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 I 

Abstract 
 

The photochemistry of molecules can be investigated computationally, and this provides 

great insight into the underlying chemistry and physics.  Such computational 

approaches are challenging and can pose many difficulties compared to ground state 

methodologies.  Care must be taken to accurately describe these systems, as some low-

level approximate methods can fail.   

 

The geometrical and electronic structures (TiO2)n clusters (n=1-4) have been 

investigated.  These are of enormous technological interest as wide band-gap 

semiconductors yet the nature of electronic transitions in nano-sized clusters has yet to 

be fully elucidated.  Structures of the neutral closed-shell, radical cationic and radical 

anionic clusters at each size are described and rationalised in terms of the pseudo-Jahn-

Teller effect.  We have used high-level response theory to set benchmarks for such 

systems.  The TiO2 monomer is the simplest of the clusters studied yet proves a stern 

test for many lower order ab-initio methods.  It is shown that high-level methods are 

required to properly describe this simple molecule.   

 

The Monte Carlo Configuration Interaction method attempts to combine the power of 

Full CI with a scalability that allows it to be used to study much larger systems.  It can 

be systematically improved and can approach the accuracy of the Full CI method.  This 

method is applied here to investigate potential energy surfaces and multipole moments 

of a range of small but challenging systems.   
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Chapter 1: Introduction 

 

The development of the field of quantum mechanics early in the last century opened up 

the possibility for the first time of accurately describing the chemistry of atoms and 

molecules mathematically.  However before the widespread availability of computers, 

due to the many body nature of these problems, only the simplest of problems could be 

attempted.  As this availability has increased the computational investigation, using 

accurate models within chemistry, has become progressively commonplace.  

Computational Chemistry, as this discipline is known, utilizes computers to solve 

physical models of chemical systems[1, 2].  As computational power has increased over 

the past decades, so the power to study such chemical systems has also increased and a 

great number of programs[3-7] have been developed to solve computational problems, 

allowing the study of larger molecular systems in far greater detail.  

 

One of the first methods developed and perhaps the easiest to conceptually understand 

was full Configuration Interaction (FCI)[8, 9], which represents the exact solution for a 

given basis set and in an ideal world it would be applied to all problems.  The amount of 

computer power required for a particular problem increases drastically with the number 

of atoms (and therefore electrons) in the molecules being studied.  Therefore often it is 

impractical, if not impossible, to use the most powerful and accurate of methods as 

system sizes increase.  Even with the large advances in computer power FCI is 

intractable for all but the smallest of problems.  Consequently, a great deal of research 

has been devoted to the development of strategies and a hierarchy of computational 

tools with which to approach larger and larger sized molecular systems[10, 11].  A 

number of different methods have since been developed which provide an approximate 

solution using less computer resources.  In applying such approximate methods a 

compromise must be made between the accuracy of the model (or method) used 

opposed to the time and computer resource devoted to the problem.  A balance must be 

struck to ensure the most accurate result in an acceptable time frame using available 

computer resources.  Care must be taken to ensure the accuracy of any method used or 

else incorrect conclusion may well be drawn from a poor result. Concurrently with these 

developments, the ability to follow and predict the processes involved in chemical 
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reactions, over both ground and excited states[9, 12], computationally has been 

developing.   

 

The photochemistry of molecules can be investigated computationally, and this provides 

great insight into the underlying chemistry and physics. Such computational approaches 

are challenging and can pose many difficulties compared to ground state methodologies.  

Within the field of photochemistry this can be applied to follow reactions on the excited 

state surfaces determining possible reaction pathways and possible eventual 

products[13].   

 

Chapter 2 is intended to provide a background of the theory and computational methods 

for the material in the subsequent chapters.  It begins with an outline of the main ideas 

and concepts from which quantum chemistry is built upon.  Then the various 

computational methods used in this work are presented along with a discussion of the 

advantages and disadvantages of each.   

 

In Chapter 3 an investigation of Titanium dioxide clusters with the form (TiO2)n (n=1-4) 

is presented.  These structures are the subject of much study due to the potential 

technological applications for such materials[14, 15].  The TiO2 monomer is first 

investigated in some depth.  This monomer is the simplest of the clusters studied yet 

proves a stern test for many lower order ab initio methods.  The popular CC2 method 

has previously been shown to be a robust excited state method for organic 

chromophores[16, 17].  It was expected to work qualitatively for more strongly 

correlated systems containing transition metals if the single reference picture was valid, 

but it is shown that this is not the case.  High-level methods are required to properly 

describe this simple molecule[18].  This is followed by a less in depth study of the n = 

2-4 clusters, which also proved problematic for lower order ab initio methods.   

 

In Chapter 4 the investigation of Titanium dioxide clusters continues; structures of the 

neutral closed-shell, radical cationic and radical anionic clusters at each size are 

described and rationalised in terms of the pseudo-Jahn-Teller effect (pJT)[19].  It is 

shown that DFT functionals can demonstrate artificial symmetry breaking for some of 

these radical clusters.  This occurs in a non-systematic way, adding a further difficulty 

when using such functional methods.   
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In Chapter 5 the Monte Carlo Configuration Interaction (MCCI) first devised[20] and 

implemented[21] by J.C. Greer et al is described.  This method attempts to combine the 

power of FCI with a scalability that allows it to be used to study much larger systems.  

This method is applied here to investigate potential energy surfaces[22] of a range of 

different challenging systems. It is shown that the MCCI method preforms very well in 

comparison to the FCI results, while utilising a wave function a fraction the size of that 

of the FCI.  

 

In Chapter 6 the MCCI method is applied to find the multipole moments[23] of a 

number of small but challenging systems.  With a small fraction of the FCI SD space, 

MCCI can produce the multipoles very close in value to the FCI result.  Then returning 

to the case of the TiO2 monomer, MCCI is applied to what was found in chapter 3 to be 

a surprisingly challenging system.  TiO2 molecule pushes the limits of what the current 

MCCI program can handle, MCCI results for the system in the final section seem to 

give satisfactory results.  In the Final chapter our conclusions are presented, along with 

possible work that can be followed to expand on this research.  

 

The results presented in chapters 3 and 4 are of research undertaken by myself, while 

the work that makes up chapters 5 and 6 of this thesis detail the results of projects 

additionally involving collaboration with Dr Jeremy Coe, a post-doctoral researcher in 

the group.  
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Chapter 2: Theory 

 

In this chapter some important theories and methods of computational chemistry are 

introduced with the aim of providing a background for the work presented within this 

thesis.  A good introduction to computational and theoretical chemistry can be found in 

Refs. [1-6].  

 

2.1 Born-Oppenheimer Approximation 

 

The Born-Oppenheimer approximation (BOA) is one of the most important concepts in 

chemistry.  Through this approximation the motion of the electrons is decoupled from 

the motion of the nuclei.  This approximation informs the very vocabulary with which 

molecules and their chemistry are thought about and described.  Without the electronic 

potential energy surface (PES), defined by this theory, the definition of most concepts 

of molecular structure (such as equilibrium configuration, bond-lengths, bond-angles, 

dihedral angles, etc.) cannot be made[7].   

 

There is a very significant difference in the mass of an electron in comparison to the 

mass of a nucleus.  The mass of a single proton (the lightest possible nucleus) is over 

1800 times heavier than the mass of an electron.  As a consequence of this fact the 

nuclei move far slower than the surrounding electrons and in the relative time scale of 

the electron movement the nuclei of the molecule would be seen to have hardly moved.  

The motion of the nuclei can therefore be considered as separate from the motion of the 

electrons.  This is the basis of the BOA where the positions of the nuclei are treated as 

fixed parameters around which the electrons move.  The nuclei in turn experience a 

time-averaged electronic “force-field” which gives rise to molecular vibrations.  The 

motions of the two different types of particle are therefore decoupled and the solution to 

the molecular quantum mechanical problems becomes a two-stage process: 1. Solve the 

electronic problem for the electrons in the field of the nuclei, 2. Solve the nuclear 

motion problem using the solution to the electronic problem as the potential in the 

nuclear problem. 
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The BOA works well for most cases and has a central role in chemistry and physics.  

Without it the concept of the potential energy surface would be lost and with it a large 

number of conceptual ideas would also be lost.  However when there is a strong 

coupling between the electronic and nuclear motion the BOA breaks down.  Even then 

the BOA, particularly the concept of the PES, remains and is used as a starting point in 

more advanced treatments of the coupled electronic and nuclear motion.   

 

Intuitively one can see that moving the nuclei such that the electronic state (and 

chemical bonding) of a molecule abruptly changes must involve a strong coupling 

between the electrons and the nuclei.  An example of strong coupling between the 

electronic and nuclear motion is the case of a conical intersection where two energy 

states cross.  At these crossing points where there is an exact degeneracy between 

electronic states the approximation breaks down completely.  Indeed the modern 

derivation of the BOA also includes a dependence on the energy difference between 

electronic states.  Thus it is now apparent that two factors control whether the BOA is 

valid, the electron-nuclear mass difference (usually always valid) and crucially also the 

energy difference between adjacent electronic states.  The closer in energy a pair of 

states get then the more the BOA breaks down, until at the point of degeneracy it 

becomes undefined, technically there is a singularity in derivative coupling (a term 

neglected in the BOA)[8-13].  Conical intersections are described in more detail later in 

this chapter, but note here that it is this feature of having multiple electronic states 

involved that presents the main difficulties for accurate computational treatment of 

photochemical problems.   

 

2.2 Potential Energy Surfaces (PES) 

 

The PES of a molecule is a 3N-6 dimensional surface, where N is the number of nuclei.  

So even for a small molecule with few atoms it can be very complex.  From this PES 

the minimum and transition state geometries for these nuclei can be recovered as critical 

points of the surface; examples of these features are demonstrated in Figure 2-1. 
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Figure 2-1: Example potential energy surface in 3 Dimensions, where the vertical axis is the energy and 
the horizontal axes are the molecular coordinates.  Local minima, transition states and the paths between 
them on the PES are shown.  From Ref. [14]. 
 

Due to this complexity searching for important features of the surface (minima, 

transition states, conical intersections, etc.) can be challenging.   

 

2.2.1 Excited States 

 

When a molecule absorbs one or more photons it is promoted into an excited electronic 

state.  In these excited states the electrons have become distributed into a higher energy 

configuration.  Each excited state can have a different chemistry to the ground state 

because of its different electron arrangements and the extra energy they have from the 

absorbed photon(s).  There are several ways that the molecule can lose this excess 

energy and in doing so it is possible that the molecule can undergo a chemical change.   
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2.2.2 Reaction Pathways 

 

 
Figure 2-2: Jablonski diagram showing the various ways the state of a given molecule can change.  The 
vertical dimension here is the energy.  The transitions between the ground (S0), first excited state (S1) and 
first triplet state (T1) are shown, but the routes are applicable for transitions between any two appropriate 
states.   
 

Figure 2-2 is an example of an energy state diagram, often called a Jablonski diagram.  

It is a reproduction of a similar diagram published in [6].  The black lines of the figure 

represent the electronic energy levels of a molecule and show the relative energy 

separations.  The levels have been separated out in such a way as to make the figure 

easier to understand.  The various elements of the figure are numbered as: 

 

1 Electromagnetic radiation incident on the molecule, with energy hν, where ν is 
the frequency. 

2 An excitation of the molecule by the absorbed photon(s) to a higher state, in the 
case of the figure to the first excited singlet electronic state (S1). 

3 Fluorescence, the emissions of photons to lower the molecule back to the ground 
state, i.e., a radiative process not changing the electronic spin-state. 

4 Internal conversion, non-adiabatic radiationless transition between states of the 
same spin, i.e., a non-radiative process. 

5 An Intersystem crossing, non-adiabatic radiationless transition between states of 
different spin.  In this case from S1 to T1. 

6 Spin-forbidden absorption of a photon exciting the molecule to a state of 
different spin (here S0 to T1). 

7 Phosphorescence, the emission of photons to lower the molecule from the T1 
state to the ground state, i.e., a radiative process involving a change in spin state. 
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8 Intersystem crossing from the excited triplet state (T1) to return to the singlet 
ground state non-radiatively. 

 

These are the routes through which the state of a molecule can change.  They fall into 

two categories; those that involve the absorption or emission of photons, and those 

where the molecule non-adiabatically decays to a lower energy state, with the excess 

energy in the system being retained in the molecule in the form of kinetic energy.  The 

table below (Table 2-1) shows the relative time scales for photoreactions.  It is worth 

mentioning that the main difference between fluorescence and phosphorescence is the 

time scale over which each occurs.  Phosphorescence is a much slower process than 

fluorescence.  Although not included in the table it is clear that, as intersystem crossing 

is a competitive process to fluorescence, for intersystem crossing to be effective it must 

occur on a shorter timescale than fluorescence.   

 

Photoreaction type Rate  (s-1) Time scale  (s) 

Fluorescence 106-1012 ps-µs 

Phosphorescence 10-1-106 µs-s 

Passing through a conical intersection 1013-1011 ~100 fs-10 ps 

Electron excitations ~1015 fs 

Table 2-1: Relative time scales for photoreactions 
 

Figure 2-3 shows an example of a schematic PES for the ground state and first excited 

state of a molecule.  This figure from Ref. [15] shows a 2-D slice along the reaction 

coordinates of a model PES, which demonstrates transitions between S0 and S1 as 

introduced in Figure 2-2. 
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Figure 2-3: Schematic diagram of the PES of the ground and first excited singlet states (S0 and S1) 
featuring a conical intersection and an avoided crossing.  Demonstrating the possible reaction pathways 
of a reactant R on the PES.  From Ref. [15]. 
 

Considering the S0 surface first it can be seen that it has three minima corresponding to 

a reactant, R, and two possible products, P and P′.  Note that by “product” a stable 

configuration of the nuclei that differs from the initial configuration is meant.  Between 

the reactant and the products there are energy barriers, consistent with transition states, 

that would have to be overcome on the ground state in order for the reactant to change 

to either product.  However, if the reactant R is excited to the first exited state S1 

becoming R* a number of other possible reaction paths become available.   

 

From its position on the S1 PES, R* will begin to move adiabatically about the surface 

and of course can return to the ground state by emitting a photon.  If the transition state 

barriers on the S1 surface aren’t too high the molecule can move to the other points 

marked on the S1 PES changing its structure accordingly as it evolves.  Note that in an 

excited electronic state the molecule will usually have excess kinetic energy available 

after a vertical transition.  There are three such points marked on the figure and each 

represents a possible reaction path to the products on the ground state.  At the point 

marked P′* the molecule has reached a point where it corresponds to the excited state of 

a product P′ marked on the ground state.  If a photon were emitted at this point the 

molecule would radiatively return to the ground state as the product P′.  Note here that 

the emitted radiation will generally be of longer wavelength than the originally 
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absorbed radiation since some of the original photon energy has been converted to 

kinetic energy of the nuclei.  The reaction of turning R into P′ has occurred, R has 

changed into P′ not by a reaction on the ground state PES, but by an adiabatic reaction 

on the S1 PES where R* becomes P′*.  This example of a photochemical reaction is 

completely analogous to standard ground state chemistry, the difference being that 

transition barriers may be more easily overcome along the reaction coordinate in an 

excited electronic state.   

 

There are two other examples of non-adiabatic internal conversions shown in Figure 

2-3.  Firstly, there is an avoided crossing where a minima on the S1 is close in energy to 

a maximum on the ground state, at this point a radiationless decay via Landau-Zener 

effect can occur[16].  Once back on the ground state surface, depending on the 

geometry of the molecule, it can then proceed down the slope to either return to R or 

end up as the product P′.  The second point is a conical intersection; at a conical 

intersection there is a point of degeneracy between the two surfaces as they actually 

cross.  That is, at a conical intersection different electronic states have the same energy.  

It is a route through which the molecule can travel directly from the excited to the 

ground state, either returning to R or becoming the product P.  The principle difference 

between internal conversion via an avoided-crossing or via a conical intersection is the 

timescales involved.  Internal conversion via an avoided crossing is quite slow 

compared to radiationless decay via a conical intersection.  It is also worth noting that in 

the case of polyatomic molecules it is believed there will generally be a conical 

intersection on the PES close to an avoided crossing.   

 

2.2.3 Conical Intersections 

 

As discussed earlier the BOA is an important tool that allows for chemical processes to 

be accurately conceptualised.  However, when the motion of the nuclei and electron in a 

molecular system become strongly coupled, it is no longer possible to persist with an 

approximation that separates them.  The Born Oppenheimer approximation breaks 

down.  One such feature of the PES that exhibits such coupling is known as a conical 

intersection[10].  Conical intersections provide a channel through which radiationless, 

ultra-fast state transitions in a molecular system can occur.  They have been the subject 
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of a great deal of work over the past 20 years[8-13, 16, 17].  These phenomena have 

proven difficult to investigate experimentally and provide an example of where theory 

and computation have helped advance the understanding of chemical processes.  At the 

point where two or more energy states cross, where the energy levels are degenerate, the 

motions of the electron and nuclei become strongly coupled.  When the two energy 

levels have different spin states this results in a surface-crossing seam that exists in M-1 

dimensions.  Between surfaces of the same spin however, such crossings produce a 

conical intersection that is actually a connected subspace of dimension M-2, called a 

seam (M = 3N-6, where N is number of nuclei in the system).   

 

By travelling through the conical intersection the molecule can change from one state to 

another in a radiationless transition.  The time scale for this is on the order of tens to 

hundreds of femtoseconds (the time-periods for vibrational motion of the nuclei).  It is 

for this reason the conical intersections are also commonly called photochemical 

funnels.  Most commonly these intersections occur between the ground state and a low-

lying excited state, but do occur between higher excited states.  It has been found that in 

polyatomic organic molecules, which typically have a high density of electronic states, 

that there is a high likelihood of a molecule in an excited state on the PES encountering 

a conical intersection before it can decay to a lower state by another path[16].  A 

graphical representation of a conical intersection is presented in Figure 2-4.  

 

 
Figure 2-4: Diagram of a model Conical intersection between two states.  The vertical direction is the 
energy and the horizontal dimensions are the gradient difference (x1) and the interstate coupling (x2).  A 
reactant molecule vertically excited to the upper excited state can move on that surface through the 
conical intersection, returning to the original Reactants or becoming a new chemical species.   
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A conical intersection is characterised on the 3N-6 dimensional PES as a point at which 

motion in only two of the 3N-6 vibrational degrees of freedom break the degeneracy.  

The conical intersection is not in fact a single point, but is rather a seam made up of an 

infinite number of conical intersections connected by the intersection space coordinates, 

i.e., the remaining 3N-8 vibrational degrees of freedom[17].   

 

The two vectors for which the degeneracy is lifted are known as the gradient difference 

(x1) and the interstate coupling (x2)[17] and have the form: 

 

!! =
! Ε! − Ε!

!"  (2.1a) 

 

!! = !!!
!!!"!#
!" !!  (2.1b) 

 

Where the Ci are the configuration interaction eigenvectors (i.e., the excited and ground 

state adiabatic wave functions), Helec is the Hamiltonian and ξ is a vector of Cartesian 

displacements.  The two vectors x1 and x2 form a plane that governs the vibrational 

motion of the nuclei travelling through a conical intersection.  The conical intersection 

can in effect serve as a photochemical pathway to several different minima.  This could 

be the original reactant or one of several possible products.  Thus reaction pathways 

become possible that differ to ground state chemistry.  The outcome of a transition 

through a conical intersection depends both on its shape determined by the surfaces that 

form it and on the local topography of those surfaces[18, 19].   

 

2.2.4 The Jahn-Teller Effect 

 

The Jahn-Teller effect involves a (non-adiabatic) vibronic coupling between the 

components of a degenerate electronic state, as obtained from the clamped-nucleus 

Born-Oppenheimer Hamiltonian, for a molecule with non-abelian point group 

symmetry[20].  Thus, the Jahn-Teller geometry is a conical intersection between the 

potential energy surfaces of the component states at the high-symmetry geometry[17].  

The non-adiabatic couplings can be expanded in a Taylor series leading to the concept 
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of linear, quadratic, etc. Jahn-Teller couplings[20].  The famous Jahn-Teller 

theorem[21] showed that such linear terms are non-zero for all orbitally degenerate 

molecules belonging to non-abelian point groups.  The symmetries of vibrational modes 

giving rise to non-zero linear or quadratic Jahn-Teller couplings are easily derived from 

group theory.  It should also be noted that general (non-symmetry imposed) conical 

intersections also have linear vibronic couplings between the (accidentally) degenerate 

electronic states via the von-Neumann-Wigner theorem[17].  In linear molecules, 

however, symmetry dictates that the linear vibronic couplings between components of a 

degenerate state are zero[22].  This is the well known Renner-Teller effect, and 

degenerate linear molecules may thus have both surfaces displaying positive curvatures, 

both displaying negative curvatures, or one positive and one negative curvature at the 

point of degeneracy (types-I, -II, and –III in terminology of Ref. [17]).  The intersection 

here is therefore of a glancing nature. 

 

2.2.4.1 Pseudo-Jahn-Teller Effect 

 

The pseudo-Jahn-Teller (pJT) effect involves the coupling of non-degenerate states at 

second-order in vibrational displacements and is in many ways similar to the Renner-

Teller effect (type-II) but with a finite energy gap between adiabatic potential energy 

surfaces rather than a degeneracy.   

 

It should be noted that there is a varying terminology in the literature regarding certain 

aspects of the Jahn-Teller and pJT effects.  The pJT effect is sometimes confusingly 

called the second-order Jahn-Teller effect but this term is best used to describe true 

(quadratic) Jahn-Teller coupling.  Another practice is to use the term pJT to describe the 

coupling of a true Jahn-Teller system to a non-degenerate electronic state[20].  In the 

work of this thesis pJT is defined to mean the coupling of a non-degenerate electronic 

state (in the work of this thesis this is the ground state) to an excited electronic state via 

a non-totally symmetric vibration (or independent sets of vibrations).   

 

The pJT effect is a very useful tool for the explanation of the local curvature of 

adiabatic potential surfaces of different states of a molecule[22-24].  It has been 

successfully applied in many areas of organic and inorganic chemistry[17, 25-29].  Its 

importance in structural chemistry is that it provides a mechanism by which non-

degenerate states can mix via molecular vibrations.  For example it provides details of 
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the vibronic couplings between non-degenerate electronic ground states, at high-

symmetry geometries, with excited electronic states.  Historically it has been used to 

explain why a particular system distorts from, an expected, higher symmetry geometry 

to a lower symmetry one[22-24, 30, 31].   

 

The pJT effect results in potential surfaces where the lower sheet displays a quadratic 

instability due to coupling with an excited electronic state.  The coupling causes the 

states to mix under a non-totally symmetric vibration.  The mixing stabilizes the lower 

state while destabilizing the upper state.  Indeed Bersuker and co-workers have proved 

that the pJT effect is the only source of instability in non-degenerate polyatomic 

molecules[32] (and References therein).  They have also detailed many examples of this 

in action, and in recent years have shown that the excited states do not necessarily need 

to be too low-lying[23].   

 

In Figure 2-5 an example of the pJT effect between the ground electronic (S0) and first 

excited state (S1) of Mo2(DXylF)2- (O2CCH3)2(µ2-O)2 complex is shown[29].  The ideal 

D2h symmetry structure is distorted along the rhomboidal distortion normal coordinate, 

leading to equivalent minima of C2h symmetry, by the pJT coupling between ground 

electronic (S0) and first excited state (S1).  The pJT effect is discussed in more detail in 

Chapter 4, where it is applied to rationalise the structures of neutral and charged clusters 

of (TiO2)n (n=1-4).   
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Figure 2-5: Schematic PES of the ground electronic (S0) and first excited state (S1) Mo2(DXylF)2- 
(O2CCH3)2(µ2-O)2 complex.  Pseudo-Jahn-Teller coupling between the two electronic states gives the 
lower potential energy surface negative curvature along the rhomboidal distortion normal coordinate, 
leading to equivalent minima of C2h symmetry.  Adapted from [29].   
 

2.3 Molecular Orbitals 

 

The molecular orbital describes the distribution of a single electron in the electric field 

generated by the nuclei of the molecule and the average field of its other electrons.  

Molecular orbitals are described as a “fundamental quantity” in quantum chemistry[33]. 

 

The wave function that describes a single electron is called an orbital.  A spatial orbital 

ψi(r), is a function that describes the spatial distribution of an electron for any given 

value of r (where r is the position of the electron).  However, in order to completely 

describe an electron, the spin of the electron must be taken into account.  The electron 

can either have α (spin up) or β spin (spin down).  So for each spatial orbital, two spin 

orbitals, χ(x), can be formed.  The x used here denotes that the orbital is now dependant 

upon a spin co-ordinate (!) as well as the original position coordinate.  Where: 

 

!!!!! ! = !! ! ! ! !!!!!"!!!!!!! ! = !! ! ! !  (2.2) 
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In practice the spatial orbitals used are molecular orbitals (MO) constructed using a 

linear combination of the atomic orbitals (AO).  Where in practice these AO are 

represented by a set of known basis set functions.  Expanding such an unknown 

function in a set of known functions is not an approximation only if the basis set of 

known functions is complete.  However, in order for the basis set to be complete it must 

include an infinite number of functions, which is impossible in actual calculations.  It is 

of course desirable to represent the MO of a molecule as accurately as possible.  The 

two factors that influence this are: the size of the basis set and how accurately the 

individual basis functions represent the MO.  The more closely an individual basis 

function represents an unknown MO, the fewer basis functions are needed to represent 

it to the required level of accuracy.  Inversely the less closely an individual basis 

function represents the MO, the more basis functions are required for an accurate 

representation and therefore for greater accuracy the larger the basis set used the better.   

 

2.3.1 Basis Sets 

 

The MO can be represented by a set of known basis set functions as,   

 

!! ! = !!"!! !
!

!!!
 (2.3) 

 

Here φµ (r) is the known basis set function and Cµi is a variable that describes the weight 

of each of those basis set functions in the molecular orbital ψi (r).  The most common 

form of basis sets used are made up of exponential basis functions, which have the 

general form: 

 

!! ! = ! !,!, ! !!!!! (2.4) 

 

Where n=1 corresponds to the Slater type orbitals (STO) and n=2 corresponds to 

Gaussian type orbitals (GTO).  ! controls how quickly the function drops off as the 

distance from the nucleus increases, essentially defining the orbital size.   

 



 19 

Originally basis functions were made up of STO that mirror the distribution of an 

electron around a nucleus.  But the multi-centre integrals involved in polyatomic 

molecular calculations were difficult to solve and hampered early development.  The 

introduction of Gaussian type orbitals (GTO) greatly simplified such calculations.  

Individually the GTO poorly describe the atomic orbital, lacking the “cusp” at the 

nucleus and dropping off too quickly far from the nucleus.  This is overcome by using a 

number of GTO to model each AO.  Thus, a greater number of GTO are required to 

describe each AO than would be required if STO were used.  Even though GTO are 

inferior to STO as a basis set for representing MO, requiring more functions, this is 

more than compensated for by the relative decrease in the difficulty of the calculations 

required[2].   

 

A basis set that contains the fewest possible functions to describe a system is known as 

a minimum basis set. As the size of the basis set is increased the result approaches the 

basis set limit, which is the limit that would be reached if an infinite basis were used.  

At the basis set limit there is no longer an approximation in the basis set and any 

difference from the experimental result is due to other approximations.   

 

The first method used to improve on this minimum basis set is to increase the number of 

functions.  The first step in such improvements is the doubling of all basis functions, 

known as ‘Double Zeta’ (DZ).  Then triple zeta (TZ) where the number of functions are 

tripled and so on.  However, the core orbitals of an atom are essentially independent 

from other atoms within a molecule, meaning that multiplying the number of these core 

orbitals does not really benefit the basis.  This leads to the so-called ‘split valence basis’ 

where only the valence orbitals of the basis set are increased.   

 

A further improvement that can be used to improve a given basis set is the addition of 

polarisation functions.  These functions, of higher angular momentum functions than 

those included in the minimum basis functions, are important as they both assist in 

accurately describing the MO and as they aid in recovering electron correlation (vide 

infra) by providing space for the electrons to ‘avoid’ one another.   

 

A large amount of the total energy of a given system is accounted for by the 1s-

electrons. Hence, minimising the energy of a molecule will emphasize the optimisation 

of the core orbitals over the outer valence orbitals.  Many properties that depend on the 
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wave function far from the molecule can therefore be poorly described.  More generally 

the chemistry of a molecule is mainly dependent on the valence orbitals of the wave 

function and it is obviously a disadvantage if these orbitals are poorly described.  These 

problems are overcome by augmenting the energy-optimised basis set with diffuse 

functions.   

 

2.3.1.1 Contracted Basis Sets 

 

Adding in all of these functions to the minimal basis set increases the accuracy, but this 

comes at greater computational cost.  Equivalently, reductions in the basis set size come 

with a loss in accuracy and so a balance must be struck between accuracy and 

computational cost.  Combining the full set of basis functions (primitive GTOs, PGTOs) 

in fixed linear combinations results in functions called contracted GTOs (CGTOs), 

which reduces the size of the basis set.  Using these CGTO provides an increase in 

computational efficiency, but at the cost of lowering the accuracy and flexibility of the 

basis set.   

 

There is very little change in the inner core orbitals as they are largely independent of 

their environment.  Also, the inner core orbitals require a larger number of GTOs to 

describe them, because as previously stated GTO do not naturally describe the wave 

function cusp at the nucleus.  These orbitals are therefore ideal for basis set contraction, 

as the downsides of the contraction are minimised.  

 

2.3.1.2 Pople Basis Sets 

 

An example of a classic minimum basis set is the STO-3G basis set developed by Pople 

and co-workers, which uses three gaussian functions contracted to form an approximate 

single STO representation of each atomic orbital.  Very popular forms of split valence 

basis set are those of Pople, which have the form: 

 

k-nlmG (2.5) 

 

The G at the end of the basis name indicates that the basis uses GTO, the k at the front 

indicates how many PGTOs are used for the core orbitals. After the dash (-) the nlm 

indicate how many PGTOs are used in each contraction of the split valence. 2 values 
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(nl) would indicate split valence, while here nlm indicates a triple split valence.  For 

example 6-31G is a split valence basis, where the core orbitals are a contraction of 6 

PGTOs, the inner valence orbitals are a contraction of 3 PGTO and the outer valence is 

a single PGTO with no contraction.  

 

If polarisation functions are added to the basis this is indicated by terms that appear 

after the G.  A common alternate notation is the use of * to indicate each level of 

polarisation functions that have been added.  For instance, 6-31G* is equivalent to 6-

31G(d) that has added d-type polarisation functions to heavier atoms and 6-31G** is 6-

31G(d,p), which also has p-type polarisation added to hydrogen atoms.  The addition of 

diffuse functions is indicated by the addition of + or ++ before the G.  The + means 

diffuse s and p functions are added to heavier atoms and ++ mean that additionally 

diffuse s functions are added to hydrogen.  These basis sets have been defined mainly 

for the first row elements, though some second row elements have been derived for 

some of the basis sets[2].   

 

The disadvantage of segmented contraction type basis sets, such as the Pople basis sets, 

is that it is difficult to estimate what the basis set limit for a calculation would be.  Also 

it is not clear that a property of interest is converged with respect to basis set size from a 

series of calculations.  This is partly due to the fact that different PGTOs are used to 

produce each of the segmented basis sets.  More modern accurate basis sets use a 

general contraction scheme that generate a sequence of basis sets that converge toward 

the basis set limit.   

 

2.3.1.3 Atomic Natural Orbital Basis Sets (ANO) 

 

The Atomic natural orbital (ANO) basis set is a contraction of a large set of PGTO 

made up of natural orbitals generated using a correlation calculation on the free 

atom[34].  The natural orbitals are those that diagonalise the density matrix and the 

ANO contraction selects important combinations of the PGTO from the magnitude of 

the orbital occupation numbers from the correlation calculation.  By gradually altering 

the selection threshold of the occupation number an even-tempered sequence of 

contracted basis sets can be generated.  This sequence of basis sets systematically 

converges toward the basis set limit.  
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2.3.1.4 Correlation Consistent Basis Sets 

 

The main disadvantage of ANO is that a very large number of PGTO are required when 

converging toward the basis set limit.  Dunning and co-workers proposed correlation 

consistent basis sets as a way to produce comparable results to the ANO basis sets, 

while using a smaller set of PGTOs.  Correlation consistent basis sets are designed for 

recovering the correlation of the valence electrons and are built such that functions that 

contribute similar amounts of correlation energy are all added at the same stage.   

 

A sequence of cc basis sets that increase in quality are defined in terms of the final 

number of contracted functions.  These are known by the acronyms: cc-pVDZ, cc-

pVTZ, cc-pVQZ, cc-pV5Z and cc-pV6Z (correlation consistent polarised Valence 

Double/ Triple/ Quadruple/ Quintuple/ Sextuple Zeta).  The prefix aug- indicates that 

diffuse functions have been added to the energy-optimised cc basis set.  Tight functions 

can also be added to the basis set in order to recover correlation contributions involving 

the core orbitals.  These basis sets have the acronyms cc-pCVXZ (X=D, T, Q, 5).   

 

The number of correlation consistent basis sets have been expanded extensively by 

Peterson et al to greatly increase the scope of systems that the cc basis sets can be 

applied [35].  These include all-electron correlation consistent basis sets for the first row 

transition metals[36].  Relativistic effects become more prominent in heavier elements 

as the electrons of the core attain relativistic speeds.  Pseudo-potentials that represent 

the core orbital of the atom can account for these relativistic effects and such basis sets 

have been produced[35].  In the work of this thesis relativistic effects are neglected, as 

only first and second row elements are considered and the focus is on electron 

correlation effects only.   

 

2.4 The Schrödinger Equation 

 

! Ψ = Ε Ψ  (2.6) 

 

This is the simplest form of the Schrödinger equation.  The wave function, Ψ, is a 

probability wave that exists for any chemical system and which describes where the 
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particles of that system are most likely to be found.  The wave function itself is not an 

observable quantity.  Ψ is defined such that Ψ !, ! ! is the probability density of a 

particle being found at a point r at a given time t.  Also, the integral of this probability 

density over all space must be normalised, intuitively to be understood that the particle 

must be somewhere in space.  By the application of known operators to these wave 

function properties of the system can be determined.  These mathematical expressions 

are in the form of eigenvalue equations, whereby an operator acts on the wave function 

to give the original wave function multiplied by a scalar value, called an eigenvalue.  

This eigenvalue is the observable of interest.  The main aim of modern quantum 

chemistry is to obtain an accurate approximation to the wave function of a given 

system, from which the properties of that system may be determined.  The most 

common way of achieving this is by finding a solution to the Schrödinger Equation.   

 

H is the Hamiltonian operator, which is applied to the wave function and E are the 

eigenvalues that correspond to the energy of the system.  The Hamiltonian operator for 

a given system of nuclei and electrons is as follows 
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Which can be written symbolically as 

 

! = !! + !! + !!! + !!! + !!! (2.8) 

 

The Hamiltonian determines the total energy of the molecule.  It sums up the separate 

energy contributions made by the interactions between the individual elements in the 

molecular system, i.e. the mutual attractions and repulsions of the positively charged 

nuclei and negatively charged electrons.  Where each part is an operator that sum 

together to find the total energy, T being the kinetic energy of the electrons and nuclei 

respectively and V being the coulomb attractions and repulsions between them.   

 

When the system is perturbed by the introduction of external potential acting on the 

molecule, this can be accounted for by extending the Hamiltonian with extra terms.  

Looking at this Hamiltonian it can be seen that it will be far from a simple task to 
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analytically obtain a wave function for a general molecular system.  The system is in a 

constant state of flux, each element in the system is moving in a potential created by the 

other particles, which are themselves also moving, constantly changing the potential 

imposed on these same other particles.  Thus quantum chemistry is a true many-body 

problem and the subject has been developed by making systematic levels of 

approximation to solve the complex many-body problem.   

 

It is at this stage that the Born-Oppenheimer approximation is introduced.  Through this 

approximation the motion of the electrons decoupled from the motion of the nuclei, 

greatly simplifying the molecular Schrödinger equation.   

 

Clearly now, as the nuclei are fixed, Tn=0 and Vnn can be replaced by a constant (Vnn).  

The electronic Schrödinger equation now has the form:   

 

!!"!#Φ!"!# = Ε!"!#Φ!"!# (2.9) 

 

Where, 

 

!!"!# = !! + !!! + !!! + V!!!!!!!! (2.10) 

and 

Φ!"!# = Φ!"!# !! ; !!  (2.11) 

 

Notice also that the form of the wave function has also changed becoming the electronic 

wave function; a semi-colon rather than a comma separates the part in brackets.  This 

indicates that the while the function still depends explicitly on the positions of the 

electrons, r, it now depends parametrically on the positions of the nuclei, R.  The 

operators can now be collected according to the number of electron indices, 
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Where hi is the one-electron operator and gij is the two-electron operator. 

In the following sections the main computational chemistry methods used in this thesis 

will be introduced.  Such electronic structure methods fall into three categories: ab initio 

(Latin for “from the beginning”), semi-empirical methods, and density functional 

theory.  One of the most important ab initio methods is the Hartree-Fock method, as it 

provides the starting point upon which later ab initio methods build on.   

 

2.5 Hartree-Fock Approximation 

 

The Hartree-Fock approximation, which is equivalent to the molecular orbital 

approximation, is that each electron can be thought of as occupying a single distinct 

orbital.  From this approximation, Hartree-Fock (HF) equation is derived, which is one 

of the most important ab initio methods developed to provide approximate solutions to 

the electronic Schrödinger equation.  It has been successfully used to describe many 

systems, though it does have its limitations.  HF usually constitutes the starting point 

from which more accurate methods have been developed.   

 

The wave function for an N electron system can be constructed using a set of one-

electron spin orbitals.  The simplest wave function that can be constructed for an N 

electron system is that of a single Slater determinant (SD); the requirement that the 

many electron wave function be anti-symmetric with respect to electron interchange, as 

a consequence of the Pauli exclusion principle, being adhered to in a determinantal 

wave function.  The form of this is shown below 

 

Ψ !!, !!,⋯ , !! = !! !! !

!! !! !! !! ⋯ !! !!
!! !! !! !! ⋯ !! !!
⋮ ⋮ ⋱ ⋮

!! !! !! !! ⋯ !! !!
 (2.13) 

 

The (N!)-1/2 term is the normalisation constant where as above N is the total number of 

electrons.  Substituting this wave function into the electronic Schrödinger equation 

yields: 
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! = Ψ! !!"!# Ψ!  (2.14) 

 

Where Helec is the full electronic Hamiltonian and E is the energy found using the set of 

spin orbitals in the SD.  The variational principle states that the best possible wave 

function is the one that gives the lowest energy (E=E0).  Minimising E with respect to 

the choice of spin orbitals yields the HF equation, which determines the optimal spin 

orbitals.  The HF equation is an eigenvalue equation of the form: 

 

! ! ! !! = !" !!  (2.15) 

 

f(i) is the Fock operator and has the form 

 

! ! = !! + !!Ϝ !  (2.16) 

 

In the HF equation (2.15) the many electron wave function seen in the electronic 

Schrödinger equation (2.9) has been replaced by the spin orbital of a single electron, i.  

The first term of the Fock operator is the one-electron operator (vide supra).  While, the 

second term νHF(i) is something new; it is the HF potential.  It represents the average 

potential acting on the electron i by all of the other electrons.  This is represented using 

the coulomb operator (J) and the exchange operator (K) as:   

 

!!" ! = !! − !!
!

!
 (2.17) 

where 

!!" = !! ! !! ! |!!"|!! ! !! !  

!!" = !! ! !! ! |!!"|!! ! !! !  
(2.18) 

 

Using the self-consistent field method, the HF eigenvalue problem (2.15) can be solved 

iteratively to obtain the best set {!k} of orthogonal HF spin orbitals with orbital 

energies{εk}.  The N electrons of the system occupy the N lowest energy spin orbitals.  

The SD formed from these occupied orbitals is the HF ground state wave function and 

is the best variational approximation to the ground state of the system.  However the 

sum of the εk of the occupied !k does not equate to HF energy (EHF), due to double 
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counting of the electron-electron interactions.  The EHF of the system can be computed 

as:  

 

!!" = !! −
1
2 !!" − !!"

!

!"

!

!!!
+ !!! (2. 19) 

 

During these calculations, one- and two-electron integrals are required.  One-electron 

integrals, also known as core integrals, are used with the one-electron operator.  The 

two-electron integrals are required for the νHF(i) part.  In conventional HF methods, the 

two-electron integrals are calculated and saved before the SCF procedure begins[2]. 

 

2.6 Electron Correlation 

 

It is in this use of an average field, in the form of the HF potential, that the HF 

approximation loses accuracy.  The use of such a field neglects the correlation effects of 

the electrons.  The energy calculated by the HF method, EHF, is always larger than or 

equal to the exact non-relativistic BO energy E0.  Therefore the correlation energy can 

be defined as: 

 

Ε!"## = Ε! − Ε!Ϝ (2.20) 

 

This correlation energy, missing from the HF method, results because of the HF 

potentials failure to properly account for instantaneous repulsions between the electrons 

in the system.  The correlation energy proves important, as many of the features of a 

given molecule PES cannot be described accurately without the inclusion of this energy.   

 

The correlation energy can further be divided into two forms, dynamic and static 

correlation.  Dynamic correlation arises from this neglect of instantaneous electron 

repulsion (usually a large number of small collective effects), while static correlation is 

a result of a single determinant being qualitatively incapable of describing the system.  

Thus dynamic correlation is always missing but there is not always any static 

correlation, for example at a stable minima the correlation energy is almost exclusively 

dynamic in origin.  When static correlation is weak, HF provides a good approximation 
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of the wave function, allowing the use of single reference methods that build upon HF 

to be used to recover the dynamic correlation.  However, at stretched geometries near 

dissociation, for excited electronic states and near electronic degeneracies static 

correlation becomes much more important.  These wave functions are no longer 

dominated by a single electronic configuration and the HF wave function stops being a 

good fit.  Multi-configurational and multireference methods must be used in such cases 

to accurately describe the wave function[37].  This delineation of the two types of 

correlation is not completely rigorous and only the total combined correlation should be 

considered as a well-defined quantity.  A problem being that methods (such as CASSCF 

discussed later) designed to recover static correlation invariably also recover (a 

somewhat uncontrolled) amount of dynamic correlation.  Further dynamic correlation 

can be recovered using perturbative methods (for example CASPT2) at the expense of 

even more computer time. 

 

The main aim of the methods that have built on the HF method is to attempt to recover 

the correlation energy and resolve an energy value for a system closer to the exact 

energy.  The three main methods that have been developed to achieve this are 

Configuration Interaction (CI), Many-Body Perturbation Theory (MBPT) and Coupled 

Cluster theory (CC).  All three go beyond a single electronic configuration description 

of the molecular system and of the three perhaps the easiest to understand is 

Configuration Interaction[37-39].   

 

2.7 Configuration Interaction 

 

The HF method uses a single Slater determinant to define the wave function of a 

molecular system.  This Slater determinant represents a single configuration that the 

electrons adopt in the spin orbitals defined.  The configuration is of the ground state 

where the N electrons of the system occupy the N lowest energy spin orbitals.  The 

basic idea of CI is that by adding other Slater determinants to the wave function, which 

represent other electron configurations, higher energy orbitals in the wave function can 

become partially filled.  This has the effect of increasing the average distance between 

the electrons, recovering part of the electron correlation energy.  If this is extended so 
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that every possible electron configuration is included in the wave function it is called 

full Configuration Interaction (FCI).  The FCI wave function can be written as: 

 

Φ = !! Ψ! + c!! Ψ!!
!"

+ c!"!" Ψ!"!"
!!!
!!!

+ c!"#!"# Ψ!"#!"# +⋯
!!!!!
!!!!!

 
(2.21) 

 

The first term (!! Ψ! ) represents the ground state configuration. The second term 

( !!! Ψ!!!" ) represents all of the configurations where a single electron has been 

excited to a higher orbital.  The third term includes all of the doubly excited 

determinants and so it goes on until all possible determinants are included.  The 

expansion coefficients preceding the determinants in each of the terms give the weight 

of that determinant in the final wave function.  By optimising these coefficients the 

occupancy of each spin orbital can be determined, it is this that allows the orbitals to 

become partially filled.  If FCI is expanded in an infinite basis set the wave function 

constructed would be the exact wave function and all of the correlation energy would be 

recovered.  However, as it is obviously not possible to use an infinite basis, the wave 

function constructed in a given basis using FCI represents the best approximation of the 

exact wave function possible for that basis.  As larger and larger basis sets are used so 

the wave function defined converges towards the exact wave function. FCI is in practice 

the exact solution to the Schrödinger equation for a given basis set, but the 

complications associated with performing such calculations have restricted the 

application of FCI to only the smallest of systems.  

 

Given a basis set of 2K one-electron spin orbitals and an N electron molecular system, 

the number of N electron Slater determinants required for FCI is 

 

2Κ
Ν = (2Κ)!

Ν! 2Κ− Ν ! (2.22) 

 

For all but the smallest system the number of determinants required for a FCI makes the 

calculations totally impractical.  Using symmetry considerations and/or configuration 

state functionals (CSF) the size of system studied can be increased slightly by reducing 

the number of terms involved in the FCI calculation.  A CSF is a symmetry-adapted 

linear combination of SDs constructed to have the same quantum numbers as the wave 

function of the system being studied.  Fewer CSFs are required to express the wave 



 30 

function in comparison to SDs, which reduces the size of the FCI calculation.  Though 

this comes at the price of having to first generate the CSFs and the increase in system 

size that can be studied is marginal.  FCI remains important still as it provides a basis 

from which new approximate methods can be built and also in providing a benchmark 

for such methods developed[37].   

 

The two factors that restrict the size of system that can be investigated using a FCI 

calculation are (i) the generation of, and possible need to store, the Hij matrix and (ii) 

the diagonalisation of the matrix Hij becoming extremely large as the size of the system 

increases.  These problems are addressed directly by in someway restricting the size of 

the HAB matrix that is generated.  This is possible because of the many configurations 

generated very few contribute significantly to the energy solution for the system.  The 

problem though is that it hasn’t proved possible to predict in advance which of the 

configurations generated in a FCI calculation are the important ones.   

 

Determining which of the possible configurations to include in a CI calculation, and 

which can be left out, is therefore a main concern for all CI methods.  It becomes 

necessary to develop truncated versions of the FCI method that recover as much of the 

correlation energy as possible, while lowering the computational cost to a more 

practical level.  Two approaches used to achieve this are to literally truncate the FCI 

wave function (2.21) and through the use of Multi-Configuration Self-Consistent Field 

methods (MCSCF).   

 

2.7.1 Truncated CI 

 

The most common way to truncate the FCI calculation is by restricting what levels of 

excited determinant are included in the wave function.  So for example CISD is 

configuration interaction with singles and doubles, only the terms that represent single 

and double electron excitations are included.  For a small molecule at equilibrium 

geometry the CISD method will recover around 95% of the correlation energy[39].  The 

physical basis for this truncation is that the Hamiltonian operator (2.8) contains only 

two-body Coulomb terms and thus the most important extra determinants will be those 

differing by up to two spin-orbitals.  Such truncated methods can still require a large 

number of determinants, though fewer than FCI, and care must be used to insure that the 
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truncated method used still accurately models the system.  A relatively new method for 

truncating FCI is Monte Carlo Configuration Interaction (MCCI) that uses a randomly 

selected set of configurations in the wave function[40-46].  The MCCI method is the 

focus of work in chapters 5 and 6 and the method is described in more depth there.   

 

A method that doesn’t calculate energy values that scale linearly with the size of 

molecular systems is said to not be size consistent.  All truncated CI methods are not 

size consistent.  This is a problem, as the energies of different systems can’t be easily 

compared, as there is no linear relationship between them.  

 

2.7.2 MCSCF 

 

The MCSCF method involves generating a number of configurations determined by a 

given set of rules.  This involves classifying the one-electron spin orbitals into various 

sections, each defining how the electrons are treated in the multi-configurations 

generated.  The basic equation for the MCSCF wave function is: 

 

Ψ!"#"$ = !! Ψ!
!

 
(2.23) 

 

The wave function is generated by simultaneously optimising both the expansion 

coefficients (cI) and the molecular orbitals using self-consistent field method.  A 

prominent example of MCSCF is the Complete Active Space Self-Consistent Field 

(CASSCF) method that uses a FCI calculation on a subset of the molecular orbitals.   

 

2.7.2.1 Complete Active Space Self-Consistent Field (CASSCF) 

 

A description of the CASSCF method is included in some of the references at the start 

of this chapter, however it is a specialised method and is described in more detail in 

more advanced texts[7, 33, 47].  Within the CASSCF method the one-electron spin 

orbitals are divided into three classes: core, valence and virtual.  Figure 2-6 below 

shows a comparison between the molecular orbital partitions used in HF and those in 

CASSCF[1].   
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Figure 2-6: Comparison of HF and CASSCF MO 
 

The core orbitals are a set of spin orbitals that are considered doubly occupied for every 

configuration in the CASSCF wave function, while the virtual spin orbitals are always 

empty.  Between these two is the valence orbitals, which is a set of partially occupied 

orbitals within which a FCI expansion happens.  These rules determine the possible 

configurations that can be included in the wave function.  A set of Slater determinants 

(or spin-adapted configuration state functions) is generated for every possible excitation 

of these valence electrons within the valence orbitals, for which the core orbitals are 

always doubly occupied and the virtual orbitals are always empty.  The configurations 

generated allow for the spin orbitals in the valence orbitals to become partially filled 

recovering part of the correlation energy in the same way as the standard CI method.  

This separation of orbitals is possible because it is assumed that the lower energy 

orbitals of the molecule are effectively constant for the chemical process under 

consideration.  The main objective of CASSCF is not to recover dynamic correlation 

through large CI expansions but rather to obtain a qualitatively correct wave function 

when static correlation is important, i.e. when several electronic configurations are 

equally important.  The power of CASSCF is the dual optimization of both orbitals and 

CI expansion coefficients.  Thus, the orbitals obtained represent the best orbitals 

possible for the given CI expansion.  Note that in standard CI methods the orbitals are 
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fixed (usually HF ones), and the CI expansion is very slowly convergent in these fixed 

orbitals.   

 

CASSCF is considered to be a non black box method.  The user is required to define 

which orbitals are included in each section, which requires an understanding of the 

molecular system and the problem to be investigated.  Unlike the other methods 

previously described, where the user merely had to define the method and basis set.  

Thus in CASSCF the art of running calculations is to define the orbital subspaces 

appropriately for the system under investigation.  It is entirely probable that two aspects 

of the same chemical system would require differently defined active spaces.   

 

2.8 Perturbation Methods 

 

Given a reference solution that is close to the exact solution, perturbation theory can be 

used to improve the reference solution in relation to the exact solution.  All types of 

correction (S, D, T, Q, etc.) are added to the reference wave function up to a given order 

(2, 3, 4, etc.).  Perturbation methods are used in quantum mechanics to recover dynamic 

correlation where static correlation has been adequately treated in the reference 

configuration(s).  In effect the Hamiltonian can be defined as consisting of two parts H0 

the reference and a perturbation H′, 

 

! = !! + !!! (2.24) 

 

where λ is variable that determines the strength of the perturbation and the perturbed 

Schrödinger equation is given as:   

 

!Ψ =!Ψ (2.25) 

 

Here if λ=0, H=H0, Ψ=Φ0 and W=E0.  As the perturbation is increased from zero to a 

finite value, W and Ψ must also change.  They can be written as a Taylor expansion in 

the powers of λ. 

 

! = !!!! + !!!! + !!!! + !!!! +⋯+ !!!!! (2.26) 
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Ψ = !!Ψ! + !!Ψ! + !!Ψ! + !!Ψ! +⋯+ !!Ψ! (2.27) 

 

The Ψ1, Ψ2,… and W1,W2,… are the first-order, second-order, etc., corrections.  Setting 

the λ parameter to 1, the nth-order energy or wave function becomes a sum of the terms 

up to order n.  This creates a hierarchy of perturbation corrections converging on the 

exact solution.  For example the Moller-Plesset (MP) perturbation theory, which uses 

the Fock operators as its basis (MP2, MP3, etc.). 

 

Using the CASSCF method the static correlation is recovered returning a qualitatively 

correct wave function. Further to this a perturbative calculation can be included to 

recover additional dynamic correlation, this is the so-called CASPT2 calculation that 

includes a second-order perturbative correction[33].   

 

2.9 Coupled Cluster Theory (CC) 

 

The coupled cluster method differs from CI theory in that its wave function is 

constructed in the exponential ansatz[7, 48].   

 

Ψ = !! Ψ!  (2.28) 

 

Where |Ψ!  is the Hartree-Fock reference wavefunction and T is the cluster operator, 

which has the form: 

 

! = !! + !! + !! +⋯+ !! (2.29) 

 

T1 is the operator for all single excitations; T2 is the operator for all double excitations 

and so on until all possible excitations are included.  Expanding eT as a Taylor series:   

 

!! = 1+ !+ 1
2!!

! + 1
3!!

! +⋯ = 1
!!!

!
!

!!!
 (2.30) 

 

Combining this with (2.29) gives: 
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!! = !+ !! + !! +
1
2!!

! + !! + !!!! +
1
6!!

! +⋯ (2.31) 

 

Where the first term (1) will include the reference wave function, T1 includes all the 

single excitations, the first bracket all the doubles and so on.  When the equation is 

expanded to include all possible terms it is equivalent to the FCI equation, with all of 

the same problems.  The strength of CC is that when the wave function is truncated at a 

certain excitation level, the exponential form of the wave function allows that higher 

excitations are included in the solution as products of the lower excitation levels.  For 

instance at the CCSD level the so-called “connected” triplet excitations (T3) are left out 

but disconnected triplet excitations remain (!!!! + !
!!!

!).  A hierarchy of approximate 

CC methods is produced by this truncation (Table 2-2), which has very good 

improvements in accuracy at each step.   

 

CC method T eT 

CCS T1 !+ !! +
1
2!!

! + 16!!
! +⋯ 

CCSD T1 + T2 !+ !! + !! +
1
2!!

! + !!!! +
1
6!!

! +⋯ 

CCSDT T1 + T2 + T3 !+ !! + !! +
1
2!!

! + !! + !!!! +
1
6!!

! +⋯ 

Table 2-2: First three truncated CC methods with their cluster operator and the exponential of the cluster 
operator up to  
 

In practice, the cost of the methods increases dramatically with each step in the 

hierarchy.  CCSDT is a very computationally expensive method and could only be 

applied to the smallest of systems.  However, methods in between CCS and CCSD and 

between CCSD and CCSDT can be constructed using additional approximations[48].   

 

One-way to achieve this is to add in approximations of missing connected excitations 

using perturbation theory.  A perturbative non-iterative correction is added to the 

truncated CC method to approximate methods higher in the hierarchy.  The most 

popular example of this is the CCSD(T) method where the CCSD result is corrected by 

adding estimations of the connected triples from MP4 to approximate CCSDT.   

 

A major drawback of these intermediate methods, which utilise perturbative corrections, 

is that their non-iterative nature means they cannot be used to calculate excitation 
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energies and frequency-dependent molecular properties[48].  This has given rise to two 

new intermediate CCn methods (CC2 and CC3) designed to be able to calculate these 

molecular properties.   

 

In the CC2 method the singles are treated in the same way as CCSD, where possible 

perturbations in an orbital un-relaxed fashion are accounted for, but the doubles are 

approximated to the lowest non-vanishing order of a fluctuation operator.  The same 

philosophy is applied in higher order to produce CC3 as an approximated CCSDT 

model.  The treatment of singles and doubles in CC3 is identical to that of CCSDT, 

while the triples are approximated to the lowest non-vanishing order[48].  In terms of 

the quality of the results the excited state results of CC2 are comparable to the MP2 

results for the ground state.  While those of CC3 are comparable to CCSD(T), which is 

considered the ‘gold standard’ of ground state quantum chemistry. 

 

CC2 has been successfully combined with the resolution of identity approximation to 

allow wave function based calculations of excited states in large organic molecules[49].  

This method is currently one of the most frequently used methods for excited electric 

states outside of TD-DFT, e.g., in the program Turbomole[50], and is believed to be a 

robust excited state method for organic chromophores having generally performed well 

in benchmarks[51, 52].  Later in this thesis CC2, and other lower cost CC methods, are 

applied to inorganic systems.  For that discussion it is important to note that in order to 

achieve consistency between the electron correlation and orbital relaxation the CC 

operators are similarity transformed via the singles operators and amplitudes.  This is a 

very dramatic effect on the utility of the CCn methods when the singles amplitudes are 

large, i.e., when the HF orbitals are very poor in strongly correlated systems.   

 

In Figure 2-7 the hierarchy CC methods is plotted against a basis set that systematically 

improves in quality. By simultaneously improving both the FCI limit can be 

approached.   
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Figure 2-7: Coupled cluster N-electron space against the basis set 1-electron space.  Both axes provide a 
systematic route to improve on the calculated results, approaching the FCI limit.   
 

2.10 Density Functional Theory (DFT) 

 

Density functional theory (DFT) differs from the methods discussed earlier in that, 

rather than a wave function basis, it is based on electron density.  Hohenberg and Kohn 

proved that the ground state electronic energy is completely described by the electron 

density, ρ, of the system.  A functional for the total energy can be defined in the same 

way as the Hamiltonian for wave function methods, but using the electron density as a 

variable.   

 

Ϝ ! ! = !! ! ! + ! ! ! + Ε!"# ! !  (2.32) 

Te is the electron kinetic energy, V is the coulomb interactions and Encl is the non-

classical portion due to self-interaction correction, exchange (i.e., anti-symmetry) and 

electron correlation effects. Of these only the coulomb interactions can be explicitly 

defined.  Early attempts to design DFT models weren’t successful as there is a difficulty 

in computing the electron kinetic energies from such models.  However, in 1965 Kohn 

and Sham introduced the ideas that the electron density should be represented by a set 

of non-interacting orbitals.  Therefore, considering the non-interacting kinetic energy 

rather than the true kinetic energy, which alleviated this problem.  Crucially, these non-
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interacting orbitals should be taken to have the same density as those of the system 

where the electrons do interact.  However, the non-interacting kinetic energy is not 

equal to the true kinetic energy (!!" ≠ !).  To account for the difference the functional 

is separated to include the so-called exchange-correlation energy.   

 

Ϝ ! ! = !!" ! ! + ! ! ! + Ε!! ! !  (2.33) 

 

Where: 

 

Ε!! ! ! = !! ! ! + Ε!"# ! !  (2.34) 

 

Tc is the correction to the kinetic energy. In essence the exchange-correlation energy 

contains all of the unknowns and this is the major problem for DFT, that the exact form 

of the exchange-correlation functional is unknown.  The effort to approximate this 

unknown has spawned a host of different density functional methods.  A hierarchy of 

DFT functionals has been formed, however often a better result is found with a simpler 

functional (B3LYP) than for more powerful, higher ranked functionals.  With the 

further problems that while a good result is found for one system the functional won’t 

automatically work well for another containing different atoms and that it is impossible 

to systematically improve the results.   

 

The most popular of the DFT methods is B3LYP[53]. It is made up of the Becke’s 

exchange 3 parameter functional (B3), which incorporates a percentage of the exact 

exchange from the Hartree-Fock method, with the LYP functional of Lee, Yang and 

Parr[54].  B3LYP can be further combined with a long-range correction using the 

coulomb-attenuating method (CAM), in the form of CAM-B3LYP[55]. 

 

2.11 Response Theory 

 

The linear response theory assumes that there is a weak perturbation to the Hamiltonian, 

meaning that the solution can be written in terms of the eigenstates of the unperturbed 

system.  
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! ! = !! + !(!) (2.35) 

 

The perturbation can be usually an oscillating electric field, which has the form: 

 

! ! = !!!!!!
!

!!! (2.36) 

 

Where ωk is the frequency of the field, Fk is the field strength and Q is the perturbation 

operator.  The expectation value of a given operator P can be expanded in terms of the 

perturbations Q, R, …etc. [2]. 

 

! ! = ! 0 + !!!!!!
!

!;! !!!!

+ 12 !!!(!!!!!)!
!,!

!;!,! !!,!!!!!! +⋯ 
(2.37) 

 

The first term ( ! 0 ) is the static expectation value, the second term is the linear 

response, the third term is the quadratic response, and so on.  In the case of an excitation 

of the molecule by light the perturbation Q is the dipole operator (µ) and Fk is a vector 

containing the x,y,z components of the field.  When P=Q=R=µ, equation (2.37) is the 

linear response term !; ! !!, which gives information on the excited state transitions.  

In the energy representation the linear response equation has the form: 

 

!!,!! !! == −!!" !! !! !! !! !! !!
!! − !!!!!

 (2.38) 

 

Poles occur where ωk = ωj.  They correspond to excitation energies and the residues 

give the oscillator strengths between the ground state (!!) and the excited state of 

interest (!!).   
 

In this representation all excitations are considered e.g. all single excitations and de-

excitations, all double excitations and de-excitations, etc.  At this level everything is 

exact, analogous to the FCI approach, but is very computationally expensive.  

Therefore, truncating the method, restricting the excitation level, generates an 

approximate version.  The simplest approximate version corresponds to using the 
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Hartree-Fock reference and including only single excitations and de-excitations, which 

is known as the Random phase approximation (RPA).  This is identical to the time-

dependent Hartree-Fock (TD-HF) method[56] and corresponds to the time-dependent 

density functional method (TD-DFT) of DFT[56, 57].  When used with the coupled 

cluster wave function this approach is known as the Equation of Motion method (EOM-

CC), the most common version of which is EOM-CCSD[58]. If the expansion is 

extended to the second order and a MP reference wave function is used, this is the 

second order polarisation propagator approximation (SOPPA) method[59].  The hybrid 

SOPPA(CCSD) method[60] corresponds to the SOPPA method with the first- and 

second- order perturbation coefficients replaced with the CCSD amplitudes.   

 

CC and DFT methods are ostensibly ground state methods and aren’t therefore directly 

applicable to excited states.  Response theory provides a means by which such ground 

state methods can be applied to excited states.  Excitation energies and transition 

moments are obtained from poles and residues of response functions using otherwise 

ground state methods in conjunction with response theory.   

 

When combined with hierarchy of CC methods, response theory can produce a 

hierarchy of results for these excitation energies and transition moments.  The response 

theory results are systematically improved as higher order CC methods are applied 

(CCS, CC2, CCSD, CC3, ... etc.).   

  



 41 

2.12 References 

 

[1] Cramer, C. J., Essentials of computational chemistry: Theories and models. 2nd ed.; John Wiley 
& Sons, Ltd: 2004; p 579. 

[2] Jensen, F., Introduction to computational chemistry. 2nd ed.; Wiley: 2007. 
[3] Szabo, A.; Ostlund, N. S., Modern quantum chemistry : Introduction to advanced electronic 

structure theory. 1st ed. rev. ed.; Dover: 1996. 
[4] Atkins, P.; de Paula, J., Atkins' physical chemistry. Seventh Edition ed.; Oxford University Press: 

2002. 
[5] Atkins, P.; Friedman, R., Molecular quantum mechanics. Fourth Edition ed.; Oxford University 

Press: 2005. 
[6] Turro, N. J.; Ramamurthy, V.; Scaiano, J. C., Principles of molecular photochemistry an 

introduction. 1st edition ed.; University Science Books: 2009. 
[7] Cimiraglia, R., Methods of calculation of excited states. In Dipartimento di Chimica, Universita 

di Ferrara. 
[8] Atchity, G. J.; Xantheas, S. S.; Ruedenberg, K., Potential-energy surfaces near intersections. 

Journal of Chemical Physics 1991, 95, 1862-1876. 
[9] Levine, B. G.; Martinez, T. J., Isomerization through conical intersections. Annual Review of 

Physical Chemistry 2007, 58, 613-634. 
[10] Worth, G. A.; Cederbaum, L. S., Beyond born-oppenheimer: Molecular dynamics through a 

conical intersection. Annual Review of Physical Chemistry 2004, 55, 127-158. 
[11] Yarkony, D. R., Diabolical conical intersections. Reviews of Modern Physics 1996, 68, 985-

1013. 
[12] Yarkony, D. R., Conical intersections: Diabolical and often misunderstood. Accounts of 

Chemical Research 1998, 31, 511-518. 
[13] Yarkony, D. R., Nuclear dynamics near conical intersections in the adiabatic representation: I. 

The effects of local topography on interstate transitions. Journal of Chemical Physics 2001, 114, 
2601-2613. 

[14] Simons, J., An introduction to theoretical chemistry. Cambridge University Press: 2003. 
[15] Robb, M. A.; Garavelli, M.; Olivucci, M.; Bernardi, F., A computational strategy for organic 

photochemistry. REVIEWS IN COMPUTATIONAL CHEMISTRY, VOL 15 2000, 15, 87-146. 
[16] Bernardi, F.; Olivucci, M.; Robb, M. A., Potential energy surface crossings in organic 

photochemistry. Chemical Society Reviews 1996, 25, 297-369. 
[17] Paterson, M. J.; Bearpark, M. J.; Robb, M. A.; Blancafort, L.; Worth, G. A., Conical 

intersections: A perspective on the computation of spectroscopic Jahn-Teller parameters and the 
degenerate 'intersection space'. Physical Chemistry Chemical Physics 2005, 7, 2100-2115. 

[18] Paterson, M. J.; Bearpark, M. J.; Robb, M. A.; Blancafort, L., The curvature of the conical 
intersection seam: An approximate second-order analysis. Journal of Chemical Physics 2004, 
121, 11562-11571. 

[19] Paterson, M. J.; Robb, M. A.; Blancafort, L.; DeBellis, A. D., Mechanism of an exceptional class 
of photostabilizers: A seam of conical intersection parallel to excited state intramolecular proton 
transfer (esipt) in o-hydroxyphenyl-(1,3,5)-triazine. Journal of Physical Chemistry A 2005, 109, 
7527-7537. 

[20] Worth, G. A.; Cederbaum, L. S., Beyond born-oppenheimer: Molecular dynamics through a 
conical intersection. Annual Review of Physical Chemistry 2004, 55, 127-158. 

[21] Jahn, H. A.; Teller, E., Stability of polyatomic molecules in degenerate electronic states. I. 
Orbital degeneracy. Proceedings of the Royal Society of London. Series A, Mathematical and 
Physical Sciences 1937, 161, 220-235. 

[22] Bersuker, I. B., Modern aspects of the Jahn-Teller effect theory and applications to molecular 
problems. Chemical Reviews 2001, 101, 1067-1114. 

[23] Bersuker, I. B., The Jahn-Teller effect as a general tool for solving molecular and solid state 
problems: Novel findings. J. Mol. Struct. 2007, 838, 44-52. 

[24] Bersuker, I. B.; Balabanov, N. B.; Pekker, D.; Boggs, J. E., Pseudo-Jahn-Teller origin of 
instability of molecular high-symmetry configurations: Novel numerical method and results. 
Journal of Chemical Physics 2002, 117, 10478-10486. 

[25] Bearpark, M. J.; Blancafort, L.; Robb, M. A., The pseudo-Jahn-Teller effect: A CASSCF 
diagnostic. Molecular Physics 2002, 100, 1735-1739. 



 42 

[26] Blancafort, L.; Bearpark, M. J.; Robb, M. A., Ring puckering of cyclooctatetraene and 
cyclohexane is induced by pseudo-Jahn-Teller coupling. Molecular Physics 2006, 104, 2007-
2010. 

[27] McKinlay, R. G.; Paterson, M. J., The Jahn–Teller effect in binary transition metal carbonyl 
complexes, The Jahn-Teller Effect. In Köppel, H.; Yarkony, D. R.; Barentzen, H., Eds. Springer 
Berlin Heidelberg: 2009; Vol. 97, pp 311-344. 

[28] McKinlay, R. G.; Zurek, J. M.; Paterson, M. J., Vibronic coupling in inorganic systems: 
Photochemistry, conical intersections, and the Jahn-Teller and pseudo-Jahn-Teller effects. In 
Advances in inorganic chemistry, Rudi van Eldik; Harvey, J., Eds. Elsevier Inc.: 2010; Vol. 62, 
p 351. 

[29] Zurek, J. M.; Paterson, M. J., Theoretical study of the pseudo-Jahn-Teller effect in the edge-
sharing bioctahedral complex mo2(dxyif)2(o2cch3)2(µ2-o)2. Inorg. Chem. 2009, 48, 10652-10657. 

[30] Paterson, M. J.; Chatterton, N. P.; McGrady, G. S., View from the bridge: A pseudo-Jahn-Teller 
approach to transition metal hydrosilane complexes. New J. Chem. 2004, 28, 1434-1436. 

[31] Pearson, R. G., Concerning Jahn-Teller effects. Proceedings of the National Academy of 
Sciences of the United States of America 1975, 72, 2104-2106. 

[32] Bersuker, I. B., The Jahn-Teller Effect. Cambridge University Press: Cambridge, UK ; New 
York, 2006; p xvi, 616 p. 

[33] Roos, B. O., Multiconfigurational quantum chemistry. In Theory and applications of 
computational chemistry: The first forty years, Dykstra, C., Ed. Elsevier B. V.: 2005; pp 725-
764. 

[34] Pou-Amérigo, R.; Merchán, M.; Nebot-Gil, I.; Widmark, P.-O.; Roos, B., Density matrix 
averaged atomic natural orbital (ANO) basis sets for correlated molecular wave functions. 
Theoret. Chim. Acta 1995, 92, 149-181. 

[35] Peterson, K. A. Peterson research group: Correlation consistent basis sets. 
http://tyr0.chem.wsu.edu/~kipeters/basis.html  

[36] Balabanov, N. B.; Peterson, K. A., Systematically convergent basis sets for transition metals. I. 
All-electron correlation consistent basis sets for the 3d elements Sc--Zn. The Journal of 
Chemical Physics 2005, 123, 064107-15. 

[37] Knowles, P.; Schutz, M.; Werner, H.-J., Ab initio methods for electron correlation in molecules. 
In winterschool, 21 - 25 February 2000, Grotendorst, J., Ed. John von Neumann-Institute for 
Computing: Forschungszentrum Jülich, 2000; Vol. 3, p 638. 

[38] Shavitt, I., The history and evolution of configuration interaction. Molecular Physics 1998, 94, 
3-17. 

[39] Sherrill, D. C., An introduction to configuration interaction theory. In School of Chemistry and 
Biochemistry, Georgia Institute of Technology: 1995. 

[40] Coe, J. P.; Taylor, D. J.; Paterson, M. J., Calculations of potential energy surfaces using Monte 
Carlo configuration interaction. The Journal of Chemical Physics 2012, 137, -. 

[41] Coe, J. P.; Taylor, D. J.; Paterson, M. J., Monte Carlo configuration interaction applied to 
multipole moments, ionization energies, and electron affinities. Journal of Computational 
Chemistry 2013, 34, 1083-1093. 

[42] Greer, J. C., Estimating full configuration-interaction limits from a monte-carlo selection of the 
expansion space. Journal of Chemical Physics 1995, 103, 1821-1828. 

[43] Greer, J. C., Consistent treatment of correlation-effects in molecular dissociation studies using 
randomly chosen configurations. Journal of Chemical Physics 1995, 103, 7996-8003. 

[44] Greer, J. C., Monte carlo configuration interaction. Journal of Computational Physics 1998, 146, 
181-202. 

[45] Grein, F., Density functional theory and multireference configuration interaction studies on low-
lying excited states of TiO2. Journal of Chemical Physics 2007, 126, 034313. 

[46] Győrffy, W.; Bartlett, R. J.; Greer, J. C., Monte carlo configuration interaction predictions for 
the electronic spectra of Ne, CH2, C2, N2, and H2O compared to full configuration interaction 
calculations. Journal of Chemical Physics 2008, 129, 064103. 

[47] Robb, M. A.; Bernardi, F., Ab initio modelling of chemical reactivity using mc-scf and vb 
methods. Theoretical and Computational Models for Organic Chemistry 1991, 339. 

[48] Christiansen, O., Coupled cluster theory with emphasis on selected new developments. Theor 
Chem Account 2006, 116, 106-123. 

[49] Hättig, C.; Weigend, F., CC2 excitation energy calculations on large molecules using the 
resolution of the identity approximation. The Journal of Chemical Physics 2000, 113, 5154-
5161. 

[50] Turbomole v6.2 2010, a development of University of Karlsruhe and 
Forschungszentrum Karlsruhe GmbH, 1989-2007, 
TURBOMOLE GmbH, since 2007; available from 
http://www.turbomole.com. 



 43 

[51] Sauer, S. P. A.; Schreiber, M.; Silva-Junior, M. R.; Thiel, W., Benchmarks for electronically 
excited states: A comparison of noniterative and iterative triples corrections in linear response 
coupled cluster methods: CCSDR(3) versus CC3. Journal of Chemical Theory and Computation 
2009, 5, 555-564. 

[52] Schreiber, M.; Silva-Junior, M. R.; Sauer, S. P. A.; Thiel, W., Benchmarks for electronically 
excited states: CASPT2, CC2, CCSD, and CC3. The Journal of Chemical Physics 2008, 128, 
134110. 

[53] Becke, A. D., Density-functional thermochemistry. Iii. The role of exact exchange. The Journal 
of Chemical Physics 1993, 98, 5648-5652. 

[54] Lee, C.; Yang, W.; Parr, R. G., Development of the colle-salvetti correlation-energy formula into 
a functional of the electron density. Physical Review B 1988, 37, 785-789. 

[55] Yanai, T.; Tew, D. P.; Handy, N. C., A new hybrid exchange‚äìcorrelation functional using the 
coulomb-attenuating method (CAM-B3LYP). Chem. Phys. Lett. 2004, 393, 51-57. 

[56] Dreuw, A.; Head-Gordon, M., Single-reference ab initio methods for the calculation of excited 
states of large molecules. Chemical Reviews 2005, 105, 4009-4037. 

[57] Stratmann, R. E.; Scuseria, G. E.; Frisch, M. J., An efficient implementation of time-dependent 
density-functional theory for the calculation of excitation energies of large molecules. The 
Journal of Chemical Physics 1998, 109, 8218-8224. 

[58] Stanton, J. F.; Bartlett, R. J., The equation of motion coupled-cluster method. A systematic 
biorthogonal approach to molecular excitation energies, transition probabilities, and excited state 
properties. The Journal of Chemical Physics 1993, 98, 7029-7039. 

[59] Packer, M. J.; Dalskov, E. K.; Enevoldsen, T.; Jensen, H. J. r. A.; Oddershede, J., A new 
implementation of the second-order polarization propagator approximation (SOPPA): The 
excitation spectra of benzene and naphthalene. The Journal of Chemical Physics 1996, 105, 
5886-5900. 

[60] Sauer, S. P. A., Second-order polarization propagator approximation with coupled-cluster 
singles and doubles amplitudes - SOPPA(CCSD): The polarizability and hyperpolarizability of 
li-. Journal of Physics B: Atomic, Molecular and Optical Physics 1997, 30, 3773. 

 
 

 

  



 44 

Chapter 3: Excited States of TiO2 Clusters - Challenges for 

Computational Chemistry. 

 

Titanium dioxide (TiO2) has been the focus of much attention in recent years, both 

experimentally[1-11] and computationally[12-24], mainly due to the potential 

applications for which it would appear to be suitable[25, 26].  Also as TiO2 is often seen 

as the simplest transition metal oxide, due to its relatively simple ground state electronic 

structure, and therefore an ideal candidate for studies of such systems.   

 

The low cost and relative abundance of TiO2 has meant that it has always had a broad 

range of, perhaps menial, applications from paint, to sunscreen and toothpaste.  

However, since the 1972 discovery of the photocatalytic splitting of water on the 

surface of TiO2 under UV light[27] the number of potential applications has been 

greatly expanded.  These new applications seem promising for tackling important 

problems in energy and environmental sciences[28].  Therefore, a good understanding 

of the electronic structure of bulk and nanoclusters of TiO2 is of paramount importance 

in these endeavours.  Especially as TiO2 nanoclusters display some fascinating quantum 

size effects, whereby unique (non-bulk) cluster properties may be observed[15].  In the 

development of such applications an effort has been made to enhance the natural 

properties of the material.  One example is the ambition to make TiO2 active at certain 

visible wavelengths and a number of possible solutions for this are being tested, 

including electron and hole doping, and photosensitisation[6, 28-30].  In order to better 

develop this material for future applications a detailed understanding of the interplay 

between electronic and geometrical structure is desirable.   

 

In recent years experimental and theoretical studies on (TiO2)n nanoclusters have been 

on-going to understand the basic nature of the bonding, electronic transitions, electron 

attachment, quantum size effects, and how the electronic structure of the clusters 

evolves to that of the bulk materials (e.g., the rutile and anatase phases).  It should be 

noted that TiO2 clusters are inherently difficult to work with experimentally for a 

number of reasons. These include the fact that for larger cluster sizes there are a greater 

number of possible isomers, there is often a very high density of electronic, vibrational 

and rotational states, and the clusters can be easily fragmented in ionisation 
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processes[5].  Regardless of these problems neutral[5], positive[4, 7, 10], and 

negative[9, 11] TiO2 clusters have been produced in the gas-phase and are the recent 

focus of experimental efforts at better understanding the electronic structure of TiO2.   

 

Computational studies of TiO2 typically have two driving factors; firstly to find cluster 

models that can be used as accurate substitutes for the bulk material itself, and secondly 

to discover any unique properties of the clusters themselves.  For example work has 

been undertaken to consider how changing the size and shape of TiO2 clusters affect 

their attributes, such as excitation energies, in comparison to the bulk band-gap[24].  

TiO2 clusters have been investigated using many of the methods of quantum 

chemistry[20].  Such clusters have the advantage that, as they involve relatively fewer 

atoms than for example bulk slab models, they are more accessible to higher accuracy 

computational methods.   

 

In the two chapters that follow a computational study of the small (TiO2)n clusters n=1-

4, including the neutral closed-shell, radical cation, and radical anion species, is 

presented.  Firstly the (TiO2)n n=1-4 neutral structures, which were used as a starting 

point for the subsequent investigations, are described.  Then in the rest of chapter 3 an 

investigation of the low-lying singlet excited states of (TiO2)n clusters n=1-4 using a 

range of methods is presented.  Starting with a more in-depth look at the TiO2 

monomer, followed by a less in-depth look at the low-lying excited states of the (TiO2)n 

clusters n=2-4 clusters.   

 

In Chapter 4 the geometry of some of the neutral clusters is rationalised in terms of the 

pseudo-Jahn-Teller effect (pJT). The pJT effect in charged radical clusters is then 

considered and it is seen that vibronic coupling will often cause the radical clusters to 

adopt a different geometry to that of the neutral.   
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3.1 Neutral (TiO2)n n=1-4 Structures. 

 

 
Figure 3-1: Neutral (TiO2)n (n=1-4) structures symmetries and electronic states optimised at B3LYP/cc-
pVTZ level. 
 

In Figure 3-1 the structures of five neutral clusters of (TiO2)n for n=1-4, including two 

energetically relevant isomers for the n=2 system are presented.  The geometries of the 

n=1 and 2 clusters are discussed in more detail in the next chapter, where they are 

rationalised in terms of the pseudo-Jahn-Teller effect.  As the value of n is increased so 

the number of possible stable isomers of each cluster size also increases and this study 

has been limited to consider only those clusters up to n=4.  In part this is due to the use 

of correlated methods such as CASSCF and EOM-CCSD for calibration purposes but it 

is hoped that the paradigm will be equally relevant to larger clusters as well.  Indeed in 

chapter 4 it is shown that the pJT effect can be used to rationalise the various isomeric 

forms of (TiO2)2 and also the ways of interconverting between them.   

 

The structures presented in Figure 3-1 are optimised at the B3LYP level.  The n=1 

monomer has a C2v symmetry with a bond-length of 1.64 Å and an angle of about 

111.88°.  This compares well with computational results of Dixon et al[20] who 

reported a bond-length of 1.666 Å and angle of 112.4° at the CCSD(T) level.  There are 

two n=2 structures shown; both consist of a central square formed by the two titanium 

and two oxygen; the difference being the relative positions of the terminal oxygen.  The 

C2v structure square has side of length 1.86 Å (1.870 Å), Ti-terminal oxygen bond 

TiO2%,%1A1%(C2v)% Ti2O4%,%1A1%(C2h)% Ti2O4%,%1A1%(C2v)%

Ti3O6%,%1A1%(Cs)% Ti4O8%,%1A1%(C2v)%
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2.015%

1.622%
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length 1.62 Å (1.645 Å) and angle 125.86°.  The C2h structure has a square side length 

of 1.85 Å (1.863 Å), Ti-terminal oxygen bond length 1.63 Å (1.648 Å) and angle 

124.47°.  The values which appear in brackets are those also reported in [20] at the 

CCSD(T) level and it can be seen that there is good agreement with them.  This is also 

true for the bond-lengths in both the (Cs) n=3 structure and the (C2v) n=4 structure.  The 

structures found here optimised using B3LYP agree well with those of the higher-level 

CCSD(T) calculations (which can be set as benchmark results for the neutral species).   

 

3.2 Calculations of the Low-Lying Excited States of the TiO2 Molecule 

 

3.2.1 Background 

 

Highly correlated methods such as CCSD(T) have been used on neutral and anion 

clusters up to n=4 and these provide the most accurate benchmark results available for 

ground state structures[20].  The isolated TiO2 molecule has been the subject of several 

studies aimed at elucidating its geometry and electronic spectroscopy[2, 8, 9, 18, 20, 21, 

31-34].  However, the first applications of correlated response theory to the problem of 

the excited states of this molecule are presented here.   

 

The development of computational methods to treat electronically excited states has 

gathered pace in the last decade or so.  In addition to complex multireference techniques 

applied to small and medium sized molecules (e.g., MRCI and CASPT2), nowadays a 

correlated treatment of electronic excitations is possible via the coupled cluster response 

hierarchy (CCS, CC2, CCSD, CC3).  Here a systematic improvement in molecular 

properties (e.g., excitation energies and transition moments) is obtained at each 

subsequent level of the hierarchy[35, 36].  The calculation of excitation energies in 

larger molecular systems is possible using both wave function and density functional 

techniques.  For example the second-order CC2 response method has emerged as a 

reliable and relatively low cost way to study a range of states in a balanced manner.  

Hättig has presented a review of second-order excited state methods[37], while Sauer et 

al. have analysed the performance of such methods in organic molecules[38].  The CC2 

method in particular has become invaluable to account for multi-configurational 
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character in excited states (e.g., state-mixing), and in the study of charge transfer 

excitations.  Time-dependent linear response density functional theory also now has a 

prominent position as used to study excited states of large molecular systems.   

 

3.2.2 Results and Discussion 

 

The geometry of TiO2 was optimized using B3LYP in conjunction with the cc-pVTZ 

basis (vide infra).  The ground electronic state is a closed-shell singlet with a C2v 

geometry.  The optimized geometrical parameters are, TiO bond-length: 1.644 Å, and 

OTiO bond-angle: 111.9°.  These compare well with the detailed MRCI study by Grein 

which gave the minimum ground state geometry as TiO bond-length: 1.640 Å, and 

OTiO bond-angle: 112.0°[18].  Other theoretical work at the CCSD(T)/aug-cc-pVTZ 

level gave optimized geometrical parameters of TiO bond-length: 1.663 Å, and OTiO 

bond-angle: 112.4°[20].   

 

The one electron basis sets used for the coupled-cluster calculations discussed in detail 

below were atomic natural orbitals (ANOs).  For oxygen the ANO-1 set[39] was 

contracted (6s5p3d2f)/[4s3p2d1f], while for titanium the ANO-3 set[40] was contracted 

(8s7p6d5f4g)/[7s6p4d2f1g].  For the density functional linear response calculations the 

cc-pVTZ basis was used (standard cc-pVTZ for oxygen ([4s3p2d1f] contracted basis 

functions), and Petersen’s cc-pVTZ for titanium[41] ([7s6p4d2f1g] contracted basis 

functions)).   

 

As the coupled cluster response calculations are benchmark results all electrons were 

correlated.  The effect of tight core correlation functions was determined by comparing 

linear response CCSD excitation energies for the 1 1B2 and 1 1A2 states using the cc-

pwCVTZ basis (Petersen’s [9s8p6d3f2g] contraction for titanium[41], and the standard 

cc-pCVTZ for oxygen of [6s5p3d1f] contracted functions).  The core correlation 

functions changed the excitation energy by less than 0.05 eV, while the frozen core 

approximation (oxygen 1s, titanium 1s2s2p) gave rise to a difference of around 0.1 eV.  

However, freezing the titanium semi-core (3s3p) gave extremely poor results, out by 

more than 5 eV for the 1 1B2 state.  The effect of extra diffuse functions was determined 

by comparing the 1 1B2 and 1 1A2 excitation energies using the cc-pVDZ and cc-pVTZ 
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basis sets with their augmented counterparts, aug-cc-pVDZ (standard augmented 

functions for oxygen giving [4s3p2d], while Petersen’s diffuse set[41] was added for 

titanium to give [7s6p4d2f]), and aug-cc-pVTZ (standard augmented functions for 

oxygen giving [5s4p3d2f], while Petersen’s diffuse set[41] was added for titanium to 

give [8s7p5d3f2g]).  In going from cc-pVDZ to aug-cc-pVDZ both excitation energies 

increase by around 0.1 eV, while the difference between cc-pVTZ and aug-cc-pVTZ is 

less than 0.05 eV.  The difference between aug-cc-pVDZ and cc-pVTZ is also less than 

0.05 eV.  Continuing further in this vein the affect of adding Rydberg-type orbitals[42] 

to the basis on the 1 1B2 state excitation energy was also checked.  Thus the ANO basis 

discussed above was augmented with centre-of-mass s, p, d, and f functions with half-

integer quantum number ranging from 4.5 to 8.5.  At the CCSD level the Rydberg basis 

gave an excitation energy of 2.381 eV, compared to 2.386 eV without these additional 

functions.  Therefore this state has almost no Rydberg character and is a pure valence 

excited state.   

 

 CIS/CCS CIS(D) SOPPA SOPPA(CCSD) CC2 CCSD CCSDR(3) CC3 

1 1B2 4.433 0.000 -0.914 -1.018 0.219 2.386 2.247 2.370 

1 1A2 5.112 2.285 -0.891 -0.987 0.704 3.045 2.730 2.376 

1 3B2 4.263  -0.873 -0.979 0.284 2.333  2.489 

1 3A2 4.671  -0.844 -0.942 0.748 3.016  2.498 

2 1B2 5.260 0.000 -0.232 -0.368 1.161 3.213 3.053 3.291 

1 3A1 4.267  0.509 0.372 2.764 3.083  3.522 

2 1A1 4.833 0.000 0.624 0.466 2.745 3.315 3.478 3.599 

3 1A1 5.456 0.000 1.059 0.906 3.363 4.027 4.250 3.677 

1 3B1 4.518  0.542 0.414 2.999 3.375  3.804 

1 1B1 4.984 0.000 0.623 0.499 3.061 3.599 3.766 3.890 

2 1A2 5.321 -0.439 1.621 1.462 3.665 3.969 4.175 3.998 

2 1B1 5.230 0.000 0.949 0.833 3.217 3.711 3.889 4.002 

Table 3-1: TiO2 vertical excitation energies (in eV) from 1 1A1 ground state to lowest singlet and triplet 
states, obtained with a variety of wave function methods using an ANO basis.   
 

Table 3-1 presents the results of wave function methods including CCS/CIS, which for 

single-excitation dominated states give excitation energies correct to first-order; a range 

of second-order methods: CIS(D)[43], CC2[44], the second-order polarization 

propagator approximation (SOPPA)[45], SOPPA with CCSD amplitudes replacing 

MP2 ones (SOPPA-CCSD)[46], and those obtained from the full CCSD linear response 

function (equivalent to equation-of-motion-CCSD (EOM-CCSD) for excitation 

energies); and CC3[47], and CCSDR(3)[48], in which the excitation energies are correct 



 50 

to 3rd-order due to the inclusion of connected triples.  CCSDR(3) is a non-iterative 

approximation to the benchmark CC3 method.  The Dalton 2.0 program[49] was used 

for all wave function based excited state calculations.  The spectrum for TiO2 obtained 

from CCSDR(3) excitation energies and CCSD oscillator strengths is plotted in Figure 

3-2.  

 

 
Figure 3-2: Spectra for TiO2 obtained from CCSDR(3) excitation energies and CCSD oscillator strengths 
 

In Figure 3-3 the excitation energies for the first singlet excited 1B2 state as calculated 

using a range of CC methods are presented.  The accuracy of the methods used 

increases going from left to right.  Each of the lines of the plot represent the results 

calculated using a different basis set.  In general for such plots oscillatory behaviour in 

the result is expected, as the accuracy of the CC method used increases and the result 

closes in on the correct result for the given basis set.  The results will oscillate about the 

correct result for the given basis set and gradually converge to this value.  This would 

seem to be true of the blue and green lines, but not the red.  Comparing the results of the 

smaller (blue line) and Larger (red line) basis sets in Figure 3-3 there is reasonably good 

agreement between the results up to CCSD, but that the CC3 results are very different. 

In general the CC2 results are poor, being almost as far from the results of the more 

accurate methods as the SCF.   
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Figure 3-3: Excitation energy against computational method for the first excited state (1B2) of TiO2.  The 
results using 3 different basis sets is shown for comparison.  The accuracy of the methods used increases 
moving left to right. 
 

The green line demonstrates the results where the basis set for Ti is consistent with that 

used for the blue line, but with diffuse functions added to the oxygen basis set.  This 

does show the oscillatory behaviour, but converges to a result about half of the expected 

result.   

 

In Figure 3-4 the Oscillator strength against computational method for the first excited 

state (1B2) of TiO2 are shown. These results pair with those of Figure 3-3.  These curves 

should have the same oscillatory nature as those of the excited energy and this appears 

to be true of all of the curves.  Due to computational constraints the CC3 oscillator 

strengths for the larger basis sets were not calculated. Therefore it is unclear if the 

difference between the red and blue curves at the CC3 level shown in Figure 3-3 is 

repeated here.  Again the green curve where diffuse functions are added to oxygen 

converges to an oscillator strength which is different from the two other curves.   
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Figure 3-4: Oscillator strength against computational method for the first excited state (1B2) of TiO2.  The 
results using 3 different basis sets is shown for comparison.  The accuracy of the methods used increases 
moving left to right. 
 

Excitation energy against computational method for the second singlet excited state 

(1A2) of TiO2 are plotted in Figure 3-5.   

 

 
Figure 3-5: Excitation energy against computational method for the second singlet excited state (1A2) of 
TiO2.  The results using 3 different basis sets is shown for comparison.  The accuracy of the methods used 
increases moving left to right. 
 



 53 

As 1A2 is a dark state all calculated oscillator strengths were zero.  Unlike those of the 

first excited state the excitation energy results of the 1A2 state are well behaved.  There 

is little difference in the results using the different sized basis sets and the oscillatory 

behaviour is clearly evident.  In section 3.3 the low-lying singlet excited states of 

(TiO2)n molecules n=2-4 are investigated and similar plots of the first excited state are 

presented.  Where possible the results have been calculated using the same small (blue) 

and large (red) basis sets, though for the larger cluster sizes only the small basis set is 

considered. In each case there is oscillatory behaviour in the curves and very little 

difference in the results using the different sized basis sets (where available).  The 

inconsistency in the results for the first excited state of TiO2 demonstrates the difficulty 

inherent with describing this state.  

 

In Table 3-2 the results of time-dependent linear response Hartree-Fock (TD-HF) and 

density functional theory (TD-DFT) are presented.  For TD-DFT the functionals chosen 

are the popular B3LYP functional, the Coulomb attenuated extension of this (CAM-

B3LYP[50]) designed to correctly describe charge transfer excitations, and the M06L 

functional[51] from the Truhlar family (expected to give best performance of this 

family for transition metal containing systems). The Gaussian 09 program[52] was used 

for these calculations.   

 

 TD-HF TD-B3LYP TD-CAM-B3LYP TD-M06L 

1 3B2 3.420 2.519 2.744 3.110 

1 1B2 4.397 2.633 2.868 3.172 

1 3A2 3.965 3.119 3.297 3.271 

1 3A1 2.641 3.208 3.254 3.751 

1 1A2 4.906 3.241 3.429 3.367 

2 1B2 4.992 3.353 3.580 3.704 

2 1A1 4.767 3.487 3.696 4.187 

1 3B1 3.969 3.535 3.653 3.989 

1 1B1 4.861 3.788 4.017 4.290 

2 1B1 4.934 4.021 4.143 4.406 

2 1A2 4.946 4.098 4.287 4.716 

3 1A1 5.131 4.209 4.370 4.568 

Table 3-2: TiO2 vertical excitation energies (in eV) from 1 1A1 ground state to lowest singlet and triplet 
states, obtained with time-dependent (TD) Hartree-Fock and density functional methods using the cc-
pVTZ basis. 
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It is clear that there is significant variation with these methods for the electronic states 

considered: the lowest two singlet states, and the lowest triplet state of each symmetry 

type.  The experimental excitation energy for the S1 state is 2.3 eV, as originally 

obtained by McIntyre et al[53].  This refers to the adiabatic (0-0) transition however, so 

the vertical excitation energy will be a little higher.  One of the most recent 

spectroscopic experiments measured the absorption of TiO2 after preparation of TiO2
- 

trapped in a Neon matrix at 6 K, followed by electron detachment of the trapped 

species[2].  The spectrum thus obtained shows (adiabatic) band onsets around 2.37 eV 

and 3.37 eV. These bands were assigned to the 1 1B2 and 1 1B1 excited states.   

 

For the 1 1B2 state CCSD, CCSDR(3), and CC3 are all within 0.1 eV of the 

experimental value of Ref. [53].  Probably any of the third order values is the most 

accurate, but it should be noted that since vibrational effects (not considered here) can 

be between 0.01 and 0.1 eV it is difficult to say which.  This state is dominated by 

single-excitations and is thus appropriate for both coupled-cluster and density functional 

response theory (all response methods having some problems for doubly-excited states).  

The CC2 method breaks down completely here with an excitation energy of only 0.21 

eV, while the non-iterative CIS(D) also breaks down with an excitation energy of 

almost zero.  At the CIS level the first two states of B2 symmetry are almost 1 eV apart 

and thus one might not except any problems related to quasi-degeneracy.  However 

comparing the absolute excitation energies in Table 3-1 it is clear that correlation effects 

are so strong here that such zeroth order states are not appropriate for the perturbative 

CIS(D) method and also cause serious problems for CC2 and the SOPPA based 

methods, which generate negative excitation energies.  The TD-DFT results for this 

state are better, especially B3LYP and CAM-B3LYP, although M06L is in error by 

around 0.6 eV.   
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Figure 3-6: Natural transition orbitals obtained from TD-CAM-B3LYP/cc-pVTZ for the first two singlet 
excitations. The S1 state is represented as a transition from oxygen pπ-orbitals to a titanium 3dx2-y2/4s 
orbital, while the S2 state is represented as a transition from oxygen pπ-orbitals to a titanium 3dxz/4px 
orbital. 
 

In Figure 3-6 the natural transition orbitals[54] for the TD-CAM-B3LYP excitations to 

the 1 1B2 and 1 1A2 states are shown.  All methods except TD-HF and CCS/CIS 

correctly predict that the 1 1B2 and 1 3B2 states are very close in energy.  The results for 

the vertical ground state singlet (1 1A1) to the first excited triplet (1 3B2) can be 

compared with previous high-level calculations obtained by explicitly optimizing each 

state separately[20].  The CCSD(T)/aug-cc-pVDZ adiabatic triplet excitation result of 

2.24 eV by Dixon et al[20] is in line with the CC3 result of 2.489 eV when the excited 

geometry relaxation is taken into account (vide infra).  It is also noted that the 

experimental estimate for the HOMO-LUMO band-gap from photoelectron 

spectroscopy is 2.22 eV[11].  For the 1 1B2 state the calculated oscillator strengths are: 

0.0025 (CC2), 0.0068 (CCSD), 0.0120 (TD-HF), 0.0067 (TD-B3LYP), 0.0060 (TD-

CAM-B3LYP), 0.0034 (TD-M06L).  The 1 1A2 state is electric dipole forbidden. 

 

CASSCF calculations (using Gaussian 09), with 12 electrons in 12 active orbitals 

generating 427350 singlet configurations, in conjunction with the cc-pVTZ basis 

discussed above have also been performed.  Using state-specific CASSCF there is 

considerable orbital relaxation in the 1 1B2 state. The S1 vertical excitation energy is 
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2.80 eV.  The one-electron density matrix elements for the S1 state show two singly 

occupied orbitals, which are almost identical to the TD-CAM-B3LYP natural transition 

orbitals shown in Figure 3-6.  The CAS(12,12) T1 vertical excitation energy is 2.83 eV.  

Previous calculations indicate that the ground state is quite well described by a single 

configuration wave function[20, 31, 32].  The CASSCF results also indicate that this is 

the case, although it should be noted that the CCSD  diagnostic is relatively high 

(0.04).  Previously, Li et al[20] have also noted this point.  The MRCI values of Grein 

are 2.43 eV for the 1 1B2 state, 3.09 eV for the 1 1A2 state, 2.40 eV 1 3B2 state, and 3.07 

eV 1 3A2 state[18].  For all the states considered the error in CCSD is on average around 

0.3 eV compared to CC3, while for CCS/CIS the error is several eV.  CC2 fails badly 

for the 1 1,3B2 and 1 1,3A2 states but performs better for the states above these.  CIS(D) 

fails for all states with the strange exception of the 1 1A2 state in which CIS(D) is 

fortuitously within 0.09 eV of the CC3 result.  CC3 gives much closer excitation 

energies for the 1 1B2 and 1 1A2, and 1 3B2 and 1 3A2 pairs of states.  This is not seen in 

CCSD or CCSDR(3) where the 1A2 dark state excitation energy is over 0.5 eV above 

that of the 1 1B2 state. 

 

The adiabatic excitation energy of the lowest excited S1 (1 1B2) state have also 

investigated, as detailed in Table 3-3.   

 

Method a Vertical b Adiabatic c 

CIS/CCS 4.433 4.082 

CIS(D) 0.000 -1.239 

CC2 0.219 -0.573 

CCSD 2.386 2.062 

CCSDR(3) 2.247 1.864 

CC3 2.370 2.083 

TD-B3LYP 2.633 2.345 

TD-CAM-B3LYP 2.868 2.593 

TD-M06L 3.172 2.883 

Table 3-3: Comparison of TiO2 1 1B2 ← 1 1A1 vertical and adiabatic excitation energies (in eV).   
a ANO basis for CC response (all electrons correlated), and cc-pVTZ basis for TD-DFT.   
b Calculated at ground state B3LYP/cc-pVTZ optimized geometry.   
c Calculated at 1 1B2 state EOM-CCSD/cc-pVTZ optimized geometry. 
 

The excited state geometry was optimized at the equation-of-motion CCSD (EOM-

CCSD) level (using Gaussian 09), using the cc-pVTZ basis discussed above.  The 

geometry for this state is not linear, as predicted by earlier studies[31], but rather has a 

T̂1
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OTiO angle of 101.0°, while the TiO bond-length is 1.672 Å.  TD-DFT geometry 

optimization for this state gives very similar results: OTiO angle of 100.4° and TiO 

bond-length of 1.672 Å for TD-B3LYP, and OTiO angle of 104.8° and TiO bond-length 

of 1.659 Å for TD-CAM-B3LYP.  This is in good agreement with the most recent 

spectroscopic characterization of TiO2 which shows vibrational progressions associated 

with the 1B2 transition consistent with the OTiO angle reducing, and the TiO bonds 

lengthening while maintaining C2v symmetry[2, 8, 34].  The adiabatic excitation 

energies in Table 3-3 are around 0.3 – 0.4 eV lower than the corresponding vertical 

excitation energy, and the poor performance of CIS(D) and CC2 is again apparent. 

 

Finally, the most recent spectroscopic characterization of the molecule used Stark effect 

spectroscopy to determine the permanent electric dipole moments of the ground 1 1A1 

state and 1 1B2 excited state[8, 34].  These properties have been computed at the 

optimized geometries for each state (Table 3-4).   

 

Methoda 1 1A1 b 1 1B2 c 

CCS 8.07 D 4.12 D 

CC2 3.60 D - 

CCSD 6.74 D 3.70 D 

CCSD(T) 7.00 D - 

MRCId 6.73 D 5.07 D 

Expt.e 6.33 ± 0.07 D 2.55 ± 0.08 D 

Table 3-4: Comparison of permanent electric dipole moments of 1 1A1 and 1 1B2 states. 
a ANO basis (all electrons correlated).   
b Coupled cluster results, using orbital unrelaxed response, calculated at ground state B3LYP/cc-pVTZ 
optimized geometry.   
c Coupled cluster results, using orbital unrelaxed response, calculated at 1 1B2 state EOM-CCSD/cc-pVTZ 
optimized geometry.   
d Reference [18].   
e Reference [8].   
 

For the ground state the CCSD and CCSD(T) methods perform well, although 

CCSD(T) is slightly further from the experimental value than CCSD or the MRCI 

results in Ref. [18].  It has been found that due to the charge transfer in the 1 1B2 excited 

state, from O to Ti (Table 3-1), that the dipole moment of this state is greatly reduced 

(to around 2.55 D).  The CCSD result for this state is in reasonable agreement with Ref. 

[8] at 3.70 D.  The only other theoretical estimate of this property came from the MRCI 

studies in Ref. [18], which gave a value of 5.07 D.  Clearly this is a challenging 

electronic state and future computation of the geometry and dipole moment (also 
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including vibrational averaging) at third-order or higher in a large basis set is desirable 

to fully reconcile with experiment.   

 

3.3 Calculations of the Low-Lying Singlet Excited States of (TiO2)n n=2-4.   

 

3.3.1 Results and Discussion 

 

A hierarchy of coupled-cluster response methods (LR-CC) were used, in addition to 

equation of motion CCSD (EOM-CCSD) and TD-DFT methods, to study the low-lying 

singlet excited states of the (TiO2)n neutral clusters (n=2-4 shown in Figure 3-1).  It is 

worth noting that the LR-CCSD and EOM-CCSD methods are completely equivalent 

for excitation energies, though not necessarily for transition moments.  The two 

excitation energies computed should be the same, all things being equivalent.  The 

differences in the results are purely due to the different basis sets used for each method.  

The one electron basis sets used for the LR-CC methods were the cc-pVDZ basis set for 

oxygen and the ANO-3 [6s4p3d1f] set for titanium.  While the cc-pVDZ basis sets were 

used for both titanium and oxygen for all EOM-CCSD and TD-DFT calculations.  Of 

the basis sets used the ANO basis is expected to be slightly better than the cc-pVDZ 

basis and so in this case the LR-CCSD calculations expected to be slightly better than 

the EOM-CCSD.  The TD-DFT functionals chosen are the B3LYP functional and the 

Coulomb attenuated extension of this, CAM-B3LYP.  All calculations were performed 

using the GAUSSIAN03 program[55] with the exception of the coupled-cluster 

response calculations, which were performed using the Dalton program[49].  

 

In Figure 3-7 the first 20 CCSDR(3) excitation energies are plotted as a function of 

cluster size (n).  The excited states can be seen to compress together as n increases. This 

may be representative of the band structure of the TiO2 bulk forming as the cluster size 

increases. 

 



 59 

 
Figure 3-7: First 20 CCSDR(3) excitation energies as a function of cluster size (n) 
 

In the next section the vertical excitation energies (in eV) from ground state to low-

lying singlet states, obtained with a variety of methods are presented. The coupled-

cluster response methods results represent the first five singlet excited states for each 

excitation symmetry.  While the EOM-CCSD and TD-DFT methods results are of the 

first ten excited states independent of the symmetry. The exception being the case of 

n=4 where only the first 5 EOM-CCSD results are presented.  The results are ordered 

according the order of the CCSD results, as the CCSD results for the monomer are 

believed to be qualitatively correct.   

 

3.3.1.1 (TiO2)2 – C2h 

 

Table 3-5 shows the vertical excitation energies from the 1Ag ground state to several of 

the lowest excited singlet states for the TiO2 dimer with C2h symmetry.   

 

 CIS/CCS CC2 CCSD CCSDR(3) CC3 EOM-

CCSD 

TD-

B3LYP 

TD-CAM-

B3LYP 

1 1Bg 5.624 1.855 3.671 3.469 3.233 3.7204 3.729 4.0135 

1 1Au 5.651 2.019 3.729 3.565 3.343 3.7831 3.874 4.0997 

1 1Bu 5.284 2.159 3.836 3.630 3.369 3.9115 3.894 4.1878 

1 1Ag 5.302 2.284 3.919 3.746 3.479 4.0053 4.082 4.3133 

2 1Bu 5.677 2.854 4.155 4.184 4.057 4.2036 4.326 4.5259 

2 1Ag 5.704 3.024 4.165 4.198 4.138 4.2177 4.325 4.5405 
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2 1Bg 5.895 3.095 4.546 4.331 4.088 4.5369 4.325 4.7008 

3 1Bu 6.077 3.070 4.550 4.256 4.134 - 4.539 4.7746 

3 1Bg 6.064 3.313 4.614 4.400 4.235 4.6769 4.481 4.8096 

2 1Au 5.921 3.292 4.624 4.415 4.209 4.6817 4.268 4.8083 

3 1Ag 6.086 3.068 4.719 4.439 4.207 -   

3 1Au 6.084 3.352 4.754 4.552 4.385 4.7583   

4 1Bg 6.506 3.350 4.807 4.545 4.455    

5 1Bg 6.852 3.984 4.980 4.953 4.920    

4 1Au 6.563 3.755 4.983 5.003 4.605    

4 1Bu 6.461 3.643 5.010 4.787 4.609    

5 1Au 6.869 4.083 5.050 4.833 4.952    

4 1Ag 6.496 3.895 5.252 5.086 4.541    

5 1Ag 6.890 4.259 5.455 5.142 4.929    

5 1Bu 6.759 4.150 5.471 5.158 4.746    

Table 3-5: (TiO2)2 C2h symmetry vertical excitation energies (in eV) from 1 1A1g ground state to lowest 
singlet states, obtained with a variety of methods 
 

As stated the results are ordered according the order of the CCSD results, however none 

of the methods order the states consistently with the CCSD results, each having a 

different order.  All of the methods apart from CIS/CCS correctly find the 1 1Bg excited 

state as the first excited state.  If only the first five excitations are considered, the results 

do correlate with the order of the CCSD results with exception of those of the CIS/CCS 

and B3LYP methods.  The CIS/CCS results are completely different, while those of 

B3LYP differ in the order of the 5th and 6th excitation where they are found to be 

extremely close in energy (a difference of 0.001 eV).   

 

In Figure 3-8 the excitation energy against computational method for the first singlet 

excited state (1Bg) of (TiO2)2 with C2h symmetry are plotted.  The results of two 

different basis sets are shown, the blue line corresponding to the smaller of the two.  

The oscillatory nature of the curve is present for both curves and there is very little 

difference in the results of the different basis sets.   
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Figure 3-8: Excitation energy against computational method for the first singlet excited state (1Bg) of 
(TiO2)2 with C2h symmetry.  The results using 2 different basis sets is shown for comparison.  The 
accuracy of the methods used increases moving left to right. 
 

The 1 1Bg state of (TiO2)2 with C2h symmetry is a dark state and so the oscillator 

strengths of the excitation were zero for all methods. 

 

 
Figure 3-9: transition orbitals for the first singlet excitations for (TiO2)2 C2h obtained from EOM-
CCSD/cc-pVDZ.  
 

In Figure 3-9 the transition orbitals for the EOM-CCSD excitations to the 1 1Bg state are 

shown.  This excitation is represented by a transition from p-type oxygen orbitals to a 

combination of different d-type orbitals of titanium. The spectrum for (TiO2)2 with C2h 
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symmetry obtained from CCSDR(3) excitation energies and CCSD oscillator strengths 

is plotted in Figure 3-10.   

 

 
Figure 3-10: Spectra for (TiO2)2 C2h obtained from CC(3) excitation energies and CCSD oscillator 
strengths. 
 

3.3.1.2 (TiO2)2 – C2v 

 

In Table 3-6 the results of the C2v symmetry dimer are presented and again they are 

ordered with respect to the CCSD results, although again over the states calculated none 

of the other methods match this order.   

 

 CIS/CCS CC2 CCSD CCSDR(3) CC3 EOM-
CCSD 

TD-
B3LYP 

TD-CAM-
B3LYP 

1 1B1 5.347 1.486 3.262 3.104 2.951 3.2833 3.2576 3.5995 
1 1A2 5.505 1.695 3.525 3.379 3.154 3.5497 3.6111 3.8771 
1 1A1 5.072 1.961 3.578 3.441 3.210 3.6306 3.5289 3.8891 
1 1B2 5.090 1.973 3.743 3.620 3.377 3.7672 3.7129 4.007 
2 1B2 5.498 2.135 3.895 3.652 3.481 3.8787 3.8813 4.156 
2 1A1 5.445 2.899 4.043 4.150 4.087 4.0511 4.1709 4.3728 
3 1B2 5.878 3.065 4.059 4.101 4.085 4.0708 4.2043 4.4072 
2 1A2 5.788 2.507 4.138 3.917 3.769 4.0957 3.9178 4.2668 
2 1B1 5.804 2.833 4.449 4.173 3.995 4.4229 4.3048 4.605 
3 1A1 5.885 3.060 4.636 4.422 4.128 - -  
3 1B1 5.929 3.328 4.681 4.614 4.306 - -  
4 1B1 6.443 3.570 4.731 4.617 4.433 - -  
3 1A2 5.914 3.315 4.744 4.770 4.256 4.6481 4.2786  
5 1B1 6.629 3.792 4.797 4.740 4.560    
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4 1A1 6.436 3.401 4.876 4.641 4.371    
4 1A2 6.356 3.573 4.976 4.683 4.643    
5 1A2 7.193 3.749 5.085 4.916 4.754    
4 1B2 6.245 3.885 5.236 5.196 4.537    
5 1B2 6.745 4.211 5.377 5.210 4.940    
5 1A1 6.584 4.170 5.492 5.382 4.807    
Table 3-6: (TiO2)2 C2v symmetry vertical excitation energies (in eV) from 1 1A1 ground state to lowest 
singlet states, obtained with a variety of methods. 
 

All of the methods, with the exception of CIS/CCS, correctly find the first excited state 

as the 1 1B1 excited state.  Considering only the first five excitations, here both the 

CIS/CCS and B3LYP methods fail to predict the correct order of the singlet excitations.  

However, the other results do correlate with the ordering of the CCSD results over these 

first five states.   

 

In Figure 3-11 the excitation energy against computational method for the first singlet 

excited state (1B1) of C2v geometry of the (TiO2)2 cluster are plotted.  The results of two 

different basis sets are shown, the blue line corresponding to the smaller of the two.  

The oscillatory nature of the curve is present for both curves and there is very little 

difference in the results of the different basis sets.   

 

 
Figure 3-11: Excitation energy against computational method for the first singlet excited state (1B1) of 
(TiO2)2 with C2v symmetry.  The results using 2 different basis sets is shown for comparison.  The 
accuracy of the methods used increases moving left to right. 
 

Oscillator strength against computational method for the first singlet excited state (1B1) 

of (TiO2)2 with C2v symmetry are plotted in Figure 3-12.  The oscillator strengths for the 
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methods larger than CCSD were not calculated due to computational constraints.  There 

are fewer points so it is difficult to say the curve is still oscillatory.  There is a 

difference in the results at the SCF level, but this disappears at the CC2 level.  At the 

CC2 level the oscillator strength is found to be almost zero (0.000047 for the smaller 

basis and 0.000052 with the larger) for both basis set sizes.  At the CCSD level there is 

a very slight difference in the oscillator strengths at the different basis set size (8 x 10-5).   
 

 
Figure 3-12: Oscillator strength against computational method for the first singlet excited state (1B1) of 
(TiO2)2 with C2v symmetry.  The results using 2 different basis sets is shown for comparison.  The 
accuracy of the methods used increases moving left to right. 
 

 
Figure 3-13: First singlet excitations for (TiO2)2 C2v obtained from EOM-CCSD/cc-pVDZ. 
 

In Figure 3-13 the transition orbitals for the EOM-CCSD excitations to the 1 1B1 state 

are shown.  The transition is from the p-type orbitals of oxygen to the dz
2-type orbitals 
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of titanium.  The spectrum for (TiO2)2 with C2v symmetry obtained from CCSDR(3) 

excitation energies and CCSD oscillator strengths is plotted in Figure 3-14.   

 

 
Figure 3-14: Spectra for (TiO2)2 C2v obtained from CC(3) excitation energies and CCSD oscillator 
strengths. 
 

3.3.1.3 (TiO2)3 

 

In Table 3-7 the results of the Cs symmetry (TiO2)3 molecule are presented. Over the 

states considered with each method, none of the methods agree with each other as to the 

ordering of the states.  In this case CC2 and the two DFT methods incorrectly find the 

first excited state to be 1 1A′, rather than the correct 1 1A′′ state.   

 

 CIS/CCS CC2 CCSD CCSDR(3) EOM-CCSD TD-B3LYP TD-CAM-B3LYP 
1 1A'' 5.520 1.782 3.809 3.448 3.866900 3.651 4.1662 
1 1A' 5.521 1.649 3.987 3.470 3.993300 2.9927 4.0621 
2 1A'' 6.007 1.975 4.165 3.830 4.178300 3.8237 4.3343 
2 1A' 6.008 2.006 4.223 3.735 4.312800 3.6976 4.4604 
3 1A' 6.036 2.691 4.337 4.106 4.380100 3.7254 4.5715 
3 1A'' 6.062 2.437 4.388 4.113 4.388900 3.9276 4.5315 
4 1A' 6.103 2.724 4.435 4.277 4.465200 3.7996 4.668 
4 1A'' 6.111 2.667 4.436 4.190 4.433400 4.0481 4.6037 
5 1A' 6.317 2.850 4.542 4.303 4.540800 3.866 4.7004 
6 1A' 6.347 2.893 4.560 4.377 - - 4.7910 
5 1A'' 6.138 2.741 4.561 4.321 4.554000 4.1103  
6 1A'' 6.349 2.929 4.574 4.324    
7 1A'' 6.402 2.978 4.708 4.419    
7 1A' 6.498 2.930 4.724 4.383    
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8 1A' 6.522 3.015 4.878 4.498    
8 1A'' 6.590 3.250 4.912 4.799    
9 1A' 6.861 3.179 4.915 4.623    

10 1A' 6.871 3.357 4.985 4.771    
9 1A'' 6.849 3.483 5.052 4.956    

10 1A'' 6.868 3.579 5.270 5.038    
Table 3-7: (TiO2)3 Cs symmetry vertical excitation energies (in eV) from 1 1A1 ground state to lowest 
singlet states, obtained with a variety of methods.   
 

Again considering the first 5 states, there is a poor general agreement as to the ordering 

of the states.  CIS/CCS, CCSD and EOM-CCSD all agree with each other as to the 

ordering of the states.  But none of the results of the other methods are consistent with 

this ordering, or with each other.   

 

In Figure 3-15 Excitation energy against computational method for the first singlet 

excited state (1A′′) of (TiO2)3 are plotted.  Due to computational constraints only the 

small basis set is considered.  The oscillatory nature of the curve is present.   

 

 
Figure 3-15: Excitation energy against computational method for the first singlet excited state (1A′′) of 
(TiO2)3.  The accuracy of the methods used increases moving left to right. 
 

In Figure 3-16 the oscillator strength against computational method for the first singlet 

excited state (1A′′) of (TiO2)3 is presented.  Again the small number of points make it 

difficult to define the curve as oscillatory.   
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Figure 3-16: Oscillator strength against computational method for the first singlet excited state (1A′′) of 
(TiO2)3.  The accuracy of the methods used increases moving left to right. 
 

 
Figure 3-17: First singlet excitations for (TiO2)3 obtained from TD-CAM-B3LYP/cc-pVTZ. 
 

In Figure 3-17 the transition orbitals for the TD-B3LYP excitations to the 1 1A′′ state 

are shown.  This transition is represented by an excitation from the orbitals of oxygen to 

the d-type orbitals of titanium.  The spectrum for (TiO2)3 obtained from CCSDR(3) 

excitation energies and CCSD oscillator strengths is plotted in Figure 3-18. 
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Figure 3-18: Spectra for (TiO2)3 obtained from CC(3) excitation energies and CCSD oscillator strengths. 
 

3.3.1.4 (TiO2)4 

 

In Table 3-8 the results of the C2v symmetry (TiO2)4 molecule are presented.  Again 

there is no consistency in the ordering of the states over the states considered by each 

method.  But this time, even if a small subset of the first 5 excitations is considered 

there is no correlation between the ordering of the excitations. Even when just the first 

excited is considered there is little agreement. CIS/CCS predicts it to be 1 1A2. CCSD 

predicts it to be 1 1B1, while EOM-CCSD predicts 1 1B2.  There is however general 

agreement between the rest of the methods, which all predict 1 1A1, but given these 

methods have been found to be less reliable with these (TiO2)n systems it is difficult to 

say they are correct.   

 

 CIS/CCS CC2 CCSD CCSDR(3) EOM-CCSD TD-B3LYP TD-CAM-B3LYP 
1 1B1 6.084 1.625 3.649 3.265 4.001300 2.7722 4.108 
1 1A1 6.104 1.520 3.677 3.063 3.753100 2.4444 3.777 
1 1A2 5.931 1.633 3.684 3.290 3.740500 3.2482 4.004 
1 1B2 5.942 1.661 3.927 3.403 3.703000 3.2377 3.953 
2 1A1 6.168 1.887 4.151 3.652 - 3.3889 4.202 
2 1B2 6.148 2.335 4.168 3.729 - 3.5275 4.464 
2 1A2 6.101 2.001 4.244 3.768 4.230200 3.5175 4.263 
2 1B1 6.113 2.540 4.320 4.026  3.163 4.315 
3 1A1 6.453 2.499 4.323 3.997  3.5358 - 
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3 1B2 6.352 2.474 4.336 3.835  - - 
3 1A2 6.196 2.552 4.338 4.092  - - 
4 1A1 6.484 2.908 4.466 4.014  - - 
4 1A2 6.351 2.775 4.550 4.206  - - 
3 1B1 6.244 2.560 4.557 4.196  3.1956 4.443 
4 1B2 6.396 2.852 4.580 3.916   - 
4 1B1 6.531 2.742 4.686 4.332   4.476 
5 1B2 6.551 2.875 4.714 4.463    
5 1B1 6.688 3.075 4.719 4.545    
5 1A1 6.687 3.196 4.727 4.577    
5 1A2 6.482 3.102 4.733 4.524    

Table 3-8: (TiO2)4 Symmetry vertical excitation energies (in eV) from 1 1A1 ground state to lowest singlet 
states, obtained with a variety of methods 
 

Plots for the first singlet excited state (1B2) of (TiO2)4 were not made, as it is unclear 

from the results which state is the first excited state. The spectrum for (TiO2)4 obtained 

from CCSDR(3) excitation energies and CCSD oscillator strengths is plotted in Figure 

3-19.   

 

 
Figure 3-19: Spectra for (TiO2)4 obtained from CC(3) excitation energies and CCSD oscillator strengths. 
 

3.4 Conclusions 

 

On the basis of the TiO2 monomer results it is concluded that caution should be 

exercised when applying lower cost excited state response methods to some transition 
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metal oxide systems, even though a priori it would be expected that there should be few 

problems regarding the nature of the system and the states involved. Strong but 

differing electron correlation effects present in the ground and valence excited 

electronic states may present problems in such systems.  These effects are not so strong 

as to invalidate single-reference approaches completely, and CCSD works very well, 

and DFT can also do so.  However the approximate second-order approaches discussed 

above may breakdown when applied to such systems.   

 

The results for the n=2-4 clusters have also been presented, but difficulty in gaining any 

consistency in the ordering of states between results was found.  This may be due to the 

differences in the basis sets used. The LR-CC methods used cc-pVDZ basis set for 

oxygen and the ANO-3 [6s4p3d1f] set for titanium.  While the EOM-CCSD and TD-

DFT calculations used the cc-pVDZ basis sets for both titanium and oxygen.  Of the 

basis sets used the ANO basis is thought to be slightly better than the cc-pVDZ basis 

and so in this case the LR-CCSD result to be slightly better than the EOM-CCSD.  

Though if only the LR-CC are considered in isolation there is still a disparity in the 

results and that this disparity worsens as the cluster size increases.  If only the first five 

excited states are considered at the n=2 cluster size the higher order CCSD, CCSDR(3) 

and CC3 methods all find the same ordering of the states, this is not true of the larger 

clusters.  At n=3 these 3 methods find a different ordering from each other, though the 

CCSD is consistent with the EOM-CCSD. While at n=4 none of the methods agree as to 

the ordering of the excited states, even when restricted to considering only the first five.  

In fact at n=4 it is unclear which state is the first excited state.   

 

Since the work in this thesis was completed, further work was undertaken that extended 

upon its findings[56-59].   
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Chapter 4: Vibronic Coupling Effects on the Structure and 

Spectroscopy of Neutral and Charged TiO2 Clusters. 

 

4.1 Theoretical Background 

 

Bulk TiO2 (e.g., the rutile phase) is a wide band gap semiconductor[1].  Therefore 

doping in a variety of forms is an important factor.  Clusters with an extra electron 

(radical anions), or an excess hole (radical cations), are useful models to study how the 

doping can affect the electronic and geometrical structure.  Indeed as detailed below 

comparison of the charged clusters with the neutrals show many differences in structure.   

 

As discussed below the geometry of some of the neutral clusters is best rationalised in 

terms of the pseudo Jahn-Teller effect (pJT), whereby vibronic coupling between the 

ground and excited states causes the clusters to adopt preferred shapes.  This is then 

extended to look at the pJT effect in the charged radical clusters, where the constraints 

placed on the electronic structure theory are even more severe, but again it can be seen 

that vibronic coupling will often cause the radical cluster to adopt a different geometry 

to that of the neutral; this results in charge localisation on the cluster, which can be 

different between the radical cations and anions.   

 

An expansion that describes the pJT effect was used first in bonding problems by 

Bader[2] and over the years there have been many rigorous (non-perturbative) 

descriptions of the pJT effect.  Perhaps the simplest to illustrate the concept is the 

second-order perturbative expansion of the lower (non-degenerate) potential surface (E) 

originally due to Pearson[3], this is shown in equation (4.1) 
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!!
!" Ψ! + !!
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!!!!
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 (4.1) 

 

E0 is the energy at the expansion point, and V is the nuclear-nuclear and nuclear-

electronic terms in the Hamiltonian, while the second term of this expression is, by 
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definition, zero for the optimised structure of a non-degenerate state (Ψ0) (i.e., zero 

gradient).  The third has been proved to always be positive by Bersuker et al[4] (and 

references therein).  The final term is always negative as the energy (Ej) of the excited 

state (Ψj) is always greater than that of Ψ0.  There is one such expansion along each of 

the 3N-6 normal vibrational coordinates (Qi∈3N-6) of the molecule at the (high-

symmetry) expansion geometry.  It is the relative magnitude of the two quadratic terms 

that determine the stability of the molecule at this geometry.  If for a given vibrational 

coordinate Qi the sum of these two terms is negative then the geometry is unstable and 

there will be a pJT distortion along this vibrational coordinate.  Symmetry can be used 

to determine if the final term is non-zero or not as the vibronic matrix element must 

transform as the totally symmetric (TS) irreducible representation (irrep) of the point 

group, i.e., 

 

Ψ!
!"
!"!

Ψ! ≠ 0!iff!Γ!!⨂Γ!!⨂Γ!! ⊃ Γ!" (4.2) 

 

Many computational methods have been used in studying in the pJT effect down the 

years.  An interesting one developed in recent years is based upon symmetry restrictions 

to a CASSCF Hessian matrix calculation first proposed by Bearpark et al[5]. This is 

based upon the notion that while CASSCF energies and gradients (of non-degenerate 

states) only require a many-electron basis (Slater determinants or spin adapted 

configuration state functions CSFs) that spans the irrep of the state in question, the 

Hessian contains terms that couple configurations of different symmetries.  The 

analytical CASSCF Hessian obtained by solving the coupled perturbed multi-

configuration self-consistent-field (CP-MCSCF) equations contains terms accounting 

for both orbital vibronic coupling and also non-adiabatic (state) vibronic couplings[5].  

Thus the second-order terms in (equation (4.1)) are evaluated in obtaining the CASSCF 

Hessian matrix.  The key to applying this to the pJT effect is to evaluate two 

comparative Hessians built from configurations spanning all irreps, and that of only the 

state under investigation.  The pJT effect is manifest by noting a change in curvature 

(i.e., a change from real to imaginary frequency) along a mode of a given symmetry.  

This indicates that a pJT coupling has been “switched on” by including the 

configurations of appropriate symmetry in the wave function.  This will be illustrated in 

the results below.  The CASSCF pJT method can be regarded as a benchmark approach 

as it explicitly calculates the wave functions and couplings, and not only shows if such a 
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vibronic coupling is present, but also can detail the nature of the states involved via the 

configurations in the excited wave functions.  However this comes at a price as the CP-

MCSCF equations are very computationally expensive, and such approaches are at 

present limited to around 2000 many-electron basis functions.  Nonetheless the method 

has been used with considerable success in both organic and inorganic chemistry[5-11].   

 

Density functional theory (DFT) has emerged as an accurate and cost-effective way of 

studying the electronic and geometrical structure of a range of systems from small to 

large molecules and solids[12].  Time-dependent density functional theory (TD-DFT) 

has further extended the scope of the method and is nowadays the most used method to 

study electronically excited states in medium and large molecules[13].  While there may 

be problems with multireference electronic states DFT may sometimes be used to 

qualitatively understand the pJT effect via inspection of vibrational normal modes and 

excited orbitals from TD-DFT calculations[10].  Thus the CASSCF method has been 

used to calibrate the DFT (and TD-DFT) on the TiO2 systems (vide infra), and then 

DFT (and TD-DFT) were applied to the larger clusters for which CASSCF is not 

feasible. Equation of motion coupled cluster singles and doubles (EOM-CCSD) is also 

used to calibrate some of the TD-DFT excited state computations.  In the previous 

chapter (chapter 3) it was shown that TD-DFT is often competitive with much more 

expensive many-body response methods applied to TiO2.  Regarding the computations 

on the radical systems there is one other aspect that must be considered when applying 

single-reference methodologies such as DFT: namely spurious symmetry breaking[15].  

This occurs when a lower symmetry wave function can be found which is lower in 

energy than a wave function displaying the correct point group symmetry.  While multi-

configurational self-consistent field methods, such as CASSCF, don’t have this problem 

as they allow for the correct mixing of competing configurations[16, 17], such problems 

often occur in unrestricted Hartree-Fock treatments of radicals.  In unrestricted density 

functional investigations on high-spin radicals it has generally been found that such 

problems do not plague DFT to the same degree[15].  The problem of spurious, or 

artificial, symmetry breaking is highlighted by Dixon et al[18] in their discussion of the 

equilibrium geometries of (TiO2)n anionic clusters.  A check for spurious symmetry 

breaking was made by comparing the energetics of the high-symmetry species in the 

absence of any symmetry constraints on the wave function via infinitesimal non-totally 

symmetric structural changes. Spurious symmetry breaking is observed as 

correspondingly large energetic changes that display a derivative discontinuity.  It is 



 77 

shown below using a combination of CASSCF, Brueckner doubles and B3LYP 

calculations with broken symmetry that, at least in the case of the monomers, the 

symmetry breaking appears to be real.  Even if both spurious symmetry breaking and 

the related issue of multi-configurational states aren’t present some functionals may still 

fail to properly describe the system being studied.  Such problems mean that DFT 

cannot be expected to perform “across the board” when applied to such radical systems 

and note in the results where TD-DFT with B3LYP does not properly describe such 

electronic states.   

 

4.2 Computational Details 

 

All DFT, TD-DFT, and EOM-CCSD calculations where carried out with the Gaussian 

09 program[19], while CASSCF calculations were run using the Gaussian 03 

program[20].  As discussed above DFT is sometimes more stable with regard to 

spurious (wave function) symmetry breaking than unrestricted Hartree-Fock.  However 

this may be dependent on the functional chosen and basis set used.  A range of 

calibration tests were run using a variety of functionals and basis sets, and compared 

with large scale CASSCF for neutral, and radical species of the two smallest clusters.  It 

was found that all hybrid functionals show a similar behaviour and for the radical 

species are stable, in contrast to Hartree-Fock calculations on some of the same systems.  

It is also noted that with hybrid functionals spin-contamination was relatively low for 

the radicals considered.  Again for excited states it was found that hybrid functionals 

give the best results in comparison to both CASSCF and EOM-CCSD. Therefore the 

B3LYP functional was used for all of the DFT calculations discussed below.  Several 

basis sets were investigated and it was found that the cc-pVTZ basis gave the best 

balance between accuracy and computational cost.  For oxygen this was the standard cc-

pVTZ basis set of Dunning et al[21], while the set optimised for 3d transition metals of 

Peterson et al[22] was used for Titanium.  The exception being any DFT calculations 

involving the anion where diffuse functions where added to the basis sets of both 

oxygen and titanium. For the anion diffuse functions were added, taken from the aug-

cc-pVTZ basis (diffuse s and p for O, and diffuse s, p, and d for Ti).  Due to the expense 

of the pJT CASSCF calculations requiring analytical Hessian evaluation the cc-pVDZ 
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basis was used for these, and calibrated by checking that geometries and excitation 

energies were close to the cc-pVTZ values.   

 

In the next section a couple of the neutral structures (n=1 and 2) are rationalised in 

terms of the pJT effect.  Then the radical cation and anion structures are considered and 

it is shown how they differ from the neutral and each other.  Again this is rationalized in 

terms of appropriate vibronic couplings with electronically excited states in the pJT 

effect.   

 

4.3 Neutral Clusters 

 

4.3.1 TiO2 

 
Figure 4-1: TiO2 ground state minimum has a bent geometry with C2v symmetry 
 

As discussed in chapter 3 TiO2 has a bent geometry with C2v symmetry.  With B3LYP 

the linear geometry is a second-order saddle-point with a doubly degenerate imaginary 

frequency for the pair of vibrational (bending) modes with Πu symmetry. This can be 

rationalised in terms of the pJT effect in the form of an excited electronic state (1Δu at 

0.76 eV) mixing with the ground electronic state as the molecule bends.  The CASSCF 

pJT diagnostic (vide supra) was performed on a geometry also optimised using 

CASSCF.  Using CAS(8,8), built from appropriate orbitals to describe the states, and 

evaluating the Hessian using all CSFs (total = 1764) gives a doubly-degenerate 

imaginary frequency for the bending mode, while using the only CSFs of Ag symmetry 

(total=256, derived from the ground Σ!!!  electronic state in the D2h subgroup used by 

the program) gives this pair of modes as having a real frequency.  The 1Δu state 

corresponds to a transfer of electron density from the oxygens to the titanium and this 
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partial charge transfer when mixed with the ground electronic state favours the bent 

form.  Further the excited state has slightly less anti-bonding character along the TiO 

bonds and slightly greater bonding with respect to the angle bend, and these factors 

favour the minimum with shorter TiO bonds and angle 111.88° shown in Figure 4-1.   

 

4.3.2 (TiO2)2 

 
Figure 4-2: B3LYP optimised ground state minimum geometries of two low-lying isomers of (TiO2)2 
 

The optimised B3LYP geometries of two lying isomers of (TiO2)2 are shown in Figure 

4-2, while the ground state adiabatic potential energy surface for (TiO2)2 in the space of 

the two terminal oxygen atoms bending is shown in Figure 4-3. 

 
Figure 4-3: (TiO2)2 ground state adiabatic potential energy surface showing double pseudo-Jahn-Teller 
effect relating D2h second-order saddle-point with C2h and C2v minima. 
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The planar D2h structure in the centre of the figure is a second-order saddle point.  

Bending one of the oxygens up and the other down leads to a C2h structure (maintaining 

the inversion centre), while bending both in the same direction leads to a C2v structure.  

The vibrations are shown schematically in Figure 4-4(a) and (b) below.  Clearly one can 

take linear combination of these vibrations such that only one terminal oxygen moves 

out of plane and this results in a Cs structure, which is a saddle-point on the surface with 

the transition vector corresponding to the in-plane terminal oxygen moving in the same 

direction as the other (C2h minimum), or opposite (C2v minimum).  The barrier heights 

are 1.031 eV for C2h-D2h, 0.769 eV for C2v-D2h, and 0.190 eV for Cs-D2h.  The primary 

orbitals corresponding to the excited states involved are also given in Figure 4-4.   

 

 
Figure 4-4: Orbitals and vibrations involved in pJT coupling in selected TiO2 clusters. (a) Neutral (TiO2)2 
D2h C2h; (b) Neutral (TiO2)2 D2h C2v; (c) Cation TiO2

.+ C2v Cs; (d) Cation (TiO2)2
.+ C2h Cs, 

(e) Cation (TiO2)2
.+ C2v Cs. 

(a)$

(b)$

(c)$

(d)$

(e)$

→ → → →
→
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For the D2h  C2h distortion (B2g symmetry) the excited state responsible for the 

coupling is of B2g symmetry since the ground state is totally symmetric (1Ag). For the 

D2h  C2v distortion (B3u symmetry) the excited state responsible for the coupling is 

therefore of B3u symmetry.  Similar to the linear TiO2 discussed above these states 

involve a partial transfer of charge from the terminal oxygens to the titaniums.  Again 

the nature of the states that mix stabilise the respective structure on the ground state 

surface.  This system is therefore an example of double-pJT system.  The EOM-CCSD 

and TD-B3LYP results for the low-lying valence states in the system are generally 

within 0.2 eV of each other.   

 

4.4 Radical Cations 

 

In the following sections the results of calculations for the radical cations and anions are 

presented.  It is noted that there is a similarity in these results to those presented 

previously by Qu and Kroes[23], here they are rationalised in terms of the pseudo-Jahn-

Teller effect.  A summary of the relevant excitation energies for the radical cations is 

presented below in Table 4-1.   

 

Cation Ground state symmetry Excited state symmetry ΔE (eV) 

TiO2
+ 2B2 2A1 2.56 

(TiO2)2
+ - C2h 2Bu 2Ag 2.18 

 4Au 4Bg 1.28 

(TiO2)2
+ - C2v 2A1 2B2 1.13 

 4B1 4A2 1.28 

(TiO2)3
+ 2A’ 2A” 0.75 

(TiO2)4
+ 2A1 2B2 0.83 

 4B2 4B1 1.02 

Table 4-1: Symmetry of vibronically coupled states and vertical energy differences for radical (TiO2)n 
cations discussed in text.  ΔE (eV) calculated using TD-B3LYP.   
  

→

→
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4.4.1 !"#!! 

 

The minimum structure of the TiO2 doublet cation has a Cs symmetry minimum, rather 

than the C2v symmetry common to the neutral discussed above, anion discussed below 

and the cationic quartet minimum shown in Figure 4-5.   

 

 
Figure 4-5: Cation TiO2 structures, symmetries and electronic states optimised at the B3LYP/cc-p-VTZ 
level. 
 

The C2v symmetry structure in this case appears to be a transition state with a single 

imaginary frequency along the asymmetric stretch vibrational coordinate.  The Cs 

geometry, shown in Figure 4-5, has bond-lengths of 1.70 and 1.61 Å and a bond angle 

of 96.14°.  This is a large distortion from the neutral minimum geometry with a bond-

length change of about 0.05 Å concurrent with a reduction of bond angle of about 15°.  

The C2v transition state has bond-lengths of 1.65 Å, a bond angle of 94.96° and has a 
2B2 ground state.  The symmetry of the imaginary vibrational coordinate is also B2 

suggesting that the ground state is coupled with an excited state of A1 symmetry.  Using 

TD-B3LYP at the transition structure the lowest excited state of A1 symmetry was 

found to at 2.56 eV.   

 

As well as the B3LYP functional, a number of different functionals were tried during 

the investigation of this structure.  In the work of Dixon et al[18] LSDA calculations 

(BP86 and PW91) are used that show imaginary frequencies found for Anionic (TiO2)n 

clusters were the result of artificial symmetry breaking.  The BP86 and PW91 

functionals also calculated the C2v TiO2
+ structure to have no imaginary frequency.  

However, a test of the B3LYP functional which forces lower symmetry in the 

calculation shows no effect of artificial symmetry breaking and the recent M06 

functional set of Truhlar et al[24], all bar M06-L functional, agree with the B3LYP 

result.  This result was also confirmed with a Brueckner doubles calculation where 

again the C2v structure was a transition state and the Cs structure was found to be the 

minimum.  The C2v transition state was re-optimised using the CASSCF with a (7,7) 
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active space of appropriate valence orbitals.  The CASSCF optimised geometry differed 

very slightly from that of B3LYP.  Using a further CAS(7,7) calculation that included 

all configuration state functions an imaginary frequency was calculated for the 

CASSCF optimised geometry.  Since the CASSCF method is not affected by artificial 

symmetry breaking this confirms the validity of the B3LYP calculation.  It would seem 

here that extreme care must be taken when choosing a DFT functional for such systems. 

 

For the pJT test, the CASSCF frequency calculation was repeated using only those 

configuration state functions of the ground state symmetry (B2) no imaginary 

frequencies were found.  A schematic of this effect is shown in Figure 4-6.   

 

 
Figure 4-6: TiO2

.+ lowest adiabatic and excited potential energy curves with respect to anti-symmetric 
(b2) bending vibration. Pseudo-Jahn-Teller effect involves coupling of ground state (2B2) with excited 
(2A1) state at C2v geometry, and is manifest as differing curvatures obtained from CAS(7,7)/cc-pVDZ 
(Ti)-cc-pVTZ (O) with many-electron basis configurations of only B2 symmetry versus those of all 
symmetries.   
 

Also shown are the primary orbitals involved in the transition.  Again it is noted that the 

B3LYP generally agrees well with the CASSCF results, although the B3LYP surface is 

flatter than the CASSCF one (the B3LYP imaginary frequency is 209.7i cm-1 while the 

CASSCF is 428.6i cm-1).  This feature was previously observed in using this method to 

look at the pJT effect in a bioctahedral molybendum complex.  It is believed that this is 

due to the features of multi-configuration character that the DFT cannot model; 

although in both cases the curvature is qualitatively correct[11].   
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4.4.2 !"#! !
! 

 

The structures presented for the (TiO2)2
+ are those optimised from the C2h and C2v 

neutral minima using B3LYP.  These calculations were repeated using two M06 

functionals (M06 and M06-L), which were found to be in good agreement with B3LYP.  

However, PW91 and BP86 calculate one imaginary frequency for C2h and none for C2v, 

and, using the forced symmetry test both B3LYP and M06 do appear to show some 

artificial symmetry breaking.   

 

4.4.2.1 !"#! !
! – C2h 

 

In the n=2 cation cluster a transition state of C2h symmetry similar in structure to the C2h 

neutral minima is found.  The structure of the transition state differs from that of the 

neutral in that Ti-terminal oxygen bond-lengths are slightly longer, the sides of the Ti-

O-Ti-O square are slightly shorter and that the Ti-Ti-Terminal oxygen bonds angles are 

smaller at 109.22° (Figure 4-7).   

 

 
Figure 4-7: Cation (TiO2)2 C2h structures, symmetries and electronic states optimised at B3LYP/cc-pVTZ 
level. 
 

Following the single imaginary frequency the Cs minima shown in Figure 4-7 was 

optimised.  The symmetries of the molecule, and that of the vibration, dictate that there 

must be an equivalent minimum where the vibration is followed in the opposite 

direction.  This pJT distortion occurs due to coupling between the ground state (2Bu) 

and excited state of Ag symmetry.  Using TD-B3LYP at the transition state geometry 

the lowest excited state of Ag symmetry was found at 2.18 eV.  The bond-lengths of the 

Cs minima follow a bonding pattern where by a shortened bond-length is neighboured 

by a lengthened bond-length, with respect to the transition structure, and vice-versa.  
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There is also a breaking of symmetry at the Ti-Ti-terminal O bonds angles where they 

are no longer equal, one being 117.18° and the other 114.03°.  The vibration and 

primary orbitals involved are shown in Figure 4-4 (d).   

 

The quartet state similarly has a pair of Cs symmetry minima divided by a C2h transition 

state.  This quartet transition state differs from the neutral minima in that the Ti-Ti-

terminal oxygen bonds angle is smaller at 92.39° and that the central Ti-O-Ti-O square 

sides are longer at 1.96 Å (Figure 4-7).  This geometry is distorted due to vibronic 

coupling between the 4Au ground state and a 4Bg excited state, found to be 1.28 eV from 

the ground state using TD-B3LYP.  In the Cs minima the central square is slightly 

pinched; the oxygens are distorted slightly out of the plane formed by the square, there 

is an asymmetry in the bond angles of the terminal oxygen (61.02° and 121.30°), and 

there is the same pattern of alternating lengthening and shortening of bond-lengths with 

respect to the transition state, as seen for the doublet.  This distortion of the central 

square out of the planar geometry is due to the proximity of the terminal oxygen with a 

bond angle of 61.02°.   

 

4.4.2.2 !"#! !
! – C2v 

 

On the doublet potential energy surface of the n=2 cluster there is also a transition state 

of C2v symmetry (Figure 4-8).   

 

 
Figure 4-8: Cation (TiO2)2 C2v structures, symmetries and electronic states optimised at B3LYP/cc-pVTZ 
level.   
 

This structure differs from the neutral C2v structure in that the bond angle is smaller 

(113.61°), the bonds of the square are slightly shorter and the bonds to the terminal 

oxygen are slightly longer.  This transition state separates two identical minima found 

along the imaginary vibration of the transition state.  These minima have Cs symmetry 

and have common features with the Cs minima associated with the C2h transition state.  

While not being the same structure they both exhibit the alternating bond-lengths and 
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the differing terminal oxygen bond angles.  The pJT effect seen in this example results 

from a coupling of the 2B2 excited state 1.13 eV from the 2A1 ground state (vibration 

and orbitals shown Figure 4-4 (e)).   

 

For the quartet state there is also a transition state of C2v symmetry and a 4B1 ground 

state.  Here the terminal oxygen forms smaller angles with the titanium atoms (104.42°) 

than seen with the neutral structure.  The proximity of these oxygen atoms seems to 

have an effect on the oxygen in the central square distorting them out of the plane.  The 

Cs minimum structure shown in the Figure 4-8 shows that the bond angles of the Ti-Ti-

terminal oxygen have increased, relieving the pressures on the central oxygen and that 

they have relaxed back to the planar arrangement of the central square.  This structure 

also shows alternating bond-lengths.  TD-B3LYP shows the coupling state in this case 

to be 4A2 and the energy difference is 1.28 eV.   

 

4.4.3 !"#! !
! 

 

The minimum structure for the n=3 doublet cluster was found by optimising from the 

neutral Cs structure is one of C1 symmetry (Figure 4-9). 

 

 
Figure 4-9: Cation (TiO2)3 structures,  symmetries and electronic states optimised at B3LYP/cc-pVTZ 
level. 
 

In the same way as previously described the alternate long and short bonds break the 

molecular symmetry and result in charge localisation.  TD-B3LYP shows the pJT 

coupling state in this case to be 2A” and the energy difference to be 0.75 eV.  The 

quartet state for this species has a Cs minimum and shows no pJT effect relative to the 

Cs neutral structure although some bond-lengths differ (Figure 4-9).   
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4.4.4 !"#! !
! 

 

Optimisation of the geometries from the C2v neutral minimum structure, on both the 

doublet and quartet potential energy surfaces, converges on a corresponding C2v 

transition state for each (Figure 4-10).   

 

 
Figure 4-10: Cation (TiO2)4 structures, symmetries and electronic states optimised at B3LYP/cc-pVTZ 
level. 
 

These transition states differ structurally from each other, and the neutral minimum, 

only in terms of the relative bond-lengths.  Both the doublet and quartet minimise from 

these C2v transition states to minima of Cs symmetry.  The major difference between 

these minima is that the relative orientations of their σh symmetry planes are 

perpendicular to each other.  Where one of the σh symmetry planes can be thought of as 

containing the top most oxygen and the titanium atom to which it is directly bonded 

forming a plane from the top to bottom of the molecule, the second σh symmetry plane 

is perpendicular to the first containing the top most oxygen and the two titanium atoms 

to which it is not directly bonded.  The two Cs minima also differ in their relative bond-
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lengths.  TD-B3LYP shows the coupling state in the case of the doublet to be 2B2 with 

the 2A1 ground at an energy difference of 0.83 eV, and for the quartet to be a coupling 

between the 4B2 ground and a 4B1 state with an energy difference of 1.02 eV.   
 

4.5 Radical Anions 

 

A summary of the relevant excitation energies for the radical anions is presented below 

in Table 4-2.   

 

Anion Ground state symmetry Excited state symmetry ΔE (eV) 

TiO2
- 4A2 4B1 0.18 

(TiO2)2
- - C2h 2Ag 2Bu 0.65 

 4Ag 
4Bu -0.84 

(TiO2)2
- - C2v 4B2 

4A1 1.46 

(TiO2)3
- 4A’ 4A” -0.17 

(TiO2)4
- 4B1 4A2 0.49 

Table 4-2: Symmetry of vibronically coupled states and vertical energy differences for radical (TiO2)n 
anions discussed in text.  ΔE (eV) calculated using TD-B3LYP.   
 

4.5.1 !"#!! 

 

The minimum structure of the TiO2 anion monomer is a doublet with C2v symmetry 

(Figure 4-11) 

 

 
Figure 4-11 Anion TiO2 structures, symmetries and electronic states optimised at the B3LYP/cc-p-VTZ 
level. 
 

In comparison to the neutral minima there is only a slight increase in the bond-length 

from 1.64 to 1.67 Å and a small difference in the bond angle 113.31° from 111.88°.  It 

is when considering the quartet state of this anion that a more dramatic difference is 
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observed.  In the quartet state the C2v geometry is a transition state with a single 

negative frequency in the asymmetric stretching vibration.  This transition state has a 

bond-length of 1.76 Å and a bond angle of 135.01° (Figure 4-11).  In this case there 

again seems to be some artificial symmetry breaking with B3LYP, but the C2v structure 

optimised using CAS(7,7) was also found to be a transition state, which re-optimised to 

a Cs minima.  The same flattening of the B3LYP surface is apparent (the B3LYP 

imaginary frequency is 447.9i cm-1 while the CASSCF is 1645.0i cm-1).  By distorting 

the molecule along this asymmetric stretching coordinate the C2v symmetry of the 

molecule is broken and an optimisation from this point proceeds to the minimum 

geometry.  This occurs due to vibronic coupling of the 4A2 ground state with an excited 

state of 4B1 symmetry, which is only 0.18 eV above.  The resulting Cs minimum has 

bond-lengths of 1.94 and 1.67 Å and a bond angle of 123.89°.   

 

4.5.2 !"#! !
! – C2h 

 

Taking as a starting point the C2h structure of the neutral n = 2 cluster an optimisation of 

the anionic doublet is made to a structure of C2h symmetry, which is found to be a 

transition state (Figure 4-12).   

 

 
Figure 4-12: Anion (TiO2)2 C2h structures, symmetries and electronic states optimised at B3LYP/cc-pVTZ 
level. 
 

This transition state differs from the neutral geometry due to both a flattening of the 

structure, where the angles made by the terminal oxygen with the titanium are increased 

toward a planar geometry, and a general lengthening of the bonds.  As reported by 
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Dixon et al[18] BP86 and PW91 calculate no imaginary frequency for the C2h structure.  

The M06 functional also finds the C2h structure to be a minimum, but using the forced 

symmetry test B3LYP does not appear to show artificial symmetry breaking.  This 

result is at odds with that of [18], but given B3LYP’s apparent agreement with 

CASSCF calculations it is believed to be a true symmetry breaking.  Again though, this 

highlights the care that must be taken with these very tricky radical systems.  A 

displacement of the structure breaking the C2h symmetry optimises the B3LYP 

calculation to a pair of minima of Cs symmetry.  The pJT coupling of the ground state 

(2Ag) in this case is with one of 2Bu symmetry and the energy difference is around 0.65 

eV. 

 

The 4Ag quartet state of C2h symmetry is found to be a second-order saddle point with 2 

imaginary frequencies (2646.66i cm-1 and 92.670i cm-1) and optimising from this 

structure along each of the negative vibration optimises to the two 4A” Cs minima (a 

from 2646.66i cm-1 and b from 92.670i cm-1) shown in Figure 4-12.  The smaller 

imaginary frequency persists even when using an ultrafine numerical integration grid in 

the DFT.  The B3LYP method is found to show artificial symmetry breaking here.  

Using BP86 and PW91 functionals a single imaginary frequency is calculated 

corresponding to the larger imaginary frequency of the B3LYP calculation.  The 4Ag 

quartet ground state is found to couple with a 4Bu excited state. The TD-B3LYP 

excitation energy is negative, another indication of the failure of B3LYP to describe this 

system and related to the spurious symmetry breaking one obtains from a C2h B3LYP 

Kohn-Sham solution.   

 

4.5.3 !"#! !
! – C2v 

 

The lowest doublet (2A1) minimum structure is one of C2v symmetry.  Here there is no 

distortion of the molecule due to any vibronic coupling.  The structure differs from that 

of the neutral by a general increase in bond-lengths and by an increase in the Ti-Ti-

terminal oxygen angle flattening the molecule (Figure 4-13).   
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Figure 4-13: Anion (TiO2)2 C2v structures, symmetries and electronic states optimised at B3LYP/cc-pVTZ 
level.   
 
For the quartet state (4B2) the C2v structure is detected to be a transition state with a 

single imaginary frequency, but again there would seem to be some artificial symmetry 

breaking present.  Optimisation along the vibration coordinate associated with this 

imaginary frequency results in a minimum with the structure 4A” Cs shown in Figure 

4-13.  The pJT coupling state in this case is 4A1 and the energy difference to be around 

1.46 eV.   

 

4.5.4 !"#! !
! 

 

Here the results for the n=3 anion structures are the opposite of those for the cation 

(Figure 4-14).   

 

 
Figure 4-14: Anion (TiO2)3 structures,  symmetries and electronic states optimised at B3LYP/cc-pVTZ 
level. 
 
The doublet minimum (2A’) has a C2v structure, similar to the neutral and cation quartet 

minima.  The anion quartet (4A’) results mirror those of the cation doublet with a Cs 

transition state distorting to C1 minima, where alternating long and short bond-lengths, 

and localising of the charge have distorted the Cs symmetry.  These similarities extend 

only to the general structures but differ as to the relative bond-lengths (Figure 4-14).  

For the quartet the pJT coupling is from the 4A’ ground state to a 4A” excited state.  

Using TD-DFT, B3LYP hasn’t properly described the excited state as the calculated 

energy difference is -0.17.   
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4.5.5 !"#! !
!  

 

The doublet (2A1) minimum optimised from the C2v symmetry also is found to have C2v 

symmetry (again opposite to the cation) (Figure 4-15).   

 

 
Figure 4-15: Anion (TiO2)4 structures, symmetries and electronic states optimised at B3LYP/cc-pVTZ 
level. 
 

The quartet C2v structure is found to be a transition state separating (4B1) minima of Cs 

symmetry where the σh symmetry plane bisects the molecule through the top most 

oxygen and the two titanium atoms to which it is not directly bonded (Figure 4-15).  

The pJT coupling state is 4A2 at 0.49 eV from the ground state.   

 

4.6 Conclusions 

 

How the pseudo-Jahn-Teller effect is manifest in certain neutral, cation, and anion 

clusters of TiO2 has been shown using a variety of computational techniques.  These 

vibronic interactions can be understood in terms of a CASSCF diagnostic.  It has also 

been shown that generally the B3LYP density functional gives reasonably accurate 

results on this challenging class of systems, although like all current functionals does 

display pathological artificial symmetry breaking in some systems.  Furthermore time-

dependent density functional theory is able to aid in a qualitative understanding of the 

vibronic couplings when there is no artificial symmetry breaking.  The interaction of 

electronic states coupled via nuclear vibrations gives rise to distinct geometrical features 

in all the clusters and is responsible for the degree of charge localisation in the radical 

clusters.  It was found that the positive and negative radical clusters often undergo 
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different vibronic interactions and consequently adopt differing geometries.  It is hoped 

these results will contribute to on-going experimental and theoretical efforts aimed at 

understanding the nature of quantum size effects in size-selected TiO2 nanoclusters.   
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Chapter 5: Application of Monte Carlo Configuration Interaction 

Method to Challenging Systems. 

 

As described in chapter 2, in theory FCI provides the exact solution to the schrödinger 

equation with a given basis ansatz.  However, such a solution proves intractable but for 

the smallest of systems due to the dramatic increase in the number of configurations.  

This is overcome by truncating the FCI method in some way.  One of the main 

problems with such truncated methods, based on the FCI method, is how to select the 

configurations to use in the calculation.  Truncation of the wave function is required in 

order to reduce the size of the calculation to the point where it can be solved, in an 

appropriate time frame, with the available computer resources and predetermining 

which configurations will contribute significantly to the solution has proven so far 

impossible.  One important feature of the FCI wave function is that it is very sparse, 

only a small percentage of configurations involved contribute significantly to the 

solution, with many coefficients that are effectively zero.  A truncated CI method 

designed to take advantage of this sparseness called Monte Carlo Configuration 

Interaction (MCCI) was proposed in the 1990s[1, 2]. Whereby a reference wave 

function made up of a single (or number of) starting configuration(s) is expanded using 

new configurations generated randomly using a Monte-Carlo method.  The method 

generates these new configurations such that they couple with the existing 

configurations of the reference wave function.  New configurations whose coefficients 

contribute significantly to the resulting solution are retained, while those that do not are 

discarded.  In this way a compact wave function made up only of those significant 

configurations is created, much smaller than the FCI wave function, which is able to 

recover a large proportion of the energy of the FCI wave function.   

 

A MCCI computer program has been developed and is documented in [3]. It is written 

in Fortran and when used in conjunction with a suitable quantum chemistry electronic 

structure program (such as the Columbus or MOLPRO programs), which supplies the 

one and two electron molecular integrals, can apply the MCCI method to molecular 

systems.   
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A number of studies of the MCCI method have been carried out using this program.  In 

refs. [4, 5] the best level of basis set to use in MCCI calculations is investigated and 

MCCI is compared to FCI in its ability to accurately describe molecular dissociation.  

The results of this investigation show that MCCI can be consistent in its treatment of 

the correlation effects of different systems during their dissociation.  While in [6] the 

energies of a number of molecules (Ne, CH2, C2, N2 and H2O) are found using MCCI 

and compared to those found using FCI. The singlet and triplet electronic excitation 

energies calculated using MCCI were found to within a few meV of the FCI results.  

This was achieved using far fewer configurations and lesser computer processing time.  

Thus the MCCI method takes advantage of the extreme scarcity of the CI Hamiltonian 

matrix.   

 

More recently the MCCI method has been extended to use natural orbitals and 

integrated with the second-order perturbation scheme[7].  State averaging was added to 

MCCI (SA-MCCI) and applied to electronically excited states[8]. Further MCCI has 

been applied to calculations of potential energy surfaces[9];  multipole moments, 

ionization energies, and electron affinities[10]; transition metal dimers[11]; 

hyperpolarizabilities[12];  characterising a configuration interaction excited state using 

natural transition geminals[13]; 

 

5.1 The MCCI Program 

 

A MCCI wave function is created by first generating a wave function separately using a 

SCF method in a suitable quantum chemistry package.  This reference wave function 

and the corresponding one- and two-electron integrals from the quantum chemistry 

package are then input into the MCCI program and used as a starting point to build the 

MCCI wave function.  After this initialisation a loop begins, that forms the main body 

of the program.  The basic procedures that make up this loop (branching, 

diagonalisation and pruning) are detailed in Figure 5-1.   
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Figure 5-1: schematic of the MCCI program algorithm 
 

The first step of this loop, called branching, involves the generation of new 

configurations.  These new configurations are created using a random single or double 

excitation from a configuration chosen at random from the reference wave function.  

The newly generated configurations are added to the wave function, which is then 
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diagonalised in a configuration interaction calculation.  An additional step that can be 

performed at this point is the calculation of a non-variational property of the system.  

Next, a process of pruning is entered, whereby new configurations that do not contribute 

significantly to the final wave function are removed. This can be with regard to the 

energy or of a non-variational value of interest (in chapter 6 where configurations are 

selected according to their contribution to the dipole moment).  This is achieved by 

discarding those new configurations with a coefficient below a user defined cut-off 

value, cmin.  Every k steps, for this work k=10, a full pruning step is preformed where all 

configurations are considered for pruning.   

 

In Figure 5-2 the MCCI (cmin = 5 x 10-4) energy against program iterations is plotted for 

the Neon atom, using the cc-pVDZ basis.  Also shown are the energies calculated using 

FCI and a number of truncated CI methods of varying accuracy.   

 

 
Figure 5-2: Convergence of truncated CI and MCCI with respect to FCI for Neon atom in the cc-pVDZ 
basis (cmin = 5 x 10-4). Inset: Close up of the MCCI curve between 1000-2000 iterations.  MCCI standard 
error over 50 MCCI runs is 5.8 x 10-8 au. 
 

The MCCI energy reduces as the number of program iterations increases, as new 

configurations are added to the reference wave function.  The MCCI value converges 

toward the FCI result.  In this case the criteria for leaving the MCCI program loop was 

the number of iterations (2000 iterations).  The energy decreases rapidly and then levels 
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out and cannot be seen to change within the scale of the plot, but a close-up plot of the 

MCCI curve shown in Figure 5-2 reveals that the energy does still continue to decrease.  

Eventually the MCCI calculation reaches a point where no new configurations are 

found. At this point, coefficients of the new configurations generated fall below the cmin 

and so are immediately pruned.  The energy can be thought of as being converged to the 

value of cmin.  The change in the number of configurations and energy of the wave 

function between iterations present two other criteria that can be used to test for 

convergence of the wave function.   

 

By changing cmin the accuracy of the final MCCI wave function can be changed.  The 

accuracy of the MCCI wave function generated is improved by decreasing the value of 

cmin, but this is at the expense of greater computer processing time.  At a value of cmin = 

0, all configurations generated would be included in the wave function and would 

represent a FCI wave function.  Therefore, using this single value of cmin it is possible to 

make systematic improvements to the wave function.  MCCI is a statistical method that 

will therefore find a variation in the result calculated from run to run.  Accordingly, a 

standard deviation in the result can be calculated from repeated program runs of the 

same system.  The standard deviation of the MCCI method has been calculated for a 

number of systems.  For example, the MCCI calculation of the energy of the Ne atom 

(Figure 5-2) over 80 runs the standard deviation was found to be 5.8 x 10-8 au.  On the 

scale of Figure 5-2 this standard deviation would be indistinguishable from the curve 

itself.  For the systems for which the standard deviation has been calculated over 

multiple runs, the standard deviations have all been of a similar scale. Thus our use of 

the MCCI method is to obtain a converged approximation to the FCI wave function.  

For the results presented in this thesis it is believed that the MCCI is being run to 

convergence and therefore the result of a single run are quoted.   

 

The program can be run in parallel by running the MCCI program loop on multiple 

processors, with each processor getting a copy of the configurations. After the 

completion of each loop the new sets of configurations generated by each processor are 

recombined and duplicate configurations are discarded.  In the case of this work all 

calculations where run on either 8 or 12 processors.   
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In the following chapters investigations that expand on prior work into uses for the 

MCCI method are presented.  Firstly, MCCI is applied to a PEC of a selection of small 

molecules and the accuracy of the results is discussed[9].  

 

Then in chapter 6 the application of MCCI to the calculation of multipole moments is 

investigated.  MCCI is applied to a number of small systems and the results are 

compared to experiment and FCI.   

 

5.1.1 Advantages and Disadvantages of MCCI Method. 

 

The advantages of the MCCI method over other truncated methods centre on the 

random way configurations that only contribute significantly are included in the wave 

function.  This allows the method to treat larger systems than the FCI method without 

the explicit truncation of the expansion space.  The random selection of configurations 

allows for the inclusion of multireference character of a system while keeping the 

number of configurations low.  Through the variation of a single parameter, cmin, the 

result of the calculation can be systematically improved, recovering a large percentage 

of the correlation energy and approaching the FCI result.  Moreover, the MCCI method 

is variational, requires a lower computational overhead than FCI and is well suited to 

parallel computing.  The random nature of this generation of new configurations means 

that little foreknowledge of the system is required and the amount of user guidance is 

minimal.   

 

Although the MCCI method is able to deal with larger systems than the FCI method and 

recover much of the correlation energy, it still has limits.  The calculation cost still 

increases with system size though at a much slower rate than FCI.  Although the 

diagonalisation steps for MCCI are much smaller, and therefore computationally less 

intensive than that of a FCI calculation, it must be repeated many times within a single 

MCCI calculation.  Like all truncated CI methods, the MCCI method is not expected to 

be size consistent nor size extensive.  The method assumes that all configurations can be 

sampled, given enough time from a single reference configuration.  A problem 

encountered during this work was one of when to end calculations, it is not always clear 
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if a run is complete or if more time is required to reach remote, but important, 

configurations.  Though it is believed that all runs presented here were fully converged.   

 

5.2 Monte Carlo Configuration Interaction Applied to Challenging Potential 

Energy Curves  

 

As described in chapter 2, PES of even a simple molecule can be quite complex.  With 

many different interconnected features that make up the surface, which can be used to 

describe the behaviour of the molecule when excited both electronically and/or 

kinetically.  An accurate representation of the PES of a molecular system can allow for 

a greater understanding of reactions and behaviours associated with it.  Much of the 

subtleties of a given molecules’ PES aren’t described sufficiently if the correlation 

energy is neglected.  So it is important to recover a sufficient amount of the electron 

correlation in order to produce an accurate PES.   

 

In this work the 2D potential energy curves (PEC) of a number of different systems are 

considered, in each case a restricted Hartree-Fock wave function is used as the reference 

wave function.  The PEC was defined by a selected number of geometries along the 

curve, with a new set of Hartree-Fock orbitals generated for each new geometry.  Either 

the Columbus or MOLPRO programs were used to generate these orbitals.   

 

As previously stated it is the accuracy of the PES that is important; the shape and 

position of the features that make up the surface.  So in the case of a PEC, an 

approximate CI method would do a good job of describing the curve if it was the same 

shape as the FCI curve but transposed by a constant energy.  A useful way of evaluating 

the accuracy of such potential curves called the non-parallelity error (NPE) is described 

in [14, 15].  Defined as: 

 

!"# = !"#
! !!!"# − !!!""#$% −!"#! !!!"# − !!!!!"#$  (5.1) 

 

Where R is over all of the points calculated in the curve and the Eapprox are the energy 

calculated by the approximate method at point R.  Essentially, the error is calculated as 

the difference between the absolute maximum and the minimum deviations from the 
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FCI values over the coordinates considered.  Where FCI results are available the NPE is 

used to define how closely the Eapprox follows the FCI curve. 

 

5.2.1 Hydrogen Dissociation  

 

Some of the simplest dissociations, those of the dissociation of hydrogen are 

investigated here as a first test of MCCI methods ability to describe ground state PEC.  

The three such cases that MCCI is applied to here are HF, BH, and CH4.  It is expected 

that these systems will have some multireference character and their PEC have been 

well defined in past investigations using FCI, CC and multireference methods by Sherill 

et al[15-17].   

 

5.2.1.1 HF 

 

The case of hydrogen fluoride (HF) is considered first.  In [15] the FCI results used 6-

31G** and a single frozen core orbital, therefore in order to be consistent the same 

conditions where used for all MCCI calculations.  The PEC generated using the MCCI 

method, using two different cmin values (5x10-3 & 5x10-4), are presented along with the 

FCI potential curve in Figure 5-3.   

 

 
Figure 5-3: Energy (Hartree) against bond length (angstrom) for the HF molecule using MCCI and FCI 
methods. Both using the 6-31G** basis set and a single frozen core orbital. 
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It can be seen visually that the MCCI curves are reasonably consistent in shape in 

comparison to the FCI curve; they follow the shape of the FCI curve quite closely.  

Apart from at low R where the curves converge together slightly, the curves appear 

similar but just shifted by a constant energy.  The NPE for these curves are found to be 

5.7 kcal/mol for the larger cmin (0.005) and 1.3 for the smaller (cmin=0.0005).  These 

NPE values compare favourably with those of single reference methods published in 

[15],  where for CCSD NPE was found to be 13.0 kcal/mol and for CCSD(T) was 26.8 

kcal/mol, significantly larger than both MCCI results.  Also with the multireference 

methods of Ref. [16] which found an NPE of 17.69 kcal/mol for CAS(8,5), and 

NPE=4.83 kcal/mol using CAS(8,8). These results were further improved using 

CASPT2 resulting in an NPE = 2.77 kcal/mol (CASPT2(8,5)) and 0.5 kcal/mol 

(CASPT2(8,8)).  NPEs of Second order CI (SOCI) calculations were also reported, 

SOCI(8,5) and SOCI(8,8) where 3.2 and 0.04 kcal/mol, respectively.  Another 

multireference study[17] of HF used a minimal CAS(2,2) calculation which gave a PEC 

with a NPE = 18.66 kcal/mol, application of CASPT2 in this case resulted in a 

CASPT2(2,2) curve with a NPE = 0.47 kcal/mol.   

 

In comparison to the FCI calculation the MCCI method required significantly fewer 

configurations.  While for FCI 3,756,816 SD[15] were required for each R, the MCCI 

method averaged 173.2 CSF’s for Cmin=0.005 and 1,337 for cmin=0.0005.  These 

represent a significant reduction in number of configurations of 0.0046% and 0.036% 

respectively, while still managing to reproduce the shape of the curve to within an NPE 

accuracy of a few kcal/mol.   

 

In Figure 5-4 and Figure 5-5 the error in the MCCI result compared to the FCI is shown, 

over two different MCCI program runs, for each of the cmin cut-offs used.   
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Figure 5-4: Error (Hartree) in MCCI result (cmin=5 x 10-3) in comparison to FCI against bond length R 
(angstrom) for the HF molecule. The results for two separate MCCI runs are shown for comparison. All 
calculations using the 6-31G** basis set and a single frozen core orbital. 
 

 
Figure 5-5: Error (Hartree) in MCCI result (cmin=5 x 10-4) in comparison to FCI against bond length R 
(angstrom) for the HF molecule. The results for two separate MCCI runs are shown for comparison. All 
calculations using the 6-31G** basis set and a single frozen core orbital. 
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The MCCI method is more accurate at longer bond lengths in both cases, with larger 

errors at shorter bond lengths.  Rerunning the calculation using a different seed (for the 

random number generator) doesn’t seem to greatly affect the error.  More broadly 

variations in the error for each run at R can be seen, which demonstrates the random 

nature of the new configurations generated.  Only if given enough time to sample the 

configuration space, over each run, would the results be expected to be exactly the 

same.  This is demonstrated in Figure 5-6 where three separate MCCI runs are shown, 

which are otherwise equal and differ only in the seed used in the random number 

generator. Such a difference is typical of the calculation and a similar plot could be 

made for any value of R.   

 

 
Figure 5-6: Energy (Hartree) against program iterations for the runs using different random number seeds. 
 

5.2.1.2 BH 

 

Energy (Hartree) from MCCI against bond length R (angstrom) for BH, using the aug-

cc-pVQZ with one frozen orbital, is displayed in Figure 5-7.  FCI results from Ref. [15] 

are included also for comparison.  At the cmin = 5 x 10-3 level the MCCI PEC is in 

reasonably good agreement with the FCI curve, with the minimum in approximately the 

correct place and in general the PEC is qualitatively correct.  The exceptions being that 
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a small shoulder is present on the potential around R = 3Å and that the energy limiting 

value is reached too early.   
 

When the cmin is reduced to 5 x 10-4 the PEC is much improved, being almost exactly 

the same as the FCI curve just shifted by a small energy.  The problems with the PEC at 

cmin = 5 x 10-3 are removed by reducing the cmin.  The difference in the quality of the 

curves at the two cmin is nicely demonstrated using the NPE values. The NPE for the 

MCCI curve is decreased from 22.8 kcal/mol to 2.6 kcal/mol when the cmin value is 

reduced.  While, the NPE for CCSD was 8.1 kcal/mol and for CCSD(T) it was 23.3 

kcal/mol[15].  For cmin = 5 x 10-4 required 4220 CSFs on average while cmin = 5 x 10-3
 

used on average 330.  These represent a very small percentage of the 1.5 x 107 SDs that 

would be required for a FCI calculation.   

 

 
Figure 5-7: Energy (Hartree) from MCCI and FCI results[15] against bond length R (angstrom) for BH.  
Using the aug-cc-pVQZ with one frozen orbital.  Adapted from Ref. [18].   
 

In Ref. [16] BH PECs generated using multireference methods were compared to FCI.  

These PEC were over a smaller range of R and used the cc-pVQZ basis set, rather than 

the aug-cc-pVQZ basis set, due to convergence problems.  CAS(4, 4) had an 

NPE=12.68 kcal/mol, which was extended in CASPT2 giving NPE=3.16 kcal/mol, and 

CAS(4,5) had an NPE of 9.38 kcal/mol. SOCI(4,4) gave an NPE = 0.29 kcal/mol.  The 
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MCCI NPE compare well with these multireference results, with only the SOCI(4,4) 

NPE being better than the MCCI.  Though it should be noted that this isn’t a direct 

comparison, due to the difference in basis sets.   

 

In Figure 5-8 the energy error (Hartree) in MCCI (cmin=5 x 10-4) compared to the FCI 

result against bond length R (angstrom) for BH is shown.  As the bond length R is 

increased the error in the MCCI energy with respect to the FCI energy decreases.  At R 

= 6 Å the difference between the MCCI energy and the sum of the MCCI energies of 

the fragments is measured at 6.6 kcal/mol at cmin = 5 x 10-3 and 0.83 kcal/mol at cmin = 5 

x 10-4.   

 
Figure 5-8: Energy error (Hartree) in MCCI (cmin=5 x 10-4) compared to the FCI result against bond 
length R (angstrom) for BH.  Using the aug-cc-pVQZ basis set with one frozen core orbital.  NPE = 2.6 
kcal/mol.   
 

5.2.1.3 Methane, CH4 

 

Preliminary MCCI results for the PEC of Methane (CH4) were first published in Ref. 

[18].  As in Ref. [15] the hydrogen dissociation is described by the stretching of a single 

CH bond from a tetrahedral geometry with bond lengths of 1.086 Å for the three 

unvaried CH bonds.  Figure 5-9 shows Energy (Hartree) from MCCI against bond 

length R (angstrom) for CH4, using the 6-31G* basis set with one frozen core orbital. 
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FCI results from Ref. [15] are included for comparison.  At cmin = 5 x 10-3 the curve 

appears to match the FCI quite well with the minimum in approximately the right place, 

though at longer bond lengths the energy is slightly too high.  In common with the 

previous cases at the reduced cmin = 5 x 10-4 the PEC is much improved, matching the 

FCI very closely.  This is quantified by the NPE results of 10.3 kcal/mol for 5 x 10-3 and 

0.6 kcal/mol for 5 x 10-4.  This compares favourably to the CCSD NPE of 10.3 

kcal/mol[15].   

 

 
Figure 5-9: Energy (Hartree) from MCCI and FCI results[15] against bond length R (angstrom) for CH4.  
Using the 6-31G* basis set with one frozen core orbital.  Adapted from Ref. [18].   
 

This system is also studied using multireference methods[16] where CAS(8,8) gave an 

NPE = 6.34 kcal/mol and CASPT2(8,8) gave 1.56 kcal/mol.  In this study only 

SOCI(8,8) had a better NPE of 0.3 kcal/mol.  While in Ref. [17] the minimal active 

space CAS(2,2) gave an NPE = 9.25 kcal/mol, CASPT2(2,2) gave 1.22 kcal/mol, and 

SOCI(2,2) gave an NPE = 0.6 kcal/mol.  On average the number of CSFs used in the 

MCCI calculations were 417 (5 x 10-3) and 4272 (5 x 10-4).  While the FCI space is 

around 26.7 x 106 SDs[15].   

 

In Figure 5-10 the error in the energy for MCCI (cmin=5 x 10-4) in comparison to FCI are 

all very small in general. The greater error occurs at shorter bond length, while the 

1 1.5 2 2.5 3 3.5 4 4.5
R (angstrom)

-40.35

-40.3

-40.25

-40.2

-40.15

E 
(H

ar
tre

e)

MCCI 0.005
MCCI 0.0005
FCI



 110 

smallest error occurs at bond lengths slightly longer than the equilibrium.  At R = 4.6 Å 

the difference in the MCCI energy in comparison to the sum of the MCCI energies of 

the fragments is calculated at 15 kcal/mol with the larger cmin and 0.79 with the smaller 

cmin.   

 

 
Figure 5-10: Energy error (Hartree) in MCCI (cmin=5 x 10-4) compared to the FCI result against bond 
length R (angstrom) for CH4.  Using the 6-31G* Basis set with one frozen core orbital.  NPE = 0.6 
kcal/mol.   
 

Method HF BH CH4 

MCCI (5 x 10-3) CSFs 172.3 333.1 417.0 

MCCI (5 x 10-4) CSFs 1337.0 4219.6 4272.0 

FCI SDs 3,756,816 15,132,412 26, 755,625 

MCCI (5 x 10-3) fraction 0.0046 % 0.0022 % 0.0016 % 

MCCI (5 x 10-4) fraction 0.036 % 0.028 % 0.016 % 

Table 5-1: MCCI mean CSFs compared to FCI symmetry adapted SDs for three cases of hydrogen 
dissociation (HF, BH, and CH4).   
 

It has been shown that for the systems of hydrogen dissociation, which been have 

considered, that using a cmin of 5 x 10-4 the shape of the FCI PEC is reproduced to high 

accuracy.  In Table 5-1 it is clear that this is achieved using only a tiny fraction of the 

FCI space.  The NPE of the MCCI (5 x 10-4) curves was only bettered by higher cost 

multireference CASPT2 and SOCI calculations, using large active spaces or smaller 

active spaces constructed with greater user input.  The number of CSFs (or SDs) used 
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for these multireference calculations was not reported and so comparison could not be 

made.   

 

5.2.2 Carbon Dimer, C2 

 

The next system considered is the dissociation of the carbon dimer C2.  The system is 

known to be multireference with low-lying states, making it a stern test for MCCI.  FCI 

results of the dimer for the three lowest-lying states have been published[19]. These are 

presented along side the MCCI (cmin==5 x 10-4) results in Figure 5-11.  The 6-31G* 

basis set with two frozen core orbitals was used in these calculations.  Preliminary 

MCCI results for C2 were first published in Ref. [18].   

 

 
Figure 5-11: Energy (Hartree) from MCCI (cmin=5 x 10-4) and FCI results[19] against bond length R 
(angstrom) for C2.  Using the 6-31G* basis set with 2 frozen core orbitals.  Here X and B’ are 1Σ+

g and B 
is 1Δg.  Adapted from Ref. [18].   
 

The FCI curves of the excited states are very close together, making judging the 

accuracy of the MCCI curve by eye difficult.  The MCCI PEC does seem to follow the 

FCI X (ground state) curve quite well, apart from at long bond length (R=~3 Å) where 

the curve is closer in energy to the FCI B’ excited state curve. Suggesting that at this R 
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the MCCI calculation has converged to this low-lying excited state rather than the 

ground state. For the FCI curves between 1.7 and 2.5 Å the lowest energy state is the B 

curve rather than the X curve.  Therefore it is possible that the MCCI method may have 

converged to the B state, as the two states have the same symmetry in the abelian point 

group (D2h) used for the MCCI calculation.  The three excited states appear to be 

trending towards a degenerate state as the system dissociates.   

 

The FCI calculations in Ref. [19] required 52,407,353 symmetry adapted SDs, while on 

average the MCCI (cmin=5 x 10-4) only used ~6900 CSFs.  The NPE of the MCCI curve 

was in this case 4.9 kcal/mol.  This is a much better performance than CCSD (NPE = 

24.3 kcal/mol) and CCSD(T) (NPE = 61.3 kcal/mol), which highlights CCs instability 

at large R[19].  CISDTQ gave a curve with NPE=16.6 kcal/mol and, without symmetry, 

would require about 3 x 106 SDs for the calculation.  This highlights the usefulness of 

the MCCI method that gives a curve with a better NPE using far fewer configurations, 

even after allowing for a reduction in the size of the CISDTQ space if symmetry and 

CSFs are used.   

 

 
Figure 5-12: Energy error (Hartree) in MCCI (cmin=5 x 10-4) compared to the FCI result against bond 
length R (angstrom) for C2.  Using the 6-31G* Basis set with 2 frozen core orbitals.  NPE = 4.9 kcal/mol.   
 

In Figure 5-12 the energy error (Hartree) in MCCI (cmin=5 x 10-4) compared to the FCI 

result against bond length R (angstrom) is plotted for C2. The NPE for the curve was 4.9 



 113 

kcal/mol, slightly better than the mean single-point error (MSPE) of 6.0 kcal/mol.  If the 

points around 3 Å, where it is believed that the MCCI may have converged to a low-

lying excited state, are excluded the MSPE reduces to 5.7 kcal/mol and the NPE drops 

to 2.7 kcal/mol.  Comparing the MCCI energy at 3 Å to the sum of the MCCI energies 

of the fragments a difference of 3.2 kcal/mol is found.   

 

5.2.2.1 Analysis of the C2 MCCI Wave function 

 

The results of the MCCI PEC of C2 can possibly be explained by analysis of the C2 

MCCI wave function at different points along the curve.  The ten largest coefficients of 

C2 at the equilibrium bond length R = 1.25 Å for the MCCI wave function are presented 

in Table 5-2, where the number of substitutions with respect to the Hartree-Fock 

reference are listed by spin for each of the configurations.  Here at the equilibrium 

geometry the Hartree-Fock reference configuration is the dominant configuration.   

 
Coefficient α substitutions β substitutions 

-0.830 0 0 

0.331 1 1 

-0.184 1 1 

-0.180 1 1 

-0.179 1 1 

-0.160 0 2 

0.158 1 1 

0.158 1 1 

-0.142 0 1 

0.106 2 2 

Table 5-2: Ten largest coefficients of C2 (R=1.25 Å) MCCI wave function with the number of 
substitutions with respect to the Hartree-Fock reference listed by spin. 
 

At R=2 Å the two largest coefficients are -0.636 and 0.557.  The dominant 

configuration is now one with a double substitution from the Hartree-Fock reference.  

This could indicate that the lowest lying B state has been converged to here, rather than 

the equilibrium ground state (X) curve.  Or alternatively it could just be an aspect of the 

multi-configurational nature of the curve.  By R=3 Å a third configuration, different 

from the dominant configurations earlier in the curve, becomes dominant.  This may 

suggest that at large R a different potential curve has been converged upon.   
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5.2.3 F2 

 

In Figure 5-13 the PEC calculated using MCCI (cmin=5 x 10-4), Hartree-Fock, and full 

valence CI for the F2 molecule is plotted.  Despite no frozen orbitals being used in the 

MCCI calculations the resulting curve follows that of the full valence CI results of Ref. 

[20].  The Hartree-Fock curve increases in energy too quickly at longer R, resulting in 

an overestimate of the well depth and an improper description of the dissociation.   

 

With cmin=5 x 10-4 MCCI required on average 3577 CSFs for the points considered 

along the curve. This is approximately 8.3 x 10-7 % of the FCI space (4.3 x 1011 SDs) 

that would be required for a single FCI calculation with 2 frozen core orbitals.  The 

NPE for MCCI was found to be 6.2 kcal/mol in this case.   

 

 
Figure 5-13: Energy (Hartree) from MCCI (cmin=5 x 10-4), Hartree-Fock, and full valence CI[20] against 
bond length R (angstrom) for F2, using the cc-pVDZ basis set. 
 

Figure 5-14 shows the energy error (Hartree) in MCCI (cmin=5 x 10-4) compared to the 

full valence CI result[20] against bond length R (angstrom) for F2. Here the error tends 

to decrease as the bond length increases.  A difference of 7.6 kcal/mol is found between 

the energy of two separate F atoms and the energy of the system at 3 Å.   
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Figure 5-14: Energy error (Hartree) in MCCI (cmin=5 x 10-4) compared to the full valence CI result[20] 
against bond length R (angstrom) for F2, using the cc-pVDZ Basis.  NPE = 6.2 kcal/mol.   
 

5.2.4 N2 

 

The bond breaking of the nitrogen molecule (N2) is now considered.  This should be a 

good test of the MCCI method, as it exhibits multireference character especially at 

longer bond length.  In fact some single reference based methods fail to describe the 

dissociation[21].  The PEC of the N2 bond breaking calculated by MCCI (cmin=10-3) 

using the cc-pVDZ basis with 2 frozen core orbitals is presented in Figure 5-15.  In 

order to reproduce the FCI N2 bond breaking PEC shown, the FCI results from a 

number of sources[22-24] were collated.   

 



 116 

 
Figure 5-15: MCCI (cmin=10-3) and FCI energy[22-24] (Hartree) against bond length R (angstrom) for the 
N2 Molecule, using the cc-pVDZ basis set with two frozen orbitals. 
 

By inspection it is clear that the general shape of the MCCI curve is correct, though the 

energy difference isn’t consistent at short R, where it converges toward the FCI curve.  

The NPE in this case is calculated to be 6.6 kcal/mol.  The number of CSFs required by 

the MCCI program ranged from about 1000 at the shortest R to about 5000 at the 

longest, where the multireference character is expected to be greater. The amount of 

computing time required for the calculations increases as the number of configurations 

increases; at the shortest R 200 iterations required 3 minutes while at the longest 200 

iteration took 1.3 hours.  The average number of CSFs over all the R considered was 

2854, significantly less than the 4.3x109 SDs required for a FCI calculation, if spatial 

symmetry is ignored.   

 

Ref. [24] considers 6 of the FCI points presented in Figure 5-15, for those points the 

NPE results for a number of methods were presented.  The NPE of CCSD and CCSD(T) 

were found to be 108.386 kcal/mol and 36.241 kcal/mol respectively.  Also, using a 

CAS(6,6) reference wave function, the NPE of MRCI was found to be 0.291 kcal/mol 

and that of MRCC was found to be 0.459 kcal/mol.  While the NPE value for MCCI at 

cmin=10-3 is 3.370 kcal/mol for these points.  This falls between the values calculated for 

the single reference (CCSD and CCSD(T)) and multireference (MRCI and MRCC) 
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methods, unfortunately the number of CSFs used is not stated in Ref. [24] so a 

comparison of the different calculation size cannot be made.   

 

Using the 13 FCI points from Ref. [22], Ref. [17] presents the NPE of a set of CASSCF 

calculations of different sizes.  CAS(10,10) gave an NPE of 22.93 kcal/mol, CAS(10,8) 

had an NPE of 15.03 kcal/mol, while the smallest active space CAS(6,6) found an NPE 

of 14.59 kcal/mol.  Further refining these results using CASPT2 the NPEs were 

calculated as; CASPT2(6,6) had a NPE of 5.2 kcal/mol and CASPT2(10,10) had a NPE 

of 1.88 kcal/mol.  These results compare well with the previously stated NPE for MCCI 

of 6.6 kcal/mol.  However if only the 13 points from Ref. [22] are considered for the 

NPE of the MCCI curve, it is improved to 5.9 kcal/mol.  Clearly, at this cmin, MCCI is 

able to replicate the results of CASPT2 calculations quite closely.  But, while the 

CASPT2 calculations require a great deal of user-defined guidance as to the make-up of 

the active space, the MCCI requires a minimum of input.   

 

Figure 5-16 shows the Error in MCCI (cmin=10-3) results in comparison to the FCI 

calculation against bond length, R.  In contrast to the results for HF the lowest error is at 

shorter R and increases as R increases.   

 

 
Figure 5-16: Error in MCCI (cmin=10-3) result in comparison to the FCI calculation against bond length R 
(angstrom) in N2, using the cc-pVDZ basis set with two frozen orbitals. 



 118 

 

The N2 PEC was also calculated using the cc-pVTZ basis set.  MCCI energies (Hartree) 

against bond length R (angstrom) for the N2 Molecule, using the cc-pVTZ basis set with 

two different cmin (10-3 and 5 x 10-4) are displayed in Figure 5-17. Inset in Figure 5-17 is 

a plot of the energy difference between the MCCI results at the two cmin.   

 

 
Figure 5-17: MCCI energy (Hartree) against bond length R (angstrom) for the N2 Molecule, using the cc-
pVTZ basis set with two different cmin (10-3 and 5 x 10-4). Inset: the energy difference between the MCCI 
results at the two cmin. 
 

The mean number for CFSs required for the cmin=10-3 and the cmin=5 x 10-4 curves were 

around 4600 and 10600, respectively.  Without symmetry considerations a FCI 

calculation would require 1017 SDs and this large size means a comparative FCI 

calculation in the same basis set is impossible.  However an approximate comparison 

with the FCI results using the ANO[4s3p1d] with two frozen cores of Ref. [25] is 

attemped here.  Using the equilibrium geometry point used in the MCCI calculations of 

1.098 Å and the maximum bond length considered of 4 Å the dissociation energy is 

calculated to be 0.381 Hartree at 5 x 10-4 cmin.  In Ref. [25] the points at 2.1 Bohr and 40 

Bohr were used to calculate a FCI dissociation energy of 0.321 Hartree, which 

compares reasonably well to this MCCI value.  Comparing the MCCI energy at 4 Å 
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with the MCCI energies of the nitrogen fragments a difference of 56.8 kcal/mol is found 

with cmin=10-3 and 41.8 kcal/mol with cmin=5 x 10-4.   

 

In an attempt to make a fairer comparison to the FCI result of Ref. [25] the MCCI 

(5x10-4) calculation was repeated using the same geometry points as Ref. [25] (2.1 and 

40 Bohr) and the cc-pVTZ basis set with the f orbitals removed.  At R=2.1 Bohr an 

energy of -109.296 Hartree was found using 12,664 CSFs.  However, at R=40 Bohr the 

MCCI result was far too high in energy, -93.66 Hartree using 5,029 CSFs.  This is 

attributed to the restricted Hartree-Fock reference wave function being qualitatively 

incorrect at this bond length.  The number of configurations required to compensate for 

using this poor reference seems to be too large for the cmin used.  Using instead the 

previous point at 4 Å (7.56 Bohr) with this new basis set an energy value of -108.959 

Hartree was calculated using 19,156 CFSs.  In this case the MCCI result is only about 

10 kcal/mol from the FCI dissociation energy of Ref. [25].   

 

5.2.5 BeH2 

 

BeH2 is a classic test system for methods due to its highly multireference behaviour at a 

small system size.  The case of BeH2 is far tougher for computational methods than any 

of the examples considered earlier in the chapter.  The model reaction for the formation 

of BeH2 was investigated using MCCI (cmin=10-3) with cc-pVDZ basis set. Comparing 

those results to those of the Hartree-Fock and FCI methods calculated using 

MOLPRO[26], a plot of these results against the reaction coordinate x (Bohr) is shown 

in Figure 5-18.   
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Figure 5-18: Energy (Hartree) from MCCI (cmin=10-3), Hartree-Fock, and FCI against reaction coordinate 
x (Bohr) for BeH2, using the cc-pVDZ basis set. Inset: the reaction coordinates.   
 

It is clear that Hartree-Fock completely fails to describe the curve and predicts in fact 

that BeH2 is not stable.  The MCCI results recover the FCI curve extremely well not just 

in the shape but also in the energy values.  In sharp contrast the Hartree-Fock results 

produce a complete different behaviour to the curve.  The MCCI NPE of 0.653 kcal/mol 

confirms the high accuracy of the MCCI results.  Which is impressive given the mean 

number of CSFs used in the MCCI curve is only 628, compared to 4 x 106 SDs required 

when neglecting symmetry in a FCI calculation.  In Figure 5-19 the error in the MCCI 

(cmin=5 x 10-3) Energy (Hartree) compared to the FCI result against reaction coordinate 

x (Bohr) for BeH2 is plotted.   
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Figure 5-19: Energy error (Hartree) in MCCI (cmin=5 x 10-3) compared to the FCI result against reaction 
coordinate x (Bohr) for BeH2, using the cc-pVDZ Basis.  NPE = 0.63 kcal/mol.   
 

The error is at its lowest at the longest x considered (4 Bohr), the error increases as the 

reaction coordinate is decreased until around 2 Bohr. Lower than about 2 Bohr the error 

decreases again.   

 

5.2.6 Ammonia Inversion 

 

Here MCCI is used to reproduce the PEC of ammonia inversion, as its triagonal 

pyramid structure inverts through a planar structure.  The cc-pVDZ basis set with a 

single frozen core orbital was used.  The geometry used in the MCCI calculations has a 

NH bond length of 1.025 Å with each hydrogen at an angle of 120° to each other.  The 

angle θ shown in the graphs is the angle the NH bond makes with a line passing through 

the nitrogen, perpendicular to the hydrogen plane.  In Figure 5-20 the Energy in Hartree 

from MCCI (cmin=10-3), Hartree-Fock, and FCI calculation is plotted against angle θ 

(degrees) for NH2.  Where the Hartree-Fock and FCI calculations were performed in 

MOLPRO[26].  The values were found for half of the plot and then mirrored about 

θ=90°.   
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Figure 5-20: Energy (Hartree) from MCCI (cmin=10-3), Hartree-Fock, and FCI against angle θ (degrees) 
for NH3.  Using the cc-pVDZ basis set and one frozen core orbital. 
 

It can be seen that both MCCI (cmin=10-3) and Hartree-Fock generally do a good job of 

recovering the shape of the FCI PEC.  Though the MCCI curve does seem a bit flat 

about θ=90°.  The NPE for Hartree-Fock is 9.9 kcal/mol, while for MCCI (cmin=10-3) it 

is 2.4 kcal/mol.  Over the length of the curve for the points calculated the number of 

CSFs used by MCCI ranged from 1226 to 1824, with a mean value of 1629.  While the 

FCI calculation, neglecting symmetry, uses about 4 x 108 SDs. 

 

The error in the energy (Hartree) calculated in MCCI (cmin=10-3) compared to the FCI 

result against angle θ (degrees) for NH3 is shown in Figure 5-21.  The error is lowest at 

the transition state and increases as the angle moves away.   
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Figure 5-21: Energy error (Hartree) in MCCI (cmin=10-3) compared to the FCI result against angle θ 
(degrees) for NH3.  Using the cc-pVDZ basis set and one frozen core orbital.  NPE = 2.4 kcal/mol.   
 

5.2.7 Hydrogen Lattice 

 

Now a strongly correlated one-dimensional lattice made up of a linear chain of 

hydrogen atoms is considered.  The ratio of static to dynamic correlation energy 

changes as the distance between the hydrogen atoms in the chain is altered.  Progressing 

from largely dynamic to largely static as the distance between hydrogen is increased.  

These systems therefore pose an interesting challenge for MCCI.  It is expected that 

modelling techniques for strongly correlated one-dimensional lattices, such as density 

matrix renormalisation group (DMRG)[27], should be more suitable for such a system 

than MCCI.  A linear chain of 50 Hydrogen atoms was investigated using DMRG with 

the STO-6G basis set[28].   

 

Firstly, a shorter chain of 12 hydrogen atoms for which FCI results can be calculated is 

considered.  FCI results were calculated using MOLPRO with the STO-6G basis set.  At 

Hydrogen separation R=1.0 Bohr only two coefficients have a value greater than 0.05 

compared to 19 at R=4.2 Bohr, where the largest is only 0.22.   
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Figure 5-22: Energy (Hartree) from MCCI (cmin=10-3), Hartree-Fock, and FCI against separation between 
atoms R (Bohr) for a chain of 12 hydrogen atoms.  Using the STO-6G basis set. 
 

In Figure 5-22 Energy (Hartree) from MCCI (cmin=10-3), Hartree-Fock, and FCI against 

separation between atoms R (Bohr) for a chain of 12 hydrogen atoms is plotted.  The 

Hartree-Fock energy increases far too quickly as the separation between hydrogen 

atoms increases, while the MCCI (cmin=10-3) is a fairly good fit to the FCI curve.  It 

must be noted here a numerical issue encountered with the MCCI results. For R > 3.2 

Bohr the MCCI results are lower in energy than the FCI. This was found to be an issue 

with the very poor quality of the MOs used, as when the calculation was repeated using 

orthogonal atomic orbitals this issue was resolved.  This suggests that the use of poor 

quality MOs in challenging systems should be done with caution as similar numerical 

issues may be encountered.  The FCI calculation required 853,776 SDs, while the 

number of CSFs required for MCCI ranged from 342 at R= 1 Bohr to 6477 at R=2.8 

Bohr. With an average 2701 CSFs required over all MCCI points.   

 

In Figure 5-23 the energy error (Hartree) for MCCI (cmin=10-3) compared to the FCI 

result against separation between atoms R (Bohr) for a chain of 12 hydrogen atoms is 

plotted.  The error in the MCCI result increases in value as R is increased from 1 Bohr 

to 2.8 Bohr.  The NPE for the MCCI curve was 15.8 kcal/mol.   
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Figure 5-23: Energy error (Hartree) in MCCI (cmin=10-3) compared to the FCI result against distance 
between atoms R (Bohr) for a chain of 12 hydrogen atoms.  Using the STO-6G basis set.  NPE = 15.8 
kcal/mol.   
 

It can be seen in Figure 5-24, that when considering a linear chain of 50 hydrogen 

atoms, MCCI (cmin=5 x 10-4) does not perform very well, giving a curve that is closer in 

shape to the Hartree-Fock curve than that of DMRG results of Ref. [28].  Though it is 

clear that the Hartree-Fock result has been improved upon.  It is suggested that this is 

due to the methods small sampling of the extremely large configuration space (1028).  

Only about 10-21 % of the configuration space is included in the ~80,000 CSFs of the 

MCCI calculation.  This appears to be much too small a sample to accurately reproduce 

the required shape of the PEC.   
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Figure 5-24: Energy (Hartree) from MCCI (cmin=5 x 10-4), Hartree-Fock, and LDMRG(500) see Ref. [28] 
and MCCI (cmin=5 x 10-4) using orthogonal atomic orbitals (AOs) against distance between atoms R 
(Bohr) for a chain of 50 hydrogen atoms.  Using the STO-6G basis set. 
 

At Large R the individual hydrogen in the chain could be far enough apart to be 

considered essentially dissociated. The system would be expected to be closer to a 

collection of non-interacting hydrogen atoms rather than an interacting chain.  

Therefore atomic orbital (AO) may be a better basis set than Hartree-Fock MOs at 

larger R.  Starting with the left most atomic orbital, orthogonal atomic orbitals were 

constructed using the Gram-Schmidt procedure.  By using CSFs, a single electron can 

be in each atomic orbital while still maintaining the correct spin of S=0.  Applying this 

AO to a hydrogen chain separation distance R=4.2 Bohr produces the single point 

marked on Figure 5-24.  The point is 0.4 Hartree above the DMRG curve.  But the 

MCCI method seems unable to improve on the value of this single CSF as no other 

configurations are then found.   

 

5.2.8 Ethylene Torsional Angle 

 

Now considered is the case of torsional twisting of the C=C double bond of ethylene 

(C2H4).  As no FCI results are available, the NPE cannot be found.  Instead the 
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transition barrier height is compared to the results published in Ref. [29].  In Ref. [29] 

the barrier height of the C=C torsion was calculated using HF, CASSCF(12,12) and 

CASPT2, giving results of 111.8, 68.2 and 65.5 kcal/mol respectively.  For the MCCI 

calculations, the ethylene geometry used was RC=C = 1.325 Å, RC-H = 1.090 Å, and 

<HCC = 120.252°. These dimensions remain fixed for all calculations, the only change 

being the varying of the torsion angle.  However, it should be noted that it is unclear 

from Ref. [29] whether exactly the same geometry was used and also if they allowed the 

molecular geometry to be relaxed at each torsion angle.   

 

The MCCI results were computed using cmin=10-3 and in keeping with the results of 

Ref.[29] the cc-pVDZ basis was used.  The potential curve of the C=C bond torsion 

against energy is presented in Figure 5-25, these results were mirrored about the line x = 

90.   

 
Figure 5-25: Energy against C=C bond torsional angle (degrees) of Ethylene with the cc-pVDZ basis and 
cmin=10-3 
 

The barrier height for this transition to be 75.52 kcal/mol when calculated from these 

MCCI results, which compares quite well with the results of Ref. [29].  Though, this 

may not be comparing like for like comparison.  The number of CSFs used in the MCCI 

calculations increased from 5900 to 11200 as the torsion moved from 0 to 90 degrees, 

with an average of 8250 CSFs.  This is a significant reduction in comparison to a FCI 
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calculation where approximately 1017 SD would be required, if any possible spatial 

symmetries are ignored.   

 

5.2.9 Cr2 

 

The final PEC considered is that of the bond breaking of Cr2.  Cr2 proves a very 

challenging test for theoretical calculation, as the wave function is very complex.  The 

Cr atom has a high spin 7S ground state with 6 unpaired electrons (3d)5(4s), which 

allows that 2 Cr atoms can in principle form 6 bonds.  It is highly multi-configurational, 

the dominant configuration only contributes to 47% of the total[30].  Experimental 

investigation of the Cr2 molecule identifies a minimum at 1.68 Å and further a flat shelf 

region around 2.5 Å[31].  The inner minimum corresponds to a 3d-3d dominated bond 

and the shelf corresponds to 4s-4s bonding.  The binding energy (De) of Cr2 has been 

experimentally measured as 1.53 ± 0.06 eV[32].   

 

A FCI investigation of Cr2 would be currently impossible due to the size of the system 

and consequently no FCI results exist for it.  Basic single reference methods (such as 

MP2) completely fail to describe the chemical bond in the case of the Cr2 molecule, 

predicting that the molecule does not exist.  Using restricted CCSD(T) a single shallow 

minimum (De=0.38 eV) is predicted at 1.6 Å.  While using unrestricted CCSD(T) the 

binding energy is improved to 0.89 eV, but at the expense of the minima location that 

moves to 2.54 Å[33].  With a CAS(12,12) treatment, that can recover the static 

correlation, only a weak and shallow minimum at about 3 Å is observed, with no shelf 

region reproduced[34].   

 

Using multireference or second order methods are required in order to obtain a correct 

description of the Cr2 chemical bond.  Using the CASSCF wave function as a reference, 

these methods can recover the missing dynamic correlation and correctly reproduce the 

shape of the Cr2 PEC.  Clearly, a large percentage of the correlation energy must be 

recovered in order to approach a correct description of the molecule.  MRCI gives a 

minima at 1.72 Å with a De=1.09 eV[35], MRCC gives a minima at 1.71 Å with 

De=1.22 eV[36], and CASPT2 finds a minima at 1.70 Å with De=0.97 eV[34].   
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5.2.9.1 Investigating the Cr2 Dissociation PEC with MCCI 

 

The PEC of Cr2 dissociation was calculated using the MCCI method using the cc-pVDZ 

basis and cmin of 10-3.  The results of these calculations are presented in Figure 5-26.   

 

 
Figure 5-26: MCCI energy (Hartrees) against bond length (Angstrom) for Cr2 with the cc-pVDZ basis 
and cmin=0.001 
 

Due to the lack of FCI results for Cr2, it is not possible to find the NPE of the MCCI 

curve.  Inspecting Figure 5-26 it can be seen that MCCI has successfully predicted the 

minima at around 1.6 Å, though due to the number of points used it is impossible to 

refine the position of the minima further.  Taking the 1.6 Å as the minima and the final 

point at 4.25 Å as being dissociation, the well depth is calculated as being De=8.94 eV.  

While the minimum appears to be in approximately the right position, the well depth is 

over estimated and is too deep. The 2.5 Å shelf is present, but is poorly resolved.  It 

would appear that at this cmin (10-3) the MCCI method is unable to correctly describe the 

PEC at longer bond lengths.  The result should be improved by reducing the value of 

cmin. 

 

Subsequent to this work, additional work by our group has improved upon the Cr2 

results presented here. Successfully reproducing the correct curve shape for Cr2 using 

MCCI[11]. 
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5.3 Conclusions 

 

MCCI has been shown here to be capable of describing potential curves of small 

systems to a good accuracy.  Though MCCI cannot be considered size consistent nor 

size extensive, when a low enough cmin is used MCCI is sufficiently size consistent to 

correctly describe the PEC of systems.  The size consistency can be quantified by 

comparing the difference in the molecules MCCI energy at the longest bond length and 

the sum of the MCCI energies of the system’s fragments.  Most systems considered 

found a difference of less than 10 kcal/mol, with exception of N2 that had a difference 

of 41.8 kcal/mol with the cc-pVTZ basis set.  The cases of hydrogen dissociation had 

differences of less than 1 kcal/mol.   

 

In Table 5-3 the mean CSFs to FCI SDs (neglecting symmetry) ratio, mean CSFs to FCI 

CSFs (neglecting symmetry), NPE (kcal/mol), and mean single point error (MSPE) in 

kcal/mol for the systems investigated are shown.  

 

System % FCI SD space % FCI CSF space NPE MSPE 

HF 0.014 % 0.056 % 1.3 2.6 

BH 0.007 % 0.021 % 2.6 2.1 

CH4 0.012 % 0.049 % 0.6 4.1 

C2 0.003 % 0.013% 4.9 6.0 

F2 8.3 x 10-7 % 4.9 x 10-6 % 6.2 9.0 

N2 6.6 x 10-5 % 3.2 x 10-4 % 6.6 11.9 

H12 0.32 % 1.2 % 15.8 6.0 

BeH2 0.016 % 0.052 % 0.63 0.94 

NH3 4 x 10-4 % 1.7 x 10-3 % 2.4 8.4 

Table 5-3: Mean CSFs to FCI SDs (neglecting symmetry) ratio, mean CSFs to FCI CSFs (neglecting 
symmetry), NPE (kcal/mol), and mean single point error (MSPE) in kcal/mol for the systems investigated 
where FCI results exist.  All MCCI results are for the smallest cmin used.   
 

NPE values often to around a few kcal/mol can be achieved using MCCI to generate a 

wave function that utilises a tiny percentage of the FCI space.  With the exception of 

BH and H12, the NPE of the MCCI curve is better than the MSPE of the constituent 

points.  In general, at least for the systems considered, as the size of the FCI space 

increased the fraction of the FCI space used by the MCCI calculation decreased.   
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Three of the systems considered did not have FCI results for comparison. For the case 

of ethylene the calculated barrier of the PEC of the isomerisation was found to compare 

well with other computational results.  For Cr2, which is a very challenging case, while 

the minimum at around 1.6 Å was found, the shelf at 2.5 Å was poorly resolved and the 

well depth of the minimum was over estimated.  This was shown to be a problem with 

the level of cmin used, and subsequent investigation resolved this problem[11].  The case 

of a large chain of 50 hydrogen atoms was to be too challenging for MCCI.  Though the 

equilibrium geometry was in approximately the correct place, at long bond lengths the 

MCCI result was not a big improvement on the Hartree-Fock curve.  A single CSF of 

orthogonal atomic orbitals provided an energy value closer to the DMFG curve here.  It 

is suggested that this is due to the methods small sampling of the extremely large 

configuration space (1028).  It is possible that the MCCI result could be improved by the 

use of approximate natural orbitals and by letting the program run for more iterations, 

thereby giving the algorithm time to explore more of the FCI space.   

 

Two potential limitations of the MCCI method when applied to potential energy 

surfaces have been noted.  Firstly, if a sufficiently low cmin is not used the potential 

energy curve may not be smooth and features may not be properly resolved.  This is due 

to the nature of the algorithm.  Secondly, when a large sampling of the FCI is required, 

where the system is strongly correlated and/or the reference wave function is not 

qualitatively correct.   
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Chapter 6: Application of Monte Carlo Configuration Interaction 

Method to Multipole Moments. 

 

As stated in chapter 5, in the version of the MCCI program used here a configuration’s 

contribution to a required property can be used to judge its inclusion to the wave 

function, rather than just the configuration’s energy contribution.  Therefore it is 

expected that all properties of the exact wave function should be approximated with 

sufficient accuracy by the calculation.  In this chapter investigations of the application 

of MCCI to the calculation of multipole moments[1] are presented. In Ref. [1], in 

addition to multipole moments, ionization energies and electron affinities were also 

considered.  While MCCI is shown to be a useful alternative for the calculation of 

atomic ionisation energies, electron affinities proved far more challenging.  Dipole 

moments and excited state energies of TiO2 calculated using MCCI appear at the end of 

the chapter, which ties in to the TiO2 results presented in chapter 3.   

 

Hartree-Fock molecular orbitals are used to generate the reference wave function where 

unless otherwise stated all electrons are correlated.  The Molecular orbital integrals 

were generated using the Columbus program[2].  In addition to MCCI, the PSI3 

program[3] was used for the FCI and multipole moment calculations, and spin-

unrestricted CCSD (UCCSD) dipole moments were calculated in MOLPRO[4].   

 

6.1 Dipole Moments 

 

The dipole moment of a linear molecule oriented along the z-axis can be calculated as:   

 

! = − Ψ ! Ψ + !!!!
!

 
(6.1) 

 

Where the dipole moment is calculated in atomic units and here Qi is the nuclear charge 

of an atom i.  In this section MCCI is used to calculate the dipole moments of the 

ground and excited states of carbon monoxide and for the ground state of NO.  These 
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results are then compared to experimental and FCI results in order to assess the quality 

of the MCCI results.  

 

6.1.1 Carbon Monoxide (CO) 

 

Firstly, the ground state dipole moment of CO is considered.  Experiment has 

previously defined the CO bond length (2.1316 Bohr) and dipole (0.122 Debye)[5]. 

Here the positive value dipole signifies a polarity of C-O+.  Though it would appear to 

be a rather simple system the calculation of the dipole moment does still have some 

difficulties.  The HF method incorrectly describes the dipole moment, giving the wrong 

sign for the dipole, effectively getting the direction of the dipole backwards.  The 

quality of a dipole moment result has been associated to the amount of correlation 

accounted for by a given method[6].   

 

In Figure 6-1 the MCCI (cmin=5 x10-3) results of CO dipole moment (e Bohr) against 

program iteration are shown.  PSI3 was used to find the FCI energy (-113.05583 

Hartree) and dipole moment (0.23D), and these results are shown in Figure 6-1 for 

comparison.  All calculations were performed using the cc-pVDZ basis set with two 

frozen core orbitals.  

 

The MCCI result starts from a value close to the incorrect HF method value, but quickly 

changes sign as new configurations are generated and more of the correlation is 

recovered.  The MCCI dipole moment eventually converges to about half of the FCI 

dipole value, the non-variational nature of the dipole can be seen at points in the 

calculation where the MCCI dipole value exceeds that of FCI.  This MCCI calculation 

only used 833 CSFs, a tiny fraction of the 109 SD required for FCI calculation (if spatial 

symmetry considerations are ignored).   
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Figure 6-1: MCCI (cmin=5 x 10-3) results of CO dipole moment (e Bohr) against program iteration, 
presented with FCI result.  Calculations using the cc-pVDZ basis set with two frozen core orbitals.  
Adapted from Ref.  [7].  Inset: Energy (Hartree) against program iteration number.   
 

The convergence of the MCCI energy toward the FCI energy is also shown inset in 

Figure 6-1.  At this value of cmin (5 x 10-3) only 88% of the FCI energy is recovered.  

Clearly there is room to improve upon these results and recover more of the correlation 

energy.   

 

The MCCI calculation was restarted from the converged cmin=5 x 10-3 wave function, 

this time with lower cmin value of 5 x 10-4. This was repeated at 3 x 10-4 with the cmin=5 

x 10-4 wave function as a reference. The MCCI energy against program iteration 

number is shown in Figure 6-2 for both these new cmin and again the FCI result is shown 

for comparison.  The lowest cmin (3 x 10-4) 98% of the correlation energy is now 

recovered, while using only approximately 4 x 104 CSFs.  A characteristic saw tooth 

pattern is evident in these curves at convergence; this pattern is due to the full pruning 

steps that occur at regular intervals (10 iterations).  Additional configurations generated 

in the interim steps reduce the energy, but are not checked for deletion as part of the 

entire wave function until this full pruning step.   

0 20 40 60 80 100 120 140 160 180
Iterations

-0.1

-0.05

0

0.05

0.1

0.15

D
ip

ol
e 

m
om

en
t (

e 
Bo

hr
)

MCCI 0.005
FCI

0 20 40 60 80 100 120 140 160 180
-113.1

-113

-112.9

-112.8

-112.7

En
er

gy
 (H

ar
tre

e)
MCCI 0.005
FCI



 137 

 
Figure 6-2: MCCI (cmin= 5x10-3 & 5x10-4) and FCI energy against program iteration number for CO, 
using the cc-pVDZ basis set with 2 frozen core orbitals.   
 

 
Figure 6-3: CO MCCI results of dipole moment (e Bohr) against program iteration number, using the cc-
pVDZ basis set with 2 frozen core orbitals. Adapted from Ref. [7].   
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In Figure 6-3 dipole moments of CO can be seen for both the MCCI 0.0005 and the 

MCCI 0.0003 runs.  It would appear that the dipole moment result is improved as the 

cmin cut-off value is reduced.  Though there is not a big difference in the two final 

results, this can be put down to the small difference in the cmin values used. 

 

 
Figure 6-4: Dipole percentage error against correlation energy percentage error for CO, using the cc-
pVDZ basis set and 2 frozen orbitals.  Percentage errors for MCCI are in comparison to FCI result.  Here, 
three values of cmin (5x10-3, 5x10-4, and 3x10-4) are presented where decreasing correlation energy 
percentage error corresponds to decreasing cmin.   
 

The percentage errors in the MCCI results in comparison to the FCI results are 

displayed in Figure 6-4.  With decreasing correlation energy percentage error 

corresponding to decreasing the cmin (5x10-3, 5x10-4, and 3x10-4), the dipole percentage 

error is plotted against the correlation energy percentage error.  The dipole error does 

indeed appear to decrease with the decreasing correlation energy error.   

 

Going back to the FCI dipole, there is a disparity with the experimental result. Though 

the absolute error is relatively small (~ 0.1 D), as a percentage error it is quite large.  

This is put down to the inability of the cc-pVDZ basis set to properly describe the wave 

function at distance from the atoms accurately.  Proper treatment of the wave function 

further away from the atom is important to the accuracy of the multipole moments 

calculated.  Adding diffuse functions to the basis set, in the form of the aug-cc-pVDZ 
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basis set should improve the MCCI results. The prior MCCI calculations were repeated 

using the aug-cc-pVDZ basis set with no frozen orbitals; unfortunately such calculations 

are far beyond FCI at this basis, therefore MCCI results are compared to experiment.   

 

 
Figure 6-5: CO MCCI results for the dipole moment (e Bohr) against program iteration number, using the 
aug-cc-pVDZ basis set.  Adapted from Ref. [7].   
 

Figure 6-5 depicts the CO MCCI results for the dipole moment (e Bohr) against 

program iteration number, using the aug-cc-pVDZ basis set.  At cmin=3 x 10-4 a dipole 

of 0.11 D was calculated with 55,913 CSFs used, in much better agreement with the 

experimental result. This is just a fraction of the SDs (1015 if no symmetry is used) that 

would be required for the FCI calculation.   

 

More conventional methods such as CCSD can calculate the dipole moment of this 

ground state at equilibrium geometry more efficiently.  A CCSD calculation using the 

cc-pVDZ basis set gives a dipole of 0.0996 Debye without a lot of computing time.  

However, in the next example a case is considered where CCSD is expected to perform 

poorly.   
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6.1.1.1 CO Stretched Bond Length 

 

CO at a stretched bond length of 4 Bohr is now considered.  Its dipole moment (e Bohr) 

against program iteration number for MCCI is presented, alongside results of the FCI 

and CCSD methods, in Figure 6-6.  The FCI was calculated in PSI3 and CCSD in 

MOLPRO[4].  While the CCSD result is clearly poor, the MCCI dipole quickly 

converges to the FCI result and at the scale of the graph the two results appear almost 

indistinguishable.   

 

 
Figure 6-6: CO dipole moment (e Bohr) against program iteration number for MCCI, FCI, and CCSD 
methods.  Using the cc-pVDZ basis set with two frozen core orbitals, CO stretched geometry of bond 
length R=4 Bohr.   
 

By considering the FCI wave function it can be seen that the system is strongly 

multireference, as the nine largest coefficients have values between 0.24 and 0.30.  This 

explains why in this case CCSD performs poorly, as methods based on a single 

reference would be expected to struggle.  The MCCI method, which has no inherent 

problems with multireference systems, performs well.  The final MCCI wave function 

was comprised of only 12,669 CSFs, a fraction of the 109 SDs required for FCI.   
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6.1.1.2 CO Triplet State 

 

Using the experimental bond length of 2.278 Bohr cited in Ref. [8], the first triplet state 

of CO (3Π) is now considered.  The dipole moment of the first triplet state has been 

measured experimentally as -1.3740 Debye[9].  The MCCI (cmin=10-3) result using cc-

pVDZ basis set with 2 frozen core orbitals is presented against program iteration 

number in Figure 6-7.  The MCCI dipole calculated is fairly close to the FCI result, but 

required only 5447 CSFs verses the 8.6 x 108 SDs for FCI.   

 

 
Figure 6-7:  CO (at 2.278 Bohr) dipole moment (e Bohr) against program iteration number for the triplet 
state using MCCI (cmin=10-3). Presented with the FCI result, both using the cc-pVDZ basis set with 2 
frozen core orbitals.   
 

Using the aug-cc-pVDZ basis set with no frozen orbitals MCCI, with a cmin=10-3 

requiring 7047 CSFs, gives a dipole of -1.584 Debye.  This is in reasonable agreement 

with the experiment result.  This result is further improved by lowering the cmin, to 10-4, 

where 14,771 CSFs find a dipole of -1.49 Debye.  Using this basis set and no 

consideration to symmetry, a FCI calculation would require in the region of 1015 SDs to 

perform these calculations.   
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6.1.1.3  CO Singlet Excited State 

 

This section considers the first excited state 1Π (of B1 or B2 symmetry within C2v) of 

CO, using the experimental bond length of 2.334 Bohr cited in Ref. [10].  In Figure 6-8 

the MCCI and FCI results using the cc-pVDZ basis set with 2 frozen core orbitals are 

plotted.   

 

 
Figure 6-8: MCCI (cmin=10-3) and FCI result for the dipole moment (e Bohr) for the first excited state of 
CO (1Π state with B1 symmetry within C2v) against program iteration number, using the cc-pVDZ basis 
set with 2 frozen core orbitals. Experimental bond length of 2.334 Bohr was used.   
 

The MCCI method using a cmin=10-3 quickly converges to a value close to the FCI 

result, using far fewer configurations (10,375 CSFs verses ~ 109 SDs in the symmetry 

adapted FCI space).   

 

When the MCCI calculations were repeated using the aug-cc-pVDZ basis set at the 

ground state geometry using no frozen core orbitals, the dipole moment is calculated as 

-0.548 Debye.  This required 16,487 CSFs.  This compares well to the experimental 

result of -0.335 ± 0.013 Debye from Ref. [11], the sign having been originally 

determined theoretically in Ref. [10].  This MCCI result is improved upon by lowering 

cmin to 5 x 10-4, giving -0.418 Debye using 45,274 CSFs.   
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Another excited state of CO considered in Refs. [10] and [11] is the first excited state of 

A1 symmetry with C2v (1Σ+).  The dipole moment for this excited state was calculated 

using MCCI and FCI, with the cc-pVDZ basis set and the experimental bond length of 

2.116 Bohr cited in Ref. [10].  The results are presented in Figure 6-9.   

 

 
Figure 6-9: MCCI (cmin=10-3) dipole moment (e Bohr) for the first (1Σ+) excited state of CO (at 2.116 
Bohr A1 symmetry within C2v) against program iteration number, using the cc-pVDZ basis set with 2 
frozen core orbitals.  Presented with the FCI result.   
 

At cmin=10-3 the MCCI dipole moment quickly converges to a value slightly higher than 

the FCI result.  At later iterations, this convergence does not seem stable with sharp 

oscillations away from the converged value.  The energy occasionally rises sharply after 

a full pruning step. Concurrently, at these points, the dipole moment is seen to sharply 

increase and then decrease, before eventually returning to a converged value.  It appears 

that during the full pruning step configurations important to the system are sometimes 

removed, resulting in the oscillations of the dipole value.  This sensitivity may be as a 

result of the cmin size used.  8988 CSFs were used in this MCCI calculation compared to 

the symmetry adapted FCI which required approximately 109 SDs.   
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The experimental dipole was found to be 1.95 ± 0.03 Debye[11]. The sign was not 

determined in this experiment, but was determined theoretically in Ref. [10] where a 

dipole of approximately -2.79 Debye was found using MCSCF and CIS with about 

27,000 CSFs.  They also calculated the dipole of the ground state to be 0.32 Debye; 

they found a change in the direction of the dipole between the ground and excited state.   

 

Using MCCI with a cmin=10-3 and the aug-cc-pVDZ basis set a dipole of 1.762 Debye 

was calculated, which required 22,198 CSFs.  Using a lower cmin (5 x 10-4) the dipole 

was found to be 1.69 Debye, this time requiring 71,857 CSFs.  For this result the final 

value was discounted due to an oscillation, so the iteration prior to this where a full 

pruning has occurred was used.  There were few oscillations using this basis set and the 

number of oscillations was reduced further as a lower cmin is used.  The sign of the 

dipole moments calculated for the excited state differs from that of the computation 

study in Ref. [10].  A change in direction of the dipole between the ground and excited 

states was not found when using MCCI.  Also, EOM-CCSD calculations performed in 

MOLPRO[4] agree with both the sign and magnitude of the MCCI results, giving a 

dipole of 1.60 Debye with the cc-pVDZ basis and 1.72 Debye with the aug-cc-pVDZ 

basis (both using 2 frozen core orbitals).  

 

6.1.2 NO 

 

The doublet grounds state of NO has been investigated experimentally; its dipole 

moment is found to be 0.157 Debye[12], and the sign of the dipole confirmed 

positive[13], corresponding to N-O+.  In this work the experimental bond length of 

1.1508 Å cited in Ref. [14] was used.   

 

In Figure 6-10 the MCCI (cmin=10-3) dipole moment (e Bohr) for NO, using the 6-31G 

basis set, is plotted against program iteration number.  Also shown are the FCI result 

calculated in PSI3, and the spin-unrestricted CCSD (UCCSD) result calculated using 

MOLPRO[4].  Starting from close to the incorrect HF dipole, which has the wrong sign, 

the MCCI result converges over the run to a dipole that lies between the FCI and 

UCCSD results.  The MCCI dipole is calculated as 0.0122 D, while the FCI and 
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UCCSD results are 0.0201 D and 0.0041 D respectively.  The FCI space with symmetry 

considered requires about 3 x 108 SDs, compared to the 3274 CSFs for the MCCI.  

 

 
Figure 6-10: MCCI (cmin=10-3) dipole moment (e Bohr) against program iteration number for NO, using 
the 6-31G basis set.  Presented with the FCI and UCCSD results.   
 

Using the larger aug-cc-pVDZ basis, in Figure 6-11 the MCCI with a cmin=5 x 10-3 

gives a result that appears close in value to the experimental result, with the UCCSD 

value slightly lower.  However, when MCCI calculations accuracy is improved by 

reducing the cmin, in attempt to improve the result, the result actually gets worse. At 

cmin=5 x 10-4 the MCCI result is now further from the experimental result than the 

UCCSD value.  Though the dipole of 0.12 Debye, calculated at this lower cmin, still 

agrees reasonably well with the experimental result.  17,188 CSFs are used for this 

MCCI calculation compared to about 1016 SDs for the FCI space, without symmetry 

considerations.   
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Figure 6-11: MCCI (cmin= 5x10-3 & 5x10-4) dipole moment (e Bohr) against program iteration number 
for NO, using the aug-cc-pVDZ basis set.  Presented with the UCCSD and experimental results.   
 

6.2 Quadrupole Moments 

 

In the sections that follow the quadrupole moments (QZZ) of N2 and BH are 

investigated.  The MCCI method is used in conjunction with the equation for the 

traceless quadrupole moment defined by Buckingham[15] and the results are compared 

to those of CC, FCI and experiment.   

 

6.2.1 Nitrogen Molecule (N2) 

 

In this work the experimental bond length of 2.07432 Bohr for N2 cited in Ref. [16] was 

used.  The traceless quadrupole has been measured experimentally[17] to be (-4.65 ± 

0.08)x10-40 cm2, which was revised in a later theoretical work[16] to (-5.01 ± 0.08)x10-

40 cm2. The difference in the values being due to an improvement in a correction term 

used.  Both these values are presented in Figure 6-13 as the upper and lower 

experimental bounds for the N2 traceless quadrupole moment.   
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The traceless quadrupole moment Qzz (e Bohr2) against program iteration number for 

N2, using MCCI (cmin=10-3) and the cc-pVDZ basis set with 2 frozen core orbitals is 

presented in Figure 6-12.  Included in the figure is the FCI result calculated, with the 

same basis and frozen orbitals, using the PSI program.  The MCCI method seems to 

produce results that agree reasonably well with the FCI, especially given the relatively 

large cmin used.  When symmetry is considered the FCI calculation uses 5.4 x 108 

configurations, far more than the 5761 CFSs involved in the MCCI.   

 

 
Figure 6-12: The traceless quadrupole moment Qzz (e Bohr2) against program iteration number for N2, 
using MCCI (cmin=10-3) and the cc-pVDZ basis set with 2 frozen core orbitals.  Presented with the FCI 
result.   
 

With the larger aug-cc-pVDZ basis and a cmin of 5 x 10-3, the MCCI result falls between 

the experimental bounds (see Figure 6-13).  This result of -1.105 e Bohr2 compares well 

with the CCSD(T) result calculated in Ref. [16] of QZZ=-1.1116 e Bohr2 when only 

valence electron were correlated (aug-cc-pVDZ) and QZZ=-1.1159 e Bohr2 when using 

the larger aug-cc-pCVQZ with all electron correlated.  If spatial symmetries were 

ignored FCI would require 1015 SDs, whereas MCCI used 22,000 CSFs.   
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Figure 6-13: The traceless quadrupole moment Qzz (e Bohr2) against program iteration number for N2, 
using MCCI (cmin=5x10-4) and the aug-cc-pVDZ basis set.  Presented with the CCSD, and the upper and 
lower bounds of the experimental results.  Adapted from Ref. [7].   
 

6.2.2 BH 

 

Here MCCI is used to calculate the quadrupole moment of BH.  In order to make direct 

comparison to the FCI and CC quadrupole moments calculated in Ref. [18], the 

experimental bond length of 2.3289 Å and aug-cc-pVDZ basis, as used in that work, 

was used here.  When calculating the centre of mass, the mass of the most common 

Boron isotope was used (11B).   

 

In Figure 6-14 the MCCI results are presented with the FCI, CCSD, and CCSD(T) 

results of Ref. [18].  In this case the MCCI method out performs CCSD and is of 

comparable accuracy to the CCSD(T) and FCI methods.  Though the MCCI method 

achieved this accuracy using far fewer configurations than FCI (4276 CFSs vs. 5 x 107 

SDs without symmetry considerations).   
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Figure 6-14: The traceless quadrupole moment Qzz (e Bohr2) against program iteration number for BH, 
using MCCI (cmin=5x10-4) and the aug-cc-pCVDZ basis set.  Presented here with the FCI and coupled 
cluster results from Ref. [18].   
 

6.3 Octopole Moments 

 

This section considers the octopole moment (ΩXXZ) for the single case of methane 

(CH4). The traceless octopole moment of Buckingham[15] is used to calculate the 

octopole along with MCCI and again compare the results with FCI results calculated 

using PSI3[3] and CC results produced using Dalton[19].   

 

6.3.1 Methane (CH4) 

 

The geometry of methane used in the calculations is of a tetrahedral symmetry and a CH 

bond length of 2.052 Bohr from experiment[20].  All calculations used the cc-pVDZ 

basis set with a single frozen core orbital.   
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The MCCI result of the ΩXXZ of methane is presented in Figure 6-15. For comparison 

the CISD and FCI results calculated using PSI3, and the CCSD result from Dalton, are 

also represented.  The MCCI (at cmin=10-3) octopole converges relatively quickly to a 

value better than the CISD result.  Unsurprisingly CCSD performs better at this 

equilibrium geometry, giving a result closer to the FCI result.  The FCI wave function 

consisted of about 4 x 108 SD, while MCCI only required 3330 CSFs.   

 

 
Figure 6-15:  MCCI (cmin=10-3) for Ωxxz (e Bohr3) of methane against program iteration number, using 
the cc-pVDZ basis set with 1 frozen core orbital.  Presented with the CISD, CCSD, and FCI results.   
 

6.3.1.1 CH4 Stretched Bond Length 

 

A methane geometry with a stretched CH bond length is now considered, moving the 

molecule away from the equilibrium geometry.  Using a bond length of 5 Bohr where 

the system is much more likely to be multireference, the calculations of 6.3.1 were 

repeated and the results presented in Figure 6-16.   

 

Comparing Figure 6-15 to Figure 6-16, it is clear that at this stretched geometry that 

CISD and CCSD perform a lot more poorly. Giving a result for the octopole moment of 

over six times the FCI value.  MCCI is more consistent, even at a relatively large cmin 

(10-3), giving a result far closer to the FCI.  The MCCI result is still relatively far from 

0 20 40 60 80 100 120 140
Iterations

1.95

2

2.05

2.1

2.15

2.2

2.25

O
ct

up
ol

e 
xx

z 
(e

 B
oh

r³)

MCCI 0.001
FCI
CCSD
CISD



 151 

the FCI; it is about 1.6 times smaller, but lowering of the cmin value gives scope to 

improve upon the result.   

 
Figure 6-16: MCCI (cmin=10-3) for Ωxxz (e Bohr3) of methane (at stretched bond length R=5 Bohr) 
against program iteration number, using the cc-pVDZ basis set with 1 frozen core orbital.  Presented with 
the CISD, CCSD, and FCI results.   
 

6.4 Applying MCCI to the Ground and Excited States of the TiO2 Monomer: 

Energies and Dipole Moments. 

 

Returning to the TiO2 monomer, which was considered in some depth in Chapter 3, the 

MCCI method is applied here to the same system.  In chapter 3 calculations of the 

lowest excited states of the TiO2 molecule were presented.  It was shown that TiO2 is a 

surprisingly strenuous test for correlated excited state methods.  Lower cost wave 

function based methods completely fail to describe the lowest 1B2 and 1A2 states of the 

molecule[21].   

 

Though TiO2 is a small system, it is currently too large to be considered for FCI 

calculation.  In a large FCI space the limiting step of the MCCI calculation is the 

diagonalisation using the Davidson algorithm.  The MCCI wave function is thus 

currently restricted to a maximum of around 105 CSFs[1].  In order to make direct 
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comparison to the results of Chapter 3 the cc-pVTZ or ANO basis sets would be 

required, however MCCI calculations using that basis set and a suitably small cmin very 

quickly reached this limit.  TiO2 pushes the limits of the size of system that can be 

studied using the current version of the MCCI program.  Therefore, in order to keep 

below the limit the cc-pVDZ basis set and 2 frozen core orbitals had to be used in these 

calculations.  Even at this level of basis, at points in the calculation more than 80,000 

CSFs would be included in the wave function.  This restriction in the size of basis set 

makes direct comparison of the results of chapter 3 difficult.   

 

The geometries used were those described earlier in chapter 3.  The calculation of the 

dipole moment differed from those earlier in this chapter, in that the dipole was found 

using a single step of the version of the MCCI program modified to calculate the dipole 

moment.  A wave function from a MCCI calculation that converged the energy in the 

original MCCI program was used as a starting point for the dipole calculation.  It was 

assumed that at the point the MCCI energy had converged that the dipole had also 

converged.  The quantities for the TiO2 molecule that were calculated using MCCI with 

a cmin=10-3 using the cc-pVDZ basis set and 2 frozen core orbitals are shown in Table 

6-1.   

 

Quantity MCCI (cmin=10-3) Result 

Vertical excitation energy (1 1B2 ← 1 1A1) 1.789 eV 

Adiabatic excitation energy (1 1B2 ← 1 1A1) 1.682 eV 

Vertical excitation energy (1 1A2 ← 1 1A1) 3.992 eV 

1 1A1 µ 7.80 D 

1 1B2 µ 5.98 D 

Table 6-1: MCCI (cmin=10-3) results for the TiO2 monomer, using the cc-pVDZ basis set and 2 frozen core 
orbitals.   
 

The MCCI wave functions in these calculations required about 40,000 CSFs.  Unlike 

the lower cost wave function methods discussed in chapter 3, MCCI (cmin=10-3) appears 

to be able to correctly describe the lowest 1 1B2 and 1 1A2 states of the molecule. The 

vertical excitation energies from the 1 1A1 ground state to the 1 1B2 and 1 1A2 compare 

favourably to the results calculated by CCSD using the ANO basis sets, which 

calculated 2.386 eV and 3.045 eV respectively.  The adiabatic excitation energy from 

the 1 1A1 ground state to the 1 1B2 first excited state gives a value of 1.682 eV with 

MCCI at this level.  This too compares well with the higher cost CC results.  The MCCI 

method (cmin=10-3) and the cc-pVDZ basis set (with 2 frozen core orbitals) calculated 
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the Dipole moments for the ground (1 1A1) and first excited state (1 1B2) as 7.80 D and 

5.98 D, respectively.  These results are reasonably close to the MRCI results of Ref. 

[22], of 6.73 D and 5.07 D.   

 

These TiO2 MCCI calculations are a preliminary test of the methods capabilities and, 

though the calculations use a smaller basis set, they compare well with the results of 

high-level multireference and CC methods.  The MCCI method provides two avenues to 

further improve the results; decreasing the cmin and increasing the basis set size. 

 

6.5 Conclusions 

 

A summary of the multipole moment results of the MCCI and FCI methods from Ref. 

[1] is presented Table 6-2.  In each case the MCCI result with the smallest cmin is 

presented.  Over the range of molecules and geometries considered the MCCI method 

performs well in comparison to FCI.  With a small fraction of the FCI SD space, MCCI 

can produce the multipoles very close in value to the FCI result.   

 

Property MCCI FCI % FCI space Ecorr error 

(%) 

Property 

error (%) 

CO µ 0.0850 0.0905 3.63 x 10-3 1.89 6.05 

CO R=4 µ -0.328 -0.323 1.17 x 10-3 3.79 1.70 

CO 3Π µ -0.551 -0.511 6.33 x 10-4 4.31 7.73 

CO 1Π µ -0.138 -0.135 9.59 x 10-4 - 2.22 

CO excited 1Σ+ µ 0.614 0.558 8.31 x 10-4 - 9.97 

NO µ 0.00475 0.00794 9.55 x 10-4 1.35 40.2 

N2 QZZ -1.342 -1.356 1.07 x 10-3 1.06 1.02 

CH4 ΩXXZ 2.056 2.0049 7.95 x 10-4 4.98 2.54 

CH4 R=5 ΩXXZ 1.000 1.631 3.24 x 10-3 1.25 38.7 

Table 6-2: MCCI and FCI multipoles in atomic units.  The cc-pVDZ basis set is used for all calculations 
with the exception of NO µ where the 6-31G basis was used.  2 frozen orbitals were used for all cases, 
apart from CH4 ΩXXZ that used one frozen orbital and NO µ for which no frozen orbitals were used.  
Experimental geometries described earlier in the chapter were used unless specified.  The percentage 
errors in the MCCI results are in comparison to the FCI result. For the percentage of FCI space used in 
the MCCI calculation, the number of CSFs used in MCCI is compared to the number of SDs of the 
symmetry adapted FCI calculation.   
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The largest percentage errors occur in the cases of NO µ and CH4 R=5 ΩXXZ (40.2 and 

38.7 % respectively).  In the case of the NO µ this can be put down to the dipole being 

very small, the absolute error is only 0.00391.  While the disparity in the CH4 R=5 ΩXXZ 

results may be due to the strong multireference nature of the system.  With the 

exception of these two cases, generally the percentage error in the multipole is of 

similar scale to that of the correlation energy.   

 

Even though the TiO2 molecule pushes the limits of what the current MCCI program 

can handle, MCCI results for the system seem to give satisfactory results. MCCI 

manages to avoid the problems encountered by lower cost wave function methods, such 

as CC2 and CIS(D), while producing results that appear comparable to the higher cost 

methods considered in chapter 3.   

 

  



 155 

6.6 References 

 

[1] Coe, J. P.; Taylor, D. J.; Paterson, M. J., Monte carlo configuration interaction applied to 
multipole moments, ionization energies, and electron affinities. Journal of Computational 
Chemistry 2013, 34, 1083-1093. 

[2] Lischka, H.; Shepard, R.; I. Shavitt; R. M. Pitzer; M. Dallos; Th. Müller; P. G. Szalay; F. B. 
Brown; R. Ahlrichs; H. J. Böhm; A. Chang; D. C. Comeau; R. Gdanitz; H. Dachsel; C. Ehrhardt; 
M. Ernzerhof; P. Höchtl; S. Irle; G. Kedziora; T. Kovar; V. Parasuk; M. J. M. Pepper; P. Scharf; 
H. Schiffer; M. Schindler; M. Schüler; M. Seth; E. A. Stahlberg; J.-G. Zhao; S. Yabushita; Z. 
Zhang; M. Barbatti; S. Matsika; M. Schuurmann; D. R. Yarkony; S. R. Brozell; E. V. Beck; and 
J.-P. Blaudeau; M. Ruckenbauer; B. Sellner; F. Plasser; and J. J. Szymczak Columbus, an ab 
initio electronic structure program, release 5.9.2 (2012). 

[3] Crawford, T. D.; Sherrill, C. D.; Valeev, E. F.; Fermann, J. T.; King, R. A.; Leininger, M. L.; 
Brown, S. T.; Janssen, C. L.; Seidl, E. T.; Kenny, J. P.; Allen, W. D., PSI3: An open-source ab 
initio electronic structure package. Journal of Computational Chemistry 2007, 28, 1610-1616. 

[4] H.-J. Werner, P. J. K., G. Knizia, F. R. Manby, M. Schütz, P. Celani, T. Korona, R. Lindh, A. 
Mitrushenkov, G. Rauhut, K. R. Shamasundar, T. B. Adler, R. D. Amos, A. Bernhardsson, A. 
Berning, D. L. Cooper, M. J. O. Deegan, A. J. Dobbyn, F. Eckert, E. Goll, C. Hampel, A. 
Hesselmann, G. Hetzer, T. Hrenar, G. Jansen, C. Köppl, Y. Liu, A. W. Lloyd, R. A. Mata, A. J. 
May, S. J. McNicholas, W. Meyer, M. E. Mura, A. Nicklass, D. P. O'Neill, P. Palmieri, K. 
Pflüger, R. Pitzer, M. Reiher, T. Shiozaki, H. Stoll, A. J. Stone, R. Tarroni, T. Thorsteinsson, M. 
Wang, and A. Wolf, Molpro, version 2010.1, a package of ab initio programs,  , see 
http://www.molpro.net. 

[5] Muenter, J. S., Electric dipole moment of carbon monoxide. Journal of Molecular Spectroscopy 
1975, 55, 490-491. 

[6] Scuseria, G. E.; Miller, M. D.; Jensen, F.; Geertsen, J., The dipole moment of carbon monoxide. 
The Journal of Chemical Physics 1991, 94, 6660-6663. 

[7] Coe, J. P.; paterson, M. J., Novel truncated and stochastic approaches to configuration 
interaction. In Recent research developments in chemical physics., Pandalai, S. G., Ed. 
Transworld Research Network: Kerala, India, 2012; Vol. 6, pp 41-65. 

[8] Peterson, K. A.; Woods, R. C., Theoretical dipole moment functions involving the a 3Π and a′ 
3Σ+ states of carbon monoxide. The Journal of Chemical Physics 1990, 93, 5029-5036. 

[9] Wicke, B. G.; Field, R. W.; Klemperer, W., Fine structure, dipole moment, and perturbation 
analysis of a 3Π CO. The Journal of Chemical Physics 1972, 56, 5758-5770. 

[10] Cooper, D. L.; Kirby, K., Theoretical study of low-lying 1Σ+ and 1Π states of CO. I. Potential 
energy curves and dipole moments. The Journal of Chemical Physics 1987, 87, 424-432. 

[11] Drabbels, M.; Meerts, W. L.; ter Meulen, J. J., Determination of electric dipole moments and 
transition probabilities of low-lying singlet states of CO. The Journal of Chemical Physics 1993, 
99, 2352-2358. 

[12] Hoy, A. R.; Johns, J. W. C.; McKellar, A. R. W., Stark spectroscopy with the CO laser: Dipole 
moments, hyperfine structure, and level crossing effects in the fundamental band of NO. 
Canadian Journal of Physics 1975, 53, 2029-2039. 

[13] Gijsbertsen, A.; Siu, W.; Kling, M. F.; Johnsson, P.; Jansen, P.; Stolte, S.; Vrakking, M. J. J., 
Direct determination of the sign of the NO dipole moment. Physical Review Letters 2007, 99, 
213003. 

[14] Sayós, R.; Valero, R.; Anglada, J. M.; González, M., Theoretical investigation of the eight low-
lying electronic states of the cis- and trans-nitric oxide dimers and its isomerization using 
multiconfigurational second-order perturbation theory (CASPT2). The Journal of Chemical 
Physics 2000, 112, 6608-6624. 

[15] Buckingham, A. D., Molecular quadrupole moments. Quarterly Reviews, Chemical Society 
1959, 13, 183-214. 

[16] Halkier, A.; Coriani, S.; Jørgensen, P., The molecular electric quadrupole moment of N2. Chem. 
Phys. Lett. 1998, 294, 292-296. 

[17] Graham, C.; Imrie, D. A.; Raab, R. E., Measurement of the electric quadrupole moments of CO2, 
CO, N2, Cl2 and BF3. Molecular Physics 1998, 93, 49-56. 

[18] Halkier, A.; Larsen, H.; Olsen, J.; Jørgensen, P.; Gauss, J. r., Full configuration interaction 
benchmark calculations of first-order one-electron properties of BH and HF. The Journal of 
Chemical Physics 1999, 110, 734-740. 



 156 

[19] Aidas, K.; Angeli, C.; Bak, K. L.; Bakken, V.; Bast, R.; Boman, L.; Christiansen, O.; Cimiraglia, 
R.; Coriani, S.; Dahle, P.; Dalskov, E. K.; Ekström, U.; Enevoldsen, T.; Eriksen, J. J.; 
Ettenhuber, P.; Fernández, B.; Ferrighi, L.; Fliegl, H.; Frediani, L.; Hald, K.; Halkier, A.; Hättig, 
C.; Heiberg, H.; Helgaker, T.; Hennum, A. C.; Hettema, H.; Hjertenæs, E.; Høst, S.; Høyvik, I.-
M.; Iozzi, M. F.; Jansík, B.; Jensen, H. J. A.; Jonsson, D.; Jørgensen, P.; Kauczor, J.; Kirpekar, 
S.; Kjærgaard, T.; Klopper, W.; Knecht, S.; Kobayashi, R.; Koch, H.; Kongsted, J.; Krapp, A.; 
Kristensen, K.; Ligabue, A.; Lutnæs, O. B.; Melo, J. I.; Mikkelsen, K. V.; Myhre, R. H.; Neiss, 
C.; Nielsen, C. B.; Norman, P.; Olsen, J.; Olsen, J. M. H.; Osted, A.; Packer, M. J.; Pawlowski, 
F.; Pedersen, T. B.; Provasi, P. F.; Reine, S.; Rinkevicius, Z.; Ruden, T. A.; Ruud, K.; Rybkin, 
V. V.; Sałek, P.; Samson, C. C. M.; de Merás, A. S.; Saue, T.; Sauer, S. P. A.; Schimmelpfennig, 
B.; Sneskov, K.; Steindal, A. H.; Sylvester-Hvid, K. O.; Taylor, P. R.; Teale, A. M.; Tellgren, E. 
I.; Tew, D. P.; Thorvaldsen, A. J.; Thøgersen, L.; Vahtras, O.; Watson, M. A.; Wilson, D. J. D.; 
Ziolkowski, M.; Ågren, H., The Dalton quantum chemistry program system. Wiley 
Interdisciplinary Reviews: Computational Molecular Science 2014, 4, 269-284. 

[20] Gray, D. L.; Robiette, A. G., The anharmonic force field and equilibrium structure of methane. 
Molecular Physics 1979, 37, 1901-1920. 

[21] Taylor, D. J.; Paterson, M. J., Calculations of the low-lying excited states of the TiO2 molcule. 
Journal of Chemical Physics 2010, 133. 

[22] Grein, F., Density functional theory and multireference configuration interaction studies on low-
lying excited states of TiO2. Journal of Chemical Physics 2007, 126, 034313. 

 

 

  



 157 

Chapter 7: Conclusions and Future Work 

 

This thesis presented computational investigations of challenging systems using a 

variety of correlated electronic structure methods.  Applying approximate methods to 

such challenging systems can be problematic, a compromise must be made between the 

accuracy of the model (or method) used opposed to the time and computer resource 

devoted to the problem.  Care must be taken to ensure the accuracy of any method used 

or else incorrect conclusions may well be drawn from a poor result.  Low-level methods 

can even fail to properly describe seemingly simple small molecules, if the system is 

sufficiently challenging.  The thesis began with an in depth investigation of the 

challenging (TiO2)n (n=1-4) clusters system, which demonstrated several challenges for 

established correlated electronic structure methods.  Then the novel Monte Carlo 

Configuration Interaction method (MCCI) was described and it was shown how this 

method performs in relation to the FCI method for calculations of the potential energy 

surfaces and multipole moments of several small challenging systems.   

 

In Chapter 3 we presented an investigation of the low-lying excited states of the 

Titanium dioxide clusters with the form (TiO2)n (n=1-4).  In our more in depth analysis 

of the TiO2 monomer, it was shown that high-level methods are required to properly 

describe this simple molecule.  Strong but differing electron correlation effects present 

in the ground and valence excited electronic states in such systems may be the source of 

these problems.  The effects were not so strong as to invalidate single-reference 

approaches completely, CCSD works very well and DFT can also do so.  However the 

approximate second-order approaches, such as CC2, were shown to breakdown when 

applied to this system.  The CC2 method is a very popular method, which having 

generally performed well in benchmarks is believed to be a robust excited state method 

for organic chromophores[1, 2].  A priori it was expected to work qualitatively well for 

more strongly correlated systems containing transition metals, if the single reference 

picture was valid, but we showed in this chapter that this is not the case.  The results of 

the n=2-4 clusters exhibited further problems, there appeared to be no consistency in the 

ordering of states between results (though, this may be due to the differences in the 

basis sets used).  On the basis of the results of this chapter we advise that caution should 
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be exercised when applying lower cost excited state response methods to some 

transition metal oxide systems.   

 

Chapter 4 presented a study of the pseudo-Jahn-Teller effects in the Titanium dioxide 

clusters.  Structures of the neutral closed-shell, radical cationic and radical anionic 

clusters at each size were described and rationalised in terms of the pseudo-Jahn-Teller 

effect.  This effect, i.e. the vibronic coupling between potential energy surfaces, causes 

the shape of the ground state potential energy surface to be altered and resulting 

minimum structures are of lower symmetry than would be expected.  A test for the 

pseudo-Jahn-Teller effect, proposed by Bearpark et al[3], that uses analytical hessians in 

the CASSCF method was applied. This showed that the pseudo-Jahn-Teller is manifest 

in certain neutral, cation, and anion clusters of TiO2.  We found that positive and 

negative radical clusters often undergo different vibronic interactions and consequently 

adopt differing geometries.  It was also shown that while in general DFT performs quite 

well in describing these geometries, DFT functionals could demonstrate artificial 

symmetry breaking for some of these radical clusters.  This occurs in a non-systematic 

way, adding a further difficulty when using such functional methods.   

 

We begin Chapter 5 with a description of the novel Monte Carlo Configuration 

Interaction of J.C. Greer et al[4-7].  This truncated CI method is designed to take 

advantage of the sparseness of the FCI wave function.  A compact wave function, much 

smaller than the FCI wave function, made up only of significant configurations is 

generated using the Monte Carlo method.  This compact wave function is however still 

able to recover a large proportion of the energy of the FCI wave function.  We then 

applied the MCCI method to the potential energy surfaces of a number of small 

challenging systems.  Using the non-parallelity error (NPE) we showed that MCCI is 

capable of describing potential curves of these small systems to a good accuracy.  Even 

though the method is not exactly size consistent, when a low enough cmin was used 

MCCI was shown to be sufficiently size consistent to reproduce the FCI curve shape.  

The MCCI method was pushed to its limits in the case of a large hydrogen chain of 50 

atoms.  Though the equilibrium geometry was in approximately the correct place, at 

long bond lengths the MCCI result was not a big improvement on the Hartree-Fock 

curve.  We suggested that this is due to the small sampling of the extremely large 

configuration space of this system.   
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In Chapter 6 we presented an investigation of the multipole moments of a number of 

challenging systems using MCCI.  We showed that over the range of molecules and 

geometries considered the MCCI method performs well in comparison to FCI.  The 

MCCI method was able to reproduce results close to the FCI results, but at a far lower 

computational cost.  With the exception of the NO µ and CH4 R=5 ΩXXZ, all of the % 

errors in the property calculated were less than 10%.  In the case of the NO µ we 

attributed the large % error to the dipole being very small, the absolute error is in fact 

very small.  The disparity in the CH4 (R=5) ΩXXZ results may have been due to the 

strong multireference nature of the system.  Finally, we returned to the case of TiO2, 

applying the MCCI method to the TiO2 monomer. This pushed the limits of what the 

current MCCI program can handle. We found that MCCI produced results that appear 

comparable to the higher cost methods considered in chapter 3 and manages to avoid 

the problems encountered by lower cost wave function methods, such as CC2 and 

CIS(D).   

 

Future work, from the work of this thesis, is on-going. Studies that increase our 

knowledge and understanding of TiO2 clusters have been performed[8-10], and some of 

our work presented here has been extended to other transition metal oxide systems[11].  

The MCCI method has been developed further increasing its functionality and the 

applicability of the method for different properties has been tested using a wider range 

of systems[12-16].   
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