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Abstract

The statistical method of Principal Component AsayPCA) is developed here
from a time-series analysis method used in nonlidgaamical systems to a forecasting
tool and a Measure-Correlate-Predict (MCP) and #pgilied to wind speed data from a
set of Met.Office stations from Scotland. PCA foné-series analysis is a method to
separate coherent information from noise of measenes arising from some
underlying dynamics and can then be used to destn# underlying dynamics. In the
first step, this thesis shows that wind speed nreasents from one or more weather
stations can be interpreted as measurements difgyrfeom some coherent underlying
dynamics, amenable to PCA time series analysia.decond step, the PCA method was
used to capture the underlying time-invariant shemn dynamics from an anemometer.
These were then used to predict or forecast thd gpeeds from some hours ahead to a
day ahead. Benchmarking the PCA prediction agaessistence, it could be shown
that PCA outperforms persistence consistently foedasting horizons longer than
around 8 hours ahead. In the third stage, the P@thwod was extended to the MCP
problem (PCA-MCP) by which a short set of concurmgta from two sites is used to
build a transfer function for the wind speed angkction from one (reference) site to
the other (target) site, and then apply that tem&fnction for a longer period of data
from the reference site to predict the expecteddvdipeed and direction at the target
site. Different to currently used MCP methods whiaat the target site wind speed as
the independent variable and the reference sitel wpeed as the dependent variable,
the PCA-MCP does not impose that link but treats ttho sites as joint observables
from the same underlying coherent dynamics plusesimgiependent variability for each
site. PCA then extracts the joint coherent dynanfckey development step was then
to extend the identification of the joint dynamuabsscription into a transfer function in
which the expected values at the target site cdaddinferred from the available
measurements at the reference site using thedgmamics. This extended PCA-MCP
was applied to a set of Met.Office data from Scutlaand benchmarked a standard
linear regression MCP method. For the majority a$es, the error of the resource
prediction in terms of wind speed and wind directébstributions at the target site was
found to be between 10% and 50% of that made ubki@gtandard linear regression.



The target mean absolute error was also found tmridg the 29% of the linear

regression one.
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Glossary

Chapter 1
C : Weibull distribution scale factor
CP: capacity factor

GCM: Global Circulation Model

K: Weibull distribution shape factor
LIDAR: Light Detection And Ranging
MCP: Measure-Correlate-Predict
PCA: Principal Component Analysis
SODAR: Sonic Detection And Ranging
n . wind turbine efficiency

Chapter 2

AEP: Annual Energy Production

ANN: Artificial Neural Network

D constant in linear regression relationship

C : subscript denoting the concurrent data

DAMS: Detailed Aspect Method of Scoring

ECMWEF: European Center for Medium-range Weathee€&asting
M : gradient in linear regression relationship

NCAR: National Centre for Atmospheric Research

NOABL: Numerical Objective Analysis Boundary Layer
pred hist: subscripts denoting the predicted and histodea
tar,ref : subscripts denoting the target and reference site

V: wind speed
XX



VMM: Virtual Met Mast
VR: Variance Ratio method

WASP: Wind Atlas Analysis and Application

0 - wind direction
Chapter 3

C : subscript denoting calibrated data in MCP methugio

di : Euclidean distance of a single point

Dj . distance to nearest neighbours

EOF: Empirical Orthogonal Function

h: subscript denoting reference only data of coremirdata set used for calibration
I, time-delay row index

j: time-delay column index

Jo: observable time-delay index

K : constant factor characteristic of the spring

K- entry of neighbour to latest measurements

k' entry of training principal components

M : number of columns in time-delay matrix

M., : number of lags (window length) in time-delay mat
N : number of rows in time-delay matrix; equationl)1

N : subscript denoting new time series projectiofonecasting methodology

N, : number of channels in the time-delay mati);in schematic of Figure 8

N, : nearest neighbours

XXi



N, : length of observations ; equation (11)

N, : orbit length

P : principal components matrix

P : subscript denoting prediction in MCP methodology

pc: principal component

Pfj(T): ensemble prediction based on nearest neighbours
I' . subscript denoting historical reference data

S: singular vectors matrix
SSA: Singular Systems Analysis
SVD: Singular Value Decomposition

svec: singular vector
T : leading time

t : subscript denoting truncation in forecasting 8@P methodology

U:)(t): predicted wind speed in forecasting methodology

V: phase space variable of a dynamical system ysasdlociated with the velocity
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Chapter 1 Introduction towind resource

This chapter will give a brief introduction on tlearrent status of wind energy.
Wind resource assessment which is the aspect of wirergy of interest for this

research will then be discussed.

1.1 Wind energy industry

Wind energy is one of the most established reneavahkrgy forms. It has been
one of the fastest growing renewable industriesterpast two decades. Its growth has
appeared at the beginning of the 90’s and eveestritas become a more mature, clean
energy generating technology. As facts indicat&dwndustry is expected to continue
existing with lower costs as energy security theeatd the immediate need to meet the

CO. reduction standards so as to prevent climate @hflig

In more details, wind energy’s key role as a reri#e/anergy form can be verified
by various statistics. In Europe, there is curgef?8.8 GW of installed wind capacity
where 8GW come from offshore and 120.6 GW from onshnstallations [2]. Wind
power installations have increased annually overptdist 14 years from 3.2GW in 2000
to 11.8GW in 2014. Germany followed by Spain, UKl &rance are the leading EU
countries in the wind installed capacity [2]. Imarmal wind year, the installed wind
capacity by the end of 2014 could produce 284TWlecttricity enough to cover 10.2%
of the EU’s electricity consumption needs where¥®.ariginates from onshore and
1.1% from offshore wind [2]. The EU wind farms istment ranges between €13.1bn
and €18.7bn with onshore wind farms in particulavihg investments from €8.9bn to
€12.8bn. Furthermore, wind energy technology itetiahs had the highest installation
rate in 2014 with 43.7% of all new installationdatl.8GW [2]. In Europe, 79.1% of
the newly installed capacity came from renewablergy sources with the installation
of 21.3GW renewable power capacity.

In 2014, UK installed 1,736.4MW of wind power wi@13.4MW originating from
offshore wind [2]. Renewable energy currently pdea 19% of the UK’s electricity
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needs and wind energy covers half of it. UK poweds were met by 13GW with wind
energy [3]. More specifically, onshore wind is piing 5% of the electricity in the UK
and this percentage is expected to rise to 10%0B9.2Another attractive factor of wind
as a form of energy is that UK has an excellentwasource potential and its cost as a
form of energy is also small compared to the bénefi decarbonisation achieved [3].
The economic benefit from wind energy to local camities is very important also
considering small scale wind installations; by #wed of 2014, 27,819 small and

medium turbines have been deployed across UK sa@B¢57 tonnes of C(B].

Scotland in particular, has shown a steady growtfenewable electricity capacity
currently at 7.3GW in the end of 2014 compared ith MW in 2007 [4]. Onshore
wind, accounts for over 69% of the installed catyati Scotland followed by hydro,
offshore and bioenergy. Furthermore, Scotland’sweble electricity output has raised
to 19,067GWh in 2014 from 8,215GWh in 2007 and #lectricity generation
originating from renewables was around 49.8% ib42pP1]. Onshore wind investment
was 4,513MW in the end of 2013 and 5,015MW in thd ef 2014 with a total of
£701.8m whereas offshore was 190MW in the end 682ihd 197MW in the end of
2014 with a £22.8m [4].

The constant technological development alongsidie thie increasing energy needs
and the necessity of turning to a more sustainaitlee will undoubtedly establish even

further wind energy in the near future.

1.2 Importance of wind resour ce assessment

Wind energy is a strongly intermittent form of egpemith a large variability [5].
Given that modern wind farms have installed capeciof several hundred megawatts
or more, even a small overestimate or an unceytairthe predicted resource can result
in a shortfall of income of several million poundenually per wind farm. For this
reason, wind resource assessment is an importanbpaiting and developing wind

farms.



Since wind is highly dependent on regional factaffecting the larger weather
systems, wind energy production is significanthaltdnging in terms of prediction [6-
8]. In order to investigate the variability in windmporally and spatially, wind speed
and direction are monitored in different locatidnsference sites) close to a potential

site (target site) so that the characteristichefvind resource can be established [9].

Different types of data sets from different wind stgain wind farms and
meteorological office stations from other nearbiesiare being used by wind farm
developers. For example, meteorological stationsorte hourly wind speed and
direction data from instruments typically 10m abareund, but dedicated wind farm
masts are typically taller and would sample measargs at a second by second or
minute by minute frequency. When these datasetsanatysed by well-established
MCP methods, they can significantly aid in the windcertainty reduction and
prediction [10].

A typical problem concerning wind data collectiantihe large variability between
areas and sources containing wind data [11]. Pfathis is because the local wind
resource is strongly affected by its immediate mmment and part is due to the
instrumentation used. A further problem that witada analysis often faces is that poor
quality and inadequate data which in both caseslead to poor predictions [12].
Sometimes, other global datasets can be used dnsigzh as reanalysis data [13].
Reanalysis data are produced by combining a rahddéferent meteorological datasets
such as: remote sensing observations, satellitg datface observations coming from
land. These data are used as an input to a Glaball&ion Model (GCM), in other
words a numerical weather prediction model, sooatesult in a range of values of
meteorological variables at discrete time interJ&#. Their accuracy however, could
be questioned since they are not always representatthe area and the data readings
might not be recorded frequently enough. Satellitsea specifically, look into for

example temperature measurements and cloud coverage

Instruments such as LIDAR, SODAR have been useckdimey can provide with
high resolution wind data as an alternative [8].mMantioned, some of the main factors

that influence the wind resource assessment qualityreliability are the location of the
3



wind farm itself [15], the wind statistics of measunents before the turbine installation
and during their operation that are expected kzd all the technical equipment used in
the farm.

Furthermore, as far as the location of the warthfis concerned, its topography is
very important. In more detail, the effects of thgain on the wind flow, the roughness
and the small/large scale weather of the surrogndiea are some of the very important
factors that should be taken into consideration rwipdanning a wind farm. In
Velasquez research the islands orography was usedra of his analysis and it was
found to be an important factor for the resultssiit can affect the sites correlation
[16]. Furthermore, wind speed and direction whack some of the most important

factors that determine the wind statistics can ergll-time scales.

A semi-empirical methodology was developed byuikeMet Office to estimate
small-scale wind energy potential which consistghaf application of corrections to
wind data locally and regionally based, accordilng average surface roughness
parameters [17]. Weekes and Tomlin in their redeanced to evaluate the
aforementioned method [9] for 38 UK sites in ortkeexamine the errors between the
actual and predicted wind speeds and wind powesityeithe surface roughness due to
the difference of terrains and the morphology ef tiK sites used. They concluded that
the method has some limitations; however, even wsithple modifications of these
aerodynamic parameters improvements could be mBdey also noted that semi-
empirical modes can be applied easily and with allsrost for wind resource
assessment however they include uncertainties ¢batd pose a problem when
assessing large wind investments. Therefore, isethmses they should be used in

addition to onsite measurements.

Due to its large variability interannually it is portant to obtain a sufficient amount
of wind data measurements [11, 18-24]. Differerthars suggest different periods such
as 3 years, 10 years or even 20 to 30 years tblbe@characterize sufficiently a sites
wind resource [11, 16, 18, 21, 25-27]. Differentleg from daily to seasonal and
interannual ones [11, 19, 26, 27] can be obseruedlbo wind turbulence and gusts are

quite common too. Turbulence represents rapiddateins in wind speed and direction
4



at all time scales, including those shorter tharussially available from resource
assessment measurements which can impact the winide performance. Wind gusts
which are a sudden increase in the wind speed wasgtHong enough to affect turbine
performance [23]. In addition, the turbines havedjust to the wind fluctuations at all
time but that is not always the case since thegnoftave a delay and a lack of
immediate response. The anemometers also can bewoprecision and response
depending on their quality so data measurementbeaf poor quality and quantity.

Albers et al. highlight the extreme importance afod quality of wind speed
measurements as they think that it is the only tealimit the financial risk of wind
farm projects especially for complex terrain s[f3]. As Angelis-Dimakis et al. note in
their review for wind energy, one of wind resouscgreatest challenge is to come up
with flow and numerical models which can identifetwind flow features while being
at a complex terrain and at the same time keegdlailation cost at a low level [8]
Gerdes et al. also mentioned in their study, orgetbée careful with the wind speed
measurements used since if the measurements aestakeh in a ‘good’ energy
production year, it could lead to an overestimatbithe forecasted energy production
of a wind farm. Thus he highlights that the longyteeffects of measurements must be
taken into account [20]. Hence, the wind farm emept quality and the methods of
analysis and prediction of wind behaviour are imbdekextreme importance for a good

resource assessment.

1.3 Fromwind to electricity

Figure 1 illustrates the power output for a givendvurbine. The maximum value
of the y axis power coefficient is 1 since it isksd to rated power. The typical wind

turbine efficiencyn is described as

Luca (1)



where P is the power output from the turbine and the demanair is the power carried

7ZD2

by the wind with o the air densityU the wind speed and\= 4 the swept area of

the blades.

At cut-in winds when the turbine starts to operdtee efficiency and output
increase rapidly until the rated power is reach&dthat point the typical turbine
efficiency is about 40%-50% and thus it is the ¢@bbest efficiency for a wind turbine.
After the rated power output reaches 1 at the raied, it becomes flat which means
that even if wind speed is increased, the effigjethecreases. It can also be seen that,

usually, abovei =25 m/s the turbine is turned off.
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Figure 1. Performance curve of a typical wind turbine.

The Weibull distribution is often found to best deise wind speed distribution, at

least in Europe. The Weibull distribution equatisiof the following form

o]



whereU is the wind speel is the shape factor agcdthe scale factor measured in m/s.

Figure 2 indicates the probability density functmfrthe Rayleigh distribution, a special

case of Weibull distribution witk =2, frequently used for well- behaved sites with

wind speeds above 4.5 m/s. The Rayleigh distwinugquation is of the form

2U u)’
2P| —| 3)

The capacity factor (CP) for wind turbines/ farmsthe ratio of actual output of the

PR(U ):

wind turbine/ farm for some time, over their fubbtpntial. The typical estimate of CP
for wind farms is 30% [29, 30].
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Figure 2. Probability density function (pdf) of Rayleigh disution.

To examine the sensitivity of wind turbine performa so as to verify the rationale
behind the importance of a good wind resource ass&s an example will be
illustrated in Figure 3. Taking a typical wind ture 45m above the ground nearby

Edinburgh airport with average annual wind speed=d m/s, the expected CP of the
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Rayleigh distribution with scale factot=6.77 m/s is expected to be CP=16.4%.
Changing the scale factor randomly by + 0.4 % tesuin a change of the CP by +

1.3%, as it can be seen in Figure 3.

Frah in his research for 43-year-long wind dataSeotland concluded that the
electricity output is subject to sensitivity whemal changes in mean wind exist,
especially for poor wind resource sites. He alghlighted the variation in the expected
output from year-to-year ranging from 10% to 15%acotland [30].

The conclusions that can be derived from this exangre that the turbine
electricity output is very sensitive to changestlre wind statistics and hence the
electricity distribution and the sites chosen afeggm@at importance. Finding the best
possible estimate of the sites distribution resultshoosing a good site. Furthermore, it
should be noted that wind direction apart fromgheed measurements is essential to be

correct since together they can affect the elettrautputs.
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Figure 3. Change of CP in response of changing c.



1.4 Aimsand objectives

In order to address the issues mentioned in sectidh and 1.3 a novel Measure-
Correlate-Predict (MCP) technique was developdtisiresearch which is based on the
statistical methodology of Principal Component Aiseéd (PCA) and applied through
the statistical package R [31].

1.5 Thesisoutline

This thesis structure will be as following: Chap2ewill explain the fundamental
principles of the MCP methods and give their ovamwi Chapter 3 will explain the
theory behind the PCA methodology, Chapter 4 wWilkirate the results of PCA being
used as a forecasting method for wind purposespt€nha will contain the initial results
of PCA used as an MCP method followed by Chapterh&h will exploit the main
results of this research i.e. using PCA and an M@#&hod for wind speed and
direction. Finally, Chapter 7 will include discussiand conclusions of this research
followed by the Appendices which contain the R [3dripts which were used

throughout this research.



Chapter 2 Measure-Correate-Predict (M CP) methods

This chapter will discuss the principles of MCP huets as well as describe the

already established MCP methods in research atiekiwind energy industry.

2.1 Fundamental principlesof MCP methods

The principle behind the MCP methodology is to etate short-term wind data of
a target site, usually the wind farm of interesthviong-term wind data of a reference
site, usually a meteorological office site nearfxy,that a relationship between them is
established [8, 9, 18, 32, 33]. A typical (concuatyedata measurement period used is a
year or more [24]. Current commercial practice ampanies is around 18 months; this
period is enough to capture the annual wind cyok ot too long so as to be longer
and more costly than necessary. The goal of MCiRighapplication is to characterise
the wind speed distribution as a function of wingkction and other invariants so as to
estimate the annual energy capture of a wind fé&4n B4]. As mentioned in section
1.2, the electricity sales are directly proportiottathe annual energy production and
hence a major factor in the economic analysis pbt@ntial site and, for that reason, a
reliable wind resource estimate is a key factorifmestors and developers for their

planning and decision-making.

In general, the following function mathematicallgsdribes MCP for the wind

application:

\/tar,c = f (\/ref,c'eref,c) (4)

where Vv is the wind speed¢ the wind direction,c denotes the concurrent data and
subscriptstarand ref are the target and reference sites, respectivéilg. flinction f()

has a fixed form which is determined from the corent data and then applied to the
historical record. Hence equation (4) indicates tha wind speed of the target site is a
function of wind speed and direction of the refeeesite. Using the concurrent set of

measurements(V,..0..) and....0..) it is possible to determinefuhetionf ,
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which can then be used to estimate historical dfma the target site by
MVarnOaen) = T Vi1, 0) . A simple example of this function estimation fsetlinear
regression MCP, where a line-fit for,  (on t$hexis) is regressed against the (on
thex axis) for the concurrent measurements. This giviess#fit line with a form of the
functionf only depending on the wind speeqd, , but not the directiorg_, . This can be

expressed as

Vv, =f(V, 6, )=b+my, (5)

ref, “ref

whereb is a constant andm is the gradient. Thus, using the historically zatalié

reference wind speed record,., in equation (5) gives the prediction for the

corresponding wind speed at the target ka@,h- Figure 4 is depicting a straight

forward case of the target site and referencelisigefitting where the solid red line
shows the line of best fit found from linear regies, resulting in the equation given at

the top left.

MCP methods can be divided into analytical and eicgdi models depending on
the function that they use. Analytical models makelear assumption regarding the
form of the function they use [18] where the partarseof the function are determined
by the regression analysis results. The most comsitime linear relationship used in
equation (5) to illustrate the principle, but namebr MCP regressional methods also
exist. Historical data are referred as the datgirating from previous years readings

taken from the reference site datasets.
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Figure 4. A straight forward case of line fitting where thelid red line shows the line of best
fit found from linear regression.

Almost all regression-based analysis methods asshatevind at the target site at
a point in time is directly linked to the wind dietreference point from the same time
period. Occasionally, and especially in complexaie, this assumption is not valid
and other, empirical, MCP methods have been deedltp overcome this. Rather than
linking the wind speeds at certain times to eatieptthe wind distribution or wind rose
at the target site is compared to that for theresige site. Empirical MCP methods
often use a matrix to link a wind situation at tta@get site with a corresponding

situation at the reference site using a matrix femiookup table for a ‘case-by-case’
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correspondence where no underlying analytical apsomis applied to all cases [35].
Like the analytical case, the matrix or distribatimethods include concurrent data to
extract the relationship [36] between the two dsitions or wind roses for the period
of the concurrent measurements, and subsequengiy dpat relationship to the
historical wind rose from the reference site todpethe corresponding wind rose for

the target site.

2.2 MCP methodsin literature

2.2.1 Overview of established MCP methods in literature

Essentially, the fundamental approaches can besifiéas into (a) analytical, of
which most use a form of regression, (b) empirizghich mostly determine links
between wind roses or wind speed distributionso(&lsown as frequency tables), and
(c) non-linear modelling, of which the Artificialéiral Network (ANN) has been used
most widely. Table 1 is attempting to provide aremew over the range of the
fundamental MCP approaches in literature. The idumn indicates a classification
according to the main approach, and the secondanrolists common variations on that
basic assumption. For example, a linear regressi@am be applied to all data
indiscriminately (‘Simple’) or it can be applied dividually to subsets of the
measurements where each subset only considers ¢lasurements when the wind
direction was in a chosen range (‘Binned’). Thedhiolumn presents the equation of
the method where applicable, followed by the lasiumn the explanation of the

equation’s variables.
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Class Variant Assumptions/ Limitations Equation Explanation
Analytical
Linear Simple Single fixed linear relationshjp y=mx+b yis predicted target wind
Regression of wind speed at each point |n speed « observed
time between sites. reference wind speed and
m,b slope and offsgB7].
Linear . Binned A _set of fixed Iinegr m iz U+ u,is the predicted mean
Regression :j?rlggggﬁrgg(s:io?he for each wind " i S i wind speed, u the mean
! 10C wind speed of Met. Site
sectors, mcthe regression
gradient and intercept and
z ,are the percentage
weights[35].
Linear Gaussian scatter Represents a  variety | of 1 & o o.is the average wind
Regression processez fWhl_ch hare_ nlot O ros = N_2 (utar,i _utar,i) speed for a particulaso’
accounted for in the simple T4 :
linear model and result in scatter angular  sectonis the
number of observations,

about the mean prediction.

in the individual data point

5

u,.is the wind speed at
target site and, , the mean
target predictiori33].

Variance Ratio

Linear relationsh
but the coefficients

(slope and
intercept) are
determined by

the error term in order to

ratio of variance

prhis approach differs from th
5 linear regression one because
direct attempt is made to mod

no
el

reconstruct the residual scatter|

=N

yis predicted target win
speedy, u,0,,0,1S the
mean and standard

deviation of x the
reference angd the target
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from both sites an

site respectively of th

D

L4
—+

Al

=1

not through concurrent datasej36].
regression.
Multiple Based on Does not require the existence|of T=-u ZV* Tis the predicted targe
grincipal( Lea;l regr(ta)ssion butgoncurfrent Ida;[a. It benefi;[s from T x T site datay v, orthogonal
quares (MPLS) combining ata of multiple sites. Reference : :
information from| site data do not need to be |in matrices andzxj diagonal
different sources. same length wiFh each other or matrix based on singulg
with the target site data. value decomposition of th
reference datf82].
Empirical
Distribution Probabilistic Limited dependence between [the 1 N P (v,,d,)is the probability
Methods reference and candidate site data ELT(V“d"):W:émEiT(V“dj’Vk’dZ)RLT(V“dZ) mass function of long-terr
and limited representation of the wind speed and directio
long-term wind characteristigs of reference siteNFis the
for the data period used for o N
training purpose. Normalization factor an(
PT(v,,d.,v.,d )is the joint
probability mass functiof
of the short-term candida
and reference site win
speed and directior
N,,N,are the wind spee
and direction bins of th
joint  probability masg
function[38].
Distribution Simple linear| Models the underlying f(ur,ut) u,u are the wind spee
Methods regression pdf distribution of target site wing flong(ut):j—f (U )flong(ur )dy, observations of target ar
(SLRpdf) speeds rather than the historical short\ " reference sites

time-series.

fony (U ) Tiog (U, )IS the long-
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Also rather than the restrictiﬁ‘n
that a specific reference si

predicts a distribution of target
site  wind speeds for

form of a conditional probability
distribution.

e
wind speed corresponds to| a
specific target site wind speed, it

every
reference site wind speed in the

term marginal probability
density function of wing
speed at target and
reference site and,_,(u,)
short-term training
marginal pdf of the
reference sit¢s9].

Distribution Weibull pdf | As above but assumes that both o Ky k is the shape and the scale

Methods (Wpdf), Nonlinear| reference and target sites are F(x y)=1-ex _( J”‘J{ y J ’ factors, o&the parameter
regression with described by Weibul| ’ A, A, controlling the degree qf
bivariate distributions association betweem,y the
cumulative , reference and target sites
\(/\\//\%b)ull pdf's [40].

Nonlinear Modelling

Artificial Neural | Multilayer No initial assumption of SST_ gST LT,sTare the long-term

Networks Perceptron relationship between sites. Lin Ve ={VCST—[ CST}/rST} [ CST}/rLT and short-term datajs the

(ANNS) Topologies is established through ‘learning’ S S

(MLPs) [41]

Group Method of

Data Handling
method (GMDH)
[41]

Extreme Learning
Machine  (ELM)

[41]

of hidden layers. Interpretatiq
and error estimation is not trivia
[15, 16, 41].

25

standard deviation andv,

is the reference and
candidate wind speef6]
based on the Variance Ratio
method [36]
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Hybrid MCP

Correlates the wind data at 1
targeted site with that at multip

reference stations. Accounts for

the local
topography

distance and (i) the elevatig
differences between the targ

climate and the
information. The
weight of each reference statipn
is determined based on: (i) the

wind site and each reference

station.

W.

1

Nref

Y Ad,

j=1j=1

Nref

Y Ah,

j=Lj=1

2(nref - 1)

Nref

Y Ad,
j=1

Nref

Y Ah
=1

wis the weight of each
reference station, n_ the

number of reference
stations, ad,,ahare the
distance and elevatian

difference between target
and j"reference station

[42] .

Table 1. MCP methods in literature.
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All the linear regression, variance ratio and MPh8thods for MCP attempt to
find a prescribed fixed function to describe theklbetween the wind at the reference
and target sites at each point in time. In the adshe simple linear regression, the a

single functiorv, ., = mv ... +b (as in equation (5) above) is determined by thedr

regression between the full contemporary recordhefreference and target site, and
then that single function is applied to the enhirgtorical wind speed record from the
reference site to calculate the corresponding ptiedis of the wind speed at the target
site. In the case of refinements, the binned s=ypa for example, repeated linear
regressions are applied, each only to the selectfi@montemporary wind speeds which
belong to a wind direction bin. With that, diffetaralues ofm andb are calculated for
each wind direction sector. Then again, only thiect®n of wind speeds from the
historical records with their respective andb are used to predict the corresponding
target wind speeds. To illustrate this with jusingstwo bins: one for easterly winds

(direction between 0° and 180°) and one for wegtethds (direction between 180°
and 360°)m and b, are found by a line fit between only those corentrV, ;e and

Veeence fOr Which the reference wind speed has a direchetween 0° and 180°;

likewise a different line fit is applied to the winspeed data from the other wind

direction bin to get values, andb, .

Having identified the two best-line fits, the histal target wind speeds are
predicted by again splitting the historical refererdata into those where the wind

direction is between 0° and 180° (say,,) and those where it is between 180° and

360° (v,.,)- Then the historical, climatological wind spestdthe target sitey_,, is
predicted as the set made up of
Vpred 1= b.L + MYVhist 1 (6)
and
Vpred,2 = b2 + MpVhist,2 (7)
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This principle can be extended to more wind dim@i bins which can be arbitrarily
chosen, or could be extended to incorporate a tietey between reference and target
site to allow for wind speed changes to be trartsgopy the wind from the reference
site to the target site. For example, for a tagiet 40 km downwind of the reference
site at a wind speed of 5 m/s, a sensible delayidvoel 40000/5 = 4000s or a little over
an hour. However, choosing the best time-delayiffecalt because physically time-
delay incorporates wind speed and direction and dorrect for one particular wind

speed and wind direction only.

Distribution methods for MCP are fundamentally eiffnt in that they do not
attempt to find a link between a wind speed measerg at a particular time at the
reference site and a corresponding speed at thettsite, but the link is made between
the wind statistics (distribution) over the periofithe availability of the concurrent
data. So, while regression links two wind speedsuesanents, the distribution methods
link how often the wind was at a particular stréngt the reference site with how often

the wind was at that strength at the target sitéhat sense it looks at dependencies.

Artificial Neural Networks attempt to find a linkebveen the sites by training the
ANN on the concurrent set, and then using thah&@iANN to predict the target site
wind speeds using the historical reference datahileAsuch a method can be very
powerful, as the link between the sites is not gibsed in a simple formula but
explored in the training process, it is notorioudifficult to predict how good an ANN
model has performed, and the training and predigtimcess is a fairly complex and

non-transparent process.

The potential of ANNs to perform very well suggetat using approaches which
can ‘learn’ not only parameters in a specified fiorcf but the form of the function
itself potentially can provide a much better prédic without having to resort to
expensive and time-consuming flow modeling. Onehsmethod, but through a much
more transparent process, uses empirical funcbassd on maximizing the covariance

between two measurement series.
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2.2.2 Applications of MCP methods

The establishment of the relationship between W dites, reference and target
can be complicated and is based on several stocheastiables. Some of these
invariants are: wind speed and direction over timieich are used as the inputs for the
MCP algorithms in most cases, the distance betwleemeference and the target site,
for example the time of flight delays, the effeofsthe terrain on the flow, e.g. local
obstructions such as forests, hills and the largk siall scale weather patterns, e.g.

atmospheric stability [36].

Due to the existence of these invariants, wind @pesservations can be binned in
accordance with their wind direction values. It dam found that wind direction is
binned in different sectors at the target and exfee site and hence the binning might
not always coincide. Thus a decision must be maderder to select which site,
reference or target binning will be used [40]. Atemaative binning methodology was
proposed by Woods and Watson where the predicted speeds related with a specific
wind direction sector are obtained from the weightwerage of the linear regression
relations among all sectors when correlated witht 8pecific bin [35]. Probst et al.
treated the wind speed data corresponding to esathrsas being analysed individually
so as to find their correlation [43]. A general iilg of the wind direction sectors

happens normally at 8, 12, 30 or 45 [16].

The reference data can be derived from weather tororg stations close to an
airport or national weather services. As Probstl.etuggest in their work, the reference
and target data used for the MCP analysis shoultbbeng from similar heights. They
continue by saying and that a difference in theglnsi could cause a reduction in the
correlation coefficient between the two sites [48]a research conducted by Carta et al.
the cross correlation of hourly mean wind speed22@d0 at the Gran Canaria airport
and some other wind installations on average 13bantavere examined. The reference
station data were measured at one height (10mbaglthe target ones at different
heights (10, 20, 40 and 60m agl). They found thatdorrelation coefficient between
10m agl for the reference and 20m agl. for thediawgps the highest one [18]. The data

readings used are usually hourly wind speed averfgehe long-term assessment but
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there exist other possible data readings intersatf as a 10-minute interval, a half-an-

hour one but also 1- or 2-minute intervals [18].

2.2.3 Comparison of MCP methods

Rogers compared four MCP methodologies [36]. Timesthods included the linear
regression model, a model using ratio distributiohwind speeds at two sites, a vector
regression method and a method based on the rhtgtandard deviations of two
datasets. The most popular of the analytical methedinear regression developed by
Derrick [37]. A refinement of this method was fouoylWoods and Watson [35] which
uses again linear regression for modelling the vapeed but treats the wind direction

in matrix bins.

Some other methods include the ‘Variance Ratio’ \\fRethod [36] where its
approach lies in the relationship of variances fribva reference and target site. VR’s
advantage lies in the fact that it preserves tle dariance whereas other MCP methods
don’t. Mortimer also developed a similar method wveh¢he wind speed is binned
according to the direction sector and speed ateevbe site. The standard deviation of
the ratios in each bin in a matrix form was taketo iaccount and another matrix was
created with the ratios averages [44]. Accordiniltwtimer, this method could predict

better extreme winds in comparison with linear esgron.

Artificial Neural Networks (ANNSs) were used for shéerm wind measurements in
order to estimate the annual wind energy poteiptis]. More specifically, one-year
measurements were used from three different sitdseland to examine the annual
wind regime using a training period of one and manths. The authors concluded that
the ANNs method performed well in predicting th@aal energy yield for both training
periods thus using short term data could be a sstderepresentative of such an
analysis. They compared the results also with WA¥RNnd Atlas Analysis and
Application Program) [45] and found that they weimilar.

Carta et al. proposed another MCP method to estinig-term wind speed

characteristics at 6 wind energy sites locatechenG@anary Islands, Spain. The method
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was based on the probability density function o thind speed of the target site
conditioned with respect to the wind speed at tbkerence site [38]. Then they

compared their method with the VR method [36], Wieibull Scale method [12] and

the joint probabilistic approach [46]. The resultgicated a better estimation of the
wind speeds in most of the cases however it waenindd by the authors that the

degree of correlation between reference and taitgets of great importance and hence
it can pose a limitation in the quality of the ries47] as well as the effect of climate

change [48]. Wind resource covers the lifetime @fiad farm (around 10-25 years) so
if historical wind speeds are included i.e. fromy#ars before then climate change is
included and hence bias is introduced [49] [30jug, the reliability of the resource

assessment would be questioned. They also undgrive importance of examining

wind regime and wind speed correlations in thearegjiof interest so that an appropriate
MCP methodology would be used. They also noteddhsérved wind speed data of the
target site may actually give better estimateseratian long-term estimations made by
MCP techniques [38].

Three new MCP methods were evaluated and comparexhather study with
simple LR and the VR method [36] on concurrent Bgtit wind speed data sets from
two sites. Perea et al. [40] developed three newletsp two based on conditional
probability density functions (pdf's) with termeerkel methods named: Weibull pdf
(Wpdf) and the simple linear regression pdf (SLRpaiid one based on nonlinear
regression with bivariate cumulative Weibull pdf&/R). They investigated 5 metrics
for all the different MCP methods: mean, standaediation, Weibull scale factor,
shape factor and energy density. The results iteticghat the combination of the
modelling approach and the parameter estimatiom & reliable criteria for the choice
of the most appropriate MCP method. The Wpdf seetoedutperform all the other
methods and give the most accurate prediction fothe metrics and input data
combinations but also portray in the best way théumal distribution of the data.
Finally, they concluded that the Wpdf method perferwith more accuracy than the
VR method [36] even though the VR method still paedict very well. However, the
drawback of Wpdf over the VR method is that it datanore programming cost.
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In another MCP study, the authors [16] compareditiear MCP method based on
the VR method [36] and ANNs comprised of Multilay&erceptron Topologies (MLPSs)
[16]. They used 6 weather stations with mean howrtyd speed data spanning from a
10-year period on the Canary Archipelago in Spastimated their long term wind
speeds and based on this knowledge, their energis.chhe uniqueness of their
research lied in the fact that for the first timkn@ar MCP algorithm and ANNs where
compared in the cost estimation per kWh of a wurbite at a target site. Furthermore,
the errors calculated were based on short-terml@mgiterm data from the target site
and were compared with each other. In generalAitids cost per kWh was lower than
the linear MCP. The errors and hence the cost tetalbe higher when using the short-

term data as a representation of the target site.

Two particular neural network models, which haveeéfitient training algorithm
and therefore are not tine consuming to reconsamdtpredict time series, were applied
to wind series reconstruction and predictions akal wind farm in Guadalajara in
Spain [41] named Group Method of Data Handling rmétfGMDH) and Extreme
Learning Machine (ELM). The methods performed aataly and fast when compared
with other well-known methodologies such as mutidr perceptron (MLP) [16] and
support vector regression algorithms. A softwargedausage of GMDH and ELM was
also undertaken and indicated fast wind speed steaition and prediction from

reference sites.

Weekes and Tomlin based their MCP research on gwoibd wind speed data,
only three months, for 22 UK stations [33]. Theyamwned 3 different MCP
approaches: simple LR, the VR method [36] and limegression with Gaussian scatter
(LR2). They concluded that using such small skema data can introduce challenges
such as the effect of seasonality but nevertheldssy can lead to successful
predictions. For the seasonality specifically, thaynd that in the UK the lowest errors
were observed when using autumn or spring datheis training period whereas the
highest errors occurred for winter and summer. &these MCP approaches performed
very well in this case, i.e. using such a shorigaeof data this subsequently can be

quite beneficial to small-scale wind farm develaper
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In another study conducted by the same author$,d@MCP approach based on
the bivariate Weibull (BW) probability distributioof wind speeds pairs of correlation
sites and a variation of the BW method, (BW2) wawmpared with simple LR and the
VR method [36] for 11-year-long wind observatiorfis2@ UK sites. In addition, they
created 22 artificial wind data based on ideal Birdbutions. Regarding the artificial
data, the BW method performed better than the lind@P methods but the contrary
was the case for the actual wind data for shomitrg periods. For training periods of
12 months, all methods performed in a similar weignce, they came to the conclusion
that whereas BW performs better for artificial dathen used for actual ones the
method might not work as well since data might felibw exactly the idealised BW

distributions assumed.

Dinler [32] in his study tested a new MCP methodultijdle Principal Least
Squares (MPLS) on hourly wind data from 4 differezgions. The main advantage of
MPLS lies in the fact that it can be applied evdrewthere is a low correlation between
the target and reference site and thus when paitgjof or non-concurrent data exist
as well. MPLS was proven to be as good as the ékhod [36] for 95% of the cases
when concurrent data exist. It also performed wethe lack of concurrent data and for
different lengths of data with 84% better prediocidhan the actual data. The method
had a 40% improvement when using one-year or sirtinalata. According to the
author, Principal Component Analysis (PCA) coulentify discrepancies in wind
speed data and be useful in order to extract sigoal noise but however it may not
give reliable predictions [32]. In this researtle topposite will be proven for PCA

standing as an MCP method with more details t@¥ih the next chapters.

Zhang et al. used an advanced hybrid MCP methoglolath wind speed and
direction as input variables for 6 reference stetiat North Dakota USA using the
years of 2008-2010 [42]. They examined two caseshe first one each reference
station used one of the established MCP algorithysR, 2) VR [36], 3) ANNs and 4)
support vector regression and the best hybridegjyabf the MCP methods and station
was assessed. It was found that the hybrid algoisttaccuracy was influenced by the

use of individual MCP algorithms and stations dmat the best scenario was achieved
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when considering the length of the correlation guériln the second case, both wind
speed and direction were taken into account antiékecorrelation period was found to
be from approximately 8 months to a year. Lastigytfound that the power generation
was over predicted by ANNs, hybrid neural netwoikk, hybrid LR and hybrid VR

methods. However, the opposite occurred for theparipvector regression, hybrid

support vector regression and for the VR method.

2.3 Alternative resource assessment approaches

The fundamental aim of MCP is to evaluate the lterga, climatological resource
at the chosen location. MCP does this throughtigld local measurement campaign to
a climatological record from a specific nearby kmas. One alternative approach is to
use climatological information synthesised from gndata sources and compiled in an

atlas format. Another method is to use the redrdis climate models.

2.3.1 Atlas methods

An initial wind resource assessment can be madasing a database, such as the
now NOABL free database [50] or the UKCPQ9 [51] tbe UK, or the WAsSP Wind
Atlas [45] used virtually world-wide, where longate wind data are used to report an
average wind speed for a fairly large area. Suthapproach only gives a rough
indication as to whether a region may have, on ay&r a good resource or not.
However, the accuracy of the prediction is wellobethat expected from developers, or
the institutions providing the financing of the d&pment. As a next step to improving
this accuracy prediction, the regional averageefsed by using computer model to
simulate the flow through the proposed developnséet They may use a Wind Atlas
as an input and with some correction for the tareasid obstacles. Then, it creates a map

where the location’s wind regime can be obtained.

One common refinement tool is WASP [45] which idely used in the wind
industry. These packages tend to work well forssith fairly simple topography, but

they are reputed to struggle to produce satisfaatesults for areas with a complex
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topography. Other commercial packages performiagertially the same service
include WindSim [52], ZephyTools [53], Windie [5¥indFarmer [55], WindPro [56],
and AWS openWind [57] which are explained in moegad in section 2.4 of this

chapter.

Another resource assessment method that has be#iedapo wind resource
prediction involves the utilisation of global atrpberic databases, with the most
commonly used being from the NCAR (National CembreAtmospheric Research) the
NCEP/ NCAR reanalysis data [13] the ECMWF (Europ€&amtre for Medium-range
Weather Forecasting) which includes datasets sgchHRES, ENS [58] and from
NASA the MERRA (Modern-Era Retrospective Analysi®r f Research and
Applications) [59]. The Virtual Met Mast (VMM) [60] developed by the Met Office)
is a type of British Wind Atlas and atmospheric mlod

2.3.2 Climate model methods

Other methods developed include statistical dowmggérom climate models and
dynamic downscaling from climate models. The clienahodels use mesoscale
atmospheric results with high resolution to conveto local atmospheric models and
thus a series of nested downscaled models areedr§@t, 62]. Mesoscale modelling
consists of a dynamical statistical approach taesgglobal (large-scale) climatology
into regional wind climatology. Typical mesoscaledels are KAMM [63], MM5 [11,
64].

The usual problem with this type of methods is ity are very expensive in
terms of computing resources and time. An advanth®CP methods is that they give
specific results for a location whereas many of #éfternative methods do not. For
example, WASP is a fixed terrain flow model whialoguces an Atlas to give a wind
resource estimate for a region rather than alsitmore detail, WASP initially uses the
observed wind at a mast to derive the wind resoatce terrain absence i.e. the wind
atlas and then using the reverse procedure, ittheelsackground wind as an input for
the wind profile prediction of other points [23]f the local topography is simple it can
give good results for a site, but it is less us&ulmore complex sites [45]. VMM is a
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more sophisticated method than WAsP and uses tapbgr information combined

with computational modelling but not local measueets.

Bowen et al. performed a study investigating the SNAimits and found that the
errors in predictions could be of importance if tieerain or climate are outside the
standard conditions- for example, having a nontéatain and with extreme weather
conditions [65]. Another study was conducted ineortb compare the offshore wind
resource for the German Bight between the mesoseatkel and WASP by Jimenez et
al. It was found that WAsP can depend on the ratereneasurement stations to a large
extend and that the wind profile used by WASP Iar North Sea is in good accordance.
MM5 seemed to yield good results with a roughly 4%shore deviation. Its main

advantage is that there is no need to use measnoteiai@ for it [66].

Suarez et al. compared the wind speed predictidnthree different methods,
WASsP, MS-Micro/3 [67] and DAMS (Detailed Aspect Metd of Scoring) [68] in a
complex forested terrain in the Cowal Peninsulapti@nd. They concluded that all
three methods vyielded similar predictions and innegal outperformed their
expectations based on previous case studies. Wsthpwreason behind this is that they
considered wind direction which could compensate deerpredictions on a hill in
relation with underpredictions of a wind comingrfra different direction. However the
prediction variability seemed to be larger for WAsRowed by MS-Micro/3 and lastly
by DAMS. Thus they concluded that for WAsP, theiadaitity of predictions tends to
become high over small distances [69].

2.4 Industrial MCP tools

A lot of well-established industrial software pagka performing MCP analysis
have been developed to fulfil the wind energy indis needs for good resource
assessment. A very well-known software package gwaforms sectorwise linear
regression is WindFarm [70]. It accepts inputshe form of time series used for the
concurrent data or of a long-term frequency taldedufor the historic dat&ince the

least squares method only takes into account wogrtin the vertical axis, the best-
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fitted straight line in WindFarm is found throughtlmgonal linear regression, also
known as the York method [71]. Since the least sspianethod which is explained
below cannot be applied, orthogonal regression rheso more appropriate. The
orthogonal regression estimators can be found éyrtimimisation of the perpendicular
distance between observations and fitted line. Dhéut given is presented as
sectorwise wind distribution but also as an ovemadlan wind speed. Furthermore, it
enables the predicted mean wind speed value taréetlyg compared to the measured

one.

Another powerful MCP package is WindPro [56] whicises among other
technigues least squares regression and base®distpns on a Weibull distribution
fit. The least squares regression is attemptingitomise the vertical distance between
observations and fitted line. However, since thedmtions made are based on a
Weibull fit, it is likely that they could includerr and thus uncertainty. The input data
are derived this time not from times series butnfrithe Weibull distribution and the
output mean wind speed prediction is now not coegpavith the actual measured one

but with a calculated one originating from frequetebles.

From the empirical methods, the Inhouse Matrix Ta®eloped by the renewable
energy consultancy company SgurrEnergy Ltd. buddsorrelation matrix between
reference and target site for each sector of thmel wlirection which is then applied to
historical data for prediction. WindPro [56] alseliudes a matrix approach, in which
the concurrent data are grouped in bins in ordelefme a matrix based analysis of the
behaviour between the reference and target sitgs,Tih order to smoothen the pattern
of the behaviour obtained, normal distributions fited to the data. The final stage
includes the use of the smoothed surface to tratwig term data from the reference to
the target site. This is undertaken by the Weilldibnte Carlo fit, to the data which are

computer based [71].

A more comprehensive review was carried out by &mergy Ltd [71] which
compares six MCP techniques. The MCP techniqued fmethis analysis were the
WindFarm and WindPro linear regression, the Windsaduals and WindPro matrix

and the Inhouse matrix and Inhouse WindFarm. Tha deaginated from wind masts
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situated at potential wind farm sites but meteaymal station data were included too.
At first it was essential to determine an overa# sorrelation for each pair of sites for
all the datasets included in the analysis. That admseved with the use of least squares
regression for all the concurrent data of each @adtr , the correlation coefficient was
determined so as to quantify this relationship. Ewer, the overall site correlation

found was different from the correlation obtaingdire MCP analysis results.

A brief explanation on the procedure of the congmariof each MCP technique
used for several pairs of sites is given next.tlira pair of two year reference and
target site concurrent data was chosen. Then,doh eair the first year of concurrent
data was used in order to explore the sectorwisd® Mé&lationships between the two
sites. Furthermore, the relationships obtained wleee applied to the second year of
the reference data to enable a prediction for dwrsd year of the target sites wind
resource. A way to verify the results obtained g MCP relationships was with the
comparison of the predicted mean wind speed withténgets measured mean wind
speed from the second year. In addition, the agpbic of the measured and predicted
wind speed against a generic power curve yieldeghneaergy outputs which were then
compared and indicated the accuracy of the pratlicigainst measured wind
distribution.

The results of the undertaken analysis indicated the WindFarm MCP tool
performed well consistently under most types oflymis and yielded accurate results.
The Inhouse Matrix tool also had a good performamgeindicated sensitivity to the
site correlation. Furthermore, the Inhouse WindF&eshnique seemed to result in a
better long-term analysis than the Inhouse MatWindPro Matrix also performed well
but its drawbacks were that it could give differanswers if the same datasets were to
be reanalysed. Finally, out of all the analysethnéues, the WindPro linear ones were

the ones that performed poorly and therefore arestmmmended.
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2.5 Main challengesfor resource prediction

2.5.1 Wind uncertainty

Apart from the MCP techniques comparison resultsnes other significant
observations were made regarding the MCP methadsorhe cases it was found that
the underlying MCP assumptions did not hold; magpecdically the relationships
established between the two sites were varyingrapg on the concurrent year which
could result in the existence of uncertainty in Mi€P methods used. Hence, the
uncertainty of a good prediction between two siteduture wind resource exists since
the analysis indicated no ideal method to overcdhg but at the same time the

uncertainty that has been accounted for durindt@® analysis was not exceeded [71].

Frandsen and Christensen [72] analysed the theony evaluated the
uncertainties based on several parameters for nineiah power curve output of a
turbine. They also indicated how to combine diffeéeriypes of uncertainty. It was found
that the uncertainty in many cases could be ranfyorg 10 % to 15% on power curve
determination and above 20% for wind resources.f@sproduction, considering
various Danish wind turbines the production estiomatvas well fitted on average but
the standard deviation of actual and predicted yton was high: 20%-30%. The
authors emphasized on the fact that the econoralaili¢y of wind power will highly

depend on the future relation of interest ratethedrices of fossil fuels.

An uncertainty analysis was conducted by Lacknei.eih terms of wind resource
assessment and energy production estimation [2#. authors examined three major
aspects related to uncertainty: wind resource, wunbine power output and losses and
finally the AEP (Annual Energy Production) uncemtgtiwhich was accounted for with
a new method based on the Weibull distributionc8ithey used sensitivity factors to
combine different uncertainty causes, it was fothrat the sensitivity factors related to
wind speed measurement and Weibull factors uncgéytaian be accurately accounted
for when this method was used. Thus the advantagehwarises is that the site

assessment uncertainty can be derived more aclsurate
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Jung [73] performed an analysis for two sites lie tKorean peninsula to
evaluate the uncertainty based on the variabilityctv characterizes the nature of wind
energy. He firstly proposed probability distributiaonodels which included wind
characteristics such as mean wind speed, Weibtdinpeters, air density etc. Then he
created an empirical probability model based on ent&Carlo simulation for the
power curve performance. It was found that theeaf@ntioned method performed well
in quantifying the annual energy production and timeertainty can successfully be
assessed when considering the site charactengtich can be obtained from the short-

term measurements of the target site in the forprabability parameters.

In another study performed in Austria, the authesed statistical simulation
methods to come up with profitability calculatiodmsed on wind speeds and
uncertainty [74]. They used the VR method [36] otwiain wind speed estimates and
then the Conditional Value at Risk (CVaR) as a nséasure for profit returns. The
originality of the method was based on the fact theasured wind speed distributions,
uncertainty and the CVaR measures were used sfgtgs$s assess the risks of wind

profitability for the first time.

Messac et al. [10] presented a new method whiahacterizes uncertainties in
the annual wind distribution predictions and modhksse uncertainties with respect to
overall wind farm performance and local wind powensity (WPD). They used a 10
year period for two sites; one onshore and onéhofts and developed two uncertainty
models; a parametric and a nonparametric one. fivegtigated the period of payback,
annual energy production (AEP) and cost of enef@®K) regarding the wind farm
performance and found that the WPD was 30% foroffghore site and 11 % for the
onshore site. It was found that wind speed andctime uncertainties are not
proportional to annual predictions of the same dants. Therefore they remarked that
it should be taken into a great account how theséitions occur from year to year but

also in the long term when it comes to designingrad farm.
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2.5.2 The example of the year 2010

In order to understand further the significance tlié good quality resource
assessment as mentioned in Chapter 1, there mesentative example of wind speed
measurements in 2010. The wind statistics that yedicated significantly low wind
speeds in comparison with the ones in previoussywaich caused a lot of insecurity in
general regarding the wind industry [1]. Investossnd farm developers and others
directly and indirectly affected in the wind indiyshave been concerned about the 2010

issue and have been seeking answers regardingnthétiiow in the future.

Regarding 2010 as a significant low wind year, salvguestions have arisen and
been of concern to many companies and investdfeiwind industry. These questions
are for example: should 2010 be included as aerber site historical data period in
order to predict wind resource? If yes, is therteead created from including 2010 in
the analysis and what kind of trend could occur&funder prediction) Is there bias?
What is the effect of using low or high wind speggdrs in a concurrent dataset? In a
similar situation but with the opposite wind affecte. extremely high wind which was
observed in 1993 further analysis that have beenedaout indicated that including
1993 in the datasets did in fact tend to over tedind resource.

Frih investigated this specific year and found thdid not fit the overall trend of
Scottish climate. However, he emphasized on thed nlee continuous research
regarding the climate indicators and wind obseovaticonnection [30]. In order to start
answering these significant questions some anatgsideen carried out with the use of
two different MCP methods, the WindFarm [70] line&gression and the matrix
method. The datasets were including 2010 as arluglyear from a total of a ten-year
historical period (2000-2010) and as a concurreatr yalongside other concurrent year
models such as 2008 and 2009.

Furthermore, the same analysis has been carrieceattiding 2010 from the
concurrent and historical data period so as torebsany significant results [75]. Figure

5 indicates a summary of this analysis, which shivesratio of the predicted mean
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wind speed over the actual wind speed for the twalygis methods against the

prediction period.

Machrihanish prediction from Salsburgh reference

1,1
1,08
1,06
1,04
1,02
1
0,98

eed

B WindFarm up to 2009
B WindFarm with 2010

Predicted wind speed /
Actual wind sp

= Matrix up to 2009
0,96 B Matrix with 2010
0,94
0,92

2008-2009 2009 2009-2010 2010
Concurrent Year(s)

Figure 5. MCP Results using WindFarm and Matrix method forchtéihanish target Salsburgh
reference for the historical period (2000-2010).

As it can be seen from Figure 5, when the ratiovofd speed exceeds 1 the
prediction periods which fall fully or partially #iin it can be interpreted as over
predicting the wind speed. On the other hand, f@mgle for the 2010 concurrent
dataset the matrix method for both long term modelm to under predict wind speed
since the wind speed ratio is below 1. The higbgst predictions can be observed for
2008-2009 and 2009 concurrent models with minoratians within all methods and
historical datasets. Hence from this dataset aisalifee question of whether the
inclusion or not of 2010 in the historical and coment data could under predict wind
speed cannot be clearly verified since in most gsoeat datasets the inclusion of 2010
in historical data but also in the 2009-2010 corenir model does not seem to under
predict wind speed. However, that seems to be &ise for the model including only
2010 as a concurrent dataset but not for both M@Ehoas. The general conclusions
that can be made from this example are that for20# concurrent model the linear
method seems to over predict but the matrix me#ie@ins to under predict irrespective

of the length of measurements. Thus, regressiomsée be less sensitive in terms of
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the inclusion or exclusion of 2010 for correlatibowever that is not the case for the

method itself.

2.6 Opportunity for improvement

The following remarks can be drawn regarding MCRhogs. An ‘easy’ site is
usually predicted by all methods quite well. Withfficult’ sites, one can sometimes
conclude that they are difficult to predict as elifint methods return different
prediction, and it is not clear which is the bestdiction. With other ‘difficult’ sites,
different models have given similar predictions thdse predictions were wrong. One
of the fundamental assumptions and therefore patdmhitations of MCP methods is
that they all assume the existence of a relatignsatween the two sites, reference and
target, and that this relationship does not chavge time.

One of the key limitations of analytical MCP metkad that they also specify the
relationship rigidly, hence it is restricted. Oretbther hand, matrix or distribution
methods predict only the distribution curve (whishalso often referred to as the
frequency table of wind speeds) [9]. By doing thhgé amount of information used to
specify the relationship is reduced, i.e., notpaksible information is utilised in the
prediction. Furthermore, some distribution methadsume explicitly a specific shape
of both distributions, such as the Weibull disttibn [12], which can also be a

limitation.

The main conclusion which can be made is that M@&Pnaethods which can be
used for wind resource assessment by wind farm loleees without being highly
complex expert systems. Furthermore, they coultuliber improved so as to become
more accurate, minimise bias and estimate thebikiaor precision of the prediction.
Factors such as the trends of the constant cliclz@ge which includes the climate
variability and oscillations on a multiple year @énscale are essential for the MCP
analysis to be identified [30]. The wind relatedadaould be treated as dynamical
systems so that cycles and random unusual behaviloatr often characterise them can

be identified, explained and understood. Thuggetmeould be a lot of benefit in having
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a common tool that is capable of identifying trenclémate cycles and true outliers.
Current industrial experience with available MCP tmoels is that there is no
consistently best prediction, and that a convergensicthe prediction from different

methods to a common answer is not necessarily aecsion to the correct answer

2.7 Reason for improvement

A study was conducted via a questionnaire named WAU(Wind Resource
Assessment Questionnaire) [76] for the first hdlf2010 which was addressed to
Europe based wind analysts in academia and industinya response from 72 people
from 48 different organisations. The conclusionawdr were that there is a need for
developing more remote sensing instruments for wirgsurements purposes but also
examine the used models for more complex terramusfar offshore wind purposes.
Furthermore, turbulence models should be takendaotount since they are related with
turbine wakes. Finally, the need of validation dndher development of the wind
resource assessment techniques is of vital impoetpi6].

A novel MCP technigue was developed which is based the statistical
methodology of Principal Component Analysis (PCRyis new PCA-MCP method is
designed to capture the relationship between tigetand reference site empirically
without enforcing common assumption such as litgan that relationship. This
method is also in the general framework of MCPhiait it assumes a fixed relationship
between the sites but does not specify the shaffeeatlationship. Instead, it allows for
a selection of empirical relationships to be coredior the prediction and selects the
best predictor for different weather types, wheséhbthe predictor and the appropriate
weather type, are identified through the PCA alponi PCA explores the
interrelationship of the reference and target sted is used rather than ‘assuming or
using’ a fixed relationship of time-delays; it maithe optimum relationship between the

two sites. This new method is based on the thebByoamical Systems and extracting

1s.Quinn, SgurrEnergy Ltd., pers.comm., 2014

35



the optimum signal using PCA. Chapter 3 will ilkagée all the theoretical background
behind this new MCP method.
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Chapter 3 Development of Principal Component Analysisasa
forecasting and MCP method

In this chapter the theory of Principal Componentlsis for optimising the time
series analysis of a dynamical system will be @rpld, and the extension of the method
for the purposes of this research, namely foreogsthd MCP, will be developed.

3.1 Dynamical systems

A dynamical systenms used to model physical phenomena whose state (o
instantaneous description) changes over time [IM@. system is described by fixed and
deterministic rules and, in order to describe thnses, the space where the system
evolves geometrically has to be defined. Their igppbns range, among others, from
financial and economic forecasting, environmentaldelling to medical diagnosis.
Their applications can be divided into three maategories: predictive, in which the
future states of the system are being predicteld thig use of past observations and the
system’s present states, diagnostic, where theisitm investigate what possible past
states (or observations) of the system might hadetd its present state and finally
applications where the aim is neither predict tteire nor explain the past but actually

explore the theory of a physical phenomenon outigerlying dynamics.

3.1.1 Phase space

The dynamical systemavolve differential equations that depend on posiand
momentum. A simple example of a dynamical systethadinear pendulum which can

be derived from the equation (Hooke’s law appl@dewtion’s second law)

F = —kx
F =ma = mi (8)
= —kx = mi

37



and can be re-arranged to the second differezqiadtion of the form

x+£x:0 9
m

that leads to the dynamical system of two coupieti-drder differential equations

V=X
Sk (10)
v+ —Xx=0
m
where v, x,a are the velocity, position and acceleration respelgt andk is the
constant factor characteristic of the spring. Asaih be seen from the relationships in

(5) their form is quite simple and they indicate tthange ofv, x given their current

condition. Thus the system can be described asndigistic since no random equations

exist i.e. the future changes ofx can be predetermined [78]. However taking into

consideration specific cases of dynamical systeinss often possible to observe
irregular behaviour in some of them, for examplethe Lorenz [79] attractor case.
Other important definitions regarding dynamicalteyss are: thghase spacavhich

describes the system’s variables, #teactor which defines the actual solution of the
system and finally theorbit which is the path that the system follows during it

evolution.

The principle in terms of a dynamical system ig¢ th@ dynamic evolution of the
system takes place on a time-invariant objectedalattractor’, after initial transients
have decayed. This attractor is a geometric obfethe phase space defined by the

dynamic variables of the dynamical system.

3.1.2 Time-delay method

A method is needed so as to define equivalent biasato the phase space ones
which is thetime-delaymethod [80]. It is a practical implementation bé tdynamical

systems since it aids in reconstructing the phpseesof a dynamical system from an
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observed deterministic time series. The reconstmicof a phase space is indeed
significant since it can extract useful informat@mout the time series that characterise
the system. Using previous measurements is equivélet not practical with data
containing noise or turbulence [81]. In complextegss, where the phase space is not
fully accessible from measurements, one can usengakmethod of delays [80]. The
phase-space equivalent variables can then be wootestr using Takens’ Method of
Delays [80], which postulates that the dynamic alalgs not directly measured have
influenced the evolution of the measured variabdesl are therefore somehow
represented by the previous measurements. Theaebyificient representation of the

state complete phase space at time is given by the delay vector
i) Y, (t—7), y5(t—27).....y; (t—M,7), where M,, is the number of time lags,

used, and the same can be done for further vasiabdasured, e.gy, ().

With a time series ofN, variables of lengthN,, the delay matrix will have

N =N, -M,z rows andM = N,M,, columns with

Yo DMy _ Y, (j+(@i-D7) (11)

with the row indexi =1,...,N, the column indexj =1,...,M , and the observable index,
Jo =1...,N, [81]. In this matrix, a rowm is equivalent to a complete phase-space

description of the system at tinfie as long as is sufficiently large. Taken’s method

of delays is therefore able to create a space alpni/to the phase space but this phase
space reconstruction cannot separate the impadtargmics from measurement noise

or turbulence.

3.2 Principal Component Analysis (PCA)

PCA is a non-parametric statistical method whi@n ®ptimize phase space
reconstruction [82]. By non-parametric it is assdrtiet it is a method not limited to be
of a certain distribution or linear relationshipcan identify the number of needed time-

delays and give a picture of their shape. It i© &sown as Empirical Orthogonal
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Function (EOF) Analysis in the Meteorological anade@nographic community to
identify the main circulation patterns in the atmlosre and oceans, e.g. [83, 84]. This
technique is now widely used for time series anslgéEnonlinear dynamical systems in
general, e.9.[80, 85] as the analysis is very phw&s separate coherent dynamics from
noise. PCA uses samples of data whereas EOF usesf spatial images and Singular
Systems Analysis (SSA) time series with a size ob4ervation which later extended to
more observations. All of them use the principlehef Singular Values Decomposition
(SVD). SVD is a mathematical matrix operation taeghe which is described by the
same theory as PCA but from a linear algebra pufintew whereas PCA comes from a

statistical point of view.

PCA’s goal is to explain important variability thfe time series data and to extract
useful information (i.e. hidden structures of tlaa] from its more relevant components
in a reduced number of dimensions. Applying PCAht® set of delay time series is a
method to redefine the phase space to concentratedherent information in a few
directions (or dimensions) of the phase space, lwthien allows to ‘delete’ the weaker

and uncorrelated dynamics from the descriptiornefdystem.

PCA’s advantage lies in the fact that it can safganoise from useful information
applied to time-delay series [80More specifically, PCA was devised to separate
coherent dynamical information from noisy experita¢aata, known also as SSA [86]
[87].

The mathematical procedure to carry out a PCA isuih SVD of the delay
matrix. In terms of the linear algebra of the SVMDis a transformation of the basis
vectors of the phase space which finds orthonorbaalis vector to maximise the
variance described by as few basis vectors aslgessihe three SVD/PCA outputs are
the singular vectorswhich are the basis vector for each dimensiony(dre also the
eigenvectors of the covariance matrix ), the singular valueswhich measure the
time-averaged contribution of each dimension tottital varianceand theprincipal
componentgpc’s) which form an attractor and describe thstey’'s time series. In

matrix notation, the Singular Value Decompositismritten as
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Y = PAS (12)

where Y(n,m) is thetime-delaymatrix with n=1,..,N the time point within time series
and m=1,..,M the index of the dimensiorP(n,m) is the principal component matrix,
A(n,m) is the diagonal matrix of singular values, astin,m) contains the singular

vectors.

The singular values represent a measure of then@e] more specifically the
square root of the variance of the time seriehédorresponding dimensions and they
can pick out the important variability of the daféhe singular values represent the

square root of the eigenvalues of the covarianceixn&, of Y in equation (12),

C =Y'Y = STA’S. If the training data set consists blgvariablesyjo(t), for example

wind speed and wind direction withl,= 2, coveringN, time steps, the first step is to

rescale them in such a manner that they both tanériequally to the analysis. This is
achieved by rescaling them both to time seriesenb 2znean and unit variance, i.e.,
subtracting the mean from each variable in turn thed dividing by the variance. The
singular vectors have the property of being orthorad, i.e. orthogonal and of unit
length and they span the dimensions of the phaseesg hey represent a measure of
those dimensions that define a dynamical systenminftance they can replace position
and momentum, two variables which can form a dyeamsystem. The singular
vectors,S are also the eigenvectors of the covariance matriin equation (12). The
principal components are the time series of théegysn the coordinate system defined
by the singular vectors. This means that plottimg principal components against each
other draws the orbit of the measurements and ligepeovides an estimate of the
underlying attractor. They represent a measurehofd dimensions that define a
dynamical system, for instance in the aforementiomeample of section 3.1.1 they can

replace position and momentum as variables.

When PCA is applied to the time-delay matrix, P@te the time series of the
coordinates of that trajectory in respect of thdsaensions. Using the example of
section 3.3.1 again, PC’s can replace the valugbeoposition and momentum at any
time. In more detail, this dynamical system’s goasi of the reconstructed phase space
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can be given at any time precisely by position armmentum however when PCA is
applied the PC’s take over this role. Since anreigkie matrix exists in PCA analysis,
it should be noted that both eigenvectors and R@Esnormalised i.e. scaled to the

amplitude of the dimensions used by PCA.

3.3 Application of PCA for time seriesanalysis

3.3.1 Single variable series

One of the first attempts to apply PCA for phasacspreconstruction to a clean
system was undertaken by Broomhead et al. [86]order to achieve that, the
application of SSA to time series generated by ipgssinusoidal signals through a
cubic non-linearity i.e. coming from nonlinear dymaal systems was used. The
number of degrees of freedom resulting from SSAbkstathe identification of the
dimension of the reduced subspace of the serigsr fiis in the same subspace, a more
extensive analysis was used in order to discovdenying patterns that contributed to
the motion. Thus, the use of this methodology flis tspecific time series was

successful since it enabled useful informatiorttier system to be extracted.

3.3.2 Multivariate variable series

As Broomhead et al. concluded [86] SSA offers dpgtential yet to be explored.
Thus, the next step in PCA/SSA analysis was deeeldgy Read [81] and was to apply
SSA in multivariate data series (M-SSA). He firstlyplied single variable SSA in data
from one probe obtained from the full set of expemtal time series of temperature
measurements with sixteen probes in total whicheweart of a rotating thermal
convection experiment. Furthermore, the SSA reswkse used to characterise the
different types of flow and their dimension cort&la. Then, he applied M-SSA to
multiple probes and found that it was able to imvprthe reconstructions of the signal,
in terms of noise ratio and uniformity of the att@’s structure in comparison with

previous methods. Thus, he concluded that the M-S$#riority lies in the fact that it
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can combine information simultaneously from all tsgdecross-correlation functions of

complex spatio-temporal structure signals.

The method of M-PCA has been used in other casesFruh [88] used spatially
extended times series for temperature measuregetdify the most important vortex
patterns in a rotating fluid experiment. He achdeteis by separating steady drifting
fluid patterns as the key mechanisms in the on$evadability. It succeeded in
extracting specific non-linear wave interactionadi@g to chaos and disordered flow,

e.g. velocity images.

3.3.3 PCA between two signals

Allen and Smith [89] used some simple stochastiusdidal system and applied
singular PCA. They used PCA on test series ancpedd analysis on noise data so
they created differed time series and correlatagendloreover, from the extraction of
noise they managed to obtain a confidence intef@®) which had the form of a
decaying spectrum containing eigenvalues. They dotlmat the eigenvalues that lay

outside the CI contained useful information.

Furthermore, in the second part of their experimérgy applied the same method
to real temperature climate data and to the eigeasautside the CI. They attempted
to refine the sign of difference and to look intan relation with noise. Finally, they
separated the random fluctuations originating ftbmsignal and performed PCA again

S0 as to compare maximum signal above the fluctosti

3.3.4 PCA for combined system

The aforementioned attempts that used PCA justifednportance as a method.
Additionally, it has had a wide range of applicasahat involve current big issues of
general significance. These applications inclugeahalysis of temperature time series
as used by Allen et al. [90] and the detection lobgl climatic changes as used by
Allen et al. [91]. Hardy and Walton [92] used P@# a one-year record of mean wind

velocities from 10 different locations. They founbdat the method can be used
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successfully for large datasets of wind velocityadand can extract the useful spatial

and temporal properties of the data.

Benestad [93] used common EOF’s for statistical mkm&ling purposes of future
climate scenarios. According to his research, thethod has the advantage of
minimizing the errors related to the downscalinggaedure hence this method is
recommended for downscaling purposes. In anotrszareh, Guillou and Dreverton
[94] generated daily time series for weather-dénes market purposes. PCA was used
in order to analyse daily average temperaturesaoh giear and it was found that the
interannual variance of the climate was capturedecty. In another research,
Martinez et al. [95] used EOF for generation ofgéascale atmospheric component
patterns using an NCEP-NCAR dataset for the ye2®8-P004 for the region of Gaspe
in Quebec, Canada. They concluded that the methallé when using large-scale data
to generate time series at a regional level andrate numerical atlases to an extent.
The success of the method according to the auttesrg the fact that it can summarise
statistical information to a few most dominant paits according to the variance
explained. Also the fact that it can construct tiseges regionally is very important for
the industries that base their research on daihe tseries of for example wind or

temperature.

Moreover, PCA has potential of further extensiont®fapplications since not only
can it be used to analyse one or multiple variallesne experiment but it can also be
applied to analyse different but coupled systemses& coupled systems could be
treated as one large system containing two sulemgsthat include the variables from
the first and the second system. With the use & RCa combined system some of the
main challenges of the MCP methods mentioned inige@.2 will be hopefully
overcome. More specifically, it will contribute tbe reduction of uncertainty due to
poor quality data but also to the reduction of lBa&e years such as 2010 might not

affect the analysis so as to result in under or pvediction of wind resource.

The following section depicts the rationale behencoupled system with the use of

a simple dynamical system which is in fact theiahiimplementation of the method and
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continues with analysis of real wind resource ditdact, it gives a first impression of

how well PCA can stand as an MCP tool.

3.4 Afirgtillustration of PCA on a dynamical system

In the example of a harmonic oscillator, the phgssce is defined by the position
and momentum of the oscillating object, and theiomobf it takes place on a limited
cycle. This cycle is the attractor, and the trdwvn by the oscillation, or its ‘orbit’,
would draw repeating copies of that cycle over aner. An illustration is shown below

using a simple oscillator.

3.4.1 Case A, fully quasi-periodic system (noiseless piema)

The first implementation of PCA was attempted tiova signal pendulum divided
into two cases, with or without noise. The pendulvas chosen since it is a case of a
simple dynamical coupled system and thus illusteatif the dynamical systems theory.
This example is an idealised case of the pendulbmsisting of two variables (signals)
X,y representing signal 1 and signal 2 respectivelichvbould represent the reference
and target site respectively. The two differentesasere selected in order to investigate
how the PCA was influenced by the existence orafiatoise. The phase space in the
pendulum’s case is defined by angular displacensm velocity i.e. the two
dimensions of the dynamical system. Performing R@Ahis example can characterise
x,y together as a linked system. More specificallythvihe application of PCA t&
and going back to the description of the combingstesn found, it can be identified

which y has the best fit to the linked system.

In more detail, the time interval of the pendulumisvement was set to be from
0.1 to 1000 seconds and several lags and windoss siere used as inputs so as to
examine the PCA results in both cases. The rangaloés that were examined for both

signals x, y for the lags were from 1 to 25 and for twendow lengthfrom 10 to 100.

Different values were also used for the noise temdg in equation (14) of case B
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ranging from 0.1 to 1. In case A when excludingsepthe pendulum inputs were of the

X = 35in(Lj
0.7

y =X+ O.4sin(Lj

T

form:

(13)

As it can be seen from Figure 6, the top right grapows the singular values that
result from the PCA analysis. Two large singulaluga followed by 2 more can be
observed here which means that they dominate imsteof their contribution as
dimensions to the total variance. It can also ken gbat the first two largest singular
values pick out the highest frequencies i.e. thestmmportant movement of the
pendulum and the next two the lower frequenciegshe&e more hidden patterns. The first

graph of the first row indicates the periodic moesmof y overtime and the two

different period movement which originates from th@® signals. Oscillations can also
be observed in the top and bottom ends of it. Tiedi® graph of the first row is a
picture of the time-delay phase portrait and itsudar shape represents the frequencies

of the pendulum with the thickness of the orbielindicating their modulation.

The first two graphs of the second row show timgudar vectors and both
contain the two signals at the same time. The eidat pattern that characterizes them

is due to the existence of the sine function initipait equations for both signalg y

and the singular vector 1 plot indicates a persawt curve. The first graph of the third
row depicts the PC’sPversus P and it is of torus shape. It summarises the whole
pendulum’s periodic movement and is an amplifiedsiom of the time delay matrix
graph described above. The last two graphs ofhilng tow which also depict the rest of
the PC’s versus each other are representing the panodic shape as the; Versus P
graph but illustrated from a different angle.
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Figure 6. MCP results for noiseless pendulum (case A) wighllawindow 35.

3.4.2 Case B, noisy oscillations

The next case in the pendulum example, case Bjdedl the term.6¢ as the white

noise and the inputs were of the following form:

X = 33in(L)
0.7

( (14)
y =X+ O.4sin(—) + 0.6¢

T

47



Figure 7 indicates the results from case B andhit lse observed that there are some
differences in comparison with the case A resdtsit can be seen, if the two singular
valuesplots are compared (top right graphs), in case @&eths a little gap in the
measurements in the first part of the flat line #md is due to the existence of noise in
the system. However, the two large singular valieefurther up from the rest in both
cases. This means that the highest frequencieBeopéndulum are being picked out
with or without the existence of noise. As it candeen in the top left graph of the time

series the movement of over time in case B appears to be less periodit ithaase A

which is due to the existence of noise. The timleydphase portrait in the middle of the
top row of case B due to noise again does notrréite clear circular shape like the one
of case A. On the other hand, the singular vectapltgs of the second row are of the
same shape in both cases A and B. However, the pl@'s as shown in the third row
do not have an identical shape as in case A. Sawadéning in the frequencies is
observed due to noise existence but the generabdoermovement can still be
observed.

A few initial conclusions could be drawn from thiist implementation of PCA. It
was found to be robust and useful method for tierées of multiple inputs since both
cases managed to extract the most significant taitpiucan be observed that even in
the presence of noise; PCA can pick out the mogibitant oscillation patterns by
looking at the second row of Figure 6 and Figumehich are identical. Moreover, the
main oscillations are indicated by the 2 dominasnggular values of the top right row
graphs of Figure 6 and Figure 8 and can reliabbpmstruct even in the presence of
noise the PC’s for example looking at\Rersus P of the bottom left row graphs which
are identical for both cases A and B. Thus, itlsartoncluded that noisy or ‘clean’ data
do not play a significant role in PCA. Since foveel trials of different time-delay and
gap of entries in the data for the pendulum exarti@eaesults were kept unchanged, it
can also be concluded that the choice of the tieleydength and gap of entries in the

matrix did not seem to play a significant rolete PCA results for this specific system.
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Figure 7. MCP results for noisy pendulum (case B) with lagvihdow 35.

3.5 PCA used for forecasting wind energy resource

Underlying all statistical and empirical approachesthe need to separate the
predictable component from the turbulent componentn effective and efficient
manner. For example, for mean daily or hourly wambed forecasts, i.e., short-term
horizons, the underlying atmospheric dynamics becofhgreat importance [96]. The
wind related data could be treated as dynamicaksys so that cycles and random
unusual behaviours that often characterise them lmandentified, explained and

understood. Based on this understanding, PCA wasoped to be used as a time series
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analysis technique based on the dynamical systdresryt for wind forecasting

purposes.

The challenge that arises from the previous chapier that if we have
measurements from only one site, can we use similalysis concepts to identify the
state of a combined system on the phase space;?dais we then predict for the second
site, for which we have half the information we deé/ore precisely, the question that
arises is by taking the defined points of the caraditwo sites system and adding the
new measurements can we project them to the existimactor and predict from the

nearby points?

The creation of this system based on a trainingpketind data defines the model
for the forecasting. New measurements can then bpped onto the cleaned-up
attractor to find previous measurements which grelynamical terms, similar to the
current measurements. Finding one or more ‘simif@evious measurements, then
allows us to the evolution of those measurementeqag/alent to predicting the current
measurements. In addition to a prediction, howetres, method predicts a number of
similar events and following how their distancesmule over the lead time of the
prediction also provides a measure of how sensitieesystem is to uncertainties in
measurements or out-of-system perturbations. Hemcpgrovides a measure of the

uncertainty of the prediction at the same time.

This section contains background information regyghase space reconstruction
as well as PCA and explains in detail how they Wi used for the forecasting
purposes. The extended results of this sectionfalibw in Chapter 4. The stages for
the training of the predictor are preparation @& ffhase space using the training set of
data (e.g., wind speed and direction), PCA of thasp space to optimise the phase
space and truncation of the phase space to theargleomponents only to define the

predictor.

The application of the predictor goes through theparation of the test data to the
same specifications as the training set, mappiegd@hkt data onto the truncated phase

space, finding an ensemble of nearest neighboutbeoattractor as defined by the test
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data, tracing the evolution of that ensemble f@ lad period of the prediction, and
finally re-transforming the ensemble of predictionso the original variables (e.g.,
wind speed and direction). A summary of the PCdasting algorithm is presented in

Table 2, and the remainder of this section willaliée each of these steps in turn.

Training:
1) Normalise wind speed measurements (yio—2,)
Yi =O_—j0
2) Create time-delay matrix; equatiqal) VoM, =yj0( j +(i _])T)
3) Perform PCA to optimise; equatiofi2) Y = PAS

4) Truncate to the relevant components to define Y =PA S
predictor; equation(15)

For ecasting:

5) Normalise new measurements using Trairing (yJ —ﬂjo)
normalisation Yin =

O'J.0

6) Create time-delay matrix using same parameters (y;O - #,-o)

as for training Yio B
jo

7) Map time-delay matrix onto attractor coordinates; P=YSA
equation (17) non

8) Find number of similar events in training period 1 L oiia
and follow evolution of past events i.e. nearest d :n_zj R R ‘

X

neighbours; equatioiil8)

9) Find distance vector due to n. neighbours; p _ p* _pmx
equation (19) ot "

10) Use ensemble prediction based on n. neighbours; pi(T)= PY'T L D
equation (20) f ‘ J

11) Map back to delay matrix and return predicted Yi—PAS
wind speed; equatioii21) f P

12) Re-scale back to proper units Y, =Y, 00+

Table 2. The PCA forecasting algorithm.
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3.5.1 The Forecasting Model

The singular values are a key measure on whichddiermination of the best
predictor is based, since our initial assumptiors Weat the wind conditions several
hours ahead is better predicted by the slower gthe& dynamics than the short-time
fluctuations. The PCA has separated the coherslowvér) dynamics from the
temporally uncorrelated short-term fluctuationsshsthat uncorrelated fluctuations are
visible as a noise floor in the singular value $peun. Persistent variance from the
atmospheric dynamics is concentrated in the leadingular values of much higher
magnitude. For that reason, the phase space carb@druncated to a much smaller

dimension than the original delay matrix.

By creating a reduced set of principal componentg,*+« singular values":

and singular vectors;" " , one can produce a filtered time series of thgimal data by

Y =FAS (15)

There, the filtered time series of the first obséte,y,, is contained in the first column
of v,, the filtered time series of the second observamleolumn M, +1, and so on.
However, due to the method of delays, those coluomhscover the time steps 1Ko
N; —M,, and one has to append the bottom row to the enldadfvariable, i.e., time
step N; —M,, +1 of the first variable is at the end of column 2vj{N,2) and the last

time step inY, (N,M ) :

Yio(t1, t, o, tyg) = {Ye(1 .. N, 1 + (jo — DM,,), e (N, {2 .. M, } + (jo — DMy)}  (16)

The forecasting model therefore consists of thacated dynamical systemna ,s

and the principle is to interpolate the current sueaments to ‘close’ examples of the

filtered training data, where ‘close’ is in terwfsdynamic behaviour rather than time.
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3.5.2 Preparing new data for the forecasting model

It is possible to project a new time series onie thduced set of singular vectors
by creating a delay matrix following the same prhoe as for the training set,

including using the mean and standard deviatiom ftiwe training data set to rescale the

new data. This projection will then give princigaimponentst,  to place the new data

in this phase space as

P =Y,S'A (17)

To generate a single point in this phase spacenghetime series must contaM , ¢
measurements. Conversely, if the new time serietagtes M,z + N, —1 points, its time
delay matrix containsn, columns for that observable and its projection otite

singular vectors results in a section of orbit egmihg N, points.

3.5.3 Finding nearest neighbours

Ensemble forecasting in dynamical forecasting makesgeral forecasts, each
initialised with a slightly different initial contion but within the measurement accuracy
of the initial point to predict a large sample afspible future outcomes. The results are
then evaluated by examining the distribution acrabsensemble members of the
forecast variables. A useful feature of ensembtedasting is that it also provides an
estimation of the reliability of the forecast. Tidea is that when the different ensemble
members differ widely, the actual event we try doetast could shadow any of the
modelled ensemble members. This then means tbdbthcast is affected by a large
uncertainty; when there is a closer agreement l@twiee ensemble member forecasts,
the uncertainty in the prediction is lower [96].iF principle can also be applied to PCA
forecasting where the attractor represents the mhidev, current measurements can be
mapped onto the attractor and previously observed wtates close to the current
measurements can be found. They can then be takean ensemble of initial

conditions close to the current state and thusised for prediction.
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The two key stages in the forecasting part of thethad are, firstly, to find a
number of ‘similar’ events in the training perioghich is done by finding a chosen
number of nearest neighbours in the attractor aedondly, to follow the evolution of
those past similar events. From that evolution ocae calculate an expected mean
evolution which is the prediction, and one can alslculate by how much the evolution
of the ensemble of similar past events either staj@se (giving confidence in the mean
forecast) or diverged over the forecasting horizomdicating that the currently
measured wind comes from a part of the attractoichviis unstable and not well

predictable).

The nearest neighbours are found by calculatindetietidean distance between the

new point, or the mean distance of each point efstction of orbit, to all other points

or sections of the training attractor; for a singtent: d, =

P,—P""*| or for a section of

orbit with n, points

di :_Zj

P/ -R"7 (18)

From this complete set of distances to all poiritdhe training attractor, a specified
number of nearest neighbours is selected, suljegtdonstraint that they do not come
from adjacent points on the training orbit but fraifferent passes of the orbit through
the neighbourhood. This can either be done byrgpdill distances and rejecting those
which come from adjacent points of the trainingdtiseries, or by stepping through all
distances, and skipping a set number of time paafiisr having identified a local

minimum of the distances. If entrly of the training principal components has been
identified as one of the nearest neighbours, them éntry k =k +n_—1lis the

neighbour to the latest measurement.

The number of nearest neighbouys,to use for the forecasting depends on the

dimension of the reduced system and how denselyphiase space is covered by the
training attractor. If too few neighbours are chgsthe ensemble prediction might not

capture the divergence or convergence of the &ttrand hence may not give a good
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estimate of the forecasting error. If too many hbmurs are chosen, the nearest
neighbours may not be that near and no longer geod representation of the local

dynamics, hence introducing errors into the foreogs

3.5.4 Predicting using nearest neighbours

Once the nearest neighbours have been identifeexh ean be moved forward in
time by the lead time or forecasting horizon wisiénpling all intervening time steps.
A key assumption in the implicit forecasting hesethat the current point will evolve

alongside the identified nearest neighbours froentthining data. This means that the
relative position of the point from the trainingrattor at timek =k +n, —1+T will

have a similar position relative to that of therent measurement predicted a lead time

T ahead. If the current distance vector to neargghbourj is

ki Ny
D =P" -P, (19)

then the prediction based on this nearest neighisour

P/(T)=R"" +D, (20)

The ensemble ofP/(T),j =1..n, is then the ensemble predictiach member of the

ensemble is mapped back onto the delay matrix dpacsing
ij =P AS (21)

Each of theY, returns the predicted wind speeds for the riexime steps as the

entrieut)(+1..T)=Y/(N-T +1..N,M,) . This ensemble of predicted wind speeds can

then be used to calculate the expected velocitheis average, and an estimate of the

uncertainty based on the standard deviation

o, (t)=(u (1)), (22)
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Likewise, if wind direction is used as a secondengble, this can be reconstructed by
0,(+1..T) =Y(N- T +1..N,..,2M,) (23)
3.6 PCA used asa Measure-Correlate-Predict methodology

In this section, the background of the usage of RE€A MCP methodology, which
is the main focus of this research will be expldin€igure 8 is depicting a first
illustration of the PCA-MCP method as a structurenatrix formalism.
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Figure 8. The PCA-MCP schematic.
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3.6.1 Mapping from part knowledge onto full attractor farediction of MCP: the
underlying idea.

The challenge that arises from Figure 8 stage 3h& if we have wind
measurements from only one site, can we use similalysis concepts to identify the
state of the combined system on the phase spacg®, tfan we then predict for the
second site for which we have only half informatiavailable?More precisely, the
question that arises is by taking the defined goiritthe combined two sites system and
adding the new measurements, can we project thehetexisting attractor and predict
from the nearby points? The experience from previasults all shown in Chapter 4
actually tells us that points under a specificestatthe phase space have moved to the
next state. Thus, in practice, with the use of ta¢areference site and the knowledge of
their current and next position in the phase spteechallenge is whether we can do

the same for the target site.

In practice, following equation (12) in order tohéeve the MCP principle, we

perform PCA to the original wind data and then tate to the relevant components
with the singular values and vectors becomingS, where t here is denoting the

truncation and will be used throughout, which i tadjustment ofr used as the
truncation notation in the PCA forecasting prineipf the previous section, section 3.5.
The notation of section 3.5 was followed directlgrh the published paper. Then, the

prediction of the wind speeds using that truncationld be of the form:
Y, =PAS (24)

where Yp,Pp are the predicted time-delay matrix and principadmponents

respectively However, as a continuance of the ppiacdescribed in the previous
paragraph, we use the reference site data onlgettiqt from, since they are the known

information and thus equation (12) becomes

Y, =PAS @5)
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where Y, , S are the reference site time-delay matrix and samguéctors respectively

l.e. of half size since they do not contain th@eéarsite data. As it can be seen from

equation (25), which is diagonal is used instead &f. since as long as there are more

time-delays than truncations i.e.>twhere r=%*MW* i,, then A, will be used.

Solving for the PC'’s to get the predicted orgsfrom equation (25) we obtain

but the predicted wind speeds are of interest antdr we need to go back again to
equation (24) and transform it by substitutifigirom equation (26) into the following

relationship

Yo = PoAtS

(27)
Yp = Yr SrT S

which can then be normalised back to actual wireskdp.

3.6.2 Predictor calibration

This is the underlying MCP idea, to predict the dvspeeds of the reference and
target sites using only the reference site datatiamdtated singular values and singular
vectors by performing PCA once. While testing tliea during development of the
technique, the issue which occurred was that apglyne operations to the historical
reference data only consistently resulted in ptedicwith far too small a variance
compared to that expected. The reason for thisoeaiound in the fact that the correct
variance is maintained if each complete principainponent is multiplied with its
corresponding singular value and singular vectdnis Tworks for each principal
component — singular vector pair individually ase tkingular vectors form an
orthonormal basis. However, only using partialnpipal components and singular
vectors, as in equation (26), do not preservevidrgance. Hence, even though the

method is applied to reference historical dataedds to be calibrated with respect to the
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known data which is the training period i.e. thenaarent reference data. Several
calibration methods were explored, all based oniecafly matching the predictions of
applying equation (27) to the reference data @magn the training period to the actual
reference and target data for the training peridtey are presented in section 5.4 but
only the final method, proposed as the most rediaéthod found so far, is introduced

here.

Going back to equation (265)p iIs now transformed int(PC which are the PC'’s

used for the calibration and it becomes of the form
Pe = YpSy At (28)

where Y, is the half from the original concurrent time-delmatrix and SrT is the

reference only singular vectors. Sin€eis the same size a¥, (i.e. half) this is the

rationale behind its use in equation (28). Thusiaéiqn (27) after substitutirfg from

equation (28) will become

Yc = I:)c/\tst

. (29)
Yo=Yns' S

i.e. the PCA predictors of the concurrent wind sised, .

Next step was to normalise the calibrated resudtklio actual wind speeds and
calculate the calibrated mean and standard demigtioo, of the Y, matrix. Hence, the

resulting prediction hag{.,0 . but we know that it should hays o . The rescaling

thus method was of the form
Mo
ﬂp:ﬂ[—jz— -
He
and
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(o3 0'2
o, :(;H:_ o

where £,,0, are the mean and standard deviation of the pestiidata, calculated as

the ratio of the original mean and standard demiatiz, o of Y over the calibrated

mean and standard deviatigp, o, of Ycrespectively. This rescaling method was

selected for the PCA-MCP procedure because it gallegariables i.e. wind speed and
wind direction from both reference and target ségsal rating so that the skewness

towards one variable can be avoided.

Finally, going back to equation (27§, = Y. S, S, we can normalise the results
back to actual wind speeds usi#g 0, as found from equations (30) and (31). Thus

Yp now contains the predicted reference and target dad Y, the reference actual

data.

3.6.3 The PCA- MCP algorithm

Table 3 presents the steps taken in the developaig¢he PCA-MCP algorithm as
described also in Figure 8.
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M easure:

1) Normalisation of measurements |of

wind speed and direction so that all measureme

nts

are given equal weight (no bias of any instrument
dominating the signals). Here the number | of

channelsj, , are 2 or 4 depending if only wind spee
or wind speed and wind direction are used.

d

(y}ko _/”10)

Oio

jo

Corrdate:

2) Creation of time-delay matrixXThis is
the fundamental step to move from dir
measurements to the phase-space description

pCt

vt My _ yjo(j +(i —])T)

3) Perform PCA to optimise the attractor

(= predictor). This finds the best combination
measurements into patterns with the high
contribution to the signal and least noise. Thelltexf
the optimisation is then the phase space desarnipfic
the relationship between the two sjteguation (12)

of
1est

Y = PAS

4) Choice of appropriate truncatiomhis
determines how many patterns are thought to cor
the important signal. A truncation too small ige®
useful information, while a truncation too hi
includes too much noise; equati@24)

ntain
r
gh

use truncation choice

t

5) Truncation of the PCA output to tk
relevant components to define predicinis with the
use of the appropriate PCA results determined én
steps 3 and 4 above helps in finding the predistion

e

th

t? t

6) Using the reference only data and

truncation equatiorn(12) becomes; equatio(e5s)

Yo =RAS

Calibrate:

7) The reference historical data need
be calibrated with respect to the known data wisc
the training period i.e. the concurrent referenatag
equation(28)

to

P=Y,S A

8) The calibrated time-delay matrix is
the following form; equation(29)

Y. =PAS
Yc :YhSrTSt
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truncation deletes (unwanted) information, variaisce @ #, =~ 0, =
lost from the system. This requires the originalam

and standard deviatioh=Y,.0 and the calibrated

onest., 0 ; equation(30) and equatioii31)

9) Rescaling of the predictor. SinceNLtEe 1’ o2

Predict:

10) Normalisation of the historical data set (Y:o _ ﬂjo)
from the reference site. This must use the sanseoff Yio =
and scaling applied in steps 4 and 5 above to ensur
that the historical data set is compatible with B(@A
attractor created from the concurrent data.

11) Creation of time-delay matrix using Yi,Hj(rJ)Mw_ ( (i _]))
same parameters as for training, this creates e-tim r = Yol 7
delay matrix using the new normalised measurements

which will become the new wind speed predictions

12) Projection of the time-delay matr|x P =YS'A®
onto the predictor gives prediction in phase space; P
equation (26) and equation27) Y, =P,AS

Y, =Y, S'S,

13) Mapping of the prediction in phase ;

the predi Y, =Yy Oiap +i4
space back to delay matrix in physical space metur R

predicted wind speed

Table 3. The PCA- MCP algorithm.

The way PCA is used as an MCP method is quite @intd the forecasting
methodology described in the previous chapter. Hewehere are some differences in
some steps of the procedure since for the MCP e@sealo not need to use from past
events the nearest neighbours in order to predecivind resource for a day ahead. In
this case, we use PCA for our reference site tm taad truncate to the relevant
components and then by having only half the infdromamatrix, we predict for both
reference and target sites. We calibrate aroundhden and standard deviation ratios in
order to recover all the lost variance caused lByRICA analysis and finally rescale
back to actual wind speeds. Furthermore, this &dsb enables us to examine the

performance of our predictions when comparing wté actual wind data from both
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sites. Hence, the PCA- MCP tool not only gives yseaiction of the wind resource of

a site but also measures the reliability of thedetion.
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Chapter 4 PCA asawind forecasting method

This chapter is describing the attempt of using P&3Aa forecasting wind speed
method. It was undertaken as a preliminary stephigrresearch’s purposes aside from
the PCA-MCP principle which is investigated in tlolapters to follow. The
methodology for this PCA application is described detail in section 3.5. This
application of PCA was also published in the jourmiaRenewable Energy, Elsevier
[97].

4.1 Literaturereview in forecasting methods

The wind variability can be characterised by slowles (daily and longer), fast
(unpredictable) turbulence, and synoptic weath@ngks which tend to changes only
slowly, the forecasting horizon can be divided ithe three following categories: 1:
immediate-short-term (up to 8 hours ahead), 2:tdgleom (8 to 24 hours ahead), and 3:
long-term (multiple-days-ahead) forecasting [98{1@0is more common to use hourly
forecasts of winds for dispatching decisions andsftheduling the loads strategy it is
common to use daily forecasts of hourly winds. Raintenance purposes, weekly

forecast of day-to-day winds are more commonly y$éd].

Several forecast models have been created whiclheaategorised into physical,
such as the Numerical Weather Prediction systen8R®) [98], statistical, including
linear methods such as Auto Regressive Moving Ayeraodels (ARMA) or methods
coming from artificial intelligence and machinenaiag fields such as Artificial Neural
Networks (ANNSs) or even by hybrid approach methadsch are a combination of
statistical and physical methods with a use of heraforecasts and analysis of time
series [99]. Erdem and Shi [102] used four ARMA ragghes in order to obtain wind
speed and direction forecasts and found that theMARmodel based on the
decomposition of wind speed into lateral and lamgjital components was better in
predicting direction in comparison to the tradisdbARMA model. However, that was
the opposite case for wind speed. De Giorgi et[H)3] used ARMA models in

combination with different types of ANNs and Adasti Neuro-Fuzzy Inference
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Systems (ANFIS) for several testing period modeisdiso time horizons. For all the
attempts it was found that the forecast was worseth@ prediction length was

increasing.

An integration of ANNs with NWPs for forecastingrposes was undertaken again
by De Giorgi et al. [104]The neural network was initially based on the statimodel
of wind power time series and was later integrateth NWPs which indicated a
significant improvement on the performance. Speaily, pressure and temperature as
NWP parameters seemed to improve the forecastindeindrih[105] explored a
simple a linear predictor and based on the obsemesmh daily cycle model with wind
speed or power output data as inputs and notedirthetased sophistication in the

forecasting methods surprisingly seemed to deteahe predictive ability.

Hybrid approaches typically employ an ARIMA (Autgressive Integrated
Moving Average) model for the linear characterstand an ANN or SVM (Support
Vector Machine) model for the nonlinear charactass Wang et al. [100] found that
depending on forecasting horizon, hybrid method8aRMA method perform better in
forecasting than the ANN and SVM methods. They atsucluded that hybrid methods
add significantly in the short-term forecasting ralidg for wind speed and power

generation, but in general, they do not outperftrenother methods [106].

4.2 Data and methodology

4.2.1 Dataset

The data used for this analysis originated from @ogarbank surface station in
Edinburgh provided through the UK Met. Office — MAB Land Surface Station record
[75]. The site used an anemometer 10m high abowengrand the data records used
spanned from 1998-2010 with hourly mean wind regslinith the wind speed stored to
the nearest knot (1 kn=0.5144 m/s) and the windctiovn in degree to the nearest 10°.
Details of the dataset used are shown in TablentiOFigure 31of section 6.3. For this
analysis purposes wind speed and wind direction degre used with the wind speed

converted to m/s. An illustration of the data, tlee wind speed is shown in Figure 9 for
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the 2-year period covering 2008 and 2009. The dataused as the training data set
were then used for testing the method. A sectiomfthe test period was used to apply
the prediction model, and the predictions for tdeh®urs following that section were

then compared against the actual data for the 2dbgfollowing that section.

o
N

u (m/s)

I
0 5000 10000 15000

time (h)
Figure 9. Wind speed time series for Gogarbank 2008 and 2009.

4.2.2 Analysis setup

From the available records, two 2-year records whsen as the training period,
either the years 2008 — 2009 or 2000 — 2001. Fexamples discussed in section 4.3,
the time lag chosen to create the delay matrix @psl to the sampling period of the
data, 7 =1h, but a range of delay window lengthk, , ranging from 1 day (i.e., 24
readings) to 2 weeks (336 readings). The referease for the discussion in the results
section is the window length of 1 day for the tnagnperiod 2008-2009 but two days
for the training period 2000-2001, as indicated @able 2 which also summarises the
other parameter chosen for testing the method. teocase of a 2-year training period
(17520 hours), a 2-week window (336 hours) of wapeed and direction, the delay
matrix will have 672 columns and 16848 rows, legdm a principal component matrix
of the same dimension, 672 singular values, and $@@ular vectors of length 672

each.

67



Because wind direction is a circular variable, ertker has to be aware that there is
an apparent discontinuity between 360° and 0° amsfiorm the wind speed and wind

direction variables into a pair of horizontal vetgccomponents,u = using and

V,=uco®. In the present case, we used the directiondieeat input. As there were

virtually no cases of the direction jumping acrtdss 0°/360° boundary, it was decided
that no error was introduced. However, for locatiomth a wider spread of wind
directions, it is recommended that the data shdaddtransformed to the velocity

components.

Of the singular values (lambda), of which the fB6tare shown in Figure 10, only
a few have high values which drop off rapidly ahdrt settle to a plateau from theé"20
on. From this figure it is clear that at least liading four dimensions must be retained
in the model but that including more than 20 woaldd increasingly noise to the

predictions. For that reason, a truncatiorMgf= 5 to 35 was explored.

100 200 300 400 500 600 700
|

0
l

index

Figure 10. The first 90 singular values for the PCA of 200®2@raining set with window
length (M ) of 2 weeks.
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The first three singular vectors (svecl,1],svechBfl svecl,3] respectively) for the

PCA applied to the 2008—2009 data usig, =48h are shown in Figure 11. Since the

input data are the wind speed and the wind direcgach singular vector contains two
distinct sections, where the first 48 entries cgpond to the temporal evolution of the
wind speed attributed to that singular vector dredntries 49 to 96 correspond to the
wind direction. Figure 11a and Figure 11b show thatfirst two singular vectors are
associated with a slow modulation of the weathdrilenvthe third singular vector in
Figure 11c and the fourth singular vector (not shpeorrespond to a daily cycle. The
phase space diagram drawn by the first two prin@peponents (Pand B), shown in
Figure 12, shows an attractor with a clear stréctassociated with the prevailing

weather conditions in Scotland, and the transitietween them.
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Figure 11. First three singular vectors of the 2008-209@9, =48h model in Fig. 10(a), 10(b),

10(c). The line between index 48 and 49 separaitas speed on left from the wind direction
on the right.
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PCA phase portrait
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Figure 12. Phase portrait constructed from the first two gpatcomponents, P, for the
2008-2009M , =48h model.

Finally, the parameters for the forecasting compbmneere the length of the orbit
section to be projected onto the attractor andntimaber of nearest neighbours which
had to be chosen. For the orbit length a range tof 3 was chosen which means that,
for a window length of, for example 48 hours, atisec of 48h, 49h, or 50h,
respectively was chosen from the test data to er@atelay matrix consisting of 1, 2 or
3 rows, correspondingly. The number of nearesthimgrs explored in the analysis
ranged from 2 to 10, as summarised in Table 4.réfe¥ence case was fixed based on
the optimal results as shown in Figure 19 to Fidire
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M, M, n, n, | Forecast | Forecasting horizon
Reference | 1 day 16 1 5 2010 24h
case
values
Range 1day-2 | 5-35 1-3 | 2-10 1999- 1-24h
weeks 2007

Table 4. Summary of data used for training and forecastiith parameter settings used for
2008-2009.

With the model defined by thwe, singular vectors and the past data describing the
observed dynamics through theé, principal components, the new measurements for

the forecasting were transformed using the samenpeters and then projected onto the
observed dynamics. This is illustrated in Figurendfere the attractor from the training
data is the grey object. The blue circle is a gn@int in the phase space created by a

time series section of the window length . In this example,n = 5 i.e. the five

nearest neighbours on the orbit of the training @ae, in order of proximity, identified
by the red numbers in Figure 13. These five neamegjhbours can then be traced
forward in time over the forecasting horizon, whistshown by the red curves evolving
from the numbered positions. Each of these can ligere-transformed to wind speed
and direction to produce the ensemble forecast.finaéresult is then a forecast of the
predicted mean wind speed and the uncertaintyangtediction for all lead times from

one hour ahead to the specified forecasting hori2zérhours in our analysis.
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Figure 13. New data mapped onto training set for the 2008-20109=48h model. The blue

circle is the new ‘current’ observation, and theefred numbers are the nearest neighbours
which were then found to evolve for the specifietetasting horizon as shown by the red lines.

4.3 Performance evaluation

To evaluate the performance of the predictions, ghedictions are compared
against the actual values from the test data, udhng three main measures
recommended by Madsen et al. [107] albeit for wepéed rather than power output.
They are all based on the prediction calculatedthas difference between actual
observation,u, at timet+ T from the test set and the wind speed predictedHat

time based on the observation at titné ,as

e(t+T|)=ut+T)— G(t+TIt) (32)
These three measures are the bias
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N
BIAS(T) = () = &) = £ e(t+T |V (33)
t=1

the mean absolute error (MAE), frequently usedaliterature, e.g. [104]

N
MAE(T) = Te(D)] = £ ) le(t+ T O] (34)
t=1

and the root mean squared error (RMSE)

N
RMSE(T) = %Z(e(t +T|D))? (35)
t=1

These errors for the predictions using the PCAdaséng were then benchmarked
against the frequently used persistenge;, (t+T | t) =u(t). This benchmarking is
quantified by an improvement measure as defined][16.g., for the BIAS (and
likewise for MAE and RMSE) as

BIAS,;(T) — BIAS(T)
BIAS,¢(T)

IInpref,BlAS (T) = (36)

Since the PCA forecasting intrinsically returns @kdicted time steps at the sampling

interval until the prediction horizon or lead tirfie, we also use average of p(T) over

T=1...,T__ . The sensitivity of the PCA forecasting method iftedent choices of the

parameters is here described in terms of the dvengirovement of the MAE over

persistence:

Tmax

Z Imp,, mae(T) (37)
=1

1
Pl =

Tm ax

where the maximum lead time in our case is 24 hours
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44 Results

4.4.1 Forecasts of wind speed and uncertainty

The uncertainty of the actual and forecasted wpekd was examined in Figure 14.
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Figure 14. Comparison of actual wind speed (red line), foreahgvind speed (open black
circles) and uncertainty of wind speed (dashed lmes). Fig. 13 (a) is a ‘bad’ prediction
example whereas Fig.13 (b) is a ‘good’example.

Figure 14 illustrates a comparison of the ensenfifecast representing all 24
hours of lead time for two of the 100 predictionada for this analysis. As outlined in
section 4.2.2, the predictions made in the phaaeespere re-transformed to real wind

speed and direction. From the ensemble npf 5 forecasts, the prediction was

calculated from the mean of the ensemble (openkbtacles) and the prediction
uncertainty was also found with the use of the ddaah deviation (dashed blue lines).

Hence the comparison to the actual wind eventsmade (red lines).

As both examples in Figure 14 show, the predict@ttvgpeeds form a strongly
smoothed curve compared to the actual winds, a®@® has successfully separated
the slow atmospheric dynamics from the unpredietdbtal turbulence. For a very

good prediction at all lead times from one houraah® the forecasting horizon, the
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actual with the predicted wind speeds are closétyned, while for an acceptable
prediction, the actual wind speed should lie witthie band specified by the uncertainty
of the prediction. Conversely, wind speeds outside band would have been poorly

predicted.

Figure 14(a) is an example where the forecastasively poor at times due to very
large hourly variations in the wind speed. The pmtsoh does not capture the
substantial increase in the first 8 hours of thedast to a degree where the actual wind
speed is well above the predicted uncertainty b&ndonsequence of this is that the
actual wind speed is outside the expected rangeatedl by the dashed blue lines.
Finally, the prediction toward the end of the honzs for the wind to increase while
the actual wind speed decreases. Figure 14(b)casa where the prediction is good:
the decrease of the wind speed over the first Ishs predicted as is the increase
beyond. Furthermore, the model predicts a higheerainty for lead times between 10
and 20 hours after which the predicted uncertasotygests a return of predictability for
the day-ahead forecast. This is exactly borne guthie actual observations which
follow the predicted mean very well but shows assent error within the 10h to 18h

lead time.

4.4.2 Forecasting quality

To quantify the performance of this model we usedhe first measure the mean
absolute error, MAE, as defined in equation (3¢pberaging the absolute forecasting
error at a lead timg ahead for a large sampl&l (=200) of forecasts. The reason for
concentrating on this measure is that it givesractlicomparison of the error with the
predicted uncertainty. If the MAE is less than timeertainty, the prediction is as good
as it can be (and is known to be) but if the MABErsch larger than the predicted
uncertainty, the model does not work for that datia

Figure 15 shows thevag(T) as the solid red line against the lead time f@& th
reference case of Table 4, i.e. the case of a X-weéning window M = 336h, a

model predictor dimension d¥l, =16 matching a point on the attractgr= 1, and using
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n,= 5 nearest neighbours where the predictor waseapf 200 samples from the year

2010. The open black circles are the average ofitivertainties predicted for that lead
time and the dotted line is the standard deviatibthese predicted uncertainties. As
the figure shows, the actual MAE is very closeh® predicted uncertainty at short lead
time, at lead times approaching the 24h predidtimmzon. The model performs slightly
worse than predicted from its own internal dynandtdead times between 8 and 20
hours but still within the range of calculated peédns. The model-internal

performance check is also compared against parsest@dhe mean absolute error for
persistenceMAEp(T) is shown as the green dash-dotted line. The katurfes of the

error of persistence compared to that of the PCAlehas that persistence is much
better than PCA at short lead times up to 6 houtdhat PCA outperforms persistence
at longer lead times. The fact that persistenadten the best predictor for short lead
times was also supported by Madsen et al. [L07]candbe explained through the short-
term fluctuations affecting the local wind at thésees more than any slow synoptic
weather changes. Based on this, we propose a medimeof the PCA-predictor by

merging it with a persistence-based correctiorhattdead times.

4.4.3 Combining persistence and PCA

After performing this comparison and applying sevanputs for the different
parameters used by PCA, it was concluded thatdbpective strengths of persistence
and PCA could be exploited in a combined forecgsapplying a filter to the PCA
prediction [99]. This filter constructs a weightaderage of the persistence prediction
and the PCA prediction for a filter length long agb to cover the range where
persistence outperforms PCA prediction. Over thigerflength, the weights of the
averaged change linearly from 1 for persistence @ridr PCA at the ‘current’ time
(lead time = 0Oh) to the other extreme of O for esice and 1 for PCA at the end of the
filter length. The filter is of the form:

i i
1——|ug+—1u i ori=0..N

uPCA’i fori > Nf
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wherei is the lead time,N; the filter length,u,., the ensemble forecast angl the

current wind speed. By trial and error, a gooefilength was found to be between 10h

and 15h, with little change of the results in traatge.

The effect of applying such a correction on théqgrerance of the predictor is shown in

Figure 16, where it is clear that the very shamt@rediction, up to a lead time of 6h is

now as good as for persistence and that the predlifcir longer lead times is dominated

by the ability of PCA to extract the slower atmospb dynamics. The reason behind

the dip at a lead time of 5h as seen in Figure d6bbth, PCA and persistence, is

unclear. However, a speculation could be madethiatreflects the gap in the typical

wind speed power spectrum at the period of a fewd$[i08].
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Figure 16. Comparison of annual mean forecasting
error and uncertainty (filtered data) for the
reference case.

Figure 15. Comparison of annual mean forecasting
error and uncertainty (unfiltered data) for the
reference case.

444 4.4 .4. Other error measures

Following the recommendations of Madsen et al. [1hé alternative error
measures of Bias (33) and RMSE (35) were caledlahd are shown in Figure 17 and
Figure 18. They both indicate that PCA outperfornibd persistence method and
specifically for the bias error measure, PCA penfed substantially better than

persistence.
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Figure 17. Comparison of bias between PCA and-igure 18. Comparison of RMSE between PCA

persistence method.

45 Sensitivity analysis of parameters

and persistence method.

Figure 19, Figure 20 and Figure 21 show the perémee index of the results for

the different choices of the length of orhit,, to use for finding the nearest neighbours

on the attractor, the number of nearest neighbayend the embedding dimension,,

respectively.
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Sensitivity to overlap
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Figure 19. Performance Index of PCA results in % for differewérlap values.

Figure 19 indicates that using a single pomt< 1) rather than fitting a short time
series of pointf, > 1) overlap seems to yield the best improvememiufad 11.2%) of

the results. This means that the PCA results arg9d tloser to the actual results in

comparison with the persistence method. Usipg 1 did not work for our data set as
there were not enough nearest neighbours. Afteraéing thatn, = 1 seems to be the
best, this was used for analysing the sensitiatthe number of nearest neighbouts,

Figure 20 shows that the overall improvement ilitiases substantially from below
8% for only two neighbours to above 11% for fivearest neighbours but then drops
again to around 9%. Using too few or too many neagins might not be appropriate
since with too few (i.e. less than 5) the inforroative use for the analysis might be too
little whereas on the contrary, using too many. (m®re than 5) might initially show
that we can obtain more information; however, thesighbours might actually lie very
far apart from each other in the phase space. Tikatlearly a distinct optimum which

needs to be determined but it is not clear whethés at or around five nearest
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neighbours for any data set or whether this mustidtermined from optimising the

parameters through experience at each site indiihdu

Sensitivity to number of nearest neighbours
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Figure 20. Performance Index of PCA results in % for differaatirest neighbours values.
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Figure 21. Performance Index of PCA results in % for differeoncation values.
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Finally, Figure 21 shows the sensitivity of the rabtb the choice of the model
truncation. Here, it can be seen that differenticghaf truncation results in a big
variation of the percentage of improvement. Herceareful choice of the number of
truncations is important. The number of truncati@wrswhich the improvement seems
to be more consistently high for (5.6%) is aroured Truncations up to 16 represent
variations at time scales from that of the windewgth down to 4 cycles per day so the
left side of Figure 21 could be interpreted in yaycles caused by the sun. It should be
noted that adding more truncations results in agldore information but whether this
information is useful or not is another issue whstlould be of further investigation and

of course depends on the site and wind dynamias fasehe analysis.

It can be concluded that applying PCA for wind t@gting purposes demonstrated
that the method is a reliable forecasting methoddecasting wind speeds hours ahead
to day ahead. By combining the PCA prediction witdrsistence prediction at very
short time scales, it was possible to eliminate wWeakness of applying PCA to a
coarsely sampled wind record. One of the most Usejoects of PCA over some other
forecasting techniques is that it is based on aemble forecast using ensembles of
similar past events. This allows an estimationhef forecast accuracy at the time when
the forecast is made. The analysis showed thateftimated forecast uncertainty is a

reliable predictor of the actual forecasting error.
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Chapter 5 PCA asan M CP method initial applications and results

This chapter is an intermediate step in the apticaof PCA used as an MCP
method starting from the simple concept of a pamduivhich was initially used in
Chapter 3 and moving on to real wind data. Iniiallind speed was only used as an
input variable and furthermore, where the main pérthis research focuses on, wind
speed and direction were used as input variableshf® analysis described in more

detail in Chapter 6.

5.1 First application of PCA asan MCP method in noisy pendulum

The initial step in developing PCA as an MCP methas to test it on the first
application of PCA which was presented in sectioch @&d more specifically for the

noisy oscillator. The initial noisy pendulum eqoas as described in equation (14)

Xy = 3Siﬂ(%)

X=X, {1+ A co{fiD +0.1£(x,) (39)

1

y= x0[1+ A, cos{fL + 5¢D +0.1s(x,)

2

were developed as

The rationale behind reconstructing the pendulumatgns of section 3.4 was to
construct simple dynamical systems representingeskey characteristic of a potential
wind site. Extending this to PCA would need to dnéwo signals representing a target
site and a reference site, respectively, which $mweare linked by a common

underlying signal representing the synoptic weatb&ttern. In this casey, would

represent, for example, the UK weather charactesisind is a common factor in both

equations andx,y i.e. are equivalent to reference and target $itege very similar

equations since in real life the wind speed of bsites should not have significant

differences in their overall behaviour. Each of the sites contains the common signal
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Xo but modulated by local effects, represented byutaimns with different amplitudes,
frequencies and phases, in addition to a noise tepnesenting local turbulence
completely without any correlation between targetl aeference site. The systematic

change of them with time should be examined bystigating changes in the following

variablesA, A, f,, f,,5¢4 . More specificallyA , A, represent the local magnitude of the

wind ofx,, f,,f, indicate the more coherent dynamicsAf A, modulating the wind

andog =@ is the time shift (time of flight) between the twites and finallys the

turbulence (noise).

The use of PCA in the noisy pendulum case wastsited as it is described in the
following steps. First, a time series for the pdoduwas set and then the equations as
described in equation (36) were introduced. Tlheime-delay matrixy containing the

equations x,y was created. Furthermore, a new reduced time sseveess created

containing only half the information of the system just the channel &f. The reason
behind this was to treat the system like the refegeand target site data in an MCP

analysis case. Thus, another time-delay ma¥fiy using this half information was
created containing onl¥,,; withy,,, being the unknown information of our interest.

PCA was then performed on the initial time-delaytnway which contained botlx, y
and the singular values\, singular vectorsSand principal componen®s were
harvested. The singular values matrix was invertedand the singular vectors matrix

was transpose@®’ according to the equations (24) and (25) of sac3i6.1.

A new principal component matrif,was then created where instead of the old
time-delay matrixY the new half informationY,,; one was used alongside with the

singular valuesA™and vectorsS'in the aforementioned form. Equation (40)
describes it

PIO =Y, . SrT Al (40)
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Another time-delay matrixy,,and a principal component matRyx., were then

created in order to check the results of combirirgginitial time-delay matrixy with

the half information oneY,_, thus containingx,; and obtaining the new information
Yiai - Finally, we projected back from the attractothie phase space to the delay space
using the new time series matri like described in equation (29) so that we can

extract the predicted signads, y, like it would happen in the case of MCP for the

reference and target site.

5.2 PCA-MCP noisy pendulum results

The range of values used for the variablgsA, f,, f, of equation (39) were 0.1,

0.2,0.3, 0.5, 0.71, 0.9, 1.11, 1, 2, 3.14, 10 ahdhese values were examined for the
different time shiftssg: O, n/2, n/4, /9, n/12,1/57 , =, 1.11n, /27 , 1.5t. These
values were chosen randomly, nevertheless atteghpiircover different scenarios for

the system of equations. A more detailed sengjtiaitalysis for the aforementioned

range of values is found in the graphs of the AplpeA.

5.2.1 Qualitative Results

The PCA results of different principal componentstted against each other
(P1,P2,PsPs) when examining an indicative range of values asea reference case of

the system for the variablesy, A, f,, f,,0¢ are presented below and summarized in

Table 5. In some cases it was observed that PCAmoaperforming very well since
some of the PC’s of the prediction time series (H@dow) were not of similar shape
when compared with the actual full time series PQ&st row). Looking atA , A, for

different A values the PC predicted graphs have differencéls thie actual ones
(middle and last row) which indicates that PCA dmt perform with accuracy for all
PC’s. As it can be seen in Figure 22 in the middid last row all PC’s are not similar
especially for B and R thus PCA failed to extract similar patterns whéae talf

information time series were used. However this n@sthe case foA, since it can be
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clearly seen from Figure 23 that all PC graphs harelar shapes when compared to
the real time series which indicates that PCA peréx well. Hence, since PCA seemed

to be performing better for differend, values than foA . Further investigation of the

singular vectors should be conducted.

Figures op A A, f, f,
Reference /9 4 0.3 0.5 0.3
Case
Figure 22 /9 0.1 0.3 0.5 0.3
Figure 23 /9 4 2 0.5 0.3
Figure 24 /4 4 0.3 0.5 0.3
Figure 25 /9 4 0.3 10 0.3

Table 5. Range of values for AA, fi, f2, 8¢ used for Figure 22 to Figure 25.
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Figure 22. Principal components results foi0.1 and rest of settings originating from the
reference case i.e#0.3, £=0.5, £=0.3, 6¢ = /9.
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Figure 23. Principal components results fop#2 and rest of settings originating from the
reference case i.e1?4, 1=0.5, £=0.3, 6¢ = /9.

Regarding the range afp we can see in Figure 24 that all PCs have similaps
when compared to each other for the actual andqgteedtime series. However, faf,

as seen in Figure 25, PCA results indicate diffestrapes of the predicted and actual
time series for fand the kgraphs in the last two columns.
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Figure 24. Principal components results fop = n/4 and rest of settings originating from the
reference case i.e.#4, Ac=0.3, £=0.5, £=0.3.
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Figure 25. Principal components results fae0 and rest of settings originating from the
reference case i.e1#4, A;=0.3, £=0.3, 6¢ = /9.

From the application of different values to theiahbles: A, A, f,, f,,6¢4 in order
to investigate how PCA performs qualitatively wheis used for MCP purposes, it can
be concluded thaf, and ¢ when choosing different values did not in geneesm to

affect the PC graphs which indicates that PCA peréal well and yielded accurate

results. On the other hand, whignand A, were examined PCA did not perform so

well since the predicted PC graphs were of diffestrape than the actual ones i.e. the

predicted PC’s did not reproduce secondary osaitiat
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5.2.2 Survey of parameter sensitivity

After the examination of the qualitative resultstie noisy pendulum example, a

survey of the sensitivity analysis was then coneldicA selection of a range of values

for the variables:A, A, f,, f,,0¢ was chosen. This range was more limited than the
ones used for the analysis in 5.2.1 and it wag\foh, f,, f,: 0.3, 0.71, 1, 2, 10 and for

op: nl2, w4, n/12. For the aforementioned range of values for \theables, the

following quantitative criteria were investigated.

The time shifts,s, at which the maximum correlation occurs &f,,X,and

Yhat » Yp- Then, the time-shifted standard deviation rd’tg(x),r(,y is described by the

equation
_ sd (Xna )
7 sd(x,)
(41)
. sd (Y har )
v sd(y,)

and finally the mear®,,&, and standard deviatiofd(&, ), Sd(e, ) of the errorse, €,

which were derived from the following equation

€ = I’O.XXp ~ Xhalf

ey = r0'),yp ~ Yhalf

(42)

Ideally, we want the time shif§;, S, between the two signals, y to be the same,

ther, .r, to also be the same as well and small value€fo®, and for sd(e, ), sd(e,) -

Similar time shift5;,S, and standard deviation ratig,_,f, values indicate that the
predictions were of good quality and representabivéne two signalg, y. Using the

same rationale, small values f&;.€ and for sd(e,), sd(e,) are indicators of a good

prediction as well.
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The results indicated that using therange of values seems to be in good
accordance with the mentioned desired criteriaviegy similars;,s, and r,, .1, with
smalle,, €, values. Similarly, the same held for tHgrange of values whereas for the
A, f, values, they seem to result in differegts, andr, .r, and very different

sd(e,),sd(e,) in the case of,. Table 6 indicates the results for each one of the

A, A, f,, f, variables for the range of values used.

Time shift Standard deviation Mean of errors Standard
wher e max ratio deviation of
correlation errors

occurs ,

O x O'y _ _

Sl ’ SZ ex ’ ey SC(Q()’SC{ey)
f1=0.7 S ,S=14 r — e =-0.001, sd(e,) =2.28,
00 1 7/2 " sd(e,) =2.19

e =-0.
, =2.86 , = -0.0003
f2:0-3, S|_=8, ro— :118 éx: '0001, Sd(ex) 2078,
= /4 " sd(e,) =4.24
e =
S,=26 oy =2.87 =044
A1=0.3, §=3, r=1.13 € = 0.005, sd(e,) =2.80,
8¢=n/12 " sd(e,) =3.06
e =
S,=17 oy =4.76 ,=0.010
Ax=1, S,S =15 [ =204 e =-0.004, sd(e,) =2.62,
8¢ =n/12 X sd(e,) =3.18
e =-0.
,, =2.87 , =-0.006

Table 6. Semi-quasi quantitative results for range of valigsh,, f1, f2: 0.3, 0.7, 1, 2, 10 and

o8¢ 1 m/2, 74, n/12.

5.3 PCA asan MCP method on real wind data

The next attempt for PCA to be used as an MCP ndettess made on real wind
speed data taken from Gogarbank (GGB) and BlackHKitd (BFH) meteorological

stations in Scotland, UK [75]. The data specifioasi were explained in detail in
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Chapter 4 and in Table 9 and Figure 31 of Chapten @ur case, Gogarbank was
treated as the reference site, where the histodedh are being used from, and
Blackford Hill as the target site, the site for wtniour aim is to predict for.

At this point it is important to mention that thaps in the data used throughout all
the real wind data analysis in this chapter but alsChapter 6 were identified and then
interpolated. The implications of this and possibtdutions will be discussed in the

final chapter, Chapter 7.

Variables such as temperature and pressure wadirallynincluded in the PCA-
MCP analysis but were emitted later on. Pressueeipally did not seem to play an
important role in the analysis and temperature @aduded since it was found that it

introduces seasonality in the data which wouldltesumore biased results.

5.3.1 PCA-MCP for wind speed

The MCP methodology steps described in section33n&re followed for this

analysis. The number of channels in this caseNgre 2 since only wind speed is used

le. vy, (t)=Uu,u, where Uis the wind speed of Gogarbank atigthe wind speed of

Blackford Hill.

5.3.2 PCA-MCP wind speed parameter analysis setup

The parameters which were examined were: the windkwgth, M , i.e. the

number of days used for the columns of the timendehatrix and the truncation®,

l.e. the number of principal components used fax BCA analysis which were
originally obtained from the singular values spewtr(A from equation (12)) graph.
Window lengthM , from 1 to 21 days was used. Table 7 indicatesvéthees of these
examined parameters. For small window length, tesults were poor for large
truncations. For window lengths of more than 14sgdlge physical limitations of the

computer prevented the use of truncations largam the very shortest of 3 and 6. For
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this reason here, the intermediate cases are peesehich will then be used to explore

the full sensitivity analysis in Chapter 6.5.

Training periods (concurrent data) 1999,

2010
Window length for training (M) 1 and 3days| 7 and 14 days
Number of principal componentsretained for 3,4,6 6,12,18
prediction (truncations) (M)
Prediction period 1999 - 2010

Table 7. Parameter settings used for the PCA-MCP wind speadysis.

54 PCA-MCP wind speed calibration and results

The calibration of the predicted wind speed resaltsl comparison with the
original data was essential to be undertaken stheePCA-MCP predictions were

shorter than the length of the historical data hg size of the window lengi¥ ,, .

Hence, the aim was to match the predicted ‘shorefgrence data with the historical
data. The calibration method presented here wasitarmediate step to achieve the
final calibration method used as described in sacs.6.2, Table 3 and used in Chapter
6. Various possibilities were explored regarding ¢tlalibration, all guided by the aim to
calibrate the predictions so as to have the samance and mean values as the actual
data. The earlier attempts explained here, basec#tibration on matching the mean
and variation of the prediction to those of theniray period. The rationale was that, if
the calibration of the target site was similartattof the reference site, then it would be
possible to determine the calibration for the refiee site and transfer that calibration to
the target site. The two calibration methods ugsediwo variants of linear regression,

described in equations (43) and (44), respectively

In contrast to this approach, the final calibratievhich was introduced in the
formal development of the model in section 3.6.8ed not require the calibration
between reference and target site to be similat, thbat the loss of variance by
truncating the singular vectors (both in dimensiand number of input channels) will
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be the same irrespective of whether the methogdptea to the reference data from the

training period or from the historical period.

The mean average erréf/AE was calculated and therefore shifted across tte da
to examine how well it matches the predicted valteddifferent sections of the
historical data. In more detall, initially the datare normalised as following:

Upp =Ugp* 01+ 1 (43)
Uz2p=Uy,"0o,+u,

where 4, u, are the mean and,,o,standard deviation coming from the original

training datay, ,,u,, and U;p , U;,p are the normalised predicted wind speeds in ni/s fo

GGB and BFH respectively. Furthermore, after sdverscaling attempts so that the
original data ‘match’ with the predicted ones, test rescaling method found by trial

and error was of the form:

A=min(u; ,),B =min(u,,)

* _ * [ /Lll
Upa = Upp ™ (

+
A) H1 (44)
— Mo
+
B ) + 1o

Upa = Uz p*(

With the use of the minimum values and the meatheftraining signald!, ,, U, , for

both GGB and BFH as correction factors and by takilso into consideration that wind

speeds are bigger than zero the rescaled sigmals@®B and BFH were found to be

U La,u 2a,

All data were then examined in order to find whtre best matches between the
predicted and original data existed. Then, theobistms of u,,u,,u;,,u,, were

produced in order to investigate how well the presti calibrated PCA results
performed when compared to the actual wind spetdfdaboth sites. Some indicative
results can be shown in Figure 26 and Figure 27.
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Figure 26 presents in the top left plot (a) thegslar values plot from the PCA
analysis results. This graph was used for therohtation of the truncation values
used in the parameter settings models. It shovee thections, an initial set of six large
but rapidly reducing singular values, followed Hyee singular values of similar
magnitude, and final a long tail of gradually dexsiag values. From this, one there are

two choices of truncation suggested, either a atioe of M,= 6 to include only the
first set or a truncation d¥1, = 9 to include the three singular values forming ¢entral

set. In Figure 26b) the mean absolute error (MA&) @GB historical and predicted
data (black line) and with the red line the MAE BifH historical and predicted data is
depicted against time shifg for matching the actual wind speed against priedict

which is shorter than the actual by the window tangsed to create delay matrix. The

MAE formula is given in equation (45):

MAE, . = > |u, - uj,
MAE, . = > |u, - u;,

(45)

2,Ws

As it can be seen for these specific training arglohical periods and parameter
choices, there is a clear minimum in tM&AE for both sites at the same time shift of
around 10. The PCA results seem to be relativelydgsince the MAE of BFH is
relatively close to that for the GGB, they arelod same shape and the amount of error
is around 1.5-2 m/s, i.e. relatively small compat@dhe much larger values at larger

time shifts.

The rest of the graphs in Figure 26, depict thébadity density function (pdf)
histograms of the actual and predicted data foh Isites. In Figure 26¢) shows the
distribution of the wind speeds at the referende @sogarbank) for the prediction
period while in Figure 26d) shows the predictiorthe wind speeds at the reference site
as the histogram, with the actual data from pahetgroduced as the red line for direct
comparison. Likewise, Figure 26e) and f) show ttieia wind speed at the target site
for the prediction period and its prediction. Indae shown from graphs d) and f) that

PCA seems to over predict for small wind speedeslf less than 6 m/s but above this
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value, the actual and predicted measurements sedr@ in good accordance for both

sites.
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Figure 26. PCA-MCP results for historical data 1999-2008 nirag year 2009-2010, truncation
M, =6, window lengthM , =7 days.

On the other hand, a ‘bad’ result of PCA is depigteFigure 27. It can be seen that the
reference and target site errors indicate an asailf movement which could possibly
suggest a daily cycle in the data. However, it &thde noted that the errors seem to be

of similar shape and a minimum value can be idiextifor both GGB and BFH similar
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to the one of Figure 26. From the differences i thvo Figure 26, Figure 27 which
contain different window lengths and truncationgan be concluded that the choice of
the parameters seems to be of great importandbdaguality of the PCA-MCP results.
This leads to the initial observation that priorutadertaking PCA, a careful evaluation

and choice of the parameters which will be usedtlier analysis purposes should be

conducted.
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Figure 27. PCA-MCP results for historical data 1999-2009 nirag year 2010, truncatioM ,
=18, window lengthM , =14 days.
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In general, the histograms as it can be seen ur&ig7 are quite similar to the ones
of Figure 26. They are very good illustrationglté performance found at all parameter
settings and hence it can be concluded that thastsea persistent tendency for over
prediction for low wind speeds for both GGB and BBt more accurate predictions
for larger wind speeds for the majority of the misdén addition, the knowledge of the
errors for the reference site enables 1) a caidrdor the predicted results 2) an error
estimation for the target site also and most ingraly 3) the evaluation of the quality
of these predictions. Overall, PCA seemed to perfaell for GGB and BFH regarding
wind speed measurements considering that a shkl{eeéerence) site was used to
predict for an exposed (target) site. In the folltg section, the performance of all
models will be compared by using the error in thedxspeed prediction to explore how

the performance varies as the model parametersaaesl.

55 PCA-MCP wind speed sensitivity analysis

The next step was to find the relative error foe thfferent settings of window
length(M , )and truncatiofM, ) as described in Table 7. The models used for trw er

analysis are shown in Table 8:

Years

Historical Truncation
1999-2009 2010
1999-2008 2009-2010
2000-2009 2010
2000-2008 2009-2010
2001-2009 2010
2001-2008 2009-2010
2002-2009 2010
2002-2008 2009-2010
2003-2009 2010
2003-2008 2009-2010
2004-2009 2010
2004-2008 2009-2010

Table 8. Datasets used for the relative error analysis.
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Initially, the errorskE, ,, E,, of GGB and BFH respectively were calculated for al

the models and the aforementioned different windamd dimension settings as

following:

Then, the relative errok,, E, of GGB and BFH which is the measure of sensitioity

E..: E..was calculated. That is the errbr,., E, ,as calculated in equation (46) but

rescaled and normalised with respect to the setaiye of window lengthM , =7 and

truncation: 6 for the GGB dataset, nambg for each model of Table 8 respectively.
The value of, was specifically chosen since it was a benchmattingeof ‘middle’

values for the PCA-MCP parameter settings of T&ble

(47)

Figure 28 indicates the boxplots of the relativeorerE,, E,in the top (a) and

absolute relative err¢f,|,|E,|in the bottom graph (b) for GGB (blue) and BFH Jred

for the different window lengths used as mentioabdve. Boxplots show the range of
values observed divided into quartiles, with thet®d horizontal line showing the
median of the error, the boxes either side tHead ¥ quartile, and the range from the
box to the whiskers the®land 4" quartile, respectively. Outliers, defined as nBes
the extend of the™ or 39 quartile from the median, are shown as individules. As

it can be seen, more window length results in lEssfor GGB. For example when

comparing the error for window 1 and 14 with windo8and 7 we can see a significant
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reduction inE, . However, E, tends to become more for BFH for the same window

length choices. The closest pairbofvalues for both sites seems to be the window

length of 3 days.
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Figure 28. Relative and absolute relative error for windowgbnM |, : 1, 3, 7, 14 days where
blue represents GGB (reference) and red BFH (arge

Next, Figure 29 iIIustratesEl,Ez and ‘El‘,‘Ez‘ for the different truncation

values. As it can be seen for GGB, the 3 diffetembcation values do not seem to

result in a significant change Bf. On the other hand, regarding BFH for the highest
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number of truncations, i.e. 12 dimensions in tliseGE, seems to be the least and also

closest to the error of GGB when compared withdations 3 and 6.
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Figure 29. Relative and absolute relative error for truncatMp: 3, 6, 12 where blue
represents GGB (reference) and red BFH (target).

Since it was observed from Figure 28 and Figurett2t E seems consistent
between the two sites for the parameter choicesimdow length 3 and truncation 12,

more graphs were created to investigate furtheetra behaviour with respect to these
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interesting parameter choices. In the top graphigidire 30 for truncation 12 and 1 day
window, we can observe a very low error for GGR; teference site meaning that the
wind regime of the local site is captured and mel@vant information from other days
is added. It can also be observed that the median & BFH for all window lengths is
relatively constant but its spread is increasinghaswindow increases too. Thus, it can
be seen that in order to get the best parametarhnaaid thus lowest error at both sites
we need to use the shortest window. For the difteteuncations with respect to
window 3 in the bottom graph of Figure 30 it canchearly seen that the lowest errors
for both target and reference sites are for truonal2. Some outliers can also be
observed which indicates that some years modelsndidyield ‘good’ PCA results.
Therefore from Figure 30 it can be concluded thatliest combination which results in

the lowesg for both sites is observed for truncation 12 anddweiv length 3.
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Figure 30. Absolute relative error for truncatiol, =12 and window lengtiM , =3 where blue
represents GGB (reference) and red BFH (target).

Hence, the main initial observations from applylPGA as an MCP method on
wind speed data for two datasets using severatyeat different parameter choices can
be drawn. Adding more time series information sekitnede better for local predictions
(reference site) but worse for the target site {fF@g28). On the contrary, more global
information dynamics, i.e. truncations added, yadldetter results for the target site but
worse for the local site (Figure 29). To sum ug, thoice and length of historical and
training periods for GGB and BFH did not seem ttedf significantly the results,
however the choice of PC’s firstly and window ldngtecondly seem to be of big
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importance for the quality of the results. Howevarkey weakness of the method
developed so far is the persistent error in thewoad speed range, where the predicted
frequency of very low wind speeds (0 to 3 m/s)ois high at the expense of moderate
wind speeds (4 — 6 m/s). This problem was trace#t bmthe calibration approach used
at this stage of the research, leading to the timhbration approach outlined in section
3.6.2, which was used throughout the final teséind validation work presented in the
following chapter. Chapter 6 will use similar aredyprinciples as Chapter 5; however,
this will be done in more depth and by introducingthe analysis one more very

important MCP variable, wind direction.
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Chapter 6 PCA-MCP method final applications and results

This chapter will present and evaluate the finagstof the PCA-MCP algorithm
development. Initially, the inclusion of anotheriable, wind direction, in the PCA-
MCP analysis will be introduced, and then a prest@rt of examples from a poor and
good performance of the method will be explorechalty, error and bias measures
criteria as well as a comparison with simple linesgression as an alternative MCP
method will be presented in order to assess thenpeance of the PCA-MCP technique

and draw the final conclusions of this research.

6.1 Wind direction asan PCA-MCP invariant

Next step in the MCP analysis is to include windediion as a variable. Wind
direction is usually included in the MCP analydisngside with the wind speed since
these too variables provide more integrated wiridrination about both reference and
target sites and hence contribute in a more robI@&P analysis [18]. The method to
introduce wind direction as a variable which wi# bsed for this MCP analysis is to
create a vector combination consisting of wind dpaad wind direction with the

componentau, v .

The selection of using these components was alsedban the fact that, for
example, north winds jump from 0° to 360°. Thugréhexists artificial discontinuity in
the data whereas using tliev components this is avoided. In general, wind diogct
prediction alone is weak. Therefore, in our case dloctual wind direction was not
looked at but the link between the reference armgktavind direction was examined as
an invariant. Positiver is coming from west to east direction and negatifeom east
to west, positiver from north to south and negatiwefrom south to north. The, v

linear combination is of the following form:
. (27
u, = -U,sin| —4@ (48)
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and
27
v, = -U, cos —&@ 49
! ! (360 1) (49)

where U, is the wind speed an@l is the wind direction (in degrees) for the refeeenc

site. Equivalently, the same relationships hold&yr and 92 of the target site i.e.:

. 2r
u,=-U,sin —4@ 50
and
27
v,=-U, cos(% sz (51)

Now, we have four signal channdlg,V;,U,,V, and hence, four columns in the SVD
matrix i.e. N,=4 instead of two that we had before when wind dpeas only used. For

the prediction part of the MCP algorithm we needbw careful when we want to
normalise the results back to actual wind speed dmeboth the reference and target
sites. This is the reason for which a scaling mahmgy was used carefully which was

explained in section 3.6.1.

6.2 PCA-MCP methodology for wind speed and direction combination

Initially, as described in detail in Chapter 4, thethod was used to predict wind
speeds up to 24 hours ahead i.e. was used forspeed forecasting. It predicted wind
speeds based on a set of previous measurementd wieie used to construct an
attractor in an optimally defined phase space a%raaning set’. Current wind
measurements were then projected to onto that phpasee to find most similar
previous measurements. By tracing the evolutiorthefse similar previous data, it
became possible not only to forecast the wind sjpeclso to obtain a measure of the

expected forecasting uncertainty [97].
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6.3 Dataand analysis setup

6.3.1 Dataset used in the PCA-MCP analysis

The PCA-MCP data came from the same source [75h aection 4.2 for the
forecasting purposes. For the purposes of thig/aisa8 sites in Scotland, UK sites were
used and as in section 4.2, the sites used anem@n#t10m high above ground and
the data records used spanned from 2000-2010 witHyhmean wind readings with the
wind speed stored to the nearest knot (1kn=0.514% and the wind direction in degree
to the nearest 10°. Table 9 indicates the posdiwhcharacterisation of the 8 sites used

and Figure 31 their position in the map of the UK.

Station name Latitude Longitude Characterisation
1) Stornoway 58.2138 -6.31772 coastal, exposed
2) Blackford Hill 55.9228 -3.18750 inland, exposed
3)Machrihanish 55.4408 -5.69571 coastal, exposed
4) Salsburgh 55.8615 -3.87409 inland, exposed
5) Prestwick Gannet 55.5153 -4.58343 coastal, esteelt
6) Gogarbank 55.9284 -3.34294 inland, sheltered
7) Port Ellen 55.6813 -6.24866 coastal, exposed
8) Bishopton 55.9068 -4.53122 inland, sheltered

Table 9. Summary of Met.Office stations used in the analysih latitude and longitude in the
decimal degrees and characterisation.
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Figure 31. Map of the data used for the PCA-MCP analysis

6.3.2 PCA-MCP parameter analysis setup

The parameter analysis setup for the dataset descim the previous section 6.3.1
is described in Table 10. The principal componestsd were determined after the first

application of PCA based on the singular valuegtspm result and the window length

(M W) which was used in the setup of the time-delay imatas determined according

to the truncations(Mt)of the relevant components. Hence, both parametere

determined at the ‘Correlation’ part of the procassmentioned in Table 3 and were
therefore carefully chosen after extensive triadl @mror attempts performed for the
PCA-MCP analysis which due to brevity are not pnéseé here. All 8 stations were
used for all possible permutations of pairs asresfee and target stations i.e. the
number of models used were 8x8=64-8=56 in ordeintestigate how the method
reacts when each site has been used in the anaedéysas a reference or target site. The
method was also applied for all one-year perioddhénspan of 2000-2010 used in turn

as training (concurrent) years.

109



Training periods (concurrent data) 2000,

2010
Window length for training (M) 1 (24h) and 2 days (48h)
Number of principal componentsretained for 3,6,9,12
prediction (truncations) (M)
Prediction period 2000 - 2010

Table 10. Parameter settings used for the PCA-MCP analysis.
6.4 Comparison of PCA-MCP with simplelinear regression

The next step in the validation of the PCA-MCP meltiiogy is to compare it with
an established MCP method such as standard lirgegssion. The linear regression in

this case was established with the following lineadel:

U, =fgt/U; +¢ (52)

where, as denoted in section 6.1 of this chaptgt], are the reference and target wind

speed respectively? is the intercept,3; is the slope and& is the error term. Hence,
the target wind speed, is the dependent variable and the reference weddU,the

independent variable in the linear model. Afterf@ening linear regression in R, a new

variable U 2,pred IS Created being the target wind speed predictemoted as:

p p 2 2
U 2,pred = Bo+ b5 \/ul past T V1 past (53)

was created with3, the estimate of the intercepf, the estimate of the reference wind

speed in the linear model of equation (52) tintes magnitude of the wind vector

combination of the actual wind speed of the refeedmstorical datéu:l.,past’ V:Lpast .
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The linear regression erroEn was then calculated which will be depicted in

graphs in the following sections of this chapters lof the form:

2 2
E, = <U ) pred> = <\/ U3 past + Va, past> (54)

i.e. the difference of the mean value of the wiedtar combination magnitude to actual

wind speed of the target historical dHtgaseVapast from the mean value of the

predicted target wind speéé 2, pred -

6.5 PCA-MCP sensitivity analysis

The performance of the PCA-MCP method in compansibin the linear regression
as an alternative MCP method was essential to batijied as part of the validation of
the new method. This was achieved with the useifdérdnt statistical sensitivity

analysis measures as explained in the following@e6.5.1.

6.5.1 Error and uncertainty measures

Initially, the error was quantified as the diffecenof the prediction and actual wind

speed distribution for the reference; target amedr regression was calculated as

follows:

Cret (u)du = (Pref ,pred (U)— Pref ,actual (u))du (55)
and

etar (U )dU = (Ptar,pred (U)— Ptar,actual (U ))du (56)
where e ,e, are the difference of the reference and targebgbility density

function prediction and the probability density ¢tion of the actual reference and

target data respectively and
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eIr (U )dU = (Plr ,pred (U)— I:)Ir ,actual (U ))du (57)

is the difference of the linear regression probigbdensity function prediction and the
probability density function of the actual refererdata.

Then, the Mean Absolute ErrdMAE)was calculated [107] as:

MAE o = [ |ee (u)du (8)
and

MAE[B.I’ = _“uio‘Qar (U){du (59)
and finally,

MAE, = [ g (u)du (60)

where MAE ., MAE,, and MAE, are the sums of the absolute error as defined in

equations (58), (59) and (60) for the referetmeayet site and linear regression and are

a measure of the goodness-of-fit of the predictionia the following, the distribution

error was calculated on probabilities N wind speed bins of widtdU=1"VS

the MAE for each distribution was calculated as:

N
MAE | = > |e;(u, JAu; j = {ref tar ,Ir } (61)
i=1

(paragrafos!!)Since we use an error of two distidms of unit area, an error measure

corresponding to the bias as defined in equat®8) ¢f Chapter 4.3,

Bias = [~ _e{u)du (62)
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is always exactly zero. Since the bias as defimedquation (33) is identical to the
difference between the predicted mean wind speddtanactual mean wind speed, this
is used here as the measure for the bias.

To summarise the performance of the PCA-MCP agaihnst standard linear
regression MCP, a performance in(ﬁE’*) , was defined as the ratio of th&AE,, over

MAE,

r -

PI _ MAEtar

~ MAE, (63)

6.6 PCA-MCPresaults

6.6.1 A ‘good’ example

Using the model of Stornoway as reference site Saldburgh as target site for
2007 with truncatioM, = 12 and windowM ,, = 24h the PCA-MCP results are shown

in the following graphs. The singular values)(spectrum graph used to determine step
3 of the PC-MCP algorithm in Table 3 for the PCAalgsis is presented in Figure 32.

As it can be seen, the lambda values have rapidftafter 5 and 9 and between 12 and

14. Hence, the choice of truncatidf, = 12 for this example is justified.
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Figure 32. Singular values spectrum for Stornoway and Salsbstations for the training year
2007, window lengthtM ,, = 24h, truncationM, = 12.

As it can be seen from the wind speed histogranfagfre 33 and Figure 34, the
predicted wind speeds match to a big extent withabtual wind speeds for both the
reference and target sites. Thus, PCA performetfareihese specific data. However, a

slight overprediction of PCA-MCP can be observaddath reference and target sites.

114



Predicted wind speed
—— Actual wind speed

Density

0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14

| | | | | | |
0 5 10 15 20 25 30

Wind speed (ms)

Figure 33. Actual and predicted wind speed for Stornoway (exfee) for training year 2007,
window lengthM ,, = 24h, truncationM, =12.
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Figure 34. Actual and predicted wind speed for Salsburgh éqrgr training year 2007,
window lengthM ,, = 24h, truncationM, =12.

Next, the wind roses which describe the wind distiion are shown. Regarding the
reference site, the actual and predicted wind resem to be quite similar to each other
as seen in Figure 35 and Figure 36. On the othed,lbe target site wind roses indicate
some differences and as it can be seen from tltkcped target site wind rose in Figure
38, it indicates overprediction of the wind speddsthe southeast direction in
comparison with the actual target data in FigurevBith shows the prevailing wind in
the southwest. It can be concluded from Figurer8¥ igure 38 that PCA-MCP seems
to predict quite well the wind speed distributidos both the actual and predicted data
but not so good the wind direction even in the @jaexample described here. As it will
be discussed in Chapter 7, this is one of the sssaebe considered in the future
validation work of the PCA-MCP method.

116



20%

15%

"

\ 3

mean = 6.41 mean = 6.29
calm = 0.3% calm = 0%
0to2 2to4  4t06 61030.35 0to2 2to4 4106 6(029783
(m s'1) (m 3’1)
Frequency of counts by wind direction (%) Frequency of counts by wind direction (%)

Figure 35. Wind rose for Stornoway (reference) Figure 36. Wind rose for Stornoway (reference)
actual data for training year 2007, window length predicted data for training year 2007, window

M, = 24h, truncationM, =12. length M, = 24h, truncationM, =12.
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Figure 37. Wind rose of Salsburgh (target) actudfigure 38. Wind rose of Salsburgh (target)

data for training year 2007, window lengl ,, =
24h, truncationM, =12. length M, = 24h, truncationM, =12.
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6.6.2 A ‘bad’ example

Using Blackford Hill as reference and Machrihanahtarget site for 2003 with

truncatioth = 9 and window lengttM ,, = 48h we obtain the following PCA-MCP

results. It can be seen from Figure 39 which dspticé singular values spectrum that
the lambda values have a rapid cut off around 3®weéver, the split between the

singular values sections is not so clear as itiwddgure 32. It can be concluded that

M, =9 would be a suitable choice fdvl , =24h in the previous ‘good’ case but

choosing it for this case oM, =48 seems to have resulted in the loss of important

variance. The choice of another truncation othant® would thus be the most suitable
one to test the bad performance of the PCA-MCP oteth
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Figure 39. Singular values spectrum for Blackford Hill and Mabanish stations for the
training year 2003, window lengtM ,, = 48h, truncationM, =9.

Next, the wind speed histograms in Figure 40 agdriéi 41 are shown. In this case,
it can be observed that the predicted wind speetistiie actual wind speeds for both

the reference and target sites have some diffeserespecially for the target site. In
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Figure 40, the predicted wind speed seems to berpretlicting the wind speeds for the
very low wind speeds (< 1m/s) and overpredictingtfe low wind speeds (< 5m/s).
Figure 41 indicates an overprediction of the tangetd speeds to begin with (< 3m/s)
followed by a very big underprediction for wind ggde ranging from 3m/s up to 11m/s
and then followed again by an overprediction far thrge wind speeds. Thus, a very
big deviation in the target site prediction anduattwind speed data can be observed
which shows a poor PCA-MCP performance. This cinddiue to an old anemometer,
or the Blackford Hill anemometer being of poor m@sge due to false instrumentation.
However this big deviation didn’t show in Figure d@cause it predicted well internally
within the station but when combined with the Malcanish site which has better
guality data , this error is apparent. Also compgthe actual data of the two sites wind

roses of Figure 42 and Figure 44, they are verfgmint.

— | Predicted wind speed
—— Actual wind speed

Density

— ' v T

| [ [ I I | [
0 5 10 15 20 25 30

0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14

Wind speed (ms)
Figure 40. Actual and predicted wind speed for Blackford Hikference) for training year

2003, window lengthM ,, = 48h, truncationM, =9.
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Figure4l. Actual and predicted wind speed for Machrihanigingét) for training year 2003,
window lengthM , = 48h, truncationM, =9.

The wind roses of the reference data, Figure 42Faquake 43 are similar with very
little differences as described in the histogramFajure 40. However, Figure 44 and
Figure 45 regarding the actual and predicted tasgetdata indicate a lot of differences
which verify the under and over predictions in thget predicted wind speed as described
in the histogram of Figure 41. The prevailing windg-igure 45 seem to be coming from
the southwest whereas in the actual target datarsim Figure 44 come from southeast.
This example was one of a poor performance foPGA-MCP method because the actual
and predicted data especially for the target staaded to a big extent. More measures to

validate the method’s performance will be showthimfollowing sections of this chapter.
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Figure 42. Wind rose for Blackford Hill (reference)Figure 43. Wind rose for Blackford Hill (reference)
actual data for training year 2003, window lengtredicted data for training year 2003, window léngt

M, = 48h, truncationM, =9.
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Figure 44. Wind rose of Machrihanish (target) actuaFigure 45. Wind rose of Machrihanish (target)
predicted data for training year 2003, window léngt

M, = 48h, truncationM, =9.

data for training year 2003, window lengh ,, =

48h, truncationM, =9.
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6.6.3 Overall PCA-MCP performance and evaluation

The following graphs depict the measures used énptievious section 6.5.1 validating

the overall performance of PCA-MCP as a methodgdme with a comparison with linear

regression.

First, the graphs of th&AE

ref 1 tar

MAE._ and MAE

, from equations (58), (59) and (60)

against all 8 reference stations for each of thar§et sites are depicted from Figure 46 to

Figure 57. As it can be seen from the first foumpips Figure 46 to Figure 4}JAE, is

ranging from 0.7 to 1.2 thus is the highest whemmared toMAE , and MAE, which are

relatively low, i.e. up to 0.4.
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Figure 46. Stornoway MAE for all reference stations. Figure 47. Blackford Hill MAE for all reference

stations.
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Figure 48. Machrihanish MAE for all referenceFigure 49. Salsburgh MAE for all reference

stations.

stations.

The first 4 target stations bias graphs indicatgeneral the existence of negative bias,
more specifically looking at Figure 50. The reasmhind this could be that PCA-MPC

method predicts slower wind speeds than simplatinegression does. Two reasons could

be behind this; possibly the calibration used mRCA-MCP analysis is not yet optimal i.e.

using the mean and standard deviation rations pressed in Chapter 3.6.2 equation (30)

and equation (31). Secondly, the calibration wagopmed in order to minimise the

distribution error i.e. calibrate so as to expdut tsmallest error in the wind speed

distribution.
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Figure 50. Stornoway Bias for all reference stations.
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Figure 52. Machrihanish Bias for all reference stations.
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Figure 53. Salsburgh Bias for all reference stations.

The next four graphs, Figure 54 to Figure 57 folh same pattern as in Figure 47 to

Figure 49 i.e. theMAE, is higher when compared tdAE, and MAE . More specifically,

theMAE, is ranging from 0.7 to 1 and it can be observedlitha the highest for Stornoway

(Figure 46), Gogarbank (Figure 55) and Bishoptoigufe 57). Examining th®IAE,, , it

ranges between 0.1 and 0.3 and the lowest BAE,

ranges from 0.1 to 0.2. It can be thus

ref

124



concluded that linear regression performs worse tAREA-MCP sinceMAE, has the

highest values, when examining all target statwitis respect to all reference stations.

PCA-MCP seems robust since the MAE graphs areyféat for most of the stations in
comparison with simple linear regression. This st that a good performance of the
standard linear regression MCP relies strongly awming chosen a good reference site
(which may not always be obvious in advance or gvessible), whereas the PCA-MCP

method is fairly insensitive to a particular choafereference site. Being able to calculate

the MAE,; as part of the PCA-MCP prediction also providdsa to estimate the actual

MAE_, .

From the last four bias graphs for stations 5-8ait be seen that the bias is above zero
in most cases. Stations 5,6 and 8 are low winddsptdions whereas stations 1,2,3,4,7 are
high wind speed stations. This indicates that samwebias is related with whether the
prediction comes from a low or high wind speed, site bias seems to be correlated with
the predicted wind speed. Linear regression as thadds unbiased by default since the
linear estimation tries to minimise bias and heih@e only logical to result in minimal bias.

In the PCA-MCP case, it was chosen to minimisedis&ibution error rather than the bias
thus the bias graphs are a flipside of MAE grapmgeneral, for wind resource purposes it
is preferable to calibrate more correctly wind spdestribution rather than bias.
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Figure 54. Prestwick Gannet MAE for all Figure55. Gogarbank MAE for all reference stations.
reference stations.
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Figure 56. Port Ellen MAE for all referenceFigure57. Bishopton MAE for all reference stations.
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Figure 58. Prestwick Gannet Bias for all referencBigure59. Gogarbank Bias for all reference stations.
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Figure 60. Port Ellen Bias for all reference stations. Figure 61. Bishopton Bias for all reference stations.
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6.6.4 Evaluation of the ‘good’ and ‘bad’ PCA examples

Going back to the ‘good’ and ‘bad’ examples of ggws 6.6.1 and 6.6.2, the following

graphs were created to explore tNAE,., , MAE,, and MAE , for these specific cases for

all training years. In Figure 62 it can be seern tbathe ‘good’ example of Salsburgh as a

target and for Stornoway (reference station 1) fanavindow length 24h and truncation 12
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the MAE , ,MAE_ are quite low, up to 0.2, for all training yearsem compared to the other

ref 7

reference stations. However, theAE, is quite high (almost 0.7). As it is shown from

Figure 63, for Machrihanish as a target and Blaakfdill (reference station 2) for window

length of 48h and truncation 9, theAE , , MAE,, for all years are higher when compared to

ref 7

the other reference stations and close to 0.&irmauch higher value than the one in Figure

62. Again, theMAE, value is high (almost 0.8) though not the higlasbng all reference

stations.

Hence, the model of Figure 63 verifies the ‘badample of PCA-MCP performance
in comparison with the use of the other stationseésrence ones and as an overall MAE
value when compared with the ‘good’ example moddtigure 62. From both Figure 62
and Figure 63 it is observed that reference stétioa. Blackford Hill seems to contain the

biggest MAE  , MAE,, when compared to the other reference stationsgtholis is the

case for these specific models. It can be also gedrthe values MMAE , are the lowest

ref

and the values oMAE, are the highest amongst most training years amieete stations

in both graphs.

Regarding Figure 64, it shows similar a behaviaipievious bias figures i.e. that the
bias is consistently negative for PCA-MCP and i & also seen that Figure 65 has a
similar pattern when compared with Figure 52 bo#igarding station 3. It can be
concluded that good choice of window and truncatian affect the bias can since similar
spreads can be seen for bias values of both PCA-Bi@Hinear regression in Figure 65.
Longer window lengths and smaller truncations a agethe calibration methods have to
be explored more. By finding the optimum parameteftings, the minimisation of the

distribution error and bias will be achieved.
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Figure 62. MAE of Salsburgh (target) for windowFigure 63. MAE of Machrihanish (target) for
length M, =24h, truncation M, =12, for all window length M, =48h, truncationM, =9,

training years and reference stations. for all training years and reference stations.
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Figure 64. Bias of Salsburgh (target) for windowrigure 65. Bias of Machrihanish (target) for

length M, =24h, truncation M, =12, for all window length M, =48h, truncation M, =9,
training years and reference stations. for all training years and reference stations.
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Figure 66 and Figure 67 show théAE , ,MAE _ and MAE, for the reference

stations of the ‘good’ and ‘bad’ PCA-MCP performannodels for all training years
and target stations. The conclusions for the tasget4, Salsburgh and Stornoway as
reference in Figure 66 and for target site 3, Mieamish and Blackford Hill as
reference in Figure 67 are the same as the afot@ned ones drawn from Figure 62

and Figure 63 regarding the justification of thesn'good’ and ‘bad’ examples. Again,

MAE, is high for almost all cases. Regarding Figuret@9findings are similar to the

Figure 65 conclusions described above.
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Figure 66. MAE of Stornoway (reference) forFigure 67. MAE of Blackford Hill (reference) for

window lengthM , = 24h, truncationM, =12, for window length M, = 48h, truncationM, =9,
all training years and target stations. for all training years and target stations.

130



Reference: 1; Win=24 h; Trunc =12 Reference: 2; Win=48 h; Trunc =9
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Figure 68. Bias of Stornoway (reference) forFigure 69. Bias of Blackford Hill (reference) for
window lengthM ,, = 24h, truncationM, =12, for window length M, =48h, truncation M, =9,
all training years and target stations. for all training years and target stations.

Finally, Figure 70 and Figure 71 indicate both theod’ and ‘bad’ models of
Chapter 6.6.1 and 6.6.2 for tHMAE,, MAE, and MAE, for all training years for
all eight window length and truncation combinatiolmsgeneral, Figure 70 and Figure
71 both depict highuae, throughout all training years whereas tNAE ., MAE,, are

lower. Regarding Figure 70, bothaEe _ ,MAE _ values are ranging below 0.2 for most

ref

years and looking specifically at 2007 which wasreied in section 6.6.1 it is

relatively low (below 0.2). On the contrary, in Brig@ 71 the MAE ,MAE , values

ref ?

generally range more and are higher. Looking sppadly at 2003 which was examined
in section 6.6.2, theVIAE _ is low, up to 0.4. Overall Figure 71 clearly indies the
poorer performance of PCA-MCP in comparison witlyufeé 70 throughout most
training years.

In Figure 72 the general trend of the bias is simibr both PCA-MCP and linear

regression. Positive bias is occurring in earlyrgdeom 2000 to 2003 and negative bias
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in the years after 2003. This also holds for Figi8e however taking into account that

station 2 has bad quality data which explains B@3Xpike.
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Figure 70. MAE of Stornoway (reference) andrigure 71. MAE of Blackford Hill (reference) and
Salsburgh (target) for all training years and patem Machrihanish (target) for all training years and
combinations i.e. window lengthdVl, =24h, 48h, parameter combinations i.e. window length,, =

truncationsM, =3,6,9,12. 24h, 48h, truncationM, =3,6,9,12.
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Figure 72. Bias of Stornoway (reference) andrigure 73. Bias of Blackford Hill (reference) and
Salsburgh (target) for all training years and patm Machrihanish (target) for all training years and

combinations i.e. window lengthdl, =24h, 48h, parameter combinations i.e. window lengtM, =
truncationsM, =3,6,9,12. 24h, 48h, truncation$!, =3,6,9,12.

When using as training the earlier years would stpihe earlier suggestion that
the Blackford Hill performed poorly. In generalgetinclusion of the year 2010 did not
affect the PCA-MCP performance since the MAE wast kelatively low for 2010 and
at a similar level when compared to the other ingjryears.

6.6.5 Further PCA-MCP validation

Next, the parameter analysis setup measures o€ Ti&ldre examined. Figure 74a)
shows theMAE . for the two different window lengths! , = 24h andM , = 48h. It

indicates most of theMAE , values are concentrated up to 0.3 which showstheat

r

MAE ., for both window length choices was low however tkdeynot lie along the line

i.e. there is some scatter. Their choice, as meatian section 6.3.2, was undertaken
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after extensive parameter testing on the PCA-Merahm prior to choosing these
two window length values. As shown in Figure 74iape most observations lie below
the diagonal line,M , =48h was the best window length choice. Figure 7abd

indicates that the two window length, , = 24h, 48h are highly correlated.
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Figure 74. Target MAE and target Bias for window length oh2ahd 48h

The next figure, Figure 75 shows theae , for the four different truncations

combinationM, = 3,6,9,12. Similarly to the window length choice mentioned in

section 6.3.2, their choice was concluded too ateensive parameter testing on the
PCA-MCP algorithm. Mosivae , values lie below 0.3 which shows that thieg , for

all truncation combinations was low. There is maeatter in themae, of the
truncation choicedM, = 3,6 since the MAE values do not lie close to tregdhal. On
the contrary, it can be seen that for truncatibhs= 9,12 the MAE _, values lie closer

to the diagonal and the same holds for truncatibhs=6,9. Hence, the choice of

higher truncations seems to be the most approgoatee PCA-MCP performance.
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Figure 76 shows that the target bias for all trtiocacombinations has a similar
shape to MAE ones. It can be drawn that as the#tion gets higher the bias becomes
more variable for smaller truncations.
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Next, the MAE,, versus theMAE ; is presented in Figure 77a) and tNAE,,
versus MAE, in Figure 77b). From Figure 77a) we can see tharethis no

proportionality betweenMAE,, andMAE ., hence in this case it is not clear that

knowing the MAE , it quantifies us the predictability and thusdiéferent way to

tar 1

predict uncertainty should be investigated. In Fégti7b), since almost all observations
lie below the line, this verifies the overall overfprmance of the PCA-MCP method
against linear regression with a few cases beimyalkhe line which indicate a poorer
PCA-MCP performance.

From Figure 77c) it is depicted that in generakdéinregression has smaller bias
than PCA-MCP because it can be seen from the ilddt af graphs that more data lie
below the red line whereas for the right side & ¢gnaph more date lie above red line
and thus more data clash towards the zero linggession bias line. Hence, the earlier

observations from previous graphs can be verified.
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As far as the performance inde(f” ) shown in equation (63) is concerned, the

following graphs were created. Figure 78 showsstgoram of thePI for all possible

permutations of pairs of the 8 Met.Office statioAs.it can be seen, thel is below 1
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in almost all cases, and most often, it is betw@dnand 0.5. This means that in the
majority of cases, the error of the resource ptaxids between 10% and 50% of that
made using the standard linear regression.

200 25 30
|
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I 1 T T 1
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Performance Index

Figure 78. Performance Index histogram.

Figure 79 indicates th@l against Figure 79aMAE Figure 79b)MAE ., and

ref ? tar

Figure 79c)MAE , . The MAE _ ,MAE _, range from 0.04 to 0.3 and from 0.05 to 0.7

ref 7

respectively. However MAE, ranges from 0.1 to 1.3 and hence, it is the highest

Consequently, this graph is another justificatibthe better performance of PCA-MCP

when compared with linear regression. It is alsseobed that thePl is less than 1 for
most cases oMAE . which means that PCA-MCP performs well. The geneean
of the PI was also found to be 0.29, thus the oveMHE _ was found to be only the

29% of theMAE |,
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In Figure 80b) the linear regression bias has a giggpe and this can be interpreted
that if linear regression has extremely low biag, PCA-MCP cannot improve because
linear regression is performing well. However,he tower parts of the pear shape it can
be seen that there is improvement of the PCA-MCHEhaak In other words, the worse

linear regression is performing, the better the INIBP performance.
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Overall, a superiority of PCA-MCP over the standéiretar regression can be
verified from the graphs of Chapter 6. The finahgter, Chapter 7 will give the overall
conclusions and discussion of this research sumamgrithe most important PCA-

MCP’s findings but also noting the method’s limibais and room for improvement.
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Chapter 7 Conclusions of PCA asawind energy resour ce tool

This is the final chapter in which the key findirgysd limitations of this research as

well as the next steps and future work will be exgdl.

7.1 Summary of key findings

From the previous chapters of this thesis, the fkaings can be summarized as
following. Wind speed can indeed be treated asraahycal system and it was proven
that the time series analysis technique works.hHeamore, it was concluded that PCA
can be used successfully for wind forecasting psgpoand for wind resource
assessment purposes as an MCP method. The PCA-M@®Bdnlogy was proven to be
in most cases superior to simple linear regressioth can be used successfully as

measure of the predictions uncertainty.

7.1.1 Strengths and current limitations of PCA as a wimekcasting method

As demonstrated in more detail in Chapter 4, thannwnclusions for the
application of PCA as a forecasting method that lmamrmade are firstly that PCA is
capable of identifying weather regimes by beingealb represent the wind
measurements in the form of an attractor with arckructure. Furthermore, it was
demonstrated that this can be done both, by jusgwgind speed measurements and by

using multivariate measurements, such as wind speédvind direction combined.

Applying the PCA to wind forecasting demonstratedt tthe method is a reliable
forecasting method for forecasting wind speeds $oainead to day ahead. By
combining the PCA prediction with persistence prdn at very short time scales, it
was possible to eliminate the weakness of applAGA to a coarsely sampled wind
record. It was specifically found that persisterecenuch better than PCA at short lead

times up to 6 hours but that PCA outperforms pasce at longer lead timds.
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Using a single point of overlapping values in tloeetasting analysis i.en, = 1
rather than fitting a short time series of poin{X 1) overlap seems to yield the best

improvement (around 11.2%) of the PCA forecastesgults. In other words, the PCA
results were 11.2% closer to the actual result€amparison with the persistence

method. Thus it was determined that that the bestlapping values was,= 1. The
overall PCA improvement raised from below 8% fotyon, =2 nearest neighbours to

above 11% fom, =5 but then dropped again to around 9%. Using teodetoo many

neighbours might not have been appropriate sinte tao few the information used for
the analysis might be too little whereas on thetreoy, using too many might initially

show that we can obtain more information; howethase neighbours might actually lie

very far apart from each other in the phase spasefar as the reduced dimensiolig

are concerned, foM,=16 the PCA improvement seemed to be consistegly for

5.6%. There is clearly a distinct optimum which ae¢o be determined and this could

be possible by optimising the parameters througieeance at each site individually.

One of the most useful aspects of PCA over somer dtdrecasting techniques is
that it is based on an ensemble forecast usingrdes of similar past events. This
allows an estimation of the forecast accuracy atithe when the forecast is made. The
analysis showed that this estimated forecast umogytis a reliable predictor of the
actual forecasting error. This knowledge will befus for the wind farm operators to
evaluate their forecasts and will help with theic@ion making. Regarding the
limitations of PCA, gaps in wind data are a comrmpbenomenon which in the case of
PCA was overcome with the linear interpolation loé lata. The missing values were
treated in a similar way for the PCA-MCP case. Tihear interpolation for gap of

length N fromtimeT +1 to T + N, was performed by

U(T+i):U(T)+i—(U(T+Ng+1)—U(T)) (64)

(Ng +1)
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7.1.2 Strengths and current limitations of the PCA-MCRhod

In the PCA-MCP approach, the formalism determiresghape and coefficients of
the best relationship between the target and aremde site by treating the
measurements as representative of the joint dyrsdraystem, rather than one as input
and the other as output. When applied on a vaoksyation pairs some several hundred
kilometers apart, it was shown that it is almostaals superior to the basic standard
MCP using linear regression. More specifically, foe majority of cases, the error of
the resource prediction was found to be between a0é650% of that made using the
standard linear regression. Moreover, the mearetavtAE was found to be only the
29% of the linear regression MAE.

PCA-MCP seems robust since the MAE graphs areyfdlat for most of the
stations in comparison with simple linear regressidhis suggests that a good
performance of the standard linear regression M&ies strongly on having chosen a
good reference site (which may not always be olsviouadvance or even possible),

whereas the PCA-MCP method is fairly insensitiveatparticular choice of reference

site. Being able to calculate thAE,, as part of the PCA-MCP prediction also

provides a tool to estimate the actvbAE,, .

As was found from the first four MAE graph®JAE, is ranging from 0.7 to 1.2
thus is the highest when comparedM&E,,, and MAE, which are relatively low, i.e.

up to 0.4. The first 4 target stations bias grapitscated in general the existence of
negative bias and the reason behind this couldhbe RCA-MPC method predicts

slower wind speeds than simple linear regressias.ddwo reasons could be behind
this; possibly the calibration used in the PCA-M&Halysis is not yet optimal i.e. using
the mean and standard deviation rations as express€hapter 3.6.2 equation (30)
and equation (31). Secondly, the calibration wagopmed in order to minimise the

distribution error i.e. calibrate so as to expdw smallest error in the wind speed

distribution.
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The next four graphs, followed the same patterthadirst four MAE graphs i.e.

the MAE, was higher when compared tdAE_ and MAE_, . More specifically, the
MAE, was ranging from 0.7 to 1. Examining M&E,_, , it ranges between 0.1 and 0.3

and the lowest oneyAE , ranges from 0.1 to 0.2. It can be thus concludedl lthear

regression performed worse than PCA-MCP. Fromdbkefbur bias graphs for stations
5-8, it can be seen that the bias was above zermsi cases. Stations 5,6 and 8 are low
wind speed stations whereas stations 1,2,3,4,7hiyle wind speed stations. This
indicates that somehow bias is related with whethemprediction comes from a low or

high wind speed site, i.e. bias seems to be coectlaith the predicted wind speed.

As far as the PCA-MCP limitations are concerneck thitial idea that this
reference estimate might give clues about the tyuafithe target prediction could not
be substantiate as verified in the results of Gérapt The dataset used was originating
from Scotland, U.K. i.e. a ‘coastal’, mid-latitudeuropean climate. It would be
therefore useful to test how the method performscimampletely different types of
climate so that its sensitivity against climate ria would be investigated. It can be
concluded that good choice of window and truncatan affect the bias can since
similar spreads can be seen for bias values of B&dA-MCP and linear regression.
Longer window lengths and smaller truncations al asethe calibration methods have
to be explored more. Sensitivity parameters sucthadruncation value and window
length have proven to be important factors not dahthe PCA-MCP analysis, but also
for PCA as a forecasting technique, thus, a carefuakideration of these parameters
when applying PCA should be undertaken By finding dptimum parameter settings,
the minimisation of the distribution error and bwid be achieved.

7.1.3 Future work

To encounter the limitations described in the pyesi section 7.1.2, future
improvement steps should be considered. The nagegif the work is to subject it to a
systematic analysis to identify if it is possibtejudge the quality of the prediction at
the target site from the information available ie tinalyst. Other possible quantities to
test in the next stage of development are the astsnreturned from applying the
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truncated PCA-MCP predictor to the data from tHerence site for the training period
and thus predicting the target wind speed for taeing period. Also, quantify the
uncertainty based on both calibration stage anarmedf prediction for the target and

reference sites.

Since it performed well against spatially distatatisns such as for example for
station 1, Stornoway, it would be interesting teestigate PCA-MCP for offshore wind
resource assessment. Moreover, further validatiaheo PCA-MCP method should be
performed. This could be achieved with the useasfous datasets, multiple reference
and/or target sites, different training periods different choice of parameter settings
such as from half day to 7 days of window lengthtraincations varying from for
example, 9 to 12. However, when the method wouldeséed for different sites and

datasets, different parameter settings may be ahose

Further investigation should also be undertakeham to treat more effectively the
missing data values. For example, a possible solut be considered would be to use
the PCA forecasting methodology in order to fill time data missing values for the
PCA-MCP method, also explained in Appendix B. Wticection calculation should
also be worth being considered for systematic extadn in comparison with other wind

direction calculation methods as proposed by liteea[18].
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Appendix
Appendix A: Supplementary results of Chapter 5

The supplementary PCA pendulum application resufit€hapter 5 are presented

here with respect to the reference case of Tablglbparameter valuesiy =n/9, A:

=4, A =0.3,  =0.5, £ =0.3. Here, three representative values of eacanpsater are

shown.
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A1=10
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A.2 For the A values

A>=0.1
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Appendix B: Data quality

The data used for the analysis originated fromBA®C MIDAS dataset [75] and
were linearly interpolated as explained in Chaftérl and equation (64). Their quality
is depicted in Table B.1 for the years 2000-2010ilgV/short gaps of a few hours, up to
about a day, are unlikely to affect the resultderded gaps of many days should be
expected to affect the results. Strategies to atlog] could be to leave long gaps in the
data and then delete any rows in the delay mathnichvcontain missing values or to use
a more advanced interpolation. One possibility dooé to use the PCA forecasting
methodology from Chapter 4, to forecast from thst taeasurement before the gap and
backcast from the measurement after the gap tftlhe gap. This would be an option

to be explored in future.

Station Wind speed | Valid Data Missing Gaps(<4h | Gaps(>4h
data Data long) long)
1-Stornoway 96432 90746 5686 in 889 580 309
(94.1%) gaps
2-Blackford 96432 76931 | 19501 in 300 273 27
Hill (79.8%) gaps
3- 96432 92883 | 3549in 2085 1985 100
Machrihanish (96.3%) gaps
4-Salsburgh 96432 96101 331in 124 117 7
(99.6%) gaps
5-Prestwick 96432 94453 1979 in 640 524 116
Gannet (97.9%) gaps
6-Gogar bank 96432 94691 1741 in 364 288 76
(98.2%) gaps
7-Port Ellen 96432 94051 2381in 780 693 87
(97.5%) gaps
8-Bishopton 96432 94500 1932in 478 402 76
(98%) gaps
Table B1. Quality of data used for the analysis

Blackford Hill was different from the other stat®m that it had a very long period
of no data from the middle of 2003 to the midd|€004.
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Appendix C: The PCA forecasting algorithm

Appendices C and D contain all the R scripts [34¢di The lines of the scripts

starting with ‘#" are the comments of the code antlactual part of the algorithms.

C.1 Preparation of data and setting of parameters

# Load the wind speed data and extract the traiamdyprediction years for the chosen

site

# Do the following only if starting from fresh:
# load("wind_yr.RData")

print("Data loaded")

# select station

istn <- which(wind$stshort == "Ggb")
print(wind$stname][istn])

# save plots to file if idev is equals to jpg
# idev <- "jpg"

# Select parameters

# Training

# Select the year for training

yeartl <- 2008

yeart2 <- 2009

# Choose delay parameters

tau <-1

win <- 48

# Choose reduced dimension

# dimred <- 15

# Forecasting

# Year in which wind speed forecasting is carriatl o
yearp <- 2010

# Prediction horizon

horizon <- 25

# Number of nearest neighbours
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# nnearest <- 2
# Overlap for finding place on attractor
# overlap <- 1

# Number of predictions to be carried out (doingrg single hour would take far too
long)

Npred <- 100

# Training

print("Training ...")
source("Forecasting CS_3a.R")
# Prediction

print("Predicting ...")
source("Forecasting_CS_3b.R")
# Postprocessing
print("Postprocessing ...")
source("Forecasting CS_3c.R")

C.2 Training the PCA forecasting model

# TRAINING

# Find the entries in the record correspondingnéd year
idxt <- (wind$year >= (yeart1-1900) & wind$year €reart2-1900))
# extract the wind speed

ut <- wind$ulidxt,istn]

ut <- utflis.na(ut)]

# extract the wind direction

dirt <- wind$udir[idxt,istn]

dirt <- dirt[!is.na(dirt)]

# Prepare the delay matrix

Nrec = length(ut)

# Remove mean and scale by standard deviation
umean <- mean(ut, na.rm = TRUE)

usd <- sd(ut, na.rm = TRUE)

dmean <- mean(dirt, na.rm = TRUE)

dsd <- sd(dirt, na.rm = TRUE)
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yl <- (ut-umean)/usd

y2 <- (dirt-dmean)/dsd

# Create delay matrix

rowdel <- Nrec-tau*win

tarr <- matrix(nrow = rowdel,ncol=2*win)

for (i in 1:(tau*win)){
tarr[,i] <- y1[i:(i+rowdel-1)]
tarr[,(i+win)] <- y2[i:(i+rowdel-1)]

}

# Carry out PCA

svd(tarr) -> dtmp

lambda <- dtmp$d

svec <- t(dtmp$v)

pc <- dtmp$u

# Plot key results from Training

if (idev == "jpg") {

jpeg(paste("Spectrum_T_",wind$stshort[istn]," agd," ", yeart2,".jpeg",sep=""
), width = 600, height = 480, units = "px", poiats = 12, quality = 100, bg =
"white", res = NA, restoreConsole = TRUE)

}
par(mfrow=c(1,1))
par(mai=c(.8,0.8,.2,.2))
plot(lambda, main = "Training set singular values")
if (idev == "jpg") {dev.off()}
print("PCA completed")
dfull <- dim(svec)
##set new lambda
lambdafull <- matrix(data = 0, nrow = dfull[1], nice dfull[2])
for (i in 1:dfull[1]){lambdafull[i,i]<- lambdali]}
lambdared <- matrix(data = 0, nrow = dimred, ncalimred)
for (i in 1:dimred){lambdared][i,i]<- lambdali]}
lambdai<-matrix(0,ncol=dimred,nrow=dfull[2])
for (i in 1:dimred){lambdai[i,i]=1/lambda[i]}
svecR <- svec[l:dimred,]
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pPCR <- pc[,1:dimred]

# To show that it works plot a section of the tissgies, overlay the full reconstruction,
and the reconstruction using the reduced dimension

if (idev =="jpg") {
jpeg(paste("Training_example",dimred,".jpeg",sep="width = 600, height =
480, units = "px", pointsize = 12, quality = 75¢ = "white", res = NA,
restoreConsole = TRUE)}

par(mfrow=c(1,1))

par(mai=c(.8,0.8,.2,.2))

ptime <- 1:(2*win)

ydellrecfull <- pc[1:(win+1),]%*%lambdafull%*%svec
ylrecfull <- c(ydellrecfull[1,1:(win-1)],ydellrechi{win])
utrecfull <- ylrecfull*usd + umean

ydellrec <- pcR[1:(win+1),]%*%lambdared%*%svecR
ylrec <- c(ydellrec[1,1:(win-1)],ydellrec[,win])

utrec <- ylrec*usd + umean

plot(ptime,ut[ptime],"l", xlab = "time (h)", ylab =u (m/s)")
lines(ptime,utrecfull,col = "green”, Ity = 3)
lines(ptime,utrec,col = "red", Ity = 1)

if (idev == "jpg") {dev.off()}

C.3 Predicting with the PCA forecasting model

# PREDICTION

# Extract the wind speeds and directions for tleligtion year
# Number of overlapping time points for finding nest neighbours
idxp <- wind$year == (yearp - 1900)

tyearp <- seq(1,length(idxp[idxp]))

upi <- approx(tyearp,wind$u[idxp,istn],tyearp)

up <- upidy

dirpi <- approx(tyearp,wind$udir[idxp,istn],tyearp)

dirp <- dirpi$y

# number of wind speed measurements (a full ye@@87
Npy <- length(up)
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# maximum number of predictions is the number ofsueements minus the history
needed to create time delay matrix for finding plan attractor with specific overlap
minus the prediction horizon

Npredmax <- Npy - tau*win - overlap - horizon

# spread out the actual predictions over the year
istep <- floor(Npredmax/Npred)

# rescale wind speeds and

ypl <- (up-umean)/usd

yp2 <- (dirp-dmean)/dsd

delaylength <- tau*win + overlap - 1

idelay2 <- seq((-delaylength+1), 0, by = 1)

# prepare matrices for predictions and errors alf ase vectors of actual current
observation

upredicted <- matrix(nrow = Npred, ncol = horizon)
dupredicted <- matrix(nrow = Npred, ncol = horizon)
prederr <- matrix(nrow = Npred, ncol = horizon)
uactual <- matrix(nrow = Npred, ncol = horizon)
upersist <- matrix(nrow = Npred, ncol = horizon)
persisterr <- matrix(nrow = Npred, ncol = horizon)
uobs <- array(dim = Npred)

dirobs <- array(dim = Npred)

upast <- array(dim = c(Npred,delaylength))

tarrcur <- matrix(nrow = overlap, ncol = 2*win)
DistVector <- array(dim = c(hnearest,dimred))
print("Start the loop")

# Prediction loop:

for (i0 in 1:Npred){

# start at beginning of the year, select i0 Hag2 section; make delay matrix,
project onto reduced EOF from training set, firghrest neighbours and predict;
compare; repeat for all possible sections in 2010

Source ("Forecasting_CS_3b1.R")
# Plot intermediate results
# if (I0 == 3
# source("Forecasting_CS_3b2.R")
# }
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} # end of the prediction 'for (i0 in 1:Npred)' lpo
# save original prediction
upredicted_std <- upredicted

C.4 Post-processing of the PCA forecasting model

# POSTPROCESSING
ptime <- (1:horizon) - 1
# trying various correction filters
filter <- array(0,dim=horizon)
filterlength <- horizon - 1
filter[1:filterlength] <- seq(1,1/filterlength,by=1/filterlength )
for (i0 in 1:Npred){
upredicted[iO,] <- upredicted_std[i0,] - filter*fuedicted_std[i0,1] - uobsJiO])
}
# Calculate mean errors and uncertainties
prederr <- upredicted - uactual
persisterr <- upersist - uactual
# only select the cases in the relevant wind spaege
idx <- (uobs >= 4)
#MSE
meanperr <- colMeans(abs(prederr[idx,]),na.rm=TRUE)
sderr <- apply(abs(prederr[idx,]), MARGIN=2,FUN=3@.rm=TRUE)
meanuncert <- colMeans(dupredicted[idx,],na.rm=TRUE
sduncert <- apply(abs(dupredicted[idx,]),MARGIN=BJR=sd, na.rm=TRUE)
persistmean <- colMeans(abs(persisterr[idx,]),na¥RUE)
persistsd <- apply(abs(persisterr[idx,]), MARGIN=BJR=sd, na.rm=TRUE)
#Bias
biasperr <- colMeans((prederr[idx,]),na.rm=TRUE)
bsderr <- apply((prederr[idx,]),MARGIN=2,FUN=sd,.ma=TRUE)
biasuncert <- colMeans(dupredicted[idx,],na.rm=TRUE
bsduncert <- apply((dupredicted[idx,]),MARGIN=2,FgbUd, na.rm=TRUE)
biaspersistmean <- colMeans((persisterr[idx,])maTRUE)
bpersistsd <- apply((persisterr[idx,]), MARGIN=2,FEBd, na.rm=TRUE)
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#RMSE

rmseperr <- colSums(prederr[idx,]*2/length(whichkiigna.rm=TRUE)

rmseuncert <- colSums(dupredicted[idx,]*2/length@klidx)),na.rm=TRUE)
rmsepersistmean <- colSums(persisterr[idx,]*2/le(ghich(idx)),na.rm=TRUE)
performanceindex <- round(mean((persistmean-meapmean(persistmean)*100,1)
# Plot the annually averaged statistics MSE

ymax <- max(c(meanuncert+sduncert,meanperr,persasijrl.0l

if ((idev == "jpg")) {

jpeg(filename = paste("meanPred_err_h_", dimred, hnearest, " ", overlap,
" " horizon, ".jpeg", sep = "), width = 600, lghit = 480, units = "px", pointsize

=12, quality = 100, bg = "white", res = NA, rest@onsole = TRUE)
}
par(mfrow=c(1,1))
par(mai=c(1.2,1.2,0.8,.2))

mtext <- paste(wind$stshort[istn],": W=", win,", D=dimred,", o=", overlap, ", nn=",
nnearest, "; N=", Npred)

plot(ptime,meanperr,"l", col="red", xlab="predictio time (h)", vylab =
expression(paste("MAE ",symbol(delta),” u (m/s)9lm = ¢(0,ymax), yaxs="i", lwd =
2)

points(ptime,meanuncert ,pch=21,col="blue")

# lines(ptime, meanperr+sderr )

# lines(ptime,meanperr-sderr )

lines(ptime,meanuncert + sduncert ,Ity = "dotteal5tblue”)
lines(ptime,meanuncert - sduncert, Ity="dotted"s¢tblue")
lines(ptime,persistmean,col="darkgreen", Ity =wid = 2)

legend(horizon*0.7,0,c("predicted”, "actual","psteince"), Ity = ¢(0,1,4), «col
=c("blue”,"red","dark green"), pch =c(21,NA,NA),ugt = 0)

grid(col="darkgrey")
if (idev == "jpg") {dev.off()}
# Plot the annually averaged statistics BIAS
ymax <- max(c(biasuncert+bsduncert,biasperr,bizsgtenean))*1.01
if ((idev == "jpg")) {
jpeg(filename = paste("biasPred_err_h_", dimred, finearest, " ", overlap, " ",

horizon, ".jpeg", sep =""), width = 600, heigh#80, units = "px", pointsize = 12,
guality = 100, bg = "white", res = NA, restoreColes= TRUE)
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par(mfrow=c(1,1))
par(mai=c(1.2,1.2,0.8,.2))

mtext <- paste(wind$stshort[istn],": W=", win,", D=dimred,", o=", overlap, ", nn=",
nnearest, "; N=", Npred)

plot(ptime,biasperr,”l',  col="red", xlab="predictio time (h)", ylab
expression(paste("Bias ",symbol(delta),” u (m/s)y)im = c(0,ymax), yaxs="i", lwd
2)

# points(ptime,biasuncert ,pch=21,col="blue")

#lines(ptime, biasperr+bsderr)
#lines(ptime,biasperr-bsderr )

# lines(ptime,biasuncert + bsduncert ,Ity = "dotteal="blue")
# lines(ptime,biasuncert - bsduncert, Ity="dottedl5"blue")
lines(ptime, biaspersistmean,col="darkgreen", I, swd = 2)
legend(horizon*0.7,0,c("actual”,"persistence"), #yc(1,4), col =c("red","dark green"),
yjust = 0)

grid(col="darkgrey")

if (idev == "jpg") {dev.off()}

# Plot the annually averaged statistics RMSE

ymax <- max(c(rmseuncert,rmseperr,rmsepersistmtiaf))
if ((idev == "jpg")) {

jpeg(filename = paste("rmsePred_err_h_", dimred,inearest, " ", overlap, " ",
horizon, ".jpeg", sep =""), width = 600, heigh#80, units = "px", pointsize = 12,
guality = 100, bg = "white", res = NA, restoreColes= TRUE)

}
par(mfrow=c(1,1))
par(mai=c(1.2,1.2,0.8,.2))

mtext <- paste(wind$stshort[istn],": W=", win,", D=dimred,", o=", overlap, ", nn=",
nnearest, "; N=", Npred)

plot(ptime,rmseperr,"l",  col="red", xlab="predictio time (h)", ylab =
expression(paste("RMSE ", symbol(delta)," u (mjs)y)im = c(0,ymax), yaxs="i", lwd
= 2)

#points(ptime,rmseuncert ,pch=21,col="blue")

# lines(ptime,meanuncert + sduncert ,Ity = "dotteol="blue")
# lines(ptime,meanuncert - sduncert, Ity="dotteol5tblue")
lines(ptime,rmsepersistmean,col="darkgreen", 18 twd = 2)
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legend(horizon*0.7,0,c("actual”,"persistence"), #yc(1,4), col =c("red","dark green"),
yjust = 0)

grid(col="darkgrey")
if (idev == "jpg") {dev.off()}

Appendix D: The PCA-MCP algorithm

D.1 Main R script of the PCA-MCP model: preparatioh data and setting of

parameters

#load data
load("Winds_8st 2000-2011.RData")
require("openair”)
source("PCAMCP_function.R")
source("simplelrerror_function.R")
source("lin_reg_pred.R")
tau <-1
Ytrain<-seq(099,109)
Nyear<-length (Ytrain)
trunca<-c(3,6,9,12)
wina<-c(1,2,3,4)*24
Ntrunc<-length(trunca)
Nwin <- length(wina)
#store reference,target and Ir MAE,Bias and peréorce index in matrices
Meanerror<-array(dim=c(8,8,Nyear,Nwin,Ntrunc,3))
abserrorref <- array(dim=c(8,8,Nyear,Nwin,Ntrunc))
biasref <- array(dim=c(8,8,Nyear,Nwin,Ntrunc))
abserrortar <- array(dim=c(8,8,Nyear,Nwin,Ntrunc))
biastar <- array(dim=c(8,8,Nyear,Nwin,Ntrunc))
abserrorlin <- array(dim=c(8,8,Nyear,Nwin,Ntrunc))
biaslin <- array(dim=c(8,8,Nyear,Nwin,Ntrunc))
Perfindex <- array(dim=c(8,8,Nyear,Nwin,Ntrunc))
for (stlin 1:1) {

for (st2 in 8:8) {
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# Find records where we have both sites

idx<-(lis.na(uwind[st1,])&
lis.na(uwind[st2,])&'is.na(udir[stl,])&!is.na(udst2,]) )

# Extract the wind speed & wind direction

#wind speed for referene site

uabs <- uwind[st1,idx]

#wind speed for target

uabs2 <- uwind[st2,idx]

#wind direction for GGB

dabs<-udir[stl,idx]

#wind direction for BFH

dabs2<-udir[st2,idx]

date <- timeseq|[idx]

#create vector combination consisting of windespand direction
#positive u coming from west to east, negatiw®moning from east to west

#positive v coming from north to south, negativeoming from south to
north

#ul and v1 is the vector combination of wind spaed direction for GGB
ul<-uabs*sin(dabs/180*pi)

vl<-uabs*cos(dabs/180*pi)

#u2 and v2 is the vector combination of wind spaed direction for BFH
u2<-uabs2*sin(dabs2/180*pi)

v2<-uabs2*cos(dabs2/180*pi)

# Prepare past data (as we always use the sare ye
jdx <- date$year >= 099 & date$year <= 110
upastl<-ul[jdx]
vpastl<-v1[jdx]
referencepast <-sqrt(upastl*2+vpastli”2)
upast2<-u2[jdx]
vpast2<-v2[jdx]
targetpast <-sqrt(upast2”2+vpast2/2)
past<-cbind(ul[jdx],v1[jdx])

for (iyearin 1:1) {
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jdx<-((date$year==Ytrain[iyear]) | (date$yeaktrain[iyear+1]))
ul09 <- ulfjdx]

v209 <- v1[jdx]

u309<-u2[jdx]

v409<-v2[jdx]

Nrec <- length(u109)

nchan<- 4

signalfull <- matrix(nrow=Nrec,ncol=4)
signalfull[,1] <- u109

signalfull[,2] <- v209

signalfull[,3] <- u309

signalfull[,4] <- v409

xbreaks <- seq(0,500)

for (iwin in seq (1,2)) {

win <- wina[iwin]

for(itrunc in 1:2) {
trunc <- trunca]itrunc]
casename<paste("St",st1,"St",st2,"Y",
Ytrain[iyear]+1900,"win",win,"Trunc",trunc,
sep=""
PCAMCP((signalfull,tau,win,trunc,past,casename
->prediction2
targetpred <-sqrt(prediction2[,3]*2+
prediction2[,4]"2)
referencepred<- sqrt(prediction2[,1]*2
+prediction2[,2]"2)
#histogram of reference and target site
# predictions saved as jpeg
jpeg(filename=paste("./MCP graphs/",
casename,"Histogram actual and pred ref.jpeg"

sep="))
histreferencepast<-hist(referencepast,

175



xbreaks ,plot=FALSE)

histreferencepred<-hist(referencepred, xlmgegk
prob=TRUE,xlab="wind speed
(m/s)",main="",xlim=c(0,30))

lines(histreferencepast$mid,
histreferencepast$density, col="red", Iwd=4)
legend(20,.1,c("Predicted ws",

"Actual ws"),col=c("black","red"),
pch=c(22,NA),lty=c(0,1))

dev.off()

jpeg(filename = paste("./MCP graphs/",
casename,"Histogram actual and pred target'jp

sep=""))

histtargetpast<-hist(targetpast, xbreaks,
plot=FALSE)

histtargetpred<-hist(targetpred, xbreaks,
prob=TRUE,xlab="wind speed (m/s)",

main="",

xlim=c(0,30))
lines(histtargetpast$mid,histtargetpast$dgnsi
col="red", lwd=4)

legend(20,.1,c("Predicted ws", "Actual ws"),
col=c("black","red"), pch=c(22,NA),lty=c(0,1)

dev.off()
#Meanerror is the bias of reference,
#target and linear regression

Meanerror[stl,st2,iyear,iwin,itrunc,1] <-
mean(referencepred) - mean(referencepast)

Meanerror[stl,st2,iyear,iwin,itrunc,2] <-
mean(targetpred) - mean(targetpast)

Meanerror[stl,st2,iyear,iwin,itrunc,3] <-
simplelrerror(uabs,uabs2,referencepast, pagét

histreferencepast<-hist(referencepast, xlsreak
,plot=FALSE)

histreferencepred<-hist(referencepred, xlweagk
plot=FALSE)

histtargetpast<-hist(targetpast, xbreaks ,
plot=FALSE)
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histtargetpred<-hist(targetpred, xbreaks ,
plot=FALSE)

#abserroref,abserrortar are the MAE
#of reference and target
#biasref,biastar are the Bias of referenaktarget

errorref<-histreferencepred$density-
histreferencepast$density

abserrorref[stl,st2,iyear,iwin,itrunc] <-
sum(abs(errorref))

biasref[stl,st2,iyear,iwin,itrunc]<-sum((emef))

errortar<-histtargetpred$density-
histtargetpast$density

abserrortar[stl,st2,iyear,iwin,itrunc] <-
sum(abs(errortar))

biastar[st1,st2,iyear,iwin,itrunc] <-sum((@ntar))
# If abserrorref is somehow correlated with

# abserrortar, then we can say that the edrsef
# is somehow a measure of the 'predictability

# given a linear regression histogram

linreghist <-
lin_reg_pred(uabs,uabs2,referencepast)

errorlin<-linreghist-histreferencepast$densit
#MAE and Bias for simple linear regression

abserrorlin[stl,st2,iyear,iwin,itrunc]<-
sum(abs(errorlin))

biaslin[st1,st2,iyear,iwin,itrunc]<-sum((erlia))

#Performance index, ratio of absolute absero
#over abserrorlin (we want it to be less than

Perfindex[st1,st2,iyear,iwin,itrunc] <- abswetar
[stl,st2,iyear,iwin,itrunc] /
abserrorlin[stl,st2,iyear,iwin,itrunc]

#converting back to degrees wind directiom fo
#wind rose purposes

jpeg(filename = paste("./MCP
graphs/",casename,"Windrose actual
target.jpeg”,sep=""))
windrosel <- data.frame(cbind(targetpast,
atan2(upast2,vpast2)/pi*180))
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names(windrosel) <- c("U","dir")
windRose(windrosel,ws="U",wd="dir")
dev.off()

jpeg(filename = paste("./MCP
graphs/",casename,"Windrose actual

ref.jpeg”,sep=""))

windrose2 <- data.frame(cbind(referencepast,
atan2(upastl,vpastl)/pi*180))

names(windrose2) <- c("U","dir")
windRose(windrose2,ws="U",wd="dir")
dev.off()

jpeg(filename = paste("./MCP
graphs/",casename,"Windrose predicted target

Jpeg",sep="")

windrose3 <- data.frame(cbind(targetpred,
atan2(prediction2[,3],prediction2[,4])/pi*180

names(windrose3) <- c("U","dir")
windRose(windrose3,ws="U",wd="dir")
dev.off()

jpeg(filename = paste("./MCP
graphs/",casename,"Windrose predicted

ref.jpeg”,sep=""))

windrose4 <- data.frame(cbind(referencepred,
atan2(prediction2[,1],prediction2[,2])/pi*180

names(windrose4) <- c("U","dir")
windRose(windrose4,ws="U",wd="dir")
dev.off()

D.2 Training the PCA-MCP method

# create function which performs PCA
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training <- function(signalfull,tau,win,nchan,caseme){
dims<-dim(signalfull)
Nrec<-dims[1]
nchan<-dims[2]
smean <-colMeans(signalfull)
#sstdev <-var(signalfull)
sstdev <- apply(signalfull,2,sd)
signalv <- matrix(nrow=Nrec,ncol=nchan)
# training rescaled data
for (i in 1:nchan){
signalv[,i] <- (signalfull[,i]-smean[i])/sstdeN}
# create the time-delay matrix
Ntd <- Nrec- (win-1)*tau
Ncd= nchan*win
Ntd->n
Ncd->m
tarr <- array(0, c(Ntd,Ncd))
for (i in 1:win) {
for (j in 1:nchan){
signalv[(1+(i-1)*tau):(Ntd+(i-1)*tau),j] -> tafr(i+(-1)*win)]

}

# carry out a Singular Value Decomposition andtgpke output into singular
# values (lambda), singular vectors (svec) andcgal components, then plot a
# selection of them

svd(tarr) -> dtmp
#singular vectors
svec <- dtmp$v
#principal components
pc <- dtmp$u
#singular values
lambda <- dtmp$d
jpeg(filename = paste("./MCP graphs/",casenamaptia.jpeg”,sep=""))
plot(lambda)
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dev.off()
training<-dtmp

D.3 Preparing the PCA-MCP method for prediction

#truncate to the relevant components
preparation<-function(fullpca,trunc){
svec <- fullpca$v
pc <- fullpca$u
lambdafull <- fullpca$d
dims <- dim(pc)
m <- dims[2]
Sm<-t(svec[1:(m/2),1:trunc])
Sp<-t(svec[1l:m,1:trunc])
pct <- pc[,1:m]
lambdaa <- diag(lambdafull[1:trunc])
lambdai <- diag(1/lambdafull[1:trunc])
preparation <- list(Sm,Sp,pct,lambdaa,lambdai)

D.4 Predicting with the PCA-MCP method

#prepare time-delay matrix for historical data
prediction <- function(past,tau,win,pca_t,sstdexgamsstdevcorr,smeancorr){
dims<-dim(past)
nchan2<-dims[2]
Nrec2<-dims[1]
nchan<-2*nchan2
Ntd <- Nrec2- (win-1)*tau
Ncds= nchan2*win
Ncd= nchan*win
signalpast<-array(0,dims)
for (j in 1:nchan2){
signalpast[,j]<-(past[,j]-smean]j])/sstdeVv[j]
}

tarr2 <- array(dim=c(Ntd,Ncds))
for (i in 1:win) {
for (j in 1:nchan2){
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signalpast[(1+(i-1)*tau):(Ntd+(i-1)*tau),j] ->atr2[,(i+(j-1)*win)]

}

Sm <- pca_t[[1]]

Sp <- pca_{[[2]]

lambdaa <- pca_t[[4]]

lambdai <- pca_t[[5]]

#get new pc's

#Pp <-tarr2%*%t(Sm)%*%lambdai

#Yp<-Pp%*%lambdaa%*%Sp

Yp <- tarr2 %*% t(Sp[,1:(hchan2*win)]) %*% Sp

# new full matrix with the first two channels repucted as a combination of

#signalpast and signalv

signalpred<-array(0,c(Ntd,nchan))

for (j in 1:nchan){
signalpred[,j]<-Yp[,(j-1)*win+1]

}

#going back to wind speeds, normalised ones

#wind speeds reference and target sites, scalngrg period

scaledpred<-array(0,c(Ntd,nchan))

for (j in 1:nchan){
scaledpred|,j]<-signalpred][,j]*sstdevcorr[j]+snmearr[j]

}

prediction<-scaledpred
}

D.5 Performing simple linear regression for comgan with the PCA-MCP
method

#Perform linear regression and calculate error

simplelrerror<-function (uabs,uabs2,referencepasgietpast) {
Im(uabs2~uabs)->simpleMCP
coef(simpleMCP)->coef
coef[1]+coef[2]*referencepast->up
Irerror<-mean(up)-mean(targetpast)
simplelrerror<-Irerror

D.6 Calibration of the PCA-MCP method predictions

PCAMCP<-function(signalfull,tau,win,trunc,past,caame) {
source("training_function.R")
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source("preparation_function.R")

source("prediction_function.R")

source("'simplelrerror_function.R")

dims<-dim(signalfull)

nchan<-dims[2]

smean<-colMeans(signalfull)

#sstdev<-var(signalfull)

sstdev <- apply(signalfull,2,sd)
training(signalfull,tau,win,nchan,casename)->faflp
preparation(fullpca,trunc)->pca _t
prediction(signalfull[,(1:(nchan/2))],tau,win,pdssstdev,smean,sstdev,smean) ->
predictionl

smean2<-colMeans(predictionl)

#sstdev2<-var(predictionl)

sstdev2 <- apply(prediction1,2,sd)

smeancorr<-smean*(smean/smean?2)

sstdevcorr<-sstdev*(sstdev/sstdev2)
prediction(past,tau,win,pca_t,sstdev,smean,sstategmeancorr) -> prediction2
PCAMCP<-prediction2

D.7 Calculating simple linear regression prediction

lin_reg_pred<-function (uabs,uabs2,referencepast) {
Im(uabs2~uabs)->simpleMCP
coef(simpleMCP)->coef
coef[1]+coef[2]*referencepast->up
zdx <- (up <0)
upfzdx] <- 0
xbreaks <- seq(0,500)
histlregpred<-hist(up, xbreaks , plot=FALSE)
return(histiregpred$density)

D.8 Depicting PCA-MCP results in comparison witmple linear regression for
different parameter settings

if ('exists("abserrorlin™)) {
load("trial3.RData")
stl <- seq(1,8)

st2 <- seq(1,8)
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yr <- seq(2000,2010)
wn <- seq(1,4)
trn <- seq(1,4)
}
# choose which target station, truncation and wingtou want to plot:
# Then plot for all reference stations and years
istl <- stl
ist2 <- 3
iwn <- 2
itrn <- 2
maintext <- paste("Target:",ist2,"; Win =", winafn], "; Trunc =", trunca]itrn])
par(mar=c(4,4,2,1))

matplot(stl,abserrorlin[,ist2,,iwn,itrn], "b", Ity 2, pch=20, xlim=c(0,8), ylim=c(0,1.2),
xlab = "Reference Station", ylab = "MAE", main = imxt)

matplot(stl,abserrorref[,ist2,,iwn,itrn], "b", Ity 3, pch=21, add=TRUE)
matplot(stl,abserrortarf,ist2,,iwn,itrn], "b", lty1, pch=24, add=TRUE)

legend(0,1.2,legend=c("Linear Regression”, "Refee&n"Target"), Ity = ¢(2,3,1), pch
=¢(20,21,24))

# choose which reference station, truncation amalew you want to plot:

# Then plot for all target stations and years

istl <-5

ist2 <- st2

iwn <- 2

itrn <- 2

maintext <- paste("Reference:",ist1,"; Win =", @&jiwn], "; Trunc =", trunca]itrn])
par(mar=c(4,4,2,1))

matplot(stl,abserrorlin[istl,ist2,,iwn,itrn], "b"lty = 2, pch=20, xlim = ¢(0,8),
ylim=c(0,1.2), xlab = "Target Station", ylab = "MAEmNain = maintext)

matplot(stl,abserrorreffistl,ist2,,iwn,itrn], "Bty = 3, pch=21, add=TRUE)
matplot(stl,abserrortar[istl,ist2,,iwn,itrn], "ty = 1, pch=24, add=TRUE)

legend(0,1.2,legend=c("Linear Regression”, "Refee&n"Target"), Ity = ¢(2,3,1), pch
=¢(20,21,24))

# choose which pair of Reference station, truncadiod window you want to plot:
# Then plot for all target stations and years

183



istl <- 3

ist2 <- 6

iwn <- c(1,4)

itrn <- ¢(1,4)

maintext <- paste("Reference:",istl, "Target:"2)st
par(mar=c(4,4,2,1))

matplot(yr,abserrorlin[istl,ist2,,1,1], "b", Ity =2, pch=20, xlim= ¢(1999,2009),
ylim=c(0,1.2), xlab = "Training year", ylab = "MAEMain = maintext, col="black")

matplot(yr,abserrorref[istl,ist2,,iwn,1], "b", Ity 3, pch=21, col = "blue", add=TRUE)
matplot(yr,abserrortar[istl,ist2,,iwn,1], "b", ky1, pch=24, col="red", add=TRUE)
matplot(yr,abserrorref[istl,ist2,,iwn,2], "b", Ity 3, pch=19, col="blue", add=TRUE)
matplot(yr,abserrortar[istl,ist2,,iwn,2], "b", ky1, pch=17, col="red", add=TRUE)

legend(1999,1.2,legend=c("Linear Regression”, "Refee”, "Target"), Ity = ¢(2,3,1),
pch = ¢(20,21,24), col=c("black","blue","red"))

# if you want to see if there is any correlatiomvzEen the reference error and the target
error:

par(mfrow=c(2,1))

matplot(abserrorref,abserrortar,pch=20, col="blue" xlab="Reference MAE",
ylab="Target MAE", xlim=c(0,max(abserrorref,na.rmRUE)),
ylim=c(0,max(abserrortar,na.rm=TRUE)), xaxs="i"xga= "i")

lines(c(0,1.1),c(0,1.1), col="red", lwd= 2)

# if you want to see if there is any correlatiortween the linear regr error and the
target error:

matplot(abserrorlin,abserrortar,pch=20, col="bluglab="Linear regression MAE",
ylab="Target MAE", xlim=c(0,max(abserrorlin,na.rmRUE)),
ylim=c(0,max(abserrortar,na.rm=TRUE)), xaxs="i"xga= "i")

lines(c(0,1.1),c(0,1.1), col="red", lwd= 2)
# Overall performance profile

hist(Perfindex,breaks = seq(0,max(Perfindex[igdi{Rerfindex)])+0.1,by =0.1),
prob=TRUE, xlab = "Performance Index", main="")

matplot(abserrorref[is.finite(Perfindex)],Perfindexfinite(Perfindex)],pch=20,
col="blue", xlab="Reference MAE", ylab="Performance Index",
xlim=c(0,max(abserrorref,na.rm=TRUE)),
ylim=c(0,max(Perfindex[is.finite(Perfindex)])), xax"i", yaxs ="i")

lines(c(0,1.1),c(0,1.1), col="red", lwd= 2)

matplot(abserrortar[is.finite(Perfindex)],PerfindieXinite(Perfindex)],pch=20,
col="blue", xlab="Target MAE", ylab="Performance diex",
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xlim=c(0,max(abserrortar,na.rm=TRUE)),
ylim=c(0,max(Perfindex[is.finite(Perfindex)])), xax"i", yaxs ="i")

lines(c(0,1.1),c(0,1.1), col="red", lwd= 2)

matplot(abserrorlin[is.finite(Perfindex)],Perfindexfinite(Perfindex)],pch=20,
col="blue", xlab="Linear Regression MAE", vylab="Remmance Index",
xlim=c(0,max(abserrorlin,na.rm=TRUE)),
ylim=c(0,max(Perfindex][is.finite(Perfindex)])), xax"i", yaxs = "i")

lines(c(0,1.1),c(0,1.1), col="red", lwd= 2)
# Mean and Median of Performance index
mean(Perfindex]is.finite(Perfindex)])
median(Perfindex|is.finite(Perfindex)])
if (lexists("abserrorlin®)) {

load("trial3.RData")

stl <- seq(1,8)

st2 <- seq(1,8)

yr <- seq(2000,2010)

wn <- seq(1,4)

trn <- seq(1,4)
}

# plot the mean absolute error for the three meass{iin.Reg;PCA ref and PCA target)
averaging over all years, all windows and all tratians

# Plotting for each target station against therszfee stations as the x-axis
par(mfrow=c(1,1))

Ist2 <-1

{if (ist2 == 1) { stx <- seq(2,8)}

if (ist2 == 8) {stx <- seq(1,7)}

if (ist2 >1 & ist2< 8) {stx <- c(seq(1,ist2-1),sesfR+1,8))}

matplot(stx,apply(abserrorlin[stx,ist2,,1,],c(1) amena.rm=TRUE),"b",pch=20,Ity="das
hed", ylim= ¢(0,1.1), xlab = "Reference Stationlaty = "MAE", main=paste("Target
station",ist2), col="black", xlim=c(1,8))

matplot(stx,apply(abserrorref[stx,ist2,,,],c(1),mga.rm=TRUE),"b",pch=19,lty="dott
ed",add=TRUE, col="blue")

matplot(stx,apply(abserrortar[stx,ist2,,,],c(1), mgea.rm=TRUE),"b",pch=24,lty="solid
",add=TRUE, col="red")

legend("topleft”,legend=c("Linear Regression"”, "&eihce", "Target"), Ity = c¢(2,3,1),
pch = ¢(20,19,24), col=c("black","blue","red"))
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ist2 <-2

{if (ist2 == 1) { stx <- seq(2,8)}

if (ist2 == 8) {stx <- seq(1,7)}

if (ist2 >1 & ist2< 8) {stx <- c(seq(1,ist2-1),sesfR+1,8))}

matplot(stx,apply(abserrorlin[stx,ist2,,1,],c(1)amena.rm=TRUE),"b",pch=20,lty="das
hed", ylim= ¢(0,1.1), xlab = "Reference Stationlaty = "MAE", main=paste("Target
station",ist2), col="black", xlim=c(1,8))

matplot(stx,apply(abserrorref[stx,ist2,,,],c(1), mgea.rm=TRUE),"b",pch=19,Ity="dott
ed",add=TRUE, col="blue")

matplot(stx,apply(abserrortar[stx,ist2,,,],c(1), mge.rm=TRUE),"b",pch=24,Ity="solid
",add=TRUE, col="red")

legend("topright",legend=c("Linear Regression”, f&ence", "Target"), Ity = ¢(2,3,1),
pch = ¢(20,19,24), col=c("black","blue","red"))

Ist2 <-3

{if (ist2 == 1) { stx <- seq(2,8)}

if (ist2 == 8) {stx <- seq(1,7)}

if (ist2 >1 & ist2< 8) {stx <- c(seq(1,ist2-1),sesfR+1,8))}

matplot(stx,apply(abserrorlin[stx,ist2,,1,],c(1) amena.rm=TRUE),"b",pch=20,Ity="das
hed", ylim= ¢(0,1.1), xlab = "Reference Stationlaly = "MAE", main=paste("Target
station",ist2), col="black", xlim=c(1,8))

matplot(stx,apply(abserrorref[stx,ist2,,,],c(1),mga.rm=TRUE),"b",pch=19,lty="dott
ed",add=TRUE, col="blue")

matplot(stx,apply(abserrortar[stx,ist2,,,],c(1),mge.rm=TRUE),"b",pch=24,Ity="solid
",add=TRUE, col="red")

legend("topright”,legend=c("Linear Regression”, f&ence", "Target"), Ity = ¢(2,3,1),
pch = ¢(20,19,24), col=c("black","blue","red"))

ist2 <-4

{if (ist2 == 1) { stx <- seq(2,8)}

if (ist2 == 8) {stx <- seq(1,7)}

if (ist2 >1 & ist2< 8) {stx <- c(seq(1,ist2-1),sestR+1,8))}

matplot(stx,apply(abserrorlin[stx,ist2,,1,],c(1) amena.rm=TRUE),"b",pch=20,lty="das
hed", ylim= ¢(0,1.1), xlab = "Reference Stationlaty = "MAE", main=paste("Target
station",ist2), col="black", xlim=c(1,8))

matplot(stx,apply(abserrorref[stx,ist2,,,],c(1), mgea.rm=TRUE),"b",pch=19,Ity="dott
ed",add=TRUE, col="blue")

matplot(stx,apply(abserrortarstx,ist2,,,],c(1), mge.rm=TRUE),"b",pch=24,Ity="solid
",add=TRUE, col="red")
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legend("topright”,legend=c("Linear Regression”, f&ence", "Target"), Ity = ¢(2,3,1),
pch = ¢(20,19,24), col=c("black","blue","red"))

ist2 <-5

{if (ist2 == 1) { stx <- seq(2,8)}

if (ist2 == 8) {stx <- seq(1,7)}

if (ist2 >1 & ist2< 8) {stx <- c(seq(1,ist2-1),sesfR+1,8))}

matplot(stx,apply(abserrorlin[stx,ist2,,1,],c(1) amena.rm=TRUE),"b",pch=20,lty="das
hed", ylim= ¢(0,1.1), xlab = "Reference Stationlaty = "MAE", main=paste("Target
station",ist2), col="black", xlim=c(1,8))

matplot(stx,apply(abserrorref[stx,ist2,,,],c(1), mgea.rm=TRUE),"b",pch=19,Ity="dott
ed",add=TRUE, col="blue")

matplot(stx,apply(abserrortarstx,ist2,,,],c(1), mge.rm=TRUE),"b",pch=24,Ity="solid
",add=TRUE, col="red")

legend("topright",legend=c("Linear Regression”, f&ence", "Target"), Ity = ¢(2,3,1),
pch = ¢(20,19,24), col=c("black","blue","red"))

Ist2 <-6

{if (ist2 == 1) { stx <- seq(2,8)}

if (ist2 == 8) {stx <- seq(1,7)}

if (ist2 >1 & ist2< 8) {stx <- c(seq(1,ist2-1),sesfR+1,8))}

matplot(stx,apply(abserrorlin[stx,ist2,,1,],c(1) amena.rm=TRUE),"b",pch=20,Ity="das
hed", ylim= ¢(0,1.1), xlab = "Reference Stationlaly = "MAE", main=paste("Target
station",ist2), col="black", xlim=c(1,8))

matplot(stx,apply(abserrorref[stx,ist2,,,],c(1),mga.rm=TRUE),"b",pch=19,lty="dott
ed",add=TRUE, col="blue")

matplot(stx,apply(abserrortar[stx,ist2,,,],c(1), mgea.rm=TRUE),"b",pch=24,lty="solid
",add=TRUE, col="red")

legend("topright”,legend=c("Linear Regression”, f&ence", "Target"), Ity = ¢(2,3,1),
pch = ¢(20,19,24), col=c("black","blue","red"))

ist2 <-7

{if (ist2 == 1) { stx <- seq(2,8)}

if (ist2 == 8) {stx <- seq(1,7)}

if (ist2 >1 & ist2< 8) {stx <- c(seq(1,ist2-1),sestR+1,8))}

matplot(stx,apply(abserrorlin[stx,ist2,,1,],c(1)amena.rm=TRUE),"b",pch=20,lty="das
hed", ylim= ¢(0,1.1), xlab = "Reference Stationlaty = "MAE", main=paste("Target
station",ist2), col="black", xlim=c(1,8))

matplot(stx,apply(abserrorref[stx,ist2,,,],c(1), mga.rm=TRUE),"b",pch=19,Ity="dott
ed",add=TRUE, col="blue")
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matplot(stx,apply(abserrortarstx,ist2,,,],c(1),mge.rm=TRUE),"b",pch=24,Ity="solid
",add=TRUE, col="red")

legend("topleft”,legend=c("Linear Regression”, "&eice", "Target"), Ity = c¢(2,3,1),
pch = ¢(20,19,24), col=c("black","blue","red"))

ist2 <-8

{if (ist2 == 1) { stx <- seq(2,8)}

if (ist2 == 8) {stx <- seq(1,7)}

if (ist2 >1 & ist2< 8) {stx <- c(seq(1,ist2-1),sesfR+1,8))}

matplot(stx,apply(abserrorlin[stx,ist2,,1,],c(1)amena.rm=TRUE),"b",pch=20,lty="das
hed", ylim= ¢(0,1.1), xlab = "Reference Stationlaty = "MAE", main=paste("Target
station",ist2), col="black", xlim=c(1,8))

matplot(stx,apply(abserrorref[stx,ist2,,,],c(1), mgea.rm=TRUE),"b",pch=19,Ity="dott
ed",add=TRUE, col="blue")

matplot(stx,apply(abserrortar[stx,ist2,,,],c(1), mge.rm=TRUE),"b",pch=24,Ity="solid
",add=TRUE, col="red")

legend("topright",legend=c("Linear Regression”, f&ence", "Target"), Ity = ¢(2,3,1),
pch = ¢(20,19,24), col=c("black","blue","red"))

b33
par(mfrow=c(3,1))

# need to adjust where to put legend dependinghenlihes; options "right"; "left",
"topright", "topleft")

legend("left",legend=c("Linear Regression", "Refere", "Target"), Ity = c(2,3,1), pch
= ¢(20,19,24), col=c("black","blue","red"))

# lllustrating the effect of two window choices

plot(abserrortar,,,1,],abserrortar|,,,2,], xlabsgg"MAE for Win =",wina[l]),
ylab=paste("MAE for Win =",wina[2]),pch=20)

lines(c(0,1),c(0,1), col="red")
# lllustrating the effect of first two Truncati@hoices

plot(abserrortarl,,,,1],abserrortar|,,,,2], xlabsfg{"MAE for Truncation",trunca[l]),
ylab=paste("MAE for Truncation",trunca[2]), pch=20)

lines(c(0,1),c(0,1), col="red")
# lllustrating the effect of last two Truncationoites

plot(abserrortarl,,,,3],abserrortar|,,,,4], xlabsfg{"MAE for Truncation",truncal3]),
ylab=paste("MAE for Truncation",truncal4]), pch=20)

lines(c(0,1),c(0,1), col="red")
par(mfrow=c(3,1))

188



# need to adjust where to put legend dependinghenlihes; options "right"; "left",
"topright”, "topleft")

legend("left",legend=c("Linear Regression”, "Refere", "Target"), Ity = ¢(2,3,1), pch
= ¢(20,19,24), col=c("black","blue","red"))

# lllustrating the effect of two window choices

plot(abserrortar(,,,1,],abserrortar,,,2,], xlabstg"Target MAE for Win =",wina[1]),
ylab=paste("Target MAE for Win =",wina[2]),pch=20)

lines(c(0,1),c(0,1), col="red")
# lllustrating the effect of first two Truncati@moices

plot(abserrortarf,,,,1],abserrortar|,,,,2], xlabsted"Target MAE for
Truncation”,trunca[l]), ylab=paste("

Target MAE for Truncation",trunca[2]), pch=20)
lines(c(0,1),c(0,1), col="red")

plot(abserrortarf,,,,3],abserrortar|,,,,4], xlabsted"Target MAE for
Truncation”,trunca[3]), ylab=paste("Target MAE fbruncation",trunca[4]), pch=20)

lines(c(0,1),c(0,1), col="red") }
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