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Abstract

The improvements in Deoxyribonucleic Acid (DNA) microarray technology mean
that thousands of genes can be profiled simultaneously in a quick and efficient man-
ner. DNA microarrays are increasingly being used for prediction and early diagnosis
in cancer treatment. Feature selection and classification play a pivotal role in this
process. The correct identification of an informative subset of genes may directly
lead to putative drug targets. These genes can also be used as an early diagnosis or
predictive tool. However, the large number of features (many thousands) present in
a typical dataset present a formidable barrier to feature selection efforts.

Many approaches have been presented in literature for feature selection in such
datasets. Most of them use classical statistical approaches (e.g. correlation). Clas-
sical statistical approaches, although fast, are incapable of detecting non-linear in-
teractions between features of interest. By default, Evolutionary Algorithms (EAs)
are capable of taking non-linear interactions into account. Therefore, EAs are very
promising for feature selection in such datasets.

It has been shown that dimensionality reduction increases the efficiency of feature
selection in large and noisy datasets such as DNA microarray data. The two-phase
Evolutionary Algorithm/k-Nearest Neighbours (EA/k-NN) algorithm is a promising
approach that carries out initial dimensionality reduction as well as feature selection
and classification.

This thesis further investigates the two-phase EA/k-NN algorithm and also in-
troduces an adaptive weights scheme for the k-Nearest Neighbours (k-NN) classifier.
It also introduces a novel weighted centroid classification technique and a correla-
tion guided mutation approach. Results show that the weighted centroid approach
is capable of out-performing the EA/k-NN algorithm across five large biomedical
datasets. It also identifies promising new areas of research that would complement
the techniques introduced and investigated.
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Chapter 1

Introduction

1.1 Introduction

Recent advances in technology have tremendously increased humankind’s ability

to create, store and carry out computations on digital data. It is estimated that

in 2007, humankind had the capacity to store 44716 MB of optimally compressed

data [29] per capita. In 1986, this figure was 539 MB [29]. This represents roughly an

83-fold increase in the per capita capacity to store data. Humankind’s capacity for

carrying out computations on digital data has seen an even bigger increase. Hilbert

et al. [29] estimated that in 1986, humankind had the per capita capacity to carry

out 0.06 Mega Instructions Per Second (MIPS) on general purpose computers. By

2007, this figure had increased to 968 MIPS. In other words, this represents roughly

a 16133-fold increase in the per capita capacity to carry out computations using

general purpose computers in 21 years (1986 to 2007).

This explosion in both storage and computational capacity together with other

scientific and technological advances has inevitably led to large scientific datasets.

This is especially the case in the biomedical field. Recent advances in technologies

such as high density Deoxyribonucleic Acid (DNA) microarrays and Proteomic anal-

ysis has led to modern biomedical datasets that are usually rich in features. For

example, the ovarian cancer dataset introduced by Petricoin et al. [61] has 15154

attributes (features) per sample. It is believed that only a handful of features are

significantly differently expressed in a disease sample compared to a normal sam-

ple. This means that data from DNA microarrays or Proteomic analysis is highly

redundant and contain high dimensional noise [38, 46].

1



Chapter 1: Introduction

These datasets are valuable in that they have the potential to help us under-

stand the pathology of certain diseases. A deeper understanding of the pathology of

diseases will help us deal better with these diseases. Another use of these datasets is

that machine learning can be used to create models that help us in early diagnosis

of certain diseases. However, the number of features present in a typical bioscience

dataset presents a formidable barrier to such efforts.

This and other challenges associated with extracting high-level knowledge from

real life large datasets has led to the emergence of the field of predictive data min-

ing [79]. In this context, the aim of Feature Selection (FS) is to eliminate features

that seem irrelevant to the case under study. FS on a feature-rich dataset results

in a much reduced dataset. Predictive data mining can then perform faster with

increased accuracy on these reduced datasets.

FS is in itself a rich area of research, and many of the techniques in this area rely

on the use of statistical correlation measures to rank the features. However, though

a convenient and fast approach to FS and very often used, statistical ranking based

FS can be unwise; such methods will miss non-linear interactions between features,

which in turn may be common in many datasets of interest.

1.1.1 Feature Selection and Classification

In predictive data mining, a model can be created that consists of a subset of features

of the original dataset. In case of gene expression data related to a certain disease

(e.g. cancer), it is possible that this subset of features can then be used as a predictor

in unseen samples leading to early diagnosis. Therefore, FS is a technique commonly

used in predictive data mining for building robust learning models that can be used

to classify hitherto unseen data.

As the number of profiled features increase, the number of possible feature sub-

sets that may be of importance grow exponentially. This makes the use of exhaustive

search for FS infeasible.

This leaves heuristic search techniques such as Evolutionary Algorithms (EAs)

as prime candidates for selecting feature subsets that are capable of discriminating

between disease and normal cases [38, 50]. Many researchers are concentrating their

efforts on methods that combine advanced search techniques (e.g. EAs) together

with efficient classification techniques (e.g. k-Nearest Neighbours (k-NN)) for feature
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selection and classification [38].

The most important objectives of feature selection are [68]:

• to avoid over-fitting and improve model performance, i.e. prediction perfor-

mance of selected feature subset on unseen data.

• to provide faster and more cost-effective models.

• to gain a deeper insight into the underlying processes that generated the data.

1.2 Two-Phase Evolutionary Algorithm/k-Nearest

Neighbours Algorithm for Feature Selection

and Classification

Juliusdottir et al. [38] has introduced a two-phase Evolutionary Algorithm/k-Nearest

Neighbours (EA/k-NN) algorithm for FS and classification in DNA microarray

datasets that is capable of achieving comparable, if not better results, compared

to other methodologies.

The two-phase EA/k-NN algorithm runs the EA/k-NN algorithm as both the

prior-selection stage (on the complete dataset) and machine learning stage (on a

reduced dataset). The EA used in the EA/k-NN algorithm is a generational, elitist

EA that uses k-NN as the classifier/objective function. In the objective function,

the classification error and the length of the chromosome are combined together to

form a single metric that is minimised.

They argue that the use of k-NN as a classifier puts the onus on the search

technique to find salient and significant gene subsets. Therefore, the two-phase

EA/k-NN algorithm is capable of finding significant gene subsets which may have

been overlooked with a more efficient classifier than k-NN.

Another advantage of using the EA/k-NN algorithm for initial feature selection

(phase one) is that owing to generally good classification performance of k-NN, we

can be confident that a good subset of features are selected. In other words, the

chances of discarding a significant gene or a set of significant genes is lower when

using this method compared to other methods.

Their two-phase EA/k-NN algorithm has led directly to the identification of three

genes for prostate cancer and five genes for colon cancer. This supports previous
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studies and further strengthens findings from those studies and suggests good targets

for further research by domain experts.

Furthermore, two-phase EA/k-NN algorithm is relatively straightforward to im-

plement and runs at an acceptable speed for even large datasets. However, there

are areas in which the two-phase EA/k-NN algorithm could be better optimised

and configured. Therefore, it was decided that this thesis would consist of a thor-

ough investigation of the two-phase EA/k-NN algorithm as a candidate for FS and

classification in predictive data mining in large biomedical datasets.

In particular, this thesis investigated the optimal way to set up the two-phase EA/k-

NN algorithm so that it performs well across multiple datasets. This included an

investigation into the population size, initial chromosome size, the balance between

classification accuracy and the length of the chromosome in the objective function,

number of generations to run phase one and phase two of the algorithm for and

different ways in which genes can be selected during phase one that can then form

the starting point of phase two. As an alternative to tuning some of the parameters

of the algorithm (e.g. the balance between classification accuracy and the length of

the chromosome in the objective function), an investigation into a multi-objective

two-phase EA/k-NN was also carried out.

1.3 Datasets

1.3.1 Leukaemia Dataset

This is a publicly available dataset introduced by Golub et al. [22]. Their initial

leukaemia dataset consisted of 38 bone marrow samples (27 Acute Lymphoblastic

Leukaemia (ALL) samples & 11 Acute Myeloid Leukaemia (AML) samples) each

containing 7070 genes. They tested their results on an independent dataset that

had 34 samples (20 ALL, 14 AML).

These two datasets were mixed together to form a single dataset that had 72

samples out of which 47 samples were ALL and 25 samples were AML. The challenge

with this dataset is to build models that can effectively classify a sample as either

ALL or AML.
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1.3.2 Ovarian Cancer Dataset

The ovarian cancer dataset is a publicly available dataset (Proteomic analysis data)

introduced by Petricoin et al. [61]. This dataset contains 253 samples of which 91 are

normal and 162 are cancer. Each sample contains 15154 values (features or genes).

The aim of predictive data mining in this case is to classify unseen samples either

as cancer or normal.

1.3.3 Prostate Cancer Dataset

This dataset was introduced by Singh et al. [72]. It contains 52 tumour and 50

normal samples with 12600 features per sample. As with the ovarian cancer dataset,

the aim in this case is to predict whether an unseen sample is a cancer sample or

normal sample.

1.3.4 Breast Cancer Dataset

The breast cancer dataset was introduced by Van’t Veer et al. [77] in patient outcome

prediction for breast cancer. The original dataset was divided into training and test

datasets. For the purpose of this thesis, both training and test datasets were mixed

together to form one dataset that was then randomly split into smaller datasets

as required. The complete dataset contains 46 samples of “relapse” cases and 51

“non-relapse” samples. Each sample contains 24481 genes. The aim of predictive

data mining in this case is to predict the patient outcome as either “relapse” or

“non-relapse”.

1.3.5 Colon Cancer Dataset

This dataset contains 62 samples collected from colon cancer patients and was in-

troduced by Alon et al. [2]. It contains 40 tumour samples and 22 normal samples

taken from a healthy part of the colon from the same patients. Each sample contains

2000 genes.

In their original study, Alon et al. [2] studied gene expression patterns using

Affymetrix oligonucleotide arrays complementary to more than 6500 genes. How-

ever, they then selected 2000 genes based on the confidence levels of the measurments

of gene expression and used only these 2000 genes in their final analysis. Therefore,
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it was decided to use the same 2000 genes in this thesis. The aim of predictive

data mining in this case is to predictively discriminate between tumour and healthy

samples.

1.4 Contributions

The following is a list of contributions made by this thesis to the field of FS and

classification in predictive data mining. In particular, this thesis deals with large

biomedical datasets.

• Juliusdottir et al. [38] introduced a novel two-phase EA/k-NN algorithm for FS

and classification in DNA microarray datasets. The first contribution of this

thesis is the investigation of the setting up of the two phases in the two-phase

EA/k-NN algorithm including the parameters that needed to be tuned. This

investigation was based on the hypothesis that phase one of the algorithm is

critical to the success of the algorithm as only the genes selected during phase

one are used for model building in phase two. The investigation revealed that

some of the parameters need to be tuned correctly for each dataset for the

algorithm to perform as described by Juliusdottir et al. [38].

• As an alternative to tuning parameters, a multi-objective EA was proposed

in this thesis that could replace the single objective EA in the two-phase

EA/k-NN algorithm. The multi-objective algorithm simultaneously optimises

both the length of the chromosome (the number of features in the selected

subset) and the classification accuracy without requiring a pre-tuned parame-

ter labelled α. The multi-objective approach yielded very competitive results

compared to the two-phase EA/k-NN algorithm.

• An investigation was carried into applying adaptive weights (adopted from

Yang and Kecman [81]) to the k-NN algorithm in order to determine if weighted

k-NN (Weighted k-Nearest Neighbour (W-k-NN)) would lead to discovery of

optimal feature subsets. As with α in the single objective two-phase EA/k-NN

algorithm, there are a few parameters that needs to be pre-tuned for W-k-NN

to perform as expected. This thesis contributes that, with proper tuning,

W-k-NN is able to out-perform k-NN.
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• Another contribution made by this thesis is the introduction of a novel weighted

centroid classification technique as the objective function for the EA in the

combined EA/k-NN approach. With this classification technique, the EA

weighted centroid classification algorithm is able to out-perform both the

EA/k-NN algorithm and the Evolutionary Algorithm/Weighted-k-Nearest Neigh-

bours (EA/W-k-NN) algorithm.

• Classical statistical techniques (e.g. Analysis Of Variance (ANOVA)) were

found to be ineffective at comparing multiple algorithms across multiple datasets

in order to determine the best algorithm across all the datasets. In order to

overcome this problem, a randomisation statistics approach was investigated

and adopted in this thesis.

• Finally, this thesis introduces a correlation guided mutation operator. This

mutation operator is designed towards selecting highly correlated features with

a higher probability of being included in the chromosome. The results indicate

this technique to be a promising technique for FS and classification.

1.5 Publications Resulting From this Research

Manjula SB Dissanayake and David W Corne. Feature selection and classification in

bioscience/medical datasets: Study of parameters and multi-objective approach in

two-phase EA/k-NN method. Computational Intelligence (UKCI), 2010 UK Work-

shop on. IEEE, 2010.

1.6 Outline of Thesis

This thesis is organised as follows:

• Chapter 2 provides a review of FS and classification techniques found in liter-

ature. It pays particular attention to FS techniques for DNA microarray data.

It also contains a detailed introduction to the two-phase EA/k-NN algorithm

and the adaptive weights scheme.

• Chapter 3 presents a detailed investigation into the configuration of the two

phases of the two-phase EA/k-NN algorithm. It also presents an investigation

into a multi-objective approach for FS and classification.
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• Chapter 4 takes the investigation of the two phases started in Chapter 3 fur-

ther. This chapter also introduces an adaptive weights scheme for k-NN algo-

rithm and a novel weighted centroid classification technique.

• Chapter 5 provides an investigation into a novel correlation guided mutation

operator for the EA/k-NN algorithm.

• Chapter 6 then presents a summary of the conclusions made in this thesis and

presents a discussion of promising areas of further research.
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Chapter 2

Literature Review

2.1 Deoxyribonucleic Acid Microarrays

DNA microarrays, shown in Figure 2.1, are a relatively new, sophisticated technology

used in molecular biology and medicine. They were first introduced in 1994 by Pease

et al. [59].

Figure 2.1: A Deoxyribonucleic Acid microarray (adapted from
http://en.wikipedia.org/wiki/DNA microarray)

Each DNA microarray consists of thousands of microscopic wells of DNA oligonu-

cleotides arranged into a two-dimensional (2D) array shape. Each well contains pi-

comoles of a specific DNA sequence. These wells in a DNA microarray are called

features.

Each feature is capable of binding its corresponding complementary Deoxyri-

bonucleic Acid (cDNA) or complementary Ribonucleic Acid (cRNA) sequences.

These cDNA or cRNA sequences are called targets. Targets are labelled with fluo-

rophores or luminescence chemicals. It is possible to measure the amount of a target

bound to each feature by measuring the amount of fluorescence [37].

9



Chapter 2: Literature Review

DNA microarrays can be used to measure changes in expression levels of many

thousands of genes simultaneously. This ability makes them a very powerful tool

that can be used in early diagnosis and treatment discovery for many diseases [38].

The standard method for isolating genes responsible for a certain disease (e.g.

cancer) is to measure gene expression levels of a number of patients (e.g. a couple

of hundred) and compare them with expression levels of the normal population. As

each chip is capable of monitoring many thousands of genes at one time and as the

data collected from these experiments tend to be very noisy, this opens up a new

challenge for computer scientists: feature selection and classification [38].

Typically, a microarray dataset consists of many thousands of genes but rela-

tively few samples (a couple of hundred). This means that there may be many

subsets of genes with good classification performance. The aim of feature selection

and classification is to find as many near-optimal solutions as possible. The most

frequently selected genes in these subsets can then be studied further as they have

a better chance of being significant to the case under study [48].

2.2 Overview of Feature Selection and Classifica-

tion Techniques

As explained in 1.1.1, exhaustive searches for subsets of interesting features become

infeasible as datasets get larger. This is due to the fact that if the original dataset

contained N number of features, then the total number of possible feature sub-

sets is 2N [13]. Therefore, even for relatively small datasets, complete or exhaustive

search for the optimal feature subset becomes infeasible. This leaves heuristic search

techniques such as EAs as prime candidates for selecting feature subsets that are ca-

pable of discriminating between disease and normal cases [38, 50] in large biomedical

datasets.

Feature selection can be divided into supervised learning (e.g. classification

where the class value is known in advance) and unsupervised learning (e.g. cluster-

ing) [68]. As this thesis studies feature selection and classification in large biological

datasets where the training data always contain class values, the appropriate learn-

ing method for feature selection for this thesis is supervised learning.

A taxonomy of feature selection techniques applicable to large biomedical datasets
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is shown in Figure 2.2. Feature selection and classification techniques can be divided

into four categories [68]:

• Filter

• Wrapper

• Embedded

• Hybrid

2.2.1 Filter Techniques

These techniques work by looking at the intrinsic properties of the dataset. For

example, in most cases, a feature relevance score is calculated and low scoring fea-

tures are pruned. The remainder of the dataset is then used for classification. The

advantages of these techniques are that they can be easily scaled up or down, they

are computationally simple and they are fast.

However, there are many disadvantages to this approach. For example, these

techniques prune the dataset by looking at one feature at a time. This means that

inter-feature relationships are not taken into account.

A number of multivariate filter techniques (e.g. Markov blanket filter) have been

introduced in order to address some of the issues associated with univariate filter

techniques [68].

Clustering analysis is also widely used with microarray data [2] for feature selec-

tion and classification. Clustering analysis works by looking at correlation between

groups of genes and provides insight into gene-gene interaction. However, clustering

analysis is not well suited for classification as it looks at correlated patterns of ex-

pression rather than patterns of expression that can differentiate between samples.

It is also difficult to determine the relative importance of genes by using clustering

analysis [48].

2.2.2 Wrapper Techniques

In wrapper techniques, a search procedure is defined that is capable of searching

through the space of possible feature subsets for a given dataset. The search pro-

cedure generates various subsets of features and they are evaluated against a test
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set by the classification algorithm [38, 68]. Therefore these techniques are tailored

to whatever the classification algorithm that is used in the evaluation. Wrapper

techniques are able to take inter-feature relations into account. However, they can

be very computationally expensive, especially if the classification step is computa-

tionally heavy [68].

These techniques are called “wrapper” techniques [38, 68] as the search process

is “wrapped” around the classification model, enabling the search process to search

for more efficient classification models.

In large datasets, the search algorithms used in wrapper techniques tend to be

heuristic search algorithms such as genetic algorithms. This, as explained in 1.1.1,

is due to the fact that exhaustive search is infeasible in large datasets.

2.2.3 Embedded Techniques

This class of feature selection techniques is termed “embedded techniques” as the

search for an optimal subset of features is built into the classifier construction [68].

Decision trees are an example of an embedded technique used in feature selection.

Embedded techniques are also specific to a given classification (learning) al-

gorithm. However, embedded techniques are less computationally intensive than

wrapper techniques.

2.2.4 Hybrid Techniques

Hybrid techniques combine two techniques to obtain better performance in FS.

k-Nearest Neighbours & Support Vector Machine Classifier (KSVM) proposed by

Xiaoqiao and Lin [80] belongs to this category. KSVM is a new classifier that

combines Support Vector Machine (SVM) together with k-NN. In the classification

phase, the algorithm computes the distance from test samples to the optimal hy-

perplane of SVM in feature space. If the distance is greater than a given threshold,

then the test sample will be classified on the SVM, otherwise k-NN will be used for

classification.

Xiaoqiao and Lin [80] explain SVM as “a method for finding a hyperplane in high

dimensional space that separates training samples of each class while maximizing

the minimum distance between that hyperplane and any training sample. If the

data are not linearly separable, they can be projected onto a higher dimensional
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feature space in which they are separable”.

The SVM works by identifying training samples that are closest to the hyperplane

and classifies an unseen sample based on this information. However, the performance

of the SVM degrades when there are training samples which are very close to the

hyperplane. This is illustrated in Figure 2.3.

Figure 2.3: Support Vector Machine (SVM) applied to the leukaemia dataset. Fig-
ure showing the application of the Support Vector Machine approach to the leukaemia dataset.
Samples indicated by hollow triangle and rectangles are closest to the hyperplane and are therefore
misclassified by the Support Vector Machine [80].

k-NN works by looking at distance between an unknown test sample and known

training samples and classifying the unknown sample according to the majority of

its closest neighbours.

Xiaoqiao and Lin [80] used Signal-to-Noise Metric (S2N) for feature selection

and used KSVM for classification.

Their results indicate that KSVM has better accuracy than either k-NN or SVM

alone. They conclude that this may be due to the fact that KSVM gathers more

support vectors during training and therefore carries more information.

Furthermore, the number of genes used in the training process has less effect on

KSVM as opposed to SVM also due to the fact that KSVM carries more information.

Mei et al. [52] also propose a similar hybridized k-NN-SVM approach. However,

they only use an SVM for classification when k-NN classification is indecisive.
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2.3 Evolutionary Algorithm/k-Nearest Neighbours

Algorithm

The EA/k-NN algorithm uses an EA as the search technique and k-NN algorithm

as the classifier. The EA/k-NN algorithm was first reported by Siedlecki & Skalan-

sky [71].

k-NN works by assigning a classification to a sample based on its closest neigh-

bours.

Figure 2.4: k-Nearest Neighbours (k-NN) Technique. Figure illustrating k-Nearest
Neighbours technique. Unknown type is classified as Type X using three closest neighbours.

In Figure 2.4, it is assumed that there are only two features (A & B). They are

assigned to x axis and y axis. Samples are then placed in this space using their

known values. A sample of unknown type can then be placed in this space by its

feature values. This unknown sample can then be classified by looking at its k-NN.

In Figure 2.4, unknown type can be classified as type X by looking at its 3 closest

neighbours [62].

EA/k-NN algorithm was applied to Surface-Enhanced Laser Desorption and Ion-

isation Time-Of-Flight (SELDI-TOF) Proteomic data by Li et al. [47]. SELDI-TOF

data is usually more complicated than DNA microarray data as SELDI-TOF tends

to contain more samples (hundreds of samples) and more features for each sam-

ple [47].

Li et al. [47] applied EA/k-NN algorithm to find many near optimal feature sub-

sets. Features were then ranked by frequency of occurrence and the most frequently

occurring features were used to classify unseen data.

They concluded that EA/k-NN algorithm was able to find a subset of 10 features

that was able to classify optimally between cancer and non-cancer cases in the
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ovarian cancer SELDI-TOF Proteomic dataset.

Therefore, it is apparent that EA/k-NN algorithm is suited for feature selection

in predictive data mining.

2.4 Two-Phase Evolutionary Algorithm/k-Nearest

Neighbours Algorithm

k-NN algorithm, first introduced by Fix & Hodges [18] is a fast and simple algorithm

with the advantage of having good classification performance on a wide range of real

world datasets [38, 64].

Siedlecki & Sklansky [38, 71], who first introduced the idea of combining an EA

with k-NN algorithm, showed that a combined EA/k-NN is very efficient at finding

near optimal subsets of features from a large dataset.

Jirapech-Umpai & Aitken [38, 33] showed that classification performance of se-

lected subsets of features improved significantly when prior feature selection was

employed. They showed this by applying EA/k-NN algorithm without prior feature

selection to Golub’s leukaemia dataset [38, 22].

They used chromosomes with initial size set to 10 and a small population. This

produced 68% accuracy at best on the test set, which is poor. The EA converged

quickly due to the fact that the risk of getting stuck in local optima is very high

with a large dataset and small chromosome size [38].

They then used RankGene software for initial feature selection. EA/k-NN algo-

rithm was then applied to the 100 best genes from the initial feature selection phase.

This resulted in 95% accuracy on the test set which is a very significant increase

from 68%. This clearly showed that EA/k-NN performs better when applied to a

reduced dataset after prior feature selection.

Stochastic search methods such as EAs return different results for different runs

when applied to truly complex problems [38]. Although this could be considered an

unfavourable outcome under certain circumstances, in the case of feature selection

and classification, it is desirable to get different results for different runs. This is

because the search method could be run multiple times and results could be pooled

to produce a reduced yet diverse dataset to which further selection and classification

methods could be applied.
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It is also favourable as it is possible to run either the further selection & classifica-

tion step or the whole process multiple times to obtain a diverse set of near optimal

feature subsets. Then, it is possible to analyse frequently occurring genes within

these subsets and conclude, with some confidence, that these genes are significant

to the case under study [38].

Juliusdottir et al. [38], in taking this idea forward, decided to use EA/k-NN for

initial feature selection as well as further selection and classification. During the

first phase, the algorithm was applied to the whole dataset for feature selection.

This enabled them to reduce the datasets down to smaller sizes and apply the same

algorithm to these smaller datasets. Unlike filter methods, this approach has the

benefit of good feature discovery without initial dimensionality reduction. They

showed that the application of EA/k-NN algorithm as the pre-processing method

(phase one) is capable of competitive, if not better results, compared to other more

complex pre-processing methods.

It has been shown that problems with unimodal fitness landscapes where there is

only one isolated global optimum with little or no information available elsewhere in

the landscape are difficult to solve. Problems with such isolated peaks in the land-

scape have been called needle-in-a-haystack (NIAH) problems. It has been shown

that in order to make such a problem solvable by Genetic Algorithms (GAs), the

fitness landscape has to be modified to decrease the isolation of the single optimum

and to increase its basin of attraction [30, 7]. On the other hand, in the context of

feature selection, a generally flat fitness landscape would also prevent an EA from

selecting a set of genes that are relevant to the case under study.

In a feature selection and classification context, a highly sophisticated classi-

fier such as an SVM may contribute to the flattening of the fitness landscape and

therefore decrease the amount of useful information that is available to the EA. For

example, an SVM may classify a sub-optimal feature subset with 95% accuracy.

k-NN on the other hand may classify the same subset with 80% accuracy. As the

classification accuracy is measured as a percentage, the maximum possible accuracy

is 100%. An SVM will therefore reduce the gap between this sub-optimal feature

subset and the optimal feature subset leading to a flattening of the fitness landscape.

k-NN on the other hand will not flatten the landscape to the same extent as an SVM.

Therefore, k-NN will guide the EA towards optimal feature subsets. Juliusdottir et

al. [38] argue that, in a combined feature selection/classification context, it is highly
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valuable to concentrate on classification methods that are straightforward as they

will put the onus on the EA to search for subsets of genes that are strongly corre-

lated to the case under study. Only then does it become possible to save money and

time by letting domain experts concentrate on these genes to either find a cure for

the underlying disease or come up with early diagnostic tests, which is the ultimate

goal of feature selection classification on these datasets.

2.4.1 Two-Phase Evolutionary Algorithm/k-Nearest Neigh-

bours Algorithm Explained

Juliusdottir et al. [38] configured phase one of the two-phase EA/k-NN as described

below:

• Chromosome length = 200

• Population = 30

• Generations = 500

• Selection type = Roulette wheel selection

• Elitism = Yes, elite count of 2

• Mutation rate = 0.3 (30% chance of mutating to a non-zero gene, 70% chance

of removing a gene)

• Crossover = Single point crossover

• Number of neighbours (k) = 3

Figure 2.5 shows how a chromosome encodes a subset of features from a dataset

(adapted from Juliusdottir et al. [38]).

In Figure 2.5:

a) S1, S2, S3 represents three samples from a dataset. F1 - F6 represents values for

each feature in a sample.

b) An integer encoded chromosome. This chromosome is encoding features 2, 3 &

5 from the initial dataset. 2, 3 & 5 can be referred to as “selected feature

subset”.
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Figure 2.5: Feature selection using an integer encoded chromosome. a) An example
of a dataset that has 3 samples with 6 features in each sample. b) An integer encoded
chromosome that encodes 3 features. c) The dataset after it has been reduced in
size using the chromosome.

c) This table shows how the dataset can be reduced using the chromosome shown

in b).

Juliusdottir et al. [38] chose to represent a subset of features (i.e. a chromosome)

as a variable length list of integers as shown in Figure 2.5. They argued that this

encoding had the benefit of limiting a priori the size of a feature subset. They also

argued that this approach had the added benefit of scalability. For large datasets

(e.g. microarray data), a binary chromosome would need to contain many thousands

of bits as the number of bits need to be equal to the number of attributes in the

dataset.

Algorithms used in this thesis have been implemented using Java. In Java, the

most efficient way of representing a binary chromosome is to represent it as an array

of bytes. A byte is a primitive data type in Java that takes up exactly 1 byte of

memory [23]. As the number of bits in a binary encoded chromosome needs to be

equal to the number of attributes in a dataset, a binary chromosome represented

in memory as a byte array will take memory equal to the number of attributes in

the dataset in bytes. For example, the ovarian cancer dataset used in this thesis

consists of 15154 attributes. A binary encoded chromosome can be implemented in

Java using a byte array that can hold 15154 bytes. This array would take 15154

bytes of memory (excluding the overhead imposed by the Java Virtual Machine

(JVM)).
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An integer encoded chromosome can be implemented as an array of integers in

Java. An integer takes up 4 bytes of memory in Java [23]. If an integer encoded

chromosome is to represent the entire feature set (worst case scenario) of the dataset,

then for the ovarian dataset, the chromosome would take up 60616 bytes (15154 x

4 bytes) of memory. However, the initial chromosome is limited to 400 features.

Therefore, the initial memory imprint would be limited to 1600 bytes (400 x 4

bytes) per chromosome. One of the objectives of the algorithm is to minimise the

size of the feature subset encoded by the chromosome. Therefore, most chromosomes

in the population are likely to be reduced to a few features. As shown above, the

shorter the chromosome, the more efficient integer encoding becomes.

There is also evidence in the literature to suggest that integer or floating point

representation of a chromosome is a faster and more consistent form to run [32].

Also, an integer encoding is obvious, easy to decode and meaningful crossover and

mutation operators can be applied with relative ease [12].

Fitness of a given chromosome is calculated using the Equation 2.1.

Fitness = ((100− class acc)/100) + ((n/N/α) (2.1)

Where:

• class acc = mean classification performance over the three three-fold cross-

validation runs

• n = size of chromosome

• N = maximum possible length for a chromosome

• α = parameter controlling trade-off between preference for accuracy and pref-

erence for small subset sizes

Classification accuracy (class acc) for a given chromosome is calculated by look-

ing at how many samples in the dataset that it is able to classify accurately using

k-NN algorithm.

To determine if a given chromosome (x) is capable of classifying a given sample

(s1) in the dataset:

• Calculate the Euclidean distances to all the other samples in the dataset using
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features encoded in x. E.g. for s1, calculate distance from s1 to s2, s1 to s3

and so on.

• Pick three closest neighbours to s1 from these distances.

• Determine the class of the majority of neighbours of s1. Assign this class to

s1.

• Compare the known class of s1 with the assigned class. If they match, then x

is capable of classifying s1 correctly using the k-NN algorithm.

The above procedure is repeated for all the data samples for a given chromosome

and number of data samples that the chromosome is able to classify accurately is

counted. Classification accuracy is then calculated as number of correct classifica-

tions/total data samples. Once classification accuracy is known, the fitness for a

given chromosome can be calculated using the Equation 2.1.

2.4.2 The Two-Phase Evolutionary Algorithm/k-Nearest Neigh-

bours Experimental Design

In this thesis, the two-phase EA/k-NN algorithm introduced by Juliusdottir et

al. [38] is used as the baseline. In Chapter 3, a thorough investigation is carried

out into the optimal way of arranging the two-phase EA/k-NN algorithm so that it

performs well across a range of datasets. In Chapter 4, a weighting scheme for k-NN

is investigated and a novel weighted centroid classifier is introduced in place of k-

NN. Chapter 5 investigates a correlation guided mutation operator for the EA/k-NN

algorithm. As the experimental design used by Juliusdottir et al. [38] is used as the

basis for the following chapters, a detailed explanation of the experimental design

is given in this section.

Juliusdottir et al. [38] conducted all their experiments in two phases. EA/k-NN

algorithm was run on two datasets (colon [2]; prostate [72]) repeatedly during phase

one. Genes that appeared in final populations were pooled together to create two

large but much reduced datasets from the original datasets. EA/k-NN was then run

on these reduced datasets for further selection and classification.

2.4.2.1 Phase One

Experiment 1A
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This experiment was carried out on the prostate cancer dataset. The dataset

had:

• 12600 features

• 52 prostate cancer samples

• 50 normal samples

The dataset was divided into training and test sets. The training set had 39

cancer and 36 normal samples. The remaining 27 samples were used as the validation

set.

Set-up of the EA:

• Total number of runs = 10

• Generations = 400

• Chromosome length = 400

• Population size: 80

• Elite count: 2

• Selection: Roulette wheel selection

• Crossover: Single point crossover

• Number of neighbours for k-NN: 3

After running EA/k-NN for ten runs, the final best subsets were pooled together

to form a dataset that contained 245 unique genes. This dataset was then used as

the starting point for experiment 1B.

Experiment 2A

This experiment was carried out on the colon cancer dataset. The dataset had:

• 2000 features

• 40 colon cancer samples

• 22 normal samples
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The dataset was divided into 4 subsets of similar sizes. Three of these were used

for 3-fold cross-validation (2 training, 1 testing) while the other was used as the

validation set.

Set-up of the EA:

• Total number of runs = 10

• Generations = 400

• Chromosome length = 200

• Population size: 30

• Elite count: 2

• Selection: Roulette wheel selection

• Crossover: Single point crossover

• Number of neighbours for k-NN: 3

After running EA/k-NN for ten runs, the final best subsets were pooled together

to form a dataset that contained 151 unique genes. This dataset was then used as

the starting point for experiment 2B.

2.4.2.2 Phase Two

Experiment 1B

This experiment was run using 245 genes discovered from experiment 1A in phase

one.

Set-up of the EA:

• Total number of runs = 10

• Generations = 100

• Chromosome length = 100

• Population size: 30

• Elite count: 2
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• Selection: Roulette wheel selection

• Crossover: Single point crossover

• Number of neighbours for k-NN: 3

The final best subsets were pooled to form a best subset of size 20.

Experiment 2B

This experiment was run using 151 genes discovered from experiment 2A in phase

one.

Set-up of the EA:

• Total number of runs = 8

• Generations = 100

• Chromosome length = 70

• Population size: 30

• Elite count: 2

• Selection: Roulette wheel selection

• Crossover: Single point crossover

• Number of neighbours for k-NN: 3

The final best subsets were pooled to form a best subset of size 37.

2.4.3 Results from Two-Phase Evolutionary Algorithm/k-

Nearest Neighbours Algorithm

Using a Probabilistic Model Building Genetic Algorithm(PMBGA) with Support

Vector Machine as a classifier, Topon & Iba [38, 58] managed to collect 177 different

subsets. Out of these, the best subsets returned a test set accuracy of 94.12%. This

subset included 24 unique genes. The smallest subset they obtained contained only

6 genes and returned 82.35% testing accuracy. They obtained an average of 84.29%

± 4.57 test set accuracy with the average number of selected genes being 17.14 ±

7.4.
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Singh et al. [72] used signal/noise stats together with k-NN to obtain a 16 gene

subset that returned 93.12% training accuracy.

Juliusdottir et al. [38] managed to obtain 10 subsets including an average of 28

genes after applying EA/k-NN algorithm once for the whole dataset. The average

test set accuracy was 87.04%. This improved to 88.88% when EA/k-NN algorithm

was applied in two phases.

Although it is not possible to compare Juliusdottir et al. [38] results with others’

due to incompatibilities in experimental methodologies, Juliusdottir et al. [38] point

out that it is possible to make a tentative and qualified comparison.

Singh et al. [72] used all data for training. This is not the preferred method as

it is not possible to get an accurate estimate of the performance of selected subsets

on unseen data if all data is used for training. The preferred method is k-fold cross-

validation where the algorithm is trained on some data and other (hitherto unseen)

data samples can be used to get an accurate estimate of how the selected subset

would perform on unseen data. Topon & Iba [58] used a 50/50 split for training and

testing. Although this is better than Singh et al. method, k-fold cross-validation is

preferred over 50/50 split.

The result obtained by Juliusdottir et al. [38] on prostate cancer dataset is

slightly better than Topon & Iba [58] but not as good as Singh et al. [72].

Li et al. [48] obtained 65% accuracy from a 50 gene subset using EA/k-NN

approach. Liu et al. [49] achieved 91.94% classification accuracy using Leave One

out Cross Validation (LOOCV).

Juliusdottir et al. [38] obtained 82.35% classification accuracy after applying

EA/k-NN algorithm to the whole dataset. This improved to 94.12% when EA/k-

NN method was applied in two phases. This result is better than previous reported

work on this dataset.

Table 2.1 below summarises results for various approaches to feature selection

and classification in prostate cancer dataset.

2.5 Multi-Objective Evolutionary Algorithms

As described in Chapter 1, it was decided that the two-phase EA/k-NN algorithm

introduced by Juliusdottir et al. [38] would be used as the baseline algorithm for

this thesis. As explained in Chapter 1, the objective function of the EA in the

25



Chapter 2: Literature Review

Algorithm Classification Accuracy Length

PMBGA / SVM 94.12% 24
PMBGA / SVM 82.35% 6
Signal / noise stats with k-NN 93.12% 16
EA/k-NN 87.04% 28
Two-phase EA/k-NN 88.86% 28

Table 2.1: Summary of results for various approaches to feature selection and clas-
sification in prostate cancer dataset.

two-phase EA/k-NN algorithm combines the classification error of the model with

the length of the feature subset encoded by it to create a single objective value.

A variable, termed α, is used in the two-phase EA/k-NN algorithm to control the

trade-off between preference for classification accuracy and preference for shorter

feature subsets. The effectiveness of the algorithm depends on the correct tuning of

this parameter.

Therefore, the trade-off between the accuracy and the length of the model has to

be calculated for each dataset the algorithm is applied to as this trade-off is critical in

obtaining the best performance from the algorithm. The best way of estimating the

optimal value for this parameter for a dataset is to carry out a series of experiments

on the dataset. This is both resource-intensive and time-consuming.

One way of avoiding this resource-intensive and time-consuming step is to use

a multi-objective EA in the two-phase EA/k-NN algorithm instead of a single ob-

jective EA. The multi-objective EA maximises the accuracy of the model while si-

multaneously minimising the length of the selected feature subset. Therefore, with

a multi-objective EA, there is no need for the parameter α.

As this problem has more than one objective (classification accuracy and the

length of the feature subset) that needs to be optimised, it can be classified as

a Multi-objective Optimisation Problem (MOP). A MOP can be mathematically

formulated as follows [85]:

minimise F (x) = (f1(x), ..., fm(x))T

s.t. x ∈ Ω
(2.2)

Where Ω is the decision space and x ∈ Ω is a decision vector. F (x) consists of

m objective functions fi : Ω→ R, i = 1, ...,m, where Rm is the objective space [85].
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The objectives in 2.2 conflict with each other and therefore multi-objective op-

timisation algorithms concentrate on finding Pareto optimal solutions [76]. Pareto

optimality was first introduced by Edgeworth and Pareto [85]. A solution is termed

Pareto optimal if it is non-dominated with respect to all the objectives [76]. In this

case, a solution can be termed Pareto optimal if there are no other solutions that

are better either on classification accuracy or the length of the chromosome. All the

Pareto optimal solutions, when plotted in objective space is termed as the Pareto

front [76]. EAs are population based, therefore, they are able to approximate the

whole Pareto front in a single run [85].

Konak et al. [1] states that the aims of a multi-objective optimisation approach

should be:

1. The best-known Pareto front should be as close as possible to the true Pareto

front. Ideally, the best-known Pareto set should be a subset of the Pareto

optimal set.

2. Solutions in the best-known Pareto set should be uniformly distributed and

diverse over the whole Pareto front in order to provide the decision-maker a

true picture of trade-offs.

3. The best-known Pareto front should capture the whole spectrum of the Pareto

front. This requires investigating solutions at the extreme ends of the objective

function space.

These aims are readily applicable to the feature selection and classification prob-

lem in large datasets as the ultimate aim is to identify feature subsets that can

classify unseen samples with accuracy and robustness. If a multi-objective EA can

fulfil the above aims, then the resulting Pareto front should contain feature subsets

that give domain experts (e.g. oncologists) a good indication as to the promising

areas for further research or putative drug targets.

Tables 2.2, 2.3 & 2.4, adapted from Konak et al. [1], lists the following multi-

objective GAs:

• Vector Evaluated Genetic Algorithm (VEGA)

• Multi-Objective Genetic Algorithm (MOGA)

• Weight-Based Genetic Algorithm (WBGA)
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• Niched Pareto Genetic Algorithm (NPGA)

• Random Weighted Genetic Algorithm (RWGA)

• Pareto Envelope-based Selection Algorithm (PESA)

• Pareto Archived Evolution Strategy (PAES)

• Nondominated Sorting Genetic Algorithm (NSGA)

• Nondominated Sorting Genetic Algorithm-II (NSGA-II)

• Strength Pareto Evolutionary Algorithm (SPEA)

• Strength Pareto Evolutionary Algorithm-2 (SPEA-2)

• Rank Density-based Genetic Algorithm (RDGA)

• Dynamic Multi-Objective Evolutionary Algorithm (DMOEA)

2.6 Related Results from Literature for the Datasets

Used in This Thesis

2.6.1 Leukaemia Dataset

Bangpeng and Shao [4] introduced a novel Additive Non-parametric Margin Max-

imum for Case-Based Reasoning (ANMM4CBR) method for feature selection and

classification in DNA microarray datasets. They managed to obtain a best classi-

fication accuracy of 97%± 2.3 with 50 features on the leukaemia dataset. With 10

features, they managed to obtain an accuracy of 96.3%± 2.4.

Zhu et al. [86] used a Memetic feature selection method with Filter Ranking

(FR), Approximate Markov Blanket (AMB) & Affinity Propagation (AP) for fea-

ture selection and classification in the leukaemia dataset. They managed to obtain

98.08% accuracy with 28.1 features.

Debnath and Kurita [15] used an evolutionary approach together with an SVM.

Their approach selects new subsets of features based on the estimates of generalisa-

tion error of the SVM and frequency of occurrence of the features in the evolutionary

approach. With this method, they managed to obtain an accuracy of 100% with 3

features on the leukaemia dataset.
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2.6.2 Prostate Cancer Dataset

Mundra and Rajapakse [54] introduced an improved version of Support Vector Ma-

chine - Recursive Feature Elimination (SVM-RFE) by incorporating a Minimum-

Redundancy Maximum-Relevancy (MRMR) filter. With this approach, they man-

aged to isolate 10 features with 98.29% ± 2.30 accuracy from the prostate cancer

dataset.

2.6.3 Ovarian Cancer Dataset

Zhu et al. [86] also used ovarian cancer dataset with their Memetic feature selection

approach. They managed to obtain 99.52% accuracy with 9 features.

2.6.4 Colon Cancer Dataset

Guyon et al. [25] proposed a feature selection method that used SVM based on Re-

cursive Feature Elimination (RFE). They demonstrated that this method is capabale

of selecting a subset of 4 genes that yielded 98% classification accuracy on the colon

cancer dataset using Leave One Out Cross Validation (LOOCV).

Peng et al. [60] combined a GA with SVM for feature selection and classification

in the colon cancer dataset. With 12 features, using LOOCV, they managed to

obtain 93.55% accuracy.

2.6.5 Breast Cancer Dataset

Bolón-Canedo et al. [6] reported 68% classification accuracy on the breast cancer

dataset with 10 features using SVM-RFE algorithm. Sardana, Agrawal & Bal-

jeet [69] used an Incremental Formulation of Trace of Ratio of Scatter Matrices

(IFTRSM) and minimum Redundancy and Maximum Relevance (mRMR) filter for

feature selection. Linear Discriminant Classifier (LDC) and k-NN were used for

classification. Their results are shown in Table 2.5.

Classifier LOOCV 10-fold 5-fold
IFTRSM mRMR IFTRSM mRMR IFTRSM mRMR

k-NN 86.6(30) 83.51(31) 63.48(24) 69.07(27) 61.2(25) 66.78(27)
LDC 100(19) 77.32(22) 64.31(6) 68.16(47) 64.19(6) 65.61(47)

Table 2.5: Breast cancer dataset results by Sardana et al. [69]. The best performing
classification method for each cross-validation technique is highlighted in bold face.

32



Chapter 2: Literature Review

As shown in Table 2.5, LOOCV achieved the best results. Classification accuracy

gets progressively lower as the number of folds in cross-validation is decreased.
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Chapter 3

Study of Parameters and

Multi-Objective Approach in

Two-Phase Evolutionary

Algorithm/k-Nearest Neighbours

Algorithm

As explained in Chapter 2, Juliusdottir et al. [38] showed that the two-phase EA/k-

NN algorithm is capable of achieving comparable, if not better, results for feature

selection and classification in two large DNA microarray datasets. Furthermore,

they pointed out that the two-phase EA/k-NN algorithm has many advantages over

other FS techniques.

Although Juliusdottir et al. [38] achieved very good results with the two-phase

EA/k-NN algorithm, it may be possible to achieve even better results by tuning

the parameters used in the algorithm so that it performs well across a number of

datasets.

The two parameters optimised by the two-phase EA/k-NN algorithm is the clas-

sification accuracy of the selected feature subset and the length of the selected

feature subset. The algorithm maximises the classification accuracy while minimis-

ing the length of the selected feature subset. Juliusdottir et al. [38] combined these

two objectives into a single objective using the Equation 2.1. This equation uses

a parameter labelled α that controls the trade-off between classification accuracy
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and the length of the selected subset of features. Therefore, it is necessary to do

preliminary experiments in order to determine a good value for α that gives the

optimal performance for the two-phase EA/k-NN algorithm. As each dataset has

unique characteristics, α may be different from dataset to dataset.

Therefore, a logical extension to the two-phase EA/k-NN is to replace the single

objective EA with a multi-objective EA. Multi-objective EA can optimise both the

classification accuracy and the length of the selected feature subset simultaneously

without the aid of any extra parameters.

This chapter presents a comprehensive study of the parameters used in the two-

phase EA/k-NN algorithm as well as an investigation into replacing the single ob-

jective EA with a multi-objective EA in the two-phase EA/k-NN algorithm.

3.1 Algorithms

Two main algorithms were used in all experiments:

1. A modified version of the Two-Phase EA/k-NN algorithm introduced by Julius-

dottir et al. [38]

2. A Two-Phase Multi-Objective Evolutionary Algorithm (MOEA)

Both algorithms were written in Java. 3-fold cross-validation was used in all

experiments.

3.1.1 Two-Phase Evolutionary Algorithm/k-Nearest Neigh-

bours

This is a single objective, generational, elitist EA that uses k-NN as the classifier /

objective function.

Pseudo code for the EA/k-NN Algorithm:

1. Create a random population P & calculate the initial values for the objective

function for all the chromosomes in P

2. Repeat for NUM GENERATIONS

• Select (P − elite count) pairs of parents using rank based selection
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• Apply crossover operator to each pair of parents to produce a child

• Apply mutation operator to children

• Calculate the values for the objective function for each child

• Delete non-elitist individuals from P

• Copy children into vacant spots in P

Chromosomes in the EA are integer encoded and variable in length. Genes in

the chromosomes range from 1 to n where n is the number of features in a sample

in the dataset.

Please refer to Figure 2.5 for an illustration on how an integer encoded chromo-

some can be used to filter a subset of features from the original dataset.

Goldberg and Deb [21] showed that an optimised implementation of roulette

wheel selection can run in O
(
n2
)

time and rank based selection can run in O
(
n lnn

)
time. This means that rank based selection should perform faster compared to

roulette wheel selection. Initial work in this thesis showed that rank based selec-

tion was not only faster but was no less accurate than roulette wheel selection.

Therefore, it was decided that rank based selection would be used in thesis instead

of roulette wheel selection that Juliusdottir et al. [38] used in their version of the

two-phase EA/k-NN algorithm.

During the rank-based selection step, each chromosome in the population was

assigned a rank, based on the value returned by the objective function. Then, a

probability was calculated for each chromosome using Equation 3.1:

probability(x) =
rank(x)

(n ∗ (n+ 1))/2
(3.1)

Where:

• x = the chromosome for which the probability is being calculated

• n = total number of chromosomes in the population

This ensures that the best chromosomes in the population have a higher proba-

bility of being selected.

The value of the objective function for chromosome x can be calculated using

the following equation:

f(x) = (1− class acc) + (n/α) (3.2)
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Where:

• class acc = classification accuracy for the chromosome. Classification error,

which should be minimised, is (1− class acc).

• n = size of the gene subset encoded by this chromosome. This is also min-

imised.

• α = parameter controlling the trade-off between preference for accuracy and

preference for smaller subset sizes.

The classification accuracy of a chromosome (X) can be calculated using the

following procedure:

• Let T be the number of correct classifications for X.

• Set T to zero.

• For each sample in the training or test set:

– Calculate the Euclidean distance from the current sample to all the other

samples in the training/test set. Euclidean distance is calculated using

genes encoded by X.

– Classify current sample using the classes of k-NNs

– If the k-NN classification matches the known classification of the sample,

add 1 to T

• Classification accuracy of X = (T/total number of samples in the set)

The algorithm aims to minimise the length of a chromosome while maximising

the classification accuracy. These two values are combined to produce a single

metric as the value of the objective function for the single objective algorithm. As it

is difficult to combine a value that is minimised with a value that is being maximised,

classification error (1− class acc) was used instead of classification accuracy. This

can be easily combined with the length of a chromosome to produce a single metric.

Other parameters for the algorithm included:

• Initial chromosome size = 30 (determined after running a series of experiments

using chromosomes with different initial sizes, ranging from 10 to 400)
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• Population size = 50 (determined after running a series of experiments using

different population sizes, ranging from 10 to 100)

• Number of Neighbours (k in k-NN) = 3 (Taken from Juliusdottir et al. [38])

• Number of generations = 2000 (determined after running a series of experi-

ments using different numbers of generations, ranging from 1000 to 10000)

• α = 1000 (determined after running a series of experiments using different

values for α, ranging from 0.001 to 100000)

Feature selection in DNA microarray data involves selecting a subset of infor-

mative genes from a large set of genes. When the classification performance of the

entire subset of informative genes is compared to the classification performance of

a single gene from the subset, the single gene may not perform as well as the sub-

set of genes. This is due to the fact that, in cases where DNA microarray data is

associated with cancers, it is common to find that more than one gene is associated

with the underlying cancer [38]. Therefore, the classification performance depends

on the composition of the selected subset of genes.

Falkenauer [17] identified problems characterized by objective functions that de-

pend on the composition of the selected subset of features (group of features) as

grouping problems. Therefore, feature selection in the context of DNA microarrays

can also be classified as a grouping problem. Falkenauer [17] showed that, for a

grouping problem, a group-based crossover operator performed better than tradi-

tional crossover operators (e.g. single point crossover). Therefore, a modified version

of the group-based crossover operator introduced by Falkenauer [17] was used in this

thesis.

The following illustrates the crossover operator that was used in this thesis (genes

shown within square brackets are for illustration only):

• Let Parent 1 (P1) be [3,4,5,29,38]

• Let Parent 2 (P2) be [4,29,38,61,120,122]

• Let I be genes common to both [4,29,38]

• Let J be leftover genes after taking common genes out of both parents [3,5,61,120,122]

• Let X be random number of genes from J [5,61,122]
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• Let child be union of I & X [4,29,38,5,61,122]

The mutation operator added, removed or modified (with 33.3% probability) a

gene in each child so that the child would only contain unique genes.

During Phase 1, EA/k-NN algorithm was run on all the features (i.e. no di-

mensionality reduction). Then, all the unique genes present in the final populations

were pooled to create a much smaller dataset. During Phase 2, EA/k-NN was run

on this reduced dataset.

3.1.2 Multi-Objective Two-Phase Evolutionary Algorithm/k-

Nearest Neighbours

The aim of the multi-objective version of the algorithm is to minimise both the

classification error (1− class acc) and the length of a chromosome simultaneously.

The ultimate objective is to isolate a set of Pareto-optimal solutions that form a

Pareto front.

Zitzler et al. [44] showed that there are specific features associated with test

functions that can cause multi-objective evolutionary algorithms problems in con-

verging to the Pareto-optimal front. They showed that elitism is an important

factor in overcoming these obstacles by showing that SPEA outperformed all the

other tested algorithms including NSGA. They have indicated that when elitism is

introduced into NSGA, it obtains similar performance to SPEA. This confirms that

elitism plays a major role in the performance of multi-objective EAs. Therefore, it

was decided that elitism should be used in the multi-objective version of the EA/k-

NN algorithm implemented in this thesis. In this respect, the multi-objective version

of the algorithm implemented in this thesis is similar to NSGA-II. The algorithm

implemented here also brings together features from MOGA and PAES. Therefore,

it can be classified as a hybrid of these algorithms. For example, the algorithm

implemented here has a feature similar to the Pareto ranking of MOGA. It is also

similar to PAES in that it keeps an archive of the Pareto optimal solutions during

the execution of the algorithm. Then, that archive is output as the Pareto front at

the end of the run.

Pseudo code for the Multi-objective EA/k-NN Algorithm:

1. Create a random population P and evaluate initial classification error of each

chromosome in P
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2. Initialise the archive

3. Calculate domination count for each individual in P and add non-dominated

individuals to the archive

4. Repeat for NUM GENERATIONS

• Select (P − elite count) pairs of parents

• Apply crossover operator to each pair of parents to produce children

• Apply mutation operator to children

• Evaluate the classification error of each child

• Calculate domination count for each child and add non-dominated chil-

dren to the archive

• Re-calculate the domination count in the archive & remove dominated

individuals from the archive

• Keep elite count non-dominated (or as close to non-dominated as possi-

ble) individuals in P and delete the rest

• Copy children into vacant spots in P

A chromosome dominates another chromosome if it is better on both objectives.

Figure 3.1 illustrates this concept. The domination count for a chromosome (X) is

the number of chromosomes that dominate X. A chromosome with a domination

count of 0 is called a non-dominated chromosome.

Parents are selected using Binary Tournament Selection (BTS) based on domi-

nation count. Two individuals are selected randomly from the population. Out of

these, the one with a domination count of 0 is selected to be the parent. If none of

the individuals have a domination count of 0, then the one closest to 0 is picked. If

both individuals have the same domination count, then one is picked randomly out

of the two. This procedure is repeated again to select the second parent.

During Phase 1, the multi-objective version of the algorithm was run on the

complete set of features (i.e. no dimensionality reduction). Then, unique genes

present in the Pareto front (archive) were pooled together to form a reduced dataset

that was used for Phase 2.
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Figure 3.1: The concept of dominated solutions. Solution 1 is non-dominated as
solutions 2, 3 & 4 are worse than solution 1 on both objectives. Solutions 2 & 3 do
not dominate each other as solution 2 is better than 3 on accuracy but solution 3 is
better on length. Both 2 & 3 are dominated by solution 1. Solution 4 is dominated
by solutions 1, 2 & 3.

3.2 Datasets

The following datasets were used for all the following experiments (please refer to

1.3 for more information on these datasets):

• Leukaemia Dataset (DNA Microarray Data). This dataset was divided into 3

folds. Each fold contained 1/3 of randomly picked ALL samples and 1/3 of

randomly picked AML samples.

• Ovarian Cancer Dataset (SELDI-TOF Proteomics Data). This dataset was

also divided into 3 folds with an equal distribution of cancer and non-cancer

samples across the folds.

• Prostate Cancer Dataset (DNA Microarray Data). This was also divided into

3 folds with an equal distribution of cancer and non-cancer samples across the

folds.

Although five datasets are used for Chapters 4 and 5 below, the aim of this

Chapter is to investigate the best way to arrange the two-phase EA/k-NN algo-

rithm with regards to parameters, then, compare the results with Juliusdottir et

al. [38]. Juliusdottir et al. [38] used two datasets for their experiments. Therefore,
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it was decided that three out of five datasets, including one of the datasets used by

Juliusdottir et al. [38], would be sufficient for the purpose of this Chapter.

3.3 Experiments

3.3.1 Leukaemia Dataset

3.3.1.1 Single Objective Two-Phase Evolutionary Algorithm/k-Nearest

Neighbours

The value of the objective function is calculated by combining the classification error

and the length of a chromosome into a single metric as shown in Equation 3.2.

Error Length α Objective function(error + (n/α))

0.2 20 1000 0.22

0.2 20 1 20.2

0.2 20 0.001 20000.2

Table 3.1: Effect of α on the objective function

As shown in Table 3.1, a high value for α makes the algorithm concentrate

more on reducing the error while a low value for α makes it concentrate more on

reducing the length. When α is not used at all, the algorithm concentrates solely on

the error. Preliminary experimentation showed that the algorithm produces much

larger chromosomes when α is not used.

The aim of Two-Phase EA/k-NN is to get rid of noise from the dataset during

phase 1 and then select relevant genes during phase 2. For the algorithm to perform

as expected, it is important that informative genes be kept in the gene pool. The

set of experiments shown in Table 3.2 was designed to identify the best way to run

the two phases and also the overall algorithm.

Abbreviations used in Table 3.2:

• SO - Single objective

• P1WO - Phase 1 without α

• P1W - Phase 1 with α

• P2WO - Phase 2 without α
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Name Phase I Phase II

SO P1WO Without α N/A

SO P1W With α N/A

SO P1WO P2WO Without α Without α

SO P1WO P2W Without α With α

SO P1W P2W With α With α

Table 3.2: Experiments run on the leukaemia dataset

• P2W - Phase 2 with α

Explanations of the experiments listed in Table 3.2:

• SO P1WO - The algorithm concentrates on accuracy only. This means that

as many informative genes as possible are selected. It was hypothesised that

this would create a comprehensive gene pool for phase 2 and this would lead

to better overall results.

• SO P1W - The algorithm concentrates both on accuracy and length. In this

mode, the algorithm selects fewer genes compared to SO P1WO. Running the

algorithm with and without α for phase 1 enables the determination of the

best way to run phase 1 of the two-phase EA/k-NN.

• SO P1WO P2WO - The algorithm is run without the effect of α during both

phases. This enables testing to ascertain whether high accuracy can be ob-

tained at the expense of length.

• SO P1WO P2W - The algorithm selects as many genes as possible during

phase 1. During phase 2, the algorithm selects as few genes as possible with

high accuracy. It was hypothesised that, in this mode, the algorithm would

produce short chromosomes with high accuracy. This is because the algorithm

is able to concentrate more on finding small subsets with high accuracy during

phase 2 as it deals with a dataset with a reduced level of noise.

• SO P1W P2W - The algorithm selects as few genes as possible during phase

1. It then selects even fewer genes during phase 2. It was hypothesised that

this should produce extremely small chromosomes with good accuracy.

As the dataset is divided into three folds, 3 runs of the algorithm were carried

out in the following manner for each experiment
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• Train on fold 0 & 1 of the dataset. Pick the chromosome with the best accuracy

and the chromosome with the best length for validation. In certain cases, one

particular chromosome may have the best length as well as the best accuracy.

Validate these two chromosomes using fold 2 of the dataset (unseen data as

far as these chromosomes are concerned).

• Repeat the same procedure using folds 0 & 2 as the training set and fold 1 as

the validation set.

• Repeat the same procedure using folds 1 & 2 as the training set and fold 0 as

the validation set.

3.3.1.2 Multi-Objective Two-Phase Evolutionary Algorithm/k-Nearest

Neighbours

This algorithm minimises both objectives (classification error and length of chromo-

some) simultaneously. As the overall output of single objective EA/k-NN depends

on choosing an effective value for α, it was assumed that multi-objective EA/k-NN

would perform better as there is no need to pick an effective value for α. It was

also assumed that running multi-objective EA/k-NN in two phases may give better

results. The following experiments were designed to test this.

• MO P1 (Multi-Objective Phase 1) - Run the algorithm on the whole dataset.

Isolate unique genes from Pareto front at the end.

• MO P2 (Multi-Objective Phase 2) - Run the algorithm on unique genes from

Phase 1.

3.3.2 Ovarian Cancer & Prostate Cancer Datasets

These two datasets were tested in exactly the same way as the leukaemia dataset.

3.4 Results & Discussion

3.4.1 Initial Parameter Tuning: Chromosome Size

A set of experiments was carried out on the ovarian cancer dataset in order to

determine the effect of the initial size of a chromosome on the performance of the
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algorithm. The results from this set of experiments are shown in Figure 3.2.

Figure 3.2: The effect of initial chromosome size on the value of the objective func-
tion. The value of the objective function of the initial randomly populated chro-
mosomes decreases as the size of the chromosome is increased. This corresponds to
an increase in the classification performance of these chromosomes. The value of
the objective function during training stays low initially but increases as the size of
the chromosome is increased corresponding to a degrading classification accuracy.
The value of the objective function during testing follows the same trend as training
albeit with markedly worse values due to over-fitting.

The average value of the objective function for the 50 initial random chromosomes

over 10 repeated runs decreased as the size of the chromosome was increased. This

decrease is due to increasing classification accuracy as the objective function is

calculated by looking at classification error (1−class acc). This indicates that there

is an optimal subset of features that is significant in classification performance. A

chromosome has a better chance of getting a classification correct as the number

of informative genes that it encodes increases. The chromosomes were populated

with randomly selected genes to start with. Therefore, the more random genes that

you encode in a chromosome, the better chance that particular chromosome has in

having informative genes and therefore obtaining better classification accuracy.

However, the initial rate of decrease in the value of the objective function de-

creases as the size of the chromosome is increased. This is due to two reasons:

1. As the length is increased, the effect of α means that the value of the objective

function increases. This counteracts the effect of classification performance of

the selected subset of genes. Therefore, the rate of decrease in the value of the
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objective function decreases as the size of the chromosome is increased.

2. As the length is increased, the chromosome encodes more and more noisy

genes. This leads directly to degraded classification performance and therefore

leads to an increase in value of the objective function which in turn slows down

the rate of decrease of the value of the objective function.

In contrast, after 1000 generations while training, the value of the objective

function generally stays very low indicating very good classification performance.

At very small initial chromosome sizes (e.g. 10), the training value of the objective

function is slightly worse than medium sized chromosomes (e.g. 30 - 50). This is

due to the fact that the algorithm, with only 10 features, has not had enough time

to cover a significant portion of the landscape in order to select the optimal subset

of features. On the other hand, medium sized chromosomes with increased number

of features give the algorithm a better chance of discovering genes associated with

the optimal subset. As the size of the chromosome is increased, the performance

starts degrading due to the algorithm not having had sufficient time to filter out the

noise encoded in the chromosomes.

The value of the objective function while testing on unseen data follows a similar

pattern to the training performance. However, test values are markedly worse than

training values. This is to be expected as there is a certain amount of over-fitting

that happens during the training process. Over-fitting helps keep the training values

of the objective function very low. However, on unseen data, over-fitting generally

degrades the classification performance.

In order to get a better understanding of the effect of the length of the chro-

mosome on classification accuracy, the initial set of experiments was extended to

include three-fold cross-validation. Figure 3.3 shows the average validation values

for the objective function of 50 chromosomes after 1000 generations versus the initial

size of the chromosomes. There is a clear correlation between the size of the initial

chromosomes and the classification performance. Mid-sized chromosomes (20 - 50)

obtain the best classification performance on unseen data.

3.4.2 Initial Parameter Tuning: The Effect of α

Juliusdottir et al. [38] used Equation 2.1 for calculating the value of the objective

function for a chromosome. An analysis of this equation for the effect that α had on
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Figure 3.3: The effect of initial chromosome size on 3-fold cross-validated values of
the objective function. Average cross-validated objective function values of chromo-
somes versus the initial size of the chromosome.

the length of the chromosome on the ovarian cancer dataset is shown in Figure 3.4.

Figure 3.4: The effect of α on the final length of chromosomes after 2000 generations.

As can be seen from Figure 3.4, the relationship between average length of the

chromosome and α is weak. A stronger relationship between the final length of the

chromosome and the value of α is desirable as this enables experiments to be run

with better control. Therefore, research was carried out into obtaining a stronger

relationship between α and the length of the chromosome which resulted in the

Equation 3.2.
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With Equation 3.2, in theory, if α is 1 and length of chromosome is 30, then the

graph of the resulting objective function values is shown in Figure 3.5

Figure 3.5: Theoretical values produced by Equation 3.2 when the length of the
chromosome is 30 and α is 1.

As accuracy increases (increasing number of correct classifications), the value of

the objective function decreases. Therefore, the EA has to minimize the value of the

objective function. Figure 3.6 shows the resulting objective function values when α

is changed from 10 to 1. As expected, the gradient of the line is the same. However,

the magnitude of the value changes with α.

This equation was then tested on the ovarian cancer dataset and the results are

shown in Figure 3.7. As expected, the average length of the chromosome increases

as α is increased. In Figure 3.7, the α value 1000000 is used as a place-holder for

illustrating the length of the chromosome when α is completely omitted from the

objective function.

In order to gain a better understanding of the effect that α has on the length,

the chromosome with the minimum length and the chromosome with the maximum

length were plotted together with the average length of 50 chromosomes after 2000

generations on the ovarian cancer dataset (Figure 3.8). This shows a strong rela-

tionship between α and the length of the final chromosomes. It shows that with the

new equation, experiments can be run with much better control of the final length

of the chromosomes.
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Figure 3.6: Theoretical values produced by Equation 3.2 when the length of the
chromosome is 30 and α is 10, and when α is 1.

Figure 3.7: The effect that α has on final chromosomes on the ovarian cancer dataset
after 2000 generations.
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Figure 3.8: The effect that α has on the minimum, maximum and average length of
final chromosomes on the ovarian cancer dataset after 2000 generations.

The EA/k-NN algorithm can be thought of as running in O
(
i ∗ c ∗ (s− 1)

)
time

where i is the number of features encoded in a chromosome, c is the number of

chromosomes and s is the number of samples in the dataset. This is due to the fact

that the most time-consuming step in the algorithm is the classification step that

calculates Euclidean distances for k-NN algorithm. In order to ascertain the classifi-

cation accuracy of c, a sample (si) needs to be classified by looking at the Euclidean

distance from si to all the other samples in the dataset (s − 1 samples). Then, k-

NNs for si are selected by looking at the distances and si is classified according to

the majority of its neighbours. If the predicted classification of si is accurate, then

that is counted as one correct classification and the same procedure is repeated for

sample si + 1, then, for si + 2, and so on until all the samples of the dataset have

been classified. The classification accuracy of c, then, is the total number of correct

classifications divided by the number of total classifications.

The two-phase EA/k-NN algorithm can be thought of as running in O
(
(i ∗ c ∗

(s−1))∗11
)

time. This is due to the fact that phase one of the algorithm is repeated

10 times in order to collect features that form the reduced dataset for phase two.

The time taken to run both the two-phase EA/k-NN and EA/k-NN algorithms

increases linearly with an increase in either the size of the dataset or the number of

chromosomes used in the algorithm.
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In other words, the EA/k-NN algorithm can be thought of as running in O
(
n
)

time whereas the two-phase EA/k-NN algorithm can be thought of as running in

O
(
n ∗ 11

)
time.

3.4.2.1 Effect of α on the Leukaemia Dataset

Figures 3.9 and 3.10 show the effect that α has on the length and the classification

accuracy of final chromosomes for the leukaemia dataset. From these graphs, it

can be concluded that a value of 1000 for α is likely to return best results for the

leukaemia dataset.

Figure 3.9: The effect that α has on the average length of chromosomes on the
leukaemia dataset after 2000 generations.

3.4.2.2 Effect of α on the Prostate Cancer Dataset

Figures 3.11 and 3.12 show the effect that α has on the length and the classification

accuracy of final chromosomes for the prostate cancer dataset. As with the leukaemia

dataset, a value of 1000 for α looks likely to return best results for this dataset.

Overall, the best fit for α across all three datasets is 1000.

3.4.3 Leukaemia Dataset

Figure 3.13 shows the best validated chromosomes from each experiment on the

leukaemia dataset. Out of the validated chromosomes, only the best chromosomes
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Figure 3.10: The effect that α has on the classification accuracy on the leukaemia
dataset after 2000 generations.

Figure 3.11: The effect that α has on the average length of chromosomes on the
prostate cancer dataset after 2000 generations.

52



Chapter 3: Study of Parameters and Multi-Objective Approach in Two-Phase
Evolutionary Algorithm/k-Nearest Neighbours Algorithm

Figure 3.12: The effect that α has on the classification accuracy on the prostate
cancer dataset after 2000 generations.
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Figure 3.13: Best validated solutions for each experiment on the leukaemia dataset
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for each experiment are shown.

Single objective 2 phase EA/k-NN has achieved 100% classification accuracy with

2 features when phase I did not take the length of the chromosome into account and

phase II did. Two-phase multi-objective approach managed to obtain a classification

accuracy of 95.83% with 1 feature.

This compares favourably with the results reported by Zhu et al. [86]. They ob-

tained 98.08% accuracy with 28.1 features. Debnath and Kurita [15] reported 100%

accuracy with 3 features. The single objective two-phase algorithm implemented

here also obtained 100% accuracy but with only 2 features.

3.4.4 Ovarian Cancer Dataset

Figure 3.14 shows the best validated chromosomes for each experiment carried out

on the ovarian cancer dataset.
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Figure 3.14: Best validated solutions for each experiment on the ovarian cancer
dataset

Single objective EA/k-NN managed to obtain a classification accuracy of 100%

with 2 features in the following cases:

• Single phase with α (taking the length of the chromosome into account)

• Two phase: phase 1 with α and phase 2 with α (both phases take length of

chromosome into account)
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• Two phase: phase 1 without α and phase 2 with α (phase 1 does not take

length of chromosome into account while phase 2 does)

Multi-objective EA/k-NN managed to obtain 96.47% classification accuracy with

1 feature in a single phase. In two phases, it achieved 97.62% classification accuracy

with 6 features.

On this dataset, Zhu et al. [86] reported 99.52% accuracy with 9 features. In

comparison, single objective EA/k-NN approach presented here obtained 100% ac-

curacy with 2 features.

3.4.5 Prostate Cancer Dataset

Figure 3.15 shows the best validated solutions from each experiment on the prostate

cancer dataset.
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Figure 3.15: Best validated solutions for each experiment on the prostate cancer
dataset

Single objective EA/k-NN in single phase mode (taking length into considera-

tion) managed to obtain a classification accuracy of 92.08% with 9 features. Multi-

objective EA/k-NN in two phases managed to obtain a classification accuracy of

91.18% with a single feature.

Mundra and Rajapakse [54] reported 98.29%±2.30 accuracy with 10 features. Al-

though the approach presented here managed a lower accuracy compared to Mundra
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and Rajapakse, the multi-objective approach managed it (91.18% accuracy) with a

single feature.

3.5 Conclusion

Results for the three datasets studied here have been reported in several papers. It

is difficult to do a careful comparison since different researchers tend to use varying

ways to partition the datasets into training, test and validation sets, and different

researchers tend to use their own variants (very common), updates, subsets, and/or

older versions of the datasets.

Also, consideration of predictive accuracy is not a main aspect of the current

work, but it can nevertheless be reported that the results on unseen data that were

reported in 3.4 are consistent with the general body of literature on these datasets,

particularly considering work that aims to find minimal and understandable models

(e.g. small subsets of genes with high predictive accuracy).

The EA/k-NN method explored here is clearly competitive in the region of ac-

curacy with small numbers of features. Single objective EA/k-NN in two phases

(both phases taking the length of the chromosome into consideration) has achieved

the best results on all three datasets. However, it should be noted that for the

two-phase EA/k-NN to achieve these results, a considerable amount of preliminary

work went into parameter tuning.

However, the multi-objective EA/k-NN in two phases has achieved very com-

petitive results on all three datasets (leukaemia - 95.83% with 1 feature, ovarian -

97.62% with 6 features and prostate - 91.18% with 1 feature) with no preliminary

work. It is this ability to produce very competitive results without the need for

preliminary work that makes the multi-objective approach look very promising for

feature selection and classification in bioscience/medical datasets.

Although the multi-objective two-phase EA/k-NN method looks very promising

for feature selection and classification, particular features (genes) selected during

repeated runs of the algorithm need to be compared with results obtained from

other approaches. If a consistent pattern emerges, then these features can be further

studied by research biologists. If different features emerge from different approaches

but on a consistent basis, then further work can be carried out into why different

methods select different features. In turn, this may lead to further understanding
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of the underlying data.

Future work should concentrate on improving the performance of two-phase

multi-objective EA/k-NN. A map of genes most frequently selected over repeated

runs of the algorithm can be created. These genes can then be compared with genes

selected by other approaches in literature in order to determine how meaningful

these features are and, in turn, how meaningful these methods are.
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Chapter 4

An Adaptive Weights Scheme for

k-Nearest Neighbours in

Evolutionary Algorithm/k-Nearest

Neighbours Algorithm for Feature

Selection

4.1 Introduction

As described in Chapter 3, the two-phase EA/k-NN method proposed by Juliusdottir

et al. [38] looks promising for feature selection and classification in predictive data

mining. Therefore, research was carried out into tuning the parameters used in the

two-phase EA/k-NN algorithm so that it performs well across a range of datasets.

An investigation was also carried out into using a multi-objective EA instead of a

single-objective EA in the EA/k-NN algorithm.

Although the results from this research were promising, there are many areas

where the methodology could be improved in order to obtain even better perfor-

mance from the algorithm. Therefore, the first part of this chapter looks into the

areas that can be improved. In the second half of the chapter, an investigation

is carried out into weighting strategies for k-NN in order to ascertain whether the

performance of the algorithm can be improved by applying feature weights during

the classification step.
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4.2 Improvements to the Methodology

4.2.1 Cross-validation

A version of k-fold cross-validation [9] was used in Chapter 3 for validating the

results obtained from all the algorithms. Usually, in k-fold cross-validation, the

dataset is randomly split into k mutually exclusive subsets. The algorithm is then

trained on k - 1 folds and tested on the remaining fold.

In Chapter 3, stratified 3-fold cross-validation was employed [41]. In stratified

cross-validation, each fold contains approximately the same proportion of classes

(e.g. cancer and normal) as the original dataset. The algorithm was then trained on

two folds and tested on the remaining fold. This procedure was repeated two more

times so that the algorithm was tested exactly one time on each fold. The reported

accuracy was the average accuracy over the three cross-validation runs.

The cross-validation method employed in Chapter 3 has a few drawbacks. First

of all, each experiment was repeated multiple times on each dataset. For each re-

peat, the split of the dataset into three folds was kept the same. An improvement to

this approach would be to randomly split the dataset into three folds each time an

experiment is repeated. This is warranted by the distribution of informative genes

and noise within the samples. The algorithm is able to extract useful information

more easily from some samples than others. This is especially the case in biolog-

ical datasets where non-disease related factors may also influence gene expression

profiles [63].

In some instances, if the training fold happens to contain a larger proportion of

easier-to-classify samples, then the EA converges quickly. However, the performance

of the selected model on unseen data may not be robust. Therefore, if the experiment

is repeated 10 times, then the quality of the final result may depend on the way the

samples were allocated to each fold. As described by Raser and O’Shea [63], gene

expression data is stochastic by nature. There is no convenient way of determining

which samples are easy to classify and which samples are harder. Therefore, the

aim of feature selection should be to build robust models that are equally capable of

classifying easy and hard samples. In theory, this process should be more efficient

and robust if the dataset is randomly split into k-folds before each repeat of the

algorithm. This is especially the case in two-phase EA/k-NN algorithm where phase
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one is repeated many times and genes selected during phase one are fed into phase

two of the algorithm.

Ron Kohavi [41] points out that in truly difficult problems, the models created

are most stable when leave-one-out cross-validation is employed. In case of k-fold

cross-validation, the stability of the selected model increases with higher numbers

for k. For example, more stable models can be built with 20-fold cross-validation

compared to 10-fold cross-validation.

Although, in theory, a higher number of k should produce better results, the

k that is actually used should be determined not only by trying to increase the

metric, but also by looking at the nature of the dataset and the underlying problem.

For example, by selecting inappropriate numbers for k, it is possible that a random

partition of a dataset into k folds may in fact lead to either a training or testing fold

that only contains one class of samples. If this happens to be a training fold, then

the models that are built will not be suitable predictors for the underlying case.

Therefore, for the second part of this chapter, it was decided that 3-fold cross-

validation would be applied to all the experiments. However, in order to make

the results robust, it was decided that each repeat of the 3-fold cross-validated

experiment would be carried out on a fresh random split of the dataset. With this

approach, the chances of a large proportion of easily-classified samples being in the

same fold across all the repeated runs are much reduced. At the same time, the

algorithm gains all the benefits of 3-fold cross-validation (e.g. a large and diverse

enough set of samples for training).

4.2.2 Model Selection

In traditional science, a model is statistically tested using null hypothesis testing [35,

3] in order to determine the robustness. There are a wide variety of statistical

methods in the literature that concentrate on null hypothesis testing. However, in

some branches of science (e.g. ecology), null hypothesis testing is being replaced

with the practice of “model selection” [35]. In model selection, several competing

models are tested at the same time on the same set of data. Then the results of

these tests are analysed to determine the best model or make inferences about case

under study.

In the context of an EA, model selection carries a slightly different set of require-
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ments. One of the major requirements is the avoidance of over-fitting. This aspect

of EAs was not addressed in Chapter 3. In Chapter 3, the dataset is split into 3

folds and the algorithm is trained on 2 folds. Then the best solutions are tested on

the third fold (unseen data).

Models (chromosomes) are selected solely based on the training performance.

This invariably leads to at least some models that have a very strong training per-

formance but a poor performance on unseen data being selected (due to over-fitting).

This was further analysed by testing all the models generated during training on

the testing fold (unseen data). If after testing all the models, the models with best

testing performance are selected, then the algorithm would have produced models

with almost perfect classification performance (nearly 100% classification accuracy

on unseen data) across all the datasets. This indicates that it is possible to increase

the general performance of the algorithm with improved model selection during

training (with a view to minimising over-fitting).

However, most methods of model selection/evaluation found in the general body

of literature is not suitable for use in an EA. This is due to the fact that a full

implementation of these methods [3] for each model produced during each generation

of the EA will amount to a great computational cost. Therefore, research needs

to be carried out into simpler methods of model selection that lead to improved

performance.

One simple method of achieving this is to modify the cross-validation technique.

As described in section 4.2.1, 3-fold cross-validation involves splitting the dataset

into three folds, training the algorithm on two out of the three folds and then

validating the trained models on the remaining fold. This leads to the selection of

models solely based on training performance and may lead to the selection of models

that include random error or noise (over-fitting). To a certain extent, over-fitting

can be avoided if the models are selected on their performance on unseen data. This

can be achieved by implementing the following cross-validation technique:

• Randomly split the dataset into three stratified folds: fold A, fold B & fold C.

• Train the algorithm on fold A.

• Test the trained models on fold B.

• Rank the models by looking at their classification performance and the length.
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Isolate a set of best performing models as “selected models”.

• Validate the “selected models” on the remaining fold of the dataset (fold C).

• Repeat the complete procedure two more times so that models are validated

on fold A & fold B.

• Take the average classification accuracy of the best chromosomes over the three

cross-validation runs as the cross validated classification performance of the

algorithm.

This approach has the advantage that models are selected for validation on the

basis of their performance on unseen data. Therefore, these models are less likely to

be affected by over-fitting. This approach was adopted for the second part of this

Chapter.

4.2.3 Setting up of Phase I & II of the Two-Phase Evolu-

tionary Algorithm/k-Nearest Neighbours Algorithm

In the two-phase EA/k-NN algorithm, phase one is used for initial dimensionality

reduction on large and noisy datasets while phase two is used for building robust

predictive models. If phase two is to succeed in building robust predictive models,

then phase one has to succeed in eliminating noise from the dataset while keeping

informative genes in the gene pool so that phase two has enough genes to work with.

Also, as phase two can only work with genes selected during phase one, phase one

should be given enough time to explore the fitness landscape and select promising

areas. Too little time would mean that phase one will not select all the informative

genes for phase two to work with, while too much time would mean that some of the

informative genes will be dropped as the algorithm converges on promising areas.

The search of the fitness landscape in this context can be expressed both in

terms of the number of generations and the number and the length of the initial

chromosomes. Setting the number of generations to a small value would mean a

premature end to the phase one search for informative genes. For the same number

of generations, an EA with a higher number of larger initial chromosomes would

cover more of the fitness landscape compared to an EA with a lower number of

smaller initial chromosomes.
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Therefore, the success of the two-phase EA/k-NN algorithm depends, to a large

extent, on the set-up of the two phases. Chapter 3 explored the different ways of

setting up the two-phase EA/k-NN algorithm (please refer to Table 3.2). As there

was no firm conclusion as to which set-up was better across datasets, the first part

of this chapter further explores this area. It also explores whether Rank Based

Selection (RBS) or BTS is better suited for feature selection and classification in

predictive data mining using the two-phase EA/k-NN algorithm.

4.3 Adaptive Weights for k-Nearest Neighbours

k-local Hyperplane Distance Nearest Neighbour (HKNN) algorithm has been shown

to perform very well in some applications [56, 57, 78]. First, prototypes for each

class are selected using the k-NN algorithm. A local hyperplane is then constructed

for each class using the prototypes. A sample can then be classified by looking at

the distance between the sample and all of the local hyperplanes constructed during

the previous step [81].

HKNN has been shown to be effective only for small values of k [78]. As the

local hyperplane for each class is constructed using k prototypes for each class, the

accuracy of the whole approach depends on the selection of k prototypes.

HKNN uses the k-NN algorithm for selecting prototypes. The k-NN algoirthm

suffers from bias in high dimensions [81]. Yang and Kecman [81] showed that these

problems can be overcome by using the Adaptive Nearest Neighbour (ANN) algo-

rithm instead of classical k-NN.

The ANN algorithm considers feature weights when selecting k-NNs of a query.

Feature weights are estimated by using the ratio of between-group to within-group

sums of squares [81].

Yang and Kecman [81] used ANN together with local hyperplanes in a method

they termed Adaptive Local Hyperplane (ALH) for classification. They showed that

ALH is capable of obtaining better classification performance on publicly available

datasets compared to other commonly used classification techniques including k-

NN. Juliusdottir et al. [38] showed that two-phase EA/k-NN method is capable of

obtaining comparable, if not better, results for feature selection and classification.

Juliusdottir et al. [38] also argued that a highly efficient classifier such as an SVM

may be counterproductive to feature selection and classification. This is due to the
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fact that a highly efficient classifier will obtain a good classification performance

from a sub-optimal feature subset and therefore lead to a “flattening” of the fitness

landscape.

The “flattening” of the fitness landscape occurs in the following way: classifica-

tion accuracy is measured as a percentage. Therefore, the maximum value possible

is 100%. An optimal subset of features may yield 100% accuracy both with a so-

phisticated classifier (e.g. SVM) and a less sophisticated classifier (e.g. k-NN). A

sub-optimal feature subset may yield 90% accuracy with k-NN but the same sub-

set may yield 98% accuracy with SVM. The EA when combined with an SVM will

identify this sub-optimal feature subset as being very close to the optimal. There-

fore, the gap between sub-optimal and optimal feature subsets gets reduced and

this leads to a “flattening” of the fitness landscape. It can be argued that an EA

combined with k-NN will lead to less “flattening” of the fitness landscape leading to

the discovery of feature subsets that are more relevant to the case under study. As a

classifier, ALH is closer to an SVM than k-NN. Therefore, it was decided that ALH

should not be used for the purposes of this thesis.

Taking the above into account, it was decided to carry out research into in-

tegrating a modified version of the ANN algorithm with the two-phase EA/k-NN

algorithm, in order to ascertain whether ANN would enhance the performance of

the two-phase EA/k-NN algorithm.

4.3.1 Adaptive Weights for k-Nearest Neighbours Explained

ANN uses the following equation for calculating the “Weighted Euclidean Distance”

between a sample (Xi) and a query (q) [81]:

D(Xi, q) =

√√√√ d∑
j=1

wj(xij − qj)2 (4.1)

Where:

• Xi = An instance from the training set

• q = Query for which nearest neighbours are being selected

• d = Number of features in the query

• wj = Weight for jth feature from the weights vector for class of Xi
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• xij = jth feature of training sample i

• qj = jth feature from the query

The weight for a feature, wj, is calculated using the following equation [81]:

wj =
exp(TRj)
d∑

j=1

exp(TRj)

(4.2)

Where:

• T = A positive parameter that controls the influence of Rj on wj.

• Rj = rj/max(rj)

• d = Number of features in a sample

rj is calculated using the following equation [81]:

rj =

∑
i

∑
c I(yi = c)(x̄cj − x̄j)2∑

i

∑
c I(yi = c)(xij − x̄cj)2

(4.3)

Where:

• x̄cj denotes jth component of class centroid of class c

• x̄j denotes jth component of grand class centroid

• xij denotes jth feature of sample i

4.3.2 Application of Adaptive Weights

Equation 4.3 can be applied to a dataset in the following way:

• Split the dataset into separate classes

• For each class, find the class centroid

• Use class centroids to find grand class centroid

• Then, for each feature (j) for each individual (i) in a class:

– Let X be the total of (feature j of class centroid - feature j of grand class

centroid)2
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– Let Y be the total of (feature j of i - feature j of class centroid)2

– rj = X/Y

rj can then be converted into wj using Equation 4.2.

When this procedure is applied to the dataset, the result is a ratio vector for

each class in the dataset. Assuming that weights are being calculated on Table 4.1,

centroids for classes A & B and grand class centroid are shown in Table 4.2.

Sample Features Class
S1 2 6 9 4 5 14 A
S2 3 3 2 2 3 9 B
S3 6 0 2 5 5 10 A
S4 6 6 6 6 6 6 B
S5 0 0 10 5 2 4 B

Table 4.1: Sample Dataset

Centroid Features
Class A Centroid 4 3 5.5 4.5 5 12
Class B Centroid 3 3 6 4.33 3.66 6.33

Grand Class Centroid 3.5 3 5.75 4.415 4.33 9.16

Table 4.2: Centroids

The following equation shows how the ratio is calculated for feature 1 for class

A from the sample dataset:

r1 =
(4− 3.5)2 + (4− 3.5)2

(2− 4)2 + (6− 4)2
=

0.25 + 0.25

4 + 4
= 0.0625

The way the cross-validation is performed has implications on the way the

weights are calculated. Weights calculated as explained above takes into account all

the samples of a class in the dataset. However, with the variation of the 3-fold cross-

validation used here, during the training phase of the algorithm, only the training

fold (1 fold out of the 3) is used. If weights are calculated for the complete dataset,

then, models are exposed to test and validation data to a certain extent. Therefore,

weights should only be calculated for the training fold during training. Furthermore,

when classification accuracy for a model is calculated, each sample in the training

fold is tested by selecting its 3 closest neighbours, classifying the sample using the

majority classification of the neighbours and checking the calculated classification

against the known classification of the sample. As each sample is tested, the number
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of attempted classifications is equal to the number of samples in the training fold.

The classification accuracy can then be calculated by looking at the percentage of

correct classification. In this context, it is logical to calculate a set of weights ex-

cluding the sample that is being classified currently. As the aim is to classify the

current sample by assuming that it belongs to an unknown class, if this sample is

included in the weights calculation, then the classification algorithm gains access

to information that it will not have when it is being used for classifying genuinely

unseen, unclassified samples. Therefore, for each attempted classification during

training, a decision was made to calculate a fresh set of weights that excluded the

sample that is being classified.

For both testing and training, the weights calculation is slightly simpler com-

pared to the weights calculation for training. This is because a sample from either

the testing or the validation fold is classified by looking at its closest neighbours

from all the training samples. This step emulates the classification of genuine, un-

classified samples. There is no learning or information gain in the model at this

stage. Therefore, a set of weights can be calculated that includes the whole of the

training fold.

4.4 Algorithms

All algorithms were written in Java and 3-fold cross-validation was used for all

experiments (where appropriate).

4.4.1 Stand-alone k-Nearest Neighbours and Weighted k-

Nearest Neighbour

These algorithms contained the classifier without the EA. It was necessary to create

these algorithms in order to make a direct comparison between classic k-NN and

W-k-NN.

Assuming there are 100 samples (S1 ... S100) in the dataset, the stand-alone

k-NN algorithm measures its performance on the dataset as follows:

1. Take S1:

(a) Calculate Euclidean distance from S1 to S2, S1 to S3 and so on
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(b) Take k closest distances to S1

(c) Classify S1 using the majority of closest neighbours

(d) If the classification matches with the known classification for S1, add 1

to the total

2. Repeat the above procedure for S2 and all remaining samples

3. The classification accuracy for the dataset is ((total/numberofsamples)∗100)

The stand-alone version of the W-k-NN algorithm includes the additional step

of obtaining weighted Euclidean distances and finding the closest neighbours using

that instead of normal Euclidean distance.

4.4.2 Single-objective Evolutionary Algorithm/k-Nearest Neigh-

bours Algorithm

This is a single objective, generational, elitist EA that uses k-NN as the classifier/ob-

jective function. Chromosomes in the EA are integer encoded and variable in length.

Genes in the chromosomes range from 1 to n where n is the number of features in

the dataset.

Figure 2.5 illustrates how this approach is used to filter a subset of features from

the original dataset. The dataset shown in Figure 2.5 has three samples (1 normal

and 2 cancer) and each sample has 6 features (genes). The chromosome encodes

three features: 2, 3 & 5. Integer encoded chromosomes can be used either to create

a much smaller dataset as shown in Figure 2.5 or to classify a sample. Please refer

to 2.4.1 for further details on this algorithm.

4.4.3 Single-objective Evolutionary Algorithm/Weighted-k-

Nearest Neighbours Algorithm

The single-objective EA/W-k-NN algorithm is identical to the single-objective EA/k-

NN algorithm apart from the fact that it uses W-k-NN for classification rather than

k-NN.

In order to incorporate weights into the algorithm, the following steps were

added:
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• For each class, create class centroid

• Use class centroids to create grand class centroid

• For each feature in a class, use Equation 4.3 to calculate the ratio of within-

group to between-groups sums of squares

• Normalise this ratio using Rj = rj/max(rj) (where rj = a ratio for a feature)

• Apply Equation 4.2 to create a weights vector for each class

Then, when calculating distance between a chromosome and its neighbours, the

square of the difference between features is multiplied by the weight for that feature.

4.4.4 Single-objective Evolutionary Algorithm/Weighted Cen-

troid Classification Algorithm

k-NN in previous versions of this algorithm worked in the following manner:

• Calculate distance from a sample (X) to all the other data samples

• Go through the distances array and find the k closest neighbours

However, there was a potential problem with this approach. For example, the

closest distance may be 1.5 and there may be 3 samples with that distance. The

next closest distance may be 2 and there may be 2 samples with this. The third

closest distance may be 2.1 and there may be 1 sample with this. So, overall we have

6 neighbours. In this case, in the previous implementation of k-NN, only the first

sample having a certain distance was considered when classifying. In this example,

the first sample with a distance of 1.5 may belong to class A and the other two to

class B. This leads to incorrect classification.

In real-life datasets, this may be extremely rare as gene expression profiles from

DNA microarrays contain real values with many decimal places. However, it was a

common occurrence during testing of the algorithms with fictional datasets. There-

fore, it was decided to compare the performance of k-NN and W-k-NN with a novel

weighted centroid classification technique.

Centroid classification usually entails calculating the centroid for each class in

a dataset, then, getting the Euclidean distance from a sample to the centroid, and
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finally, classifying the sample according to the smallest distance. The approach used

here differs from this approach in that the distance for each feature from the sample

in question to each of the centroids is multiplied by the adaptive feature weight for

that feature.

For example, if a chromosome encodes features 2 & 5, then the weighted centroid

classification would be carried out like this:

Assume there are two classes (class A and class B) in the dataset.

• Calculate the distance from sample 1 to the class A centroid for feature 2 and

multiply this distance by the class A weight for feature 2

• Calculate the distance from sample 1 to the class A centroid for feature 5 and

multiply this distance by the class A weight for feature 5

• Sum the distances to get the total distance from sample 1 to the class A

centroid. Let this be X

• Calculate the distance from sample 1 to the class B centroid for feature 2 and

multiply this distance by the class B weight for feature 2

• Calculate the distance from sample 1 to the class B centroid for feature 5 and

multiply this distance by the class B weight for feature 5

• Sum the distances to get the total distance from sample 1 to the class B

centroid. Let this be Y

• If X <Y, then classify the sample as class A. If Y <X, classify the sample as

class B. Break ties randomly.

4.5 Preliminary Experiments

4.5.1 Speed of the Algorithm

When calculating the weights, a new set of weights had to be calculated for each

sample (excluding the current sample). If the dataset contained 100 samples, then in

order to classify one chromosome, 100 different sets of weights had to be calculated.

This, coupled with Euclidean distances, meant that the algorithm was computation-

ally very expensive. It had to be optimised by changing the way some of the steps
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of the calculation were done. This enabled the bulk of the calculation to be done

beforehand. The algorithm only had to “look up” values during run-time making it

much faster.

Fitness inheritance was also tried in order to determine if the execution time

of the algorithm could be reduced without compromising the accuracy. Fitness

inheritance was originally suggested by Smith et al. [73]. They proposed that com-

putationally intensive fitness calculations could be done only for a portion of the

population. This is in contrast to Grefenestette and Fitzpatrick’s [24] earlier ap-

proach of partially evaluating the fitness of the entire population.

Smith et al. [73] proposed evaluating the fitness of only part of the population.

The rest of the population would “inherit” the fitness of their parents. However,

rather than a straightforward inheritance of the fitness value, they suggest that the

fitness value of a child chromosome should be derived in a simple way from the

fitness values of its parents. They put forward two ways of deriving the child fitness:

• Averaged Inheritance: Child’s fitness is equal to the arithmetic mean of the

parents’ fitness values.

• Proportional Inheritance: Child’s fitness is a weighted average of the fitness of

the parents based on the contribution of genes from each parent to the child.

Smith et al. [73] showed that a proportional approach to deriving the inherited

fitness of a child chromosome could achieve excellent results even when less than 1%

of the population had their fitnesses fully evaluated.

Other ways of achieving fitness inheritance include estimating the fitness of a

chromosome not only by looking at the parents but also at the neighbouring in-

dividuals. Branke and Schmidt [8] used interpolation and regression analysis to

estimate (or predict) the fitness of a child chromosome. They concluded that it is

possible to either achieve a better fitness in a given time or to reach a given fitness

level in reduced time without compromising the quality of the solutions.

Barbour, Corne & McCall [5] applied fitness inheritance strategies suggested

by Smith et al. [73] to the cancer chemotherapy treatment schedule optimisation

problem and found that averaged inheritance can produce an 80% saving on model

evaluations (computationally intensive fitness evaluation step) at 95% inheritance

(only 5% full fitness calculations).
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As the weights scheme for k-NN and k-NN itself are both computationally expen-

sive and fitness inheritance is a promising solution for lowering the computational

cost of EAs, it was decided that fitness inheritance should be tested in order to

ascertain if it can be successfully applied to the problem of feature selection and

classification in large datasets.

Averaged fitness inheritance was implemented and tested for various rates of

inheritance ranging from 10% to 95% inheritance in each generation. Averaged

fitness inheritance was also tested for a percentage of generations. For example, if

fitness was inherited for all the chromosomes but in every other generation, then

this would indicate a 50% inheritance with reference to the number of generations.

The results indicated that the version of the fitness inheritance implemented in this

thesis was not efficient in cutting down on computational time while achieving small

feature subsets with good classification performance.

Due to the fact that only one method of fitness inheritance (averaged inheritance,

suggested by Smith et at. [73]) was investigated here, it can be argued that fitness

inheritance remains a valid subject for future research. The nature of the problem

in feature selection and classification means that some features contribute more to

the fitness of an individual than others. Therefore, estimating the fitness of a child

using the fitness of the parents without paying attention to the selected genes may

lead to poor results. For example, the parents of a child chromosome may encode

some important genes as well as some noisy genes. If the child encodes mainly the

informative genes from both parents, then the fitness of the child will obviously be

much higher than the arithmetic mean of the parents. Therefore, it is logical to

assume that, in this case, proportional inheritance may yield better results.

4.5.2 Estimating T

T is a parameter used in the Equation (4.2) that calculates the weights for the W-

k-NN algorithm. The calculated weights depend on T, therefore, the classification

accuracy also depends on the value of T. A series of experiments was carried out on

each dataset to determine if there are different values for T for each dataset that

improve the classification performance.
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4.6 Main Experiments

The main experiments were carried out in two sections:

• Further exploration of the best way to set up the two-phase EA/k-NN algo-

rithm prior to the application of feature weights

• Exploration of the application of feature weights to the k-NN algorithm

4.6.1 Set-up of the Two-Phase Evolutionary Algorithm/k-

Nearest Neighbours Algorithm

One of the conclusions of Chapter 3 was that it was possible to obtain much better

results from the algorithm when the objective function took the length of the chro-

mosome into account during phase two of the algorithm. This is due to the fact that

the models built during phase two need to be evaluated both for their classification

accuracy and the length of the feature subset encoded by the model.

The selection method employed was also tested in order to learn whether BTS

or RBS would perform better in feature selection and classification across a number

of datasets.

In summary, the following experiments were carried out:

• BTS

– P1W

– P1WO

– P1WO P2W

– P1W P2W

• RBS

– P1W

– P1WO

– P1WO P2W

– P1W P2W

Where:
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• P1W: Phase one run with the effect of the length of the chromosome taken

into account

• P1WO: Phase one run without the effect of the length of the chromosome

taken into account

• P2W: Phase two run with the effect of the chromosome taken into account

4.6.2 Exploration of Feature Weights

The best method from 4.6.1 was then tested on the following methods:

• EA/W-k-NN algorithm

• EA/Weighted Centroid Classification algorithm

4.7 Results and Discussion

4.7.1 Speed of the Algorithm

One of the main problems with the algorithm was the time that it took to calculate

weights as this step had to be done for each data sample and for each chromosome.

This then had to be repeated for each generation.

In order to cut down on time, it was decided that all Euclidean distances would

be pre-calculated and stored in a serialized Java object. This object is then read

from disk to memory when needed. The same procedure was applied to the weights.

However, this turned out to be impractical as the size of the object storing dis-

tances and weights (using double precision numbers) was much larger (over 3.5GB)

than the available memory in 32-bit Windows systems. “Look up” method only be-

came viable by using single precision numbers and optimising the storage method.

It was decided that the loss of precision when going from double to single precision

in Java would not be an issue for this algorithm.

Table 4.3 shows a summary of results for k-NN classifier on all three datasets.

These are averages over 10 runs on a PC with Intel Core 2 Duo processor at 3.00GHz

with 2.00GB of RAM.
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Dataset Calculate everything on the fly “Look up” values
Ovarian Dataset 17.96 days 4.54 days
Prostate Dataset 2.61 days 0.61days

Leukaemia Dataset 0.73 days 0.17days

Table 4.3: Calculating everything on the fly vs. look up for k-Nearest Neighbours

4.7.2 Estimating T: Stand-alone k-Nearest Neighbours vs.

Weighted k-Nearest Neighbour

4.7.2.1 Stand-alone k-NN and W-k-NN on the Leukaemia Dataset

Figure 4.1 shows the accuracy of stand-alone k-NN on the leukaemia dataset for a

range of values of T.

Figure 4.1: Accuracy of stand-alone k-Nearest Neighbours on the leukaemia dataset
for a range of values for T.

As shown in Figure 4.1, the performance of W-k-NN classifier is clearly better

than the performance of classical k-NN. The performance of classical k-NN is shown

as the first point of the graph where T = 0. Classical k-NN achieved 91.67 %

accuracy on the leukaemia dataset whereas W-k-NN managed to achieve 98.61%

accuracy. This was achieved for values of T between 8 to 10.7.
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4.7.2.2 Stand-alone k-Nearest Neighbours and Weighted k-Nearest Neigh-

bour on the Prostate Cancer Dataset

Figure 4.2 shows the accuracy of stand-alone W-k-NN on the prostate cancer dataset

for a range of values of T.

Figure 4.2: Accuracy of stand-alone Weighted k-Nearest Neighbour on the prostate
cancer dataset for a range of values for T

As with the leukaemia dataset, W-k-NN achieved a much better accuracy com-

pared to k-NN. On the prostate cancer dataset, k-NN achieved 79.41% accuracy

while W-k-NN achieved 93.14% accuracy which is a considerable improvement. W-

k-NN achieved this with values of T between 10.2 to 11.5.

4.7.2.3 Stand-alone k-Nearest Neighbours and Weighted k-Nearest Neigh-

bour on the Ovarian Cancer Dataset

Figure 4.3 shows the accuracy of stand-alone W-k-NN on the ovarian dataset for a

range of values of T.

On the ovarian cancer dataset, classical k-NN achieved an accuracy of 94.86%

while W-k-NN achieved an accuracy of 97.23%.

Overall, W-k-NN clearly outperformed k-NN on all three datasets. However,

in order to gain this performance from W-k-NN, the parameter labelled T has to

be adjusted to suit each dataset. On the leukaemia dataset, the best result was

obtained when T was set between 8 and 10.7. On the prostate cancer dataset, T
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Figure 4.3: Accuracy of stand-alone Weighted k-Nearest Neighbour on the ovarian
cancer dataset for a range of values for T

had to be set between 10.2 to 11.5 for the best results. However, on the ovarian

dataset, T had to be set to between 6 to 8 to obtain the best results. This clearly

indicates that, in order to get the best results from W-k-NN, T has to be adjusted

for each dataset.

The prostate dataset is known to be a difficult dataset for classification tasks.

This is due to the fact that the classification accuracy reported for this dataset in

the general body of literature is lower than, for example, the ovarian cancer dataset.

Therefore, it seems that there is a link between the “difficulty” of the dataset and the

value of T: higher values of T need to be used to get better results from “difficult”

datasets. However, more research needs to be carried out before a firm conclusion

can be made.

4.7.3 Two-Phase Evolutionary Algorithm/k-Nearest Neigh-

bours vs. Two-Phase Evolutionary Algorithm/Weighted-

k-Nearest Neighbours

One of the main problems identified with the two-phase EA/k-NN approach is how

best to set up the two phases. Juliusdottir et al. [38] set up the two phases in the

following way:
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• Run Phase I ten times (400 generations with 80 chromosomes each with an

initial length of 400) and collect genes present in the best chromosomes at the

end.

• Run Phase II once with the genes collected from all ten runs of Phase I for

100 generations with 30 chromosomes each with an initial length of 100.

However, these settings cannot be used in general for all the datasets. In order

to obtain the best results, the algorithm needs to be set up for each dataset by

carrying out preliminary research into various combinations of parameters (e.g. the

number of generations to run phase one for and the number of generations to run

phase two for).

Model selection is also a problematic area. Juliusdottir et al. [38] pick genes for

phase two by looking at the final best chromosomes from phase one. This may not

be the best approach in selecting genes for phase two. The point of running the

algorithm in two phases is to reduce noise present in the dataset during phase one

and then to learn robust models during phase two. However, the stopping point for

phase one is critical for the success of phase two. If phase one is stopped too early,

then genes selected for phase two will still contain noise. If phase two is stopped

too late, then a certain amount of noise creeps back into the selected pool of genes

due to over-fitting. It is essential to reduce the error introduced by over-fitting,

especially in datasets considered as “difficult” for classification.

In order to determine if a general end-point can be achieved across all datasets,

a set of experiments was carried out as outlined below.

4.7.3.1 End-Point Experiments for Phase I

It was decided that in order to compare the performance of the two-phase EA/k-NN

algorithm with the two-phase EA/W-k-NN algorithm, an experimental procedure

that generalised well across all the datasets used here had to be adopted for the two-

phase EA/k-NN algorithm. Then, the EA/W-k-NN algorithm can be run using the

same procedure and a direct comparison can be made between the two algorithms.

The first parameter that had to be standardised was the number of generations

that phase one of the algorithm should be run for. This was tested by splitting each

dataset into two folds, training the algorithm on one fold and testing the generated

models on the remaining fold. The folds were then swapped and the procedure was
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repeated. The average best testing accuracy for each generation was then plotted

in order to identify any patterns that may emerge.

As explained in 4.6.1, the following configurations of the two-phase EA/k-NN

algorithm were tested:

• BTS

– P1W

– P1WO

• RBS

– P1W

– P1WO

The following set of graphs illustrate the results for the leukaemia dataset:

• Fig. 4.4 - Classification accuracy and chromosome length vs. number of gen-

erations for the leukaemia dataset using the length of the chromosome when

calculating the values for the objective function (phase I). Using binary tour-

nament selection.

• Fig. 4.5 - Classification accuracy and chromosome length vs. number of gen-

erations for the leukaemia dataset using the length of the chromosome when

calculating the values for the objective function (phase I). Using rank based

selection.

• Fig. 4.6 - Classification accuracy and chromosome length vs. number of gen-

erations for the leukaemia dataset without using the length of the chromosome

when calculating the values for the objective function (phase I). Using binary

tournament selection.

• Fig. 4.7 - Classification accuracy and chromosome length vs. number of gen-

erations for the leukaemia dataset without using the length of the chromosome

when calculating the values for the objective function (phase I). Using rank

based selection.
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Figure 4.4: Leukaemia dataset: classification accuracy and chromosome length vs.
number of generations. The value of the objective function was calculated taking
the length of the chromosome into account and Binary Tournament Selection was
used as the selection method.

As can be seen from these graphs for the leukaemia dataset, there is no clear

end-point for phase one for the EA/k-NN algorithm. An arbitrary end-point should

not be used as this would hinder the qualitative comparisons that can be made with

results from related literature.

Figures 4.8 & 4.9 illustrate this point further by looking at the same result for

the ovarian cancer and prostate cancer datasets. The corresponding figure for the

leukaemia dataset is Figure 4.4.

One other potential problem with the way that Juliusdottir et al. [38] set up

the two-phase EA/k-NN algorithm is model selection. They ran the algorithm in

phase one mode for a pre-determined number of generations and then looked at the

genes present in the final population. Unique genes present in the final populations

from repeated runs of the algorithm were carried forward to the second phase of the

algorithm. With this approach, it is possible that at least some of the informative

genes may not be present in the final population. A better alternative would be to

select the genes associated with the fittest chromosomes that appear across all the

generations in phase one. These genes can then be taken over to phase two of the

algorithm.

The new approach for selecting genes for phase two keeps track of all the chro-
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Figure 4.5: Leukaemia dataset: classification accuracy and chromosome length vs.
number of generations. The value of the objective function was calculated without
taking the length of the chromosome into account and Binary Tournament Selection
was used as the selection method.

mosomes across all the generations in phase one. Then, for each chromosome in

each generation, the following information is saved:

• The number of times a particular gene has appeared in a chromosome across

all the generations (frequency of appearance)

• The sum of the values for the objective function evaluations for each chromo-

some that the gene appears in

Then, at the end, the algorithm calculates the average value for the objective

function for each gene across all the generations by dividing the sum of the objective

function values by the frequency of appearance. The top 10% of the genes are then

carried over to the second phase of the algorithm.

This approach avoids both problems highlighted above. Furthermore, it has the

advantage of dismissing certain genes regardless of their frequency of selection. This

is because, despite the fact that some genes are selected frequently, they may act to

lower the fitness of the chromosome that they are associated with. Such genes may

be present in the final populations of phase one of the algorithm if it were set up

in the way suggested by Juliusdottir et al. [38]. This is in part due to the fact that
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Figure 4.6: Leukaemia dataset: classification accuracy and chromosome length vs.
number of generations. The value of the objective function was calculated taking
the length of the chromosome into account and Rank Based Selection was used as
the selection method.

phase one of the algorithm is not run for long enough for the algorithm to get to a

point where the final population only contains informative genes.

As over-fitting is not taken into account during phase one, it may also lead

to genes that that have a negative effect on the classification performance of the

chromosome being picked up for phase two. With the new approach, such genes will

have a lower chance of getting through to the second phase of the algorithm.

The top 10% was selected as a reasonable figure by looking at the number of

genes selected during phase one of the algorithm with the method suggested by

Juliusdottir et al. [38].

4.7.4 The Set-Up of the Two-Phase Evolutionary Algorithm/k-

Nearest Neighbours Algorithm Using the Method Pro-

posed in 4.7.3.1

As there was no clear way of determining the termination point for phase one of the

two-phase EA/k-NN algorithm, a novel method was proposed in section 4.7.3.1. This

method was then used for testing the set-up of the two-phase EA/k-NN algorithm

the following way:
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Figure 4.7: Leukaemia dataset: classification accuracy and chromosome length vs.
number of generations. The value of the objective function was calculated without
taking the length of the chromosome into account and Rank Based Selection was
used as the selection method.

• BTS

– P1W

– P1WO

– P1WO P2W

– P1W P2W

• RBS

– P1W

– P1WO

– P1WO P2W

– P1W P2W

Where:

• P1W: Phase one run with the effect of the length of the chromosome taken

into account

• P1WO: Phase one run without the effect of the length of the chromosome

taken into account
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Figure 4.8: Ovarian cancer dataset: classification accuracy and chromosome length
vs. number of generations. The value of the objective function was calculated taking
the length of the chromosome into account and Binary Tournament Selection was
used as the selection method.

• P2W: Phase two run with the effect of the chromosome taken into account

Each configuration of the algorithm was run for 10000 generations on the follow-

ing datasets:

• Leukaemia

• Prostate cancer

• Colon cancer

• Breast cancer

• Ovarian cancer

Please refer to Chapter 1 for a brief overview of the datasets and Chapter 3 for a

full explanation of the different ways to set-up the two-phase EA/k-NN algorithm.

Table 4.8 shows the mean accuracy and Standard Deviation (SD) for the best

chromosomes (selected models) over 8 repetitions for each method shown above.

Table 4.9 shows the mean length and SD of the best validated chromosomes (selected

models) for each method shown above.
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Figure 4.9: Prostate cancer dataset: classification accuracy and chromosome length
vs. number of generations. The value of the objective function was calculated taking
the length of the chromosome into account and Binary Tournament Selection was
used as the selection method.

These methods were then analysed using ANOVA in order to determine the best

method (or way of setting up the algorithm). The results from ANOVA are shown

in Table 4.7. In this table, “rows” refer to datasets and “columns” refer to the

different ways of setting up the two-phase EA/k-NN algorithm.

ANOVA, developed by R. A. Fisher, is a process that aims to answer the question

“Are there one or more significant differences anywhere among these samples?” [67].

It calculates an F-value using an F-test. The F-test compares the variability of

values within a group to the variability of values between groups and produces an

F-ratio (F-value). The F-value then needs to be checked against the F-distribution

in order to reject the null hypothesis. The F-distribution is a continuous probability

distribution whose shape depends on the number and the size of the samples [36, 67].

From the F-distribution applicable to the case under study, a critical F-value can

be obtained at which the null hypothesis can be rejected.

The null hypothesis in this case is that all the means belong to the same popu-

lation, therefore, there is no statistically significant difference between groups. The

null hypothesis can be rejected once the probability of incorrectly rejecting it comes

down to a certain significance level. This level is usually set to 5%. This means that

there is a 5% chance of incorrectly rejecting the null hypothesis. In general, 5% is
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considered to be an acceptable level for safely rejecting the null hypothesis.

As the F-value increases, the probability of incorrectly rejecting the null hy-

pothesis decreases [67]. Common software packages that can carry out ANOVA

(e.g. SPSS, Microsoft Excel etc.) calculate the F-value for the given data and out-

put this F-value together with the critical F-value at the specified significance level

(usually 5%). If the calculated F-value is higher than the critical F-value, then the

null hypothesis can safely be rejected.

In Table 4.7, the F value for datasets is 268.61 and the critical F value is 2.71.

Since the actual F value is higher than the critical F value, it can be concluded

that there is a statistically significant difference between datasets. This is a logi-

cal conclusion as these datasets are completely different from each other, meaning

that there should be marked differences in the way each machine learning method

performs between these datasets.

The F value for each method is 1.02 and the critical F value is 2.36. This can be

interpreted as there being no statistically significant difference between the various

ways of setting up the algorithm across the datasets.

However, ANOVA, performed this way, is not a suitable statistical test for a few

reasons. First of all, the usual assumption in ANOVA is that samples come from

the same population. This clearly is not the case here. Samples (accuracies for each

method on each dataset) come from different populations as the datasets are not

related to each other. This fact has been verified by the first part of the statistical

test itself.

Secondly, for results of ANOVA to hold, the underlying data must conform to

some basic parameters. One of them is the “normality” of data. Normality of a

distribution can be described by skewness and kurtosis [34]. Although skewness and

kurtosis can describe a non-normal distribution, there is no general set of guidelines

in this respect. This is due to the fact that skewness and kurtosis depend on sample

size [53]. However, values for kurtosis that deviate significantly from zero can be

taken as a good indicator of a non-normal distribution.

In general, a skewness value greater than zero indicates a right skewed distribu-

tion whereas a value less than zero indicates a left skewed distribution. A kurtosis

value greater than zero indicates Leptokurtic distribution which is sharper than a

normal distribution. In this type of distribution, values are concentrated around the

mean and the tails are thicker. The implication is that there is a higher probability
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for extreme values than in a normal distribution. A kurtosis value less than zero

indicates a Platykurtic distribution which is flatter than a normal distribution with

a wider peak. The implication in this case is that the probability for extreme val-

ues is less than for a normal distribution. The values are spread wider around the

mean. Using these two metrics, it is possible to gain a good understanding about

the underlying distribution. Therefore, descriptive statistics were carried out on the

result set in order to ascertain the skewness and kurtosis values.

The result from this analysis is shown in Table 4.10. In this table, “columns”

refer to the various ways in which the two-phase EA/k-NN algorithm could be set-

up. The skewness and kurtosis values indicate that the underlying distribution is a

non-normal distribution.

In order to test this further, Shapiro-Wilk test [65] was carried out on the results

set. The null hypothesis in this test is that the underlying distribution is a normal

distribution. The P value returned from the test was 0.0130. Therefore, the null

hypothesis can be rejected. This further confirms that the results set does not

confirm to a normal distribution. Therefore, it can be concluded that ANOVA

results are invalid. In general, if a few algorithms need to be compared across a

few (non related) datasets, then it can be concluded that ANOVA cannot be used

as the results returned by these datasets, as a whole, are unlikely to be normally

distributed.

Therefore, in order to distinguish between the different ways of setting up the

two-phase EA/k-NN algorithm, a non-parametric, rank based method had to be

used.

Mean ranks for each method were calculated as shown in Table 4.11. Then, a

Java program was written that would randomize the ranking for each method for

each dataset. A randomised mean rank for each method could then be calculated.

The question to be answered was that if method 1 achieved an actual mean rank

of 2.8, what would be the probability of this happening due to random chance?

In order to answer this, the randomisation was repeated for 100000 times and the

probability of a method achieving a mean ranking of 0.1 to 8.1 was plotted. This

graph is shown in Figure 4.10.

Method 1 achieved an actual mean rank of 2.8. This corresponds to a probability

of 0.13 of this result happening due to random chance. The next best method

(method 2) achieved an actual mean rank of 3.2, which corresponds to a probability

87



Chapter 4: An Adaptive Weights Scheme for k-Nearest Neighbours in Evolutionary
Algorithm/k-Nearest Neighbours Algorithm for Feature Selection

of 0.23 of this result happening due to random chance. The worst method, method 5,

achieved a mean rank of 6 which corresponds to a probability of 0.96 of it happening

randomly. This clearly shows that some methods of setting up the algorithm are

considerably better than others. In this case, method 1 (EA/k-NN run in single

phase mode with taking the length of the chromosome into account and using BTS as

the selection method) seems to be the best way of running the EA/k-NN algorithm.

Therefore, this method will be used from here on.

Figure 4.10: The probability of a mean rank happening by random chance.

4.7.5 Application of Feature Weights

As concluded in section 4.7.3.1, the first way (method 1) of setting up the two-

phase EA/k-NN algorithm is used here for the application of the weights. In this

method, the algorithm is run in single phase mode (i.e. it is single phase rather

than two-phase EA/k-NN). The length of the chromosome is taken into account

while evaluating the objective function and BTS is used as the selection method.

Table 4.4 summarises the cross-validated mean accuracy, mean length and associ-

ated SDs across eight repetitions for all the datasets for the EA/W-k-NN algorithm.

In this algorithm, instead of classical k-NN, weighted k-NN is used as the classifier.

Table 4.5 summarises the cross-validated mean accuracy, mean length and associ-

ated SDs across eight repetitions for all the datasets for the version of the algorithm
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Dataset Mean accuracy SD Mean length SD

Leukaemia 0.79 0.10 1.25 0.46
Prostate cancer 0.85 0.06 3.63 1.30
Breast cancer 0.53 0.06 3.63 1.60
Colon cancer 0.72 0.06 2.75 1.75
Ovarian cancer 0.99 0.02 2.00 0.00

Table 4.4: Results from the application of feature weights to the Evolutionary
Algorithm/k-Nearest Neighbours algorithm.

Dataset Mean accuracy SD Mean length SD

Leukaemia 0.90 0.09 1.88 0.99
Prostate cancer 0.81 0.06 6.13 8.54
Breast cancer 0.59 0.10 3.88 2.10
Colon cancer 0.81 0.06 2.75 1.98
Ovarian cancer 0.99 0.02 2.13 0.64

Table 4.5: Results from the Evolutionary Algorithm/Weighted Centroid Classifica-
tion algorithm.

Dataset Mean accuracy SD Mean length SD

Leukaemia 0.81 0.10 1.25 0.46
Prostate cancer 0.87 0.07 4.37 2.50
Breast cancer 0.58 0.11 9.87 9.70
Colon cancer 0.78 0.08 3.25 1.49
Ovarian cancer 0.98 0.02 2.00 0.53

Table 4.6: Baseline results to compare the two weighted algorithms against.
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that uses the weighted centroid classification approach.

The baseline against which the performance of both the algorithms is measured is

the EA/k-NN algorithm with classical k-NN running in single phase mode with BTS

as the selection method. Results for the baseline method are shown in Table 4.6.

Figure 4.11 shows this information in graphical form. The EA/W-k-NN algo-

rithm performs worse than the baseline on all the datasets apart from the ovarian

cancer dataset, whereas the weighted centroid classifier algorithm performs better

than the baseline on all the datasets apart from the prostate cancer dataset. From

these results, it can be concluded that the weighted centroid classification algorithm

proposed here looks promising for feature selection and classification in predictive

data mining.

Figure 4.11: Comparison of the baseline method vs. weighted methods.

4.7.6 Conclusion

The first part of this chapter focused on setting up the two-phase EA/k-NN algo-

rithm in the best possible way across a number of datasets. This was done so that

a baseline performance measure could be calculated for the best method for each

dataset used here.

An attempt was made to use classical statistics (e.g. ANOVA) to analyse the

results for the different ways of setting up the algorithm across a few datasets.

However, due to the nature of the problem at hand, it turned out that classical
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Chapter 4: An Adaptive Weights Scheme for k-Nearest Neighbours in Evolutionary
Algorithm/k-Nearest Neighbours Algorithm for Feature Selection

statistics may not be able to provide a conclusion.

Therefore, a non-parametric, randomised ranking based method was used for

determining the best way of setting up the two-phase EA/k-NN algorithm. In

contrast to Chapter 3, results from this study indicated that the single phase EA/k-

NN outperformed the two-phase EA/k-NN algorithm.

Single phase EA/k-NN was then tested with adaptive weights (W-k-NN) in order

to determine if weights could improve the performance of the algorithm. Initial

testing strongly indicated that with the correct value of T for the adaptive weights,

W-k-NN is able to outperform the classical k-NN algorithm.

However, further testing in combination with an EA showed the adaptive weights

scheme to be counterproductive to the k-NN algorithm.

After that, a novel way of classifying samples was tested across the five datasets.

In this method, centroid classification was used instead of classical k-NN. However,

instead of normal Euclidean distances, weighted (adaptive weights) Euclidean dis-

tances were used in centroid classification. This method outperformed classical k-NN

in all the datasets apart from one.

Therefore, the weighted centroid classifier looks promising for feature selection

and classification in predictive data mining.
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Chapter 5

Correlation Guided Evolutionary

Algorithm/k-Nearest Neighbours

for Feature Selection

5.1 Introduction

The two-phase EA/k-NN algorithm introduced by Juliusdottir et al. [38] was exten-

sively studied for FS in five large biomedical datasets in Chapter 4. It was concluded

in Chapter 4 that single phase EA/k-NN was better at FS and classification across

the datasets tested compared to the two-phase EA/k-NN algorithm.

From the experiments conducted in Chapter 4, it was clear that the selection

and retention of information rich features is of paramount importance to FS and

classification in noisy, high dimensional datasets such as DNA microarray data.

Statistical correlation is used widely in FS. Some techniques rank genes using

correlation as a way of prior-selection before applying machine learning algorithms

to the dataset [68, 66, 13, 83]. It is claimed that prior-selection considerably im-

proves the performance of machine learning algorithms [38]. Hall and Smith [27]

demonstrated that prior feature selection using a correlation based filter approach

significantly increased the performance of three machine learning algorithms.

This indicates that feature correlation carries knowledge and this approach should

improve the performance of an EA as well. Therefore, it is logical to assume that

some degree of improvement could be made to the EA/k-NN algorithm if the search

could be guided with information gained by correlation coefficients calculated for
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features in the dataset.

Correlation between features can be quantified using different coefficients. Pear-

son’s coefficient (r), Spearman’s rho coefficient (rs), and Kendall’s tau (τ) coefficient

are three of the most popular correlation coefficients [28].

Pearson’s correlation coefficient is a parametric statistical technique that can

capture linear relationships between two features. It assumes that the underlying

data belongs to a normal distribution and it is applied to raw data [67]. Pearson’s

correlation coefficient can be calculated using Equation 5.2.

The Spearman’s rs is a rank based correlation coefficient introduced by Spear-

man [74]. It is generally expressed as [84]:

rs = 1− 6
∑

d2/(n3 − n) (5.1)

Where:

• n is the number of measurements

•
∑
d2 =

∑
n
i=1d

2
i

• di is the ranked difference between ith measurements

Spearman’s rank correlation coefficient is a nonparametric technique that is cal-

culated on ranked data. As this is a nonparametric technique, it does not depend

on the underlying population conforming to a normal distribution. As it operates

on ranked data, it is also more tolerant to outliers. However, there is a loss of infor-

mation when raw data is converted to ranks. Therefore, for a normally distributed

dataset, Pearson’s correlation coefficient is more powerful than Spearman’s [20].

Kendall’s τ , introduced by Kendall in 1938 [39] is a correlation coefficient that can

be used as an alternative to Spearman’s rs. Kendall’s τ is a rank based coefficient. It

is described as a simple function of the minimum number of neighbour swaps needed

to produce one ordering from another by Hauke and Kossowski [28]. Kendall argued

that although Spearman’s rs is easier to calculate than τ , from a theoretical point

of view, τ is preferable to rs [39].

After carrying out statistical significance testing on both Pearson’s and Spear-

men’s correlation coefficients, Hauke and Kossowski concluded that it is possible to

find situations where Pearson’s coefficient is negative while Spearman’s is positive.
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However, they argue that results from Spearmen’s rank correlation coefficient should

not be over interpreted as a measure of significance between two variables [28].

Although, in theory, Kendall’s τ is preferable to Spearman’s rank correlation

coefficient, as τ is harder to calculate and not commonly used, it was decided that

τ will not be used in this thesis. Therefore, the choice of correlation coefficient was

between Pearson’s and Spearman’s. It was decided that this thesis would investi-

gate Pearson’s correlation coefficient as it is potentially more powerful compared to

Spearman’s.

This decision was made due to the fact that the point of introducing correlation

coefficient into the EA/k-NN is to help guide the search process towards promising

feature subsets. The EA/k-NN algorithm has been proven to be a powerful feature

selection and classification tool in Chapter 3 and Chapter 4 of this thesis. Therefore,

it can be argued that the correlation coefficient that is most likely to extract useful

information from the dataset is more likely to fit the requirements. As Spearman’s

rank correlation coefficient considers ranks instead of raw data and therefore loses

some information in the process, it was decided that Pearson’s correlation coefficient

would be a better fit here.

In the context of feature selection, statistical correlation could be used in two

different ways:

• Include the most strongly correlated features in the selected feature subset.

• Include a diverse set of loosely correlated features in the selected feature subset.

Common techniques that use correlation coefficient for feature selection gener-

ally prefer strongly correlated feature subsets [68, 66, 13, 83]. However, there is

evidence in literature [43, 42, 16] that supports preferring loosely correlated features

in the selected feature subset. The rationale for this argument is that for efficient

feature selection, irrelevant features should be eliminated (in addition to redundant

features). A feature is regarded as redundant if it is strongly correlated to an already

selected feature with a high classification performance. The redundancy arises from

the fact that each feature on its own is capable of high classification performance

and therefore, combining these features does not increase the knowledge contained

within the model. This theory could be applied in this case by changing the selec-

tion bias towards loosely correlated features. In theory, this would give the EA a
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wider search area and it may force the EA to select a feature subset that is highly

correlated to the case under study.

This chapter investigates both correlation based approaches to feature selection

using Pearson’s product-moment correlation coefficient [10].

5.2 Overview of the Algorithm

The same algorithm that was used in Chapter 4 was used as the basis here (please

see 4.4.2 for more details). This algorithm is a single objective, generational, elitist

EA that uses k-NN as the classifier/objective function. Chromosomes in the EA are

integer encoded and variable in length. Genes in the chromosomes range from 1 to

n where n is the number of features in the dataset.

The algorithm performs the following steps during a typical run in single phase

mode:

• Read the training fold of the dataset from disk

• Create a population store (the population store tracks chromosomes across

generations)

• Create the initial random population and add it to the population store

• Calculate the values for the objective function for all the chromosomes in the

initial population

• Add the initial population to the population store

• Repeat for NUM GENERATIONS:

– Select (POP SIZE - ELITIST COUNT ) pairs of parents

– Apply crossover operator to produce a child from each pair of parents

– Apply mutation operator to each child (33% of the time add a random

gene, 33% of the time remove a random gene, 33% of the time change a

random gene to another random gene)

– Calculate the values for the objective function for each child

– Replace parents (except the elitist parents) with children

100



Chapter 5: Correlation Guided Evolutionary Algorithm/k-Nearest Neighbours for
Feature Selection

• Read the test fold of the dataset

• Calculate the test objective function values for all the chromosomes across all

the generations in the population store

• Mark the top chromosome/s for each generation depending on the test accu-

racy and the length of the feature subset encoded by the chromosome

• Read the validation fold of the dataset

• Validate only the chromosomes marked as top using validation data

5.3 Correlation Guided Mutation

Statistical correlation is used widely in FS. However, it is not used frequently to-

gether with EAs for FS and classification. It was hypothesised that correlation

coefficient could provide additional information to the EA and therefore make the

search for the optimal feature subset more effective.

The most logical place in the EA where correlation coefficient could be intro-

duced is the mutation operator. This is due to the fact that the mutation operator

directly adds, removes or modifies genes in the chromosome. Therefore, the muta-

tion operator could be influenced by the correlation coefficient of the features in the

dataset.

In order to achieve this, a method that calculated the correlation coefficient ma-

trix for the training fold of the dataset was incorporated to the algorithm immedi-

ately after reading the training fold of the dataset from disk. This method calculates

the correlation coefficient matrix on the entire training fold of the dataset. It then

calculates the mean correlation coefficient for each feature in the training fold as

shown in Tables 5.1 and 5.2. Please see section 5.4 for an explanation of the method

used for calculating the correlation coefficient. The mean is calculated using the ab-

solute value of the correlation coefficient as both positively and negatively correlated

features are of interest to the case under study.
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F1 F2 F3 F4 F5 F6 Classification

S1 1 8 3 6 10 2 Normal
S2 5 1 8 5 5 5 Normal
S3 4 8 5 8 1 5 Normal
S4 6 1 6 5 8 3 Normal
S5 3 2 9 4 4 2 Cancer
S6 4 9 6 5 10 6 Cancer
S7 9 4 10 10 9 9 Cancer

Table 5.1: An artificial dataset for illustrating the calculation of mean correlation
coefficient for each feature. This dataset contains seven samples (S1 - S7). Each
sample has six features F1 - F6).

F1 F2 F3 F4 F5 F6

F1 1.00 0.41 0.69 0.58 0.10 0.79
F2 0.41 1.00 0.61 0.27 0.18 0.13
F3 0.69 0.61 1.00 0.17 0.13 0.50
F4 0.58 0.27 0.17 1.00 0.01 0.74
F5 0.10 0.18 0.13 0.01 1.00 0.16
F6 0.79 0.13 0.50 0.74 0.16 1.00

Mean (absolute) 0.59 0.44 0.52 0.46 0.26 0.55

Table 5.2: Correlation coefficient matrix and the mean correlation coefficients for
each feature for the dataset shown in 5.1.

5.3.1 Correlation Guided Mutation - Remove a Gene

5.3.1.1 Preference Towards Selecting Strongly Correlated Features

In order to remove a gene from a chromosome using correlation information, the

genes encoded in the chromosome are sorted into descending order by their mean cor-

relation coefficient. After sorting, the genes that have the highest mean correlation

coefficients are at the beginning of the chromosome and the genes with the lowest

correlation coefficients are at the end of the chromosome. A biased random number

(please see section 5.5) is then generated between 0 and CHROMOSOME LENGTH−

1. The gene pointed to by this random number is then removed from the chromo-

some. As this number is biased towards CHROMOSOME LENGTH − 1, this

makes sure that genes with lower mean correlation coefficients have a higher chance

of being removed.
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5.3.1.2 Preference Towards Selecting Loosely Correlated Features

This approach for removing a gene operates in an identical fashion to the approach

described in section 5.3.1.1, apart from one difference: instead of using a descending

order, the genes encoded in the chromosome are sorted into ascending order by their

mean correlation coefficient. As the random number that is generated is biased

towards CHROMOSOME LENGTH−1, this ensures that most correlated genes

in the chromosome have a higher chance of being removed.

5.3.2 Correlation Guided Mutation - Add a Gene

5.3.2.1 Preference Towards Selecting Strongly Correlated Features

Adding a correlation guided gene works in a similar manner to removing a correlation

guided gene. However, in this case, rather than looking at the mean correlation

coefficients of the genes in the chromosome, the correlation coefficients of the genes

present in the entire training set are looked at. The features of the dataset are

sorted into ascending order by their mean correlation coefficients. A biased random

number is used for selecting a gene to be added to the chromosome. As the biased

random number is biased towards larger numbers and strongly correlated features of

the dataset are towards the end (after sorting into ascending order), this ensures that

highly correlated genes have a better chance of being included in the chromosome.

A constraint is applied to this process to make sure that the gene that is being

added is not already present in the chromosome.

5.3.2.2 Preference Towards Selecting Loosely Correlated Features

This approach operates in an identical fashion to the approach described in sec-

tion 5.3.2.1, apart from one difference: the features of the dataset are sorted into

descending order by their correlation coefficients. After sorting, loosely correlated

features are placed towards the end of the dataset. As the biased random number

is biased towards larger numbers, this, together with the sorting of the dataset,

ensures that loosely correlated genes have a higher chance of being added to the

chromosome.
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5.3.3 Correlation Guided Mutation - Change a Gene

5.3.3.1 Preference Towards Selecting Strongly Correlated Features

This again is similar to correlation guided removal and addition of a gene. In this

case, the correlation coefficients of the genes in the chromosome and also the entire

training fold are looked at. First of all, a gene from the chromosome is selected for

changing. This is achieved by sorting the genes in the chromosome into descending

order by correlation coefficient and selecting a gene using a biased random number.

This ensures that genes with lower correlation coefficients have a better chance of

being changed.

Then, the correlation coefficients for the dataset are sorted into ascending order

and a gene is picked using a biased random number so that genes that are highly

correlated have a better chance of being selected.

A constraint is applied to this process to make sure that the gene that is being

changed does not change to a gene that is already present in the chromosome.

5.3.3.2 Preference Towards Selecting Loosely Correlated Features

This approach works in a similar manner to the approach described in section 5.3.3.1,

apart from one difference. In the approach outlined in section 5.3.3.1, genes encoded

in the chromosome and the features of the dataset are sorted by their correlation

coefficients so that the least correlated genes in the chromosome have a higher chance

of being changed into the most correlated features in the dataset. In this approach,

the sort orders are changed so that the most correlated genes in the chromosome

have a higher chance of being replaced with the least correlated features in the

dataset.
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5.4 Calculation of the Correlation Coefficient Ma-

trix

Equation 5.2 [45] was used for calculating the correlation coefficient between two

features.

rxy =

n∑
i=1

(xi − x̄)(yi − ȳ)√
n∑

i=1

(xi − x̄)2
n∑

i=1

(yi − ȳ)2
(5.2)

Where:

• xi = feature x from ith sample

• yi = feature y from ith sample

• x̄ = mean of feature x

• ȳ = mean of feature y

Equation 5.2 was interpreted in the form of the following algorithm in order to

calculate the correlation coefficient between two features (x and y) of the training

fold:

• For each sample in the training fold:

– Sum feature x

– Sum feature y

• Calculate the means for features x̄ and ȳ

• For each sample in the training fold:

– Calculate (x− x̄)∗(y− ȳ) and add this to a running total named sumXY

– Calculate (x− x̄)2 and add this to a running total named sumX2

– Calculate (y − ȳ)2 and add this to a running total named sumY 2

• Calculate the coefficient by using sumXY/(
√
sumX2 ∗

√
sumY 2)
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5.5 Biased Random Number Generation

Java provides built-in methods for generating uniformly distributed random numbers

between any range. However, there is no built-in method for generating random

numbers within a specified range with a bias towards one end of the range. The

availability of such a random number generator is a requirement for the correlation

guided mutation operator described in section 5.3.

For example, if a chromosome encodes 10 features, then it is necessary to generate

a random number between 0 and 9 that is biased towards 9. Then, by sorting the

chromosome into descending order by the magnitude of the correlation coefficient of

each gene, this random number is more likely to point to a gene that has a relatively

low correlation coefficient.

Such a random number can be generated by using the following procedure:

• Generate a random number between 0 and 1, let this be R

• Transform the random number using R = Rbias where bias is an adjustable

parameter

• Scale the random number to a custom range using R = R ∗ (1 + (TOP − 1))

where TOP is the number of features in a chromosome

• Return the rounded R as an integer

Figure 5.1 shows the frequency of random numbers generated using the above

procedure with the following parameters:

• Total number of random numbers generated = 10000

• bias = 0.5

• TOP = 10

Figure 5.2 shows another set of 10000 biased random numbers with a bias of 0.25.

From these two graphs, it is clear that a bias of 0.5 is more appropriate compared

to a bias of 0.25. With a bias of 0.25, genes with a very low correlation coefficient

have no chance of being selected. This may be counterproductive and goes against

one of the core principles of EAs. In an EA, the fittest individuals have a better

chance of being selected as parents and therefore producing children. However, even
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individuals with lower fitness values do have a chance of being selected although the

chance is very low compared to the fittest individuals. Therefore, in this instance,

it is logical to use a value for bias that gives a chance to even the least correlated

genes.

Figure 5.1: Frequency of 10000 biased random numbers with a bias of 0.5.

Figure 5.2: Frequency of 10000 biased random numbers with a bias of 0.25.
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5.6 Experiment Set-up

All 5 datasets (please refer to section 1.3 for details on the datasets) were tested using

EA/k-NN algorithm with correlation coefficient guided mutation. Experiments were

set up with the following parameters:

• Number of generations = 10000

• Population size = 50

• Initial chromosome size = 30

• Selection method = BTS

• Use chromosome length in the objective function = true

• α = 1000

• Algorithm mode = single phase

Eight separate runs were carried out on each of the datasets. For each run, the

dataset was randomly split into three stratified folds. The algorithm was trained

on the training fold. Then, all the chromosomes across all the generations were

tested on the testing fold (unseen data). For each generation, the top chromosome

was marked as the selected model. The selected models were then validated on the

validation fold (unseen data).

Then, as a post processing step, the best testing chromosome across all the

generations (the best chromosome is defined as the chromosome with the highest

testing accuracy and the lowest feature subset at the earliest generation) was selected

and the validation accuracy of this chromosome was noted. The reported validation

accuracy then is the average validation accuracy across the eight separate runs.

Initially, two batches of experiments were carried out using EA/k-NN algorithm

(without weights):

• Most correlated approach: In this set of experiments, the correlation guided

mutation added, removed or changed genes in the chromosome (selected fea-

ture subset) with a preference towards strongly correlated genes being included

in the chromosome.
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• Least correlated approach: In this set of experiments, the mutation operator

added, removed or changed genes in the chromosome with a preference towards

having loosely correlated set of genes.

Results were then analysed and the most promising approach (the most corre-

lated approach) was then applied to the best approach from Chapter 4 (EA/weighted

centroid classifier).

5.7 Results and Discussion

Tables 5.7 and 5.7 show overall results across the five datasets for EA/k-NN algo-

rithm with correlation guided mutation for the most correlated approach and least

correlated approach respectively. Table 5.7 shows results across all five datasets for

the correlation guided mutation approach with a preference for strongly correlated

features applied to the EA/weighted centroid classifier algorithm. Then, Table 5.6

shows the results from the three sets of correlation guided experiments in com-

parison to the baseline algorithm, W-k-NN algorithm and EA/weighted centroid

classification algorithm.

As shown in Table 5.6, the correlation guided mutation approach with a prefer-

ence for strongly correlated feature subsets achieves slightly better results on two out

of the five datasets (prostate & ovarian cancer datasets). The correlation guided mu-

tation approach with a preference for loosely correlated feature subsets only achieved

better results on one out of the five datasets (colon cancer dataset). When combined,

correlation guided approaches achieved better results than the other approaches

shown in Table 5.6 in three out of the five datasets.

When compared with each other, from the two correlation guided mutation

approaches, the approach with preference for strongly correlated feature subsets

achieves better results on two out of the five datasets (prostate and ovarian cancer

datasets) while the approach with a preference for loosely correlated feature subsets

achieves better results on one out of the five datasets (colon cancer dataset). On

two out of the five datasets (leukaemia and breast cancer datasets), both approaches

achieved the same result. As the mutation guided approach with a preference for

strongly correlated feature subsets achieved better results than the approach with a

preference for loosely correlated feature subsets, this approach was then tested with
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the EA/Weighted Centroid algorithm from Chapter 4.

The EA/Weighted Centroid algorithm, together with the correlation guided mu-

tation that had a preference for strongly correlated subset of features, achieved

better (or joint best) results for four out of the five datasets. The only dataset that

this approach failed to achieve the best results for was the prostate cancer dataset.

This result further demonstrates that the EA/Weighted Centroid algorithm in-

troduced in Chapter 4 is capable of outperforming the algorithms used in this thesis

across the datasets tested in this thesis.

If only the EA/Weighted Centroid is analysed before and after applying the

correlation guided mutation approach, then EA/Weighted Centroid shows improved

results on three out of the five datasets (leukaemia, prostate cancer and colon cancer

datasets) after applying the correlation guided mutation approach. On the other two

datasets, the correlation guided mutation approach did not make any difference to

the end result. This clearly indicates that the correlation guided mutation approach

with a preference towards strongly correlated features in the selected feature subset

is capable of improving the performance of the EA/Weighted Centroid algorithm

across the five datasets that were tested.

When the correlation guided mutation approach with a preference towards se-

lected loosely correlated features is compared to the baseline, it manages to achieve

better results on one out of the five datasets while achieving slightly worse results on

two out of the five datasets. This indicates that even when the mutation operator

is forcing the EA to search for loosely correlated features, which may point the EA

towards noisy features, the EA is still capable of selecting feature subsets with good

classification performance. This is an indication of the robustness of the EA in

feature selection.

However, there may be room for improvement. First of all, the way the correla-

tion coefficient has been implemented in this thesis means that correlation between

features is taken into account while the correlation between features and a class

(e.g. cancer or normal) is not taken into account. Therefore, the EA is trying to

learn information from the overall correlation of features in the dataset. As this

correlation may not be significantly related to a particular class, the EA may be se-

lecting features that are correlated for some other reason than the case under study.

In a gene expression profile, many normal expression patterns will be present, as

well expression patterns related to the case under study (e.g. cancer). Therefore,

110



Chapter 5: Correlation Guided Evolutionary Algorithm/k-Nearest Neighbours for
Feature Selection

it is possible that the EA is forced to search for expression patterns that are not

correlated to the case under study. However, if this is the case, then this presents

further evidence for the robustness of the EA as the EA is able to perform well al-

though the mutation operator may be forcing the search towards unrelated features.

This hypothesis can be investigated by using correlation coefficients calculated by

taking the classification of the sample into account. Then, when the algorithm se-

lects highly correlated features, there would be a certain degree of assurance that

a particular feature would either be positively or negatively correlated to the case

under study.

It is well known that DNA microarray data contains non-linear relationships be-

tween features [38]. Therefore, either a positive or negative bias towards features

using a linear correlation measure may hinder the performance of the EA. Therefore,

future research could concentrate on using a correlation measure that is capable of

taking non-linear interactions into account (e.g. Spearman’s rs) in order to deter-

mine if correlation guided mutation approach could further improve the performance

of the EA/Weighted Centroid algorithm.

Another factor that may lessen the effectiveness of the correlation guided muta-

tion may be the length of the chromosome. With larger chromosomes, the methods

implemented here have a more pronounced effect. With shorter chromosomes, they

have a less pronounced effect. For example, when the length of the chromosome is

two, the correlation guidance in removing a gene effectively becomes null. Therefore,

another interesting approach would be to change the parameter α so that the algo-

rithm keeps larger chromosomes for longer and as such gives the correlation guided

mutation operator adequate time to guide the search process.

5.8 Conclusion

Chapter 4 of this thesis concluded that weighted k-NN is capable of outperforming

classical k-NN. There was evidence in the literature to show that prior selection of

features using correlation measures improves the performance of machine learning

algorithms from a feature selection and classification point of view. Therefore, it

was hypothesised that EA/k-NN algorithm could perform better with the aid of

correlation measures.

A literature search showed that there were three commonly used correlation co-
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Leukaemia dataset
Generation Validation accuracy Length
48 0.92 2
87 0.81 1
284 0.92 1
2051 0.88 1
173 0.65 1
219 0.88 1
472 0.69 1
1295 0.77 2
Mean 0.82 1.25
SD 0.10 0.46

Prostate cancer dataset
Generation Validation accuracy Length
2416 0.89 5
554 0.81 6
221 0.86 4
2791 0.83 3
8426 0.89 4
3008 0.86 5
6180 0.81 9
7 0.92 29
Mean 0.86 8.13
SD 0.04 8.63

Breast cancer dataset
Generation Validation accuracy Length
9658 0.52 4
3586 0.52 4
7942 0.64 6
752 0.61 4
2340 0.58 1
136 0.64 9
359 0.52 6
2579 0.61 2
Mean 0.58 4.50
SD 0.05 2.51

Colon cancer dataset
Generation Validation accuracy Length
8841 0.82 2
9876 0.77 4
5758 0.68 3
3430 0.55 2
9667 0.86 5
70 0.64 5
9914 0.59 1
3253 0.73 3
Mean 0.70 3.13
SD 0.11 1.46

Ovarian cancer dataset
Generation Validation accuracy Length
2298 0.95 2
993 0.95 2
7440 0.99 2
3149 0.99 5
1125 0.99 2
5273 0.98 4
2512 0.98 2
332 0.99 4
Mean 0.98 2.88
SD 0.02 1.25

Table 5.3: Overall results for correlation guided mutation with preference for
strongly correlated feature subsets for the Evolutionary Algorithm/k-Nearest Neigh-
bours algorithm.
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Leukaemia dataset
Generation Validation accuracy Length
48 0.88 2
495 0.81 1
498 0.92 1
445 0.88 1
1505 0.65 1
3023 0.88 1
9769 0.73 2
398 0.77 2
Mean 0.82 1.38
SD 0.09 0.52

Prostate cancer dataset
Generation Validation accuracy Length
8369 0.64 3
48 0.83 2
4419 0.78 2
1681 0.86 4
878 0.92 7
4183 0.86 5
9977 0.75 3
5218 0.94 3
Mean 0.82 3.63
SD 0.10 1.69

Breast cancer dataset
Generation Validation accuracy Length
999 0.58 9
4488 0.48 6
7156 0.64 6
5889 0.61 6
9223 0.58 5
5084 0.42 5
5473 0.82 3
3675 0.52 1
Mean 0.58 5.13
SD 0.12 2.36

Colon cancer dataset
Generation Validation accuracy Length
2628 0.82 7
3147 0.77 3
9577 0.68 4
3630 0.73 4
2837 0.91 3
2408 0.68 3
347 0.77 1
887 0.91 2
Mean 0.78 3.38
SD 0.09 1.77

Ovarian cancer dataset
Generation Validation accuracy Length
2577 0.94 1
2396 0.99 2
333 0.98 2
4231 0.98 2
786 0.99 2
281 0.98 3
72 0.99 2
392 0.91 2
Mean 0.97 2.00
SD 0.03 0.53

Table 5.4: Overall results for correlation guided mutation approach with prefer-
ence for loosely correlated feature subsets for the Evolutionary Algorithm/k-Nearest
Neighbours algorithm.
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Leukaemia dataset
Generation Validation accuracy Length
7897 0.88 2
507 0.81 2
1008 0.96 1
836 0.88 2
67 1.00 2
4818 0.81 1
88 0.92 7
991 0.85 1
Mean 0.89 2.25
SD 0.07 1.98

Prostate cancer dataset
Generation Validation accuracy Length
339 0.69 3
717 0.86 4
1757 0.78 1
155 0.89 4
7107 0.81 9
538 0.83 2
4215 0.81 6
2244 0.81 5
Mean 0.81 4.25
SD 0.06 2.49

Breast cancer dataset
Generation Validation accuracy Length
9785 0.70 5
1739 0.70 8
8914 0.64 5
8404 0.61 3
3470 0.52 1
7772 0.61 2
3831 0.76 2
316 0.52 5
Mean 0.63 3.88
SD 0.09 2.30

Colon cancer dataset
Generation Validation accuracy Length
1479 0.91 4
1637 0.82 2
2682 0.91 4
9810 0.55 2
5934 0.95 2
1594 0.73 2
34 0.77 1
1395 0.82 3
Mean 0.81 2.50
SD 0.13 1.07

Ovarian cancer dataset
Generation Validation accuracy Length
832 0.96 2
144 0.99 3
2195 0.96 3
6516 0.98 5
1229 0.99 2
4227 0.95 2
1366 1.00 2
30 0.99 5
Mean 0.98 3.00
SD 0.02 1.31

Table 5.5: Overall results for correlation guided mutation approach with prefer-
ence for strongly correlated feature subsets for Evolutionary Algorithm/Weighted
Centroid Classifier algorithm.
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Leukaemia Prostate Breast Colon Ovarian

Baseline(EA/k-NN) 0.83 0.82 0.61 0.72 0.97

EA/W-k-NN 0.81 0.85 0.58 0.76 0.97

EA/Weighted Centroid 0.80 0.79 0.63 0.76 0.98

EA/k-NN & Correlation
guided mutation with
preference for the most
correlated features

0.82 0.86 0.58 0.70 0.98

EA/k-NN & Correlation
guided mutation with
preference for the least
correlated features

0.82 0.82 0.58 0.78 0.97

EA/Weighted Centroid &
Correlation guided mutation
with preference for most
correlated features

0.89 0.81 0.63 0.81 0.98

Table 5.6: Comparison of correlation guided mutation approaches to other ap-
proaches used in this thesis. The best algorithm for each dataset is highlighted
in boldface.

efficients. Out of these three, Person’s correlation coefficient was chosen for this

study as it is potentially more powerful than the alternatives. A novel correla-

tion guided mutation operator was then introduced. This mutation operator either

added, removed or changed a gene in a chromosome using probabilities for each gene

calculated with the help of Perason’s correlation coefficient.

Correlation coefficient was primarily used in two ways:

• Include the most strongly correlated features in the selected feature subset.

• Include a diverse set of loosely correlated features in the selected feature subset.

Both of these approaches were compared with the baseline algorithm (EA/k-

NN), the weighted algorithm (EA/W-k-NN) and the weighted centroid algorithm

(EA/Weighted Centroid). The approach that had a preference for strongly cor-

related features in the selected feature subset performed slightly better than the

approach that had a preference for selecting loosely correlated features in the se-

lected feature subset.

The approach that had a preference for strongly correlated features was then

implemented for the EA/Weighted Centroid algorithm. The EA/Weighted Centroid
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algorithm, with the help of the correlation guided mutation operator, managed to

outperform the other algorithms on four out of the five datasets tested in this thesis.

This Chapter adds more evidence in support of the conclusion made in Chap-

ter 4 that stated that the weighted approaches were capable of outperforming non-

weighted approaches. It also provides evidence to show that correlation measures

can improve the performance of feature selection and classification algorithms. Ar-

eas for further research in the use of correlation measures in feature selection and

classification have also been identified.
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Conclusions and Future Work

This thesis concentrated on research into FS and classification in predictive data

mining, especially in large biological datasets such as DNA microarray data and

proteomic analysis data using EAs. Particular attention was paid to the two-phase

EA/k-NN algorithm and an adaptive weights scheme for k-NN. Finally, an investi-

gation was carried out into the possible use of correlation guided mutation in the

EA/k-NN algorithm.

6.1 Main Findings

6.1.1 Parameters and Multi-Objective Approach in Two-

Phase Evolutionary Algorithm/k-Nearest Neighbours

Algorithm

Although results for the datasets used in this thesis have been reported elsewhere, it

is difficult to do a direct comparison. This is due to the fact that different researchers

use slightly different versions of the dataset and their validation methods also vary

from one study to another. However, a comparison can nevertheless be made and

results from this thesis are very competitive, if not better, compared than results

published in other literature.

Properly tuned, the two-phase EA/k-NN algorithm achieved very competitive

results to those that were published in the literature for all three datasets tested

in Chapter 3. The multi-objective version of the two-phase EA/k-NN algorithm

also achieved excellent results. The advantage of the multi-objective approach is
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that there is no need to pre-tune some of the parameters (e.g. α that combines the

classification error with the length of the chromosome).

These results have provided further evidence that the two-phase EA/k-NN al-

gorithm is clearly competitive with other methods when it comes to FS and classi-

fication.

However, the two-phase EA/k-NN algorithm is sensitive to the way phase one is

conducted. Phase one needs to avoid over-fitting while gathering informative genes

so that phase two can build robust models. The termination point of phase one is

therefore critical in the success of the complete algorithm. As a clear termination

point could not be identified in a straightforward way, a new method for terminating

the algorithm was introduced. This method tracks the classification accuracy of each

gene that is used in the algorithm across all the generations of the first phase of the

algorithm. This method avoided the requirement for tuning the termination point

of the first phase of the algorithm.

6.1.2 An Adaptive Weights Scheme for k-Nearest Neigh-

bours in Evolutionary Algorithm/k-Nearest Neighbours

Algorithm for Feature Selection

Although the two-phase EA/k-NN algorithm looks promising for FS and classifica-

tion in predictive data mining, further testing across five datasets showed that the

single phase EA/k-NN algorithm held a slight advantage. It may still be possible to

set-up the two-phase EA/k-NN algorithm in such a way that it clearly out-performs

the EA/k-NN algorithm across all five datasets. However, it was decided that single

phase EA/k-NN algorithm would be used for the remainder of the thesis due to the

fact that it out-performed the two-phase algorithm.

The direct comparison between EA/k-NN and EA/W-k-NN algorithms (using

two weighted approaches) across the five datasets has shown that when properly

tuned, the EA/W-k-NN algorithm is capable of out-performing the EA/k-NN algo-

rithm.

The direct application of adaptive weights to the k-NN classifier provided better

or equal results on three out of the five datasets. However, a novel weighted centroid

classifier managed to obtain better results for four out of the five datasets tested.

The weighted centroid classification technique introduced here has the advantage
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that it is much less memory-intensive and several orders of magnitude faster than

either the EA/k-NN or the EA/W-k-NN algorithm. For example, on the ovarian

cancer dataset, one run of the EA/W-k-NN algorithm took 44 hours to complete on

the Beowulf cluster at Heriot-Watt University. The same run only took 2 hours to

complete using the weighted centroid classification approach.

6.1.3 Correlation Guided Evolutionary Algorithm/k-Nearest

Neighbours for Feature Selection

There is evidence in the literature to suggest that prior FS leads to better perfor-

mance in predictive data mining in large datasets [38, 27]. This is due to the fact

that prior FS removes redundant and noisy features from high dimensional datasets.

Statistical correlation is used widely in such efforts. However, there is very little ev-

idence to suggest that correlation has been used in combination with EAs in FS and

classification.

Therefore, a correlation guided EA was introduced in Chapter 5. This algorithm

uses Pearson’s product-moment correlation coefficient calculated on the entire train-

ing fold of the dataset to guide the mutation operator in the EA. The mutation

operator added, removed or changed genes encoded in the chromosome with two

approaches:

• Include the most strongly correlated features in the selected feature subset.

With this approach, when removing a gene, loosely correlated genes in the

chromosome had a higher chance of being removed. When adding a gene,

strongly correlated genes in the dataset had a higher chance of being added to

the chromosome. When changing a chromosome, loosely correlated genes in

the chromosome had a higher chance of being replaced with strongly correlated

features in the dataset.

• Include a diverse set of loosely correlated features in the selected feature subset.

With this approach, genes in the chromosome that were strongly correlated

had a higher chance of being removed. Loosely correlated genes in the dataset

had a higher chance of being added to the chromosome. While changing a

gene, the mutation operator ensured that strongly correlated genes encoded in

the chromosome had a higher chance of being changed into a loosely correlated
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feature in the dataset.

The EA/Weighted Centroid algorithm with correlation guided mutation per-

formed better than the other algorithms on four out of the five datasets that were

tested in this thesis. However, when the EA/Weighted Centroid algorithm was com-

pared to the EA/Weighted Centroid algorithm with correlation guided mutation

operator, the EA/Weighted Centroid algorithm with correlation guided mutation

performed better on all five datasets. This provides further evidence in support

of the argument that correlation measures can improve the performance of feature

selection and classification algorithms.

6.2 Future Work

There are a number of areas presented in this thesis that would benefit from further

work. This possible additional work is discussed in the following sections.

6.2.1 Setting up of the Two-Phase Evolutionary Algorithm/k-

Nearest Neighbours Algorithm

The two-phase EA/k-NN algorithm has been shown to be clearly sensitive to some

of the parameters and also the way the two phases are set up. Chapter 3 concluded

that the two-phase algorithm is clearly better than the single phase algorithm. How-

ever, further testing in Chapter 4 revealed that single phase algorithm slightly out-

performed the two-phase algorithm. As previous results have shown the two-phase

algorithm to be promising, more research could be carried out to determine a better

way of setting up the two phases so that the algorithm has a better chance of good

performance across a range of datasets.

One of the ways of optimising the setting up of the two phases could be to

try introducing different amounts of genes from phase one to the second phase. In

this thesis, 10% of the genes from phase one was carried into phase two. As it is

critical that informative genes are kept in the gene pool, further research can clarify

whether taking a higher percentage of genes to the second phase would improve the

performance of the two-phase EA/k-NN algorithm.

A value of 1000 was used for the parameter α for all the datasets. This value

was determined by testing three out of the five datasets. Further research could be
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carried out to identify an appropriate value for α for each dataset. This is necessary

as the value of α determines the length of the chromosome and how quickly the

algorithm converges. A quickly converging algorithm in phase one is not desirable

as the search would not be able to cover interesting areas of the landscape and

therefore may lead to poor performance in phase two.

Another area of further research could be an investigation into the subsets of

genes identified by different runs of the algorithm. The purpose of predictive data

mining in biological datasets is to discover subsets of genes that have a high classi-

fication performance. If the algorithm finds similar subsets of genes across multiple

runs, then it can be confidently concluded that these genes are in fact related to the

case under study.

6.2.2 Multi-objective Approach

The multi-objective approach presented in Chapter 3 looked promising for feature

selection and classification. However, it was decided that the single object approach

would be taken forward in order to do a direct comparison with results presented

by Juliusdottir et al. [38].

The advantage of the multi-objective approach is that the tuning of the parame-

ter α is not needed. The multi-objective approach was only tested with termination

strategy for phase one discussed in Chapter 3. This termination point also had to be

tuned. However, there is no need for tuning this parameter in the strategy proposed

in Chapter 4. Therefore, it would be interesting to investigate the performance of

the multi-objective approach using the strategy proposed in Chapter 4.

6.2.3 Adaptive Weights

Adaptive weights, especially in the form of weighted centroid classifier introduced

in Chapter 4 has been shown to out-perform the classical EA/k-NN algorithm in

feature selection and classification in five large biomedical datasets. As the adaptive

weights strategy was adopted from (and modified in this thesis) the ALH algorithm

introduced by Yang and Kecman [81], it would be interesting to do a direct compari-

son between the approach outlined in this thesis with that of Yang and Kecman [81].

This could be achieved by testing the same datasets that they tested and in the same

way (e.g. validation method). This would enable the testing of the hypothesis that
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a straightforward classifier (e.g. k-NN) is better than a sophisticated classifier (e.g.

SVM) in the context of FS and classification.

One major problem with the adaptive weights approach is the time taken for

calculating the weights. This was drastically reduced by optimising the algorithm

and also by pre-calculating most of the weights. Although this speeded up the algo-

rithm, a drawback is that if the dataset is very large (much larger than the ovarian

dataset), it is possible that the algorithm may not have enough Random Access

Memory (RAM) to work with. Therefore, further research could be carried out into

a solution that is faster and less memory-intensive. One interesting approach that

was tried briefly in order to cut down computation time was fitness inheritance [5].

Further research could be carried out on ways to apply fitness inheritance to the

EA/W-k-NN algorithm.

As shown in section 4.7.2, the performance of EA/W-k-NN algorithm relies heav-

ily on the value used for the parameter T . The optimal value for T varies depending

on the dataset used. It is time-consuming and impractical to calculate T manually

for each new dataset that is used with the algorithm. Therefore, a brief investigation

was carried out into encoding T as part of the chromosome and letting it evolve.

For these experiments, a child chromosome inherited the T associated with the

stronger of its two parents. If both parents were equal, then the child chromosome

took the average T of its parent chromosomes. The T of the child chromosome was

then mutated with a probability of 50% (mutate T 50% of the time).

The mutation operator generated a Gaussian random number and then scaled

it using a pre-determined scaling factor. For example, if the scaling factor was set

to 10, then the random numbers would be distributed between -10 and 10 with a

higher probability of the random number being closer to 0. The random number was

then shifted to be around a pre-determined mean. The modified Gaussian random

number was then simply added to the T value of the child chromosome. With this

method, the mean and the SD of the generated Gaussian random numbers could be

tightly controlled. The investigation then concentrated on finding the best values

for the mean and the scaling factor.

The results obtained from this investigation were not encouraging. There was

no single set of values for the mean and the scaling factor that worked well across

all the datasets. The aim of this investigation was to find a way to let T evolve so

that no initial tuning of T would be required for a new dataset. However, if a series
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of experiments had to be conducted to find an effective set of values for the mean

and the scaling factor for T for each dataset, then this would mean that the research

aim would not be met by this approach.

Another reason why this investigation did not meet the research aims could be

due to the fact that the algorithm is very sensitive to the value of T . As shown in

section 4.7.2, even a small deviation in the optimal value of T leads to a dramatic

change in classification accuracies. The method for evolving T implemented in this

thesis would continue to make changes to T and therefore would continue changing

the fitness landscape from the point of view of the EA. This would make it difficult

for the algorithm to converge on an optimal set of features.

As the brief investigation did not produce promising results, it was decided not to

pursue it further due to other priorities and constraints. However, as the EA/W-k-

NN algorithm looks promising, it would be interesting to carry out further research

into evolving T . This research could be aimed at achieving two objectives:

• Achieve better results from the algorithm with regards to classification accu-

racy and selected subset of features.

• Increase the amount of automation in the algorithm by evolving T so that the

application of the algorithm for a new dataset is not as taxing as it is now.

6.2.4 Correlation Guided Mutation for Evolutionary Algorithm/k-

Nearest Neighbours Algorithm

In accordance with the evidence present in the literature, introduction of correla-

tion measures improved the performance of the EA/Weighted Centroid algorithm.

However, promising areas for further research have also been identified.

The most logical next step is to calculate the correlation coefficient taking into

account the classification of the samples present in the training fold of the dataset.

Pearson’s correlation coefficient was selected for this study. However, Pearson’s

correlation coefficient is incapable of taking non-linear interactions between features

into account. It is well documented that DNA microarray data contains non-linear

relationships. Therefore, a logical next step would be to test a correlation coeffi-

cient that can take non-linear relationships into account such as Spearman’s rho

coefficient.
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Furthermore, as discussed in Chapter 5, the length of the chromosome has an

effect on the effectiveness of the correlation guided mutation approach. Therefore,

further research could be carried out into ways in which the chromosome could be

kept artificially long for a certain number of generations.

Another interesting area of research would be to introduce the correlation guided

approach to the cross-over operator.

6.3 Final Thoughts

This thesis has presented research into FS and classification in predictive data min-

ing in large biomedical datasets using EAs. The two-phase EA/k-NN algorithm

introduced by Juliusdottir et al. [38] has been thoroughly investigated for parame-

ter optimisation and the optimal way of setting up the two phases. An investigation

into an adaptive weights scheme for the k-NN algorithm was carried out and a

promising new weighted centroid classifier has been identified. Research was also

presented into a new way of guiding the mutation operator (correlation guided) in

an EA in FS and classification. Rich and promising areas of further research have

also been identified which should add further value to techniques investigated and

introduced in this thesis. Table 6.1 shows the best results for each algorithm for

each dataset tested in this thesis.
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Leukaemia Prostate Breast Colon Ovarian

Baseline(EA/k-NN) 0.83 0.82 0.61 0.72 0.97

EA/W-k-NN 0.81 0.85 0.58 0.76 0.97

EA/Weighted Centroid 0.80 0.79 0.63 0.76 0.98

EA/k-NN & Correlation
guided mutation with
preference for the most
correlated features

0.82 0.86 0.58 0.70 0.98

EA/k-NN & Correlation
guided mutation with
preference for the least
correlated features

0.82 0.82 0.58 0.78 0.97

EA/Weighted Centroid &
Correlation guided mutation
with preference for most
correlated features

0.89 0.81 0.63 0.81 0.98

Table 6.1: The best results from all the algorithms tested in this thesis. The best
algorithm for each dataset is highlighted in boldface.
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