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Abstract 

The statistical method of Principal Component Analysis (PCA) is developed here 

from a time-series analysis method used in nonlinear dynamical systems to a forecasting 

tool and a Measure-Correlate-Predict (MCP) and then applied to wind speed data from a 

set of Met.Office stations from Scotland. PCA for time-series analysis is a method to 

separate coherent information from noise of measurements arising from some 

underlying dynamics and can then be used to describe the underlying dynamics. In the 

first step, this thesis shows that wind speed measurements from one or more weather 

stations can be interpreted as measurements originating from some coherent underlying 

dynamics, amenable to PCA time series analysis. In a second step, the PCA method was 

used to capture the underlying time-invariant short-term dynamics from an anemometer.  

These were then used to predict or forecast the wind speeds from some hours ahead to a 

day ahead. Benchmarking the PCA prediction against persistence, it could be shown 

that PCA outperforms persistence consistently for forecasting horizons longer than 

around 8 hours ahead. In the third stage, the PCA method was extended to the MCP 

problem (PCA-MCP) by which a short set of concurrent data from two sites is used to 

build a transfer function for the wind speed and direction from one (reference) site to 

the other (target) site, and then apply that transfer function for a longer period of data 

from the reference site to predict the expected wind speed and direction at the target 

site. Different to currently used MCP methods which treat the target site wind speed as 

the independent variable and the reference site wind speed as the dependent variable, 

the PCA-MCP does not impose that link but treats the two sites as joint observables 

from the same underlying coherent dynamics plus some independent variability for each 

site. PCA then extracts the joint coherent dynamics. A key development step was then 

to extend the identification of the joint dynamics description into a transfer function in 

which the expected values at the target site could be inferred from the available 

measurements at the reference site using the joint dynamics. This extended PCA-MCP 

was applied to a set of Met.Office data from Scotland and benchmarked a standard 

linear regression MCP method. For the majority of cases, the error of the resource 

prediction in terms of wind speed and wind direction distributions at the target site was 

found to be between 10% and 50% of that made using the standard linear regression. 
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The target mean absolute error was also found to be only the 29% of the linear 

regression one. 
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1 

Chapter 1 Introduction to wind resource 

This chapter will give a brief introduction on the current status of wind energy. 

Wind resource assessment which is the aspect of wind energy of interest for this 

research will then be discussed. 

1.1 Wind energy industry 

Wind energy is one of the most established renewable energy forms. It has been 

one of the fastest growing renewable industries for the past two decades. Its growth has 

appeared at the beginning of the 90’s and ever since it has become a more mature, clean 

energy generating technology. As facts indicate, wind industry is expected to continue 

existing with lower costs as energy security threats and the immediate need to meet the 

CO2 reduction standards so as to prevent climate change [1]. 

In more details, wind energy’s key role as a renewable energy form can be verified 

by various statistics. In Europe, there is currently 128.8 GW of installed wind capacity 

where 8GW come from offshore and 120.6 GW from onshore installations [2]. Wind 

power installations have increased annually over the past 14 years from 3.2GW in 2000 

to 11.8GW in 2014. Germany followed by Spain, UK and France are the leading EU 

countries in the wind installed capacity [2]. In a normal wind year, the installed wind 

capacity by the end of 2014 could produce 284TW of electricity enough to cover 10.2% 

of the EU’s electricity consumption needs where 9.1% originates from onshore and 

1.1% from offshore wind [2]. The EU wind farms investment ranges between €13.1bn 

and €18.7bn with onshore wind farms in particular having investments from €8.9bn to 

€12.8bn. Furthermore, wind energy technology installations had the highest installation 

rate in 2014 with 43.7% of all new installations and 11.8GW [2]. In Europe, 79.1% of 

the newly installed capacity came from renewable energy sources with the installation 

of 21.3GW renewable power capacity. 

In 2014, UK installed 1,736.4MW of wind power with 813.4MW originating from 

offshore wind [2]. Renewable energy currently provides 19% of the UK’s electricity 
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needs and wind energy covers half of it. UK power needs were met by 13GW with wind 

energy [3]. More specifically, onshore wind is providing 5% of the electricity in the UK 

and this percentage is expected to rise to 10% by 2020. Another attractive factor of wind 

as a form of energy is that UK has an excellent wind resource potential and its cost as a 

form of energy is also small compared to the benefits of  decarbonisation achieved [3]. 

The economic benefit from wind energy to local communities is very important also 

considering small scale wind installations; by the end of 2014, 27,819 small and 

medium turbines have been deployed across UK saving 168,257 tonnes of CO2 [3]. 

Scotland in particular, has shown a steady growth in renewable electricity capacity 

currently at 7.3GW in the end of 2014 compared with 2.7 MW in 2007 [4]. Onshore 

wind, accounts for over 69% of the installed capacity in Scotland followed by hydro, 

offshore and bioenergy. Furthermore, Scotland’s renewable electricity output has raised 

to 19,067GWh in 2014 from 8,215GWh in 2007 and the electricity generation 

originating from renewables was  around 49.8% in 2014 [4]. Onshore wind investment 

was 4,513MW in the end of 2013 and 5,015MW in the end of 2014 with a total of 

£701.8m whereas offshore was 190MW in the end of 2003 and 197MW in the end of 

2014 with a £22.8m [4]. 

The constant technological development alongside with the increasing energy needs 

and the necessity of turning to a more sustainable future will undoubtedly establish even 

further wind energy in the near future. 

1.2 Importance of wind resource assessment 

Wind energy is a strongly intermittent form of energy with a large variability [5]. 

Given that modern wind farms have installed capacities of several hundred megawatts 

or more, even a small overestimate or an uncertainty in the predicted resource can result 

in a shortfall of income of several million pounds annually per wind farm. For this 

reason, wind resource assessment is an important part of siting and developing wind 

farms. 
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Since wind is highly dependent on regional factors affecting the larger weather 

systems, wind energy production is significantly challenging in terms of prediction [6-

8]. In order to investigate the variability in wind temporally and spatially, wind speed 

and direction are monitored in different locations (reference sites) close to a potential 

site (target site) so that the characteristics of the wind resource can be established [9].  

Different types of data sets from different wind masts in wind farms and 

meteorological office stations from other nearby sites are being used by wind farm 

developers. For example, meteorological stations report hourly wind speed and 

direction data from instruments typically 10m above ground, but dedicated wind farm 

masts are typically taller and would sample measurements at a second by second or 

minute by minute frequency. When these datasets are analysed by well-established 

MCP methods, they can significantly aid in the wind uncertainty reduction and 

prediction [10]. 

A typical problem concerning wind data collection is the large variability between 

areas and sources containing wind data [11]. Part of this is because the local wind 

resource is strongly affected by its immediate environment and part is due to the 

instrumentation used.  A further problem that wind data analysis often faces is that poor 

quality and inadequate data which in both cases can lead to poor predictions [12]. 

Sometimes, other global datasets can be used instead such as reanalysis data [13]. 

Reanalysis data are produced by combining a range of different meteorological datasets 

such as: remote sensing observations, satellite data, surface observations coming from 

land. These data are used as an input to a Global Circulation Model (GCM),  in other 

words a numerical weather prediction model, so at to result in a range of values of 

meteorological variables at discrete time intervals [14]. Their accuracy however, could 

be questioned since they are not always representative of the area and the data readings 

might not be recorded frequently enough. Satellite data specifically, look into for 

example temperature measurements and cloud coverage. 

Instruments such as LIDAR, SODAR have been used since they can provide with 

high resolution wind data as an alternative [8]. As mentioned, some of the main factors 

that influence the wind resource assessment quality and reliability are the location of the 
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wind farm itself [15], the wind statistics of measurements before the turbine installation 

and during their operation that are expected but also all the technical equipment used in 

the farm. 

  Furthermore, as far as the location of the wind farm is concerned, its topography is 

very important. In more detail, the effects of the terrain on the wind flow, the roughness 

and the small/large scale weather of the surrounding area are some of the very important 

factors that should be taken into consideration when planning a wind farm. In 

Velasquez research the islands orography was used as part of his analysis and it was 

found to be an important factor for the results since it can affect the sites correlation 

[16].  Furthermore, wind speed and direction which are some of the most important 

factors that determine the wind statistics can vary at all-time scales. 

 A semi-empirical methodology was developed by the UK Met Office to estimate 

small-scale wind energy potential which consists of the application of corrections to 

wind data locally and regionally based, according to average surface roughness 

parameters [17]. Weekes and Tomlin in their research tried to evaluate the 

aforementioned method [9] for 38 UK sites in order to examine the errors between the 

actual and predicted wind speeds and wind power density, the surface roughness due to 

the difference of terrains and the morphology of the UK sites used. They concluded that 

the method has some limitations; however, even with simple modifications of these 

aerodynamic parameters improvements could be made. They also noted that semi-

empirical modes can be applied easily and with a small cost for wind resource 

assessment however they include uncertainties that could pose a problem when 

assessing large wind investments. Therefore, in these cases they should be used in 

addition to onsite measurements. 

Due to its large variability interannually it is important to obtain a sufficient amount 

of wind data measurements [11, 18-24]. Different authors suggest different periods such 

as 3 years, 10 years or even 20 to 30 years to be able to characterize sufficiently a sites 

wind resource [11, 16, 18, 21, 25-27]. Different cycles from daily to seasonal and 

interannual ones [11, 19, 26, 27] can be observed but also wind turbulence and gusts are 

quite common too. Turbulence represents rapid fluctuations in wind speed and direction 
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at all time scales, including those shorter than is usually available from resource 

assessment measurements which can impact the wind turbine performance. Wind gusts 

which are a sudden increase in the wind speed which last long enough to affect turbine 

performance [23]. In addition, the turbines have to adjust to the wind fluctuations at all 

time but that is not always the case since they often have a delay and a lack of 

immediate response. The anemometers also can be of low precision and response 

depending on their quality so data measurements can be of poor quality and quantity. 

Albers et al. highlight the extreme importance of good quality of wind speed 

measurements as they think that it is the only way to limit the financial risk of wind 

farm projects especially for complex terrain sites [28]. As Angelis-Dimakis et al. note in 

their review for wind energy, one of wind resource’s greatest challenge is to come up 

with flow and numerical models which can identify the wind flow features while being 

at a complex terrain and at the same time keep the calculation cost at a low level [8] 

Gerdes et al. also mentioned in their study, one has to be careful with the wind speed 

measurements used since if the measurements are undertaken in a ‘good’ energy 

production year, it could lead to an overestimation of the forecasted energy production 

of a wind farm. Thus he highlights that the long-term effects of measurements must be 

taken into account [20]. Hence, the wind farm equipment quality and the methods of 

analysis and prediction of wind behaviour are indeed of extreme importance for a good 

resource assessment. 

1.3 From wind to electricity 

Figure 1 illustrates the power output for a given wind turbine. The maximum value 

of the y axis power coefficient is 1 since it is scaled to rated power. The typical wind 

turbine efficiency η is described as 
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where P is the power output from the turbine and the denominator is the power carried 

by the wind with ρ the air density, U the wind speed and 4

2D
A
π
= the swept area of 

the blades. 

At cut-in winds when the turbine starts to operate, the efficiency and output 

increase rapidly until the rated power is reached. At that point the typical turbine 

efficiency is about 40%-50% and thus it is the typical best efficiency for a wind turbine. 

After the rated power output reaches 1 at the rated wind, it becomes flat which means 

that even if wind speed is increased, the efficiency decreases. It can also be seen that, 

usually, above u =25 m/s the turbine is turned off. 

 

Figure 1. Performance curve of a typical wind turbine. 

The Weibull distribution is often found to best describe wind speed distribution, at 

least in Europe. The Weibull distribution equation is of the following form 
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where U is the wind speedk is the shape factor andc the scale factor measured in m/s.  

Figure 2 indicates the probability density function of the Rayleigh distribution, a special 

case of Weibull distribution withk =2, frequently used for well- behaved sites with 

wind speeds above 4.5 m/s.  The Rayleigh distribution equation is of the form 

 

( ) 



 


−=

2

2
exp

2

c

U

c

U
UPR  (3) 

The capacity factor (CP) for wind turbines/ farms is the ratio of actual output of the 

wind turbine/ farm for some time, over their full potential. The typical estimate of CP 

for wind farms is 30% [29, 30]. 

 
Figure 2. Probability density function (pdf) of Rayleigh distribution. 

To examine the sensitivity of wind turbine performance so as to verify the rationale 

behind the importance of a good wind resource assessment an example will be 

illustrated in Figure 3. Taking a typical wind turbine 45m above the ground nearby 

Edinburgh airport with average annual wind speed of u=6 m/s, the expected CP of the 
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Rayleigh distribution with scale factor c =6.77 m/s is expected to be CP=16.4%.  

Changing the scale factor randomly by ± 0.4 % resulted in a change of the CP by ± 

1.3%, as it can be seen in Figure 3. 

Früh in his research for 43-year-long wind data in Scotland concluded that the 

electricity output is subject to sensitivity when small changes in mean wind exist, 

especially for poor wind resource sites. He also highlighted the variation in the expected 

output from year-to-year ranging from 10% to 15% in Scotland [30]. 

The conclusions that can be derived from this example are that the turbine 

electricity output is very sensitive to changes in the wind statistics and hence the 

electricity distribution and the sites chosen are of great importance. Finding the best 

possible estimate of the sites distribution results in choosing a good site. Furthermore, it 

should be noted that wind direction apart from the speed measurements is essential to be 

correct since together they can affect the electricity outputs. 

 
Figure 3. Change of CP in response of changing c. 
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1.4 Aims and objectives 

In order to address the issues mentioned in sections 1.2 and 1.3 a novel Measure-

Correlate-Predict (MCP) technique was developed in this research which is based on the 

statistical methodology of Principal Component Analysis (PCA) and applied through 

the statistical package R [31]. 

1.5 Thesis outline 

This thesis structure will be as following: Chapter 2 will explain the fundamental 

principles of the MCP methods and give their overview. Chapter 3 will explain the 

theory behind the PCA methodology, Chapter 4 will illustrate the results of PCA being 

used as a forecasting method for wind purposes. Chapter 5 will contain the initial results 

of PCA used as an MCP method followed by Chapter 6 which will exploit the main 

results of this research i.e. using PCA and an MCP method for wind speed and 

direction. Finally, Chapter 7 will include discussion and conclusions of this research 

followed by the Appendices which contain the R [31] scripts which were used 

throughout this research. 
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Chapter 2 Measure-Correlate-Predict (MCP) methods 

This chapter will discuss the principles of MCP methods as well as describe the 

already established MCP methods in research and in the wind energy industry.  

2.1 Fundamental principles of MCP methods 

The principle behind the MCP methodology is to correlate short-term wind data of 

a target site, usually the wind farm of interest, with long-term wind data of a reference 

site, usually a meteorological office site nearby, so that a relationship between them is 

established [8, 9, 18, 32, 33]. A typical (concurrent) data measurement period used is a 

year or more [24]. Current commercial practice in companies is around 18 months; this 

period is enough to capture the annual wind cycle and not too long so as to be longer 

and more costly than necessary. The goal of MCP in this application is to characterise 

the wind speed distribution as a function of wind direction and other invariants so as to 

estimate the annual energy capture of a wind farm [24, 34].  As mentioned in section 

1.2, the electricity sales are directly proportional to the annual energy production and 

hence a major factor in the economic analysis of a potential site and, for that reason, a 

reliable wind resource estimate is a key factor for investors and developers for their 

planning and decision-making. 

In general, the following function mathematically describes MCP for the wind 

application:                                                              

  (4) 

where V is the wind speed, θ  the wind direction, c  denotes the concurrent data and 

subscripts tarand ref are the target and reference sites, respectively. The function ( ).f  

has a fixed form which is determined from the concurrent data and then applied to the 

historical record. Hence equation (4) indicates that the wind speed of the target site is a 

function of wind speed and direction of the reference site. Using the concurrent set of 

measurements,  and it is possible to determine the function f , 

),( ,,, crefcrefctar VfV θ=

),( ,, crefcrefV θ ),( ,, ctarctarV θ
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which can then be used to estimate historical data for the target site by 

. A simple example of this function estimation is the linear 

regression MCP, where a line-fit for  (on the y axis) is regressed against the  (on 

the x axis) for the concurrent measurements. This gives a best-fit line with a form of the 

function f only depending on the wind speed, 
refV  , but not the direction, 

refθ . This can be 

expressed as                                              

 ( ) refrefreftar mVbVfV +== θ,  
(5) 

whereb is a constant and m is the gradient. Thus, using the historically available 

reference wind speed record, hrefV ,  in equation (5) gives the prediction for the 

corresponding wind speed at the target site,htarV , . Figure 4 is depicting a straight 

forward case of the target site and reference site line fitting where the solid red line 

shows the line of best fit found from linear regression, resulting in the equation given at 

the top left. 

MCP methods can be divided into analytical and empirical models depending on 

the function that they use. Analytical models make a clear assumption regarding the 

form of the function they use [18] where the parameters of the function are determined 

by the regression analysis results. The most common is the linear relationship used in 

equation (5) to illustrate the principle, but non-linear MCP regressional methods also 

exist. Historical data are referred as the data originating from previous years readings 

taken from the reference site datasets. 

),(),( ,,,, hrefhrefhtarhtar VfV θθ =

tarV
refV
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Figure 4. A straight forward case of line fitting where the solid red line shows the line of best 
fit found from linear regression. 

 

Almost all regression-based analysis methods assume that wind at the target site at 

a point in time is directly linked to the wind at the reference point from the same time 

period.  Occasionally, and especially in complex terrain, this assumption is not valid 

and other, empirical, MCP methods have been developed to overcome this. Rather than 

linking the wind speeds at certain times to each other, the wind distribution or wind rose 

at the target site is compared to that for the reference site. Empirical MCP methods 

often use a matrix to link a wind situation at the target site with a corresponding 

situation at the reference site using a matrix form or lookup table for a ‘case-by-case’ 
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correspondence where no underlying analytical assumption is applied to all cases [35]. 

Like the analytical case, the matrix or distribution methods include concurrent data to 

extract the relationship [36] between the two distributions or wind roses for the period 

of the concurrent measurements, and subsequently apply that relationship to the 

historical wind rose from the reference site to predict the corresponding wind rose for 

the target site.  

2.2 MCP methods in literature 

2.2.1 Overview of established MCP methods in literature 

Essentially, the fundamental approaches can be classified into (a) analytical, of 

which most use a form of regression, (b) empirical, which mostly determine links 

between wind roses or wind speed distributions (also known as frequency tables), and 

(c) non-linear modelling, of which the Artificial Neural Network (ANN) has been used 

most widely. Table 1 is attempting to provide an overview over the range of the 

fundamental MCP approaches in literature. The first column indicates a classification 

according to the main approach, and the second column lists common variations on that 

basic assumption. For example, a linear regression can be applied to all data 

indiscriminately (‘Simple’) or it can be applied individually to subsets of the 

measurements where each subset only considers the measurements when the wind 

direction was in a chosen range (‘Binned’). The third column presents the equation of 

the method where applicable, followed by the last column the explanation of the 

equation’s variables. 
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Class Variant Assumptions / Limitations Equation  Explanation  

Analytical     

Linear 
Regression 

Simple Single fixed linear relationship 
of wind speed at each point in 
time between sites. 

bmxy +=
)  

 

y
) is predicted target wind 
speed, x observed 
reference wind speed and

bm, slope and offset [37]. 
Linear 
Regression 

Binned A set of fixed linear 
relationships, one for each wind 
direction sector. 

100
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+
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u  

 

ju is the predicted mean 

wind speed, 
iu the mean 

wind speed of Met. Site 
sectors, cm, the regression 
gradient and intercept and 

jiZ ,
are the percentage 

weights [35]. 
Linear 
Regression 

Gaussian scatter Represents a variety of 
processes which are not 
accounted for in the simple 
linear model and result in scatter 
in the individual data points 
about the mean prediction.  
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N 1
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,,2

1 )

σ  
resσ is the average wind 

speed for a particular o30

angular sector,N is the 
number of observations,

itaru ,
is the wind speed at 

target site and
itaru ,

) the mean 

target prediction [33]. 
Variance Ratio Linear relationship 

but the coefficients 
(slope and 
intercept) are 
determined by 
ratio of variance 

This approach differs from the 
linear regression one because no 
direct attempt is made to model 
the error term in order to 

reconstruct the residual scatter. 
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from both sites and 
not through 
regression. 

site respectively of the 
concurrent datasets [36]. 

Multiple 
Principal Least 
Squares (MPLS) 

Based on 
regression but 
combining 
information from 
different sources. 

Does not require the existence of 
concurrent data. It benefits from 
data of multiple sites. Reference 
site data do not need to be in 
same length with each other or 
with the target site data.  

∑=
x

TT VuT *ˆ  T̂ is the predicted target 
site data, *, TT VU orthogonal 
matrices and ∑

x

diagonal 

matrix based on singular 
value decomposition of the 
reference data [32]. 

Empirical     
Distribution 
Methods 

Probabilistic Limited dependence between the 
reference and candidate site data 
and limited representation of the 
long-term wind characteristics 
for the data period used for 
training purpose.  

( ) ( ) ( )zk

LT

rzkji

wN

k

dN

z

ST

rcji

LT

c dvPdvdvP
NF

dvP ,,,,
1

,
1 1
∑∑
= =

−
=  

( )zk

LT

r dvP , is the probability 
mass function of long-term 
wind speed and direction 
of reference site, NF is the 
Normalization factor and 

( )rrcc

ST

rc dvdvP ,,,
−

is the joint 
probability mass function 
of the short-term candidate 
and reference site wind 
speed and direction. 

dw NN , are the wind speed 
and direction bins of the 
joint probability mass 
function [38]. 

Distribution 
Methods 

Simple linear 
regression pdf 
(SLRpdf) 

 

Models the underlying 
distribution of target site wind 
speeds rather than the historical 
time-series.  

( ) ( )
( ) ( ) rrlong

rshort

tr
tlong duuf

uf

uuf
uf ∫= ,

 rt uu , are the wind speed 
observations of target and 
reference sites, 

( ) ( )rlongtlong ufuf , is the long-
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Also rather than the restriction 
that a specific reference site 
wind speed corresponds to a 
specific target site wind speed, it 
predicts a distribution of target 
site wind speeds for every 
reference site wind speed in the 
form of a conditional probability 
distribution. 

term marginal probability 
density function of wind 
speed at target and 
reference site and ( )rshort uf

short-term training 
marginal pdf of the 
reference site [39]. 

Distribution 
Methods 

Weibull pdf 
(Wpdf), Nonlinear 
regression with 
bivariate 
cumulative 
Weibull pdf’s 
(WR) 

As above but assumes that both 
reference and target sites are 
described by Weibull 
distributions.  
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x

yx
yxF exp1,  

k is the shape and λ the scale 
factors, δ the parameter 
controlling the degree of 
association between yx,  the 
reference and target sites 
[40]. 

Nonlinear Modelling   
Artificial Neural 
Networks 
(ANNs) 

Multilayer 
Perceptron 
Topologies 
(MLPs) [41] 

Group Method of 
Data Handling 
method (GMDH) 
[41] 

Extreme Learning 
Machine (ELM) 
[41] 

No initial assumption of 
relationship between sites. Link 
is established through ‘learning’ 
of hidden layers. Interpretation 
and error estimation is not trivial 
[15, 16, 41].  
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
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STLT , are the long-term 
and short-term data,S is the 
standard deviation and cr VV ,  
is the reference and 
candidate wind speed [16] 
based on the Variance Ratio 
method [36]. 
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Hybrid MCP  Correlates the wind data at the 
targeted site with that at multiple 
reference stations. Accounts for 
the local climate and the 
topography information. The 
weight of each reference station 
is determined based on: (i) the 
distance and (ii) the elevation 
differences between the target 
wind site and each reference 
station.  
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iw is the weight of each 
reference station, 

refn the 

number of reference 
stations, 

jj hd ∆∆ , are the 

distance and elevation 
difference between target 
and thj reference station 
[42] . 

Table 1. MCP methods in literature. 
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All the linear regression, variance ratio and MPLS methods for MCP attempt to 

find a prescribed fixed function to describe the link between the wind at the reference 

and target sites at each point in time.  In the case of the simple linear regression, the a 

single function bmvv referenceett +=arg  (as in equation (5) above) is determined by the linear 

regression between the full contemporary records of the reference and target site, and 

then that single function is applied to the entire historical wind speed record from the 

reference site to calculate the corresponding predictions of the wind speed at the target 

site.  In the case of refinements, the binned regression for example, repeated linear 

regressions are applied, each only to the selection of contemporary wind speeds which 

belong to a wind direction bin. With that, different values of m  and b are calculated for 

each wind direction sector. Then again, only the selection of wind speeds from the 

historical records with their respective m  and b  are used to predict the corresponding 

target wind speeds. To illustrate this with just using two bins: one for easterly winds 

(direction between 0° and 180°) and one for westerly winds (direction between 180° 

and 360°): 1m  and 1b  are found by a line fit between only those concurrent ettv arg  and

referencev  for which the reference wind speed has a direction between 0° and 180°;  

likewise a different line fit is applied to the wind speed data from the other wind 

direction bin to get values 2m  and 2b .    

Having identified the two best-line fits, the historical target wind speeds are 

predicted by again splitting the historical reference data into those where the wind 

direction is between 0° and 180° (say, 
1,histv ) and those where it is  between 180° and 

360° (
2,histv ).  Then the historical, climatological wind speed at the target site, 

predv , is 

predicted as the set made up of                                                     

 1,111, histpred vmbV +=
 

(6) 

and 

         
2,222, histpred vmbV +=

 
(7) 
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This principle can be extended to more wind directional bins which can be arbitrarily 

chosen, or could be extended to incorporate a time-delay between reference and target 

site to allow for wind speed changes to be transported by the wind from the reference 

site to the target site. For example, for a target site 40 km downwind of the reference 

site at a wind speed of 5 m/s, a sensible delay would be 40000/5 = 4000s or a little over 

an hour. However, choosing the best time-delay is difficult because physically time-

delay incorporates wind speed and direction and it is correct for one particular wind 

speed and wind direction only. 

Distribution methods for MCP are fundamentally different in that they do not 

attempt to find a link between a wind speed measurement at a particular time at the 

reference site and a corresponding speed at the target site, but the link is made between 

the wind statistics (distribution) over the period of the availability of the concurrent 

data. So, while regression links two wind speed measurements, the distribution methods 

link how often the wind was at a particular strength at the reference site with how often 

the wind was at that strength at the target site. In that sense it looks at dependencies. 

Artificial Neural Networks attempt to find a link between the sites by training the 

ANN on the concurrent set, and then using that trained ANN to predict the target site 

wind speeds using the historical reference data.  While such a method can be very 

powerful, as the link between the sites is not prescribed in a simple formula but 

explored in the training process, it is notoriously difficult to predict how good an ANN 

model has performed, and the training and prediction process is a fairly complex and 

non-transparent process.   

The potential of ANNs to perform very well suggests that using approaches which 

can ‘learn’ not only parameters in a specified function f  but the form of the function 

itself potentially can provide a much better prediction without having to resort to 

expensive and time-consuming flow modeling. One such method, but through a much 

more transparent process, uses empirical functions based on maximizing the covariance 

between two measurement series.  
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2.2.2 Applications of MCP methods  

The establishment of the relationship between the two sites, reference and target 

can be complicated and is based on several stochastic variables. Some of these 

invariants are: wind speed and direction over time, which are used as the inputs for the 

MCP algorithms in most cases, the distance between the reference and the target site, 

for example the time of flight delays, the effects of the terrain on the flow, e.g. local 

obstructions such as forests, hills and the large and small scale weather patterns, e.g. 

atmospheric stability [36]. 

Due to the existence of these invariants, wind speed observations can be binned in 

accordance with their wind direction values. It can be found that wind direction is 

binned in different sectors at the target and reference site and hence the binning might 

not always coincide. Thus a decision must be made in order to select which site, 

reference or target binning will be used [40]. An alternative binning methodology was 

proposed by Woods and Watson where the predicted wind speeds related with a specific 

wind direction sector are obtained from the weighted average of the linear regression 

relations among all sectors when correlated with that specific bin [35]. Probst et al. 

treated the wind speed data corresponding to each sector as being analysed individually 

so as to find their correlation [43]. A general binning of the wind direction sectors 

happens normally at 8, 12, 30 or 45 [16]. 

The reference data can be derived from weather monitoring stations close to an 

airport or national weather services. As Probst et al. suggest in their work, the reference 

and target data used for the MCP analysis should be coming from similar heights. They 

continue by saying and that a difference in the heights could cause a reduction in the 

correlation coefficient between the two sites [43]. In a research conducted by Carta et al.  

the cross correlation of hourly mean wind speeds for 2010  at the Gran Canaria airport 

and some other wind installations on average 13km apart were examined. The reference 

station data were measured at one height (10m agl) but the target ones at different 

heights (10, 20, 40 and 60m agl). They found that the correlation coefficient between 

10m agl for the reference and 20m agl. for the target was the highest one [18]. The data 

readings used are usually hourly wind speed averages for the long-term assessment but 
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there exist other possible data readings intervals such as a 10-minute interval, a half-an-

hour one but also 1- or 2-minute intervals [18]. 

2.2.3 Comparison of MCP methods 

Rogers compared four MCP methodologies [36]. These methods included the linear 

regression model, a model using ratio distributions of wind speeds at two sites, a vector 

regression method and a method based on the ratio of standard deviations of two 

datasets. The most popular of the analytical methods is linear regression developed by 

Derrick [37]. A refinement of this method was found by Woods and Watson [35]  which 

uses again linear regression for modelling the wind speed but treats the wind direction 

in matrix bins. 

Some other methods include the ‘Variance Ratio’ (VR) method [36] where its 

approach lies in the relationship of variances from the reference and target site. VR’s 

advantage lies in the fact that it preserves the data variance whereas other MCP methods 

don’t. Mortimer also developed a similar method where the wind speed is binned 

according to the direction sector and speed at reference site. The standard deviation of 

the ratios in each bin in a matrix form was taken into account and another matrix was 

created with the ratios averages [44]. According to Mortimer, this method could predict 

better extreme winds in comparison with linear regression. 

Artificial Neural Networks (ANNs) were used for short term wind measurements in 

order to estimate the annual wind energy potential [15]. More specifically, one-year 

measurements were used from three different sites in Ireland to examine the annual 

wind regime using a training period of one and two months. The authors concluded that 

the ANNs method performed well in predicting the annual energy yield for both training 

periods thus using short term data could be a successful representative of such an 

analysis. They compared the results also with WAsP (Wind Atlas Analysis and 

Application Program) [45] and found that they were similar. 

Carta et al. proposed another MCP method to estimate long-term wind speed 

characteristics at 6 wind energy sites located in the Canary Islands, Spain. The method 
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was based on the probability density function of the wind speed of the target site 

conditioned with respect to the wind speed at the reference site [38]. Then they 

compared their method with the VR method [36], the Weibull Scale method [12] and 

the joint probabilistic approach [46]. The results indicated a better estimation of the 

wind speeds in most of the cases however it was underlined by the authors that the 

degree of correlation between reference and target site is of great importance and hence 

it can pose a limitation in the quality of the results [47] as well as the effect of climate 

change [48]. Wind resource covers the lifetime of a wind farm (around 10-25 years) so 

if historical wind speeds are included i.e. from 40 years before then climate change is 

included and hence bias  is introduced [49] [30]. Thus, the reliability of the resource 

assessment would be questioned. They also underlined the importance of examining 

wind regime and wind speed correlations in the regions of interest so that an appropriate 

MCP methodology would be used. They also noted that observed wind speed data of the 

target site may actually give better estimates rather than long-term estimations made by 

MCP techniques [38]. 

Three new MCP methods were evaluated and compared in another study with 

simple LR and the VR method [36] on concurrent synthetic wind speed data sets from 

two sites. Perea et al. [40] developed three new models, two based on conditional 

probability density functions (pdf’s) with termed kernel methods named: Weibull pdf 

(Wpdf) and the simple linear regression pdf (SLRpdf) and one based on nonlinear 

regression with bivariate cumulative Weibull pdf’s (WR). They investigated 5 metrics 

for all the different MCP methods: mean, standard deviation, Weibull scale factor, 

shape factor and energy density. The results indicated that the combination of the 

modelling approach and the parameter estimation both are reliable criteria for the choice 

of the most appropriate MCP method. The Wpdf seemed to outperform all the other 

methods and give the most accurate prediction for all the metrics and input data 

combinations but also portray in the best way the natural distribution of the data. 

Finally, they concluded that the Wpdf method performs with more accuracy than the 

VR method [36] even though the VR method still can predict very well. However, the 

drawback of Wpdf over the VR method is that it entails more programming cost.  
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In another MCP study, the authors [16] compared the linear MCP method based on 

the VR method [36] and ANNs comprised of Multilayer Perceptron Topologies (MLPs) 

[16]. They used 6 weather stations with mean hourly wind speed data spanning from a 

10-year period on the Canary Archipelago in Spain, estimated their long term wind 

speeds and based on this knowledge, their energy costs. The uniqueness of their 

research lied in the fact that for the first time a linear MCP algorithm and ANNs where 

compared in the cost estimation per kWh of a wind turbine at a target site. Furthermore, 

the errors calculated were based on short-term and long-term data from the target site 

and were compared with each other. In general, the ANNs cost per kWh was lower than 

the linear MCP. The errors and hence the cost tended to be higher when using the short-

term data as a representation of the target site. 

Two particular neural network models, which have an efficient training algorithm 

and therefore are not tine consuming to reconstruct and predict time series, were applied 

to wind series reconstruction and predictions of a real wind farm in Guadalajara in 

Spain [41] named Group Method of Data Handling method (GMDH) and Extreme 

Learning Machine (ELM). The methods performed accurately and fast when compared 

with other well-known methodologies such as multi-layer perceptron (MLP) [16] and 

support vector regression algorithms. A software based usage of GMDH and ELM was 

also undertaken and indicated fast wind speed reconstruction and prediction from 

reference sites.  

Weekes and Tomlin based their MCP research on short period wind speed data, 

only three months, for 22 UK stations [33]. They examined 3 different MCP 

approaches: simple LR, the VR method [36] and linear regression with Gaussian scatter 

(LR2).  They concluded that using such small short-term data can introduce challenges 

such as the effect of seasonality but nevertheless, they can lead to successful 

predictions. For the seasonality specifically, they found that in the UK the lowest errors 

were observed when using autumn or spring data as their training period whereas the 

highest errors occurred for winter and summer. Since these MCP approaches performed 

very well in this case, i.e. using such a short period of data this subsequently can be 

quite beneficial to small-scale wind farm developers. 
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In another study conducted by the same authors, [39] an MCP approach based on 

the bivariate Weibull (BW) probability distribution of wind speeds pairs of correlation 

sites and a variation of the BW method, (BW2) were compared with simple LR and the 

VR method [36] for 11-year-long wind observations of 22 UK sites. In addition, they 

created 22 artificial wind data based on ideal BW distributions.  Regarding the artificial 

data, the BW method performed better than the linear MCP methods but the contrary 

was the case for the actual wind data for short training periods. For training periods of 

12 months, all methods performed in a similar way.  Hence, they came to the conclusion 

that whereas BW performs better for artificial data, when used for actual ones the 

method might not work as well since data might not follow exactly the idealised BW 

distributions assumed. 

Dinler [32] in his study tested a new MCP method, Multiple Principal Least 

Squares (MPLS) on hourly wind data from 4 different regions. The main advantage of 

MPLS lies in the fact that it can be applied even when there is a low correlation between 

the target and reference site and thus when poor quality of or non-concurrent data exist 

as well.  MPLS was proven to be as good as the VR method [36] for 95% of the cases 

when concurrent data exist. It also performed well in the lack of concurrent data and for 

different lengths of data with 84% better predictions than the actual data. The method 

had a 40% improvement when using one-year or six-month data. According to the 

author, Principal Component Analysis (PCA) could identify discrepancies in wind 

speed data and be useful in order to extract signal from noise but however it may not 

give reliable predictions [32].  In this research the opposite will be proven for PCA 

standing as an MCP method with more details to follow in the next chapters. 

Zhang et al. used an advanced hybrid MCP methodology with wind speed and 

direction as input variables for 6 reference stations at North Dakota USA using the 

years of 2008-2010 [42]. They examined two cases, in the first one each reference 

station used one of the established MCP algorithms 1) LR, 2) VR [36], 3) ANNs and 4) 

support vector regression and the best hybrid strategy of the MCP methods and station 

was assessed. It was found that the hybrid algorithm’s accuracy was influenced by the 

use of individual MCP algorithms and stations and that the best scenario was achieved 
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when considering the length of the correlation period. In the second case, both wind 

speed and direction were taken into account and the best correlation period was found to 

be from approximately 8 months to a year. Lastly, they found that the power generation 

was over predicted by ANNs, hybrid neural networks, LR, hybrid LR and hybrid VR 

methods. However, the opposite occurred for the support vector regression, hybrid 

support vector regression and for the VR method.  

2.3 Alternative resource assessment approaches 

The fundamental aim of MCP is to evaluate the long-term, climatological resource 

at the chosen location. MCP does this through linking a local measurement campaign to 

a climatological record from a specific nearby locations. One alternative approach is to 

use climatological information synthesised from many data sources and compiled in an 

atlas format. Another method is to use the results from climate models. 

2.3.1 Atlas methods 

An initial wind resource assessment can be made by using a database, such as the 

now NOABL free database [50] or the UKCP09 [51] for the UK, or the WAsP Wind 

Atlas [45] used virtually world-wide, where long-term wind data are used to report an 

average wind speed for a fairly large area.  Such an approach only gives a rough 

indication as to whether a region may have, on average, a good resource or not.  

However, the accuracy of the prediction is well below that expected from developers, or 

the institutions providing the financing of the development. As a next step to improving 

this accuracy prediction, the regional average is refined by using computer model to 

simulate the flow through the proposed development site. They may use a Wind Atlas 

as an input and with some correction for the terrain and obstacles. Then, it creates a map 

where the location’s wind regime can be obtained.  

One common refinement tool is WAsP [45] which is widely used in the wind 

industry. These packages tend to work well for sites with fairly simple topography, but 

they are reputed to struggle to produce satisfactory results for areas with a complex 
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topography.  Other commercial packages performing essentially the same service 

include WindSim [52], ZephyTools [53], Windie [54] WindFarmer [55], WindPro [56], 

and AWS openWind [57] which are explained in more detail in section 2.4 of this 

chapter. 

Another resource assessment method that has been applied to wind resource 

prediction involves the utilisation of global atmospheric databases, with the most 

commonly used being from the NCAR (National Centre for Atmospheric Research) the 

NCEP/ NCAR reanalysis data [13] the ECMWF (European Centre for Medium-range 

Weather Forecasting) which includes datasets such as HRES, ENS [58] and from 

NASA the MERRA (Modern-Era Retrospective Analysis for Research and 

Applications) [59]. The Virtual Met Mast (VMM) [60] ( developed by the Met Office) 

is a type of British Wind Atlas and atmospheric model.  

2.3.2 Climate model methods  

Other methods developed include statistical downscaling from climate models and 

dynamic downscaling from climate models. The climate models use mesoscale 

atmospheric results with high resolution to convert it to local atmospheric models and 

thus a series of nested downscaled models are created [61, 62]. Mesoscale modelling 

consists of a dynamical statistical approach to express global (large-scale) climatology 

into regional wind climatology. Typical mesoscale models are KAMM [63], MM5 [11, 

64]. 

The usual problem with this type of methods is that they are very expensive in 

terms of computing resources and time. An advantage of MCP methods is that they give 

specific results for a location whereas many of the alternative methods do not. For 

example, WAsP is a fixed terrain flow model which produces an Atlas to give a wind 

resource estimate for a region rather than a site. In more detail, WAsP initially uses the 

observed wind at a mast to derive the wind resource at a terrain absence i.e. the wind 

atlas and then using the reverse procedure, it uses the background wind as an input for 

the wind profile prediction of other points [23].  If the local topography is simple it can 

give good results for a site, but it is less useful for more complex sites [45]. VMM is a 
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more sophisticated method than WAsP and uses topographic information combined 

with computational modelling but not local measurements.  

Bowen et al. performed a study investigating the WAsP limits and found that the 

errors in predictions could be of importance if the terrain or climate are outside the 

standard conditions- for example, having a non-flat terrain and with extreme weather 

conditions [65]. Another study was conducted in order to compare the offshore wind 

resource for the German Bight between the mesoscale model and WAsP by Jimenez et 

al. It was found that WAsP can depend on the reference measurement stations to a large 

extend and that the wind profile used by WAsP for the North Sea is in good accordance. 

MM5 seemed to yield good results with a roughly 4% offshore deviation. Its main 

advantage is that there is no need to use measurement data for it [66].  

Suarez et al. compared the wind speed predictions of three different methods, 

WAsP, MS-Micro/3 [67] and DAMS (Detailed Aspect Method of Scoring) [68] in a 

complex forested terrain in the Cowal Peninsula, Scotland. They concluded that all 

three methods yielded similar predictions and in general outperformed their 

expectations based on previous case studies. The possible reason behind this is that they 

considered wind direction which could compensate for overpredictions on a hill in 

relation with underpredictions of a wind coming from a different direction. However the 

prediction variability seemed to be larger for WAsP followed by MS-Micro/3 and lastly 

by DAMS. Thus they concluded that for WAsP, the variability of predictions tends to 

become high over small distances [69]. 

2.4 Industrial MCP tools  

A lot of well-established industrial software packages performing MCP analysis 

have been developed to fulfil the wind energy industry’s needs for good resource 

assessment. A very well-known software package that performs sectorwise linear 

regression is WindFarm [70]. It accepts inputs in the form of time series used for the 

concurrent data or of a long-term frequency table used for the historic data. Since the 

least squares method only takes into account uncertainty in the vertical axis, the best-
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fitted straight line in WindFarm is found through orthogonal linear regression, also 

known as the York method [71]. Since the least squares method which is explained 

below cannot be applied, orthogonal regression becomes more appropriate. The 

orthogonal regression estimators can be found by the minimisation of the perpendicular 

distance between observations and fitted line. The output given is presented as 

sectorwise wind distribution but also as an overall mean wind speed. Furthermore, it 

enables the predicted mean wind speed value to be directly compared to the measured 

one.  

Another powerful MCP package is WindPro [56] which uses among other 

techniques least squares regression and bases its predictions on a Weibull distribution 

fit. The least squares regression is attempting to minimise the vertical distance between 

observations and fitted line. However, since the predictions made are based on a 

Weibull fit, it is likely that they could include error and thus uncertainty. The input data 

are derived this time not from times series but from the Weibull distribution and the 

output mean wind speed prediction is now not compared with the actual measured one 

but with a calculated one originating from frequency tables. 

From the empirical methods, the Inhouse Matrix Tool developed by the renewable 

energy consultancy company SgurrEnergy Ltd. builds a correlation matrix between 

reference and target site for each sector of the wind direction which is then applied to 

historical data for prediction. WindPro [56] also includes a matrix approach, in which 

the concurrent data are grouped in bins in order to define a matrix based analysis of the 

behaviour between the reference and target site. Thus, in order to smoothen the pattern 

of the behaviour obtained, normal distributions are fitted to the data. The final stage 

includes the use of the smoothed surface to transfer long term data from the reference to 

the target site. This is undertaken by the Weibull- Monte Carlo fit, to the data which are 

computer based [71]. 

A more comprehensive review was carried out by SgurrEnergy Ltd [71] which 

compares six MCP techniques. The MCP techniques used for this analysis were the 

WindFarm and WindPro linear regression, the WindPro residuals and WindPro matrix 

and the Inhouse matrix and Inhouse WindFarm. The data originated from wind masts 
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situated at potential wind farm sites but meteorological station data were included too. 

At first it was essential to determine an overall site correlation for each pair of sites for 

all the datasets included in the analysis. That was achieved with the use of least squares 

regression for all the concurrent data of each pair and r , the correlation coefficient was 

determined so as to quantify this relationship. However, the overall site correlation 

found was different from the correlation obtained by the MCP analysis results.  

A brief explanation on the procedure of the comparison of each MCP technique 

used for several pairs of sites is given next. Firstly, a pair of two year reference and 

target site concurrent data was chosen. Then, for each pair the first year of concurrent 

data was used in order to explore the sectorwise MCP relationships between the two 

sites. Furthermore, the relationships obtained were then applied to the second year of 

the reference data to enable a prediction for the second year of the target sites wind 

resource. A way to verify the results obtained by the MCP relationships was with the 

comparison of the predicted mean wind speed with the targets measured mean wind 

speed from the second year. In addition, the application of the measured and predicted 

wind speed against a generic power curve yielded mean energy outputs which were then 

compared and indicated the accuracy of the predicted against measured wind 

distribution. 

The results of the undertaken analysis indicated that the WindFarm MCP tool 

performed well consistently under most types of analysis and yielded accurate results. 

The Inhouse Matrix tool also had a good performance but indicated sensitivity to the 

site correlation. Furthermore, the Inhouse WindFarm technique seemed to result in a 

better long-term analysis than the Inhouse Matrix. WindPro Matrix also performed well 

but its drawbacks were that it could give different answers if the same datasets were to 

be reanalysed. Finally, out of all the analysed techniques, the WindPro linear ones were 

the ones that performed poorly and therefore are not recommended. 
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2.5 Main challenges for resource prediction 

2.5.1 Wind uncertainty  

 Apart from the MCP techniques comparison results, some other significant 

observations were made regarding the MCP methods. In some cases it was found that 

the underlying MCP assumptions did not hold; more specifically the relationships 

established between the two sites were varying depending on the concurrent year which 

could result in the existence of uncertainty in the MCP methods used. Hence, the 

uncertainty of a good prediction between two sites for future wind resource exists since 

the analysis indicated no ideal method to overcome this but at the same time the 

uncertainty that has been accounted for during the MCP analysis was not exceeded [71]. 

  Frandsen and Christensen [72] analysed the theory and evaluated the 

uncertainties based on several parameters for the annual power curve output of a 

turbine. They also indicated how to combine different types of uncertainty. It was found 

that the uncertainty in many cases could be ranging from 10 % to 15% on power curve 

determination and above 20% for wind resources. As for production, considering 

various Danish wind turbines the production estimation was well fitted on average but 

the standard deviation of actual and predicted production was high: 20%-30%. The 

authors emphasized on the fact that the economic viability of wind power will highly 

depend on the future relation of interest rate and the prices of fossil fuels.  

An uncertainty analysis was conducted by Lackner et al. in terms of wind resource 

assessment and energy production estimation [24]. The authors examined three major 

aspects related to uncertainty: wind resource, wind turbine power output and losses and 

finally the AEP (Annual Energy Production) uncertainty which was accounted for with 

a new method based on the Weibull distribution. Since they used sensitivity factors to 

combine different uncertainty causes, it was found that the sensitivity factors related to 

wind speed measurement and Weibull factors uncertainty can be accurately accounted 

for when this method was used. Thus the advantage which arises is that the site 

assessment uncertainty can be derived more accurately.  
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 Jung [73] performed an analysis for two sites in the Korean peninsula to 

evaluate the uncertainty based on the variability which characterizes the nature of wind 

energy. He firstly proposed probability distribution models which included wind 

characteristics such as mean wind speed, Weibull parameters, air density etc. Then he 

created an empirical probability model based on a Monte-Carlo simulation for the 

power curve performance. It was found that the aforementioned method performed well 

in quantifying the annual energy production and the uncertainty can successfully be 

assessed when considering the site characteristics which can be obtained from the short-

term measurements of the target site in the form of probability parameters.  

 In another study performed in Austria, the authors used statistical simulation 

methods to come up with profitability calculations based on wind speeds and 

uncertainty [74]. They used the VR method [36]  to obtain wind speed estimates and 

then the Conditional Value at Risk (CVaR) as a risk measure for profit returns.  The 

originality of the method was based on the fact that measured wind speed distributions, 

uncertainty and the CVaR measures were used successfully to assess the risks of wind 

profitability for the first time. 

  Messac et al. [10] presented a new method which characterizes uncertainties in 

the annual wind distribution predictions and models these uncertainties with respect to 

overall wind farm performance and local wind power density (WPD). They used a 10 

year period for two sites; one onshore and one offshore and developed two uncertainty 

models; a parametric and a nonparametric one. They investigated the period of payback, 

annual energy production (AEP) and cost of energy (COE) regarding the wind farm 

performance and found that the WPD was 30% for the offshore site and 11 % for the 

onshore site. It was found that wind speed and direction uncertainties are not 

proportional to annual predictions of the same conditions. Therefore they remarked that 

it should be taken into a great account how these conditions occur from year to year but 

also in the long term when it comes to designing a wind farm.  
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2.5.2 The example of the year 2010  

In order to understand further the significance of the good quality resource 

assessment as mentioned in Chapter 1, there is a representative example of wind speed 

measurements in 2010. The wind statistics that year indicated significantly low wind 

speeds in comparison with the ones in previous years which caused a lot of insecurity in 

general regarding the wind industry [1]. Investors, wind farm developers and others 

directly and indirectly affected in the wind industry have been concerned about the 2010 

issue and have been seeking answers regarding what will follow in the future.   

Regarding 2010 as a significant low wind year, several questions have arisen and 

been of concern to many companies and investors in the wind industry. These questions 

are for example: should 2010 be included as a reference site historical data period in 

order to predict wind resource? If yes, is there a trend created from including 2010 in 

the analysis and what kind of trend could occur? (over/under prediction) Is there bias? 

What is the effect of using low or high wind speed years in a concurrent dataset? In a 

similar situation but with the opposite wind affects i.e. extremely high wind which was 

observed in 1993 further analysis that have been carried out indicated that including 

1993 in the datasets did in fact tend to over predict wind resource.  

 Früh investigated this specific year and found that it did not fit the overall trend of 

Scottish climate. However, he emphasized on the need for continuous research 

regarding the climate indicators and wind observations connection [30]. In order to start 

answering these significant questions some analysis has been carried out with the use of 

two different MCP methods, the WindFarm [70] linear regression and the matrix 

method. The datasets were including 2010 as a historical year from a total of a ten-year 

historical period (2000-2010) and as a concurrent year alongside other concurrent year 

models such as 2008 and 2009.  

Furthermore, the same analysis has been carried out excluding 2010 from the 

concurrent and historical data period so as to observe any significant results [75]. Figure 

5 indicates a summary of this analysis, which shows the ratio of the predicted mean 
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wind speed over the actual wind speed for the two analysis methods against the 

prediction period. 

 

Figure 5. MCP Results using WindFarm and Matrix method for Machrihanish target Salsburgh 
reference for the historical period (2000-2010). 

As it can be seen from Figure 5, when the ratio of wind speed exceeds 1 the 

prediction periods which fall fully or partially within it can be interpreted as over 

predicting the wind speed. On the other hand, for example for the 2010 concurrent 

dataset the matrix method for both long term models seem to under predict wind speed 

since the wind speed ratio is below 1. The highest over predictions can be observed for 

2008-2009 and 2009 concurrent models with minor variations within all methods and 

historical datasets. Hence from this dataset analysis the question of whether the 

inclusion or not of 2010 in the historical and concurrent data could under predict wind 

speed cannot be clearly verified since in most concurrent datasets the inclusion of 2010 

in historical data but also in the 2009-2010 concurrent model does not seem to under 

predict wind speed. However, that seems to be the case for the model including only 

2010 as a concurrent dataset but not for both MCP methods. The general conclusions 

that can be made from this example are that for the 2010 concurrent model the linear 

method seems to over predict but the matrix method seems to under predict irrespective 

of the length of measurements. Thus, regression seems to be less sensitive in terms of 

0,92
0,94
0,96
0,98

1
1,02
1,04
1,06
1,08

1,1

2008-2009 2009 2009-2010 2010

Pre
dic

ted
 w

ind
 sp

ee
d /

Ac
tua

l w
ind

 sp
ee

d

Concurrent Year(s)

Machrihanish prediction from Salsburgh reference

WindFarm up to 2009
WindFarm with 2010
Matrix up to 2009
Matrix with 2010



 

 

 

34 

the inclusion or exclusion of 2010 for correlation however that is not the case for the 

method itself. 

2.6 Opportunity for improvement 

The following remarks can be drawn regarding MCP methods. An ‘easy’ site is 

usually predicted by all methods quite well. With ‘difficult’ sites, one can sometimes 

conclude that they are difficult to predict as different methods return different 

prediction, and it is not clear which is the best prediction. With other ‘difficult’ sites, 

different models have given similar predictions but those predictions were wrong. One 

of the fundamental assumptions and therefore potential limitations of MCP methods is 

that they all assume the existence of a relationship between the two sites, reference and 

target, and that this relationship does not change over time.  

One of the key limitations of analytical MCP methods is that they also specify the 

relationship rigidly, hence it is restricted. On the other hand, matrix or distribution 

methods predict only the distribution curve (which is also often referred to as the 

frequency table of wind speeds) [9]. By doing that, the amount of information used to 

specify the relationship is reduced, i.e., not all possible information is utilised in the 

prediction. Furthermore, some distribution methods assume explicitly a specific shape 

of both distributions, such as the Weibull distribution [12], which can also be a 

limitation. 

The main conclusion which can be made is that MCP are methods which can be 

used for wind resource assessment by wind farm developers without being highly 

complex expert systems. Furthermore, they could be further improved so as to become 

more accurate, minimise bias and estimate the reliability or precision of the prediction. 

Factors such as the trends of the constant climate change which includes the climate 

variability and oscillations on a multiple year time scale are essential for the MCP 

analysis to be identified [30]. The wind related data could be treated as dynamical 

systems so that cycles and random unusual behaviours that often characterise them can 

be identified, explained and understood.  Thus, there would be a lot of benefit in having 
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a common tool that is capable of identifying trends, climate cycles and true outliers. 

Current industrial experience with available MCP methods is that there is no 

consistently best prediction, and that a convergence of the prediction from different 

methods to a common answer is not necessarily a conversion to the correct answer 1
 .  

2.7 Reason for improvement 

A study was conducted via a questionnaire named WAUDIT (Wind Resource 

Assessment Questionnaire) [76] for the first half of 2010 which was addressed to 

Europe based wind analysts in academia and industry with a response from 72 people 

from 48 different organisations. The conclusions drawn were that there is a need for 

developing more remote sensing instruments for wind measurements purposes but also 

examine the used models for more complex terrains and for offshore wind purposes. 

Furthermore, turbulence models should be taken into account since they are related with 

turbine wakes. Finally, the need of validation and further development of the wind 

resource assessment techniques is of vital importance [76]. 

A novel MCP technique was developed which is based on the statistical 

methodology of Principal Component Analysis (PCA). This new  PCA-MCP method is 

designed to capture the relationship between the target and reference site empirically 

without enforcing common assumption such as linearity in that relationship. This 

method is also in the general framework of MCP in that it assumes a fixed relationship 

between the sites but does not specify the shape of the relationship. Instead, it allows for 

a selection of empirical relationships to be combined for the prediction and selects the 

best predictor for different weather types, where both, the predictor and the appropriate 

weather type, are identified through the PCA algorithm. PCA explores the 

interrelationship of the reference and target sites and is used rather than ‘assuming or 

using’ a fixed relationship of time-delays; it trains the optimum relationship between the 

two sites. This new method is based on the theory of Dynamical Systems and extracting 

                                                 

1 S.Quinn, SgurrEnergy Ltd., pers.comm., 2014 
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the optimum signal using PCA. Chapter 3 will illustrate all the theoretical background 

behind this new MCP method.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

37 

Chapter 3 Development of Principal Component Analysis as a 

forecasting and MCP method 

In this chapter the theory of Principal Component Analysis for optimising the time 

series analysis of a dynamical system will be explained, and the extension of the method 

for the purposes of this research, namely forecasting and MCP, will be developed. 

3.1 Dynamical systems 

 A dynamical system is used to model physical phenomena whose state (or 

instantaneous description) changes over time [77]. The system is described by fixed and 

deterministic rules and, in order to describe those rules, the space where the system 

evolves geometrically has to be defined. Their applications range, among others, from 

financial and economic forecasting, environmental modelling to medical diagnosis. 

Their applications can be divided into three main categories: predictive, in which the 

future states of the system are being predicted with the use of past observations and the 

system’s present states, diagnostic, where the aim is to investigate what possible past 

states (or observations) of the system might have led to its present state and finally 

applications where the aim is neither predict the future nor explain the past but actually 

explore the theory of a physical phenomenon or the underlying dynamics. 

3.1.1 Phase space 

The dynamical systems involve differential equations that depend on position and 

momentum. A simple example of a dynamical system is the linear pendulum which can 

be derived from the equation (Hooke’s law applied to Newtion’s second law) 
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and can be re-arranged  to the second differential equation of the form                                                              

 0
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(9) 

that leads to the dynamical system of two coupled first-order differential equations                                                            
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 (10) 

where α,, xv are the velocity, position and acceleration respectively andk  is the 

constant factor characteristic of the spring. As it can be seen from the relationships in 

(5) their form is quite simple and they indicate the change of xv, given their current 

condition. Thus the system can be described as deterministic since no random equations 

exist i.e. the future changes of xv,  can be predetermined [78]. However taking into 

consideration specific cases of dynamical systems, it is often possible to observe 

irregular behaviour in some of them, for example in the Lorenz [79] attractor case. 

Other important definitions regarding dynamical systems are: the phase space which 

describes the system’s variables, the attractor which defines the actual solution of the 

system and finally the orbit which is the path that the system follows during its 

evolution. 

The principle in terms of a dynamical system is that the dynamic evolution of the 

system takes place on a time-invariant object, called ‘attractor’, after initial transients 

have decayed.  This attractor is a geometric object in the phase space defined by the 

dynamic variables of the dynamical system. 

3.1.2 Time-delay method 

A method is needed so as to define equivalent variables to the phase space ones 

which is the time-delay method [80]. It is a practical implementation of the dynamical 

systems since it aids in reconstructing the phase space of a dynamical system from an 
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observed deterministic time series.  The reconstruction of a phase space is indeed 

significant since it can extract useful information about the time series that characterise 

the system. Using previous measurements is equivalent but not practical with data 

containing noise or turbulence [81]. In complex systems, where the phase space is not 

fully accessible from measurements, one can use Takens’ method of delays [80]. The 

phase-space equivalent variables can then be constructed using Takens’ Method of 

Delays [80], which postulates that the dynamic variables not directly measured have 

influenced the evolution of the measured variables and are therefore somehow 

represented by the previous measurements. Thereby, a sufficient representation of the 

state complete phase space at time t  is given by the delay vector 

( ) ( ) ( ) )(,...,2,, 321 τττ wj Mtytytyty −−− , where wM  is the number of time lags,τ , 

used, and the same can be done for further variables measured, e.g., )(2 ty .   

With a time series of 0N  variables of length tN , the delay matrix will have

τwt MNN −=  rows and wMNM 0=  columns with                                                       

 ))1((
0

0 )1(,, τ−+=−+ ijyY j
Mjji w

 

 (11) 

with the row index Ni ,...,1= , the column index Mj ,...,1= , and the observable index, 

00 ,...,1 Nj =  [81].  In this matrix, a row m is equivalent to a complete phase-space 

description of the system at time mt  as long asM  is sufficiently large. Taken’s method 

of delays is therefore able to create a space equivalent to the phase space but this phase 

space reconstruction cannot separate the important dynamics from measurement noise 

or turbulence. 

3.2 Principal Component Analysis (PCA) 

 PCA is a non-parametric statistical method which can optimize phase space 

reconstruction [82]. By non-parametric it is assumed that it is a method not limited to be 

of a certain distribution or linear relationship. It can identify the number of needed time-

delays and give a picture of their shape. It is also known as Empirical Orthogonal 
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Function (EOF) Analysis in the Meteorological and Oceanographic community to 

identify the main circulation patterns in the atmosphere and oceans, e.g. [83, 84]. This 

technique is now widely used for time series analysis of nonlinear dynamical systems in 

general, e.g.[80, 85] as the analysis is very powerful to separate coherent dynamics from 

noise. PCA uses samples of data whereas EOF uses sets of spatial images and Singular 

Systems Analysis (SSA) time series with a size of 1 observation which later extended to 

more observations. All of them use the principle of the Singular Values Decomposition 

(SVD). SVD is a mathematical matrix operation technique which is described by the 

same theory as PCA but from a linear algebra point of view whereas PCA comes from a 

statistical point of view. 

 PCA’s goal is to explain important variability of the time series data and to extract 

useful information (i.e. hidden structures of the data) from its more relevant components 

in a reduced number of dimensions. Applying PCA to the set of delay time series is a 

method to redefine the phase space to concentrate the coherent information in a few 

directions (or dimensions) of the phase space, which then allows to ‘delete’ the weaker 

and uncorrelated dynamics from the description of the system.   

 PCA’s advantage lies in the fact that it can separate noise from useful information 

applied to time-delay series [80]. More specifically, PCA was devised to separate 

coherent dynamical information from noisy experimental data, known also as SSA [86] 

[87] .  

The mathematical procedure to carry out a PCA is through SVD of the delay 

matrix. In terms of the linear algebra of the SVD, it is a transformation of the basis 

vectors of the phase space which finds orthonormal basis vector to maximise the 

variance described by as few basis vectors as possible.  The three SVD/PCA outputs are 

the singular vectors which are the basis vector for each dimension (they are also the 

eigenvectors of the covariance matrix of Y ), the singular values which measure the 

time-averaged contribution of each dimension to the total variance, and the principal 

components (pc’s) which form an attractor and describe the system’s time series.  In 

matrix notation, the Singular Value Decomposition is written as                                                          
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 SPY Λ=
 

 (12) 

where ( )mnY ,  is the time-delay matrix with Nn ,..,1=  the time point within time series 

and Mm ,..,1= the index of the dimension. ( )mnP ,  is the principal component matrix, 

( )mn,Λ  is the diagonal matrix of singular values, and ( )mmS ,  contains the singular 

vectors.   

The singular values represent a measure of the variance, more specifically the 

square root of the variance of the time series in the corresponding dimensions and they 

can pick out the important variability of the data. The singular values represent the 

square root of the eigenvalues of the covariance matrix C , of Y  in equation  (12), 

SSYYC TT 2Λ== . If the training data set consists of 0N variables, )(0 ty j , for example 

wind speed and wind direction with 0N = 2, covering tN  time steps, the first step is to 

rescale them in such a manner that they both contribute equally to the analysis.  This is 

achieved by rescaling them both to time series of zero mean and unit variance, i.e., 

subtracting the mean from each variable in turn and then dividing by the variance. The 

singular vectors have the property of being orthonormal, i.e. orthogonal and of unit 

length and they span the dimensions of the phase space. They represent a measure of 

those dimensions that define a dynamical system, for instance they can replace position 

and momentum, two variables which can form a dynamical system. The singular 

vectors, S are also the eigenvectors of the covariance matrix of Y in equation  (12). The 

principal components are the time series of the system in the coordinate system defined 

by the singular vectors. This means that plotting the principal components against each 

other draws the orbit of the measurements and thereby provides an estimate of the 

underlying attractor. They represent a measure of those dimensions that define a 

dynamical system, for instance in the aforementioned example of section 3.1.1 they can 

replace position and momentum as variables.  

When PCA is applied to the time-delay matrix, PC’s are the time series of the 

coordinates of that trajectory in respect of these dimensions. Using the example of 

section 3.3.1 again, PC’s can replace the values of the position and momentum at any 

time.  In more detail, this dynamical system’s position of the reconstructed phase space 
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can be given at any time precisely by position and momentum however when PCA is 

applied the PC’s take over this role. Since an eigenvalue matrix exists in PCA analysis, 

it should be noted that both eigenvectors and PC’s are normalised i.e. scaled to the 

amplitude of the dimensions used by PCA. 

3.3 Application of PCA for time series analysis 

3.3.1 Single variable series 

One of the first attempts to apply PCA for phase space reconstruction to a clean 

system was undertaken by Broomhead et al. [86]. In order to achieve that, the 

application of SSA to time series generated by passing sinusoidal signals through a 

cubic non-linearity i.e. coming from nonlinear dynamical systems was used. The 

number of degrees of freedom resulting from SSA enabled the identification of the 

dimension of the reduced subspace of the series. After this in the same subspace, a more 

extensive analysis was used in order to discover underlying patterns that contributed to 

the motion. Thus, the use of this methodology for this specific time series was 

successful since it enabled useful information for the system to be extracted. 

3.3.2 Multivariate variable series 

As Broomhead et al. concluded [86] SSA offers a high potential yet to be explored. 

Thus, the next step in PCA/SSA analysis was developed by Read [81] and was to apply 

SSA in multivariate data series (M-SSA). He firstly applied single variable SSA in data 

from one probe obtained from the full set of experimental time series of temperature 

measurements with sixteen probes in total which were part of a rotating thermal 

convection experiment. Furthermore, the SSA results were used to characterise the 

different types of flow and their dimension correlation. Then, he applied M-SSA to 

multiple probes and found that it was able to improve the reconstructions of the signal, 

in terms of noise ratio and uniformity of the attractor’s structure in comparison with 

previous methods. Thus, he concluded that the M-SSA superiority lies in the fact that it 
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can combine information simultaneously from all spatial cross-correlation functions of 

complex spatio-temporal structure signals.  

The method of M-PCA has been used in other cases, too. Früh [88] used spatially 

extended times series for temperature measures to identify the most important vortex 

patterns in a rotating fluid experiment. He achieved this by separating steady drifting 

fluid patterns as the key mechanisms in the onset of variability. It succeeded in 

extracting specific non-linear wave interactions leading to chaos and disordered flow, 

e.g. velocity images. 

3.3.3 PCA between two signals  

Allen and Smith [89] used some simple stochastic sinusoidal system and applied 

singular PCA. They used PCA on test series and performed analysis on noise data so 

they created differed time series and correlated noise. Moreover, from the extraction of 

noise they managed to obtain a confidence interval (CI) which had the form of a 

decaying spectrum containing eigenvalues. They found that the eigenvalues that lay 

outside the CI contained useful information.  

Furthermore, in the second part of their experiment, they applied the same method 

to real temperature climate data and to the eigenvalues outside the CI. They attempted 

to refine the sign of difference and to look into it in relation with noise.  Finally, they 

separated the random fluctuations originating from the signal and performed PCA again 

so as to compare maximum signal above the fluctuations. 

3.3.4 PCA for combined system 

The aforementioned attempts that used PCA justified its importance as a method.  

Additionally, it has had a wide range of applications that involve current big issues of 

general significance. These applications include the analysis of temperature time series 

as used by Allen et al. [90] and the detection of global climatic changes as used by 

Allen et al.  [91]. Hardy and Walton [92] used PCA for a one-year record of mean wind 

velocities from 10 different locations. They found that the method can be used 
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successfully for large datasets of wind velocity data and can extract the useful spatial 

and temporal properties of the data.  

Benestad [93] used common EOF’s for statistical downscaling purposes of future 

climate scenarios. According to his research, the method has the advantage of 

minimizing the errors related to the downscaling procedure hence this method is 

recommended for downscaling purposes. In another research, Guillou and Dreverton 

[94] generated daily time series for weather-derivatives market purposes. PCA was used 

in order to analyse daily average temperatures of each year and it was found that the 

interannual variance of the climate was captured correctly. In another research, 

Martinez et al. [95] used EOF for generation of large-scale atmospheric component 

patterns using an NCEP-NCAR dataset for the years 1958-2004 for the region of Gaspe 

in Quebec, Canada. They concluded that the method is able when using large-scale data 

to generate time series at a regional level and accurate numerical atlases to an extent. 

The success of the method according to the authors lies in the fact that it can summarise 

statistical information to a few most dominant patterns according to the variance 

explained. Also the fact that it can construct time series regionally is very important for 

the industries that base their research on daily time series of for example wind or 

temperature. 

Moreover, PCA has potential of further extension of its applications since not only 

can it be used to analyse one or multiple variables for one experiment but it can also be 

applied to analyse different but coupled systems. These coupled systems could be 

treated as one large system containing two sub systems that include the variables from 

the first and the second system. With the use of PCA for a combined system some of the 

main challenges of the MCP methods mentioned in section 2.2 will be hopefully 

overcome. More specifically, it will contribute to the reduction of uncertainty due to 

poor quality data but also to the reduction of bias since years such as 2010 might not 

affect the analysis so as to result in under or over prediction of wind resource.  

The following section depicts the rationale behind a coupled system with the use of 

a simple dynamical system which is in fact the initial implementation of the method and 
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continues with analysis of real wind resource data. In fact, it gives a first impression of 

how well PCA can stand as an MCP tool. 

3.4 A first illustration of PCA on a dynamical system  

In the example of a harmonic oscillator, the phase space is defined by the position 

and momentum of the oscillating object, and the motion of it takes place on a limited 

cycle.  This cycle is the attractor, and the trace drawn by the oscillation, or its ‘orbit’, 

would draw repeating copies of that cycle over and over. An illustration is shown below 

using a simple oscillator. 

3.4.1 Case A, fully quasi-periodic system (noiseless pendulum)  

The first implementation of PCA was attempted to a two signal pendulum divided 

into two cases, with or without noise. The pendulum was chosen since it is a case of a 

simple dynamical coupled system and thus illustrative of the dynamical systems theory. 

This example is an idealised case of the pendulum consisting of two variables (signals) 

yx,  representing signal 1 and signal 2 respectively which could represent the reference 

and target site respectively. The two different cases were selected in order to investigate 

how the PCA was influenced by the existence or not of noise. The phase space in the 

pendulum’s case is defined by angular displacement and velocity i.e. the two 

dimensions of the dynamical system. Performing PCA for this example can characterise 

yx,  together as a linked system. More specifically, with the application of PCA to x 

and going back to the description of the combined system found, it can be identified 

which y  has the best fit to the linked system.  

In more detail, the time interval of the pendulum’s movement was set to be from 

0.1 to 1000 seconds and several lags and window sizes were used as inputs so as to 

examine the PCA results in both cases. The range of values that were examined for both 

signals yx, for the lags were from 1 to 25 and for the window length from 10 to 100. 

Different values were also used for the noise term, ε6.0 in equation (14) of case B 
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ranging from 0.1 to 1. In case A when excluding noise, the pendulum inputs were of the 

form:                                         
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(13) 

As it can be seen from Figure 6, the top right graph shows the singular values that 

result from the PCA analysis. Two large singular values followed by 2 more can be 

observed here which means that they dominate in terms of their contribution as 

dimensions to the total variance. It can also be seen that the first two largest singular 

values pick out the highest frequencies i.e. the most important movement of the 

pendulum and the next two the lower frequencies i.e. the more hidden patterns. The first 

graph of the first row indicates the periodic movement of y overtime and the two 

different period movement which originates from the two signals. Oscillations can also 

be observed in the top and bottom ends of it. The middle graph of the first row is a 

picture of the time-delay phase portrait and its circular shape represents the frequencies 

of the pendulum with the thickness of the orbit line indicating their modulation.  

  The first two graphs of the second row show the singular vectors and both 

contain the two signals at the same time. The sinusoidal pattern that characterizes them 

is due to the existence of the sine function in the input equations for both signals yx,  

and the singular vector 1 plot indicates a perfect sine curve. The first graph of the third 

row depicts the PC’s P1 versus P2 and it is of torus shape. It summarises the whole 

pendulum’s periodic movement and is an amplified version of the time delay matrix 

graph described above. The last two graphs of the third row which also depict the rest of 

the PC’s versus each other are representing the same periodic shape as the  P1 versus P2 

graph but illustrated from a different angle.  
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Figure 6. MCP results for noiseless pendulum (case A) with lag 1, window 35. 

3.4.2 Case B, noisy oscillations  

The next case in the pendulum example, case B, included the term ε6.0 as the white 

noise and the inputs were of the following form: 
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Figure 7 indicates the results from case B and it can be observed that there are some 

differences in comparison with the case A results. As it can be seen, if the two singular 

values plots are compared (top right graphs), in case B there is a little gap in the 

measurements in the first part of the flat line and this is due to the existence of noise in 

the system. However, the two large singular values lie further up from the rest in both 

cases. This means that the highest frequencies of the pendulum are being picked out 

with or without the existence of noise. As it can be seen in the top left graph of the time 

series the movement of y over time in case B appears to be less periodic than in case A 

which is due to the existence of noise. The time-delay phase portrait in the middle of the 

top row of case B due to noise again does not retain the clear circular shape like the one 

of case A. On the other hand, the singular vector graphs of the second row are of the 

same shape in both cases A and B. However, the PC’s plots as shown in the third row 

do not have an identical shape as in case A. Some broadening in the frequencies is 

observed due to noise existence but the general periodic movement can still be 

observed. 

A few initial conclusions could be drawn from this first implementation of PCA. It 

was found to be robust and useful method for time series of multiple inputs since both 

cases managed to extract the most significant outputs. It can be observed that even in 

the presence of noise; PCA can pick out the most important oscillation patterns by 

looking at the second row of Figure 6 and Figure 7 which are identical. Moreover, the 

main oscillations are indicated by the 2 dominating singular values of the top right row 

graphs of Figure 6 and Figure 8 and can reliably reconstruct even in the presence of 

noise the PC’s for example looking at P1 versus P2 of the bottom left row graphs which 

are identical for both cases A and B. Thus, it can be concluded that noisy or ‘clean’ data 

do not play a significant role in PCA. Since for several trials of different time-delay and 

gap of entries in the data for the pendulum example the results were kept unchanged, it 

can also be concluded that the choice of the time-delay length and gap of entries in the 

matrix did not seem to play a significant role in the PCA results for this specific system. 
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Figure 7. MCP results for noisy pendulum (case B) with lag 1, window 35. 

3.5 PCA used for forecasting wind energy resource 

Underlying all statistical and empirical approaches is the need to separate the 

predictable component from the turbulent component in an effective and efficient 

manner. For example, for mean daily or hourly wind speed forecasts, i.e., short-term 

horizons, the underlying atmospheric dynamics become of great importance [96]. The 

wind related data could be treated as dynamical systems so that cycles and random 

unusual behaviours that often characterise them can be identified, explained and 

understood.  Based on this understanding, PCA was proposed to be used as a time series 
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analysis technique based on the dynamical systems theory for wind forecasting 

purposes. 

The challenge that arises from the previous chapters is that if we have 

measurements from only one site, can we use similar analysis concepts to identify the 

state of a combined system on the phase space? If so, can we then predict for the second 

site, for which we have half the information we need? More precisely, the question that 

arises is by taking the defined points of the combined two sites system and adding the 

new measurements can we project them to the existing attractor and predict from the 

nearby points?  

The creation of this system based on a training set of wind data defines the model 

for the forecasting. New measurements can then be mapped onto the cleaned-up 

attractor to find previous measurements which are, in dynamical terms, similar to the 

current measurements. Finding one or more ‘similar’ previous measurements, then 

allows us to the evolution of those measurements as equivalent to predicting the current 

measurements. In addition to a prediction, however, this method predicts a number of 

similar events and following how their distances change over the lead time of the 

prediction also provides a measure of how sensitive the system is to uncertainties in 

measurements or out-of-system perturbations. Hence, it provides a measure of the 

uncertainty of the prediction at the same time.   

This section contains background information regarding phase space reconstruction 

as well as PCA and explains in detail how they will be used for the forecasting 

purposes. The extended results of this section will follow in Chapter 4. The stages for 

the training of the predictor are preparation of the phase space using the training set of 

data (e.g., wind speed and direction), PCA of the phase space to optimise the phase 

space and truncation of the phase space to the relevant components only to define the 

predictor.   

The application of the predictor goes through the preparation of the test data to the 

same specifications as the training set, mapping the test data onto the truncated phase 

space, finding an ensemble of nearest neighbours on the attractor as defined by the test 
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data, tracing the evolution of that ensemble for the lead period of the prediction, and 

finally re-transforming the ensemble of predictions into the original variables (e.g., 

wind speed and direction).  A summary of the PCA forecasting algorithm is presented in 

Table 2, and the remainder of this section will describe each of these steps in turn. 

Training: 
1) Normalise wind speed measurements ( )

0

0

*

0

0

j

jj

j

y
y

σ
µ−

=  

2) Create time-delay matrix; equation  (11) ( ) ( )( )τ10
1, 0 −+=−+ ijyY j

Mjji w

 
3) Perform PCA to optimise; equation  (12) SPY Λ=  

4) Truncate to the relevant components to define 
predictor; equation  (15) 

tttt SPY Λ=  

Forecasting: 
5) Normalise new measurements using Training 

normalisation 
( )

0

0

*

j

jjn

jn

y
y

σ
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=  

6) Create time-delay matrix using same parameters 
as for training 

( )
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7) Map time-delay matrix onto attractor coordinates; 
equation  (17) 

1−Λ= t
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8) Find number of similar events in training period 
and follow evolution of past events i.e. nearest 
neighbours; equation  (18) 

∑ −+
−= j

ji

t

j

n

x

i PP
n

d 11
 

9) Find distance vector due to n. neighbours; 
equation  (19) 

xn

n
jk

tj PPD −=  

10)  Use ensemble prediction based on n. neighbours; 
equation  (20) 

( ) j
Tjk

t

j

f DPTP += +
 

11)  Map back to delay matrix and return predicted 
wind speed; equation  (21) 

ttf

j

f SPY Λ=  

12)  Re-scale back to proper units  
00

*
jjjfjf yy µσ +=

 

Table 2. The PCA forecasting algorithm. 
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3.5.1 The Forecasting Model 

The singular values are a key measure on which the determination of the best 

predictor is based, since our initial assumption was that the wind conditions several 

hours ahead is better predicted by the slower atmospheric dynamics than the short-time 

fluctuations.  The PCA has separated the coherent (slower) dynamics from the 

temporally uncorrelated short-term fluctuations, such that uncorrelated fluctuations are 

visible as a noise floor in the singular value spectrum. Persistent variance from the 

atmospheric dynamics is concentrated in the leading singular values of much higher 

magnitude.  For that reason, the phase space can now be truncated to a much smaller 

dimension than the original delay matrix. 

By creating a reduced set of 
tM  principal components, rMN

tP ,  singular values, rMrM

t

,Λ  

and singular vectors, MrM

tS
, , one can produce a filtered time series of the original data by                                    

 tttt SPY Λ=
 

 (15) 

There, the filtered time series of the first observable, 1y , is contained in the first column 

of 
tY , the filtered time series of the second observable in column 1+wM , and so on.  

However, due to the method of delays, those columns only cover the time steps 1 toTN  

wT MN −  and one has to append the bottom row to the end of that variable, i.e., time 

step 1+− wT MN  of the first variable is at the end of column 2 in )2,(NYr  and the last 

time step in ),( wr MNY : 

 ������, ��, … , ���� = �����…�,�+ �	� − ��
��,����, ��…
��+ �	� − ��
��� (16) 

The forecasting model therefore consists of the truncated dynamical system
tP ,

tΛ ,
tS  

and the principle is to interpolate the current measurements to ‘close’ examples of the 

filtered training data, where  ‘close’ is in terms of dynamic behaviour rather than time. 
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3.5.2 Preparing new data for the forecasting model 

It is possible to project a new time series onto this reduced set of singular vectors 

by creating a delay matrix following the same procedure as for the training set, 

including using the mean and standard deviation from the training data set to rescale the 

new data. This projection will then give principal components, nP , to place the new data 

in this phase space as  

 1−Λ= t

T

tnn SYP   (17) 

To generate a single point in this phase space, the new time series must contain τwM  

measurements. Conversely, if the new time series contains 1−+ xw nM τ  points, its time 

delay matrix contains xn  columns for that observable and its projection onto the 

singular vectors results in a section of orbit containing xn  points. 

3.5.3 Finding nearest neighbours 

Ensemble forecasting in dynamical forecasting makes several forecasts, each 

initialised with a slightly different initial condition but within the measurement accuracy 

of the initial point to predict a large sample of possible future outcomes. The results are 

then evaluated by examining the distribution across all ensemble members of the 

forecast variables. A useful feature of ensemble forecasting is that it also provides an 

estimation of the reliability of the forecast. The idea is that when the different ensemble 

members differ widely, the actual event we try to forecast could shadow any of the 

modelled ensemble members.  This then means that the forecast is affected by a large 

uncertainty; when there is a closer agreement between the ensemble member forecasts, 

the uncertainty in the prediction is lower [96]. This principle can also be applied to PCA 

forecasting where the attractor represents the model. Now, current measurements can be 

mapped onto the attractor and previously observed wind states close to the current 

measurements can be found.  They can then be taken as an ensemble of initial 

conditions close to the current state and thus, be used for prediction.  
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The two key stages in the forecasting part of the method are, firstly, to find a 

number of ‘similar’ events in the training period, which is done by finding a chosen 

number of nearest neighbours in the attractor and, secondly, to follow the evolution of 

those past similar events.  From that evolution one can calculate an expected mean 

evolution which is the prediction, and one can also calculate by how much the evolution 

of the ensemble of similar past events either stayed close (giving confidence in the mean 

forecast) or diverged over the forecasting horizon (indicating that the currently 

measured wind comes from a part of the attractor which is unstable and not well 

predictable).   

The nearest neighbours are found by calculating the Euclidean distance between the 

new point, or the mean distance of each point of the section of orbit, to all other points 

or sections of the training attractor; for a single point: 1−+
−=

ji

tni PPd  or for a section of 

orbit with xn points                                           

 ∑ −+
−= j

ji

t

j

n

x

i PP
n

d 11

 

 (18) 

From this complete set of distances to all points of the training attractor, a specified 

number of nearest neighbours is selected, subject to a constraint that they do not come 

from adjacent points on the training orbit but from different passes of the orbit through 

the neighbourhood. This can either be done by sorting all distances and rejecting those 

which come from adjacent points of the training time series, or by stepping through all 

distances, and skipping a set number of time points after having identified a local 

minimum of the distances. If entry 'k  of the training principal components has been 

identified as one of the nearest neighbours, then the entry 1' −+= xnkk is the 

neighbour to the latest measurement.  

The number of nearest neighbours,nn , to use for the forecasting depends on the 

dimension of the reduced system and how densely the phase space is covered by the 

training attractor. If too few neighbours are chosen, the ensemble prediction might not 

capture the divergence or convergence of the attractor and hence may not give a good 
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estimate of the forecasting error. If too many neighbours are chosen, the nearest 

neighbours may not be that near and no longer be a good representation of the local 

dynamics, hence introducing errors into the forecasting. 

3.5.4 Predicting using nearest neighbours 

Once the nearest neighbours have been identified, each can be moved forward in 

time by the lead time or forecasting horizon while sampling all intervening time steps. 

A key assumption in the implicit forecasting here is that the current point will evolve 

alongside the identified nearest neighbours from the training data. This means that the 

relative position of the point from the training attractor at time Tnkk x +−+= 1'  will 

have a similar position relative to that of the current measurement predicted a lead time 

T  ahead. If the current distance vector to nearest neighbourj  is                                           

 xn

n

jk

tj PPD −=
 

 (19) 

then the prediction based on this nearest neighbour is                                                

 ( ) j

Tjk

t

j

f DPTP += +

 
 (20) 

 

The ensemble of   is then the ensemble prediction, each member of the 

ensemble is mapped back onto the delay matrix space by using                                                          

 ttf

j

f SPY Λ=
 

 (21) 

Each of the 
 
 returns the predicted wind speeds for the next T time steps as the 

entries . This ensemble of predicted wind speeds can 

then be used to calculate the expected velocity as their average, and an estimate of the 

uncertainty based on the standard deviation                                                         

 
 

 (22) 

( ) n
j

f njTP ...1, =

j
fY

( ) ( )w
j

f
j
p MNTNYTu ,...1...1 +−=+

( ) ( )
j

j
pp tut =σ
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Likewise, if wind direction is used as a second observable, this can be reconstructed by                              

 ��
� �+�…�� = ����� − � + �…�, … ,�	��  (23) 

3.6 PCA used as a Measure-Correlate-Predict methodology 

In this section, the background of the usage of PCA as a MCP methodology, which 

is the main focus of this research will be explained. Figure 8 is depicting a first 

illustration of the PCA-MCP method as a structure of matrix formalism. 
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Figure 8. The PCA-MCP schematic. 
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3.6.1 Mapping from part knowledge onto full attractor for prediction of MCP: the 

underlying idea. 

The challenge that arises from Figure 8 stage 3 is that if we have wind 

measurements from only one site, can we use similar analysis concepts to identify the 

state of the combined system on the phase space? If so, can we then predict for the 

second site for which we have only half information available? More precisely, the 

question that arises is by taking the defined points of the combined two sites system and 

adding the new measurements, can we project them to the existing attractor and predict 

from the nearby points? The experience from previous results all shown in Chapter 4 

actually tells us that points under a specific state of the phase space have moved to the 

next state. Thus, in practice, with the use of data the reference site and the knowledge of 

their current and next position in the phase space, the challenge is whether we can do 

the same for the target site.  

In practice, following equation  (12) in order to achieve the MCP principle, we 

perform PCA to the original wind data and then truncate to the relevant components 

with the singular values and vectors becoming: tt S,Λ where t here is denoting the 

truncation and will be used throughout, which is the adjustment of r used as the 

truncation notation in the PCA forecasting principle of the previous section, section 3.5. 

The notation of section 3.5 was followed directly from the published paper. Then, the 

prediction of the wind speeds using that truncation would be of the form:                                                      

 ttpp SPY Λ=
 

 (24) 

where pp PY , are the predicted time-delay matrix and principal components 

respectively However, as a continuance of the principle described in the previous 

paragraph, we use the reference site data only to predict from, since they are the known 

information and thus equation  (12) becomes                                                       

 rtpr SPY Λ=
 

 (25) 
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where rr SY , are the reference site time-delay matrix and singular vectors respectively 

i.e. of half size since they do not contain the target site data. As it can be seen from 

equation  (25) tΛ which is diagonal is used instead of rΛ since as long as there are more 

time-delays than truncations i.e. tr > where 0**
2

1
jMr w= , then tΛ will be used. 

Solving for the PC’s to get the predicted ones,pP  from equation  (25) we obtain 

 1−Λ= t
T
rrp SYP

 
 (26) 

but the predicted wind speeds are of interest and hence we need to go back again to 

equation  (24) and transform it by substituting pP from equation  (26) into the following 

relationship
 

 
t

T
rrp

ttpp

SSYY

SPY

=

Λ=

 

 (27) 

which can then be normalised back to actual wind speeds.  

3.6.2       Predictor calibration 

This is the underlying MCP idea, to predict the wind speeds of the reference and 

target sites using only the reference site data and truncated singular values and singular 

vectors by performing PCA once. While testing this idea during development of the 

technique, the issue which occurred was that applying the operations to the historical 

reference data only consistently resulted in prediction with far too small a variance 

compared to that expected.  The reason for this can be found in the fact that the correct 

variance is maintained if each complete principal component is multiplied with its 

corresponding singular value and singular vector. This works for each principal 

component – singular vector pair individually as the singular vectors form an 

orthonormal basis.  However, only using partial principal components and singular 

vectors, as in equation  (26), do not preserve the variance. Hence, even though the 

method is applied to reference historical data it needs to be calibrated with respect to the 
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known data which is the training period i.e. the concurrent reference data. Several 

calibration methods were explored, all based on empirically matching the predictions of 

applying equation  (27) to the reference data only from the training period to the actual 

reference and target data for the training period. They are presented in section 5.4 but 

only the final method, proposed as the most reliable method found so far, is introduced 

here. 

Going back to equation  (26) pP is now transformed into cP
 which are the PC’s 

used for the calibration and it becomes of the form:  

 1−Λ= t
T
rhc SYP

 

 (28) 

where hY is the half from the original concurrent time-delay matrix and 
T

rS is the 

reference only singular vectors. Since rS is the same size as hY  (i.e. half) this is the 

rationale behind its use in equation (28). Thus, equation  (27) after substitutingcP from 

equation (28) will become
 

 
t

T
rhc

ttcc

SSYY

SPY

=

Λ=

 

 (29) 

i.e. the PCA predictors of the concurrent wind speeds  cY .    

Next step was to normalise the calibrated results back to actual wind speeds and 

calculate the calibrated mean and standard deviation cc σµ , of the cY  matrix. Hence, the 

resulting prediction has cc σµ ,  but we know that it should haveσµ , . The rescaling 

thus method was of the form:                                                     
 

 
cc

p µ
µ

µ
µµµ

2

=



=

 

 (30) 

and  
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cc
p

σ

σ

σ

σ
σσ

2

=



=

 

 (31) 

where pp σµ ,  are the mean and standard deviation of the predicted data, calculated as 

the ratio of the original mean and standard deviation σµ ,  of Y over the calibrated 

mean and standard deviation cc σµ ,  of cY respectively. This rescaling method was 

selected for the PCA-MCP procedure because it gives all variables i.e. wind speed and 

wind direction from both reference and target sites equal rating so that the skewness 

towards one variable can be avoided.  

Finally, going back to equation  (27) t

T

rrp SSYY = we can normalise the results 

back to actual wind speeds using pp σµ ,  as found from equations  (30) and (31). Thus 

pY now contains the predicted reference and target data and rY  the reference actual 

data. 

3.6.3 The PCA- MCP algorithm 

Table 3 presents the steps taken in the development of the PCA-MCP algorithm as 

described also in Figure 8. 
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Measure: 
1) Normalisation of measurements of 

wind speed and direction so that all measurements 
are given equal weight (no bias of any instrument 
dominating the signals). Here the number of 
channels, 0j , are 2 or 4 depending if only wind speed 
or wind speed and wind direction are used. 

 

( )
0

0
*
0

0
j

jj
j

y
y

σ
µ−

=  

Correlate: 
2) Creation of time-delay matrix. This is 

the fundamental step to move from direct 
measurements to the phase-space description 

( ) ( )( )τ10
1, 0 −+=−+ ijyY j

Mjji w

 

3) Perform PCA to optimise the attractor 
(= predictor). This finds the best combination of 
measurements into patterns with the highest 
contribution to the signal and least noise. The result of 
the optimisation is then the phase space description of 
the relationship between the two sites; equation  (12) 

 

SPY Λ=  

4) Choice of appropriate truncation. This 
determines how many patterns are thought to contain 
the important signal.  A truncation too small ignores 
useful information, while a truncation too high 
includes too much noise; equation  (24) 

use truncation choice 

t  

5) Truncation of the PCA output to the 
relevant components to define predictor. This with the 
use of the appropriate PCA results determined in the 
steps 3 and 4 above helps in finding the predictions. 

tt S,Λ  

6) Using the reference only data and 
truncation equation  (12) becomes; equation  (25) 

rtpr SPY Λ=  

Calibrate:  
7)  The reference historical data need  to 

be calibrated with respect to the known data which is 
the training period i.e. the concurrent reference data; 
equation (28) 

1−Λ= t

T

rhc SYP  

8) The calibrated time-delay matrix is of 
the following form; equation  (29) 

t

T

rhc

ttcc

SSYY

SPY

=
Λ=
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9) Rescaling of the predictor. Since the 
truncation deletes (unwanted) information, variance is 
lost from the system. This requires the original mean 

and standard deviation σµ ,0jy= and the calibrated 

ones cc σµ , ; equation  (30) and equation (31) 

c

p

c

p σ
σσ

µ
µµ

22

, ==  

Predict:  
10)  Normalisation of the historical data set 

from the reference site. This must use the same offset 
and scaling applied in steps 4 and 5 above to ensure 
that the historical data set is compatible with the PCA 
attractor created from the concurrent data. 

( )
0

0
*
0

0
j

jr
r

y
y

σ
µ−

=  

11)  Creation of time-delay matrix using 
same parameters as for training, this creates a time-
delay matrix using the new normalised measurements 
which will become the new wind speed predictions. 

 

( ) ( )( )τ10

10,
−+=

−+ ijyY r
wMjji

r  

12)  Projection of the time-delay matrix 
onto the predictor gives prediction in phase space; 
equation  (26)  and equation  (27) 

1−Λ= t

T

rrp SYP

t

T

rrp

ttpp

SSYY

SPY

=
Λ=

 

13)  Mapping of the prediction in phase 
space back to  delay matrix in physical space returns 
predicted wind speed 

pjpjjpp yy ,0,0
* µσ +=  

Table 3. The PCA- MCP algorithm. 

The way PCA is used as an MCP method is quite similar to the forecasting 

methodology described in the previous chapter. However, there are some differences in 

some steps of the procedure since for the MCP case; we do not need to use from past 

events the nearest neighbours in order to predict the wind resource for a day ahead. In 

this case, we use PCA for our reference site to train and truncate to the relevant 

components and then by having only half the information matrix, we predict for both 

reference and target sites. We calibrate around the mean and standard deviation ratios in 

order to recover all the lost variance caused by the PCA analysis and finally rescale 

back to actual wind speeds. Furthermore, this tool also enables us to examine the 

performance of our predictions when comparing with the actual wind data from both 
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sites. Hence, the PCA- MCP tool not only gives us a prediction of the wind resource of 

a site but also measures the reliability of this prediction. 
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Chapter 4 PCA as a wind forecasting method 

This chapter is describing the attempt of using PCA as a forecasting wind speed 

method. It was undertaken as a preliminary step for this research’s purposes aside from 

the PCA-MCP principle which is investigated in the chapters to follow. The 

methodology for this PCA application is described in detail in section 3.5. This 

application of PCA was also published in the journal of Renewable Energy, Elsevier 

[97]. 

4.1 Literature review in forecasting methods 

The wind variability can be characterised by slow cycles (daily and longer), fast 

(unpredictable) turbulence, and synoptic weather changes which tend to changes only 

slowly, the forecasting horizon can be divided into the three following categories: 1: 

immediate-short-term (up to 8 hours ahead), 2: short-term (8 to 24 hours ahead), and 3: 

long-term (multiple-days-ahead) forecasting [98-100]. It is more common to use hourly 

forecasts of winds for dispatching decisions and for scheduling the loads strategy it is 

common to use daily forecasts of hourly winds. For maintenance purposes, weekly 

forecast of day-to-day winds are more commonly used [101]. 

Several forecast models have been created which can be categorised into physical, 

such as the Numerical Weather Prediction systems (NWPs) [98], statistical, including 

linear methods such as Auto Regressive Moving Average models (ARMA) or methods 

coming from artificial intelligence and machine learning fields such as Artificial Neural 

Networks (ANNs) or even by hybrid approach methods which are a combination of 

statistical and physical methods with a use of weather forecasts and analysis of time 

series [99]. Erdem and Shi [102] used four ARMA approaches in order to obtain wind 

speed and direction forecasts and found that the ARMA model based on the 

decomposition of wind speed into lateral and longitudinal components was better in 

predicting direction in comparison to the traditional ARMA model. However, that was 

the opposite case for wind speed. De Giorgi et al. [103] used ARMA models in 

combination with different types of ANNs and Adaptive Neuro-Fuzzy Inference 
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Systems (ANFIS) for several testing period models but also time horizons. For all the 

attempts it was found that the forecast was worse as the prediction length was 

increasing. 

An integration of ANNs with NWPs for forecasting purposes was undertaken again 

by De Giorgi et al. [104]. The neural network was initially based on the statistic model 

of wind power time series and was later integrated with NWPs which indicated a 

significant improvement on the performance. Specifically, pressure and temperature as 

NWP parameters seemed to improve the forecasting model. Früh [105] explored a 

simple a linear predictor and based on the observed mean daily cycle model with wind 

speed or power output data as inputs and noted that increased sophistication in the 

forecasting methods surprisingly seemed to deteriorate the predictive ability.  

Hybrid approaches typically employ an ARIMA (Autoregressive Integrated 

Moving Average) model for the linear characteristics and an ANN or SVM (Support 

Vector Machine) model for the nonlinear characteristics. Wang et al. [100] found that 

depending on forecasting horizon, hybrid methods or ARIMA method perform better in 

forecasting than the ANN and SVM methods. They also concluded that hybrid methods 

add significantly in the short-term forecasting modelling for wind speed and power 

generation, but in general, they do not outperform the other methods [106]. 

4.2 Data and methodology 

4.2.1 Dataset 

The data used for this analysis originated from the Gogarbank surface station in 

Edinburgh provided through the UK Met. Office – MIDAS Land Surface Station record 

[75]. The site used an anemometer 10m high above ground and the data records used 

spanned from 1998-2010 with hourly mean wind readings with the wind speed stored to 

the nearest knot (1 kn=0.5144 m/s) and the wind direction in degree to the nearest 10°. 

Details of the dataset used are shown in Table 10 and Figure 31 of section 6.3. For this 

analysis purposes wind speed and wind direction data were used with the wind speed 

converted to m/s. An illustration of the data, i.e. the wind speed is shown in Figure 9 for 
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the 2-year period covering 2008 and 2009. The data not used as the training data set 

were then used for testing the method. A section from the test period was used to apply 

the prediction model, and the predictions for the 24 hours following that section were 

then compared against the actual data for the 24h period following that section. 

 

Figure 9. Wind speed time series for Gogarbank 2008 and 2009. 

4.2.2 Analysis setup 

From the available records, two 2-year records were chosen as the training period, 

either the years 2008 – 2009 or 2000 – 2001.  For all examples discussed in section 4.3, 

the time lag chosen to create the delay matrix was equal to the sampling period of the 

data, =τ 1h, but a range of delay window lengths,wM , ranging from 1 day (i.e., 24 

readings) to 2 weeks (336 readings).  The reference case for the discussion in the results 

section is the window length of 1 day for the training period 2008–2009 but two days 

for the training period 2000–2001, as indicated in Table 2 which also summarises the 

other parameter chosen for testing the method.  For the case of a 2-year training period 

(17520 hours), a 2-week window (336 hours) of wind speed and direction, the delay 

matrix will have 672 columns and 16848 rows, leading to a principal component matrix 

of the same dimension, 672 singular values, and 672 singular vectors of length 672 

each. 
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Because wind direction is a circular variable, one either has to be aware that there is 

an apparent discontinuity between 360° and 0° or transform the wind speed and wind 

direction variables into a pair of horizontal velocity components, θsinuux =  and 

θcosuvy = .  In the present case, we used the direction as a direct input.  As there were 

virtually no cases of the direction jumping across the 0°/360° boundary, it was decided 

that no error was introduced. However, for locations with a wider spread of wind 

directions, it is recommended that the data should be transformed to the velocity 

components. 

Of the singular values (lambda), of which the first 90 are shown in Figure 10, only 

a few have high values which drop off rapidly and then settle to a plateau from the 20th 

on. From this figure it is clear that at least the leading four dimensions must be retained 

in the model but that including more than 20 would add increasingly noise to the 

predictions.  For that reason, a truncation of tM = 5 to 35 was explored. 

 

Figure 10. The first 90 singular values for the PCA of 2008-2009 training set with window 
length ( wM ) of 2 weeks. 
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The first three singular vectors (svec[,1],svec[,2] and svec[,3] respectively) for the 

PCA applied to the 2008–2009 data using wM =48h are shown in Figure 11.  Since the 

input data are the wind speed and the wind direction, each singular vector contains two 

distinct sections, where the first 48 entries correspond to the temporal evolution of the 

wind speed attributed to that singular vector and the entries 49 to 96 correspond to the 

wind direction. Figure 11a and Figure 11b show that the first two singular vectors are 

associated with a slow modulation of the weather, while the third singular vector in 

Figure 11c and the fourth singular vector (not shown) correspond to a daily cycle.  The 

phase space diagram drawn by the first two principal components (P1 and P2), shown in 

Figure 12, shows an attractor with a clear structure associated with the prevailing 

weather conditions in Scotland, and the transition between them. 
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Figure 11. First three singular vectors of the 2008-2009 wM =48h model in Fig. 10(a), 10(b), 

10(c). The line between index 48 and 49 separates wind speed on left from the wind direction 
on the right. 

 

a) 

b) 

c) 
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Figure 12. Phase portrait constructed from the first two principal components 21,PP  for the 

2008-2009 wM =48h model. 

Finally, the parameters for the forecasting component were the length of the orbit 

section to be projected onto the attractor and the number of nearest neighbours which 

had to be chosen. For the orbit length a range of 1 to 3 was chosen which means that, 

for a window length of, for example 48 hours, a section of 48h, 49h, or 50h, 

respectively was chosen from the test data to create a delay matrix consisting of 1, 2 or 

3 rows, correspondingly. The number of nearest neighbours explored in the analysis 

ranged from 2 to 10, as summarised in Table 4. The reference case was fixed based on 

the optimal results as shown in Figure 19 to Figure 21. 
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wM  tM  xn  nn  Forecast Forecasting horizon 

Reference 
case 

values 

1 day 

 

16 

 

1 

 

5 

 

2010 24h 

Range 1 day-2 
weeks 

5-35 1-3 2-10 1999-
2007 

1-24h 

Table 4. Summary of data used for training and forecasting, with parameter settings used for 
2008-2009. 

With the model defined by the tM singular vectors and the past data describing the 

observed dynamics through the tM  principal components, the new measurements for 

the forecasting were transformed using the same parameters and then projected onto the 

observed dynamics. This is illustrated in Figure 13 where the attractor from the training 

data is the grey object. The blue circle is a single point in the phase space created by a 

time series section of the window length wM . In this example, nn = 5 i.e. the five 

nearest neighbours on the orbit of the training data are, in order of proximity, identified 

by the red numbers in Figure 13. These five nearest neighbours can then be traced 

forward in time over the forecasting horizon, which is shown by the red curves evolving 

from the numbered positions. Each of these can then be re-transformed to wind speed 

and direction to produce the ensemble forecast. The final result is then a forecast of the 

predicted mean wind speed and the uncertainty in that prediction for all lead times from 

one hour ahead to the specified forecasting horizon, 24 hours in our analysis. 
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Figure 13. New data mapped onto training set for the 2008-2009 wM =48h model. The blue 

circle is the new ‘current’ observation, and the five red numbers are the nearest neighbours 
which were then found to evolve for the specified forecasting horizon as shown by the red lines. 

4.3 Performance evaluation 

To evaluate the performance of the predictions, the predictions are compared 

against the actual values from the test data, using the three main measures 

recommended by Madsen et al. [107] albeit for wind speed rather than power output. 

They are all based on the prediction calculated as the difference between actual 

observation, u , at time Tt +  from the test set and the wind speed predicted for that 

time based on the observation at time t  û ,as                              

 ��� � � |�� 	 
�� � �� � 
��� � � |��  (32) 

These three measures are the bias 
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                       ������� = �	���� = 
��������� = �
�
�� + � | ���

���
 

 (33) 

  

the mean absolute error (MAE), frequently used in the literature, e.g. [104]                                 

 ������ = |
(�)|�������� = �
�|
�� + � | ��|�

���
 

 (34) 

and the root mean squared error (RMSE) 

         ������� = ��
��
�� + � | �� ���

���
 

 (35) 

These errors for the predictions using the PCA forecasting were then benchmarked 

against the frequently used persistence, ûref (t+T | t) = u(t). This benchmarking is 

quantified by an improvement measure as defined [107], e.g., for the BIAS (and 

likewise for MAE and RMSE) as                               

 ������,	
����� = ���������� − �����������������  
 (36) 

Since the PCA forecasting intrinsically returns all predicted time steps at the sampling 

interval until the prediction horizon or lead time T , we also use average of ( )TpIm  over 

max,....,1 TT = . The sensitivity of the PCA forecasting method to different choices of the 

parameters is here described in terms of the overall improvement of the MAE over 

persistence:                                    

 �� =  ��
��
� ����,������ 
����

���
 

 (37) 

where the maximum lead time in our case is 24 hours. 
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4.4 Results 

4.4.1 Forecasts of wind speed and uncertainty 

The uncertainty of the actual and forecasted wind speed was examined in Figure 14. 

 

Figure 14. Comparison of actual wind speed (red line), forecasted wind speed (open black 
circles) and uncertainty of wind speed (dashed blue lines). Fig. 13 (a) is a ‘bad’ prediction 
example whereas Fig.13 (b) is a ‘good’example. 

Figure 14 illustrates a comparison of the ensemble forecast representing all 24 

hours of lead time for two of the 100 predictions made for this analysis. As outlined in 

section 4.2.2, the predictions made in the phase space were re-transformed to real wind 

speed and direction. From the ensemble of nn = 5 forecasts, the prediction was 

calculated from the mean of the ensemble (open black circles) and the prediction 

uncertainty was also found with the use of the standard deviation (dashed blue lines).  

Hence the comparison to the actual wind events was made (red lines).  

As both examples in Figure 14 show, the predicted wind speeds form a strongly 

smoothed curve compared to the actual winds, as the PCA has successfully separated 

the slow atmospheric dynamics from the unpredictable local turbulence. For a very 

good prediction at all lead times from one hour ahead to the forecasting horizon, the 



 

 

 

76 

actual with the predicted wind speeds are closely aligned, while for an acceptable 

prediction, the actual wind speed should lie within the band specified by the uncertainty 

of the prediction. Conversely, wind speeds outside the band would have been poorly 

predicted.   

Figure 14(a) is an example where the forecast is relatively poor at times due to very 

large hourly variations in the wind speed. The prediction does not capture the 

substantial increase in the first 8 hours of the forecast to a degree where the actual wind 

speed is well above the predicted uncertainty band. A consequence of this is that the 

actual wind speed is outside the expected range indicated by the dashed blue lines.  

Finally, the prediction toward the end of the horizon is for the wind to increase while 

the actual wind speed decreases. Figure 14(b) is a case where the prediction is good:  

the decrease of the wind speed over the first 14 hours is predicted as is the increase 

beyond.  Furthermore, the model predicts a higher uncertainty for lead times between 10 

and 20 hours after which the predicted uncertainty suggests a return of predictability for 

the day-ahead forecast. This is exactly borne out by the actual observations which 

follow the predicted mean very well but shows a persistent error within the 10h to 18h 

lead time. 

4.4.2 Forecasting quality 

To quantify the performance of this model we used as the first measure the mean 

absolute error, MAE, as defined in equation  (34) by averaging the absolute forecasting 

error at a lead time T  ahead for a large sample (=N 200) of forecasts. The reason for 

concentrating on this measure is that it gives a direct comparison of the error with the 

predicted uncertainty.  If the MAE is less than the uncertainty, the prediction is as good 

as it can be (and is known to be) but if the MAE is much larger than the predicted 

uncertainty, the model does not work for that data set. 

Figure 15 shows the ( )TMAE  as the solid red line against the lead time for the 

reference case of Table 4, i.e. the case of a 2-week training window wM = 336h, a 

model predictor dimension of tM =16 matching a point on the attractor xn = 1, and using 
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nn = 5 nearest neighbours where the predictor was applied to 200 samples from the year 

2010. The open black circles are the average of the uncertainties predicted for that lead 

time and the dotted line is the standard deviation of these predicted uncertainties.  As 

the figure shows, the actual MAE is very close to the predicted uncertainty at short lead 

time, at lead times approaching the 24h prediction horizon. The model performs slightly 

worse than predicted from its own internal dynamics at lead times between 8 and 20 

hours but still within the range of calculated predictions. The model-internal 

performance check is also compared against persistence. The mean absolute error for 

persistence, ( )TMAEp  is shown as the green dash-dotted line. The key features of the 

error of persistence compared to that of the PCA model is that persistence is much 

better than PCA at short lead times up to 6 hours but that PCA outperforms persistence 

at longer lead times.  The fact that persistence is often the best predictor for short lead 

times was also supported by Madsen et al. [107] and can be explained through the short-

term fluctuations affecting the local wind at these times more than any slow synoptic 

weather changes. Based on this, we propose a refinement of the PCA-predictor by 

merging it with a persistence-based correction at short lead times.  

4.4.3 Combining persistence and PCA 

After performing this comparison and applying several inputs for the different 

parameters used by PCA, it was concluded that the respective strengths of persistence 

and PCA could be exploited in a combined forecast by applying a filter to the PCA 

prediction [99]. This filter constructs a weighted average of the persistence prediction 

and the PCA prediction for a filter length long enough to cover the range where 

persistence outperforms PCA prediction. Over that filter length, the weights of the 

averaged change linearly from 1 for persistence and 0 for PCA at the ‘current’ time 

(lead time = 0h) to the other extreme of 0 for persistence and 1 for PCA at the end of the 

filter length. The filter is of the form:                        

 ��,� =  ��� − ���
� �� + ���

 ����,� ��  � = !…������,� ��  � > ��
  (38) 
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where i  is the lead time, fN the filter length, iPCAu , the ensemble forecast and u0 the 

current wind speed. By trial and error, a good filter length was found to be between 10h 

and 15h, with little change of the results in that range. 

The effect of applying such a correction on the performance of the predictor is shown in 

Figure 16, where it is clear that the very short term prediction, up to a lead time of 6h is 

now as good as for persistence and that the prediction for longer lead times is dominated 

by the ability of PCA to extract the slower atmospheric dynamics. The reason behind 

the dip at a lead time of 5h as seen in Figure 16 for both, PCA and persistence, is 

unclear.  However, a speculation could be made that this reflects the gap in the typical 

wind speed power spectrum at the period of a few hours [108]. 

 

Figure 15. Comparison of annual mean forecasting 
error and uncertainty (unfiltered data) for the 
reference case. 

 

Figure 16. Comparison of annual mean forecasting 
error and uncertainty (filtered data) for the 
reference case. 

4.4.4            4.4.4. Other error measures 

 Following the recommendations of Madsen et al. [107] the alternative error 

measures of Bias  (33) and RMSE  (35) were calculated and are shown in Figure 17 and 

Figure 18. They both indicate that PCA outperformed the persistence method and 

specifically for the bias error measure, PCA performed substantially better than 

persistence. 
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Figure 17. Comparison of bias between PCA and 
persistence method. 

 

Figure 18. Comparison of RMSE between PCA 
and persistence method. 

4.5 Sensitivity analysis of parameters 

Figure 19, Figure 20 and Figure 21 show the performance index of the results for 

the different choices of the length of orbit, xn , to use for finding the nearest neighbours 

on the attractor, the number of nearest neighbours, nn and the embedding dimension tM , 

respectively. 
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Figure 19. Performance Index of PCA results in % for different overlap values. 

Figure 19 indicates that using a single point (xn = 1) rather than fitting a short time 

series of point (xn > 1) overlap seems to yield the best improvement (around 11.2%) of 

the results. This means that the PCA results are 11.2% closer to the actual results in 

comparison with the persistence method. Using xn > 1 did not work for our data set as 

there were not enough nearest neighbours. After determining that xn = 1 seems to be the 

best, this was used for analysing the sensitivity to the number of nearest neighbours, nn , 

Figure 20 shows that the overall improvement initially rises substantially from below 

8% for only two neighbours to above 11% for five nearest neighbours but then drops 

again to around 9%. Using too few or too many neighbours might not be appropriate 

since with too few (i.e. less than 5) the information we use for the analysis might be too 

little whereas on the contrary, using too many (i.e. more than 5) might initially show 

that we can obtain more information; however, these neighbours might actually lie very 

far apart from each other in the phase space. There is clearly a distinct optimum which 

needs to be determined but it is not clear whether it is at or around five nearest 
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neighbours for any data set or whether this must be determined from optimising the 

parameters through experience at each site individually. 

 

Figure 20. Performance Index of PCA results in % for different nearest neighbours values. 

 

Figure 21. Performance Index of PCA results in % for different truncation values. 



 

 

 

82 

Finally, Figure 21 shows the sensitivity of the model to the choice of the model 

truncation. Here, it can be seen that different choice of truncation results in a big 

variation of the percentage of improvement. Hence, a careful choice of the number of 

truncations is important. The number of truncations for which the improvement seems 

to be more consistently high for (5.6%) is around 16. Truncations up to 16 represent 

variations at time scales from that of the window length down to 4 cycles per day so the 

left side of Figure 21 could be interpreted in daily cycles caused by the sun. It should be 

noted that adding more truncations results in adding more information but whether this 

information is useful or not is another issue which should be of further investigation and 

of course depends on the site and wind dynamics used for the analysis. 

It can be concluded that applying PCA for wind forecasting purposes demonstrated 

that the method is a reliable forecasting method for forecasting wind speeds hours ahead 

to day ahead. By combining the PCA prediction with persistence prediction at very 

short time scales, it was possible to eliminate the weakness of applying PCA to a 

coarsely sampled wind record. One of the most useful aspects of PCA over some other 

forecasting techniques is that it is based on an ensemble forecast using ensembles of 

similar past events. This allows an estimation of the forecast accuracy at the time when 

the forecast is made.  The analysis showed that this estimated forecast uncertainty is a 

reliable predictor of the actual forecasting error.  
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Chapter 5 PCA as an MCP method initial applications and results 

This chapter is an intermediate step in the application of PCA used as an MCP 

method starting from the simple concept of a pendulum which was initially used in 

Chapter 3 and moving on to real wind data. Initially, wind speed was only used as an 

input variable and furthermore, where the main part of this research focuses on, wind 

speed and direction were used as input variables for the analysis described in more 

detail in Chapter 6.  

5.1 First application of PCA as an MCP method in noisy pendulum  

The initial step in developing PCA as an MCP method was to test it on the first 

application of PCA which was presented in section 3.4 and more specifically for the 

noisy oscillator. The initial noisy pendulum equations as described in equation (14) 

were developed as 
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 (39) 

The rationale behind reconstructing the pendulum equations of section 3.4 was to 

construct simple dynamical systems representing some key characteristic of a potential 

wind site.  Extending this to PCA would need to have two signals representing a target 

site and a reference site, respectively, which somehow are linked by a common 

underlying signal representing the synoptic weather pattern. In this case, 0x  would 

represent, for example, the UK weather characteristics and is a common factor in both 

equations and yx,  i.e. are equivalent to reference and target sites have very similar 

equations since in real life the wind speed of both sites should not have significant 

differences in their overall behaviour. Each of the two sites contains the common signal 
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x0 but modulated by local effects, represented by modulations with different amplitudes, 

frequencies and phases, in addition to a noise term representing local turbulence 

completely without any correlation between target and reference site. The systematic 

change of them with time should be examined by investigating changes in the following 

variables: δφ,,, 21,21 ffAA . More specifically, 21, AA  represent the local magnitude of the 

wind of 0x , 21, ff  indicate the more coherent dynamics of 21, AA  modulating the wind 

and ( )π
πδφ
2,0

=

 
is the time shift (time of flight) between the two sites and finally,ε the 

turbulence (noise).  

The use of PCA in the noisy pendulum case was structured as it is described in the 

following steps. First, a time series for the pendulum was set and then the equations as 

described in equation  (36) were introduced. Then, a time-delay matrix Y containing the 

equations yx,  was created. Furthermore, a new reduced time series was created 

containing only half the information of the system i.e. just the channel ofx. The reason 

behind this was to treat the system like the reference and target site data in an MCP 

analysis case. Thus, another time-delay matrix halfY  using this half information was 

created containing only halfx  with halfy being the unknown information of our interest. 

PCA was then performed on the initial time-delay matrix Y which contained both yx,  

and the singular values Λ , singular vectors S and principal componentsP  were 

harvested.  The singular values matrix was inverted 1−Λ and the singular vectors matrix 

was transposed TS according to the equations  (24) and  (25) of section 3.6.1.   

A new principal component matrix pP was then created where instead of the old 

time-delay matrix Y the new half information halfY one was used alongside with the 

singular values 1−Λ and vectors TS in the aforementioned form.  Equation  (40) 

describes it                                                
 

 1−Λ= T
rhalfp SYP

 
 (40) 
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Another time-delay matrix testY and a principal component matrixtestpP ,  were then 

created in order to check the results of combining the initial time-delay matrix Y  with 

the half information one halfY  thus containing halfx  and obtaining the new information

halfy . Finally, we projected back from the attractor in the phase space to the delay space 

using the new time series matrix pY  like described in equation  (29) so that we can 

extract the predicted signals pp yx ,  like it would happen in the case of MCP for the 

reference and target site.  

5.2 PCA-MCP noisy pendulum results 

The range of values used for the variables 21,21 ,, ffAA  of equation  (39) were 0.1, 

0.2, 0.3, 0.5, 0.71, 0.9, 1.11, 1, 2, 3.14, 10 and all these values were examined for the 

different time shifts δφ : 0, π/2, π/4, π/9, π/12,1, π5 , π, 1.11π, π2 , 1.5π. These 

values were chosen randomly, nevertheless attempting to cover different scenarios for 

the system of equations. A more detailed sensitivity analysis for the aforementioned 

range of values is found in the graphs of the Appendix A.  

5.2.1 Qualitative Results 

The PCA results of different principal components plotted against each other 

(P1,P2,P3,P4) when examining an indicative range of values based on a reference case of 

the system for the variables: δφ,,, 21,21 ffAA  are presented below and summarized in 

Table 5. In some cases it was observed that PCA was not performing very well since 

some of the PC’s of the prediction time series (middle row) were not of similar shape 

when compared with the actual full time series PC’s  (last row). Looking at 21, AA  for 

different 1A  values the PC predicted graphs have differences with the actual ones 

(middle and last row) which indicates that PCA did not perform with accuracy for all 

PC’s. As it can be seen in Figure 22 in the middle and last row all PC’s are not similar 

especially for P3 and P4 thus PCA failed to extract similar patterns when the half 

information time series were used. However this was not the case for 2A  since it can be 
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clearly seen from Figure 23 that all PC graphs have similar shapes when compared to 

the real time series which indicates that PCA performed well. Hence, since PCA seemed 

to be performing better for different 2A values than for1A . Further investigation of the 

singular vectors should be conducted. 

 

Figures δφ  
1A  2A  1f  2f  

Reference 
Case 

π/9  4 0.3 0.5 0.3 

Figure 22 π/9 0.1 0.3 0.5 0.3 
Figure 23 π/9 4 2 0.5 0.3 
Figure 24 π/4 4 0.3 0.5 0.3 
Figure 25 π/9  4 0.3 10 0.3 

Table 5. Range of values for A1, A2, f1, f2, δφ used for Figure 22 to Figure 25. 

 



 

 

 

87 

 

Figure 22. Principal components results for A1=0.1 and rest of settings originating from the 
reference case i.e. A2=0.3, f1=0.5, f2=0.3, δφ = π/9. 

a) b) 

d) e) 

g) h) 

c) 

f) 

i) 
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Figure 23. Principal components results for A2=2 and rest of settings originating from the 
reference case i.e. A1=4, f1=0.5, f2=0.3, δφ = π/9. 

Regarding the range of δφ  we can see in Figure 24 that all PCs have similar shape 

when compared to each other for the actual and predicted time series. However, for 1f  

as seen in Figure 25, PCA results indicate different shapes of the predicted and actual 

time series for P3 and the P4 graphs in the last two columns.  

a) b) 

d) e) 

g) h) 

c) 

f) 

i) 
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Figure 24. Principal components results for δφ = π/4 and rest of settings originating from the 
reference case i.e. A1=4, A2=0.3, f1=0.5, f2=0.3. 

 

a) b) 

d) e) 

g) h) 

c) 

f) 

i) 
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Figure 25. Principal components results for f1=10 and rest of settings originating from the 
reference case i.e. A1=4, A2=0.3, f2=0.3, δφ = π/9. 

From the application of different values to the variables: δφ,,, 21,21 ffAA  in order 

to investigate how PCA performs qualitatively when it is used for MCP purposes, it can 

be concluded that 2A  and δφ  when choosing different values did not in general seem to 

affect the PC graphs which indicates that PCA performed well and yielded accurate 

results. On the other hand, when1f  and 1A were examined PCA did not perform so 

well since the predicted PC graphs were of different shape than the actual ones i.e. the 

predicted PC’s did not reproduce secondary oscillations. 

a) b) 

d) e) 

g) h) 

c) 

f) 

i) 
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5.2.2 Survey of parameter sensitivity  

After the examination of the qualitative results in the noisy pendulum example, a 

survey of the sensitivity analysis was then conducted. A selection of a range of values 

for the variables: δφ,,, 21,21 ffAA  was chosen. This range was more limited than the 

ones used for the analysis in 5.2.1 and it was for 21,21 ,, ffAA : 0.3, 0.71, 1, 2, 10 and for 

δφ : π/2, π/4, π/12. For the aforementioned range of values for the variables, the 

following quantitative criteria were investigated.  

The time shift 21,ss  at which the maximum correlation occurs of phalf xx , and

phalf yy , . Then, the time-shifted standard deviation ratio 
yx

rr σσ ,  is described by the 

equation                                     
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and finally the mean yx ee , and standard deviation )(),( yx esdesd of the errors yx ee ,  

which were derived from the following equation                                                                                     
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 (42) 

Ideally, we want the time shift 21,ss between the two signals yx,  to be the same, 

the 
yx

rr
σσ

, to also be the same as well and small values for yx ee , and for )(),( yx esdesd . 

Similar time shift 21,ss  and standard deviation ratio 
yx

rr
σσ

, values indicate that the 

predictions were of good quality and representative of the two signals yx, . Using the 

same rationale, small values for yx ee , and for )(),( yx esdesd are indicators of a good 

prediction as well. 
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The results indicated that using the2A
 
range of values seems to be in good 

accordance with the mentioned desired criteria i.e. very similar 21,ss  and 
yx

rr
σσ

, with 

small yx ee ,
 values. Similarly, the same held for the 1f  range of values whereas for the 

21, fA  values, they seem to result in different 21,ss  and
yx

rr
σσ

,  and very different 

)(),( yx esdesd  in the case of2f . Table 6 indicates the results for each one of the 

21,21 ,, ffAA  variables for the range of values used. 

 Time shift 
where max  
correlation 

occurs

21 , ss   

Standard deviation 
ratio 

yx
rr
σσ

,  

Mean of errors  

 

yx ee ,  

Standard 
deviation of 

errors 

)(),( yx esdesd  

f1=0.7 
,δφ : π/2 

1s  , 2s =14 
x

r
σ =1,  

y
r
σ =2.86 

xe =-0.001,  

ye = -0.0003 

)( xesd =2.28, 
)( yesd =2.19 

f2=0.3, 
δφ= π/4 

1s =8,  

2s =26 

x
r
σ =1.18,  

y
r
σ =2.87 

xe = -0.001,  

ye =0.44 

)( xesd =0.78, 
)( yesd =4.24 

A1=0.3 , 
δφ= π/12 

1s =3,  

2s =17 

x
r
σ =1.13,  

y
r
σ =4.76 

xe = 0.005,  

ye = 0.010  

)( xesd =2.80, 

)( yesd =3.06 

A2=1, 
δφ =π/12 

 21,ss =15 
x

r
σ =2.94,  

y
r
σ =2.87 

xe = -0.004,  

ye  =-0.006 

)( xesd =2.62, 

)( yesd =3.18 

Table 6. Semi-quasi quantitative results for range of values A1, A2, f1, f2: 0.3, 0.7, 1, 2, 10 and 
δφ : π/2, π/4, π/12. 

5.3 PCA as an MCP method on real wind data 

The next attempt for PCA to be used as an MCP method was made on real wind 

speed data taken from Gogarbank (GGB) and Blackford Hill (BFH) meteorological 

stations in Scotland, UK [75]. The data specifications were explained in detail in 
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Chapter 4 and in Table 9 and Figure 31 of Chapter 6. In our case, Gogarbank was 

treated as the reference site, where the historical data are being used from, and 

Blackford Hill as the target site, the site for which our aim is to predict for.  

At this point it is important to mention that the gaps in the data used throughout all 

the real wind data analysis in this chapter but also in Chapter 6 were identified and then 

interpolated. The implications of this and possible solutions will be discussed in the 

final chapter, Chapter 7. 

Variables such as temperature and pressure were initially included in the PCA-

MCP analysis but were emitted later on. Pressure specifically did not seem to play an 

important role in the analysis and temperature was excluded since it was found that it 

introduces seasonality in the data which would result in more biased results. 

5.3.1 PCA-MCP for wind speed 

The MCP methodology steps described in section 3.6.3 were followed for this 

analysis. The number of channels in this case are =0N 2 since only wind speed is used 

i.e. ( )ty j0
= 2,1 uu where 1u is the wind speed of Gogarbank and 2u the wind speed of 

Blackford Hill. 

5.3.2 PCA-MCP wind speed parameter analysis setup 

The parameters which were examined were: the window length, wM i.e. the 

number of days used for the columns of the time-delay matrix and the truncations, tM

i.e. the number of principal components used for the PCA analysis which were 

originally obtained from the singular values spectrum (Λ  from equation  (12)) graph. 

Window length wM  from 1 to 21 days was used. Table 7 indicates the values of these 

examined parameters. For small window length, the results were poor for large 

truncations. For window lengths of more than 14 days, the physical limitations of the 

computer prevented the use of truncations larger than the very shortest of 3 and 6. For 
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this reason here, the intermediate cases are presented which will then be used to explore 

the full sensitivity analysis in Chapter 6.5. 

Training periods (concurrent data) 1999, 
…,  

2010 

Window length for training ( )wM  1  and 3 days  7 and 14 days  

Number of principal components retained for 
prediction  (truncations) ( )tM   

3,4,6 6,12,18 

Prediction period 1999 - 2010 

Table 7. Parameter settings used for the PCA-MCP wind speed analysis. 

5.4 PCA-MCP wind speed calibration and results 

The calibration of the predicted wind speed results and comparison with the 

original data was essential to be undertaken since the PCA-MCP predictions were 

shorter than the length of the historical data by the size of the window length wM . 

Hence, the aim was to match the predicted ‘shorter’ reference data with the historical 

data. The calibration method presented here was an intermediate step to achieve the 

final calibration method used as described in section 3.6.2, Table 3 and used in Chapter 

6. Various possibilities were explored regarding the calibration, all guided by the aim to 

calibrate the predictions so as to have the same variance and mean values as the actual 

data.  The earlier attempts explained here, base this calibration on matching the mean 

and variation of the prediction to those of the training period.  The rationale was that, if 

the calibration of the target site was similar to that of the reference site, then it would be 

possible to determine the calibration for the reference site and transfer that calibration to 

the target site. The two calibration methods used are two variants of linear regression, 

described in equations  (43) and (44), respectively.   

In contrast to this approach, the final calibration, which was introduced in the 

formal development of the model in section 3.6.2, does not require the calibration 

between reference and target site to be similar, but that the loss of variance by 

truncating the singular vectors (both in dimensions and number of input channels) will 
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be the same irrespective of whether the method is applied to the reference data from the 

training period or from the historical period. 

The mean average error MAE  was calculated and therefore shifted across the data 

to examine how well it matches the predicted values to different sections of the 

historical data. In more detail, initially the data were normalised as following: 
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where 21 , µµ  are the mean and 21 ,σσ standard deviation coming from the original 

training data, pp uu ,2,1 ,  and 
*
,2

*
,1 , pp uu  are the normalised predicted wind speeds in m/s for 

GGB and BFH respectively. Furthermore, after several rescaling attempts so that the 

original data ‘match’ with the predicted ones, the best rescaling method found by trial 

and error was of the form:                                               
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(44) 

With the use of the minimum values and the mean of the training signals pp uu ,2,1 , for 

both GGB and BFH as correction factors and by taking also into consideration that wind 

speeds are bigger than zero the rescaled signals for GGB and BFH were found to be 

aa uu ,2
*

,1
* , . 

All data were then examined in order to find where the best matches between the 

predicted and original data existed. Then, the histograms of *

,2

*

,121 ,,, aa uuuu were 

produced in order to investigate how well the predicted calibrated PCA results 

performed when compared to the actual wind speed data for both sites. Some indicative 

results can be shown in Figure 26 and Figure 27. 
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 Figure 26 presents in the top left plot (a) the singular values plot from the PCA 

analysis results.  This graph was used for the determination of the truncation values 

used in the parameter settings models. It shows three sections, an initial set of six large 

but rapidly reducing singular values, followed by three singular values of similar 

magnitude, and final a long tail of gradually decreasing values. From this, one there are 

two choices of truncation suggested, either a truncation of tM = 6 to include only the 

first set or a truncation of tM = 9 to include the three singular values forming the central 

set. In Figure 26b) the mean absolute error (MAE) for GGB historical and predicted 

data (black line) and with the red line the MAE for BFH historical and predicted data is 

depicted against time shift, s  for matching the actual wind speed against prediction 

which is shorter than the actual by the window length used to create delay matrix. The 

MAE formula is given in equation  (45):                                          

 ∑
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As it can be seen for these specific training and historical periods and parameter 

choices, there is a clear minimum in the MAE for both sites at the same time shift of 

around 10. The PCA results seem to be relatively good since the MAE of BFH is 

relatively close to that for the GGB, they are of the same shape and the amount of error 

is around 1.5-2 m/s, i.e. relatively small compared to the much larger values at larger 

time shifts.  

The rest of the graphs in Figure 26, depict the probability density function (pdf) 

histograms of the actual and predicted data for both sites. In Figure 26c) shows the 

distribution of the wind speeds at the reference site (Gogarbank) for the prediction 

period while in Figure 26d) shows the prediction of the wind speeds at the reference site 

as the histogram, with the actual data from panel c) reproduced as the red line for direct 

comparison. Likewise, Figure 26e) and f) show the actual wind speed at the target site 

for the prediction period and its prediction. It can be shown from graphs d) and f) that 

PCA seems to over predict for small wind speed values of less than 6 m/s but above this 
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value, the actual and predicted measurements seem to be in good accordance for both 

sites. 

  

 

Figure 26. PCA-MCP results for historical data 1999-2008, training year 2009-2010, truncation

tM =6, window length wM =7 days. 

On the other hand, a ‘bad’ result of PCA is depicted in Figure 27. It can be seen that the 

reference and target site errors indicate an oscillatory movement which could possibly 

suggest a daily cycle in the data. However, it should be noted that the errors seem to be 

of similar shape and a minimum value can be identified for both GGB and BFH similar 

a) b) 

c) d) 

e) f) 
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to the one of Figure 26. From the differences in the two Figure 26, Figure 27 which 

contain different window lengths and truncations, it can be concluded that the choice of 

the parameters seems to be of great importance for the quality of the PCA-MCP results. 

This leads to the initial observation that prior to undertaking PCA, a careful evaluation 

and choice of the parameters which will be used for the analysis purposes should be 

conducted.  

 

Figure 27. PCA-MCP results for historical data 1999-2009, training year 2010, truncation tM

=18, window length wM =14 days. 

a) b) 

c) d) 

e) f) 
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In general, the histograms as it can be seen in Figure 27 are quite similar to the ones 

of Figure 26.  They are very good illustrations of the performance found at all parameter 

settings and hence it can be concluded that there exists a persistent tendency for over 

prediction for low wind speeds for both GGB and BFH but more accurate predictions 

for larger wind speeds for the majority of the models. In addition, the knowledge of the 

errors for the reference site enables 1) a calibration for the predicted results 2) an error 

estimation for the target site also and most importantly 3) the evaluation of the quality 

of these predictions. Overall, PCA seemed to perform well for GGB and BFH regarding 

wind speed measurements considering that a sheltered (reference) site was used to 

predict for an exposed (target) site.  In the following section, the performance of all 

models will be compared by using the error in the wind speed prediction to explore how 

the performance varies as the model parameters are varied. 

5.5 PCA-MCP wind speed sensitivity analysis 

The next step was to find the relative error for the different settings of window 

length( )wM and truncation( )tM as described in Table 7. The models used for the error 

analysis are shown in Table 8:  

 

Years 
Historical Truncation 
1999-2009 2010 
1999-2008 2009-2010 
2000-2009 2010 
2000-2008 2009-2010 
2001-2009 2010 
2001-2008 2009-2010 
2002-2009 2010 
2002-2008 2009-2010 
2003-2009 2010 
2003-2008 2009-2010 
2004-2009 2010 
2004-2008 2009-2010 

Table 8.  Datasets used for the relative error analysis. 
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Initially, the errors 2,1, , uu EE  of GGB and BFH respectively were calculated for all 

the models and the aforementioned different window and dimension settings as 

following:      
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Then, the relative error 21, EE  of GGB and BFH which is the measure of sensitivity of 

2,1, , uu EE was calculated. That is the error 2,1, , uu EE as calculated in equation (46) but 

rescaled and normalised with respect to the set up value of window length wM =7 and 

truncation: 6 for the GGB dataset, named RE for each model of Table 8 respectively. 

The value of RE was specifically chosen since it was a benchmark setting of ‘middle’ 

values for the PCA-MCP parameter settings of Table 7.                                                    
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Figure 28 indicates the boxplots of the relative error 21 , EE in the top (a) and 

absolute relative error 21 , EE in the bottom graph (b) for GGB (blue) and BFH (red) 

for the different window lengths used as mentioned above. Boxplots show the range of 

values observed divided into quartiles, with the central horizontal line showing the 

median of the error, the boxes either side the 2nd and 3rd quartile, and the range from the 

box to the whiskers the 1st and 4th quartile, respectively. Outliers, defined as 2.5 times 

the extend of the 2nd or 3rd quartile from the median, are shown as individual circles. As 

it can be seen, more window length results in less 1E  for GGB. For example when 

comparing the error for window 1 and 14 with windows 3 and 7 we can see a significant 
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reduction in 1E . However, 2E tends to become more for BFH for the same window 

length choices. The closest pair ofE values for both sites seems to be the window 

length of 3 days. 

 

Figure 28. Relative and absolute relative error for window length wM : 1, 3, 7, 14 days where 

blue represents GGB (reference)  and red BFH (target). 

Next, Figure 29 illustrates 21,EE  and 21 , EE  for the different truncation 

values. As it can be seen for GGB, the 3 different truncation values do not seem to 

result in a significant change of1E . On the other hand, regarding BFH for the highest 
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number of truncations, i.e. 12 dimensions in this case, 2E  seems to be the least and also 

closest to the error of GGB when compared with truncations 3 and 6. 

 

 

Figure 29. Relative and absolute relative error for truncation tM : 3, 6, 12 where blue 

represents GGB (reference)  and red BFH (target). 

Since it was observed from Figure 28 and Figure 29 that E seems consistent 

between the two sites for the parameter choices of window length 3 and truncation 12, 

more graphs were created to investigate further the error behaviour with respect to these 
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interesting parameter choices. In the top graph of Figure 30 for truncation 12 and 1 day 

window, we can observe a very low error for GGB, the reference site meaning that the 

wind regime of the local site is captured and no irrelevant information from other days 

is added. It can also be observed that the median error of BFH for all window lengths is 

relatively constant but its spread is increasing as the window increases too. Thus, it can 

be seen that in order to get the best parameter match and thus lowest error at both sites 

we need to use the shortest window. For the different truncations with respect to 

window 3 in the bottom graph of Figure 30 it can be clearly seen that the lowest errors 

for both target and reference sites are for truncation 12. Some outliers can also be 

observed which indicates that some years models did not yield ‘good’ PCA results. 

Therefore from Figure 30 it can be concluded that the best combination which results in 

the lowestE for both sites is observed for truncation 12 and window length 3. 
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Figure 30. Absolute relative error for truncation tM =12 and window length wM =3 where blue 

represents GGB (reference) and red BFH (target). 

Hence, the main initial observations from applying PCA as an MCP method on 

wind speed data for two datasets using several years and different parameter choices can 

be drawn. Adding more time series information seemed to be better for local predictions 

(reference site) but worse for the target site (Figure 28). On the contrary, more global 

information dynamics, i.e. truncations added, yielded better results for the target site but 

worse for the local site (Figure 29). To sum up, the choice and length of historical and 

training periods for GGB and BFH did not seem to affect significantly the results, 

however the choice of PC’s firstly and window length secondly seem to be of big 
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importance for the quality of the results. However, a key weakness of the method 

developed so far is the persistent error in the low wind speed range, where the predicted 

frequency of very low wind speeds (0 to 3 m/s) is too high at the expense of moderate 

wind speeds (4 – 6 m/s). This problem was traced back to the calibration approach used 

at this stage of the research, leading to the final calibration approach outlined in section 

3.6.2, which was used throughout the final testing and validation work presented in the 

following chapter. Chapter 6 will use similar analysis principles as Chapter 5; however, 

this will be done in more depth and by introducing in the analysis one more very 

important MCP variable, wind direction. 
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Chapter 6 PCA-MCP method final applications and results 

This chapter will present and evaluate the final stage of the PCA-MCP algorithm 

development. Initially, the inclusion of another variable, wind direction, in the PCA-

MCP analysis will be introduced, and then a presentation of examples from a poor and 

good performance of the method will be explored. Finally, error and bias measures 

criteria as well as a comparison with simple linear regression as an alternative MCP 

method will be presented in order to assess the performance of the PCA-MCP technique 

and draw the final conclusions of this research. 

6.1 Wind direction as an PCA-MCP invariant  

Next step in the MCP analysis is to include wind direction as a variable. Wind 

direction is usually included in the MCP analysis alongside with the wind speed since 

these too variables provide more integrated wind information about both reference and 

target sites and hence contribute in a more robust MCP analysis [18]. The method to 

introduce wind direction as a variable which will be used for this MCP analysis is to 

create a vector combination consisting of wind speed and wind direction with the 

components vu , . 

The selection of using these components was also based on the fact that, for 

example, north winds jump from 0° to 360°. Thus, there exists artificial discontinuity in 

the data whereas using the vu, components this is avoided. In general, wind direction 

prediction alone is weak. Therefore, in our case the actual wind direction was not 

looked at but the link between the reference and target wind direction was examined as 

an invariant. Positive � is coming from west to east direction and negative � from east 

to west, positive � from north to south and negative � from south to north. The �, � 

linear combination is of the following form:                                           
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and                                            
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 (49) 

where 1U is the wind speed and 1θ  is the wind direction (in degrees) for the reference 

site. Equivalently, the same relationships hold for 2U  and 2θ of the target site i.e.:                                              
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and                                              
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Now, we have four signal channels 2211 ,,, vuvu  and hence, four columns in the SVD 

matrix i.e. 0N =4 instead of two that we had before when wind speed was only used. For 

the prediction part of the MCP algorithm we need to be careful when we want to 

normalise the results back to actual wind speed ones for both the reference and target 

sites. This is the reason for which a scaling methodology was used carefully which was 

explained in section 3.6.1. 

6.2 PCA-MCP methodology for wind speed and direction combination 

Initially, as described in detail in Chapter 4, the method was used to predict wind 

speeds up to 24 hours ahead i.e. was used for wind speed forecasting. It predicted wind 

speeds based on a set of previous measurements which were used to construct an 

attractor in an optimally defined phase space as a ‘training set’. Current wind 

measurements were then projected to onto that phase space to find most similar 

previous measurements. By tracing the evolution of these similar previous data, it 

became possible not only to forecast the wind speed but also to obtain a measure of the 

expected forecasting uncertainty [97].  
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6.3 Data and analysis setup 

6.3.1 Dataset used in the PCA-MCP analysis 

The PCA-MCP data came from the same source [75] as in section 4.2 for the 

forecasting purposes. For the purposes of this analysis 8 sites in Scotland, UK sites were 

used and as in section 4.2, the sites used anemometers of 10m high above ground and 

the data records used spanned from 2000-2010 with hourly mean wind readings with the 

wind speed stored to the nearest knot (1kn=0.5144 m/s) and the wind direction in degree 

to the nearest 10°. Table 9 indicates the position and characterisation of the 8 sites used 

and Figure 31 their position in the map of the UK. 

Station name Latitude Longitude Characterisation 
1) Stornoway 58.2138 -6.31772 coastal, exposed 

2) Blackford Hill 55.9228 -3.18750 inland, exposed 
3)Machrihanish 55.4408 -5.69571 coastal, exposed 

4) Salsburgh 55.8615 -3.87409 inland, exposed 
5) Prestwick Gannet 55.5153 -4.58343 coastal, sheltered 

6) Gogarbank 55.9284 -3.34294 inland, sheltered 
7) Port Ellen 55.6813 -6.24866 coastal, exposed 
8) Bishopton 55.9068 -4.53122 inland, sheltered 

Table 9. Summary of Met.Office stations used in the analysis with latitude and longitude in the 
decimal degrees and characterisation. 
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Figure 31. Map of the data used for the PCA-MCP analysis 

6.3.2 PCA-MCP parameter analysis setup 

The parameter analysis setup for the dataset described in the previous section 6.3.1 

is described in Table 10. The principal components used were determined after the first 

application of PCA based on the singular values spectrum result and the window length 

( )wM  which was used in the setup of the time-delay matrix was determined according 

to the truncations ( )tM of the relevant components. Hence, both parameters were 

determined at the ‘Correlation’ part of the process as mentioned in Table 3 and were 

therefore carefully chosen after extensive trial and error attempts performed for the 

PCA-MCP analysis which due to brevity are not presented here. All 8 stations were 

used for all possible permutations of pairs as reference and target stations i.e. the 

number of models used were 8x8=64-8=56 in order to investigate how the method 

reacts when each site has been used in the analysis i.e. as a reference or target site. The 

method was also applied for all one-year periods in the span of 2000-2010 used in turn 

as training (concurrent) years.  
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Training periods (concurrent data) 2000, 
…,  

2010 

Window length for training ( )wM  1  (24h) and 2 days (48h) 

Number of principal components retained for 
prediction  (truncations) ( )tM   

3,6,9,12 

Prediction period 2000 - 2010 

Table 10. Parameter settings used for the PCA-MCP analysis. 

6.4 Comparison of PCA-MCP with simple linear regression 

The next step in the validation of the PCA-MCP methodology is to compare it with 

an established MCP method such as standard linear regression. The linear regression in 

this case was established with the following linear model:                                          

 εββ ++= 1102 UU
 

 (52) 

where, as denoted in section 6.1 of this chapter, 21,UU  are the reference and target wind 

speed respectively, 0β  is the intercept, 1β  is the slope and ε is the error term. Hence, 

the target wind speed 2U  is the dependent variable and the reference wind speed 1U the 

independent variable in the linear model. After performing linear regression in R, a new 

variable predU ,2 is created being the target wind speed prediction denoted as:                           
 

 2
,1

2
,110,2 *ˆˆ

pastpastpred vuU ++= ββ
 

 (53) 

was created with 0β̂  the estimate of the intercept, 1β̂ the estimate of the reference wind 

speed in the linear model of equation  (52) times the magnitude of the wind vector 

combination of the actual wind speed of the reference historical data pastpast vu ,1,1 ,  . 
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The linear regression error lrE  was then calculated which will be depicted in 

graphs in the following sections of this chapter. It is of the form:                                 
 

 
2
,2

2
,2,2 pastpastpredlr vuUE +−=

 

 (54) 

i.e. the difference of the mean value of the wind vector combination magnitude to actual 

wind speed of the target historical data pastpast vu ,2,2 ,  from the mean value of the 

predicted target wind speed predU ,2 . 

6.5 PCA-MCP sensitivity analysis  

The performance of the PCA-MCP method in comparison with the linear regression 

as an alternative MCP method was essential to be quantified as part of the validation of 

the new method. This was achieved with the use of different statistical sensitivity 

analysis measures as explained in the following section 6.5.1. 

6.5.1 Error and uncertainty measures 

Initially, the error was quantified as the difference of the prediction and actual wind 

speed distribution for the reference; target and linear regression was calculated as 

follows:                                         

 ( ) ( ) ( )( )duuPuPduue actualrefpredrefref ,, −=

 
 (55) 

and                                                

 ( ) ( ) ( )( )duuPuPduue actualtarpredtartar ,, −=

 
 (56) 

where tarref ee ,  are the difference of the reference and target probability density 

function prediction and the probability density function of the actual reference and 

target data respectively and                                                 
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 ( ) ( ) ( )( )duuPuPduue actuallrpredlrlr ,, −=

 
 (57) 

is the difference of the linear regression probability density function prediction and the 

probability density function of the actual reference data.  

Then, the Mean Absolute Error ( )MAE was calculated [107] as:                                
 

 ( )∫∞==
0u refref duueMAE

  
 (58) 

and                                       
 

 ( )∫∞==
0u tartar duueMAE

 

 (59) 

and finally,                                     
 

 ( )∫∞==
0u lrlr duueMAE

 
 (60) 

where tarref MAEMAE , and lrMAE are the sums of the absolute error as defined in 

equations  (58),  (59) and  (60) for the reference, target site and linear regression and are 

a measure of the goodness-of-fit of the predictions.   In the following, the distribution 

error was calculated on probabilities in N wind speed bins of width, smu /1=∆               
the MAE for each distribution was calculated as: 
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(61) 

(paragrafos!!)Since we use an error of two distributions of unit area, an error measure 

corresponding to the bias as defined in equation  (33) of Chapter 4.3,  

 ( )∫∞==
0u

duueBias
 

 (62) 



 

 

 

113 

is always exactly zero. Since the bias as defined in equation  (33) is identical to the 

difference between the predicted mean wind speed and the actual mean wind speed, this 

is used here as the measure for the bias.                                         
 

To summarise the performance of the PCA-MCP against the standard linear 

regression MCP, a performance index( )PI , was defined as the ratio of the tarMAE  over

lrMAE :                                             
 

 
lr

tar

MAE

MAE
PI =

 

 (63) 

6.6 PCA-MCP results  

6.6.1 A ‘good’ example 

Using the model of Stornoway as reference site and Salsburgh as target site for 

2007 with truncation =tM  12 and window =wM 24h the PCA-MCP results are shown 

in the following graphs. The singular values (Λ ) spectrum graph used to determine step 

3 of the PC-MCP algorithm in Table 3 for the PCA analysis is presented in Figure 32. 

As it can be seen, the lambda values have rapid cut off after 5 and 9 and between 12 and 

14. Hence, the choice of truncation =tM 12 for this example is justified. 
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Figure 32. Singular values spectrum for Stornoway and Salsburgh stations for the training year 

2007, window length =wM 24h, truncation =tM 12. 

As it can be seen from the wind speed histograms of Figure 33 and Figure 34, the 

predicted wind speeds match to a big extent with the actual wind speeds for both the 

reference and target sites. Thus, PCA performed well for these specific data. However, a 

slight overprediction of PCA-MCP can be observed for both reference and target sites. 
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Figure 33. Actual and predicted wind speed for Stornoway (reference) for training year 2007, 

window length =wM 24h, truncation =tM 12. 
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Figure 34. Actual and predicted wind speed for Salsburgh (target) for training year 2007, 

window length =wM 24h, truncation =tM 12. 

Next, the wind roses which describe the wind distribution are shown. Regarding the 

reference site, the actual and predicted wind roses seem to be quite similar to each other 

as seen in Figure 35 and Figure 36. On the other hand, the target site wind roses indicate 

some differences and as it can be seen from the predicted target site wind rose in Figure 

38, it indicates overprediction of the wind speeds in the southeast direction in 

comparison with the actual target data in Figure 37 which shows the prevailing wind in 

the southwest. It can be concluded from Figure 37 and Figure 38 that PCA-MCP seems 

to predict quite well the wind speed distributions for both the actual and predicted data 

but not so good the wind direction even in the ‘good’ example described here. As it will 

be discussed in Chapter 7, this is one of the issues to be considered in the future 

validation work of the PCA-MCP method. 
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Figure 35. Wind rose for Stornoway (reference) 
actual data for training year 2007, window length 

=wM 24h, truncation =tM 12.  

 

Figure 36. Wind rose for Stornoway (reference) 
predicted data for training year 2007, window 

length =wM 24h, truncation =tM 12. 

  

Figure 37. Wind rose of Salsburgh (target) actual 

data for training year 2007, window length =wM

24h, truncation =tM 12. 

Figure 38. Wind rose of Salsburgh (target) 
predicted data for training year 2007, window 

length =wM 24h, truncation =tM 12. 
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6.6.2 A ‘bad’ example 

Using Blackford Hill as reference and Machrihanish as target site for 2003 with 

truncation =tM  9 and window length =wM 48h we obtain the following PCA-MCP 

results. It can be seen from Figure 39 which depicts the singular values spectrum that 

the lambda values have a rapid cut off around 30. However, the split between the 

singular values sections is not so clear as it was in Figure 32. It can be concluded that 

=tM 9 would be a suitable choice for =wM 24h in the previous ‘good’ case but 

choosing it for this case of =wM 48 seems to have resulted in the loss of important 

variance. The choice of another truncation other than 9 would thus be the most suitable 

one to test the bad performance of the PCA-MCP method. 

 

Figure 39. Singular values spectrum for Blackford Hill and Machrihanish stations for the 

training year 2003, window length =wM 48h, truncation =tM 9. 

 

Next, the wind speed histograms in Figure 40 and Figure 41 are shown. In this case, 

it can be observed that the predicted wind speeds with the actual wind speeds for both 

the reference and target sites have some differences, especially for the target site. In 
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Figure 40, the predicted wind speed seems to be underpredicting the wind speeds for the 

very low wind speeds (< 1m/s) and overpredicting for the low wind speeds (< 5m/s). 

Figure 41 indicates an overprediction of the target wind speeds to begin with (< 3m/s) 

followed by a very big underprediction for wind speeds ranging from 3m/s up to 11m/s 

and then followed again by an overprediction for the large wind speeds. Thus, a very 

big deviation in the target site prediction and actual wind speed data can be observed 

which shows a poor PCA-MCP performance. This could be due to an old anemometer, 

or the Blackford Hill anemometer being of poor response due to false instrumentation. 

However this big deviation didn’t show in Figure 40 because it predicted well internally 

within the station but when combined with the Machrihanish site which has better 

quality data , this error is apparent. Also comparing the actual data of the two sites wind 

roses of Figure 42 and Figure 44, they are very different. 

 
Figure 40. Actual and predicted wind speed for Blackford Hill (reference) for training year 

2003, window length =wM 48h, truncation =tM 9. 
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Figure 41. Actual and predicted wind speed for Machrihanish (target) for training year 2003, 

window length =wM 48h, truncation =tM 9. 

 

The wind roses of the reference data, Figure 42 and Figure 43 are similar with very 

little differences as described in the histogram of Figure 40. However, Figure 44 and 

Figure 45 regarding the actual and predicted target site data indicate a lot of differences 

which verify the under and over predictions in the target predicted wind speed as described 

in the histogram of Figure 41. The prevailing winds in Figure 45 seem to be coming from 

the southwest whereas in the actual target data shown in Figure 44 come from southeast. 

This example was one of a poor performance for the PCA-MCP method because the actual 

and predicted data especially for the target site deviated to a big extent. More measures to 

validate the method’s performance will be shown in the following sections of this chapter. 
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Figure 42. Wind rose for Blackford Hill (reference) 
actual data for training year 2003, window length 

=wM 48h, truncation =tM 9.  

 

Figure 43. Wind rose for Blackford Hill (reference) 
predicted data for training year 2003, window length 

=wM 48h, truncation =tM 9. 

 

Figure 44. Wind rose of Machrihanish (target) actual 

data for training year 2003, window length =wM

48h, truncation =tM 9. 

 

Figure 45. Wind rose of Machrihanish (target) 
predicted data for training year 2003, window length 

=wM 48h, truncation =tM 9.  
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6.6.3 Overall PCA-MCP performance and evaluation 

The following graphs depict the measures used in the previous section 6.5.1 validating 

the overall performance of PCA-MCP as a method alongside with a comparison with linear 

regression.  

First, the graphs of the tarref MAEMAE , and lrMAE  from equations  (58),  (59) and  (60) 

against all 8 reference stations for each of the 8 target sites are depicted from Figure 46 to 

Figure 57.  As it can be seen from the first four graphs Figure 46 to Figure 49, lrMAE  is 

ranging from 0.7 to 1.2 thus is the highest when compared to tarMAE  and refMAE which are 

relatively low, i.e. up to 0.4. 

 

  

 
Figure 46. Stornoway MAE for all reference stations. Figure 47. Blackford Hill MAE for all reference 

stations. 
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Figure 48. Machrihanish MAE for all reference 
stations. 

Figure 49. Salsburgh MAE for all reference 
stations. 

The first 4 target stations bias graphs indicate in general the existence of negative bias, 

more specifically looking at Figure 50. The reason behind this could be that PCA-MPC 

method predicts slower wind speeds than simple linear regression does. Two reasons could 

be behind this; possibly the calibration used in the PCA-MCP analysis is not yet optimal i.e. 

using the mean and standard deviation rations as expressed in Chapter 3.6.2 equation  (30) 

and equation (31). Secondly, the calibration was performed in order to minimise the 

distribution error i.e. calibrate so as to expect the smallest error in the wind speed 

distribution. 
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 Figure 50. Stornoway Bias for all reference stations.  Figure 51. Blackford Hill Bias for all reference stations. 

  
Figure 52. Machrihanish Bias for all reference stations.  Figure 53. Salsburgh Bias for all reference stations. 

 

The next four graphs, Figure 54 to Figure 57 follow the same pattern as in Figure 47 to 

Figure 49 i.e. the lrMAE is higher when compared to tarMAE and refMAE . More specifically, 

the lrMAE is ranging from 0.7 to 1 and it can be observed that it is the highest for Stornoway 

(Figure 46), Gogarbank (Figure 55) and Bishopton (Figure 57). Examining the tarMAE , it 

ranges between 0.1 and 0.3 and the lowest one, refMAE ranges from 0.1 to 0.2. It can be thus 
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concluded that linear regression performs worse than PCA-MCP since lrMAE  has the 

highest values, when examining all target stations with respect to all reference stations.  

PCA-MCP seems robust since the MAE graphs are fairly flat for most of the stations in 

comparison with simple linear regression. This suggests that a good performance of the 

standard linear regression MCP relies strongly on having chosen a good reference site 

(which may not always be obvious in advance or even possible), whereas the PCA-MCP 

method is fairly insensitive to a particular choice of reference site.  Being able to calculate 

the refMAE  as part of the PCA-MCP prediction also provides a tool to estimate the actual 

tarMAE .  

From the last four bias graphs for stations 5-8, it can be seen that the bias is above zero 

in most cases. Stations 5,6 and 8 are low wind speed stations whereas stations 1,2,3,4,7 are 

high wind speed stations. This indicates that somehow bias is related with whether the 

prediction comes from a low or high wind speed site, i.e. bias seems to be correlated with 

the predicted wind speed. Linear regression as a method is unbiased by default since the 

linear estimation tries to minimise bias and hence it is only logical to result in minimal bias. 

In the PCA-MCP case, it was chosen to minimise the distribution error rather than the bias 

thus the bias graphs are a flipside of MAE graphs. In general, for wind resource purposes it 

is preferable to calibrate more correctly wind speed distribution rather than bias.  
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Figure 54. Prestwick Gannet MAE for all 
reference stations. 

Figure 55. Gogarbank MAE for all reference stations. 

 
Figure 56. Port Ellen MAE for all reference 
stations. 

Figure 57. Bishopton MAE for all reference stations. 
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Figure 58. Prestwick Gannet Bias for all reference 
stations. 

Figure 59. Gogarbank Bias for all reference stations. 

  

Figure 60. Port Ellen Bias for all reference stations.  Figure 61. Bishopton Bias for all reference stations. 

 

6.6.4 Evaluation of the ‘good’ and ‘bad’ PCA examples 

Going back to the ‘good’ and ‘bad’ examples of sections 6.6.1 and 6.6.2, the following 

graphs were created to explore the tarref MAEMAE , and lrMAE for these specific cases for 

all training years. In Figure 62 it can be seen that for the ‘good’ example of Salsburgh as a 

target and for Stornoway (reference station 1) and for window length 24h and truncation 12 
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the tarref MAEMAE ,  are quite low, up to 0.2, for all training years when compared to the other 

reference stations. However, the lrMAE is quite high (almost 0.7). As it is shown from 

Figure 63, for Machrihanish as a target and Blackford Hill (reference station 2) for window 

length of 48h and truncation 9, the tarref MAEMAE , for all years are higher when compared to 

the other reference stations and close to 0.6 i.e. a much higher value than the one in Figure 

62. Again, the lrMAE  value is high (almost 0.8) though not the highest among all reference 

stations.  

Hence, the model of Figure 63 verifies the ‘bad’ example of PCA-MCP performance 

in comparison with the use of the other stations as reference ones and as an overall MAE 

value when compared with the ‘good’ example model of Figure 62. From both Figure 62 

and Figure 63 it is observed that reference station 2 i.e. Blackford Hill seems to contain the 

biggest tarref MAEMAE ,  when compared to the other reference stations though this is the 

case for these specific models. It can be also seen that the values of refMAE  are the lowest 

and the values of lrMAE are the highest amongst most training years and reference stations 

in both graphs. 

Regarding Figure 64, it shows similar a behaviour as previous bias figures i.e. that the 

bias is consistently negative for PCA-MCP and it can be also seen that Figure 65 has a 

similar pattern when compared with Figure 52 both regarding station 3. It can be 

concluded that good choice of window and truncation can affect the bias can since similar 

spreads can be seen for bias values of both PCA-MCP and linear regression in Figure 65. 

Longer window lengths and smaller truncations as well as the calibration methods have to 

be explored more. By finding the optimum parameter settings, the minimisation of the 

distribution error and bias will be achieved.  
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Figure 62. MAE of Salsburgh (target) for window 

length =wM 24h, truncation =tM 12, for all 
training years and reference stations. 

Figure 63. MAE of Machrihanish (target) for 

window length =wM 48h, truncation =tM 9, 
for all training years and reference stations.  

  
 Figure 64. Bias of Salsburgh (target) for window 

length =wM 24h, truncation =tM 12, for all 
training years and reference stations. 

Figure 65. Bias of Machrihanish (target) for 

window length =wM 48h, truncation =tM 9, 
for all training years and reference stations. 

 



 

 

 

130 

Figure 66 and Figure 67 show the tarref MAEMAE , and lrMAE for the reference 

stations of the ‘good’ and ‘bad’ PCA-MCP performance models for all training years 

and target stations. The conclusions for the target site 4, Salsburgh and Stornoway as 

reference in Figure 66 and for target site 3, Machrihanish and Blackford Hill as 

reference in Figure 67 are the same as the aforementioned ones drawn from Figure 62 

and Figure 63 regarding the justification of them as ‘good’ and ‘bad’ examples. Again, 

lrMAE  is high for almost all cases. Regarding Figure 69 the findings are similar to the 

Figure 65 conclusions described above.  

  
Figure 66. MAE of Stornoway  (reference) for 

window length =wM 24h, truncation =tM 12, for 
all training years  and target stations. 

Figure 67. MAE of Blackford Hill (reference) for 

window length =wM 48h, truncation =tM 9, 
for all training years and target stations. 
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Figure 68. Bias of Stornoway (reference) for 

window length =wM 24h, truncation =tM 12, for 
all training years  and target stations. 

 Figure 69. Bias of Blackford Hill (reference) for 

window length =wM 48h, truncation =tM 9, 
for all training years and target stations. 

 

Finally, Figure 70 and Figure 71 indicate both the ‘good’ and ‘bad’ models of 

Chapter 6.6.1 and 6.6.2 for the tarref MAEMAE , and lrMAE  for all training years for 

all eight window length and truncation combinations. In general, Figure 70 and Figure 

71 both depict high 
lrMAE throughout all training years whereas the tarref MAEMAE , are 

lower. Regarding Figure 70, both 
tarref MAEMAE , values are ranging below 0.2 for most 

years and looking specifically at 2007 which was examined in section 6.6.1 it is 

relatively low (below 0.2). On the contrary, in Figure 71 the tarref MAEMAE , values 

generally range more and are higher. Looking specifically at 2003 which was examined 

in section 6.6.2, the tarMAE is low, up to 0.4. Overall Figure 71 clearly indicates the 

poorer performance of PCA-MCP in comparison with Figure 70 throughout most 

training years.  

In Figure 72 the general trend of the bias is similar for both PCA-MCP and linear 

regression. Positive bias is occurring in early years from 2000 to 2003 and negative bias 
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in the years after 2003. This also holds for Figure 73, however taking into account that 

station 2 has bad quality data which explains the 2003 spike. 

 
 

Figure 70. MAE of Stornoway (reference) and 
Salsburgh (target) for all training years and parameter 

combinations i.e. window lengths =wM 24h, 48h, 

truncations =tM 3,6,9,12. 

Figure 71. MAE of Blackford Hill (reference) and 
Machrihanish (target) for all training years and 

parameter combinations i.e. window lengths =wM

24h, 48h, truncations =tM 3,6,9,12. 
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 Figure 72. Bias of Stornoway (reference) and 
Salsburgh (target) for all training years and parameter 

combinations i.e. window lengths =wM 24h, 48h, 

truncations =tM 3,6,9,12. 

Figure 73. Bias of Blackford Hill (reference) and 
Machrihanish (target) for all training years and 

parameter combinations i.e. window lengths =wM

24h, 48h, truncations =tM 3,6,9,12. 

When using as training the earlier years would support the earlier suggestion that 

the Blackford Hill performed poorly. In general, the inclusion of the year 2010 did not 

affect the PCA-MCP performance since the MAE was kept relatively low for 2010 and 

at a similar level when compared to the other training years. 

6.6.5 Further PCA-MCP validation  

Next, the parameter analysis setup measures of Table 10 are examined. Figure 74a) 

shows the tarMAE  for the two different window lengths =wM 24h and =wM  48h. It 

indicates most of the tarMAE  values are concentrated up to 0.3 which shows that the 

tarMAE for both window length choices was low however they do not lie along the line 

i.e. there is some scatter. Their choice, as mentioned in section 6.3.2, was undertaken 
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after extensive parameter testing on the PCA-MCP algorithm prior to choosing these 

two window length values. As shown in Figure 74a) since most observations lie below 

the diagonal line, =wM 48h was the best window length choice. Figure 74b) also 

indicates that the two window lengths, =wM 24h, 48h are highly correlated. 

  
Figure 74. Target MAE and target Bias for window length of 24h and 48h 

 

The next figure, Figure 75 shows the 
tarMAE for the four different truncations 

combination =tM 3,6,9,12. Similarly to the window length choice as mentioned in 

section 6.3.2, their choice was concluded too after extensive parameter testing on the 

PCA-MCP algorithm. Most 
tarMAE values lie below 0.3 which shows that the 

tarMAE for 

all truncation combinations was low. There is more scatter in the 
tarMAE  of the 

truncation choices =rM 3,6 since the MAE values do not lie close to the diagonal. On 

the contrary, it can be seen that for truncations =tM 9,12 the tarMAE  values lie closer 

to the diagonal and the same holds for truncations =tM 6,9.  Hence, the choice of 

higher truncations seems to be the most appropriate for the PCA-MCP performance.  

a) b) 
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Figure 75. Target MAE for all truncation combinations. 

Figure 76 shows that the target bias for all truncation combinations has a similar 

shape to MAE ones. It can be drawn that as the truncation gets higher the bias becomes 

more variable for smaller truncations. 

a) b) 

c) 
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Figure 76. Target Bias for all truncation combinations. 

 

a) b) 

c) 
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Next, the tarMAE versus the refMAE  is presented in Figure 77a) and the tarMAE

versus lrMAE in Figure 77b). From Figure 77a) we can see that there is no 

proportionality between tarMAE and refMAE  hence in this case it is not clear that 

knowing the tarMAE , it  quantifies us the predictability and thus, a different way to 

predict uncertainty should be investigated. In Figure 77b), since almost all observations 

lie below the line, this verifies the overall overperformance of the PCA-MCP method 

against linear regression with a few cases being above the line which indicate a poorer 

PCA-MCP performance.  

From Figure 77c) it is depicted that in general linear regression has smaller bias 

than PCA-MCP because it can be seen from the left side of graphs that more data lie 

below the red line whereas for the right side of the graph more date lie above red line 

and thus more data clash towards the zero linear regression bias line. Hence, the earlier 

observations from previous graphs can be verified. 
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Figure 77. Target MAE and linear regression MAE versus reference MAE. Target Bias versus linear 
regession Bias 

As far as the performance index ( )PI  shown in equation (63) is concerned, the 

following graphs were created. Figure 78 shows a histogram of the PI for all possible 

permutations of pairs of the 8 Met.Office stations. As it can be seen, the PI is below 1 

a) b) 

c) 
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in almost all cases, and most often, it is between 0.1 and 0.5. This means that in the 

majority of cases, the error of the resource prediction is between 10% and 50% of that 

made using the standard linear regression.   

 

Figure 78. Performance Index histogram.  

Figure 79 indicates the PI against Figure 79a) refMAE , Figure 79b) tarMAE and 

Figure 79c) lrMAE . The tarref MAEMAE , range from 0.04 to 0.3 and from 0.05 to 0.7 

respectively. However, lrMAE ranges from 0.1 to 1.3 and hence, it is the highest. 

Consequently, this graph is another justification of the better performance of PCA-MCP 

when compared with linear regression. It is also observed that the PI is less than 1 for 

most cases of tarMAE  which means that PCA-MCP performs well. The general mean 

of the PI was also found to be 0.29, thus the overall tarMAE was found to be only the 

29% of the lrMAE  
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Figure 79. Performance Index against reference, target and linear regression MAE. 

a) 

b) 

c) 
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In Figure 80b) the linear regression bias has a pear shape and this can be interpreted 

that if linear regression has extremely low bias, the PCA-MCP cannot improve because 

linear regression is performing well. However, in the lower parts of the pear shape it can 

be seen that there is improvement of the PCA-MCP method. In other words, the worse 

linear regression is performing, the better the PCA-MCP performance. 
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Figure 80. Performance Index again reference and linear regression MAE 

 

a) 

b) 
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Overall, a superiority of PCA-MCP over the standard linear regression can be 

verified from the graphs of Chapter 6. The final chapter, Chapter 7 will give the overall 

conclusions and discussion of this research summarizing the most important PCA-

MCP’s findings but also noting the method’s limitations and room for improvement. 
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Chapter 7 Conclusions of PCA as a wind energy resource tool 

This is the final chapter in which the key findings and limitations of this research as 

well as the next steps and future work will be explored. 

7.1 Summary of key findings  

From the previous chapters of this thesis, the key findings can be summarized as 

following. Wind speed can indeed be treated as a dynamical system and it was proven 

that the time series analysis technique works. Furthermore, it was concluded that PCA 

can be used successfully for wind forecasting purposes and for wind resource 

assessment purposes as an MCP method. The PCA-MCP methodology was proven to be 

in most cases superior to simple linear regression and can be used successfully as 

measure of the predictions uncertainty.  

7.1.1 Strengths and current limitations of PCA as a wind forecasting method 

As demonstrated in more detail in Chapter 4, the main conclusions for the 

application of PCA as a forecasting method that can be made are firstly that PCA is 

capable of identifying weather regimes by being able to represent the wind 

measurements in the form of an attractor with a clear structure. Furthermore, it was 

demonstrated that this can be done both, by just using wind speed measurements and by 

using multivariate measurements, such as wind speed and wind direction combined.  

Applying the PCA to wind forecasting demonstrated that the method is a reliable 

forecasting method for forecasting wind speeds hours ahead to day ahead. By 

combining the PCA prediction with persistence prediction at very short time scales, it 

was possible to eliminate the weakness of applying PCA to a coarsely sampled wind 

record. It was specifically found that persistence is much better than PCA at short lead 

times up to 6 hours but that PCA outperforms persistence at longer lead times T . 
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Using a single point of overlapping values in the forecasting analysis i.e. xn = 1 

rather than fitting a short time series of point (xn > 1) overlap seems to yield the best 

improvement (around 11.2%) of the PCA forecasting results. In other words, the PCA 

results were 11.2% closer to the actual results in comparison with the persistence 

method. Thus it was determined that that the best overlapping values was xn = 1. The 

overall PCA improvement raised from below 8% for only =nn 2 nearest neighbours to 

above 11% for =nn 5 but then dropped again to around 9%. Using too few or too many 

neighbours might not have been appropriate since with too few the information used for 

the analysis might be too little whereas on the contrary, using too many might initially 

show that we can obtain more information; however, these neighbours might actually lie 

very far apart from each other in the phase space.  As far as the reduced dimensions tM

are concerned, for tM =16 the PCA improvement seemed to be consistently high for 

5.6%. There is clearly a distinct optimum which needs to be determined and this could 

be possible by optimising the parameters through experience at each site individually. 

One of the most useful aspects of PCA over some other forecasting techniques is 

that it is based on an ensemble forecast using ensembles of similar past events. This 

allows an estimation of the forecast accuracy at the time when the forecast is made. The 

analysis showed that this estimated forecast uncertainty is a reliable predictor of the 

actual forecasting error. This knowledge will be useful for the wind farm operators to 

evaluate their forecasts and will help with their decision making. Regarding the 

limitations of PCA, gaps in wind data are a common phenomenon which in the case of 

PCA was overcome with the linear interpolation of the data. The missing values were 

treated in a similar way for the PCA-MCP case. The linear interpolation for gap of 

length GN  from time 1+T  to gNT +  was performed by               
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7.1.2 Strengths and current limitations of the PCA-MCP method 

In the PCA-MCP approach, the formalism determines the shape and coefficients of 

the best relationship between the target and a reference site by treating the 

measurements as representative of the joint dynamical system, rather than one as input 

and the other as output. When applied on a variety of station pairs some several hundred 

kilometers apart, it was shown that it is almost always superior to the basic standard 

MCP using linear regression. More specifically, for the majority of cases, the error of 

the resource prediction was found to be between 10% and 50% of that made using the 

standard linear regression. Moreover, the mean target MAE was found to be only the 

29% of the linear regression MAE.  

PCA-MCP seems robust since the MAE graphs are fairly flat for most of the 

stations in comparison with simple linear regression. This suggests that a good 

performance of the standard linear regression MCP relies strongly on having chosen a 

good reference site (which may not always be obvious in advance or even possible), 

whereas the PCA-MCP method is fairly insensitive to a particular choice of reference 

site.  Being able to calculate the refMAE  as part of the PCA-MCP prediction also 

provides a tool to estimate the actual tarMAE .  

As was found from the first four MAE graphs, lrMAE  is ranging from 0.7 to 1.2 

thus is the highest when compared to tarMAE  and refMAE which are relatively low, i.e. 

up to 0.4. The first 4 target stations bias graphs indicated in general the existence of 

negative bias and the reason behind this could be that PCA-MPC method predicts 

slower wind speeds than simple linear regression does. Two reasons could be behind 

this; possibly the calibration used in the PCA-MCP analysis is not yet optimal i.e. using 

the mean and standard deviation rations as expressed in Chapter 3.6.2 equation  (30) 

and equation (31). Secondly, the calibration was performed in order to minimise the 

distribution error i.e. calibrate so as to expect the smallest error in the wind speed 

distribution. 
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The next four graphs, followed the same pattern as the first four MAE graphs i.e. 

the lrMAE was higher when compared to tarMAE and refMAE . More specifically, the

lrMAE was ranging from 0.7 to 1. Examining the tarMAE , it ranges between 0.1 and 0.3 

and the lowest one, refMAE ranges from 0.1 to 0.2. It can be thus concluded that linear 

regression performed worse than PCA-MCP. From the last four bias graphs for stations 

5-8, it can be seen that the bias was above zero in most cases. Stations 5,6 and 8 are low 

wind speed stations whereas stations 1,2,3,4,7 are high wind speed stations. This 

indicates that somehow bias is related with whether the prediction comes from a low or 

high wind speed site, i.e. bias seems to be correlated with the predicted wind speed.  

As far as the PCA-MCP limitations are concerned, the initial idea that this 

reference estimate might give clues about the quality of the target prediction could not 

be substantiate as verified in the results of Chapter 6. The dataset used was originating 

from Scotland, U.K. i.e. a ‘coastal’, mid-latitude European climate. It would be 

therefore useful to test how the method performs for completely different types of 

climate so that its sensitivity against climate change would be investigated. It can be 

concluded that good choice of window and truncation can affect the bias can since 

similar spreads can be seen for bias values of both PCA-MCP and linear regression. 

Longer window lengths and smaller truncations as well as the calibration methods have 

to be explored more. Sensitivity parameters such as the truncation value and window 

length have proven to be important factors not only for the PCA-MCP analysis, but also 

for PCA as a forecasting technique, thus, a careful consideration of these parameters 

when applying PCA should be undertaken By finding the optimum parameter settings, 

the minimisation of the distribution error and bias will be achieved. 

7.1.3 Future work 

To encounter the limitations described in the previous section 7.1.2, future 

improvement steps should be considered. The next stage of the work is to subject it to a 

systematic analysis to identify if it is possible to judge the quality of the prediction at 

the target site from the information available to the analyst. Other possible quantities to 

test in the next stage of development are the estimates returned from applying the 
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truncated PCA-MCP predictor to the data from the reference site for the training period 

and thus predicting the target wind speed for the training period. Also, quantify the 

uncertainty based on both calibration stage and return of prediction for the target and 

reference sites. 

Since it performed well against spatially distant stations such as for example for 

station 1, Stornoway, it would be interesting to investigate PCA-MCP for offshore wind 

resource assessment. Moreover, further validation of the PCA-MCP method should be 

performed. This could be achieved with the use of various datasets, multiple reference 

and/or target sites, different training periods and different choice of parameter settings 

such as from half day to 7 days of window length or truncations varying from for 

example, 9 to 12. However, when the method would be tested for different sites and 

datasets, different parameter settings may be chosen. 

Further investigation should also be undertaken on how to treat more effectively the 

missing data values. For example, a possible solution to be considered would be to use 

the PCA forecasting methodology in order to fill in the data missing values for the 

PCA-MCP method, also explained in Appendix B. Wind direction calculation should 

also be worth being considered for systematic evaluation in comparison with other wind 

direction calculation methods as proposed by literature [18]. 
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Appendix 

Appendix A: Supplementary results of Chapter 5 

The supplementary PCA pendulum application results of Chapter 5 are presented 

here with respect to the reference case of  Table 5 with parameter values: δφ  =π/9, A1 

=4, A2 =0.3, f1 =0.5, f2 =0.3. Here, three representative values of each parameter are 

shown.  

A.1 For the A1 values 

A1=0.9 
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A1=2 
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A1=10
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A.2 For the A2 values 

A2=0.1 
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A2=1 
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A2=10 
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A.3 For the δϕ  values 

δϕ =
12

π
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δϕ =
2

π
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δϕ = π5.1  
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A.4 For the f1 values 

f1=0.2 
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f1=1
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f1=3.14 

 

 

 

 

 

 

 

 



 

 

 

161 

A.5 For the f2 values 

f2=0.9 
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f2=2 
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f2=10 
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Appendix B: Data quality  

The data used for the analysis originated from the BADC MIDAS dataset [75] and 

were linearly interpolated as explained in Chapter 7.1.1 and equation (64). Their quality 

is depicted in Table B.1 for the years 2000-2010. While short gaps of a few hours, up to 

about a day, are unlikely to affect the results, extended gaps of many days should be 

expected to affect the results. Strategies to avoid this, could be to leave long gaps in the 

data and then delete any rows in the delay matrix which contain missing values or to use 

a more advanced interpolation. One possibility could be to use the PCA forecasting 

methodology from Chapter 4, to forecast from the last measurement before the gap and 

backcast from the measurement after the gap to fill in the gap. This would be an option 

to be explored in future. 

Station Wind speed 
data 

Valid Data Missing 
Data 

Gaps (< 4h 
long) 

Gaps (> 4h 
long) 

1-Stornoway 96432 90746 
(94.1%) 

5686 in 889 
gaps 

580 309 

2-Blackford 
Hill 

96432 76931 
(79.8%) 

19501 in 300 
gaps 

273 27 

3-
Machrihanish 

96432 92883 
(96.3%) 

3549 in 2085 
gaps 

1985 100 

4-Salsburgh 96432 96101 
(99.6%) 

331 in 124 
gaps 

117 7 

5-Prestwick 
Gannet 

96432 94453 
(97.9%) 

1979 in 640 
gaps 

524 116 

6-Gogarbank 96432 94691 
(98.2%) 

1741 in 364 
gaps 

288 76 

7-Port Ellen 96432 94051 
(97.5%) 

2381 in 780 
gaps 

693 87 

8-Bishopton 96432 94500 
(98%) 

1932 in 478 
gaps 

402 76 

Table B1. Quality of data used for the analysis 

Blackford Hill was different from the other stations in that it had a very long period 

of no data from the middle of 2003 to the middle of 2004. 
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Appendix C: The PCA forecasting algorithm 

Appendices C and D contain all the R scripts [31] used. The lines of the scripts 

starting with ‘#’ are the comments of the code and not actual part of the algorithms. 

C.1 Preparation of data and setting of parameters  

# Load the wind speed data and extract the training and prediction years for the chosen 

site 

# Do the following only if starting from fresh: 

# load("wind_yr.RData") 

print("Data loaded") 

# select station 

istn <- which(wind$stshort == "Ggb") 

print(wind$stname[istn]) 

# save plots to file if idev is equals to jpg 

# idev <- "jpg" 

# Select parameters 

# Training 

# Select the year for training 

yeart1 <- 2008 

yeart2 <- 2009 

# Choose delay parameters 

tau <- 1 

win <- 48  

# Choose reduced dimension 

# dimred <- 15 

# Forecasting 

# Year in which wind speed forecasting is carried out 

yearp <- 2010 

# Prediction horizon 

horizon <- 25 

# Number of nearest neighbours 
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# nnearest <- 2 

# Overlap for finding place on attractor 

# overlap <- 1 

# Number of predictions to be carried out  (doing every single hour would take far too 
long) 

Npred <- 100 

# Training 

print("Training ...") 

source("Forecasting_CS_3a.R") 

# Prediction 

print("Predicting ...") 

source("Forecasting_CS_3b.R") 

# Postprocessing 

print("Postprocessing ...") 

source("Forecasting_CS_3c.R") 

C.2 Training the PCA forecasting model  

# TRAINING  

# Find the entries in the record corresponding to that year 

idxt <- (wind$year >= (yeart1-1900) & wind$year <= (yeart2-1900)) 

# extract the wind speed 

ut <- wind$u[idxt,istn] 

ut <- ut[!is.na(ut)] 

# extract the wind direction 

dirt <- wind$udir[idxt,istn] 

dirt <- dirt[!is.na(dirt)] 

# Prepare the delay matrix  

Nrec = length(ut) 

# Remove mean and scale by standard deviation 

umean <- mean(ut, na.rm = TRUE) 

usd <- sd(ut, na.rm = TRUE) 

dmean <- mean(dirt, na.rm = TRUE) 

dsd <- sd(dirt, na.rm = TRUE) 
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y1 <- (ut-umean)/usd 

y2 <- (dirt-dmean)/dsd 

# Create delay matrix 

rowdel <- Nrec-tau*win 

tarr <- matrix(nrow = rowdel,ncol=2*win) 

for (i in 1:(tau*win)){ 

 tarr[,i] <- y1[i:(i+rowdel-1)] 

 tarr[,(i+win)] <- y2[i:(i+rowdel-1)] 

} 

# Carry out PCA 

svd(tarr) -> dtmp 

lambda <- dtmp$d 

svec <- t(dtmp$v) 

pc <- dtmp$u 

# Plot key results from Training 

if (idev == "jpg") { 

 jpeg(paste("Spectrum_T_",wind$stshort[istn],"_",yeart1,"_",yeart2,".jpeg",sep=""
 ), width = 600, height = 480, units = "px", pointsize = 12, quality = 100, bg = 
 "white", res = NA, restoreConsole = TRUE) 

} 

par(mfrow=c(1,1)) 

par(mai=c(.8,0.8,.2,.2)) 

plot(lambda, main = "Training set singular values") 

if (idev == "jpg") {dev.off()} 

print("PCA completed") 

dfull <- dim(svec) 

##set new lambda 

lambdafull <- matrix(data = 0, nrow = dfull[1], ncol = dfull[2]) 

for (i in 1:dfull[1]){lambdafull[i,i]<- lambda[i]} 

lambdared <- matrix(data = 0, nrow = dimred, ncol = dimred)  

for (i in 1:dimred){lambdared[i,i]<- lambda[i]} 

lambdai<-matrix(0,ncol=dimred,nrow=dfull[2]) 

for (i in 1:dimred){lambdai[i,i]=1/lambda[i]} 

svecR <- svec[1:dimred,] 
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pcR <- pc[,1:dimred] 

# To show that it works plot a section of the time series, overlay the full reconstruction, 
and the reconstruction using the reduced dimension 

if (idev == "jpg") { 

 jpeg(paste("Training_example",dimred,".jpeg",sep=""), width = 600, height = 
 480, units = "px", pointsize = 12, quality = 75, bg = "white", res = NA, 
 restoreConsole = TRUE)} 

par(mfrow=c(1,1)) 

par(mai=c(.8,0.8,.2,.2)) 

ptime <- 1:(2*win) 

 ydel1recfull <- pc[1:(win+1),]%*%lambdafull%*%svec 

y1recfull <- c(ydel1recfull[1,1:(win-1)],ydel1recfull[,win]) 

 utrecfull <- y1recfull*usd + umean 

ydel1rec <- pcR[1:(win+1),]%*%lambdared%*%svecR 

y1rec <- c(ydel1rec[1,1:(win-1)],ydel1rec[,win]) 

utrec <- y1rec*usd + umean 

plot(ptime,ut[ptime],"l", xlab = "time (h)", ylab = "u (m/s)") 

lines(ptime,utrecfull,col = "green", lty = 3) 

lines(ptime,utrec,col = "red", lty = 1) 

 if (idev == "jpg") {dev.off()} 

C.3 Predicting with the PCA forecasting model 

# PREDICTION 

# Extract the wind speeds and directions for the prediction year 

# Number of overlapping time points for finding nearest neighbours  

idxp <- wind$year == (yearp - 1900) 

tyearp <- seq(1,length(idxp[idxp])) 

upi <- approx(tyearp,wind$u[idxp,istn],tyearp) 

up <- upi$y 

dirpi <- approx(tyearp,wind$udir[idxp,istn],tyearp) 

dirp <- dirpi$y 

# number of wind speed measurements (a full year 8760) 

Npy <- length(up) 
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# maximum number of predictions is the number of measurements minus the history 
needed to create time delay matrix for finding place on attractor with specific overlap 
minus the prediction horizon 

Npredmax <- Npy - tau*win - overlap - horizon 

# spread out the actual predictions over the year 

istep <- floor(Npredmax/Npred) 

# rescale wind speeds and  

yp1 <- (up-umean)/usd 

yp2 <- (dirp-dmean)/dsd 

delaylength <- tau*win + overlap - 1 

idelay2 <- seq((-delaylength+1), 0, by = 1) 

# prepare matrices for predictions and errors as well as vectors of actual current 
observation 

upredicted <- matrix(nrow = Npred, ncol = horizon) 

dupredicted <- matrix(nrow = Npred, ncol = horizon) 

prederr <- matrix(nrow = Npred, ncol = horizon) 

uactual <- matrix(nrow = Npred, ncol = horizon) 

upersist <- matrix(nrow = Npred, ncol = horizon) 

persisterr <- matrix(nrow = Npred, ncol = horizon) 

uobs <- array(dim = Npred) 

dirobs <- array(dim = Npred) 

upast <- array(dim = c(Npred,delaylength)) 

tarrcur <- matrix(nrow = overlap, ncol = 2*win) 

DistVector <- array(dim = c(nnearest,dimred)) 

print("Start the loop") 

# Prediction loop: 

for (i0 in 1:Npred){ 

 # start at beginning of the year,  select i0 + idelay2 section; make delay matrix, 
 project onto reduced EOF from training set, find nearest neighbours and predict;  
 compare;  repeat for all possible sections in 2010 

  Source ("Forecasting_CS_3b1.R") 

 # Plot intermediate results 

 #     if (i0 == 3){ 

  #       source("Forecasting_CS_3b2.R") 

 #     }  
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} # end of the prediction 'for (i0 in 1:Npred)' loop 

# save original prediction 

upredicted_std <- upredicted 

C.4 Post-processing of the PCA forecasting model 

#  POSTPROCESSING 

ptime <- (1:horizon) - 1 

# trying various correction filters 

filter <- array(0,dim=horizon) 

filterlength <- horizon - 1 

filter[1:filterlength] <- seq(1,1/filterlength,by= - 1/filterlength ) 

for (i0 in 1:Npred){ 

 upredicted[i0,] <- upredicted_std[i0,] - filter*(upredicted_std[i0,1] - uobs[i0]) 

} 

# Calculate mean errors and uncertainties 

prederr <- upredicted - uactual 

persisterr <- upersist - uactual 

# only select the cases in the relevant wind speed range 

idx <- (uobs >= 4) 

#MSE 

meanperr <- colMeans(abs(prederr[idx,]),na.rm=TRUE) 

sderr <- apply(abs(prederr[idx,]),MARGIN=2,FUN=sd, na.rm=TRUE) 

meanuncert <- colMeans(dupredicted[idx,],na.rm=TRUE) 

sduncert <- apply(abs(dupredicted[idx,]),MARGIN=2,FUN=sd, na.rm=TRUE) 

persistmean <- colMeans(abs(persisterr[idx,]),na.rm=TRUE) 

persistsd <- apply(abs(persisterr[idx,]),MARGIN=2,FUN=sd, na.rm=TRUE) 

#Bias 

biasperr <- colMeans((prederr[idx,]),na.rm=TRUE) 

bsderr <- apply((prederr[idx,]),MARGIN=2,FUN=sd, na.rm=TRUE) 

biasuncert <- colMeans(dupredicted[idx,],na.rm=TRUE) 

bsduncert <- apply((dupredicted[idx,]),MARGIN=2,FUN=sd, na.rm=TRUE) 

biaspersistmean <- colMeans((persisterr[idx,]),na.rm=TRUE) 

bpersistsd <- apply((persisterr[idx,]),MARGIN=2,FUN=sd, na.rm=TRUE) 
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#RMSE 

rmseperr <- colSums(prederr[idx,]^2/length(which(idx)),na.rm=TRUE) 

rmseuncert <- colSums(dupredicted[idx,]^2/length(which(idx)),na.rm=TRUE) 

rmsepersistmean <- colSums(persisterr[idx,]^2/length(which(idx)),na.rm=TRUE) 

performanceindex <- round(mean((persistmean-meanperr))/mean(persistmean)*100,1) 

# Plot the annually averaged statistics MSE 

ymax <- max(c(meanuncert+sduncert,meanperr,persistmean))*1.01 

if ((idev == "jpg")) { 

 jpeg(filename = paste("meanPred_err_h_", dimred, "_", nnearest, "_", overlap, 
 "_", horizon, ".jpeg", sep = ""), width = 600, height = 480, units = "px", pointsize 
 = 12, quality = 100, bg = "white", res = NA, restoreConsole = TRUE) 

} 

par(mfrow=c(1,1)) 

par(mai=c(1.2,1.2,0.8,.2)) 

mtext <- paste(wind$stshort[istn],": W=", win,", D=", dimred,", o=", overlap, ", nn=", 
nnearest, "; N=", Npred) 

plot(ptime,meanperr,"l", col="red", xlab="prediction time (h)", ylab = 
expression(paste("MAE ",symbol(delta)," u (m/s)")), ylim = c(0,ymax), yaxs="i", lwd = 
2) 

points(ptime,meanuncert ,pch=21,col="blue") 

# lines(ptime, meanperr+sderr ) 

# lines(ptime,meanperr-sderr ) 

lines(ptime,meanuncert + sduncert ,lty = "dotted",col="blue") 

lines(ptime,meanuncert - sduncert, lty="dotted",col="blue") 

lines(ptime,persistmean,col="darkgreen", lty = 4, lwd = 2) 

legend(horizon*0.7,0,c("predicted", "actual","persistence"), lty = c(0,1,4), col 
=c("blue","red","dark green"), pch =c(21,NA,NA), yjust = 0) 

grid(col="darkgrey") 

if (idev == "jpg") {dev.off()} 

# Plot the annually averaged statistics BIAS 

ymax <- max(c(biasuncert+bsduncert,biasperr,biaspersistmean))*1.01 

if ((idev == "jpg")) { 

 jpeg(filename = paste("biasPred_err_h_", dimred, "_", nnearest, "_", overlap, "_", 
 horizon, ".jpeg", sep = ""), width = 600, height = 480, units = "px", pointsize = 12, 
 quality = 100, bg = "white", res = NA, restoreConsole = TRUE) 

} 
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par(mfrow=c(1,1)) 

par(mai=c(1.2,1.2,0.8,.2)) 

mtext <- paste(wind$stshort[istn],": W=", win,", D=", dimred,", o=", overlap, ", nn=", 
nnearest, "; N=", Npred) 

plot(ptime,biasperr,"l", col="red", xlab="prediction time (h)", ylab = 
expression(paste("Bias ",symbol(delta)," u (m/s)")), ylim = c(0,ymax), yaxs="i", lwd = 
2) 

# points(ptime,biasuncert ,pch=21,col="blue") 

#lines(ptime, biasperr+bsderr ) 

#lines(ptime,biasperr-bsderr ) 

# lines(ptime,biasuncert + bsduncert ,lty = "dotted",col="blue") 

# lines(ptime,biasuncert - bsduncert, lty="dotted",col="blue") 

lines(ptime,biaspersistmean,col="darkgreen", lty = 4, lwd = 2) 

legend(horizon*0.7,0,c("actual","persistence"), lty = c(1,4), col =c("red","dark green"), 
yjust = 0) 

grid(col="darkgrey") 

if (idev == "jpg") {dev.off()} 

# Plot the annually averaged statistics RMSE 

ymax <- max(c(rmseuncert,rmseperr,rmsepersistmean))*1.01 

if ((idev == "jpg")) { 

 jpeg(filename = paste("rmsePred_err_h_", dimred, "_", nnearest, "_", overlap, "_", 
 horizon, ".jpeg", sep = ""), width = 600, height = 480, units = "px", pointsize = 12, 
 quality = 100, bg = "white", res = NA, restoreConsole = TRUE) 

} 

par(mfrow=c(1,1)) 

par(mai=c(1.2,1.2,0.8,.2)) 

mtext <- paste(wind$stshort[istn],": W=", win,", D=", dimred,", o=", overlap, ", nn=", 
nnearest, "; N=", Npred) 

plot(ptime,rmseperr,"l", col="red", xlab="prediction time (h)", ylab = 
expression(paste("RMSE ", symbol(delta)," u (m/s)")), ylim = c(0,ymax), yaxs="i", lwd 
= 2) 

#points(ptime,rmseuncert ,pch=21,col="blue") 

# lines(ptime,meanuncert + sduncert ,lty = "dotted",col="blue") 

# lines(ptime,meanuncert - sduncert, lty="dotted",col="blue") 

lines(ptime,rmsepersistmean,col="darkgreen", lty = 4, lwd = 2) 
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legend(horizon*0.7,0,c("actual","persistence"), lty = c(1,4), col =c("red","dark green"), 
yjust = 0) 

grid(col="darkgrey") 

if (idev == "jpg") {dev.off()} 

Appendix D: The PCA-MCP algorithm 

D.1 Main R script of the PCA-MCP model: preparation of data and setting of 

parameters  

#load data 

load("Winds_8st_2000-2011.RData") 

require("openair") 

source("PCAMCP_function.R") 

source("simplelrerror_function.R") 

source("lin_reg_pred.R") 

tau <-1 

Ytrain<-seq(099,109) 

Nyear<-length (Ytrain) 

trunca<-c(3,6,9,12) 

wina<-c(1,2,3,4)*24 

Ntrunc<-length(trunca) 

Nwin <- length(wina) 

#store reference,target and lr MAE,Bias and performance index in matrices 

Meanerror<-array(dim=c(8,8,Nyear,Nwin,Ntrunc,3)) 

abserrorref <- array(dim=c(8,8,Nyear,Nwin,Ntrunc)) 

biasref <- array(dim=c(8,8,Nyear,Nwin,Ntrunc)) 

abserrortar <- array(dim=c(8,8,Nyear,Nwin,Ntrunc)) 

biastar <- array(dim=c(8,8,Nyear,Nwin,Ntrunc)) 

abserrorlin <- array(dim=c(8,8,Nyear,Nwin,Ntrunc)) 

biaslin <- array(dim=c(8,8,Nyear,Nwin,Ntrunc)) 

Perfindex <- array(dim=c(8,8,Nyear,Nwin,Ntrunc)) 

for (st1 in 1:1) { 

 for (st2 in 8:8) { 
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  # Find records where we have both sites 

  idx<-(!is.na(uwind[st1,])&       
  !is.na(uwind[st2,])&!is.na(udir[st1,])&!is.na(udir[st2,]) ) 

  # Extract the wind speed & wind direction  

  #wind speed for referene site 

  uabs <- uwind[st1,idx] 

  #wind speed for target 

  uabs2 <- uwind[st2,idx] 

  #wind direction for GGB 

  dabs<-udir[st1,idx] 

  #wind direction for BFH 

  dabs2<-udir[st2,idx] 

  date <- timeseql[idx] 

  #create vector combination consisting of wind speed and direction 

  #positive u coming from west to east, negative u coming from east to west 

  #positive v coming from north to south, negative u coming from south to 
  north 

  #u1 and v1 is the vector combination of wind speed and direction for GGB  

  u1<-uabs*sin(dabs/180*pi) 

  v1<-uabs*cos(dabs/180*pi) 

  #u2 and v2 is the vector combination of wind speed and direction for BFH  

  u2<-uabs2*sin(dabs2/180*pi) 

  v2<-uabs2*cos(dabs2/180*pi) 

 

  # Prepare past data (as we always use the same years 

  jdx <- date$year >= 099 & date$year <= 110 

  upast1<-u1[jdx] 

  vpast1<-v1[jdx] 

  referencepast <-sqrt(upast1^2+vpast1^2) 

  upast2<-u2[jdx] 

  vpast2<-v2[jdx] 

  targetpast <-sqrt(upast2^2+vpast2^2) 

  past<-cbind(u1[jdx],v1[jdx]) 

   for (iyear in 1:1) { 
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    jdx<-((date$year==Ytrain[iyear]) | (date$year==Ytrain[iyear+1])) 

    u109 <- u1[jdx] 

    v209 <- v1[jdx] 

    u309<-u2[jdx] 

    v409<-v2[jdx] 

    Nrec <- length(u109) 

    nchan<- 4 

    signalfull <- matrix(nrow=Nrec,ncol=4) 

    signalfull[,1] <- u109 

    signalfull[,2] <- v209 

    signalfull[,3] <- u309 

    signalfull[,4] <- v409 

    xbreaks <- seq(0,500) 

 

    for (iwin in seq (1,2)) { 

     win <- wina[iwin] 

     for(itrunc in 1:2) { 

      trunc <- trunca[itrunc] 

      casename<paste("St",st1,"St",st2,"Y", 

      Ytrain[iyear]+1900,"win",win,"Trunc",trunc, 

      sep="") 

      PCAMCP(signalfull,tau,win,trunc,past,casename) 

      ->prediction2 

      targetpred <-sqrt(prediction2[,3]^2+ 

      prediction2[,4]^2) 

      referencepred<- sqrt(prediction2[,1]^2 

      +prediction2[,2]^2) 

      #histogram of reference and target site 

      # predictions saved as jpeg 

      jpeg(filename=paste("./MCP graphs/", 

      casename,"Histogram actual and pred ref.jpeg", 

      sep="")) 

      histreferencepast<-hist(referencepast, 
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       xbreaks ,plot=FALSE) 

      histreferencepred<-hist(referencepred, xbreaks , 
      prob=TRUE,xlab="wind speed   
      (m/s)",main="",xlim=c(0,30)) 

      lines(histreferencepast$mid,    
      histreferencepast$density, col="red", lwd=4) 
      legend(20,.1,c("Predicted ws", 

      "Actual ws"),col=c("black","red"),   
      pch=c(22,NA),lty=c(0,1)) 

      dev.off() 

      jpeg(filename = paste("./MCP graphs/",  
      casename,"Histogram actual and pred target.jpeg", 

      sep="")) 

      histtargetpast<-hist(targetpast, xbreaks,  
      plot=FALSE) 

      histtargetpred<-hist(targetpred, xbreaks,  
      prob=TRUE,xlab="wind speed (m/s)",  
      main="",      
      xlim=c(0,30)) 

      lines(histtargetpast$mid,histtargetpast$density, 

      col="red", lwd=4) 

      legend(20,.1,c("Predicted ws", "Actual ws"), 
      col=c("black","red"), pch=c(22,NA),lty=c(0,1)) 

      dev.off() 

      #Meanerror is the bias of reference, 

      #target and linear regression 

      Meanerror[st1,st2,iyear,iwin,itrunc,1] <-  
      mean(referencepred) - mean(referencepast) 

      Meanerror[st1,st2,iyear,iwin,itrunc,2] <-  
      mean(targetpred) - mean(targetpast) 

      Meanerror[st1,st2,iyear,iwin,itrunc,3] <-  
      simplelrerror(uabs,uabs2,referencepast,targetpast) 

      histreferencepast<-hist(referencepast, xbreaks 
      ,plot=FALSE) 

      histreferencepred<-hist(referencepred, xbreaks , 
      plot=FALSE) 

      histtargetpast<-hist(targetpast, xbreaks ,  
      plot=FALSE) 



 

 

 

177 

       histtargetpred<-hist(targetpred, xbreaks ,  
      plot=FALSE) 

      #abserroref,abserrortar are the MAE 

      #of reference and target 

      #biasref,biastar are the Bias of reference and target 

      errorref<-histreferencepred$density-  
      histreferencepast$density 

      abserrorref[st1,st2,iyear,iwin,itrunc] <- 
      sum(abs(errorref)) 

      biasref[st1,st2,iyear,iwin,itrunc]<-sum((errorref)) 

      errortar<-histtargetpred$density-  
      histtargetpast$density 

      abserrortar[st1,st2,iyear,iwin,itrunc] <- 
      sum(abs(errortar)) 

      biastar[st1,st2,iyear,iwin,itrunc] <-sum((errortar)) 

      #  If abserrorref is somehow correlated with 

      # abserrortar, then we can say that the abserrorref 
      # is somehow a measure of the 'predictability'  

      # given a linear regression histogram 

      linreghist <-      
      lin_reg_pred(uabs,uabs2,referencepast)  

      errorlin<-linreghist-histreferencepast$density 

      #MAE and Bias for simple linear regression 

      abserrorlin[st1,st2,iyear,iwin,itrunc]<- 
      sum(abs(errorlin)) 

      biaslin[st1,st2,iyear,iwin,itrunc]<-sum((errorlin)) 

      #Performance index, ratio of absolute abserrortar 
      #over abserrorlin (we want it to be less than 1) 

      Perfindex[st1,st2,iyear,iwin,itrunc] <- abserrortar 
      [st1,st2,iyear,iwin,itrunc] /    
      abserrorlin[st1,st2,iyear,iwin,itrunc] 

      #converting back to degrees wind direction for 
      #wind rose purposes 

      jpeg(filename = paste("./MCP   
      graphs/",casename,"Windrose actual   
      target.jpeg",sep="")) 

      windrose1 <- data.frame(cbind(targetpast,  
      atan2(upast2,vpast2)/pi*180)) 
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      names(windrose1) <- c("U","dir") 

      windRose(windrose1,ws="U",wd="dir") 

      dev.off() 

      jpeg(filename = paste("./MCP   
      graphs/",casename,"Windrose actual   
      ref.jpeg",sep="")) 

      windrose2 <- data.frame(cbind(referencepast, 
      atan2(upast1,vpast1)/pi*180)) 

      names(windrose2) <- c("U","dir") 

      windRose(windrose2,ws="U",wd="dir") 

      dev.off() 

      jpeg(filename = paste("./MCP   
      graphs/",casename,"Windrose predicted target 
      .jpeg",sep="")) 

      windrose3 <- data.frame(cbind(targetpred,  
      atan2(prediction2[,3],prediction2[,4])/pi*180)) 

      names(windrose3) <- c("U","dir") 

      windRose(windrose3,ws="U",wd="dir") 

      dev.off() 

      jpeg(filename = paste("./MCP   
      graphs/",casename,"Windrose predicted  
      ref.jpeg",sep="")) 

      windrose4 <- data.frame(cbind(referencepred, 
      atan2(prediction2[,1],prediction2[,2])/pi*180)) 

      names(windrose4) <- c("U","dir") 

      windRose(windrose4,ws="U",wd="dir") 

      dev.off() 

     } 

    } 

   } 

  } 

 } 

} 

D.2 Training the PCA-MCP method 

# create function which performs PCA 
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training <- function(signalfull,tau,win,nchan,casename){ 

 dims<-dim(signalfull)  

 Nrec<-dims[1] 

 nchan<-dims[2] 

 smean <-colMeans(signalfull) 

 #sstdev <-var(signalfull) 

 sstdev <- apply(signalfull,2,sd) 

 signalv <- matrix(nrow=Nrec,ncol=nchan) 

 # training rescaled data 

 for (i in 1:nchan){ 

   signalv[,i] <- (signalfull[,i]-smean[i])/sstdev[i]} 

 # create the time-delay matrix 

 Ntd <- Nrec- (win-1)*tau 

 Ncd= nchan*win 

 Ntd->n 

 Ncd->m 

 tarr <- array(0, c(Ntd,Ncd)) 

 for (i in 1:win) { 

  for (j in 1:nchan){ 

   signalv[(1+(i-1)*tau):(Ntd+(i-1)*tau),j] -> tarr[,(i+(j-1)*win)] 

  } 

 } 

 # carry out a Singular Value Decomposition and split the output into singular 
 # values (lambda), singular vectors (svec) and principal components, then plot a 
 # selection of them 

 svd(tarr) -> dtmp 

 #singular vectors 

 svec <- dtmp$v 

 #principal components 

 pc <- dtmp$u 

 #singular values  

 lambda <- dtmp$d 

 jpeg(filename = paste("./MCP graphs/",casename,"lambda.jpeg",sep="")) 

 plot(lambda) 
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 dev.off() 

 training<-dtmp 

} 

D.3 Preparing the PCA-MCP method for prediction 

#truncate to the relevant components 

preparation<-function(fullpca,trunc){ 

 svec <- fullpca$v 

 pc <- fullpca$u 

 lambdafull <- fullpca$d 

 dims <- dim(pc) 

 m <- dims[2] 

 Sm<-t(svec[1:(m/2),1:trunc]) 

 Sp<-t(svec[1:m,1:trunc]) 

 pct <- pc[,1:m] 

 lambdaa <- diag(lambdafull[1:trunc]) 

 lambdai <- diag(1/lambdafull[1:trunc]) 

 preparation <- list(Sm,Sp,pct,lambdaa,lambdai) 

} 

D.4 Predicting with the PCA-MCP method 

#prepare time-delay matrix for historical data 
prediction <- function(past,tau,win,pca_t,sstdev,smean,sstdevcorr,smeancorr){ 
 dims<-dim(past) 
 nchan2<-dims[2] 
 Nrec2<-dims[1] 
 nchan<-2*nchan2 
 Ntd <- Nrec2- (win-1)*tau 
 Ncds= nchan2*win 
 Ncd= nchan*win 
 signalpast<-array(0,dims) 
 for (j in 1:nchan2){ 
  signalpast[,j]<-(past[,j]-smean[j])/sstdev[j] 
 } 
 
 tarr2 <- array(dim=c(Ntd,Ncds)) 
 for (i in 1:win) { 
  for (j in 1:nchan2){ 
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   signalpast[(1+(i-1)*tau):(Ntd+(i-1)*tau),j] -> tarr2[,(i+(j-1)*win)] 
  } 
 } 
 
 Sm <- pca_t[[1]] 
 Sp <- pca_t[[2]] 
 lambdaa <- pca_t[[4]] 
 lambdai <- pca_t[[5]] 
 #get new pc's 
 #Pp <-tarr2%*%t(Sm)%*%lambdai 
 #Yp<-Pp%*%lambdaa%*%Sp 
 Yp <- tarr2 %*% t(Sp[,1:(nchan2*win)]) %*% Sp 
 # new full matrix with the first two channels reproducted as a combination of 
 #signalpast and signalv 
 signalpred<-array(0,c(Ntd,nchan)) 
 for (j in 1:nchan){ 
  signalpred[,j]<-Yp[,(j-1)*win+1] 
 } 
 #going back to wind speeds, normalised ones 
 #wind speeds reference and target sites, scaling training period 
 scaledpred<-array(0,c(Ntd,nchan)) 
 for (j in 1:nchan){ 
  scaledpred[,j]<-signalpred[,j]*sstdevcorr[j]+smeancorr[j] 
 } 
 prediction<-scaledpred 
} 

D.5 Performing simple linear regression for comparison with the PCA-MCP 

method 

#Perform linear regression and calculate error 

simplelrerror<-function (uabs,uabs2,referencepast,targetpast) { 

 lm(uabs2~uabs)->simpleMCP 

 coef(simpleMCP)->coef 

 coef[1]+coef[2]*referencepast->up 

 lrerror<-mean(up)-mean(targetpast) 

 simplelrerror<-lrerror 

} 

D.6 Calibration of the PCA-MCP method predictions 

PCAMCP<-function(signalfull,tau,win,trunc,past,casename) { 
 source("training_function.R") 
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 source("preparation_function.R") 
 source("prediction_function.R") 
 source("simplelrerror_function.R") 
 dims<-dim(signalfull) 
 nchan<-dims[2] 
 smean<-colMeans(signalfull) 
 #sstdev<-var(signalfull) 
 sstdev <- apply(signalfull,2,sd) 
 training(signalfull,tau,win,nchan,casename)->fullpca 
 preparation(fullpca,trunc)->pca_t 
 prediction(signalfull[,(1:(nchan/2))],tau,win,pca_t,sstdev,smean,sstdev,smean) -> 
 prediction1 
 smean2<-colMeans(prediction1) 
 #sstdev2<-var(prediction1) 
 sstdev2 <- apply(prediction1,2,sd) 
 smeancorr<-smean*(smean/smean2) 
 sstdevcorr<-sstdev*(sstdev/sstdev2) 
 prediction(past,tau,win,pca_t,sstdev,smean,sstdevcorr,smeancorr) -> prediction2 
 PCAMCP<-prediction2 
} 

D.7 Calculating simple linear regression prediction 

lin_reg_pred<-function (uabs,uabs2,referencepast) { 

 lm(uabs2~uabs)->simpleMCP 

 coef(simpleMCP)->coef 

 coef[1]+coef[2]*referencepast->up 

 zdx <- (up < 0) 

 up[zdx] <- 0 

 xbreaks <- seq(0,500) 

 histlregpred<-hist(up, xbreaks , plot=FALSE) 

 return(histlregpred$density) 

} 

D.8 Depicting PCA-MCP results in comparison with simple linear regression for 

different parameter settings  

if (!exists("abserrorlin")) { 

   load("trial3.RData") 

   st1 <- seq(1,8) 

   st2 <- seq(1,8) 
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   yr <- seq(2000,2010) 

   wn <- seq(1,4) 

   trn <- seq(1,4) 

} 

# choose which target station, truncation and window you want to plot: 

# Then plot for all reference stations and years 

ist1 <- st1 

ist2 <- 3 

iwn <- 2 

itrn <- 2 

maintext <- paste("Target:",ist2,"; Win = ", wina[iwn], "; Trunc = ", trunca[itrn]) 

par(mar=c(4,4,2,1)) 

matplot(st1,abserrorlin[,ist2,,iwn,itrn], "b", lty = 2, pch=20, xlim=c(0,8), ylim=c(0,1.2), 
xlab = "Reference Station", ylab = "MAE", main = maintext) 

matplot(st1,abserrorref[,ist2,,iwn,itrn], "b", lty = 3, pch=21, add=TRUE) 

matplot(st1,abserrortar[,ist2,,iwn,itrn], "b", lty = 1, pch=24, add=TRUE) 

legend(0,1.2,legend=c("Linear Regression", "Reference", "Target"), lty = c(2,3,1), pch 
= c(20,21,24)) 

# choose which reference station, truncation and window you want to plot: 

# Then plot for all target stations and years 

ist1 <- 5 

ist2 <- st2 

iwn <- 2 

itrn <- 2 

maintext <- paste("Reference:",ist1,"; Win = ", wina[iwn], "; Trunc = ", trunca[itrn]) 

par(mar=c(4,4,2,1)) 

matplot(st1,abserrorlin[ist1,ist2,,iwn,itrn], "b", lty = 2, pch=20, xlim = c(0,8), 
ylim=c(0,1.2), xlab = "Target Station", ylab = "MAE", main = maintext) 

matplot(st1,abserrorref[ist1,ist2,,iwn,itrn], "b", lty = 3, pch=21, add=TRUE) 

matplot(st1,abserrortar[ist1,ist2,,iwn,itrn], "b", lty = 1, pch=24, add=TRUE) 

legend(0,1.2,legend=c("Linear Regression", "Reference", "Target"), lty = c(2,3,1), pch 
= c(20,21,24)) 

# choose which pair of Reference station, truncation and window you want to plot: 

# Then plot for all target stations and years 
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ist1 <- 3 

ist2 <- 6 

iwn <- c(1,4) 

itrn <- c(1,4) 

maintext <- paste("Reference:",ist1, "Target:", ist2) 

par(mar=c(4,4,2,1)) 

matplot(yr,abserrorlin[ist1,ist2,,1,1], "b", lty = 2, pch=20, xlim= c(1999,2009), 
ylim=c(0,1.2), xlab = "Training year", ylab = "MAE", main = maintext, col="black") 

matplot(yr,abserrorref[ist1,ist2,,iwn,1], "b", lty = 3, pch=21, col = "blue", add=TRUE) 

matplot(yr,abserrortar[ist1,ist2,,iwn,1], "b", lty = 1, pch=24, col="red", add=TRUE) 

matplot(yr,abserrorref[ist1,ist2,,iwn,2], "b", lty = 3, pch=19, col="blue", add=TRUE) 

matplot(yr,abserrortar[ist1,ist2,,iwn,2], "b", lty = 1, pch=17, col="red", add=TRUE) 

legend(1999,1.2,legend=c("Linear Regression", "Reference", "Target"), lty = c(2,3,1), 
pch = c(20,21,24), col=c("black","blue","red")) 

# if you want to see if there is any correlation between the reference error and the target 
error: 

par(mfrow=c(2,1)) 

matplot(abserrorref,abserrortar,pch=20, col="blue", xlab="Reference MAE", 
ylab="Target MAE", xlim=c(0,max(abserrorref,na.rm=TRUE)), 
ylim=c(0,max(abserrortar,na.rm=TRUE)), xaxs="i", yaxs = "i") 

lines(c(0,1.1),c(0,1.1), col="red", lwd= 2) 

# if you want to see if there is any correlation between the linear regr error and the 
target error: 

matplot(abserrorlin,abserrortar,pch=20, col="blue", xlab="Linear regression MAE", 
ylab="Target MAE", xlim=c(0,max(abserrorlin,na.rm=TRUE)), 
ylim=c(0,max(abserrortar,na.rm=TRUE)), xaxs="i", yaxs = "i") 

lines(c(0,1.1),c(0,1.1), col="red", lwd= 2) 

# Overall performance profile 

hist(Perfindex,breaks = seq(0,max(Perfindex[is.finite(Perfindex)])+0.1,by =0.1), 
prob=TRUE, xlab = "Performance Index", main="") 

matplot(abserrorref[is.finite(Perfindex)],Perfindex[is.finite(Perfindex)],pch=20, 
col="blue", xlab="Reference MAE", ylab="Performance Index", 
xlim=c(0,max(abserrorref,na.rm=TRUE)), 
ylim=c(0,max(Perfindex[is.finite(Perfindex)])), xaxs="i", yaxs = "i") 

lines(c(0,1.1),c(0,1.1), col="red", lwd= 2) 

matplot(abserrortar[is.finite(Perfindex)],Perfindex[is.finite(Perfindex)],pch=20, 
col="blue", xlab="Target MAE", ylab="Performance Index", 
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xlim=c(0,max(abserrortar,na.rm=TRUE)), 
ylim=c(0,max(Perfindex[is.finite(Perfindex)])), xaxs="i", yaxs = "i") 

lines(c(0,1.1),c(0,1.1), col="red", lwd= 2) 

matplot(abserrorlin[is.finite(Perfindex)],Perfindex[is.finite(Perfindex)],pch=20, 
col="blue", xlab="Linear Regression MAE", ylab="Performance Index", 
xlim=c(0,max(abserrorlin,na.rm=TRUE)), 
ylim=c(0,max(Perfindex[is.finite(Perfindex)])), xaxs="i", yaxs = "i") 

lines(c(0,1.1),c(0,1.1), col="red", lwd= 2) 

# Mean and Median of Performance index 

mean(Perfindex[is.finite(Perfindex)]) 

median(Perfindex[is.finite(Perfindex)]) 

if (!exists("abserrorlin")) { 

 load("trial3.RData") 

 st1 <- seq(1,8) 

 st2 <- seq(1,8) 

 yr <- seq(2000,2010) 

 wn <- seq(1,4) 

 trn <- seq(1,4) 

} 

# plot the mean absolute error for the three measures (Lin.Reg;PCA ref and PCA target) 
averaging over all years, all windows and all truncations 

# Plotting for each target station against the reference stations as the x-axis 

par(mfrow=c(1,1)) 

ist2 <-1 

{if (ist2 == 1) { stx <- seq(2,8)}  

if (ist2 == 8) {stx <- seq(1,7)}  

if (ist2 >1 & ist2< 8) {stx <- c(seq(1,ist2-1),seq(ist2+1,8))} 

matplot(stx,apply(abserrorlin[stx,ist2,,1,],c(1),mean,na.rm=TRUE),"b",pch=20,lty="das
hed", ylim= c(0,1.1), xlab = "Reference Station", ylab = "MAE", main=paste("Target 
station",ist2), col="black", xlim=c(1,8)) 

matplot(stx,apply(abserrorref[stx,ist2,,,],c(1),mean,na.rm=TRUE),"b",pch=19,lty="dott
ed",add=TRUE, col="blue") 

matplot(stx,apply(abserrortar[stx,ist2,,,],c(1),mean,na.rm=TRUE),"b",pch=24,lty="solid
",add=TRUE, col="red") 

legend("topleft",legend=c("Linear Regression", "Reference", "Target"), lty = c(2,3,1), 
pch = c(20,19,24), col=c("black","blue","red")) 
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ist2 <-2 

{if (ist2 == 1) { stx <- seq(2,8)}  

if (ist2 == 8) {stx <- seq(1,7)}  

if (ist2 >1 & ist2< 8) {stx <- c(seq(1,ist2-1),seq(ist2+1,8))} 

matplot(stx,apply(abserrorlin[stx,ist2,,1,],c(1),mean,na.rm=TRUE),"b",pch=20,lty="das
hed", ylim= c(0,1.1), xlab = "Reference Station", ylab = "MAE", main=paste("Target 
station",ist2), col="black", xlim=c(1,8)) 

matplot(stx,apply(abserrorref[stx,ist2,,,],c(1),mean,na.rm=TRUE),"b",pch=19,lty="dott
ed",add=TRUE, col="blue") 

matplot(stx,apply(abserrortar[stx,ist2,,,],c(1),mean,na.rm=TRUE),"b",pch=24,lty="solid
",add=TRUE, col="red") 

legend("topright",legend=c("Linear Regression", "Reference", "Target"), lty = c(2,3,1), 
pch = c(20,19,24), col=c("black","blue","red")) 

ist2 <-3 

{if (ist2 == 1) { stx <- seq(2,8)}  

if (ist2 == 8) {stx <- seq(1,7)}  

if (ist2 >1 & ist2< 8) {stx <- c(seq(1,ist2-1),seq(ist2+1,8))} 

matplot(stx,apply(abserrorlin[stx,ist2,,1,],c(1),mean,na.rm=TRUE),"b",pch=20,lty="das
hed", ylim= c(0,1.1), xlab = "Reference Station", ylab = "MAE", main=paste("Target 
station",ist2), col="black", xlim=c(1,8)) 

matplot(stx,apply(abserrorref[stx,ist2,,,],c(1),mean,na.rm=TRUE),"b",pch=19,lty="dott
ed",add=TRUE, col="blue") 

matplot(stx,apply(abserrortar[stx,ist2,,,],c(1),mean,na.rm=TRUE),"b",pch=24,lty="solid
",add=TRUE, col="red") 

legend("topright",legend=c("Linear Regression", "Reference", "Target"), lty = c(2,3,1), 
pch = c(20,19,24), col=c("black","blue","red")) 

ist2 <-4 

{if (ist2 == 1) { stx <- seq(2,8)}  

if (ist2 == 8) {stx <- seq(1,7)}  

if (ist2 >1 & ist2< 8) {stx <- c(seq(1,ist2-1),seq(ist2+1,8))} 

matplot(stx,apply(abserrorlin[stx,ist2,,1,],c(1),mean,na.rm=TRUE),"b",pch=20,lty="das
hed", ylim= c(0,1.1), xlab = "Reference Station", ylab = "MAE", main=paste("Target 
station",ist2), col="black", xlim=c(1,8)) 

matplot(stx,apply(abserrorref[stx,ist2,,,],c(1),mean,na.rm=TRUE),"b",pch=19,lty="dott
ed",add=TRUE, col="blue") 

matplot(stx,apply(abserrortar[stx,ist2,,,],c(1),mean,na.rm=TRUE),"b",pch=24,lty="solid
",add=TRUE, col="red") 
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legend("topright",legend=c("Linear Regression", "Reference", "Target"), lty = c(2,3,1), 
pch = c(20,19,24), col=c("black","blue","red")) 

ist2 <-5 

{if (ist2 == 1) { stx <- seq(2,8)}  

if (ist2 == 8) {stx <- seq(1,7)}  

if (ist2 >1 & ist2< 8) {stx <- c(seq(1,ist2-1),seq(ist2+1,8))} 

matplot(stx,apply(abserrorlin[stx,ist2,,1,],c(1),mean,na.rm=TRUE),"b",pch=20,lty="das
hed", ylim= c(0,1.1), xlab = "Reference Station", ylab = "MAE", main=paste("Target 
station",ist2), col="black", xlim=c(1,8)) 

matplot(stx,apply(abserrorref[stx,ist2,,,],c(1),mean,na.rm=TRUE),"b",pch=19,lty="dott
ed",add=TRUE, col="blue") 

matplot(stx,apply(abserrortar[stx,ist2,,,],c(1),mean,na.rm=TRUE),"b",pch=24,lty="solid
",add=TRUE, col="red") 

legend("topright",legend=c("Linear Regression", "Reference", "Target"), lty = c(2,3,1), 
pch = c(20,19,24), col=c("black","blue","red")) 

ist2 <-6 

{if (ist2 == 1) { stx <- seq(2,8)}  

if (ist2 == 8) {stx <- seq(1,7)}  

if (ist2 >1 & ist2< 8) {stx <- c(seq(1,ist2-1),seq(ist2+1,8))} 

matplot(stx,apply(abserrorlin[stx,ist2,,1,],c(1),mean,na.rm=TRUE),"b",pch=20,lty="das
hed", ylim= c(0,1.1), xlab = "Reference Station", ylab = "MAE", main=paste("Target 
station",ist2), col="black", xlim=c(1,8)) 

matplot(stx,apply(abserrorref[stx,ist2,,,],c(1),mean,na.rm=TRUE),"b",pch=19,lty="dott
ed",add=TRUE, col="blue") 

matplot(stx,apply(abserrortar[stx,ist2,,,],c(1),mean,na.rm=TRUE),"b",pch=24,lty="solid
",add=TRUE, col="red") 

legend("topright",legend=c("Linear Regression", "Reference", "Target"), lty = c(2,3,1), 
pch = c(20,19,24), col=c("black","blue","red")) 

ist2 <-7 

{if (ist2 == 1) { stx <- seq(2,8)}  

if (ist2 == 8) {stx <- seq(1,7)}  

if (ist2 >1 & ist2< 8) {stx <- c(seq(1,ist2-1),seq(ist2+1,8))} 

matplot(stx,apply(abserrorlin[stx,ist2,,1,],c(1),mean,na.rm=TRUE),"b",pch=20,lty="das
hed", ylim= c(0,1.1), xlab = "Reference Station", ylab = "MAE", main=paste("Target 
station",ist2), col="black", xlim=c(1,8)) 

matplot(stx,apply(abserrorref[stx,ist2,,,],c(1),mean,na.rm=TRUE),"b",pch=19,lty="dott
ed",add=TRUE, col="blue") 
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matplot(stx,apply(abserrortar[stx,ist2,,,],c(1),mean,na.rm=TRUE),"b",pch=24,lty="solid
",add=TRUE, col="red") 

legend("topleft",legend=c("Linear Regression", "Reference", "Target"), lty = c(2,3,1), 
pch = c(20,19,24), col=c("black","blue","red")) 

ist2 <-8 

{if (ist2 == 1) { stx <- seq(2,8)}  

if (ist2 == 8) {stx <- seq(1,7)}  

if (ist2 >1 & ist2< 8) {stx <- c(seq(1,ist2-1),seq(ist2+1,8))} 

matplot(stx,apply(abserrorlin[stx,ist2,,1,],c(1),mean,na.rm=TRUE),"b",pch=20,lty="das
hed", ylim= c(0,1.1), xlab = "Reference Station", ylab = "MAE", main=paste("Target 
station",ist2), col="black", xlim=c(1,8)) 

matplot(stx,apply(abserrorref[stx,ist2,,,],c(1),mean,na.rm=TRUE),"b",pch=19,lty="dott
ed",add=TRUE, col="blue") 

matplot(stx,apply(abserrortar[stx,ist2,,,],c(1),mean,na.rm=TRUE),"b",pch=24,lty="solid
",add=TRUE, col="red") 

legend("topright",legend=c("Linear Regression", "Reference", "Target"), lty = c(2,3,1), 
pch = c(20,19,24), col=c("black","blue","red")) 

}}}} 

par(mfrow=c(3,1)) 

# need to adjust where to put legend depending on the lines; options "right"; "left", 
"topright", "topleft") 

legend("left",legend=c("Linear Regression", "Reference", "Target"), lty = c(2,3,1), pch 
= c(20,19,24), col=c("black","blue","red")) 

#  Illustrating the effect of two window choices 

plot(abserrortar[,,,1,],abserrortar[,,,2,], xlab=paste("MAE for Win =",wina[1]), 
ylab=paste("MAE for Win =",wina[2]),pch=20) 

lines(c(0,1),c(0,1), col="red") 

#  Illustrating the effect of first two Truncation choices 

plot(abserrortar[,,,,1],abserrortar[,,,,2], xlab=paste("MAE for Truncation",trunca[1]), 
ylab=paste("MAE for Truncation",trunca[2]), pch=20) 

lines(c(0,1),c(0,1), col="red") 

# Illustrating the effect of last two Truncation choices 

plot(abserrortar[,,,,3],abserrortar[,,,,4], xlab=paste("MAE for Truncation",trunca[3]), 
ylab=paste("MAE for Truncation",trunca[4]), pch=20) 

lines(c(0,1),c(0,1), col="red") 

par(mfrow=c(3,1)) 
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# need to adjust where to put legend depending on the lines; options "right"; "left", 
"topright", "topleft") 

legend("left",legend=c("Linear Regression", "Reference", "Target"), lty = c(2,3,1), pch 
= c(20,19,24), col=c("black","blue","red")) 

#  Illustrating the effect of two window choices 

plot(abserrortar[,,,1,],abserrortar[,,,2,], xlab=paste("Target MAE for Win =",wina[1]), 
ylab=paste("Target MAE for Win =",wina[2]),pch=20) 

lines(c(0,1),c(0,1), col="red") 

#  Illustrating the effect of first two Truncation choices 

plot(abserrortar[,,,,1],abserrortar[,,,,2], xlab=paste("Target MAE for 
Truncation",trunca[1]), ylab=paste(" 

Target MAE for Truncation",trunca[2]), pch=20) 

lines(c(0,1),c(0,1), col="red") 

plot(abserrortar[,,,,3],abserrortar[,,,,4], xlab=paste("Target MAE for 
Truncation",trunca[3]), ylab=paste("Target MAE for Truncation",trunca[4]), pch=20) 

lines(c(0,1),c(0,1), col="red") } 
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