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Abstract—This paper addresses the solution of optimal con-
trol problems with multiple and possibly conflicting objective
functions. The solution strategy is based on the integration of
Direct Finite Elements in Time (DFET) transcription into the
Multi Agent Collaborative Search (MACS) framework. Multi
Agent Collaborative Search is a memetic algorithm in which
a population of agents performs a set of individual and social
actions looking for the Pareto front. Direct Finite Elements in
Time transcribe an optimal control problem into a constrained
Non-linear Programming Problem (NLP) by collocating states
and controls on spectral bases. MACS operates directly on the
NLP problem and generates nearly-feasible trial solutions which
are then submitted to a NLP solver. If the NLP solver converges to
a feasible solution, an updated solution for the control parameters
is returned to MACS, along with the corresponding value of the
objective functions. Both the updated guess and the objective
function values will be used by MACS to generate new trial
solutions and converge, as uniformly as possible, to the Pareto
front. To demonstrate the applicability of this strategy, the paper
presents the solution of the multi-objective extensions of two
well-known space related optimal control problems: the Goddard
Rocket problem, and the maximum energy orbit rise problem.

I. INTRODUCTION

Optimal control theory is a part of mathematical optimisa-

tion that is concerned with finding optimal control policies.

The control policy is generally required to regulate the evo-

lution of a process or bring a system to a desired state by

minimising a cost functional and satisfying a set of constraints.

It is customary to classify methods to solve optimal control

problems in two classes: indirect and direct methods. Indirect

methods explicitly derive the necessary conditions for opti-

mality from Pontryagin’s maximum principle. The necessary

conditions for optimality are a set of algebraic differential

equations (ADE) that govern the time evolution of the states,

the controls and the adjoint variables (or co-states) [1]. The

solution of this coupled system of ADEs provides an accurate,

yet local, solution to the optimal control problem.

Direct methods instead transcribe the optimal control prob-

lem into a non-linear programming problem (NLP) and look

for a solution that satisfies the resulting set of constraints and

minimises the objective function[2]. Direct methods do not

require the derivation of the necessary conditions of optimality

for every specific optimal control problem and do not need a

first guess for the co-states. The higher flexibility of direct

methods makes them easy to integrate into any optimisation

scheme and to apply any optimisation algorithm without the

need of an ad hoc formulation of the problem.

Most of the methods for optimal control problems that can

be found in the literature solve problems with a single cost

functional. However, in many cases it is desirable to have a

full set of solutions that are optimal with respect to a number

of conflicting cost functions.

In Coverstone et al. [3] the authors combined Genetic Al-

gorithms and optimal control theory in a dual loop algorithm.

In the outer loop, NSGAII was generating vectors of co-states

and times of flight. For each set, the inner loop was solving

a single objective optimal control problem with given time

of flight, minimising the propellant consumption. In Ober-

Blobaum et al. a direct transcription approach is used, coupled

with an approach that scalarises the multi-objective vector

along directions pointing at predefined unreachable points in

the criteria space. Each scalar problem is then solved with a

standard NLP solver. In [4] a similar approach is proposed

that uses a smoothed version of Tchebycheff scalarisation to

scalarise the MOO problem. In [5] the authors proposed a

dual loop algorithm in which the outer loop solves a multi-

objective problem handling a set of categorical variables and

the inner loop solves a set of single objective constrained

optimal control problems using Monotonic Basin Hopping.

This paper proposes an evolutionary-based approach to

find a set of Pareto optimal control policies that satisfy

a set of dynamic and algebraic constraints. The proposed

approach presents two main novelties: i) Pareto optimal so-

lutions are globally sought in the parameter space with a

memetic approach based on the Multi-Agent Colaborative

Search framework [6]; ii) the optimal control problem is

first transcribed into a non-linear Programming Problem with

Direct Finite Element Transcritpion (DFET) [7] and then



into a bi-level optimisation problem where constraints sat-

isfaction and multi-objective optimisation are decoupled and

approached separately. Although gradient based approaches

are well established and give necessary conditions for op-

timality, the evaluation or approximation of the gradients

(and especially Hessians, if required) may be too expensive.

Moreover, gradient based methods are local in nature, thus

a global approach might find better solutions. Finally, the

separate handling of the constraints avoids the necessity to

penalise their violation by artificially adding this penalisation

to the objective functions. This strategy has often proved to be

problematic, as penalisation requires some form of weighting,

and a bad choice of weights can greatly hinder the convergence

of any method to the true solution.

II. PROBLEM FORMULATION

This paper is concerned with the following multi-objective

optimal control problem:

min
u∈U

J = [J1, J2, ..., Ji..., Jm]T

s.t.

ẋ = F(x,u, t)
g(x,u, t) ≥ 0
ψ(x0,xf , t0, tf ) ≥ 0
t ∈ [t0, tf ]

(1)

where J is a vector of objectives Ji, that are functions of the

state variable x : [t0, tf ]→ R
n, control variable u ∈ L∞ and

time t. The functions x belong to the Sobolev space W 1,∞

while the objective functions are Ji : R
n+2×R

p× [t0, tf ] −→
R. The objective vector is subject to a set of dynamic

constraints with F : R
n × R

p × [t0, tf ] −→ R
n, algebraic

constraints g : R
n × R

p × [t0, tf ] −→ R
s, and boundary

conditions R
2n+2 −→ R

q . Note that problem (1) generally

is non-smooth and can include a number of additional static

parameters.

III. PROBLEM TRANSCRIPTION

Problem (1) is here transcribed into a multi-objective non-

linear programming problem via DFET. DFET was initially

proposed in [8] and uses finite elements in time on spectral

bases to transcribe the differential equations into a set of

algebraic equations. Finite Elements in Time for the indirect

solution of optimal control problems were initially proposed

by Hodges et al. in [9], and during the late 1990s evolved to

the discontinuous version. As pointed out by Bottasso et al. in

[10], FET for the forward integration of ordinary differential

equations are equivalent to some classes of implicit Runge-

Kutta integration schemes, can be extended to arbitrary high-

order, are very robust and allow full h-p adaptivity. In the past

decade direct transcription with FET on spectral bases has

been successfully used to solve a range of difficult problems:

from the design of low-thrust multi-gravity assist trajectories to

Mercury [11], to the Sun [12], to the design of WSB transfers

to the Moon, low-thrust transfers in the restricted three body

problem and optimal landing trajectories to the Moon [8].

For each individual cost function consider the following

Bolza’s problem:

min
u∈U

Ji = αiφi(x0,xf , t0, tf ) + βi

∫ tf

t0

Li(x,u, t)dt (2)

where αi and βi are positive weights. In multi-objective

optimisation this formulation corresponds to a weighted sum

scalarisation, which is known to be unable to represent points

on non-convex regions of the Pareto front. Therefore, to avoid

this problem, in this paper only cases with (αi = 1, βi = 0) or

(αi = 0, βi = 1) are considered. The differential constraints

can be recast in weak form and integrated by parts, leading to
∫ tf

t0

ẇTx+wTF(x,u, t)dt−wT
f x

b
f +wT

0 x
b
0 = 0 (3)

where w are the generalised weight functions and xb are the

boundary values of the states, that may be either imposed or

free. Let the time domain D be decomposed into N finite

elements such that

D =

N
⋃

j=1

Dj(tj−1, tj) (4)

and parametrise, over each Dj , the states, controls and weight

functions as

x(t) =
N

℧
j=1

Xj =
N

℧
j=1

l
∑

s=0

fsj(t)xsj (5)

u(t) =
N

℧
j=1

Uj =
N

℧
j=1

m
∑

s=0

gsj(t)usj (6)

w(t) =
N

℧
j=1

Wj =
N

℧
j=1

l+1
∑

s=0

hsj(t)wsj (7)

where
N

℧
j=1

denotes the juxtaposition of the polynomials defined

over each sub-interval, the functions fsj , gsj and hsj are

chosen among the space of polynomials of degree l, m and

l + 1 respectively. It is practical to define each Dj over the

normalised interval [−1, 1] through the transformation

τ = 2
t− tj−tj−1

2

tj − tj−1

(8)

This way it’s easy to express the polynomials fsj , gsj and

hsj as the Lagrange interpolation on the Gauss nodes in the

normalised interval:

fsj =

l
∏

k=0,k 6=s

τ − τk

τs − τi
(9)

and similarly for gsj and hsj . Different Gauss nodes will

lead to schemes with slightly different characteristics. In this

work, Gauss-Lobatto nodes will be used for the generation of

the polynomials for states and weight functions, while Gauss-

Legendre nodes will be used for the controls. Substituting the



definitions of the polynomials into the objective functions and

integrating with Gauss quadrature formulas leads to

J̃i =αiφi(X
b
0,X

b
f , t0, tf )+

βi

N
∑

j=1

l+1
∑

k=1

σkLi(Xj(τk),Uj(τk), τk)
∆t

2

(10)

and for the variational constraints leads to the system

l+1
∑

k=1

σk

[

Ẇj(τk)
TXj(τk) +Wj(τk)

TFj(τk)
∆t

2

]

−WT
p+1X

b
j +WT

1 X
b
j = 0

(11)

where τk and σk are the Gauss nodes and weights, and

Fj(τk) is the shorthand notation for F (Xj(τk),Uj(τk), τk).
Gauss-Legendre weights and nodes are used for the numer-

ical quadrature in this work, i.e., the polynomials generated

through the Lagrange interpolation over the Gauss-Legendre or

Gauss-Lobatto nodes are then evaluated at the Gauss-Legendre

nodes over each interval. With DFET, optimal control problem

(2) was transcribed into the non-linear programming problem

(10), which in compact reads as:

min
p

J̃(xs,p)

s.t.

c(xs,p) ≥ 0

(12)

where the vector xs contains all the nodal values for the

states and p = [us,x0,xf , t0, tf ]
T collects all the static and

dynamic control variables.

IV. SOLUTION APPROACH

Problem (12) is further translated into the following two-

level optimisation problem:

min
p∗

J̃(x∗,p∗)

s.t.

(x∗,p∗) = argmin{f(xs,p)|c(xs,p) ≥ 0}
(13)

and solved with a two level algorithm. The outer level gen-

erates sets of candidate solution vectors pc that are submitted

to an inner level. The inner level takes the candidate solutions

and attempts to satisfy constraints c. If the candidate vector pc

does not lead to convergence of the inner level, a penalty value

L for all the objective functions is returned to the outer level,

while if it converges to a feasible solution (x∗,p∗), it returns

the corresponding values J̃(x∗,p∗) for the objective functions,

together with the feasible vector (x∗,p∗). The penalty value

L is chosen to be large enough that the non feasible solution

will surely be worse than the objective function of any feasible

solution.

Note that states are also part of the solution vector of the

inner level and thus a first guess for the state vector xs is

also required. For the implementation in this paper, at the first

iteration the state variables are initialised by simply cloning the

initial condition. This was found to be simple yet sufficiently

robust to provide convergence at the first iteration on the

test cases presented in this paper. Then the inner level is

Algorithm 1 Algorithm 1: Outer level

1: Initialise control parameters p and search directions λ

2: Initialise state vector xs

3: Perform individual actions: evaluate objective vector with

Algorithm 2

4: Evaluate dominance and Tchebycheff scalarisation of the

population and of the archive

5: Archive the non dominated solutions

6: p← p∗,xs ← x∗
s

7: Perform social actions: evaluate objective vector with

Algorithm 2

8: Evaluate dominance and Tchebycheff scalarisation of the

population and of the archive

9: Archive the non dominated solutions

10: p← p∗,xs ← x∗
s

11: if fun evals < max fun eval then

12: GoTo 3

13: end if

solved with the Matlab function fmincon with f(xs,p) = 1,

so that it focuses only on the satisfaction of the constraints.

The outer level is solved with an implementation of Multi-

Agent Collaborative Search. MACS sees the inner level as a

single function evaluation returning objective function values,

since the objective functions are evaluated only once the non-

linear solver has returned a solution. The state variables x∗ are

returned to the outer level together with the vector p∗ and are

used to initialise the state vector of a new candidate vector

pc. This way, after the very first iteration, the outer level

has a good initial guess for the state vector, and the inner

level will start from a better initial solution, with resulting

higher chances of convergence and less computational effort.

The algorithms for the inner and outer levels are summarised

in Algorithm 1 and 2. Algorithm 1 follows the general

implementation of MACS as described in [6], but includes

the following modifications: the solution vector contains both

states and optimisation values, so additional information is

needed to tell weather a given variable is a state variable, a

dynamic optimisation variable (control) or a static optimisation

variable. This information is needed so that MACS knows

which segments of the solution vector it can alter through

its heuristics. Moreover, as explained before, the objective

function evaluation also returns updated (feasible) values for

the solution vector, and at the beginning, the initialisation

of solution vectors requires MACS to also generate the state

variables.

V. NUMERICAL TESTS

In this section we present two simple test cases to show the

applicability of the present work: the first one is the Goddard

Rocket problem and the second one is the maximum energy

orbit rise problem. These two cases are very well known in

the aerospace related optimal control community, and thus

provide an interesting starting point. However, to the authors’

knowledge, they have always been studied as single objective



Algorithm 2 Algorithm 2: Inner level

1: Initialise states and controls with xs and pc from outer

level

2: Run fmincon

3: if [p∗, x∗
s] feasible then

4: Return p∗,x∗
s,J(p

∗,x∗
s)

5: else

6: Return J = L

7: end if

problems, thus a multi-objective extension could provide some

interesting insight.

A. Goddard Rocket problem

The Goddard Rocket problem is a simple rocket ascent

problem from a flat celestial body and no atmosphere. The

control variable is the thrust angle and both the gravity and the

thrust accelerations are constant. The final state is constrained

so that at the final time the altitude has a specified value and

the vertical component of velocity is zero. The optimal control

formulation of the problem and its analytical solution can be

found in [1], while a solution with DFET for single objective

optimisation can be found in [7].

In the literature solutions exist for either the minimum

time to reach a target altitude or the maximum horizontal

component of the velocity at a target altitude. In this paper

the problem is reformulated to consider the two objective func-

tions simultaneously. Therefore, the following multi-objective

extension is solved:

min
tf ,u

[J1, J2]
T = [tf ,−vx(tf )]T (14)

subject to the dynamic constraints:


















ẋ =vx

v̇x =a cos(u)

ẏ =vy

v̇y =− g + a sin(u)

(15)

where g is the gravity acceleration, a the thrust acceleration,

x and y are the component of the position vector, vx and vy
the component of the velocity vector and u the control. The

dynamics is integrated from time t = 0 to time t = tf . The

boundary conditions are:










x(0) = 0; vx(0) = 0

y(0) = 0; vy(0) = 0

y(tf ) = h; vy(tf ) = 0

(16)

The parameters g, a and h were respectively set to 1.6·10−3,

4 ·10−3 and 10. Following [7], the DFET method was applied

splitting the time domain into 4 elements, with polynomials

of order 6 for each control and state variable. Control angles

were bounded between −π
2

and π
2

, while total mission time

was bounded between 100 and 250. In total there are 29

optimisation variables: 28 dynamic (i.e. the coefficients of the

polynomials for the control) and 1 static (final time). The

TABLE I
MACS SETTINGS (IN BRACKETS FOR THE ORBIT RISE CASE)

max fun eval 10000 (50000)
pop size 10
ρ ini 1
F 0.9
CR 0.9

p social 1
max arch 10
coord ratio 1
contr ratio 0.5

max contr ratio 5

TABLE II
fmincon SETTINGS (IN BRACKETS FOR THE ORBIT RISE CASE)

max con eval 10000 (20000)
tol con 1e-6 (1e-9)

transcribed problem was then optimised with MACS2.1. A

brief explanation of the settings reported in table I follows:

max fun eval is the maximum number of objective func-

tions evaluation, pop size is the number of agents performing

the search, ρ ini is the initial radius for the pattern search local

action, F and CR are the standard parameters for the Differen-

tial Evolution local action, p social is the ratio of the agents

also performing social actions, max arch is the number of

solutions to store in the archive, coord ratio is the number

of coordinates initially scanned by pattern search, contr ratio

is the amount the radius of pattern search contracts after the

local actions fail, and max contr ratio is the maximum

number of times the radius of pattern search can contract

before it returns to the initial value. Settings reported in Table

II instead refer to the parameters of fmincon: max con eval

is the maximum number of constraints evaluation (for each

call to the objective functions) and tol con is the threshold

under which the solution is considered to be feasible. All other

fmincon settings are left as default.

Algorithm 1 was run 30 times to collect some statistics on its

convergence behaviour as a reference for future studies (see

Table III). Since the two objectives have different orders of

magnitude, to compute the statistics the reference front was

scaled between 0 and 1. This way the metrics are equally

sensitive to both objectives. For self consistency, statistics

were computed using the collective front as the reference

front. Figure 1 shows the collection of all the non domi-

nated solutions of those 30 runs, along with 4 representative

solutions (marked with plusses) and the objective values

computed from the analytic solutions with the same time of

the representative solutions (marked with circles). The gaps

in the front are only apparent, as the settings of MACS

were chosen to have only 10 points in the front, and the

different runs did not generate exactly the same front. To

show the actual solutions of the points indicated as crosses

on the Pareto front, the corresponding trajectories and time

histories of the controls and velocities are plot in figures 2

and 3 to 6. The same figures also show the comparison of the



TABLE III
STATISTICS FOR THE TWO PROBLEMS

Problem mean GD mean IGD average runtime (s)
(variance) (variance)

Goddard 5.701e-3 2.588e-2 2456
(1.107e-5) (1.909e-5)

Orbit 7.384e-4 5.179e-3 41113
(4.217e-7) (5.052e-6)

time histories computed with a standard gradient based single

objective optimisation approach on the same transcription for

the single objective cases (i.e solved directly with fmincon),

and with the analytic solution for the same mission time. As

can be seen, the control law becomes progressively flatter as

the allowed mission time increases, and the solution obtained

with the present approach is very close to the solution obtained

with the classical gradient based single objective formulation

or with the analytic one. The control laws computed with

the proposed approach however present some imperfections in

the form of discontinuities or wiggles. These are due to two

reasons: first, as pointed out by Vasile in [7], h-p adaptivity is

required to correctly capture the steep changes in the control

law for the shortest mission times, and second, wiggles are

a sign of incomplete optimality, indicating that the solution

does not lie on the true Pareto front. Both these considerations

are evident from the given plots. Despite these imperfections

which can be mitigated or eliminated with h-p adaptivity, more

function evaluations or better local strategies, MACS+DFET

can give a very good idea of the trade-off required to satisfy the

two objectives and the resulting control laws. This approach

seems thus very promising because the problem was treated

as a genuinely multi-objective problem in all the aspects

(i.e. without scalarising the objective functions in the optimal

control formulation), and was treated in all regards as a black

box (i.e. no gradient of the objective functions was supplied or

required). Obviously, for some problems it could be possible to

automatically compute the gradients of the objective functions

with respect to the control parameters, and thus employ that

precious information in the optimisation. However, a more

general approach like the one adopted seems more applicable

if one wishes to solve problems where it is too expensive or

not evident how to compute those gradients (provided they

exist at all).

B. Maximum Energy Orbit Rise

The maximum energy orbit rise is another common optimal

control problem in space engineering. It’s original formulation

and some solution strategies can be found in [13] and [7]. In

this case, a spacecraft is orbiting around a celestial body, and it

is required to increase its total energy by changing its altitude

and velocity. The only control variable is again the thrusting

angle, and the only other force affecting the spacecraft is

gravity (in this case it is considered variable with altitude, so

the dynamics of the system are non-linear). In the following it

is proposed, as a simple multi-objective extension, the problem

t
f
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Fig. 1. Non dominated solutions of 30 different runs for the Goddard problem.
Crosses indicate solutions for which trajectories, velocities and control law
over time are also plotted. Circles indicate the objective values corresponding
to the analytic solution with the same time as the solutions marked with
crosses
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Fig. 2. Comparison of the trajectories for the 4 selected points on the Pareto
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of maximising the final energy and minimising the manoeuvre

time:

min
tf ,u

[J1, J2]
T =

[

tf ,−
(

v2r(tf ) + v2t (tf )
)

2
+

1

r(tf )

]T

(17)

subject to the dynamic constraints:



































ṙ =vr

v̇r =
v2t
r
− 1

r2
+ a cos(u)

θ̇ =
vt

r

v̇t =− vtvr

r
+ a sin(u)

(18)

where r and θ are the polar coordinates of the spacecraft, vr
and vt are the radial and tangential velocities, and a is the

magnitude of the acceleration generated by the thrust. In this
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work, a = 1e− 2. The boundary conditions are:






r(0) = 1.1; vr(0) = 0

θ(0) = 0; vt(0) =
1√
1.1

(19)

The DFET transcription method described in the previous

section was employed, and, following [7], the time domain

was subdivided into 30 elements of order 1 for each state

and control variable. Control angles were bound between −π
and π, while total mission time was bounded between 20 and

80. In total there are 61 optimisation variables: 60 dynamic

(i.e. the coefficients of the polynomials for the controls) ad 1

static (final time). The transcribed problem was then optimised

with MACS2.1, with the same settings as in the previous case,

except for max fun eval which was increased to 50000,

tol con which was set to 1e − 9 and max con eval which

was increased to 20000. The non dominated Pareto front of

the combined 30 runs is reported in figure 7, while the same

statistics performed in the previous case are reported in Table

III. Again, gaps in this front are only due to the fact that only

10 points for each run were sought, and the different runs

did not find exactly the same solutions. In this case, we plot

the comparison of 4 trajectories, and the corresponding control

laws in figures 8 and 9 to 12. The fact that the 4 trajectories are
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Fig. 4. Time history for velocities and controls, point 2 on the Pareto front

overlapping and that the controls for the two extreme points

on the Pareto front match very closely to the gradient based

single objective solutions indicates that the whole spectrum of

solutions is very close to the real Pareto front. In facts, the

control laws found are basically each the continuation of the

previous one, and so are the trajectories.

VI. CONCLUSION

A novel method for the solution of multi-objective opti-

mal control problems was presented. This method has sev-

eral interesting properties: the formulation of optimal control

problems is genuinely multi-objective and does not require

any scalarisation, no gradients of the objective functions

are required because the optimisation is performed directly

through a memetic algorithm, and constraints are always

satisfied before objective functions are evaluated, avoiding

any need to penalise constraints violations. These character-

istics seem very interesting, because this way multi-objective

optimal control problems can be treated as black boxes by

the optimisers, thus even problems with very complex non-

differentiable objectives can be tackled. The approach has been

tested on the multi-objective extensions of two very common

problems arising in the space sector. Although not perfect,

the results seem encouraging because even with a relatively
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Fig. 5. Time history for velocities and controls, point 3 on the Pareto front

low number of function evaluations and simple heuristics it

was possible to obtain sensible control laws, appreciate the

trade-off required to deal with the various objectives, and find

solutions very similar to those computed with a gradient based

single objective optimisation for the extreme points on the

Pareto front or with existing analytic solutions. Further work

can obviously focus on improving the local actions to get

better solutions, introduce h-p adaptivity in the transcription

(a feature that comes with the notable added complexity of

having decision vectors of different lengths), employ more

efficient programming languages and non-linear solvers, or use

a different existing multi-objective optimiser algorithm for the

external level.
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