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Abstract

The first part of this thesis studies interactions in Rashba-coupled Fermi gases. The

main objective of this part of the thesis consists of proposing a model to describe di-

lute Fermi gases. Recent theoretical works propose to use Rashba spin-orbit-coupled

systems by means to enhance superconductivity, topologically protected insulators, or

quantum computing. The richness and potential of Rashba-coupled Fermi systems has

been proved with currently ongoing experiments with cold atoms and synthetic gauge

fields, which allow to simulate neutral particles using laser fields. In this part of the the-

sis, we conclude that it is possible to describe dilute Rashba-coupled Fermi gases with a

model that has meaningful predictive power. In the second part of the thesis we analyse

the validity of the master equation approach to describe open quantum systems. Using

a Jaynes-Cummings Hamiltonian we show that under certain circumstances, the master

equation approach does not fully describe the effect of the environment onto the system,

hence additional tools are needed.
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Chapter 1

Introduction

This thesis comprises of two different and sometimes related topics, condensed matter

physics and open quantum systems. The first part of the thesis is devoted to the intro-

duction and description of Rashba spin-orbit coupling in Fermi gases and to a review of

scattering theory, Chapter 2 and Chapter 3, respectively. In the second part, Chapter 4

and Chapter 5, new features of Rashba-coupled Fermi gases are described. The third and

last part of the thesis, Chapter 6, sheds some light on the validity of the master equation

approach when quantum systems interact with their surroundings.

The first experimental observation of optically trapped cold sodium atoms, by S. Chu

et al. in 1986 [1], led the way to a new experimental platform that allows to manipulate

single particles [2, 3] and to simulate many-body physics [4, 5]. It was not until nearly a

decade later, when the longtime predicted Bose-Einstein condensate (BEC) was observed

by E. Cornell and C. Wieman [6], and W. Ketterle [7]. A BEC is a macroscopic quan-

tum state of matter where a large fraction of bosons — particles with integer spin —

occupy the same quantum state. If the constitutive particles of the gas are fermions —

particles with half-integer spin —, one obtains a degenerate Fermi gas governed by the

Pauli exclusion principle. By tuning the interaction strength between particles, the sys-

tem changes from the BEC phase, a short-distance bound state, to the Bardeen-Cooper-

Schrieffer (BCS) phase, where the characteristic size of the bound state is much larger

than the interparticle spacing [8].

In Chapter 2 we will introduce the spin of a quantum particle, an intrinsic angular

momentum with no classical analogue. The spin of a charged particle, the electron in this

particular case, appears naturally in the relativistic wave equation, the so-called Dirac

equation [9]. In condensed matter systems subject to a constant electric field appears

a coupling between the spin of the particle and its momentum that lies in the perpen-
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dicular plane to the electric field. The absence of inversion symmetry yields systems

with Rashba spin-orbit coupling [10], while Dresselhaus spin-orbit coupling appears in

systems without bulk symmetry [11]. The eigenstates of noninteracting Rashba-coupled

Fermi systems can be labelled according to the projection of the spin of the particle onto

its momentum — the helicity —, thus the eigenstates have positive and negative helicity.

The two-branches structure of the eigenstates has been observed recently in Refs. [12, 13].

Albeit strange, ultracold neutral particles can reproduce the dynamics of charged par-

ticles by means of laser-engineered gauge fields [14–19]. Different systems have been

mimicked, such as synthetic electric force [20], synthetic magnetic field [21]. Synthetic

spin-orbit coupling has attracted special attention recently [22–24], reporting the first ex-

perimental realisation of synthetic spin-orbit coupling in a BEC [25].

Since an important part of this thesis is related to interactions, in Chapter 3 we shall

briefly review some aspects of scattering theory, Green’s functions and renormalisation.

In scattering theory, the Transfer Matrix (T-matrix) allows us to calculate scattering am-

plitudes of interacting particles [26]. Modelling effective interactions with zero-range

potentials in Rashba-coupled Fermi gases yields divergent quantities in the T-matrix that

disappear when multichannel processes — processes that include changing the helicity

— are considered [27]. In Chapter 4 we will propose a divergence-free single-branch

theory for Rashba-coupled Fermi gases [28].

In Chapter 5 we will show how ultracold Rashba-coupled Fermi gases respond to a

momentum kick [29]. Due to the absence of Galilean invariance the system will deform

in a nontrivial way. We will see that when weak repulsive interactions in the negative-

helicity branch are considered, the gas will evolve towards a finite momentum phase.

The last part of the thesis, Chapter 6, is dedicated to the field of open quantum sys-

tems. These are quantum systems that interact with the environment [30] and are de-

scribed using master equations for the reduced-density matrix of the system. Depend-

ing on the effect of the environment onto the system, a master equations can describe

Markov — memoryless — processes, where the master equation is written in Lindblad

form [31, 32], or non-Markovian processes where the past history of the system deter-

mines its future evolution, where the master equation can also be written in Lindblad-like

form [33]. In this chapter we will analyse the validity of the master equation approach

using two different Hamiltonians that yield the same non-Markovian master equation.
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Chapter 2

Spin-orbit coupling in cold Fermi

gases

“Begin at the beginning,” the King

said, very gravely, “and go on till

you come to the end: then stop.”

Lewis Carroll, Alice in

Wonderland

In this Chapter we introduce the origin of spin-orbit coupling and how to treat a spin-

orbit coupled system in the non-relativistic limit. We will explain how a moving particle

couples its spin and its momentum to give rise to a particular two dimensional spin-orbit

coupling called Rashba spin-orbit coupling. We describe the main properties of two and

three dimensional noninteracting Rashba-coupled Fermi gases in order to set the scene

for the first part of the thesis.

2.1 Spin-orbit coupling

The spin of a particle is a quantum mechanical angular momentum that does not have

any analog in classical physics. It appears as a consequence of treating a particle using

relativistic quantum mechanics. The idea of a particle spinning in a certain manner is

not correct and does not give a correct picture of its properties. The spin is related to the

symmetry of the Lagrangian describing the physics of a particle under rotations, i.e. the

Lagrangian for a particle with spin 1 is invariant under rotation of 2π, while a particle of

spin-1/2 looks the same when it is rotated by 4π. In general, the Lagrangian of a spin-S

particle is invariant under a θ = 2π/S-rotation of its spin.
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The first attempt to find a relativistic equation for a quantum particle gave the Klein-

Gordon equation in 1926, a second order differential equation in position and time. In

order to solve the time evolution it is necessary to know not only the initial value and

its first spatial derivative of the wave function but also its time derivative. In 1928 Dirac

proposed a linearised version of the Klein-Gordon equation, where position and time

were treated equally, and is Lorentz invariant. We aim to work with a non-relativistic

Hamiltonian that includes spin. Hence we show the derivation of the non-relativistic-

Schrödinger equation for a spin-1/2 particle [34–36].

Let us begin with the relativistic expression for the energy ER

ER =
√
c2p2 +m2c4, (2.1)

where c is the speed of light, p = |p| is the momentum of the particle and m is its mass.

Identifying the relativistic energy, given by Eq. (2.1), with the Hamiltonian allows to con-

struct a wave equation for a relativistic free particle, formally, as

(√
−c2~2∇2 +m2c4

)
ψ (r, t) = i~

∂

∂t
ψ (r, t) , (2.2)

where h and ~ = h/2π are Planck’s constant and the reduced Planck constant, respec-

tively. In Eq. (2.2) the momentum and the relativistic energy are written using their dif-

ferential operator counterparts

p→ −i~∇, ER → i~
∂

∂t
. (2.3)

Applying twice the energy operator, Eq. (2.3), to the wave function ψ (r, t) yields the

Klein-Gordon equation

−~2 ∂
2

∂t2
ψ (r, t) =

(
−c2~2∇2 +m2c4

)
ψ (r, t) , (2.4)

which needs the knowledge of ∂ψ/∂t at t = 0 in order to determine its time evolution.

Dirac realised that the relativistic energy, Eq. (2.1), can be linear in the particle’s momen-

tum p if it is written as

E2
R =

(
c

3∑
i=1

αipi + βmc2

)c 3∑
j=1

αjpj + βmc2

 . (2.5)
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The above equation only holds if the coefficients αi and β obey the following relations

{αi, αj} = 2δi,j ,

αiβ + βαi = 0, (2.6)

β2 = 1,

where i = x, y, z and δi,j is the Kronecker delta. Therefore αi and β correspond to a

representation of the generators of the Clifford algebra.1 In the Dirac representation αi

and β read

αi =

 0 σi

σi 0

 , β =

1 0

0 −1

 , (2.7)

where σi are the spin-1/2 Pauli matrices

σx =

 0 1

1 0

 , σy =

 0 −i
i 0

 , σz =

 1 0

0 −1

 . (2.8)

The linearised Dirac Hamiltonian reads

HD = cα · p + βmc2, (2.9)

where α = (αx, αy, αz) is the vector of Dirac matrices. The eigenstates Ψ of the Dirac

Hamiltonian (2.9) are 4-dimensional objects called spinors. Although the Hamiltonian (2.9)

is a 4 × 4 Hamiltonian, the structure of the Dirac matrices α allows to decompose the

Hamiltonian (2.9) in 2 × 2 blocks. In consequence it is possible to decompose the spinor

Ψ into two components. In matrix form we have

 mc2 c p · σ
c p · σ −mc2

Ψ+

Ψ−

 = ER

Ψ+

Ψ−

 . (2.10)

The objects Ψ± are the positive and negative mass solutions of the Dirac equation (2.10)

for a spin-1/2 particle and correspond to the particle and its antiparticle, respectively. Ex-

panding Eq. (2.10) for v2/c2 � 1 and clearing Ψ− in favour of Ψ+ yields the Schrödinger

equation for a free electron. We will show next how this is done when a charged particle

1The elements of the Clifford algebra are matrices γµ where µ = 0, 1, 2, 3, with the following anticommu-
tation relations {γµ, γν} = 2ηµν14×4 where ηµν = diag (1,−1,−1,−1) is the Minkowski metric and 14×4 is
the four dimensional identity matrix.
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moves in an electromagnetic field.

We introduce the effect of an electromagnetic field via the minimal coupling

p→ p− q

c
A, ER → ER − qφ, (2.11)

where q is the charge, A is the vector potential and φ is the electric potential, we use gaus-

sian units since the 1/c dependance is explicit. Dirac’s Hamiltonian (2.9) is transformed

to

HD = cα ·
(
p− q

c
A
)2

+ qφ+ βmc2, (2.12)

which in matrix form reads qφ+mc2 c σ ·
(
p− q

cA
)

c σ ·
(
p− q

cA
)

qφ−mc2

Ψ+

Ψ−

 = ER

Ψ+

Ψ−

 . (2.13)

From Eq. (2.13) it is possible to write the negative-mass2 solution Ψ− in terms of the

positive-mass solution Ψ+ as

Ψ− =
1

ER − qφ+mc2
c σ ·

(
p− q

c
A
)

Ψ+. (2.14)

Equation (2.14) yields an expression for the positive mass solution as

−
(
ER − qφ−mc2

)
Ψ+ + c2 σ ·

(
p− q

c
A
) 1

ER − qφ+mc2
σ ·
(
p− q

c
A
)

Ψ+ = 0. (2.15)

So far no approximation has been done. Expanding the relativistic energy ER, Eq. (2.1),

for mc2 � c2p2 we have ER ≈ E + mc2, where E = p2/2m is the non-relativistic energy.

Substituting ER ≈ E + mc2 into Eq. (2.15) and using 1/ (1 + x) ≈ 1 − x, where |x| =

|E − qφ| /2mc2 � 1, we obtain

− (E − qφ) Ψ+ +
1

2m
σ ·
(
p− q

c
A
)
σ ·
(
p− q

c
A
)

Ψ+ = 0. (2.16)

Using the following identity for the Pauli matrices

(σ ·A) (σ ·B) = A ·B + i (A×B) · σ, (2.17)

2Ψ+ and Ψ− are also called large and small component due to the difference in the sign in front of mc2 in
Eq. (2.13).
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where A and B are arbitrary vectors in C2, the second term in Eq. (2.16) can be reduced

to

σ ·
(
p− q

c
A
)
σ ·
(
p− q

c
A
)

=
(
p− q

c
A
)2

+ i
∑
i,j,k

εijk

(
pj −

q

c
Aj

)(
pk −

q

c
Ak

)
σi,

(2.18)

where εijk is the Levi-Civita (or totally antisymmetric) tensor. The terms pjpk, AjAk and

Ajpj form a symmetric second rank tensor, so they vanish when contracted with εijk.3

The only non-vanishing term

∑
i,j,k

εijkpjAkσi = σ · (p×A) (2.19)

produces a coupling term between the magnetic field and the spin of the particle

−i~ σ · (∇×A) = −i~ σ ·B. (2.20)

We arrive at the non-relativistic equation for the spin-1/2 particle4 in an electromagnetic

field

[
1

2m

(
p− q

c
A
)2
− q~

2mc
σ ·B + qφ

]
Ψ = EΨ. (2.21)

An earlier version of Eq.(2.21) was derived by Pauli in 1927 as a limiting case of the

Schrödinger equation for a charged spin-1/2 particle in an electromagnetic field, there-

fore Pauli’s equation is non-relativistic and it predicted wrongly the magnetic moment of

a charged spin-1/2 particle. On the other hand, Eq. (2.21) is the non-relativistic limit of

a relativistic equation (2.13), hence Eq. (2.21) ensures a correct treatment of spin. In this

case, the predicted magnetic moment is correct and is given by

µ = − q~
2mc

σ = −gS, (2.22)

where g is the gyromagnetic moment of the charged particle. The magnetic moment of

the electron is called Bohr’s magneton and it is given by µB = e~/2mec, where e and me

are the electron charge and mass, respectively. The gyromagnetic factor of the electron is

3We specify it for second rank tensors, but it applies to any rank. A second rank symmetric ten-
sor Cij = Cji contracted with an antisymmetric second rank tensor Dij = −Dij gives CijD

ji =(
CijD

ji + CijD
ji
)
/2 =

(
CijD

ji − CjiDij
)
/2, relabelling

(
CijD

ji − CijDji
)
/2 = 0, where Einstein’s sum-

mation criteria for repeated indices was used.
4From now onwards all the particles we refer to correspond to the positive mass solution.
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predicted5 to be ge = 2. Finally we arrive at the effective non-relativistic Hamiltonian for

a charged spin-1/2 particle in an electromagnetic field

HSO =
1

2m

(
p− q

c
A
)2

+ µ ·B + qφ. (2.23)

See Ref. [37] for an extensive monograph on spin-orbit coupling in solid state and con-

densed matter systems.

2.2 Rashba spin-orbit coupling

Nowadays Rashba spin-orbit coupling cannot only be measured directly [12] but it can

also be achieved by synthetic gauge fields [22, 38, 39] in neutral bosonic [25] condensates

or fermionic condensates [13]. It is also important the strength of the spin-orbit coupling

as it plays a major role in the formation of two-body bound states [40, 41]. Moreover, the

crossover between a BEC of molecules and a BCS superfluid state can be driven by the

spin-orbit coupling alone when the s-wave scattering length is fixed in two-dimensional

and three-dimensional systems [42, 43].

In this section we show how to derive the effective two dimensional Rashba spin-

orbit Hamiltonian for a spin-1/2 particle in an electromagnetic field. We begin by ex-

panding Eq. (2.23) in order to simplify the general spin-orbit Hamiltonian

HSO =
1

2m
p2 − q

2mc
(p ·A + A · p) +

q2

2mc2
A2 + µ ·B + qφ. (2.24)

The first simplification comes from using the Coulomb gauge, given by∇ ·A = 0, which

allows to choose φ = 0. The second assumption considers the contribution from the

diamagnetic term q2A2/c2, negligible when compared to the rest of the Hamiltonian,

which is of order O
(
c−1
)
. The third premise assumes a constant magnetic field, hence

the vector potential can be written as

A =
1

2
B× r. (2.25)

Substituting the vector potential, Eq. (2.25), into the paramagnetic term proportional to

5The actual value of the electron gyromagnetic factor is 2.002319. This correction comes from higher order
diagrams in quantum electrodynamics.
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A · p yields

q

2mc
A · p =

q

4mc
(B× r) · p. (2.26)

Writing Eq. (2.26) in components and using the differential operator form of p leads to

− iq~
4mc

∑
i,j,k

εijkBjrk
∂

∂ri
= − iq~

4mc

∑
i,j,k

εijkBirj
∂

∂rk
,

= − iq~
4mc

B · (∇× r) . (2.27)

Finally, identifying the orbital angular momentum as L = −i~ r ×∇ allows to write the

paramagnetic term as

q

2mc
A · p =

q

4mc
B · L. (2.28)

The Hamiltonian, Eq. (2.24), for a particle in an electromagnetic field is simplified to

HSO =
p2

2m
− q

4mc
B · L + µ ·B +O

(
c−2
)
. (2.29)

Rashba spin-orbit coupling appears when a constant electric field E in the z direction

is applied. Under this circumstance, a moving charge feels a magnetic field B′ in the

reference frame where the particle is at rest. The applied electric field E and the induced

magnetic field B′ are related via a Lorentz transformation [44]

E′ = γ

(
E +

1

c
v ×B

)
− γ2

1 + γ

v

c

(v
c
·E
)
, (2.30)

B′ = γ

(
B +

1

c
v ×E

)
− γ2

1 + γ

v

c

(v
c
·B
)
, (2.31)

where v is the speed of the particle and γ = 1/
√

1− v2/c2. A constant electric field in the

z direction E = E0ez induces a magnetic field

B′ =
γ

c2
E0 (vyex − vxey)

=
γ~
mc2

E0 (kyex − kxey) , (2.32)

where {ex, ey, ez} is the Cartesian orthonormal basis, while in the particle’s co-moving
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reference frame the interaction of the particle with the magnetic field reads

µ ·B = ge
~
2

γ~
mc2

E0σ · (−ky, kx, 0)

=
~2λ

m
(kxσy − kyσx) , (2.33)

where the coupling constant is λ = geγE0/2c
2. The Rashba spin-orbit Hamiltonian6 is

given by

HSO =
p2

2m
+

~2λ

m
(kxσy − kyσx) , (2.34)

where the orbital angular momentum is L = 0. In this thesis we write the Rashba Hamil-

tonian as

HSO =
p2

2m
+

~2λ

m
k · σ. (2.35)

In order to get from Eq. (2.34) to Eq. (2.35), the Pauli matrices, Eq. (2.8), are rotated by an

unitary matrixR = diag
(
e−iπ/8, eiπ/8

)
[27]. This transformation yields

R−1σxR =
σx − σy√

2
, (2.36)

R−1σyR =
σx + σy√

2
. (2.37)

Renaming the wave vectors kx and ky in the Hamiltonian (2.34) according to the canonical

transformation kx,y → (kx ∓ ky) /
√

2 after transforming the Pauli matrices in Eq. (2.34) ac-

cording to the rotation given by Eqs. (2.36) and (2.37) gives the Rashba spin-orbit Hamil-

tonian (2.35).

2.2.1 Helicity formalism

The helicity σ · p, defined as the projection of the momentum onto the spin of the parti-

cle, is a convenient quantity used in relativistic quantum mechanics and quantum field

theory [46, 47]. The helicity operator commutes with the Hamiltonian (2.35) and the mo-

mentum p. This implies that the eigenstates of Eq. (2.35) can be labeled according to their

helicity. The helicity operator for a spin-1/2 particle is defined as the projection of the

6As we already mentioned, Rashba spin-orbit Hamiltonian (2.35) is not the only two dimensional spin-
orbit Hamiltonian. Dresselhaus spin-orbit coupling appears in systems where there is a lack of bulk in-
version [11] and the coupling is HD ∝ kxσy + kyσx. Experimental evidence of simultaneous and equal
Rashba-Dresselhaus coupling measurements in Fermi gases was reported in Refs. [12, 45], respectively.
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normalised momentum onto the direction of the spin

h =
~k · σ
k

, (2.38)

where k = |k|. With the use of the Pauli matrices, Eq. (2.8), a matrix representation for

the helicity is given by

h =
~
k

 kz kx − iky
kx + iky −kz

 . (2.39)

The symmetry of the helicity matrix, Eq. (2.39), makes it is most convenient to work in

cylindrical coordinates

kx = k⊥ cos(γk), (2.40)

ky = k⊥ sin(γk), (2.41)

kz = kz, (2.42)

where k⊥ =
√
k2
x + k2

y and γk = arctan (ky/kx). The helicity, Eq. (2.39), becomes

h =
~
k

 kz k⊥e
−iγk

k⊥e
iγk −kz

 . (2.43)

Diagonalising the helicity (2.43) shows that the helicity has two different branches of

eigenvectors. They represent the parallel and antiparallel projections of the momentum

onto the spin. The helicity eigenstates are

∣∣∣ψ(α)
k

〉
=

1√
1 +

(
kz−αk⊥
k⊥

)2

 1

−kz−αk⊥
k⊥

eiγk

 , (2.44)

where α = ±1 represent the parallel and antiparallel projection, respectively. In order

to define a spin basis to work with, we introduce the eigenvectors, |↑〉 and |↓〉, of the z

component of the spin S as

Sz |↑〉 =
~
2
|↑〉 (2.45)

Sz |↓〉 = −~
2
|↓〉 . (2.46)
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In spin-space, the eigenvectors of Sz define the spin-1/2 basis {|↑〉 , |↓〉}. The identity

matrix is written as

1 = |↑〉〈↑|+ |↓〉〈↓|. (2.47)

With the use of the spin-1/2 basis the eigenvectors of the helicity (2.44) read

∣∣∣ψ(α)
k

〉
=

1√
1 +

(
kz−αk⊥
k⊥

)2

(
|↑〉 − kz − αk⊥

k⊥
eiγk |↓〉

)
. (2.48)

The corresponding eigenvalues are

hα = α~, (2.49)

where α = ±1 for the positive and negative helicity respectively.

2.2.2 Single-particle physics

In this section we describe how to diagonalise the Rashba-coupled spin-orbit Hamilto-

nian (2.35) using the helicity formalism. We begin by expressing the Hamiltonian in

second quantisation as

HSO =
∑
k

(
c†k,↑ c†k,↓

)( ~2

2m

[
k2 + λ2

]
1+

~2λ

m
k⊥ · σ

) ck,↑

ck,↓

 , (2.50)

where ck,σ (c†k,σ) annihilates (creates) a fermion of momentum ~k and z-spin component

σ and k⊥ = (kx, ky, 0) is the xy-plane wave vector. These operators obey canonical anti-

commutation relations7

{
cq,σ′ , c

†
k,σ

}
= δσ,σ′δk,q ,

{
cq,σ′ , ck,σ

}
=
{
c†q,σ′ , c

†
k,σ

}
= 0. (2.51)

As mentioned before, the helicity commutes with the free particle term in the Hamilto-

nian (2.50). Therefore there is a common basis of vectors of the helicity and the Hamilto-

nian. To show this we compute the commutator between the terms corresponding to the

free evolution and the helicity. We first rewrite the Hamiltonian (2.50) in a more suitable

7We explicitly state the commutation relations here for convenience

[ck,σ, cq,σ′ ] = 2ck,σcq,σ′ ,
[
ck,σ, c

†
q,σ′

]
= δσ,σ′δk,q − 2c†q,σ′ck,σ.
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way

HSO =
∑
k,σ

~2

2m

(
k2 + λ2

)
c†k,σck,σ +

~2λ

m

∑
k

k⊥

(
e−iγkc†k,↑ck,↓ + eiγkc†k,↓ck,↑

)
. (2.52)

The commutator between the free particle evolution of the Hamiltonian and the first term

of the helicity is8

∑
k,q,σ

k⊥e
−iγk

[
c†k,σck,σ, c

†
q,↑cq,↓

]
=
∑
k,q,σ

k⊥e
−iγk

(
c†k,σc

†
q,↑ [ck,σ, cq,↓] + c†k,σ

[
ck,σ, c

†
q,↑

]
cq,↓

+ c†q,↑

[
c†k,σ, cq,↓

]
ck,σ +

[
c†k,σ, c

†
q,↑

]
cq,↓ck,σ

)
=
∑
k,q,σ

k⊥e
−iγk

(
2c†k,σc

†
q,↑ck,σcq,↓ − 2c†k,σc

†
q,↑ck,σcq,↓ + δk,qδσ,↑c

†
k,σcq,↓

− 2c†q,↑c
†
k,σcq,↓ck,σ − δk,qδσ,↓c

†
q,↑ck,σ + 2c†q,↑c

†
k,σcq,↓ck,σ

)
=
∑
k,q

k⊥e
−iγk

(
δk,qc

†
k,↑cq,↓ − δk,qc

†
q,↑ck,↓

)
= 0, (2.53)

where the anticommutation relations (2.51) have been used.

Due to the absence of spin-orbit coupling in the z direction the helicity (2.43) has a

simpler expression if it is written as a matrix

h = ~k⊥

 0 e−iγk

eiγk 0

 , (2.54)

and its eigenvalues are given by hα = α~k⊥, with α = ±1. The corresponding eigenvec-

tors are

∣∣∣ψ(α)
k

〉
=

1√
2

 1

αeiγk


=

1√
2

(
|↑〉+ αeiγk |↓〉

)
. (2.55)

With the use of Eq. (2.54) the Hamiltonian (2.52) can be expressed as a matrix as

HSO =
~2

2m

 k2
⊥ + k2

z + λ2 2k⊥e
−iγλ

2k⊥e
iγλ k2

⊥ + k2
z + λ2

 . (2.56)

8The complex conjugated term is calculated in the same way, therefore it is not calculated explicitly here.
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When diagonalised, the spin-orbit coupling mixes spin components giving rise to two

different gapless energy bands (see Ref. [12]),

ε± (k) =
~2

2m

[
(k⊥ ± λ)2 + k2

z

]
, (2.57)

with the corresponding eigenvectors

∣∣∣Ψ(±)
k (r)

〉
=

1√
2
eik·r

(
|↑〉 ± eiγk |↓〉

)
. (2.58)

In second quantisation, diagonalising the Hamiltonian (2.52) corresponds to changing

from a set of operators c†k,σ and ck,σ for fermions with spin σ to another set of operators

d†k,h and dk,h that create and annihilate fermions with positive or negative helicity h9.

The relation between the two sets of operators is given by the canonical transformation

 dk,↑

dk,↓

 =
1√
2

 1 e−iγk

1 −e−iγk

 ck,↑

ck,↓

 . (2.59)

The new operators satisfy the canonical anticommutation relations for fermions

{
dq,σ′ , d

†
k,σ

}
= δσ,σ′δk,q ,

{
dq,σ′ , dk,σ

}
=
{
d†q,σ′ , d

†
k,σ

}
= 0. (2.60)

In the diagonal basis, the Rashba spin-orbit (SO) Hamiltonian is given by

HSO =
∑
k

(
ε+ (k) d†k,↑dk,↑ + ε− (k) d†k,↓dk,↓

)
. (2.61)

The two-band structure, Fig. 2.1, and the energy gap in Rashba-coupled systems makes

as ideal candidates to realise topological s-wave superconductors [48]. Topologically pro-

tected Majorana fermions [49] enhanced by spin-orbit coupling are promising candidates

to develop a platform for quantum computing using Rashba spin-orbit coupling [50] or

Rashba-Dresselhaus spin-orbit coupling [51].

9The helicity is also a representation of the spin, and we will keep the notation σ =↑, ↓ for positive and
negative helicity.
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Figure 2.1: Representation of the positive (yellow) and negative (red) helic-
ity branches for a constant kz/λ = 0. The projection onto the plane (blue)
represents the two-dimensional Fermi sea.

2.3 Noninteracting Rashba-coupled Fermi gas at low densities

Let us consider a noninteracting Rashba-coupled Fermi gas. At low density the ground

state only populates the negative helicity branch and we can work with the projection

H(−) =
∑
k

ε− (k) d†kdk , (2.62)

where for simplicity we have changed notation from d†k,↓ (dk,↓) to d†k (dk).10

We define the Fermi energy EF for the negative helicity branch as the maximum

single-particle energy a fermion has inside the Fermi sea

ε− (kF ) =
~2k2

F

2m
, (2.63)

where kF = |kF | is the Fermi wave vector. The Fermi sea becomes saturated when the

positive helicity branch is populated in the noninteracting ground state.

The number operator gives the occupation of states with well defined momentum ~k
10The operators with explicit dependance in the spin dk,σ (d†k,σ) are written when there is any chance of

confusion, otherwise it will be implicit that we refer to the lower branch.
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and negative helicity in the Fermi sea. It is defined as

Nk = d†kdk . (2.64)

When applied to the Fermi sea |FS〉 gives

Nk |FS〉 = ΘI (k) |FS〉 , (2.65)

where

ΘI (k) =


1 if k ∈ FS

0 if k /∈ FS.
(2.66)

It is convenient to also define the function ΘO (k) = 1 − ΘI (k). This will be useful

when multiple wave vectors involving particles and holes appear in the corresponding

integrals in perturbation theory.

2.4 Properties of noninteracting Rashba-coupled Fermi gases in

two and three dimensions

In this section we show different properties of two and three dimensional Rashba-coupled

spin-orbit Fermi gases. The properties outlined in this section will be extensively used in

Chapters 4 and 5.

2.4.1 Fermi sea

Fermions loose their individuality to become part of a many-body noninteracting ground

state [52] called the Fermi sea. The Fermi sea is the condensed matter physics equivalent

to the vacuum in quantum optics. In this section we describe the Fermi sea for a Rashba-

coupled Fermi gas in two and three dimensions. We first work through the properties

of the three dimensional case. Afterwards we analyse to the two dimensional case. The

Fermi energy EF sets an upper bound for the single particle energy of the fermions in the

noninteracting many-body ground state.

The single particle energy in three dimensions is given by Eq. (2.57), which allows to
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define the occupation limit values of kz as

|kz| ≤
√
k2
F − (k⊥ − λ)2. (2.67)

The minimum and maximum values for the in-plane momentum k⊥ =
√
k2
x + k2

y come

from

k2
F − (k⊥ − λ)2 ≥ 0. (2.68)

This inequality yields

k⊥ ∈ [λ− kF , λ+ kF ] . (2.69)

Therefore the Fermi sea is the volume defined by the vectors (γ, kz, k⊥) whose compo-

nents belong to

FS3D = [0, 2π)×
[
−
√
k2
F − (k⊥ − λ)2,

√
k2
F − (k⊥ − λ)2

]
× [λ− kF , λ+ kF ] . (2.70)

In Ref. [53] Kohl et al. reported the observation of the Fermi surface in a three-dimensional

lattice. The Fermi sea in two dimensions is simply defined eliminating the z-direction in

three dimensions

FS2D = [0, 2π)× [λ− kF , λ+ kF ] . (2.71)

2.4.2 Number of states

The number of fermions in the Fermi sea comes from evaluating the expectation value of

the number operator. In three dimensions is

N3D = 〈FS|
∑
k∈FS

Nk |FS〉

=
∑
k∈FS

ΘI (k)

=
V

(2π)3

∫
FS

dk

=
V

(2π)3

∫ 2π

0
dγ
∫ λ+kF

λ−kF
dk⊥k⊥

∫ √kF−(k⊥−λ)2

−
√
kF−(k⊥−λ)2

dkz

= V
λk2

F

4π
, (2.72)
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where V is the volume of the system. The density of fermions is

ρ3D =
λk2

F

4π
. (2.73)

The number of states in two dimensions is easily obtained from expression (2.72) if the

integral over kz is removed and V/(2π)3 is substituted by S/(2π)2, where S is the surface

of the system. We have then

N2D =
S

(2π)2

∫ 2π

0
dγ
∫ λ+kF

λ−kF
dk⊥k⊥

=
SλkF
π

. (2.74)

The two-dimensional density of fermions in the negative helicity branch is

ρ2D =
λkF
π
. (2.75)

2.4.3 Ground state energy

The filled Fermi sea is the many-body ground state of the Hamiltonian (2.52). Its total

energy is the sum of all occupied single-particle energies. In three dimensions we have

E
(3D)
0 = 〈FS|H(−) |FS〉

=
∑
k∈FS

〈FS| ε− (k) d†kdk |FS〉

=
∑
k∈FS

ε− (k) ΘI (k)

=
V

(2π)3

~2

2m

∫
FS

dk
[
(k⊥ − λ)2 − k2

z

]
=

V

(2π)3

~2

2m

∫ 2π

0
dγ
∫ λ+kF

λ−kF
dk⊥k⊥

∫ √kF−(k⊥−λ)2

−
√
kF−(k⊥−λ)2

dkz
[
(k⊥ − λ)2 − k2

z

]
. (2.76)

The last integral above gives the energy per unit volume as

E
(3D)
0

V
=

~2λk4
F

16πm
, (2.77)

or in terms of the density (2.73)

E
(3D)
0

V
=
π~2

mλ
ρ2

3D. (2.78)
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For the two-dimensional case we remove the kz integral in Eq. (2.76) and we again replace

V/(2π)3 → S/(2π)2. We obtain the energy density

E
(2D)
0

S
=

1

(2π)2

~2

2m

∫ 2π

0
dγ
∫ λ+kF

λ−kF
dk⊥k⊥ (k⊥ − λ)2

=
~2λ

6πm
k3
F . (2.79)

In terms of the two-dimensional density, defined in Eq. (2.75), the ground state energy

reads

E
(2D)
0

S
=

~2π2

6mλ2
ρ3

2D. (2.80)

2.5 Conclusions

In this Chapter we have introduced the spin of a charged quantum particle as a conse-

quence of describing its dynamics by special relativity and quantum mechanics. In this

framework, the helicity allows to distinguish between the two different projections of the

spin onto the momentum of the particle, which labels the eigenvalues as positive-helicity

eigenvalues for the parallel projection and negative-helicity eigenvalues for the antipar-

allel projection. The coupling between the spin of a particle and its momentum yields an

in-plane spin-orbit coupling called Rashba spin-orbit coupling. Rashba spin-orbit cou-

pling has become an active field in condensed matter physics, since it is a good candidate

to enhance superconductivity [54], quantum computation [50] or as a potential platform

to observe Majorana fermions [55, 56]. Along this Chapter we briefly reviewed the main

concepts related to spin-orbit Rashba-coupled Fermi gases that will be used during the

rest of the thesis.
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Chapter 3

Scattering theory and

renormalisation

Scattering theory provides the tools to calculate effective particle-particle interactions us-

ing the T-matrix [26, 34, 57], that can be calculated as a perturbative expansion in the

potential using Green’s functions. This expansion is the Born series. The techniques used

in scattering theory have been adapted to condensed matter physics in order to compute

interactions in fermionic and bosonic systems [58, 59], where Rashba spin-orbit coupling

is present [60]. When the interactions considered are modelled by zero-range s-wave

contact interactions, ultraviolet (UV) divergences appear. In order to have a meaningful

theory that includes interactions, divergences need to be renormalised. Hence, in this

Chapter we begin by introducing scattering theory and Green’s functions. We conclude

the Chapter by explaining the basics of renormalisation and applying them to a typical

case similar to what we will encounter in the following Chapters.

3.1 Scattering states and Green’s functions

In this section we introduce the basics of stationary scattering theory and how it is related

to time-independent Green’s functions for interacting and noninteracting systems. We

also explain some concepts such as the T-matrix and the Born series which we will use in

Chapter 4.

3.1.1 Stationary scattering states

First, let us tackle the problem of a particle interacting with a finite-range potential V ,

whereHI = λV is the interacting Hamiltonian and λ the coupling constant. We define the
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incident wave |ψ0〉 as an eigenstate of the noninteracting HamiltonianH0 with energy E,

and the stationary wave as |ψ〉, eigenfunction of the Schrödinger equation. The stationary

scattering wave function can be written as

|ψ〉 = |ψ0〉+ |ψS〉 , (3.1)

where |ψS〉 is the scattered part. The stationary Schrödinger equation is given by

(H0 + λV) |ψ〉 = E |ψ〉 , (3.2)

where E is the energy associated with |ψ〉, since we look for a stationary scattering wave

solution such thatH0 |ψ〉 = E |ψ〉 and |ψ〉 → |ψ0〉when V → 0. Substituting Eq. (3.1) into

the Schrödinger equation (3.2) gives

λV |ψ〉 = (E −H0) (|ψ0〉+ |ψS〉) . (3.3)

AsH0 |ψ0〉 = E |ψ0〉, we can relate |ψ〉with the scattered term |ψS〉 as

λV |ψ〉 = (E −H0) |ψS〉 . (3.4)

Therefore the scattered wave reads, formally

|ψS〉 = λ (E −H0)−1 V |ψ〉 . (3.5)

In order to avoid double counting of |ψ0〉 and to ensure causality the energy is replaced

by E + iη, where η → 0+. Substituting the scattered part |ψS〉 given by Eq. (3.5), into the

stationary scattering wave, Eq. (3.1), gives the Lippmann-Schwinger equation [61]

|ψ〉 = |ψ0〉+ λ (E + iη −H0)−1 V |ψ〉 , (3.6)

which allows us to write the state |ψ〉 in terms of the incident state |ψ0〉

|ψ〉 =
1

1− λ (E + iη −H0)−1 V
|ψ0〉 . (3.7)

It is also possible to solve Eq. (3.6) by iteration. The first-order solution comes when

the interacting term is not considered, thence |ψ〉 = |ψ0〉. The second-order solution
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corresponds to substituting |ψ〉 = |ψ0〉 in the right hand side (RHS) of Eq.(3.6), this yields

|ψ〉 ≈
(

1 + λ (E + iη −H0)−1 V
)
|ψ0〉 . (3.8)

Subsequently the third iteration gives

|ψ〉 ≈
(

1 + λ (E + iη −H0)−1 V + λ2 (E + iη −H0)−1 V (E + iη −H0)−1 V
)
|ψ0〉 (3.9)

This iteration procedure yields the Born series, which we explain and expand later in

Sec. 3.1.3. Equation (3.9) can be rewritten as

|ψ〉 ≈ (E + iη −H0)−1
[
(E + iη −H0) + λV + λ2V (E + iη −H0)−1 V

]
|ψ0〉 . (3.10)

Finally, we get to

|ψ〉 ≈ |ψ0〉+ (E + iη −H0)−1
(
λV + λ2V (E + iη −H0)−1 V

)
|ψ0〉 . (3.11)

Obviously it is possible to keep iterating the series to express the stationary scattering

wave |ψ〉 as the sum of all the possible scattering events.

3.1.2 Green’s function

The scattered wave function in Eq. (3.5) is written in terms of the operator (E + iη −H0)−1,

which is also the central part of the iterative expansion in Eq. (3.9). The operator (E + iη −H0)−1

is called the noninteracting Green’s function. Let us define Green’s functions for a gen-

eral time-independent Hamiltonian. Given the Hamiltonian H of a system, the Green’s

function is defined as

G (z) = (z −H)−1 , (3.12)

where z is a complex variable with dimensions of energy. Although it was mentioned

earlier, we introduce now the noninteracting Green’s function G0 (z) as

G0 (z) = (z −H0)−1 . (3.13)

From the general definition in Eq. (3.12) it is clear that Green’s functions are not Hermi-

tian and G (z∗) = [G (z)]†.

We now introduce an equivalent definition of the Green’s function. From the nonin-
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teracting Green’s function defined in Eq. (3.13) we have the following identity

(z −H0)G0 (z) = 1. (3.14)

Multiplying Eq. (3.14) on the left by 〈r′| and on the right by |r〉 and using the differential

operator representation for the momentum, Eq. (2.3), we obtain

(
~2∇2

2m
+ z

)〈
r′
∣∣G0 (z) |r〉 = δ

(
r − r′

)
, (3.15)

where we have used 〈r′|r〉 = δ (r − r′). We extend the definition to the interacting Green’s

function G (z) as the function that solves Eq. (3.15), whereH0 → H0 +HI .
In order to show some properties of the Green’s function let us now calculate the

eigenvalues and eigenstates of the interacting Green’s function, defined by Eq. (3.12).

Let us assume the spectrum σ (H) ofH is known and its basis of eigenstates is {|ψk〉 , k =

1, . . . , NH} beingNH the dimension of the Hilbert spaceH. We apply the Green’s function

to the eigenstates ofH to get

G (z) |ψk〉 =
1

z − Ek
|ψk〉 , (3.16)

which implies that (z −H)−1 is meromorphic1. According to Eqs. (3.12) and (3.16), Green’s

functions are not defined when z is an eigenvalue of the Hamiltonian. Hence the knowl-

edge of the singularities of the Green’s function is equivalent to the knowledge of the

spectrum of the Hamiltonian. In the particular case of considering scattering states,

where there is a continuous and positive spectrum, G is not defined in R+ and is sin-

gular at the bound state energies.

The interacting and noninteracting Green’s functions are related with the interacting

Hamiltonian via the identity2

G (z) = G0 (z) + G0 (z)HIG (z) , (3.17)

or alternatively

G (z) = G0 (z) + G (z)HIG0 (z) . (3.18)

1A complex function is said to be meromorphic in an open subset U of C if it is complex differentiable at
every point of U except the poles (see Ref. [62]).

2For any operators A and B, it holds A−1 = B−1 +B−1 (B −A)A−1. Write A = z −H and B = z −H0

to obtain (3.17) or A↔ B to get (3.18) (see Ref. [26])
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From Eqs. (3.17) and (3.18) it is obvious that

G0 (z)HIG (z) = G (z)HIG0 (z) (3.19)

if G0 (z) and G (z) exist.

3.1.3 T-matrix

The T-matrix is defined in terms of the interacting Hamiltonian (HI = λV) and the inter-

acting Green’s function as

T (z) = HI +HIG (z)HI . (3.20)

We can write now the stationary scattering wave |ψ〉, given by Eq. (3.11), as

|ψ〉 = [1 + G0 (z)T (z)] |ψ0〉 . (3.21)

Therefore the scattered wave in Eq. (3.5) is

|ψS〉 = G0 (z)T (z) |ψ0〉 . (3.22)

Multiplying the T-matrix in Eq. (3.20) on the left by G0 (z) and using Eq. (3.17) we obtain

G0 (z)T (z) = G (z)HI . (3.23)

Or alternatively multiplying on the right and using Eq. (3.18) gives

T (z)G0 (z) = HIG (z) . (3.24)

Therefore it is possible to write a relation between the noninteracting Green’s function,

the interacting Green’s function and the T-matrix as

G (z) = G0 (z) + G0 (z)T (z)G0 (z) . (3.25)

Substituting Eq. (3.23) into the equation for the T-matrix (3.20) yields an integral equation

for the T-matrix similar to that for G (z) in Eq. (3.17)

T (z) = HI +HIG0 (z)T (z) . (3.26)
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This is called the Lippmann-Schwinger equation for the T-matrix. Equation (3.26) is the

starting point to construct the Born series. We solve Eq. (3.26) iteratively as we did to

obtain |ψ〉, Eq. (3.8), with the difference that we use now operators instead of wave func-

tions. Thus the first term corresponds to

T (z) ≈ HI . (3.27)

Substituting Eq. (3.27) into the RHS of Eq. (3.26) yields a second order term in the inter-

acting HamiltonianHI

T (z) ≈ HI +HIG0 (z)HI . (3.28)

Iterating this process yields the Born series for the T-matrix

T (z) =
∞∑
n=0

λnT (n) (z) . (3.29)

Above we have written the dependence of the interacting Hamiltonian in the coupling

constant λ explicitly. The Born series is not necessarily convergent. For weak potentials

or high energy collisions the series in Eq. (3.29) may converge. If the coupling parameter

λ is small enough that the series in Eq. (3.29) converges for all momenta p, then it can

be proved that there are no bound states [26]. Conversely, if it is known that the Hamil-

tonian has some bound state, then the Born series does not converge for all momenta p.

Proving the convergence of the Born series can give extra information of the structure of

the spectrum of the Hamiltonian, though the calculations can be rather hard [26].

3.2 Renormalisation

It doesn’t matter how beautiful

your theory is, it doesn’t matter

how smart you are. If it doesn’t

agree with the experiments, it’s

wrong.

Richard P. Feynman

Sometimes, certain calculations yield results that are not compatible with the experi-

ments, including finite experimental results when theoretical calculations predict diver-

gent quantities. As there is no experimental evidence of infinities, and so far Nature is
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finite, these infinities have to disappear from the theory or else the theory has little-to-

no predictive power. The process of annihilating the infinities is called renormalisation.

Since H. Bethe applied perturbative renormalisation for the first time in 1947 to compute

Lamb’s shift in the Hydrogen atom, it has become an extremely active field in Physics [63–

66], giving rise to several Nobel prizes3.

The first step to renormalise a theory that shows divergent quantities is to regularise

the theory. Here we will consider cut-off regularisation, although there are different reg-

ularisation schemes.4 Although different regularisation schemes give different interme-

diate results, the final result must be independent of the regularisation scheme. Regular-

ising a divergent theory consists of parametrising the divergences into the sensitivity to

a parameter Ξ called regulator.

In Sec. 4.3 we will encounter linear and logarithmic ultraviolet (UV) divergences in

the calculation of the T-matrix for a Rashba-coupled Fermi gas. They appear because of

integrating over all the possible momenta in the interaction and the use of approximate

low-energy interactions. The linear divergence is renormalised using minimal subtrac-

tion or the Tan-Valiente distribution [67, 68] (see Sec. 3.2.2), while the logarithmic diver-

gence is removed by renormalisation of the coupling constant.

3.2.1 Renormalisation process

We now explain how to renormalise a single-parameter divergent theory [69]. We do not

specify how the divergence appears or which regulator is used as the purpose of this

section is to show how to eliminate the divergent terms in favour of physical quantities.

Let us start by introducing a single-parameter theory with a bare coupling constant

g0 that can be for instance the strength of the interaction in the Hamiltonian. A function

F (r) is a measurable or calculable quantity that depends on the only scale r of the theory.

From the experiment or Gedanken experiment we know that

F (r0) = gR, (3.30)

where gR is called the renormalised coupling constant at r0. Equation (3.30) is the only

“experimental” information we have on the system and it shows a disagreement be-

tween the “theoretical” g0 and the “experimental” gR values of the coupling constant.

3K. Wilson for his application to Statistical Mechanics (1982) and to M. Veltman and G. t’ Hooft for their
work in Particle Physics.

4Different regularisation schemes include lattice regularisation, minimal subtraction or coupling constant
renormalisation.
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The coupling constants g0 and gR disagree because a function in the theory is expanded

in a mathematically inconsistent way. Equation (3.30) is used as the starting point in the

renormalisation process and it is called renormalisation condition. On the other hand, the

quantity F (r) admits a formal perturbative expansion in powers of the bare coupling g0

F (r) = g0 + g2
0F1 (r) + g3

0F2 (r) + · · · (3.31)

The functions Fi (r) are ill-defined (divergent) for all r. The first step in the renormali-

sation protocol consists in choosing an appropriate regularisation scheme. Substituting

the ill-defined functions Fi by other functions Fi,Ξ where the divergence is parametrised

into the sensitivity to an external parameter Ξ as it goes to infinity. The functions Fi,Ξ are

finite if Ξ is finite, but they still diverge if the regulator Ξ goes to infinity. We write the

expansion in Eq. (3.31) using the regularised functions Fi,Ξ

FΞ (r) = g0 + g2
0F1,Ξ (r) + g3

0F2,Ξ (r) + · · · (3.32)

Now the expansion in Eq. (3.32) is well defined for r0 as long as Ξ is finite. When the

limit Ξ → ∞ is taken, the expansion (3.32) is still divergent at all orders. The main idea

consists now of adjusting the terms in Eq. (3.32) so the renormalisation condition, given

by Eq. (3.30), is fulfilled and once the theory is renormalised then

lim
Ξ→∞

FΞ (r) = F (r) . (3.33)

Now Eq. (3.33) is free of divergences under quite general conditions (in particular, if the

divergence is r-independent). The general renormalisation process can be summarised

as follows:

• Regularise the theory: Find a suitable way of defining the regulator Ξ and the func-

tions Fi,Ξ (r).

• The regularised functionsFi,Ξ (r) must obey the renormalisation condition, Eq. (3.30),

at any order, therefore we set FΞ (r0) = gR. The regularised functions Fi,Ξ (r) must

have the same functional form as the ill-defined functions Fi (r).

• The renormalisation condition, Eq. (3.30), imposes F (r0) = FΞ (r0) when Ξ → ∞.

As we will show, the divergent term of order n in (3.31) cancels with the n− 1 term

that comes from the renormalisation process. In order to cancel a divergent term we

must add another divergent term that needs to cancel out a higher order correction.

27



This process is repeated ad infinitum.

Renormalisation to second order

We now show the general and formal procedure of renormalisation to second order. In

Sec. 4.3 we follow this approach to renormalise into the coupling constant the logarithmic

UV divergence that appears in the T-matrix of a Rashba-coupled Fermi gas. The renor-

malisation condition, Eq. (3.30), imposes F (r0) = FΞ (r0) to any order of the expansion

of FΞ (r), given by Eq. (3.32). Thence, to first order we expand the bare coupling g0 in

terms of the renormalised coupling gR as

g0 = gR +O
(
g2
R

)
. (3.34)

Introducing Eq. (3.34) into the regularised expansion of FΞ (r), given by Eq. (3.32), and

retaining only the second order terms gives

FΞ (r) = gR + g2
RF1,Ξ (r) +O

(
g3
R

)
. (3.35)

Still the function defined by Eq. (3.35) is divergent when Ξ→∞. To eliminate this term,

we substitute the expansion of g0 in terms of gR, Eq. (3.34), into the expansion of FΞ (r),

Eq. (3.32), to obtain

FΞ (r) = gR +O
(
g2
R

)
+
[
gR +O

(
g2
R

)]2F1,Ξ (r) + · · · (3.36)

The idea consists now of finding O
(
g2
R

)
such that it cancels the divergent term F1,Ξ in

Eq. (3.36). The renormalisation condition FΞ (r0) = gR gives

O
(
g2
R

)
= −g2

RF1,Ξ (r0) (3.37)

as the correction to second order in the renormalised coupling gR. Substituting the cor-

rection, Eq. (3.37), into Eq. (3.36) and retaining only the terms to second order yields

FΞ (r) = gR + g2
R [F1,Ξ (r)−F1,Ξ (r0)] +O

(
g3
R

)
. (3.38)

Equation (3.38) gives the correct result if [F1,Ξ (r)−F1,Ξ (r0)] is finite for all r when Ξ→
∞. We introduced a divergent termO

(
g2
R

)
in the expansion of the bare coupling constant

g0, Eq. (3.34), in order to cancel the divergence F1,Ξ that comes from the expansion of
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FΞ (r) in Eq. (3.32).

3.2.2 s-wave contact interaction

Contact s-wave interactions described by δ (r) functions can be good approximations to

scattering off short-range potentials. However, they give rise to UV divergences when

short distances (large momenta) are considered. Hence the δ-interaction has to be renor-

malised. This can be done using the Tan-Valiente Λ distribution. The Λ distribution

was introduced by S. Tan [67] to renormalise the Fermi-Huang-Lee pseudopotential [70].

Later M. Valiente found the momentum representation of Λ [68]. In this section we begin

by showing the origin and main properties of Λ and we finish with a calculation as an

example of the type of renormalisation procedure we encounter in Sec. 4.1.

Let us follow the same approach as S. Tan in [67]. We assume the interaction between

two particles with different spin states is mediated by the zero-range Fermi-Huang-Lee

pseudopotential [70]

V (r)ψ (r) =
4πa

µ
δ (r)

∂

∂r
[rψ (r)] , (3.39)

where a is the s-wave scattering length, µ is the reduced mass and r is the interparticle

distance. The pseudo-potential (3.39) is valid when the effective range r0 is much smaller

than |a|. The Schrödinger equation reads

−~2∇2

µ
ψ (r) +

4πa

µ
δ (r)

∂

∂r
[r ψ (r)] = Eψ (r) . (3.40)

Since we want to relate the properties of Λ in momentum space to the Fermi-Huang-Lee

pseudopotential, we Fourier transform the Schrödinger equation (3.40)

∫
dk

(2π)3

(
E − ~2k2

µ

)
eik·rψ (k) =

4πa

µ

∫
dk

(2π)3
ψ (k) δ (r)

∂

∂r

(
reik·r

)
. (3.41)

The Λ distribution is defined as

δ (r) Λ (k) = δ (r)
∂

∂r

(
reik·r

)
, (3.42)

where Λ (k) is an unknown distribution of k. The equality in Eq. (3.42) cannot be taken

term by term. By taking the limit r → 0 while keeping k finite in both sides of Eq. (3.42)
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we get to

Λ (k) = 1 if k <∞. (3.43)

One of the great advantages of using the Λ distribution relies on the absence of UV linear

divergences. To show this, let us perform the typical integral that leads to UV linear

divergences. In order to do so, we multiply both sides of Eq. (3.42) by k−2 and integrate

over k

δ (r)

∫
dk

(2π)3

Λ (k)

k2
= δ (r)

∂

∂r

[∫
dk

(2π)3

reik·r

k2

]
(3.44)

Integrating the RHS of Eq. (3.44) yields a constant value, hence the derivative with respect

to r is zero. Therefore

∫
dk

(2π)3

Λ (k)

k2
= 0 (3.45)

annihilates the UV linear divergences in the theory. We can enumerate the most impor-

tant mathematical properties of Λ [67]

Λ (−k) = Λ (k)

Λ (ck) = Λ (k) (3.46)

Λ∗ (k) = Λ (k) ,

where c 6= 0 is a real constant.

So far the properties of Λ (k) are well established but its form is unknown. The ex-

plicit momentum representation for the Λ distribution was given by M. Valiente in [68]

and formally, it has the form

Λ (k) = 1− δ (1/k)

k
. (3.47)

Equation (3.47) can be modified to include the effects of a cutoff for numerical calcula-

tions, therefore

Λc (k) = θ (kc − k)− δ (1/k − 1/kc)

k
, (3.48)

where kc is the high-momentum cutoff. We use now Eq. (3.48) to explicitly integrate an
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expression similar to Eq. (3.45), hence

∫ ∞
0

dk
k2

1 + k2
Λc (k) =

∫ ∞
0

dk
k2

1 + k2

[
θ (kc − k)− δ (1/k − 1/kc)

k

]
= lim

kc→∞

[∫ kc

0
dk

k2

1 + k2
−
∫ ∞

1/kc

dk
k δ (1/k − 1/kc)

1 + k2

]

= lim
kc→∞

[
kc − arctan k2

c +

∫ ∞
1/kc

du
δ (u− 1/kc)

u2 (u+ 1)

]

= lim
kc→∞

[
kc − arctan kc +

kc
1 + 1/k2

c

]
= −π

2
, (3.49)

where the substitution k = 1/u is used. The result of the integral (3.49) shows how

the Tan-Valiente distribution renormalises the bare contact s-wave interaction so no UV

divergences appear.

3.3 Conclusions

In this Chapter we reviewed the most important concepts in scattering theory and renor-

malisation, which will be addressed in Chapter 4 and Chapter 5. We showed the im-

portance of Green’s functions in the framework of computing effective interactions using

the T-matrix. We approached renormalisation with the humble purpose of clarifying the

origin of different UV divergences. We showed how linear divergences can be nicely

renormalised using the Tan-Valiente distribution [67, 68], while logarithmic UV diver-

gences can be renormalised into the coupling constant.
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Chapter 4

Single-branch theory of ultracold

Fermi gases with artificial Rashba

spin-orbit coupling

In previous Chapters we introduced and described the properties of noninteracting Rashba-

coupled Fermi gases. We outlined the helicity formalism to distinguish two different

set of eigenstates. In this Chapter we will describe contact s-wave interactions between

negative-helicity fermions. As proved by Ozawa and Baym [27], the multichannel theory

shows no logarithmic UV divergences in the T-matrix. Here we show how the single-

channel T-matrix is renormalised using the correct multi-channel T-matrix by Ozawa,

yielding a divergent-free theory for the negative-helicity branch with a finite correction

to the energy in second order perturbation theory [28].

The outline of this Chapter is as follows: we start introducing the negative-helicity

contact s-wave interaction. We then describe the first and second approximation in the

Born series, Eq. (3.29), and show the linear and logarithmic divergences. The linear diver-

gence is renormalised using the Tan-Valiente distribution [67, 68], while we renormalise

the logarithmic divergence into the coupling constant. We conclude by showing that the

energy of the interacting ground state is renormalisable, therefore finite, to second order

in perturbation theory.

4.1 Contact interactions in Rashba-coupled Fermi gases

In Chapter 2 we described the main properties of noninteracting Rashba-coupled Fermi

gases in two and three dimensions. For single-branch theories, introducing a contact
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s-wave interaction leads to a non-renormalisable logarithmic divergence [71, 72] in the T-

matrix that is renormalised when the multichannel T-matrix is considered [27]. Our start-

ing point to develop a divergent-free single-branch theory for a Rashba-coupled many-

body problem at low densities is the interaction term1 in the spin-1/2 basis [27]

HI =
g∗
V

∑
k1+k2=k3+k4

c†k4,↑c
†
k3,↓ck2,↓ck1,↑, (4.1)

where V is the volume and g∗ is the bare coupling constant. With the use of the noninter-

acting spin-orbit Hamiltonian (2.52), the interacting Hamiltonian reads

H =
∑
k,σ

~2

2m

(
k2 + λ2

)
c†k,σck,σ +

~2λ

m

∑
k

k⊥

(
e−iγkc†k,↑ck,↓ + eiγkc†k,↓ck,↑

)
+
g∗
V

∑
k1+k2=k3+k4

c†k4,↑c
†
k3,↓ck2,↓ck1,↑. (4.2)

We express the interacting Hamiltonian (4.2) in the helicity basis, where the noninteract-

ing Hamiltonian (2.52) is diagonal. The inverse transformation of Eq. (2.59) is

 ck,↑

ck,↓

 =
1√
2

 1 1

eiγk −eiγk

 dk,↑

dk,↓

 . (4.3)

Writing the interaction Hamiltonian (4.1) in the helicity basis yields

HI =
g∗
4V

∑
k1+k2=k3+k4

e−iγ3eiγ2
(
d†k4,↑ + d†k4,↓

)
(
d†k3,↑ − d

†
k3,↓

)
(dk2,↑ − dk2,↓) (dk1,↑ + dk1,↓) . (4.4)

Expanding Eq. (4.4) gives all the possible interactions in the system. Since at low density

only the lowest branch is energetically relevant, we only retain that term in Eq. (4.4).

Therefore the effective Hamiltonian is reduced to

V =
g∗
4V

∑
k1+k2=k3+k4

e−iγ3eiγ2d†k4,↓d
†
k3,↓dk2,↓dk1,↓, (4.5)

where V represents the interaction Hamiltonian in the negative-helicity branch. The in-

teraction only depends in the incident angle γ2 and the outgoing angle γ3. In order to

have an interaction that depends on the parameters of all the particles involved, we pro-

1Any wave vector labeled using numbers ki where i = 1, 2, ... corresponds to a creation or annihilation
operator that appears in the effective interaction no matter the basis chosen.
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ceed to symmetrise Eq. (4.5). Permuting the indices (from here onwards we omit again

the spin indices as we always refer to the negative helicity branch) yields

V =
g∗
8V

∑
k1+k2=k3+k4

(
e−iγ3eiγ2d†k4

d†k3
dk2dk1 + e−iγ4eiγ2d†k3

d†k4
dk2dk1

)
=

g∗
16V

∑
k1+k2=k3+k4

(
e−iγ3eiγ2d†k4

d†k3
dk2dk1 + e−iγ3eiγ1d†k4

d†k3
dk1dk2

+ e−iγ4eiγ2d†k3
d†k4

dk2dk1 + e−iγ4eiγ1d†k3
d†k4

dk1dk2

)
. (4.6)

The anticommutation relations, Eq. (2.60), allow to write Eq. (4.6) as

V =
g∗

16V

∑
k1+k2=k3+k4

d†k4
d†k3

dk2dk1

(
e−iγ3eiγ2 − e−iγ3eiγ1 − e−iγ4eiγ2 + e−iγ4eiγ1

)
, (4.7)

which is rearranged as

V = − g∗
16V

∑
k1+k2=k3+k4

d†k4
d†k3

dk2dk1

(
eiγ1 − eiγ2

) (
e−iγ3 − e−iγ4

)
. (4.8)

We finally write the negative-helicity bare interaction Hamiltonian as

V =
g∗
2V

∑
k1+k2=k3+k4

∆ (γ1, γ2, γ3, γ4) d†k4
d†k3

dk2dk1 , (4.9)

where the angular details of the interaction are given by

∆ (γ1, γ2, γ3, γ4) = −1

8

(
eiγ1 − eiγ2

) (
e−iγ3 − e−iγ4

)
. (4.10)

In App. A.4 we summarise the main properties of the ∆ function, Eq. (4.10).

Since the total momentum is conserved, we separate the centre of mass (CM) and

relative coordinates. From Fig. 4.1 we define the incident wave vectors as k1 and k2 and

the outgoing wave vectors as k3 and k4. The relative incident momentum ~p and the CM

momentum ~Q are defined in terms of the incident wave vectors as

p =
k2 − k1

2
, (4.11)

Q = k1 + k2. (4.12)

Conservation of momentum leads to the same relations for the outgoing momenta k3 and
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V

k2 =
Q
2 − p

k1 =
Q
2 + p

k3 =
Q
2 − p′k4 =

Q
2 + p′

= +
p′

k6 =
Q
2 + k

k5 =
Q
2
− k

Figure 4.1: Pictorial representation of the negative helicity interaction V to
first and second order.

k4 and the relative outgoing momentum ~p′

k3 =
Q

2
− p′, (4.13)

k4 =
Q

2
+ p′. (4.14)

4.2 Single channel T-matrix

In this section we compute the single-channel T-matrix for an interacting Rashba-coupled

Fermi gas. We begin by computing the first and second term in the Born series, Eq. (3.29),

to show how the second term in the Born series yields a logarithmic UV divergence.

The linear UV divergence is removed by re-parametrising the zero-range s-wave interac-

tion (4.10) using the Tan-Valiente distribution, see Sec. 3.2.2.

4.2.1 First Born approximation

The first term in the Born series, Eq. (3.29), comes from evaluating the matrix elements

of the interaction V . We define |k,q〉 = d†kd
†
q |0〉 and |k′,q′〉 = d†k′d

†
q′ |0〉 as incident and

outgoing states respectively. Hence, the matrix elements read

〈
q′,k′

∣∣V |k,q〉 =
g∗
2V

∑
k1+k2=k3+k4

∆ (γ1, γ2, γ3, γ4) Λ (p)
〈
q′,k′

∣∣ d†k4
d†k3

dk2dk1 |k,q〉

=
g∗
2V

∑
k1+k2=k3+k4

∆ (γ1, γ2, γ3, γ4) Λ (p) 〈0| dqdkd†k4
d†k3

dk2dk1d
†
kd
†
q |0〉 ,

(4.15)
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where Λ (p) is the Tan-Valiente distribution and p = (k2 − k1) /2 the relative momen-

tum. The expectation value in Eq. (4.15) is easily obtained using Wick’s theorem (see

Appendix A.5). From the eight contractions that do not leave any operator unpaired,

let us show first the four contractions that give a non-vanishing contribution to the T-

matrix. Afterwards, we will show how the remaining four terms vanish. The first term

in the Born series reads

T (1) =
g∗
2V

∑
k1+k2=k3+k4

∆ (γ1, γ2, γ3, γ4) Λ (p)×

〈0|

dq′dk′d†k4
d†k3

+ dq′dk′d
†
k4
d†k3

dk2dk1d
†
kd
†
q + dk2dk1d

†
kd
†
q

 |0〉 . (4.16)

Substituting the contractions by their values we get

T (1) =
g∗
2V

∑
k1+k2=k3+k4

∆ (γ1, γ2, γ3, γ4) Λ (p)×

[
δq′ ,k3δk′ ,k4 − δq′ ,k4δk′ ,k3

][
− δq,k1δk,k2 + δq,k2δk,k1

]
. (4.17)

In order to simplify this expression we interchange the dummy indices to obtain

T (1) =
g∗
2V

∑
k1+k2=k3+k4

δq,k1δk,k2δk′ ,k3δq′ ,k4Λ (p)
[
−∆ (γ1, γ2, γ4, γ3)

+ ∆ (γ2, γ1, γ4, γ3) + ∆ (γ1, γ2, γ3, γ4)−∆ (γ2, γ1, γ3, γ4)
]
. (4.18)

The antisymmetry of ∆, Eq. (A.18), allows us to write Eq. (4.18) as

T (1) =
2g∗
V

∑
k1+k2=k3+k4

δq,k1δk,k2δk′ ,k3δq′ ,k4∆ (γ1, γ2, γ3, γ4) Λ (p) . (4.19)

Finally summing over all momenta gives the first term in the Born series

T (1) =
2g∗
V

∆
(
γq, γk, γk′ , γq′

)
. (4.20)

The four contractions that give a vanishing contribution to the T-matrix are given by

t(1) =
g∗
2V

∑
k1+k2=k3+k4

∆ (γ1, γ2, γ3, γ4) Λ (p)×

〈0|

dq′dk′d†kd†q + dq′dk′d
†
kd
†
q

dk2dk1d
†
k4
d†k3

+ dk2dk1d
†
k4
d†k3

 |0〉 . (4.21)
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Equation (4.21) yields

t(1) =
g∗
2V

∑
k1+k2=k3+k4

∆ (γ1, γ2, γ3, γ4) Λ (p)×

[
δq,q′ δk,k′ − δq,k′ δk,q′

][
δk1,k4δk2,k3 − δk1,k3δk2,k4

]
. (4.22)

A first inspection of Eq. (4.22) suggests that this set of contractions corresponds to a non-

interacting process. All the indices that correspond to incident (q and k) or outgoing (q′

and k′) operators are not mixed with numeric indices that describe operators that come

from the interaction, Eq. (4.9). Let us operate on the Kronecker deltas that are not affected

by the sum. Due to conservation of momentum we write the Kronecker delta δq+k,q′+k′

explicitly to obtain

[
− δq,q′ δk,k′ + δq,k′ δk,q′

]
δq+k,q′+k′ = −δq,q′ δk,q+k−q′ + δq,k′ δk,k+q−k′ , (4.23)

which simplifies to (−δk,k + δk,k) = 0. Contractions that involve incident operators with

outgoing operators, and subsequently contraction of operators that come from the in-

teraction in Eq. (4.9) correspond to noninteracting processes, therefore they do not con-

tribute to the T-matrix, see Fig. 4.2.

4.2.2 Second Born approximation

The second term in the Born series comes from evaluating the matrix elements of VG0 (z)V ,

Eq. (3.28). The resolution of the identity for a two-particle system in the relative momen-

tum p basis, Eq. (4.11), for a fixed CM momentum, Eq. (4.12), reads

1 =
∑
p

∣∣∣∣Q2 + p,
Q

2
− p

〉〈
Q

2
− p,

Q

2
+ p

∣∣∣∣ , (4.24)

|k〉 |q〉

|q′〉|k′〉

|k〉 |q〉

|k′〉 |q′〉

Figure 4.2: Vanishing contractions in the first term of the Born series.
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hence the noninteracting Green’s function is

G0 (z) =
∑
p

1

z −H(−)

∣∣∣∣Q2 + p,
Q

2
− p

〉〈
Q

2
− p,

Q

2
+ p

∣∣∣∣ . (4.25)

The two-particle state |Q/2 + p,Q/2− p〉 is an eigenstate of the noninteracting single-

branch Hamiltonian (2.61), therefore

H(−)

∣∣∣∣Q2 + p,
Q

2
− p

〉
=

[
ε−

(
Q

2
+ p

)
+ ε−

(
Q

2
− p

)] ∣∣∣∣Q2 + p,
Q

2
− p

〉
(4.26)

allows us to write the noninteracting Green’s function, Eq. (4.25), as

G0 (z) =
∑
p

1

z − ε− (Q/2 + p)− ε− (Q/2− p)

∣∣∣∣Q2 + p,
Q

2
− p

〉〈
Q

2
− p,

Q

2
+ p

∣∣∣∣ .
(4.27)

Making use of Eq. (4.27), the second term in the Born series reads

〈
q′,k′

∣∣VG0 (z)V |k,q〉 =
( g∗

2V

)2∑
p

δk+q,k′+q′

z − ε− (Q/2 + p)− ε− (Q/2− p)
×

∑
k5+k6=k7+k8

∆ (γ5, γ6, γ7, γ8) Λ
(
p′′
)
〈0| dq′dk′d†k8

d†k7
dk6dk5d

†
Q/2+pd

†
Q/2−p |0〉∑

k1+k2=k3+k4

∆ (γ1, γ2, γ3, γ4) Λ
(
p′
)
〈0| dQ/2−pdQ/2+pd

†
k4
d†k3

dk2dk1d
†
kd
†
q |0〉 ,

(4.28)

where the relative momentum are given by p′ = (k2 − k1) /2, and p′′ = (k6 − k5) /2. As

explained at the end of Sec. 4.2.1 there are certain contractions that do not contribute to

the T-matrix, therefore we will not compute them. We name the two vacuum expectation

values in Eq. (4.28) as 〈T (2)
1 〉 and 〈T (2)

2 〉, respectively. From the first vacuum expectation

value we have

〈T (2)
1 〉 =

∑
k5+k6=k7+k8

∆ (γ5, γ6, γ7, γ8)Λ
(
p′′
) (
δk8,k′ δk7,q′ − δk8,q′ δk7,k′

)
×

(
δk6,Q/2−pδk5,Q/2+p − δk6,Q/2+pδk5,Q/2−p

)
, (4.29)
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which yields

〈T (2)
1 〉 =4

∑
k5+k6=k7+k8

∆ (γ5, γ6, γ7, γ8) Λ
(
p′′
)
δk5,Q/2+pδk6,Q/2−pδk7,q′ δk8,k′

=4 ∆
(
γQ/2+p, γQ/2−p, γq′ , γk′

)
Λ (p) . (4.30)

For the second vacuum expectation value in the second Born term, Eq. (4.28), we simply

interchange indices as

q′ → Q

2
− p,

k′ → Q

2
+ p,

Q

2
+ p→ k, (4.31)

Q

2
− p→ q,

p′′ → p′,

and the numerical indices as k4 → k8, k3 → k7, k2 → k6 and k1 → k5 to get to

〈T (2)
2 〉 = 4 ∆

(
γk, γq, γQ/2−p, γQ/2+p

)
Λ (p) . (4.32)

Substituting 〈T (2)
1 〉 and 〈T (2)

2 〉, Eqs. (4.30) and (4.32) respectively, into Eq. (4.28), we obtain

the second term in the Born series

T (2) =16 δk+q,k′+q′

( g∗
2V

)2
×∑

p

Λ (p)
∆
(
γk, γq, γQ/2−p, γQ/2+p

)
∆
(
γQ/2+p, γQ/2−p, γq′ , γk′

)
z − ε− (Q/2 + p)− ε− (Q/2− p)

. (4.33)

The composition property (A.21) of ∆ yields

T (2) = δk+q,k′+q′

(
2g∗
V

)2

∆
(
γk, γq, γq′ , γk′

)
×

∑
p

Λ (p)
∆
(
γQ/2+p, γQ/2−p, γQ/2+p, γQ/2−p

)
z − ε− (Q/2 + p)− ε− (Q/2− p)

. (4.34)
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We express ∆
(
γQ/2+p, γQ/2−p, γQ/2+p, γQ/2−p

)
using Eq. (A.20) and we write the sum in

Eq. (4.34) as an integral to finally obtain the second term in the Born series

T (2) = δk+q,k′+q′

(g∗
V

)2
∆
(
γk, γq, γk′ , γq′

)
×

V

(2π)3

∫
dp Λ (p)

1− cos
(
γQ/2−p − γQ/2+p

)
z − ε− (Q/2 + p)− ε− (Q/2− p)

. (4.35)

Finally, the first and second term in the Born series, Eqs. (4.20) and (4.35) respectively,

give the T-matrix to second order in the Born series

〈
q′,k′

∣∣T |k,q〉 = δk+q,k′+q′
2g∗
V

∆
(
γq, γk, γk′ , γq′

)
×
[

1− g∗
2

∫
dp

(2π)3
Λ (p)

1− cos
(
γQ/2−p − γQ/2+p

)
z − ε− (Q/2 + p)− ε− (Q/2− p)

]
.

(4.36)

4.2.3 Logarithmic divergence

The single-channel T-matrix (4.36) contains a genuine linear UV divergence coming from

the zero-range s-wave interaction and a logarithmic UV divergence caused by consider-

ing only the negative helicity branch [27]. In this section we will explicitly compute the

linear and logarithmic UV divergences in Eq. (4.36). To show the linear UV divergence

we remove the Tan-Valiente distribution from Eq. (4.36). The integral reads

∫
dp

(2π)3

1− cos
(
γQ/2−p − γQ/2+p

)
z − ε− (Q/2 + p)− ε− (Q/2− p)

. (4.37)

Let us first rewrite the denominator in Eq. (4.37) using Eq. (2.57). For |p| � |Q⊥| /2 we

have

ε−

(
Q

2
± p

)
=

~2

2m

[(∣∣∣∣Q⊥2 ± p⊥

∣∣∣∣− λ)2

+
(qz

2
± pz

)2
]

≈ ~2

2m

[
(p⊥ − λ)2 + p2

z

]
. (4.38)

In cylindrical coordinates the identity kx + iky = k⊥e
iγk allows us to write

Q⊥
2
eiγQ ± p⊥eiγp = eiγQ/2±p

∣∣∣∣Q⊥2 ± p⊥

∣∣∣∣ , (4.39)
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hence the product eiγQ/2+pe−iγQ/2−p reads

eiγQ/2+pe−iγQ/2−p =

(
Q⊥
2 eiγQ − p⊥eiγp

)
∣∣∣Q⊥2 − k⊥

∣∣∣
(
Q⊥
2 e−iγQ + p⊥e

−iγp
)

∣∣∣Q⊥2 + p⊥

∣∣∣
=

Q2
⊥
4 − p2

⊥ + iQ⊥p⊥ sin (γQ − γp)∣∣∣Q⊥2 − p⊥

∣∣∣∣∣∣Q⊥2 + p⊥

∣∣∣ . (4.40)

The cosine in Eq. (4.37) is written as

cos
(
γQ/2−p − γQ/2+p

)
=

Q2
⊥
4 − p2

⊥∣∣∣Q⊥2 − p⊥

∣∣∣∣∣∣Q⊥2 + p⊥

∣∣∣ , (4.41)

or alternatively as a function of the angles γQ and γp

cos
(
γQ/2−p − γQ/2+p

)
=

Q2
⊥
4 − p2

⊥√(
Q2
⊥
4 + p2

⊥

)2
− p2
⊥Q

2
⊥ cos2 (γp − γQ)

. (4.42)

For large values of the in-plane wave vector p⊥ the cosine in Eq. (4.42) tends to −1 and

the single-particle energy can be written as Eq. (4.38), substituting these two results into

Eq. (4.37) gives

2m

~2

∫ Λ dp
(2π)3

1

(p⊥ − λ)2 + p2
z

=
m

~2

∫ Λ dp⊥p⊥
2π

∫
dpz
2π

1

(p⊥ − λ)2 + p2
z

=
m

2~2

∫ Λ dp⊥
2π

p⊥
p⊥ − λ

=
m

4π~2

(
Λ + λln

Λ

Λ0

)
, (4.43)

where Λ is the high momentum cutoff and Λ0 is a finite, arbitrary momentum scale with

the only purpose of rendering the argument of the logarithm dimensionless. Therefore

the T-matrix for large cutoff Λ behaves as

T ∗

g∗∆
∼ 1− g∗m

16π~2

(
Λ + λln

Λ

Λ0

)
. (4.44)

The linear divergence in Eq. (4.44) can be removed using the Tan-Valiente distribution,

Eq. (3.47), while the logarithmic divergence will be absorbed by the coupling constant.
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4.3 Renormalization of the coupling constant

In this section we renormalise the coupling constant to cure the logarithmic divergence in

the single-channel T-matrix, Eq. (4.36). We use the divergence-free multichannel T-matrix

computed in [27] as the renormalisation condition, Eq. (3.30), while the linear divergence

is renormalised by means of the Tan-Valiente distribution, Sec. 3.2.2.

Ozawa and Baym proved that the T-matrix for a Rashba-coupled Fermi gas does

not have logarithmic UV-divergences when both branches are considered [27]. The exact

divergence-free T-matrix is

〈
q′,k′

∣∣T |k,q〉 =
g∆
(
γq, γk, γk′ , γq′

)
1 + mgλ~

4π F
(
Q
2

) , (4.45)

where g = 4πa/m is the renormalised coupling constant, with a the s-wave scattering

length. The function F is given by

F
(
Q

2

)
=

π

mλ~

∫
dp

(2π)3
Λ (p)

[
1− cos

(
γQ/2−p − γQ/2+p

)
ε−

(
Q
2 − p

)
+ ε−

(
Q
2 + p

)
+

1− cos
(
γQ/2−p − γQ/2+p

)
ε+

(
Q
2 − p

)
+ ε+

(
Q
2 + p

) + 2
1 + cos

(
γQ/2−p − γQ/2+p

)
ε−

(
Q
2 + p

)
+ ε+

(
Q
2 − p

)].
(4.46)

As explained in Sec. 3.2.1, the renormalisation condition, Eq. (3.30), is given by the exact

divergence-free T-matrix, Eq. (4.45), at zero-energy, which means setting z = 0 in the

denominator of the Green’s function. We begin the renormalisation process by expanding

the bare coupling constant g∗ in powers of its renormalised counterpart g

g∗(λ,Q) = g + αλ,Qg
2 +O(g3), (4.47)

where αλ,Q is an unknown function of the CM momentum ~Q and spin-orbit coupling

constant λ. The divergence-free T-matrix, Eq. (4.45), to first order in g reads

〈
q′,k′

∣∣T |k,q〉 ≈ g∆
(
γq, γk, γk′ , γq′

) [
1− mgλ~

4π
F
(
Q

2

)
+O

(
g2
)]
. (4.48)

We substitute now the expansion of the bare coupling g∗ in terms of the renormalised
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coupling g, Eq. (4.47), into the single-channel UV-divergent T-matrix given by Eq. (4.36)

〈
q′,k′

∣∣T ∗ |k,q〉 =
(
g + αλ,Qg

2
)

∆
(
γq, γk, γk′ , γq′

)
×1− g + αλ,Qg

2

4

∫
dp

(2π)3
Λ (p)

1− cos
(
γQ/2−p − γQ/2+p

)
ε−

(
Q
2 − p

)
+ ε−

(
Q
2 + p

)
+O

(
g3
∗
)
.

(4.49)

Comparing terms to second order in the renormalised coupling constant g between the

divergence-free T-matrix, Eq. (4.48), and the single-channel T-matrix in Eq. (4.49) yields

−mλ~
4π
F
(
Q

2

)
= αλ,Q −

1

4

∫
dp

(2π)3
Λ (p)

1− cos
(
γQ/2−p − γQ/2+p

)
ε−

(
Q
2 − p

)
+ ε−

(
Q
2 + p

) . (4.50)

Hence, solving Eq. (4.50) for αλ,Q gives

αλ,Q = −mλ~
4π
F
(
Q

2

)
+

1

4

∫
dp

(2π)3
Λ (p)

1− cos
(
γQ/2−p − γQ/2+p

)
ε−

(
Q
2 − p

)
+ ε−

(
Q
2 + p

) . (4.51)

Substituting the definition of F , Eq. (4.46), into the above equation gives a more compact

expression for αλ,Q

αλ,Q = −1

4

∫
dp

(2π)3
Λ (p)

1− cos
(
γQ/2−p − γQ/2+p

)
ε+

(
Q
2 − k

)
+ ε+

(
Q
2 + k

) + 2
1 + cos

(
γQ/2−p − γQ/2+p

)
ε−

(
Q
2 + k

)
+ ε+

(
Q
2 − k

)
 .

(4.52)

The integrals in Eq. (4.52) are of the same kind as that in Eq. (4.37), which we proved to

be divergent. Hence αλ,Q is a logarithmically divergent function that will cancel the loga-

rithmic divergence in the renormalised single-channel T-matrix (4.49). We now rearrange

the renormalised single-channel T-matrix to second order in g, Eq. (4.49), as

〈
q′,k′

∣∣T ∗ |k,q〉 =g∆
(
γq, γk, γk′ , γq′

)
×1 + αλ,Qg −

g

4

∫
dp

(2π)3
Λ (p)

1− cos
(
γQ/2−p − γQ/2+p

)
ε−

(
Q
2 − p

)
+ ε−

(
Q
2 + p

)
 . (4.53)

Substituting the expression for αλ,Q, Eq. (4.51), into Eq. (4.53) yields

〈
q′,k′

∣∣T ∗ |k,q〉 = g∆
(
γq, γk, γk′ , γq′

) [
1− mgλ~

4π
F
(
Q

2

)]
. (4.54)
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The renormalised single-channel T-matrix corresponds to the weak coupling expansion

of the multichannel T-matrix (4.48).

4.4 Energy of the interacting Rashba-coupled Fermi gas

The energy of a Rashba-coupled Fermi gas changes when contact s-wave interactions are

included. We now compute the contribution to the energy using perturbation theory to

first and second order in the renormalised coupling constant and show that the many-

body problem is renormalisable. We also show that the second order term proves to be

finite when the renormalised coupling constant g is used.

4.4.1 First order correction

The first order correction to the energy (Hartree-shift) comes from evaluating 〈FS| V |FS〉.
Hence, substituting V , Eq. (4.9), yields

〈FS| V |FS〉 =
g∗
2V

∑
k1+k2=k3+k4

∆ (γ1, γ2, γ3, γ4) Λ (p) 〈FS| d†k4
d†k3

dk2dk1 |FS〉 , (4.55)

where the relative momentum is p = (k2 − k1) /2. In principle, the four momenta in-

volved in the expectation value in the equation above do not have any restriction besides

total momentum conservation. But in order to have a non-vanishing contribution it is

necessary that holes are created inside the Fermi sea, hence k1 and k2 belong to the Fermi

sea. On the other hand, k3 and k4 also need to belong to the Fermi sea so the initial state

is recovered. Therefore applying Wick’s theorem to Eq. (4.55) gives

〈FS| V |FS〉 =
g∗
2V

∑
k1+k2=k3+k4

∆ (γ1, γ2, γ3, γ4) Λ (p)

× 〈0|

d†k4
d†k3

dk2dk1 − d†k4
d†k3

dk2dk1

 |0〉ΘI (k4) ΘI (k3) ΘI (k2) ΘI (k1)

=
g∗
2V

∑
k1+k2=k3+k4

∆ (γ1, γ2, γ3, γ4) Λ (p) (δk1,k4δk2,k3 − δk1,k3δk2,k4)

×ΘI (k4) ΘI (k3) ΘI (k2) ΘI (k1) , (4.56)
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relabelling the dummy indices in Eq. (4.56) yields

E(1) =
g∗
2V

∑
k1+k2=k3+k4

δk1,k4δk2,k3Λ (p)
[
∆ (γ1, γ2, γ3, γ4)−∆ (γ1, γ2, γ4, γ3)

]
×ΘI (k4) ΘI (k3) ΘI (k2) ΘI (k1) . (4.57)

The antisymmetry property of ∆, Eq. (A.18), simplifies Eq. (4.57) to

E(1) =
g∗
V

∑
k1+k2=k3+k4

δk1,k4δk2,k3∆ (γ1, γ2, γ3, γ4) Λ (p) ΘI (k4) ΘI (k3) ΘI (k2) ΘI (k1) .

(4.58)

Summing over k2 and k4 in Eq. (4.58) gives

E(1) =
g∗
V

∑
k1,k3

∆ (γ1, γ3, γ3, γ1) Λ (p) ΘI (k3) ΘI (k1) . (4.59)

Writing the sums in Eq. (4.59) as integrals and using Eq. (A.20) to express ∆ as a cosine

function gives the energy density

E(1)

V
= −g∗

∫
FS

dk1

(2π)3

∫
FS

dk3

(2π)3
∆ (γ1, γ3, γ1, γ3)

=
g∗
4

∫
FS

dk1

(2π)3

∫
FS

dk3

(2π)3
[1− cos (γ3 − γ1)] , (4.60)

where the Tan-Valiente distribution is removed as the integrals in the Fermi sea do not

yield any UV divergence. The integral involving the cosine function in Eq. (4.60) vanishes

when the angular integral is performed. Therefore, the energy reads

E(1)

V
=
g∗
4

[∫
FS

dk
(2π)3

]2

=
g∗
4
ρ2. (4.61)

The first order correction in perturbation theory to the energy gives a constant term which

is proportional to the bare coupling g∗ and the density of the Rashba-coupled Fermi gas,

Eq. (2.73). The renormalisation condition, Eq. (4.47), to first order imposes g∗ = g, hence

the energy density reads

E(1)

V
=
g

4
ρ2. (4.62)
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The noninteracting ground state energy (2.78) and the first correction (4.62) give a total

energy for the system

E

V
=

(
π~2

mλ
+
g

4

)
ρ2. (4.63)

4.4.2 Second order correction

The energy to second order in the renormalised coupling constant g comes from two

different contributions. The renormalisation process to second order, Eq. (3.35), yields

a divergent term of order g2 in the renormalised coupling constant. On the other hand,

second order perturbation theory in g2
∗ gives another logarithmically-divergent term of

order g2 when the bare coupling constant is substituted by its renormalised counterpart.

As we will show, the energy to second order in the renormalised coupling is finite.

We start by computing the contribution to the energy from the renormalisation pro-

cess. Substituting Eq. (4.47), into the interacting Hamiltonian (4.9) yields

V =
∑

k1+k2=k3+k4

g + αλ,Qg
2

2V
∆ (γ1, γ2, γ3, γ4) Λ (p) d†k4

d†k3
dk2dk1 , (4.64)

where p = (k2 − k1) /2 is the relative momentum. Equation (4.64) yields two terms, one

proportional to g, Eq. (4.62), the other proportional to g2

E
(2)
1 =

g2

2V

∑
k1+k2=k3+k4

αλ,Q∆ (γ1, γ2, γ3, γ4) Λ (p) 〈FS| d†k4
d†k3

dk2dk1 |FS〉

×ΘI (k4) ΘI (k3) ΘI (k2) ΘI (k1) . (4.65)

Performing the same steps and calculations as in Sec. 4.4.1 we obtain

E
(2)
1

V
=
g2

4

∫
FS

dk1

(2π)3

∫
FS

dk3

(2π)3
αλ,QΛ (p) [1− cos (γ3 − γ1)] . (4.66)

The above equation is logarithmically divergent due to the presence of αλ,Q. Performing

the integration in Eq. (4.66) yields

E
(2)
1

V
=
g2

4
ρ2αλ,Q. (4.67)
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Substituting αλ,Q, Eq. (4.52), into Eq. (4.67) gives

E
(2)
1

V
= −g

2ρ2

16

∫
dp

(2π)3
Λ (p)

×

1− cos
(
γQ/2−p − γQ/2+p

)
ε+

(
Q
2 − p

)
+ ε+

(
Q
2 + p

) + 2
1 + cos

(
γQ/2−p − γQ/2+p

)
ε−

(
Q
2 + p

)
+ ε+

(
Q
2 − p

)
 . (4.68)

Since it will show useful, we perform the integral in Eq. (4.68) for large in-plane momen-

tum |p⊥| � |Q⊥| /2. Therefore, Eq. (4.68) gives

E
(2)
1

V
≈ −1

2

(gρ
2

)2
∫ Λ dp

(2π)3
Λ (p)

1

(p⊥ − λ)2 + p2
z

, (4.69)

which, obviously, is the same integral as in Eq. (4.43).

The remaining contribution to the energy in order g2 comes from calculating the

second order correction to the energy in perturbation theory. In this case, we obtain a

correction to the energy proportional to g2
∗ . Imposing the renormalisation condition to

first order in the coupling (g∗ ≈ g) yields a second order correction in g2. Let us begin by

writing the second order correction to the energy

E
(2)
2 =

∑
|n〉/∈FS

|〈FS| V |n〉|2
E0 − εn

, (4.70)

where E0 is the energy of the ground state (2.78), and εn is the energy associated to the

intermediate state |n〉, which is different from the Fermi sea. The intermediate state con-

sists of two particles ejected from the Fermi sea, hence their momenta are not inside the

Fermi sea, plus two holes created in the Fermi sea, with their corresponding momenta

inside the Fermi sea. The two particle-two hole state is represented as

|n〉 = ΘO (k) ΘO (q) ΘI

(
k′
)

ΘI

(
q′
)
d†kd

†
qdk′dq′ |FS〉 . (4.71)

The energy of the excited state corresponds to the energy of the ground stateE0, Eq. (2.78),

plus the energy of the two particles minus the energy of the two holes

εn = E0 + ε− (k) + ε− (q)− ε−
(
k′
)
− ε−

(
q′
)
. (4.72)
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The matrix element in Eq. (4.70) reads

〈FS| V |n〉 =
g∗
2V

∑
k1+k2=k3+k4

∆ (γ1, γ2, γ3, γ4) Λ (p)

× 〈FS| d†k4
d†k3

dk2dk1d
†
kd
†
qdk′dq′ |FS〉ΘO (k) ΘO (q) ΘI

(
k′
)

ΘI

(
q′
)
, (4.73)

where p = (k2 − k1) /2 is the relative momenta. The non-vanishing contractions that

come from applying Wick’s theorem to the matrix element in Eq. (4.73) are

〈FS| d†k4
d†k3

dk2dk1d
†
kd
†
qdk′dq′ |FS〉 = (δk,k1δq,k2 − δk,k2δq,k1)

(
δk′ ,k3δq′ ,k4 − δk′ ,k4δq′ ,k3

)
.

(4.74)

Inserting Eq. (4.74) into Eq. (4.73) gives

〈FS| V |n〉 =
g∗
2V

∑
k1+k2=k3+k4

∆ (γ1, γ2, γ3, γ4) Λ (p) [δk,k1δq,k2 − δk,k2δq,k1 ]

×
[
δk′ ,k3δq′ ,k4 − δk′ ,k4δq′ ,k3

]
ΘO (k) ΘO (q) ΘI

(
k′
)

ΘI

(
q′
)

=
g∗
2V

∑
k1+k2=k3+k4

δk,k1δq,k2δk′ ,k3δq′ ,k4Λ (p)

[
∆ (γ1, γ2, γ3, γ4)−∆ (γ1, γ2, γ4, γ3)

−∆ (γ2, γ1, γ3, γ4) + ∆ (γ2, γ1, γ4, γ3)

]
ΘO (k) ΘO (q) ΘI

(
k′
)

ΘI

(
q′
)

=
2g∗
V

∆
(
γk, γq, γq′ , γk′

)
Λ (p) ΘO (k) ΘO (q) ΘI

(
k′
)

ΘI

(
q′
)
, (4.75)

where Eq. (A.18) has been used. Substituting the matrix element (4.75) into the expression

for the energy at second order, Eq. (4.70), yields

E
(2)
2 =

∑
|n〉/∈FS

〈FS| V |n〉 〈n| V |FS〉
E0 − εn

=

(
2g∗
V

)2 ∑
|n〉/∈FS

Λ (p)
∆
(
γk, γq, γq′ , γk′

)
∆
(
γk′ , γq′ , γq, γk

)
ε− (k) + ε− (q)− ε− (k′)− ε− (q′)

×ΘO (k) ΘO (q) ΘI

(
k′
)

ΘI

(
q′
)

= −
(

2g∗
V

)2 1

16

∑
|n〉/∈FS

Λ (p)
[1− cos (γk − γq)]

[
1− cos

(
γk′ − γq′

)]
ε− (k) + ε− (q)− ε− (k′)− ε− (q′)

×ΘO (k) ΘO (q) ΘI

(
k′
)

ΘI

(
q′
)
. (4.76)
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To make Eq. (4.76) more compact we introduce the following notation

Ck,q = 1− cos (γk − γq) , (4.77)

ε−
(
k,q,k′,q′

)
= ε− (k) + ε− (q)− ε−

(
k′
)
− ε−

(
q′
)
. (4.78)

We also make explicit the conservation of momentum by including δk+q,k′+q′ in Eq. (4.76).

Hence we get to

E
(2)
2 = −

( g∗
2V

)2 ∑
|n〉/∈FS

δk+q,k′+q′Λ (p)
Ck,qCk′,q′

ε− (k,q,k′,q′)

×ΘO (k) ΘO (q) ΘI

(
k′
)

ΘI

(
q′
)
. (4.79)

Performing the sum in k in Eq. (4.79) yields

E
(2)
2 = −

( g∗
2V

)2 ∑
q,k′,q′

Λ (p)
Cq−k′−q′,qCk′,q′

ε− (q− k′ − q′,q,k′,q′)
ΘO (q) ΘI

(
k′
)

ΘI

(
q′
)
. (4.80)

Writing Eq. (4.80) as an integral and substituting the bare coupling constant g∗ for the

renormalised coupling constant g (first order renormalisation process, see Eq. (3.34))

gives the energy density to second order in perturbation theory in the thermodynamic

limit

E
(2)
2

V
= −g

2

4

∫
dq

(2π)3

∫
FS

dk′

(2π)3

∫
FS

dq′

(2π)3
Λ (p)

Cq−k′−q′,qCk′,q′
ε− (q− k′ − q′,q,k′,q′)

ΘO (q) . (4.81)

For large momentum |q| � |Q| /2, we can write 1/ε− (q− k′ − q′,q,k′,q′) ≈ 1/2ε− (q)+

O
(
ε−2
− (q)

)
since the remaining momenta k′ and q′ belong to the Fermi sea. Therefore,

Eq. (4.81) reads

E
(2)
2

V
≈ −

(gρ
2

)2
∫ Λ dq

(2π)3

1

2ε− (q)
, (4.82)

which is logarithmic divergent for large values of the momenta. Finally, Eqs. (4.66)

and (4.81) give the total energy to order g2

E2

V
=
g2

4

∫
FS

dk′

(2π)3

∫
FS

dq′

(2π)3
Ck′,q′Λ

(
p′
) [

αλ,Q −
∫

dq
(2π)3

Λ (p)
Cq−k′−q′,q′

ε− (k,q,k′,q′)
ΘO (q)

]
.

(4.83)

Equation (4.83) is finite for large relative momentum since the combination of Eq. (4.69)
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and Eq. (4.82) yield a finite correction to the energy

E
(2)
1 + E

(2)
2

V
≈ −1

2

(gρ
2

)2
∫ Λ dp

(2π)3
Λ (p)

1

(p⊥ − λ)2 + p2
z

+
1

2

(gρ
2

)2
∫ Λ dq

(2π)3

Λ (p)

ε− (q)
.

(4.84)

4.5 Conclusions

In this Chapter we have introduced a renormalisable theory for interacting fermions sub-

ject to a Rashba spin-orbit coupling. The theory is valid in the dilute regime where the

fermions in the noninteracting ground state occupy only the lower helicity branch. The

effective single-branch model corresponds to interacting fermions in the negative-helicity

branch, and thus opens the path to a simpler treatment of the many-body problem, cir-

cumventing the intricacies of the full multi-channel system. We showed that the second-

order correction to the ground-state energy of the repulsive Rashba-coupled Fermi gas is

finite.

As a natural extension of the single-channel theory, it would be interesting to cal-

culate the non-Hermitian optical potential. Solving the single-channel problem with the

use of the optical potential yields complex energies that are the same of the multichan-

nel problem when outgoing boundary conditions are imposed in the time-independent

Schrödinger equation [73]. The single-channel model may be also of interest for a more

sophisticated treatment of the BEC-BCS crossover. In the next Chapter we will apply the

single-branch model to compute the effect of applying a Fermi kick onto the system.
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Chapter 5

Non-Galilean features of ultracold

Rashba-Fermi gases in two

dimensions

Landau’s Fermi-liquid theory successfully describes Fermi systems when interactions are

present. Interactions change the effective mass and the effective coupling of the parti-

cle, thus Landau’s Fermi-liquid description is based on quasiparticles with different dy-

namical properties than those in noninteracting systems [74]. Despite Landau’s Fermi-

liquid theory has been widely applied, it breaks down in the vicinity of quantum critical

points [75, 76], to describe copper-based high-temperature superconductors [77, 78], or

to predict a phase transition to an insulating spin liquid [79]. Additionally, symmetry-

breaking deformations of the Fermi surface are difficult to explain using Landau’s Fermi-

liquid theory, including Pomeranchuk instabilities [80], where fermion-fermion forward

scattering leads to shape deformations of the Fermi surface [81]. It is also possible to

induce finite momentum Fermi surface deformations in Rashba-coupled Fermi gases by

exploiting the absence of Galilean invariance [29].

In this Chapter we will show how the Fermi surface is deformed when a Galilean

boost is applied to a Rashba-coupled Fermi gas. We begin by revising how Galilean in-

variance breaks down in spin-orbit Rashba-coupled Fermi systems. Then, we show the

response of the noninteracting system to an overall momentum kick. We will classify

the transformations of the Fermi sea accordingly to the most favourable energy config-

uration. When interactions are considered, the system will exhibit a phase transition to

a finite-momentum ground state. We will conclude with some experimental considera-

tions.
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5.1 Galilean invariance

A non-relativistic system is said to have Galilean symmetry if its equations of motion are

invariant under a Galilean transformation [82]. The Galileo group is composed by space-

time translations, rotations and boosts, hence it is a 10-generator continuous group. If

rotations are not considered, a Galilean boost of speed v0 between two frames of reference

moving with respect to each other at constant speed v0 corresponds to

v→ v + v0. (5.1)

Due to the fact that the acceleration does not change, Newtonian laws of motion exhibit

Galilean invariance when the velocity is not involved.1 However, certain quantities de-

pend on the frame of reference. If we apply a Galilean boost to a moving particle, the

kinetic energy K changes as

K =
1

2
mv2 → 1

2
m
(
v2 + v2

0 + 2 v · v0

)
= K +K0 +mv · v0, (5.2)

making explicitly the dependance on the frame of reference, where K0 = mv2/2.

Quantum mechanically, the effect of a Galilean boost (5.1) into the free particle Hamil-

tonian can be removed by a gauge transformation, therefore the Heisenberg equation of

motion for the creation and annihilation operators are invariant under a Galilean boost.

On the other hand, the spin-orbit coupling adds an extra term to the free particle Hamil-

tonian, Eq. (2.52).

Let us show how to remove the effect of the Galilean boost by a gauge transformation.

The free Fermi gas Hamiltonian is

H0 =
∑
k,σ

~2k2

2m
c†k,σck,σ. (5.3)

The equation of motion for the creation operator c†q,σ′ in the Heisenberg picture2 (we

1Lorentz’s force is a clear example of a force which is not Galilean invariant F = q (E + v ×B/c).
2A operatorA in the Schrödinger picture is expressed in the Heisenberg pictureA (t) via the transforma-

tion A (t) = U† (t)A U (t), where U (t) = exp (−iHt/~) is the unitary time-evolution operator and H the
Hamiltonian of the system.
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make explicit now the time dependance in the operators) is

d
dt
c†q,σ′ (t) =

i

~

[
H0, c

†
q,σ′ (t)

]
=

i~
2m

∑
k,σ

k2
[
c†k,σ (t) ck,σ (t), c†q,σ′ (t)

]
=

i~
2m

∑
k,σ

k2δk,qδσ,σ′c
†
k,σ (t)

=
i~q2

2m
c†q,σ′ (t) . (5.4)

Solving the differential equation yields

c†q,σ′ (t) = ei~q
2t/2mc†q,σ′ (0) . (5.5)

Equation (5.5) gives the usual free particle evolution. Let us assume now that a Galilean

boost in the wave vector k → k + k0 is applied to the system. The Hamiltonian changes

to

H = H0 +HG

=
~2

2m

∑
k,σ

(
k2 + k2

0 + 2k · k0

)
c†k,σck,σ, (5.6)

where the Galilean-boosted Hamiltonian reads

HG =
~2

2m

∑
k,σ

(
k2

0 + 2k · k0

)
c†k,σck,σ. (5.7)

The equation of motion for the creation operator changes to

d
dt
c†q,σ′ (t) =

i

~

[
H0 +HG, c†q,σ′ (t)

]
. (5.8)

Let us analyse the term
[
HG, c†q,σ′

]
independently. The commutator is given by

i

~

[
HG, c†q,σ′ (t)

]
=

i~
2m

∑
k,σ

(
k2

0 + 2k · k0

) [
c†k,σ (t) ck,σ (t), c†q,σ′ (t)

]
=

i~
2m

(
k2

0 + 2q · k0

)
c†q,σ′ (t) . (5.9)
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Therefore, the Heisenberg equation, Eq. (5.8), for the creation operator reads

d
dt
c†q,σ′ (t) =

i~
2m

[
q2 + k2

0 + 2q · k0

]
c†q,σ′ (t) . (5.10)

The term k2
0 + 2q · k0 in Eq. (5.10) appears from the effect of the Galilean boost in the

free Fermi gas Hamiltonian. It is possible to remove this term from Eq. (5.10) by a gauge

transformation

c†q,σ (t)→ eiHGt/~c†q,σ (t) e−iHGt/~. (5.11)

In the case of a Rashba-coupled Fermi gas described by the Hamiltonian (2.52), the Heisen-

berg equation for c†q,σ′ is

d
dt
c†q,σ′ (t) =

i

~

[
H0 +HSO, c†q,σ′ (t)

]
, (5.12)

where the spin-orbit part of the Rashba-coupled Fermi gas Hamiltonian (2.52) is

HSO =
~2λ

m

∑
k

k⊥

(
e−iγkc†k,↑ck,↓ + eiγkc†k,↓ck,↑

)
. (5.13)

Let us expand the commutator in Eq. (5.12) between the creation operator and the spin-

orbit Hamiltonian, Eq. (5.13),

[
HSO, c†q,σ′ (t)

]
=
λ~2

m

∑
k

k⊥

(
e−iγk

[
c†k,↑ (t) ck,↓ (t), c†q,σ′ (t)

]
+ eiγk

[
c†k,↓ (t) ck,↑ (t), c†q,σ′ (t)

])

=
λ~2

m

∑
k

k⊥δk,q

[
e−iγkδ↓,σ′c

†
k,↑ (t) + eiγkδ↑,σ′c

†
k,↓ (t)

]
=
λ~2

m
q⊥

[
e−iγqδ↓,σ′c

†
q,↑ (t) + eiγqδ↑,σ′c

†
q,↓ (t)

]
. (5.14)

Hence substituting Eq. (5.14) into Eq. (5.12) yields

d
dt
c†q,σ′ (t) =

i~
m

[(
q2 + λ2

)
c†q,σ′ (t) + λq⊥

(
e−iγqδ↓,σ′c

†
q,↑ (t) + eiγqδ↑,σ′c

†
q,↓ (t)

)]
. (5.15)
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The information enclosed in Eq. (5.15) is easier to visualise if it is written as a system

d
dt
c†q,↑ (t) =

i~
m

[(
q2 + λ2

)
c†q,↑ (t) + λq⊥e

iγqc†q,↓ (t)
]
, (5.16)

d
dt
c†q,↓ (t) =

i~
m

[(
q2 + λ2

)
c†q,↓ (t) + λq⊥e

−iγqc†q,↑ (t)
]
. (5.17)

The spin-orbit couples the dynamics of the different spin-particles. On the other hand,

performing a Galilean boost to the spin-orbit Hamiltonian (2.52) gives

HSOG = H0 +HG +
~2λ

m

∑
k

(k⊥ + k0,⊥)
(
e−iγk+k0 c†k,↑ck,↓ + eiγk+k0 c†k,↓ck,↑

)
, (5.18)

where the term in third term in the RHS of Eq. (5.18) comes from the Galilean boost

applied to Eq. (5.13). There is no gauge transformation like Eq. (5.11) that simultaneously

removes the effect of the Galilean boost in the free particle Hamiltonian and in the spin-

orbit Hamiltonian. Although for for large spin-orbit coupling, Galilean invariance can be

restored at the BEC-BCS crossover [83, 84].

5.2 Conditions and description of the system

Let us apply a momentum kick ~k0 per particle to the Rashba-coupled Fermi gas, so that

the total momentum of the system is

~Q = ~
N∑
i

ki = N~k0, (5.19)

where N is the total number of particles in the system and ~ki is the individual momen-

tum of each particle of the system. For finite momentum kick ~k0, the gas will adiabat-

ically evolve according to the minimum energy configuration it can achieve. If the mo-

mentum kick per particle ~k0 is small compared to the typical single-particle momentum

~λ, the finite momentum ground state in the thermodynamic limit can be modelled by in-

finitesimal transformations, which describe the response of the system to small momen-

tum kicks. These infinitesimal transformations must fulfil two conditions: (i) the density

ρ is preserved and (ii) the momentum per particle of the resulting Fermi sea equals ~k0.

These conditions do not prevent fermions to have individual momentum different than

~k0 as long as the momentum density remains constant. If we consider infinitesimally

small momenta, we can safely rule out breaking the Fermi sea into two disjoint pieces,

that is, we do not allow a change in topology, which is predicted to happen in strong
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Rashba spin-orbit coupling [54]. We are then left with two possibilities, namely displace-

ments of the inner and outer circumferences and multipolar deformations of these.

The Fermi sea of a two-dimensional Rashba-coupled Fermi gas, Eq. (2.75), is an an-

nulus with inner and outer radii RI = λ − kF and RO = λ + kF , respectively. Due to

the shape of the Fermi sea we consider the region k < RI as a virtual Fermi sea of holes

with density ρI . On the other hand, we treat the region k < RO as a virtual Fermi sea of

particles with density ρO, Fig. 2.1. The virtual individual densities are defined as

ρi =

∫ 2π

0

dγ
2π

∫ Ri

0

dkk
2π

=
R2
i

4π
, (5.20)

where i = I,O for the inner (outer) radius. The total density of the system needs to

remain constant and it is defined as the virtual density of particles minus the virtual

density of holes as

ρ = ρO − ρI =
λkF
π
, (5.21)

which is the density for the noninteracting Rashba-coupled Fermi gas in two dimensions,

Eq. (2.75). An analogous relation to Eq. (5.21) can be obtained for the momentum den-

sity. Let us write the total momentum per particle ~k0 of the resulting Fermi sea as the

total momentum per particle of the virtual Fermi sea of particles ~qO minus the total

momentum per particle of the virtual Fermi sea of holes ~qI . This means

k0ρ = qOρO − qIρI . (5.22)

In order to have infinitesimal transformations of the Fermi sea, Eq. (5.21) and Eq. (5.22)

need to remain fixed.

We introduce now the only dimensionless parameter that defines the strength of the

density3-coupling ratio in a two-dimensional Rashba-coupled Fermi gas as [29]

z =
πρ

λ2
. (5.23)

Alternatively, using Eq. (2.75) we can write z = kF /λ. The inner and outer radius of the

3In this Chapter we use the two-dimensional density (2.75) ρ2D = λkF /π. Since there is no chance of
confusion and not to overload notation, we write from now on ρ instead of ρ2D .
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Fermi sea, Eq. (2.71), in terms of z read

RI = λ− kF = λ (1− z) , (5.24)

RO = λ+ kF = λ (1 + z) . (5.25)

5.2.1 Mathematical description of the displacements and deformations

Mathematically, we model displacements and deformations of the Rashba-coupled Fermi

gas differently. Applying a momentum kick ~k0 to the Rashba-coupled Fermi gas can

yield a displacement of the Fermi sea. The displacement is parametrised by replacing

k→ k+k0 into the single-particle energy, Eq. (2.57). Therefore, the single-particle energy

changes as

ε− (k)→ ε− (k + k0) . (5.26)

Since we consider small displacements k0 � k, the single-particle energy for the negative-

helicity branch, given by Eq. (2.57), is expanded as

ε− (k + k0) ≈ ~2

2m

(
|k + k0|2 + λ2 − 2λk

[
1 +

k0

k
cos γ +

k2
0

2k2
sin2 γ

])
, (5.27)

where we have written the square root in Eq. (2.57) as

|k + k0| =
√
k2 + k2

0 + 2kk0 cos γ

≈ k
(

1 +
k0

k
cos γ +

k2
0

2k2
sin2 γ

)
+O

(
k3

0

)
. (5.28)

Let us consider now that the momentum kick ~k0 induces multipolar deformations [85]

of the Fermi sea. Deformations of the Fermi sea appears in square lattices [86, 87], or

as a consequence of interactions [88] that yield Pomeranchuk instabilities [81, 89]. We

parametrise deformations using polar coordinates, therefore the inner and outer radii are

written as

Ri (γ) = Ri + fi (γ) , (5.29)

where i = I,O for the inner and outer radii respectively and fi (γ) are real-valued func-

tions. Since deformations do not preserve density in general, we need to impose ad-

ditional conditions on the angular functions fI(O) (γ). To this end, let us calculate the
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density of the deformed system using the parametrisation in Eq.(5.29). We have then

ρ =

∫ 2π

0

dγ
2π

∫ RO+fO(γ)

RI+fI(γ)

dkk
2π

= ρO − ρI +
1

8π2

∫ 2π

0
dγ
(

[fO (γ)]2 − [fI (γ)]2
)
, (5.30)

where we have used the fact that fI(O) (γ) are periodic functions of the angle. In order to

keep the density constant we impose

∫ 2π

0
dγ [fO (γ)]2 =

∫ 2π

0
dγ [fI (γ)]2 . (5.31)

We express now the angular functions fI(O) (γ) as a multipole expansion4 as

fi (γ) =
∑
m≥1

c(i)
m

cos (mγ)√
π

, (5.32)

where i = I,O and every coefficient c(i)
m is real. Since we consider small deformations,

we retain only the dipolar term of the expansion, hence

fi (γ) ≈ c(i)
1

cos γ√
π
. (5.33)

We substitute Eq. (5.33) into Eq. (5.31) to obtain the condition for the dipolar coefficients

c
(i)
1 , which reads

(
c

(O)
1

)2
=
(
c

(I)
1

)2
. (5.34)

Equation (5.34) yields to two types of deformations depending on whether the dipolar

coefficients are equal or opposite

c
(I)
1 = ±c(O)

1 . (5.35)

4Since fI(O) (γ) are periodic functions it is possible to write the reparametrisation in (5.29) as a cosine
Fourier series as

fi (γ) = Ri +
∑
m=1

c(i)m
cos (mγ)√

π
,

where i = I,O.
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For simplicity we introduce the notation

q1 =
c

(O)
1√
π
, (5.36)

therefore all the dipolar coefficients will be referred to q1. We introduce now the angle-

parametrisation of the inner and outer radii as

RI (γ) = RI + p cos γ, (5.37)

RO (γ) = RO + q cos γ, (5.38)

where q = q1 and p = ±q1, and with the positive (negative) sign corresponding to equal

(opposite) dipolar coefficients. In Sec. 5.3.2 we study the excess of energy density corre-

sponding to equal and opposite deformations of the Fermi surface.

5.3 Energetic effects of non-Galilean transformations on the Fermi

sea

In this section we analyse which of the density-preserving transformations gives the most

favourable excess of energy to the noninteracting Rashba-coupled Fermi gas when a mo-

mentum kick is performed. Therefore we define the excess of energy due to the momentum

kick as

∆Ei = Ei − E0. (5.39)

Above, E = E/S is the energy density, i = GB, D denotes the energy density correspond-

ing to a Galilean boost (GB) or D to a deformation and E0 is the ground state energy

density of the two-dimensional noninteracting Rashba-coupled Fermi gas introduced in

Eq. (2.80). Using the dimensionless variable z, Eq. (5.23), we have

E0 =
~2

2m

∫ 2π

0

dγ
2π

∫ λ(1+z)

λ(1−z)

dk k
2π

(k − λ)2

=
~2π

6m
zρ2. (5.40)

We shall compute now the excess of energy density for a finite momentum kick ~k0 per

particle to a Rashba-coupled Fermi gas. We split the analysis in the three different cases:

Galilean boost, deformations and displacement along with deformations.
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5.3.1 Galilean boost

The first configuration we consider corresponds to a Galilean boost to the whole Fermi

sea. Due to the circular symmetry of the system we perform a momentum kick to the

system in the x direction, therefore the momentum kick is ~k0 = ~k0êx, where êx is the

unit vector in the x-dimension. We consider both circumferences to be displaced equally.

Hence the energy of the moving many-body ground state reads

EGB =

∫
FS

dk
(2π)2

ε− (k + k0)

=
~2

2m

∫ 2π

0

dγ
2π

∫ RO

RI

dk k
2π

(
|k + k0| − λ

)2
. (5.41)

Introducing the second order expansion in k0 for the single-particle energy, Eq. (5.27), we

get to

EGB =
~2

2m

∫ 2π

0

dγ
2π

∫ RO

RI

dk
2π
k

[
(k − λ)2 + 2k0 (k − λ) cos γ + k2

0

(
1− λ

k
sin2 γ

)]
. (5.42)

Performing the integral in Eq. (5.42) yields an excess of energy

∆EGB = EG − E0 =
~2k2

0

4m
ρ. (5.43)

At the end of this section we will show that Eq. (5.43) gives an upper bound for the

ground-state energy at finite momentum and it is only attained for a saturated (z = 1)

lower branch.

5.3.2 Dipolar deformations of the Fermi surface

Let us assume now that the Fermi circumferences deform when the finite momentum

kick is applied to the system. We study both cases where the dipolar coefficients of the

inner and outer Fermi circumferences are equal (q = q1 = p) or opposite (q = q1 = −p),

according to the notation introduced in Eqs. (5.37) and (5.38), see Fig. 5.1.

The energy density for a Rashba-coupled Fermi gas subject to a momentum kick ~k0

that induces dipolar deformations of the Fermi sea with dipolar coefficients q and p for

the outer and inner radii, respectively, is

ED =
~2

2m

∫ 2π

0

dγ
2π

∫ RO+q cos γ

RI+p cos γ

dk
2π
k (k − λ)2 . (5.44)
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Figure 5.1: Pictorial representation of the displacement and deformation
of the Fermi circumferences for equal and opposite dipolar coefficients
c

(I)
1 = ±c(O)

1 . In order to enhance the deformation we have set q1/RO = 0.3
and RI/RO = 0.4, hence the appearance resembles a displaced curve.
The red curve represents the deformation of the outer Fermi circumference
RO (γ) = RO + q1 cos γ, while the blue (yellow) curve represent the defor-
mation of the inner circumferenceRI (γ) = RI±q1 cos γ, where the positive
(negative) sign corresponds to equal (opposite) dipolar coefficient q1.

Doing the integral in Eq. (5.44) yields

ED =
~2

8πm

1

48

(
9
[
q4 − p4

]
+ 24zλ2

[
2
(
q2 + p2

)
+ 3z

(
q2 − p2

)]
+ 64z3λ4

)
. (5.45)

As the energy density in Eq. (5.45) is an even polynomial of q and p we can substitute

q = q1 and p = ±q1, where p = q1 and p = −q1 represent equal and opposite dipolar

coefficients respectively. Both deformations yield the same expression, which is

ED =
~2

4m
ρ

[
q2

1 +
2π2ρ2

3λ2

]
, (5.46)

where the second term in the RHS represents the ground state energy E0 computed in

Eq. (5.40). Equation (5.46) shows that without any additional restriction, deformations

with equal or opposite dipolar coefficients yield the same energy density. Since the mo-

mentum density ρk0 needs to remain constant, Eq. (5.22) gives the additional relation

between the different momenta

k0ρ =
1

(2π)2

∫ 2π

0
dγ cos γ

∫ RO+q cos γ

RI+p cos γ
dk k2. (5.47)
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Performing the integral gives

k0ρ =
1

16π

[
q3 − p3 + 4λ2

(
q [1 + z]2 − p [1− z]2

)]
. (5.48)

Since Eq. (5.48) is an odd polynomial in q and p, substituting q = q1 and p = ±q1 does not

simplify it any further.

Equal dipolar coefficients

For equal dipolar coefficients (q = q1 = p), the constant momentum density condition,

Eq. (5.48) is

k0ρ =
q1λ

2

4π

(
[1 + z]2 − [1− z]2

)
. (5.49)

Since ρi = R2
i /4π where i = I,O and RI(O) = λ (1∓ z), Eq. (5.49) simplifies to

k0 = q1. (5.50)

Substituting Eq. (5.50) into Eq. (5.46) gives an excess of energy density for a deformation

with equal dipolar coefficients

∆E(+)
D =

~2k2
0

4m
ρ. (5.51)

A finite momentum kick that induces a deformation of the Fermi sea with equal dipolar

coefficients yields an excess of energy, Eq. (5.51), which is equal to the excess of energy

produced by a momentum kick that yields a displacement of the Fermi sea, Eq. (5.43).

Opposite dipolar coefficients

For opposite dipolar coefficients (q = q1 = −p) the constant momentum density, Eq. (5.48),

gives

k0ρ =
q1

8π

[
q2

1 + 4λ2
(
1 + z2

) ]
. (5.52)

Intuitively, dipolar coefficients with opposite sign yield a lower energy, since from Eq. (5.52)

we see that a weaker deformation is needed in order to have the required momentum k0.
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Considering only the leading order in q1 we have

q1 =
2z

1 + z2
k0, (5.53)

where ρ = λkF /π has been used. Substituting Eq. (5.53) into the energy density for

dipolar deformations (5.46) gives

∆E(−)
D =

~2k2
0

m

[
z

1 + z2

]2

ρ. (5.54)

This expression is bounded from above by the energy of a Galilean boost, Eq. (5.51), and

it only reaches its maximum value in the case of a saturated gas z = 1.

5.3.3 General Galilean displacements and dipolar deformations of the Fermi

surface

We now study the most general case. Once the momentum kick is applied, it induces a

displacement and a deformation of the Fermi sea. We consider different displacements

qI and qO for the inner and outer circumferences. As we saw in the previous section, the

most favourable energetic situation corresponds to a deformation with opposite dipolar

coefficients, hence the dipolar coefficients are q = q1 = −p. We compute the excess of

energy density as the difference between the energy EO of a virtual Fermi sea of particles

and that of a virtual Fermi sea of holes EI . Each energy density for the virtual Fermi seas

is calculated as

Ei =
1

(2π)2

∫ 2π

0
dγ
∫ Ri+fi(γ)

0
dkkε− (k + qi) , (5.55)

where i = I,O. Introducing the limits of integration and the single-particle energy,

Eq. (5.27), for k � k0 yields

Ei =
~2

2m

1

(2π)2

∫ 2π

0
dγ
∫ Ri±q1 cos γ

0
dkk

[
|k + qi| − λ

]2

≈ ~2

2m

1

(2π)2

∫ 2π

0
dγ
∫ Ri±q1 cos γ

0
dkk

[
(k − λ)2 + 2qi (k − λ) cos γ + q2

i

(
1− λ

k
sin2 γ

)]
,

(5.56)

where the upper (lower) sign corresponds to the outer (inner) Fermi circumference. In

order to simplify the integral and to see the different contributions, we separate the inte-

grand in Eq. (5.56) into two terms. The first integrand does not depend on the momentum
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kick qi and corresponds to a pure deformation. Obviously, the other two integrands cor-

responds to a displacement and a simultaneous deformation, since the dependence on qi

it is explicit. The deformation term E(D)
i , with i = I,O corresponds to

E(D)
i =

~2

2m

1

(2π)2

∫ 2π

0
dγ
∫ Ri±q1 cos γ

0
dk k (k − λ)2 . (5.57)

The energy density difference between the virtual Fermi sea of particles and the virtual

Fermi sea of holes reads5

E(D)
O − E(D)

I =
~2

4πm
λ

(
2

3
k3
F + kF q

2
1

)
, (5.58)

where we used Ri = λ ∓ kF for the inner and outer radius. The first term in the RHS of

Eq. (5.58) corresponds to the energy density of the ground state, Eq. (5.40).

The second and third terms in the RHS of Eq. (5.56) correspond to a displacement

happening simultaneously as a deformation of the Fermi circumference with opposite

dipolar coefficients, we name this term as E(DD)
i , where i = I,O. The energy density

difference between the outer and inner circumference is

E(DD)
O − E(DD)

I =
~2

8π2m

∫ 2π

0
dγ

(∫ RO+q1 cos γ

0
dkk

[
2qO (k − λ) cos γ + q2

O

(
1− λ

k
sin2 γ

)]

−
∫ RI−q1 cos γ

0
dkk

[
2qI (k − λ) cos γ + q2

I

(
1− λ

k
sin2 γ

)])

=
~2

16πm

[ (
q2
O − q2

I

) (
q2

1 + 2k2
F

)
+ q1 (qO + qI)

(
q2

1 + 4k2
F

)
+ 4kFλq1 (qO − qI) + 2kFλ

(
q2
O + q2

I

) ]
.

(5.59)

Combining Eq. (5.58) and Eq. (5.59) we recover the excess of energy density for a dis-

placed deformation

∆EDD =
~2

16πm

[
4kFλq

2
1 +

(
q2
O − q2

I

) (
q2

1 + 2k2
F

)
+ q1 (qO + qI)

(
q2

1 + 4k2
F

)
+ 4kFλq1 (qO − qI) + 2kFλ

(
q2
O + q2

I

) ]
. (5.60)

Equation (5.60) has terms of quartic order in the momenta as q2
Iq

2
1 or q2

Oq
2
1 . Since the

dipolar coefficient q1, the inner momentum kick qI and the outer momentum kick qO are

of the same order and smaller than the Fermi wave vector kF , it is possible to retain the
5Equation (5.58) was computed before in Eq. (5.46), but we rewrite it here as we use an explicit depen-

dence on the Fermi vector kF .
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terms of order O
(
q2
i

)
, where i = 1, I, O, in Eq. (5.60) to get

∆EDD =
~2

8πm

[
k2
F

(
q2
O − q2

I

)
+ kFλ

(
q2
O + q2

I

)
+ 2kF q1 [kF (qO + qI) + λ (qO − qI) + λq1]

]
. (5.61)

Equation (5.61) gives the excess of energy density for a momentum kick that induces

on the Fermi sea a displacement along with a deformation, but it does not preserve, in

general, constant momentum density. Since we have three momenta, the momentum

density, Eq (5.22), is

k0ρ = qOρO − qIρI + q1ρ1, (5.62)

where q1ρ1 is included to take into account the region of the gas that is deformed. The

total momenta in the deformed region S1 is

Q1 =

N1∑
i=1

ki cos γi

=
S1

(2π)2

∫ 2π

0
dγ
∫ RO+q1 cos γ

RI−q1 cos γ
dkk2 cos γ, (5.63)

where N1 is the number of fermions in the deformed region S1. The total momenta ~Q1

and the momenta per particle ~q1 are related via ~Q1 = N1~q1. Hence the third term in

the RHS of Eq. (5.62) is

q1ρ1 =
1

4π

[
q1

(
R2
O +R2

I

)
+
q3

1

2

]
=

1 + z2

2z
q1ρ+

q3
1

8π
. (5.64)

Therefore to first order in q1 we have

q1ρ1 ≈
1 + z2

2z
q1ρ. (5.65)

Substituting Eq. (5.65) into the momentum density, Eq. (5.62), gives

k0ρ = qOρO − qIρI +
1 + z2

2z
q1ρ. (5.66)
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We obtain now qI as a function of qO and q1

qI =
1

ρI

[
−k0ρ+ qOρO +

1 + z2

2z
q1ρ

]
. (5.67)

Substituting qI into (5.61) allows us to write the excess of energy density as a function of

the remaining momenta

∆EDD =
~2

8πm

(
kF q

2
O (λ+ kF ) +

kF
ρ2
I

[
−k0ρ+ qOρO +

1 + z2

2z
q1ρ

]2

(λ− kF )

+ 2kF q1

[
qO (λ+ kF )− 1

ρI

[
−k0ρ+ qOρO +

1 + z2

2z
q1ρ

]
(λ− kF ) + λq1

])
. (5.68)

The wave vector qO that minimises (5.68) reads

qmin
O = −q1 +

2z (1 + z)

1 + 3z2
k0, (5.69)

that yields an expression for the minimum energy

∆Emin
DD =

~2k2
0

m

z2

1 + 3z2
ρ. (5.70)

The minimum energy density is infinitely degenerate in the dipolar coefficient q1 and it

is upper bounded by the excess of energy density for a Galilean boost of the Fermi sea,

Eq. (5.43), for all z and for each z by the excess of energy density for a deformation of the

Fermi sea with opposite dipolar coefficients, Eq. (5.54).

5.4 Non-Galilean transformations in a weakly interacting gas

We now study the response of a weakly interacting Rashba-coupled Fermi gas to a finite

momentum kick. We consider a contact s-wave interaction in the negative helicity branch

given by Eq. (4.9). We introduced the dimensionless parameter z, Eq. (5.23), for the non-

interacting Rashba-coupled Fermi gas. We define another dimensionless parameter for

the interacting theory [90] as

ξ =
mg

4π~2
. (5.71)

Typically, for mean field theory to be valid, the interaction energy to first order in pertur-

bation theory, Eq. (4.62), must be smaller than the Fermi energy, Eq. (2.63). Therefore we
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have

gρ

4
<

~2k2
F

2m
=⇒ ξ <

z

2
, (5.72)

where kF = πρ/λ has been used.

In Sec. 4.4 we obtained the first correction to the energy in perturbation theory, Eq. (4.60),

in three dimensions. In two dimensions, the Hartree shift reads

EHS =
gρ2

4
− g

4

∫
FS

dk
(2π)2

∫
FS

dq
(2π)2

cos (γk − γq) . (5.73)

In Eq. (5.73) the first term is independent of the shape of the Fermi sea, thence it is not

affected by displacements nor deformations. On the other hand, the second term van-

ishes in a spherically symmetric ground state, but deformations of the Fermi sea reduce

the interaction energy for repulsive interactions (g > 0).

We perform a momentum kick per particle ~k0 to a weakly interacting Rashba-coupled

Fermi gas and we allow the Fermi circumferences to displace and deform with opposite

dipolar coefficients, since we showed in Sec. 5.3 that opposite dipolar coefficients yield a

lower energy density. We proceed as in the previous section: first we determine the result-

ing interacting Fermi sea due to the deformation and displacement. Then we compute

the excess of energy density, given by the integral in Eq. (5.73). Secondly, we calculate the

relation between the inner momentum qI , the outer momentum qO and the dipolar coef-

ficient q1 in order for the momentum density ρk0 to remain constant. Finally we obtain

the outer momentum qO that minimises the excess of energy.

The parametrisation of the displacement and the deformation is slightly more com-

plicated than any previous case, since the displacement of the Fermi sea cannot be de-

scribed by performing a Galilean boost in the single-particle energy ε− (k). Therefore, we

introduce the displacement and the deformation into the integration limits of Eq. (5.73).

We first show how to parametrise a displacement and afterwards we include deforma-

tions. Initially, the Fermi circumferences are defined in momentum space as

k(i)
x = k(i) cos γk, (5.74)

k(i)
y = k(i) sin γk, (5.75)

where i = I,O and the corresponding radii are Ri (γk) =

√(
k

(i)
x

)2
+
(
k

(i)
y

)2
. After
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performing a displacement in the x direction, the Fermi circumferences change to

k̃(i)
x = k(i) cos γk + qi, (5.76)

k̃(i)
y = k(i) sin γk. (5.77)

Hence, the displaced radius R̃i is defined as

R̃i (γk) =
√
R2
i + q2

i + 2Riqi cos γk. (5.78)

The radius defined in Eq. (5.78) considers only displacements. Deformations with op-

posite dipolar coefficients are considered by substituting Ri by RO(I) → RO(I) ± q1 cos γ

in Eq. (5.78), where the positive (negative) sign corresponds to the outer (inner) Fermi

circumference

R̃i (γk) =

√
(Ri ± q1 cos γk)

2 + q2
i + 2qi (Ri ± q1 cos γk) cos γk. (5.79)

The resulting interacting Fermi sea due to a displacement and opposite dipolar coeffi-

cients deformation corresponds to the region defined by

FS : [0, 2π)×
[√

(RI − q1 cos γk)
2 + q2

I + 2qI (RI − q1 cos γk) cos γk,

√
(RO + q1 cos γk)

2 + q2
O + 2qO (RO + q1 cos γk) cos γk

]
, (5.80)

which is depicted in Fig. 5.2.

Instead of substituting the Fermi sea, Eq. (5.80), into the expression for the Hartree

shift, Eq. (5.73), let us use the symmetry of the Fermi sea to simplify it. One of the inte-

grals in Eq. (5.80) can be evaluated as follows

∫
FS

dk
(2π)2

cos (γk − γq) =
1

(2π)2

∫ 2π

0
dγk

∫ R̃O(γk)

R̃I(γk)
dk k cos (γk − γq)

=
1

2(2π)2

∫ 2π

0
dγk cos (γk − γq)

[
R̃2
O (γk)− R̃2

I (γk)
]
. (5.81)

By means of the trigonometric identity cos (γk − γq) = cos γk cos γq − sin γk sin γq we ex-

press Eq. (5.81) as

1

2(2π)2

∫ 2π

0
dγk

[
cos γk cos γq − sin γk sin γq

] [
R̃2
O (γk)− R̃2

I (γk)
]
. (5.82)
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Figure 5.2: Deformed Fermi sea by a general non-Galilean transformation
with different dipolar coefficients according to Eq. (5.80), with q1/RO = 0.2,
qI/RO = 0.1, qO/RO = 0.5 and RI/RO = 0.4.

The inner and outer radii given by Eq. (5.79) are symmetric functions of the angle γk in

the interval [0, 2π). Therefore, the integrals in Eq. (5.82) that involve sin γk vanish. We

define the integral in the Hartree shift, Eq. (5.73), as

I =− g

4

∫
FS

dk
(2π)2

∫
FS

dq
(2π)2

cos (γk − γq)

=− g

4

[∫
FS

dk
(2π)2

cos γk

]2

. (5.83)

Performing the integral in Eq. (5.83) within the Fermi sea, Eq. (5.80), gives

I = − gρ

64πz
[qO (1 + z)− qI (1− z) + 2q1]2 , (5.84)

which allows us to write the Hartree shift, Eq. (5.73) as

EHS =
gρ

4

(
1− 1

16πz
[qO (1 + z)− qI (1− z) + 2q1]2

)
. (5.85)

The excess of energy density for an interacting Rashba-coupled Fermi gas whose Fermi

sea is deformed and displaced comes from combining the noninteracting excess of energy
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density ∆EDD, Eq. (5.61), and the Hartree shift EHS , given by Eq. (5.85),

∆EInt =
~2ρ

8m

[
1

z

(
q2
O − q2

I

)
+
(
q2
O + q2

I

)
+ 2q1

(
1

z
(qO + qI) + (qO − qI) + q1

)

+
gρ

4

(
1− 1

16πz
[qO (1 + z)− qI (1− z) + 2q1]2

)]
. (5.86)

Since we impose a constant momentum density, ρk0, the three momenta qI , qO and q1

are related by Eq. (5.66). Clearing qI in favour of q1 and qO gives Eq. (5.67). Substituting

qI = qI (q1, qO), Eq. (5.67), into Eq. (5.86) yields the excess of energy density as a function

of q1 and qO

∆EInt =
~2ρ

128mπ (1− z)3[
32π

(
− 8k0z + (q1 + qO) (1 + z)

[
4k0 (1 + z)− (q1 + qO)

(
3 + z2

)] )
+ gρ (1− z)

(
4π (1− z)2 − z [−2k0 + (q1 + qO) (1 + z)]2

)]
. (5.87)

We look now for the momentum qO that minimises the excess of energy density given by

Eq. (5.87), by solving ∂ (∆EInt) /∂qO|qmin
O

= 0, which yields

qmin
O =

2k0z (−2 + 2ξ [1− z]) + q1 (2− z − 2z [z + ξ])

2 (−1 + 2z2 + zξ [1− z2])
. (5.88)

Substituting the minimum outer momentum qmin
O , Eq. (5.88), into the excess of energy

density, Eq. (5.87), we obtain the minimum excess of energy density for an interacting

Rashba-coupled Fermi gas

∆Emin
T = G (ξ, z)

~2k2
0

m
ρ, (5.89)

where the function G (ξ, z) is given by

G (ξ, z) =
z (z − ξ)

zξ (z2 − 1) + 1 + 3z2
. (5.90)

Since G (ξ, z) is independent of the choice of the dipolar coefficient q1, the minimum

excess of energy density is infinitely degenerate at small q1 even in the presence of inter-

actions.

In Fig. 5.3 we summarise the excess of energy density hierarchy for the different cases

considered.
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Figure 5.3: This figure represents the excess of energy density hierarchy
for the different cases considered. Applying a Galilean boost to the sys-
tem or performing a deformation with equal dipolar coefficients yields the
maximum excess of energy density, given by ∆EGB and ∆E(+)

D , which is in-
dependent of the dimensionless parameter z = πρ/λ2. The excess of energy
density is reduced when a deformation with opposite dipolar coefficients
is applied to the Rashba-coupled Fermi gas, ∆E(−)

D . The most general trans-
formation of the Fermi surface, joint displacement and opposite dipolar co-
efficients deformation, gives the minimum excess of energy density ∆EDD
for the noninteracting case. In the noninteracting case, the upper bound
is reached when the system is saturated (z = 1). We attain the minimum
excess of energy density for an interacting Rashba-coupled Fermi gas that
is displaced and deformed with opposite dipolar coefficients ∆Emin

T . It is
important to notice that every case is infinitely degenerate in the dipolar
coefficients.
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5.4.1 Phase transition to a finite momentum ground state

As we infer from Eq. (5.89), the systems’ ground state of the Rashba-coupled Fermi gas

will change from the noninteracting Fermi sea to a Fermi sea with an infinitesimally small

momentum at a critical value ξ (z) = ξc, where G (ξ, z) = 0. This happens for

ξc (z) = z, (5.91)

which is in good agreement with self consistent Hartree-Fock methods used in systems

with strong-coupling limit [91, 92] where they showed that the Fermi surfaces can be de-

formed. However, with their choice of the self-consistent Zeeman field, the degeneracy

of the ground state or the absence thereof was not investigated. We are considering the

system’s noninteracting energy to order O
(
k2

0

)
, since we used the small momentum ex-

pansion given by Eq. (5.28) to obtain ∆Emin
DD , Eq. (5.70). On the other hand, the interacting

energy is indeed not approximate but proportional to k2
0 in the cases qI = qO = 0 with

q1 6= 0 and q1 = 0 with qI , qO 6= 0. This comes from the fact that we used the excess of

energy for a deformed and displaced noninteracting Fermi sea, Eq. (5.68), to obtain the

ground state energy in the Hartree shift, Eq (5.73). Hence, for a momentum kick that

only yields a displacement (q1 = 0) or a deformation qI = qO = 0 of the Fermi sea,

the interacting energy is proportional to k2
0 . The critical point ξc = z lies slightly away

from the validity of mean-field theory. This also happens in ferromagnetic [93] transi-

tions in repulsive Fermi gases [94–96]. This problem is solved going beyond first order

perturbation theory, which gives rise to apparent first order phase transitions [96–98].

Non-perturbative methods also overcome this problem, although they predict second

order phase transitions [99, 100] which are in good agreement with Monte Carlo simula-

tions [101, 102].

The low-momentum theory of the Rashba-coupled Fermi gas predicts only whether

the system evolves towards a finite-momentum ground state in a continuous manner.

This is to say that the theory can describe, correctly, only derivatives in the energy at zero

momenta. The first derivative of the excess of energy density, Eq. (5.89), with respect to

k0 vanishes when k0 = 0, while its second derivative with respect to k0 reads

d2

dk2
0

∆Emin
T =

2~2ρ

m
G (ξ, z)

∣∣∣∣∣
k0=0

. (5.92)

Combined with (5.90) the expression above is positive for interactions smaller than the
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critical point ξc = z. If interactions are larger than the critical point the second derivative

of the energy becomes negative and the system acquires a nonzero overall momentum.6

The change of sign in G (ξ, z) denotes the transition from a minimum to a maximum at

k0 = 0, which implies that for repulsions stronger than the critical value ξc the system’s

ground state has nonzero momentum. To calculate the actual momentum of the ground

state for ξ > ξc we need more terms in k0.

5.5 Experimental considerations

In the previous section we considered the momentum acquired by the gas to be in a par-

ticular direction. In an experiment, however, no direction is in principle preferred. Obvi-

ously, after the critical point is reached, the ground state is highly degenerate, since the

same momentum in any direction yields the same energy. The many-body wave function

is therefore an arbitrary superposition of states with momenta pointing at different direc-

tions. For instance, we may expect to observe an equal superposition of these states, up to

arbitrary phases, which yields a circularly symmetric momentum distribution. Even if a

finite momentum is acquired in a particular direction, this will be different in each experi-

mental realisation, and the averaged momentum distribution after many realisations will

be spherically symmetric. Momentum distributions are especially relevant to cold atom

experiments where these can be obtained via time-of-flight measurements [5], in com-

bination with spin-injection spectroscopy [13] and resolved-momentum radio-frequency

spectroscopy [12].

We can easily map out, starting from a Fermi sea at finite momentum in a particular

direction, the integrated, circularly symmetric momentum distribution. The momentum

distribution is denoted by n (k), and is defined such that

ρ =

∫
dk

(2π)3
n (k) . (5.93)

From Eq. (5.93) it is possible to define the integrated, angle-independent momentum dis-

tribution ñ (k) as

ñ (k) =

∫ 2π

0

dφ
2π
n (k) . (5.94)

Geometrically, n (k) is the arc length of occupied states on a circumference of radius k

6Strictly speaking this happens when the pole ξ∞ =
(
1 + 3z2

)
/z
(
1− z2

)
� ξc, which is far beyond the

limit of validity of mean-field theory.
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in momentum space. Closed circumferences map into unit length (fully occupied states)

while open arcs give shorter lengths (smaller average occupations). The circularly sym-

metric momentum distribution arising from the superposition of the different states is

obtained as a surface of revolution by rotating the Fermi sea at finite momentum in a

particular direction with respect to the origin in momentum space. Clearly, the resulting

momentum distribution coincides with n (k).

In Fig. (5.4) we show the integrated momentum distribution for a particular case of

an interacting Fermi sea at nonzero total momentum compared to the noninteracting mo-

mentum distribution. There, we observe a shortening of the unit occupation plateau, to-

gether with a smoothing of the momentum distribution at the edges of the Fermi sea, with

an obvious change in concavity, which can be a relevant experimental signature for finite-

momentum states. In cold-atom experiments, where an external trap is always present,

the Fermi sea and the homogeneous momentum distribution can be observed by selec-

tively probing fermions around the centre of the trap [103, 104]. An alternative way to ob-

serve these effects consists of adding to the system a small symmetry-breaking term, i.e.,

a small momentum kick in a chosen direction, in order to observe the deformations per se.

In Ref. [105] authors reported splitting a BEC with the use of standing-wave light-pulse

sequences. This technique was used in Ref. [106] to reverse the movement of two 87Rb

BEC clouds. Authors used a 6.2µW pulse applied during 150µs onto both BEC clouds

to make them collide, in order to recover the originally split BEC cloud. Additionally,

two BEC with synthetic contact s-wave interaction were collided using standing-wave

light-pulse sequences [107]. Typically, for 40Kb Rashba spin-orbit gases the Fermi vector

is given by kF = 1.35kr = 1.15 × 10−27m−1, see Ref. [12], where Er = 2π~ × 8.34 kHz is

Figure 5.4: Integrated momentum distribution (blue solid line) at critical
interaction strength ξ = z, with k0/λ = 5× 10−2 and z = 1/5, compared to
the noninteracting momentum distribution (red-dashed line).
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the recoil energy and kr the recoil momentum. In order to displace and deform the Fermi

surfaces for dilute gases (z � 1), a standing-light wave-pulse which infers a momentum

kick per particle k0 � kF onto the Rashba-coupled Fermi gas should be applied.

5.6 Conclusions

In this Chapter, we have studied the response of a dilute two-dimensional Fermi gas with

Rashba spin-orbit coupling to a small overall constant velocity kick. We have found that

the moving Fermi sea deforms in a nontrivial manner due to the non-Galilean nature of

the system and is highly degenerate. We have then considered repulsive interactions at

the Hartree-Fock level and found that the ground state of the system acquires a finite

momentum. The Fermi sea becomes deformed beyond a critical interaction strength in

a continuous fashion, which we identified as a possible experimental signature. These

results open the path towards the observation of finite-momentum ground states, con-

stitute the starting point for more elaborate treatments of interactions, and can be gener-

alised to higher dimensions and more general types of spin-orbit coupling.
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Chapter 6

Generality of time-local master

equations

In Nature, quantum systems are never truly isolated; the dynamics of a quantum system

depends, to lesser or greater extent, on its interactions with its surroundings [30, 108–

112]. For an isolated system, the evolution is unitary and it is determined by the system

Hamiltonian. On the other hand, the interaction with the environment yields a non-

unitary time evolution of the reduced density matrix of the system. The dynamic of the

reduced density matrix of the system is governed by a Master Equation where the envi-

ronment enters as parameters. Given the complete Hamiltonian of the system and envi-

ronment it is possible to obtain a Master Equation tracing out the environment, however

different system-environment Hamiltonians yield the same Master Equation [113].

We begin this Chapter by introducing classical Markov processes. We continue by ex-

tending the definition to Markovian and non-Markovian quantum evolution. We will ex-

plain the fully quantised light-matter interaction model by Jaynes and Cummings [114].

Based on this model, we will construct a Jaynes-Cummings Hamiltonian that changes

from an on-resonance evolution to an off-resonance evolution. We will show that the

decay rate and the Master Equation do not change during the time evolution.

6.1 Classical Markov processes

In this section we define the basic mathematical concepts to introduce and describe classi-

cal Markov processes [30]. Let us begin by defining a stochastic process. A one-parameter

stochastic process is a family of random variables Y (t) = y, where y ∈ R and t is the pa-

rameter (usually time). The evolution of a stochastic process is determined by a family of
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joint probability distributions

p (yn, tn; yn−1, tn−1; . . . ; y0, t0) (6.1)

that describe all the possible realisation of the random variable Y from Y (t0) = y0 to

Y (tn) = yn. A stochastic process is called stationary if all joint probability densities are

invariant under time translations

p (y, t+ ∆t; . . . ; y0, t0 + ∆t) = p (y, t; . . . ; y0, t0) . (6.2)

We define a classical Markov process as a memoryless stochastic process. This means that

the conditional probability of the random variable Y to take the value yn at tn, provided

that Y (tn−1) = yn−1, only depends on the value yn−1 of the random variable Y at tn−1

p (yn, tn|yn−1, tn−1; . . . ; y0, t0) = p (yn, tn|yn−1, tn−1) . (6.3)

The propagator of a stochastic process is defined as the conditional probability for the

random variable Y to take the value y at t provided that at time t′ < t the random variable

Y took the value y′

T
(
y, t|y′, t′

)
≡ p

(
y, t|y′, t′

)
, (6.4)

with the following properties

∫
dy′ T

(
y, t|y′, t′

)
= 1, (6.5)

lim
t→t′

T
(
y, t|y′, t′

)
= δ

(
y − y′

)
. (6.6)

The above equations have a simple interpretation. Equation (6.5) represents the fact that

the random variable Y (t) will evolve to any available state (ergodic property), while

Eq. (6.6) shows that the random variable Y (t) will not change if time does not change. It

is possible to express the probability of an event in terms of the propagator as

p (y, t) =

∫
dy′ T

(
y, t|y′, t′

)
p
(
y′, t′

)
. (6.7)
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The memoryless condition for a Markov process is given by the Chapman-Kolmogorov

equation

T
(
y, t|y′, t′

)
=

∫
dy′′ T

(
y, t|y′′, t′′

)
T
(
y′′, t′′|y′, t′

)
. (6.8)

Equation (6.8) represents the conditional transition probability of the random variable

at Y (t′) = y′ to reach Y (t) = y via all the possible intermediate states y′′ at a fixed

intermediate time t′′. The Chapman-Kolmogorov equation can be written as a differential

equation

∂

∂t
T
(
y, t|y′, t′

)
= A (t)T

(
y, t|y′, t′

)
, (6.9)

where A (t) is the time-dependent operator that generates the infinitesimal time trans-

lations. Integrating Eq. (6.9) yields the propagator for a time inhomogeneous Markov

process

T
(
y, t|y′, t′

)
= T←

[
e
∫ t
t′ dτA(τ)

]
δ
(
y − y′

)
, (6.10)

where T← is the time-order operator. For time-independent generators A, the propaga-

tor is called homogeneous in time, as it only depends on time differences. In this case,

integrating the Chapman-Kolmogorov equation yields

T
(
y, t|y′, t′

)
= eA(t−t′)δ

(
y − y′

)
. (6.11)

Since the time interval t − t′ ≥ 0, Eq. (6.11) defines the semigroup structure for a homo-

geneous Markov process.

6.2 Open quantum systems

There are processes in Nature which are inherently quantum but only appear when the

quantum system interacts with its surroundings, such as decoherence [115, 116]. Con-

trolling decoherence has become important since long decoherence times are needed to

efficiently perform quantum computing [117]. Several approaches have been proposed to

reduce decoherence in quantum computation [118] by means of the Zeno effect [119]. In

Ref. [120] remarkable coherence times for superconducting qubits were reported. Other

examples where the environment plays an important role are biological processes such

78



as photosynthesis [121, 122], or improving energy transfer efficiency [123].

In a closed quantum system, the time evolution of the density operator ρ of the state

|ψ〉 is constructed from the time-dependent Schrödinger equationH |ψ〉 = i~∂t |ψ〉, where

H is the Hamiltonian of the system, to yield

d
dt
ρ (t) = − i

~
[H, ρ (t)] . (6.12)

The solution of Eq. (6.12) is given in terms of the unitary transformation

U (t) = exp (−iHt/~) , (6.13)

that gives rise to a unitary time evolution

ρ (t) = U (t) ρ (0)U † (t) . (6.14)

On the other hand, an open quantum system is a quantum system S coupled to its

environment E. The composite system is described by a tensor product Hilbert space

between the Hilbert space of the system HS and the Hilbert space of the environment

HE , this is

H = HS ⊗HE . (6.15)

The Hamiltonian of the composite system is

HT = HS +HE +HI , (6.16)

where HS , HE and HI represent the Hamiltonian for the system, environment and the

interaction between the system and environment, respectively. It is possible to have a

unitary evolution for the joint system-environment density matrix ρ (t)

d
dt
ρ (t) = − i

~
[HS +HE +HI , ρ (t)] . (6.17)

Unfortunately, due to the number of degrees of freedom of the environment, it is a quite

formidable problem to solve the differential equation for the composite system. There-

fore, tracing out the environment in Eq. (6.17) gives the equation of motion for the re-
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duced density matrix of the system

d
dt
ρS (t) = − i

~
TrE ([HS +HE +HI , ρ (t)]) , (6.18)

where ρS (t) = TrE [ρ (t)] and the environment enters the description as parameters in-

stead of variables. In the following sections we will analyse how the environment affects

the time evolution of the reduced density matrix of the system, which is no longer de-

scribed by a unitary time evolution.

6.2.1 Markovian and non-Markovian time evolution in quantum systems

The time evolution of a quantum system can be seen as a linear map from the initial

state ρ (0) to the final state ρ (t). Physically valid time evolutions are represented by

completely positive trace-preserving (CPTP) maps [30, 124]. Let us first introduce the

concepts of positive map, completely positive map and trace preserving map. Let B (H)

be the algebra of bounded operators of the Hilbert space H. A one-parameter map φ :

B (H) → B (H) is said to be positive if φt
(
ρ†ρ
)
≥ 0 for all ρ ∈ B (H). A one-parameter

linear map φt : B (H) → B (H′) is said to be completely positive if φt ⊗ 1n is positive for

any n ∈ N, this means that not only the map φt acting on ρ ∈ B (H) is positive but also ρt⊗
1n acting on an arbitrary finite extension of the Hilbert space. Finally, a one-parameter

linear map is said to be trace-preserving if Tr [ρ] = Tr [φt (ρ)], for all ρ ∈ B (H). It is

important to mention that every CPTP map φt admits a Kraus decomposition [125, 126]

φt [ρ (0)] =
n∑
k=1

Ak (t) ρ (0)A†k (t) , (6.19)

where n ≤ dim2
H, and Ak (t) are the time-dependent Kraus operators that satisfy

n∑
k=1

A†k (t)Ak (t) = 1. (6.20)

A CPTP map φt is called divisible if

φt,0 = φt,sφs,0, (6.21)

where φt,s is a CPTP map for all t ≥ s ≥ 0.

We can now say that a quantum system undergoes a Markovian time evolution [127]

if the time evolution is governed by a family of CPTP maps φt that obey the composi-
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tion law given by Eq. (6.21). This condition is the quantum analogue for the classical

Chapman-Kolmogorov equation (6.8).

For a homogeneous in time quantum Markov process, the CPTP map [30] is given by

φt,t′ = eL(t−t′), (6.22)

where L is time independent generator of the homogeneous in time quantum Markov

process. The CPTP map defined by Eq. (6.22) has a semigroup structure similar to that

of a homogeneous in time classical propagator in Eq. (6.11). Given the time independent

generator L of a homogeneous-in-time quantum Markov process, the Master Equation

for the reduced density matrix is

d
dt
ρS (t) = LρS (t) = − i

~
[H, ρS (t)] +

∑
k

γk

[
VkρS (t)V †k −

1

2

{
V †k Vk, ρS (t)

}]
, (6.23)

where γk ≥ 0 ∀ k are the decay rates of the system and Vk are the time independent op-

erators that define the decoherence channels. This is the Lindblad-Gorini-Kossakowski-

Sudarshan theorem [31, 32]. A quantum system coupled to an environment does not

always produce memory-less dynamics. Under certain situations, the Markov approxi-

mation is not valid. Since the time evolution of a quantum Markov process is defined by a

family of divisible CPTP maps, the time evolution of a quantum non-Markovian process

is described by a family of CPTP maps which all of them do not need to be divisible [127],

hence Eq. (6.21) does not hold for all t ≥ s ≥ 0.

Recently, there have been different proposals to characterise the non-Markovianity of

a quantum system that undergoes a non-Markovian time evolution. The RHP-measure

by Rivas, Huelga and Plenio defines the non-Markovianity of a process based on the di-

visibility of the CPTP map [128], while the BLP-measure by Breuer, Laine and Piilo quan-

tifies non-Markovianity using the time evolution of the trace distance between two differ-

ent initial states [129, 130]. Although any Master Equation describing a homogeneous-in-

time quantum Markov process can be written in Lindblad-like form, given by Eq. (6.23),

also non-Markovian processes can be expressed in Lindblad-like form with time-dependent

decay rates γk (t) and decoherence channels Vk (t) [33].

6.2.2 Quantum Markovian Master Equation

In this section we derive a quantum Master Equation for a Markov process [131]. In the

Schrödinger picture, the time evolution for the composite system-environment density
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matrix ρ (t) is given by

d
dt
ρ (t) = − i

~
[HS +HE +HI , ρ (t)] , (6.24)

where HS is the system Hamiltonian, HE is the environment Hamiltonian and HI the

interaction Hamiltonian between system and environment. Since we are interested in

the effects of the interaction HamiltonianHI onto the dynamics of the composite system-

environment density matrix ρ (t), we move to the interaction picture by the transforma-

tion

HI = e−iH0t/~ H̃I (t) eiH0t/~, (6.25)

ρ (t) = e−iH0t/~ ρ̃ (t) eiH0t/~, (6.26)

where the noninteracting Hamiltonian is H0 = HS +HE , and H̃I and ρ̃ (t) represent the

interaction Hamiltonian and the system-environment density matrix in the interaction

picture. Differentiating Eq. (6.26) with respect to time yields

d
dt
ρ (t) =

d
dt

(
e−iH0t/~ ρ̃ (t) eiH0t/~

)
= e−iH0t/~

(
−iH0

~
ρ̃ (t) + ˙̃ρ (t) + iρ̃ (t)

H0

~

)
eiH0t/~

= e−iH0t/~
(
− i
~

[H0, ρ̃ (t)] + ˙̃ρ (t)

)
eiH0t/~. (6.27)

Substituting H̃I (t) and ρ̃ (t), from the inverse transformation of Eqs. (6.25) and (6.26),

into the RHS of Eq. (6.24) yields

− i
~

[H0 +HI (t), ρ (t)] = − i
~
e−iH0t/~

[
H0 + H̃I (t), ρ̃ (t)

]
eiH0t/~. (6.28)

Finally, Eqs. (6.27) and (6.28) give the time evolution for joint density matrix in the inter-

action picture as

d
dt
ρ̃ (t) = − i

~

[
H̃I (t), ρ̃ (t)

]
. (6.29)

Formally, Eq. (6.29) can be integrated to give

ρ̃ (t)− ρ̃ (0) = − i
~

∫ t

0
dt′
[
H̃I
(
t′
)
, ρ̃
(
t′
)]
. (6.30)
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We substitute the formal solution of the joint density matrix (6.30) into the RHS of Eq. (6.29)

to obtain

d
dt
ρ̃ (t) = − i

~

[
H̃I (t), ρ̃(0)

]
+

(
i

~

)2 ∫ t

0
dt′
[
H̃I (t),

[
H̃I
(
t′
)
, ρ̃
(
t′
)]]

. (6.31)

We consider that initially the environment (a zero-temperature reservoir or a thermal

reservoir) and the system are independent

ρ̃(0) = ρ̃S(0)⊗ ρE , (6.32)

and since the system and the environment are weak coupled, the time evolution of the

composite system-environment density matrix remains factorised

ρ̃ (t) ≈ ρ̃S (t)⊗ ρE . (6.33)

Equation (6.33) is called the Born approximation as it allows a perturbative solution,

Eq. (6.31), in the coupling constant as the one for the T-matrix (see Eq. (3.29) in Sec. 3.1).

A differential equation for the reduced density matrix of the system, ρ̃S (t), is obtained

by tracing out the environment in Eq. (6.31)

d
dt
ρ̃S (t) = − i

~
TrE

([
H̃I (t), ρ̃ (0)

])
+

(
i

~

)2 ∫ t

0
dt′TrE

([
H̃I (t),

[
H̃I
(
t′
)
, ρ̃
(
t′
)]])

.

(6.34)

Let us consider that the operators representing the interaction have zero mean value in

the initial state of the environment, hence the first term of the RHS in Eq. (6.34) can be

simplified as follows

TrE
([
H̃I (t), ρ̃S(0)⊗ ρE

])
= 0. (6.35)

Equation (6.34) reads now

d
dt
ρ̃S (t) = − 1

~2

∫ t

0
dt′TrE

([
H̃I (t),

[
H̃I
(
t′
)
, ρ̃S

(
t′
)
⊗ ρE

]])
. (6.36)
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Equation (6.36) has a explicit dependence on the initial time t′ = 0 in the second Hamil-

tonianHI (t′). Therefore we define τ = t− t′ and we express the above equation as

d
dt
ρ̃S (t) = − 1

~2

∫ t

0
dτTrE

([
H̃I (t),

[
H̃I (t− τ), ρ̃S (t− τ)⊗ ρE

]])
. (6.37)

Correlation times for the environment operators are typically much shorter than the typ-

ical time scales for the reduced density matrix. Therefore, the reduced density matrix for

the system does not change at all in this time scale. Hence, it is possible to substitute

ρ̃S (t− τ) → ρ̃S (t) in the RHS of Eq. (6.37). As a consequence, the upper limit of the

integral in Eq. (6.37) can go to infinity. This is the Markov approximation. Hence, the

quantum Markov Master Equation reads

d
dt
ρ̃S (t) = − 1

~2

∫ ∞
0

dτTrE
([
H̃I (t),

[
H̃I (t− τ), ρ̃S (t)⊗ ρE

]])
. (6.38)

Tracing out the environment in Eq. (6.38) yields a time-independent Lindblad-like form

Master Equation, given by Eq. (6.23) [31, 32].

6.3 Light-matter interaction

In 1963 E. T. Jaynes and F. W. Cummings introduced a model to describe light-matter in-

teraction in a completely quantised way [114]. Named after them, the Jaynes-Cummings

model describes the interaction between a two-level atom and a light mode of the fully

quantised electromagnetic field. In this description, |e〉 and |g〉 represent the excited and

ground state of the two-level atom, respectively. The operators a and a† are the anni-

hilation and creation operator of a mode of the electromagnetic field and they obey the

canonical commutation relation
[
a, a†

]
= 1.

The complete Hamiltonian of the system consists of three parts: the free evolution

for the field, the free evolution for the atom and the interaction between the atom and the

field [132, 133]. The Hamiltonian that describes the free evolution of the atom is given by

HA =
1

2
~ω0σz, (6.39)

where ~ω0 is the energetic distance between the two atomic levels |g〉 and |e〉, and σz

is one of the Pauli matrices (2.8). Expressed in terms of |g〉 and |e〉, the Pauli matrix

σz = |e〉〈e| − |g〉〈g| represents the atomic inversion operator.

The free evolution of a single-mode of the electromagnetic field is described by the
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harmonic oscillator Hamiltonian

HF = ~ω
(
a†a+

1

2

)
, (6.40)

where ω is the frequency of the mode.

The two-level atom and the electromagnetic field interact via a dipole interaction

HI = −d ·E, (6.41)

where E is the electromagnetic field operator and d is the dipole moment of the atom. By

parity, the only transitions allowed are between adjacent levels: from |e〉 to |g〉 and from

|g〉 to |e〉. Therefore, d is expressed in terms of the atomic transition operators σ− = |g〉〈e|
and σ+ = |e〉〈g| as

d = dσ+ + d∗σ−, (6.42)

where d is the dipolar coefficient, which we will consider real for simplicity. We define

the interaction Hamiltonian as

HI = −i~Ω (σ− + σ+)
(
a− a†

)
, (6.43)

where Ω is the coupling strength between the atom and the field.

With all these ingredients, the fully quantised light-matter Hamiltonian reads

HT = ~ω
(
a†a+

1

2

)
+

1

2
~ω0σz − i~Ω (σ− + σ+)

(
a− a†

)
. (6.44)

6.3.1 The rotating wave approximation and Jaynes-Cummings Hamiltonian

The fully quantised light-matter Hamiltonian (6.44) can be simplified by eliminating fast-

rotating and non-conserving energy terms. Expanding the interaction Hamiltonian (6.43)

yields four terms σ−a†, σ−a, σ+a
† and σ+a. Their time evolution in the interaction picture

is given by

σ± (t) = σ± (0) e±iω0t, a (t) = a (0) e−iωt. (6.45)

Therefore, close to resonance (ω ≈ ω0) the terms σ+a
† ∼ ei(ω0+ω)t and σ−a ∼ e−i(ω0+ω)t

rotate faster than σ+a ∼ ei(ω0−ω)t and σ−a
† ∼ e−i(ω0−ω)t, hence it is possible to discard
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them. These two terms also correspond to processes where energy is not conserved,

as the creation of a photon of the electromagnetic field and the excitation of the two-

level system (σ+a
†), or the opposite process (σ−a), where a photon is annihilated while

the two-level system remains in the ground state. Discarding the fast rotating terms in

the Hamiltonian (6.44) is called the rotating wave approximation (RWA) and yields the

Jaynes-Cummings Hamiltonian [114], which in the Schrödinger picture is expressed as

HJC = ~ω
(
a†a+

1

2

)
+

1

2
~ω0σz − i~Ω

(
σ+a− σ−a†

)
. (6.46)

Let us fist calculate the eigenstates of the Jaynes-Cummings Hamiltonian (6.46). In

the subspace spanned by {|n〉 , |n+ 1〉}, Eq. (6.46) is written in matrix form as

HJC = ~

 ωn+ 1
2ω0 −iΩ

√
n+ 1

iΩ
√
n+ 1 ω (n+ 1)− 1

2ω0

 , (6.47)

where n is the eigenvalue of the electromagnetic field number operator a†a acting on the

state |n〉 and the zero-point energy of the electromagnetic field ~ω/2 has been dropped.

The corresponding eigenvalues of the Jaynes-Cummings Hamiltonian (6.47) are given by

E± = En ±
~
2

√
∆2 + 4Ω2 (n+ 1) (6.48)

where En = ~ω (n+ 1/2) is the energy of a mode of the electromagnetic field, ∆ = ω0−ω
is the detuning of the system and we introduce λ =

√
∆2 + 4Ω2 (n+ 1) for simplicity.

The dressed states {|n,+〉 , |n,−〉} are the eigenstates of the Jaynes-Cummings Hamilto-

nian (6.47), they can be written in terms of the bare states {|e〉 ⊗ |n〉 , |g〉 ⊗ |n+ 1〉} as

|n,+〉 = i cos
θ

2
|e〉 ⊗ |n〉+ sin

θ

2
|g〉 ⊗ |n+ 1〉 , (6.49)

|n,−〉 = sin
θ

2
|e〉 ⊗ |n〉+ i cos

θ

2
|g〉 ⊗ |n+ 1〉 , (6.50)

where

cos
θ

2
=

2Ω
√
n+ 1√

4Ω2 (n+ 1) + (∆− λ)2
, (6.51)

sin
θ

2
=

∆− λ√
4Ω2 (n+ 1) + (∆− λ)2

. (6.52)
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The time evolution of the state is given by the time-dependent Schrödinger equation

HJC |Ψ (t)〉 = i~
∂

∂t
|Ψ (t)〉 , (6.53)

where the time-dependent state of the system is expressed in the bare state basis as

|Ψ (t)〉 = ce (t) |e〉 ⊗ |n〉+ cg (t) |g〉 ⊗ |n+ 1〉 , (6.54)

where ce (t) and cg (t) are the time-dependent coefficients that determine the time evolu-

tion. Substituting Eq. (6.54) into the time-dependent Schrödinger equation (6.53) yields

a system of first order differential equation for the time-dependent coefficients ce (t) and

cg (t)

−i

 ωn+ 1
2ω0 −iΩ

√
n+ 1

iΩ
√
n+ 1 ω (n+ 1)− 1

2ω0

 ce (t)

cg (t)

 =

 ċe (t)

ċg (t)

 , (6.55)

If we use for instance the initial conditions cg (0) = 0 and ce (0) = 1, i.e., initially the

system is in the excited state, the system evolves as

|Ψ (t)〉 = e−iEnt/~
(
e−iλt/2 cos2 θ

2
+ eiλt/2 sin2 θ

2

)
|e〉 ⊗ |n〉

−e−iEnt/~ sin θ sin

(
λt

2

)
|g〉 ⊗ |n+ 1〉 . (6.56)

Let us calculate now the expectation value of the inversion operator σz in the time-

dependent state defined by Eq. (6.56). Hence, we obtain

〈σz〉|Ψ(t)〉 = 〈Ψ (t)|e〉〈e|Ψ (t)〉 − 〈Ψ (t)|g〉〈g|Ψ (t)〉

= 1− 2 sin2 θ sin2

(
λt

2

)
. (6.57)

Setting the detuning ∆ to zero, gives λ = 2Ω
√
n+ 1 and sin θ = 1, therefore Eq. (6.57)

yields

〈σz〉|Ψ(t)〉 = cos
(
2Ω
√
n+ 1t

)
, (6.58)

which allows us to define the Rabi frequency as ωR = 2Ω
√
n+ 1, see Ref. [132, 133].

This frequency defines the transition of population between the ground state |g〉 and the

excited state |e〉. It was introduced by Rabi in his semiclassical approach in 1937 [134].
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6.4 Master Equation for a two-level system

In this section we show how different time evolutions of a two-level system yield the

same Master Equation for the reduced density matrix of the system. The Kraus decom-

position for the reduced density matrix of the two-level system is

ρS (t) =
2∑

k=1

Ak (t) ρS (0)A†k (t) , (6.59)

where the Kraus operators are defined as

A1 (t) = |g〉〈g|+ f (t) |e〉〈e|, (6.60)

A2 (t) =
√

1− |f (t) |2|g〉〈e|, (6.61)

and f (t) is a continuous real-valued function, bounded by 0 ≤ |f (t)| ≤ 1, see Ref. [135].

The Kraus operators fulfil

2∑
k=1

A†k (t)Ak (t) = A†1 (t)A1 (t) +A†2 (t)A2 (t)

= |g〉〈g|+ |f (t)|2 |e〉〈e|+
(

1− |f (t)|2
)
|e〉〈e|

= |g〉〈g|+ |e〉〈e|

= 1. (6.62)

The time evolution of the reduced density matrix (6.59) is

ρS (t) = |f (t)|2 ρee (0) |e〉〈e|+
[
ρgg (0) +

(
1− |f (t)|2

)
ρee (0)

]
|g〉〈g|

+ f (t) ρeg (0) |e〉〈g|+ f∗ (t) ρge (0) |g〉〈e|. (6.63)

If the system is initially in the excited state ρ (0) = |e〉〈e|, then Eq. (6.63) reads

ρS (t) = |f (t)|2 |e〉〈e|+
(

1− |f (t)|2
)
|g〉〈g|. (6.64)

Accordingly to Ref.[135], the time evolution (6.64) corresponds to a time-local Lindblad-

like Master Equation given by

ρ̇S (t) = − ḟ (t)

f (t)
(2σ−ρ (t)σ+ − σ+σ−ρ (t)− ρ (t)σ+σ−) . (6.65)
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Inspection of Eq. (6.65) allows us to define a time dependent decay rate for the transition

between the excited level |e〉 and the ground level |g〉 as

γ (t) = −2ḟ (t)

f (t)
. (6.66)

Analysing the function f (t) it is possible to determine certain aspects of the Master Equa-

tion (6.65). The decay rate is positive, and therefore it corresponds to a Markovian pro-

cess if f (t) is positive (negative) and monotonically decreasing (increasing). On the other

hand, the process described by the Master Equation (6.65) has negative decay rate, hence

it is non-Markovian [33] if f (t) is positive (negative) and monotonically increasing (de-

creasing).

The existence and uniqueness theorem, (see Appendix B), sets the conditions to de-

termine if the solution of a differential equation is unique. The differential equation (6.65)

is not invertible when f (t) = 0, independently of the initial conditions, therefore it ad-

mits multiple solutions in any subset of R where f (t) = 0. Setting f (t) = 0 in Eq. (6.64)

yields

ρS (t) |f(t)=0 = ρee (0) |g〉〈g|. (6.67)

Hence Eq. (6.65) has one and only one solution in a time interval [t1, t2] if the system does

not reach the ground state in that interval.

Let us now show how different time evolutions of the reduced density matrix ρ (t)

yield the same Master Equation (6.65). The first case we consider corresponds to a choice

of f (t) = cos (ωt) and ρ (0) = |e〉〈e| as initial condition. Substituting f (t) = cos (ωt) into

Eq. (6.64) yields the time evolution of the reduced density matrix, given by

ρS (t) = cos2 (ωt) |e〉〈e|+ sin2 (ωt) |g〉〈g|. (6.68)

Substituting f (t) = cos (ωt) in the time-local Master Equation (6.65) yields

ρ̇S (t) = 2ω tan (ωt)

(
σ+ρ (t)σ− −

1

2
{ρ (t) , σ+σ−}

)
, (6.69)

where γ (t) = 2ω tan (ωt) is the time-dependent decay rate. The decay rate is negative

when ωt ∈ π (−1/2 + n, n) and it diverges when the evolution becomes non-invertible at

ωt = π (n+ 1/2), where n ∈ Z.

The second time evolution we consider starts with the same choice of f (t) (system
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on-resonance) and initial conditions as before. When the system reaches the ground state

|g〉, the Hamiltonian is rapidly switched to off-resonance (∆ 6= 0). This change hap-

pens at ωt = π (n+ 1/2). Changing from an on-resonance evolution to an off-resonance

evolution implies that the function f (t) = cos (ωt) changes to f (t) = A cos (ωt), where

0 < A < 1. From this point onwards the time evolution of the reduced density ma-

trix (6.64) is

ρS (t) = A2 cos2 (ωt) |e〉〈e|+
[
1−A2 cos2 (ωt)

]
|g〉〈g|. (6.70)

Substituting now f (t) = A cos (ωt) into the time-local Master Equation (6.65) yields the

same Master Equation as f (t) = cos (ωt), Eq. (6.69).

6.5 Hamiltonian and time evolution

The Jaynes-Cummings Hamiltonian (6.46) gives the perfect example to explicitly con-

struct two different Hamiltonians, therefore two different time evolutions, that corre-

spond to the same time-local Master Equation. In order to simplify the calculations, we

will restrict to the subspace spanned by {|e〉 ⊗ |0〉 , |g〉 ⊗ |1〉}. Hence Eq. (6.55) reduces to

−i

 ∆
2 −iΩ
iΩ −∆

2

 ce (t)

cg (t)

 =

 ċe (t)

ċg (t)

 , (6.71)

where zero-point energy ~ω/2 has been dropped. We introduce τ as the scale of the

problem to use dimensionless units, t̃ = t/τ , ω̃0 = τω0, ω̃ = τω, Ω̃ = τΩ and ∆̃ = τ∆. The

eigenvalues of the time dependent Schrödinger equation (6.55) are ω̃R = ±1
2

√
∆̃2 + 4Ω̃2

as the scaled Rabi frequency. By varying ∆̃ and Ω̃ but keeping ω̃R constant, we can

construct two different Hamiltonian that give the same Master Equation, Eq. (6.69).

The first case to be considered corresponds to a Jaynes-Cummings Hamiltonian on-

resonance (∆̃ = 0), see Fig. 6.1(a). From Eq. (6.56) we get to

|Ψ (t)〉 = cos
(
ω̃Rt̃

)
|e〉 ⊗ |0〉 − sin

(
ω̃Rt̃

)
|g〉 ⊗ |1〉 . (6.72)

From Eq. (6.51) and Eq. (6.52) it is easy to see that ∆ = 0 implies sin θ = 1 and sin (θ/2) =

cos (θ/2) = 1/
√

2. The reduced density matrix for the system reads then

ρS
(
t̃
)

= cos2
(
ω̃Rt̃

)
|e〉〈e|+ sin2

(
ω̃Rt̃

)
|g〉〈g|. (6.73)
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(a) On-resonance oscillations (∆ = 0).
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(b) Off-resonance oscillations (∆ 6= 0)

Figure 6.1: On-resonance and off-resonance oscillations for the diagonal
elements of the density matrix in the Jaynes-Cummings model.

The second case we considered consists of a Jaynes-Cummings Hamiltonian with a time

dependent coupling Ω̃ (t) and a time dependent detuning ∆̃ (t) provided that the Rabi

frequency is kept constant, hence ω̃R = 1
2

√
∆̃2 (t) + 4Ω̃2 (t). The system will evolve from

an on-resonance evolution (∆̃ (t) = 0) with Ω̃ (t) = Ω̃ to an off-resonance (∆̃ (t) 6= 0),

where the coupling is Ω̃ (t) = Ω̃′. The change from on-resonance to off-resonance evolu-

tion is performed when the two-level atom is in the ground state and the cavity in the first

excited level |g〉 ⊗ |1〉. From Eq. (6.73) we see that this happens when ω̃Rt̃i = (n+ 1/2)π,

where n ∈ N. Solving Eq. (6.71) with initial conditions ce
(
t̃i
)

= 0 and cg
(
t̃i
)

= 1 allows

us to construct the time evolution of the reduced density matrix as

ρS
(
t̃
)

=

∣∣∣∣∣ Ω̃′

ω̃R

∣∣∣∣∣
2

cos2
(
ω̃Rt̃

)
|e〉〈e|+

1−
∣∣∣∣∣ Ω̃′

ω̃R

∣∣∣∣∣
2

cos2
(
ω̃Rt̃

) |g〉〈g| (6.74)

If the change is instantaneous and occurs at the right time, i.e., when the time evolution is

non-invertible, then the Master Equation for Eqs. (6.73) and (6.74), is the same, Eq. (6.69).

6.5.1 Evolution with time-dependent coupling

The system evolves from on-resonance to off-resonance by a simultaneous change in the

detuning ∆̃ and the coupling Ω̃ that keeps the Rabi frequency ω̃R constant. We introduce

a time-dependent coupling Ω (t) that changes smoothly from a maximum value Ωmax to

a minimum value Ωmin as

Ω (t) =
Ωmax − Ωmin

2
[1− tanh (k [t− ti])] + Ωmin, (6.75)

where k = k̃/τ controls the rate of change - slope of the function - and ti is the point

at which Ω (t) takes it average value (Ωmax + Ωmin) /2, Fig. 6.2. The detuning changes
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as ∆̃ (t) =
√

2ω̃2
R − 4Ω̃2 (t) with ω̃R constant. Changing the coupling strength might

be feasible in cavity QED [136] by changing the position of an atom in a laser cavity

or by changing the laser field strength. In circuit QED, it is possible to realise tunable

resonators [137, 138].

We solve Eq. (6.71) for cg (t) and ce (t) with initial conditions cg (0) = 0 and ce (0) = 1.

The solution for k̃ = 1.6, depicted in Fig. 6.3, shows how the time-dependent cou-

pling (6.75) changes from Ω̃ = 0.3 to Ω̃ = 0.2 when the system is in the ground state,

t̃i is chosen to have cg
(
t̃i
)

= 0. If the time-dependent coupling Ω̃ (t) does not change fast

enough, the system evolves off-resonance but it does not reach the ground state anymore,

Fig. 6.4. Fourier analysis of the time-dependent coefficient ce (t) (see Fig. 6.5) confirms

that the Rabi frequency remains constant during the time evolution.

6.5.2 How rapidly should the coupling change?

The impulse approximation [139] states that if a Hamiltonian changes smoothly from

H (t0) = H0 at t0 to H (t1) = H1 at t1, then the probability that the system remains in the

previous state |ψ0〉 fromH0 is

ξ =
T 2

~2

(
〈ψ0|H2 |ψ0〉 − 〈ψ0|H |ψ0〉2

)
, (6.76)

where T = t1 − t0 and

H =
1

T

∫ t1

t0

dtH (t) (6.77)
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Figure 6.2: Scaled coupling strengths Ω̃ = τΩ for different rates of change
k̃ = τk, varying according to Eq. (6.75) with t̃i = ti/τ = 0, Ω̃max = 0.3 and
Ω̃min = 0.2.
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Figure 6.3: Time evolution of the reduced density matrix elements of the
atom for changing detuning ∆̃ (t) and time-dependent coupling Ω̃ (t) with
Ω̃max = 0.3 and Ω̃min = 0.2. The Rabi frequency ω̃R = 0.3 is kept constant.
The dotted line (blue) shows ρgg(t̃) and the dashed line (red) ρee(t̃). The
parameter controlling the rate of change of the coupling Ω̃ (t) is given by
k̃ = 1.6. The solid line (gold) shows how the coupling is changing.
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Figure 6.4: Time evolution of ρee (t) for different values of k̃. The dotted
curve (gold) corresponds to k̃ = 0.5, in which case the system never reaches
the ground state. As will be seen later, this affects the decay rate. The
dashed curve (red) corresponds to k̃ = 1.0 and the dot-dashed (blue) one
to k̃ = 1.6. The solid line (green) corresponds to k̃ → ∞, that is, an instant
change.
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Figure 6.5: Fourier analysis of ce(t̃) with k̃ = 1.6, Ω̃max = 0.3 and Ω̃min =
0.2. When k → ∞, ce (t) and cg (t) are piecewise defined functions, with
ce (t) = cos (ωRt) if t < ti and ce (t) = A cos (ωRt) if t > ti, with 0 < A < 1,

and cg (t) =
√

1− |ce (t)|2 (up to a phase sign). Fourier analysis of ce (t)

when k →∞ gives a delta-function peak at ω̃R = τωR = 0.3, together with
a term proportional to 1/τ (ω − ωR).

is the averaged value of the Hamiltonian in T . We impose ξ � 1 in order to make sure

that the system evolves from |ψ0〉 to |ψ1〉. The initial and final Hamiltonian correspond to

H0 = H(Ωmax) and H1 = H(Ωmin) respectively.1 We write the initial state of the system

as

|Ψ (t0)〉 = ce (t0) |e〉 ⊗ |n〉+ cg (t0) |g〉 ⊗ |n+ 1〉 . (6.78)

The time averaged Hamiltonian (6.71) reads

H = ~

 ∆
2 −iΩ
iΩ −∆

2

 , (6.79)

then also is straightforward to obtain

H2
= ~2

 ∆
2

4 + Ω
2

0

0 ∆
2

4 + Ω
2

 . (6.80)

1During this section of the Chapter, the tilde that represents dimensionless variables will be omitted as
expressions will get overloaded with notation.
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The expectation value of the Hamiltonian (6.79) is

〈Ψ (t)|H |Ψ (t)〉 = ~ 〈Ψ (t)|

 ∆
2 −iΩ
iΩ −∆

2

 |Ψ (t)〉

= ~
(
c∗e (t) , c∗g (t)

) ∆
2 −iΩ
iΩ −∆

2

 ce (t)

cg (t)


= ~

∆

2

(
|ce (t)|2 − |cg (t)|2

)
+ i~Ω

[
c∗g (t) ce (t)− ce (t) c∗g (t)

]
= ~

∆

2

(
|ce (t)|2 − |cg (t)|2

)
− 2~ΩIm

[
c∗g (t) ce (t)

]
. (6.81)

The expectation value of Eq. (6.80) reads

〈Ψ (t)|H2 |Ψ (t)〉 = ~2 〈Ψ (t)|

 ∆
2

4 + Ω
2

0

0 ∆
2

4 + Ω
2

 |Ψ (t)〉

= ~2
(
c∗e (t) , c∗g (t)

) ∆
2

4 + Ω
2

0

0 ∆
2

4 + Ω
2

 ce (t)

cg (t)


= ~2

(
∆

2

4
+ Ω

2

)(
|ce (t)|2 + |cg (t)|2

)
= ~2

(
∆

2

4
+ Ω

2

)
, (6.82)

since |ce (t)|2 + |cg (t)|2 = 1, due to normalisation condition. The probability that after a

time t the system is still in the initial state is

ξ = T 2

(
∆

2

4
+ Ω

2 −
(

∆

2

(
|ce (t)|2 − |cg (t)|2

)
− 2ΩIm

[
c∗g (t) ce (t)

])2
)
. (6.83)

The last term of the RHS of Eq. (6.83) vanishes as both coefficients are real since the system

is on-resonance initially. Therefore Eq. (6.83) can be reduced to

ξ = T 2

(
∆

2

4
+ Ω

2 ∆

2

(
1− 2 |cg (t)|2

)2
)

= T 2
(

Ω
2

+ ∆
2 |cg (t)|2

(
1− |cg (t)|2

))
= T 2

(
Ω

2
+ ∆

2 |cg (t)|2 |ce (t)|2
)
. (6.84)
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Imposing ξ � 1 to Eq. (6.84) is

T 2
(

Ω
2

+ ∆
2 |cg (t)|2 |ce (t)|2

)
� 1. (6.85)

If we consider the time averaged detuning to be real
(
∆ ∈ Re

)
then the following inequal-

ity holds

T 2Ω
2 � T 2

(
Ω

2
+ ∆

2 |cg (t)|2 |ce (t)|2
)
. (6.86)

Finally, the above inequality yields

T 2Ω
2 � 1. (6.87)

The time averaged coupling is

Ω =
1

T

∫ t1

t0

dtΩ (t)

=
1

T

∫ t1

t0

dt
(

Ωmax − Ωmin

2
[1− tanh (k [t− ti])] + Ωmin

)
=

Ωmax + Ωmin

2
− Ωmax − Ωmin

2kT
ln
(

cosh [k (t1 − ti)]
cosh [k (t0 − ti)]

)
. (6.88)

Working in a symmetric time interval (−t0 = t1) simplifies the last expression, so the

average value of the coupling reads

Ω =
Ωmax + Ωmin

2
(6.89)

Condition in Eq. (6.87) reads now

T 2 (Ωmax + Ωmin)2

4
� 1, (6.90)

which leads to

T (Ωmax + Ωmin)

2
� 1, (6.91)

Achieving this limits experimentally can be challenging and difficult as it involves con-

trolling simultaneously the coupling and the detuning.
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6.5.3 Decay rate in the time-local master equation

In this section we will compute the decay rate (6.66). Since the time evolution of the

reduced density matrix element is ρee (t) = |f (t)|2 ρee (0), where f (t) is real, then

ḟ (t) =
1

2f (t)

ρ̇ee (t)

ρee (0)
. (6.92)

Substituting Eq. (6.92) into Eq. (6.66) we obtain a time dependent decay rate

γ (t) = − 1

f2 (t)

ρ̇ee (t)

ρee (0)
. (6.93)

Figure 6.6 shows how the decay rate approaches the ideal case of an instantaneous change

γ (t) = 2ωR tan (ωRt), as k̃ grows. The decay rate does not give enough information to

distinguish two different time evolutions if the coupling changes fast enough at the right

time. The decay rate becomes negative in certain time intervals which correspond to

“recoherence” of the system and hence, to non-Markovian time evolution [33].

6.5.4 Master Equation for a two-level system with time-dependent coupling

In this section we will sketch the microscopical derivation of the Master Equation for a

two-level atom interacting with a cavity via a time-dependent coupling Ω (t), given by

Eq. (6.96). Let us start by defining the noninteracting Hamiltonian as

H0 = ~ω
(
a†a+

1

2

)
+

~ω0

2
σz. (6.94)

We now write the time-dependent interaction Hamiltonian in the Schrödinger picture

as HI (t) ≡ Ω (t)HI . This is done to explicitly point out the importance of the time-

dependent coupling in the analysis. The interaction Hamiltonian then reads

Ω (t)HI = −i~Ω (t)
(
aσ+ − a†σ−

)
. (6.95)

Following the steps in Sec. 6.2.2, we get to a Master Equation for the reduced density

matrix of the system, similar to Eq. (6.37), given by

d
dt
ρ̃S (t) = −Ω (t)

~2

∫ t

0
dτΩ (t− τ) TrE

([
H̃I (t),

[
H̃I (t− τ), ρ̃S (t− τ)⊗ ρE

]])
. (6.96)

In order to reach to Eq. (6.96) only the Born approximation, Eq. (6.33), was used. Hence,

solving Eq. (6.96), a non-Markovian integro-differential equation, might give evidence of
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Figure 6.6: Decay rate for different values of k̃. The dotted curve (gold)
corresponds to k̃ = 0.5, the dashed curve (red) corresponds to k̃ = 1.0 and
the dot-dashed line (blue) to k̃ = 1.6. The solid line (green) corresponds to
k̃ →∞.
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Figure 6.7: This figure shows the numerically obtained decay rate, the time
evolution of the reduced density matrix elements and the change in the
coupling for our example with the Jaynes-Cummings model. The dotted
line (blue) and dashed line (red) correspond to ρgg (t) and ρee (t) respec-
tively. The dot-dashed line (green) represents the tangent-like decay rate
and the solid line (gold) the time-dependent coupling with Ω̃max = 0.3,
Ω̃min = 0.2 and k̃ = 1.6.
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the system changing from an on-resonance evolution to an off-resonance evolution.

6.6 Conclusions

In this Chapter we have investigated time-local Master Equations through an example in-

volving a two-level system. We constructed two different system-environment Hamilto-

nians, corresponding to two different time evolutions for the system, which nevertheless

both give the same time-local Master Equation. This explicitly shows that the time-local

Master Equation on its own is not enough to solve for the time evolution, if the time

evolution is not invertible.

The example is nevertheless somewhat artificial since it involves rapid changes in

one of the system-environment Hamiltonians at a specific instant in time. If any Hamil-

tonian is guaranteed to be “physically well-behaved”, for example, that it is continuous

and does not change too fast (or more precisely, that its matrix elements are Lipshitz-

continuous), one may conjecture that the corresponding time-local Master Equation does

determine the time evolution, at least in principle, even when the time evolution is not

invertible. This would in other words mean that two “physically well-behaved” system-

environment Hamiltonians, corresponding to different time evolutions for a quantum

system when its environment is traced out, cannot both lead to the same Master Equa-

tion for the system. Equivalently, this would mean that if a Master Equation does not

have a unique solution, then at least one of the solutions corresponds to an “ill-behaved”

system-environment Hamiltonian involving rapid changes.

Now, as our example shows, even a “well-behaved” Hamiltonian, such as the one

in the Jaynes-Cummings model on resonance, may result in divergencies in the decay

rate in the corresponding Master Equation. The usual theorems related to the existence

and uniqueness of solutions of differential equations are of little help in proving our

conjecture. The Picard-Lindelöf theorem, for example, just tells us that the solution of

such a Master Equation, with diverging decay rates, is not unique. If the decay rates

in a Lindblad-like Master Equation do not diverge, then its solution would be unique

– but this simply corresponds to the case where the time evolution is always invertible.

When the time evolution is not invertible, then decay rates will inevitably diverge at

these times, and as already stated, this can and does happen even for very well-behaved

system-environment Hamiltonians.

If the time evolution is not invertible, then even if our conjecture holds true, and if the

Hamiltonian is well-behaved enough for the time evolution to be uniquely defined by the
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time-local in a formal sense, one would still need to take care when numerically solving

a time-local Master Equation. This is because the diverging decay rates may lead to

instabilities in numerical calculations. Nonetheless, our results would generally support

the view that time local Master Equations are applicable to a wider class of problems than

one might expect on first inspection.
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Chapter 7

Conclusions

This thesis focuses on two different topics, the first one a spin-orbit-coupled condensed

matter system, while the second one considered a problem from open quantum systems.

Let us summarise here the most important achievements presented in this thesis.

We have strongly emphasised the importance of Rashba-coupled spin-orbit systems

on the development of future technologies and applications, such as quantum computa-

tion or superconductivity. In Chapter 2 we reviewed the origin of spin as a relativistic

quantum mechanical effect and we described the most important properties of noninter-

acting Rashba-coupled Fermi gases.

In Chapter 3 we gave a short review of scattering theory and renormalisation. Scat-

tering theory allows us to explain interactions between particles using a different but

equivalent approach — Green’s functions and the T-matrix — than the Schrödinger or

Heisenberg equation approach. Effective theories that include contact interactions yield

infinities that do not appear in experiments. We briefly explained how to treat such in-

finities and we gave an example of the UV divergences that appear in the T-matrix when

describing interactions.

A method to describe a single-channel UV divergent-free Rashba-coupled Fermi gas

is proposed in Chapter 4. We showed that this theory has predictive power, since the

logarithmic UV divergence that appears in the T-matrix is renormalised into the particle-

particle interaction constant. As a consequence, we also found that the corrections to the

energy in second order perturbation theory are finite.

In Chapter 5 we used the lack of Galilean invariance in a Rashba-coupled Fermi gas,

to show how the Fermi surface deforms when a momentum kick is applied onto the

system. Using the single-branch theory for an interacting Rashba-coupled Fermi gas,

introduced in the previous Chapter, we saw that the momentum kick induces a phase
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transition to a finite momentum ground-state. We also discussed experimental signa-

tures to detect this effect. Additionally, it would be interesting to study the lifetime of

excitations when a momentum kick per particle k0 is applied to an excited state of the

Rashba-coupled Fermi gas. These results could be compared with the lifetime of quasi-

particles subject to Pomeranchuk instabilities.

In the second part we change tack, and study the dynamics of open quantum systems

described by master equations of the reduced density matrix of the system. In Chap-

ter 6 we considered two different systems described by two different Jaynes-Cummings

Hamiltonians coupled to a bath that yield a same non-Markovian master equation. We

analyse the validity of the master equation approach when the coupling between the

two-level system and the bath changes suddenly. If the coupling changes fast enough

at the right time, when the Master Equation is not invertible, then it is not possible to

distinguish between on-resonance and off-resonance evolution in the Master Equation,

Eq. (6.69). On the other hand, numerically solving the Master Equation obtained from

microscopic principles for a Jaynes-Cummings model with time-dependent coupling,

see Sec. 6.5.4,might yield signatures to distinguish between the on-resonance and off-

resonance evolution.
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Appendix A

Deltas, Fourier transformations and

Wick’s theorem

In this Appendix we introduce some concepts and intermediate calculations of Chapter 4.

A.1 Dirac & Kronecker delta functions

We define the Kronecker delta for the discretised momentum coordinate as

δk,q =
1

V

∫
[0,L)3

dr eir(k−q), (A.1)

where V = L3 is the volume of the system. We also introduce the Dirac delta

δ
(
r − r′

)
=

∫
R3

dk
(2π)3

eik(r−r′), (A.2)

δ
(
k − k′

)
=

∫
R3

dr
(2π)3

eir(k−k′). (A.3)

It is possible to connect the Kronecker delta with the Dirac delta. We start from

∑
q

δk,q = 1. (A.4)

We transform the sum to an integral, therefore we have

V

(2π)3

∫
dq δk,q = 1. (A.5)
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In order to write δk,q as a Dirac delta we have to cancel the factors in (A.5). Hence

δk,q →
(2π)3

V
δ (k − q) (A.6)

gives the same result as (A.4).

A.2 Fourier transform of operators

We now show the Fourier transform of the creation and annihilation operators (for any

kind of spin system). The position representation of the creation c†k,σ and annihilation

ck,σ operator are

Φ†σ (r) =
1√
V

∑
k

e−ik·rc†k,σ, (A.7)

Φσ (r) =
1√
V

∑
k

eik·rck,σ. (A.8)

To define the inverse transformation we multiply (A.7) by eiq·r

eiq·r Φ†σ (r) =
1√
V

∑
k

eiq·re−ik·rc†k,σ, (A.9)

we integrate over position in the expression above to get

∫
dr eiq·r Φ†σ (r) =

1√
V

∑
k

∫
dr eiq·re−ik·rc†k,σ

=
√
V
∑
k

δq,kc
†
k,σ. (A.10)

Where we have made use of Eq. (A.1). We obtain finally

c†k,σ =
1√
V

∫
dr eik·rΦ†σ (r) , (A.11)

ck,σ =
1√
V

∫
dr e−ik·rΦσ (r) . (A.12)

A.3 Anticommutation relations

The anticommutation relations for fermionic operators are given by

{
cq,σ′ , c

†
k,σ

}
= δq,kδσ,σ′ ,

{
cq,σ′ , ck,σ

}
=
{
c†q,σ′ , c

†
k,σ

}
= 0. (A.13)
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We Fourier transform (A.13) using (A.7) and (A.8)

{
Φσ (r),Φ†σ′

(
r′
)}

=
1

V

∑
k,q

e−ir·keir
′·q
{
ck,σ, c

†
q,σ′

}
=

1

V

∑
k,q

e−ir·keir
′·qδk,qδσ,σ′

=
1

V

∑
k

eik(r′−r)δσ,σ′ , (A.14)

writing the sum as an integral and using (A.2) we get to

{
Φσ (r),Φ†σ′

(
r′
)}

= δ
(
r − r′

)
δσ,σ′ . (A.15)

A.4 Properties of the ∆ function

In this section we give some details about the negative-helicity fermion-fermion interac-

tion introduced in Chapter 4. The interaction reads

V =
g∗
2V

∑
k1+k2=k3+k4

∆ (γ1, γ2, γ3, γ4) d†k4
d†k3

dk2dk1 , (A.16)

where the angular dependence of ∆ are

∆ (γ1, γ2, γ3, γ4) = −1

8

(
eiγ1 − eiγ2

) (
e−iγ3 − e−iγ4

)
. (A.17)

The ∆ function is antisymmetric under the permutation of the first and second argument

or the third and fourth

∆ (γ1, γ2, γ3, γ4) = −∆ (γ1, γ2, γ4, γ3)

= ∆ (γ2, γ1, γ4, γ3)

= −∆ (γ2, γ1, γ3, γ4) . (A.18)

The complex conjugate of ∆ is equivalent to interchange the two first arguments with the

last two

[∆ (γ1, γ2, γ3, γ4)]∗ = −1

8

(
e−iγ1 − e−iγ2

) (
eiγ3 − eiγ4

)
= ∆ (γ3, γ4, γ1, γ2) . (A.19)
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If the incident and outgoing angles are the same, ∆ reduces to

∆ (γ1, γ2, γ1, γ2) = −1

8

(
eiγ1 − eiγ2

) (
e−iγ1 − e−iγ2

)
= −1

8

(
2− eiγ1−iγ2 − e−iγ1+iγ2

)
= −1

4
[1− cos (γ2 − γ1)] . (A.20)

Second order processes involve two different ∆ functions with intermediate states which

simplifies as follows

∆ (γ1, γ2, γ5, γ6) ∆ (γ5, γ6, γ3, γ4) =
1

64

(
eiγ1 − eiγ2

) (
e−iγ5 − e−iγ6

)
×
(
eiγ5 − eiγ6

) (
e−iγ3 − e−iγ4

)
= −1

4
[1− cos (γ6 − γ5)] ∆ (γ1, γ2, γ3, γ4)

= ∆ (γ1, γ2, γ3, γ4) ∆ (γ5, γ6, γ5, γ6) (A.21)

A.5 Wick’s Theorem

Wick’s theorem is one of the most powerful techniques to compute expectation values

which involve multiple operators. We do not show any proof of the theorem, as it can be

found in the original paper [140] or in any Quantum Field Theory textbook [47]. Before

stating Wick’s theorem we need to introduce the time ordering, the normal order and the

contraction of two operators.

Given a product of time-dependent operators, time-ordering the product consists on

rearranging the product in such a way that the operators which act at latest times are

placed to the left. For the case of a product of two time-dependent operators c†k (t) and

ck (t′) we have

T
(
c†k (t) cq

(
t′
))

=

{
c†k (t) cq (t′) if t′ < t

cq (t′) c†k (t) if t < t′.
(A.22)

Normal Ordering works as follows. Given a product of n operators, the normal or-

der places the creation operators with respect to vacuum to the left and the annihilation

operators to the right. In the case of four operators we have

N
(
ckc
†
qc
†
ucr

)
= c†qc

†
uckcr . (A.23)
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Finally the contraction of two operators is a complex number represented by its commu-

tator

ab = [a, b] . (A.24)

We are now ready to state Wick’s theorem. The time-ordered product of operators is

equal to the normal product plus all the possible combinations of contractions. Therefore,

the time-ordered product of n operators A reads

T (AnAn−1 · · ·A1) = N (AnAn−1 · · ·A1) +
∑

Single contractions

(−1)pN (AnAn−1 · · ·A1)

+
∑

Double contractions

(−1)pN (AnAn−1 · · ·A1)

+
∑

Triple contractions

(−1)pN (AnAn−1 · · ·A1) + · · · , (A.25)

where p represents the number of permutations needed to normal order the product in

the case of fermions. For bosons the permutations do not involve any sign, hence we

replace (−1)p by 1. As an example, we make explicit the calculation of the time-ordered

product of four operators A,B,C,D

T (ABCD) =N (ABCD) + (−1)pN
(
ABCD

)
+ (−1)pN

(
ABCD

)
+

(−1)pN
(
ABCD

)
+ (−1)pN

(
ABCD

)
+ (−1)pN

(
ABCD

)
+

(−1)pN
(
ABCD

)
+ (−1)pN

(
ABCD

)
+

(−1)pN

ABCD
+ (−1)pN

ABCD
 . (A.26)

Wick’s theorem is specially useful to compute expectation values of products of field op-

erators on the vacuum as all the terms in (A.26) which include non-contracted operators

or either contractions of the same type of operators (creation-creation or annihilation-

annihilation) vanish. In Chapter 4 we encounter expectation values of 4 and 8 creation

and annihilation operators. Now we analyse with detail the expectation value of 4 cre-
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ation and annihilation operators. Therefore the time-order product of c†qc
†
kck′ cq′ reads

〈0| T
(
c†qc
†
kck′ cq′

)
|0〉 = 〈0| N

(
c†qc
†
kck′ cq′

)
|0〉+ 〈0| N

(
c†qc
†
kck′cq′

)
|0〉

+ 〈0| N
(
c†qc
†
kck′cq′

)
|0〉+ 〈0| N

(
c†qc
†
kck′cq′

)
|0〉

+ 〈0| N
(
c†qc
†
kck′cq′

)
|0〉+ 〈0| N

(
c†qc
†
kck′cq′

)
|0〉

+ 〈0| N
(
c†qc
†
kck′cq′

)
|0〉+ 〈0| N

(
c†qc
†
kck′cq′

)
|0〉

+ 〈0| N

c†qc†kck′cq′
 |0〉+ 〈0| N

c†qc†kck′cq′
 |0〉 . (A.27)

All the terms in (A.27) that have non-contracted operators vanish as ck′ |0〉 = 0 and

〈0| c†k = 0. The term 〈0| N
(
c†qc
†
kck′cq′

)
|0〉 also vanishes as

[
c†q , c

†
k

]
=
[
ck′ , cq′

]
= 0.

Hence (A.27) reduces to

〈0| T
(
c†qc
†
kck′ cq′

)
|0〉 = −

[
c†q , ck′

] [
c†k , cq′

]
+
[
c†q , cq′

] [
c†k , ck′

]
. (A.28)

Finally we get to

〈0| T
(
c†qc
†
kck′ cq′

)
|0〉 = −δq,k′ δk,q′ + δq,q′ δk,k′ . (A.29)

In Chapter 4 we also compute the expectation value on the Fermi sea. Wick’s theorem

is applied in the same way, with the vacuum of particles replaced by the Fermi sea (the

noninteracting vacuum).
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Appendix B

Existence and uniqueness theorem

The Picard-Lindelöf-Lipschitz-Cauchy theorem or existence and uniqueness theorem de-

fines the conditions for a differential equation to have a valid solution [141]. Let us as-

sume the initial condition problem

y′ (t) = f (t, y (t)) , (B.1)

y (t0) = y0, (B.2)

if f (t, y (t)) and ∂yf (t, y (t)) are continuous in a subset [t0, t0 + h] × [y0 − r, y0 + r], then

there is one and only one solution to Eq. (B.1) with the initial condition (B.2) defined in

the interval [t0, t0 + d] where d ≤ h.
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potentials for neutral atoms. Reviews of Modern Physics 83(4), 1523–1543 (2011).
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[29] D. Maldonado-Mundo, L. He, P. Öhberg, and M. Valiente. Non-Galilean response

of Rashba-coupled Fermi gases. Physical Review A 88(5), 053609 (2013).

[30] H.-P. Breuer and F. Petruccione. The Theory of Open Quantum Systems. Oxford Uni-

versity Press, Oxford, 2006.

[31] G. Lindblad. On the generators of quantum dynamical semigroups. Commun. Math.

Phys. 48(2), 119–130 (1976).

[32] V. Gorini, A. Kossakowski, and E. C. G. Sudarshan. Completely positive dynamical

semigroups of Nlevel systems. Journal of Mathematical Physics 17(5), 821–825 (1976).

[33] M. J. W. Hall, J. D. Cresser, L. Li, and E. Andersson. Canonical form of master equa-

tions and characterization of non-Markovianity. Physical Review A 89(4), 042120

(2014).

[34] G. Baym. Lectures on Quantum Mechanics. Westview Press, 1974.

[35] A. Galindo and P. Pascual. Quantum Mechanics, volume I. Springer-Verlag, 1990.

[36] B. Thaller. The Dirac Equation. Springer-Verlag, 1992.

112



[37] R. Winkler. Spin-Orbit Coupling Effects in Two-Dimensional Electron and Hole Systems,

volume 191 of Springer Tracts in Modern Physics. Springer-Verlag Berlin Heidelberg,

2003.
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