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Abstract 

 

 

ABSTRACT 

While global demand for energy is increasing, it is mostly covered by fossil energies, 

like oil and natural gas.  Principally composed of hydrocarbons (methane, ethane, 

propane...), reservoir fluids contain also impurities such as carbon dioxide, hydrogen 

sulphide and nitrogen.  To meet the request of energy demand, oil and gas companies 

are interested in new gas fields, like reservoirs containing high concentrations of acid 

gases. 

 

Natural gas transport is done under high pressure and these fluids are also saturated 

with water.  These conditions are favourable to hydrates formation, leading to pipelines 

blockage.  To avoid these operational problems, thermodynamic inhibitors, like 

methanol or ethanol, are injected in lines.  

 

It is necessary to predict with more accuracy hydrates boundaries in different 

systems to avoid their formation in pipelines for example, as well as vapour liquid 

equilibria (VLE) in both sub-critical regions.  Phase equilibria predictions are usually 

based on cubic equations of state and applied to mixtures, mixing rules involving the 

binary interaction parameter are required.  A predictive model based on the group 

contribution method, called PPR78, combined with the Cubic – Plus – Association 

(CPA) equation of state has been developed in order to predict phase equilibria of 

mixtures containing associating compounds, such as water and alcohols. 

To complete database for multicomponent systems with acid gases, VLE and hydrate 

dissociation point measurements have been conducted. 

 

The developed model, called GC-PR-CPA, has been validated for binary systems and 

applied for different multicomponent mixtures.  Its ability to predict hydrate stability 

zone and mixing enthalpies has also been tested.  It has been found that the model is 

generally in good agreement with experimental data. 
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Introduction 

 

1 

INTRODUCTION 

 

La demande en énergies fossiles ne cesse de s’accroitre avec l’augmentation de la 

population mondiale et l’émergence économique de nouveaux pays.  Les industries 

pétrolières et gazières sont confrontées à de nouveaux défis : forage en mer profonde, 

sources non-conventionnelles et gaz acides (dioxyde de carbone et le sulfure 

d’hydrogène présents en quantités variables dans le gaz naturel).  En plus de ces défis 

technologiques, les énergies fossiles sont aussi émettrices de dioxyde de carbone, gaz à 

effet de serre qui a un impact non négligeable sur le climat.  Une des solutions serait de 

le capturer et le transporter vers des zones de stockage.  Qu’il s’agisse du transport du 

gaz naturel ou du dioxyde de carbone, de l’eau peut être présente introduisant un risque 

supplémentaire : la formation d’hydrates de gaz.  C’est sur cette problématique que 

s’appuie cette thèse.  Un travail de modélisation a été effectué pour prédire les 

diagrammes de phases des hydrocarbures, des gaz acides (CO2, H2S) et inertes (N2, H2) 

en présence d’eau et d’alcools.  Des études expérimentales ont été menées sur des 

systèmes multi-constituants pour évaluer la capacité du modèle à prédire les équilibres 

entre phases pour des mélanges complexes et le valider. 
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With the growing population and the economic emergence of new countries, the 

demand in fossil energies is continuously increasing.  To meet the demand, oil and gas 

industries are looking to new types of reservoirs, and therefore face new challenges: 

deepwater drilling, unconventional oil and gases, acid gases (gases with an important 

concentration of carbon dioxide and hydrogen sulphide).  In addition to these 

challenges, combustion of fossil fuels is the principal anthropological source of carbon 

dioxide emissions to the atmosphere.  It is considered as the major cause of global 

warming.  A solution proposed is to capture, transport and store carbon dioxide 

produced in suitable geological reservoirs. 

Whether natural gas or carbon dioxide, they are transported with impurities.  One of 

them is water, which may lead to hydrate formation in pipelines.  This introduces a 

serious flow assurance issue, since hydrates may block pipelines. 

 Chapter 1 presents natural gas and carbon dioxide transportation.  The thesis is 

principally focused on hydrate formation during transportation.  Since the systems of 

interest contain acid gases, it leads to different problems, which may be encountered 

during transportation.  In the presence of water, they intensify the risk of pipeline 

corrosion and blockage (hydrates formation).  To avoid hydrates formation, inhibitors 

such as methanol, ethanol or glycols are used.  Therefore accurate knowledge of 

mixtures phase equilibria are important for safe operation of pipelines and 

production/processing/separation facilities.   

 As part of three industrial projects experimental measurements have been 

conducted and presented in Chapter 2: 

 Hydrate dissociation points and vapour-liquid equilibrium points have been 

measured for different mixtures to determine the impact of aromatic impurities 

on acid gas systems, in the case of acid gas injection. 

 Hydrate dissociation points of rich CO2 systems have been also measured in the 

context of carbon dioxide transport in Carbon Capture and Storage (CCS) 

 Hydrate dissociation points of different hydrocarbon mixtures in the presence of 

hydrate inhibitors have been determined in the context of flow assurance 

Data generated are used to evaluate and validate the capability of the model to predict 

phase equilibria of complex systems. 

 Phase equilibria are predicted with thermodynamic models.  Cubic equations of 

state (EoS), such as the Soave-Redlich-Kwong (SRK EoS) [1] and the Peng-Robinson 

(PR EoS) [2] equations of state are widely used in the industry.  But they are limited for 

mixtures containing associating compounds, i.e. forming hydrogen bonding, such as 
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water or alcohols, because they have been developed mainly for hydrocarbons.  To 

improve their ability to predict phase behaviour, none zero binary interaction parameters 

are introduced.  They are adjusted on experimental data for each binary system of 

interest.  In the case of no data are available, there are two solutions: or experimental 

data are conducted to complete database, or predictive models are used.  One of the 

predictive model available in the literature, the PPR78 model [3], is presented in 

Chapter 3, as well as the Cubic-Plus Associtaion EoS [4], suitable for systems 

containing associating compounds.   

 In this thesis, a predictive model (called GC-CPA-PR, for Group Contribution – 

CPA – PR), combining the CPA EoS and the PPR78 model, has been developed and is 

explained in Chapter 4.  The aim is to take into account the hydrogen bonding with the 

CPA EoS and to have a robust model to predict phase equilibria (VLE, LLE and hydrate 

stability zone) of different mixtures.  Parameters have been adjusted for binary systems 

with associating compounds (water and alcohols) on experimental data taken from the 

literature. 

 Chapter 5 presents the validation of the model.  First, predictions are compared to 

experimental data (VLE and LLE) taken from the literature for binary systems of water 

and alcohols.  Then, the ability of the model to predict phase equilibria of more complex 

systems is assessed.  Finally, the model is tested on hydrate stability zone and enthalpy 

of mixing predictions.  The mixtures are either from the literature or those generated in 

laboratory and presented in Chapter 2. 
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CHAPTER 1 – NATURAL GAS AND CARBON DIOXIDE 

TRANSPORT: PROPERTIES, FEATURES AND PROBLEMS 

 

La consommation en énergies fossiles représente 80% [1.1] de la consommation 

mondiale en énergies, avec une augmentation de la demande en gaz naturel.  Pour 

répondre à cette demande, les industries s’orientent vers de nouvelles ressources, 

comme les gaz de schistes ou les gaz naturels à forte teneur en gaz acides.  Ces derniers 

représentent 40% des ressources connues actuellement.  Ils contiennent en proportions 

variables mais conséquentes du dioxyde de carbone et du sulfure d’hydrogène.  Or ces 

composés sont des impuretés qu’il faut séparer des hydrocarbures pour répondre aux 

exigences techniques nécessaires avant toute commercialisation et utilisation.  Il faut 

donc connaitre les différentes propriétés du gaz naturel pour adapter les conditions de 

transport. 

L’émission de gaz à effet de serre est à l’origine du réchauffement climatique.  Les 

sources anthropiques en sont la principale cause, avec une part importante due à la 

combustion des énergies fossiles.  Les émissions en dioxyde de carbone issues de 

l’industrie en sont une part non négligeable.  Une des solutions étudiées est la capture 

du dioxyde de carbone et son stockage dans des sites géologiques.  Quelque soit la 

technique de capture, le dioxyde de carbone est récupéré avec des impuretés, qui ont 

une influence non négligeable sur les propriétés du mélange. 

Dans le cas de l’industrie gazière, l’eau est une des plus importantes impuretés à 

traiter.  Elle est aussi présente en quantités variables avec le gaz naturel ou le dioxyde 

de carbone.  En présence de gaz acides et d’un milieu aqueux, les pipelines peuvent se 

corroder.  Le matériau étant détérioré, cela peut être une cause de fuite.  La présence 

d’eau et de petites molécules (méthane, dioxyde de carbone, sulfure d’hydrogène…), 

dans certaines conditions de pression et de température, est une situation favorable à la 

formation d’hydrates.  Ces structures cristallines peuvent bloquer les pipelines.  Le 

sujet de cette thèse étant centré sur les hydrates de gaz, un rapide descriptif de la 

corrosion est donné dans la dernière partie avant de décrire plus en détails les 

caractéristiques des hydrates. 
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1.1. INTRODUCTION 

The twentieth century has seen an important increase of the fossil energy demand with 

an annual growth rate for the natural gas of 3% for 30 years [1.2].  They represent today 

80% of world energy consumption [1.1].  Figure 1.1 and Figure 1.2 show the world oil 

and gas production and consumption between 1987 and 2012.  According to the US 

Energy Information Administration (EIA) the total world energy use is supposed to rise 

from 524 quadrillion British thermal units (Btu) in 2010 to 820 quadrillion Btu in 2040 

[1.3]. 

 

Figure 1.1: World oil production (left) and consumption (right) between1987 and 2012 

[1.4]. 

 

Figure 1.2: World Natural Gas production (left) and consumption (right) between1987 

and 2012 [1.4]. 
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With the growing population, the demand is still increasing: the EIA foresees a 56% 

raise in the world energy consumption between 2010 and 2040 (Figure 1.3).  This trend 

is strongest in countries outside the Organization for Economic Cooperation and 

Development (OECD) with a rise of 90%, while it is just 17% in OECD countries.  

Moreover, world industrial sector and transport consume half of the energies produced.  

Despite a decrease of liquid fuels use and an increase of renewable energies and nuclear 

plant use (plus 2.5 % per year), fossil fuels continue to supply the majority of the world 

energy demand.  Indeed, liquid fuels are the most used in the transport sector and 

despite of the increasing prices, their used is supposed to rise by 38% from 2010 to 

2040. 

 

Figure 1.3: World energy consumption by fuel type between 1990 and 2010 and 

projections for the next 30 years [1.3]. 

According to the EIA, natural gas use increases by 1.7% per year.  With 116 quadrillion 

Btu consumed in 2010, the increase is estimated at 64 % with a consumption of 190 

quadrillion Btu in 2040.  Among all fossil energies, natural gas presents a lot of 

benefits: low risk since it is not toxic, lower carbon dioxide emissions relative to other 

fossil fuels and quicker reaction to demand peaks.  With the consumption pace, the 

actual proven reserves (Figure 1.4) are supposed to be enough for 60 years.  Oil and gas 

companies are interested in new gas fields, like shale, coal bed, tight and sour gas.  
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Figure 1.4: World Natural Gas reserves at the end of 2011 [1.5]. ■ +10%, ■ from 2 to 

5%, ■ from 1 to 1.9%, ■ from 0.1 to 0.9% 

40% of these reserves [1.6] are acid and sour gases (Figure 1.5), i.e. the percentage of 

carbon dioxide and hydrogen sulphide is significant.  Middle Eastern and central Asian 

countries have the most important fields.  Their production and transport can be a 

challenge, due to their corrosiveness in the presence of water, leading to pipelines 

damages and H2S toxicity.  Oil and gas companies are in search of environmentally 

friendly and gainful methods for dealing with acid and sour gases, as well as low energy 

consumption.  

 

Figure 1.5: World sour and acid gas reserves [1.7]. 
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Some fields are even ultra-sour, with over 20% of CO2 or H2S.  In all cases, these 

compounds are considered as impurities as well as water usually present in the 

reservoirs and other elements (e.g. nitrogen, helium...).  They are removed by chemical 

absorption in separation units. Acid gases are commonly removed with different types 

of amines. For example, the maximum concentration of hydrogen sulphide allowed in 

treated gas is about 4 ppm [1.8].  They are then compressed and injected into suitable 

underground formations.  

As a result of world’s dependence on fossil energies, the release of carbon into 

atmosphere is increasing and leads to climate changes.  The combustion of fossil fuels 

generates about 30 gigatons of CO2 per year, or 43% of total CO2 emissions [1.9].  In 

2012, Coal represents 43% of total fuel-based CO2 emissions, oil 33% and natural gas 

18% [1.10] (see Figure 1.6). 

 

Figure 1.6: Global CO2 emissions from fossil energies from 1960 to 2012 [1.10]. 

Estimations predict an increase of temperature between 1.0 to 2.1°C per 3600 gigatons 

of CO2 emitted [1.11].  Even if a solution is found now to stop carbon dioxide 

emissions, the climate changes are irreversible and last up to 1000 years [1.12].  Fossil 

energies-based CO2 emissions come from both stationary (e.g. power plant, refinery) 

and non-stationary systems (e.g. urban transport) [1.9].  Different ways to reduce CO2 

emissions in the atmosphere have been proposed.  One of the most promising is the 

Carbon Capture and Storage (CCS).  Amines are currently used as chemical solvent in 

fuel process plants to remove carbon dioxide.  But all carbon dioxide capture 

technologies, existing or future, depend on different factors:  

 What kind of system (stationary or non-stationary)?  
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 CO2 concentration in the gas mixture 

 Presence of impurities (water, SOx, NOx...)? 

 Temperature and pressure conditions 

Then carbon dioxide is transported through pipelines for Enhanced Oil Recovery 

(EOR), which looks to be the main target for many operators, or to storage sites.  The 

ones actually considered are geologic formations (deep saline aquifers, depleted oil and 

gas fields...) [1.9]. 

Whether in natural gas production, carbon dioxide capture or acid gas injection, water 

may be present.  During the different steps in production, transportation and processing, 

changes in temperature and pressure can lead to water condensation, ice and/or gas 

hydrates formation.   

General information of both natural gas and carbon dioxide, as well as their 

transportation conditions are presented below.  Origins of water, corrosion problem and 

hydrate formation in pipelines are also explained. 

1.2.  NATURAL GAS TRANSPORT 

1.2.1. What is Natural Gas? 

If a natural substance is in gaseous state at IUPAC standard conditions
1
, it is a 

permanent gas.  In subsurface rock reservoirs it is hydrocarbons from methane to 

butane, carbon dioxide, nitrogen, hydrogen sulphide, hydrogen, helium and argon [1.8].  

But the natural gas recovered, contains permanent gases but also heavier hydrocarbons.  

Compositions depend on reservoir source, history and present conditions.  An example 

of typical composition is given in Table 1.1. 

Table 1.1: Example of natural gas composition [1.13] 

Components Composition [mole %] 

Methane 84.07 

Ethane 5.86 

Propane 2.20 

i-Butane 0.35 

                                                           
1
 Air at 273.15 K and  10

5
 Pa 
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Table 1.1 (to be continued): Example of natural gas composition [1.13] 

Components Composition [mole %] 

n-Butane 0.58 

i-Pentane 0.27 

n-Pentane 0.25 

n-Hexane 0.28 

n-Heptane and heavier 0.76 

Carbon dioxide 1.30 

Hydrogen sulphide 0.63 

Nitrogen 3.45 

 

The proportion of carbon dioxide, hydrogen sulphide and nitrogen depends on the 

reservoir.  For example, there is 15 % of hydrogen sulphide in the reservoir in Lacq 

(France), but 87 % in Alberta (Canada). 

1.2.1.1. Origin of Natural Gas 

As seen above, natural gas is composed of hydrocarbon and non-hydrocarbon 

compounds.  Hydrocarbons result from organic decomposition in two different modes 

[1.8]. 

 The first one is the bacterial gas.  It is formed in recent sediments, formed from 

the accumulation of marine muds.  Bacteria affect the decomposition of organic 

remains during the deposition of sediments.  Methane is the only hydrocarbon 

formed, and derives from the reaction (R-1.1).   

                 

(R-1.1) 

Carbon dioxide is dissolved in water naturally present in reservoirs.  Hydrogen 

results from the other bacteria.  Suitable conditions are required for this reaction: 

the temperature must be lower than 338.15 K, which is encountered at a depth 

between 2000 and 25000 m, and in an environment without free oxygen.   
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 The second one is the thermal gas.  In an environment without oxygen, the 

organic matter is slowly degraded, according to a set of kinetic equations of 

order 1 under the following form (Equation (1.1)). 

   

  
      

(1.1) 

with k the activation energy following the Arrhenius law
2
 and Xi the 

concentration of the compound considered. 

Residues of the decomposition are not soluble in organic solvents and form the 

kerogen.  With the evolution of the sedimentary basins, sediments are buried 

deeper: the increase of temperature (between 50 to 110 °C) leads to a thermal 

degradation of the kerogen.  In this case, it produces hydrocarbon and non-

hydrocarbon compounds (CO2, H2O, H2S, H2, N2). 

1.2.1.2. Natural Gas Resources 

Gas reservoirs are classified into two categories: “conventional” and “non-

conventional” reservoirs.  The conventional ones are mainly those operated today.  The 

different types of non-conventional reservoirs are listed below [1.13]: 

 Gas in tight sand is generally in formation having porosities of 0.001 to 1 

millidarcy (md). At higher permeabilities, conventional fracturing is used; 

 Gas in tight shales: the shale is fissile, finely laminated and varicoloured. 

Permeability is less than 1 md; 

 Coal-bed methane is gas in minable coal beds with depths less than 914.4 

meters. The production of this type of gas may be limited regarding to practical 

constraints; 

 Geopressured reservoirs at abnormally pressured reservoirs; 

 Methane gas hydrates are naturally present throughout the world, in seabeds and 

in some permafrost regions.  It is considered as a future unconventional gas 

resource. 

They are considerable, but they are underexploited for technical and economical 

reasons. 

                                                           
2
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1.2.1.3. Natural Gas Properties 

Phase diagrams are essential for the processing of natural gases and the design of 

transportation facilities.  They show the state of the gas at different temperature and 

pressure conditions.  For example, conditions of the formation of a liquid phase in 

process conditions can be seen on a phase diagram of the system considered.  Therefore 

it is possible to distinguish different types of gases in the context of production: 

 Dry gas: no liquid phase is formed in the conditions of the production; 

 Humid gas: a liquid phase is formed during the production in surface conditions; 

 Gas condensate: a liquid is formed during the production in the reservoir; 

 Associated gas: the gas coexists with oil. Associated gas occurs both in the 

gaseous phase above the oil phase and dissolved in the oil phase. 

An example of a phase diagram is given in Figure 1.7. 

 

Figure 1.7: Example of natural gas phase diagram [1.14] 

The zone of retrograde condensation is a zone where a liquid phase appears if the 

pressure is decreased at a certain temperature. 

The form of the phase envelope depends on gas compositions.  More there are heavier 

hydrocarbons, larger is the curve. 

Solubility in water has to be considered.  This information helps for separation of the 

different components, but also for the production of the reservoir.  In general, natural 
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gases are slightly soluble in water.  And water salinity decreases their solubility  in 

water [1.8]. 

1.2.2. Natural Gas Transportation 

Pipeline network transports natural gas from the wellhead to the customer (Figure 1.8). 

 

Figure 1.8: Natural gas pipeline network [1.15] 

After drilling, natural gas is transported first to gas processing plants through flow lines 

and gathering lines (their specific features are explained in 1.2.2.1 and 1.2.2.2), then 

transmission systems to market areas and finally distribution lines to customers.  There 

are mainly two transmission systems: 

 Long-distance pipelines or mainline transmission systems; 

 Gas carriers after methane liquefaction; 

This work is focused on pipeline transport, which will be described below. 

1.2.2.1. Flow Lines and Gathering Lines 

Flow lines are connected to a single wellhead, while gathering lines collect gas from 

multiple flow lines.  They transport raw gas to processing plants, where water and 

impurities are removed.  Corrosive content is present in raw gas and may affect 
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pipelines integrity. According to the U.S. Environmental Protection Agency (EPA), 

“Methane leakage from flow lines is a significant source of emissions in the gas 

industry” [1.16]. To prevent corrosion pipelines are protected with a special coating: a 

fusion bonded epoxy (resin).  

Flow lines are narrow pipelines (with diameter as small as 0.5”) and the operating 

pressure is about 1.7 MPa, while gathering pipelines are larger, with a diameter under 

18”, made of steel and carrying compressed gas at 4.9 MPa [1.17]. 

Since the gas has not been treated, heavier hydrocarbons (from propane) may condense 

during the transport and form a liquid phase.  The transport becomes multiphase.  

1.2.2.2. Transmission and Distribution Lines 

Transmission and distribution lines transport treated gas to customers.  Transmission 

lines are usually long-distance and large pipelines (from 10” to 42” in diameter) made 

of steel, while distribution lines are categorized as regional systems [1.17].  They are 

also covered of a protective coating, but corrosion and material failure may happen.  

Indeed, even if the gas is considered as dry gas, there is still a certain amount of water, 

which may condense at a certain point, and acid gases.  Some filters, used as liquid 

separators may be installed with the compression stations to purify as much as possible 

the gas before its compression. 

Gas is carried at pressure from 1.4 to 8.3 MPa, usually in single phase [1.17].  For 

safety reason, the gas is compressed (Figure 1.9) and then transported and delivered 

under dense phase. 
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Figure 1.9: Natural gas phase envelope and compression conditions [1.18] 

To ensure that the flow remains pressurized, compression stations are placed at 64 to 

1600 km along the pipeline [1.19] (Figure 1.10).   

 

Figure 1.10: Transport chain [1.8]. 

It is compressed by a turbine, operating thanks to the combustion of a proportion of the 

gas carried, or by an electric motor, requiring a reliable source of electricity around 

[1.15].  

Compared to methane liquefaction and transport by gas carrier, pipeline transport is the 

simplest and cheapest solution [1.8]. 
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1.3. CARBON DIOXIDE TRANSPORT 

1.3.1. Sources of Carbon Dioxide 

Emissions of greenhouse gases (methane, carbone dioxide, ozone, nitrous oxide...) are 

associated to a global world warming.  It is expected to increase to 6.4 K by the end of 

the 21
st
 century [1.20].  Several and serious consequences may be related to global 

warming: rising of sea level, more frequent natural disasters (hurricane, flood etc), 

rainfall disruption, changes in agriculture yields, disappearance of certain species and 

increase of disease-carrying insects. 

Carbon dioxide is the largest contributor.  It is mainly released by the combustion of 

fossil fuels and the burning of forests (Figure 1.11). 

 

Figure 1.11: Global carbon dioxide emissions by sector between 1990 and 2010 [1.21].  

Carbon dioxide emissions from combustion of fossil fuels are estimated at 30 gigatons 

per year.  Petroleum represents the majority of CO2 emissions (approximately 43 %) 

among all fossil fuels.  They may come from both stationary (e.g. power plants) and 

non-stationary (e.g. conveyance) [1.9].  For example, natural gas combustion is used in 

power plants to produce electricity and carbon dioxide and water produced are currently 

vented to the atmosphere. 
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1.3.2. Carbon Dioxide Capture 

A promising solution to reduce carbon dioxide emissions to the atmosphere is Carbon 

dioxide Capture and Storage (CCS).  It is captured from power plants, transported and 

stored in suitable geological storage for a long-term.  Three capture ways are possible 

(Figure 1.12): 

 Post-combustion capture 

 Oxy-combustion capture 

 Pre-combustion capture 

 

 

Figure 1.12: Schematic of processes for carbon dioxide capture [1.9]. 

In the case of CCS, carbon dioxide captured is not pure.  Impurities concentration varies 

depending on capture technology used.  These impurities, H2O, N2, O2, Ar, CH4, SO2 
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and H2S, and SOx and NOx in the case of post-combustion capture, have to be 

considered in thermodynamic studies. 

1.3.2.1. Post-Combustion Capture 

Fossil fuels are combusted in the presence of air.  Flue gases are produced and a 

solution would be to compress and inject them into geological storage or reuse in 

Enhanced Oil Recovery (EOR).  But more energy would be needed for the compression 

and there would be more constraints to be considered on geological storage.  Therefore, 

carbon dioxide is extracted from the flue gases produced.  But its concentration is 

relatively low (its partial pressure is generally between 0.1 and 0.2 bar) considering the 

huge quantities of nitrogen (air) used for the combustion.  It is a downstream process: 

carbon dioxide is removed by a chemical absorption process using alkanolamines at 

near atmospheric pressure.  About 90% of CO2 is recovered [1.22] and will be 

transported to storage reservoirs.  The rest of the flue gas, a majority of nitrogen with 

carbon dioxide, water and oxygen is released to the atmosphere. An example of flue gas 

features is given in Table 1.2. 

Table 1.2: Example of properties of flue gases from thermal power plants [1.22] 

 Units Natural Gas Coal 

Capacity MWe 600 600 

Flue gas flow rate Nm
3
/h 3 300 000 1 700 000 

Density kg/Nm
3
 1.3 1.3 

Temperature °C 95-105 85-120 

Pressure MPa 0.1 0.1 

Composition  

CO2 %vol 3.5 13.5 

H2O %vol 7 7-11 

N2 %vol 75-80 70-75 

O2 %vol 13.5 4 

H2 %vol - - 

CO %vol - 10-25 

Ar %vol 0.02 0.9 
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Table 1.2 (to be continued): Example of properties of flue gases from thermal power 

plants [1.22] 

 Units Natural Gas Coal 

Composition  

NOx mg/Nm
3
 25-50 200 

SOx mg/Nm
3
 0-35 150-200 

HCl ppm - 4 

NH3 ppm - <1 

Ashes mg/Nm
3
 <5 30 

Heavy metals (Hg, Mn, Ni, 

Pb…) 

µg/Nm
3
 - <5 (each) 

 

1.3.2.2. Oxy-Combustion Capture 

Oxy-combustion is combustion in the presence of pure oxygen.  It increases the 

concentration of carbon dioxide in flue gases.  These gases are mostly carbon dioxide 

and water.  Therefore, capture process is reduced to water condensation.  But the major 

obstacle is the necessity to have a continuous oxygen flow, with purity greater than 95% 

to limit nitrogen content, which presents a high cost.  The temperature of combustion 

has also to be taken into account: it is increased from 1 900 °C with air (21% of oxygen) 

to 2 800 °C with 95% of oxygen.  It can be an advantage, with the possibility to 

intensify heat transfers.  But a solution to reduce the temperature would be to re-inject 

the carbon dioxide recovered.  Other advantages are: 

 Decrease of emissions and of flue gases flow rate (decrease of costs of flue gases 

treatment, smaller equipments, etc) 

 Better efficiency (decrease of fuel consumption) 

Although this technique is already applied in some industries (glass, cement, metals…), 

it is still at the state of research for an oxy-combustion in boilers. 

1.3.2.3.  Pre-Combustion Capture 

The aim of pre-combustion is to form carbon dioxide before the combustion step.  The 

fuel is converted to a syngas (a mixture of carbon monoxide and hydrogen).  The steam 

reaction is the suitable process for natural gas (R-1.2): 
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(R-1.2) 

It is an endothermic reaction that is why hydrogen production is done in furnaces.  

Before the oven, the temperature is between 540 and 580 °C.  To move out the vapour 

from the catalyst, the temperature in the oven is between 850 and 900 °C.  Pressure is 

between 2 and 3 MPa [1.22]. 

The syngas is treated through a shift conversion to increase hydrogen production (R-

1.3). 

               

(R-1.3) 

This reaction is done in two furnaces: 

 The principal reactor is a High Temperature Shift: it operates between 400 and 

415 °C 

 A smaller reactor, a Low Temperature Shift, increases the conversion of carbon 

monoxide.  It operates from 220 to 240 °C. 

Carbon dioxide is formed during this reaction and can be captured while hydrogen is 

burned to produce energy.  Since CO2 partial pressure is greater than the one for post-

combustion, it is possible to extract carbon dioxide by physical solvent, like methanol.  

There are still research efforts to simplify the entire process scheme and to reduce costs 

[1.22]. 

1.3.3. Carbon dioxide Transportation 

Carbon dioxide can be either used for Enhanced Oil Recovery (EOR) or stored in 

underground geological reservoirs or used in chemical processes.  Regardless of its 

destination, it is compressed for transport.  Typical pipeline conditions are between 10 

and 15 MPa, at pressures above its critical point (7.4 MPa), to avoid multiphase flow, 

increase the density and reduce the volume to be transported.  Temperature is equivalent 

to the surrounding temperature: it varies seasonally and depends on regions, from below 

zero to 279.15-281.15 K, with peaks at 293.15 K in tropical regions.   

There are three compression devices used to enable transport in single phase [1.9]: 

 Compressors, which move gas at differential pressures (from 0.2 to 450 MPa); 

 Blowers, which move large volumes of gas up to 0.3 MPa; 

 Fans, which move gas up to 0.015 MPa. 
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Ship conditions are 0.7 MPa and 223.15 K [1.9] (Figure 1.13).   

 

Figure 1.13: Temperature and pressure conditions of the CCS systems [1.20] 

Design of pipeline diameter depends on different parameters: pressure drop, elevation 

change, carbon dioxide mass flow rate, compressibility and viscosity.  But these 

properties are highly influenced by impurities.  Indeed, a two-phase region appears as 

the purity of carbon dioxide decreases (Figure 1.14). 

 

Figure 1.14: Phase diagram for different CO2 – N2 mixtures ( ) 99.99%mol 

CO2+0.01%mol N2. ( ) 90%mol CO2+10%mol N2. ( ) 80%mol CO2+20%mol N2.  
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Moreover, for the same temperature and pressure, fluid density may be up to 35% less 

[1.23], which has a serious impact on transportation: the energy needed for compression 

is increased or transport happens at lower densities. 

Therefore, accurate phase diagrams and representation of density and viscosity of pure 

CO2 and CO2 mixtures are necessary for an efficient design of pipelines and a safe 

transport. 

1.4.  PROBLEMS ENCOUNTERED 

As seen in part 1.2 and 1.3, natural gas and carbon dioxide are transported in the 

presence of various impurities.  The major one in both cases is water, which is also one 

of the major wastes in the oil and gas industry.  Presence of water and acid gases in 

pipeline may lead to corrosion (pipeline rupture) and hydrate formation (reason of 

pipeline blockage.  These two phenomena are serious flow assurance issues. 

1.4.1. Produced Water 

Natural gas or oil produced are usually saturated with formation water [1.24].  In 

addition to formation water, there are two other sources of produced water: 

 Injected water: to produce in the right conditions, the pressure must be 

maintained in oil reservoirs. Water with additives is injected in parallel 

wellbores and recovered later with the produced oil. 

 Condensed water: water is also present in the gas phase in the reservoir. During 

the drilling and the transport, temperature and pressure conditions may change 

and water can condense. It is thus recovered as liquid phase. 

These three sources of water are called produced water.  It is the major waste in oil and 

gas industries.  It is estimated at 250 million barrels per day compared to 80 million 

barrels of oil per day, which is equivalent to water cut of 70% [1.25].  Different factors 

may affect the amount of produced water, like the location of the well or the method of 

drilling.  But the water rate is inherent to the well considered.  On the other hand, 

mechanical problems may be the cause of unexpected increases of water production.  

Excessive pressure, material failures or holes caused by corrosion can let unwanted 

reservoir fluids enter the casing.  Pump failure may also cause casing leaks.  They occur 

usually above the top of the cement, so the drilling mud enters the wellbore. 

Composition of produced water includes different sort of compounds [1.25]: 
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 Dissolved and dispersed oil compounds: BTEX (Benzene, Toluene, 

Ethylbenzene and Xylenes) are the most soluble compounds in produced water.  

They cannot be removed efficiently by oil/water techniques. 

 Dissolved gases: carbon dioxide, nitrogen, oxygen and hydrogen sulphide are 

the most common gases in produced water. 

 Dissolved formation minerals: cations and anions which affect water salinity.  

Salinity is mainly due to dissolved sodium and chloride.  Salt concentration may 

vary from few ppm to 300 g/L.  There are also traces of heavy metals such as 

mercury, copper, silver and zinc and Naturally Occurring Radioactive Materials 

(NORM). 

 Production chemical compounds: additives in injected water, like treatment 

chemicals (corrosion inhibitors, biocides, antifoam...).  Their concentration is 

lower than 0.1 ppm, except for corrosion and scale inhibitors, which can have a 

serious environmental impact [1.26]. 

 Solids, like corrosion products, bacteria, waxes and asphaltenes. 

In gas fields, there is no necessity to inject water.  Therefore produced water is only a 

mixture of formation water and condensed water, so its volume is less than in oil fields. 

Produced reservoir fluids are generally in equilibrium with the formation water and 

therefore contain significant quantities of water.  In parallel, carbon dioxide is captured 

and transported with some amounts of water.  In both cases, water content may lead to 

several problems.  Corrosion is the first one.  It can weaken pipelines.  Because 

temperature and pressure conditions can change during the transport, it may lead to 

water condensation and to hydrate formation. 

1.4.2. Corrosion 

Presence of water and acid gases in natural gas transportation may lead to corrosion of 

pipelines.  Corrosion is commonly defined as an irreversible deterioration of a material 

because of a chemical reaction with its environment.  It induces to a degradation of the 

material.   If the reaction continues with the same intensity, the metal can be completely 

converted into metal salts.  High content of chromium and nickel prevents the corrosion 

of the alloy.  But these types of steels are not used for pipelines, because it would be 

uneconomical.  High-strength carbon steels (X65-X80) are generally used for pipelines 

[1.27]. A typical composition of additional compounds to iron is given in Table 1.3. 
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Table 1.3: Composition of the mild carbon steel X65 [1.28]. 

X65 C Si Mn S P Cr 

%wt 0.057 0.22 1.56 0.002 0.013 0.05 

Table 1.3 (to be continued): Composition of the mild carbon steel X65 [1.28]. 

X65 Ni V Mo Cu Al Sn 

%wt 0.04 0.04 0.02 0.01 0.041 0.001 

 

Dissolved carbon dioxide is the most prevalent form of corrosion: it promotes 

electrochemical reaction between steel and the aqueous phase.  Because the formed 

carbonate Fe CO3 has a low solubility in water, a corrosion layer grows on pipeline 

surface.  In addition, the presence of hydrogen sulphide may also cause corrosion and 

pipeline failures (Sulphide Stress Corrosion Cracking).  

Corrosion rate is dependent on the partial pressure of carbon dioxide [1.29].  25% of 

failures in oil and gas industry are due to corrosion [1.29].  

1.4.3. Gas Hydrates 

Discovered in 1810 by Sir Humphrey Davy, gas hydrates became source of interest for 

the hydrocarbon industry in 1934 [1.30], due to the blockage of pipelines.   

1.4.3.1. What are Gas Hydrates? 

Gas hydrates are solid crystalline compounds, formed through a combination of water 

(host molecules) and small molecules (guest molecules under vapour or liquid state) 

under low temperature and elevated pressure conditions (e.g. 3-10 MPa and 275-285 K 

for methane hydrate [1.31]), stable above the ice point of water. 

In general, considering a mixture of non polar (e.g. hydrocarbons) and polar molecules 

(e.g. water), there is no strong interactions between the solute and the solvent.  

Therefore, each molecule of solute is trapped into a cage of solvent.  This cage involves 

hydrogen bonds.  The solute is stabilised in the cage thanks to hydrophobic interactions 

[1.32]. 

More precisely, water molecules can be described as having two positive and two 

negative charges.  The hydrogen bond, as proposed by Latimer and Rodebush [1.33] in 
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1920, is the attraction of the positive pole of a water molecule to the negative pole of 

another molecule (Figure 1.15). 

 

Figure 1.15: Hydrogen bonding between five molecules of water. 

In this way, a water molecule is attached to four others, forming a network whose 

cavities are filled by guest molecules (e.g. CH4 or CO2). 

The most common gas hydrates structures are structure I (sI) and structure II (sII) 

[1.34].  The existence of a third structure (sH) was discovered in 1987 by Ripmeester et 

al. [1.35].  Guest molecules in structure I are small molecules with a diameter between 

4.2 and 6 Å
3
 (e.g. methane, carbon dioxide and hydrogen sulphide).  Structure II guest 

molecules are larger molecules, with diameters between 6 and 7 Å (e.g. propane, 

isobutane).  Larger molecules (up to 9 Å) accompanied with small molecules (typically 

the one forming sI) can form structure H (cycloheptane, methylcyclohexane, 2,2-

dimethylbutane).  Besides common hydrate formers, some hydrocarbons have unusual 

behaviours.  For example, cyclopropane is either a sI or sII hydrate former, entering in 

the larger cages of these two types.  As for n-butane, it is a transition component.  It is 

not a hydrate former itself, but can enter in the large cages in structure II in the presence 

of smaller hydrate former.  Alkanes smaller than n-butane are hydrate former, while the 

one wider do not form hydrates.  Hydrogen is a particular case.  For a long time, it has 

been considered as non-hydrate former, based on the assumption that it was too small to 

stabilize cavities.  But it has been shown that it can form structure II hydrates at very 

high pressures (200 MPa at 280 K) or cryogenic temperatures (145 K) [1.36, 1.37].  

                                                           
3
 Ångstrom: 1 Å is equal to 0.1 nm 
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SI and sII hydrates are cubic structures, formed by two types of water cages, while sH is 

a hexagonal structure with three different types of water molecules (Figure 1.16).  

 Other hydrate structures have been reported: the tetragonal structure of bromine hydrate 

[1.38] and the trigonal structure of dimethyl ether hydrate [1.39]. 

 

Figure 1.16: Hydrates structures [1.40] 

Table 1.4 gives a brief description of the geometry of the different cages. 

These structures are non-stoichiometric hydrates, since not all cages are filled.  The 

occupancy depends on system pressure and temperature, and on the nature of the guest 

molecules.  For example, about 96% of the cages are occupied in methane hydrates 

[1.31].  
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Table 1.4: Geometry of cages in the three hydrates structures [1.40] 

Cavity 

Structure I 

 

Structure II 

 

Structure H 

 

Small Large Small Large Small Medium Large 

Description 

5
12 

 

5
12

6
2 

 

5
12 

 

5
12

6
4 

 

5
12 

 

4
3
5

6
6

3 

 

5
12

6
8 

 

Number of 

cavities/unit 

cell 

2 6 16 8 3 2 1 

Average 

cavity radius
 a
 

(Å)  

3.95 4.33 3.91 4.73 3.91
b
 4.06

b
 5.71

b
 

Variation on 

radius
c
 (%)  

3.4 14.4 5.5 1.73 
Not 

available 

 

 

Coordination 

number
d
 

20 24 20 28 20 20 36 

Number of 

waters/unit 

cell 

46 136 34 

 

   

a
 The average cavity radius varies with temperature, pressure and guest composition. 

b
 Estimates of structure H cavities from geometric models. 

c
 Variation in distance of oxygen atoms from centre of cage. 

d
 Number of oxygen atoms at the periphery of each cavity. 
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1.4.3.2. Hydrates Occurrence 

Three conditions are necessary to form hydrates: suitable temperature and pressure 

conditions (usually low temperatures and high pressures), suitable sized molecules and 

the presence of water.   

In natural gas or carbon dioxide processing and transportation, hydrate formation are a 

consequence of unusual flow line operations, and can block pipelines in the worst 

scenario (Figure 1.17). 

 

Figure 1.17: Gas hydrates removed from a pipeline [1.41] 

It occurs principally in gathering pipelines, before gas drying and during transient 

operations such as restarts after emergency shut-ins.  The fluid arrives to process 

facilities at low temperature and it may not be completely dehydrated, so hydrate 

formation can also happen in transportation pipeline or after a restriction (choke or 

valve).  Moreover, as the oil and gas industry moves into deeper water, the risk of 

hydrate formation in long subsea tiebacks is increasing.  

Hydrate formation is similar to a crystallization process.  There are two principle stages: 

 Hydrate nucleation or induction time: temperature and pressure conditions are 

the one of hydrate stability zone, but no hydrate is forming.  It is a metastable 

state, where a non equilibrium state lasts for a long time.  The memory effect has 

an effect on induction time.  If hydrates were formed and dissociated or if water 

was under ice form, the induction time is reduced; 

 Hydrate growth: rapid hydrate formation and growth with the consumption of 

the gas present. 

As for hydrate dissociation, it is an endothermic process: by supplying heat, hydrogen 

bonds forming the cages can be broken. 

From a kinetic point of view, hydrate formation may be very long and difficult 

considering the induction time.  Compared to formation process, hydrate dissociation is 
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quite easier.  Unlike hydrate thermodynamics, the kinetic of formation is difficult to be 

measured and modelled [1.34]. 

 

Methane hydrates are also naturally present in the ocean at depths greater than 500 m 

and permafrost (Figure 1.18). 

 

Figure 1.18: Known and expected methane hydrates locations in the World [1.42].  

They are considered today as a considerable potential source of energy, since the 

reserves are estimated to be between 2.10
3
 and 4.10

6
gigatons [1.43].  But conventional 

reservoirs can be present in the same locations and drilling operations through hydrates 

can be very hazardous.  Indeed, drilling through hydrate bearing sediments may change 

the temperature and the pressure of the sediments and then destabilize the hydrates.  It 

may lead to wellbore instability with an enlargement of the wellbore and even a collapse 

or changes of mechanical and physical properties of the sediments [1.44].  Hydrates 

may form again when dissolved gas rises to the surface, forming plugs in subsurface 

equipments (around the drill string in the riser, the casing and the blowout preventer).  

Whether in pipelines or during the drilling, plugs may cause equipment damage but also 

injury and even life loss.  But, removing hydrates plug is time-consuming, expensive 

and can be dangerous depending on the location.  Therefore to drill and transport the gas 

safely, it is important to understand hydrates formation conditions and to prevent them. 
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1.4.3.3.  Thermodynamic Inhibitors 

Several techniques have been developed to avoid hydrates formation.  The first ones are 

based on hydrate formation conditions.  Since it is necessary to have water to form 

hydrates, a solution would be to dehydrate the gas before its transport.  It is usually 

done during on-shore processing, but it is, for the moment, difficult to apply for 

deepwater production.  Another way is to reduce the pressure below the hydrate 

formation pressure. If the pipeline is already plugged, pressure must be reduced equally 

on both sides of the blockage to avoid the movement at high velocity of the plug along 

the line [1.45].  A more frequent method is to heat up the system, but again it is harder 

to apply on deepwater facilities.  Chemical inhibition is the widely used technique to 

prevent hydrate formation, either in on-shore or off-shore production.  Methanol and 

ethylene glycol are particularly used in the natural gas industry, but also ethanol to a 

lesser extent [1.34].  By reducing water activity, they allow a decrease of the 

temperature and an increase of pressure: the hydrate phase boundary is shifted enough 

to be able to operate outside hydrates stability zone.   

Methanol is less expensive than glycols and therefore has been prevalent in the industry.  

But, because of its volatility, high concentrations are required, usually from 25 to 50% 

by volume in produced water [1.46].  Considering these high concentrations, some 

important issues have to be considered: 

 Methanol is toxic[1.47]; 

 The permitted total organic carbon levels in the wastewater are often exceeded 

due to methanol [1.48]; 

 Due to its high vapour pressure, there are losses in the vapour phase. It therefore 

difficult and expensive to recover [1.49]. 

 If methanol content is too high in oil or gas, refineries often impose penalties.  

For example, the penalty for methanol can be higher than 5$ per bbl (oil barrel) 

[1.34]. 

 Spaces are limited for methanol storage on offshore platforms.  It presents also a 

safety issue, since methanol is a flammable and easily ignited liquid, which 

flame is not visible when burning [1.47];  

 Methanol may concentrate in the liquefied petroleum gas (mostly propane with 

butanes).  Nevertheless, propane and n-butane form azeotropes with methanol.  

So binary distillation is impossible to separate them [1.45]. 
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 Methanol may dissolve corrosion inhibitors, leading to corrosion problems in 

pipelines [1.45]. 

The advantage of glycols is their low volatility, thus there are fewer losses in the vapour 

phase and it is easier to recover.  Since they are usually used at low temperatures there 

are fewer losses.  But they are also toxic.  Their high viscosity leads to flow difficulties 

so they would be more efficient for plug removals [1.49]. From an economical point of 

view, glycols are more expensive than methanol.  For years, inhibitors recovering has 

not been done, but for ecological reasons, it has to be considered now in the gas 

production plants and in financial plans [1.45]. 

Another kind of inhibitors is developed, called kinetic inhibitors.  Usually polymers, 

they are based on kinetic and not on thermodynamic equilibrium. They slow down 

hydrate formation and growth, so the fluids are transported without plug.  

But thermodynamic inhibitors are still the most used in the industry, so it is important to 

improve and optimize their use.  Accurate models and experimental data are essential 

for better understanding of the systems, safe production and transport.  This work aimed 

to develop a predictive model allowing good predictions of phase equilibria, including 

hydrate stability zone.  Measurements have been carried out to analyze complex 

systems, closest to the industrial ones, and validate the model.   
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CHAPTER 2 – EXPERIMENTAL STUDY 

 

Les diagrammes de phase sont utiles pour la conception et/ou l’optimisation de 

procédés. Ces diagrammes sont prédits à l’aide de modèles thermodynamiques.  Pour 

être le plus précis possible, les paramètres de ces modèles sont ajustés sur des données 

expérimentales.  Au cours de ce travail, des données d’équilibres liquide-vapeur et 

liquide-liquide ont été répertoriées et utilisées pour ajuster les paramètres de groupes 

de l’équation d’état GC-PR-CPA pour des systèmes binaires comportant de l’eau et/ou 

des alcools.  D’autre part, des mesures expérimentales ont été effectuées dans le cadre 

de projets industriels.  Il s’agit de compléter les bases de données sur des fluides réels, 

de mieux comprendre leur comportement ainsi que l’influence des impuretés et de 

valider les modèles.  Ainsi, des mesures de points de bulle, d’équilibres liquide-liquide 

et principalement de points de dissociation d’hydrates ont été réalisées. 
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2.1. INTRODUCTION 

Thermodynamic models are used to determine phase diagrams useful for process design 

and/or optimization.  To develop these models and to adjust their parameters, it is 

necessary to have reliable experimental data.  In the first part of this chapter, a literature 

review has been conducted.  Vapour-Liquid Equilibrium (VLE) data have been gathered 

from the literature for binary systems with water and alcohols up to n-decane.  These 

data have been screened and used to adjust the GC-PR-CPA EoS parameters Ckl, Dkl 

and Ekl (see Chapter 4).  Then, experimental works have been performed to determine 

principally hydrate dissociation points but also VLE data and bubble points of multi-

components systems.  These measurements were carried out within the framework of 

several industrial projects.  All of them consider the impact of acid gases on flow 

assurance but in different contexts: natural gas transport, carbon dioxide (from CCS) 

transport and acid gas injection.   

Producing deepwater reservoirs, which involve low temperatures combined with high 

pressures and longer transfer times, means that the oil and gas industries has to deal 

with gas hydrate problems in subsea pipelines.  With about 40% of untapped fields with 

high concentrations of CO2 or H2S [2.1], it is important to have reliable data for such 

systems. But the existing data are limited especially for the real systems containing acid 

gases.  These data are necessary to improve or validate the models, to improve 

predictions essential for strong design of production facilities.  Therefore hydrate 

dissociation points have been measured for three multi-components systems in the 

presence of thermodynamic inhibitors (methanol, ethanol and ethylene glycol). Binary 

systems of methane with hydrogen sulphide without inhibitors have also been studied. 

Furthermore, the presence of acid gases in natural gas is undesirable and they are 

stripped from the hydrocarbon stream.  Nowadays, the principal technique to remove 

acid gases from natural gas processing plants is chemical absorption with amines.  It has 

been shown [2.2] that these amines absorb also aromatic compounds.  These aromatic 

compounds become therefore impurities in the acid gases stream and could have an 

impact on the acid gas compression process.  They can potentially condense at high 

pressures in a sour liquid phase and can also impact hydrate formation conditions in the 

presence of water.  VLE and hydrate dissociation points have been measured for 

different concentrations of acid gases in presence of aromatic compounds. 

Carbon dioxide captured from power plants contains impurities (water, nitrogen, 

oxygen, hydrogen, methane, nitrous oxide...), which may lead to flow assurance issues 
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and increasing processing cost.  The presence of water may cause pipeline blockage 

with hydrate formation or pipeline rupture due to corrosion.  Moreover, since carbon 

dioxide is compressed, the presence of impurities may change the physical properties of 

the stream (e.g. bubble point and viscosity) and therefore the conditions of compression 

and transport.  The aim of the project is to investigate the phase behaviour of carbon 

dioxide in the presence of impurities.  The effect of impurities has rarely been 

investigated and limited data are available for CO2-rich mixtures.  Status of VLE data 

available for binary systems of interest is presented in Table 2.1). 

Table 2.1: VLE status of the bibliographic study. CD: Confidential Data. CR: Chemical 

Reaction. CRYO: Cryogenic measurements. DWA: Data Widely Available. : one to 

ten references available in the literature. ND: No Data.  

 
CO2 CO N2 O2 Ar H2 NO CH4 C2H6 C3H8 NO2 SO2 H2S N2O 

CO2 
 

         CD    

CO 

  

+ CD CR   ND    ND ND  ND 

N2 
   

    DWA ND   

O2 
    

 ND ND CRYO CD  ND  ND 

Ar 
     

CRYO ND CRYO  ND ND 
To be 

published 
ND ND 

H2 

      

ND    ND ND ND ND 

NO 
       

 ND ND  ND ND ND 

CH4 
        

DWA ND   

C2H6 
         

DWA ND ND  

C3H8 

          

ND   ND 

NO2 
           

CR ND ND 

SO2 
            

ND ND 

H2S 

             

ND 

N2O 
              

 

Among all systems investigated in this project, two have been studied by myself: a 

binary system carbon dioxide with argon and a CO2-rich system.  Bubble points and 

hydrate dissociation points have been measured. 
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2.2. REVIEW OF AVAILABLE EXPERIMENTAL DATA 

Vapour-Liquid Equilibrium (VLE) and Liquid-Liquid Equilibrium (LLE) data are used 

to adjust the group parameters of the GC-PR-CPA EoS.  An extensive literature review 

has been conducted to collect experimental data for binary systems with water and 

alcohols.  

2.2.1. Binary Systems Containing Water 

The solubilities of hydrocarbons, acid gases and inert gases (e.g. nitrogen and hydrogen) 

in pure water have been measured by many researchers.  Some data are also available 

for water content.  Several data have been found for light hydrocarbons.  Data are more 

limited for heavier normal alkanes and branched alkanes as well as for naphthenic 

compounds except cyclohexane. 

For a chosen system, all available data have been compared.  Data which did not follow 

the major trend have been rejected (e.g. Figure 2.1). 

 

Figure 2.1: n-Pentane solubility in water at atmospheric pressure. Comparison of data 

from the literature (♦) [2.3], (▲) [2.4], (●) [2.5] and (■) [2.6]. 

Sources of experimental data for binary systems with water are listed in Appendix A.1. 

2.2.2. Binary Systems Containing Methanol 

Methanol is one of the most commonly used hydrate inhibitor, especially during shut in 

and start-up.  It is therefore important to have accurate knowledge of phase behaviour of 
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systems containing methanol.  VLE and LLE data of hydrocarbons, acid gases, inert 

gases and water with methanol are reported in Appendix A.2.  Most of the data have 

been taken from the NIST (National Institute of Standards and Technology) database.  

The software ThermoData Engine from the NIST evaluates the accuracy of 

experimental data listed [2.7-2.15].  Some data have been therefore rejected after this 

evaluation. 

2.2.3.  Binary Systems Containing Ethanol 

Ethanol is also used as a hydrate inhibitor in a lesser extent.  It is commonly used in 

South America (e.g. Brazil).  Compared to methanol, fewer data are available.  The 

temperature and pressure ranges of studies are also more limited.  Data collected are 

presented in Appendix A.3. 

2.2.4. Binary Systems Containing Alcohols 

Alcohols are used as solvents in extractive distillation for example.  Since they form 

hydrogen bonds, it is also interesting to test the model for these compounds.  Data 

gathered for n-propanol to n-decanol, 2-propanol to 2-octanol and 3-pentanol are 

presented in Appendices A.4 to A.18. 

2.3. EXPERIMENTAL EQUIPMENTS 

2.3.1. Bubble Point 

To validate the setup the binary mixture CO2+Ar has been first studied.  Then bubble 

points have been measured for a CO2-rich mixture (MIX 1).  The technique is based on 

a synthetic method 

2.3.1.1. Apparatus 

The apparatus used is a rocking cell, i.e. a piston-type variable volume (maximum 

volume of 300 cm
3
), shown on Figure 2.2.  The apparatus consists of an equilibrium 

cell, a cooling jacket, a rocking mechanism and pressure/temperature recording 

equipment controlled by a computer.  The equilibrium cell is made of titanium and there 

is also a mixing ball inside.  The cell volume (hence pressure) can be adjusted injected 

or removing liquid behind the moving piston.  The rocking mechanism is a horizontal 

pivot associated to pneumatic controlled rocking through 180 degrees, at a rate of 8 

times per minute. 
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Figure 2.2: Schematic of apparatus used for bubble point measurements. 

The working temperature range is from -80 to 80 °C, with a maximum operating 

pressure of 70 MPa.  To ensure good temperature stability, the jacket is insulated with 

polystyrene and the connecting pipe covered with plastic foam.  The temperature is 

measured with a Platinium Resistance Thermometer, located in the cooling jacket.  The 

accuracy of temperature measurements is estimated to be ± 0.1 °C.  The pressure is 

measured with a Quartzdyne pressure transducer, directly in the cell.  The accuracy is 

estimated to be ± 8 kPa. 

The mixture is prepared or directly loaded from a gas bottle in a piston vessel. 

2.3.1.2. Materials 

Since some measurements have been done for temperatures under the freezing point of 

water, a mixture of de-ionized water and ethylene glycol has been injected behind the 

moving piston of the equilibrium cell.  De-ionized water has also been used to 

pressurize and maintain the pressure constant in the external piston vessel. 

Carbon dioxide and argon used for the first experiment were 99.99 % pure and supplied 

by BOC (UK). 

The composition of the CO2-rich synthetic mixture (MIX 1) is given in Table 2.2. 
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Table 2.2: Composition of each component (mole %) of mixture MIX 1 

Components MIX 1 

CO2 94.92 

CO 0.21 

O2 0.80 

Ar 1.21 

CH4 0.63 

H2 0.82 

N2 1.41 

 

2.3.2. Vapour-Liquid Equilibrium Data 

Complete PTxy data have been measured for acid gases mixtures.  

2.3.2.1. Apparatus 

Figure 2.3 shows the apparatus used for VLE measurements.  The equilibrium cell (EC) 

is totally immersed in a liquid bath regulated by a temperature controller.  Techniques 

are based on a static-analytic method, thus both liquid and vapour phase are sampled 

with two capillary samplers.  The composition of the samples is determined with a gas 

chromatograph (Perichrom model PR-2100) equipped with two thermal conductivity 

detectors (TCD and FID).  Two platinium resistance probes are used to measure the 

temperature: one is located at the upper of the cell and the other one at the bottom.  The 

accuracy of temperature measurements is estimated to be ±0.1 °C.  A pressure 

transducer (range: 0-160 bar) measures the pressure in the cell.  It is maintained at a 

constant temperature of 110 °C by a in-house air-thermostat, controlled by a PID 

regulator.  The accuracy of pressure measurements is estimated to be ±8 kPa.  

Temperature and pressure probes are connected to a HP data acquisition unit. 
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Figure 2.3: Flow diagram of the equipment used for VLE measurements. EC: 

equilibrium cell; PT: pressure transducer; LB: liquid bath; PP: platinum probe; SD: 

stirring device; TR: temperature regulator; VP: vacuum pump. 

2.3.2.2. Materials 

The project includes measurements with several compositions of acid gases (CO2+H2S).   

Table 2.3: Materials used for VLE measurements 

Components Purity [%] Suppliers 

Carbon dioxide 99.995 Air Liquide 

Hydrogen sulphide 99.5 Air Liquide 

Light hydrocarbon mixture 

(methane, ethane and 

propane) 

Ethane: 99.80 

Air Liquide Propane: 99.90 

Methane: balance 

Benzene 99.9 VWR 
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Table 2.3 (to be continued): Materials used for VLE measurements 

Components Purity [%] Suppliers 

Toluene 99.9 Sigma-Aldrich 

m-Xylene 99.0 Sigma-Aldrich 

Cyclopentane 99 Sigma-Aldrich 

 

In this work, VLE measurements have been done for one mixture (MIX 2).  Its 

composition is given in Table 2.4. 

Table 2.4: Composition of each component (mole %) of mixture MIX 2 

Components MIX 2 

Hydrogen sulphide 51.20 

Carbon dioxide 22.19 

Methane 2.62 

Ethane 0.31 

Propane 0.15 

Cyclopentane 0.71 

Benzene 13.64 

Toluene 7.53 

m-Xylene 1.65 

 

2.3.3. Hydrate Dissociation Point 

Hydrate dissociation point measurements have been the bulk of the experimental work 

carried out during this thesis.  The measurements have been conducted in the presence 

of thermodynamic inhibitors (methanol, ethanol and ethylene glycol).  Measurements 

have also been done for CO2-rich systems and acid gases.  The technique is based on 

static synthetic method. 
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2.3.3.1. Apparatus 

Two types of equilibrium cells have been used for hydrate dissociation point 

measurements: one in Heriot Watt University and the other one in Mines ParisTech. 

The first one is a mixed autoclave rig, made of Hastelloy (Figure 2.4).  The cell volume 

is about 125 mL.  The cell is held in a cooling jacket or immersed directly in a 

temperature-controlled liquid bath.  To achieve thermodynamic equilibrium and to mix 

well the fluids, a stirrer with a magnetic motor is used.  A platinium resistance probe 

measures the temperature.  The accuracy of temperature measurements is ±0.1 °C.  A 

Quartzdyne pressure transducer is mounted directly on the cell.  The accuracy of 

pressure measurements is about ±5 kPa.  Both pressure and temperature monitors are 

connected to a computer for a direct acquisition. 

 

Figure 2.4: Schematic of apparatus used for hydrate dissociation point measurements. 

The working temperature range is from -70 to 50 °C and up to 70 MPa. 

Figure 2.5 shows the other equilibrium cell (EC).  It is a cylindrical vessel with two 

sapphire windows. The cell is immersed in a temperature controlled bath (LB and TR).  

A stirring device (SD) is also used. The pressure is measured with one of the two 

pressure transducers (PT), for a pressure range up to 16 MPa (LPT) and 70 MPa (HPT), 

depending on the experimental pressure range. The pressure accuracy is less than 5 kPa. 

The temperature is measured with two platinium resistance thermometers (PP). The 

temperature accuracy is estimated to be less than 0.1 °C.  
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Figure 2.5: Schematic flow diagram of the apparatus. EC: equilibrium cell; PT: 

pressure transducer; LB: liquid bath; PP: platinum probe; SD: stirring device; TR: 

temperature regulator; VP: vacuum pump. 

2.3.3.2. Materials 

 CO2-rich mixtures 

For this project, the systems studied are the same ones as for bubble point 

measurements.  The material used has been thus already presented in 2.2.1.2. 

 Acid gases mixtures 

The material used is the same as the one presented in 2.3.2.2.  Two mixtures, MIX 3 

(Table 2.5) and MIX 4 (Table 2.6) have been studied. 

Table 2.5: Composition of each component (mole %) of mixture MIX 3 

Components MIX 3 

Hydrogen sulphide 22.03 

Carbon dioxide 50.61 

Methane 1.66 

Ethane 0.19 
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Table 2.5 (to be continued): Composition of each component (mole %) of mixture MIX 3 

Components MIX 3 

Propane 0.10 

Cyclopentane 0.76 

Benzene 14.73 

Toluene 8.13 

m-Xylene 1.79 

 

Table 2.6: Composition of each component (mole %) of mixture MIX 4 

Components MIX 4 

Hydrogen sulphide 40.29 

Carbon dioxide 41.70 

Methane 1.18 

Ethane 0.14 

Propane 0.07 

Cyclopentane 0.52 

Benzene 9.62 

Toluene 5.32 

m-Xylene 1.16 

 

 Natural gas with acid gases mixtures 

De-ionized water has been used in all tests.  Thermodynamic inhibitors have also been 

used: methanol, ethanol and ethylene glycol (MEG) were all 99+% pure. 

Four mixtures have been studied.  The two first one are based on a natural gas supplied 

by BOC.  CO2 (99.995% pure) has been added by weight (10%wt and 25%wt).  The 

compositions of these two gas mixtures (MIX 5 and MIX 6) are given in Tables 2.7 and 
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2.8.  For a same mixture, several samples have been prepared to measure enough points 

for all systems of interest. 

Table 2.7: Composition of each component (mole %) of mixture MIX 5 

Components MIX 5-1 MIX 5-2 MIX 5-3 MIX 5-4 

Nitrogen 6.33 6.36 6.36 6.36 

Methane 76.11 76.48 76.49 76.48 

Ethane 4.22 4.25 4.25 4.25 

Propane 2.12 2.12 2.12 2.12 

n-Butane 0.84 0.85 0.85 0.85 

n-Pentane 0.84 0.85 0.85 0.85 

Carbon dioxide 9.54 9.09 9.08 9.09 

 

Table 2.8: Composition of each component (mole %) of mixture MIX 6 

Components MIX 6 

Nitrogen 5.60 

Methane 67.31 

Ethane 3.74 

Propane 1.87 

n-Butane 0.74 

n-Pentane 0.74 

Carbon dioxide 20.00 

 

The third mixture (MIX 7) contains 70%mol of CO2.  It has been supplied by BOC and 

the composition is given in Table 2.9. 
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Table 2.9: Composition of each component (mole %) of mixture MIX 7 

Components MIX 7 

Methane 20.00 

Ethane 6.60  

Propane 2.60 

i-Butane 0.40 

n-Butane 0.40 

Carbon dioxide 70.00 

 

Finally, since limited data are available for systems with hydrogen sulphide, hydrate 

dissociation points have been measured for the binary system 80%mol methane 

(99.995% purity) with 20%mol hydrogen sulphide (99.5% purity).  Both gases were 

supplied by Air Liquide.   

2.4. EXPERIMENTAL PROCEDURES 

2.4.1. Calibration 

During this thesis, the probes on apparatus used for hydrate dissociation point 

measurements have been calibrated again.  Results are presented below. 

2.4.1.1. Pressure Transducer Calibration 

The pressure transducer used is calibrated using a dead weight balance: Desgranges and 

Huot, France, 5202 model.  The uncertainty given by the manufacturer is 200 mbar.  

Experimental field is between 30 and 75 bars, so calibration has been done between 1 

and 82 bar (Table 2.10). 

Table 2.10: Pressure transducers calibration 

Pressure transducer 

Field 

 [bar] 

Calibration Field 

[bar] 

Accuracy 

 [bar]  

PT 200 0-200 1-82 ±0.01 
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Calculation of uncertainties of pressure measurements is given in Appendix B (Table 

B.2). 

2.4.1.2. Platinium Probe Temperature Calibration 

Both temperature probes used are calibrated on a very high precision standard platinium 

probe 25 Ω (Fluke Hart Scientific Model 5628). This standard probe is connected to an 

Ohmmeter Agilent 344420A and has been previously calibrated by the “Laboratoire 

National d’Essai” (LNE, Paris).  The uncertainty given by the manufacturer is 0.013 °C.  

Calibration field corresponds to the temperature range of hydrate measurements (from -

20 to 25 °C).  Calibration results are presented in Table 2.11. 

Table 2.11: Temperature probes calibration 

Temperature probe 

Calibration Field 

 [°C] 

Accuracy  

[°C] 

Bottom -20 – 40 ±0.03 

Upper  -20 – 40 ±0.04 

 

Calculation of the uncertainties of temperature measurements is given in Appendix B 

(Table B.1). 

2.4.2. Constant Mass Expansion 

Bubble points are measured through a constant mass expansion study.  First the cell is 

cleaned and vacuumed.  Then the mixture is loaded from an external piston vessel.  The 

vessel is pressurized and kept above the bubble pressure. During the loading, distilled 

water is injected behind the moving piston to ensure that the mixture is loaded as a 

single liquid phase.  

After the loading of the cell, water is injected behind its moving piston to reduce the 

sample volume and to increase the pressure significantly to be higher than the expected 

bubble point.  For measurements at temperatures below the freezing point of water, a 

mixture water + alcohol or water + glycol is injected instead of distilled water.  The 

temperature is set to and the cell is rocked to mix all components and to ensure 

equilibrium.   
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Then the sample volume is increased step by step by removing measured quantities of 

the pumped liquid behind the piston.  At each step, the mixing is kept until reaching 

equilibrium, indicated by a constant pressure.   

For each temperature, the stabilized equilibrium pressure is plotted as a function of the 

mass or volume of the different samples removed: the bubble point is indicated by slope 

change in the plot.  It is the intersection between the two curves (see Figure 2.24). 

 

Figure 2.6: Pressure – mass diagram to determine the bubble point at constant 

temperature. ▲ above the bubble point. ■ bubble line. 

2.4.3. Static-Analytic Method 

First the equilibrium cell is cleaned and vacuumed while the mixture is prepared in an 

external piston vessel.  The hydraulic side of the piston is pressurized with nitrogen up 

to 10 MPa.  Then the mixture is loaded into the equilibrium cell in a single liquid phase, 

until the required pressure and temperature are reached.  When a constant pressure and 

temperature are observed, the sampling and its analysis are conducted and repeated for 

both liquid and vapour phases.  A gas chromatograph (GC) is used for the samples 

analysis.  A RT-Qplot column is used to separate all compounds.  Detectors have been 

previously calibrated for each compound.  With this calibration, a relation between the 

surface given by the GC and the number of moles is established, allowing the 

determination of the mixture composition in both phases.  
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2.4.4. Isochoric Pressure Search Method 

Hydrate dissociation points are measured using the isochoric pressure search method.  

The equilibrium cell is cleaned, vacuumed and charged with deionised water.  It is then 

immersed into the bath.  The binary mixture is prepared in a high-pressure cylinder and 

it is injected into the vessel (as a single supercritical phase), until the desired pressure, 

well above the hydrate stability zone.  After achieving a thermodynamic equilibrium, 

the temperature is continuously decreased to form hydrates.  Hydrate formation is 

detected with a pressure drop.  Then the temperature is increased step by step and kept 

constant at each step to reach the temperature and pressure equilibrium.  If the 

temperature is increased in the hydrate zone, the pressure increases significantly, but if 

the temperature is increased outside the hydrate zone, there is a small increase of 

pressure due to the thermal expansion.  Consequently, the dissociation point is the 

intersection between the two slopes (Figure 2.7). 

 

Figure 2.7: Pressure – temperature diagram for estimating hydrate dissociation point. ♦ 

thermal expansion, ▲ pressure drop (hydrate formation), ○ heating, ● step by step 

heating, □ hydrate dissociation point 
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2.5. EXPERIMENTAL RESULTS 

2.5.1. Bubble Point Measurements 

Bubble point measurements were carried out for the carbon dioxide – argon binary 

system and for the multicomponent mixture MIX 1 from -30 to 20 °C.  The results are 

listed in Tables 2.12 and 2.13. 

Table 2.12: Experimental bubble points of the 95% CO2 + 5% Ar binary system 

Temperatures [K] 

(±0.1) 

Pressures [MPa] 

(±0.005) 

243.25 3.902 

253.15 4.316 

263.15 4.888 

273.15 5.550 

278.15 6.109 

283.05 6.412 

283.15 6.591 

288.15 7.005 

293.15 7.481 
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Table 2.13: Experimental bubble points of MIX 1 (Table 2.2) 

Temperatures [K] 

(±0.1) 

Pressures [MPa] 

(±0.005) 

248.25 5.172 

253.15 5.340 

263.25 5.755 

273.15 6.340 

273.15 6.251 

278.15 6.507 

283.15 6.836 

288.25 7.160 

293.25 7.710 

293.25 7.678 

2.5.2. Vapour-Liquid Equilibrium Measurements 

The experimental results of MIX 2 (Table 2.4) are given in Tables C.1 and C.2 in 

Appendix C. 

2.5.3. Hydrate Dissociation Point Measurements 

2.5.3.1. CO2-Rich Mixtures 

Experimental hydrate dissociation conditions of 95% CO2 + 5% Ar are presented in 

Tables 2.14 and in 2.15 for MIX 1. 
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Table 2.14: Experimental hydrate dissociation conditions in the presence of distilled 

water of the system 95% CO2 + 5% Ar (aqueous fraction between 0.92 and 0.85) 

Temperatures [K] 

(±0.1) 

Pressures [MPa] 

(±0.005) 

277.2 2.089 

280.1 2.976 

281.0 3.578 

282.0 4.093 

283.1 4.785 

284.3 7.864 

 

Table 2.15: Experimental hydrate dissociation conditions in the presence of distilled 

water of MIX 1 (aqueous fraction between 0.92 and 0.85) 

Temperatures [K] 

(±0.1) 

Pressures [MPa] 

(±0.005) 

274.3 1.522 

276.7 1.987 

278.4 2.421 

279.5 2.840 

280.5 3.200 

281.5 3.682 

2.5.3.2. Acid Gases mixture 

Hydrate dissociation points for acid gases mixtures MIX 3 and MIX 4 are given in 

Appendix D (Tables D.1 and D.2).  Uncertainties of measurements have been 

determined.  Calculation procedures and results for hydrate dissociation conditions of 

MIX 3 are presented in Appendices E and F. 
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2.5.3.3. Natural Gas with Acid Gases Mixtures 

Experimental hydrate dissociation conditions of MIX 5, MIX 6 and MIX 7 are 

presented in Tables 2.16, 2.17 and 2.18 in the presence of different aqueous solutions. 

Table 2.16: Experimental hydrate dissociation conditions with gas mixtures MIX 5 

(Table 2.7) in the presence of distilled water and different aqueous solutions 

Aqueous phase 

compositions 

(±0.1) 

Gas mixtures 

Aqueous 

Fractions 

(±0.001) 

Temperatures 

[K] 

(±0.1) 

Pressures 

[MPa] 

(±0.03) 

Deionised water 

MIX 5-1 

0.973 278.6 1.76 

0.949 284.4 3.47 

0.895 289.2 6.90 

0.771 292.9 13.90 

MIX 5-2 
0.737 294.5 19.94 

0.699 296.0 26.59 

25%wt ethanol 

MIX 5-2 

0.972 270.3 1.74 

0.941 276.2 3.52 

0.890 281.3 6.71 

0.770 284.7 13.37 

MIX 5-3 
0.738 286.4 18.67 

0.671 288.5 28.13 

25%wt methanol MIX 5-4 

0.977 267.7 1.84 

0.958 272.8 3.45 

0.917 277.2 6.6 

0.873 279.4 10.12 

0.828 280.5 13.83 

0.732 282.2 21.09 
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Table 2.16 (to be continued): Experimental hydrate dissociation conditions with gas 

mixtures MIX 5 (Table 2.7) in the presence of distilled water and different aqueous 

solutions 

Aqueous phase 

compositions 

(±0.1) 

Gas mixtures 

Aqueous 

Fractions 

(±0.001) 

Temperatures 

[K] 

(±0.1) 

Pressures 

[MPa] 

(±0.03) 

25%wt MEG 

MIX 5-3 
0.907 277.2 3.33 

0.828 281.5 6.49 

MIX 5-4 

0.711 284.6 10.50 

0.681 285.5 13.22 

0.604 286.8 18.74 

0.541 287.6 20.18 

0.475 288.2 23.68 

50%wt ethanol MIX 5-4 

0.950 268.6 4.14 

0.917 271.4 6.88 

0.881 273.4 9.91 

0.802 278.0 16.24 

0.780 278.2 18.79 

50%wt methanol MIX 5-4 

0.922 259.4 4.92 

0.881 261.6 7.15 

0.823 262.8 11.14 

0.790 263.6 14.59 

0.753 264.3 18.48 

50%wt MEG MIX 5-4 

0.874 267.9 6.98 

0.837 270.7 12.74 

0.780 271.3 16.71 

0.775 272.2 20.79 

0.750 273.6 23.89 
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Table 2.17: Experimental hydrate dissociation conditions with gas mixtures MIX 6 

(Table 2.8) in the presence of different aqueous solutions 

Aqueous phase 

compositions (±0.1) 

Aqueous Fractions 

(±0.001) 

Temperatures [K] 

(±0.1) 

Pressures [MPa] 

(±0.03) 

25%wt ethanol 

0.966 267.0 1.64 

0.916 273.8 3.60 

0.863 278.6 6.73 

0.792 281.8 10.32 

0.729 283.0 13.92 

0.701 283.7 15.98 

0.683 284.2 17.83 

0.666 284.8 20.16 

25%wt methanol 

0.963 269.5 2.54 

0.918 276.0 6.25 

0.882 277.8 9.16 

0.818 278.8 13.58 

0.777 279.5 15.63 

0.738 280.0 18.21 

0.725 280.1 19.40 

25%wt MEG 

0.946 273.3 2.30 

0.859 281.2 7.25 

0.798 282.3 10.19 

0.763 283.5 12.29 

0.724 284.8 14.95 

0.618 285.7 20.27 
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Table 2.17(to be continued): Experimental hydrate dissociation conditions with gas 

mixtures MIX 6 (Table 2.8) in the presence of different aqueous solutions 

Aqueous phase 

compositions (±0.1) 

Aqueous Fractions 

(±0.001) 

Temperatures [K] 

(±0.1) 

Pressures [MPa] 

(±0.03) 

50%wt ethanol 

 

0.945 258.9 2.87 

0.905 260.3 3.90 

0.786 267.0 9.23 

0.712 268.4 13.30 

0.742 269.4 17.33 

50%wt methanol 

0.915 256.7 3.99 

0.874 261.4 8.43 

0.832 262.4 12.72 

50%wt MEG 

0.973 264.3 3.76 

0.945 268.4 7.70 

0.923 269.2 10.00 

0.896 269.8 13.48 

0.874 270.6 17.08 
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Table 2.18: Experimental hydrate dissociation conditions with gas mixtures MIX 7 

(Table 2.9) in the presence of different aqueous solutions 

Aqueous phase 

compositions (±0.1) 
Aqueous Fractions 

Temperatures [K] 

(±0.1) 

Pressures [MPa] 

(±0.03) 

25%wt ethanol 

0.973 263.1 0.93 

0.941 275.0 3.19 

0.852 277.5 6.64 

0.784 278.1 7.93 

0.736 279.0 10.62 

0.713 280.1 15.23 

0.702 280.8 17.57 

25%wt methanol 

0.948 269.5 1.76 

0.886 275.2 4.48 

0.846 276.3 7.42 

0.741 275.9 11.42 

0.707 276.9 16.26 

0.722 278.4 19.70 

25%wt MEG 

0.963 265.6 0.98 

0.892 278.2 4.21 

0.877 278.5 7.24 

0.775 279.3 8.80 

0.684 280.3 12.30 

0.637 280.7 14.73 

0.621 281.41 18.03 
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Table 2.18 (to be continued): Experimental hydrate dissociation conditions with gas 

mixtures MIX 7 (Table 2.9) in the presence of different aqueous solutions 

Aqueous phase 

compositions (±0.1) 
Aqueous Fractions 

Temperatures [K] 

(±0.1) 

Pressures [MPa] 

(±0.03) 

50%wt ethanol 

0.938 262.6 1.93 

0.905 268.5 3.20 

0.810 269.4 3.85 

0.668 269.9 4.70 

0.526 271.5 7.72 

0.517 274.5 17.86 

0.537 278.9 39.73 

50%wt methanol 

0.959 253.0 1.72 

0.906 258.3 3.39 

0.750 257.0 5.64 

0.728 257.5 7.31 

0.713 258.6 11.46 

0.690 261.4 24.38 

0.742 267.7 62.40 

50%wt MEG 

0.940 259.5 2.12 

0.908 263.5 3.63 

0.760 263.7 5.79 

0.728 265.0 8.07 

0.709 266.3 13.27 

0.722 268.1 21.34 

0.711 269.3 29.51 

 

Table 2.19 presents hydrate dissociation conditions for the system 80%mol CH4 + 

20%mol H2S.  
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Table 2.19: Experimental hydrate dissociation conditions in the presence of distilled 

water of 80%mol CH4 +20%mol H2S system 

Aqueous Fractions 

(±0.001) 

Temperature [K] 

(±0.1) 

Pressure [MPa] 

(±0.03) 

0.977 275.0 1.02 

0.964 282.3 1.89 

0.937 289.0 3.56 

0.906 293.4 5.52 

0.877 296.1 7.37 

0.818 297.7 9.43 

 

2.6.  CONCLUSION 

PTx and PTxy data for binary systems have been taken from the literature and will be 

used in Chapter 4 to adjust the GC-PR-CPA EoS group parameters Ckl, Dkl and Ekl and 

validate the model for binary mixtures.  Phase equilibria and hydrate dissociation point 

measurements have been conducted for three industrial projects to better understand the 

behaviour of real systems encountered.  Some of these data will be used in Chapter 5 to 

evaluate the accuracy of the model for multi-component systems.    
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CHAPTER 3 - THERMODYNAMIC MODELLING: FROM 

PHASE EQUILIBRIA TO EQUATIONS OF STATE 

 

Le pétrole et le gaz naturel sont des systèmes complexes dans lesquels les 

hydrocarbures sont produits avec de l’eau et différentes impuretés, telles que le dioxyde 

de carbone ou le sulfure d’hydrogène.  Il est donc nécessaire de connaitre  le 

comportement de ces fluides pour concevoir et optimiser les procédés de production et 

de traitement.  Les diagrammes de phases permettent d’établir une « cartographie » du 

système en déterminant, par exemple, les compositions pour une température et une 

pression données.  Ce chapitre présente dans un premier temps les équilibres entre 

phases.  L’équilibre thermodynamique est défini par une enthalpie libre (ou énergie de 

Gibbs) minimum à une certaine température et pression.  C’est dans ce cas 

qu’interviennent les modèles thermodynamiques, dont les équations d’état.  Des 

équations d’états sont présentées dans une deuxième partie : les équations cubiques 

sont les plus utilisées dans l’industrie.  Ces équations nécessitent de nombreux 

ajustements de paramètres pour représenter précisément les fluides pétroliers, dont les 

mélanges aqueux.   Les modèles ont évolué vers de meilleures représentations des 

composés associatifs (eau, alcools, glycols) en tenant compte des différentes 

interactions entre les molécules, comme les liaisons hydrogène.  L’équation d’état 

Cubic-Plus-Association (CPA), qui réunit une équation d’état cubique au terme 

associatif de Wertheim, est adaptée aux systèmes contenant des composés associatifs.  

Un autre modèle d’intérêt est un modèle de contribution de groupe Predictive Peng-

Robinson (PPR78), qui évalue de façon prédictive les coefficients d’interaction binaire 

et permet donc de prédire les diagrammes de phase pour des systèmes d’intérêt sans 

réajustement des paramètres sur des données expérimentales. 
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3.1. INTRODUCTION 

As seen in Chapter 1, multiphase flows are challenging for the oil and gas engineering, 

having a serious impact on production and transport.  Water and impurities (carbon 

dioxide, hydrogen sulphide, nitrogen, helium...) are usually co-produced with oil and 

gas.  It is also the case in CCS, even if the concentration and the type of impurities are 

different.  Multiphase flows during transport influence the design of pipelines.  It 

complicates the systems and affects their reliability by altering the performance 

characteristics (e.g. the pressure drop that determines the system’s power requirements).  

Presence of water and acid gases during the transport increases the probability of 

pipeline corrosion and hydrates formation.  To secure the transport, inhibitors 

(methanol, ethanol, ethylene glycol) are injected, and recovered at the end of the 

process.  This supplementary aspect has also to be taken into account.  Therefore, 

accurate phase diagrams, by showing the equilibrium conditions of different phases, 

have a great importance in the industry, being useful for the design of pipelines and for 

separation facilities (e.g. distillation).  These diagrams can be predicted using 

thermodynamic modelling.  

Models developed are based on Equations of State (EoS).  Cubic equations of state, 

such as the Soave-Redlich-Kwong (SRK) Equation of State [3.1] and the Peng-

Robinson (PR) EoS [3.2], are widely used in the industry for several years.  Their 

drawback rests on an incorrect prediction of species forming hydrogen bonds, e.g. water 

and alcohols.  Therefore, equations of state have been developed to describe more 

accurately their behaviour, taking into account hydrogen bonding.  The Cubic-Plus-

Association (CPA) EoS [3.3] is suitable for these systems.  Another interesting model is 

the Predictive Peng-Robinson (PPR78) EoS [3.4].  It allows good predictions for natural 

gas systems (without water) by calculating a predictive temperature dependent binary 

interaction parameter.  Both models are described in this chapter after a description of 

phase equilibria calculations. 
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 3.2. PHASE EQUILIBRIA CALCULATIONS 

3.2.1. Definition of Thermodynamic Equilibrium 

For an isothermal and isobaric process, phase equilibrium is represented by Equation 

(3.1): 

        

(3.1) 

Equation (3.1)  is stable in the case of a single phase system and unstable in the case of 

a multiphase system. 

The chemical potential μ is the macroscopic representation of the repulsive interactions 

of a molecule in a system and is related to the Gibbs free energy by: 

    
  

   
 
          

 

(3.2) 

For an isothermal and isobaric process, one obtains Equation (3.3): 

        

 

   

 

(3.3) 

To recap, phase equilibrium is characterized by: 

 Uniformity of the temperature in the system (isothermal process):  

  
          

       
 

 Uniformity of the pressure (isobaric process): 

  
          

       
 

 Uniformity of chemical potentials: 

  
           

       
 

For a component i considered as an ideal gas at a temperature T, the chemical potential 

is defined by: 

 
   

  

  
 

 

   
   

  

 
 

(3.4) 

By integrating Equation (3.4) between two pressures, one obtains: 

  
          

             
 

  
 

(3.5) 
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For the same component i in any phase, the chemical potential is defined as: 

  
                        

             
  

                     

  
 

(3.6) 

where x is the composition of the component i in one phase and f is the fugacity.  The 

fugacity depends on temperature, pressure and composition of the mixture.  The 

fugacity is equivalent to a pressure and it represents the deviation to ideality.  

Equation (3.7) is a generalised version of Equation (3.6): 

  
                        

             
  

                     

  
         

(3.7) 

The equilibrium defined by Equation (3.3) can also be applied to fugacities: 

  
                        

                      

(3.8) 

3.2.2. Vapour – Liquid Equilibrium 

The vapour – liquid equilibrium is defined by the equality of fugacities at given 

temperature and pressure.  

The equality of fugacities is expressed as follows:  

  
              

            

(3.9) 

Where 

 Liq: liquid phase 

 Vap: vapour phase 

 x: composition of the component i in the liquid phase 

 y: composition of the component i the vapour phase 

Fugacities can be calculated through two methods: the gamma – phi and the phi – phi 

method [3.5]. 

3.2.2.1. The Gamma – Phi Approach 

The gamma – phi approach uses a cubic equation of state for the vapour phase and 

activity coefficient model for the liquid fugacity.  

 Calculation of the fugacity in the vapour phase 
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In the vapour phase, the fugacity is defined as follows: 

  
              

                 

(3.10) 

Where 

o   
            is the fugacity coefficient 

o yi is the composition of the component i in the vapour phase. 

The fugacity coefficient is defined in the same way as for the phi – phi method (see 

3.2.2.2). 

 Calculation of the fugacity in the liquid phase 

The fugacity in the liquid phase for the component i is defined by Equation (3.11). 

  
              

                 
             

(3.11) 

 Where 

o   
            is the activity coefficient of the component i in the liquid 

phase 

o   
            is the fugacity of the ideal liquid  

The activity coefficient γi is related to the excess Gibbs energy. 

       
  

         

  
 

(3.12) 

By defining the excess Gibbs energy, it is possible to define the activity coefficient.  

Several models exist to define the excess Gibbs energy.  For example, Renon and 

Prausnitz [3.6] defined the NRTL (Non-Random Two-Liquid) model.  It is based on the 

hypothesis of Wilson: the local concentration around a molecule i is different from the 

bulk concentration.  This difference is due to the difference between the interaction 

energy of the central molecule i with the other molecules (same kind i and different kind 

j).  

 3.2.2.2. The Phi – Phi Approach 

The phi – phi approach uses a cubic equation of state for both vapour and liquid phases.  

Then the equilibrium is given under the following form: 

    
                

            

(3.13) 
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where φi is the fugacity coefficient. It is defined by Equation (3.14). 

 
 
      

       

  
 

(3.14) 

The fugacity coefficient can also be defined as a function of the residual Gibbs energy: 

    
 
   

   
 

   
 

        

 

(3.15) 

The residual Gibbs energy can be determined with an equation of state.  The general 

expression for the residual Gibbs energy is given by Equation (3.16): 

  

  
         

 

  
  

  

 
   

 

 

   

(3.16) 

The compressibility factor Z  is defined as follows: 

  
  

  
 

(3.17) 

And P is defined by equation of states.  

3.2.3. Cubic Equations of State 

Besides the well known Van der Waals equation of state, its modified versions, the 

Soave – Redlich – Kwong (SRK) [3.1] and the Peng-Robinson (PR) [3.2] are the most 

commonly used in the industry (see Table 3.1).  

Table 3.1: Classical cubic equations of state 

Equations of state Abbreviations Expressions 

Van der Waals VdW   
  

    
    

  
      

 
 

Soave-Redlich-Kwong SRK   
  

    
    

  
      

      
    

 

Peng-Robinson PR   
  

    
   

  
     

      
      

       
   

 

 



Chapter 3 – Thermodynamic Modelling: from Phase Equilibria to Equations of State 

 

69 

Parameters used in cubic equations of state are presented in Table 3.2. 

Table 3.2: Parameters used in the cubic equations of state. 

 

Calculations of the energy parameter and the co-volume are developed below. 

 Pure compounds 

o Calculation of the attractive parameter 

The attractive parameter for inert compounds is an adjustable constant for the VdW 

EoS, but it is temperature dependent in the SRK and PR EoS. 

                   
 

    
  

 

 

(3.18) 

With  

     Ω 

      
 

    
 

(3.19) 

Parameters of Equations (3.18) and (3.19) are given in Table 3.3. 

  

Parameters Names Values Units 

P Pressure System parameter Pa 

T Temperature System parameter K 

R Ideal gas constant 8.314472 J.mol
-1

.K
-1

 

v Molar volume System parameter m
3
.mol

-1
 

bi Co-volume of the 

component i 

See (3.20) m
3
.mol

-1
 

ai Attractive parameter 

of the component i 

See (3.18) J.m
3
.mol

-2
 

α 
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Table 3.3: Parameters of the attractive parameter 

Equations of 

state 
Ωa [3.7] κi 

SRK 

 

         

         

                               
  

PR 

      

       

         

            

                              
  

 

           

                                
 

           
  

 

With             
 

       
 

 
  

             and ω the acentric factor 

of the component i. 

The alpha function α(T) has a consistent monotonous decrease with increasing 

temperatures.  Some examples are given on Figure 3.1. 

 

Figure 3.1: Variation of the alpha function for methane, carbon dioxide, 

hydrogen sulphide, water and methanol. 

Since the alpha function is a quadratic function, there is a minimum before an increase 

with increasing temperatures.  For all compounds considered, the minimum is located 

above 1 500 K, so far beyond the domain of current industrial applications. 
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o Calculation of the co-volume 

The co-volume for inert compounds is also an adjustable constant for the VdW EoS.  

The expression for the SRK and PR EoS is given below: 

  
   Ω 

     

    
 

(3.20) 

Table 3.4: Parameters of the co-volume 

Equations of state Ωb [3.7] 

SRK       

 
         

PR 
  

    
          

 Classical mixing rules 

The equations of state presented above can be used for mixture, but it is necessary to 

introduce mixing rules.  The classical mixing rule (or Van der Waals mixing rule) is 

used in this work (Equations (3.21) and (3.23)). 

           

  

 

(3.21) 

where 

                 

(3.22) 

and 

       

 

 

(3.23) 

where kij is the binary interaction parameter.  It is usually or set to zero or equal to a 

constant, but can also be temperature dependent.  Some correlations have already been 

adjusted for some binary systems (e.g. hydrocarbon mixtures [3.8]). 
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3.2.4. Vapour – Liquid – Liquid Equilibrium 

The liquid-liquid equilibrium can be expressed in the same way as for the vapour-liquid 

equilibrium.  For a vapour-liquid-liquid equilibrium (VLLE) there is an equilibrium 

between between two liquid phases L and L’ and a vapour phase V.  The mixture is 

characterized by its composition zi, the liquid phases by the liquid composition xi and xi’ 

and the vapour phase by the vapour composition yi, where i is the considered 

compound.  The material balance equations are given by Equations (3.24) and (3.25): 

         
        

(3.24) 

         

(3.25) 

The equilibrium relations between the compositions are: 

  

  
 

  
 

  
  

(3.26) 

  

  
 
 

  
  

  
  

(3.27) 

where   is the fugacity coefficient of the component i in the phase j.  

Furthermore, the phase compositions have to satisfy the normalization constraints: 

   

 

   

(3.28) 

   
 

 

   

(3.29) 

   

 

   

(3.30) 

There are 3n+1equations and 3n+5 variables (with n the total number of components in 

the mixture).  So if the temperature and the pressure are fixed, the equilibrium 

composition can be found by an iterative procedure, using the three-phase flash 

algorithm. 
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3.2.5. Hydrate Phase 

The hydrate phase is modelled using the solid solution of van der Waals and Platteeuw 

[3.9], as implemented by Parrish and Prausnitz [3.10].  The hydrate phase model is 

based on the thermodynamic equilibrium, which means equality of temperatures, 

pressures and fugacities.  In the case of liquid water – vapour – hydrates three phases 

equilibrium, fugacities of each phase are then equal.  The fugacity of water in the 

hydrate phase is expressed by Equation (3.31) [3.11]: 

  
    

 
     

   
   

  
  

(3.31) 

where f
H
 refers to the fugacity of the hydrate lattice and f 

β
 to the fugacity of the empty 

one.  Δμ is the chemical potential difference of water between the empty lattice and the 

hydrate phase.  It is given by the van der Waals and Platteuw model [3.9]. 

 

   
   

                     
 

 

 

 

(3.32) 

where        is the number of cavities of type m per water molecule in the unit cell, fj is the 

fugacity of the gas component j and Cmj the Langmuir constant.  The Langmuir 

constants are temperature dependent and describe the potential of interaction between 

the encaged guest molecule and the water molecules around it.  They can be defined 

with the following expression: 

       
  

  
      

    

  
     

 

 

 

 

(3.33) 

where k is the Boltzmann’s constant and w(r) is the spherically symmetric cell potential 

in the cavity (with r the radial distance from the cavity centre).  Figure 3.2 shows the 

shape of Boltzmann probability factor in function of r.  The Boltzmann factor gives the 

probability to find a molecule somewhere between r1 and r2.  Most of the time, the gas 

molecule is located near the centre of the cavity, about 0.5 to 1 Å from the centre. 

Molecules presented on Figure 3.2 have bond length between 1 and 1.5 Å.  The 

molecule is mainly rotating around the centre of the cavity [3.12]. 

Boltzmann probability factor 
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Figure 3.2: Boltzmann probability factor versus r. N2 hydrate. C2H6 

hydrate. [3.12] 

w(r) depends on the intermolecular potential function.  First, the potential of interaction 

is based on Lennard-Jones model [3.13]: Γ(r) is defined between a host molecule and a 

guest molecule.  Figure 3.3 shows the shape of Lennard-Jones potential, the Kihara 

potential is deduced by translation. 

 

Figure 3.3: Shape of Lennard-Jones potential 

Interactions between two particles are stronger when ε is deeper. 

Here, the Kihara model [3.14] for spherical molecules has been used to calculate the 

potential functions, as described by McKoy and Sinanoglu [3.12]: 
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(3.34) 

ε is the Kihara energy, aG the radius of the guest molecule, aH the radius of the host 

molecule and σ the collision diameter (the distance where  =0).   

 

Figure 3.4: Schematic of the notation used in Kihara potential. 

Kihara hard-core parameters a are given in the literature [3.10] and ε and σ are fitted to 

available experimental data of hydrate phase behaviour.  These two parameters are 

defined in the thesis of Haghighi [3.15]. 

Then w(r) is calculated as the sum of the Kihara potential on all guest-water interactions 

in the cavity: 

         
   

    
     

 

 
     

  

   
    

 

 
     

(3.35) 

with 

   
 

 
    

 

 
 

 

 
 
  

    
 

 
 

 

 
 
  

  

(3.36) 

where Z is the number of water molecules in a cavity and R is the cavity radius.  

The fugacity of water in the empty hydrate lattice is expressed by Equation (3.37). 

  
 

   
   

     
   

     

  
  

(3.37) 

Where f
I/L

 refers to the fugacity of pure ice or liquid water and    
     

 is the difference 

between the chemical potential of the empty hydrate lattice and the one of pure liquid 

water (or ice).  It is given by Equation (3.38). 

   
     

  
 

   
 

   
  

   
     

   
    

   
     

  
  

 

  

 

  

 

(3.38) 
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Where h is the molar enthalpy, v the molar volume, μ
β
 and μ

I/L 
are respectively the 

chemical potential of the empty hydrate lattice and of pure liquid water (or ice).  The 

subscript 0 refers to the triple point of water. 

The difference in the enthalpy between the empty hydrate lattice and pure liquid water 

(or ice) is expressed as follows: 

   
     

    
       

   
 

  

 

(3.39) 

Where C’pw refers to the molar heat capacity (J.mol
-1

.K
-1

) and Δh
0
 is the difference in 

the enthalpy between the empty hydrate lattice and pure liquid water (or ice) at the triple 

point.  

Holder et al. [3.16] proposed the following expression for the heat capacity difference: 

    
                     

(3.40) 

The reference properties for Equations (3.38) and (3.39) are given in Table 3.5. 

Table 3.5: Reference properties for structures I and II hydrates 

Properties Units Structure I Structure II References 

   
  J.mol

-1
 1297 937 [3.17] 

   
  J.mol

-1
 1389 1025 [3.17] 

    cm
3
.mol

-1
 3.0 3.4 [3.10] 

 

3.3. INTRODUCTION TO THE CPA EQUATION OF STATE 

As explained in 3.2.3, classical equations of state are widely used in the industry.  But 

these EoS do not take into account especially associative molecules (water, alcohols and 

glycols), and predictions for mixtures containing hydrogen bonding compounds can be 

inaccurate without readjustment of equations parameters (attractive parameter, co-

volume, parameter κi and binary interaction parameter).  Therefore, new kind of 

equations of state has been developed, trying to better represent associative compounds.  

In 1995, Kontogeorgis et al. [3.3] combined a cubic equation of state (SRK EoS) with 

the attractive term of the Wertheim’s theory [3.18-3.21].  The cubic equation of state 

takes into account the physical interactions (attractive or repulsive forces) and the site-

to-site attraction for associating fluids.  
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In this work, the SRK equation of state is replaced by the Peng-Robinson (PR) EoS 

[3.2], justified by its better predictions for liquid density and in the critical region 

[3.22].  The PR – CPA EoS is expressed here, in term of pressure (Equation (3.41)). 

  
  

    
   

     

      
      

       
   

 
 

 

  

 
    

      

  
            

  

 

   

 

(3.41) 

PR EoS parameters have already been defined in 3.2.3 for non associating compounds 

and the ones of the Wertheim’s term are given in Table 3.6 and developed later. 

Table 3.6: Parameters used in the PR-CPA EoS. 

3.3.1. Hydrogen bonds 

The association term in the CPA EoS represents hydrogen bonding by taking into 

account a specific site-site interaction.  Molecules are represented as spheres.  An 

example of spherical segments with one associating site A is shown on Figure 3.5. 

Parameters Names Values Units 

P Pressure System parameter Pa 

T Temperature System parameter K 

R Ideal gas constant 8.314472 J.mol
-1

.K
-1

 

v Molar volume System parameter m
3
.mol

-1
 

bi Co-volume of the 

component i 

See (3.20) m
3
.mol

-1
 

ai Attractive parameter 

of the component i 

See (3.18) J.m
3
.mol

-2
 

ρ Density System parameter - 

xi Mole fraction of the 

component i 

System parameter - 

X
Ai

 

Mole fraction of the 

component i not 

bonded to the site A 

See (3.42) - 
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Figure 3.5: Illustration of site-to-site distance and orientation and square-well potential 

[3.15]. 

The associating sites are modeled as square-well sites [3.3] and AA-bonded dimer is 

formed only when both distance and orientation are favourable.  ε
AA

 is the association 

energy and corresponds the well depth, while κ
AA

 is the association volume and 

corresponds to the well width. 

3.3.2. Fraction of Non-bonded Associating Molecules X
A
 

The association term from Wertheim’s theory is the one also used in SAFT EoS.  It 

takes into account the hydrogen bonding between associating and cross-associating 

compounds. It is assumed that the activity of each bonding site is independent of other 

bonding sites of the same molecule.  Moreover, one site on a molecule cannot bond 

simultaneously to two sites on a different molecule and there is no double bonding 

between two molecules.  The form of the association term is derived by Michelsen and 

Hendriks [3.23]. 

In the association term, iA
X is the mole fraction of sites A on molecule i that do not 

form bonds with other active sites B on molecules j.  It is related to the association 

strength jiBA
 and the fractions X

B
 of all other kind of association sites B by Equation 

(3.42):  
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(3.42) 

where ρ is the molar density of the fluid and xj is the mole fraction of substance j.  Both 

iA
X and jiBA

  depend on the structure of the molecule and the number and type of sites.  

The association strength between site A on molecule i and site B on molecule j is given 

by Equation (3.43). 

               
   

  
           

(3.43) 

where  (d) is the radial distribution function, b is the co–volume parameter from the 

cubic part of the model, β and ε are respectively the association energy and volume 

parameters of CPA.  These two last parameters are adjustable. 

The radial distribution is defined as: 

     
   

       
 

(3.44) 

Equation (3.44) is a derived function of Carnahan-Starling EoS [3.24]. 

Kontogeorgis et al. (1999) [3.3] proposed a simplified expression of the radial 

distribution function g(d)
simpl

 that is used in the PR-CPA EoS: 

         
 

      
 

(3.45) 

where η is the reduced fluid density given as: 

  
 

 
   

 

  
 

(3.46) 

where ρ is the fluid density and the co–volume parameter, b, is assumed to be 

temperature independent, in agreement with most published equations of state. 

As seen in Equation (3.42), the association term depends on the choice of association 

schemes (number and type of association sites).  Huang and Radosz [3.25] have 

classified eight different association schemes, presented in Table 3.7.  
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Table 3.7: Association schemes for associating components [3.25] 

Species  Rigorous type Assigned type 

Acid 

 

1 1 

Alkanol 

 

3B 2B 

Water 

 

4C 3B 

Amines 

Tertiary 

 

1 Non self-associating 

Secondary 

 

2B 2B 

Primary 

 

3B 3B 

Ammonia 

 

4B 3B 

 

In the three-site (3B) association scheme, sites A and B correspond to oxygen pairs and 

the site C to a hydrogen atom.  The four-site (4C) association scheme has two proton 

donors and two proton acceptors per molecule. 

The 4C and the 3B association schemes have been respectively applied for water and 

alcohols. Solvation is accounted for carbon dioxide. It is modelled as a non-associating 

compound, but it can cross-associate with water and alcohols (Figure 3.6). 
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Figure 3.6: Water solvation of carbon dioxide [3.26]. 

3.3.3. The CPA – PR Model Applied for Mixtures 

The classical mixing rules as explained in 3.2.3 have been used in this work.  To 

calculate the association strength jiBA
 , it is necessary to calculate the association 

energy and volume parameters.  There are calculated using combining rules.  Various 

combining rules have been investigated [3.27].  Derawi et al. [3.28] showed that 

between all these rules, the CR-1 and the ECR (Elliott rule) combining rules had 

physical explanations: the arithmetic mean of the cross-association energy       is 

proportional to the enthalpy of hydrogen bonding while the geometric mean of the 

cross-association volume       is related to the cross-entropy of the hydrogen bonding.  

Both combining rules give similar results, but CR-1 is the only choice for heavy 

alcohol-water systems [3.29]. Since these systems are considered in this work, the CR-1 

combining rule has been employed (Equations (3.47) and (3.48)). 

      
           

 
 

(3.47) 

                  

(3.48) 

The modified combining rule mCR-1 is applied for carbon dioxide with water and 

alcohols.  The association energy has been taken from the literature [3.30].  The values 

for CO2-H2O and CO2-alcohol mixtures are respectively -14 200 J/mol and -12 380 

J/mol.  The volume parameter has been fitted to experimental data. 
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3.4. INTRODUCTION TO THE PPR78 MODEL 

From 2004,  Jaubert et al. [3.4] develop a predictive method to estimate the temperature 

dependent binary interaction parameters kij(T), through a group contribution method, 

based on Abdoul et al. work [3.31].  This new model was called PPR78 EoS, for 

predictive Peng-Robinson EoS.  

In their work, the binary interaction parameter kij is temperature dependent.  It is 

commonly assumed that temperature has an effect on kij. For light alkanes and CO2-

alkanes systems, the temperature dependence is quadratic with respect to 1/T [3.32].  

The example of the methane-propane system is given on Figure 3.7.  Two other systems 

are also presented: the pentane-toluene system, which has a similar volatility at low 

pressures, and an asymmetric system toluene-n-dodecane (very different volatility).  For 

these two systems, the trend is not quadratic anymore, but the temperature dependence 

of the kij parameter is confirmed. 

 

Figure 3.7: Temperature dependence of the kij parameter.  Methane-propane 

system.  Pentane-toluene system..  Toluene-dodecane system. TR is the 

reduced temperature of propane and toluene. kij calculated with Equation (3.49) 

The binary interaction parameter defined by Qian et al. [3.33] can be calculated for any 

systems containing the groups presented in Table 3.8. 
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Table 3.8: Groups defined in the PPR78 EoS. 

Families Groups References 

Alkanes 

CH3 

[3.4] 

CH2 

CH 

CH4 

C2H6 

Aromatics 

CHaro 

[3.34] Caro 

Cfused aromatic rings 

Napthenics 
CH2,cyclic [3.35] 

CHcyclic or Ccyclic 

Alkenes 

C2H4 

[3.36] 
CH2,alk or CHalk 

Calk 

CHcyclic,alk or Ccyclic,alk 

Inert gases 

CO2 [3.37] 

N2 [3.38] 

H2S [3.39] 

SH [3.40, 3.41] 

H2 [3.42] 

Water H2O [3.33] 

 

The binary interaction parameter is given by Equation (3.49). 

       

 
 
            

      
  

  
      

  
 

 

 
           

    

 

(3.49) 

With 

                                 
      

 
 
 
   
   

   
  

   

  

   

 

(3.50) 

Where  
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and Akl and Bkl are group interaction parameters reported in the last manuscript of Qian 

et al. (2013) [3.33].  

To adjust their parameters, Jaubert et al. defined the objective function by the following 

equation: 

     
                                                      

                        
 

(3.51) 

with 

                    
                

      
 

                

      
 
 

       

   

 

                 
                

      
 

                

      
 
 

    

   

 

                       
                  

       
 

                  

       
 
 

     

   

 

                           
                  

       
 
 

     

   

 

where nbubble, ndew and ncrit are the number of bubble points, dew points and mixture 

critical points. PCm is the binary critical pressure.  Later on, they also took into account 

mixing enthalpies and heats of mixing in terms of temperature effect [3.43]: 

   
      

 

  
       

  

   

 

(3.52) 

Where 

    
   

                           
 

(3.53) 

Parameters Akl and Bkl are presented in Table 3.9. 
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Table 3.9: Group parameters in the PPR78 EoS. Green: parameters available. Red: no 

parameters 
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CONCLUSION 

Two thermodynamic approaches enable to describe phase equilibrium: the symmetric 

and dissymmetric approaches.  In both cases, it is necessary to select an equation of 

state.  Among all equations already defined, two of them have been taken on: the CPA 

and the PPR78 EoS.  The first one is suitable for associating compounds and the second 

one has a predictive feature.  Considering the advantages of a predictive model and the 

good results obtained by Jaubert and co-workers, it has been decided to include their 

group contribution approach to the CPA EoS. 
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CHAPTER 4 - THE GC-PR-CPA MODEL 

 

Dans le cadre de cette thèse, un nouveau modèle, appelé GC-PR-CPA, a été établi.  

L’équation d’état Cubic-Plus-Association (CPA), qui réunit une équation d’état cubique 

au terme associatif de Wertheim, est combinée au modèle de contribution de groupe 

Predictive Peng-Robinson (PPR78), qui évalue de façon prédictive les coefficients 

d’interaction binaire.  Dans un premier temps, les paramètres des corps purs eau et 

alcools (methanol à n-decanol) de l’équation d’état PR-CPA ont été réjustés sur des 

données de pression de vapeur staturante et de densité liquide (extraites du NIST).  

Ensuite la formulation du paramètre d’interaction binaire a été modifiée.  Enfin, les 

paramètres d’interaction entre groupes ont été ajustés sur des données d’équilibre 

présentées dans les annexes A1 à A18. 
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4.1. INTRODUCTION 

In this work, the Group Contribution – Peng-Robinson – Cubic-Plus-Association (GC-

PR-CPA) model has been developed, by combining the PR-Cubic-Plus-Association 

(CPA) EoS [4.1] and the Predictive Peng-Robinson (PPR78) EoS [4.2]. 

Group parameters defined in the PPR78 EoS, except the ones for water, have been 

implemented and used in the new model.  Hydrocarbons and inert gases are considered 

as non-associative compounds and in these cases the PR-CPA EoS is reduced to the PR 

EoS.  Moreover, even if the group H2O has been recently added to the PPR78 model 

[4.3], quantitative predictions are considered not accurate enough.  With an adjusted 

binary interaction parameter, the CPA EoS gives already good predictions for systems 

with water.  The idea in this work is to have a predictive approach while maintaining 

accurate predictions of the CPA EoS for associating compounds.   

4.2. Pure Compounds 

Unlike for inert compounds, the expressions given by Equations (3.18) and (3.20) are 

not appropriate for associating compounds.  Therefore the attractive parameter, the co-

volume and the association parameters (energy and volume) are fitted to vapour 

pressure and saturated liquid density data.  Adjustments have been made for water and 

normal alcohols up to n-decanol (Table 4.1) using TPure, software developed in the 

Centre Thermodynamic of Processes (CTP). 
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Table 4.1: PR-CPA parameters for water and alcohol 

Components 

a0 

[bar.L².mol
-
²] 

b 

[L.mol
-1

] 

C1 

ε 

[bar.L.mol
-1

] 

β 

[10
3
] 

Temperature 

range [K] 

ΔP 

[%] 

Δρ 

[%] 

Water 2.174 0.015 0.639 146.39 68.31 273 – 643 1.1 2.7 

Methanol 4.929 0.032 0.770 201.75 40.20 176 – 506 0.9 1.1 

Ethanol 8.387 0.048 0.654 237.98 8.47 260 – 510 0.3 0.8 

Propanol 14.72 0.065 0.849 207.66 5.58 202 – 527 0.8 1.1 

Butanol 19.77 0.081 0.769 236.11 2.74 205 – 555 1.7 2.0 

Pentanol 26.20 0.098 1.183 155.25 5.58 250 – 500 1.9 0.9 

Hexanol 31.70 0.114 1.292 138.57 5.74 250 – 500 1.2 0.8 

Heptanol 39.85 0.132 1.077 244.72 0.417 250 – 500 0.9 1.3 

Octanol 44.32 0.148 1.349 201.39 0.644 250 – 500 1.5 1.4 

Nonanol 51.29 0.164 1.361 262.46 0.074 250 – 500 1.4 1.0 

Decanol 57.68 0.183 1.450 246.39 0.091 260 – 500 1.3 1.5 
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4.3. Group Interaction Parameters 

Binary interaction parameters are calculated using a predictive approach, based on the 

PPR78 model.  The binary interaction parameter defined in the PPR78 model has been 

modified for binary systems with associating compounds.  Then group interaction 

parameters have been adjusted for these systems using equilibrium data, listed in 

Appendices A1 to A18. 

4.3.1. Addition of the Group H2O 

First, the group H2O has been added to the GC-PR-CPA model.   Group parameters 

have been adjusted on literature data and using the flash calculation of the Hydraflash™ 

software.  The objective function defined by Equation (4.1) has been minimized using 

the simplex algorithm. 

  
 

    
  

              

               
 

     

   

 

(4.1) 

where NEXP is the number of experimental data, xi,exp the experimental liquid mole 

fraction of the component i and xi,calc the calculated one. 

The objective function was limited to solubility data, because they are more widely 

available in the literature.  Indeed, in the case of VLE, measuring gas solubility is easier 

than measuring the water content.  Furthermore, the binary interaction parameter for 

systems with water does not impact on water content in gas phase (Figure 4.2).  

However, as shown on Figure 4.1, for the system methane – water, the SRK-CPA EoS 

with a kij set to zero over predicts methane solubility, while the SRK-CPA EoS with 

polynomial binary interaction parameters is in good agreement with experimental data.  

Therefore, adjusting the binary interaction parameter improves solubility predictions.  
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Figure 4.1: CH4 solubility in water at 310.93 K (♦) [4.4], 423.15 K (▲) and 473.15 K 

(●) [4.5].  SRK–CPA EoS with kij=0.  SRK–CPA EoS with adjusted kij. 

 

Figure 4.2: Water content in the vapour phase of the methane and water binary system 

at 423.15K (♦) [4.6], (▲) [4.5] and (●) [4.7].  SRK–CPA EoS with kij=0.  

SRK–CPA EoS with adjusted kij. 

Binary interaction parameters have been also adjusted on literature data temperature by 

temperature for the methane – water, ethane – water, carbon dioxide – water, nitrogen – 

water and benzene-water systems.  They present a polynomial tendency (Figure 4.3 and 

Figure 4.4) similar to a Henry’s law constant [4.8].  Initially, the binary interaction 
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parameter as defined in the PPR78 EoS (Equation (3.50)) has been used, but results 

were not satisfactory and the polynomial trend could not be reproduced.  

 

Figure 4.3: Shape of the methane – water kij versus methane reduced temperature TR. -

○- Adjusted kij. -♦- GC–PR–CPA kij (4.2). -▲- PR–CPA with PPR78 kij (3.50).  

 

Figure 4.4: Shape of the benzene – water kij versus benzene reduced temperature TR. -○- 

Adjusted kij. -♦- GC–PR–CPA kij (4.2). -▲- PR–CPA with PPR78 kij (3.50). 

Therefore the term SumPPR78 has been modified for the group H2O under a second order 

polynomial expression: three new interaction parameters CkH2O, DkH2O and EkH2O have 

been introduced (Equation (4.2)). 
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   α                    

   

   

       
                

(4.2) 

With Ck,H2O=CH2O,l, Dk,H2O=DH2O,l, Ek,H2O=EH2O,l. 

The two predictive binary interaction parameters have been compared to the adjusted 

one for the methane – water system (Table 4.2) and the benzene-water system (Table 

4.3). 

Table 4.2: Comparison between adjusted kij temperature by temperature, calculated kij 

with PPR78 and calculated kij with the GC-PR-CPA EoS for the binary system methane-

water. 

Temperatures 

[K] 
Adjusted kij 

Calculated kij 

with (4.2) 

AAD 

[%] 

Calculated kij 

with (3.50) 

AAD 

[%] 

283 -0.129 -0.117 9 -0.050 67 

293 -0.099 -0.094 5 -0.042 61 

303 -0.069 -0.072 3 -0.034 49 

333 -0.008 -0.0095 18 -0.008 1 

363 0.043 0.044 2 0.019 54 

393 0.086 0.087 1 0.048 43 

423 0.118 0.117 0 0.078 34 

479 0.140 0.136 3 0.139 0 

507 0.123 0.122 1 0.172 40 
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Table 4.3: Comparison between adjusted kij temperature by temperature, calculated kij 

with PPR78 and calculated kij with the GC-PR-CPA EoS for the binary system benzene-

water. 

Temperatures 

[K] 
Adjusted kij 

Calculated kij 

with (4.2) 

AAD 

[%] 

Calculated kij 

with (3.50) 

AAD 

[%] 

278 -0.060 -0.059 1 -0.054 10 

283 -0.057 -0.056 1 -0.052 8 

288 -0.054 -0.054 1 -0.051 6 

293 -0.051 -0.051 0 -0.049 4 

298 -0.048 -0.048 0 -0.048 2 

303 -0.046 -0.046 0 -0.046 1 

308 -0.044 -0.044 0 -0.044 0 

313 -0.042 -0.042 1 -0.042 1 

318 -0.040 -0.040 0 -0.041 2 

323 -0.038 -0.038 0 -0.039 2 

328 -0.037 -0.037 1 -0.037 1 

333 -0.035 -0.035 1 -0.035 0 

338 -0.033 -0.034 4 -0.033 1 

343 -0.034 -0.033 1 -0.031 7 

 

The GC-PR-CPA model is able to reproduce with more accuracy the trend of the kij 

parameter.   

The model proposed has therefore five parameters: two parameters (Akl and Bkl) for 

non-associating groups and three parameters (Ckl, Dkl and Ekl) for associating groups 

such as water.  Therefore, if a binary system without associating compounds is studied, 

the model is reduced to the PPR78 EoS: the associating part of the PR-CPA EoS is not 

useful and the binary interaction parameter is the one defined by Equation (3.49) with 

the term SumPPR78. However, for a system with water, the PR-CPA EoS is applied and 

the binary interaction parameter is calculated with Equation (3.49) together with the 
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new term Sumasso (Equation (4.2)). Table 4.4 presents the group interaction parameters 

with water obtained with Equation (4.2). 

Table 4.4: Group interaction parameters with water  

Groups (k) 
Ck,H2O 

[10
3
 Pa.K

-2
] 

Dk,H2O 

[10
6
 Pa.K

-1
] 

Ek,H2O 

[10
8
 Pa] 

CO2 

(no solvation) 

-7.7 6.5 -11.7 

CO2 

(solvation) 

-7.8 6.5 -11.8 

H2S 

(no solvation) 

-2.5 1.4 -0.99 

H2S 

(solvation) 

0.55 -0.19 2.8 

N2 -11.4 10.3 -17.2 

H2 -8.1 7.8 -11.7 

CH3 -0.04 1.5 -0.83 

CH2 -8.7 6.8 -11.1 

CH -28.0 19.7 -33 

C -41.5 27.5 -46 

CH4 -8.9 8.0 -12.8 

C2H6 -8.5 7.3 -11.5 

CHaro -6.3 4.6 -7.1 

Caro 10.7 -7.2 10.4 

CH2,cyclic -8.8 6.9 -10.6 

CHcyclic / Ccyclic -4.9 1.9 -0.05 

C2H4 -5.2 4.9 -8.1 

CH2,alkene  / CHalkene -8.9 6.8 -11.1 
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4.3.3. Addition of Alcohols 

Alcohols are present in different industrial processes.  Methanol and, to a lesser extent, 

ethanol are used as hydrate inhibitors during transport.  They are often used as solvents 

in distillation and liquid-liquid extraction.  Equilibrium data and predictions are thus 

necessary for the design and optimisation of processes.  In petrochemical industry, they 

are used as solvents in extractive distillation to separate closely boiling hydrocarbons 

[4.9].  They are also used in the reprocessing of nuclear fuel [4.10].  Alcohol-water 

systems are present in separation of fusel
4
 oil from fermentation [4.11].  Short chain 

alcohols are also used as co-emulsifiers in the polymerization of acrylic resins [4.12].  

They present interesting properties, such as liquidlike density, low viscosity and high 

diffusivity.  For example, the butanol-water system is used in sol-gel processes and after 

drying in supercritical carbon dioxide, one synthesizes particles with high porosity and 

large surface area [4.13].  In this case, information about carbon-dioxide – water – n-

butanol system is required.  These few examples give an idea of the multitude of 

applications of alcohols in the industry and the requirement of accurate phase equilibria 

predictions, experimental work being too considerable and costly. 

Alcohols from methanol to n-decanol have been added to the GC-PR-CPA model.  

Methanol and ethanol are groups in their own and the others are divided in three groups: 

CH3,OH, CH2,OH and OH.  

Initially, adjustments have been made for methanol and ethanol.  Then the new groups 

have been added.  First, VLE data of alcohol-alcohol systems have been used to adjust 

these three new groups between them.  Then, it has been extended to the other groups.  

Bubble pressure calculations (temperatures and liquid compositions are fixed) 

minimizing the objective function defined by Equation (4.3) have been used to define 

group parameters for systems with alcohols. 

  
 

    
  

              

           
 

     

   

 

(4.3) 

Group interaction parameters for methanol are given in Table 4.5, for ethanol in Table 

4.6 and for other alcohols in Table 4.7. 

  

                                                           
4
  Fusel oil: mixture of several alcohols produced as a by-product of alcoholic fermentation. 
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Table 4.5: Group interaction parameters for methanol 

Groups (k) 
CkCH3OH 

[10
3 
Pa.K

-2
] 

DkCH3OH 

[10
6 
Pa.K] 

EkCH3OH 

[10
8 
Pa] 

CO2 4.2 -2.6 4.3 

N2 -1.6 1.1 0.039 

H2S -0.55 0.006 0.18 

H2 2.46 -1.4 4.6 

CH4 1.0 -0.51 1.5 

C2H6 0.1 5.4 -7.6 

CH3 0.40 0.22 0.0019 

CH2 -0.005 0.044 0.43 

CH -15.5 9.9 -14.4 

CH2,cyclic -19.3 12.2 -18.8 

CHcyclic / Ccyclic -780 512 -840 

CHaro -50.6 32.05 -51 

Caro 25.0 -9.0 3.0 

C2H4 1.89 -0.77 0.76 

CH2alk / CHalk 0.27 0.035 0.20 

H2O -21.6 15.2 -27 
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Table 4.6: Group interaction parameters for ethanol 

Groups (k) 
CkCH3CH2OH 

[10
3 
Pa.K

-2
] 

DkCH3CH2OH 

[10
6 
Pa.K] 

EkCH3CH2OH 

[10
8 
Pa] 

CO2 -8.9 5.4 -7.4 

N2 -75 48 -77 

H2 -1.1 0.9 1.1 

CH4 -1.4 0.72 -0.035 

C2H6 0.1 -0.087 0.59 

CH3 -1.4 0.23 1.0 

CH2 -0.9 0.51 -0.061 

CH 94 -61 100 

CH2,cyclic 1.0 -0.23 0.041 

CHcyclic / Ccyclic 45.3 -35 67 

CHaro 0.92 -0.44 0.52 

Caro -118 83 -147 

H2O -3.6 3.3 -6.5 

CH3OH -0.04 -0.011 0.068 
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Table 4.7: Group interaction parameters for alcohols 

Groups 
C 

[10
3 
Pa.K

-2
] 

D 

[10
6 
Pa.K] 

E 

[10
8 
Pa] 

CH4 + OH -24.2 -7.6 -2.8 

CH4 + CH3,OH 24.0 -6.1 -3.8 

CH4 + CH2,OH 1.63 0.29 -2.1 

C2H4 + OH 5.7 -1.4 -2.3 

C2H4 + CH3,OH 6.4 -5.3 -8.3 

C2H4 + CH2,OH 0.94 -0.48 -3.9 

H2O + OH -37 -1.8 -19.3 

H2O + CH3,OH 47 -13.4 8.5 

H2O + CH2,OH 13 -8.8 16.1 

CH3OH + OH 16.3 -8.0 -4.2 

CH3OH + CH3,OH -16.0 -4.7 -8.2 

CH3OH + CH2,OH -0.37 -1.3 4.9 

C2H5OH + OH 10725 -7794 7196 

C2H5OH + CH3,OH -190 -10.8 7195 

C2H5OH + CH2,OH -2621 1939 -3583 

OH+CH3,OH -11.6 -15.4 -43 

OH+CH2,OH -9.1 -7.1 -7.1 

CH3,OH +CH2,OH -7.9 1.3 -8.6 
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4.4. CONCLUSION 

The GC-PR-CPA EoS is a predictive model for systems present in natural gas.  The 

binary interaction parameter defined in the PPR78 model has been modified for binary 

systems with associating compounds.  Group interaction parameters have been adjusted 

on equilibrium data.  Remaning VLE and LLE data are used to validate the model for 

binary systems (Chapter 5).  In the following chapter, the model is also validated for 

multicomponent systems. 
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CHAPTER 5 – VALIDATION OF THE GC-PR-CPA MODEL 

 

    L’objectif de ce travail a été de développer un modèle prédictif robuste pour des 

systèmes comprenant des molécules associative.  Le modèle GC-PR-CPA, présenté dans 

le Chapitre 2, est donc évalué ici pour des systèmes binaires comprenant de l’eau ou 

des alcools sur des données d’équilibre de la littérature. Pour les systèmes avec l’eau, 

les solubilités des hydrocarbures, des gaz acides (dioxyde de carbone et sulfure 

d’hydrogène) et des gaz inertes (azote et hydrogène) ont été considérées.  La teneur en 

eau dans la phase vapeur a été étudiée pour certains systèmes.  Quant aux systèmes 

avec des alcools, les données permettaient de définir des enveloppes de phase 

complètes.  Les résultats sont satisfaisants dans l’ensemble : le modèle reproduit les 

équilibres de phase ainsi que les comportements spécifiques de certains systèmes, 

comme les azéotropes.  Les déviations sont plus importantes pour les hydrocarbures 

lourds, étant donné leur faible solubilité et pour la teneur en alcools dans la phase 

vapeur pour des systèmes avec des gaz légers (méthane, éthane ou dioxyde de carbone). 

    Les capacités prédictives du modèle GC-PR-CPA sont évaluées sur des données 

d’équilibres liquide-vapeur de la littérature pour des systèmes multi-constituants 

comprenant de l’eau et/ou des alcools.  Les résultats sont satisfaisants en général.  Le 

modèle est aussi utilisé pour prédire les courbes de dissociation d’hydrates de certains 

systèmes présentés dans le chapitre 3.  Il est montré que le modèle est en accord avec 

les données expérimentales pour des systèmes sans inhibiteurs et avec du méthanol 

mais présente des écarts pour les mélanges de l’éthanol.  Ceci est principalement du 

aux déviations observées dans la prédiction des diagrammes de phases.  Enfin, outre les 

équilibres entre phases, les grandeurs de mélange, nécessaires dans le cadre de la 

conception de procédés sont prédits avec plus ou moins de précision. Le modèle a été 

développé à partir de données d’équilibres uniquement. 
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5.1 INTRODUCTION 

The objective of this work is to develop a reliable predictive model for systems 

containing associative compounds.  Group parameters have been defined for water and 

alcohols with hydrocarbons, acid and inert gases in Chapter 4.  Results for binary 

systems with water, methanol and ethanol, and to a lesser extent, other alcohols are 

presented in this chapter, using the data listed in Appendices A1 to 18.  For binary 

systems with water, the model has been evaluated on its ability to predict solubility 

either for VLE or LLE.  Water content has also been considered for some systems.  

Tsonoupoulos published a correlation for hydrocarbons – water mutual solubilities [5.1, 

5.2].  This correlation is in good agreement with experimental data and therefore has 

been compared to the GC-PR-CPA model.  For binary systems with alcohols, entire 

phase diagrams were available, so predictions were made for both phases.    

The model is considered accurate if it is close to experimental data within the 

experimental error, which represents a kind of confidence interval.  If the experimental 

error is given by the authors in their publications, it is reported in tables (EE for 

Experimental Error).  In the case of several values, the maximum error is reported.  If it 

is not specified, it is set arbitrarily to 5%.   

Systems of interest contain more than two compounds.  The model is then evaluated for 

multicomponent systems.  Its ability to predict hydrate stability zone is also considered 

in the second part, for some mixtures presented in Chapter 2.  Finally, since mixing 

enthalpies are involved in the energy balances, the accuracy of the model to predict such 

derivate property is checked.  In these three parts, systems have been chosen to show 

the model accuracy and its limits.  

As for binary systems, if the experimental error (EE) is given by the authors, it is 

reported here; otherwise it is set to 5%.  For hydrate stability zone, an error bar of 0.5 K 

is preferred to the uncertainties calculated in Appendix E, to have a constant value for a 

better visibility.  In process design, the maximum deviation usually accepted between 

predicted and experimental mixing enthalpies is 10%. 

5.2. BINARY SYSTEMS WITH WATER 

5.2.1. Correlation for Hydrocarbons – Water Systems 

The correlations defined by Tsonopoulos [5.1, 5.2] for hydrocarbons solubilities in 

water and vice-versa are valid for isobaric systems.  Since water content data have been 
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evaluated for isothermal systems, only the correlation for hydrocarbons solubilities in 

water is presented.   

The development of the correlation is based on the relation between the heat of solution 

and the solubility of hydrocarbons in water (Equation (5.1)) [5.1]: 

 
       

  
 
 

 
   
 

   
 

(5.1) 

where xi is the solubility of the component i and hi is the heat of solution. 

Gill et al. [5.3, 5.4] established that the heat of solution is a linear function of 

temperature.  Thus, by integrating Equation (5.1), one obtains an expression relating 

hydrocarbons solubility in water and the temperature (Equation (5.2)). 

          
  

 
         

(5.2) 

Alkanes, naphthenic and aromatic hydrocarbons show an isobaric minimum of 

solubility.  From Equation (5.2), the temperature of the minimum of solubility is 

defined by: 

       
  

  
 

(5.3) 

Equation (5.2) has been compared to the GC-PR-CPA model for normal alkanes (from 

C5), naphthenic and aromatic hydrocarbons. 

5.2.2. Normal Alkanes 

Natural gases are mostly composed of light hydrocarbons with traces of heavier 

hydrocarbons.  Normal alkanes – water binary systems from methane to n-eicosane 

have been considered.  Absolute errors and Average Absolute Deviations (AAD) 

between experimental data and the GC-PR-CPA model are presented in Table 5.1.  
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Table 5.1: Deviations between the GC-PR-CPA model and experimental data for 

normal alkanes – water binary systems 

Groups Compounds 

Absolute Error [mole 

fraction] 
AAD  

[%] 

EE 

[%] 

Temperature 

range [K] 

Pressure 

range 

[MPa] 
Min Max 

CH4 Methane 7.2.10
-8

 1.7.10
-2

 6 5 274 – 623 0.1 – 108 

C2H6 Ethane 9.9.10
-9

 3.6.10
-3

 7 7 259 – 444 0.05 – 685 

CH3, 

CH2 

Propane 3.0.10
-8

 1.4.10
-4

 17 

 

247 – 422 0.01 – 19 

n-Butane 4.7.10
-8

 3.1.10
-4

 12 273 – 511 0.1 – 69 

n-Pentane 6.9.10
-8

 1.8.10
-2

 17 273 – 603 0.02 – 71 

n-Hexane 4.4.10
-8

 2.3.10
-6

 12 273 – 425 0.01 – 0.8 

n-Heptane 5.5.10
-9

 6.7.10
-7

 17 273 – 444 0.1 

n-Octane 9.9.10
-9

 3.6.10
-3

 35 273 – 456 0.1 

n-Nonane 6.3.10
-10

 3.9.10
-7

 38  288 – 410 0.1 

n-Decane 1.8.10
-10

 4.9.10
-9

 36  293 – 298 0.1 

n-Undecane 1.0.10
-10

 2.0.10
-10

 32  298 0.1 

n-Dodecane 3.4.10
-10

 7.5.10
-8

 91 16 298 – 423 0.1 – 5 

n-

Tetradecane 
2.0.10

-10
 1.3.10

-7
 93  298 – 473 0.1 - 5 

n-

Hexadecane 
7.0.10

-11
 4.4.10

-8
 99  298 – 526 0.1 – 5 

n-

Octadecane 
5.0.10

-11
 5.0.10

-11
 34  298 0.1 

n-Eicosane 1.0.10
-11

 4.0.10
-9

 64  298 – 473 0.1 - 5 

 

The GC-PR-CPA model is in good agreement with experimental data for light alkanes 

within experimental error (see Figure 5.1).  However, alkanes from n-octane have low 

solubility in water (lower than 10
-8

 mole fraction) and the model is not able to represent 

accurately the behaviour of these alkanes from n-octane.  Furthermore, limited data are 
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available for these compounds and it is difficult to evaluate the quality of experimental 

data.  Finally, it is stated that Peng-Robinson EoS, as all cubic equations of state with 

two parameters (attractive parameter a and co-volume b), is poorly accurate for high 

boiling hydrocarbons and would also explain the larger deviations.  Indeed, in liquid 

state, molecules are closer to each other than in gas state.  Parameter b represents the 

volume of molecules and is more effective in liquid densities calculations.  Therefore, it 

is more important than the parameter a in liquid state calculations.  But this parameter is 

kept constant [5.5].  

 

Figure 5.1: Ethane solubility in water at 313.15 K (♦), 373.15 K (▲) and 393.15 K (●) 

[5.6]. (-) GC-PR-CPA model. Error bar: ± 7% 

It has also to be mentioned, that the GC-PR-CPA model has been adjusted on solubility 

data of selected alkanes and its parameters have been validated for the remaining ones.  

Therefore the model cannot be completely accurate.  However for alkanes from n-

propane to n-hexane, the accuracy is globally acceptable with better representation for 

alkanes with an even number of carbon.  There could be an “odd-even” effect. 

 

Since Tsonopoulos correlation is able to well represent alkanes solubility in water, it is 

compared to the GC-PR-CPA model for two systems: n-pentane – water and n-hexane – 

water (see Figure 5.2).  
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Figure 5.2: n-pentane (♦) [5.7] and n-hexane (▲) [5.8] solubilities in water at 

atmospheric pressure. (-) GC-PR-CPA model. ( ) Tsonopoulos correlation. ( ) 

Readjusted Tsonopoulos correlation. Error bar: ± 5% 

Parameters of Equation (5.2) have also been readjusted on literature data presented on 

Figure 5.2 (Table 5.2). 

Table 5.2: n-Pentane and n-hexane solubility in water with Equation (5.2)  

Compounds Correlation A  [-] B  [K] C  [-] Tmin [K] 

n-Pentane 

Tsonopoulos 

[5.2] 
-333.60 14537.47 47.97 303.03 

Readjusted -320.37 14351.21 45.77 313.57 

n-Hexane 

Tsonopoulos 

[5.2] 
-374.91 16327.13 53.90 302.94 

Readjusted -368.81 16327.25 52.85 308.96 

 

As seen on Figure 5.2, the GC-PR-CPA model presents some deviation with 

experimental data selected for the n-pentane – water system with 21% of deviation, but 

is in good agreement for the n-hexane – water system (7%).  For both systems, it is able 

to represent the minimum of solubility.  The temperature of minimum of solubility for 

the n-pentane – water system is 315.40 K, which is close to the one obtained with 

readjusted parameters.  It is 305.39 K for the n-hexane – water system. 
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Correlation with readjusted parameters is clearly the better representation of alkanes 

solubility with only 5% and 4% of deviation.  For the n-pentane – water system, the 

original version of Equation (5.2) presents 18% of deviation, which is better than the 

GC-PR-CPA model, but 11% for the n-hexane – water system.  It can be explained by 

the difference of data used for the parameters fitting. 

 

The ability of the model to predict water content is also evaluated here.  Water content 

in light hydrocarbons is in good agreement with experimental data, considering the 

experimental error (e.g. methane – water [5.9] and ethane – water on Figure 5.3).   

 

Figure 5.3: Water content in ethane at 283.11 K (♦), 293.11 K (▲) and 303.15 K (●) 

[5.10]. (-) GC-PR-CPA model. Error bar: ± 6% 

However, as seen in Figure 5.4, the model fails to predict water solubility in heavier 

alkanes. Lower deviations are about 38%. And highest deviations are at lower 

temperatures.  But the model is, at least, able to reproduce the right shape of water 

solubility in alkanes. 
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Figure 5.4: Water solubility in n-hexane at atmospheric pressure (♦) [5.8]. (-) GC-PR-

CPA model. Error bar from [5.8]: ± 30% 

As explained before, LLE for heavier hydrocarbons are poorly predicted and it has been 

shown that water solubility predictions present even more deviations.  A solution would 

be to change the expression of the co-volume b, by introducing a mixing rule as for the 

attractive parameter a, with a binary interaction parameter lij. 

 

5.2.3. Branched Alkanes 

Branched alkanes have also been included in the GC-PR-CPA model.  Limited data are 

available for these compounds and for limited range of pressure.  As seen in Table 5.3, 

the model is better in VLE predictions (i-butane – water system) than for LLE. 

Table 5.3: Deviations between the GC-PR-CPA model and experimental data for 

branched alkanes – water binary systems 

Groups Compounds 

Absolute Error 

 [mole fraction] AAD[%] 
Temperature 

range [K] 

Pressure 

range 

[MPa] 
Min Max 

CH3, 

CH2, CH 

i-Butane 5.5.10
-8

 1.7.10
-6

 5 278 – 318 0.1 

i-Pentane 3.6.10
-7

 4.4.10
-6

 23 273 – 333 0.1 
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Table 5.3 (to be continued): Deviations between the GC-PR-CPA model and 

experimental data for branched alkanes – water binary systems 

Groups Compounds 

Absolute Error 

 [mole fraction] AAD[%] 
Temperature 

range [K] 

Pressure 

range 

[MPa] 
Min Max 

CH3, 

CH2, CH 

2,3-

Dimethylbutane 
4.3.10

-8
 5.0.10

-6
 20 273 – 423 0.1 – 0.7 

CH3, 

CH2, C 

2,2-

Dimethylpropane 
1.8.10

-6
 1.8.10

-6
 22 298 0.1 

2,2-

Dimethylbutane 
2.5.10

-7
 1.4.10

-6
 17 273 – 298 0.1 

2,2-

Dimethylpentane 
2.5.10

-7
 2.5.10

-7
 32 298 0.1 

3,3-

Dimethylpentane 
1.8.10

-8
 9.6.10

-7
 16 298 – 423 0.1 

5.2.4. Alkenes 

Two alkenes have been added to the GC-PR-CPA model: ethylene and propylene. 

Table 5.4: Deviations between the GC-PR-CPA model and experimental data for 

alkenes – water binary systems 

Groups Compounds 

Absolute Error  

[mole fraction] 
AAD 

 [%] 

EE 

[%] 

Tempera

ture 

range[K] 

Pressure 

range 

[MPa] 
Min Max 

C2H4 Ethylene 2.2.10
-19

 4.6.10
-4

 7 - 298 – 394 0.1 – 53 

CH2,alk / 

CHalk 
Propylene 3.2.10

-7
 3.7.10

-4
 8.5 4 311 – 411 0.15 – 32 

 

As seen in Table 5.4, the model is in good agreement with experimental data, except 

deviations up to 25% at higher pressures and temperatures (see Figure 5.5). 
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Figure 5.5: Ethylene solubility in water at 310.93 K (♦), 327.59 K (▲) and 344.26 K (●) 

[5.11]. (-) GC-PR-CPA model. Error bar: ± 5% 

5.2.5. Naphthenic Hydrocarbons 

The GC-PR-CPA model has been extended to naphthenic (or cyclic) hydrocarbons.  

Comparison between the model and experimental data is limited to five compounds due 

to availability of data in the literature. 

Table 5.5 gives the deviations from experimental data.  Considering that the model is 

less accurate for LLE and the low solubility in water, the model is in good agreement 

with experimental data for cyclohexane, methylcyclopentane and methylcyclohexane.   

As shown on Figure 5.6, the model describes well the cyclohexane behaviour.  

However, it fails to describe minimum of solubility of methylcyclohexane in water with 

temperature.   It shows also higher discrepancies for cyclopentane and cycloheptane.  

There is only one data set point for cycloheptane, therefore the results have to been 

taken carefully.  For cyclopentane, the model reproduces the behaviour but over predicts 

the solubility. 
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Table 5.5: Deviations between the GC-PR-CPA model and experimental data for 

naphthenic hydrocarbons – water binary systems 

Groups Compounds 

Absolute Error [mole 

fraction] AAD 

[%] 

Temperature 

range [K] 

Pressure 

range 

[MPa] 
Min Max 

CH2,cyclic 

Cyclopentane 1.9.10
-5

 5.0.10
-5

 52 278 – 373 0.1 

Cyclohexane 1.9.10
-7

 7.6.10
-6

 13 274 – 425 0.1 

Cycloheptane 2.3.10
-6

 2.3.10
-6

 41 298 0.1 

CH2,cyclic, 

CHcyclic / 

Ccyclic 

Methyl- 

cyclopentane 
1.5.10

-8
 5.2.10

-4
 24 298 – 487 0.1 

Methyl-

cyclohexane 
3.3.10

-7
 1.8.10

-6
 22 298 – 423 0.1 

 

 

Figure 5.6: Cyclohexane (♦) [5.12] and (▲) [5.13], and Methylcyclohexane (●) [5.14] 

solubilities in water at atmospheric pressure. (-) GC-PR-CPA model. ( ) 

Tsonopoulos correlation. ( ) Readjusted Tsonopoulos correlation. Error bar: ± 5% 

Parameters for cyclohexane and methylcyclohexane determined by Tsonopoulos are 

given in Table 5.6.  These parameters have also been fitted to the experimental data 

presented in Figure 5.6.  The same parameters have been obtained for cyclohexane.  But 
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the fitting of parameters for the system methylcyclohexane – water improved the 

correlation. 

Table 5.6: Cyclohexane and methylcyclohexane solubility in water with Equation (5.2)  

Compounds Correlation A  [-] B  [K] C  [-] Tmin [K] 

Cyclohexane 
Tsonopoulos 

[5.2] 
-219.86 8893.78 31.37 283.47 

Methylcyclohexane 

Tsonopoulos 

[5.2] 
-491.07 22132.10 70.92 312.09 

Readjustment -366.03 15971.10 52.61 303.55 

 

The correlation presents a deviation of 5% for the systems cyclohexane – water, while 

the model deviates from 8%.  There GC-PR-CPA model predicts a minimum of 

solubility at 297.78 K, which is higher than the one given by Equation (5.3).  Deviations 

for the methylcyclohexane – water system are 20% for the GC-PR-CPA model, 14% for 

the original version of Equation (5.2) and 7% for the readjusted one. 

5.2.6. Aromatic Hydrocarbons 

The GC-PR-CPA model is able to predict benzene, toluene, ethylbenzene and xylenes 

solubility in water.  Deviations from experimental data are presented in Table 5.7.  

Table 5.7: Deviations between the GC-PR-CPA model and experimental data for 

aromatic hydrocarbons – water binary systems 

Groups Compounds 

Absolute Error 

[mole fraction] AAD 

[%] 

EE 

[%] 

Temperature 

range [K] 

Pressure 

range 

[MPa] 
Min Max 

CHaro Benzene 4.0.10
-8

 8.5.10
-4

 5 7 260 – 572 0.1 – 81 

CHaro, 

Caro 

Toluene 2.3.10
-7

 4.1.10
-5

 7 

10 

273 – 583 0.1 – 61 

Ethylbenzene 2.1.10
-7

 1.8.10
-5

 13 273 – 393 0.1 – 7 

m-Xylene 5.5.10
-7

 1.7.10
-5

 17 273 – 318 0.1 

o-Xylene 1.6.10
-7

 7.3.10
-6

 15 273 – 343 0.1 

p-Xylene 1.1.10
-6

 2.1.10
-5

 21 273 - 363 0.1 
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The model is in good agreement with experimental data, especially for benzene and 

toluene.  It under predicts ethylbenzene solubility in water, but is still in the confidence 

interval of the experimental error.  Data for xylenes are scattered.  But in general, the 

model seems to under predict p-xylene solubility and over predict for the two others.  

Equation (5.2) is also valid for aromatic hydrocarbons.  Preliminary results have been 

published [5.9].  However, to improve the model, parameters of the GC-PR-CPA EoS 

have been readjusted as well as the parameters of Equation (5.2) to the data presented 

on Figure 5.7 and Figure 5.8.  Parameters given by Tsonopoulos [5.2] and the ones 

readjusted are presented in Table 5.8. 

Table 5.8: Benzene, toluene and ethylbenzene solubility in water with Equation (5.2) 

Compounds Correlation A  [-] B  [K] C  [-] Tmin [K] 

Benzene 

Tsonopoulos 

[5.2] 
-192.48 8053.11 27.67 290.99 

Readjustment -171.09 6999.75 24.54 285.27 

Toluene 

Tsonopoulos 

[5.2] 
-221.74 9274.79 31.87 291.00 

Readjustment -221.74 9274.79 31.86 291.08 

Ethylbenzene 

Tsonopoulos 

[5.2] 
-263.22 11024.75 37.89 291.00 

Readjustment -261.26 11021.60 37.54 293.56 
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Figure 5.7: Benzene solubility in water at atmospheric pressure (♦) [5.15]. (-) GC-PR-

CPA model. ( ) Tsonopoulos correlation. ( ) Readjusted Tsonopoulos 

correlation. Error bar: ± 7% 

Deviations from these experimental data are 3% for the GC-PR-CPA model and 2% for 

the correlation with both sets of parameters.   

The temperature of the minimum of solubility predicted by the GC-PR-CPA model is 

290.12 K, close to the one given by Tsonopoulos (see Table 5.8) and Bohon and 

Claussen (291.15 K) [5.16].  A seen on Figure 5.7, the readjusted correlation represents 

well the solubility at higher temperatures, but does not reproduce accurately the 

minimum of solubility, explaining the lower predicted temperature. 

 

Figure 5.8 compares experimental solubility of toluene and ethylbenzene in water with 

the GC-PR-CPA model and correlations. 
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Figure 5.8: Toluene (♦) and Ethylbenzene (▲) solubilities in water at 0.5 MPa [5.17]. 

(-) GC-PR-CPA model. ( ) Tsonopoulos correlation. ( ) Readjusted Tsonopoulos 

correlation. Error bar: ± 10% 

The GC-PR-CPA model deviates from 5% and 12% for the toluene – water system and 

the toluene –water system, repectively.  The original equation (5.2) deviates 

respectively from 5 % and 7%, while the readjusted one presents deviations of 3% and 

2%.   

Bohon and Claussen [5.16] measured a temperature of the minimum of solubility of 

291.15 K for aromatic hydrocarbons.  The temperature predicted by the GC-PR-CPA 

model is 292.08 K for the toluene – water system and 291.32 K for the ethylbenzene – 

water system, which is close to the experimental measurements.  Even if the model 

under predicts the solubility for the ethylbenzene – water system, the temperature of the 

minimum of solubility is well determined. 

5.2.7. Gases 

In this part, predictions for acid (CO2 and H2S) and inert (N2 and H2) gases are 

presented.  Deviations from experimental data are given in Table 5.9.  
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Table 5.9: Deviations between the GC-PR-CPA model and experimental data for acid 

gases – water and inert gases – water binary systems 

Groups Compounds 

Absolute Error 

[mole fraction] 
AAD  

[%] 

EE 

[%] 

Temperatu

re range 

[K] 

Pressure 

range 

[MPa] 
Min Max 

CO2 

Carbon 

dioxide 

(solvation) 

7.1.10
-8

 4.1.10
-2

 7 

7 273 – 607 0.008 – 80 
Carbon 

dioxide  

(no solvation) 

9.6.10
-7

 9.6.10
-3

 8 

H2S 

Hydrogen 

sulphide 

(solvation) 

0 1.8.10
-2

 7 

7 273 – 594 0.04 – 21 
Hydrogen 

sulphide 

 (no solvation) 

0 8.4.10
-3

 10 

N2 Nitrogen 4.0.10
-7

 3.4.10
-4

 9 2.5 273 – 589 0.1 – 61 

H2 Hydrogen 1.5.10
-7

 3.5.10
-3

 7 10 273 – 423 0.1 – 101 

 

In general, the GC-PR-CPA model is in good agreement with experimental data.  

Deviations are more important at low temperatures and high pressures, but still accurate 

within the experimental error. 

The model took also into account the solvation of carbon dioxide and hydrogen sulphide 

in water.  A comparison is done for these systems between predictions taking into 

solvation and without solvation (Figure 5.9 and Figure 5.10).  For hydrogen sulphide, 

solvation is clearly improving predictions.  For carbon dioxide, it improves predictions 

at higher temperatures, but presents some discrepancies at lower ones, still acceptable 

considering the experimental error. 
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Figure 5.9: Carbon dioxide solubility in water at 288.26 K (♦), 298.28 K (▲), 308.2 K 

(●) and 318.23 K (■) [5.18]. (-) GC-PR-CPA model + solvation. ( - - ) GC-PR-CPA 

without solvation. Error bar: ± 7% 

 

Figure 5.10: Hydrogen sulphide solubility in water at 393.15 K (♦), 423.15 K (▲) and 

453.15 K (●) [5.19]. (-) GC-PR-CPA model + solvation. ( - - ) GC-PR-CPA without 

solvation. Error bar: ± 5% 

The GC-PR-CPA is also able to predict accurately water content in gases, within the 

experimental error.   The example of water content in carbon dioxide at four 

temperatures is shown on Figure 5.11.  Deviations are about 6% for these data.  
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Predictions with and without solvation are similar at lower pressures.  However, there is 

a difference at high pressures (see Figure 5.12).  In this case, taking into account 

solvation improves predictions and the behaviour is better reproduced. 

 

Figure 5.11: Water content in carbon dioxide at 373.15 K (♦), 393.15 K (▲), 413.15 K 

(●) and 433.15 K (■) [5.20]. (-) GC-PR-CPA model. Error bar: ± 5% 

 

Figure 5.12: Water content in carbon dioxide at 366.48 K (♦),394.26 K (▲) and 422.04 

K (●) [5.21]. (-) GC-PR-CPA model + solvation. ( - - ) GC-PR-CPA without solvation. 

Error bar: ± 5% 
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5.2.8. Alcohols 

The model has been extended to alcohols.  Deviations for water – methanol and water – 

ethanol systems are given in Table 5.10.  

Table 5.10: Deviations between the GC-PR-CPA model and experimental data for 

alcohol – water binary systems 

Groups Compounds 

AAD [%] 
Temperature 

range [K] 

Pressure range 

[MPa] 
P y y alcohol 

CH3OH Methanol 2 5 5 308 – 442 0.006 – 2 

C2H5OH Ethanol 7 7 10 283 – 548 0.002 – 10 

CH3,OH, 

CH2,OH, 

OH 

n-Propanol 5 10 15 273 – 373 7.10
-4

 – 0.1 

n-Butanol 10 12 24 298 – 444 9.10
-4

 – 0.5 

n-Hexanol 9 1 30 294 – 430 1.10
-4

 – 0.1 

 

The GC-PR-CPA model is in good agreement with experimental data for systems with 

methanol and ethanol.  It is able to represent the alcohols solubility in water but also the 

alcohol and the water content.  As seen on Figure 5.13, the water – ethanol system 

presents an azeotrope.  The model predicts an azeotrope but at higher ethanol molar 

fractions.  
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Figure 5.13: Phase equilibria of the binary system water – ethanol at 313.15 K (♦) 

[5.22] and 323.15 K (▲) [5.23]. (-) GC-PR-CPA model. Error bar: ± 5% 

For systems with other alcohols, the model presents some deviations with experimental 

data, especially for the vapour phase.  

Freezing points have been taken into account for methanol – water and ethanol – water 

binary systems.  The model is able to predict freezing points with an accuracy of 1.1% 

for the methanol – water system and 1.4% for the ethanol – water system. 

 

Figure 5.14: Freezing points of the binary system water – methanol at 313.15 K [5.24]. 

(-) GC-PR-CPA model.  
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5.3. BINARY SYSTEMS WITH METHANOL 

To predict hydrate stability zone with methanol as an inhibitor, it is first important to 

well represent it with the other compounds present.  In this part, the results for binary 

systems of hydrocarbons or single gases with methanol are presented.   

5.3.1. Normal Alkanes 

As for water, binary systems normal alkanes – methanol have been considered.  Group 

parameters have been determined for methane – methanol system using flash 

calculations, while bubble point calculations have been employed for the others.  That is 

why, deviations with experimental data are given either on solubility or on pressure. 

Table 5.11: Deviations between the GC-PR-CPA model and experimental data for 

methane – methanol binary system 

Group Compound 

AAD [%] 

Temperature 

range [K] 

Pressure 

range 

[MPa] 
x 

methane 

y 

methane 

y 

methanol 

CH4 Methane 8 1.3 23 183 – 472 0.1 – 250 

 

Table 5.12: Deviations between the GC-PR-CPA model and experimental data for 

normal alkanes – methanol binary system 

Groups Compounds 

AAD [%] 
Temperature 

range [K] 

Pressure 

range 

[MPa] P y y methanol 

C2H6 Ethane 12 0.1 7 184 – 373 0.06 – 7 

CH3, 

CH2 

Propane 6 4 14 293 – 474 0.06 – 9 

n-Butane 4 7 8 264 – 470 0.06 – 140 

n-Pentane 3 4 7 270 – 423 0.05 – 140 

n-Hexane 7 6 7 255 – 513 0.02 – 151 

n-Heptane 9 11 3 268 – 540 0.01 – 151 
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Table 5.12 (to be continued): Deviations between the GC-PR-CPA model and 

experimental data for normal alkanes – methanol binary system 

Groups Compounds 

AAD [%] 
Temperature 

range [K] 

Pressure 

range 

[MPa] P y y methanol 

CH3, 

CH2 

n-Nonane 4 - - 416 – 537 1 – 8 

n-Decane 3 - - 422 – 540 1 – 8 

n-Dodecane 3 - - 278 – 536 0.1 – 9 

n-

Tetradecane 
2.5 - - 298 – 535 0.1 – 9 

n-

Hexadecane 
5 - - 298 – 318 5.10

-4
 – 0.04 

 

As seen in Table 5.11 and Table 5.12, the model is in good agreement with 

experimental data.  However, it presents some discrepancies for methanol content in 

light hydrocarbons.  Despite many different adjustments, using flash or bubble point 

calculations with different data, the results have not been improved. 

5.3.2. Branched Alkanes 

Bubble point calculations have been applied to determine the parameters for branched 

alkanes – methanol systems.  Deviations are presented in Table 5.13.  

Table 5.13: Deviations between the GC-PR-CPA model and experimental data for 

branched alkanes – methanol binary systems 

Groups Compounds 

AAD [%] 
Temperature 

range [K] 

Pressure 

range 

[MPa] P y y methanol 

CH3, CH2, 

CH 

i-Butane 5.5 3 18 273 – 423 0.03 – 5 

i-Pentane 2 2 11 297 – 305 0.1 

2,3-

Dimethylbutane 
3 3 6 283 – 334 0.1 
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As for normal alkanes, the methanol content is better described for heavier 

hydrocarbons, but it is able to represent the shape of the phase equilibrium (see Figure 

5.15).   

 

Figure 5.15: Phase equilibria of the binary system i-butane – methanol at 313.06 K (♦) 

and 323.15 K (▲) [5.25]. (-) GC-PR-CPA model. Error bar: ± 5% 

5.3.3. Naphthenic Hydrocarbons 

Naphthenic hydrocarbons – methanol systems form an azeotrope.  As seen on Figure 

5.16, the model reproduces this behaviour.  
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Figure 5.16: Phase equilibria of the binary system cyclohexane – methanol at 293.15 K 

(♦), 303.15 K (▲) [5.26] and 313.15 K (●) [5.27]. (-) GC-PR-CPA model. Error bar: ± 

5% 

There are some discrepancies in the vapour phase, but as seen in Table 5.14, the model 

is globally accurate within the experimental error.  However, the model is not able to 

predict LLE for these systems. 

Table 5.14: Deviations between the GC-PR-CPA model and experimental data for 

naphthenic hydrocarbons – methanol binary systems 

Groups Compounds 

AAD [%] 

Temperature 

range [K] 

Pressure 

range 

[MPa] P y 
y 

methanol 

CH2,cyclic Cyclohexane 4 5 18.5 278 – 333 0.01 – 14 

CH2,cyclic, 

CHcyclic / 

Ccyclic 

Methylcyclopentane 13 5 11 296 – 345 0.1 – 120 

Methylcyclohexane 2 3 1 298 – 318 0.03 – 0.1 

 

5.3.4. Aromatic Hydrocarbons 

The benzene – water system shows an azeotrope.  The model is able to reproduce the 

azeotrope and is in general in good agreement with experimental data, but there are 

some discrepancies for methanol content.  For the other systems, the model is accurate 
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and reproduces the shape of the equilibrium (Figure 5.17), except for o-xylene (Table 

5.15). 

 

Figure 5.17: Phase equilibria of the binary systems toluene – methanol (♦) and p-xylene 

– methanol (▲) at 313.15 K [5.28]. (-) GC-PR-CPA model. Error bar: ± 5% 

Table 5.15: Deviations between the GC-PR-CPA model and experimental data for 

aromatic hydrocarbons – methanol binary systems 

Groups Compounds 

AAD [%] 
Temperature 

range [K] 

Pressure 

range [MPa] 
P y y methanol 

CHaro Benzene 5 9 25 298 – 353 0.02 – 0.1 

 

CHaro, 

Caro 

Toluene 4 8 8 313 – 383 0.008 – 0.1 

Ethylbenzene 7 12.5 1 338 – 407 0.1 

o-Xylene 24 49 3 336 – 415 0.1 

p-Xylene 8 11 4 313 – 409 0.003 – 0.01 

 

5.3.5. Gases 

As for the methane – methanol system, predictions deviate from experimental data for 

methanol content in carbon dioxide.  The accuracy is greater for the methanol content in 

hydrogen sulphide and nitrogen, even if discrepancies are observed at higher 

temperatures.  Regarding to gases solubility in methanol, the model is accurate at low 
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pressures, but deviates significantly near the critical region.  But this is inherent to the 

model [5.29].  For the three other systems, their solubility is well reproduced, with some 

deviations at low temperatures and high pressures, still acceptable with the experimental 

uncertainty. 

Table 5.16: Deviations between the GC-PR-CPA model and experimental data for acid 

gases – methanol and inert gases – methanol binary systems 

Groups Compounds 

AAD [%] 
Temperature 

range [K] 

Pressure 

range [MPa] 
P y y methanol 

CO2 
Carbon 

dioxide 
11 3 26 213– 478 0.1 – 19 

H2S 
Hydrogen 

sulphide 
6 6 21 223 – 448 2.10

-4
 – 11 

N2 Nitrogen 10 0.4 13.5 213 – 373 0.1 – 108 

H2 Hydrogen 10 0.14 27 213 – 477 0.04 – 110 

 

  



Chapter 5 –Application of the GC-PR-CPA Model 

 

131 

5.3.6. Alcohols 

As seen in Table 5.17, the model is in relative good agreement for alcohol – methanol 

systems.  Their behaviour is accurately reproduced within the experimental error. 

Table 5.17: Deviations between the GC-PR-CPA model and experimental data for 

alcohols – methanol binary systems 

Groups Compounds 

AAD [%] 
Temperature 

range [K] 

Pressure 

range 

[MPa] P y y alcohol 

CH3,OH, 

CH2,OH, 

OH 

n–Propanol 4 4 7 273 – 370 5.10
-4

 – 0.1 

n–Butanol 6 5 22 298 – 559 0.001 – 7 

n–Pentanol 8 4 24 313 – 410 9.10
-4

 – 0.1 

n-Decanol 10 - - 293 – 323 
2..10

-6
 – 

0.06 

 

 

Figure 5.18: Phase equilibria of the binary systems n-butanol – methanol at 298.15 K 

(♦) [5.30]. (-) GC-PR-CPA model. Error bar: ± 5% 
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5.4. BINARY SYSTEMS WITH ETHANOL 

Ethanol is also a hydrate inhibitor and therefore its behaviour with hydrocarbons and 

gases is of interest. 

5.4.1. Normal Alkanes 

Flash and bubble point calculations have been used to determine group parameters for 

n-alkane – ethanol systems.  As seen in Table 5.18, the model seems to deviate a lot for 

methane – ethanol and ethane – ethanol systems.  In fact, it fails near and in the critical 

region, which is inherent to the model.  The same analysis can be done for the propane – 

ethanol system.  

Referring to Table 5.19, the model is in general in good agreement with experimental 

data for other alkanes and reproduces the azeotropic behaviour of n-alkane – ethanol 

systems (with 5 ≤ n ≤ 8).   

Table 5.18: Deviations between the GC-PR-CPA model and experimental data for 

methane – ethanol and ethane – ethanol binary systems 

Groups Compounds 

AAD [%] 
Temperature 

range [K] 

Pressure 

range 

[MPa] x y y ethanol 

CH4 Methane 10 5 12 280 – 498 0.5 – 36 

C2H6 Ethane 21 5 18 298 – 498 0.3 – 12 

 

Table 5.19: Deviations between the GC-PR-CPA model and experimental data for 

normal alkanes – ethanol binary systems 

Groups Compounds 

AAD [%] 
Temperature 

range [K] 

Pressure 

range [MPa] 
P y y ethanol 

CH3, 

CH2 

Propane 10.5 1.5 20.5 273 – 500 0.03 – 6 

n-Butane 11 0.7 9 283 – 500 0.006 – 9 

n-Pentane 12 8 6 303 – 500 0.03 – 6 

n-Hexane 7 4 4.5 298 – 508 0.01 – 6 
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Table 5.19 (to be continued): Deviations between the GC-PR-CPA model and 

experimental data for normal alkanes – ethanol binary systems 

Groups Compounds 

AAD [%] 
Temperature 

range [K] 

Pressure 

range [MPa] 
P y y ethanol 

CH3, 

CH2 

n-Heptane 6 8 6 303 – 523 0.004 – 6 

n-Octane 9 6 2 308 – 359 0.004 – 0.1 

n-Nonane 5 3.5 0.4 343 0.006 – 0.07 

n-Decane 3 11 2 307 – 447 0.1 

n-Undecane 12 35 0.8 333 – 353 6.10
-4

 – 0.1 

 

5.4.2. Branched Alkanes 

Limited data are available for branched alkanes with ethanol systems. However, as seen 

in Table 5.20, the model is in good agreement with the experimental data found, for the 

limited range of temperature and pressure.  

Table 5.20: Deviations between the GC-PR-CPA model and experimental data for 

branched alkanes – ethanol binary systems 

Groups Compounds 

AAD [%] 
Temperature 

range [K] 

Pressure 

range 

[MPa] P y y ethanol 

 

CH3, 

CH2, CH 

i-Butane 1 0.3 4 309 – 364 0.02 – 2 

i-Pentane 3 7 3 300 – 352 0.02 – 0.2 

2,3-

Dimethylbutane 
2.5 2 2.5 325 – 343 0.1 

 

5.4.3. Naphthenic Hydrocarbons 

Figure 5.19 illustrates the accuracy of the model for naphthenic hydrocarbons with 

ethanol systems.  The model reproduces the azeotropic behaviour and is in good 

agreement with experimental data within the experimental error (Table 5.21) in the 

limited range of pressure and temperature of data found. 
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Figure 5.19: Phase equilibria of the binary systems cyclohexane – ethanol at 298.15 K 

(♦) [5.31]. (-) GC-PR-CPA model. Error bar: ± 5% 

Table 5.21: Deviations between the GC-PR-CPA model and experimental data for 

naphthenic hydrocarbons – ethanol binary systems 

Groups Compounds 

AAD [%] 
Temperature 

range [K] 

Pressure 

range 

[MPa] P y y ethanol 

 

CH2,cyclic 

Cyclopentane 3 1.5 5 323 – 374 0.1 – 0.5 

Cyclohexane 2 3.5 6 278 – 338 0.002 – 0.1 

CH2,cyclic

, CHcyclic 

/ Ccyclic 

Methyl-

cyclopentane 
1 3 3 333 – 349 0.1 

Methyl-

cyclohexane 
1 3 2 345 – 369 0.1 

 

5.4.4. Aromatic Hydrocarbons 

As for systems with water and methanol, the model is in good agreement with 

experimental data for benzene – ethanol, toluene – ethanol and ethylbenzene – ethanol 

systems.  However, deviations are more important for xylene – ethanol systems.   
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Table 5.22: Deviations between the GC-PR-CPA model and experimental data for 

aromatic hydrocarbons – ethanol binary systems 

Groups Compounds 

AAD [%] 
Temperature 

range [K] 

Pressure 

range 

[MPa] P y y ethanol 

CHaro Benzene 2.5 4 5 294 – 347 0.008 – 0.1 

 

CHaro, 

Caro 

Toluene 7 13 5 286 – 383 0.004 – 0.1 

Ethylbenzene 3 10 2 350 – 409  0.1 

m-Xylene 34 76 50 298 – 408 0.004 – 0.1 

o-Xylene 12 29 22 308 – 411 0.003 – 0.1 

p-Xylene 13 22 7 313 – 409 0.003 – 0.1 

 

An example is shown on Figure 5.20.   

 

Figure 5.20: Phase equilibria of the binary systems o-xylene – ethanol at 308.15 K (♦) 

[5.32]. (-) GC-PR-CPA model. Error bar: ± 5% 

Limited data are available, and in the case of o-xylene – ethanol system the shape seems 

to be incoherent.  Indeed, the vapour pressure of ethanol at 308.15 K is 0.0138 MPa, 

according to Scatchard and Satkiewicz [5.33] and Singh and Benson [5.34].  But data 

show a vapour pressure at 0.01 MPa, explaining the difference in the shape of the 

equilibrium.   
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5.4.5. Gases 

For acid gases, only data for carbon dioxide have been found.  The model is accurate 

only in the subcritical region and over predicts the critical region.  For the nitrogen – 

ethanol system, the model over predicts ethanol content, but is accurate for nitrogen 

solubility.  As for hydrogen, the model is accurate in general, but there are discrepancies 

at high temperatures and high pressures. 

Table 5.23: Deviations between the GC-PR-CPA model and experimental data for 

carbon dioxide – ethanol and inert gases – ethanol binary systems 

Groups Compounds 

AAD [%] 
Temperature 

range [K] 

Pressure 

range 

[MPa] x y y ethanol 

CO2 Carbon dioxide 18 2 48 283 – 496 0.09 – 15 

N2 Nitrogen 6 0.9 38 298 – 398 0.1 – 10 

H2 Hydrogen 15 13 10 213 – 508 0.1 – 34 

 

5.5. BINARY SYSTEMS WITH ALCOHOLS 

Alcohols have also been added to the model but parameters adjustment is still in 

progress.  It has been done for water – alcohol (see 5.2.8), alcohol – alcohol and 

methane- alcohols binary systems 

5.5.1. Normal Alkanes 

Limited data are available for methane – alcohol systems.  Deviations are presented in 

Table 5.24.  The model in in good agreement with experimental data but presents some 

deviations in alcohol content representation. 
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Table 5.24: Deviations between the GC-PR-CPA model and experimental data for 

alkanes – alcohols binary systems 

Alkane Alcohols 

AAD [%] 
Temperature 

range [K] 

Pressure 

range 

[MPa] x y y alcohol 

Methane 

n-Propanol 2 0.1 26 313 – 333 1 – 10 

n-Heptanol 6 - - 298 0.1 

 

5.5.2. Alcohols 

Table 5.25 presents deviations for alcohol – alcohol systems.  The model is accurate for 

all these systems. There are some discrepancies at higher temperatures, but behaviours 

are well represented in general.  

Table 5.25: Deviations between the GC-PR-CPA model and experimental data for 

alcohol – alcohol binary systems 

Alcohol (1) Alcohol (2) 

AAD [%] 
Temperature 

range [K] 

Pressure range 

[MPa] 
P y1 y2 

n -Propanol 

n-Butanol 1 1.5 1 313 – 391 3.10
-3

 – 0.1 

n-Pentanol 2 2 10 313 – 411 9.10
-4

 – 0.1 

n-Hexanol 1 - - 356 – 411 0.05 – 0.1 

 n-Decanol 5 - - 293 – 323 2.10
-6

 – 0.01 

n -Butanol n-Pentanol 5 5 17 313 – 371 9.10
-4

 – 0.02 

n -Hexanol 

n-Pentanol 7 2 5 331 – 388 3.10
-3

 – 0.02 

n-Heptanol 10 3 5 344 – 406 3.10
-3

 – 0.02 

n-Octanol 2 1 8 356 – 391 4.10
-3

 – 0.01 

n-Octanol n-Nonanol 8 2 3 361 – 418 
1.10-3 – 0.01 
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5.6. VAPOUR-LIQUID EQUILIBRIUM OF MULTICOMPONENT SYSTEMS 

The model is tested here for multi-component systems.  First, two ternary systems are 

considered, including the three principal associating compounds studied in this work, 

water, methanol and ethanol.  Then predictions for a more complex system with water 

are presented. 

5.6.1. Ternary Systems 

The first ternary system is a mixture of methane, water and methanol.  The feed 

composition is presented in Table 5.26.  This system has been studied over three 

temperatures (280.25, 298.77 and 313.45 K).   

Table 5.26: Feed composition of each component (mole %) of MIX 8 [5.35] 

Compounds MIX 8 

Methane 25.0 

Water 46.3 

Methanol 28.7 

 

Table 5.27: Deviations between the GC-PR-CPA model and experimental data for MIX 

8  

Compounds 

Absolute Error [mole fraction] AAD [%] 

x*10
-3

 y*10
-4

 x y 

Methane 3.6 3.9 47 0.04 

Water 0.29 0.66 0.05 9.2 

Methanol 4 3.9 1.1 9.1 
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Deviations between experimental and predicted data are given in Table 5.27.  The 

model presents important deviations for methane composition in the liquid phase.  But 

as seen in 5.3, there are more discrepancies in the predictions of hydrocarbons 

solubilities in methanol at low temperatures, conditions met here.  It would explain this 

high deviation.   

 

Another mixture composed of water, methanol and ethanol [5.36] is studied.  

Experimental measurements have been done at atmospheric pressure at several 

temperatures.  Pressure and vapour compositions have been predicted and deviations are 

given in Table 5.28.  

Table 5.28: Deviations between the GC-PR-CPA model and experimental data for MIX 

9  

Compounds 

Absolute Error [mole fraction] AAD [%] 

P y*10
-2

 P y 

Water 

3.05.10
-3

 

1.2 

3.0 

6.4 

Methanol 1.2 4.1 

Ethanol 1.8 5.8 

 

As seen in Table 5.28, the model is in good agreement with experimental data for 

methanol in vapour phase, considering an experimental error of 5% and for bubble 

pressure.  Deviations for water and ethanol in the vapour phase are mainly due to the 

discrepancies already seen for the water –ethanol binary system, but predictions are still 

acceptable, since it is close to 5%.  

5.6.2. Multicomponent System 

Water distribution in gas production systems has been studied few years ago [5.37]. One 

of the multicomponent systems, defined in Table 5.29 as MIX 10, is considered here to 

validate the model.  The system MIX 10 + water shows vapour – liquid – liquid 

equilibrium at pressures and temperatures of study.  
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Table 5.29: Composition of each component (mole %) of mixture MIX 10 [5.37] 

Compounds MIX 10 

Methane 23.5 

Ethane 5.6 

Propane 8.9 

n-Butane 8.9 

n-Heptane 13.1 

n-Decane 16.4 

Toluene 23.6 

 

Deviations between experimental and predicted data are given for both organic and 

vapour phases.   

Table 5.30: Deviations between the GC-PR-CPA model and experimental data for MIX 

10  

Compounds 

Absolute Error 

[mole fraction] 
AAD [%] EE[%] 

x*10
-3

 y*10
-3

 x y x y 

Methane 11.4 20.3 16.2 2.7 12 3 

Ethane 1.2 7.3 4.7 7.0 12 5 

Propane 7.8 18.5 9.0 9.3 14 5 

n-Butane 1.3 3.7 1.2 15.5 11 10 
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Table 5.30 (to be continued): Deviations between the GC-PR-CPA model and 

experimental data for MIX 10  

Compounds 

Absolute Error 

[mole fraction] 
AAD [%] EE[%] 

x*10
-3

 y*10
-3

 x y x y 

n-Heptane 4.1 0.39 2.3 24.3 11 15 

n-Decane 4.0 0.013 1.9 15.2 10 15 

Toluene 5.2 0.47 1.7 23.7 8 15 

Water 1.1 0.25 139 10.6 12 15 

 

Considering the organic phase, the model is in general in good agreement with 

experimental data, within experimental errors (Figure 5.22). However, the model over 

predicts methane composition (Figure 5.21), and fails significantly to predict water 

composition (over prediction with an order of magnitude of 10). 

 

Figure 5.21: Compositions of methane (♦) and ethane (▲) in organic phase of MIX 10 

at 298.1 K. (-) GC-PR-CPA model. Error bar from [5.37]: ± 12% 
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Figure 5.22: Compositions of n-heptane (♦), n-decane (▲) and toluene (●) in organic 

phase of MIX 10 at 298.1 K. (-) GC-PR-CPA model. Error bars from [5.37]: ± 11%, ± 

10% and ± 8%. 

As for the vapour phase, the model is in general in good agreement with experimental 

data, within the experimental error (see Figure 5.23 and Figure 5.24).   

 

Figure 5.23: Compositions of methane (♦) in vapour phase of MIX 10 at 298.1 K. (-) 

GC-PR-CPA model. Error bar from [5.37]: ± 3% 
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Figure 5.24: Compositions of n-heptane (♦), toluene (▲) and water (●) in vapour 

phase of MIX 10 at 298.1 K. (-) GC-PR-CPA model. Error bar from [5.37]: ± 15% 

5.7. HYDRATE STABILITY ZONE 

Hydrate dissociation points have been measured for eight systems.  Predictions of 

hydrate dissociation curves are presented here for two systems with and without hydrate 

inhibitors. 

5.7.1. Binary System 

Hydrate stability zone for the binary system 80% methane + 20% hydrogen sulphide is 

predicted here with the GC-PR-CPA model.  As seen on Figure 5.25, predictions must 

be calculated for the different aqueous fractions defined to better represent experimental 

data.   
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Figure 5.25: Hydrate dissociation points of 80% methane + 20% hydrogen sulphide 

system. (-) GC-PR-CPA model for different aqueous fractions (from the left to the right: 

0.98, 0.96, 0.94, 0.91, 0.82). Error bar: ± 0.5 K. 

5.7.2. Multicomponent System 

Hydrate stability zone is also predicted for MIX 5 with deionised water.  As seen on 

Figure 5.26, the model is in good agreement with experimental data. 

 

Figure 5.26: Hydrate dissociation points of MIX 5 with deionised water. (-) GC-PR-

CPA model. Error bar: ±0.5 K. 
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When considering thermodynamic inhibitors, the model is in good agreement with 

experimental data for MIX 5 with 25%wt of methanol but presents some discrepancies 

for the mixture with 25%wt of ethanol (see Figure 5.27).  It is certainly related to the 

deviations already seen in phase equilibria predictions.  It is also relatively accurate for 

higher concentrations of methanol, with small deviations at low temperatures (Figure 

5.28), but presents higher deviations for systems with ethanol. 

 

Figure 5.27: Hydrate dissociation points of MIX 5 with deionised water (♦), 25%wt 

ethanol (▲) and 25%wt methanol (●). (-) GC-PR-CPA model. Error bar: ±0.5 K. 

 

Figure 5.28: Hydrate dissociation points of MIX 5 with deionised water (♦), 25%wt 

methanol (●) and 50%wt methanol (▲). (-) GC-PR-CPA model. Error bar: ±0.5 K. 
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5.8. ENTHALPIES OF MIXING 

5.8.1. Definition 

The enthalpy of mixing represents the non ideality of the mixture.  For mixtures with 

few polar and few associating compounds (e.g. alkane mixtures), h
M

 is negligible.  But 

it is not the case for systems with water (e.g. hydrocarbons – water mixtures), which are 

asymmetrical systems and present highly nonideal behaviour. 

The enthalpy of mixing, and not the excess enthalpy as it is mistakenly named by some 

authors [5.38], can be experimentally measured with a calorimeter.   

The enthalpy of mixing of N components systems at a given temperature T, pressure P 

and composition z is given by Equation (5.4) [5.38]. 

                             
                 

 

   

 

(5.4) 

Where        
                  is the molar enthalpy of a pure compound i at the same 

conditions (T and P) as the mixture in its stable state.  . 

As for the excess enthalpy, it can be expressed in function of the mixing enthalpy: 

                                 

(5.5) 

where h
M,id

 is: 

                        
                                      

                  

 

   

 

(5.6) 

When the mixture is ideal and the pure compounds are in the same state as the mixture, 

h
M,id

 is equal to zero.  It is the restricted case where the enthalpy of mixing is equal to 

the excess enthalpy. 

5.8.2. Predictions of Enthalpies of Mixing 

Enthalpies of mixing are predicted for three binary systems with water at different 

temperatures and pressures.  The compounds chosen refer to the different families 

presented previously: hydrocarbons with propane and benzene and gases with nitrogen. 
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The first system is water – propane at atmospheric pressure.  As seen on Figure 5.29, 

the model is in good agreement with experimental data, within the experimental error. 

 

Figure 5.29: Enthalpies of mixing at atmospheric pressure of the binary system water –

propane at 383.2 K (♦) and 393.2 K (▲) [5.39]. (-) GC-PR-CPA model. Error bar: ± 

10%. 

The AAD is 3% for enthalpies of mixing at 383.2 K and 4% at 393.2 K and the AAE is 

respectively 1.3 J.mol
-1

 and 2.1 J.mol
-1

, which is accurate. 

 

Figure 5.30 presents enthalpies of mixing of the system water – benzene at two 

temperatures.  The maximum experimental value at 581 K is 11.2 kJ.mol
-1

 and 13.5 

kJ.mol
-1

 at 592 K.  The model over predicts the enthalpies of mixing at 581 K and gives 

a maximum of 11.9 kJ.mol
-1

, while it under predicts at 592 K, giving a maximum of 

12.4 kJ.mol
-1

.   
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Figure 5.30: Enthalpies of mixing at 16.4 MPa of the binary system water – benzene at 

581 K (♦) and 592 K (▲) [5.40]. (-) GC-PR-CPA model. Error bar: ± 10%. 

There are more discrepancies for this system, with 14% deviation for values at 581 K 

and 9% at 592 K, the AAE are respectively 1.1 kJ.mol
-1

 and 0.8 kJ.mol
-1

.  Maximum 

deviation usually accepted is 10%, so some improvements should be done to reduce 

deviations. 

 

Figure 5.31 shows predicted and experimental enthalpies of mixing for the water – 

nitrogen system. 
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Figure 5.31: Enthalpies of mixing at atmospheric pressure of the binary system water –

nitrogen at 373.15 K (♦) and 423.15 K (▲) [5.41]. (-) GC-PR-CPA model. Error bar: ± 

10%. 

The model is in good agreement with experimental data at 423.15 K, with 10.6% and an 

AAE of 3.6 J.mol
-1

.  However, there are 18.7% deviations at 373.15 K and the AAE is 

equal to 12.2 J.mol
-1

.  These deviations can be related to the ones observed for nitrogen 

solubility in water: there are 9% deviations at 373.15 K against 0.6% at 423.15 K. 

 

The GC-PR-CPA model has not taken into account enthalpies of mixing in parameters 

adjustments.  For the three systems presented and in general, the model presents 

satisfactory results. But it can be improved to reduce deviations seen in some systems 

and to have good predictions whatever the mixture considered. 

 

For liquid mixture, Desnoyers and Perron [5.42] suggested to plot the h
E
/(x1x2) instead 

the excess enthalpy itself.  As the excess enthalpy represents the nonideality of 

mixtures, plotting the total apparent molar thermodynamic quantity h
E
/(x1x2) helps to 

identify the difference in interactions.  Excess enthalpies at 323.15 K are presented on 

Figure 5.32 for the water – ethanol binary system.  h
E
/(x1x2) versus water mole fraction 

is plotted on  
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Figure 5.32: Excess enthalpies at atmospheric pressure of the water – ethanol binary 

system at 323.15 K [5.43]. (-) GC-PR-CPA model. Error bar: ± 10%. 

 

Figure 5.33: Total apparent molar thermodynamic quantity of the water – ethanol 

binary system at 323.15 K [5.43]. (-) GC-PR-CPA model.  

The model is able to reproduce the particular shape of the excess enthalpy for the water 

– ethanol system.  However it presents important discrepancies with 54% of deviations, 

the AAE being 89.2 J.mol
-1

.  These discrepancies are principally present at higher water 

molar fraction as for phase equilibria.  From Figure 5.33 and the different trends 

presented by Desnoyers and Perron [5.42], we can deduce that this system belongs to 
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mixtures of liquids of different size and polarity, which is the case from a molecular 

point of view. 

5.9. CONCLUSION 

In this chapter, the accuracy of the model has been evaluated for several binary systems 

containing water and alcohols, over a wide range of temperature and pressure 

conditions.  The model has been validated using independent experimental data.  The 

GC-PR-CPA model is able to predict mutual solubilities of hydrocarbons, acid gases 

and inert gases with water and alcohols.  Phase diagrams of water – alcohol and alcohol 

– alcohol have also been considered.  In general, the model is in good agreement with 

experimental data, within the experimental error and is better for VLE than for LLE. 

In this chapter, the ability of the model to predict VLE and hydrate stability zone for 

multicomponent systems have been evaluated.  For systems with water, the model is in 

good agreement with experimental data.  For mixtures with methanol or ethanol, the 

discrepancies seen in binary mixtures are also present in multi-component systems.  

Mixing enthalpies have also been considered for binary systems.  Since enthalpies have 

not been taken into account in parameters adjustments, the model can be considered in 

good agreement with experimental data.  However, it can be improved by adding 

enthalpies in the objective function.  But it may degrade VLE and LLE predictions. 
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CONCLUSION AND PERSPECTIVES 

The interest for new gas fields with high content of acid gases and carbon 

dioxide capture and storage are one of today challenges.  It leads to two main 

considerations: better understanding and prediction of the phase behaviour of mixtures 

present for an optimized and safe design, and prevention the different issues that may 

happen.  The problem considered in this thesis is hydrates formation during transport 

due to the presence of water in suitable temperature and pressure conditions.   

 

This thesis includes three aspects related to three industrial projects.  The first 

one is mainly focused on gas hydrate formation in subsea pipelines in the presence of 

different concentrations of sour and acid gases. This project includes different studies 

like the impact of thermodynamic inhibitors on hydrate stability zone, inhibitor 

distribution in water and hydrate formation in low water content. The development of 

the thermodynamic model is part of this project.  The second project is focused on the 

impact of impurities on carbon dioxide recovered from power plants. Their presence 

during transport may lead to flow assurance issues, such as gas hydrate formation. The 

aim of this project is to study the phase behaviour of carbon dioxide in the presence of 

impurities, to determine the hydrate stability zone and to measure and predict different 

physical properties such as viscosity and density.  Finally the aim of the third project is 

to investigate the impact of aromatics on acid gas injection. When the natural gas is 

produced, acid gases are usually removed with different types of amines before being 

compressed for injection in underground formations. However, amines can also absorb 

aromatic compounds, which can condense at high pressures and lead to liquid formation 

in compressors or hydrate formation. This project includes experimental measurements, 

principally VLE and VLLE with water, but also hydrates dissociation points. 

 

Counting of the experience in thermodynamic modelling of the Centre for Gas 

Hydrate Research and the Centre Thermodynamic of Processes, a predictive model, 

called GC-PR-CPA, has been developed.  The Cubic-Plus-Association equation of state 

takes into account hydrogen bonding between associating molecules (e.g. water, 

alcohols, glycols).  The combination with the PPR78 model aims to give predictive 

feature to the model.  After a modification of the expression of binary interaction 

parameter for associating compounds, group parameters have been adjusted on 

solubility or bubble point data for binary systems containing water, methanol or ethanol 
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and to a lesser extent other alcohols.  Solvation phenomenon has been taken into 

account for carbon dioxide – water and hydrogen sulphide – water systems.  It has been 

shown that it improves predictions, especially at higher pressures.  Indeed, the solubility 

of gases is more important at higher pressures involving a stronger effect of solvation 

phenomenon. 

The model has been validated using experimental data, taken from the literature, 

in a wide range of temperatures and pressures.  It has been shown that it is able to 

predict mutual solubilities of hydrocarbons, acid gases and inert gases with water and 

alcohols, being better for VLE than for LLE.  The model fails to predict phase equilibria 

near the critical region, but this is inherent to cubic equations of state and to the model.  

Temperature range of hydrate phase boundaries is usually lower than the one of VLE or 

LLE.  Therefore, freezing points have been used as well as phase equilibria data to 

readjust group interaction parameters for methanol – water and ethanol – water systems, 

allowing freezing points predictions (with an accuracy between 1 and 1.5%) and better 

predictions of hydrate stability zone. 

To evaluate the model for more complex systems, experimental measurements 

have been conducted.   New experimental measurements of the locus of incipient 

hydrate curve for systems containing natural gases or acid gases with distilled water or 

aqueous solution of inhibitors (i.e. methanol, ethanol and ethylene glycol) in a wide 

range of concentrations, pressures and temperatures have been determined.  VLE data 

and bubble points have also been measured. 

Finally, the model has been tested on VLE for multicomponent systems.  The 

model is in general in good agreement with experimental data.  Deviations observed are 

related to the one already noted for binary systems.  The ability of the model to predict 

hydrate stability zone has also been considered.  For systems involving water and 

methanol, the model is in good agreement with experimental data.  Higher deviations 

are observed for systems ethanol: compared to systems with water or methanol, 

predictions for binary mixtures with ethanol present higher deviations.  Finally, the 

ability of the model to predict enthalpies of mixing has been considered.  The model is 

more or less in good agreement with experimental data, depending on systems, 

temperature and pressure conditions considered.  But these results are, in general, 

satisfactory since it is completely predictive.  As suggested by Qian et al. [6.1], 

predictions could be improved by including enthalpies of mixing and/or heat capacities 

in the objective function, at the risk of degrading VLE and LLE predictions.  Some tests 

will be done in the near future. 
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As the main subject of this work is hydrate inhibition during transport, it must be 

pointed out that glycols are also hydrate inhibitors.  Ethylene glycol is the most 

effective among all glycols and used mostly in the North Sea operations.  To complete 

and cover as much as possible all systems encountered in natural gas transport, it is 

planned to add them to the model.  However, after a non-exhaustive literature review, it 

seems that experimental data are limited.  

To complete the model and enlarge its application to other industrial domains, 

parameters adjustment for the remaining groups with alcohols is still undergoing.  In 

petrochemical industry, alcohols are used as solvents in extractive distillation to 

separate closely boiling hydrocarbons.  Alcohol-water systems are present in separation 

of fusel oil from fermentation.  In general, they present interesting properties, such as 

liquidlike density, low viscosity and high diffusivity.  The multitude of applications of 

alcohols in the industry and the need of a predictive (as seen already for methane – 

alcohols systems and in Appendices A.3 to A.18, data can be limited.) model, 

emphasise the interest of adding these groups in the model.   

 

It is known that cubic equations of state poorly predict liquid densities, because 

the co-volume is kept constant.  But for liquid systems, the free space between 

molecules tends to reduce and in this case the role of the co-volume overcomes the one 

of the attractive parameter.  It would be interesting to modify the co-volume by adding a 

mixing rule to the co-volum to improve LLE predictions.  An additional binary 

interaction parameter (lij) must thus be defined: first, the influence of temperature must 

be evaluated.  In the case of temperature dependence, there are two possibilities: or 

correlations are defined for each binary system considered or a group contribution 

method can be applied, so the model would still be predictive.  

 

Finally, it has been seen that the temperature dependent binary interaction 

parameter can be used for different cubic equations of state and not only for the Peng-

Robinson EoS.  As for PR2SRK, it would be interesting to develop a relationship 

between the GC-PR-CPA model and a group contribution method adapted to the SRK-

CPA EoS.  The relationship between the two binary interaction parameters relies on 

different hypothesis, and can be reduced to a constant at the end.  However in the GC-

PR-CPA model parameters for pure compounds have been re-adjusted.  And hypothesis 

used must be checked for this equation of state.  Right now, there is no simple and 

obvious relationship between both binary interaction parameters. 
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APPENDIX A.1.  BINARY SYSTEMS CONTAINING WATER 

Table A.1: Sources of vapour-liquid and liquid-liquid equilibria data for binary systems 

with water 

Components References 
Data 

rejected 

Temperature 

range [K] 

Pressure range 

[MPa] 

Methane 

[A1.1], [A1.2], [A1.3], 

[A1.4], [A1.5], [A1.6], 

[A1.7], [A1.8], [A1.9], 

[A1.10], [A1.11], 

[A1.12], [A1.13], 

[A1.14], [A1.15], 

[A1.16] 

 274– 623 0.1 – 108 

Ethane 

[A1.17], [A1.2], 

[A1.5], [A1.6], 

[A1.11], [A1.14], 

[A1.18], [A1.19], 

[A1.20], [A1.21], 

[A1.22], [A1.23], 

[A1.24], [A1.25], 

[A1.26] 

 259 – 444 0.05 – 685 

Propane 

[A1.27], [A1.28], 

[A1.29], [A1.11], 

[A1.14], [A1.19], 

[A1.24], [A1.30], 

[A1.31], [A1.32], 

[A1.33], [A1.34], 

[A1.26] 

 247 – 422 0.01 – 19 

n-Butane 

[A1.33], [A1.35], 

[A1.11], [A1.14], 

[A1.36], [A1.23], 

[A1.24], [A1.26], 

[A1.30], [A1.31], 

[A1.32], [A1.37], 

[A1.38] 

[A1.38], 

[A1.39] 
273 – 511 0.1 – 69 

n-Pentane 

[A1.26], [A1.40], 

[A1.41], [A1.23], 

[A1.42], [A1.43], 

[A1.44], [A1.45], 

[A1.46] 

[A1.16], 

[A1.47], 

[A1.48] 

273 – 625 0.02 – 71 
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Table A.1 (to be continued): Sources of vapour-liquid and liquid-liquid equilibria data 

for binary systems with water 

Components References 
Data 

rejected 

Temperature 

range [K] 

Pressure 

range [MPa] 

n-Hexane 

[A1.26], [A1.49], 

[A1.42], [A1.43], 

[A1.44], [A1.45], 

[A1.50], [A1.51], 

[A1.52], [A1.53], 

[A1.54] 

[A1.55], 

[A1.56] 
273 – 671 0.01 – 0.8 

n-Heptane 
[A1.23], [A1.42], 

[A1.44], [A1.57] 
 273 – 373 0.1 

n-Octane 
[A1.42], [A1.43], 

[A1.44], [A1.58] 
 273 – 433 0.1 

n-Nonane 
[A1.59], [A1.44], 

[A1.45], [A1.60] 
 288 – 410 0.1 

n-Decane 
[A1.61], [A1.62], 

[A1.63], [A1.64] 
 293 – 542 0.1 – 1 

n-Undecane [A1.60], [A1.65]  298 – 298 0.1 

n-Dodecane 
[A1.62], [A1.65], 

[A1.66], [A1.67] 
 298 – 425 0.1 – 5 

n-Tetradecane 
[A1.52], [A1.66], 

[A1.67] 
 298 – 473 0.1 – 5 

n-Hexadecane 

[A1.62], [A1.66], 

[A1.67], [A1.68], 

[A1.64] 

 298 – 526 0.1 – 5 

n-Octadecane [A1.66]  298 0.1 

n-Eicosane [A1.66], [A1.67]  298 – 473 0.1 – 5 

n-Octacosane [A1.64]  429 – 519 0.15 – 0.25 

i-Butane 
[A1.11], [A1.23], 

[A1.31] 
 278 – 318 0.1 

i-Pentane 
[A1.40], [A1.43], 

[A1.42], [A1.45] 
 273 – 333 0.1 
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Table A.1 (to be continued): Sources of vapour-liquid and liquid-liquid equilibria data 

for binary systems with water 

Components References 
Data 

rejected 

Temperature 

range [K] 

Pressure range 

[MPa] 

2,3-Dimethylbutane 
[A1.49], [A1.43], 

[A1.42], [A1.45] 
 273 – 423 0.1 – 0.7 

2,2-Dimethylpropane [A1.42]  298 0.1 

2,2-Dimethylbutane 
[A1.42], [A1.43], 

[A1.45], [A1.49] 
 273 – 298 0.1 

2,2-Dimethylpentane [A1.45]  298 0.1 

3,3-Dimethylpentane [A1.45]  298 – 423 0.1 

Cyclopentane [A1.40], [A1.42] [A1.48] 278 – 373 0.1 

Cyclohexane 

[A1.69], [A1.11], 

[A1.23], [A1.45], 

[A1.50], [A1.51], 

[A1.70], [A1.71], 

[A1.72], [A1.73] 

[A1.48], 

[A1.56] 
274 – 425 0.1 

Cycloheptane [A1.42]  298 0.1 

Cyclooctane [A1.42]  298 0.1 

Methylcyclopentane 

[A1.23], [A1.42], 

[A1.45], [A1.69], 

[A1.74] 

 298 – 487 0.1 

Methylcyclohexane 
[A1.23], [A1.42], 

[A1.57] 
 298 – 423 0.1 

Ethylcyclopentane [A1.74]  344 – 476 0.1 
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Table A.1 (to be continued): Sources of vapour-liquid and liquid-liquid equilibria data 

for binary systems with water 

Components References 
Data 

rejected 

Temperature 

range [K] 

Pressure 

range [MPa] 

Benzene 

[A1.11], [A1.14], 

[A1.43], [A1.45], 

[A1.51], [A1.54], 

[A1.62], [A1.70], 

[A1.71], [A1.75], 

[A1.76], [A1.77], 

[A1.78], [A1.79], 

[A1.80] 

[A1.47], 

[A1.48], 

[A1.81], 

[A1.82], 

[A1.83] 

260 – 473 0.1 – 81 

Toluene 

[A1.57], [A1.76], 

[A1.11], [A1.14], 

[A1.45], [A1.43], 

[A1.51], [A1.54], 

[A1.66], [A1.73], 

[A1.78], [A1.84], 

[A1.85] 

[A1.48], 

[A1.75], 

[A1.81], 

[A1.82] 

273 – 583 0.1 – 61 

Ethylbenzene 

[A1.76], [A1.86], 

[A1.11], [A1.14], 

[A1.43], [A1.45], 

[A1.51], [A1.54], 

[A1.66], [A1.73], 

[A1.78], [A1.85], 

[A1.87] 

[A1.75], 

[A1.81], 

[A1.82] 

273 – 373 0.1 

o-Xylene 

[A1.86], [A1.11], 

[A1.43], [A1.45], 

[A1.66], [A1.82], 

[A1.84] 

 273 – 318 0.1 

m-Xylene 

[A1.86], [A1.43], 

[A1.45], [A1.66], 

[A1.75], [A1.82], 

[A1.84] 

 273 – 343 0.1 

p-Xylene 

[A1.86], [A1.43], 

[A1.45], [A1.66], 

[A1.75],  [A1.82], 

[A1.84] 

 273 – 363 0.1 
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Table A.1 (to be continued): Sources of vapour-liquid and liquid-liquid equilibria data 

for binary systems with water 

Components References 
Data 

rejected 

Temperature 

range [K] 

Pressure 

range [MPa] 

Carbon dioxide 

[A1.88], [A1.14], 

[A1.89], [A1.90], 

[A1.91], [A1.92], 

[A1.93], [A1.94], 

[A1.95], [A1.96], 

[A1.97], [A1.98], 

[A1.99], [A1.100], 

[A1.101], [A1.102], 

[A1.103], [A1.104], 

[A1.105] 

 273 – 607 0.008 – 80 

Nitrogen 

[A1.106], [A1.12], 

[A1.14], [A1.16],  

[A1.25], [A1.107], 

[A1.108], [A1.109], 

[A1.110], [A1.111], 

[A1.112], [A1.113], 

[A1.114], [A1.115], 

[A1.116], [A1.117] 

 273 – 589 0.1 – 61 

Hydrogen sulphide 

[A1.16], [A1.118], 

[A1.119], [A1.120], 

[A1.121], [A1.122], 

[A1.123], [A1.124], 

[A1.125], [A1.126], 

[A1.127] 

 273 – 594 0.04 – 21 
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APPENDIX A.2.  BINARY SYSTEMS CONTAINING METHANOL 

Table A.2: Sources of vapour-liquid and liquid-liquid equilibrium data for binary 

systems with methanol 

Components VLE LLE 
Data 

rejected 

Temperature  

range  

[K] 

Pressure 

range 

[MPa] 

Methane 

[A2.1], [A2.2], 

[A2.3], [A2.4], 

[A2.5], [A2.6], 

[A2.7], [A2.8] 

  183 – 472 0.1 – 250 

Ethane 

[A2.4], [A2.9], 

[A2.10], [A2.6], 

[A2.11], [A2.12], 

[A2.13], [A2.14], 

[A2.15], [A2.16] 

 

[A2.11], 

[A2.16], 

[A2.17] 

184 – 373 0.06 – 7 

Propane 
[A2.18], [A2.19], 

[A2.20], [A2.21], 

[A2.22] 

  293 – 474 0.06 – 9 

n-Butane 

[A2.23], [A2.20], 

[A2.24], [A2.21], 

[A2.25], [A2.26], 

[A2.22], [A2.27] 

[A2.28] [A2.28] 264 – 470 0.06 – 140 

n-Pentane 
[A2.29], [A2.30], 

[A2.31], [A2.32] 

[A2.33], 

[A2.28] 

[A2.28], 

[A2.33], 

[A2.34] 

270 – 423 0.05 – 140 

n-Hexane 

[A2.32], 

[A2.35],[A2.36], 

[A2.37], [A2.38], 

[A2.39], [A2.40], 

[A2.41], [A2.42], 

[A2.43] 

[A2.44], 

[A2.45], 

[A2.46], 

[A2.47], 

[A2.48], 

[A2.49], 

[A2.34], 

[A2.50], 

[A2.51] 

[A2.36], 

[A2.38], 

[A2.52] 

[A2.44], 

[A2.49], 

[A2.34], 

[A2.50] 

255 – 513 0.02 – 151 

n-Heptane 
[A2.36], [A2.38], 

[A2.53], [A2.54] 

[A2.55], 

[A2.33], 

[A2.56], 

[A2.57], 

[A2.47], 

[A2.48], 

[A2.58], 

[A2.34], 

[A2.51], 

[A2.59] 

[A2.36], 

[A2.38], 

[A2.53], 

[A2.33], 

[A2.56] 

268 – 540 0.01 – 151 
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Table A.2 (to be continued): Sources of vapour-liquid and liquid-liquid equilibrium 

data for binary systems with methanol  

Components VLE LLE 
Data 

rejected 

Temperature 

range [K] 

Pressure 

range 

[MPa] 

n-Octane  

[A2.60], 

[A2.56], 

[A2.59] 

[A2.36], 

[A2.56], 

[A2.57], 

[A2.48], 

[A2.34] 

278 – 372 0.1 – 151 

n-Nonane [A2.36]  

[A2.56], 

[A2.57], 

[A2.60], 

[A2.61], 

[A2.49], 

[A2.33], 

[A2.62] 

416 – 537 1 – 7.5 

n-Decane [A2.36]  

[A2.56], 

[A2.57], 

[A2.62], 

[A2.61], 

[A2.63], 

[A2.49], 

[A2.64] 

422 – 540 1 – 8 

n-Undecane   

[A2.33], 

[A2.57], 

[A2.62], 

[A2.63] 

278 – 376 0.1 

n-Dodecane [A2.36] 
 [A2.57], 

[A2.62], 

[A2.63] 

 278 – 536 0.1 – 9 

n-Tetradecane   
[A2.36], 

[A2.65] 
298 – 535 0.1 – 9 

n-Hexadecane [A2.66]   298 – 318 
5.10

-4
 – 

0.04 

i-Butane 

[A2.67], 

[A2.68], 

[A2.69], 

[A2.20] 

  273 – 423 0.03 – 5 

i-Pentane [A2.70]   297 – 304 0.1 

2,3-

Dimethylbutane 

[A2.71], 

[A2.72], 

[A2.73] 

[A2.52]  283 – 334 0.1 

2,2-

Dimethylbutane 
 [A2.52]  275 – 296 0.1 
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Table A.2 (to be continued): Sources of vapour-liquid and liquid-liquid equilibrium 

data for binary systems with methanol  

Components VLE LLE 
Data 

rejected 

Temperature 

range [K] 

Pressure 

range 

[MPa] 

Cyclohexane 
[A2.74], [A2.75], 

[A2.76], [A2.39], 

[A2.52], 

[A2.58], 

[A2.77], 

[A2.78], 

[A2.79], 

[A2.80], 

[A2.81], 

[A2.82], 

[A2.46], 

[A2.83] 

[A2.81], 

[A2.84], 

[A2.85] 

278 – 333 0.01 – 14 

Cycloheptane  [A2.44]  290 – 340 0.1 

Cyclooctane  [A2.44]  266 – 358 0.1 

Methyl-

cyclopentane 
[A2.86], [A2.87] [A2.88]  296 – 345 0.1 – 120 

Methylcyclo-

hexane 
[A2.53], 

[A2.89], 

[A2.90] 
 298 – 318 0.03 – 0.1 

Benzene 

[A2.91], [A2.92], 

[A2.93], [A2.94], 

[A2.95], [A2.96], 

[A2.97], [A2.39], 

[A2.98], [A2.87], 

[A2.99], [A2.53], 

[A2.100], [A2.101], 

[A2.102], [A2.103], 

[A2.104] 

 [A2.104] 298 – 353 0.02 – 0.1 

Toluene 
[A2.100], [A2.105], 

[A2.106], [A2.53], 

[A2.107], [A2.108] 

  313 – 384 0.008 – 0.1 

Ethylbenzene [A2.109], [A2.109]   338 – 407 0.1 

o-Xylene [A2.110], [A2.111]   336 – 415 0.1  

p-Xylene [A2.112], [A2.100]   313 – 409 0.003 – 0.1 
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Table A.2 (to be continued): Sources of vapour-liquid and liquid-liquid equilibrium 

data for binary systems with methanol  

Components VLE LLE 
Data 

rejected 

Temperature 

range [K] 

Pressure 

range 

[MPa] 

Carbon 

dioxide 

[A2.113], [A2.114], 

[A2.115], [A2.116], 

[A2.117], [A2.118], 

[A2.119], [A2.120], 

[A2.121], [A2.122], 

[A2.123], [A2.124], 

[A2.125], [A2.126], 

[A2.127], [A2.128], 

[A2.129], [A2.3] 

 [A2.130] 213 – 478 0.1 – 18.5 

Nitrogen 

[A2.3], [A2.131], 

[A2.8], [A2.6], 

[A2.132], [A2.133], 

[A2.12], [A2.134], 

[A2.125], [A2.5], 

[A2.135] 

  213 – 373 0.1 – 108 

Hydrogen 

sulphide 

[A2.136], [A2.137], 

[A2.138], [A2.124] 
  223 – 448 2.10

-4
 – 11 

Hydrogen 

[A2.139], [A2.140], 

[A2.134], [A2.141],  

[A2.3] 

 
[A2.130], 

[A2.142] 
213 – 477 0.04 – 110 

Ethylene 

[A2.143], [A2.144], 

[A2.12], [A2.145], 

[A2.146], [A2.147] 

[A2.145], 

[A2.146] 

[A2.145], 

[A2.143], 

[A2.147] 

240 – 432 0.1 – 15.5 

Propylene [A2.148]   298 0.5 – 2 

Water 

[A2.149], [A2.150], 

[A2.151], [A2.152], 

[A2.153], [A2.154], 

[A2.155], [A2.156], 

[A2.157], [A2.158], 

[A2.159], [A2.160], 

[A2.161], [A2.162], 

[A2.163], [A2.164], 

[A2.165], [A2.166], 

[A2.167], [A2.168] 

 [A2.169] 308 – 442 0.006 – 2 
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APPENDIX A.3.  BINARY SYSTEMS CONTAINING ETHANOL 

Table A.3: Sources of vapour-liquid and liquid-liquid equilibrium data for binary 

systems with ethanol  

Components VLE LLE 
Data 

rejected 

Temperature 

range [K] 

Pressure 

range [MPa] 

Methane 
[A3.1], [A3.2], 

[A3.3], [A3.4] 
  280 – 498 0.5 – 36 

Ethane 
[A3.3], [A3.1], 

[A3.5], [A3.6] 
  298 – 498 0.3 – 12 

Propane 

[A3.7], [A3.8], 

[A3.9], [A3.10], 

[A3.11], [A3.12] 

  273 – 500 0.03 – 6 

n-Butane 

[A3.13], [A3.14], 

[A3.15], [A3.16], 

[A3.17], [A3.18] 

  283 – 500 0.006 – 9 

n-Pentane 
[A3.19], [A3.20], 

[A3.21], [A3.22] 
  303 – 500 0.03 – 6 

n-Hexane 

[A3.23], [A3.24], 

[A3.25], [A3.26], 

[A3.27], [A3.28], 

[A3.29], [A3.30], 

[A3.31], [A3.32], 

[A3.33] 

  298 – 508 0.01 – 6 

n-Heptane 

[A3.31], [A3.34], 

[A3.35], [A3.36], 

[A3.37], [A3.38], 

[A3.39], [A3.40], 

[A3.41], [A3.42], 

[A3.43] 

  303 – 523 0.004 – 6 

n-Octane 
[A3.31], [A3.44], 

[A3.45], [A3.46] 
  308 – 359 0.004 – 0. 

n-Nonane [A3.36]   343 0.006 – 0.07 

n-Decane [A3.6] [A3.47]  307 – 447 0.1 

n-Undecane [A3.48]   333 – 353 0.0006 – 0.1 
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Table A.3 (to be continued): Sources of vapour-liquid and liquid-liquid equilibrium 

data for binary systems with ethanol  

Components VLE LLE 
Data 

rejected 

Temperature 

range [K] 

Pressure 

range 

[MPa] 

n-Dodecane  
[A3.49], 

[A3.50] 
[A3.50] 271 – 309 0.1 – 120 

n-Tridecane  [A3.50]  294 – 297 0.1 

n-Tetradecane  
[A3.49], 

[A3.51] 
[A3.49] 280 – 331 0.1 – 120 

n-Hexadecane [A3.52] 

[A3.49], 

[A3.51], 

[A3.53], 

[A3.52] 

[A3.49], 

[A3.51], 

[A3.53], 

[A3.52] 

290 – 348 0.004 – 120 

n-Octadecane [A3.54] [A3.55]  283. – 337 0.1 

n-Nonadecane [A3.54]   283 – 304 0.1 

i-Butane [A3.56], [A3.7]   309 – 364 0.02 – 2 

2,3-

Dimethylbutane 
[A3.57]   325 – 343 0.1 

Cyclopentane [A3.58]   323 – 374 0.1 – 0.5 

Cyclohexane 
[A3.59], [A3.60], 

[A3.61] 
 [A3.32] 278 – 338 0.002 – 0.1 

Methylcyclo-

pentane 
[A3.30]   333 – 349 0.1 

Methylcyclo-

hexane 
[A3.62]   345 – 369 0.1 

Benzene 

[A3.63], [A3.64], 

[A3.65], [A3.66], 

[A3.33], [A3.67], 

[A3.29], [A3.68], 

[A3.32], [A3.69], 

[A3.70], [A3.71] 

  294 – 347 0.008 – 0.1 

Toluene 

[A3.72], [A3.66], 

[A3.73], [A3.74], 

[A3.75], [A3.76], 

[A3.77] 

  286 – 383 0.004 – 0.1 
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Table A.3 (to be continued): Sources of vapour-liquid and liquid-liquid equilibrium 

data for binary systems with ethanol 

Components VLE LLE 
Data 

rejected 

Temperature 

range [K] 

Pressure 

range [MPa] 

Ethylbenzene [A3.6], [A3.78]   350 – 409 0.1  

m-Xylene [A3.79], [A3.80]   298 – 408 0.004 – 0.1 

o-Xylene [A3.81], [A3.82]   308 – 410 0.003 – 0.1 

p-Xylene 
[A3.79], [A3.66], 

[A3.62] 
  313 – 409 0.003 – 0.1 

Ethylene [A3.83] [A3.83]  284 1 – 5 

Propylene [A3.84]   331 – 368 1 – 5 

Carbon 

dioxide 

[A3.85], [A3.86], 

[A3.3], [A3.87], 

[A3.88], [A3.89], 

[A3.90], [A3.91], 

[A3.92], [A3.93], 

[A3.94], [A3.95], 

[A3.96], [A3.97], 

[A3.98], [A3.99], 

[A3.4], [A3.100], 

[A3.101], [A3.102], 

[A3.103], [A3.104], 

[A3.105] 

  283 – 496 0.09 – 15 

Nitrogen 

[A3.106], [A3.107], 

[A3.108], [A3.109], 

[A3.110], [A3.4] 

  298 – 398 0.1 – 10 

Hydrogen 
[A3.1], [A3.109], 

[A3.111], [A3.112] 
  213 – 508 0.1 – 34 

Methanol 
[A3.113], [A3.63], 

[A3.114], [A3.115] 
  303 – 351 0.01 – 0.1 
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Table A.3 (to be continued): Sources of vapour-liquid and liquid-liquid equilibrium 

data for binary systems with ethanol 

Components VLE LLE 
Data 

rejected 

Temperature 

range [K] 

Pressure 

range [MPa] 

Water 

[A3.116], [A3.117], 

[A3.118], [A3.119], 

[A3.120], [A3.121], 

[A3.122], [A3.123], 

[A3.124], [A3.99], 

[A3.125], [A3.126], 

[A3.127], [A3.128], 

[A3.129], [A3.130], 

[A3.131], [A3.132], 

[A3.133], [A3.134], 

[A3.135], [A3.136], 

[A3.137], [A3.138], 

[A3.139], [A3.140], 

[A3.141], [A3.142], 

[A3.143], [A3.144], 

[A3.145] 

  283 – 548 0.002 – 10 
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APPENDIX A.4.  BINARY SYSTEMS CONTAINING N-PROPANOL 

Table A.4: Sources of vapour-liquid and liquid-liquid equilibria data for binary systems 

with n-propanol 

Components References Data rejected 
Temperature 

range [K] 

Pressure range 

[MPa] 

Methane [A4.1]  313 – 333 1 – 10 

Ethane 

[A4.2], [A4.3], 

[A4.4], [A4.5], 

[A4.4] 

[A4.3], [A4.5] 313 – 349 0.1 – 9.5 

Propane [A4.5], [A4.6]  318 – 393 0.45 – 4 

n-Butane 
[A4.7], [A4.8], 

[A4.9],  
 283 – 523 0.02 – 5 

n-Pentane [A4.10], [A4.11]  313 – 513 0.007 – 5 

n-Hexane 

[A4.12], [A4.13], 

[A4.14], [A4.15], 

[A4.16], [A4.17], 

[A4.18], [A4.19] 

 298 – 369 0.003 – 0.15 

n-Heptane 

[A4.20], [A4.21], 

[A4.22], [A4.23], 

[A4.24], [A4.25], 

[A4.26], [A4.16], 

[A4.27], [A4.28], 

[A4.29], [A4.30] 

 278 – 523 0.002 – 4 

n-Octane 
[A4.27], [A4.31], 

[A4.32] 
 313 – 400 0.004 – 0.1 

n-Nonane [A4.33]  298 0.002 – 0.003 

n-Decane [A4.34], [A4.35]  363 – 366 0.05 – 0.07 

i-Butane [A4.36], [A4.9]  318 – 364 0.01 – 2 

Cyclohexane 

[A4.14], [A4.37], 

[A4.38], [A4.39], 

[A4.40], [A4.41] 

 298 – 370 0.003 – 0.1 

Methyl-

cyclohexane 

[A4.42], [A4.43], 

[A4.44] 
 333 – 374 0.03 – 0.1 
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Table A.4 (to be continued): Sources of vapour-liquid and liquid-liquid equilibria data 

for binary systems with n-propanol 

Components References Data rejected 
Temperature 

range [K] 

Pressure 

range [MPa] 

Benzene 

[A4.45], [A4.46], 

[A4.47], [A4.48], 

[A4.12], [A4.20], 

[A4.14], [A4.37], 

[A4.49], [A4.39], 

[A4.40], [A4.50], 

[A4.51] 

 298 – 370 0.003 – 0.1 

Toluene [A4.49], [A4.39]  298 – 313 0.003 – 0.01 

Ethylbenzene [A4.52]  369 – 407 0.1 

o-Xylene [A4.39]  298 0.0009 – 0.003 

m-Xylene [A4.39]  298 0.001 – 0.003 

p-Xylene 

[A4.39], [A4.53], 

[A4.49], [A4.54], 

[A4.55] 

 298 – 494 0.001 – 3 

Carbon dioxide 

[A4.3], [A4.56], 

[A4.57], [A4.58], 

[A4.59] 

 298 – 427 0.5 – 16 

Nitrogen [A4.60], [A4.61]  298 – 398 0.003 – 10 

Hydrogen [A4.62], [A4.63]  291 – 514 1 – 10 

Water 

[A4.64], [A4.34], 

[A4.65], [A4.66], 

[A4.67], [A4.68], 

[A4.69], [A4.70], 

[A4.71], [A4.72] 

[A4.66] 273 – 373 0.0007 – 0.1 

Methanol 
[A4.73], [A4.74], 

[A4.75] 
 333 – 370 0.02 – 0.1 

Ethanol 
[A4.76], [A4.28], 

[A4.77] 
 298 – 313 0.003 – 0.02 
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APPENDIX A.5.  BINARY SYSTEMS CONTAINING N-BUTANOL 

Table A.5: Sources of vapour-liquid and liquid-liquid equilibria data for binary systems 

with n-butanol 

Components References Data rejected 
Temperature 

range [K] 

Pressure 

range [MPa] 

Ethane 
[A5.1], [A5.2], 

[A5.3], [A5.1] 
[A5.2] 298 – 314 0.0002 – 5.5 

n-Butane 
[A5.4], [A5.5], 

[A5.6], [A5.7] 
 283 – 521 0.04 – 5 

n-Pentane [A5.8], [A5.9]  303 – 513 0.001 – 4 

n-Hexane 

[A5.10], [A5.11], 

[A5.12], [A5.13], 

[A5.14], [A5.15] 

 283 – 389 0.0003 – 0.1 

n-Heptane 

[A5.16], [A5.17], 

[A5.18], [A5.19], 

[A5.20], [A5.21], 

[A5.22], [A5.23] 

 303 – 434 0.001 – 0.5 

n-Octane 

[A5.24], [A5.25], 

[A5.26], [A5.27], 

[A5.28] 

 283 – 400 0.0004 – 0.1 

n-Nonane [A5.11], [A5.29]  323 – 371 0.005 – 0.05 

n-Decane 
[A5.30], [A5.24], 

[A5.31] 
 358 – 388 0.005 – 0.09 

i-Butane [A5.4]  298 – 323 0.1 

Cyclohexane 
[A5.32], [A5.33], 

[A5.19], [A5.34] 
 318 – 389 0.003 – 0.2 

Methylcyclohexane 
[A5.35], [A5.36], 

[A5.37], [A5.38] 
 333 – 391 0.01 – 0.1 

Ethylene [A5.39]  264 – 343 0.1 

Propylene [A5.40]  298 – 343 0.2 – 2 
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Table A.5 (to be continued): Sources of vapour-liquid and liquid-liquid equilibria data 

for binary systems with n-butanol 

Components References 
Data 

rejected 

Temperature 

range [K] 

Pressure 

range [MPa] 

Benzene 

[A5.41], [A5.42], 

[A5.43], [A5.44], 

[A5.45], [A5.46], 

[A5.47], [A5.48], 

[A5.49] 

 298 – 425 0.0008 – 0.3 

Toluene 

[A5.50], [A5.51], 

[A5.36], [A5.45], 

[A5.52], [A5.48] 

 308 – 391 0.003 – 0.1 

Ethylbenzene [A5.53], [A5.54]  337 – 407 0.01 – 0.1 

o-Xylene [A5.48]  308.2 0.001 – 0.003 

m-Xylene [A5.55], [A5.48]  308 – 408.0 0.002 – 0.1 

p-Xylene 
[A5.56], [A5.45], 

[A5.57], [A5.48] 
 308 – 412 0.002 – 0.1 

Carbon dioxide 

[A5.58], [A5.59], 

[A5.60], [A5.61], 

[A5.62], [A5.63], 

[A5.64], [A5.65], 

[A5.66], [A5.67], 

[A5.68] 

 293 – 430 0.1 – 17 

Hydrogen [A5.69], [A5.70]  291 – 525 1.5 – 9 

Hydrogen sulphide [A5.71]  263 – 333 0.1 
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Table A.5 (to be continued): Sources of vapour-liquid and liquid-liquid equilibria data 

for binary systems with n-butanol 

Components References 
Data 

rejected 

Temperature 

range [K] 

Pressure 

range [MPa] 

Water 

[A5.72], [A5.73], 

[A5.74], [A5.75], 

[A5.76], [A5.77], 

[A5.78], [A5.79], 

[A5.19], [A5.80], 

[A5.81], [A5.82], 

[A5.83], [A5.84], 

[A5.85], [A5.86], 

[A5.87], [A5.88], 

[A5.89], [A5.90], 

[A5.91], [A5.92], 

[A5.93], [A5.94], 

[A5.95], [A5.96], 

[A5.97], [A5.98], 

[A5.99], [A5.100], 

[A5.101], [A5.102], 

[A5.103], [A5.104], 

[A5.105], [A5.106], 

[A5.107], [A5.108], 

[A5.109], [A5.110], 

[A5.111], [A5.112], 

[A5.113], [A5.114], 

[A5.84] 

[A5.72], 

[A5.73], 

[A5.74], 

[A5.75], 

[A5.76], 

[A5.77], 

[A5.78], 

[A5.79], 

[A5.19], 

[A5.81], 

[A5.83] 

255 – 401 0.0009 – 248 

Methanol 
[A5.115], [A5.116], 

[A5.117], [A5.118] 
 298 – 559 0.0009 – 7 

Ethanol 
[A5.119], [A5.120], 

[A5.121], [A5.28] 
 308 – 391 0.1 

n-Propanol [A5.122]  337 – 374 0.02 – 0.1 

i-Propanol [A5.123]  325 – 385 0.03 – 0.1  
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APPENDIX A.6.  BINARY SYSTEMS CONTAINING N-PENTANOL 

Table A.6: Sources of vapour-liquid and liquid-liquid equilibria data for binary systems 

with n-pentanol 

Components References Data rejected 
Temperature 

range [K] 

Pressure range 

[MPa] 

n-Pentane [A6.1]  303 0.0004 – 0.08 

n-Hexane 
[A6.1], [A6.2], 

[A6.3], [A6.4] 
 298 – 343 0.0003 – 0.1 

n-Heptane 
[A6.5], [A6.6], 

[A6.7], [A6.8] 
 313 – 417 0.0009 – 0.1 

n-Nonane [A6.9]  410 – 424 0.1 

Cyclohexane [A6.10], [A6.4]  315 – 436 0.03 – 0.04 

Ethylene [A6.11]  343 – 373 2.5 – 16 

Benzene [A6.12]  313 0.0009 – 0.03 

Toluene [A6.13]  303 -390 0.0006 – 0.1 

Ethylbenzene [A6.14]  397 – 407 0.1 

p-Xylene [A6.15]  404 – 412 0.1 

Carbon 

dioxide 

[A6.16], [A6.17], 

[A6.18] 
 283 – 427 2 – 19 

Water 

[A6.19], [A6.20], 

[A6.21], [A6.22], 

[A6.23], [A6.24], 

[A6.25], [A6.26], 

[A6.27], [A6.28], 

[A6.29], [A6.30], 

[A6.31], [A6.32], 

[A6.33], [A6.34], 

[A6.35], [A6.36], 

[A6.37], [A6.38], 

[A6.39], [A6.40] 

[A6.19] 273 – 463 0.1 – 90 

Methanol 
[A6.41], [A6.42], 

[A6.43] 
 313 – 410 0.0009 – 0.1 
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Table A.6: Sources of vapour-liquid and liquid-liquid equilibria data for binary systems 

with n-pentanol 

Components References Data rejected 
Temperature 

range [K] 

Pressure range 

[MPa] 

Ethanol [A6.44], [A6.5]  334 – 417 0.05 – 0.15 

n-Propanol 
[A6.45], [A6.46], 

[A6.47] 
 313 – 411 0.0009 – 0.1 

i-Propanol [A6.45]  313 0.0009 – 0.01 
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APPENDIX A.7.  BINARY SYSTEMS CONTAINING N-HEXANOL 

Table A.7: Sources of vapour-liquid and liquid-liquid equilibria data for binary systems 

with n-hexanol 

Components References 
Data 

rejected 

Temperature 

range [K] 

Pressure range 

[MPa] 

n-Hexane 
[A7.1], [A7.2], 

[A7.3] 
 293 – 422 6.10

-5
 – 0.1 

n-Heptane [A7.1]  372 – 428 0.1 

p-xylene [A7.4]  411 – 429 0.1 

Carbon dioxide 
[A7.5], [A7.6], 

[A7.7], [A7.5] 
[A7.5] 218 – 433 0.5 – 20 

Water 

[A7.8], [A7.9], 

[A7.10], [A7.11], 

[A7.12], [A7.13], 

[A7.14], [A7.15], 

[A7.16], [A7.17], 

[A7.18], [A7.19], 

[A7.20], [A7.21], 

[A7.22], [A7.23], 

[A7.24] 

 273 – 493 0.1 
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APPENDIX A.8.  BINARY SYSTEMS CONTAINING N-HEPTANOL 

Table A.8: Sources of vapour-liquid and liquid-liquid equilibria data for binary systems 

with n-heptanol 

Components References 
Temperature range 

[K] 

Pressure range 

 [MPa] 

Methane [A8.1] 298 0.1 

Ethane [A8.1] 298 0.1 

n-Decane [A8.2] 342 – 439 0.003 – 0.1 

Toluene [A8.3] 384 – 447 0.1 

Cyclohexane [A8.4] 318 – 476 0.03 – 0.4 

Ethylene [A8.1] 298 0.1 

Carbon dioxide [A8.5] 375 – 432 4.0 – 21 

Water 

[A8.6], [A8.7], [A8.8], 

[A8.9], [A8.10], 

[A8.11] 

273 – 363 0.1 
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APPENDIX A.9.  BINARY SYSTEMS CONTAINING N-OCTANOL 

Table A.9: Sources of vapour-liquid and liquid-liquid equilibria data for binary systems 

with n-octanol 

Components References Data rejected 
Temperature 

range [K] 

Pressure range 

[MPa] 

Ethane [A9.1], [A9.2]  289 – 338 2 – 11 

n-Hexane [A9.3]  313 0.009 – 0.04  

n-Heptane [A9.4]  293 5.10
-4

 – 0.005 

n-Octane [A9.5]  373 – 383 0.003 – 0.06 

n-Decane [A9.6]  243 – 383 0.003 – 0.1 

Cyclohexane [A9.7]  321 – 485 0.03 – 0.4 

Ethylene [A9.2]  318 – 338 3 – 18 

Carbon 

dioxide 

[A9.2], [A9.8], 

[A9.9], [A9.10], 

[A9.11] 

[A9.2], [A9.8] 250 – 453 1 – 19 

Nitrogen [A9.12], [A9.13]  273 – 453 1 – 10 

Hydrogen [A9.12], [A9.14]  273 – 318 0.7 – 8.5 

Water 

[A9.15], [A9.16], 

[A9.17], [A9.18], 

[A9.19], [A9.20], 

[A9.21], [A9.22], 

[A9.23], [A9.24], 

[A9.25] 

 283 – 559 0.1 – 10 

Methanol [A9.26]  338 – 468 0.1 

Ethanol [A9.26]  352 – 468 0.1 

n-Hexanol [A9.27]  356 – 391 0.004 – 0.01 
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APPENDIX A.10.  BINARY SYSTEMS CONTAINING N-NONANOL 

Table A.10: Sources of vapour-liquid and liquid-liquid equilibria data for binary 

systems with n-nonanol 

Components References Data rejected 
Temperature 

range [K] 

Pressure range 

[MPa] 

m-Xylene [A10.1]  415 – 452 0.1 

p-Xylene [A10.1]  414 – 451 0.1 

Carbon dioxide [A10.2]  303 11 – 34 

Water [A10.3], [A10.4]  273 – 363 0.1 
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APPENDIX A.11.  BINARY SYSTEMS CONTAINING N-DECANOL 

Table A.11: Sources of vapour-liquid and liquid-liquid equilibria data for binary 

systems with n-decanol 

Components References Data rejected 
Temperature 

range [K] 

Pressure range 

[MPa] 

Ethane 
[A11.1], [A11.2], 

[A11.3]  
[A11.1], [A11.2] 275 – 307 2.5 – 5 

Propane [A11.4]  378 – 408 4 – 7 

n-Hexane [A11.5]  283 – 333 0.003 – 0.07 

Carbon 

dioxide 

[A11.6], [A11.7], 

[A11.8], [A11.9] 
[A11.6] 271 – 453 1 – 19 

Nitrogen [A11.10]  333 – 453 1 – 10 

Water 

[A11.11], 

[A11.12], 

[A11.13], 

[A11.14], 

[A11.15] 

 292 – 590 0.1 – 90 

Methanol [A11.16]  293 – 323 2.10
-6

 – 0.06 

Ethanol [A11.16]  293 – 323 2.10
-6

 – 0.03 

n-Propanol [A11.17]  293 – 323 2.10
-6

 – 0.01 

2-Propanol [A11.18]  293 – 323 2.10
-6

 – 0.02 
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APPENDIX A.12.  BINARY SYSTEMS CONTAINING 2-

PROPANOL 

Table A.12: Sources of vapour-liquid and liquid-liquid equilibria data for binary 

systems with 2-propanol 

Components References Data rejected 
Temperature 

range [K] 

Pressure 

range [MPa] 

Ethane [A12.1]  308 – 313 2 – 5 

Propane [A12.2], [A12.3]  273 – 353 0.001 – 3 

n-Butane 
[A12.2], [A12.4], 

[A12.5] 
 298 – 365 0.01 – 1 

n-Hexane 

[A12.6], [A12.7], 

[A12.8], [A12.9], 

[A12.10], [A12.11], 

[A12.12] 

 303 – 503 0.008 – 5 

n-Heptane 

[A12.13], [A12.14], 

[A12.7], [A12.15], 

[A12.16], [A12.17], 

[A12.18], [A12.19], 

[A12.20], [A12.21] 

 298 – 523 0.008 – 5 

n-Octane 
[A12.22], [A12.23], 

[A12.24] 
 338 – 400 0.02 – 0.1 

n-Decane [A12.25]  363 0.1 

i-Butane 
[A12.2], [A12.26], 

[A12.27] 
 298 – 390 0.01 – 3 

Cyclohexane 

[A12.28], [A12.29], 

[A12.30], [A12.31], 

[A12.32], [A12.33], 

[A12.34],  

 298 – 350 0.006 – 0.1 

Methyl-

cyclohexane 

[A12.29], [A12.31], 

[A12.35] 
 323 – 374 0.03 – 0.1 

Ethylene [A12.36], [A12.37]  273 – 323 0.1 – 5 

Propylene [A12.3], [A12.38]  298 – 370 0.2 – 4 
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Table A.12 (to be continued): Sources of vapour-liquid and liquid-liquid equilibria data 

for binary systems with 2-propanol 

Components References Data rejected 
Temperature 

range [K] 

Pressure 

range [MPa] 

Benzene 

[A12.39], [A12.40], 

[A12.29], [A12.31], 

[A12.41], [A12.42], 

[A12.43], [A12.44] 

 298 – 355 0.006 – 0.1 

Toluene 
[A12.45], [A12.46], 

[A12.43] 
 298 – 377 0.004 – 0.1 

Ethylbenzene [A12.47], [A12.48]  354 – 409 0.1 

m-Xylene [A12.43]  298 0.001 – 0.006 

o-Xylene [A12.43]  298 9.10
-4

 – 0.006 

p-Xylene [A12.43], [A12.47]  298 – 412 0.001 – 0.1 

Carbon dioxide 

[A12.49], [A12.50], 

[A12.51], [A12.52], 

[A12.53], [A12.54], 

[A12.55], [A12.56], 

[A12.57] 

 293 – 444 0.7 – 14 

Nitrogen [A12.58]  333 – 393 2 – 10 

Water 

[A12.59], [A12.60], 

[A12.61], [A12.62], 

[A12.30], [A12.63], 

[A12.64], [A12.65], 

[A12.66], [A12.67], 

[A12.68], [A12.41], 

[A12.69], [A12.70], 

[A12.71], [A12.72], 

[A12.73], [A12.74], 

[A12.75], [A12.76], 

[A12.77], [A12.78], 

[A12.79], [A12.80] 

[A12.61] 288 – 584 0.01 – 12 

Methanol 

[A12.81], [A12.82], 

[A12.83], [A12.84], 

[A12.85] 

 328 – 356 0.03 – 0.1 
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Table A.12 (to be continued): Sources of vapour-liquid and liquid-liquid equilibria data 

for binary systems with 2-propanol 

Components References Data rejected 
Temperature 

range [K] 

Pressure 

range [MPa] 

Ethanol 
[A12.81], [A12.86], 

[A12.17], [A12.87] 
 303 – 356 0.008 – 0.1 

n-Propanol 

[A12.81], [A12.88], 

[A12.89], [A12.90], 

[A12.91], [A12.92] 

 298 – 371 0.003 – 0.1 
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APPENDIX A.13.  BINARY SYSTEMS CONTAINING 2-BUTANOL 

Table A.13: Sources of vapour-liquid and liquid-liquid equilibria data for binary 

systems with 2-butanol 

Components References Data rejected 
Temperature 

range [K] 

Pressure 

range [MPa] 

Methane [A13.1]  263 – 303 0.1 

Ethane [A13.1]  263 – 303 0.1 

n-Propane [A13.2]  328 – 368 1.0 – 4 

n-Butane [A13.3], [A13.4]  323 – 365 0.01 – 1 

n-Pentane [A13.5], [A13.6]  303 – 513 0.003 – 4 

n-Hexane 

[A13.7], [A13.8], 

[A13.9], [A13.10], 

[A13.11], [A13.12] 

 298 – 371 0.002 – 0.2 

n-Heptane 

[A13.13], [A13.14], 

[A13.15], [A13.16], 

[A13.17] 

 303 – 372 0.003 – 0.1 

n-Octane [A13.18], [A13.19]  358 – 400 0.03 – 0.1 

i-Butane [A13.20]  313 0.006 – 0.5 

Cyclohexane 

[A13.21], [A13.15], 

[A13.8], [A13.22], 

[A13.23] 

 318 – 373 0.008 – 0.1 

Methyl-

cyclohexane 
[A13.24], [A13.25]  333 – 374 0.02 – 0.1 

Ethylene [A13.1]  263 – 303 0.1 

Propylene [A13.2]  333 – 368 1 – 4 

Benzene 

[A13.26], [A13.27], 

[A13.28], [A13.29], 

[A13.30] 

 298 – 318 0.002 – 0.03 
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Table A.13 (to be continued): Sources of vapour-liquid and liquid-liquid equilibria data 

for binary systems with 2-butanol 

Components References Data rejected 
Temperature 

range [K] 

Pressure 

range [MPa] 

Toluene [A13.29]  308 0.006 – 0.01 

Ethylbenzene [A13.31]  370 – 407 0.01 

m-Xylene 
[A13.32], [A13.33], 

[A13.29] 
 308 – 409 0.002 – 0.1 

o-Xylene [A13.29]  308 0.002 – 0.006 

p-Xylene [A13.29], [A13.32]  308 – 408 0.003 – 0.09 

Carbon dioxide 

[A13.1], [A13.34], 

[A13.35], [A13.36], 

[A13.37] 

 294 – 532 0.1 – 15 

Nitrogen [A13.1], [A13.38]  263 – 393 0.1 – 10 

Hydrogen [A13.1]  263 – 303 0.1 

Water 

[A13.39], [A13.40], 

[A13.41], [A13.42], 

[A13.43], [A13.44], 

[A13.45], [A13.46], 

[A13.47], [A13.48], 

[A13.49], [A13.50], 

[A13.51], [A13.52], 

[A13.53], [A13.54], 

[A13.55], [A13.43], 

[A13.56], [A13.57], 

[A13.58], [A13.59] 

[A13.40] 214 – 573 2.10
-4

 – 11 

Methanol [A13.60], [A13.5]  298 – 303 0.002 – 0.02 

Ethanol [A13.61]  352 – 373 0.1 

2-Propanol [A13.62]  356 – 371 0.1 

n-Butanol 
[A13.63], [A13.64], 

[A13.65], [A13.15] 
 313 – 390 0.003 – 0.1 
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APPENDIX A.14.  BINARY SYSTEMS CONTAINING 2-

PENTANOL 

Table A.14: Sources of vapour-liquid and liquid-liquid equilibria data for binary 

systems with 2-pentanol 

Components References Data rejected 
Temperature 

range [K] 

Pressure range 

[MPa] 

n-Heptane [A14.1], [A14.2]  313 – 368 0.002 – 0.1 

Carbon dioxide [A14.3], [A14.4]  313 – 432 1 – 16 

Nitrogen [A14.5]  333 – 393 2 – 10 

Water 

[A14.6], [A14.7], 

[A14.8], [A14.9], 

[A14.10], 

[A14.11], [A14.12] 

 273 – 523 0.01 – 5 

Methanol [A14.13]  313 0.002 – 0.04 

n-Propanol [A14.14]  313 0.002 – 0.007 

2-Propanol [A14.14]  313 0.002 – 0.01 
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APPENDIX A.15.  BINARY SYSTEMS CONTAINING 2-HEXANOL 

Table A.15: Sources of vapour-liquid and liquid-liquid equilibria data for binary 

systems with 2-hexanol 

Components References Data rejected 
Temperature 

range [K] 

Pressure range 

[MPa] 

Nitrogen [A15.1]  333 – 393 2 – 10 

Water 

[A15.2], 

[A15.3], 

[A15.4] 

 273 – 363 0.1 
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APPENDIX A.16.  BINARY SYSTEMS CONTAINING 2-

HEPTANOL 

Table A.16: Sources of vapour-liquid and liquid-liquid equilibria data for binary 

systems with 2-heptanol 

Components References Data rejected 
Temperature 

range [K] 

Pressure range 

[MPa] 

Nitrogen [A16.1]  333 – 393 2 – 10 

Water 
[A16.2], 

[A16.3] 
 273 – 363 0.1 
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APPENDIX A.17.  BINARY SYSTEMS CONTAINING 2-OCTANOL 

Table A.17: Sources of vapour-liquid and liquid-liquid equilibria data for binary 

systems with 2-octanol 

Components References Data rejected 
Temperature 

range [K] 

Pressure range 

[MPa] 

Nitrogen [A17.1]  333 – 393 2 – 10 

Water 

[A17.2], 

[A17.3], 

[A17.4] 

 273 – 363 0.1 
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APPENDIX A.18.  BINARY SYSTEMS CONTAINING 3-

PENTANOL 

Table A.18: Sources of vapour-liquid and liquid-liquid equilibria data for binary 

systems with 3-pentanol 

Components References 
Data 

rejected 

Temperature 

range [K] 

Pressure range 

[MPa] 

n-Heptane [A18.1], [A18.2]  313 – 368 0.003 – 0.1 

Benzene [A18.3]  313 0.003 – 0.02 

Carbon dioxide [A18.4]  313 2 – 8 

Water 

[A18.5], [A18.6], 

[A18.7], [A18.8], 

[A18.9] 

 273 – 490 0.1 

Methanol [A18.10]  313 0.003 – 0.04 
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APPENDIX B.  CALCULATION OF UNCERTAINTIES ON 

TEMPERATURE AND PRESSURE 

Calculations of the uncertainties on pressure and temperature measurements are similar.  

They are two sources of uncertainty: the uncertainty linked to the repeatability of 

measurements and the uncertainty of calibration.  It is expressed by Equations (B.1) and 

(B.2): 

               
           

          
         

          
     

(B.1) 

               
           

          
         

          
     

(B.2) 

where 2 is the coverage factor to better represent the uncertainty on the measurement.  

With K=2, the confidence is about 95%. 

Urep, uref and ucorr are defined by the same kind of equations for both temperature and 

pressure.  They are expressed below for a physical parameter θ. 

B.1. UNCERTAINTY OF MEASUREMENTS REPEATABILITY 

The uncertainty of measurements repeatability is defined as (Equation (B.3)): 

         
 

      
         
 

   

 

(B.3) 

where    is the average. 

B.2. STANDARD UNCERTAINTY 

The uncertainty on calibration uref is a standard uncertainty of type B.  The probability 

of distribution of the physical parameter θ considered follows a rectangular law.  The 

probability of distribution is therefore unvarying in the interval [3.θ
-
; θ

+
].  2a is the 

interval width.  Uref is defined by Equation (B.4). 
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(B.4) 

For the dead weight balance,   is equal to 200 mbar and 0.013 °C for the standard 

platinium probe 25 Ω. 

B.3. UNCERTAINTY OF CALIBRATION 

The calibration compares the values read and the one given by either the dead weight 

balance for pressure or the standard platinium probe for temperature.  Thus, this 

correlation corrects the value of the parameter read on the probe.  Second order 

equations have been considered for probes calibration (Equation (B.5)): 

         
             

(B.5) 

The uncertainty of calibration is defined by Equation (B.6): 

        

              
             

          
                   

         

      
          

  

(B.6) 

B.4. UNCERTAINTIES OF TEMPERATURE AND PRESSURE 

MEASUREMENTS 

Tables B.1 and B.2 present the uncertainties of respectively temperature and pressure 

measured for probes calibration. 

Table B.1: Uncertainties of temperature measurements 

Temperatures [°C] u (Tbottom, K=2) [°C] u (Tupper, K=2) [°C] 

-20.007 0.018 0.019 

-15.044 0.017 0.018 

-10.040 0.017 0.017 

-5.058 0.016 0.016 
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Table B.1 (to be continued): Uncertainties of temperature measurements 

Temperatures [°C] u (Tbottom, K=2) [°C] u (Tupper, K=2) [°C] 

-0.076 0.016 0.016 

4.907 0.016 0.016 

9.888 0.016 0.016 

14.888 0.016 0.017 

19.881 0.021 0.022 

24.869 0.018 0.020 

29.882 0.019 0.022 

34.852 0.021 0.025 

39.849 0.024 0.029 

 

Table B.2: Uncertainties of pressure measurements 

Pressures [bar] u (P) [bar] 

1.029 0.231 

2.004 0.231 

6.991 0.231 

11.995 0.231 

16.997 0.231 

21.995 0.231 

27.001 0.231 

31.997 0.231 

37.003 0.231 

41.999 0.232 
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Table B.2 (to be continued): Uncertainties of pressure measurements 

Pressures [bar] u (P) [bar] 

52.002 0.232 

57.004 0.232 

62.001 0.232 

67.001 0.233 

72.000 0.233 

76.999 0.234 

81.996 0.234 
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APPENDIX C.  EXPERIMENTAL COMPOSITION OF THE LIQUID AND THE VAPOUR PHASES FOR 

MIX 2 

Table C.1: Experimental composition of the liquid phase for MIX 2. u: uncertainty of measurements results from calibration. 

Temperatures 

[K] 

Pressures 

[MPa] 

Carbon 

dioxide 

Hydrogen 

sulphide 
Methane Ethane Propane Cyclopentane Benzene Toluene 

m-

Xylene 

283.18 1.49 0.0865 0.529 0.00243 0.00318 0.00081 0.00866 0.227 0.118 0.0250 

313.19 3.49 0.1463 0.565 0.00793 0.00517 0.00089 0.00897 0.138 0.106 0.0216 

338.19 5.39 0.1634 0.548 0.01148 0.00563 0.00089 0.00860 0.137 0.104 0.0211 

 

u  

(z Carbon 

dioxide) 

u 

 (z Hydrogen 

sulphide) 

u  

(z Methane) 

u (z Ethane) u (z Propane) 

u 

 (z 

Cyclopentane) 

u (z Benzene) u (z Toluene) 

u 

 ( z m-

Xylene) 

2E-03 9E-03 7E-05 1E-04 2E-05 3E-04 6E-03 3E-03 8E-04 

3E-03 9E-03 2E-04 2E-04 3E-05 3E-04 4E-03 3E-03 7E-04 

3E-03 9E-03 3E-04 2E-04 2E-05 3E-04 4E-03 3E-03 6E-04 
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Table C.2: Experimental composition of the vapour phase for MIX 2. u: uncertainty of measurements results. 

Temperatures 

[K] 

Pressures 

[MPa] 

Carbon 

dioxide 

Hydrogen 

sulphide 
Methane Ethane Propane Cyclopentane Benzene Toluene 

m-

Xylene 

283.17 1.50 0.429 0.500 0.0576 0.00556 0.00086 0.0005 0.005 0.0019 0.0004 

313.23 3.50 0.433 0.468 0.0740 0.00548 0.00083 0.0009 0.011 0.0050 0.0010 

336.82 5.42 0.408 0.493 0.0663 0.00502 0.00080 0.0012 0.017 0.0068 0.0013 

 

u  

(z Carbon 

dioxide) 

u  

(z Hydrogen 

sulphide) 

u (z 

Methane) 
u (z Ethane) u (z Propane) 

u  

(z 

Cyclopentane) 

u (z Benzene) u (z Toluene) 

u 

 ( z m-

Xylene) 

8E-03 9E-03 2E-05 2E-04 2E-05 2E-05 1E-04 6E-05 1E-05 

7E-03 9E-03 2E-04 2E-04 2E-05 3E-05 4E-04 1E-04 3E-05 

7E-03 9E-03 2E-04 1E-04 2E-05 4E-05 5E-04 2E-04 4E-05 
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APPENDIX D.  EXPERIMENTAL HYDRATE DISSOCIATION 

CONDITIONS OF MIX 3 AND 4 

Table D.1: Experimental hydrate dissociation conditions in the presence of distilled 

water of MIX 3 (Table 2.5) 

Aqueous Fractions 

Temperatures [K] 

(±0.03) 

Pressures [MPa] 

(±0.001) 

0.758 290.85 3.434 

0.872 290.65 3.904 

0.891 290.85 4.565 

 

Uncertainties are calculated and presented for these experimental results in Appendices 

E and F. 

Table D.2: Experimental hydrate dissociation conditions in the presence of distilled 

water of MIX 4 (Table 2.6) 

Aqueous Fractions 

Temperatures [K] 

(±0.03) 

Pressures [MPa] 

(±0.001) 

0.716 295.68 4.277 

0.758 295.79 5.734 

0.765 296.14 8.063 
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APPENDIX E.  CALCULATION OF UNCERTAINTIES ON 

HYDRATE DISSOCIATION POINT MEASUREMENTS 

As seen on Figure 2.7, the hydrate dissociation point is determined as the intersection 

between two curves.  Depending on the tendency curve used to represent the different 

point, there is an uncertainty, more or less important, on the pressure and the 

temperature calculated.  In addition to this uncertainty, the uncertainty on calibration of 

temperature and pressure probes is also considered. 

E.1. UNCERTAINTY ON CALIBRATION 

The uncertainty on calibration ucalib is a standard uncertainty of type B.  The probability 

of distribution of the physical parameter θ considered follows a rectangular law.  The 

probability of distribution is therefore unvarying in the interval [3.θ
-
; θ

+
].  2a is the 

interval width.  The uncertainty ucalib is calculated by Equation (E.1): 

          
 

  
 

(E.1) 

E.2. UNCERTAINTY ON HYDRATE DISSOCIATION POINT 

MEASUREMENT 

The uncertainty on hydrate dissociation point measurement has two sources of 

uncertainties: the uncertainty on temperature and the one on pressure.  

The physical parameter θ can be expressed as a function of independent parameters αk 

(Equation (E.2)): 

                

(E.2) 

The uncertainty on the hydrate dissociation point measurement u can be expressed as 

(Equation (E.3)): 

              
  

   
 
 

      

 

   

       
     

(E.3) 
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where 2 is the coverage factor to better represent the uncertainty on the measurement.  

With K=2, the confidence is about 95%. 

In the case of hydrate point measurement, the uncertainty is about the temperature and 

the pressure of the intersection of two slopes.  

The curve before the dissociation point is usually a second-order polynomial equation 

(Equation (E.4)): 

              

(E.4) 

And the curve after the dissociation point is usually a straight line (Equation (E.5)): 

         

(E.5) 

The temperature of hydrate dissociation is defined as (Equation (E.6)): 

                   

(E.6) 

It is equivalent to solve the following equation (Equation (E.7)): 

                        

(E.7) 

The temperature of hydrate dissociation point T* is thus defined by Equation (E.8). 

   
           

   
 

with  

         
 
            

(E.8) 

and  

                 

Thus the temperature depends on parameters A”, B”, C”, A’ and B’.  The uncertainty on 

the temperature can be defined as follows (Equation (E.9)): 
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(E.9) 

where uc(αk) is the variance of the parameter αk, defined after a linear regression of 

parameters. 

As for the pressure, it can be calculated by Equation (E.5).  Thus it is dependent on 

parameters A’ and B’ and the temperature T* (Equation (E.10)). 

 

         

    
   

   
    

   
 

  
   

   
    

   
 

  
   

   
    

   
 

  
   

   
      

 

       
     

(E.10) 

In the case if the curve before the dissociation point is a straight line, Equation (E.4) 

becomes Equation (E.11): 

          

(E.11) 

Then the temperature of dissociation point is defined as (Equation (E.12)): 

   
     

     
 

(E.12) 

The uncertainty on temperature is expressed by Equation (E.13): 

         
   

   
    

   
 

  
   

   
    

   
 

  
   

   
    

   
 

  
   

   
    

   
 

       
     

(E.13) 

And Equation (E.10) becomes Equation (E.14): 

             
   

   
    

   
 

  
   

   
    

   
 

  
   

   
      

 

       
     

(E.14) 



Appendix E. Calculation of Uncertainties on Hydrate Dissociation Point Measurements 

 

269 

An example is given in Table E.1 for hydrate dissociation conditions of MIX 3 (Table 

D.1). 

Table E.1: Experimental hydrate dissociation conditions in the presence of distilled 

water of MIX 3 and corresponding uncertainties  

Temperatures [K] u(T, K=2) [K] Pressures [MPa] u(P, K=2) [MPa] 

290.9 3.7 3.4 0.2 

290.7 2.4 3.9 0.4 

290.9 0.07 4.6 0.1 

 

N.B.: Since bubble point measurement follows the same procedure as for hydrate 

dissociation point measurement, uncertainties can be calculated in the same way. 
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APPENDIX F.  CALCULATION OF UNCERTAINTIES ON 

AQUEOUS MOLE FRACTION 

For a binary system, the aqueous mole fraction is defined as (Equation (F.1)): 

    
   

      
 

(F.1) 

The uncertainty is given by Equation (F.2) 
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(F.2) 

In our case, measurements are not always repeated, so urep cannot be calculated.  But if 

they are repeated, it can be calculated as shown in Appendix B. 

The number of moles ni is determined with the volume injected.  The mixture prepared 

is always loaded as a single mixture, under liquid phase.  The aqueous solution is also 

under liquid state.  In both cases, it is assumed that the operating temperature is not 

influencing the density of the fluids.  Then the uncertainty on ni can be calculated with 

the following simplified equation (Equation (F.3)): 

      
  

  
      

(F.3) 

In the following part, uncertainties are given for calculated aqueous mole fractions for 

the experimental work presented in Table D.1 (MIX 3).  The uncertainties on volumes 

are given by the manufacturers.  The uncertainty on the pump is 0.3%vol and on the 

external cylinder 2.10
-2

 cm
3
.  Thus the calculated uncertainties are given in Table F.1. 
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Table F.1: Experimental aqueous fraction and corresponding uncertainties of hydrate 

dissociation conditions of MIX 3 (Table 2.5) 

Aqueous Fractions (xaq) u(xaq, K=2) 

0.758 0.009 

0.872 0.004 

0.891 0.008 
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APPENDIX G.  LIST OF PUBLICATIONS 

G.1. ARTICLE 

Hajiw, M., Chapoy, A., Coquelet, C., Hydrocarbons - Water Phase Equilibria using the 

CPA Equation of State with a Group Contribution Method, The Canadian Journal of 

Chemical Engineering, 2014, DOI: 10.1002/cjce.22093 

G.2. CONFERENCES 

 SFGP 2013 (oral presentation):  

Hajiw, M., Chapoy, A., Coquelet, C., Hydrocarbons - Water Phase Equilibria using the 

CPA Equation of State with a Group Contribution Method 

 ICGH 8 (poster) 

Hajiw, M., Chapoy, A., Coquelet, C., Effect of Acid Gases on Methane Hydrate 

Stability Zone 

 

 AIChE 2014 (poster): 

Hajiw, M., Chapoy, A., Coquelet, C., Methanol Content in Natural Gas Systems: 

Modelling with the GC-PR-CPA Eos 
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G.3. INDUSTRIAL PROJECTS 

 Joint Industrial Project “Gas Hydrates and Flow Assurance”:  

The aim of this project is to deal with gas hydrate problems in subsea pipelines. It is 

mainly focused on sour and acid gases, at different concentrations. Different studies are 

conducted, including the impact of thermodynamic inhibitors on hydrate stability zone, 

inhibitor distribution in water, hydrate formation in low water content. The development 

of the thermodynamic model is part of this project and has been developed in six 

Progress Reports (01 to 05), as well as experimental measurements. 

 Joint Industrial Project “Impact of Common Impurities on CO2 

Capture, Transport and Storage”:  

In the context of Carbon Capture, Transport and Storage (CCS), the impact of 

impurities on carbon dioxide transported is studied. The presence of these impurities 

during transport may lead to flow assurance issues, such as gas hydrate formation. The 

aim of this project is to study the phase behaviour of carbon dioxide in the presence of 

impurities and their properties (viscosity and density). Experimental measurements have 

been presented in two Progress Reports (01 and 02). 

 Gas Processors Association “Impact of Aromatic on Acid Gas 

Injection”: 

When the natural gas is produced, acid gases are usually removed with different types 

of amines before being compressed for injection in underground formations. However, 

amines can also absorb aromatic compounds. The aim of this project is to investigate 

the impact of aromatics on acid gas compression design. Indeed they can condense at 

high pressures and lead to liquid formation in compressors or hydrate formation. 

Experimental measurements have been included in one Progress Report (March 2014). 

 



 

 



 

 



 

 

 


