
Heriot-Watt University

Towards A Crowdsourced Solution For

The Authoring Bottleneck In Interactive

Narratives

Michael Kriegel

April 2015

Submitted for the degree of

Doctor of Philosophy in Computer Science

on completion of research in the

Department of Mathematics,

School of Mathematical and Computer Sciences.

The copyright in this thesis is owned by the author. Any quotation from the thesis

or use of any of the information contained in it must acknowledge this thesis as the

source of the quotation or information.

Abstract

Interactive Storytelling research has produced a wealth of technologies that can be

employed to create personalised narrative experiences, in which the audience takes

a participating rather than observing role. But so far this technology has not led

to the production of large scale playable interactive story experiences that realise

the ambitions of the field. One main reason for this state of affairs is the difficulty

of authoring interactive stories, a task that requires describing a huge amount of

story building blocks in a machine friendly fashion. This is not only technically

and conceptually more challenging than traditional narrative authoring but also a

scalability problem.

This thesis examines the authoring bottleneck through a case study and a literature

survey and advocates a solution based on crowdsourcing. Prior work has already

shown that combining a large number of example stories collected from crowd workers

with a system that merges these contributions into a single interactive story can be

an effective way to reduce the authorial burden. As a refinement of such an approach,

this thesis introduces the novel concept of Crowd Task Adaptation. It argues that in

order to maximise the usefulness of the collected stories, a system should dynamically

and intelligently analyse the corpus of collected stories and based on this analysis

modify the tasks handed out to crowd workers.

Two authoring systems, ENIGMA and CROSCAT, which show two radically different

approaches of using the Crowd Task Adaptation paradigm have been implemented and

are described in this thesis. While ENIGMA adapts tasks through a realtime dialog

between crowd workers and the system that is based on what has been learned from

previously collected stories, CROSCAT modifies the backstory given to crowd workers

in order to optimise the distribution of branching points in the tree structure that

combines all collected stories. Two experimental studies of crowdsourced authoring

are also presented. They lead to guidelines on how to employ crowdsourced authoring

effectively, but more importantly the results of one of the studies demonstrate the

effectiveness of the Crowd Task Adaptation approach.

Acknowledgements

I am deeply grateful to my supervisors Ruth Aylett and Sandy Louchart for bearing

with me for all this time, teaching me so much about this topic, always having an open

door to discuss problems and provide advice and for giving me many opportunities to

connect to the Interactive Storytelling research community through conference visits.

A big thank you to my examiners Dr. Mariët Theune and Dr. Yun-Heh (Jessica)

Chen-Burger for showing great interest in my work and providing much appreciated

feedback and a very constructive and inspiring discussion during my viva. And of

course also for awarding me the PhD title.

I would like to thank my colleagues and fellow students from the Computer Science

Department at Heriot-Watt University for invaluable discussions and feedback. Par-

ticularly Asad, Amol, Christopher, Iain, Rob, Irene, Matthias, Shahira and Patricia,

all of whom I shared an office with at some time and the Storylab guys Allan, Neil

and Andy all gave me many opportunities to bounce off ideas.

During the e-Circus project I had the chance to be part of a multidisciplinary and

multinational team doing groundbreaking work in educational IS applications that

also motivated and spawned this PhD. Being part of this team was a fantastic ex-

perience and I want to take this opportunity to acknowledge the many talented and

genuinely nice people I had the pleasure to work with. I worked especially close with

Joao, Rui and Marco of the GAIPS research group at INESC-ID, Lisbon, who taught

me much about the ins and outs of FAtiMA and who I was lucky enough to be able

to visit several times for collaborative work.

Ivo Swartjes, formerly a PhD student and researcher at University of Twente, on his

research visit to our department provided me with a wonderfully enlightening collab-

oration opportunity and helped in shaping my views on Interactive Storytelling that

inform this work. Alasdair Clarke and Scott Watson are both much more well versed

in statistics than me and deserve my thanks for having kindly answered my questions

regarding experimental design and statistical analysis. I would also like to thank all

the volunteers who participated in one of the several authoring experiments that this

thesis describes. Without their help this research would have been impossible to com-

plete.

The work on this PhD has accompanied me for the better part of a decade. This is

1

a long time and along the way life has produced many distractions, while the PhD

work itself has also not been without its diversions, dead ends and desperate moments.

Most importantly, I would therefore like to express my eternal gratitude to my family.

This includes my parents, my sister, my two brothers-in-law and my parents-in-law

who were all fantastic in encouraging me along the way. I am especially indebted to

my dad who took it upon himself to proof-read this thesis and gave me much appre-

ciated feedback. But my most heartfelt thanks have to go to my wonderful wife Mei

Yii and daughter Alicia, whose support and understanding allowed me to find enough

time to focus on writing this thesis and who patiently suffered with me through the

final stretches of this work, when many evenings, weekends and holidays had to be

sacrificed for this endeavour. Now, as I’m writing these words, that is almost done

and I am looking forward to give them and our newest family member Sebastian the

time as husband and father that they deserve.

ACADEMIC REGISTRY
Research Thesis Submission

Name:

School/PGI:

Version: (i.e. First,
Resubmission, Final)

Degree Sought
(Award and
Subject area)

Declaration

In accordance with the appropriate regulations I hereby submit my thesis and I declare that:

1) the thesis embodies the results of my own work and has been composed by myself
2) where appropriate, I have made acknowledgement of the work of others and have made reference to

work carried out in collaboration with other persons
3) the thesis is the correct version of the thesis for submission and is the same version as any electronic

versions submitted*.
4) my thesis for the award referred to, deposited in the Heriot-Watt University Library, should be made

available for loan or photocopying and be available via the Institutional Repository, subject to such
conditions as the Librarian may require

5) I understand that as a student of the University I am required to abide by the Regulations of the
University and to conform to its discipline.

* Please note that it is the responsibility of the candidate to ensure that the correct version of the thesis
is submitted.

Signature of
Candidate:

Date:

Submission

Submitted By (name in capitals):

Signature of Individual
Submitting:

Date Submitted:

For Completion in the Student Service Centre (SSC)

Received in the SSC by (name in
capitals):

Method of Submission
(Handed in to SSC; posted through
internal/external mail):

E-thesis Submitted (mandatory for
final theses)

Signature: Date:

Please note this form should bound into the submitted thesis.

Updated February 2008, November 2008, February 2009, January 2011

Contents

List of Figures vii

1 Introduction 1

1.1 Motivation . 1

1.1.1 Interactive Digital Storytelling 1

1.1.2 Story Worlds and Runtime Engines 2

1.1.3 Fully Realized IS Artefacts 3

1.1.4 The Authoring Bottleneck . 4

1.2 Crowdsourced Authoring . 5

1.2.1 Collecting Linear Example Stories 6

1.2.2 The Crowd Task Adaptation Hypothesis 6

1.3 Summary Of Contributions . 7

1.4 Thesis structure . 8

I The Authoring Bottleneck 10

2 Creating FearNot! - An Authoring Case Study 11

2.1 FearNot! Overview . 12

2.1.1 FearNot Creation Stages . 13

2.2 An Overview of the FAtiMA Architecture 15

2.2.1 Planning . 15

2.2.2 Emotions . 17

2.2.3 Reactive Behaviour . 19

2.2.4 Agents and their environment 20

2.2.5 Personality . 21

2.3 Integrating FAtiMA into an IS Runtime Engine 22

2.3.1 The Story Facilitator . 24

2.4 Story World Contents . 27

2.4.1 Character Configuration Content 27

2.4.2 Dialogue Content . 28

2.4.3 Interaction Rules . 29

i

CONTENTS

2.4.4 Presentational Content . 29

2.4.5 Story Structure Content . 30

2.5 FearNot! Authoring Process . 30

2.5.1 Resources . 30

2.5.2 Workflow . 31

2.5.3 Knowledge Representation Encoding 32

2.6 Authoring Observations . 36

2.6.1 Actual Use of Planning . 36

2.6.2 Decision Making . 37

2.6.3 Use of Emotion Model . 39

2.6.4 Interactivity . 41

2.6.5 Content Reuse and Abstraction 42

2.7 Conclusion . 43

3 Data Structures for Story Representation 44

3.1 Explicit Specification of Branches . 45

3.2 Plot-centric Story Representation . 47

3.2.1 Planning . 47

3.2.2 Case-Based Reasoning . 49

3.2.3 Narrative Theories . 50

3.2.4 User Models . 52

3.3 Character-centric Story Representation 53

3.3.1 Agents Using STRIPS-like Planning 53

3.3.2 Agents Using Hierarchical Task Networks 54

3.3.3 Agents Using Heuristic Search Planning 55

3.3.4 Decision Theoretic Agents . 57

3.3.5 Other Approaches . 58

3.4 Hybrid Solutions . 62

3.4.1 Character Autonomy For Plot-Centric Systems 62

3.4.2 Drama Management For Character-Centric Systems 64

3.5 Conclusion . 66

4 Authoring Methods And Tools 68

4.1 Defining The Authoring Process . 68

4.1.1 Who are the authors? . 68

4.1.2 Authoring Metaphors . 69

4.2 Authoring Tools . 71

4.2.1 Prototyping . 72

4.2.2 Authoring Explicit Branching 73

4.2.3 Authoring Generative Data Structures 74

ii

CONTENTS

4.2.4 Debugging . 76

4.2.5 Affecting Story Presentation 77

4.2.6 Educational Authoring . 78

4.3 Data Driven Authoring . 78

4.3.1 The Restaurant and Improviso 79

4.3.2 Scheherazade . 81

4.3.3 Comparison . 82

4.4 Conclusion . 83

II Crowdsourced Authoring 84

5 Crowd Task Adaptation 85

5.1 Defining Crowdsourcing . 85

5.1.1 Crowdsourcing and other crowd-powered approaches 85

5.1.2 Storytelling Examples . 87

5.2 Attacking the Authoring Bottleneck with a Crowd 90

5.2.1 Useful Data . 90

5.2.2 Finding a suitable crowd-powered approach 94

5.3 Crowd Task Adaptation: A Novel Process Improvement Proposal . . 96

5.3.1 Definition . 97

5.3.2 Crowd Task Adaptation Strategies for IS Authoring 98

5.3.3 Expected Benefits . 100

5.4 Conclusion . 103

6 The ENIGMA Authoring System 104

6.1 Design . 104

6.1.1 Overview . 104

6.1.2 Storytelling Interface . 106

6.1.3 Annotations . 112

6.1.4 Mixed Initiative . 113

6.2 Implementation . 115

6.2.1 Technology Overview . 115

6.2.2 User Interface . 116

6.3 From Stories to FAtiMA Agents . 119

6.3.1 Formalization as a machine learning problem 120

6.3.2 The probabilistic domain model 121

6.3.3 The ENIGMA learning cycle 121

6.3.4 Updating the probabilistic domain model 123

6.4 Usability Trial . 125

iii

CONTENTS

6.4.1 Setup . 126

6.4.2 Observations . 126

6.4.3 Implications . 127

6.4.4 Ways Forward . 128

6.5 Conclusion . 128

7 The CROSCAT Authoring System 130

7.1 Overview . 131

7.1.1 User Perspective . 131

7.1.2 System Perspective . 132

7.2 The Back Story Selection Algorithm 134

7.2.1 Heuristic Function 1: Distance From Branching Points and Leafs135

7.2.2 Heuristic Function 2: Adding Branching Ancestor Penalty . . 138

7.2.3 Heuristic Function 3: Adding Child Branch Penalty 139

7.2.4 Other Heuristics . 140

7.3 Antonym Insertion . 141

7.3.1 Using Antonyms . 143

7.3.2 Obtaining Antonyms . 145

7.4 Algorithm Implementation . 146

7.5 Scalability . 147

7.5.1 Concurrent Use . 148

7.5.2 Scoring Algorithm Performance 149

7.6 The CROSCAT Viewer . 149

7.7 Conclusion . 150

III Authoring Experiments 151

8 Study Descriptions 152

8.1 The Point Nautilus Study . 152

8.1.1 Story Setting . 153

8.1.2 Execution . 154

8.1.3 Data Sources For Evaluation 155

8.2 The Seagnomes Study . 156

8.2.1 Participant Assignment . 157

8.2.2 Story Setting . 159

8.2.3 Execution . 160

8.2.4 Data Sources For Evaluation 162

8.3 Data Analysis Plans . 165

8.3.1 Primary Research Question 165

iv

CONTENTS

8.3.2 Secondary Research Questions 166

8.4 Conclusion . 167

9 Experimental Results And Analysis 168

9.1 Evaluating Crowd Task Adaptation 168

9.1.1 Seagnomes Author Profiles . 168

9.1.2 Seagnomes Story Graphs . 169

9.1.3 Seagnomes Interactive Story Ratings 171

9.1.4 Story Analysis . 174

9.1.5 End User Feedback . 178

9.1.6 Choice Analysis . 179

9.1.7 Author Feedback . 181

9.2 Story World Properties . 183

9.2.1 Results of The Point Nautilus Study 183

9.2.2 Comparison of Point Nautilus and Seagnomes stories 186

9.3 Authoring Tool Design Lessons . 187

9.3.1 User Interface . 187

9.3.2 Content Library . 188

9.3.3 Accommodating Deliberation 189

9.3.4 Storytelling Modality . 190

9.4 Conclusion . 191

10 Reflection 193

10.1 Summary of Thesis . 193

10.2 Practicality of Crowdsourced Authoring 195

10.3 Future Work . 197

10.3.1 Specific Follow-ups . 197

10.3.2 General Follow-ups . 198

10.4 Concluding Remarks . 199

Glossary 200

References 201

Appendices 217

A Complete List of FearNot! agent goals 218

B The Point Nautilus Story 221

C The Seagnomes Story 226

v

CONTENTS

D CROSCAT usage instructions 229

E CROSCAT Graph Scoring Implementation 231

F Supplementary Digital Materials 234

vi

List of Figures

1.1 Spierling’s and Szilas’s definition of the boundaries of authoring . . . 2

2.1 Screenshots of FearNot! . 13

2.2 Major FearNot! development stages. 14

2.3 Illustration of the example cookie planning domain. 16

2.4 Complete plan in the example cookie domain. 17

2.5 The OCC emotion taxonomy . 18

2.6 High-level FAtiMA architecture diagram 20

2.7 High-level components of storytelling system used in FearNot! 22

2.8 FearNot! authoring workflow . 31

2.9 Iterative interactive implementation cycle 35

3.1 Illustration of a plan in the MIMESIS system 48

3.2 Freytag’s and Campbell’s Narrative Theories 51

3.3 An example dramatic arc generated by Façade 51

3.4 Example of an HTN used by the IStorytelling System 55

3.5 Interpretation operator in the EmoEmma system 56

3.6 Screenshots of SWAT . 59

3.7 High-Level Overview of Comme-il-faut story world components 60

3.8 Architectural overview of the Virtual Storyteller 65

3.9 Example sentence in DEIKTO . 67

4.1 Different authoring roles suggested by Hoffmann et al. 69

4.2 Landscape view of an IS story world 69

4.3 Gardening metaphor for implicit creation of IS story worlds 71

4.4 The Scene Graph View in the U-Create tool 73

4.5 ASAPS story graph editor . 74

4.6 Wide Ruled: Plot Fragment Editor 75

4.7 Story Canvas: Plot Fragment Editor 76

4.8 Thespian Goal Fitting Procedure . 79

4.9 Orkin’s Restaurant and Improviso Games 80

4.10 A Scheherazade Plot Graph . 81

vii

LIST OF FIGURES

5.1 Crowdsourcing and related crowd-powered approaches 86

5.2 Screenshots of the Bar Karma Authoring Tool StoryMaker 91

5.3 Tradeoff between authoring effort and transformation effort 93

5.4 Visualization of the Crowdsourcing process 97

6.1 Enigma Basic Workflow . 105

6.2 Comparison of the user’s role in a FAtiMA based IS artefact and in

ENIGMA. 107

6.3 Metadata associated with an action in ENIGMA 108

6.4 Metadata associated with the GiveGift action 108

6.5 Screenshot of initial ENIGMA prototype using a 3D game engine . . 110

6.6 Example of 2 frames using ENIGMA’s comics story presentation layer 110

6.7 ENIGMA’s user interface: main window 116

6.8 ENIGMA’s user interface for action selection and definition 117

6.9 ENIGMA’s user interface for annotating changes 118

6.10 ENIGMA’s user interface for annotating goals 119

6.11 Overview of the FAtiMA domain model learning approach for ENIGMA122

7.1 Main graphical user interface of the CROSCAT Tool. 131

7.2 Overview of the Crowd Task Adaptation via back story selection feature

in the CROSCAT authoring tool. 133

7.3 Branching story tree if no back story selection would be used. 134

7.4 Laurel’s view of narrative as a flying wedge of possibilities 136

7.5 CROSCAT simulation results using heuristic function 1 137

7.6 CROSCAT simulation results using heuristic function 2 138

7.7 CROSCAT simulation results using heuristic function 3 140

7.8 Example of a story fragment containing a dramatic choice point . . . 142

7.9 CROSCAT story tree with added antonym knowledge 143

7.10 Simulation results for antonym weight 144

7.11 A choice visualized in the CROSCAT Viewer 150

8.1 Locations for the Seagnomes Story 160

8.2 Instructions for the Seagnomes Study 161

9.1 Author background questionnaire results for the “Seagnomes” study . 169

9.2 The resulting story graph for condition “graph” 169

9.3 The resulting story graph for group “anto” 170

9.4 The resulting story graph for condition “none” 170

9.5 Between-Group Interactive Story Ratings 172

9.6 Within-Subject Interactive Story Ratings 172

9.7 Story Length Depending On Backstory 174

viii

LIST OF FIGURES

9.8 Example of author’s resistance to being steered 177

9.9 Choices made by the viewers of version “graph” 180

9.10 Choices made by the viewers of group “anto” 181

9.11 Feedback On The Authoring Experience 182

9.12 “Point Nautilus” Authors’ Familiarity With Related Activities (averages)183

ix

Chapter 1

Introduction

1.1 Motivation

1.1.1 Interactive Digital Storytelling

Storytelling always was and continues to be an important cultural tradition central

to our identity as human beings. Advances in technology have often lead to the in-

vention of new storytelling media, allowing us to experience narratives in new ways.

The printing press enabling the novel, the camera leading to movies, or the computer

being a prerequisite for video games are just three of the numerous examples of how

technology has transformed our experience of narratives. Advances in artificial in-

telligence and virtual reality technologies are currently resulting in efforts to create

another storytelling medium: “Interactive Storytelling”(IS).

Within the context of this thesis, IS refers to computer mediated dramatic nar-

rative experiences in which the audience can influence the narrative in a meaningful

way. This contextualized definition is necessary, as there is no fully agreed upon termi-

nology within the field. In the literature the terms Interactive Narrative, Interactive

Drama and Interactive Storytelling are often used interchangeably and all 3 could

fit the above definition within this thesis. Similarly there are several types of narra-

tive experience that are sometimes labelled Interactive Storytelling, that do not fit

the above definition. These include non computer mediated experiences, for example

roleplaying, improvisational theatre or choose your own adventure books and com-

puter mediated experiences that offer rather linear narrative experiences (e.g. most

video games).

In IS the audience takes the role of a user instead of spectator as it is the case

in traditional narrative media such as literature, theatre or film. By incorporating a

participating user (usually playing the role of one of the protagonists), stories need

to adapt dynamically to the choices of the user. Science Fiction has already shown

us the possibilities on offer if this new medium reaches maturity: In the fictional

1

Chapter 1: Introduction

Star-Trek universe, the holodeck is a recreational technology that allows people to

step into a perfectly simulated Virtual Reality and experience stories from a first

person perspective as protagonists with total freedom of choice. Murray (1998) helped

fostering the holodeck as a metaphor for the aspirations of the interactive drama

community, with her seminal “Hamlet on the Holodeck”.

IS not only promises to provide more immersive entertainment than traditional

narrative but also opens up many potential applications in education. Right now IS

technology is in its infancy, maybe comparable to the state of movies in the early

20th century. We will never build a holodeck without first mastering the general

hard problems of the enabling technologies of artificial intelligence and virtual reality.

However, that is not a reason for not investigating the questions surrounding IS right

now and a growing multidisciplinary research community is trying to find ways of

progressing on the long path towards the holodeck. This thesis adds to that growing

body of work.

1.1.2 Story Worlds and Runtime Engines

Complex computer programs usually separate their implementation, logic and al-

gorithms from the data the program processes at runtime and IS systems are no

exception. In order to talk about these distinctions we borrow the terminology from

Spierling and Szilas (2009), who use the terms Runtime Engine and Story World

to refer to processes and data in the context of IS. A story world is a library of story

elements that a Runtime Engine can assemble interactively into a story, taking into

account user input. The bundle of a Runtime Engine and a specific story world in

this terminology is referred to as IS Artefact. An IS Artefact is the playable product

that is distributed to end users, for whom an interaction session with it results in an

IS Experience. Figure 1.1 summarizes these relationships.

Figure 1.1: Spierling’s and Szilas’s definition of the boundaries of authoring. (from
Spierling and Szilas (2009) p.52)

While IS research strives to produce IS Artefacts capable of generating vast num-

bers of different story experiences depending on a user’s input, there are implicit

limits to the story experiences that can come out of a single IS Artefact. Within this

2

Chapter 1: Introduction

definition an IS Artefact always revolves around a certain theme, conflict, setting or

cast of characters. For example one could imagine an artefact about the adventures

of a cowboy in the wild west. No possible user interaction with this artefact would

ever produce a story experience about the struggles of a football team in winning a

championship. This is because no information about football would be encoded in the

wild west story world that could allow the runtime engine to generate such a story.

It is, however, perfectly possible to use the same runtime engine for running many

different story worlds, e.g. a wild west and a football themed one.

This distinction between runtime engine and story world also extends to the roles

assigned to the creators of an IS Artefact. Most IS work stems from computer science

research labs where computer scientists devise algorithms for narrative generation

and/or manipulation and implement them in a runtime engine. However, as runtime

engines are typically agnostic of any specific narrative content, the term author in IS

is generally used to refer to the creator of the story world and not the runtime engine.

Small story worlds are often created by the same researchers who created a runtime

engine as a proof of concept and for evaluation purposes. However, most of the IS

community will readily admit that these small story worlds lack the breadth and com-

plexity to create impressive IS artefacts. The hope is that third-party authors (quite

possibly with a skill set different from the computer scientists who generate the run-

time engines and more rooted in creative writing) will take up a runtime engine and

create story worlds for it. So far, this has not really happened.

1.1.3 Fully Realized IS Artefacts

In order to distinguish current systems from the ideal that the medium aspires to be,

we use the term fully realized IS Artefact to describe the type of experience that the

IS community is striving to create. Obviously this is a very subjective distinction as

we are talking about a medium for artistic expression, but there is wide agreement

that so far no fully realized IS artefact exists. And while no formal definition exists

of what a fully realized IS artefact exactly is, the set of the following minimal criteria

for it are generally agreed upon in the literature (Murray, 1998; Mateas and Stern,

2003; Cavazza et al., 2004; Crawford, 2005):

• Agency The user must feel like they have meaningful control over the develop-

ment of the narrative and the system must provide them with enough possibil-

ities for interacting. If the user interacts by controlling a character, most likely

the protagonist of the story, they should ideally be able to make the character

do whatever they chose and whenever they chose it. But agency is not so much

about the quantity as it is about the quality of choices. For example in a first

person shooter game we control every step of our character but have no agency

3

Chapter 1: Introduction

when it comes to the story. There is nothing the user can do but shoot or be

shot.

• Variety An IS artefact is only fully realized if its possibility space cannot easily

be exhausted by its users. I.e. it must be complex enough so that different

users experience different personalised stories. A single user must be able to

revisit/replay the IS artefact multiple times to experience alternative versions

of events. Modern story based video games lack this kind of replayability. Of

course video games may be replayed many times, just as books may be reread

many times, but after at most a handful of play-throughs the player will no

longer experience any new story content.

• Coherence Each story produced by the system needs to be coherent and logical.

Events in the story need to be causally connected and characters need to act

rationally.

• Drama A system that produces replayable, i.e. highly variable and coherent

stories is still not enough. Each possible path a user could take through the

interactive story space should ideally also have the quality of a “story” and be

dramatic, i.e. contain conflict and resolution.

The real difficulty lies in addressing all of these criteria together. Focusing on a

single criterion and taking measures to improve it will most likely go at the expense of

one or more of the other criteria. For example a system that aims to achieve variety by

randomly stringing together events will suffer from a negative impact on coherence as

randomly assembled event sequences will rarely result in coherent stories. The tension

between the criteria of Agency and Drama in particular has been the subject of much

debate and is often called the narrative paradox (Aylett, 2000)

1.1.4 The Authoring Bottleneck

The ideal of a fully realized IS artefact, can only be achieved by a storytelling system

that is backed up with a huge library of content from which it can construct a variety

of alternative plots. This content could either take the form of an explicit enumeration

of all the possible plots or be specified in a more implicit representation. The former

is usually considered impractical, due to the combinatorial explosion of possibilities

and the effort it would take to write them all out, which is why most IS systems take

the latter approach. In that case the library needs to contain knowledge and facts

about the world the story takes place in and the characters that inhabit this world.

While this implicit approach is regarded as more scalable, it also results in a very

different role for the author: their work becomes more that of a knowledge engineer

4

Chapter 1: Introduction

than that of traditional novelists, poets, playwrights or screen writers. Instead of

detailing a plot from beginning to end, the author has to describe a world in which

the possibility for numerous hypothetical plots exists. Since this description has to

happen in a way understandable by the computer, computer programming might be

a better analogy than writing to describe the author’s activity within this framework.

This process of authoring, has been recognized as one of the main bottlenecks in the

creation of fully realized IS artefacts. Pizzi and Cavazza (2008) for example state that

“the issue of content creation is lagging behind the early technical developments and

their proof-of-concept prototypes” while Spierling and Szilas (2009) call authoring

“one of the main challenges that have recently been discussed at Interactive Story-

telling conferences”. The authoring bottleneck does not only prevent the creation of

fully realized IS artefacts but also hinders IS research progress since research topics

such as story generation algorithms, user experience or the narrative paradox cannot

easily be studied on a small scale. There is much work to be done in characterizing,

understanding and improving the authoring process.

1.2 Crowdsourced Authoring

This thesis presents an exploration of the nature of the authoring bottleneck and

suggests a crowdsourced authoring process as a potential solution. The term “Crowd-

sourcing”, coined by Howe (2006), refers to work processes that rely on large scale

division of labour. Large or tedious tasks are divided into small subtasks, which are

then completed by members of a crowd, typically online. The rationale for using

crowdsourcing to address the authoring bottleneck problem is straightforward and in-

tuitive. Distributing the authorship for IS among a large enough group, should result

in a large corpus of useful data, even when any one individual only makes very minor

contributions.

An IS artefact created in such a way can of course not be the creative vision and

product of a single mind. Critics may argue that such a method of creation is inca-

pable of producing works of art, as it replaces the artist’s determined focus with a

muddled mass consensus. They may be right, but IS is too young and immature as

a storytelling medium to assess what constitutes artistically valuable IS artefacts. It

seems plausible that the unique IS property of providing stories that develop accord-

ing to the individual reader’s choices fits a distributed authorship model: As there is

an almost infinite story space to fill, there is enough room for every contribution from

the crowd. The existence of the authoring bottleneck seems to suggest that there

is in any case no way around a collaborative creation of fully realized IS artefacts.

Similar to software or film production, the scale of work necessary is beyond what a

single individual can reasonably contribute. Without significant advances in Artificial

5

Chapter 1: Introduction

Intelligence that allow the authoring to be fully automated this is not likely to change

anytime soon.

In light of this inevitability of collaboration, the exploration of a crowdsourcing ap-

proach to IS authoring seems a worthwhile endeavour that should be of interest for

the wider IS community. Several interesting research questions follow from this line

of enquiry, e.g. how should the authoring task be divided, what data exactly should

be collected, how should it be processed, how is the collection process organised or

how to assure quality. The work presented here addresses all these questions, though

it does not claim to answer them definitely.

1.2.1 Collecting Linear Example Stories

Orkin and Roy (2007) demonstrated the potential of crowdsourced authoring with

the “Restaurant Game”, a video game in which two players role-play the interac-

tions between a waitress and a customer in a restaurant setting. Thousands of game

play sessions were recorded and used to learn behaviour patterns for autonomous

computer-controlled characters (Orkin and Roy, 2009). This work has opened up

fertile ground for further exploration of the topic and more recently Li et al. (2012)

have started to explore similar territory with the Scheherazade system.

Both these systems share the same approach to subdividing the authoring task: con-

tributors from the crowd are asked to provide linear example stories, which a computer

system collects and automatically merges into a story world. Asking authors to con-

tribute on the level of linear stories provides a natural way for them to think about

narrative and thus greatly reduces the learning barrier. Authors do not need to un-

derstand IS in order to make useful contributions. By relinquishing control to an

automated system that merges multiple collected stories into an IS story world, one

loses some confidence in what kind of experience the resulting IS artefact will be, but

gains productivity and scalability. This thesis deals with the design of such authoring

solutions and how they can be made more efficient.

1.2.2 The Crowd Task Adaptation Hypothesis

As mentioned above, the idea of approaching the authoring of interactive story worlds

as a crowdsourced collection of linear example stories is shared with other work and

cannot therefore in itself be this thesis’ claim to novelty. The central novel aspect

that the work within this thesis adds to this approach is the concept of “Crowd Task

Adaptation” and its applicability to the authoring of interactive story worlds.

Crowd Task Adaptation is a term we define in this thesis and refers to the simple

premise that an IS system, which makes use of crowdsourcing dynamically modifies

the tasks handed out to crowd workers based on the corpus of collected data to date.

6

Chapter 1: Introduction

This thesis’ central research hypothesis is that by applying Crowd Task Adapta-

tion, such a system may gain some additional value from its collected data compared

to the value it would have derived from it otherwise. In other words, we hypothesize

that Crowd Task Adaptation can make the collected data more valuable.

This notion of added value may sound somewhat vague but that is due to the fact

that there are many different possible ways in which to implement the idea of Crowd

Task Adaptation and the benefits gained are likely differing depending on the cho-

sen implementation. Later in this thesis we discuss both different variants of Crowd

Task Adaptations and the different kind of benefits we believe to be gainable from

employing Crowd Task Adaptation. They include for example increased variety and

homogeneity in the created story world. We also show some concrete implementations

of Crowd Task Adaptation in two IS authoring systems, which were implemented in

the course of this work.

1.3 Summary Of Contributions

The work presented in this thesis makes several novel contributions to the state of the

art in IS research. Most importantly it introduces the theoretical concept of Crowd

Task Adaptation and its application to authoring interactive stories. This is novel

since previous crowdsourcing approaches to IS authoring such as the ones mentioned

above have always used static tasks. This discussion does not remain theoretical but

is given weight through the implementation in two concrete IS authoring systems:

ENIGMA and CROSCAT. The latter system was used to obtain experimental results

from crowdsourced authoring studies. These results confirm our research hypothesis.

They clearly demonstrate that employing Crowd Task Adaptation has improved the

quality of interactive stories authored with the CROSCAT system. In its entirety this

work therefore constitutes a small further step towards a solution to the authoring

bottleneck.

Furthermore this thesis makes several secondary contributions:

• A concrete IS authoring case study is presented in Chapter 2, giving previously

unpublished details about the construction of one of the major IS artefacts

(FearNot!). This case study sheds more light on the authoring bottleneck.

• Two algorithms for adapting crowdsourced example story collection tasks are

presented in this thesis. The first is used for learning planing domains from

example stories with mixed initiative authoring and is described in the context

of the ENIGMA authoring system in Section 6.3. The second is an algorithm

for selecting backstories from a branching story tree, which is implemented in

7

Chapter 1: Introduction

the CROSCAT system and discussed in Section 7.2. Since the Crowd Task

Adaptation concept itself is novel these algorithms are obviously novel as well.

• The ENIGMA and CROSCAT authoring systems that were exclusively written

for this PhD are available to interested parties (see Appendix F for details) and

could be used in future IS research.

• During the implementation and evaluation of the systems mentioned above,

generic lessons about the design of IS authoring tools were learned, which are

shared in this thesis.

• As far as we are aware, out of the few published pieces of research that apply

crowdsourcing to IS authoring, the work in this PhD is the only research to date

that focuses on collecting dramatic character-driven stories rather than scripts

of typical behaviour in certain situations. In these other pieces of work, much

duplication in the collected story material is needed to statistically determine

what is typical behaviour. As a result other pieces of work have framed the task

in a way that does not encourage dramatic improvisation as much as this work

does. Section 9.2 provides a discussion backed by experimental results about

some properties of stories that our approach seems particularly suited to.

• As an outcome of the experimental studies conducted in this PhD, several actual

IS artefacts were authored. The creation of new IS artefacts in itself arguably

constitutes a useful contribution to the research field, as especially theoretically

minded IS scholars need IS artefacts to analyse. All IS artefacts created in the

course of this PhD work are available to interested parties (see Appendix F).

1.4 Thesis structure

The remainder of this thesis is structured into 3 parts and 9 chapters.

Part I “The Authoring Bottleneck” consists of 3 chapters, in which the ex-

isting problems around authoring in IS systems are explored.

First, Chapter 2 motivates the work within this thesis by presenting a case study of

authoring activities performed by the eCircus project team (including the author of

this thesis) when creating the educational interactive bullying drama FearNot! An

analysis of the problems encountered during these activities is provided.

Next, Chapter 3 reviews a multitude of other existing IS systems, focusing on the

data structures for story representation employed by these systems. This will serve

to demonstrate the many facets of modern IS systems and underline the universality

of the authoring bottleneck problem addressed by this thesis.

8

Chapter 1: Introduction

Chapter 4 is a review of literature that acknowledges the authoring bottleneck and

proposed solutions in the form of authoring processes and tools.

Part II “Crowdsourced Authoring” is the central part of the thesis, where

crowdsourcing as a potential solution to the authoring bottleneck is discussed and

crowd task adaptation is suggested as a novel modification to this approach with the

potential to increase crowdsourcing effectiveness. Chapter 5 compares crowdsourcing

with other scalable online collaboration approaches, discusses the merits of basing

an authoring process for IS systems on crowdsourcing in general and on crowd task

adaptation in particular. This is followed by 2 chapters describing concrete prototype

implementations of IS authoring systems based on the crowd task adaptation princi-

ple.

Chapter 6 centres on ENIGMA, the first prototype for a collaborative authoring sys-

tem built as part of this research. A first small-scale user trial revealed that the

amount of work required to make this approach usable goes beyond what is achiev-

able within the scope of a single PhD.

In Chapter 7 a second authoring system prototype, CROSCAT, is described, which

was implemented following the lessons learned from the ENIGMA user trial. This

system serves as the basis for the authoring study described in Section 8.2.

Part III “Authoring Experiments” puts crowdsourced authoring and the prin-

ciple of crowd task adaptation, proposed in Part II to the test through the analysis

of collaborative authoring studies.

Chapter 8 describes the motivation and design of two collaborative authoring studies

carried out during the course of this work. In one of these experiments hand-written

stories were collected, while the other experiment employs the CROSCAT authoring

system for a comparison between crowdsourced authoring with and without crowd

task adaptation.

Chapter 9 presents the results of these studies and in their analysis focuses on what

these results can teach us about a) crowd task adaptation and b) the properties of

story worlds suitable to crowd-sourced authoring.

Finally, Chapter 10 reflects upon the work presented in this thesis and draws

conclusions from it.

9

There is nothing to writing. All you do is sit down at a typewriter and bleed.

Ernest Hemingway

Part I

The Authoring Bottleneck

10

Chapter 2

Creating FearNot! - An Authoring

Case Study

We start exploring the issues surrounding IS authoring with a case study examin-

ing the creation of a specific system: the anti-bullying interactive drama “FearNot!”.

FearNot! as an IS artefact is based on an IS Runtime Engine, which utilises the

agent architecture FAtiMA (short for FearNot AffecTIve Mind Architecture) (Dias

and Paiva, 2005; Aylett et al., 2006a). This chapter’s discussion of how FearNot! was

created is therefore primarily focused on how to encode IS story worlds in the FA-

tiMA architecture. During the research project eCIRCUS, the author was personally

involved in the creation of FearNot!, both as an author and as a system designer/pro-

grammer. The FearNot! design, implentation and authoring work in itself was a joint

team effort and is not claimed to be a novel contribution by this thesis. However,

this chapter’s retrospective anaysis of the authoring processes that were employed in

producing FearNot! and the problems encountered along the way constitutes a novel

contribution. These analyses are presented in Sections 2.5 and 2.6.

These experiences in IS authoring were very important motivators for the research

direction this PhD has taken and thus should not be omitted from this thesis. Besides

mirroring the author’s personal research journey, this chapter also serves the purpose

of providing an in-depth example of an IS runtime engine and its associated story

representation. Another reason for dedicating considerable space to a single system

in this chapter is that the discussion in Chapter 6 of the ENIGMA authoring system

will require a basic understanding of FAtiMA.

Furthermore, readers unfamiliar with interactive storytelling research will benefit from

such a detailed system description to appreciate the complexity of the IS authoring

task. Those already well-versed in the field of IS research on the other hand will

probably recognize FearNot! as one of the more prominent IS systems and appreciate

the previously unpublished details of its creation process.

While it is somewhat unconventional to start a thesis with a case study instead of a

11

Chapter 2: Creating FearNot! - An Authoring Case Study

literature review chapter, in this case it makes both chronological and didactic sense.

Literature reviews detailing a variety of alternative approaches follow in the subse-

quent two chapters but having first discussed a single system in detail helps ground

these discussions and gives them context.

When the eCIRCUS project set out to create FearNot! there were no established

processes to rely on that define how one best approaches such a task. In fact, to this

date this still has not changed. The workflow descriptions in this chapter are there-

fore representing an experimental attempt of establishing best practises for authoring

an IS story world with a medium size multidisciplinary team. Critically evaluating

these practises in retrospect falls very much within the research scope of the eCIR-

CUS project. In other words, while producing FearNot! was undoubtedly the primary

goal, the authoring journey of arriving there was in itself a worthwhile endeavour that

provides lessons learned and contributes to the overall knowledge of the IS research

field. In some respect, this Chapter attempts to belatedly deliver this previously un-

published process analysis.

2.1 FearNot! Overview

VICTEC (Virtual ICT with Empathic Characters) and its successor eCIRCUS (Ed-

ucation through Characters with emotional Intelligence and Role-playing Capabili-

ties that Understand Social Interaction) were interdisciplinary collaborative research

projects exploring the use of IS technology in social and emotional learning for young

primary school children. This means learning of moral lessons and empathy rather

than hard facts. The FearNot! application, which applies these ideas to anti-bullying

education is the primary output of the VICTEC and eCIRCUS projects. The design

goal for FearNot! was to create a game-like application that would allow children to

empathise with the victims of bullying and safely experiment with different coping

strategies (Aylett et al., 2006b). Ideally, with the outcome that bullies using the appli-

cation would learn to empathise with the victims and act less aggressively, bystanders

would more readily intervene when witnessing bullying incidents and victims would

gain more confidence. Interactive stories presented in game-like virtual environments

promise to be a suitable medium for conveying these messages as video games have a

wide acceptance in and attraction to the target audience of primary school pupils.

FearNot! conveys the problems surrounding bullying in schools by describing the

trials and tribulations of a single primary school child (henceforth referred to as the

victim) who is experiencing bullying in the school environment. The gender of the

victim protagonist is chosen to match the user’s gender in order to make it easier for

the user to identify themselves with the protagonist. One of the first and most im-

12

Chapter 2: Creating FearNot! - An Authoring Case Study

Figure 2.1: Screenshots of the FearNot! antibullying application showing a dramatic
episode (left) and an interaction session (right)

portant decisions when designing an IS artefact is the role of the user. The VICTEC

team in their design of FearNot! did not chose the most obvious and prevalent IS

interaction style “user as participant”, where the user influences the unfolding story

by directing the actions of a character in the story. Instead in FearNot!, the user takes

a “Spect-Actor” role, a mix between spectator and actor. Concretely in FearNot! this

means that the user is an invisible friend to the bullying victim protagonist.

The story itself unfolds in several dramatic episodes (left side of Figure 2.1). Dur-

ing these episodes the user just observes the dramatic interactions between the char-

acters. Interspersed between the dramatic episodes are interaction sessions, in which

the protagonist consults the user and asks for advice. This consultation takes the

form of a free text entry chat (right side of Figure 2.1). During this interaction the

user can advice the victim on how to best deal with their bullying problems. This

influences the victim’s behaviour in the subsequent dramatic episode.

The interaction structure of FearNot! was inspired by the Forum Theatre approach,

pioneered by Boal (2000). In this form of dramatic performance, there are several

time-out sessions from the performance during which the actors address the audience

in-character and discuss the preceding events. Forum Theatre has been found to be

very effective in education and thus aligns very well with what FearNot! tries to

achieve.

2.1.1 FearNot Creation Stages

Figure 2.2 gives an overview of the major stages involved in creating FearNot! The

division between the VICTEC and eCIRCUS projects is shown. VICTEC laid the

groundwork by defining the conceptual design for what FearNot! should be (stage 1),

designing and implementing a software architecture for supporting this design (stage

13

Chapter 2: Creating FearNot! - An Authoring Case Study

1: conceptual
design

2: architecture design
and implementation

3: prototype content
authoring

4: prototype
evaluation

VICTEC project

5: architecture
improvements

6: large scale content
authoring

7: large scale
evaluation

eCircus project

Figure 2.2: Major FearNot! development stages.

2), authoring some content for an application prototype (stage 3) and evaluating this

prototype with school children (stage 4). This evaluation in which an emergent version

of the FearNot! prototype was compared with a scripted one showed some promise.

Specifically it was found that children found the conversations more interesting and

realistic, thought the victim was more willing to take their advice and thought they

were able to help the victim better in the emergent version (Aylett et al., 2005). But

the evaluation also highlighted that there was much more work to be done to turn the

FearNot! prototype into a useful educational tool. The prototype was simply offering

too little content and too short interaction to make any discernible difference.

The eCIRCUS project’s goal was to scale up the FearNot! prototype that was available

by the end of the VICTEC project and increase its robustness. These goals necessi-

tated substantial improvements/changes to the FearNot! software architecture (stage

5). More importantly for this chapter, the increase in scale went hand in hand with

the authoring of new content (stage 6) that went several times in size beyond what

was created in VICTEC (stage 3). While the VICTEC prototype provided a fairly

linear experience of less than 5 minutes, the goal in eCIRCUS was to allow for up to

45 minutes of interactions of a more emergent nature. The benefit of a robust large-

scale application was the possibility of being able to perform a large-scale longitudinal

evaluation study in actual primary schools, directly embedded in the curriculum over

several weeks (stage 7). For the purpose of our discussion of authoring, the following

summary of the study results shall suffice: While no statistically significant increase

in coping strategy knowledge as a result of using the FearNot! software was found

(Watson et al., 2010), the use of FearNot! was shown to have “a short-term effect on

escaping victimization for a priori identified victims, and a short-term overall preven-

tion effect for UK children” (Sapouna et al., 2010).

This chapter will first focus on describing the software architecture that FearNot! is

based on, especially the agent architecture FAtiMA. As it has little bearing on the dis-

cussions here, we will not make a distinction between features implemented in stages

2 and 5. The later sections of this chapter will then follow to describe the authoring

activities during stage 6.

14

Chapter 2: Creating FearNot! - An Authoring Case Study

2.2 An Overview of the FAtiMA Architecture

Before describing the process of creating FAtiMA based IS artefacts in general and

FearNot! in particular, it is necessary to give the reader an overview of the FAtiMA

system itself. It is important to note that FAtiMA is not a complete IS runtime engine,

but an agent architecture following the Beliefs, Desires, Intentions (BDI) paradigm

(Rao et al., 1995). A FAtiMA instance simulates the thought processes of a single

autonomous agent, incorporating psychological theories of the human mind, such as

the OCC model of emotion (Ortony et al., 1988) or the theory of appraisal and cop-

ing by Lazarus and Folkman (1984). In order to produce interactive stories using

this technology one can populate a simulation environment with several such agents,

each one acting autonomously. As these autonomous agents are influenced by each

other and the environment, their interactions can be interpreted by a spectator as a

narrative. If the system provides means for the spectator to influence the agents, e.g.

through an avatar present within the simulated environment, the spectator becomes

an interactor and the simulation as a whole can be considered an IS artefact. This dis-

tributed bottom-up approach to Interactive Storytelling has been termed “Emergent

Narrative” by Aylett (1999). We now describe the basic components and functionality

of a single FAtiMA agent before providing more details on how several such agents

and a user interact in an emergent narrative application framework like the one used

in FearNot!.

2.2.1 Planning

At the heart of a FAtiMA agent resides a STRIPS (Fikes and Nilsson, 1971)-like

planning system that builds plans (intentions) based on the agent’s knowledge of the

current world state (beliefs) in order to achieve goals (desires). Plans are ordered

sequences of actions that the agent must execute in order to achieve a goal state.

To illustrate how this works in FAtiMA, consider the example of an agent that is

placed in an environment with a jar containing a cookie. For the sake of simplic-

ity we assume the agent has only a single goal GetCookie and can only perform 3

actions (also called planning operators): MoveTo([target], Open[container] and Pick-

From([object],[container]). Note that the actions are parameterised, i.e. they take

variable arguments and can be performed on different objects. FAtiMA uses square

brackets to denote variables. This is one aspect in which FAtiMA’s planning domain

representation differs from the STRIPS planning language standard, which is strictly

propositional, i.e. does not allow any variable bindings. In FAtiMA, the world state is

described through a set of logical predicates referring to entities (objects and agents).

It is these entities that the variables in planning operators can be bound to. In our

example the environment contains the 3 entities agent, jar and cookie. Both the goal

15

Chapter 2: Creating FearNot! - An Authoring Case Study

state and the initial world state are given through a set of predicates. Additionally all

actions define pre-conditions (requirements in order to be able to execute the action)

and effects (world state changes as a result of executing the action). Figure 2.3 shows

the logical descriptions of the initial and goal world state and lists the preconditions

(on top) and effects (at the bottom) for each action.

Initial State

in(cookie,jar)
¬open(jar)

¬at(agent,jar)
¬ has(agent,cookie)

Goal
GetCookie

has(agent,cookie)

MoveTo([target])

at([SELF],[target])

Open([container])

at([SELF],[container])
¬open([container])

open([container])

PickFrom([object],[container])

in([object],[container])
open([container])
at([SELF],[container])

¬ in([object],[container])
has([SELF],[object])

Figure 2.3: Illustration of the example cookie planning domain.

As should become evident from the examples, FAtiMA uses the open world as-

sumption, which allows it to ignore all aspects of the world state that are not made

explicit. For example the goal state only contains the statement that the agent has

the cookie but no other predicates, meaning that their truth value is irrelevant for

this goal.

The agent’s process of AI planning(Russell and Norvig, 2003) is equivalent to a

search task over a state space defined by all possible actions. The planner uses back-

ward search and first checks if the goal is already achieved. As this is not the case it

proceeds to search for an operator that can achieve the goal state, i.e. it examines the

effects of each operator and checks if they contain the predicate has(agent,cookie) or

a predicate containing variables that can be substituted to achieve has(agent,cookie).

The only action that qualifies is PickFrom so an instance of this action is inserted as

the final plan step with the variable [object] bound to the value cookie. The variable

[SELF] is automatically bound to the executing agent, it merely exists, so that the

executors name need not be hard-coded, so action definitions can be shared amongst

several agents. Having a final plan step, the planner now checks the preconditions of

the PickFrom action, which leads to a binding of the variable [container] to jar, as

in(cookie,jar) is a current world state. However 2 preconditions of the action are not

met, so the planner has to search the action space to find actions that can meet those

preconditions. Figure 2.4 shows the shortest complete resolved plan. Note however

that it is not the only valid plan. Any sequence of actions that achieves the goal state

is eligible, as long as the preconditions of each action in the plan are met along the

way. One example would be the sequence MoveTo(cookie), MoveTo(jar), Open(jar),

PickFrom(jar,cookie).

The example also shows that FAtiMA does not employ a type system for its

16

Chapter 2: Creating FearNot! - An Authoring Case Study

Initial State

in(cookie,jar)
¬open(jar)

¬at(agent,jar)
¬ has(agent,cookie)

Goal
GetCookie

has(agent,cookie)

MoveTo(jar)

at(agent,jar)

Open(jar)

at(agent,jar)
¬open(jar)

open(jar)

PickFrom(jar,cookie)

in(cookie,jar)
open(jar)
at(agent,jar)

¬ in(cookie,jar)
has(agent,cookie)

Figure 2.4: Complete plan in the example cookie domain.

variables. Any entity can be bound to any variable. A type system can however be

emulated by the author through additional predicates, e.g. isContainer([container]).

The actions and goals available to an agent and the predicates describing them are

defined at design time and immutable at runtime. As will be shown later, defining

and describing these action and goal sets constitutes a major part of the author’s

duty when authoring IS storyworlds using FAtiMA. Typically an agent has more

than one goal. In order to help contextualize which goal should be pursued when,

preconditions for goals can be defined. Only goals for which all preconditions are met

will be considered by the planner. If there is more than one goal at a given time with

all preconditions met, the planner will select one goal at a time to focus on. The goal

that the planner focuses on and currently plans for is called the active intention. Like

actions, goals can be parameterised, i.e. contain variables in their preconditions. For

example, a generalized version of the goal in the cookie example could be expressed

as GetFood([food]). A precondition like isFood([food]) will bind a specific entity to

the variable. The variable would then be referred to again in the success conditions,

which could be restated as has(agent,[food]).

A final point that should be made about the FAtiMA planner is that it also supports

interest goals. These are different kind of goals that express constraints that the

planner should attempt to work around, i.e. world states that the agent wishes to

preserve. A very common interest goal for most agents would be for example self-

preservation. Adding an interest goal that protects a predicate like healthy(agent)

can prevent the agent from performing actions that contain an effect like ¬healthy,

by causing the planner to prefer other alternative plans.

2.2.2 Emotions

FAtiMA sets itself apart from other planning systems through its tight integration

with a model of emotion. The model employed is based on the OCC taxonomy of

emotions by Ortony et al. (1988). The OCC model describes emotions as valenced

reactions to events experienced by the agent and helps determine which emotion a

certain type of event should generate. Figure 2.5 shows the basic structure of emotions

17

Chapter 2: Creating FearNot! - An Authoring Case Study

in the OCC model.

Figure 2.5: The OCC emotion taxonomy (from Ortony et al. (1988))

An emotion is represented through a label, a numeric intensity value and support-

ing information such as the target of the emotion and the inciting event. An agent can

experience several emotions at the same time and each emotion decays over time until

it eventually vanishes. The compound of all emotions felt by an agent at any given

time is called its emotional state and a numeric value called mood is assigned to this

too, comprised of the sum of all intensities, with negative emotions such as anger or

shame contributing negative scores. That means in FAtiMA it is for example possible

for an agent to have a neutral mood with a value of 0, but feel 2 strong emotions of

opposing polarities, for example anger and pride.

A FAtiMA agent generates emotions in three different ways: The prospect-based

emotions of the OCC model emerge naturally as a by-product of the agent’s planning

processes. Whenever an agent adopts a goal, hope (to achieve the goal) and fear (of

failing) are generated. The ratio between hope and fear is mainly determined by the

agent’s assessment of the probability of achieving the goal. Once a goal succeeds, hope

and fear are transformed into satisfaction and relief, whereas if it fails on the other

hand they turn into disappointment and fears-confirmed. The other non prospect-

18

Chapter 2: Creating FearNot! - An Authoring Case Study

based emotions are generated as reactions to external events using a set of hard coded

event appraisal rules (termed emotional reactions in FAtiMA). An emotional reaction

maps an event to up to 3 values: desirability (how much does the appraising agent

desire this event), desirability for other (how much does the other agent involved

desire this event) and praiseworthiness (how is this event morally judged by the ap-

praising agent). Each of these values can take negative or positive values and their

combination leads to the instantiation of specific emotions in the fortune of others,

attribution and well-being categories as defined by the OCC model.

Of course letting an agent possess emotions is only useful if the emotions are being

used somehow by the system. One major use for emotions is showing them to the user.

When a FAtiMA instance drives a graphical character in a simulated virtual world,

emotions can be utilised in the visualisation process by driving expressive behaviour

such as facial expressions. But while this can greatly improve character believability

to a human observer, this is a purely cosmetic use of emotions. There are a number

of other ways in which the emotional state also directly affects the agent’s decision

making processes:

• The intensity of the overall emotional state, i.e. the agent’s mood influences

the further generation of emotions and relationships to other agents. A posi-

tive mood, i.e. a positive emotional state will amplify new positive emotions

and lessen the effect of new negative emotions, while a negative mood has the

opposite effect.

• Emotions can be directly queried and used in boolean statements within for ex-

ample goal pre-conditions. For example a goal TakeRevenge([enemy]) could have

a precondition that the agent’s anger value towards the person to take revenge on

needs to be above a certain threshold, e.g. Greater(Anger([SELF],[enemy]),5).

• Prospect-based emotions influence the goal selection process. Negative emotions

associated with a certain goal for example decrease the likelihood of that goal

being chosen again.

• All emotions can also act as a trigger for reactive behaviour (see next section).

2.2.3 Reactive Behaviour

Not all behaviour is triggered through careful deliberation. In certain situations our

impulses make us do things that we would not choose to do if we were thinking about

them rationally. For example one might burst into tears in certain situations without

having chosen or wanting to do so. FAtiMA provides a facility to simulate this type

of behaviour as an alternative to the deliberative behaviour (Planning) described so

far. The reactive behaviour of an agent is defined through a set of simple triggers

19

Chapter 2: Creating FearNot! - An Authoring Case Study

called action tendencies. The trigger part of an action tendency is described by

an emotion and/or triggering event. The action that this trigger should cause is

also explicitly stated. As with goals and actions, variables may be used to allow

more generic statements. Figure 2.6 summarizes the integration of deliberative and

reactive behaviour in FAtiMA and also highlights how the concepts discussed so far

are plausible in terms of psychology and align with the theory of appraisal and coping

(Lazarus and Folkman, 1984).

Figure 2.6: High-level FAtiMA architecture diagram (from Aylett et al. (2006a)

2.2.4 Agents and their environment

FAtiMA agents follow a sense-think-act cycle. They sense by exposing a set of well de-

fined methods through a communication interface. When embedded in a compatible

agent execution environment, it is the environment’s task to route messages regarding

events in the environment to the agent. The agent processes these perceptions and

updates its knowledge base. Changes in the knowledge base can trigger action ten-

dencies, cause certain goals to become activated and others to become deactivated.

Furthermore they might make the current plan invalid or alternative plans more vi-

able. Acting for FAtiMA agents means sending the actions in the current plan to

the execution environment. As the system is designed for controlling the behaviour

of virtual agents in game like virtual environments, the execution of actions in the

world is typically not instantaneous. Instead the duration of actions is dependent

on the specific realisation of the action in the execution environment. For example

FAtiMA as the agent’s “mind” might issue the command walk to door. By issuing

this command the mind delegates control to the “body”, i.e. the part of the exe-

20

Chapter 2: Creating FearNot! - An Authoring Case Study

cution environment responsible for controlling the agent’s behaviour. In the case of

walk to door, the body module would perform tasks such as path planning, animating

and moving the character and performing obstacle avoidance. During all this time

FAtiMA waits patiently for a feedback message regarding the action’s success (or fail-

ure). Only once it has received this message will it proceed with the next step in

the plan. Note that the execution environment is also responsible for applying the

effects of actions. While FAtiMA necessarily has internal representations of action

effects these serve merely as heuristics for the agent’s planning. The agent needs to

perceive the effect through its sensory inputs in order to accept it. Consider for exam-

ple the action Open([container]). The effect open([container]) might not be applied

by the environment if the container is locked. Because effects are not guaranteed,

an optional probability for each effect can be specified. This does not need to match

the actual probability of the effect happening but should rather indicate the agent’s

certainty that the effect will occur. The probability values are taken into account

by the planner to compute overall probabilities of plans, which in turn are used to

compare alternative plans.

With the realtime execution of actions and realtime decay of emotions, time rep-

resents a major source of non-determinism in any simulation that involves FAtiMA

agents. This non-determinism is further amplified by the fact that usually multiple

FAtiMA agents are running in parallel as concurrent, independent processes. From

an author’s perspective this makes it harder to predict that a desired outcome will

be produced and “debug” an agent but on the other hand it can lead to the kind of

emergent behaviour that is desired from an Interactive Story.

2.2.5 Personality

One could encode all of an agent’s personality explicitly into its goals and actions.

For the sake of authoring efficiency it is however often useful to formulate goals and

actions in an objective way so that multiple agents that inhabit the same environment

can share a single library of action and goal definitions. In order to be able to do this

without creating “clones”, FAtiMA provides the facility of personality profiles. These

contain:

• The already mentioned action tendencies and emotional reactions.

• The names of goals (not their definition) that are enabled for the agent and 2

numeric values per goal indicating the importance of success and failure for this

goal.

• A decay and threshold parameter per OCC emotion. The decay parameter un-

surprisingly controls the speed of realtime decay of the emotion. The threshold

21

Chapter 2: Creating FearNot! - An Authoring Case Study

value filters out all emotions below a certain intensity. For example if the emo-

tional system generates a fear emotion with the intensity 4, an agent with a

fear threshold of 5 would not experience this emotion, whereas an agent with a

fear threshold of 3 would. In other words the fear threshold value controls how

fearful a character is.

2.3 Integrating FAtiMA into an IS Runtime En-

gine

A FAtiMA agent is an abstract configurable real-time decision making machine in-

spired by human psychology principles, which needs to be integrated into a storytelling

system in order to deliver an IS experience. There are several possibilities of how a

storytelling system could be built around FAtiMA agents. However, for the purpose of

this chapter it suffices to describe the actual storytelling system that was built in the

eCIRCUS project for delivering the FearNot! IS artefact. We will refer to this system,

which FAtiMA is a vital subcomponent of, as the “FearNot! software architecture”.

Figure 2.7 gives an overview of its components.

Story
Facilitator

Agent 1
Proxy

Agent 2
Proxy

FAtiMA
1

FAtiMA
2

3D Game Engine

Set &
Props

Agent 1
Model

Simulation
Model

Agent 2
Model

User
Agent

Speech
Synthesis

User Interface

....

Language
Generation

Language
Parsing

update

receive
notificaions

User

lipsynch

Audio
Output

Visuals
Output

Typed
Text Input

Story Facilitator
initialising other components

Figure 2.7: High-level components of storytelling system used in FearNot!

The system’s front-end is a Game Engine in which 3D character models can be

22

Chapter 2: Creating FearNot! - An Authoring Case Study

visualized and animated within a virtual environment. Every character displayed in

the virtual environment is controlled by a separate instance of FAtiMA. Agent proxy

components handle the communication with FAtiMA by implementing the sensor

and actuator interfaces dictated by FAtiMA. Each agent proxy acts as a place holder

for a FAtiMA agent instance in the simulation model and turns actions issued by

the connected FAtiMA instance into behaviour that the virtual body of the agent

can perform. Behaviours usually correspond either to a series of animations to be

performed by the body or a piece of dialogue that the agent should utter. In the

latter case a language generation system (a customized version of the semantic parser

SPIN (Engel, 2006)) is invoked that turns the symbolic representation of the action

into an actual line of dialogue. For example it might turn Speak(Greet,Ollie) into

“Hi Ollie, how are you?”. The language engine uses pre-authored templates and has

access to several context variables (e.g. gender and name of the speaker) in order

to modify utterances sensibly. The generated utterance is then passed to a speech

synthesizer which generates and plays back the character’s voice and links up with

the 3d model of the character for lip-syncing. The user agent component maps user

input events into symbolic world events. In the case of FearNot! the user interface

consists of typed natural language input and thus the user agent enlists the help of a

language parser that essentially performs the reverse task of the language generator

described above. In fact language generator and parser use the same system in this

case.

A simulation model stores the current symbolic state of the world. This consists of

a set of predicates describing the properties of simulated entities plus the history of

events that have occurred in the world. For each simulated entity (character or object)

the world model has one container. Each container stores the predicates associated

with the entity as a map of key / value pairs. For example the fact that the character

John is hurt could be stored in the world model as the value of the hurt property

inside the John container, i.e.John.hurt = true. The event memory of the world model

is an ordered list of events that have occured in the past with each event stored as a

tuple of event type, subject, action and parameters. To give a concrete example, the

event of Luke having successfully stolen John’s book could be expressed as an event

with type ACTION FINISHED , action steal , subject Luke and the parameters John,

book . Parameters are not broken down into more specific fields (e.g. object, item, etc)

at this level in order to be flexible in supporting arbitrary events initiated by FAtiMA

agents. Other event types include ACTION STARTED and ACTION FAILED .

Agent proxies update the simulation model when they start or finish performing an

action. Equally the simulation model gets updated by user actions. At the same

time agent proxies are also observers of the simulation model. Every agent proxy

gets notified when any changes to the model occur and passes these changes on to its

23

Chapter 2: Creating FearNot! - An Authoring Case Study

connected FAtiMA instance as perceptions. If for example FAtiMA 1 asks to perform

action x, its proxy will pass this event on to the simulation model, which is being

observed by Agent 2 Proxy, which in turn sends a perception event to FAtiMA 2.

The simulation model does not provide or need to provide any automation by itself.

It is essentially an observable black board for other components to exchange informa-

tion. All actions in the system are initiated by either the agents, the user or the Story

Facilitator (see next Section).

2.3.1 The Story Facilitator

The story facilitator (Figueiredo et al., 2008) serves the purpose of structuring the

narrative into episodes. It essentially breaks the emergent simulation up into small

manageable pieces with clearly defined boundaries. At design time the author provides

the story facilitator with a story profile and several episode profiles. The story profile

defines the overall properties of the story world, e.g. the characters that are part

of the story, the possible locations and props, an initial world state and the set of

episode profiles linked to the story. Each episode profile contains the following:

• pre-conditions: These are expressions of world states that need to be fulfilled

in order to be able to select this episode. For example an episode dealing with

the funeral of the hero would probably include a pre-condition that the hero

needs to be dead in order to prevent this episode from appearing in the wrong

context.

• set, characters & props: Where is this episode situated and which characters

(and possibly objects) are initially present. This information is reminiscent of

the scene introductions usually found in dramatic texts written for the stage.

• character goals: The episode also defines the subset of goals (out of the overall

pool of goals available to each FAtiMA agent) that each character can adopt

during this episode. Considering the lack of complex hierarchical goal manage-

ment in FAtiMA this was considered a reasonable compromise that allows the

coexistence of many goals in an agent while still allowing contextually highly

relevant goals to be chosen in every situation. Of course the price one pays for

this is a restriction of emergence as the agent is deprived of a large part of its

possible behaviour repertoire by only having a selective subset of goals.

• triggers: Each episode may define trigger events (reactive rules that fire when

certain world states occur). A set of special narrative actions can be invoked

through those trigger (e.g. entrance and exit events of characters or exter-

nal/chance events such as weather.). The intention of the triggers is to provide

24

Chapter 2: Creating FearNot! - An Authoring Case Study

the opportunity to subtly steer the story into a desired direction without inter-

fering with the character’s autonomy. For example, if the hero gets cold feet

and attempts to leave the villain’s lair without having confronted him, the story

facilitator might use the damsel in distress trope and spawn a princess that calls

out for help. This is in line with how a game master in pen & paper role playing

games operates (Aylett et al., 2008).

• finish conditions: These define conditions in which the story facilitator con-

siders the episode to be over. Multiple finish conditions can be defined so that

multiple outcomes are supported. The default is to end the episode after a

configurable amount of inactivity. This relieves the author from predicting in

advance what the emergent outcomes of an episode might be. The downside to

using this facility is that each episode ends with an awkward silence.

The episode selection process is straightforward. The next episode is selected ran-

domly from the set of all eligible episodes (with all pre-conditions met) each time

an episode ends. If the set is empty the story is over. In the software architecture

depicted in Figure 2.7, the story facilitator is responsible for loading the respective

FAtiMA agents and the user agent, instructs the game engine to load new sets and

models and initializes the simulation model whenever it starts a new episode. It does

a similar clean up after an episode ends. The contents of the simulation model and

the states of FAtiMA agents persist in between episodes so that changes to the world

and characters can be propagated across episode boundaries.

Example Scenario

The following example illustrates how the Story Facilitator (SF) works. Given a story

profile with three available episodes as shown in Table 2.1 the SF would start by exam-

ining the pre-conditions of all episodes. With a blank slate at the beginning of a story,

only Episode 1 has its pre-conditions fulfilled. At the begining of the story no events

have happend yet and Episodes 2 and 3 have pre-conditions checking for the presence

of a prior event, whereas the pre-condition of Episode 1 checks for the absence of a

prior event. As it is the only eligible one, Episode 1 is loaded and initialised. This

involves instructing the 3D game engine to load the matching environment (School)

and character models (Luke and John) and the startup of the FAtiMA agents for Luke

and John and their proxies. The FAtiMA agents are also constrained to only have the

goals specified in the episode. In this case Luke has the goal of bullying John and

John has the goal of escaping from Luke. After this initialisation is complete, the SF

relinquishes control to the agents and monitors the ongoing changes to the simulation

model.

25

Chapter 2: Creating FearNot! - An Authoring Case Study

Episode 1 Episode 2 Episode 3
Description

John encounters an
aggressive Luke on the
street

John confronts Luke and
demands him to stop the
bullying

John asks the user for ad-
vice on how to deal with
Luke’s bullying

Characters
John, Luke John, Luke John, User

Setting
School Playground John’s Room

Pre-conditions
!EVENT: (Luke, Bully,
John)

EVENT: (Luke, Bully,
John)

EVENT: (*, Bully, John)

John(courageous)
Character Goals

John: Escape(Luke) John: Confront(Luke) John: AskForHelp(User)
Luke: Bully(John) Luke: Apologise(John)

Luke: MakeFunOf(John)
Finish-conditions

timeout timeout EVENT: (User, Advise,
John, *)

Table 2.1: A simple example of Story Facilitator episodes

The FAtiMA agents for Luke and John will now likely spring into action, probably

with Luke pursuing his goal of bullying John. This may or may not succeed and John

may or may not succeed in running away from Luke. The SF is not concerned with

which events happen, it simply waits until the agents stop acting, since the finish-

condition for the episode is a timeout. When that timeout occurs, the SF ends the

current episode and looks for the next eligible episode. Assuming a bullying event has

happened this makes Episode 3 eligible. Episode 2 is still not eligible has it has an

additional unfulfilled pre-condition (John being courageous). The SF now initialises

Episode 3 by switching the setting to John’s room and activating the user and John

and giving John the goal of asking the user for help. The John FAtiMA agent should

pursue its goal of asking for help by initiating a dialogue with the user. The user

can type in different pieces of advise in response. Eventually the event (User, Advise,

John, *) will have occurred, which is the episode’s finish-condition and which will

result in the SF ending the episode.

Depending on what advise the user has given (notice the * place holder in the Ad-

vise event), John may or may not have become courageous. In the case of him not

becoming courageous, there are no more eligible episodes left to select for the SF and

the story ends. If John had become courageous on the other hand, the SF would have

found Episode 2 to be eligible and selected it. In the latter case the SF would initialise

and monitor Episode 2, waiting once again for a timeout, after which in this simple

26

Chapter 2: Creating FearNot! - An Authoring Case Study

example the story would end as all episodes have been used up.

2.4 Story World Contents

In the conceptual division of an IS Experience shown in Figure 1.1, the FearNot!

software architecture (composed of multiple instances of FAtiMA agents, a supporting

agent framework and a simulated 3D virtual environment) constitutes an IS runtime

engine . In order to create an IS artefact like FearNot!, a story world (i.e. content for

the runtime engine to process) needs to be authored. The following types of content

are required by the FearNot! software architecture:

• Character Configuration Content: Configuration data for FAtiMA that

define an agent’s personality and its repertoire of behaviour.

• Dialogue Content: Actual lines of dialogues, that are uttered by characters

or a narrator.

• Interaction Rules: Rules for how the user can interact with the story world.

• Presentational Content: All graphical and audio material for presenting the

unfolding story to the user.

• Story Structure Content: Configuration data for the Story Facilitator de-

scribing the constraints for story progression across episodes.

2.4.1 Character Configuration Content

Each FAtiMA instance loads at startup some XML configuration files that encode

the agent’s planning domain (action and goal libraries), expressed in a STRIPS like

language. The planning domain represents the general knowledge of the kind of

behaviour that is available in a given story world. As this knowledge usually tends to

be available to all characters, the configuration files for the planning domain can be

shared between all agents. Listing 2.1 gives an impression of the XML syntax used

to configure FAtiMA agents, in this case to describe an action. The action illustrated

is taken from the cookie planning domain (see Figure 2.3).

Listing 2.1: Example of XML syntax for describing a FAtiMA action

<Action name="Open([container])">

<PreConditions>

<Property name="at([AGENT],[container])" operator="=" value="True" />

<Property name="[container](isOpen)" operator="=" value="False" />

</PreConditions>

<Effects>

27

Chapter 2: Creating FearNot! - An Authoring Case Study

<Property name="[container](isOpen)" operator="=" value="True" />

</Effects>

</Action>

Furthermore each FAtiMA instance is also initialized with an XML agent person-

ality profile (see Section 2.2.5).

2.4.2 Dialogue Content

Assuming the characters in the story world are talking with each other, the system

needs to be provided with the language generation templates that map FAtiMA speech

acts into actual natural language dialogue lines. More than one mapping for any given

speech act may be provided, in which case one of the eligible templates is chosen at

random. Listing 2.2 demonstrates the syntax of specifying language templates based

on two examples of different complexity.

Listing 2.2: Two examplary language engine rules from FearNot!

giving in to a threat

Type(Value:threattalktopositiveanswer)

-> Utterance(Value: "Ok, ok. Just leave me alone, ok?")

victim replying that he/she needs help

Type(Value:helpquestionpositiveanswer) sex(Value:$S) bully(Value:$B)

-> Utterance(Value: ("Erm, yes, actually ",$B," bullies me. ",

Lex(SemCat:ppn_3,Number:sg,Gender:$S,Case:nom),

" makes my life a misery."))

The value of the mandatory parameter “Type” provides the speech act symbol.

The first example, shows the most simple type of template where a specific dialogue

line is directly provided. The second example on the other hand makes use of parame-

ters. One parameter in this case is a name that is inserted into the dialogue, while the

other parameter is a variable indicating gender, which is passed into a lexicon lookup

function to retrieve the grammatically correct personal pronoun. Similarly any world

state, including the emotional state of characters may be passed to a language rule

and used in a template. Obviously templates of the first type are easier to author but

the flexibility provided by the use of parameterisation as demonstrated in the second

example can improve the reusability of dialogue content. On the other hand authors

disinclined to use these more complex features can achieve more reusability by paying

more attention to how utterances are worded. For example instead of “He/she makes

my life a misery.” one might write “I feel so miserable”, which in this context conveys

roughly the same meaning.

28

Chapter 2: Creating FearNot! - An Authoring Case Study

2.4.3 Interaction Rules

The FearNot! software architecture supports only one type of user interaction with

the story, namely typed natural language input. The same language engine that

generates agent dialogues is also used for parsing user inputs. The templates are

specified using the same syntax as the generation rules. Listing 2.3 shows a parsing

rule used in FearNot!. In this particular example the parser looks for one of a number

of verbs, followed at some point by the noun teacher. If this pattern is encountered it

is matched to the speech act “suggestcopingstrategy”. This example also shows how

a variable ($C) is used to store (a portion of) the state of the dialogue: in this case

which coping strategy the user has suggested in the dialogue.

Listing 2.3: An example of a user language parsing rule

or(go,talk,tell,ask,speak,say,explain) teacher %$C=copingstrategy()

-> Type(value:suggestcopingstrategy) copingstrategy(Value:tellteacher)

2.4.4 Presentational Content

In the FearNot! software architecture the story is presented to the user in the form

of a 3D virtual environment. This requires the availability of audiovisual resources

such as textured 3d models of environments, character and object models, animations

for the characters, voices and sound effects, etc. Many of these resources furthermore

require some meta data annotation. For example 3D environments need the definition

of interaction spots, walkable areas, etc. Character models similarly have interaction

spots attached to their geometry and also need higher level behaviours that string

together multiple animations and can be mapped to character actions initiated by a

FAtiMA instance. The creation of this category of content is a well understood work

step in the production of video games. Well established tools (e.g. modelling software

and level editors) are available to efficiently perform these tasks. The only type of

the above resources that is decidedly different in FearNot! from standard video game

techniques is the character voices. Rather than having a script containing all possible

sentences and recording all of these, the speech synthesis approach employed by the

FearNot! software architecture uses a unit selection technique that only requires the

recording of some dialogue samples to capture a given voice and make it say any-

thing. However, in contrast to universal speech synthesis, in a unit-selection system

as employed in FearNot!, the quality of the generated speech improves if the recorded

samples represent the overall domain well (Weiss et al., 2007). While speech synthesis

cannot match the quality of a professional voice-over, there are definite advantages

to its use in the production cycle of an IS artefact. Furthermore, the use of speech

synthesis is necessitated by the template based language generation and the resulting

29

Chapter 2: Creating FearNot! - An Authoring Case Study

unpredictability of generated utterances.

2.4.5 Story Structure Content

FearNot! story structure content consists of configuration files for the story facil-

itator. Using XML syntax these files describe the properties of individual episodes

(such as characters present, finishing conditions, etc) and ordering constraints between

episodes. The above Section 2.3.1 on the Story Facilitator explains the details.

2.5 FearNot! Authoring Process

In the above sections we have discussed how the FearNot! software architecture

works and what kinds of content is needed to create an IS experience based on this

architecture. We will now focus on how this content was authored in the case of

FearNot! These observations are based on a number of sources: personal experience

of being part of the team that carried out this work, analysis of the created content

and retrospective analysis of archival information such as project documents, email

correspondence, etc. With regards to the creation stages outlined in Figure 2.2 this

section will focus exclusively on Stage 6, i.e. the authoring activities during the

eCIRCUS project.

2.5.1 Resources

The box representing stage 6 in Figure 2.2 is innocuously labelled “large scale con-

tent authoring” but it represents a variety of very different activities that all fall into

the category of “IS Authoring”. While there are no exact man-hour breakdowns of

work that can be attributed to this process we can make a reasonably well informed

estimate: The e-Circus project ran for exactly 3 years employed about 15 full-time

researchers from several disciplines and dedicated about half of its resources to im-

proving the FearNot! prototype1. Taking into account Figure 2.2, we can see that

the FearNot! work carried out during eCIRCUS covered 3 main stages: technology

development, authoring and evaluation. Assuming that these stages are roughly equal

in required effort, we can conclude that authoring FearNot! consumed about a third

of half the project resources (a sixth), which amounts to 6 months of the full project

resources. Given the roughly 15 project employees this amounts to an impressive 90

man-months. While undeniably being a very rough estimate, this number neverthe-

less conveys the scale / order of magnitude of the work involved. And while some

1The other half was spent developing a new IS artefact called ORIENT (Kriegel et al., 2008) that
employs the same principles and base technologies as FearNOT! but for promoting inter-cultural
empathy in teenagers.

30

Chapter 2: Creating FearNot! - An Authoring Case Study

team members were more responsible for authoring than others, every team member

contributed in some way to this task: Authoring turned out to be a truly multidis-

ciplinary endeavour and a focal point of integration where every team member could

contribute in some way with their area of expertise. This is for example in contrast to

the technology development and evaluation phases that were very much the exclusive

domain of the computer scientists and psychologists.

2.5.2 Workflow

Create Storyboards

Identify Graphical
Resources (Models,

Animations, Locations)

Artwork: Modelling,
Texturing, Animating

Knowledge Representation:
Symbols, Planning Domain,
Parameters, Speech Act
Primitives

Dialogue Writing
& Encoding

Content
Integration

Feedback to
Development Team:

Bug Report or
Feature Request

Testing

Collect Stories from
children in workshops

Speech Synthesis
Training

Figure 2.8: FearNot! authoring workflow

So how was the authoring work distributed between the project team members?

Figure 2.8 illustrates the workflow employed by the e-Circus team. With the excep-

tion of speech synthesis training all these workflow tasks were performed manually.

The process started with organizing a series of workshops in which school children

were invited to write stories dealing with bullying. This kind of involvement of chil-

dren in the authoring process was deemed necessary if the end result was to be a

realistic portrayal of bullying that children could relate to. This stage of the process

exhibits some similarities to the crowdsourcing approach to authoring that the origi-

nal work presented in this thesis takes. However the children’s input stories were not

used directly but rather utilised as a source of inspiration and a tool to probe chil-

dren’s attitudes towards bullying. Psychologist and educational experts in the team

condensed the themes emerging from the collected workshop materials into around

31

Chapter 2: Creating FearNot! - An Authoring Case Study

40 storyboards (20 for boys and 20 for girls stories). Each of these storyboards was

meant to represent the blueprint of a FearNot! episode.

At this stage the team collectively analysed the available storyboards and identified

a pool of required graphical resources. This included 3D locations, character and

item models and animations. This step allowed the parallelisation of knowledge rep-

resentation encoding (essentially configuring the parameters and planning domains

for the FAtiMA agents, more on this in the next section) and artwork production.

Our artists did not have to wait for primitive actions to be defined by the KR encod-

ing team. but could immediately start producing content. The KR encoding team

was still able to add graphical resources to the list as their work of translating the

storyboards into autonomous agent behaviour progressed. As part of the knowledge

representation encoding, a list of speech act symbols was produced. In a separate

stage, language templates (see Section 2.4.2) for mapping these symbols to dialogue

lines were produced. With this dialogue content in place, suitable training data for

the unit selection speech synthesis component could be selected and recorded, which

was then used to automatically train the unit selection speech synthesizer.

Finally authoring also encompassed an integration stage where data was created that

ties these diverse pieces of content together (e.g. story facilitator episode configura-

tions). The integrated content was then tested in order to ensure that episodes varied

interactively based on prior interactions and that no possible story paths led to a

dead end. Problems found in testing were corrected, followed by further retesting.

Throughout the authoring process content creation and software architecture devel-

opment were tightly coupled. In many cases bugs or missing essential features in the

software were only uncovered during authoring.

That this is the workflow that would be adopted for IS authoring was not clear from

the beginning. It emerged however quite naturally, which is perhaps not surprising,

considering that it bears strong resemblances to the way video game development

teams collaborate. The most interesting step in this workflow that is unique to in-

teractive storytelling is the encoding of the knowledge representation, which we now

examine more closely.

2.5.3 Knowledge Representation Encoding

During this workflow step, authors add to the configurations of the FAtiMA agents

that represent the different characters. This is done by editing the various XML

files that define character goals, actions, personality parameters, etc. It would be

very inefficient if the author would have to wait for the content integration stage to

see the newly configured FAtiMA agents in action. It became immediately obvious

that the authors needed some way of testing and debugging the created knowledge

representations in a direct manner. To this end a command line based simulation

32

Chapter 2: Creating FearNot! - An Authoring Case Study

runtime environment was made available to the authors that allows the immediate

observation of the emerging interactions between a set of FAtiMA agents.

Initial Role Configuration

The initial stage of knowledge representation encoding identifies the required char-

acters and their roles. A role is a simplification of character personality that makes

authoring easier. Rather than treating each character as an individual, authoring is

performed at the level of archetypical roles. In FearNot! these roles are bully, bully

assistant, victim, bystander and helper. Dealing with roles rather than individuals

immediately cuts down on the authoring effort, as there are at least 2 characters for

each role (because FearNot! has separate scenarios for boys and girls). The disadvan-

tage of course is rather shallow characters without much individual personality beyond

their role requirements. Also if there are several characters with the same role profile

around at the same time they tend to behave like the clones that they arguably are.

In FearNot! this is for example often the case with the bully assistants, the characters

forming the bully’s gang. Nevertheless, the e-Circus team decided that the efficiency

benefits gained by using role profiles outweighs their disadvantages. Also it would be

always possible and trivially easy to later split a role profile into two or more separate

character profiles and start modifying these.

After the set of roles was determined, the emotional personality parameters for each

role (threshold and decay for each OCC emotion, see Section 2.2.5) were set to sen-

sible values with the help of the team psychologists. These values could be tweaked

further at a later stage if they turned out to represent the role incorrectly.

Identifying the Initial Action Set of an Episode

After the initial roles were defined and their emotional personality parameters were

set, knowledge representation encoding was performed on a per episode basis. An au-

thor would be assigned an episode and its respective storyboard and be tasked with

its implementation as FAtiMA agent behaviour. The e-Circus team established some

guidelines on how this task should be approached by authors. In the first instance the

author should analyse the provided storyboard and extract from it the contained ac-

tions / planning operators. This is not a trivial task as actions can describe behaviour

at various levels of detail. Theoretically, an action could be arbitrarily microscopic

(e.g. “sit down”, “lift fork”, etc), macroscopic (e.g. “eat dinner”) or anything in

between. But practically, the fact that actions need to be visualized by the FearNot!

software architecture, put some tight constraints onto what an appropriate level of

detail was. Getting this right requires some experience. As all agents share a single

planning domain across all episodes, examining the actions that have already been

33

Chapter 2: Creating FearNot! - An Authoring Case Study

authored as examples of the right level of detail can help.

Authors are also encouraged to reuse existing actions from the planning domain wher-

ever possible, instead of creating new ones. More experienced authors should ideally

go even one step further and proactively look for similarities between a newly identi-

fied action and an existing action. If such similarities are found, it is often beneficial

to refactor the existing action, i.e. make it more generic / abstract, for example

by adding a parameter. A concrete example of an instance where such refactoring

happened in the actual authoring process is in the abstraction of question and re-

ply speech acts. Initially there were separate actions for different question speech

acts, but when the common reasoning structure behind these was discovered, a single

generic abstract question action with the concrete question as a parameter, was able

to replace all these individual question actions.

Implementing Action Selection Mechanisms

At this stage the author has identified the actions contained in a particular story-

board. The next step is to implement the necessary action selection mechanisms so

that a group of FAtiMA agents actually perform these actions in the right order. In

other words, the agent configurations are adjusted so that the input storyboard can

be produced as an output. Concretely this involves adding or modifying some of the

following: goals (including goal preconditions and success conditions and goal impor-

tance parameters for certain roles), action preconditions and effects, action tendencies

for reactive behaviour and emotional reactions.

Extracting the action selection mechanisms from the storyboard is more difficult than

the previous step of extracting the actions. As in most common forms of narrative

presentation, the storyboard does not spell out the character’s decision processes. We

do not always know why characters in stories do what they do. The author thus

has to come up with their own plausible reasons for the character’s behaviour in the

storyboard. They then need to find a way of formalizing these reasons into a FAtiMA

compatible action selection mechanism (e.g. a goal or a reactive action tendency).

Again, this is not trivial as the exact same comments that were made above about

the level of detail of actions, reuse of existing actions and refactoring of the action

library equally applies to goals as well.

Extending Breadth

When the author has succeeded in recreating the storyboard via a simulation of

FAtiMA agents, the most difficult work step still lies ahead of them. Simply deter-

ministically producing a linear story using an agent simulation system is clearly not

the purpose of an emergent narrative system. The author now has to consider other

34

Chapter 2: Creating FearNot! - An Authoring Case Study

possible courses of events that could arise in the situation depicted by the original

storyboard (in effect producing, at least in their head, alternative storyboards) and

implement these alternative plots just as they implemented the initial storyboard. In

order to test these different paths the command line simulation environment allows

the simulation of user interaction and the manipulation of internal variables to test

their effect on the simulation outcome.

The e-Circus authoring guidelines advocated approaching this task from a character-

centric perspective. Instead of imagining what other plots could happen, authors were

encouraged to think about other things characters could do. The distinction between

these 2 approaches is subtle but the latter one is a much closer fit to the character-

centric story world encoding used in FearNot! Character-driven thinking also enables

an interactive FAtiMA implementation cycle discussed in Louchart et al. (2007b) and

illustrated in Figure 2.9.

Figure 2.9: Iterative interactive implementation cycle (from Louchart et al. (2007b))

Essentially the approach requires early and constant involvement of the simula-

35

Chapter 2: Creating FearNot! - An Authoring Case Study

tion environment in the authoring process in order to obtain new situations derived

from the interplay of the authored characters. This has some important advantages:

Firstly it incorporates debugging into the authoring process and allows mistakes in the

knowledge representation to be detected early. Secondly this approach also promotes

real emergence in the sense that the system might surprise the author and arrive at

a situation that was unexpected. After all the system makes decisions based on a

complex interplay of many variables and factors that will not always be possible to

predict for the author, especially once the planning domain has reached a certain size.

Swartjes and Theune (2009) make a similar argument and use the term co-creation

for such an iterative process. They advocate a mindset where authors should try to

accept and incorporate the surprising situations that the simulation produces rather

than discarding and preventing them.

2.6 Authoring Observations

The following observations about authoring are based on an analysis of the process

described above and of its final outcome: the FearNot! story world. The problems that

are highlighted in this section are by no means meant as a criticism of the authoring

team, which after all the author of this thesis was a part of as well.

2.6.1 Actual Use of Planning

In Section 2.2.1, we have explained how planning sits at the heart of FAtiMA. In

theory, modelling the agent’s decision making processes as a planning domain is the

key to characters that exhibit intelligent decision making and react to unexpected

situations by specifying what the agent can do (actions) and what the agent wants

(goals) without explaining how the agent reaches its goals. Unfortunately FearNot!

exhibits very little of such emergent behaviour, and this is not for a lack of trying on

part of the authoring team. It just turned out that modelling stories in a way that

makes proper use of FAtiMAs planning abilities is very hard.

To explain the problem, we turn to an analysis of the set of active pursuit goals

authored for the emergent FearNot! episodes2. The complete list of these goals can

be found in appendix A. In total 83 goals were authored. A manual static analysis

of the planning domain revealed that for 80 out of these 83 goals there exists only a

single valid, rational, partially ordered plan that can be constructed from the planning

domain. This means that for only 3 goals the agent had a choice in the course of action

to take in order to achieve the goal (between 2, 2 and 3 alternative plans respectively).

In all other 80 cases the authors have essentially hard-coded the unique solution of

2Goals that drive the dialogue with the user are not considered here as they comprise a completely
separate goal set that is only activated in interaction episodes.

36

Chapter 2: Creating FearNot! - An Authoring Case Study

how to achieve this goal into the planning domain. Clearly this is not making good

use of the flexibility that a planning based architecture offers. If the agent has only

a single way of achieving its goal then it would be more effective to specify this plan

directly rather than having a planner assemble it expensively at runtime.

The second realization from the planning domain analysis is that the majority of goals

(67 of 83) will be achieved by a plan containing only a single action. In these cases

the goal’s success condition directly specifies the action that has to happen to make

the goal succeed and this action itself will have no preconditions that require the

agent to perform another action before it. A possible explanation for the prevalence

of both these phenomena (one step plans and one plan goals) is that most of the goals

that were authored are expressed at a level of detail that is very close to the level

of detail at which the actions are expressed. If this gap in hierarchical abstraction is

very narrow then a goal is not able to effectively decompose into complex plans. As

a result of very little decomposition plans are short and alternative-less. Apparently,

creating goals with a wider hierarchical gap to the actions is conceptually difficult.

For example the goal “ConfrontVictimTellTeacher” as the name suggests is a goal of

the bully to “confront the victim after he went to the teacher for help”. This is one

of the many goals for which only a single plan consisting of a single action can be

synthesized from the planning domain. The action in this case is a speech act verbally

abusing the victim for being a “snitch”. What else could the author who was tasked

with implementing the action selection processes that trigger this speech act then

have done, instead of authoring this primitive goal? A goal with a wider hierarchical

gap would have to address the question of why the bully wants to confront the teacher

and express this motivation as a goal. There are several reasons the author might

consider: for example the bully might like to scare and threaten his victim or he hopes

by threatening the victim he will avoid future trouble. In the first case we have a

very generic goal that covers almost anything the bully ever does. As such it will

become extremely complex and difficult to test and debug. It also involves reasoning

about the emotions of others, which is a feature that was only recently added to

FAtiMA by Dias and Paiva (2011) and not available when creating FearNot! The

second suggested alternative goal (avoiding future trouble) is equally challenging to

implement. In essence the agent tries to prevent a future event from happening, by

acting now and taking certain preventative measures. But it is not at all obvious how

a goal success condition for such an avoidance goal could be expressed.

2.6.2 Decision Making

The prevalence of goals that produce alternative-less plans begs the question how

agents make decisions, i.e. choose between alternative courses of actions. In FearNot!

most choices are encoded in the preconditions of goals. A recurring pattern in the

37

Chapter 2: Creating FearNot! - An Authoring Case Study

FearNot! goal library (listed in appendix A) is the creation of pairs (or larger sets) of

related goals that are used to represent choices. Due to mutually exclusive precondi-

tions, an agent can only ever have one goal of such a set active at the same time. An

example of such a goal set is the pair “JoinGroupAccept” and “JoinGroupRefuse”,

which is shown in listings 2.4 and 2.5. The only precondition that differs between

the two goals is the property check of the like relation. Depending on the value of

the like relation, one of the two goals gets activated. The planner will then resolve

the respective success condition which triggers the speech action corresponding to

accepting/refusing the request.

The problem with this pattern is that the decision is hardcoded to be solely de-

pendent on the value of a specific single variable. This prevents the decision from

being taken by the planner itself. For example, someone who actually likes the victim

might still decide to refuse the request to join the group in fear of reprisals by the

bully. A planning based agent architecture like FAtiMA would in theory allow for

this kind of decision making to be modelled, but in the content authored for FearNot!

this is rarely encountered. The fact that FAtiMA lacks any form of hierarchical goal

management probably exacerbated this situation. The ability to express sub-goal

relationships should have enabled the FearNot! authoring team to more effectively

encode decision making. But even though this was discussed several times during

the project, the e-Circus team unfortunately lacked the resources to implement this

feature in FAtiMA.

Listing 2.4: The JoinGroupAccept goal

<ActivePursuitGoal name="JoinGroupAccept([joiner],[group])">

<PreConditions>

<Property name="[group](isGroup)" operator="=" value="True" />

<Property name="[SELF](inGroup,[group])" operator="=" value="True" />

<Property name="[joiner](inGroup,[group])" operator="=" value="Pending" />

<!-- only active, if a join request was made -->

<RecentEvent occurred="True" subject="[joiner]" target="[group]" action="Question"

parameters="joingroupquestion" />

<RecentEvent occurred="False" subject="[SELF]" action="Reply" target="[joiner]"

parameters="joingroupquestion,positiveanswer"/>

<RecentEvent occurred="False" subject="[SELF]" action="Reply" target="[joiner]"

parameters="joingroupquestion,negativeanswer"/>

<!-- choose pos unless I strongly dislike joiner -->

<Property name="Like([SELF],[joiner])" operator="GreaterEqual" value="-2" />

</PreConditions>

<SucessConditions>

<RecentEvent occurred="True" subject="[SELF]" action="Reply" target="[joiner]"

parameters="joingroupquestion,positiveanswer,[group]"/>

</SucessConditions>

</ActivePursuitGoal>

38

Chapter 2: Creating FearNot! - An Authoring Case Study

Listing 2.5: The JoinGroupRefuse goal

<ActivePursuitGoal name="JoinGroupRefuse([joiner],[group])">

<PreConditions>

<Property name="[group](isGroup)" operator="=" value="True" />

<Property name="[SELF](inGroup,[group])" operator="=" value="True" />

<Property name="[joiner](inGroup,[group])" operator="=" value="Pending" />

<!-- only active, if a join request was made -->

<RecentEvent occurred="True" subject="[joiner]" target="[group]" action="Question"

parameters="joingroupquestion" />

<RecentEvent occurred="False" subject="[SELF]" action="Reply" target="[joiner]"

parameters="joingroupquestion,positiveanswer"/>

<RecentEvent occurred="False" subject="[SELF]" action="Reply" target="[joiner]"

parameters="joingroupquestion,negativeanswer"/>

<!-- choose neg if I strongly dislike joiner -->

<Property name="Like([SELF],[joiner])" operator="LesserThan" value="-2" />

</PreConditions>

<SucessConditions>

<RecentEvent occurred="True" subject="[SELF]" action="Reply" target="[joiner]"

parameters="joingroupquestion,negativeanswer,[group]"/>

</SucessConditions>

</ActivePursuitGoal>

2.6.3 Use of Emotion Model

The FearNot! authors have not shied away from attempting to configure the agent’s

emotion models. It would have been easy to ignore the emotional aspects of FAtiMA

as a troublesome burden and just author content in a way that makes agent behaviour

independent of the state of the emotion model. But as evidenced by the number of

emotional reactions authored as shown in Table 2.2, emotions were used extensively.

Role Name # of Emotional Reactions # of Action Tentencies
Victim 85 4
Bully 48 6

Bully Assistant 13 0
Bystander 43 0
Defender 42 0

Table 2.2: Number of Emotional Reactions and Action Tendencies authored for
FearNot!

Nevertheless, a common complaint voiced by the authors was that it is difficult

to assign numeric values to feelings and that there is little transparency whether one

has chosen the right value or not. And in hindsight another problem related to the

authoring of emotions was discovered. The fact that the act of planning also gener-

39

Chapter 2: Creating FearNot! - An Authoring Case Study

ates emotions (positive emotions whenever a goal succeeds and negative ones when

it fails) places some special constraints on the authoring of goals: a goal always has

to represent something that we would expect to make the agent happy. If not, the

positive emotion generated by the planner distorts the realism of the model repre-

sented by the emotional state. However, authors were not sufficiently aware of this

constraint and in several cases misused goals as trigger mechanisms for single actions

that should clearly not be associated with positive emotions. For example, the goal

“GotHitComplain” is activated when the bully hurts the victim by throwing an object

at him and merely acts as a trigger for a speech act voicing the victim’s pain. But

because it is authored as a goal, succeeding will absurdly actually boost the victim’s

mood.

A better solution would have been to make more use of reactive behaviour in the form

of action tendencies in these cases, which is a feature that was not much used as shown

by Table 2.2, as authors in general preferred to trigger behaviour through the planner

even when the plan as discussed above is alternative-less and only involves a single

step. We could identify several reasons for this in retrospect unjustified dismissal of

action tendencies. Authors preferred to employ the planner with the hope that this

would lead to more reusable, generalised units of behaviour. As shown earlier, this

anticipated generality did rarely materialise. The issue can also partly be attributed

to training as the FAtiMA teaching examples provided to the authoring team dis-

proportionately favoured planning, due to its complexity. As a result the FearNot!

authors developed authoring patterns focussed on the planner. It was easy for them

to forget about the availability of action tendencies altogether. This is similar to

programmers that rarely use all features that a certain programming language has to

offer but instead often develop their own style using only a subset of the language.

So far we have discussed authoring effort that went towards generating emotions.

These emotions were used to influence behaviour in a number of ways. The relation

variables like and respect are directly derived from the emotion model. In 38 of the

83 goals discussed, either emotion variables or relation variables were used in a goal

precondition. In most of these cases this particular precondition was the crucial one

for decision making in a set of mutually exclusive goals as discussed in Section 2.6.2.

Emotions also have a more subtle influence on planning. Emotions influence the over-

all mood, which in turn determines the magnitude of generated emotions including

prospect based ones like Hope and Fear that are generated by the planer itself. These

emotions in turn influence the behaviour of the planner, e.g. when to give up on a

plan. This complex relationship is not very transparent, but it does mean that emo-

tions add some entropy and unpredictability to the system that can be the source of

emergent behaviour. Finally emotions are also routed to the presentational layer and

used by it to drive facial expressions. While we did not run any studies determin-

40

Chapter 2: Creating FearNot! - An Authoring Case Study

ing the impact of facial expressions, it is quite reasonable to believe that they may

contribute positively to character believability.

2.6.4 Interactivity

Every play-through of FearNot! looks slightly different. This has 2 causes: indeter-

ministic / random behaviour and interactivity. As was explained before there are

quite a few sources of random indeterminism, for example, which episode out of an

eligible set is selected next, timing (e.g. how long the user takes to interact) affecting

emotions which decay in real time or the language engine picking a random utterance

out of a set of possible utterances mapping to a speech act. This means that even

if the user interaction sessions were taken out completely, most times one would run

FearNot! the story would differ a bit.

So how does user interaction in FearNot! actually influence the story and how much

variety does it add to the produced story? Recall that after each multi-agent emer-

gent episode, there is an interaction session, where the victim engages in a free form

chat with the user. During this dialogue the user can possibly affect the mood of the

character. Each sentence that the user types is mapped onto a speech act and for

many of these speech acts the victim role will define an emotional reaction. From this

an emotion is generated which will carry over to subsequent episodes and thus might

impact the behaviour of the victim in these episodes. This of course can then in turn

also affect the behaviour of other agents and so on. These hard to determine chains

of knock on effects might be considered by some to make the system less reliable, but

they are actually appreciated and valued in emergent narrative systems like FearNot!

Furthermore, in each interaction session the user suggests a coping strategy to the

victim or is asked to weigh in with an opinion about coping strategies that the victim

suggests. In either case the interaction session ends with the victim having decided

on a coping strategy, which is stored in a variable. The value of the coping strategy

variable influences the episode selected next by the story facilitator and also can lead

to the activation of certain special coping goals in bullying situations.

None of this user interaction has a fundamental long term impact on the story, but

in FearNot! this is mainly by design. Considering its purpose as an educational tool,

there was not supposed to be a way to beat the game and stop the bullying prema-

turely. Every user was supposed to be exposed to a variety of bullying situations and

interactively explore the effect of various coping strategies. The fact that users are

not able to significantly alter the course of events in FearNot! directly contradicts the

agency requirement of IS (see Section 1.1.3). As predicted by the narrative paradox

theory, reconciling agency with a fixed plot (in this case the educational requirement

that the victim cannot escape his role) proved to be difficult. Because designing an

educational tool had a higher priority for the project as a whole than designing a fully

41

Chapter 2: Creating FearNot! - An Authoring Case Study

realized IS artefact, a large potential of agency was sacrificed. It is worth noting that

the work presented in this thesis does not attempt to solve such narrative paradox

issues and instead focuses on the scalability of the authoring process.

2.6.5 Content Reuse and Abstraction

There are several strategies that were used by the FearNot! authors in order to reduce

the amount of authored content:

• Defining Roles instead of Characters: As mentioned before, only 5 FAtiMA

role profiles were authored, while there are 11 characters in total in FearNot!

Every role profile is used by at least 2 characters. This significantly reduces

duplication.

• Reuse of Goals: Almost all goals in FearNot! are parameterised. This allows

them to be reduced in different contexts. The “JoinGroupAccept” goal from

listing 2.4 for example is modelled in such a way that it applies to any situation

where someone wants to join in a group activity, rather than a more specific

situation like someone wanting to join a football team. This reusability is not

only a theoretical possibility but is also often made use of in FearNot! “Join-

GroupAccept” for example is used in several situations in FearNot! including

Football (boys), Netball (girls), playground games and study groups.

• Reuse of Actions / Speech Acts: The above mentioned reuse of goals is

possible because actions and in particular speech acts were also modelled where

possible in a generic way. This however has the downside that a particular

dialogue line that this speech act is resolved to, might be out of context in

the story presentation layer. In the FearNot! language engine rules we can

find two strategies for dealing with this problem. Wherever possible utterances

are formulated in such a way that they apply in a variety of situations. This

means, omitting references to any specific details and focussing on conveying the

core message. These highly reusable utterances will usually be rather short. In

order to avoid repetitiveness, often a variety of alternatives are defined. Where

using generic language is not possible one can often encounter another pattern:

Writing a set of utterances for a speech act, each of which is very context specific.

The context is captured via the current episode, which is added to the language

engine rule and used to select the correct utterance. See listing 2.6 below for an

example of this approach.

Listing 2.6: Examples of utterance selection for a speech act based on context

42

Chapter 2: Creating FearNot! - An Authoring Case Study

Type(value:joingroupquestionnegativeanswer) episode(value:"B05")

-> Utterance(value: "No, you suck at football.")

Type(value:joingroupquestionnegativeanswer) episode(value:"G06")

-> Utterance(value: "No, we don’t want you to work with us.")

2.7 Conclusion

This chapter has set the scene for why IS authoring is a difficult challenge. IS authors

are required to define story worlds in terms of abstract data structures, while ensuring

that interactions with the final IS artefact result in interesting, varied and meaning-

ful stories. This process was illustrated by giving an insider perspective of the efforts

involved in creating an IS artefact, the educational anti-bullying application FearNot!.

We have explained the FearNot! software architecture, described the process employed

in creating FearNot! and characterised the authored story world in terms of emerging

design patterns. FearNot! is a widely cited major achievement of IS research. But it is

also true that FearNot! only scratches the surface of the powerful emergent behaviour

that its software architecture would in principle allow. We have shown the techniques

that authors have used to translate a set of storyboards into emergent agent based

simulations, but also concluded that authors were not able to make effective use of

the capabilities offered by the FAtiMA architecture, especially planning. In short we

have described the authoring bottleneck in one of its many guises. The next chapter

will give an overview of other approaches to interactive storytelling and demonstrate

the universality of the authoring bottleneck.

43

Chapter 3

Data Structures for Story

Representation

The last chapter has described the details of one particular IS runtime engine, the

FearNot! system utilising the FAtiMA affective agent architecture and an explanation

of the authoring process for this system was given. The FearNot! system however only

represents one of many diverse technical approaches to realizing an IS runtime engine.

This chapter gives an overview of this variety of approaches. Particular emphasis is

put on the data structures for story representation, i.e. the types and characteristics

of the basic story building blocks contained within the IS story worlds. This aspect

of storytelling engines is the most important for this thesis’ discussion of authoring,

as the data structures employed by a system dictate how authors need to express

themselves and define what exactly it means to be an author.

Our survey of story representation is structured into four parts. We will first discuss

the simplest possible approach, namely explicit branching, which simply means

manually enumerating all possible story branches, a technique that is commonly used

in video games. Academic prototypes of IS runtime engines however, typically favour

a more generative approach. Generativity means that the system makes story pro-

gression decisions at runtime as a stand-in for the author. In such generative systems,

two fundamentally different approaches to runtime story generation can be identified,

which this chapter will discuss in turn: Plot-centric systems have some notion of

what constitutes a good plot and employ this knowledge in order to sequence plot

elements into a satisfying story, taking into account user action. Authors are pri-

marily concerned with creating atomic plot elements and annotating them in some

way that allows the system to sequence them at runtime. This is in contrast to

character-centric systems, whose primary concern is the simulation of believable

artificial character behaviour. Authors of such systems are primarily concerned with

encoding the psychology of a cast of characters in a computer understandable fashion.

There is an inherent conflict between these two view points. If our only concern is

44

Chapter 3: Data Structures for Story Representation

generating an interesting plot then character believability might fall by the wayside,

whereas a simulation of believable characters interacting with each other might not

result in an interesting story. This conflict is in fact well known to non-interactive

fiction writers too. It has been argued that learning to balance the needs for character

and plot is one of the key skills a writer has to learn (Gerke, 2010). The need for a

balance between these two extremes was also recognized by the IS community (Riedl,

2004; Si et al., 2008). Consequently, many IS systems adopt a hybrid approach. Such

hybrid systems will be discussed in the final section of this chapter.

3.1 Explicit Specification of Branches

The earliest attempts of creating IS artefacts can be traced back to the birth of game-

books in the 1970s and the most successful incarnation of this format, the Choose

your own adventure books. Gamebooks present the reader with a story that is in-

terspersed with choices. Each choice gives the reader a number of options, each of

which has an associated page number. The reader chooses by turning to the indi-

cated page, where they continue their reading. This leads to interactive stories with

multiple endings. The author has of course specified all possible decisions and their

consequences explicitly in advance. The authored story world can be visualized as a

directed graph, which the audience directly interacts with. The electronic version of

the same principle is known as Hypertext Fiction. This is a format which presents

choices as hypertext links instead of page references but offers otherwise the same

type of interactive narrative experience as Gamebooks. This approach to interactive

storytelling is not limited to gamebooks but is also prevalent in video games.

While games offer players much agency on the surface, most of this freedom does not

result in any changes to the plot. In fact in most games, story is little more than

the glue that connects sections of gameplay and motivates the action but not an in-

teractive experience by itself. Often the story is limited to some cut-scenes between

levels. Costikyan (2007) coined the term “Beads on a string” to describe this type

of rudimentary integration of story and gameplay. If games offer the player choices

affecting the story line at all, then these choices are typically explicitly pre-authored

as is the case with gamebooks. Because game companies do not like to create content

for only a portion of players these choices typically never reach far. A popular way

to minimize the impact of a choice are so called foldback schemes (Crawford, 2005),

where a story diverges at a branching point only for the separate branches to even-

tually merge again into a single plot line. Another relatively cheap way to offer story

choices one often encounters are dead ends. While choices seemingly affecting the

plot are being offered, only one of them actually advances the plot, while the others

45

Chapter 3: Data Structures for Story Representation

lead nowhere or only to death (i.e. a Game Over screen). Both these techniques are

also heavily employed in gamebooks.

Some games have higher storytelling ambitions, especially in the role-playing genre.

In best role playing fashion, titles such as for example Mass Effect, Fallout, Fable

or Knights Of The Old Republic attempt to let players decide for themselves what

kind of character they want to be and show them the consequences of their actions.

All these games offer multiple endings and a variety of moral choices. Technically,

however, they are still operating on a variant of explicitly authored plot graphs. How-

ever, rather than mapping story branches directly to a single choice made by the user,

the selection of the branch often depends on internal game state that represents an

accumulation of user actions. For example, all of the games mentioned above feature

some kind of karma system. Many actions carried out by the player are classified as

good or evil and consequently increase or decrease the player character’s reputation

and moral standing in the game world. Its value can then be used to select a story

branch when the player reaches an intersection point.

Tying choices to game state variables in this way, makes the author’s job slightly

more challenging as it involves one more level of indirection. But even with this slight

complication, explicitly authored story graphs are arguably the most straightforward

way for authors to think of interactive stories. The author is in complete control and

carefully crafts any story related decisions the user might be able to make and their

consequences. Technically this type of interactive storytelling is trivial to realize but

huge amounts of manual authoring are required for complex graphs. This can easily

lead to a “combinatorial explosion” (Stern, 2008) and therefore, the general consensus

in the IS community is that explicitly authored plot graphs are not the way forward to

achieve fully realized IS artefacts (Crawford, 2005; Stern, 2008). Nevertheless, many

of the most engaging interactive story experiences to date were realized this way. This

is because explicitly specified branching story graphs offer the greatest possible level

of authorial intent (Riedl and Bulitko, 2013): The author is in full control of every

possible trajectory through the narrative space and can thus craft a highly engrossing

experience for the audience. Wei (2011) for example analyses how explicitly authored

branching is used to great effect in the critically acclaimed game Heavy Rain: The

player can make a few key choices in each chapter that have mostly local consequences

(contained within the chapter) but to a lesser degree also a few global ones (across

chapters). Wei concludes that restricting oneself to a manageable amount of explicitly

authored branches can still result in satisfying illusion of agency for the player if done

well.

For the original work on crowdsourced authoring, presented in the later chapters of

this thesis, explicit branching is considered a viable (although by no means the only)

option. The CROSCAT system discussed in Chapter 7 uses an explicit branching

46

Chapter 3: Data Structures for Story Representation

story representation. Enlisting potentially thousands of prospective authors working

together has the potential of creating branching structures of unprecedented scale and

therefore the scalability argument does not necessarily hold anymore.

3.2 Plot-centric Story Representation

In Plot-centric systems, authors associate units of story with some contextual data

that allows the system to connect story units at runtime in order to achieve a satisfying

plot. In the following we examine several ways in which such systems may obtain

their notions about what constitutes a satisfying plot, namely planning, case-based

reasoning, narrative theories and user modelling.

3.2.1 Planning

The Mimesis system (Young, 2001; Young et al., 2004) represents a purist planning

approach to generating interactive stories in game environments. A Mimesis story

world consists of a set of planning operators that describe story events and a story

outcome composed of one or more goal states. Similar to FAtiMA as described in

Section 2.2.1, MIMESIS employs a STRIPS style representation of planning operators.

Unlike FAtiMA, the MIMESIS system performs planning at a global level, i.e. not just

from the perspective of an individual character. The goal states that the planner aims

to achieve represent the end of the story and are pre-specified by the author. Figure

3.1 shows an exemplary small MIMESIS plan. Such a universal plan representing the

entire story is initially generated when a new session is launched. The plan includes

actions for all non-player characters, exogenous events and the actions anticipated to

be carried out by the player. An execution engine will then schedule the visualization

of the plan steps (except those attributed to the player) within the game environment

(e.g. as 3D animations) and monitor their progress.

It is highly unlikely that the player will behave entirely according to the initial

plan. If the user performs an unanticipated action, the system checks in realtime

whether this would threaten / invalidate the current plan. If such a threat is de-

tected, Mimesis employs one of 2 mediation strategies. Accommodation, the first of

these strategies, is the planner’s attempt to repair the plan. E.g. if the player de-

cides to kill a character that was due to provide a vital piece of information later, a

repair to the plan might involve finding this information in the deceased character’s

diary. If there is no way to feasibly repair the plan so that it accommodates the users

action then the intervention strategy is used as a last resort. Intervention replaces

the intended action with an alternative that does not threaten the plan, a so-called

failure mode (Riedl et al., 2003). Failure modes constitute a set of actions that are not

47

Chapter 3: Data Structures for Story Representation

1.Move(fred,tower,armory)

2.PickUp(fred,ammo,armory)

At(fred,tower)

At(Barney,bunker)

At(fred,armory)

Has(fred,ammo)

At(fred,armory)

At(fred,armory)

At(fred,bunker)

3.PickUp(fred,gun,armory)

Has(fred,gun)

5.Move(fred,armory,bunker)

7. Goal
State

0.Current
Game
State

6.Shoot(fred,barney,gun,bunker)

Wounded(fred)

Loaded(gun)4.Load(fred,gun,ammo)

Figure 3.1: Illustration of a plan in the MIMESIS system. (from Young et al. (2004),
p 9)

eligible for regular planning and that are explicitly specified as possible replacements

for other regular action. For example, a possible failure mode for a shoot action is a

jammed gun.

Riedl (2009) discusses author goals as an extension to Mimesis’ representation of a

story as a universal plan to achieve a single outcome. Author goals specify interme-

diate states that the story is required to pass through along the way to its ultimate

outcome. This gives the author finer control over the desired story arc and effectively

segments the planning problem into individual episodes, thus reducing the computa-

tional cost of planning.

From the author’s perspective, writing story worlds for a plot planning based IS run-

time engine like MIMESIS is mainly a matter of planning domain construction, i.e. a)

the conceptual modelling of the story world as symbolic entities and their properties

and b) the specification of goal states and planning operators, including their pre-

conditions and effects, which reference the symbolic world model. Depending on the

system, additional knowledge, e. g. failure modes or author goals may be required as

well. This demands a similar understanding of planning concepts from authors as a

FAtiMA based system. The fact that the planning is not distributed as in FAtiMA

but centralised can be both a help and a burden. On the one hand, the author does

not need to anticipate the interactions of multiple autonomous planners, which makes

plans more readable but on the other hand, distributed per-character planners allow

to break the planning space down into smaller individual units.

A major disadvantage of plot-level planning systems that use explicitly authored goal

states like Mimesis is that endings are unchangeable. For some stories e.g. about

the inescapability of fate this can be acceptable but in general it limits the author’s

expressive possibilities and may diminish a user’s sense of agency, especially on repeat

interaction sessions with the same IS artefact.

48

Chapter 3: Data Structures for Story Representation

3.2.2 Case-Based Reasoning

Kolodner (1992) describes case-based reasoning (CBR) as the process of “using old

experiences to understand and solve new problems”. A typical CBR system compares

a current situation and problem to a library of reference cases (i.e. known solutions

for previous situations), retrieves a solution for a similar situation from the case-base,

adapts it to fit the current situation and finally uses it to solve the problem. This

approach lends itself quite naturally to IS generation, if we consider a case-base of

exemplary stories or story fragments that demonstrate the quality of a “good” plot.

These example stories are then potential solutions to the central problem that all IS

runtime engines aim to solve: generating a good narrative continuation for the current

plot situation.

Minstrel (Turner, 1993) is an early (non-interactive) story generation system that

employs CBR to model the creative thought-processes of an author. Story generation

for Minstrel is the process of building a plot graph that adheres to several author-level

goals that operate on a meta level and specify desired thematic, dramatic, consistency

and presentation properties of the story to be generated. During its construction of

the story graph, Minstrel queries its episodic memory (i.e. case-base) to find fitting

story fragments and when failing to locate a direct match, uses one of its twenty-four

built-in Transform Recall Adapt Methods (TRAMs) in order to transform the query.

TRAMs are creativity heuristics that implement specific strategies for lateral think-

ing. The TRAM dictionary includes for example a TRAM for generalizing the role

of an actor and one for replacing an event’s outcome with a similar one. TRAMs are

recursive and if necessary a whole series of them is applied until a solution is found.

Upon finding a match, each TRAM on the current query transformation stack adapts

the found story fragment, effectively reversing the transformation applied to the query

at each transformation stage until the completely adapted story fragment is inserted

into the plot graph.

As Minstrel demonstrates, the key ingredient for a CBR based storytelling system is

its case adaptation mechanism. Where Minstrel uses its dictionary of built-in creativ-

ity heuristics, Fairclough (2004) and Gervás et al. (2005) have both independently

adopted a CBR approach to story generation that employs the structuralist model of

narrative by Propp (1968) (see next section) for retrieving related story pieces from

the case-base. Example story fragments have to be annotated with their respective

Propp functions that imbue them with additional semantics.

Riedl and Sugandh (2008) describe a way to augment a story planning algorithm

with the ability to reuse pre-defined story pieces (termed vignettes). Their system

represents these vignettes as plan fragments, i.e. partially ordered sets of events with

preconditions and effects that can be woven into the generated story plan like ordi-

nary planning operators. Vignettes that are specified in a different source domain can

49

Chapter 3: Data Structures for Story Representation

be transferred to the current target using the Connectionist Analogy Builder (CAB)

model (Larkey and Love, 2003). Their analogy-based case transformation establishes

similarities between operator structure and associated domain state in the source and

target domains and exhibits some similarities to Minstrel’s Cross-Domain-Solution

TRAM.

From the authoring perspective, CBR requires the creation of (pieces of) example

stories. These have to be specified in a formal structure (e.g. schemas in the case of

Minstrel, the vignette’s plan fragment representation) so that they can be adapted to

a different context by the system. None of the systems above handles example stories

expressed in a human-friendly format like natural language. Case-based reasoning

alone therefore does not make the authoring process less technical but it does make

it more declarative as opposed to e.g. authoring exclusively at the level of planning

operators. This increases authorial intent, as authors can demonstrate to the system

via examples, what kind of stories they prefer.

The biggest potential advantage of using CBR however is that case libraries may be

shared across multiple story worlds. On the one hand this would diminish authorial

intent as the system now makes decisions based on a large library of cases that the

author has no control over but on the other hand it would reduce authoring effort

immensely. This is the type of usage that Riedl and Sugandh (2008) imagine for their

vignette based system. However this would require large general purpose reusable

case libraries, which so far do not exist.

3.2.3 Narrative Theories

For a long time, literary scholars have tried to build models of the defining character-

istics of stories, going all the way back to Aristotle (330 BC) and his identification of

a narrative arc based on three parts. Aristotle’s model was further refined by Freytag

(1863), who proposed a five-partite dramatic structure (see Figure 3.2). Polti (1921)

identified 36 common narrative situations while Thompson (1955) and Propp (1968)

both created catalogues identifying the basic structural elements common across a

wide range of folk tales. Campbell (1972) established the monomyth model which

describes the typical structure of a hero’s journey (see Figure 3.2)and which has been

successfully applied to characterize e.g. the plots of movies like Star Wars and The

Matrix.

All these models derive from a literary analysis of narratives but can be employed

as a guiding principle for arranging story units in a plot-based story generation sys-

tem. Instead of sequencing events purely based on causality, events may be chosen

that make the generated story adhere to a given narrative theory. Several existing

systems have chosen this approach:

The Façade system (Mateas and Stern, 2003) arranges its content in small dramatic

50

Chapter 3: Data Structures for Story Representation

Return
Call to

Adventure Supernatural
aid

KNOWN
UNKNOWN

Threshold
Guardian(s)

Threshold
(beginning of

transformation)

Helper

Mentor

Helper

Atonement

Transformation

(Gift of
the Goddess)

Abyss
death & rebirth

The
Hero's
Journey

Figure 3.2: Examples of influential narrative theories. Left: Freytag’s dramatic pyra-
mid, Right: Campbell’s monomyth (source: Wikipedia)

units called beats. Its drama manager tries to sequences beats according to an Aris-

totelian story tension value arc (see Figure 3.3). Grasbon and Braun (2001), Fair-

clough (2004) and Gervás et al. (2005) have all built IS Runtime Engines that structure

their stories according to Propp’s morphological functions. The PASSAGE system

(Thue et al., 2007) employs Campbell’s monomyth model for selecting encounters in

a fantasy quest scenario. The GADIN system (Barber and Kudenko, 2007a) is based

on a view of narrative as conflict. It contains a library of dilemmas (conflicting goals)

and uses a planner that tries to incorporate dilemmas into a never-ending soap opera

style narrative.

Figure 3.3: An example dramatic arc generated by Façade (from Mateas and Stern
(2003), p 15)

The IDtension system (Szilas, 2003) is based on the theories of Bremond (1974) and

Todorov (1970). They inspired an ontology of basic actions that are hard coded into

the system (e.g. Inform, Incite, Disuade, Perform, Refuse, Renounce, Congratulate

or Condemn) and informed the rules that encode IDtension’s narrative logic. IDten-

sion’s event representation allows combining authored actions to form more complex

51

Chapter 3: Data Structures for Story Representation

statements such as Inform(Y,X,CAN(X,a)) (Szilas, 2002). This increases the space of

possible events without the need to author many actions.

In all the systems mentioned above, the particular choice of narrative theory to some

degree influences the representation of story world knowledge. The system needs a

way to associate authored story world content to its narrative model, e.g the knowl-

edge which Propp function or stage in the monomyth model the content represents

or a dramatic tension value is associated with it. The greater concern for authors

is however not how a narrative theory adopted by an IS system impacts the knowl-

edge representation but rather how it restricts the types of stories that the system is

able to generate. Tomaszewski and Binsted (2007) for example discuss the inherent

limitations of using the Propp model.

3.2.4 User Models

The end users of IS Artefacts may have differing opinions about what constitutes a

satisfying story experience. Therefore several systems employ models of learned user

preferences to guide plot generation. PASSAGE (Thue et al., 2007) incorporates its

story into a RPG video game experience and characterizes the player’s preferred style

of playing as a vector of weights for the following player types: Fighter, Method-

Actor, Storyteller, Tactician and Power Gamer. The story is structured into encoun-

ters, which are organized and sequenced according to Campbell’s monomyth model

(see previous section). Encounters are essentially explicitly authored branching plot

graphs. Player decisions are annotated with player type weights. Thus, through ev-

ery decision the player makes, the player model is updated and refined. For example

if in a dialogue the player shows an interest in going on a bounty hunt, then this

increases the Power Gamer dimension in the player model. The continually updated

player model is used a) along with the monomyth model for encounter selection (ev-

ery encounter is annotated with player model weights) and b) to automatically select

certain branches within encounters

The dilemma-based GADIN system maintains a user model based on the following

dimensions (Barber and Kudenko, 2007b): honesty, faithfulness, responsibility for ac-

tions, selfishness, preference for relationship or friendship, strength of character and

morality. These values attempt to be an estimation of the personality of the charac-

ter that the user is impersonating. The model gets updated based on how the user

choses to deal with dilemma situations and it effects the selection of future dilemmas.

Of course, for this mechanism to work, dilemmas stored in the system need to be

annotated with user model values.

The IS system described by Seif El-Nasr (2007) is architecturally inspired by Façade

(Mateas and Stern, 2003) but adds a user model, which like the one in GADIN, in-

tends to model the personality of the player character. Explicit rules added by the

52

Chapter 3: Data Structures for Story Representation

author specify how the user model gets updated and how it is used to influence the

story.

User modelling is also an important component of the IDtension system (Szilas, 2003).

IDtension’s narrative sequencer module ranks, filters and chooses actions that the nar-

rative logic component has selected as eligible according to 8 criteria (termed needs)

such as Consistency, Conflict, Demonstrativeness, etc. When scoring actions, a model

of the user’s current 8 needs is taken into account and actions are promoted that satisfy

this model. By modelling the user’s narrative needs, IDtension aims to characterize

the user on a meta level rather than as a story entity as GADIN and OPIATE do.

In this regard it shares similarities with PASSAGE’s user model concept but is less

video game centric.

In conclusion, there are several ways in which an IS system can model the user and

several exemplary implementations of how such a model can be used to adapt a story

at runtime to the demands of the current user. By definition, the user model is a data

structure whose contents are updated and populated dynamically at runtime and

thus not part of the story world that the author needs to create. However, typically

authors need to enhance the story world content with user model annotations (e.g.

annotating encounters with player type weights in PASSAGE), so that the runtime

system knows how to update and make use of the user model.

3.3 Character-centric Story Representation

Character-centric (i.e. emergent narrative) approaches to Interactive Storytelling are

more concerned with encoding IS story worlds in terms of character behaviours and

motivations instead of story-units and story-sequencing heuristics. Common imple-

mentation characteristics of such systems are their use of psychological simulation,

a distributed nature (often in the form of a multi agent system) and an insistence

on autonomy of character. In the following we review some of the ways in which

character-centric IS systems have been realized.

3.3.1 Agents Using STRIPS-like Planning

The previous chapter has already presented a detailed example of a system that em-

ploys STRIPS like planning to simulate the decision making processes of a character

in the autonomous agent architecture FAtiMA and its use in building the IS artefact

FearNot!, which needs no further explanation here. However, since the conclusion

of development work on FearNot!, several features have been added to the FAtiMA

agent architecture, which are deserve mentioning here, as they also have an impact

on the authoring. None of these extensions relate to the planning directly but they do

53

Chapter 3: Data Structures for Story Representation

serve as further examples of how a planner might be augmented with psychological

theories. Lim et al. (2008) integrated the PSI model (Doerner, 2005) into FAtiMA,

which describes a set of basic human needs and how they drive behaviour. Integrated

into FAtiMA, this model requires the author to annotate actions with the needs that

they satisfy and drain (e.g. sleeping increases the agent’s energy level, while running

decreases it). By doing this, the author gains improved goal management and is no

longer required to explicitly specify goal importance values, as goals can now be chosen

based on the agent’s current needs. Mascarenhas et al. (2009) incorporated a model

of culture based on the 5 cultural dimensions by Hofstede et al. (1997). To make use

of this model, the author has to specify a cultural profile that consists of rituals and

norms. The author can then assign the agent to be a member of a particular culture,

which makes the agent inherit attributes from their culture. Finally, Dias and Paiva

(2011) have added a theory of mind component which allows agents to reason about

other agents emotions. In order to make use of this component FAtiMA authors have

to use a new type of preconditions.

The Virtual Storyteller system (Theune et al., 2003; Swartjes and Theune, 2008)

shares many similarities with the FearNot! architecture, amongst them the emergent

narrative approach, implementation as a multi-agent system, using STRIPS-like plan-

ning and the incorporation of the OCC emotional model. In addition, it incorporates

novel distributed drama management features, which will be discussed later in this

chapter.

3.3.2 Agents Using Hierarchical Task Networks

The IStorytelling system by Cavazza et al. (2002) is a prominent IS runtime engine

that uses Hierarchical Task Networks (HTNs) to represent character behaviour. HTNs

are a representation for explicitly declaring how a goal decomposes into levels of

subgoals and ultimately primitive actions. Figure 3.4 shows an example of an HTN

used in the IStorytelling system’s main story world, an adaptation of the sitcom

Friends. In this case the HTN for Ross’ goal to ask Rachel out is shown. At any

level a decomposition may either use disjunctions (only one child task needs to be

completed) or conjunctions (all child tasks need to be fulfilled). The latter is visualized

in Figure 3.4 using an arc with an arrow. Each task node is also associated with

pre- and post-conditions (not visualized). The IStorytelling system uses individual

HTNs for each character, each representing a character’s entire goal and plan space.

As in the FearNot! system, the system uses separate planners for each agent that

run in parallel, giving the characters a strong autonomy. At runtime each planner

starts decomposing its character’s goal in a top down depth-first fashion, checking

the pre-conditions of every node along the way. While this is also called planning,

the process is much less computationally intense than STRIPS like planning as the

54

Chapter 3: Data Structures for Story Representation

causality links are already established at design time. The IStorytelling system also

allows annotating the HTN with personality values that serve as heuristics for the

planner when choosing subgoals. E.g. an angry character may be more likely to chose

a sub-goal that is tagged as “rude” than a happy one.

Ring

Go to
Rachel

Give
gift

Go to
Rachel

Give
gift

Give
gift

Select
gift

Be
friendly

Go to
Rachel

Say
nicethings
toher

Send
message

Go to
friends

Befriend
her

friends

Send
message

Offer
gift

Gain
affection

Go to
diary

Pickup
diary

Read
diary

Go to
phone

Dial phone
diary

Send
message

Borrow
her diary

Acqiure
infor-
mation

Phone
hermom

Goto
friend

Askher
friend

Send
message

Askher

Take
her out

Send
message

Ask
someone
else

Get
reply

Send
message

Ask
yourself

Get
reply

Attract her
attention

Go to
place

Singher
favorite
song

Send
message

Isolate
her

Go to
worst enemy

Talk to
her worst
enemy

Send
message

Ask
them

Goto
others

Ask
them

Send
message

Takeher
aside

Go to
telephone

Phone

Send
message

Turn
towardsher

Shout

Send
message

Go to
diary

Pickup
diary

Read
diary

Go to
phone

Dial phone
number

Send
message

Borrow
her diary

Acqiure
infor-
mation

Phone
hermom

Goto
friend

:Friend_Free :Friend_Listen :Diary_Free :Hands_Empty :Phone_Nearby
:Phone_Free

:Phone# :Mom_Listen

Askher
friend

Send
message

34 1 5

2

5

1

1

3 2

1

5
3 1

1

2 3

55

1 5

2

1
3 2

1

5

Figure 3.4: Example of an HTN used by the IStorytelling System (from Cavazza et al.
(2002), p 19)

The use of HTNs to encode character behaviour has both advantages and disad-

vantages from an authoring point of view. It is arguably an intuitive data structure

that lends itself well to debugging and visual editing. However, having to explic-

itly spell out every single possible causal link is not an approach that scales well.

Cavazza and his colleagues have acknowledged this limitation and have later turned

to Heuristic Search Planning (HSP), which is described in the next section.

3.3.3 Agents Using Heuristic Search Planning

Heuristic Search Planning (HSP) is a term describing a family of planners that auto-

matically derive heuristics from a STRIPS encoded domain and use these to guide the

search through plan space (Bonet and Geffner, 2001). This means, HSP is primarily

an implementation technique for STRIPS style planners that does not significantly

impact the knowledge representation compared to the other STRIPS based systems

discussed earlier.

HSP has been first used by Cavazza et al. (2003) for planning humorous agent be-

haviour in an interactive story setting (demonstrated through an example Pink Pan-

55

Chapter 3: Data Structures for Story Representation

ther themed story world). Humorous agent behaviour is achieved by allowing authors

to add plans with the intentional potential for (comical) failure to the domain. To

support this, the standard STRIPS operator description using preconditions and ef-

fects was augmented with so-called executability conditions. These conditions have

to be met for an action to succeed but are not taken into account while planning.

For example the presence of running water could be an executability condition for the

action of taking a shower. Starting to take a shower when there is no water can be

comical.

The same team later applied HSP to the EmoEmma system (Pizzi et al., 2007) an IS

system built to run a story world adaptation of the 19th century novel Madame Bovary

by Gustave Flaubert. Standard STRIPS is used to encode the planning domain for

each character. The Madame Bovary story world was encoded with operators that not

only represent character actions but also character emotion changes (interpretation

operators). Figure 3.5 shows an example of an interpretation operator whose effects

are only internal emotion changes of the protagonist Emma Bovary, namely increased

pride and a decrease in affection for her husband. The use of interpreation operators is

an interesting authoring decision but it is not a representation enforced by the engine

or HSPs in general.

Figure 3.5: Example of an interpretation operator in the EmoEmma system (from
Pizzi et al. (2007), p 4)

There is however one possible difference between HSP and other more simple

planning algorithms such as forward or backward search through plan space (as for

example employed by FearNot!) that also affects authoring. In realtime applications

such as IS, the utilization of a heuristic function enables searching at a limited depth

without necessarily reaching the goal state. The option to search at a limited depth

is not a viable option for traditional STRIPS planners as it is difficult to judge the

quality of a partial plan without having seen it’s role in connecting the start to the

56

Chapter 3: Data Structures for Story Representation

goal states. In HSP on the other hand, judging the quality of a partial plan is very

closely related to what the heuristic function is supposed to do (i.e. ascribe a distance

to the goal state to each possible world state).

In the EmoEmma system the planner operates at a search depth of 1 without look-

ing ahead. Whenever it is invoked, the planner would consider all possible actions

that could be taken in the current state and evaluate them based on the heuristic,

choosing the highest scoring candidate for execution, without necessarily knowing for

certain whether this action is really contributing to achieving the goal state. This

allows systems like EmoEmma to operate on a comparatively large planning domain

while retaining planning performance and thus enables far more complex plans (i.e.

plans involving many steps). Authors for such a system need to be aware that due

to the incremental nature of the planning, the system may not necessarily execute a

plan that can succeed at runtime and design their story world accordingly. Depending

on the quality of the heuristic, there is a potential for characters to take irrational

decisions. It should be noted however, that this only applies if search depth is inten-

tionally limited. One may of course also utilize HSPs to find complete plans in which

case the above considerations do not apply.

3.3.4 Decision Theoretic Agents

Unlike the HSP agents discussed above, Decision Theoretic Agents differ significantly

from the STRIPS style agents we have discussed so far. (Russell and Norvig, 2003, p.

466) explain “the primary difference is that the decision-theoretic agent’s knowledge

of the current state is uncertain; the agent’s belief state is a representation of the

probabilities of all possible actual states of the world”.

The Thespian system (Si et al., 2006; Si and Marsella, 2010) demonstrates an im-

plementation of this approach in an IS runtime engine. Thespian is a multi-agent

system of decision-theoretic agents built on top of the PsychSim framework (Marsella

et al., 2004; Pynadath and Marsella, 2005). Each Thespian agent has an internal

state describing its actual current physical and social status and a recursive belief

state about themselves and other agents that constitutes a theory of mind. E.g. an

agent A might believe with some level of certainty that some other agent B believes

that A is hungry. Each agent possesses a number of competing goals, whose relative

importance is decided by the author. Besides domain-specific author defined goals,

all agents inherit a set of built-in social norms goals that control the agents behaviour

in conversations (e.g. turn-taking, responding to questions). Decision making con-

stitutes a look ahead search of available actions, also taking into account the mental

models of other agents. The action that promises the greatest reward (as defined by

the agent’s goals) is chosen.

Authoring Thespian agents largely consists of describing actions and goals. Unlike

57

Chapter 3: Data Structures for Story Representation

STRIPS though, their states are described using probability values. A challenge for

the author is to tweak these values in a way that the agent behaves in a desired way.

The same is true for balancing the goal priorities. A fitting mechanism to aid the au-

thor in this task was integrated into Thespian (Si et al., 2005) and will be described

in the next chapter.

3.3.5 Other Approaches

Storytron

There exist other less obviously classifiable character-centric approaches. One of them

is Chris Crawford’s Storytron Crawford (2005, 2007). Everything in Storytron re-

volves around the concept of verbs. Stories simulated by Storytron consists of sen-

tences in a formal story grammar, each of which has a single main verb. Verbs have

typed slots that when filled result in an instantiated sentence. Decision making is en-

coded in a special purpose graphical scripting language (SAPPHO) on a per-character

basis through so called inclination scripts. These encode under which conditions ac-

tors (Storytron’s terminology for characters) prefer which verbs. In a blog posting,

Crawford (2012a) estimates that writing these inclination scripts consumes at least 50

percent of the author’s total effort. Besides inclination scripts the main components

of a story world are verb definitions (some generic ones are provided by the system,

while further ones can be added by the author), attributes, actors, props and stages.

SAPPHO scripting is heavily used throughout the definition for all of the above. As

the scripting language is graphical, the authoring experience in Storytron cannot be

considered in isolation from the system’s authoring tool SWAT (see Figure 3.6).

Of all the systems we have encountered in this section, authoring with Storytron

bears the closest resemblance to actual programming due to its heavy dependence on

scripting. This makes Storytron a complex system to master for authors (Crawford,

2012b) but was an intentional design choice, necessitated by the desire to not rely

overly much on fixed story generation algorithms and instead give the author full

artistic control over decision making processes. As Crawford (1999) states (talking

about Erasmatron, Storytron’s predecessor):

“Therefore I claim that interactive storytelling will always be the domain

of the artist. Surely computers will play an important role in the creative

process (and a necessary role in the performance), but the creative respon-

sibility must lie with the artist, not the algorithm. This does not preclude

the possibility of the artist creating the algorithms; indeed, the Erasmatron

requires the artist to supply a great many simple algorithms for charac-

ter choices. But these are narrowly-applied algorithms; overall creative

strategy remains a task for neurons, not transistors.”

58

Chapter 3: Data Structures for Story Representation

Figure 3.6: Screenshots of SWAT. Left: a verb definition window. Right a typical
SAPPHO script, in this case for selecting eligible actors for a particular verb slot.

Certainly, when considering the IS systems reviewed in this chapter, we have

seen many examples of IS systems limiting the types of stories that are possible to

implement within them, due to their adoption of a particular algorithmic model of

story generation. Storytron affords the author with more freedom and creates less

such restrictions.

Comme-Il-Faut

Another noteworthy character-based system is Comme-il-faut (McCoy et al., 2010b,

2014). It centers around the idea of social games, formal models of the typical social

exchanges that occur between people, which change the social landscape of their

environment somehow (e.g. flirting, paying a compliment, gossiping). The example IS

artefact built with the Comme-il-faut system is called “Prom Week”, is implemented

as a single player Facebook game and puts the player in the shoes of a character

having to navigate the complex social networks of teenage high school life. Players

are assigned goals such as for example getting the class geek to date the prom queen.

Figure 3.7 shows the elements that constitute a Comme-il-faut story world such

as “Prom Week”. We give a very brief description of these here. Detailed information

is available from McCoy et al. (2010a).

• Relationships: Describe reciprocal state between 2 characters. Prom Week

uses the 3 relationships Dating, Friends and Enemies.

59

Chapter 3: Data Structures for Story Representation

Figure 3.7: High-Level Overview of Comme-il-faut story world components (from
McCoy et al. (2010a))

• Social Networks: Very similar to relationships but representing less stable

relations between characters. Realized as a bidirectional graph, connecting all

characters with each other. Prom Week uses the 3 social networks Buddy, Cool

and Romance.Unlike relationships, which are boolean, social networks are scalar

valued, i.e. able to express varying degrees of a relation.

• Characters: Definitions of the characters inhabiting the world. Each character

can have additional author-defined traits (e.g. Confident is one of several traits

in Prom Week). Characters can lose or gain traits through their participation

in social games.

• Character Statuses: Can be interpreted as temporary one-directional rela-

tionships. The author can provide triggers (rules) that cause status changes.

• Cultural Knowledgebase: Contains knowledge about the shared culture or

zeitgeist in the simulated environment. Entries in this knowledge base are topics

of cultural relevance. Each topic is assigned general attributes, representing the

consensus about these topics, but additionally characters can have individual

relationships to them. In fact, this is a large part of what constitutes character’s

individuality. For example the topic Skateboarding might be considered cool in

general but a specific character may find it boring.

• Social Games: The basic units of story progression. Each social game relates

to exactly one Relationship or Social Network and has the goal of improving

or diminishing it. Furthermore, each social game has preconditions that define

whether the game is eligible to be played at this moment or not, a rule set for

the initiator that encodes how desirable it is for them to play the particular

game, a rule set for the respondent that determines the response, effects that

describe how the world changes as a result of this game and instantiations, which

60

Chapter 3: Data Structures for Story Representation

describe staging directions including dialogue on how to present and visualise

the game.

• Social Facts Database: The system’s memory of all social games played in

the past. It is automatically filled during runtime but may be pre-populated by

an author to provide a backstory.

Versu

Versu (Evans and Short, 2014) is the most recent system covered by this literature

review. At the time of writing two story artefacts running on Versu have been pro-

duced and released for iOS devices on Apple’s app store to favourable reviews from

both users and the gaming press. This foray into the mainstream alone makes Versu a

noteworthy system that in due time may help popularize IS, but it also uses a unique

and interesting story representation. Versu artefacts are text-based simulations with

which the user interacts by chosing from a list of actions presented by the system.

The user can chose when to act and when not to act. Unlike other IS systems the

role played by the user is not predetermined by the author (i.e. the user can chose to

control any character) and neither are the actions available to the user at any given

time during the simulation. The eligible repertoire of actions stems from the currently

active social practises, which sit at the heart of the Versu system.

A social practise is a structure which describes a social situation such as having a

meal. Several social practises may be active at the same time, e.g. the process of hav-

ing a meal itself, a conversation occurring at the dinner table and an ongoing flirtation

between two of the dinner guests. Social practises are associated with a set of actions

that are appropriate for that particular situations. Characters in the Versu system are

implemented as utility-based agents and limited to chose from the actions which are

enabled by any of the currently active social practises. Among these actions however,

agents chose autonomously. Their internal utility-based short term planner will select

the action that best satisfies the agent’s desires.

Listing 3.1: Example of a social practise in Versu (from Evans and Short (2014))

process.greet.X(agent).Y(agent)

action "Greet"

preconditions

// They must be co-located

X.in!L and Y.in!L

postconditions

text "[X] says ’Hi’ to [Y obj]"

end

Listing 3.1 shows a very simple example of how a social practise is encoded in

Versu. In this case the social practise of one agent X greeting another agent Y makes

61

Chapter 3: Data Structures for Story Representation

the ”Greet” action available to X if the precondition is fulfilled that both agents are

situated in the same room. A social practise is activated by adding a sentence that

instantiates it to the system’s knowledge base, e.g. process.greet.jack.jill. Many

other elements are involved in the Versu architecture, whose description would be out-

side the scope of this literature review, but the idea of having social practises provide

affordances to a set of autonomous agents is the central distinguishing element of the

system.

3.4 Hybrid Solutions

While most IS systems as discussed above are clearly primarily either character or

plot-centric, many aim to incorporate some aspects of the opposing approach as well.

Several primarily plot-centric systems have found ways of representing the motivations

and behaviour for believable characters and many character-centric drama manage-

ment have been augmented with some drama management functionality that aims to

improve the conditions that are necessary for dramatic plots to occur without restrict-

ing character autonomy. From the author’s standpoint, the hybrid nature of these

systems adds duality to the story world knowledge representation. The author will be

required to provide both plot- and character-centric data structures to make effective

use of these systems.

3.4.1 Character Autonomy For Plot-Centric Systems

Systems that center on plot-centric story representation may run into the risk of

creating stories with unbelievable characters. This may occur when character actions

are selected to serve a plot goal without considering whether the character is motivated

to perform this action. Swartjes (2010) gives the following example to illustrate this

potential problem:

“The goal of the planner may be to create a plot in which a beggar becomes

rich. Without considering character motivation, a plan that satisfies this

plot goal might be that the beggar goes to the bank, the bank owner gives

the beggar all of the bank’s money, and the beggar is rich. This creates a

believability problem upon execution of the plan: there is, for instance, no

believable reason for the bank owner to simply give away the money.”

Of course, character motivations may be encoded implicitly in plot-centric data

structures. E.g. in the bank director case one might add preconditions to the give-

money action that explicitly rule out states, in which this action cannot apply. Ap-

plying such an implicit representation of character motivation can however quickly

62

Chapter 3: Data Structures for Story Representation

lead to confusing and bloated story worlds, e.g. if the give-money action is to be

reused in different contexts, where different preconditions apply. Riedl and Stern

(2006) address this problem by introducing a system that treats the high-level plot

points planned by a plot level planner as prescriptive and proscriptive directions given

at runtime to autonomous character agents. Prescriptive directions assign a goal to

the character. The autonomous agent may achieve this goal either together with its

current autonomous goal, after completing its current autonomous goal or if necessary

after first believably abandoning its current autonomous goal (e.g. the character gets

a phone call with a new order). Proscriptive directions give the autonomous character

a list of world states to avoid in its own planning.

Façade also uses a division between high level plot-planning and low-level character

autonomy (Mateas and Stern, 2005). As mentioned before Façade’s plot is structured

in small dramatic units called beats. Each beat is in fact a collection of autonomous

character behaviour scripts expressed in a language called ABL (Agent Behaviour

Language). Arinbjarnar and Kudenko (2008) use a similar approach entitled DED

(Directed Emergent Drama). Their system does have a central drama Manager which

selects episodic drama structures called schemas. These schemas define a set of roles

and for each role a set of actions annotated by a set of feelings and characteristics.

Agents are dynamically assigned to these roles and have free reign in their action

selection as long as it adheres to the schema.

With the IPOCL system Riedl and Young (2010) have explored the idea of intent-

driven story planning, by augmenting a plot-level planner similar to MIMESIS (see

Section 3.2.1) with the ability to chose believable goals that explain the actions taken

by characters and to generate plans that make these goals believable. In order to

achieve this, the STRIPS action representation was extended in two ways: Firstly,

authors can classify actions into two sets: Non-happenings are character actions that

need to be motivated, whereas happenings are actions that the author deems accept-

able to appear in a story without a reason or motivation (e.g. accidents). Secondly,

authors can specify special kind of effects using the intends keyword. This signifies

that an action enables a character goal.

Listing 3.2 shows an example. The action of a monster to appear threatening to an-

other character is a happening (i.e. the monster does not need to motivate it). The

action enables a goal for said character, desiring the death of the monster. How might

IPOCL use such an action? Consider a partial plan, in which a knight kills a monster,

the action of killing being a non-happening and thus needing motivation. The planner

might then pick the goal of wanting the monster dead for the knight to motivate his

killing. In order to explain how the knight came to pursue this goal, the planner might

then insert the appear-threatening action earlier into the plan.

63

Chapter 3: Data Structures for Story Representation

Listing 3.2: Example of an IPOCL action (from Riedl and Young (2010))

Action: appear-threatening (?monster, ?char, ?place)

actors: ?monster

happening: t

constraints: monster(?monster), character(?char), place(?place)

precondition: at(?monster, ?place), at(?char, ?place), scary(?monster),

?monster 6=char

effect: intends(?char, ¬alive(?monster))

3.4.2 Drama Management For Character-Centric Systems

Character-centric systems have been augmented with a level of plot-awareness through

the addition of centralised or distributed drama management.

Centralised Drama Management

A centralised drama manager is a component that may fulfil one or more of the

following functions:

1. Add a high level plot structure by chaining together multiple character-based

simulations

2. Control the simulation: Initialising the environment (including characters) and

ending a simulation

3. Limit the character’s set of behaviours to a subset of dramatically relevant ones

4. Incite exogenous story events (i.e. those outside of the characters’ control)

The story facilitator in the FearNot! software architecture for example, which

was discussed in the last chapter (see Section 2.3.1) is a typical example of such a

drama manager and does in fact carry out all of the 4 above mentioned functions:

1) it structures the entire plot into smaller episodes, each of which is an emergent

simulation of FAtiMA agents, 2) it sets up the initial conditions for each episode and

monitors episode endings, 3) it limits character goals in each episode to an author

defined subset and 4) external events can be specified by the author for each episode

in the form of triggers.

In a similar vein, the Virtual Storyteller contains a plot agent that fulfils the above

functions 1 and 2 by starting up scenes (Swartjes and Theune, 2008). Figure 3.8

shows how the plot agent ties into the overall Virtual Storyteller architecture. Besides

controlling the simulation the plot agent also captures all occurring events in a fabula

model. The Virtual Storyteller also contains a narrator component that selects a

64

Chapter 3: Data Structures for Story Representation

subset of the events in the fabula model and turns them into an actual story. The nar-

rator is another plot-centric element in an otherwise character-centric system, since

it makes its decision based on a model of what constitutes a good narrated story.

Finally, the Virtual Storyteller also uses distributed drama management (see next

section).

Figure 3.8: Architectural overview of the Virtual Storyteller (from Swartjes and The-
une (2008))

In the Thespian System, the director agent is maintaining a set of author defined

plot goals (Si et al., 2009). It may exert directorial control by changing character’s

motivations and beliefs or even the world state. The director agent only does this,

if it expects an imminent violation of one of its plot goals. Changes made by the

director agent to a character agent have are motivated, i.e. they are not allowed to

break an already established character. Belief and motivation changes can be justified

by making use of past unknown events that have not been observed yet. This is an

instance of a strategy called late commitment (Swartjes et al., 2008). Rather than

pre-defining every single aspect of the world state, late commitment declares all as

of yet unobserved state as changeable. This idea also underlies much of distributed

drama management (see next section).

Distributed Drama Management

Distributed drama management revolves around the idea of autonomous agents that

are aware not only of their role as a character but also on a meta-level of their role as

an actor in a virtual drama. Swartjes et al. (2008) draw from improvisational theatre

practises and uses the above mentioned late commitment strategy in the Virtual

Storyteller system to allow the actor part of a character to fill in as of yet unknown

details about the character in a way that supports dramatic plot development. The

constructs that support this are called framing operators, special types of author

defined STRIPS operators with the effect of asserting some world state proposition.

Framing operators constitute the improvisational repertoire for the actor side of an

65

Chapter 3: Data Structures for Story Representation

agent. They may be used both to justify adopting a new goal and within a normal

plan. E.g. a pirate character on a ship may invoke a BeCaptain Framing Operator

that makes the character the captain and opens up new goals (order an attack). This

is only allowed if it does not contradict previously established facts (e.g. no other

pirate on the ship has already been named captain). These restrictions are encoded

as preconditions of the framing operator. In a similar vein, Arinbjarnar and Kudenko

(2009) suggest an approach for representing both actor and character goals within the

same character using object oriented Bayesian networks.

Louchart et al. (2007a) have incorporated a double appraisal mechanism into FAtiMA.

When an agent has more than one option regarding which action to perform next,

it will make this choice not “in character” but instead “out of character” by picking

the event that causes the strongest emotional reaction in other agents, as determined

by simulation of the emotional appraisal processes of other characters (hence double

appraisal). The idea behind this strategy is that strong emotions result in better

drama. Weallans et al. (2012) have built upon this work and refined the “out of

character” action selection by incorporating a story specification, which defines an

emotional target (rather than always aiming for the emotional reaction of the greatest

magnitude), behind-the-scenes inter-agent communication of the agent’s actor layers

and a virtual user model, as it is really the user’s emotional response to the ongoing

action that is of most importance to the drama. Unlike other drama management

approaches discussed here, Louchart and Weallan’s work does not require much further

authoring effort. It does however pre-necessitate fully specified FAtiMA agents with

an accurate emotional model, which as we have shown in Chapter 2 introduces a high

baseline authoring load.

3.5 Conclusion

This chapter has covered a variety of approaches for representing interactive story

content in IS systems. An obvious overall observation is that authorial intent (how

directly can the author specify their vision) stands in direct conflict to generativity

(to what degree can the system recombine story world knowledge to create new story

variations). While being a popular technique for story representation in video games,

explicit specification of branches has been largely dismissed as a viable solution for

achieving fully realized IS artefacts, due to its combinatorial explosion. In other words,

generativity is deemed essential. Unfortunately, the fact that authorial intent dwindles

with increasing generativity, means that the more technically promising solutions

are also those more challenging to author for. Generative approaches can focus on

describing story elements at the level of plot or character, with both approaches

having advantages and disadvantages. While hybrid solutions exist they typically

66

Chapter 3: Data Structures for Story Representation

also introduce a duality of story representation that increases authoring effort and

complexity. The fact that all of the reviewed systems are part of the same endeavour

towards fully-realized IS and so far none of them has been able to demonstrate any

large scale story worlds proves that the authoring bottleneck is very much a general

phenomenon. More than anything it is a problem of quantity. While generativity

helps with restructuring existing content, there needs to exist enough of it in the first

place.

One aspect of authoring this chapter has not touched on is story representation. The

discussed systems vary significantly in what story representation and user interaction

paradigms they require, and in the degrees of effort that is involved in producing the

materials necessary for presentation. Storytron for instance uses the toy language

Deikto (Crawford, 2008), a story representation mechanism that directly operates on

and exposes its story world data structures.

Figure 3.9: Example of a sentence in DEIKTO: I advise Mary with moderate urgency
that she should go to “?”. The destination parameter is yet to be filled out by the
user. Clicking on it will pop up a context menu listing possible locations.

This requires no further authoring effort for adding story representation to the

story world but results in an extremely mechanical experience (see Figure 3.9) that

some critics argue would rob any story of all its artistic beauty and remove all incentive

for engaging with a story in the first place (Bond, 2007). On the other end of the

spectrum, some IS story engines are designed to be coupled with highly immersive

story representations in simulated 3D virtual worlds. These systems face a whole

battery of follow-on authoring problems for the various pieces or representational

content they require (characters, animations, objects, dialogue, etc).

The next chapter reviews the growing body of work that acknowledges, studies and

attempts to solve these problems through authoring methods and tools.

67

Chapter 4

Authoring Methods And Tools

The previous chapter has shown what kind of content the author has to create in

a variety of IS systems. All of these approaches have scalability problems and no

existing story representation formalism or story generation algorithm offers an obvious

solution to authoring bottleneck. This problem has been widely recognized by the IS

community (Mateas and Stern, 2005; Spierling and Szilas, 2009; Skorupski et al., 2007;

Pizzi and Cavazza, 2008; Medler and Magerko, 2006; Koenitz, 2011b; Iurgel, 2006) and

spawned a growing body of work, studying ways to address the authoring bottleneck.

This chapter discusses some methodological contributions towards defining the process

of authoring, authoring tools that aim to support authors in creating story world data

structures and finally data driven authoring approaches.

4.1 Defining The Authoring Process

4.1.1 Who are the authors?

One reason for the lack of large scale IS artefacts, is the lack of dedicated IS authors.

For many of the IS runtime engines that were reviewed in the last section, the only

story worlds that have been authored were created by the system designers themselves.

Only few of them can afford to invest the effort to implement anything beyond small

example proof-of-concept story worlds. Mateas and Stern (2005) relate that it took

them around 3 person years to author the content for Façade. Their effort certainly

paid off, as Façade, is still widely regarded as the closest anyone has come yet to fully

realized IS. A fundamental assumption underlying most of IS research however is

that the technology is ultimately build for a group of external authors, the question is

only, who are they? Murray (1998) posits that the art form of IS needs a new type of

artist, which she names cyber bard, equally comfortable in the realms of programming

and storytelling. Crawford (2005) is equally insistent that programming skills are a

necessary prerequisite for anyone who wishes to express themselves artistically through

68

Chapter 4: Authoring Methods And Tools

the medium of IS.

Figure 4.1: A view of the different roles assumed to participate in the creation of an
IS artefact (from Hoffmann et al. (2011))

Hoffmann et al. (2011), inspired by the division of labour found in typical game

development teams, break up the author’s role into story creator and technical op-

erator, which represent the artistic and technical side of the cyber bard (see Figure

4.1). If these both roles are not consumed by the same person, it will nevertheless be

important for both parties to have a common understanding to be able to effectively

communicate and collaborate.

This thesis advocates a different distribution of roles that naturally follows from the

use of crowdsourcing. The model proposed in the next chapter and implemented by

the authoring tools that are described in subsequent Chapters distinguishes between

a single principal author and multiple contributing authors. While it would certainly

help if all involved are fully fledged cyber bards, a major thread of the work in this

thesis is how to simplify the process so as to place as little requirements as possible

on the contributing authors.

4.1.2 Authoring Metaphors

Figure 4.2: View of an IS story world as a landscape with several story paths shown

In a joint piece of work, which this thesis author was involved in (Louchart et al.,

2008), we characterized the authoring of emergent narratives using the metaphor of a

story landscape, which represents the total sum of all possible story experiences that

69

Chapter 4: Authoring Methods And Tools

the story world is able to generate. Each location on the story landscape represents

a possible story event and each actual end-user story experience is a path through

this landscape (see Figure 4.2). This metaphor helps in describing three important

properties of authored story worlds that the author needs to consider:

• boundaries: IS story worlds cannot be about everything. They need to have

a theme, message, setting, characters, etc. In other words the story landscape

cannot extend infinitely but needs to have a clear set of boundaries. These are

not explicitly specified but rather implied in the authored content. Nevertheless,

setting the boundaries (conceptually) and finding creative ways to justify them

should be one of the first design considerations of an IS author.

• critical mass: Within the boundaries of the story world a critical mass of

content needs to exist for emergence to occur. One of the conclusions of the

FearNot! authoring case study in Chapter 2 was that in the case of FearNot!

this critical mass was not quite achieved. In terms of the story landscape,

critical mass should be thought of as density. It is not the absolute quantity

of content that matters but content per “square inch” of the story landscape.

Incidentally, this might be why Façade worked so well. Firstly it had very

narrow boundaries. The setting is a single room where the player only interacts

with two characters over the course of about 10 minutes. Secondly it had a very

high density of content within these boundaries (as mentioned earlier 3 person

years of authoring effort).

• dead ends: Dead ends are paths that just end abruptly. They signify a lack of

content in the authored story world. Finding these dead ends and subsequently

filling in the hole in the story content is a challenging aspect of authoring,

especially because every new piece of content that is added has the potential of

creating further dead ends.

These properties are also useful to characterize the crowdsourced authoring ap-

proach advocated by this thesis. Our entire approach (i.e. the use of crowdsourcing) is

necessitated by the critical mass property and how to enforce boundaries for authors

contributing through crowdsourcing is a key theme of this work. The new paradigm of

crowd task adaptation that we introduce has the potential for creating more coherent

story worlds, which also means fewer dead ends.

One key concept, which the story landscape is meant to convey is that of emergence.

We do not explicitly create a landscape, but it implicitly emerges from the authored

story world as processed by an IS runtime engine. It is this aspect of IS authoring that

Spierling (2007) calls “implicit creation” and describes through a gardening metaphor

(see Figure 4.3).

70

Chapter 4: Authoring Methods And Tools

Figure 4.3: Gardening metaphor for implicit creation of IS story worlds (from Spierling
(2007))

Unlike explicit authoring, which is likened to building a paper flower, where the

author has full control over every extricate detail, implicit authoring relies on the plant

to grow from the seeds planted by the author. By definition, it is impossible to predict

the exact properties of the growing plant (i.e. resulting narrative). If the author could

know exactly in advance what the plant will look like that grows from their seeds, it

would have been easier to build a paper flower to start with. Spierling argues that

implicit creation of narrative is a new design paradigm with a steep learning curve:

“Faced with the complexity of emergent systems, content creators need to

approach implicit creation in steps, starting with explicit creation methods

for its greater accessibility. There is a need for future research in identi-

fying appropriate steps and developing supporting tools.”

4.2 Authoring Tools

We use the term authoring tools loosely to describe any software tools that aid authors

in the creation of IS story worlds. This involves graphical editing of story world data

structures as presented in the previous chapter, but may also cover other related

functionality. The relation between an authoring tool and an IS runtime engine (with

a particular story world representation) is analogous to that between a programming

language and an IDE (integrated development environment). Medler and Magerko

(2006) list the following requirements for their ideal IS authoring tool:

• Generality: The tool should support a variety of environments and story con-

texts.

• Enables Debugging: The tool should not only be able to create content but

also allow the author to test it.

71

Chapter 4: Authoring Methods And Tools

• Usability: The system must be user friendly, easy to learn and support efficient

use.

• Environment Representation: The tool should be independent of any par-

ticular environment representation and instead use an intermediate format (e.g.

of maps) in order to support different back ends.

• Scope: Ideally all authoring functionality should be integrated into a single tool

to facilitate integration of and switching between tasks (e.g. action definitions

and dialogue editing).

• Pacing and Timing: Authors should be able to control the pacing and timing

of events.

In the following an overview of existing IS authoring tools is given. Rather than

describing the tools separately in turn we structure our discussion with regards to

the various features that IS authoring tools offer and also occasionally refer back to

Medler and Magerko’s requirements to characterize systems.

4.2.1 Prototyping

A variety of tools specifically aim to support the design rather than the implemen-

tation of IS story worlds. Their goal is to elicit and refine ideas and story elements.

One such tool is Dramachina by Donikian and Portugal (2004). Its main function

is the annotation and identification of narrative elements in written screenplay in-

puts provided by a writer. Elements that can be annotated can be of a plot-centric

structural (acts, scenes, dramatic actions and units) as well as character-centric na-

ture (relationships, character traits, emotions, etc). After the initial annotation in

an actual text the elements are presented in a directory structure and can be further

edited graphically. The resulting directory has two use cases. Firstly, it helps the

author to take a structural view of their screenplay and assists them in making the

transition from explicit to implicit creation modes. Secondly, the annotated elements

can be exported in XML format to ease knowledge encoding for a particular IS engine

(provided that a suitable importer is available).

Struck (2005) suggests the use of a database of film scenes, annotated with a character-

driven drama model as a tool to aid authors in mapping out the protagonist’s emo-

tional journey. Hoffmann et al. (2011) suggest a paper-based approach for collabora-

tively prototyping a plot-based planning domain story representation. They achieved

this by translating the execution of a planning algorithm into a board game rule set.

This is intended to help a team to collaboratively prototype the planning domain

design for a plan-based IS story world and to teach planning fundamentals to non-

technical writers new to IS.

72

Chapter 4: Authoring Methods And Tools

A different aspect of prototyping is the production of quick and dirty playable inter-

active stories. The key goal in this case is to produce a sort of interactive storyboard

that can be used to demonstrated and discuss drafts of IS story worlds among teams.

Tools for authoring of branching narratives as discussed in the next section are well

suited for this purpose.

4.2.2 Authoring Explicit Branching

Branching narrative structures are easily understood and visualized. Authoring tools

supporting this paradigm focus on Medler and Magerko’s requirements of usability, i.e.

making it easy for the user to view, navigate and edit branches and scope, i.e. allowing

users to also edit most presentational aspects of the experience. INSCAPE (Balet,

2007) was devised as a full authoring suite encompassing all stages of design and

production. INSCAPE was designed as an open architecture, which can be extended

through plugins. Its core modules support visual editing of branching story lines. U-

Create (Sauer et al., 2006) is a tool for creating mixed reality storytelling applications

that run on mobile devices. It organizes stories in a hierarchical structure. A story

world is a directed graph of scenes, which themselves are directed graphs of actions.

Figure 4.4 shows the visual editing style of U-Create’s scene graph view. Macvean

et al. (2011) have built a similar system for geo-location enabled mobile story telling

called WeQuest. Unlike U-Create, the WeQuest editor runs directly on a mobile

device and thus allows authoring story points directly in their corresponding real

world location.

Figure 4.4: The Scene Graph View in the U-Create tool (from Sauer et al. (2006))

The Advanced Stories Authoring and Presentation System (ASAPS) by Koenitz

(2011a) is a more recent tool for authoring branching interactive stories with a 2D

graphical presentation and hyperlinks. Figure 4.5 shows the story graph editor of

73

Chapter 4: Authoring Methods And Tools

the system. Koenitz and Chen (2012) call the ASAPS story representation model

“procedural branching”, which they describe as follows:

“While branches have to be pre-determined by an author, the concrete

decision on which branch to take can be determined at runtime depending

on the state of a particular counter, the inventory system, or a variable.”

Figure 4.5: Visual Story Graph Editor in the ASAPS system (from Koenitz and Chen
(2012))

4.2.3 Authoring Generative Data Structures

Authoring tools for creating generative story representations face the fundamental

problem of making implicit creation intuitive. They usually offer features such as

views to organize the story world elements, dialogues and wizards for creating new el-

ements and context sensitive item selection through means such as drop down menus.

These are all quite familiar features of programming IDEs 1 and as any programmer

can attest they undoubtedly help increase productivity but cannot make program-

ming conceptually easier. The actually challenging aspects of software development

cannot be simply addressed with a fancier editor. The same is true for the authoring

of generative IS as Spierling and Szilas (2009) argue. Authoring tools can help by

“replacing the code generation form of typing by clicking” (Spierling, 2007) but they

cannot take the conceptual challenge out of implicit creation.

We have already encountered one tool of this category. The Story World Authoring

1IDEs such as Eclipse, NetBeans or Visual Studio offer for example object and class browsers,
new class wizards, and text auto-complete while typing

74

Chapter 4: Authoring Methods And Tools

Tool (SWAT) for the Storytron system (Crawford, 2007) was shown in Section 3.3.5.

SWAT offers myriads of dialogues and views for manipulating all aspects of a story

world, as Storytron is exclusively based on visual editing, i.e. there are no “code

editor” windows in SWAT.

WideRuled (Skorupski et al., 2007) is a graphical authoring tool for the Universe story

model (Lebowitz, 1985), an author-based model of planning that represents stories as

pre-authored hierarchical plans not unlike HTNs. However, in contrast to the HTN

based work of Cavazza et al. (2002), discussed in the last chapter, Universe plans

are not character but plot-centric. The main structural units of Wide Ruled (and

Universe) are “Author Goal” and “Plot Fragment”. Each plot fragment belongs to

exactly one author goal and may link to further children author goals. Plot fragments

contain a set of preconditions that need to hold true for the fragment to be eligible for

execution by the runtime engine and a set of actions that the plot fragment executes.

Plot fragment preconditions can bind variables that can be reused in the actions.

Figure 4.6 shows the author’s view of a plot fragment. In this example victimName

and friendName are two variables defined by the plot fragment. preconditions and

actions are created and edited through a number of popup dialogue windows.

Figure 4.6: Wide Ruled: Plot Fragment Editor (from Skorupski et al. (2007))

A similar style of planning domain authoring is afforded by the Scribe authoring

tool by Medler and Magerko (2006) and the tool by Pizzi and Cavazza (2008) for the

EmoEmma system. Renaissance by Zancanaro et al. (2001) is a graphical knowledge

base editor for a frame-based production rules system used in educational story based

games, while Scenejo by Weiss et al. (2005) is a tool for authoring dynamic dialogue

scripts. The latter two systems are not based on planning formalisms as the oth-

ers mentioned before but they offer similar authorial affordances and use similar UI

75

Chapter 4: Authoring Methods And Tools

paradigms. The Bowman authoring tool (Thomas and Young, 2006) takes an unusual

approach in that it interleaves plan execution with author feedback to develop plan

heuristics in a meta-language. Its mixed-initiative approach can be used to gain data

for augmenting a plot planner with heuristics to guide which of otherwise identical

plans to prefer.

A version 2 of Wide Ruled with minor UI improvements was introduced by Skorupski

and Mateas (2009), but the authors eventually concluded that a more novice friendly

authoring environment was needed. Addressing this, they produced Story Canvas

(Skorupski and Mateas, 2010), a radically redesigned authoring tool for the same un-

derlying Universe story model. Story Canvas uses a comics story visualization and in

general more visual editing and less dialogue windows in comparison to Wide Ruled.

Its most innovative contribution is the representation of temporary variable bindings.

Figure 4.7 shows the plot fragment editor of Story Canvas, which offers exactly the

same plot fragment editing capabilities as that of Wide Ruled shown in Figure 4.6.

Characters that are unspecified at authoring time are represented as colour-coded

silhouetted shapes in the comics visualization, while character relationships are rep-

resented as bidirectional arrows between character shapes. Unfortunately there are

no studies available that relate how Story Canvas’ use of visual metaphors affected

the performance of authors.

Figure 4.7: Story Canvas: Plot Fragment Editor (from Skorupski and Mateas (2010))

4.2.4 Debugging

With growing complexity of authored story worlds, authors will inevitably make mis-

takes that need to be corrected. Authoring tools can support this through debugging

features. The simplest of these is for the authoring tool to allow the author to swiftly

switch to story execution mode and observe running the authored story world. This

also enables iterative authoring and cocreation methodologies (Louchart et al., 2007b;

76

Chapter 4: Authoring Methods And Tools

Swartjes and Theune, 2009). Most authoring tools support this basic functionality,

but some go further in that they allow the step wise execution of plans (Pizzi and

Cavazza, 2008) or the manipulation and monitoring of story world states during exe-

cution (Medler and Magerko, 2006; Pizzi and Cavazza, 2008). This is in line with the

functionality provided by debuggers for programming languages.

Another popular way for finding bugs in software programs is the use of static analysis

tools. These tools perform an offline analysis of the entire source code of a computer

program and detect problematic issues such as memory leaks. Equivalent functional-

ity also exists in IS authoring tools, especially those based on planning formalisms.

The EmoEmma authoring tool by Pizzi and Cavazza (2008) checks for completeness

and consistency of the authored planning domain. Similar functionality is provided

by Dang et al. (2011) in a stand alone tool that uses a linear logic proof to identify

for example unused operators, dead ends, unused propositions and unreachable goal

states. The Storytron editor SWAT (Crawford, 2007) also offers a suite of analysis

tools to authors. An author may for example invoke its “Scriptalyzer” module on a

script of their choosing, which performs a Monte Carlo simulation on the script by

reporting the effects of different random combinations of the script’s input variables.

4.2.5 Affecting Story Presentation

As mentioned earlier, story presentation styles vary wildly in different IS systems. If a

system employs any form of graphical story presentation, some sort of tool support for

configuring the presentation is absolutely vital. Common tasks include configuration

of the environment, placement of elements in the virtual world, definition of character

animations and behaviours, association of sound effects, etc. However, much of this

functionality can be found in professional third party tools. Therefore many systems

use professional game engines and their associated editors for the majority of pre-

sentation related authoring such as the Unreal Engine editor (Cavazza et al., 2002;

Magerko, 2002; Young et al., 2004; Pizzi et al., 2007), the Neverwinter Nights editor

Aurora (Thue et al., 2007) or the Unity3D game engine and its editor (Nazir et al.,

2012).

Scribe (Medler and Magerko, 2006) has an emplacement editor that allows users to

manipulate the spatial configuration of the story world but for more detailed visual

configurations (such as animation phases of a character) external tools still have to

be used.

Many of the tools reviewed above for authoring explicit branching offer in-tool edit-

ing of all aspects of the visual appearance of the resulting story. ASAPS (Koenitz,

2011a) for example offers simple layouting of 2D scenes. INSCAPE (Balet, 2007)

also supports complex 3D visualizations and while addressing the scope requirement,

raises the question how much more this project could have been achieved in terms

77

Chapter 4: Authoring Methods And Tools

of authoring interfaces for generative IS, if the resources spent on replicating well

understood game editor functionality would have been directed towards it.

4.2.6 Educational Authoring

A discussion of authoring tools would not be complete without mentioning those sys-

tems, whose primary or secondary goal is computer science education. These systems

take the view that storytelling is a suitable gateway domain to get acquainted with

basic computer science concepts such as data types, variables or function calls. This

approach has been successfully applied across different age groups.

Adventure Author (Robertson and Nicholson, 2007) is a tool targeted at young chil-

dren for making story-based adventure games. Storytelling Alice (Kelleher, 2009) is

a storytelling variant of the visual programming language Alice that allows users (the

designed target group are middle school children) to explore the basics of scripting.

Emohawk (Brom et al., 2009) targets a more mature audience with existing computer

science knowledge. It is designed primarily as a vehicle for CS students to experiment

with autonomous agent technologies and algorithms.

4.3 Data Driven Authoring

Several IS systems have implemented authoring solutions that use data-mining tech-

niques in order to configure an IS story world. Data being mined is predominantly

provided in one form: example stories or story fragments. The author’s task then

is the collection or creation of these examples in order to provide them to an au-

thoring system that processes these cases and automatically extracts features from

them to incorporate into the story world. Swartjes (2007) calls this process “author-

ing with narrative cases”. There are also many parallels to the “programming by

demonstration” paradigm (Cypher, 1993). Authoring for IS systems that use case-

based reasoning (CBR) is practically identical, the difference lying solely in whether

the cases are used online (cases are part of the actual story world and processed at

runtime) or offline (cases are an intermediate representation and used to modify the

actual story world data structures in a separate processing step at authoring time).

A system that adopts this latter strategy is Thespian, which was introduced in Section

3.3.4. Thespian represents agent personality as a vector of relative goal weights. It

was found that setting these weights to suitable values by hand is a time consuming

and tedious process. The authoring suite for Thespian agents therefore includes a

mechanism for fitting an agent’s personality (as expressed by its goal weights) so that

it best matches a set of author provided example stories, which act as valid demon-

strations of believable behaviour of this agent (Si et al., 2005). Figure 4.8 illustrates

78

Chapter 4: Authoring Methods And Tools

how the goal fitting procedure is integrated into the Thespian authoring process.

Figure 4.8: The Thespian Authoring Process with its Goal Fitting Procedure (from
Si et al. (2005))

The ActAffAct system by Rank and Petta (2012) contains a similar feature that

allows the author to provide example episodes of a character’s past, which the system

uses offline as in Thespian for tuning the character’s personality parameters. While

the story examples here are framed as backstory, whereas in Thespian they specify

character behaviour in hypothetical situations, this distinction makes no discernible

difference in practise.

Once we consider the provision of narrative cases as a valid authoring method, it

is a small leap to consider crowdsourcing the collection of these narrative cases. As

already mentioned in the introduction of this thesis, Orkin (2011) with the Restaurant

and Improviso systems and Li et al. (2012) with the Scheherazade system have taken

this step. As their work is highly related to the original work carried out within this

PhD, descriptions of their systems and a comparison to this work are provided in the

following sections.

4.3.1 The Restaurant and Improviso

The Restaurant Game (Orkin and Roy, 2007) was launched in 2007 as an experiment

in salvaging game play data for the authoring of intelligent agent behaviour. The

two-player game lets pairs of players act out the interactions between a waitress

and a customer in a 3D virtual restaurant environment (see Figure 4.9 (left)). The

game only starts when two players, which are randomly matched by the system, are

both present. What ensues is entirely up to the players. A session might follow the

perfectly ordinary, if slightly boring steps of greeting, ordering, serving, eating and

paying or might turn into a surrealist exchange of oddities. The system does not

reward, comment or judge the performance. For players the enjoyment derives from

the anonymous participation in an improv session with a total stranger.

79

Chapter 4: Authoring Methods And Tools

Figure 4.9: Left: The Restaurant Game, Right: Improviso

Players can move through the restaurant environment (it is impossible to leave this

locale), use a few predefined physical actions such as (eat, pick up, sit down, etc) on

the objects available in the environment and communicate with each other through

text input (As there is only one interaction partner this is simply a matter typing

and hitting Enter). All these actions of both players are recorded by the system as a

gameplay trace, which is The Restaurant’s equivalent of a narrative case. Orkin has

recorded over 5000 of such traces. Later work of the same team describes how one

of the roles (waitress or customer) could be automated using this corpus of recorded

traces (Orkin and Roy, 2009) and how manual task annotation of the traces (i.e.

describing which task each recorded action is related to) improves believability of the

generated behaviour (Orkin et al., 2010).

The project demonstrated how data generated as a by-product of multiplayer gaming

that would otherwise just go to waste can be used to drive the behaviour of AI

agents. But the interactions recorded in The Restaurant were mostly not inherently

dramatic and as a result the model of behaviour built from the Restaurant game play

traces was mostly a representation of normal, acceptable behaviour in a restaurant

situation. Improviso (Orkin, 2011) was an attempt to apply the same technology to

a game play situation that is more amenable to dramatic improvisation. Improviso

allows two or more players to enact the chaos that ensues around a UFO crash site,

with playable characters including aliens, FBI agents, scientists and a reporter (see

Figure 4.9 (right)). Interaction modalities are similar to the Restaurant but players

are also allowed to switch between characters and can even perform some directorial

actions. Unfortunately, no further publications relate how the system was received

and what kind of data was collected.

80

Chapter 4: Authoring Methods And Tools

4.3.2 Scheherazade

The Scheherazade system (Li, 2012; Li et al., 2012) uses crowdsourcing on Amazon’s

Mechanical Turk platform to collect example scripts for a given social situation (e.g.

a bank robbery). Posting the HIT2 on Mechanical Turk and collecting the incoming

results is a built-in automated part of the system. The “author”, i.e. the initiator

of a story picks a few characters and a social situation. A short description of the

characters and the type of social situation is then provided to the workers who have

to provide write a text that details one possible chain of events describing how the

situation unfolds. Workers are asked to use short simple sentences that describe one

event and have only one verb.

John covers
face

John enters
bank

John sees
Sally

John waits
in line

John approaches
Sally

John gives
Sally bag

Sally is
scaredSally greets

John
John hands
Sally a noteJohn pulls

out gun

Sally
screams

John points
gun at Sally

John shows
gun

Sally reads
note

John demands
money

Sally calls
police

John drives
away

John gets in
car

John leaves
bank

John opens
bank door

John takes
bag

Sally gives
John bag

Sally presses
alarm

Sally puts
money in bag

The note demands
money

Sally collects
money

Sally opens
cash drawer

Sally give
John money

John collects
money

Police
arrives

Police arrests
John

Legend

Normal EventA

A Optional Event

Precedence constraint

Mutual exclusion

Figure 4.10: A Scheherazade plot graph for a bank robbery situation (from Li et al.
(2012))

The system uses the collected corpus of textual situation descriptions to build the

following plot graph representation: a directed graph where nodes are events, which

may be optional (event may be skipped without making the story invalid), precedence

constraints (in any story event A must happen before event B) are represented as

directed edges and mutual exclusion relations (events A and B may not both appear

in the same story) as undirected edges. To derive such a graph as shown in Figure 4.10,

2HIT stands for Human Intelligence Task and is Amazon’s terminology for a task to be completed
by Mechanical Turk workers

81

Chapter 4: Authoring Methods And Tools

the system first splits each story into individual sentences and performs clustering on

the set of all sentences to identify unique events. It then derives precedence constraints

from the observed probabilities that 2 events follow each other. These probabilities

need to be above a certain threshold to combat noise. With precedence constraints in

place mutual exclusion links and optional events are calculated based on the statistical

interdependence between pairs of events. Traversing a complete plot graph yields an

interactive story if at stages where multiple options are available, these are presented

as choices to the user.

More recent publications on Scheherazade (Li et al., 2014b,a) have focused on the

automated narration of the generated stories. In order to produce more readable and

entertaining accounts of paths through the plot graph, the system employs a second

round of Crowdsourcing (after the plot graph has been learned) in which explicitly

colorful textual descriptions of the same social situation are being collected.

4.3.3 Comparison

The systems discussed are the most similar related work to the systems implemented

for this PhD: ENIGMA (subject of Chapter 6) and CROSCAT (subject of Chapter

7). In order to contextualize our work, Table 4.1 briefly summarizes some of the main

differences between these systems. It shows that our work provides some novel view

point on the use of crowdsourced authoring. Most importantly we uniquely use crowd

task adaptation (a concept defined in the next chapter), but we also differ from both

the Restaurant / Improviso and Scheherazade systems in several other aspects.

The Restaurant
Improviso

Scheherazade ENIGMA
CROSCAT

multiplayer creation Yes No No
natural language processing Yes Yes No
focus on dramatic stories No / Yes No Yes
story representation 3D graphics text 2D comics
specialised authoring tool Yes No Yes
story domain independent No Yes Yes
authors have time to delib-
erate

No Yes Yes

crowd task adaptation No No Yes

Table 4.1: Feature comparison between IS authoring systems that employ crowdsourc-
ing

82

Chapter 4: Authoring Methods And Tools

4.4 Conclusion

This chapter has reviewed a variety of IS authoring approaches. Authoring tools

offering debugging, visual editing and intelligent decision making support features

certainly can contribute to educating authors, shaping their approach to story world

design and construction and aid them in the actual implementation. However, none

of the tools address the fundamental problem of scalability. The ideal authoring tool

requirements by Medler and Magerko (2006) also do not include scalability, indicating

that this is an aspect that has been given little attention so far. We would argue that

for the ambitious goal of achieving fully realized IS, tools designed for scalability are

needed and that the best modus operandi for these tools is to facilitate collaboration

of multiple authors.

This chapter has also reviewed data-driven authoring approaches as a promising way

to tackle the scalability / quantity problem. But only few systems have explicitly

considered how data-driven authoring can be effectively applied to multiple authors.

The remainder of this thesis tries to address this question. First we establish effective

collaboration models for IS authoring, building upon patterns shown by the data-

driven systems. In subsequent chapters we then describe our own authoring tools

based on these models.

83

Individually, we are one drop. Together, we are an ocean.

Ryunosuke Satoro

Part II

Crowdsourced Authoring

84

Chapter 5

Crowd Task Adaptation

The first part of this thesis has demonstrated the conceptual and scalability difficulties

found in contemporary approaches to IS authoring. Independent of the approach

taken to encode IS story worlds, IS runtime engines are by their very nature extremely

data-hungry and it is the author’s responsibility to provide this data. As discussed in

the previous chapter, involving an online crowd in its creation is a promising approach

for obtaining a critical mass of data. In this chapter we home in on this idea and

turn to various types of mass collaboration systems enabled through the pervasiveness

of the World Wide Web (Doan et al., 2010), discuss how they can be applied to IS

authoring. As a result of this exploration, the novel concept of Crowd Task Adaptation

is suggested as a modification to the crowdsourcing workflow. This is followed by a

discussion of reasons for why this new approach should boost efficiency and the value

of the resulting data.

5.1 Defining Crowdsourcing

5.1.1 Crowdsourcing and other crowd-powered approaches

Crowdsourcing is one of the most common buzzwords of the computing industry in

the early 21st century. Howe (2006) defines crowdsourcing as “... the act of a company

or institution taking a function once performed by employees and outsourcing it to

an undefined (and generally large) network of people in the form of an open call...

The crucial prerequisite is the use of the open call format and the large network of

potential laborers.”. Based on this definition, crowdsourcing possesses some crucial

characteristic that distinguish it from related large-scale problem solving and content

production approaches.

Figure 5.1 contrasts Crowdsourcing with Data mining and Commons-based peer

production. All these three approaches make use of the unprecedented scale of con-

nectedness provided by the internet and enlist a crowd of internet users for achieving

85

Chapter 5: Crowd Task Adaptation

Data mining

Crowdsourcing Commons-
based
peer

production
passive activerole of

contributors

low higheffort required
from contributors

value of a single
contribution

moreless

Say Anything

IS Examples

Bar Karma

The
Restaurant

A million
penguins

Improviso

Figure 5.1: Crowdsourcing and related crowd-powered approaches

some goal.

Data mining underpins the business model of many modern internet companies,

which capture the online activities of their users to generate value. The collected

data is processed using machine learning techniques and used for example to provide

various types of recommendations, from targeted advertising to shopping recommen-

dations or customised internet searches. Users are usually passively contributing to

such a data mining effort and are often not even aware of their own participation.

The collected data is merely a byproduct and users do not put any effort into creating

the data. Data mining is crucially lacking the “open call” to adhere to the definition

of crowdsourcing.

At the other end of the spectrum, Commons-based peer production (Benkler and

Nissenbaum, 2006) refers to highly democratic internet based production processes.

The internet gives people interested in a common goal a platform for collaborating in

an efficient manner. Two prime examples for successful Commons-based peer produc-

tion can be found in the online encyclopaedia Wikipedia and large scale open source

software projects such as the Linux operating system. In both cases a large number

of volunteers have pooled their resources to produce world-leading artefacts. The key

distinction between crowdsourcing and Commons-based peer production lies in the

organization of work.

Crowdsourcing implies a distinction between a central organizing entity and crowd

workers. The central organizer issues and promotes the open call for participation,

defines the tasks for crowd workers and finally collects and processes the collection

86

Chapter 5: Crowd Task Adaptation

results. In contrast, participators in a Commons-based peer production play an ac-

tive role in the organisation of work and definition of tasks. Wikipedia is an excellent

example to illustrate this point: A contributor gets to chose which article they want

to edit or create. Differences of opinion are dealt with by the community through

discussions and an elaborate set of rules of conduct, which are in turn established by

the community. In contrast, in a crowdsourcing model a central encyclopaedia editor

would farm out tasks for the creation of certain articles and consolidate any incon-

sistencies using their own judgement. They might also use crowdsourcing to obtain

a vote on certain decisions, but the decision on whether to involve the crowd in the

first instance and whether to adhere to the voting result or not would always lie with

the central editor.

5.1.2 Storytelling Examples

The degree of involvement of a contributor (passive to active) in the 3 crowd-powered

approaches naturally influences the amount of effort that contributors have to invest

in order to participate. However, this effort does also pay off in terms of the average

value that can be derived from a single contribution. Figure 5.1 shows how some

examples from the realm of Storytelling (in some of the cases interactive) relate to

our distinction of crowd-powered approaches.

Say Anything

The “Say Anything” Open Domain Story Writing Companion by Swanson and Gordon

(2008) crawls a huge amount of openly accessible blogs, which contain personal stories

of internet users and stores single sentences from these stories in a database. This

database enables an Interactive Storytelling mode where the user and the system

jointly construct a story in turns. The user types a sentence, which provides the

features for looking up suitable follow up sentences in the sentence database. The

user is presented with a set of the highest-scoring follow-up sentences. The user

picks one of the suggested sentences and then continues the story by typing another

sentence. This is followed by another database sentence lookup, which can now take

into account features from the entire story history so far. This turn taking continues

as long as the user wants.

The stories usually become increasingly bizarre / surreal with every added sentence

and fall apart at some point, due to the growing mismatch between the context

understood by a human reader of the story and that captured in the retrieval features.

Nevertheless, there is no denying that “Say Anything” has entertainment value and

potential applications as a creativity / inspirational source for writers aid and as a

teaching tool for creative writing. Its open domain nature make it stand out from the

87

Chapter 5: Crowd Task Adaptation

traditional idea of Interactive Storytelling that this thesis focusses on. Subsequent

research on the project has focussed on the choice of retrieval models for looking

up candidate sentences (Swanson and Gordon, 2009), the ranking of the presented

candidate sentences and sentence adaptation to fit the story context Swanson and

Gordon (2010).

“Say Anything” firmly falls into the “Data Mining” category of our taxonomy of

crowd-powered approaches. The data contributors in “Say Anything” are various

bloggers across the world. They were truly passive with regards to their involvement

in the project itself. Most of them will not have been aware of “Say Anything”

and many contributions might in fact have been made before the inception of the

“Say Anything” project. None of the bloggers have invested any additional effort in

order to participate in “Say Anything”. Consequently the relative value of a single

contribution is not very hight but this is compensated by quantity. Finally, it should

be noted that Swanson and Gordon (2010) report on their use of crowdsourcing for

evaluating “Say Anything”. However, this has no bearing on the authoring process.

The Restaurant, Improviso, Games With A Purpose and SNACS

The approach taken by (Orkin, 2011) on the games “The Restaurant” and “Im-

proviso”, which we have already discussed in previous chapters can be classified as

“Crowdsourcing”. With these projects, a central organising entity (Orkin himself) has

created a constrained task for contributors. The task consists of collaboratively acting

out improvised fictional scenes in a video game style application. The story domain

is constrained by the content present in the game and the instructions provided along

with it. Consequently participants have to accept certain restrictions and clearly do

not have the possibility to significantly influence the overall direction of the project

as they would have in a Commons-based peer production. However they do take a

significantly more active role than the bloggers that provided the material for Data

Mining in “Say Anything”. A contributor to either “The Restaurant” or “Improviso”

will have responded to an open call for participation and have had some motivation

for participating. They will in all likelihood been aware of their participation in a

crowd sourced data collection and the broad purpose of the “game”.

The Restaurant and Improviso can also be seen as examples of “Games with a Pur-

pose”, a term established by von Ahn and Dabbish (2004). The idea of a “Game With

A Purpose” is to disguise a Crowdsourcing task behind a layer of gameplay. As games

are commonly associated with fun, the gameplay layer provides a motivation for par-

ticipating. Von Ahn has provided several prototype examples of such games: In the

ESP game (von Ahn and Dabbish, 2004) two players try to achieve a joint highscore

by scoring points if they come up with the same keywords for a given image. The

images fed to them while playing are taken from a corpus of images that need to be

88

Chapter 5: Crowd Task Adaptation

labelled and the keywords they type while playing the game can be used for generating

labels. Following similar principles, Peekaboom (von Ahn et al., 2006b) is a game for

learning the location of objects in images, Verbosity (von Ahn et al., 2006a) collects

common sense knowledge (e.g. the fact that a dog is a kind of animal) through the

means of a guessing game and Tagatune (Law et al., 2007) uses the game mechanics

of the ESP game for sound and music annotation instead of image labelling.

“Games with a purpose” show that the boundary between Crowdsourcing and Data

Mining in our distinction of crowd-powered approaches is blurry. This is especially

true, if the game disguises the task extremely well and the participant is not even

aware of the fact that they are contributing to some data collection effort by playing

the game.

Our final example for the use of Crowdsourcing in creating narratives is the SNACS

system (Sina et al., 2013). SNACS is used for collecting social narratives through

Amazon’s Mechanical Turk platform. The collected narratives are short diary-like de-

scriptions of some recent social activity the worker has been involved in. In addition

to these natural language narratives, contributors are also providing metadata in the

form of attributes describing themselves and their narrative by filling out some ques-

tionaires. Based on this data the system is able to create new narratives for a given

character profile by adapting collected narratives to a different context.

A Million Penguins and Bar Karma

The “A Million Penguins” project (Mason and Thomas, 2008) sponsored by the pub-

lishing house Penguin Books aimed to study the application of Commons-based peer

production principles to creative writing. The grand goal was the joint creation of

a wikinovel, a novel written by internet users using a Wiki platform. Users had to

organize and coordinate their writing contributions. They had to decide on a theme,

setting, characters and plot for the novel and somehow resolve their differences of

opinion. This was reportedly not always easy. It is not hard to imagine that the

types of person that are passionate enough about creative writing to contribute to

such an endeavour also feel a sense of pride and ownership in their work and ideas and

more importantly have strong opinions. When people’s ideas get rejected, feelings are

easily hurt. Not surprisingly the “A Million Penguins” community relatively quickly

fractured with several groups working on alternative “versions” of the final work. The

outcome of this creative experiment is therefore not a single monolithic novel but a

wiki full of fragmented stories and unfinished pieces, which due to its multi-faceted

nature has certain similarities to an IS artefact. Nevertheless an astonishing amount

of collaboration also took place and many participants thoroughly enjoyed the experi-

ence. The lesson to be learned for our discussion of crowd-powered creation processes

is that active involvement of participants can lead to conflicts that are not typically

89

Chapter 5: Crowd Task Adaptation

observed in a Crowdsourcing situation. While people may really pour an unprece-

dented amount of hard work into the collaboration they will also much more fiercely

fight for their contribution to be acknowledged.

Another example for Commons-based peer production principles applied to Story-

telling was Bar Karma (Zucker-Scharff, 2011), a short-lived community-written TV-

show on a small independent channel. Bar Karma was a project by the famous video

game designer Will Wright (creator of Sim City, The Sims and Spore). Using a

piece of software called “StoryMaker”, users were able to draft storyboards for future

episodes on the show’s website. User’s could provide storyboards for entire episodes

or only single scenes. Discussions and collaborative editing were also possible, with

“StoryMaker” laying out all proposed storylines in a graphical story graph (see Figure

5.2). After a deadline date, the community would be invited to vote for their favourite

storyboard, which would then in turn be filmed by the show’s producers. This second

voting stage is more characteristic of Crowdsourcing, as during this stage users had a

well defined task. However, this is merely a narrowing down of existing content. The

actual content generation falls in the Commons-based peer production category.

Unfortunately reports about the authoring process of Bar Karma are hard to come

by, therefore we cannot say more about how well the community collaborated and if

there were any conflicts. Arguably, Bar Karma qualifies as a form of Interactive

Storytelling, as the audience can influence the overall storyline of the show on an

episode-by-episode basis, but for the narrower definition of computer-based IS that

this thesis has adopted, we do not consider Bar Karma as an IS artefact.

5.2 Attacking the Authoring Bottleneck with a Crowd

5.2.1 Useful Data

The goal of this thesis is to work towards a crowd-powered solution for the problem of

the Authoring Bottleneck. This clearly involves the crowd producing either an entire

story world by themselves or alternatively at least some data that can be classified as

useful during the creation of an IS story world. Useful in the latter case could be more

precisely defined as significantly reducing the authoring effort required for authoring

this story world. We can identify several potential types of useful data.

Story World Data Structures

In Chapters 2 and 3 we have surveyed the data structures in use for encoding story

worlds in a variety of prominent IS Runtime Engines. It would be ideal if we could

get data that adheres to one of these formats, so that it is directly readable and

90

Chapter 5: Crowd Task Adaptation

Figure 5.2: Screenshots of the StoryMaker application used to collaboratively edit
storyboards for Bar Karma episodes

processable by an IS Runtime Engine. The data on its own could make up an entire

complete story world or complement additional data structures that are authored

before and / or after the data collection from the crowd. Most story world data

structures encode knowledge in one form or another. Several projects exist that have

employed crowdsourcing for collecting common sense knowledge (Singh, 2002; Lenat,

1995). Some of them (Lieberman et al., 2007; von Ahn et al., 2006a) follow the “Games

With A Purpose” paradigm of hiding the data collection behind a game play layer.

Consequently, this type of data-collection is not entirely new ground and templates

for how to efficiently collect data exist.

91

Chapter 5: Crowd Task Adaptation

Example Stories

Considering that the majority of crowd members will not possess the expert knowledge

for directly producing the required data-structures, we might settle for an intermediate

more human-friendly representation. In order to produce an IS story world such

an intermediate presentation will then have to be processed further into the data

structures required by the IS Runtime Engine in use. This transformation could

be done using manual labour or automated processes (e.g. utilising machine learning

methods). In Chapter 4 we have encountered multiple instances where example stories

were used as such an intermediate presentation (Orkin and Roy, 2007; Li et al., 2012;

Rank and Petta, 2012; Si et al., 2005). Not all of these systems have used the ability of

providing example stories as input as a means to enable crowd-powered data collection.

Instead, some systems simply use example stories as an aid for a trained individual

author. The fact that such an aid is necessary and useful, supports our observation

from chapter 2 that thinking in linear stories is fundamentally easier than thinking

in the abstract data structures in use by most IS Runtime engines. And of course we

have seen several case-based reasoning systems, where example stories are the primary

data structures used by the IS Runtime Engine.

Furthermore, in our literature review we did not encounter any other intermediate

representations of story world content. Based on this evidence we can conclude that

example stories are the most natural and preferred medium of specifying the contents

of a story world. However, example stories are a high-level concept that can be

technically represented in a large variety of ways. When collecting example stories

from the crowd with the aim of helping us to design an IS story world, their usefulness

will depend partly on their representation. Probably the most natural forms of story

representation are those that we are used to consuming ourselves: stories written

in prose / natural language, drawn stories (e.g. comics) or film / animation are all

human readable representations whose creation processes are well understood. On the

other hand, stories could be represented in a more machine-friendly representation.

For example the representation could specify a structuring that identifies distinct

events, the actions taking place, the characters involved in the action, any parameters

modifying the action, etc. Details vary depending on the specific story world format,

but in general data provided in such a representation is more useful, as it allows

for an easier transformation into the data structures used for describing an IS story

world. Consequently there is a tradeoff between authoring effort (how difficult is it

for a crowd member to contribute an example story) and transformation effort (how

difficult is it for a machine or human expert to extract useful data from the example

story that contributes to an IS story world). Figure 5.3 visualizes this tradeoff.

To be clear, a single example story will not yield in an interactive story world.

Instead, a large amount of example stories demonstrating a variety of alternative

92

Chapter 5: Crowd Task Adaptation

Human
Author

IS Story
World

Example Story
Representation

Transformation
Stage(s)

authoring effort low

authoring effort high

human
readable

machine
readable

transformation
effort high

transformation
effort low

Figure 5.3: The tradeoffs between authoring effort and transformation effort when
considering an example story representation

courses of events will be required for the transformation stage to produce meaningful

results. But after all, this quantity aspect is why we consider involving the crowd

in the first place. Regarding the question of how the transformation from example

story into story world data structures works, it is impossible to give a general answer.

It depends on both the example story representation and the data structure of the

story world. The systems using example story input that are discussed above provide

some exemplary answers to this question. Furthermore, Chapter 6 will show another

concrete example of such a transformation process in the ENIGMA authoring system.

Similarly, the type of information provided to crowd authors before they start pro-

ducing example stories may differ. They may be given a backstory and be asked to

continue it as in the authoring experiments descriped in this thesis, but could equally

be given an existing story and be asked to create variations or extensions of it.

Human Judgement

Another way in which a crowd can contribute is by providing human judgement in

certain types of systems where story worlds are partially or fully machine generated.

For example in the discussion of example stories above, it is quite possible that the

transformation stage (if automated) will have a certain error rate, i.e. generate some

story world content that does not make any sense from a human perspective. In such

cases the crowd can be used to filter out such errors by applying their common sense

to review the content. This content filtering or verification is a much easier task than

actual content creation, as it can be reduced to make only multiple choice decision

making, i.e. vote.

Branching Story Trees

Finally, instead of relying on an IS runtime engine to generate a story, we may con-

sider returning to the much simpler concept of branching story trees in the vein of

“Chose Your Own Adventure” stories. As we have discussed in Chapter 3, branching

story trees are usually dismissed by the IS research community because of the combi-

93

Chapter 5: Crowd Task Adaptation

natorial explosion of branches that makes authoring a story world with more than a

few branching points unmanageable. However this view is based on the assumption of

a single author or small team of authors doing all the work. Crowd-based approaches

remove this restriction and make branching story trees a feasible possibility for deliv-

ering certain types of fully realized IS artefacts. The CROSCAT system discussed in

Chapter 7 uses this approach.

5.2.2 Finding a suitable crowd-powered approach

We are now ready to discuss which of the crowd-powered approaches (Data mining,

Crowdsourcing or Commons-based peer production) is most suited for addressing the

problem of the Authoring Bottleneck that the first part of this thesis has characterised.

The key question when considering Data Mining is how to obtain useful data. A

repository of useful data needs to be found or an existing user activity that produces

useful data needs to be identified. Data Mining works well for “Say Anything” because

of its open story domain. For such a data-driven open-domain storytelling system,

any story is useful data. For the more specific idea of a limited story domain however,

we would need to find a repository of data that shares the limitations of the story

domain. This is not easy, but possible under certain circumstances. For example, Lin

and Walker (2011) data-mine a semantically annotated internet database of movie

scripts. In their system the movie scripts are used to automatically learn parameters

describing the language patterns of a certain type of character (e.g. an American

Italian Mobster) for a natural language generation system. If a data archive as in this

case can be found, Data Mining is a useful approach, with the important advantage

that it does not necessitate recruitment of and advertising to contributors. However,

it will be difficult to perceive general Data Mining solutions for the authoring bottle-

neck as any solution will be dependent on the availability of suitable data.

In Commons-based peer production situations, contributors collaborate explicitly

with each other. In contrast to Crowdsourcing, they are not given specific tasks to

perform. Instead each contributor gets access to the entire artefact that is collabo-

ratively created and gets to decide on how to improve it. In Wikipedia the entire

encyclopaedia and all editing discussions are publicly accessible and everyone is free

to chose, which article to edit or add. Similarly in Open Source software projects the

entire source code is available to anyone who wishes to inspect it and contributors

have freedom in choosing the features they would like to add or the bugs they would

like to fix. How well large-scale Commons-based peer production works, therefore de-

pends on how well the jointly created product is structured. Wikipedia is inherently

well structured due to it being an encyclopaedia. Using the main index and search

94

Chapter 5: Crowd Task Adaptation

tools it is trivial to retrieve existing articles and discussions on a particular topic.

Furthermore, Wikipedia provides many tools and practises to add further structur-

ing such as for example support for grouping articles belonging to a particular topic,

disambiguation pages or naming conventions for articles (Chernov et al., 2006). Con-

sequently, there is a very low entry barrier to becoming a Wikipedian. In the case

of software development, modularity and structure do not come as easily as they do

for an encyclopaedia. Arguably, the majority of the discipline of software engineer-

ing concerns itself with how to structure and modularize code in order make it more

maintainable and extendible. Thus, it is unsurprising that Baldwin and Clark (2006)

found that open source projects are more successful if their codebase is well struc-

tured and exhibits a high level of modularity. If the source code of an open-source

project is not well structured or documented, contributing is considerably harder and

consequently, the likelihood of the project failing increases with its scale.

In order to apply Commons-based peer production to the creation of IS story

worlds, a similar organizational structure for the created IS story world content needs

to be found. A way is needed for collaborators to effectively take in the whole state

of the story world, in order for them to pick a “module” to work on. What exactly a

“module” is in the context of Interactive Storytelling is not clear. Let us consider 2

scenarios to explore this idea a bit further.

Scenario 1: If the crowd is collaboratively constructing a branching story tree, a

contributor needs to review whether a specific branch is already present or not before

they can add it to the tree. The Bar Karma Storymaker (see Figure 5.2) shows a very

straightforward example of how such a collectively created story tree would be pre-

sented to users. The application visualizes the entire tree with scenes being visualised

as nodes and temporal connections between scenes visualized as edges. Users may

zoom, pan and collapse or expand nodes.The problem with this approach however is

that it is not scalable, as the time it takes to review the story tree grows proportional

to the number of branches in the tree. This was not a problem for the Bar Karma

community as they used this format for debating the drafts for a single story board.

Thus their trees did neither have nor require the breadth one would expect from a

fully realized IS artefact.

Scenario 2: Commons-based peer production may also be used to collaboratively

edit the data structures for an IS Runtime Engine directly. We cannot make a gener-

alised statement on how easily such IS story world data structures can be structured

in a modular way, as this depends to a large degree on the specific data structures

in use. In any case, such a collaboration would have to grow organically. Just as

one needs to learn programming first on a small scale before being able to contribute

to large scale open source projects, contributors in such a collaboration would also

95

Chapter 5: Crowd Task Adaptation

require a significant amount of training and experience using a particular IS Runtime

engine. As it stands, there is currently no IS Runtime engine with a user base that

is large enough to spawn a collaborative community of this sort. Thus, while we do

not dismiss the possibility of this scenario entirely (e.g. with suitably user-friendly

authoring tools the audience of popular IS artefacts such as Façade, Prom Week or

Versu may be incentivised to become authors similarly to games that are bundled with

editors and have created lively modding communities), there is not much research can

currently contribute to foster such a collaboration.

Summarizing, for the purposes of IS authoring, Commons-based peer production suf-

fers scalability problems, while the Data Mining approach gives us no control over

the contents of a data source, which makes it difficult to collect data specific to a

limited story domain. Crowdsourcing, however, lying between these 2 extremes, is a

suitable approach for IS authoring as was already successfully demonstrated by the

Restaurant, Improviso and Scheherazade systems. These systems also converge on

the idea that the best way for eliciting useful contributions from crowd members is

to let them provide example stories.

5.3 Crowd Task Adaptation: A Novel Process Im-

provement Proposal

As we have discussed, the crowd-sourced collection of example stories is currently the

best (and only) accepted approach for generic crowd-based solutions to the authoring

bottleneck. Consequently the work in this PhD also uses this approach as a starting

point. In this section, crowd task adaptation will be put forward as a suggested im-

provement to the common implementation of this strategy.

The notion that there is room for improvement in the current model comes from the

observation that the explicit collaboration, present in Commons-based peer produc-

tion can have tremendous advantages. When explicitly collaborating, contributors

actively seek out holes in the content and attempt to fill them. This is possible be-

cause every contributor can see the overall state and the individual contributions of

others. In contrast, the way that crowdsourced example story collection is currently

employed in IS Authoring (in the Restaurant, Improviso and Scheherazade) there is

no collaboration at all. Every collaborator can only see their own contribution and is

agnostic to the overall state and other people’s contributions. We argue that this can

inherently not be as organized and efficient as explicit collaboration. For example,

imagine a Wikipedia where everyone could submit whatever they feel like writing with-

out ever seeing what others have written. Such an encyclopaedia would be chaotic,

full of duplicate and contradicting information and unmaintainable. However, we have

96

Chapter 5: Crowd Task Adaptation

also already established above that explicitly collaborating (i.e. Commons-based peer

production), is not a practicable solution for IS authoring, as we have no scalable

solution for providing structure and ordering to the content.

There exists apparently a contradiction that collaboration is both good and bad at

the same time. We propose this contradiction can be resolved by using implicit rather

than explicit collaboration between contributors. The means by which implicit col-

laboration can be achieved is Crowd Task Adaptation.

5.3.1 Definition

Crowd Task Adaptation in general is a concept applicable to Crowdsourcing as a

whole, i.e.broader than its application in IS authoring. We define the term as follow-

ing:

Crowd Task adaptation is the property of a Crowdsourcing process, where

the collector of contributions generates tasks for workers dynamically, tak-

ing into account the history of already collected results.

The collector in the above definition will usually be an automated computer system

but may also be a human manually processing contributions. Figure 5.4 shows a

conceptualized visualization of the crowdsourcing process.

W1

W2

W3

T1R1

T2
R2

T3

R3

Figure 5.4: Visualization of the Crowdsourcing process

Workers (W) receive tasks (T) from the Collector and send back results (R). There

is no Crowd Task Adaptation if all workers receive the same task, i.e. T1 = T2 = ... =

Tn. This is true for the Restaurant, Improviso and Scheherazade systems. The pres-

ence of Crowd Task Adaptation does not necessarily mean that all workers receive

different tasks, it is possible that in several instances the adaptation process results in

the same task. Thus a more accurate description of Crowd Task Adaptation is rather

that a) some tasks may differ and b) it is guaranteed that some tasks will differ if

they were generated after certain results have been collected.

We use formal language notation for a precise definition of Crowd Task Adaptation:

Let Rset denote the set of all results we could possibly collect and Tset denote the set of

97

Chapter 5: Crowd Task Adaptation

all tasks we could possibly generate. Thus R1, R2 . . . Rn ∈ Rset and T1, T2 . . . Tn ∈ Tset.

If we treat Rset as an alphabet, then Rset
∗ denotes the set of all possible words over

this alphabet. At any given point in time, the ordered sequence of results already

received by the collector will always be a member of Rset
∗. Task Generation (tgen) is

a function that generates tasks from the results collected so far: tgen : Rset
∗ → Tset.

Based on these definitions, Crowd Task Adaptation is occurring if and only if

the function tgen is non-constant.

Let us consider how this general concept of crowd task adaptation enables implicit

collaboration between contributors in a crowdsourced IS authoring process. The basic

idea is to steer contributors towards making more useful contributions by having the

system asses the state of the story world contents collected so far and modify the

tasks handed out accordingly.

5.3.2 Crowd Task Adaptation Strategies for IS Authoring

In the following we present a by no means exhaustive set of exemplary strategies for

adapting the task of providing an example story based on the data collected so far.

Instruction Modification

In the simplest case a task consists only of a set of instructions. Li (2012) for example,

reports on the following task format in the Scheherazade system:

“In an iterative trial-and-error process, instructions given to the crowd

workers have been carefully tuned. We supply a few major characters

and their roles in the social situation we are interested in, and ask crowd

workers to describe events happening immediately before, during and im-

mediately after the social situation.”

It is worth noting that the trial-and-error tuning of instructions in the above quote

is not a form of crowd task adaptation but an initial optimization of the task. In

the Scheherazade system, once the task has been finalized, it is considered a con-

stant. Instruction modification as a crowd task adaptation strategy on the other

hand would mean that instructions are dynamically assembled and changing to elicit

optimal contributions. For instance, constraints may be added to or removed from

the instructions that will change the possible stories a contributing author considers.

This makes not much sense for the current incarnation of the Scheherazade system,

which is more interested in collecting scripts of typical behaviour (Schank and Abel-

son, 1977) than variations of dramatic events. However for the sake of illustrating a

possible use case of instruction modification, let us consider a hypothetical system,

98

Chapter 5: Crowd Task Adaptation

which like the Scheherazade system collects written example stories but for dramatic

purposes. Assume the instructions given to workers, ask them to tell the story of a

bank robbery. If the system for example statistically determines that the majority

of stories collected so far are too violent, an exemplary constraint that might be dy-

namically inserted by the system into the instructions might be: “Your story may not

contain any deaths.”.

Back Story Modification

When eliciting dramatic stories from the crowd in a limited domain, it will often be

useful to provide the contributors with a back story. The back story sets the scene,

introduces characters and might contain the setup of a conflict. It fulfils the important

role of communicating the limits of the domain. In many respects the back story is part

of the instructions, which makes back story modification a special case of instruction

modification. Modifying the back story is a simple way of steering a contributor in a

desired direction. Unlike our example above, back story modification is a more natural

dramatically embedded way of enforcing certain narrative constraints. Chapter 7

discusses in detail how back story modification is employed in the CROSCAT system,

which was designed as part of this PhD.

Building Block Selection

If example stories are created using a specialized authoring tool software then the

configuration of this tool may also be considered a part of the task. Such a system

might provide a number of building blocks or primitives from which to assemble a

story. Consider for example “The Restaurant”. Pairs of contributors jointly enact

stories in a video-game environment. Building blocks in this case are for example the

characters that users are able to play and interact with (Guest, Waitress, Barkeeper

and Chef in the Restaurant), the set of actions (pick up, eat, etc.) that are available

for these characters to perform and the objects that characters may interact with

(plate, fork, cash register, etc.). In “The Restaurant” this set of building blocks is

static, i.e. every pair of contributors enacting a story have at their disposal exactly the

same set of characters, objects and actions. Systems may chose to dynamically modify

this set of building blocks based on a number of heuristics. For example a system may

find that after a certain amount of stories have been collected some building blocks

have been overused and consequently remove them from the available selection. A

less drastic approach would be to change the ordering in which building blocks are

presented to the user (which depending on the authoring tool’s user interface might

influence their usage). We should also consider a hypothetical authoring tool which,

while relying on building blocks for assembling a story also supports the definition of

99

Chapter 5: Crowd Task Adaptation

new building blocks by the user. If in such a system subsequent contributors have

access to user-generated building blocks created by earlier contributors then it would

also adhere to the definition of Crowd Task Adaptation. This is one of the crowd task

adaptation strategies used by the Enigma system, discussed in Chapter 6.

Realtime Suggestions And Feedback

If workers use an authoring tool to construct example stories, such a tool may be

equipped with the facility to enter a realtime dialogue with the worker, as they are

constructing the story. Within this dialogue the system may for example suggest how

to continue the story or ask the user for an immediate explanation as to why a certain

event was chosen. Follow up questions may be posed by the system to gather further

knowledge about the meaning of certain story events. This idea of realtime sugges-

tions and feedback lies at the heart of the mixed initiative feature of the ENIGMA

system, which will be discussed in more detail in Chapter 6.

As an illustrating example we give at this point only a very brief description of

ENIGMA’s use of realtime suggestions. The ENIGMA system attempts to build

planning domains for FAtiMA agents from collected example stories. With every ex-

ample story submission, a temporary planning domain is rebuilt by a machine learning

algorithm (see Chapter 6 for details) that takes into account all stories collected so

far. In ENIGMA, this temporary planning domain now forms part of the task given

out to a new worker / user. While that user is creating new story, a planning algo-

rithm using the temporary planning domain runs along in parallel. When the planner

reaches the stage of executing an action it may suggest that action as a possible next

event to the user. The user may discard or approve the system’s suggestion. In case

of approving it, the planner gains confidence that the planned action was appropriate.

If the suggestion is rejected, the system will ask for clarification why the action was

discarded and depending on the reason given might lower its confidence in the current

plan. These confidence values are then part of the result submitted to the collector

and feed back into the next round of planning domain generation.

From this example it becomes also clear why this particular form of realtime dialogue

between user and system falls within our definition of Crowd Task Adaptation. As

the task includes a planning domain and that planning domain is regenerated based

on the results collected so far, it follows that the task is a non-constant function of

the collected results, which is how we defined Crowd Task Adaptation.

5.3.3 Expected Benefits

We now discuss some of the potential benefits that we could expect from Crowd

Task Adaptation when applied to IS Authoring. That is, we answer the question of

100

Chapter 5: Crowd Task Adaptation

how stories collected with Crowd Task Adaptation may be more useful than stories

collected without it. The difficulty of automating the processes described below in

practise may vary a lot depending on the specific system used, especially on the for-

mat of the collected example stories. While we therefore can only describe the benefits

of Crowd Task Adaptation in general terms here, the following two chapters discuss

two concrete systems and provide more specific examples.

Waste Reduction and Increased Variety

We are interested in a wide spectrum of variation in the stories we collect. After all,

we aim to transform the corpus of collected example stories into a story world that

enables a fully realized IS artefact. We consider a novel story line contributed to our

collected corpus more useful than a near duplicate of an already existent storyline.

While duplicates can be useful in confirming that certain story lines are more obvious

/ popular than others, too much duplication is obviously a waste of effort. Crowd

Task Adaptation can help in reducing this waste. If the system by analysing the

collected corpus identifies a tendency for duplication of certain storylines among pre-

vious authors it may adapt future tasks so as to avoid or discourage the occurence of

further duplication of the same kind. It could use one of the following Crowd Task

Adaptation strategies to achieve this:

• Instruction Modification Strategy: Changing the instructions to discourage

recreating an identified duplicate story line.

• Back Story Modification Strategy: Insert an event into the back story that

would discourage recreating an identified duplicate story line.

• Building Block Selection Strategy: Remove the building blocks necessary to

recreate an identified duplicate story line.

Correction and Validation

Applications of crowdsourcing will always suffer from some degree of uncertainty re-

garding the quality of the collected data. Users may willingly sabotage the system

and intentionally submit meaningless, misleading, offending or otherwise useless data.

There are several strategies for filtering out such contributions made with malicious

intent. Having a trusted party such as the collectors themselves manually reviewing

all submitted content is often not practical, due to the scale of content to review. In

some cases verification can be handled in a separate round of crowdsourcing, by hav-

ing several crowd members vet a certain contribution as genuine or useful. However,

this second round of crowdsourcing creates an overhead.

In the use case of crowdsourced example story collection, intentional spam is also

101

Chapter 5: Crowd Task Adaptation

not the only quality criterion of concern. Users may unintentionally submit data of

insufficient quality. This could for example be the case if the contributor has language

problems, misunderstands the story domain’s context or interprets it differently, e.g.

through the lens of a different culture or has conceptual or technical problems with

the story creation process.

To address these problems, Crowd Task Adaptation may be used as a self-correction

facility, directly built into the crowdsourcing process itself. The validation and cor-

rection of content created by some prior contributors can become part of the task

given to subsequent contributors. The Realtime Suggestions And Feedback strategy

mentioned above is one possible way of implementing this approach. As it is used

by the ENIGMA system, user feedback to system suggestions corrects mistakes in

previous user’s submissions not directly by modifying the data collected in the earlier

submission, but by adding additional knowledge to the system that changes the way

this earlier data is processed.

Homogeneity of Collected Material

The collected material should also be homogeneous. Defining the notion of homo-

geneity precisely is difficult, as its exact meaning is depending on the data structures

used for story world representation. It may sound as though the requirement of ho-

mogeneity conflicts with the aforementioned requirement of variety. This is however

not the case. Homogeneity does not mean that the collected stories should be similar

to each other but that they should be in some way related to each other. A collection

of unrelated stories, no matter how large, cannot be turned into a satisfying IS story

world.

It would be very difficult to achieve homogeneity retrospectively. Making a story

homogeneous is not primarily a case of correction and validation as described above,

as there is no clear notion of wrongness associated with a story that is not hetero-

geneous to its story domain. Crowd Task Adaptation may however help to achieve

homogeneity by influencing the author at the time of creating a story towards making

it more homogeneous with the collected story corpus. Two of the strategies for crowd

task adaptation that we have introduced could be used in such a way. Backstory

Modification may be used to provide the author with a glimpse of some story con-

tent derived from prior contributions by other users. We hypothesize that the fact

of having been given this glimpse will influence the author’s own story to be more

homogeneous. The CROSCAT system discussed in Chapter 7 uses this approach. If

the homogeneity of a story can be assessed automatically, the Realtime Suggestions

And Feedback strategy is also suitable to influence the user as they are telling the

story, for example by discouraging the use of certain events, when the passing of a

certain heterogeneity threshold is detected. We hypothesize that the mixed initiative

102

Chapter 5: Crowd Task Adaptation

feature in the ENIGMA system (discussed in the next Chapter) also leads to more

homogeneity.

5.4 Conclusion

This chapter has looked at different ways in which the creative task of story writing

and in particular the authoring of interactive stories can be distributed among mem-

bers of an online crowd. It came to the conclusion that a crowdsourcing approach

where a central authority is in charge of defining the skeleton and boundaries of a

story world and online contributors are tasked with providing example stories set in

this story world is the most suitable approach to tackling the authoring bottleneck.

A generic extension to this workflow termed Crowd Task Adaptation was suggested,

wherein the automated story collection system continually analyses its repertoire of

results obtained so far and intelligently adopts the tasks handed out to contributors

accordingly, so as to maximise their utility for the authoring effort. This chapter

has discussed some ideas of how this abstract idea could be realized. The next two

chapters follow up on these ideas with two concrete examples of systems implemented

within this PhD that realize Crowd Task Adaptation in two very different ways.

103

Chapter 6

The ENIGMA Authoring System

In this chapter a system called ENIGMA for crowd-sourced authoring of IS systems

is discussed. The idea for this system was motivated by the experience of building IS

artefacts based on the FAtiMA agent technology. Chapter 2 has discussed the prob-

lems encountered while authoring FAtiMA agents for the FearNot! project. ENIGMA

was an attempt to create an authoring tool for FAtiMA that addresses these shortcom-

ings through the means of crowd-sourced authoring. The system is designed around

the principle of crowd task adaptation described in the previous chapter. The re-

sults of a small scale usability trial are given that suggest that the approach taken by

ENIGMA was too ambitious to realize within the scope of a PhD project. Neverthe-

less this chapter summarizes the work in designing and implementing a first prototype

of this system and the lessons learned.

6.1 Design

6.1.1 Overview

ENIGMA was planned as an authoring tool for the FAtiMA architecture. Its chief

requirement thus was to lighten the authorial complexity of creating FAtiMA agents

that was illustrated through our case study in Chapter 2. As we have presented in

that case study there are many aspects to creating an actual IS artefact based on

FAtiMA agents. ENIGMA was not intended to initially address all of these issues

but instead was always firmly targeting the authoring of the FAtiMA layer, i.e. the

planning domain encoding the agent’s decision making processes. It is for example

not meant to address the creation of graphics, animations, etc. In real world usage,

ENIGMA would be one of many tools in a content production pipeline.

Figure 6.1 gives an overview of the ENIGMA system architecture. ENIGMA fol-

lows the crowd-sourced story collection approach discussed in the last chapter. A

104

Chapter 6: The ENIGMA Authoring System

��������

�	
�����

�����
��������	
��������

���
������	������

��������������

	
��������

��
�������

��������

��������

�������

��
�����

��������

�

��
����������
������������	
�����������

�

�����������
���
����
����������������

������������
����������

�

�������������
���

��������	�����������

�������

���
���

�����������

Figure 6.1: Enigma Basic Workflow

client application which can be run directly from the browser allows contributors,

who are invited by a principal author (PA) to create a story within given boundaries,

which are set by the PA. Those boundaries include a fixed cast of characters, set of

props and scenes and authoring instructions regarding the theme of the story world,

back stories of characters, etc. Every story that gets created within the client applica-

tion is submitted to a server where many of these stories are collected and processed

by machine learning algorithms to generate the planning domains and personality

configuration for FAtiMA agents that can be used as virtual actors within an inter-

active drama. An important aspect of the design of ENIGMA is the mixed-initiative

mode, in which characters are giving occasional realtime suggestions to the user. As

we have shown such a built in feedback loop is an example of crowd task adaptation.

The design of the ENIGMA system went through several iterations until it eventually

arrived at the state that is described in this chapter. This evolution can be traced

through the few publications describing the plans for the ENIGMA system. The ini-

tial design plans are described by Kriegel and Aylett (2007) and Kriegel et al. (2007).

In those early design stages crowdsourcing was not yet a central concern. The vision

at that stage was of an authoring tool that supports an individual author through

the means of providing example stories. I.e. no distinction between principal au-

thor and contributors was made at this point. The realtime feedback was seen as

a way for the author to assess the state of learned character behaviour, i.e. a win-

dow into the character’s mind, as it has emerged from the learned example stories

up to this point. Kriegel and Aylett (2008) established the connection between the

ENIGMA architecture and the use of crowdsourcing. From that point on ENIGMA

105

Chapter 6: The ENIGMA Authoring System

was treated primarily as a platform for crowdsourced authoring. Finally, Kriegel and

Aylett (2010) give an up-to-date description of the ENIGMA system. It describes

more concrete implementation details and is the only of the four publications that

mentions the name ENIGMA.

6.1.2 Storytelling Interface

A central design question for ENIGMA was how the user creates stories. On the

one hand the process should be as user friendly as possible, on the other hand there

must exist a way for the stories to be processed by machine learning algorithms into

FAtiMA planning domains. A possible answer to this question, might be found in the

user interaction methods in IS artefacts. After all, users interacting with IS artefacts

are also acting out a part of a story, using user-friendly interfaces and their actions

are often successfully interpreted by a machine.

As we have discussed in Chapter 2, an IS artefacts based on FAtiMA, will usually

contain a story presentation layer on top of FAtiMA that renders the FAtiMA event

syntax into a human understandable format. For example, in FearNot!(Aylett et al.,

2007) an action executed by a FAtiMA agent is translated into an animation per-

formed by the 3D character representation of this agent. As demonstrated by the

left side of Figure 6.2, user interaction also passes through the story presentation

layer. For example in FearNot! users interact via natural language text input that is

translated by a language parser into a discrete FAtiMA event. In ORIENT (Kriegel

et al., 2008), another IS artefact built on top of FAtiMA, user actions are performed

using a combination of multi-modal interaction modalities (Stepping on a dance mat,

performing gestures using a WiiMote Controller and scanning RFID tags using a mo-

bile phone), which are translated into FAtiMA syntax by the application behind the

scenes.

These IS artefacts can allow user interaction to be well integrated with the pre-

sentation layer, because the user is restricted to a very limited set of actions. Hand-

crafted code exists that translates each possible user action taking into account the

context in which the action was performed into its corresponding discrete FAtiMA

event syntax. As we do not want to restrict a user’s freedom in telling a story with

ENIGMA by limiting the set of user actions, this model becomes infeasible. The prob-

lem of creating user interfaces that allow acting out the actions of an avatar within

a virtual world freely without any restrictions is a well known challenge of Interac-

tive Storytelling Research (Mehta et al., 2010). Systems like FearNot! and Façade

(Mateas and Stern, 2003), use natural language input to hide the fact that the user

is really limited to perform a restricted, finite set of actions.

We therefore decided to design a storytelling interface for ENIGMA that lets

106

Chapter 6: The ENIGMA Authoring System

Fatima

FAtiMA Simulation Mode
(e.g. FearNot!)

Fatima

FAtiMA
event
syntax

Story Presentation Layer

User
view interact

Fatima

ENIGMA Authoring Mode

Story Presentation
 Layer

User

FAtiMA
event
syntax

create

application
translates

view

ENIGMA
translates

Figure 6.2: Comparison of the user’s role in a FAtiMA based IS artefact and in
ENIGMA.

the user specify stories directly using the FAtiMA event syntax. This means stories

created with ENIGMA will contain discrete events consisting of subject, action and

action parameters that are readily understandable by a FAtiMA agent. Nevertheless,

a story presentation layer was included to display the created events to the user. This

is possible because the translation from FAtiMA event syntax to Story Presentation

Layer is achieved much easier than the reverse direction. We hope that the presence

of a presentation layer makes the application more user friendly and provides the user

with the ability to review the story they have created. The right half of Figure 6.2

illustrates our approach.

Event Specification

The FAtiMA event syntax is very simple. Each event consists of a location, subject, ac-

tion and a number of (action dependent) action parameters (e.g. John GiveGift(Luke,

Ball) @ Playground). The actions referred to in events are always instantiated, i.e.

all action parameter variables are bound to concrete values. ENIGMA can support

the author in the process of specifying events by allowing them to chose values from

a pre-filtered selection of choices. ENIGMA stores additional metadata for actions to

enable and simplify this selection process, as shown in Figure 6.3.

Figure 6.4 shows the aforementioned GiveGift action as an example of such an

action definition.

The descriptions are not required by FAtiMA and were added to ENIGMA purely

for the reason of assisting the user in the process of specifying events by means of

instantiating actions. After all a short action or parameter name will not always be

able to convey the specific meaning that the execution of this action carries. Simi-

107

Chapter 6: The ENIGMA Authoring System

Action

Name identifier of the action.

Category (optional) allows
grouping of related actions.

Description explanation of
the action's meaning

Action Parameter

Name identifier of the parameter,
i.e. name of variable

Type type for legal parameter values

Description exaplantion of the
parameter's meaning

1 0 .. n

Figure 6.3: Metadata associated with an action in ENIGMA

Action

Name GiveGift

Category Social Interaction

Description Presenting
someone with a gift

Action Parameter

Name Receiver

Type Character

Description the person to receive the gift

Action Parameter

Name Gift

Type Item

Description the item that is gifted

Figure 6.4: Metadata associated with the GiveGift action

larly the only function of action categories is to help users in finding a certain kind of

action. The type for parameters however does more than help in filtering the values

available for selection when instantiating actions. The type of parameters will also

find its way into the FAtiMA planning domain as action preconditions enforcing the

type during planning in absence of a real type system in FAtiMA. The GiveGift action

demonstrated in Figure 6.4 for example would automatically be equipped with the

preconditions isCharacter([Receiver]) and isItem([Gift]). The type system has a few

built in types like characters and items and can be extended with further story world

specific types.

Adding New Content

Users are allowed to define new actions from within the ENIGMA application. The

definition of a new action amounts to filling out a schema as in Figure 6.4. While there

is quite a bit of overhead involved in specifying all the metadata necessary for an action

description, that action will from then on be part of the story’s repertoire of story

building blocks. Subsequent authors will have access to it and reuse it in different

contexts. As previously mentioned, this transfer of user-generated story building

108

Chapter 6: The ENIGMA Authoring System

blocks between contributors also amounts to a form of crowd task adaptation, as the

authoring tool’s configuration and thus the task continually changes for subsequent

authors. Besides actions, new types may also be manually specified by the user.

One might criticise the requirement of having to specify actions as too cumbersome

but the alternative of only being able to chose from a predefined set of actions would

be severely limiting the user’s ability to exercise their creativity when creating a story.

Bootstraping

ENIGMA’s design requires the principal author to preload the authoring system with

the characters, locations and items that will be available to the authors. The set

of these entities is one of the means for defining the bounds of the story domain,

within which all collected stories should fall. Additionally, the principal author is also

encouraged but not required to provide an initial set of relevant types and actions.

The advantages of providing an initial set of existing actions and types are that they

make life easier for the first few participants, who would otherwise have to specify

a new action for virtually every event. Furthermore they provide essential examples

for how to structure actions and types and thus make it easier for authors to add

additional content.

Story Presentation Layer

The story presentation layer displays the story events in a more human-friendly form

than the FAtiMA event syntax in which the story is authored. It involves graphical

and textual representation of events.

Graphical Display Initially ENIGMA was designed to use a 3D virtual environ-

ment presentation layer. Figure 6.5 shows an early prototype of the application’s

interface.

This interface was initially intended to match the presentation layer present in

FearNot!. Also, especially before its move towards crowdsourcing, ENIGMA’s early

design was influenced by theatre metaphors, with the author taking the role of a

director performing multiple rehearsals (i.e. example stories) with a cast of characters.

However, we soon abandoned the visualization through animated 3D graphics and

instead decided for a comics based graphical presentation layer, similar to the Story

Canvas system (Skorupski and Mateas, 2010). Figure 6.6 shows an example of the

style that was eventually adopted.

There were several reasons why the comics interface was eventually preferred over

3D animation. Using comics allows us to have a thin authoring client that can be

easily distributed independent of platform. 3D applications on the other hand are

typically much thicker applications with more technologically challenging deployment

109

Chapter 6: The ENIGMA Authoring System

Figure 6.5: Screenshot of initial ENIGMA prototype using a 3D game engine

Figure 6.6: Example of 2 frames using ENIGMA’s comics story presentation layer

issues. This is an important consideration for crowdsourcing applications as we ide-

ally don’t want to exclude any potential participants on the basis of their choice of

operating system. Also, we need to represent event sequences within the authoring

tool. With the way they are structured (1 panel = 1 event), comics provide a better

mechanism for doing that than animations. Finally this form of visualisation al-

lows for uncomplicated graphics content generation independent of any specific tools

(characters are represented by a series of annotated head and body pictures, scenes

are simply panoramic pictures). This means less work for the principal author when

setting up an initial story domain.

In either graphical presentation style, the principal author can provide the system

with a list of mappings from actions to character graphics / animations and emo-

tional states to character head graphics / facial animations.

110

Chapter 6: The ENIGMA Authoring System

Natural Language Natural language is used in two different ways to augment the

representation of story events, dialogue and narration. Any action in the library of

available actions can be optionally marked as a dialogue action. This associates the

action with a list of alternative dialogue lines, one of which is chosen at random

whenever an instantiation of the action is displayed by the story presentation layer.

Supporting a one to many mapping from action to dialogue can make the story rep-

resentation seem less repetitive if an action is instantiated multiple times. Variables

referring to the action’s parameters and the subject may be used in the dialogue lines.

If for example the GiveGift action from Figure 6.4 was marked as a dialogue action,

it could be associated with some dialogue lines such as “Here [receiver], I want you

to have this [Gift].” or “You can have this [Gift], [Receiver]”. When the action is

instantiated (e.g. GiveGift(Luke, Ball)) the variables are replaced (e.g. “You can

have this ball, Luke.”). The dialogue line is presented as a speech bubble attached to

the event subject character by the comics system (see right panel in Figure 6.6). In

our initially planned 3d animated graphical presentation it would have been uttered

by the event subject character in realtime using text to speech technology and addi-

tionally displayed as subtitles.

Narration text may optionally be used to describe actions. It is technically handled in

the same way as dialogue text, but is presented differently (in the comics presentation

as a narration box as in the left panel in Figure 6.6 and in the initial 3d prototype as

a subtitle). The main envisaged use of narration text is as a place-holder for character

graphics or animations that represent the action graphically. For example an action

such as Kick([target]) may have a narration text like “[subject] kicks [target].”.

Especially new user-defined actions, i.e. those not in the initial action library created

by the principal author, will benefit from this. Extending the authoring tool to let

users define their own graphics or even animations is impractical and would distract

too much from the application’s main purpose of storytelling. Therefore whenever a

user defines a new action, ENIGMA allows them to define a narration text and / or

dialogues. In order to simplify the process for users ENIGMA does not require users

to define narration or dialogue text using variables. Instead if there are any variables

used they are inferred from the action’s first instantiation.

When story collection is complete and an IS artefact is built using the FAtiMA agent

configurations constructed by ENIGMA, the principal author may or may not use

the dialogue and narration texts created by the authors. In other words, collecting

this textual content is not the primary outcome of using ENIGMA, but it might be a

useful secondary side effect.

111

Chapter 6: The ENIGMA Authoring System

6.1.3 Annotations

The stories created as described above consist of event traces describing the actions

of characters. However, they don’t capture necessarily everything that happens in the

story, nor do they in themselves provide enough information to infer the contents of

a FAtiMA planning domain. Therefore ENIGMA’s design includes the functionality

for annotating stories with additional metadata.

One might be able to use the corpus of unannotated event traces collected by ENIGMA

to drive agents with a case-based reasoning architecture (which FAtiMA is not), sim-

ilarly to the approach taken by Orkin and Roy (2009) when automating agent be-

haviour based on the “Restaurant” corpus. But even in such a case-based reasoning

architecture, the value of unannotated cases is limited. In later work Orkin et al.

(2010) describes a system for annotating the collected Restaurant corpus with tasks

in order to improve automated behaviour.

ENIGMA lets the user create several different types of annotations for stories, which

are briefly described below.

State Changes

Users may specify how certain events change the state of the story environment (this

includes the states of characters, items, etc.). State changes are expressed as property

changes of entities, like characters or items. Properties are arbitrary name-value pairs.

Property values have types just as action parameters and can thus be comfortably

selected using the same type system support. An initial set of properties may be

provided by the principal author but users can also define new properties. A possible

state change for our exemplary event John GiveGift(Luke, Ball) @ Playground could

be for example the property owner of the ball item changing to Luke. ENIGMA does

not visualize state changes in the story presentation layer, but it might be possible to

do so (for example as additional comics panels).

Emotions

When an event affects a character’s emotions this is a special kind of state change

and treated in a slightly different way from generic state changes. This is firstly,

because emotions in FAtiMA are represented different from properties and influence

an agents behaviour differently. Secondly, visualizing emotions in the presentation

layer is straightforward, requires relatively little and finite graphical materials and

adds a lot of flavour to the story presentation. Thus, if users in ENIGMA specify

that a certain event has made a character e.g. happier, sadder, angrier or more

fearful this will be reflected by a different facial expression.

112

Chapter 6: The ENIGMA Authoring System

Goals

Goals are an essential part of a FAtiMA planning domain but none of the information

we have described collecting so far can help us in inferring an agent’s goals. It is

therefore necessary for ENIGMA to support goal annotation if we intend to construct

complete FAtiMA planning domains. Goal annotation is performed once the story

has been completed and works as follows: The author first selects a goal’s name from

the library of existing goals (or creates a new one) and the character, whose goal is

being specified. Next the author selects all events that are part of the character’s

plan to achieve the goal. Finally the author specifies whether the plan has succeeded,

failed or remains unachieved. This can be repeated multiple times until the author

judges the annotation to be complete. If a contributor should fail to perform the goal

annotation, a third party (e.g. the principal author) could annotate the goals in their

submitted story at a later point.

6.1.4 Mixed Initiative

Mixed initiative planning refers to a planning software that is supervised and assisted

by a human being. In the case of ENIGMA as it was originally envisaged, it refers to

the author working alongside a planner for each character, which determines that char-

acter’s behaviour. In line with the theatre metaphor, which permeated ENIGMA’s

early design, the author is thought of as a director, who controls the characters not

as lifeless puppets but rather as autonomous and intelligent actors, who plan their

own actions. When a character’s planner wants to perform an action it can suggest

its execution to the author / director. The author can override the character’s sug-

gestions if he does not agree with them. A dialogue between the author and character

might ensue in which the author, explains to the character why the suggestion was not

accepted. These explanations feed into the next round of planning domain generation

as additional metadata.

This mixed initiative mode as it was originally intended should provide 2 core benefits:

Firstly it will provide the author with immediate feedback of a character’s authored

personality so far and thus make it easier for them to ”debug” a character and correct

parts of its personality. Secondly, especially after multiple stories have been collected,

authors will be relieved from the burden of giving the characters repeated instruc-

tions. With every additional collected story a character will become more active and

autonomous and the author can focus on the input of new knowledge rather than

repeating knowledge the character already has.

When the ENIGMA project’s focus was extended to crowdsourcing, another benefit

of the mixed initiative mode became apparent. As we have already briefly touched

on in the last chapter, ENIGMA’s mixed initiative mode with its possibility of giv-

113

Chapter 6: The ENIGMA Authoring System

ing realtime suggestions and feedback is another Crowd Task Adaptation strategy.

Thus, for any contributing author using ENIGMA, traces of previous authors’ work

can not only be found in the user-generated story building blocks available to them

(actions, goals, properties and types), but also in the realtime suggestions made by

the characters, which represent the accumulated knowledge and behaviour, which the

characters are equipped with. As we have argued in the last chapter, there is good

reason to believe that such a type of Crowd Task Adaptation leads to a higher quality

of generated planning domain, by providing some sense of coherence and connection

between otherwise disjointed example stories.

Suggestion and Feedback Format

Suggestions should not be made too frequently but only occasionally so as to not

annoy the user. The acceptable frequency will also depend on the degree of subtlety

with which the suggestion is presented. If its incorporation into the authoring tool is

very invasive then a low suggestion frequency is advisable, whereas subtle, easier to

ignore, suggestions that stay in the background might be more frequent. A real-time

suggestion by the system can take one of several forms:

• Story Continuation: - Suggest the next event for the currently created story

• Property Change Annotation: - Suggest a property to change as the result

of the current event.

• Emotion Change Annotation: - Suggest a change to a character’s emotional

state as the result of the current event.

Feedback may be gathered from the author in response to these suggestions using a

simple multiple choice format, providing the following options:

• Accept: - The author accepts the suggested event / change. Increases the

system’s confidence in its reasoning that lead to the suggestion.

• Reject - Illogical: - The author rejects the suggested event / change on the

grounds of it making no sense. Decreases the system’s confidence that the

reasoning the suggestion was based on is sound.

• Reject - Not For Me: - The author rejects the suggested event / change on

the grounds of it not fitting into the story they want to tell. As this option can

(especially in presence of the illogical option) be interpreted as a mild acknowl-

edgement that the suggestion itself is sound, this option may slightly increase

the system’s confidence in the reasoning associated with the suggestion.

114

Chapter 6: The ENIGMA Authoring System

• Leave me alone: - The author does not even want to think about whether this

suggestion is fitting or not. The system will draw no conclusions whatsoever

from this feedback, except possibly to lower its frequency of making suggestions.

Section 6.3 will provide more details of how the mixed initiative mode is used in the

system’s learning process.

6.2 Implementation

This section briefly summarizes the final implementation of the ENIGMA design,

which was described above. As we have already mentioned in the introduction, dur-

ing the course of this PhD, ENIGMA was eventually abandoned, or better radically

redesigned as the CROSCAT system, which is the topic of the next chapter. As a

result, the implementation of the design outlined above is not complete. While the

story specification, annotation and story presentation layers are complete and a fully

functional client-server architecture for collecting stories is in place, neither the learn-

ing of FAtiMA planning domains (see Section 6.3) nor the mixed initiative feature

(see section 6.1.4) were ever implemented. This is because the decision to take a

different approach for this PhD was already made after a first usability study of the

authoring tool interface (see Section 6.4), so there was never any need to implement

the outstanding features.

6.2.1 Technology Overview

We have decided to implement both the ENIGMA server and client using the Java

programming language, as it allows platform independent deployment. The authoring

tool user interface uses the Java Swing GUI library. With hindsight a purely web

based authoring client might have been more appropriate, but at the time when

this implementation decision was made, Swing was still very popular and complex

interactive user interfaces in HTML and JavaScript were more difficult to implement

than nowadays. The ENIGMA client and server communicate using RMI (remote

method invocation), Java’s default implementation of remote procedure calls. The

ENIGMA server machine also runs an instance of a comics generation system (Alves

et al., 2008) that communicates with the ENIGMA server via a custom TCP protocol.

All comics images are generated on the server side. When the client requires a new

comics image, it calls a remote method on the server that invokes the comics system.

The comics system then outputs the comics frame as an SVG vector graphic, which

the server rasterises into a jpg image, which is then sent back to the client.

115

Chapter 6: The ENIGMA Authoring System

Figure 6.7: ENIGMA’s user interface: main window

6.2.2 User Interface

Figure 6.7 shows the main window of ENIGMA’s user interface, which is structured

into 3 parts. The story time line lets the user review the story they have created so far.

Comic panels can be enlarged by clicking on them. The current scene panel displays

the context of the current scene (time and place, characters and items present) and

allows the author to modify it. When the author modifies the context, an event

visualizing the change will automatically be created. For example “Luke enters the

house”, “Meanwhile on the playground” or “A few hours later..”. Finally, the event

editor lets the author add new events. The parameter slots (target and item in Figure

6.7) are made visible and labelled depending on the chosen action’s parameters.

Instantiating Events

Figure 6.8 shows ENIGMA’s user interface for selecting an action. The dialog window

on the left shows the listing of available actions sorted by category in a tree control.

An icon for each action indicates whether it is a dialogue or physical action. If the

action that an author wants their character to perform is not in the list they may

define a new action. This will initially bring up the action creation wizard shown in

the middle of Figure 6.8. In order to simplify the action creation process for users,

the wizard makes a few simplifications to ENIGMA’s action model for the sake of a

simpler action definition process. It allows only the creation of actions that have no

more than two parameters: a character (the target of the action) and / or an item (the

instrument of the action). From our analysis of the FearNot! corpus, we could see

116

Chapter 6: The ENIGMA Authoring System

Figure 6.8: ENIGMA’s user interface for choosing an action (left), defining a new
action using the action wizard (top right) and defining a new action in expert mode
(bottom right)

that the majority of actions that authors create typically adhere to this restriction.

The GiveGift action which was cited as an example throughout this chapter does so

too. As a result, when using the action wizard, the user does not have to bother

about defining action parameters and choosing their types. If an expert user wants

more control they make create an action in expert mode (see right of Figure 6.8), in

which case the user has full control over the number, names and types of parameters.

Change Annotations

Whenever a user creates a new event in ENIGMA, the application will ask if the event

caused any changes in state or emotions. Answering this question in the affirmative

will cause the change annotation dialogue to appear (see left window in Figure 6.9).

The changes caused by an event can also be edited retrospectively by pressing the

butterfly icon placed on each event panel in the ENIGMA main window’s story time

line (see Figure 6.7). The change annotation dialog window allows defining new

117

Chapter 6: The ENIGMA Authoring System

Figure 6.9: ENIGMA’s user interface for annotating changes after an event (top),
specifically state changes (bottom left) and emotional changes (bottom right)

property and/or emotion changes and lists all changes already associated with the

event. The middle of Figure 6.9 shows the dialog window for defining state / property

changes. The dialog window for defining emotion changes is shown on the right side

of Figure 6.9. A selection of emotions directly corresponding to all the non-prospect

based emotions of the OCC model ((Ortony et al., 1988)) used in FAtiMA is presented

to the user.

Change annotations are necessarily interpreted as postconditions and never as precon-

ditions. While for the purpose of deducing FAtiMA operators, a separate annotation

mechanism for preconditions (perhaps presented along the lines of ”why did this event

happen”) would have been useful, this was not added in order to avoid overcompli-

cating the author’s task.

Goal Annotations

Finally, Figure 6.10 shows ENIGMA’s dialog window for annotating goals. Goals

are selected (and possibly created in the top left section of the dialog window). The

arrow button labelled “use in this story” instantiates a goal, i.e. it opens up a dia-

logue, in which the owner of the goal and any goal parameters are chosen. This goal

118

Chapter 6: The ENIGMA Authoring System

Figure 6.10: ENIGMA’s user interface for annotating goals

instantiation dialogue is the goal equivalent to the event editor panel on ENIGMA’s

main window (see Figure 6.7). Instantiated goals are listed in the top right section

of the goal annotation dialog window. The currently selected goal from the list of

instantiated goals can be annotated using the bottom half of the dialog window. The

user marks all events that are part of the character’s plan to achieve the selected goal

by simply clicking on them. Contributing events are highlighted using a red frame.

6.3 From Stories to FAtiMA Agents

In this section we outline a procedure by which ENIGMA may transform the collected

corpus of stories (ordered series of annotated events) into planning domains and per-

sonality configurations for FAtiMA agents. As mentioned before, ENIGMA was never

completed as originally intended and in particular the learning functionality discussed

here was never implemented. Low level implementation details are omitted for the

simple reason that there is no implementation. The design presented here quite pos-

sibly contains some flaws that would become apparent in the implementation of the

model. Therefore this section is not intended to endorse the presented method as

the most efficient, effective or suitable way of solving this category of problem. It

is mainly included for the sake of giving a high level overview of how the ENIGMA

learning process was intended to be realized, as this is arguably the most intriguing

part of the system from a computer science perspective. This section should also

prove that despite focusing the direction of this research away from ENIGMA, there

119

Chapter 6: The ENIGMA Authoring System

existed a concept of moving forward with the ENIGMA system.

6.3.1 Formalization as a machine learning problem

Mitchell (1997) characterises a formalised machine learning problem as consisting of

a task T, a performance measure P, some training experience E and a target function

V. The problem of deriving FAtiMA agent configurations from the data collected by

ENIGMA could be described as follows:

• Task T - Generate a representational model for deliberative and reactive be-

haviour of FAtiMA agents. In the following we will call this the Domain Model.

• Performance Measure P - We judge the quality of a derived Domain Model,

by how well it enables a set of FAtiMA agents through their interactions to

jointly create an emergent narrative that satisfies the criteria we defined for

fully realized interactive stories (See Section 1.1.3). In particular the generated

Domain Model should allow the agents to exhibit believable dramatic behaviour.

• Training Experience E - The system learns primarily from a set of annotated

example stories. Furthermore it is able to make realtime suggestions to authors

as they generate stories and learn from their responses.

• Target Function V - One could take the view that the system aims to learn

about the suitability/quality of candidate domains. In this case, one may think

of the target function V as mapping domain models to a numeric score.

The learning task described above is highly atypical and to some degree exhibits

elements of various machine learning styles. The basic task of inferring planning

domain from example stories has a supervised element but is not real Supervised

Learning. While the example stories could be considered examples of “good stories”

provided by a supervisor, this is not the type of classification task one would normally

associate with supervised learning. This is also the reason, why the above definition of

target function V is rather vague. A more classical supervised learning problem would

be the classification of stories, e.g. being able to recognize “good” stories based on the

positive examples (collected through crowdsourcing). ENIGMA’s learning task also

has some similarities with the discipline of Case-Based Reasoning (CBR). However,

ENIGMA does not use the set of collected cases themselves to drive its reasoning

and instead uses them to derive a domain model for an external reasoning engine

(FAtiMA). In other words, the example cases and the reasoning are too decoupled

from each other to qualify as traditional CBR. Finally, the mixed initiative mode also

introduces elements of Active Learning as the algorithm itself may decide when

to provide suggestions to the user. Given this mix of properties of the learning task

120

Chapter 6: The ENIGMA Authoring System

at hand, it may not come as a surprise that the literature does not seem to offer a

template solution to this unique task. In the following we describe one possible way

to approach it.

6.3.2 The probabilistic domain model

As described above, conceptually we want the system to associate a score to each pos-

sible domain model. But the number of possible models is if not infinite then at least

inconceivably large. Clearly a holistic approach of generating and comparing many

entire candidate domains is not very practicable. Fortunately it is also not necessary

if we introduce a probabilistic extension to the FAtiMA domain model. A regular

FAtiMA domain model (i.e. one that can be used by actual FAtiMA agents) contains

a set of actions, each with preconditions and effects, goals, with various conditions,

emotional reaction rules and action tendencies (see Section 2.2). A probabilistic do-

main model contains exactly the same types of elements but instead of only one may

store a number of alternative versions for each of these elements with an associated

probability1.

The probability reflects the system’s confidence in the element being “correct”. Rather

than associating probabilities with entire domain models, they are only associated

with individual sub-elements, thus greatly reducing the amount of data necessary for

keeping track of generated candidate domains. For example the probabilistic domain

model might contain two versions of the action Hit([target]), one with the effect “[tar-

get](hurt)” and an alternative version with the effect “![target](hungry)”. It may have

deduced the latter, e.g. from a story in which a character jokingly says “Now, I’m

no longer hungry” after being punched. The system may learn in due time that the

former is probably a more useful representation of the action. This would be reflected

in the probabilities associated with the 2 versions of the action.

6.3.3 The ENIGMA learning cycle

The probabilistic domain model sits at the heart of ENIGMA’s learning process as

illustrated in Figure 6.11. The server manages a single version of such a model, which

gets updated whenever a client submits a new story. The most probable domain model

is then extracted from the updated probabilistic domain model, by simply choosing

the version of each event with the highest probability. When a new client logs in,

the server launches a set of FAtiMA agents that are configured according to the most

probable domain model. These agent instances run in the background on the server

side while the user is constructing a story in the authoring client. Story events that

1Emotional Reaction Rules are an exception. We do not maintain alternative versions with
associated probabilities for these. Section 6.3.4 explains why.

121

Chapter 6: The ENIGMA Authoring System

Client

Server

Probabilistic
Domain Model

Annotated
Story

submit

update

Most Likely
Domain Model

FAtiMA
agents

per client sessionupdate

launch with

Suggestion
Generator

actions &
state changes

make
a suggestion

perceptions

finalize

Story Creation Mode

commited
events

Figure 6.11: Overview of the FAtiMA domain model learning approach for ENIGMA

the user creates in the client storytelling application are routed as perceptions to the

agents.

Actions performed by these agents and state changes within them are captured by

the suggestion generator component, which may turn them into realtime suggestions.

While an action would be turned into a suggestion for story continuation, a state

change would be translated into a property or emotion change suggestion. The sug-

gestion generator fulfils 2 functions: Firstly it ensures that the user is not overbur-

dened with too frequent suggestions (see discussion in Section 6.1.4). Secondly it tries

to make suggestions that maximise the system’s ability to decrease its uncertainty. It

does this by preferring to make suggestions that lead to new knowledge about domain

elements for which the most probable version is uncertain (i.e. where probabilities for

the top two items are very close). User feedback (i.e. responses to the suggestions)

are stored on the client side and are sent together with the finalized annotated story

to the server, where the cycle is completed and the process starts once again with an

update to the probabilistic domain model.

If the above diagram conjures the idea of strictly serial processing, it should be pointed

out that this is only a simplification of the illustration. The ENIGMA learning ap-

proach supports multiple clients logged in at the same point. As the server maintains

a set of separate FAtiMA agent processes, a copy of the associated domain and a

separate instance of the suggestion generator per client session, there is no risk of in-

terference between multiple clients. Also the scenario where client A submits a story,

while client B is in the middle of a storytelling session is covered by this per-session

isolation. The story submitted by A will lead to an update of the probabilistic domain

122

Chapter 6: The ENIGMA Authoring System

model and consequently give rise to a new most probable domain model, which will be

available for new client sessions launched beyond this point. But this will not affect

client B, whose session is already in progress and operates on a copy of the previous

most probable domain model.

The underlying hypothesis of this approach is that the quality of the “most probable

domain model” should constantly improve, and eventually converge towards a best

solution that optimally represents all the provided example stories. The fact that the

set of primitives / story building blocks is not necessarily constant, may work against

this idea of continual improvement. Recall that users of the authoring client may

define new actions, goals and types. When such elements are added, the probabilistic

domain model will initially contain no suitable representations for them.

For example when the 21st user defines a new action ”x”, the system does not initially

know much about ”x”, whereas it may have encountered all other previously defined

actions multiple times already. It is clear that the initially derived representation of

”x”, which first appeared in version 21 of the probabilistic domain model is not as

much based on group consensus as that for some other actions. Therefore one might

take the view that version 20 had converged further towards the perfect solution rep-

resenting all stories than version 21.

But viewing this as a decrease in quality is misleading. Previous versions of the most

probable domain model were not aware of the added elements at all and are not rep-

resenting them any better. The fact that they did not need to is irrelevant as the

measure of quality for a given domain model is how well it represents all stories. As

there now is a story containing new elements all previous best solutions would find it

hard to match those stories. In conclusion, even though the pool of domain building

blocks is not constant, we can expect our approach to produce a continually improv-

ing “most probable domain model”.

6.3.4 Updating the probabilistic domain model

Initialization

The initial probabilistic domain model (i.e. the model that is used when the learning

cycle illustrated in Figure 6.11 is first set up and no example story has been collected

yet) is empty and contains no emotional reactions, action tendencies, actions or goals.

It is however initialised with a set of personality parameters (e.g. emotion thresholds

and decay rates) for every character as learning these from example stories is currently

outside the scope of the ENIGMA tool. The initial values for these parameters may

be provided by the principal author.

123

Chapter 6: The ENIGMA Authoring System

Behaviour - Actions, Goals and Action Tendencies

The goal annotations provided by authors (see Section 6.2.2) are the key to building

accurate models of those elements that directly trigger behaviour (actions, goals and

action tendencies). We work with the assumption that every event that was not

annotated to be part of some goal was caused by reactive behaviour and is thus

triggered by an action tendency. We further assume that the event was triggered by

the preceding event. Thus, if event A is followed by event B and if event B was not

annotated to be contributing to any plan, then this leads the system to construct an

action tendency (i.e. a reactive behaviour rule) of the form “if A happens then trigger

B”. This rule is entered into the probabilistic domain model with an initial probability.

Additional instances of encountering A followed by B (not inside a plan) subsequently

increase this initial property. The rule competes in the probabilistic domain model

with other rules triggered by A. If the system for example encounters “A followed

by B” three times and “A followed by C” twice in all the example stories, then the

Probabilistic Domain Model will contain two alternatives for the Action Tendency for

A: “if A then B” and “if A then C”, with the system being more confident about the

former.

On the other hand, all events that are annotated to be part of a plan, will contribute

towards building action and goal models. We assume causal links between the ordered

chain of events contributing to a given goal. If an event has a property change

annotation then we prefer to use the value of this property as the basis of the causal

link. Otherwise we explicitly link the two events, i.e. we specify the occurrence

of one action as the precondition for another one to occur. The effects of the last

action in this causal chain correspond to a goal’s success or failure condition. The

goal annotation contains information about whether a goal has succeeded or failed and

thus, whether a failure or success condition should be created. Encountering an action

in multiple contexts or encountering multiple instances of the same goal across all the

example stories leads to either the creation of alternatives for these elements in the

probabilistic domain model or an increase in probability of a particular alternative.

Emotional Reactions

Unlike the process for updating behaviour elements described above, where multiple

alternative versions with associated probabilities are maintained, in the case of emo-

tional reaction rules we may more conveniently accumulate the collective consensus

of all collected stories. For every single action encountered in every example story

we record the total number of occurrences of this action across all example stories

and every emotion change associated with this action. Updating the model with a

new story simply means updating these counts. All this is done on a per character

124

Chapter 6: The ENIGMA Authoring System

basis, as the resulting FAtiMA domain model will also contain individual emotional

reaction rules per character. When it comes to extracting an actual FAtiMA domain

model from the probabilistic domain model (i.e. the most probable domain model),

emotional reaction rules are constructed according to the following rules:

• An action, for which no single emotion change annotation was made across all

stories, will not result in an emotional reaction rule. All other actions will result

in exactly one emotional reaction rule.

• The values for the desirability, desirability for other and praiseworthiness OCC

parameters that are part of an emotional reaction rule for a given action are

calculated taking into account all collected emotion change annotations for this

action.

• All emotional reaction parameters are also scaled by the number of total oc-

currences of the respective action. This means that actions for which emotion

change annotations were specified relatively often, result in OCC emotional re-

action parameters of comparatively high magnitude compared to actions which

were only annotated seldom.

Looking up an emotion in the OCC model (see Figure 2.5) yields the sign (posi-

tive or negative) for the desirability, desirability for other and praiseworthiness OCC

parameters. But as the ENIGMA client software deliberately does not ask the user

for a magnitude of the emotion change, we also cannot deduce the magnitude of the

OCC parameters. Therefore the above rules make use of a) the absence as well as the

presence of emotion and b) the averaging of all emotions for a given event to derive

consistent magnitude values.

Of course the precision of this calculation could be improved if users would also be

able to indicate an intensity of emotion change directly in the authoring tool’s user

interface but in order to avoid further user interface complexity such a feature was left

out. So far we can only speculate that the more crude method of equating frequency

with magnitude as described above would yield a useful enough approximation, but

this was at least what we intended to try first.

6.4 Usability Trial

When the initial implementation of ENGIMA (excluding any of the learning and

mixed initiative features) as described in Section 6.2 was completed, a small informal

usability trial was performed as the next step. Five users were asked to try out

the software and their usage of the system was observed and logged. The five users

were all interactive storytelling experts though none of them had prior experience in

125

Chapter 6: The ENIGMA Authoring System

working with the FAtiMA agent architecture. Each of them saw ENIGMA for the

first time when participating in the trial. The necessity for running a usability trial

coincided with the author’s attendance of the Third International Conference on In-

teractive Digital Storytelling (ICIDS), which made access to this pool of exper users

possible. Expert users were the prefered choice for this first trial instead of general

users because it was hoped that they would be able to provide more insights and

feedback.

6.4.1 Setup

The ENIGMA system was preloaded with graphical resources from a Little Red Rid-

ing Hood setting2. This included 4 characters (Red Riding Hood, Wolf, Grandma,

Woodsman), a few theme related items (cake, wine, mushroom) and locations (a few

different forest locations, grandma’s house, grandma’s bedroom). The action library

contained only 2 exemplary generic world events (snow, lightning strike) and 9 generic

character actions (steal, offer, accept, refuse, introduce, cry, sleep, wake up, eat). The

system had no initial knowledge of any goals. Users were given a short demonstration

and explanation of the system and then left to their own devices. The only instruction

given was to create a little red riding hood themed story. The users were observed

while creating the stories and subsequently interviewed about their opinions about

the system. Each user interacted with the system for around 15 minutes.

6.4.2 Observations

The most striking observation was that all five users despite being experts on in-

teractive storytelling had difficulties grasping the concepts underlying the system.

In particular the distinction between actions and events (instantiated actions), the

type system for limiting the possible bindings for action parameters and the mapping

between a symbolic dialogue action and its natural language textual representation

seemed to be causing confusion. This became especially apparent when users were

creating new actions via the new action wizard (see Figure 6.8).

As a result, users ended up avoiding the creation of new actions and almost exclu-

sively used the pre-defined generic actions to assemble stories which as a result were

not very creative. The distinction between knowledge representation and presentation

layers in general was poorly understood. Three out of five subjects clearly did not

understand that the comics were merely a graphical representation of the authored

knowledge and that in order to change the contents of a comics frame the related

2The story domain was inspired by a series of workshops on authoring interactive stories that
used Little Red Riding Hood as a common theme for comparing different approaches to interactive
storytelling (Spierling and Iurgel, 2008; Spierling et al., 2009). ENIGMA was one of the systems
featured in these workshops.

126

Chapter 6: The ENIGMA Authoring System

action instantiation has to be edited.Instead the presence of a comics visualisation

made them automatically assume that the purpose of the system is to manipulate the

comic images directly. When this was not working as expected, these subjects showed

signs of frustration.

A common observation across all subjects was that optional annotations (of prop-

erty changes, emotion changes and goals) were ignored. We discussed earlier how

ENIGMA depends on this annotation metadata if it is to make sense of collected

stories, so the fact that in its current implementation users do not make use of these

annotation facilities highlights a clear shortcoming of the application.

6.4.3 Implications

The implications from the ENIGMA usability trial were discouraging. The system

clearly did not make a good enough job of explaining the underlying authoring con-

cepts. Even expert users did not manage to operate it in the intended way so as to

produce meaningful results (i.e. stories that can be actually processed). This was

especially disheartening as its probably most complex feature, the mixed initiative

suggestions were not even integrated into the prototype yet. In particular the dis-

tinction between an action definition (template), an action (instantiation) and the

action’s visual representation seems difficult and needs to be either explained in more

depth up front or made clearer in the UI.

As the goal for the production of ENIGMA was to end up with a system that can

be used for an actual user evaluation, defeat had to be eventually admitted. The

choices for continuing work on ENIGMA were to either produce a high quality sys-

tem that conveys the underlying concepts effortlessly to the lay user or to train enough

participants sufficiently so that they can author stories as intended with ENIGMA’s

prototype implementation. Either of these paths requires more resources than avail-

able in a PhD research project, especially, when taking into account that a number of

complex ENIGMA features were still left to implement. With its ambitious design and

the eventual realization of the many unanticipated obstacles preventing its success-

ful implementation, ENIGMA is in good company. On his website, Chris Crawford

(Crawford, 2012b) published a statement detailing what went wrong in the design of

the Storytron engine. While Storytron was arguably a much larger scale project, some

problems mentioned by Crawford are similar to those encountered in the ENIGMA

project. In particular, also the Storytron system was too complex for the majority of

users to understand and effectively use it.

The problems observed above also echo the earlier-mentioned sentiment by Spierling

and Szilas (2009) that conceptual and not user interface issues lie at the heart of

the authoring bottleneck. Even though the system was explicitly designed to hide the

full complexity of authoring FAtiMA based emergent narratives, partly in response to

127

Chapter 6: The ENIGMA Authoring System

the above mentioned sentiment, we still mainly observed confusion about conceptual

aspects in the usability trial. Whether a more intuitive user interface for ENIGMA

could allow these concepts to be understood more easily is an open question.

6.4.4 Ways Forward

It would be wrong to write off ENIGMA as a complete failure. For one thing, it

might just be unrealistic to expect an immediate grasp even by domain experts of

such a fairly complex system. With increased training time and specially prepared

tutorials etc users are likely to fare much better. The problem of users not using the

annotation facilities could be addressed through either increased user awareness of

the purpose of these annotations or by making them compulsory. Doing this however

without creating a more frustrating user experience is difficult. In general, further

improvements of the user interface could probably improve the users’ performance in

using ENIGMA, but this would require a similar evolution step as that from Wide

Ruled to Story Canvas as discussed in Section 4.2.3. While this work turned out

to be outside of the scope of the project, given adequate resources, we considered

experimenting with the following ideas for evolving the system’s user interface:

• Automatically obtaining (partial) action definitions from a lexicon / ontology,

to prevent users from having to define them entirely manually

• Enabling visual editing of actions, making more use of the information displayed

by the comics frames. E.g. placing two characters in a scene, placing an object

in the hand of one of them and then dragging an ”action” arrow from the other

character to the object could lead to inferral of action subject and object.

• Adding a natural language input / search component to the user interface, that

allows automatic instantiation of recognized actions from a descriptive natural

language action string.

• One fundamental problem is the missing ability for visualizing newly added ac-

tions. We considered the use of other character animation techniques, including

procedural animation, inverse kinematics or even cheap motion capture using

consumer-level devices like the Microsoft Kinect for filling the gap between sym-

bolic actions and their visual representation.

6.5 Conclusion

ENIGMA is an authoring system for building FAtiMA agents from example stories

collected through crowdsourcing. In order to learn from the collected stories, they need

128

Chapter 6: The ENIGMA Authoring System

to be expressed in a computer friendly way and annotated with additional metadata.

This chapter has described how users specify stories with ENIGMA and how the

system was designed to adopt the Crowd Task Adaptation approach through its mixed

initiative mode to elicit user feedback.

Considering the authoring tool requirements proposed by Medler and Magerko (2006)

and discussed in Section 4.2, ENIGMA only clearly satisfies one, namely generality

(i.e. it is story-domain independent). Usability was something ENIGMA’s design as-

pired to but that its implementation did not manage to realize. ENIGMA falls short

of some of the other listed authoring tool requirements due to it being designed as

a crowdsourcing tool. In particular debugging and pacing and timing are only

really applicable where an author is in control of the entire interactive narrative, with

ENIGMA such responsibilities are relinquished to the system itself.

It eventually transpired that plans for the ENIGMA system were too ambitious to

realize within the scope of a single PhD project. Therefore the research direction

has shifted towards a simpler, albeit less generative approach towards interactive

storytelling which is described in the next chapter and which salvages much of the

development work that had gone into ENIGMA up to that point.

129

Chapter 7

The CROSCAT Authoring System

The previous chapter concluded that the first authoring system prototype, ENIGMA,

was found to be too complex for evaluation purposes within the means of this PhD re-

search. In this chapter, a second authoring system prototype CROSCAT is discussed.

The development of CROSCAT had the ENIGMA code base as a starting point and

thus both systems have many commonalities, especially in terms of user interface,

look and feel and back-end architecture. However, a much simpler story represen-

tation model is employed for CROSCAT. While ENIGMA aimed to construct the

planning domains for FAtiMA agents from the example stories provided, CROSCAT

maps the collected stories into a branching story tree. While such a data structure has

much less generative power compared to an emergent narrative based on autonomous

agents, it also does not require as semantically rich knowledge acquisition. This allows

the authoring task to be much more intuitive and thus makes it easier to learn for

contributing authors.

While it superficially looks very similar to one of the many commercially available

storyboarding tool and comics editors1, CROSCAT is fundamentally different from

these systems since its ultimate goal is to assemble a branching story tree and not

just a single story line. Some of the authoring tools reviewed in Chapter 4 such as

INSCAPE (Balet, 2007) and ASAPS (Koenitz, 2011a) are also used for the creation

of branching story graphs. But CROSCAT differs from these systems in its reliance

on Crowdsourcing. Not a single author, but the system itself creates the branching

points from many collected linear stories, which allows the story world creation to

be distributed and scalable. Crowd Task Adaptation via the modification of the back

story given to each user makes this possible, as without this strategy the system would

not be able to merge the collected stories in a sensible way.

1Some examples of commercial comics editing software include Pixton (www.pixton.com, Chogger
(www.chogger.com) and Kar2ouche(http://www.immersiveeducation.eu)

130

www.pixton.com
www.chogger.com
http://www.immersiveeducation.eu

Chapter 7: The CROSCAT Authoring System

7.1 Overview

The design of the CROSCAT system takes into account some of the lessons learnt

from the usability trial of the ENIGMA system. This section gives an overview of

how the system differs from ENIGMA, both from the perspective of a contributing

author using the frontend authoring tool for telling a story and that of the principal

author using the system backend for collecting and processing stories.

7.1.1 User Perspective

From an author’s point of view the key difference between the two systems lies in

the way that stories are created. A user of the CROSCAT software specifies a story

directly using the comics story presentation layer. I.e. instead of having to choose or

define an action and instantiating it, the user directly specifies the graphical contents

of a comics frame. The user interface (Figure 7.1) directly affords the user with

means to chose a background scene, place characters and items on the scene, change

characters’ facial expressions and attach speech or thought bubbles to characters.

Narration boxes may also be created and all text used in narration boxes and speech

or thought bubbles may be directly edited on the fly.

Figure 7.1: Main graphical user interface of the CROSCAT Tool.

In contrast to ENIGMA there is also no annotation of stories required by users

of the CROSCAT authoring tool. Also, CROSCAT has no equivalent of ENIGMA’s

131

Chapter 7: The CROSCAT Authoring System

mixed-initiative mode, i.e. users will not have to enter dialogues with the system.

Overall all these changes result in a much more user-friendly and less restrictive user

interface. Users are liberated from the constraints imposed by the FAtiMA event syn-

tax and can concentrate on the creation of narratives. Like in the ENIGMA system,

users are given a limited set of story building blocks from which the comic frames

may be assembled. Locations, characters and their available facial expressions and

the items that can be held by characters are all predefined by the principal author.

Users are not allowed to add additional content in any of these categories.

A few additional convenience editing functions not present in ENIGMA were also

added to CROSCAT. Users are allowed to delete, move or retrospectively edit arbi-

trary frames in the story time line. A final user-interface difference between CROSCAT

and ENIGMA is that the CROSCAT interface has a built-in back story viewer. The

back story is also a comic that establishes context by introducing the user to the

story domain. The task of a CROSCAT user is to continue the back story they were

given, i.e. to create a suitable ending for it. To ensure users actually do this, reading

the provided back story is mandatory. The CROSCAT main window becomes only

accessible, after all frames of the back story comic have been read.

7.1.2 System Perspective

Compared to ENIGMA, where the authoring experience of the user was designed to

produce the story representation requirements of the system, CROSCAT has taken the

opposite approach. In its design, the authoring user experience has taken center stage

and the backend system is accommodating. The system does not ”understand” the

events / frames that were authored in any meaningful way. The data representation

of individual events is solely concerned with capturing a frame’s visual composition

from the building blocks available. Listing 7.1 shows an example of how the System

represents a CROSCAT frame.

Listing 7.1: Example of CROSCAT frame representation (XML serialization)

<StoryFrame id="0000003" location="Beach1">

<Narration text="They compared the contents of their bags..."/>

<Character name="Laura" emotion="neutral" object="bottle of water"/>

<Character name="Monica" emotion="serious" object="sun cream"/>

<Character name="Nathan" emotion="neutral" object="banana"/>

<Dialogue owner="Laura" text="We only have a single bottle of water so we

should try and use it wisely." type="SPEECH"/>

</StoryFrame>

Considering the missing annotations and the human rather than machine-friendly

representation of stories, it is clear that ENIGMA’s methods for processing the col-

lected stories are not suitable here. The system lacks for example the knowledge to

132

Chapter 7: The CROSCAT Authoring System

recognize similarities between two events / frames, something that in the ENIGMA

system would have been possible in some cases, e.g. where two distinct events are two

separate instantiations of the same action.

CROSCAT thus takes a very different approach, abandoning the use of FAtiMA as

the target IS runtime engine. Instead the goal of the CROSCAT system is to build

a branching story tree from the collected stories. This much simpler data structure

is suited to the low semantic information content of the input data available to the

CROSCAT system. CROSCAT is however still a suitable vehicle to investigate the

benefits of Crowd Task Adaptation, discussed in Chapter 5. Because the collected

stories are expressed as comics, there is an inherent structure present in them with

events clearly separated into individual frames. A comparable structuring could not

be as easily extracted from only written, textual stories. Thus, CROSCAT can make

use of branching story graphs, an IS story world representation format that is only

concerned with structure. CROSCAT adapts the strategy of back story adaptation

to support merging the collected stories into a single branching story graph.

CROSCAT Server

Authoring Client

1.

2.

3.Server picks
a back story
from tree

provides back story

client continues story

submit
continuation

Add continuation
to tree

Figure 7.2: Overview of the Crowd Task Adaptation via back story selection feature
in the CROSCAT authoring tool.

Figure 7.2 illustrates how this is done. The principal author bootstraps the system

with an initial back story (represented in Figure 7.2 by the coloured top nodes of the

graph). This is the back story served to at least the first two contributors. The

story collected from these first participants are appended to initial back story nodes

and the graph is a tree with a single branching point. From this point onwards, the

server picks a single partial path from the graph as the back story provided to the

authoring client. This path will always include the full initial back story provided by

133

Chapter 7: The CROSCAT Authoring System

the principal author. The continuation of this story sent back by the client is inserted

as a new branch into the story graph. The story graph assembled in this way will

always be a tree, i.e. branches do not fold back and merge with other branches. The

back story sent to a client at any given point is chosen so that branching points are

evenly distributed in the overall story tree. The next section discusses the algorithm

for selecting the ideal back story for achieving this goal.

7.2 The Back Story Selection Algorithm

The goal of the back story selection algorithm is to determine a node in the story

tree, from which we want the next contributed story to branch off. This point should

be chosen so that we have an overall balanced story tree. The notion of balanced tree

we put forward here, should not be confused with balanced binary search trees, such

as red-black trees (Guibas and Sedgewick, 1978). CROSCAT’s concept of balance

is based on the hypothesis that the structure of a branching story tree will affect

the enjoyability of a user’s interactive story experience, when navigating the tree.

Consider for example the scenario, in which every contributor receives the same basic

back story provided by the principal author. Simply merging all those stories results

in a tree as that shown in Figure 7.32.

Figure 7.3: Branching story tree if no back story selection would be used.

It is not hard to see that this tree does not capture the ideal of a branching in-

teractive story very well. There is only a single branching point, at which the story

branches off into 50 directions. Someone interacting with this story would be first over-

2Some additional merging not shown in this figure may be occurring in this scenario if the first n
events in separate stories are identical. In this case, the branches in question would be summarized
into a single branch and a branching point would be added at the nth event.

134

Chapter 7: The CROSCAT Authoring System

whelmed by the amount of options at the single branching point and subsequently

be disappointed by the fact that no further branching points are available. Instead

we strive for more evenly distributed branching points with fewer options. We also

want each story path to have roughly the same amount of branching points. This

notion of an ideal, balanced interactive story tree is intuitive but difficult to precisely

define. Idealness in this case is defined as resulting in a more satisfying interactive

experience, which is a decidedly subjective measure, but it is clear that we can do

better than Figure 7.3.

The CROSCAT back story selection algorithm uses a heuristic for determining the

ideal node in the tree for receiving an extension. Each node is assigned a score made

up of different components. The highest scoring node (or if there are several highest

scoring nodes, a node randomly selected from that set) is the one chosen for receiving

the extension. The heuristic’s components encapsulate our criteria for what consti-

tutes an ideally balanced branching story tree. Below the individual components of

the heuristic scoring function are described and visual simulation results (i.e Figures

of the resulting story trees, such as Figure 7.3) are presented. All simulation results

reported in this section were obtained by simulating the effect of 50 authors consec-

utively contributing a story, each of a randomly chosen length between 15 and 20

events. The graphs shown in this section all use the same colouring scheme, which

follows the rules below:

• The root node is always shown in red

• Each individually submitted story is assigned a unique grey level.

• Darker grey tones represent stories submitted earlier. Nodes belonging to the

first received story are coloured black and nodes of subsequent rehearsals in-

creasingly lighter.

• Branching nodes are always drawn in the colour of the story, which lead to the

node’s original creation.

By following our development of the heuristic scoring function step by step, i.e.

presenting a series of 3 increasingly more complex heuristics, in the order in which they

were originally derived, the following section attempts to communicate our criteria

for an ideally balanced branching story tree.

7.2.1 Heuristic Function 1: Distance From Branching Points

and Leafs

The first proposed property of an ideally balanced graph is that branching points

are evenly distributed. Consequently, in order to satisfy this condition, new branches

135

Chapter 7: The CROSCAT Authoring System

are preferably inserted as far away from other branching points as possible. This

translates very conveniently into a heuristic for our scoring function. The reward for

evenly spaced branching RDB is defined as the shortest distance, i.e. length of the

shortest path in any direction (i.e up or down the tree), from any branching point

or leaf node (as leaf nodes are obviously story endings, branching there makes little

sense). For branching points and leaf nodes RDB = 0.

We also add another condition that runs counter to the above requirement of evenly

distributed branching points: We want branching points not to be too close to a story

ending, i.e. a leaf node. Laurel (1993) characterizes narrative as a flying wedge of

possibilities (see Figure 7.4).

Figure 7.4: Laurel’s view of narrative as a flying wedge of possibilities (Laurel, 1993)

The idea expressed by this wedge or funnel is that as the events of a narrative

progress, the space of possible narrative futures narrows, until eventually a necessary

outcome becomes inevitable. This is a consequence of the establishment of characters

and conflicts that demand resolution over the course of the narrative. This insight

has important consequences for the collaborative construction of interactive narra-

tives with CROSCAT: According to the flying wedge theory, the further a back story

provided to a user has progressed toward a narrative outcome, the more likely it is

that the user will not create a novel story continuation, but instead repeat a path

that was already present in the graph.

Therefore the heuristic function rewards nodes for their location in a wide rather than

narrow section of the flying wedge. Nodes still having many narrative possibilities are

more suitable candidates than nodes very close to an inevitable necessary outcome.

The CROSCAT heuristic encapsulates this notion in the reward RDL for a node’s

average distance from leaf nodes. RDL takes into account all possible directed

paths that connect the given node with any leaf. RDL for this node is defined as

the average length of all these paths. Note that the first heuristic component RDB

also rewards distance from leaf nodes but unlike RDL it does so only locally and not

globally for the entire tree.

The CROSCAT heuristic needs to strike a balance between the two reward compo-

nents RDB and RDL. We therefore assign weights wDB and wDL to each component

136

Chapter 7: The CROSCAT Authoring System

and examine the effects of different weights through simulation. Figure 7.5 shows the

simulation results for 2 different sets of weights for the heuristic function H1, which

is defined as:

H1(node) = wDB ∗RDB(node) + wDL ∗RDL(node)

Figure 7.5: Simulation results of 50 story submissions to CROSCAT using heuristic
function 1. Left side: wDB = 2, wDL = 0.5, right side: wDB = 2, wDL = 1

Through manual experimentation and a visual inspection of the story graph, the

combination of weights shown in the right tree in Figure 7.5 (wDB = 2, wDL = 1),

was chosen as the best compromise. This decision is inevitably a subjective one, but

the immediately obvious contrast in structure between the two graphs in Figure 7.5

illustrates the aesthetic criteria used for making this decision. The right hand side

graph is clearly overall more balanced than the left hand side graph, where a single

almost never-ending path dominates the entire graph.

137

Chapter 7: The CROSCAT Authoring System

7.2.2 Heuristic Function 2: Adding Branching Ancestor Penalty

Upon visual inspection, the first heuristic function H1, even with adjusted weights, still

has some problems. Despite the RDB component in H1, there is an uneven distribution

of branching points. While some paths through the tree are full of branching points,

several others have very few branching points. The revised heuristic function H2

addresses this problem through an additional component: PBA is a node’s penalty

for every branching ancestor node that it possesses. We define an ancestor of a

node x as any node along the shortest path between the root node and x. A branching

ancestor node is one that has more than one child node. PBA is simply the count of

a node’s branching ancestors. As the other heuristic components, PBA is weighted.

This results in the following equation for H2:

H2(node) = H1(node)− wBA ∗ PBA(node)

Figure 7.6: Simulation results of 50 story submissions to CROSCAT using heuristic
function 2. wDB = 2, wDL = 0.5, wBA = 3

Figure 7.6 shows the simulation results for the H2 function. As the subjective

process of assessing the weighting factors is analogous to that already illustrated in

Figure 7.5, we omit showing further weight combinations. Suffice it to say that the

weights shown in Figure 7.6 (wDB = 2, wDL = 0.5, wBA = 3) were chosen as the best

combination.

138

Chapter 7: The CROSCAT Authoring System

7.2.3 Heuristic Function 3: Adding Child Branch Penalty

The second heuristic function H2 as shown in Figure 7.6, improves the distribution

of branching points across different paths compared to H1, but is still not an ideal

solution. The apparent shortcoming with H2 is that it creates too many branches off

a single node. In Figure 7.6, the root node has a branching factor BF of 17. This can

be explained by the fact that the root node is the only node in the graph where there

is no branching ancestor penalty PBA. To counteract this problem we introduce an

additional penalty for nodes that have a high branching factor (BF) to the heuristic

function. We define the branching factor BF of a node, as the number of direct child

nodes. In graph theory the branching factor is also called outdegree.

The fourth heuristic component PBF is a penalty for nodes having a higher branch-

ing factor than threshold amount (TBF), which defines an acceptable branching

factor. Formally, PBF is thus defined as below:

PBF (node) =

BF (node)− TBF if BF (node) > TBF

0 otherwise.

A value of 3 was chosen as the acceptable branching factor threshold TBF in

CROSCAT. This value is based on the intuition that 3 is a number of choices that is

most definitely positive to the user experience, i.e. it is better to have 3 than 2 or no

choices. Furthermore, having a few more than 3 choices (as the function penalizes but

not outright forbids a higher branching factor than 3) is also still positive, although

the benefit diminishes with every added choice until some threshold is passed where

the number of choices becomes a burden. The exact value of this threshold is unclear,

but 17 for example as seen in Figure 7.6 is probably exceeding. Unfortunately we

are not aware of any research investigating the ideal number of choices in interactive

stories. Widely cited work in a related, more general context is the theory of the

magical number seven plus or minus two by Miller (1956). It claims that human

memory is limited to processing around 7 items of information (with some individual

variation of +/- 2) at any given time. Miller bases this on experimental evidence.

He cites several examples of one-dimensional judgement tasks (e.g. distinguishing

the pitch of a set of n tones) where performance drastically falls off when more than

7 (+/- 2) choices are presented. The application of Miller’s theory in inapplicable

contexts (in particular user interface design) has been widely criticised e.g. by Gócza

(2010). It is unclear, whether the magic number 7 applies to choices in Interactive

Storytelling but in lack of other evidence it provides at least some guidance. The

theory resonates well with our chosen branching threshold of 3 (with some leeway for

increase).

Apart from the threshold value TBF , an additional weighting factor wBF also influences

139

Chapter 7: The CROSCAT Authoring System

the effect of the penalty PBF . This leads to the below definition of H3:

H3(node) = H2(node)− wBF ∗ PBF (node)

Figure 7.7: Simulation results of 50 story submissions to CROSCAT using heuristic
function 3. wDB = 2, wDL = 0.5, wBA = 3, wBF = 4, TBF = 3

Simulation results for the H3 function are shown in Figure 7.7. The branching

factor of the root node has noticeably reduced compared to Figure 7.6. We again

abstain from showing different weight combinations and instead immediately report

the final weights as wDB = 2, wDL = 0.5, wBA = 3, wBF = 4, TBF = 3.

7.2.4 Other Heuristics

The heuristic H3 uses only topological information about the story graph itself to

determine the best node for receiving an extension. With a deeper understanding

of the narrative meaning of events, this heuristic could of course be significantly

improved. Some possibilities for additional heuristics, are:

• Dramatic Impact: Users like to make meaningful choices with dramatic con-

sequences. A choice of whether the hero should pull the trigger on the villain or

not is more meaningful, then a choice of whether he should eat a banana or an

140

Chapter 7: The CROSCAT Authoring System

apple for breakfast. The event of contemplating murder has a higher dramatic

impact than the event of contemplating breakfast. Dramatic impact will likely

extend beyond a single event. In many stories there will be entire stretches

of high and low dramatic impact. If we had a way of evaluating the dramatic

impact of individual events of sequences of events, we could reward nodes for

their placement in dramatic regions.

• Branch popularity: Under certain conditions, the illusion of choice may be

sufficient for creating a feeling of agency in the audience of an Interactive Story.

This was for example found in a study by Fendt et al. (2012). In similar work

Figueiredo and Paiva (2010) argue that psychological persuasion techniques may

be used for influencing the choices users make in interactive stories. If there was

some way to estimate the persuasive potential of the available choices at a

given branching point, this knowledge could feed into an additional heuristic for

CROSCAT. Surely, it is overall more valuable to extend the content in branches

that are more likely to be chosen. The details of how the persuasive potential

of a certain choice may be automatically evaluated go beyond the scope of this

PhD.

While the above two possibilities were not implemented in CROSCAT, the next

section describes a similar feature called antonym insertion. A semi-automatic version

of this feature has been implemented in CROSCAT.

7.3 Antonym Insertion

We have already described above, how branching at a dramatic choice point is advan-

tageous. If such a point is chosen as the winner by the back story selection algorithm,

a contributing author will be presented with a back story that ends at an interesting

dramatic junction. There is, however, nothing to guarantee that their created story

will actually lead down the opposite path as intended. If the author replicates the

same option that was already present in the graph, then this interactive choice point

will be disappointing for the (non-authoring) end user.

Consider the example story fragment shown in Figure 7.8. In this story, event 4 is

a dramatic choice point (should or shouldn’t Tom obey Ringo’s command). If event

5 is chosen as the winner by the back story selection algorithm, then that decision is

already made and included in the back story. If event 4 is chosen on the other hand

then the contributing author has to start their own story with a dramatic decision.

However, the author might make the same choice as that made in event 5 (Tom obeys)

and essentially just replicate event 5 (though probably with slightly different wording

or details, so that it will be difficult to automatically determine that both events are

141

Chapter 7: The CROSCAT Authoring System

Tom cracks his
piggy bank open
and puts all his

savings into
his bag

1
Tom walks into
town to buy the
cool bicycle that

he so long
saved for

2
Ringo the

school bully that
Tom is scared of
comes up the

street

3
Ringo commands
Tom to hand over

his bag (which
contains all
the savings)

4
Tom reluctantly

obeys and
hands Ringo

the bag

5

... ...

Figure 7.8: Example of a story fragment containing a dramatic choice point
(Node/Event 4)

equal.). Furthermore, not all dramatic choices are necessarily preceded by an event

announcing and presenting the choice as event 4 in this example.

CROSCAT implements the antonym insertion strategy as an alternative way of pro-

moting branches at dramatic choice points that avoids the problems described above.

We define antonymy as a symmetric relation between two events that describes the

events as being direct opposites in a given story context. These two events are then

called antonyms of each other. This is analogous to language where antonyms are

pairs of words with clearly opposite meaning, e.g. (yes/no, agree/disagree), etc. For

example, an antonym of event 5 in the example story in Figure 7.8 in its story context

would be “Tom disobeys and refuses to hand Ringo the bag”. While there might be

other ways to express the same meaning and thus other possible antonym events of

event 5, these alternatives are all essentially synonymous. For the antonym notion in

CROSCAT it is only important that the events are obvious opposing alternatives in

a choice story situation.

Almost every event has an antonym. Simply negating an event (e.g. “Tom does not

crack his piggy bank open” as a negation of event 1) will typically create an antonym.

However these antonyms are not necessarily meaningful for our purposes. Negation

of events often leads to an event describing the absence of action. This is only mean-

ingful in certain story contexts. For example if Tom pondered for a long time whether

to open the piggy bank or not, maybe talked about it and maybe even already holds

the hammer in his hand then an event like “Tom does not crack his piggy bank open”

has meaning. If however the action whose absence is described has no bearing on

the story, the antonym is not meaningful. For example, in a story where neither the

piggy bank, nor Tom’s need for money is ever mentioned before, an event such as

“Tom does not crack his piggy bank open” is meaningless.

CROSCAT aims to use only meaningful antonyms. This is because, a pair of meaning-

ful antonyms represents a meaningful choice in the story. In general, we characterize

the admitteedly fuzzy notion of a meaningful antonym as an event, which represents

an alternative course of action that a) an audience could reasonably expect to occur

and that b) in the eyes of the audience has the potential to alter the course of the

story. A relevant piece of supporting related work in this context is the study per-

142

Chapter 7: The CROSCAT Authoring System

formed by Cardona-Rivera et al. (2014) that found users to achieve a higher sense of

agency when given choices that could be foreseen to lead to meaningfully different

story outcomes in contrast to those that didn’t.

7.3.1 Using Antonyms

We have so far described the concept of antonym events, but we have yet to discuss

how CROSCAT would use antonyms in combination with its back story selection

algorithm. Figure 7.9 illustrates this process. It shows several events in the branching

story tree (1,5,6,8,10,12,13), for which CROSCAT is aware of possible antonyms. An

event for which an antonym event is known can contribute an additional constant

reward Ran to the back story selection heuristic. This is illustrated by the plus signs

in Figure 7.9. Importantly the reward is not given to the event node, for which the

antonym is defined but to its parent node. Furthermore, the antonym reward is only

granted if said parent node does not yet have a child node that is equivalent to the

antonym event.

For example in Figure 7.9, the system knows an antonym event for node 10, which

results in the antonym reward Ran being granted to node 10’s parent, node 9. In

contrast, node 10 does not receive the antonym reward, because it does not have a

child, for which an antonym is known. Node 4 has a child for which an antonym is

known (node 5), but since node 4 already has the antonym event in question as a

child (node a5), the antonym reward Ran is not granted to node 4. If a node has more

than one child for which an antonym is known (case not illustrated), Ran is still only

granted once. When it is given to a node x, Ran is simply added to H3(x) to form the

final score for x.

1
2

3

4

5

6

a5

8

9

10
11

12

13

9

10

11

a12

Figure 7.9: Example of a CROSCAT story tree containing some events, for which the
system knows how to create antonyms.

143

Chapter 7: The CROSCAT Authoring System

If a node is selected, that was awarded the antonym reward Ran, then a new event

node is instantiated for the antonym event that has contributed this bonus. This

new event node is appended to the back story, which is sent to the client. Figure

7.9 illustrates this by showing the back story that would result from node 11 being

selected. Event a12 is instantiated and appended to the back story.

We have previously discussed parameters for weighing the different components of the

heuristic. The value chosen for Ran is another such parameter. If Ran is very high,

then nodes below which a new antonym event can be inserted will almost certainly

always be selected, if such nodes are available. The other topological criteria in the

heuristic H3 will then only influence which of the nodes that allow antonym insertion

is chosen. If Ran is modestly low on the other hand, then topological criteria can still

outweigh antonym insertion and nodes have a chance to win, even if they do not lead

to the appending of an antonym. Figure 7.10 shows the effect that different values of

Ran have, given the weights we have discussed so far are chosen. The graph shows the

results of a simulation where for different values of 10 different values of Ran, 1000

contributions each were simulated. Each generated event has a 50 percent chance to

have an antonym. If Ran is 0 as we would expect, events that allow antonym insertion

are not preferred and are only selected in 50 percent of cases, which is the probability

of picking such an event by chance. As Ran is increased, supporting antonym insertion

becomes a more important criterion for node selection, until at a value of Ran = 10

no nodes are selected on topological criteria alone anymore.

Figure 7.10: Simulation results showing the percentage of times that a winner that
allows antonym insertion is selected plotted against the value of Ran, when antonyms
are randomly distributed with a probability of 0.5

How Ran is chosen thus depends on how much value we assign to branching at

antonym points compared to branching at topologically useful points. We will return

to this question in Chapter 9, when we discuss the results of authoring experiments

carried out with CROSCAT.

144

Chapter 7: The CROSCAT Authoring System

7.3.2 Obtaining Antonyms

The above explains how we use available antonym events, but how do we obtain them

in the first place? Is it possible to automate the process of a) determining whether a

meaningful antonym for a given event exists and b) generating the antonym for this

event? To our knowledge there is no general purpose solution for negating natural

language sentences and the problem statement we define here is even more complex

than this. A conceivable solution might involve the WordNet (Miller, 1995) lexical

database for the English language. We already mentioned the linguistic meaning of

antonym (a pair of opposing words). If one could determine the central verb of an

event (e.g. “obeys” in event 5 our example story: Tom obeys Ringo...), WordNet could

be used to look up the antonym “disobeys”. If an antonym is found by WordNet then

we would assume the existence of a meaningful antonym event. This is based on the

assumption that verbs which have antonyms signify good choices and good choices

in turn result in meaningful antonyms. For example, “obey” is such a verb, while

WordNet does not define an antonym for “crack”, and indeed we have discussed how

event 1 (Tom cracks his piggy bank open...) does not have a meaningful antonym.

Generating the antonym event would then only amount to replacing the central verb

with its antonym verb.

However, this approach really only works in the simplest of cases. In practice there

are lots of problems. Even in our example we have neglected to address how the

central verb of a sentence is determined. Composites such as the second half of the

event 5 sentence (... and hands Ringo the bag) are also a problem. The assumption of

equating the existence of an antonym verb with a meaningful antonym event is weak

and language-dependent. There are other methods of negation, which this approach

ignores, e.g using the particles no or not, or the antonym of a noun, adjective or

adverb. Finally, events in CROSCAT are not only narrative sentences but entire

comic frames. There might be no narrative text at all and instead the antonym

might require negating the dialogue of a character, changing the facial expressions of

characters and other graphical properties of the comics frame.

Creating a robust solution to all these problem is outside the scope of this PhD.

Therefore CROSCAT does not include an automatic antonym generation capability.

It does however provide the option of manually defining antonyms. In order to keep

the story submission process as simple as possible, this annotation of antonyms is not

done by the crowd workers in the CROSCAT authoring tool but by a special user with

elevated privileges (e.g. the principal author). This user may review any submitted

story and define antonyms for any number of events contained within. This approach

might not necessarily scale well and could easily lead to a bottleneck when hundreds

or thousands of stories need to be reviewed. The current implementation fulfils the

purpose of enabling an initial assessment of whether the principle of antonym insertion

145

Chapter 7: The CROSCAT Authoring System

has some merit. This assessment is part of the experiment discussed in Section 8.2,

that compares CROSCAT with and without antonym insertion. For the scale of this

experiment, manual antonym annotation is feasible and sufficient.

7.4 Algorithm Implementation

In the CROSCAT implementation, the story graph is represented in the way that tree

data structures usually are in object oriented programs, i.e. as a series of interlinked

node objects. Each node object encapsulates the data describing the composition of a

single comics frame (see Listing 7.1) and furthermore maintains a pointer to its par-

ent and to a list of children nodes. For leaf nodes this list is empty. The system only

retains a pointer to the root node. The back story selection algorithm is currently im-

plemented in a simple fashion. Every time a new story is submitted it is first inserted

into the graph, at which point the scores for all nodes in the graph are recalculated.

As shown in Listing 7.2, this involves three stages, namely 1) recursively resetting

the scores and scoring prerequisites of all nodes to zero, 2) calculating scoring pre-

requisites for each node and 3) determining each node’s final score. After every node

was assigned a new score in this fashion the highest scoring node is determined by

another recursive search through the tree. The highest scoring node that is returned

by this search is then chosen as a new branching points. The shortest path from the

root node to that node is appended to the back story that is being served to the next

crowd worker.

Listing 7.2: Top-level view of CROSCAT scoring algorithm (Java code snippet)

public class StoryGraph {

/** the root node of the graph */

private StoryNode rootNode;

...

/** calculate new scores for all nodes in the graph */

public void rescoreAll()

{

rootNode.resetScoreRecurse();

rootNode.calcScoringPrerequisitesRecurse();

rootNode.scoreRecurse();

}

}

As they are too long to show here, the concrete implementations of the three meth-

ods discussed above (i.e. those called by rescoreAll in Listing 7.2) have been moved

146

Chapter 7: The CROSCAT Authoring System

into Appendix E. Here a general description of the implementation shall suffice but

consulting the relevant source code in the above mentioned Appendix is recommended.

The implementation for resetting the score is a straightforward recursion from the root

over all nodes and thus has a runtime of complexity of O(n) where n is the number

of total nodes in the tree. The calculation of scoring prerequisites is more interesting.

Firstly we recurse top-down through the graph starting from the root node, record-

ing for each node its distance to a branching point in the front and the number of

branching ancestors. This operation is once again of O(n) complexity.

However, whenever a leaf node is reached a backwards iteration from that leaf to the

root node is started, during which all nodes along this path record their distance to

that particular leaf node and their distance to a branching point in the back. There-

fore each non-leaf node is visited multiple times during the prerequisite calculation:

once in a top-down direction, but also once in a bottom-up direction for each direct

path from that node to any leaf node. This bottom-up recursion is required to deter-

mine heuristic component RDL, average distance from leafs (see Section 7.2.1). The

runtime for this bottom-up recursion is O(k ∗ l) where k is the number of leaf nodes

(this is also the number of submitted stories) and l is the average path length from

the root to a leaf (i.e. the average length of a complete story).

Finally after all prerequisites have been set, the scoring algorithm is once again a

straightforward recursion over the graph starting from the root, yielding once again

in O(n) This final stage is where the heuristics discussed earlier in this chapter are

being applied. The variables needed for the heuristics calculation of each individual

node have already all been calculated as prerequisites at this stage.

It follows that the overall complexity for the algorithm is O(n) + O(n) + O(k ∗ l) + O(n),

which condenses down to O(k ∗ l). We can neglect the O(n) parts of the algorithm

as k ∗ l will always be at least n, in the very worst case it could be close to n2. In

practise k ∗ l should be somewhere in between n and n2, with the topology of the tree

(i.e. the distribution of branching points) determining whether it is closer to one or

the other.

7.5 Scalability

For a system that relies on crowdsourcing, scalability is a valid concern. In our proto-

type implementation of the CROSCAT system however, the main goal was to build

something that could be used during an experiment for evaluating the effect of Crowd

Task Adaptation. For the modest number of participants which we could anticipate

to be able to recruit for this purpose, scalability was not an issue. In other words, for

running the experiments described in the next two chapters a more efficient implemen-

tation and an improved ability of the system to concurrently serve multiple users was

147

Chapter 7: The CROSCAT Authoring System

not required and would not have made a noticeable difference. If the system would be

employed for an actual real-world authoring effort and a medium to large user base

could be tapped into, such aspects could start to matter. Therefore we briefly discuss

here how the current implementation would fare when faced with thousands of users

and massive story graphs.

7.5.1 Concurrent Use

One aspect that would have to be addressed for a large-scale deployment of the

CROSCAT system is concurrent use, i.e. allowing multiple authors to submit stories

at the same time. This is an issue as a typical transaction with the system consists

of two parts, receiving a task (i.e. a backstory to continue) and submitting the con-

tinuation and a considerable amount of time (anything from a few minutes up to a

few hours) elapses between these two events. Blocking access to the system entirely

for others during this period is impractical, but if we allow them to logon while still

waiting to receive the story of another user then which graph are we scoring in order

to chose which backstory to serve the new user(s). The results of the first user’s work

will obviously influence the shape of the graph and thus may impact which backstory

gets selected, but we need to select a backstory for the new user(s) before this infor-

mation becomes available.

The current implementation of the system ignores these problems and does not al-

low concurrent access. Addressing this issue was not a necessity for the experiments

we conducted with CROSCAT. Specifically as described in the next chapter, for our

experiments multiple stories were authored in parallel so that we could let multiple

participants do the experiment at the same time and still only have a single person

modifying each storygraph at any one time. This is described in more detail in Section

8.2.1 in the next chapter.

There are several ways in which a more scalable version of CROSCAT could support

concurrent use. The naive approach would be to not only retain the highest scoring

node in each scoring round but also the second, third, etc highest scoring node. If

a second, third, etc user arrives before the graph can be rescored with a first user’s

contribution included, then we could use the second highest scoring node to assign

the backstory for the second, third, etc user. But this naive solution is not ideal. For

example the first, second and third highest scoring nodes might be all situated next

to each other. If we use all three of them we get three branching points next to each

other, which is something that the heuristic would have most likely tried to avoid

if the nodes would have been selected sequentially. Ideally the system would need a

more sophisticated algorithm that generates a list of possible nodes which should be

as independent of each other as possible.

148

Chapter 7: The CROSCAT Authoring System

7.5.2 Scoring Algorithm Performance

The current implementation of the scoring algorithm has two weaknesses: The first

is the fact that the entire graph needs to be reprocessed and traversed every time in

order to obtain updated scores, no matter how miniscule the change to the graph since

the last scores were obtained may have been. The second weakness is the algorithm’s

runtime which as we have discussed above is O(k ∗ l), where k are the number of

submitted stories (leaf nodes) and l is the average story length. It follows (assuming

that the average story length will likely remain constant in the long term) that the

algorithm’s runtime increases linearly with every additional user contributing a story.

For 100s or even 1000s of users this should not be a problem, but for user numbers sev-

eral orders of magnitude higher this may very well turn into a problem. Running the

system on more powerful hardware may alleviate some of the problems, but the fact

remains, that the runtime will continually increase for every additional contributor

and the system in its current form is not highly scalable.

7.6 The CROSCAT Viewer

Compared to ENIGMA, one of the main advantages of the much more simplistic

branching story tree representation employed by CROSCAT is that one can quite

trivially produce a runtime engine for it and subsequently an IS artefact from it. More

complex story representation mechanisms may require substantial integration effort

as demonstrated for example by the FearNot! case study in Chapter 2). CROSCAT’s

branching story tree on the other hand contains everything needed to create an inter-

active story experience in the “Chose your own adventure” fashion.

Interacting with the IS artefact is essentially the act of traversing the story tree. Start-

ing at the root node (of the common back story), we present the story frames to the

audience in order. Interaction consists of letting the audience choose a path whenever

a branching node is encountered during the downwards traversal of the story tree.

The key question then is how the choice of different paths is presented to the user.

“Chose your own adventure” stories will typically present short textual descriptions

of the choices on offer such as “Do you want to take the bus or walk”. However, such

descriptions cannot always be easily generated automatically given a set of children

nodes. A simpler alternative is to simply present the first comics frame of each sub

branch to the audience and let this inform their choice.

A simple IS runtime engine using the latter approach to choice presentation was

implemented for CROSCAT. Figure 7.11 shows an example of how a choice is visu-

alized and presented in this viewer application. Implemented as a web application

in PHP, it accesses the branching story tree exported by the CROSCAT server as

tables of nodes (containing a unique node id and comics frame image file) and edges

149

Chapter 7: The CROSCAT Authoring System

Figure 7.11: A choice in the simple web based viewer for browsing stories authored
with CROSCAT.

(containing a source and destination node id). The CROSCAT story collection server

can be integrated with the viewer application in such a way that without any human

intervention, the IS artefact as given by the latest state of the branching story tree

can be viewed.

7.7 Conclusion

After describing the ENIGMA system in the previous chapter, this chapter has shown

a second, very different example of how the Crowd Task Adaptation paradigm can

be applied to IS authoring. This alternative approach uses a branching story tree

representation and adapts the story collection tasks that are farmed out to the crowd

by changing the back stories given to workers. This essentially allows the system to

decide at which point in the existing tree a new story contribution should branch off.

Several heuristics for determining a suitable branching point from a given branching

story tree based on its topology were discussed. We also discussed how a system’s

knowledge of antonyms (pairs of events with an opposite/contrary meaning) may

further improve the selection of suitable branching points. This approach was im-

plemented in a complete IS authoring system and runtime engine called CROSCAT,

which forms the foundation for authoring experiments described in the next chapters.

In the last chapter’s conclusion we discussed how the ENIGMA system fits within the

set of authoring tool requirements proposed by Medler and Magerko (2006). Much

the same applies to CROSCAT, but unlike ENIGMA, it is more successful in terms

of usability.

150

Science never solves a problem without creating ten more.

George Bernard Shaw

Part III

Authoring Experiments

151

Chapter 8

Study Descriptions

So far this thesis’ arguments for using an IS authoring process based on crowdsourcing

and in particular incorporating Crowd Task Adaptation have been entirely specula-

tive. This final part of the thesis discusses experiments that add some practical

evidence to the discussion. This chapter describes the experimental design of two

crowdsourced authoring studies and the research questions addressed by them.

First the “Point Nautilus” study, named after its story setting, is discussed. It was

concerned with the crowdsourced collection of stories written in text form. No technol-

ogy was involved in running the study and no Crowd Task Adaptation was performed.

It served the purpose of establishing a baseline regarding story setting, imposed nar-

rative boundaries and participant’s ability for creative writing free from any techno-

logical or methodological influences.

This is followed by a description of the “Seagnomes” study (again named after its

story setting). This study took into account lessons learnt from the “Point Nau-

tilus” study, which included a strong indication for using a different story setting.

The “Seagnomes” study was designed to test this thesis’ hypothesis that Crowd Task

Adaptation can improve the IS authoring process and result in the creation of better IS

artefacts. To this end the study employs the CROSCAT tool described in the previous

chapter to compare crowdsourced authoring under different Crowd Task Adaptation

conditions, including one control condition where no Crowd Task Adaptation takes

place. In order to evaluate the quality of the created artefacts we let users experience

and rate them.

8.1 The Point Nautilus Study

In the Point Nautilus study, which was performed after the development of ENIGMA

and in parallel to the development of CROSCAT, participants were given the begin-

ning of a written story and asked to write an ending for it. All participants received

exactly the same task and no Crowd Task Adaptation took place. No technology

152

Chapter 8: Study Descriptions

apart from a word processor was involved in the study. This no-technology approach

was chosen in order to first assess the basic potential of the style of crowdsourced

authoring that this thesis advocates under simple conditions. Specifically, the study

was designed to address the following questions:

• Suitability Of Story Setting: Does the “Point Nautilus” story setting elicit

useful contributions from a crowd of authors? In particular, are example stories

collected from multiple authors varied and coherent. Is the story setting a useful

base for later experiments with CROSCAT?

• Suitability Of Instructions And Boundaries: How well are instructions

being followed and imposed narrative boundaries respected by the authors con-

tributing example stories?

• Participant’s Capability For Creative Writing: Are volunteering partici-

pants finding the task to contribute a story line to a dictated story setting easy

or difficult? Should crowdsourced writing experiments aim to prefer recruitment

of certain demographics?

Gaining insight into these aspects was deemed beneficial in establishing the foun-

dations for the thesis’ main authoring study.

8.1.1 Story Setting

In order to perform an experiment of crowdsourced authoring, a story setting was

needed. Clearly, not specifying a story setting at all and simply asking participants

to write a story about anything they like would not have resulted in a collection of

stories that could be combined in any meaningful way. Providing a story setting limits

collected contributions by establishing story world boundaries, as was discussed in

Section 4.1.2. The goal for this study was to create an open-ended narrative situation

which opens up many alternative possible story paths, while also communicating clear

boundaries through the following means:

• A cast of characters with established goals and motivations

• Introduction of a central conflict that requires resolution. A dilemma situation

was aimed for that has no clear obvious outcome.

• The story provides a setting that naturally limits the action to a confined space.

Based on these criteria, we wrote a back story in the romance genre entitled “Point

Nautilus”, which participants had to read as the first step of the experiment. The full

text for “Point Nautilus” as it was provided to participants can be found in Appendix

153

Chapter 8: Study Descriptions

B. Here a short summary of the story and how it addresses the above criteria is given.

Point Nautilus is the name of a small hotel on an isolated island, which is the

central location in the story. The protagonist, Claire comes there in the wake of a

bad breakup and ends up settling down in Point Nautilus and running the hotel. She

eventually falls in love with Humphrey, a writer, who has taken up residence in the

hotel to work on a novel. The couple spend a few happy weeks on the island, but

eventually Humphrey has to leave for a business meeting. When he does not return

to the island and cannot be located, Claire is distraught. The reader learns that un-

beknown to Claire, Humphrey has an accident that causes him to lose his memory.

The narrative now jumps several months forward. We learn that Claire is expecting a

baby and there is no doubt that Humphrey is the father. On a stormy night, Claire is

all alone on the island (her assistant Jack is on the main land and cannot return due

to the storm) when she has an unexpected visitor. A woman named Susan, who had

been on a sailing trip with her boyfriend shows up and asks for shelter from the storm.

Claire happily agrees and Susan explains how she has until recently been a doctor and

her boyfriend John a former patient suffering from Amnesia. At that moment John,

who had been mooring their sailing boat enters and Claire recognizes Humphrey. He

does not seem to remember her though and the back story ends with Claire feeling a

sharp pain in her belly.

At the point, where this back story ends, a clear conflict is established that requires

some form of resolution. The driving agent of this conflict is clearly the character of

Claire as she is presented with the dilemma whether to reveal John’s past. The pres-

ence of a love triangle and Claire’s pregnancy add further layers and complications

to this decision. The story tries to enforce narrative boundaries through the iso-

lated island location, the storm which permits no communication with and travel to

the outside world and by hinting at an imminent medical emergency, which has the

potential to act as a catalytic event.

8.1.2 Execution

The study was advertised via mailing lists, social networks and word of mouth. Inter-

ested volunteers were given the link to a website, which briefly explained the purpose

of the study. On the website they were then asked to read the entire Point Nautilus

back story and then given the following further instructions.

• Only use the 3 characters Claire, Susan and John/Humphrey and the island as

a location. Everyone else including Jack has to stay off the island.

154

Chapter 8: Study Descriptions

• The communications to the main land have to remain broken.

• Just to clarify, John/Humphrey is not faking his amnesia, he really does not

remember anything.

• Claire has a copy of Humphrey’s novel, if you want you can use that fact in your

story, but you do not have to.

• Write in any style you like, I am interested in the plot resolution that you come

up with not the language you use.

• Try to write at least 200 words, but you can write much more if you like.

• Please try to finish the story, bring it to what you consider an ending

• I would be very grateful if you recruit anyone you think would be interested in

participating, but please don’t discuss the story with them before you have both

completed the experiment

These instructions were intended to clarify the participants task and make the

story world boundaries that were implicitly hinted at in the back story explicit. When

finishing their story, participants were asked to email their contribution and fill out a

short online questionnaire (see next Section). A time limit for completing the story

was not imposed on participants.

8.1.3 Data Sources For Evaluation

Questionnaire

One source of data for the analysis of this experiment was a short two-part question-

naire that every participant had to fill out.

The first part contained questions that collected demographic information about the

participant. Each participant had to declare their gender and age and using 5-point

Likert items self-assess their creativity (1: very uncreative to 5: very creative) and

level of English (1:basic to 5:native speaker). Furthermore we were interested in

assessing a participant’s previous practise in participating in creative storytelling ex-

periences. A number of related activities were therefore identified (Write Fiction,

Write Poetry, Play Video Games, Create/Design Video Games, Playing Pen & Paper

or Live Action Role-Playing Games, Direct, Act and Improv) and participants were

asked how often they were involved in these activities using a 5-point Likert item per

activity (with the levels Never, Once or Twice, Occasionally, Regularly, Very Often).

The second part of the questionnaire related to the actual activity of writing an end-

ing for the “Point Nautilus” story. The following three questions were asked in this

section:

155

Chapter 8: Study Descriptions

How difficult did you find it to think of a continuation for the story? 5-point

Likert item from 1:very difficult to 5:very easy.

How satisfied are you with your continuation of the story? 5-point Likert item

from 1:very unsatisfied to 5:very satisfied.

Overall, did you find the constraints imposed by the original story more hin-

dering or helping your creative process? 5-point Likert item from 1:hindering to

5:helping

Finally a box for free-form comments was made available.

Story Analysis

The second source of data is the set of written endings for the “Point Nautilus”

back story. Several methods were being applied in order to analyse it. In absence of

much quantifiable purely objective data being extractable from such a corpus beyond

each story’s word count, manual reading and analysis of each story was being used

to address the research questions. One aspect that was analysed was whether the

narrative boundaries were being observed and the central narrative conflict was being

resolved in each story. The corpus in its entirety was also being subjected to an

analysis of variety (how many original story ideas can be found, or in other words how

many stories are replicating ideas already found in other stories) and inconsistencies

(how many events in one story clearly contradict those in another story). In the next

chapter in Section 9.2 the importance of consistency is explained. Story consistency

and variety were both evaluated through manual story analysis.

8.2 The Seagnomes Study

The “Seagnomes” study was the central experiment of this PhD thesis. Its aim was

the collection of evidence in support of the Crowd Task Adaptation hypothesis. The

goal of the study was to show if Crowd Task Adaptation makes a positive difference

in an authoring situation. To this end it compares three versions of the CROSCAT

system as its independent variable:

• version graph: uses the back story selection strategy without antonym in-

sertion, i.e. with back stories selected solely based on topological features of

the story graph. The back story selection algorithm uses heuristic H3(node)

to score nodes with the weights set as reported in the last chapter (wDB =

2, wDL = 0.5, wBA = 3, wBF = 4, TBF = 3).

156

Chapter 8: Study Descriptions

• version anto: uses the back story selection adaptation strategy including

antonym insertion. Applies the same heuristic as version “graph” for scoring

but adds the reward Ran = 100 to each node that allows antonym insertion.

The extremely high value for Ran was chosen to ensure antonym insertion is

always carried out for this experimental condition but might not be the best

choice otherwise in practice.

• version none: does not use any back story selection at all, i.e. always assigns

the highest score to the root node of the graph, which results in always serving

the same initial back story.

With the thesis’ emphasis on Crowdsourcing, readers may expect this to be a large-

scale experiment with hundreds of participants, which it should be noted it is unfor-

tunately not. While more is almost always better in the case of experimental sample

size, the realities of participant recruitment and the non-trivial time investment that

participants were asked to make, meant that it was not possible to arbitrarily scale

up the experiment. We contend however, that a large sample size is not an absolute

requirement for this experiment. Specifically, if experimental effects (i.e. differences

between the above experimental groups) are being observed then our usage of statisti-

cal tests determines the significance of the effects taking into account the sample size.

A low sample size can of course mean that weaker effects are more easily missed, but

the effects that are found to be significant are as valid for low sample sizes as they

are for higher ones. Thus we could hope to derive useful conclusions from this mod-

est-scale experiment. As the next chapter demonstrates this hope was not unfounded

and a statistically significant experimental effect was indeed found.

8.2.1 Participant Assignment

The CROSCAT server, which was setup for the experiment therefore maintains three

different, collaboratively created story graphs. Apart from the differing strategies for

choosing the back story presented to the client, the three versions are identical. The

same story setting with the same pre-authored initial back story is used by all three

versions.

Due to their greater statistical power, Field and Hole (2003) recommend whenever pos-

sible the usage of within-subject, i.e. repeated-measures experimental designs, where

every participant is exposed to all experimental conditions in favour of between-group

designs, where every participant is only exposed to one of the conditions. Neverthe-

less, there were several reasons why a between-group design was eventually chosen for

the “Seagnomes” study. Firstly, the time required to write a single story is already

substantial and stretches the goodwill of many volunteers. Doubling or tripling the

157

Chapter 8: Study Descriptions

amount of work was deemed as too demanding and fatiguing and would in all likeli-

hood have significantly reduced both the number of volunteers willing to participate

in the study and the quality of contributions. Furthermore, the ordering effect for this

particular task was expected to be extremely strong. We could not expect a partici-

pant to write several stories based on the same story setting and keep up their level

of creativity and motivation. The only sensible way to counteract this problem would

be the use of three different story settings for the three different CROSCAT versions.

While this would be expected to remove most of the ordering effect, it would also

introduce an additional independent variable (story setting). Observed effects could

now no longer be clearly attributed to the CROSCAT version, as the story settings

differ too. While this problem could be addressed through a 3x3 latin squares design,

the resulting 9 experimental conditions would negate any statistical power advantages

gained by using a repeated measures design in the first place.

Consequently, the server assigns participants to only one of the three versions upon

initial connection. If all three versions have the same running total of participants,

a random version is chosen, otherwise, in order to maintain a balanced number of

participants across versions, the version with the lowest number of participants is

always preferred. Additionally versions “graph” and “anto” may be locked in which

case they are not eligible for selection. Version “none” is always available, so no par-

ticipant would have to be rejected.

The locking of versions has two reasons. First we do not allow concurrent access by

multiple clients to a single version (except version “none”). Consequently a lock is

placed on versions “graph” and “anto” while a participant is connected, i.e. during

the interval between logging into the system and submitting the completed story. This

is a measure to ensure that the back story modification can operate under optimal

conditions. When the back story for a new participant is chosen, we can guarantee

the selection algorithm operates on a graph that takes into account all previous con-

tributions. For version “none” this is not necessary as the selection algorithm always

chooses the same result anyway.

Additionally, version “anto” is also locked due to the necessity of manual annota-

tion of antonyms. Whenever a new story is submitted to version “anto”, the lock

remains until the experimental operator (notified via email) had time to finish the

manual antonym annotation for this story. Only then is the lock removed and the

CROSCAT server ready to rescore the entire story graph and make an informed de-

cision on which back story (most likely with an inserted antonym) should be selected

for the next participant using this version.

158

Chapter 8: Study Descriptions

8.2.2 Story Setting

In our discussion of the “Point Nautilus” story setting in section 8.1.1, a number

of criteria for an ideal story setting were proposed. Without pre-empting a detailed

analysis of the “Point Nautilus” study in the next chapter, an apparent shortcoming

of the “Point Nautilus” story setting that was found during the analysis should be

mentioned here: We found that the “Point Nautilus” back story did not elicit as much

variation in story contributions as was hoped for. It appeared as though the central

conflict established in the “Point Nautilus” back story limited the further possibilities

for narrative development too much. Expressed in terms of the flying wedge model

(see Figure 7.4) by Laurel (1993), the “Point Nautilus” story setting includes too

many of the decisions that narrow the space of possible narrative futures already in

its back story.

Based on this finding, a different story setting was sought for the main authoring

study, which while imposing a similarly strict set of narrative boundaries would not

already have established a narrative conflict up to the point where certain resolutions

become inevitable. The eventual story setting was called “Seagnomes” and shares the

use of an isolated island setting with “Point Nautilus”. The full back story for the

“Seagnomes” story can be found in appendix C. As this story was served to partici-

pants within the CROSCAT authoring tool, it is written as a comic. Below a short

summary of the back story is given.

The chief of the Seagnomes nation has taken his four adult children on a boat ride.

When they are out on the ocean, he reveals to them his desire to retire and for one

of his children to take over his leadership role. He then produces a magic bell and by

ringing it summons an island that rises out of the sea. The chief explains that this

is the island Badingo, a magical place that is subject of many Seagnome legends and

that tradition dictates that it is Badingo that will chose the next leader. With this

information the chief leaves the astonished children alone on the island without any

clear task and only certain in the knowledge that they will remain there until one of

them has been revealed as the leader.

While this story setting also confines a small cast of characters to an isolated

island location, the initial situation is much more open ended than that of the “Point

Nautilus” story setting. An already established conflict was avoided but a narrative

goal to guide story development was provided (the island has to chose a leader).

As this study utilises the CROSCAT authoring tool, narrative boundaries did not

only have to be enforced through the story setting related via the back story but

are also implicit in the graphical material (not) made available to the authors. The

only usable characters were the chief’s four children. The available five locations (see

159

Chapter 8: Study Descriptions

Figure 8.1) and seven objects (Banana, Chocolate Bar, Monkey, Parrot, Stick, Sun

Cream, Bottle of Water) were based on generic associations with the deserted mythical

island setting. While it was not a conscious choice, in hindsight the fact that Point

Nautilus’ realistic setting was traded with a magical one was probably also a contrib-

utor to the more open-ended nature of the Seagnomes scenario. Importantly in their

choice we deliberately tried to avoid thinking about possible plots and choosing items

in service of this plot. Instead the goal was to create both through the back story

and the available material library the conditions for a kind of small-scale open-world

narrative playground.

Figure 8.1: Available locations for the Seagnomes Story: two beaches, a cave, a river
bank and a temple

8.2.3 Execution

The study was performed online and allowed anonymous participation. Interested

volunteers were provided with a link to a website that explained the task involved in

the study. The following text was used to explain the task:

What exactly is the experiment about?

Simply speaking, you will be asked to read the beginning of a story (the back

story) and “write” the ending for it. Both the first half you get to read

160

Chapter 8: Study Descriptions

and the second half you write yourself are in the form of a comic. You will

use a piece of software called CROSCAT (a sort of comics editor) for both

reading/viewing and writing. After you have finished the story you will be

asked to fill out a very short online questionnaire. The broad theme of the

experiment is “collaborative creative writing”, the use of crowd-sourcing

for exploring the possibilities of a story universe. A server collects and

analyses all the comic stories created by the participants of this experiment.

When a new experiment participant (i.e. you) logs into CROSCAT, the

system will construct a new comics back story based on the stories it has

collected so far. Thus the back story is different for different participants

and for this reason it is really important that you complete the experiment

in a single session.

The website also contained a short reference manual on how to use the CROSCAT

authoring tool (see Appendix D for the entire manual shown to participants.). Reading

these instructions was optional. Installation instructions for the CROSCAT client

were also provided. Participants would then start the client software. This would in

the first instance open the back story viewer. As reading the back story is a mandatory

part of the experiment, a timer was added that ensured every comics frame of the

back story was displayed for a minimum of three seconds. After the participant had

seen the entire back story (initial pre-authored back story plus possible back story

extension) a final frame with instructions was inserted (see Figure 8.2).

Figure 8.2: Instructions appended to back story in the Seagnomes study

As these instructions state, the CROSCAT software was modified so that upon

story submission, participants had to explicitly declare in a mandatory multiple choice

dialogue which character was the “chosen one”. After submission of their story, par-

ticipants were asked to fill out a short online questionnaire.

Antonym Annotation

A submission in the “anto” experimental condition triggered a notification email to the

experiment conductor (the author of this thesis) that manual antonym annotation was

161

Chapter 8: Study Descriptions

required. The protocol for this process involved the conductor carefully reading the

submitted story frame by frame, identifying any events that are of dramatic relevance

and have a clear antonym (see Section 7.3 on a discussion what this entails), creating

said antonym events and submitting them to the database. While this is necessarily

a subjective process, we do not consider this a weakness of our evaluation: if the

annotated events were not good antonyms we would only weaken our own hypothesis.

Bootstrapping

As explained in the previous chapter, due to the way CROSCAT’s back story modi-

fication algorithm calculates scores, it requires the presence of at least one branching

point. This means that no matter which version of the system is used, it is guaran-

teed that for the first 2 submissions only the initial pre-authored back story will be

shown. For the evaluation this represents a problem, as we want every participant

in versions “graph” and “anto” to experience back story modification. The problem

was addressed by overriding the random version assignment for the first two partici-

pants and instead assigning them to version “none”. After these first two stories were

collected and a story graph with a single branching point (at the root node) existed,

this story graph was copied and used to bootstrap all three versions of the system.

For the “anto” version, antonyms were first manually annotated for these first two

stories. Only then did the participant assignment protocol as described earlier start

to apply. For evaluation purposes the data gathered about the authoring experience

of these first two participants was only counted towards version “none”.

8.2.4 Data Sources For Evaluation

Logging

For every participant usage data of the CROSCAT client software was logged and

collected. This includes the duration of the user’s session within the software and a

timestamped list of every event created, edited, moved or deleted and every undo /

redo action.

Questionnaire

Participants were asked to fill out a questionnaire, similar to that used in the “Point

Nautilus” study (see Section 8.1.3). The demographic questions asked were exactly

identical and the three questions about the writing experience itself were also kept

with minor rewordings to reflect the fact that the medium of comics was being used.

Additionally a few questions about using the software and the medium of comics were

added:

162

Chapter 8: Study Descriptions

Did you have problems operating the CROSCAT comics editor? 5-point Likert

item from 1:lots of problems to 5:no problems at all.

Would you have preferred to continue the story by drawing a comic by hand

instead of using software? 3 choices (Prefer hand drawing, prefer software, no

preference).

Would you have enjoyed this experiment more if it was using only words (i.e.

writing the end of a short story) as a medium instead of comics? 3 choices

(I would have preferred to write, I enjoyed creating a comic more than I would have

enjoyed writing, no preference)

Do you think you would have created a better story if you were writing instead

of using the comics editor? 4 choices (Yes I think the story would have been better,

No I think the story would have been worse if I had to write, I don’t think it would have

made a big difference, I don’t know)

As in the “Point Nautilus” questionnaire, a free-form text box for comments was

provided.

Story Analysis

Despite being in comics form, the collected corpus of stories (or more accurately

the three corpora) could be subjected to a similar analysis as the collected “Point

Nautilus” texts (see Section 8.1.3). Furthermore in this study we can also inspect the

topology of the story graphs created by the three versions as an additional source of

data.

Interactive Story Ratings

For the “Seagnomes” study, ratings of the produced IS artefacts were collected. Each

of the three experimental conditions resulted in a separate story graph. Via the

CROSCAT Viewer (see Section 7.6) a navigable interactive version of each of these

story graphs is available. Ratings were collected by letting a separate group of subjects

interact with these IS artefacts after their finalization, i.e. after the authoring part of

the “Seagnomes” study was concluded.

Between-Group Design Initially an online experiment using a between-group de-

sign was used to obtain these ratings. Subjects were told their task was to “read

and rate an interactive comics story”. Each subject was randomly assigned one of

the three IS artefacts. Whenever a choice, i.e. a node with multiple children was

encountered, the subject had to not only pick one event to proceed, but also rate

163

Chapter 8: Study Descriptions

this choice on a 5-point Likert item (1:interesting choice - 5:boring choice) with the

accompanying description “Please rate this choice on a scale of 1 - 5”. Once

choices were committed they could not be reverted (In order to ensure each subject’s

experience is comparable). Eventually the subject would reach a story ending, i.e. a

leaf node in the graph. At this point the following two further questions were being

asked to gauge each subject’s impression of the quality of plot and their sense of

agency..

Are you satisfied with the way the story ended? 5-point Likert item from 1:Very

Much to 5:Not At All.

Did you feel that you could influence the course of the story through your

choices? 5-point Likert item from 1:Very Much to 5:Not At All.

A free form text box for comments was also provided. This concluded the story

rating experiment. In order to identify replays by the same subject, which might

adversely affect ratings, a cookie based browser session id mechanism was used for

filtering out repeat visitors.

Within-Subject Design After conducting the between-group version of the story

rating collection, we came to the realization that a within-subject design may be more

suited to this particular scenario. In the between-group design, subjects had no ref-

erence grounding points to base their ratings of story lines, choices and influences on.

And unlike the actual story creation part of the study, the story rating section can

be easily implemented as a within-subject design. We therefore also collected within-

subject story rankings as an additional source of data. Unlike the between-group

design this experiment was not web-based but ran locally on a specially prepared PC.

This was solely done in order to avoid having to implement the mechanisms for a

robust web-based execution of the below protocol. Its adherence was instead ensured

through manual preparation and supervision.

Each participant was experiencing all three created IS artefacts from beginning to

end. The interaction once again used the CROSCAT viewer and was identical to the

between-group design, except that ratings for individual choices were not collected.

The order in which the three stories were experienced was randomized for every par-

ticipant. After participants had experienced all three IS artefacts they had to rate

each of them according to the following three questions.

How entertaining did you find the plot? 5-point Likert item from 1:Very Boring to

5:Very Entertaining.

How interesting were the choices you were given? 5-point Likert item from 1:Very

Boring to 5:Very Interesting.

164

Chapter 8: Study Descriptions

How much did you feel you were able to influence the course of the story

through your decisions? 5-point Likert item from 1:No Influence At All to 5:A Lot

of Influence.

By applying the same question to all three experimental conditions, the scales are

contextualized and gain meaning. In effect the task of rating becomes one of ranking

(with equal ranks being allowed). During the ranking stage, participants were allowed

to refer back to the three stories they had read and the choices they had made in each

of them. Some participants also gave some additional oral feedback after providing

the story rankings.

8.3 Data Analysis Plans

8.3.1 Primary Research Question

The primary research question that was the main motivator for conducting these stud-

ies is whether Crowd Task Adaptation (in particular the back story selection strategy)

can improve the quality of IS artefacts assembled from crowdsourced data. Answering

this question through analysis of the “Seagnomes” study results also addresses the

question if back story selection with or without antonym insertion is more effective.

The primary instrument for answering this question is a statistical analysis of the

story ratings. The prior hypothesis was that we would find the following:

• Quality of plot ratings are not expected to be statistically different across all

three version. The Crowd Task Adaptation feature in CROSCAT was designed

to distribute branching points, i.e. choices but should have no bearing on any

individual plot line.

• Interestingness of choices ratings are expected to indicate the following dif-

ferences across versions: “anto” (most interesting) > “graph” and “none” (both

equally less interesting). We hypothesize that choices are more interesting if

they are relevant and dramatic. Version “graph” does not guarantee this any

more than version “none”, but in version “anto” it should be the case.

• Level of influence ratings are expected to obey the following ordering: “anto”

(most influence) > “graph” > “none” (least influence). This expectation is

based on the hypothesis that the overall number and spacing of choices is more

important than the number of options provided. Version “none” would contain

one gigantic choice with many options while “graph” and “anto” would both be

expected to contain more frequent choices with less options. Furthermore we

expect version “anto” to fare even better than version “graph” as making more

165

Chapter 8: Study Descriptions

dramatically interesting choices should be beneficial to promoting a feeling of

narrative influence.

The non-parametric Kruskall-Wallis (for comparing the between-group ratings)

and Friedmann tests (for comparing the within-subject ratings) were employed to

test for these hypotheses and their statistical significance. Non-parametric tests were

chosen in order to avoid the issues surrounding an ongoing disagreement in the field of

statistics; the question whether it is valid to treat individual Likert items as scale data

(Field and Hole, 2003). The Kruskall-Wallis test is the non-parametric equivalent of

an ANOVA (analysis of variance) that is suitable when testing one dependent variable

for three or more levels of a single nominal independent variable. The Friedmann Test

is the non-parametric equivalent of a Repeated Measures ANOVA.

In addition to these quantitative approaches, some additional more qualitative per-

spective on this question may be gained through analysis of the authored stories and

the comments and feedback that were collected from the subjects, who provided the

story ratings.

8.3.2 Secondary Research Questions

The data collected during the authoring studies can also shed light on several other

related secondary research questions. The following questions were being addressed

in our analysis.

Author Perspective on Crowd Task Adaptation

While our primary research question is concerned with the end result of Crowd Task

Adaptation, i.e. the ways in which it shapes the collaboratively authored IS story

worlds, we can also investigate how authors perceive Crowd Task Adaptation, specif-

ically via back story selection. In particular we should investigate that the author’s

experience is not negatively affected in the “graph” and “anto” conditions compared

to the “none” condition of the “Seagnomes” study. The main tool for this inves-

tigation is the authoring experience questionnaire filled out by participants of the

“Seagnomes” study.

Suitable Story Settings

Comparing the “Point Nautilus” and “Seagnomes” studies allows us to draw some

conclusions about the kind of story settings and situations that are important for

supporting crowdsourced authoring of interactive narratives. Of particular interest

are the questions of how to enforce narrative boundaries, maintain character coherence

and nevertheless ensure story world variability.

166

Chapter 8: Study Descriptions

Different Media: Writing vs Comics

Another aspect that differed in the two studies was the medium in which stories

were expressed. Both story analysis and author opinions in the form of questionnaire

results and free form comments can be employed in order to discover how the narrative

medium impacts the way in which contributors tell stories.

Authoring Tool Design Aspects

Some information about the usability of the CROSCAT authoring tool can be inferred

from the analysis of its usage logs and some of the questionnaire results. Especially

when these results are combined with our findings of the ENIGMA usability trial (see

Section 6.4), we may gain some insight into the general design for authoring tools.

8.4 Conclusion

This chapter has described the experimental designs for the “Point Nautilus” and

“Seagnomes” authoring studies and explained their background. The next chapter

focuses on presenting, analysing and discussing the results of these studies.

167

Chapter 9

Experimental Results And Analysis

We are now suitably prepared to present and analyse the results of the “Point Nau-

tilus” and “Seagnomes” authoring studies, whose design and setup was described in

detail in the previous chapter. This chapter starts by analysing the results of the

“Seagnomes” study and discusses how they demonstrate some advantages gained by

Crowd Task Adaptation and thus confirm the central hypothesis of this thesis. This

is followed by discussions of secondary results taking into consideration both studies

that highlight properties of stories suitable for crowdsourced authoring and lessons

for the design of authoring tools.

All results presented in this chapter are provided as supplementary digital materials

together with this thesis. This includes all the actual stories collected for the “Point

Nautilus” and “Seagnomes” experiments, the questionnaire responses and the story

ratings. Further information about these materials is given in Appendix F.

9.1 Evaluating Crowd Task Adaptation

9.1.1 Seagnomes Author Profiles

Forty-five volunteering participants that were equally spread across the 3 experimental

conditions (i.e. 15 per version) contributed their stories to the “Seagnomes” study.

The pool of authors had an average age of 32 and a gender split of 31 males and 14

females with genders and age evenly distributed across the three conditions (10 male

and 5 female in version “none” with average age 32, 11 male and 4 female in version

“graph” with average age 33 and 10 male and 5 female in version “anto” with average

age 31). Figure 9.1 shows further background information about the participants,

gathered from the questionnaire.

Summarizing this figure, the average participant’s self-assessed command of En-

glish language was very good although not at native speaker level and they rated

their creativity as average. Most participants indicated some familiarity with video

168

Chapter 9: Experimental Results And Analysis

English Creativity
Write Fiction

Write Poetry
Play Games

Make Games
Play RPG

Direct
Acting

Improv

none

graph

anto

B
as

ic
N

at
iv

e
S
p
ea

ke
r

1

2

3

4

5

1

2

3

4

5

1

2

3

4

5

V
er

y
U

n
cr

ea
ti
ve

V
er

y
C
re

at
iv

e

N
ev

er
O

n
ce

 O
r

Tw
ic

e
O

cc
as

io
n
al

lyR
eg

u
la

rl
y

V
er

y
O

ft
en

Figure 9.1: Author background questionnaire results for the “Seagnomes” study

games as players. A few participants indicated some prior exposure to writing fiction

or poetry, creating games or playing role playing games. Very few participants had

any directing, acting or improv experience. The graph visually indicates that there is

very little variation in the author profiles across groups. Differences between groups

for all these variables are only minor and not statistically significant as revealed by

Kruskal-Wallis tests, which were run for all the items in Figure 9.1. This gives us more

confidence that any observed differences between groups are due to the manipulated

experimental condition and not attributable to e.g. a major variance in writing or

English language skills across the different groups.

9.1.2 Seagnomes Story Graphs

Figure 9.2: The resulting story graph for condition “graph”

Figure 9.2 shows the resulting story graph for the CROSCAT version “graph”,

in which back stories were selected based on topological features. The illustration

uses the same conventions as those in Chapter 7, except that the graph is displayed

169

Chapter 9: Experimental Results And Analysis

sideways for readability. The root node at the left represents the entire initial pre-

authored back story (see Appendix C). Every other node represents a single comics

frame. For all nodes except the root node, the shade of grey indicates the temporal

order of contributions. The later an author participated to the overall story graph,

the brighter their contribution is displayed.The total number of leaf nodes i.e. story

endings is 17 because as mentioned in the last chapter, the version was bootstrapped

with a graph containing already two branches.

An informal examination of the topology shows that the back story modifica-

tion strategy was applied correctly in group “graph”. Branching points are relatively

evenly distributed and the result bears visual resemblance with the simulation out-

come for the same heuristic, which was shown in Chapter 7’s Figure 7.7.

Figure 9.3: The resulting story graph for group “anto”

When we compare the visualisation for version “graph” to that for version “anto”

shown in Figure 9.3, the weaker topological balance in version “anto” is visible in

particular through the branch that has 4 consecutive branching points. A structure

like that is not very likely to emerge solely based on topology. In this case it is caused

by a story that has several events supporting antonym insertion clustered closely

together. All branching points in version “anto” are antonym pairs, except for the

branching decision at the root node (i.e. the pair of events directly following the back

story), which was defined as part of the bootstrapping.

Figure 9.4: The resulting story graph for condition “none”

The graph for version “none” looks exactly as expected. Only a single branching

170

Chapter 9: Experimental Results And Analysis

point exists at the root node where fifteen independent stories are split off. In fact,

the only reason for it to look any different would be if several contributors by pure

chance started their stories with identical events, as the system would then treat them

as the same. For CROSCAT, identity would imply the exact same scene, characters,

objects, facial expressions and most importantly dialogue and narration strings, which

is highly unlikely.

Based purely on visual appearance then, one could conclude that the crowd task

adaptation strategy of back story selection had the intended effect of placing branching

points evenly in version “graph” and to a lesser degree in version “anto”, as even dis-

tribution was not the sole criterion in that case. Not using any crowd task adaptation

results in a broad plot graph structure (version “none”) that only provides a single

choice, independent of the scale on which we perform crowdsourced story collection.

9.1.3 Seagnomes Interactive Story Ratings

One has to admit that the conclusion above was predictable and only confirms that

the system behaves as designed. It does not however address whether crowd task

adaptation has improved the assembled IS artefact. We aim to answer this question

by comparing the end-user ratings of the IS artefacts produced by the three versions.

As described in Section 8.2.4, ratings of the three IS artefacts were initially collected

in an online between-group study, where every participant experienced only one of

the three IS artefacts, which was randomly assigned. 167 participants contributed to

this study, of which 63 rated version “none”, 56 rated version “graph”, and 48 rated

version “anto”. 140 of the 167 participants were recruited via the crowdsourcing

platform Crowdflower (51 “none”, 46 “graph”, 43 “anto”) and were being paid for

their participation, while the remaining 27 subjects were unpaid volunteers.

Figure 9.5 shows the average results of these ratings. Note that while the questions

regarding satisfaction with the ending and influence were asked once per participant

upon reaching a story ending, while the choices rating was collected individually for

every branching point and the displayed results show the average rating of all choices

in each condition (63 “none”, 136 “graph”, 192 “anto”). Upon visual inspection, some

of these results look promising. We can see that in version “anto”, participants on

average felt they had more influence over the course of the story. We can also see that

choices in version “anto” are rated on average as more interesting than for version

“graph”. This is both in line with our hypothesis.

The results of Kruskal-Wallis tests (Satisfied With Ending: H(2)=3.86,p=.15, Choices:

H(2)=3.81,p=.15, Influence: H(2)=1.28,p=.53) reveal however that none of the dif-

ferences are statistically significant, taking 0.05 as the significance level. As already

explained in the last chapter, we suspect that a prime reason for this unexpected

171

Chapter 9: Experimental Results And Analysis

Satisfied
1

2

3

4

5

none

graph

anto

Choices
1

2

3

4

5

Influence
1

2

3

4

5

V
er

y
M

u
ch

with Ending

N
o
t

A
t

A
ll

In
te

re
st

in
g
 C

h
o
ic

e
B
o
ri
n
g
 C

h
o
ic

e

V
er

y
M

u
ch

N
o
t

A
t

A
ll

Figure 9.5: Between-Group Interactive Story Ratings

uniformity lies within the way the ratings were collected. When a participant only

rates a single IS artefact, they have no reference points for the 5-point scales used in

rating each story / choice.

Another collection of ratings was therefore performed using the within-subject, i.e.

repeated measures design described in Section 8.2.4. 20 persons participated, each of

them first experiencing all three IS artefacts in random order and subsequently rating

them comparatively. Figure 9.6 shows the results. Please note that the scales are

inverted compared to the results in Figure 9.5. Here the negative extreme of each

scale is assigned value 1.

1

2

3

4

5

none

graph

anto

Influence
1

2

3

4

5

1

2

3

4

5

Plot ChoicesV
er

y
B
o
ri

n
g

V
er

y
 E

n
te

rt
ai

n
in

g

V
er

y
B
o
ri

n
g

V
er

y
 I

n
te

re
st

in
g

N
o
 I

n
fl
u
en

ce
A
t

A
ll

A
 L

o
t

O
f

In
fl
u
en

ce

Figure 9.6: Within-Subject Interactive Story Ratings

These results show similar trends, but more pronounced. The IS artefact pro-

duced by group “anto” not only provided the highest feeling of influence over the plot

172

Chapter 9: Experimental Results And Analysis

direction and the most interesting choices (both in line with our hypothesis) but also

overall the most interesting plot. The IS artefact for group “graph” seems to only

fare marginally better than that for group “none” in terms of choices and influence,

but the two groups still exhibit some difference in story plot rating, with the plot in

group “graph” deemed on average more entertaining. Applying a Friedmann test re-

veals that the observed differences for plot (H(2)=1.18,p=.55) and choice (H(2)=2.17,

p=.34) ratings are not statistically significant, but those for influence ratings are

(H(2)=7.58, p=.02). Again we use 0.05 as our significance threshold. The Friedman

test shows that there is a statistically significant finding, but it does not show us

where. Therefore the post-hoc Wilcoxon test was run on the three possible pairings

of influence ratings. As expected from the bar chart, while there are no significant

differences between groups “none” and “graph” (Z=-.06, p=.95), the differences be-

tween groups “anto” and “none” (Z=-2.57, p=.01) and “anto” and “graph” (Z=-2.15,

p=.03) are both statistically significant taking into account a significance threshold of

0.05. However, in order to guard against Type I errors (i.e. false positives), it is com-

mon practise to apply a Bonferroni correction to such Wilcoxon post-hoc tests. As

three pairwise comparisons where performed, the Bonferroni correction in this case

adjusts the significance threshold to a third of its original value (0.05/3 = 0.016).

Based on the adjusted threshold, the differences between groups “anto” and “graph”

(Z=-2.15, p=.03) are no longer statistically significant, but the differences between

groups “anto” and “none” (Z=-2.57, p=.01) remain so.

It is worth pausing for a moment at this point to emphasise the importance of this

result within the context of this thesis. We have shown that a particular crowd task

adaptation strategy (back story selection using topology and antonym insertion) has

made a significant positive difference to how end users perceive the authored IS

artefact. Specifically this difference manifests itself in the user’s perception of influ-

ence / control over the unfolding interactive narrative. This directly confirms the

hypothesis posed in this thesis. The other two within-subject questions shown above,

while not exhibiting statistically significant differences, do also point in the same di-

rection, i.e. the “anto” group of authors having produced an overall more entertaining

IS artefact than the group using no Crowd Task Adaptation. While these results are

the most important outcome of this experiment, it is worth delving a bit deeper and

addressing some questions that these results raise. For example, why were the differ-

ences between the groups not even greater and why did group “graph” only seem to

marginally improve upon group “none”? A qualitative look at the created stories and

feedback gathered from both authors and story raters can help in addressing these

points.

173

Chapter 9: Experimental Results And Analysis

9.1.4 Story Analysis

One feature of the collected “Seagnomes” stories that can be easily and objectively

analysed is the story length, measured in number of events, e.g. story frames. Prior

to running the experiment, we did not form a hypothesis on how story length may

be influenced by Crowd Task Adaptation. Do contributions have a natural average

length, independent on how long the back story leading up to the contribution is?

Or do contributors write less when they are already given a bigger back story? The

data that was collected from the experiment suggests the answer to lie somewhere in

the middle. Figure 9.7 plots the length of written stories as a function of the back

story length (not including the initial pre-authored back story of length 24). A linear

regression fit through the data shows only a lose correlation between back story length

and the length of the written continuation. Based on the collected data, the length

of authored stories reduces as the back story length increases but only very slowly.

0 5 10 15 20 25 30 35 40
0

10

20

30

40

50

60

70
R² = 0.0347710224

Figure 9.7: Scatter plot showing for each authored story across all 3 groups, the length
(in # of events) of the back story (x-axis) and the corresponding length of the new
created story continuation (y-axis). A linear fit through the data is also shown.

Table 9.1 breaks down the average length of back stories and authored stories per

group, as a more accessible presentation of information also visible in the story graphs

shown in Figures 9.2, 9.3 and 9.4. The data shows that while participants in group

“graph” produced somewhat shorter stories than in group “none” as the result of being

provided with longer back stories, the same does not apply for contributors from group

“anto”, whose story contributions were as long (even slightly longer) on average than

those of group “none”. As contributors in group “anto” have furthermore received

the longest back stories, the average total story length (i.e. the average length from

the root node to a leaf node) for the three groups seems to differ significantly. In

order to verify this statistically, we first need to determine whether a parametric or

non-parametric test should be applied to the data. Unlike the ordinal Likert items

174

Chapter 9: Experimental Results And Analysis

we have so far statistically tested in this chapter, story length is a scale variable

that can be subjected to parametric statistical tests. However, another prerequisite

for applying parametric tests is a normal distribution of the tested variable. For

small sample sizes as in the present experiment, the Shapiro-Wilk test is the correct

statistic to test for normal distribution. Running a Shapiro-Wilk test with a standard

significance threshold of 0.05 reveals that the data does not significantly deviate from

a normal distribution for all three groups (“anto”: p=.267, “graph”: p=.065, “none”:

p=.153) and can thus be further analysed using parametric statistics. A one way

ANOVA (F(2,42)=6.514, p=.003) using a significance level of 0.05 shows that there

was a statistically significant difference in total story length between the three groups.

Post-hoc Tukey’s HSD tests at the 0.05 level of significance showed that the total story

length for group “anto” is significantly higher than for both group “graph” (p=.043)

and group “none” (p=.003), while the average total story length in group “graph” is

only insignificantly higher than in group “none” (p=.577).

none graph anto
back story length 0 10.733 17.6
new story length 27.933 22.333 28.2
total story length 27.933 33.066 45.8

Table 9.1: Average length of back stories, new stories (i.e. individual contributions)
and total stories (sum of back stories and new stories) for all three experimental
conditions.

Let us attempt to explain these numbers through some speculative qualitative

analysis of the IS artefacts. A general subjective observation of the collected stories

is that independent of the experimental condition many story paths initially do not

contain a lot of action or drama. In fact, many stories seem to meander for a long

stretch through a series of unimportant events that neither develop characters nor

plot before they finally find some focus and direction. Recall that the story starts

after the introductory scene on the boat, with a group of characters stranded on an

island without a clear idea what to do. Given this situation, the “meandering” often

manifests itself in long dialogues that only express the character’s confusion about

the situation (e.g. “What should we do now”, “I don’t know”, “Neither Do I”, etc.)

or in characters moving aimlessly between different locations on the island without

anything of importance happening there. It is likely that the fact that stories possess

this quality is a combination of three factors:

• The story setting itself promotes a long initial phase of confused orientation,

which would not be very dramatically interesting.

• Authors have likely thought about the story as they went along and approached

175

Chapter 9: Experimental Results And Analysis

the authoring in a real time manner. Therefore many of them may have started

writing without a clear plan of where they were going and only developed this

plan gradually on the fly. One of the authors in fact explicitly left a comment

along these lines: “Once I started to create the story, it went better and better.

I just had to start.”

• Finally the CROSCAT software’s interface may have had an influence as it is

optimized for a linear writing style from start to end (i.e. left to right in its

timeline view). While it has editing functionality that in principle allows authors

to rewrite the entire beginning of the story, rewriting the beginning of a story is

not as smooth an operation as appending to its end. This may have discouraged

authors from editing their “meandering” story beginnings.

The “meandering” beginnings then explain the first line in table 9.1, i.e. why

longer back stories were served to group “anto” than to group “graph”. As not many

dramatically interesting events were happening initially, antonym annotations were

not as present during these initial story sections as in later stretches. This in turn

meant that events selected in group “anto” based on their support of antonym in-

sertion were located further away from the root node than those selected in group

“graph” based solely on their location within the graph. Using the same reasoning,

we can also speculate why the interactivity offered by group “graph” (as expressed in

ratings for choice and influence in Figures 9.5 and 9.5) was almost rated as poorly as

that offered by group “none”. Given that in group “graph” branching points, whose

location is chosen based on topology, are placed much closer to the root node than in

group “anto”, where branching points are located in dramatically interesting places,

group “graph” runs a higher risk of placing choices within the initial dramatically

boring “meandering” zone. It is understandable that such branching points should

not be rated as particularly interesting or giving the reader much influence over the

course of the story.

We have now found possible explanations for the unexpectedly poor ratings of group

“graph” (which we expected to rank better than group “none”, although not as good

as group “anto”) and for the increased back story length in group “anto”. Why how-

ever, were the story continuations authored in group “anto” also longer? One possible

explanation follows.

The antonym insertion mechanism in that group metaphorically speaking makes the

plot take sharp 90 degree turns away from its original plot line. However in an anal-

ysis of the “anto” story graph one can find several instances, where authors resisted

this steering attempt and ignored the implied change in story direction. Effectively,

these authors were steering back to the original course with the antonym only having

resulted in a short detour. These detours may explain the difference in length between

176

Chapter 9: Experimental Results And Analysis

story continuations in group “graph” and “anto”.

Figure 9.8: Example of an author’s resistance to being steered: top left (1): event
before branching point, top right (2): event following (1) that was initially authored,
bottom left (3): antonym for event (2) created by experiment conductor, bottom right
(4): event following (3) written by a new author

Figure 9.8 shows an example of such a situation. In the original story the event of

drinking some water, resulted in the character having hallucinations. In the antonym

annotation phase this was deemed as dramatically interesting and an antonym event

(the character deciding that the water looks unsafe) was created. When a subsequent

author was served with a back story that ended on this antonym event, their first

action was to undo it by creating an event where the character decides to drink after

all. In this case there now is a 2 event long diversion in the story that has not really

achieved anything.

From the end user perspective, making such choices only to see them immediately

undone, may result in an unsatisfactory experience. During the within-subject story

rating, two participants gave some verbal feedback along these lines, one of them

referring specifically to the water drinking choice shown above. The participant said

that they preferred a meaningless non-dramatic choice to one that turns out to be an

177

Chapter 9: Experimental Results And Analysis

“illusion”. This might explain too then, why group “anto” was not ranked even higher.

As mentioned above there are several instances of such illusory choices resulting from

an author’s resistance to being steered. But as this does not apply to all choices

in group “anto”, the overall feeling of end users is still that they can influence the

course of the story more strongly than for the other conditions. Nevertheless, this

shortcoming highlights that there may be ways in which to improve antonym insertion.

For example, authors could be made aware of the purpose and function of the system,

so that they more intentionally follow the path laid out for them. This relates in some

ways to the notion of offers, found in improvisational theatre. An improv actor is not

supposed to discard some fact that another actor has established. Instead it is part

of the etiquette of improv to go along with such offers. Establishing a similar kind of

etiquette and set of rules may be required for crowdsourced authoring too.

9.1.5 End User Feedback

The validity of the speculations made above is underlined by some of the comments

left by the end users, i.e. the participants of the story rating experiments. In the

within-subject experiment, participants gave their feedback verbally in person. The

majority of them commented on the fact that the choices in group “anto” were more

meaningful and made them think harder about which one to chose. Opinions on

versions “none” were divided. Specifically, there were several people that liked the

quantity of choices in version “none”, even though they are mostly very similar, while

several others found the plethora of nearly identical choices unappealing. Several peo-

ple pointed out version “graph” in particular as the one condition where the choices

don’t make much sense. As explained above, two participants commented that some

choices in version “anto” can be disappointing if the intended consequences of a choice

being made did not materialize and that they rated version “anto” poorly for this rea-

son.

The feedback from the between group ratings is a bit different as participants were

not comparing alternative versions or even aware of the existence of different versions.

As this experiment was conducted online the comments were left in a text box and

unlike for those summarized above there was no opportunity to discuss and clarify

them. Many participants regardless of the version they were assigned to liked the

overall experience, leaving comments along the lines of “nice”, “good story”, “inter-

esting story”. Some comments clearly underlined the poor interactivity offered by

version “none”:

“Only given one choice - didn’t feel that it made an impact on the story, and that I

didn’t have enough information at the time to make a ’sensible’ choice from so many

178

Chapter 9: Experimental Results And Analysis

possible ones.”

“The only choice I got to make wasn’t dramatically interesting at all.”

“I don’t understand, so the choices we made have different story scenario? i just

pick the most logical one that has nice story flow.”

The following three comments all relate to version “anto”. The first two might be

indications of the “resistance to steering” symptom described earlier, as they com-

plain about the choices having no perceived effect. The third comment shows that of

course improving the quality of choices in version “anto” is not ensuring a satisfying

ending.

“It seems that some people, after me having made the first choice of splitting up,

would never be able to become the new leader. So the first choice seems to be the

most important, whereas the later choices do not matter that much anymore. Still,

I’m curious to see what all the other story branches look like!”

“The story was nice but the last few instances which was asked to rate did not add

to the total theme of the story. The ending was a bit low and did not put any sense

on the reader.”

“It wasn’t really clear in the first choice that there was any meaningful difference

between the two options. The narrative arc didn’t conclude: the story set up the con-

flict to be about which of the siblings would be selected to be the next chief, but never

resolved this conflict.”

9.1.6 Choice Analysis

Related to the above user-feedback is a more objective analysis of the choices made

by the users during the story rating experiments. Between the within-subject and

between-group ratings collections there were 66 viewers of a complete story in ver-

sion “anto”, 76 in version “graph” and 82 in version “none”. The difference between

the number of views in the different conditions stems from the fact that in the be-

tween-group rating experiments subjects were randomly assigned to one of the three

conditions. Let us examine which choices were made during these story views.

In group “none” there was a single choice with 15 options. With all choices equally

popular we would expect the 82 story views to distribute evenly, i.e. every choice

should have been made either 5 or 6 times. In reality the most popular choice was

179

Chapter 9: Experimental Results And Analysis

made 22 times, with the remaining choices in descending order of popularity being

made 10, 9, 8, 7, 6, 4, 3, 3, 3, 3, 2, 1, 1 and 0 times. The analogous data for groups

“graph” and “anto” is shown in Figures 9.9 and 9.10.

76

19

9

19

7

7

2

1

1

1
1

1
0

0

0

0

00

00

0
0

0 0
0

0

17

9

9

8

6

6 2

2

31

18

10

10

8

8

13

8

8

5

2
3

2 3

Figure 9.9: An overview of the choices made by the 76 viewers of group “graph”.
The numbers indicate how many viewers have chosen a particular story path. Circles
indicate choices and each box represents one of the 17 possible endings.

The first thing that stands out from this data is that in none of the conditions

choices appear to be have been made in a completely arbitrary, i.e. random fashion.

Given that the order in which the choices were shown to viewers was randomized,

if choices had indeed been made randomly, a more equal split among the available

options could be expected. Instead the data clearly shows that certain favourite choice

options and story paths exist in each of the three conditions. However we can also see

that in none of the conditions the most favourite story path was chosen by an overall

majority. In version “none” 26.8% (22/82) of viewers chose the most popular path

whereas in version “graph” 25% (19/76) and in version “anto” 21.2% (14/66) did the

same. We argue that in light of these numbers we can have some confidence in the

results reported earlier and that they represent ratings of the complete IS artefacts

rather than individual stories. An absolute majority favourite (i.e. a story path chosen

by 50% or more of all viewers) on the other hand would have been more troubling.

The fact that favourites would exist at all, however is not that surprising. After all

the artefacts are a combination of story lines created by a number of authors with

varying writing abilities. That some authors may create story frames that are more

180

Chapter 9: Experimental Results And Analysis

66

24

17

14

14
3

7

43

4
1 2

21

42
26

8
4

4
4

4

16

10 6

5 5

5 5

6

18

11
7

7
4

7

4

4

0

4

4

3

3

3

0

0
0

0
0

3

Figure 9.10: An overview of the choices made by the 66 viewers of group “anto”.
The same labelling conventions as in Figure 9.9 are used. Additionally, antonyms are
shown as black triangles.

captivating than others and thus preferred by viewers when presented as a choice

seems only natural. Upon closer inspection, the most popular choice from the “none”

condition that was chosen by 22 viewers for example clearly stands out. Most options

presented at the single branching point in version “none” are similar and show a story

frame where the protagonists stand puzzled and indecisive at the beach at which they

have landed. The most popular option is different in that it already in the first frame

shows a leader taking control and formulating a plan of action.

In the case of version “anto” the data about the choices made by viewers also allows

us to confirm that the manually created antonyms were appropriate in the sense that

they were neither so unappealing that they would never be selected, nor were they

so appealing that viewers always chose the antonyms. We can conclude this from the

fact that overall the instances where antonyms were preferably chosen (5) are fairly

balanced with those were the original option was preferred (7) with both being equally

popular in some instances (3). Overall 174 binary choices involving antonyms were

made. The antonym option was chosen in 83 (47.7%) of these whereas the original

option was chosen 91 times (52.3%).

9.1.7 Author Feedback

One aspect that we have not yet touched on is, whether the presence of Crowd Task

Adaptation affected the authors in any way. E.g. was it easier / more comfortable to

181

Chapter 9: Experimental Results And Analysis

create stories from the open-ended starting point of the initial back story or when one

is given an already further developed back story. Authors did not leave any comments

that would shed light on this question, which is perhaps not so surprising, considering

that they were not fully aware of the back story manipulation and how it works. The

other data source relevant for this question are some items from the questionnaire

filled out by every author, specifically how difficult it was to think of a continuation

and how satisfied authors were with their continuation.

none

graph

anto

ToCOn

1

2

3

4

5

How Difficult
To Continue

1

2

3

4

5

Satisfied With
My Continuation

ve
ry

d
if
fi
cu
lt

ve
ry

ea
sy

ve
ry

u
n
sa
ti
sf
ie
d

ve
ry

sa
ti
sf
ie
d

Figure 9.11: Feedback On The Authoring Experience

Figure 9.11 shows the results for these items broken down into the three different

experimental groups. The result most standing out is that participants in group

“none” overall seem to have been more satisfied with the stories they created, although

they did not find writing any easier. However, we have also seen earlier that the

separate group of raters did not rate stories in group “none” more positively than

those produced by the other groups. So the group “none” stories do not seem to be

of an inherently better quality than the stories of the other groups, but their authors

experienced higher levels of satisfaction during their creation. This makes sense if

we consider that only the participants in group “none” had full ownership over their

stories (not considering the introductory boat scene). In any case, a Kruskal-Wallis

test shows that these differences between groups are not statistically significant (How

difficult to continue: H(2)=.32, p=.85, Satisfied with my continuation: H(2)=3.56,

p=.17). Crowd Task Adaptation seemed to have had no adverse effect on the author’s

experience, which is a positive outcome.

182

Chapter 9: Experimental Results And Analysis

9.2 Story World Properties

9.2.1 Results of The Point Nautilus Study

Demographics

Twenty-one participants (8 female, 13 male) with an average age of 37.714 contributed

their stories to the “Point Nautilus” study. Their average self-assessed creativity on

a scale from 1(Very Uncreative) to 5(Very Creative) was 3.333, comparable to that

of the “Seagnomes” participants, while the self-assessed level of English proficiency,

3.238 on a scale from 1(basic) to 5 (native speaker) was slightly lower than for the

“Seagnomes” participants. Figure 9.12 shows the participants self-assessed familiarity

with activities related to IS. This profile is almost identical to that of the “Seagnomes”

participants (see Figure 9.1), the only outstanding difference being that the “Point

Nautilus” participant pool was significantly less accustomed to playing video games

(Mann-Whitney-U test results: U = 328.50, p=.04). This is probably explained by

the older demographic (average age more than 6 years higher) of the “Point Nautilus”

authors. In section 9.3 we will return to this difference.

Write Fiction

Write Poetry
Play Games

Make Games
Play RPG

Direct
Acting

Improv
1

2

3

4

5

N
ev

er
O

n
ce

 O
r

Tw
ic

e
O

cc
as

io
n
al

ly
R
eg

u
la

rl
y

V
er

y
O

ft
en

Figure 9.12: “Point Nautilus” Authors’ Familiarity With Related Activities (averages)

Story Properties

The average word count of the twenty-one stories is 566 with quite noticeable varia-

tion (std. deviation = 406) between the shortest (166) and the longest (1858) stories.

The difference in length is also reflected by a difference in writing styles: while some

authors used the bare minimum of words to convey the key plot points (three stories

were written in bullet points), others described situations and character’s feelings in

great detail. Unlike in the “Seagnomes” experiment, where a limited set of characters,

locations and props was built into the authoring tool, for the “Point Nautilus” ex-

periment it was not possible to enforce any narrative constraints and the cooperation

of authors was necessary to achieve them. Authors mostly followed the instructions

183

Chapter 9: Experimental Results And Analysis

given to them, such as limiting themselves to the three characters and the island lo-

cation that were provided by the back story.

The main purpose of the experiment was to find out if, given the back story and the

constraints given by the instructions, a corpus of stories could be collected that ex-

hibits both variety and consistency. By this point in the thesis it should be clear, why

we care about variety: the goal is to construct an entire story landscape by sampling

as many individual story paths as possible and that requires the samples to differ

from each other. It is, however, worth explaining the consistency requirement further

and what we mean by it. All the stories that were collected in the “Point Nautilus”

experiment start at the same moment in (narrative) time, the point at which the back

story ended, i.e. the point when Claire recognizes John as Humphrey. We consider

a set of collected stories to be consistent with each other if they believably depict

parallel universes that separated only at that forking moment. This means for ex-

ample, that what is revealed of a character’s past in one story needs to be consistent

with what is revealed in another one. Characters should also behave consistently, and

if they exhibit a different personality in one story this must be explained by previ-

ous events in that same story that believably led to a personality change. There are

two reasons for desiring such a form of consistency across the collected story corpus.

Firstly it enables a special kind of rereadability (Mitchell and McGee, 2012) of the

final IS artefact that allows a reader / player to experience a story landscape multiple

times, making different decisions along the way and playing with “what if” scenarios.

This possibility of exploring the consequences of choices, is undoubtedly attractive, as

various movies such as “Sliding Doors” or “Butterfly Effect”, derive their entire plot

from presenting alternative (consistent) universes created by a simple choice. IS offers

the unique possibility to explore such scenarios freely. Secondly, a degree of character

consistency in the input stories is required for some IS story representations, such

as that employed by FAtiMA. The learning component integrated into the ENIGMA

system (see Section 6.3) for example assumes that there is a single personality model

that can be learned for a character, which would not be the case if in different input

stories the same character exhibits differing personalities.

So, were variety and consistency achieved in the “Point Nautilus” corpus? A sub-

jective analysis of the corpus shows that many stories are very similar. The plots of

several contributions only differ in minor details or in the ordering of some events.

One of the authors, described the story landscape fairly accurately in their free form

comment:

When I read the initial story, I could envisage a state machine of possi-

bilities for the ending and so spent time wondering about which transition

sequence to follow:

Claire lives/dies

184

Chapter 9: Experimental Results And Analysis

Baby lives/dies

John realises/doesn’t realise he’s Humphrey

Claire does/doesn’t tell John/Susan he’s Humphrey

Claire reacts well/badly to news

John reacts well/badly to news

John & Claire do/don’t stay together

John & Susan do/don’t stay together

The differences between the majority of collected stories are mostly captured by these

alternative states. This lack of variety and the obviousness of most of the collected

stories is likely a direct result of the strong constraints and conflict set up by the back

story and instructions. Several of the other authors also left comments that indicate

this is the case:

The last sentence seems like a cliffhanger and may influence the continu-

ation more than intended.

Many coincidences in the story, but that’s not a criticism, its a story after

all.

By isolating totally the island, and co-incidentally putting a doctor and a

heavily pregnant woman together the natural thought would be that Claire

’should’ be giving birth in the presence of a doctor.

I started by making a short list of possible scenarios and then discounted

those which were dull, unbelievable, far fetched, stereotypical (mills and

boon!).

While the majority of the corpus has this obvious nature, there were two stories in

particular that defied expectations. In both these cases an unexpected shift of per-

spective took place: in one most of the back story was revealed to be a made-up

bedtime story, whereas in the other one all events turned out to be a daydream. Not

surprisingly then, these two stories are not consistent with any of the other ones. But

even discarding these two outliers, consistency was not achieved across most of the

corpus. Stories that were not consistent had characters making different decisions

without any explanation. For example, in one case Susan is jealous when John’s true

identity is revealed, while in another story she is not and no events in either story

could explain this divergence. Similarly in some stories John is still in love with Susan

after regaining his memory, while in others he is in love with Claire. Claire on the

other hand is angry at John in some stories, while in others she is immediately in love

with him again and in a third set she is indifferent and happy to leave those events

185

Chapter 9: Experimental Results And Analysis

behind her altogether.

We can conclude then that in the “Point Nautilus” experiment, the attempt to enforce

consistency only via the means of back story and instructions failed and that further-

more the severity of these constraints has significantly limited the creative variety of

the collected stories.

9.2.2 Comparison of Point Nautilus and Seagnomes stories

As mentioned in the last chapter, the “Seagnomes” story setting was designed to

prevent the shortcomings that were found in the “Point Nautilus” experiment, as

discussed above. A scenario was needed that allows for more variety in the produced

stories. With the “Seagnomes” setting this was attempted by avoiding a back story

ending on a cliffhanger as mentioned above. Only a goal for the story but no central

conflict was established and characters were only minimally developed during the back

story, thus effectively being blank sheets.

Whether this has paid off then in terms of variety is not an easy question to answer.

As the scenarios and modes of authoring are so radically different, and not even the

same amount of stories were collected for both of them, a comparison between the

“Point Nautilus” and “Seagnomes” experiments can not be conclusive and decisive,

but only provide some cautious indication. This indication does however point to

the answer that yes, indeed there is more variety in the “Seagnomes” corpus than in

the “Point Nautilus” corpus, also after taking into account the corpus relative sizes.

While in “Point Nautilus”, nearly every story revolved around Claire’s pregnancy

and Humphrey’s amnesia, “Seagnomes” stories turned out very differently from each

other. Here are just a few one-sentence summaries of some collected “Seagnomes”

stories, illustrating the variety of plots:

• The island creates various situations that test which of the siblings has the

purest heart.

• The island is full of deadly traps and a test of survival, with the last man/woman

standing winning the contest (in a variant of this, everyone is alive again, once

the test is over).

• The island is a test of intelligence and the person that solves some riddle wins.

• The siblings need to work out their differences in order to pass the test.

• One of the male siblings has always been a secret agent, serving the deity that

rules the island and betrays his siblings once on the island.

• Some of the siblings turn to murder in order to “win” the contest.

186

Chapter 9: Experimental Results And Analysis

At the same time, however, as should also become clear from the above summaries,

the “Seagnomes” story corpus exhibits even less consistency across stories than the

“Point Nautilus” corpus1. Given that the characters are blank sheets this is not

surprising as an author has to invent personalities, motivations and personal histories

for them and it would be a coincidence if they were matching up in different stories.

The choice of sacrificing consistency in the “Seagnomes” experiment was a concious

and voluntary one. As the “Point Nautilus” results have shown, achieving the strict

kind of consistency we discussed earlier is difficult, even when exhaustive back stories

for all characters are provided. For the “Seagnomes” experiment, consistency was

neither a requirement for the underlying story representation, nor was the “what-if”

style of rereadability a necessity.

Having provided a back story without a clear conflict on the other hand was likely

a contributing factor to the observed initial “meandering” in many of the collected

“Seagnomes” stories. There thus seems to be a difficult trade-off between too much

and too little established conflict in the story setting, but further research outside the

scope of this PhD is needed to make definite conclusions on this topic.

9.3 Authoring Tool Design Lessons

9.3.1 User Interface

Judging by the fact that all participants of the “Seagnomes” experiment managed

to create stories that incorporate most of the available software features (narration

boxes, speech bubbles, different locations, characters, objects and facial expressions),

one may conclude that the user interface coupled with the provided tutorial have been

sufficiently intuitive. The same cannot be said for the ENIGMA system, as mentioned

in the previous discussion of the ENIGMA usability trial in Section 6.4. The simpli-

fications made in transforming the ENIGMA to the CROSCAT system, e.g. allowing

the storytelling to focus on visuals and natural language, without having to deal with

symbolic representations, seemed to have paid off then.

However, the “Seagnomes” experiment also highlights areas for further improvements,

with participants answering the question about whether they encountered any prob-

lems operating the CROSCAT software (5-point Likert item from 1:lots of problems to

5: no problems at all) with a mean rating of only 3.35. Fortunately many participants

elaborated on this point in their free-text comments and suggested features for im-

proving usability. The most requested of these features (mentioned by 7 participants)

was to allow multiple speech bubbles in a single frame. For future authoring systems

1To clarify, this is a different discussion from the crowd task adaptation one. In the “Seagnomes”
story graph, each individual story path is in itself a consistent story, consistency in the current
discussion is concerned with the differences between alternative story paths.

187

Chapter 9: Experimental Results And Analysis

based on comics this should be a relatively simple feature to add that apparently

contributes positively to the user experience.

Related to this is a request for a finer grained, more direct and realtime control of the

visual appearance of the final frames (mentioned by 5 participants). In the CROSCAT

system all layouting of the comics frames is handled by Alves et al. (2008)’s comic

generation system. For example, one participant mentioned: “I was annoyed that I

cannot see the picture I am currently creating.”. The other 4 participants were more

specific and specifically mentioned positioning of characters and items and in one

case determining the camera angle in which the scene is displayed. When designing

CROSCAT, we thought that relieving the user of low level layout decisions would be

a useful abstraction, but possibly did not give enough consideration to the advantages

of controlling the visual appearance details. For future systems, a hybrid solution that

applies a default layout but allows interested user to change the frame’s appearance

should be considered.

Four users commented on the fact that story-level editing (i.e. inserting or moving

frames) was too cumbersome. This is certainly a valid criticism, as in CROSCAT

new events are always appended at the end of the story and then have to be moved

manually to the front, one position at a time. Therefore inserting a single event may

be achieved but requires several clicks. Moving an entire section of story quickly be-

comes infeasible, as movement operations can only be applied to individual events.

This feature may not only have had cosmetic consequences, but is a possible contrib-

utor to the above mentioned meandering of the created stories. It may have simply

been too much work to edit stories, trimming out overlong passages. Therefore better

story-level editing facilities would be the highest-priority recommendation for future

development of the CROSCAT system. Finally, the integration of a spell checker was

recommended twice. Indeed several of the collected stories contained spelling mis-

takes, so we acknowledge that a spell checker would be a useful additional feature.

9.3.2 Content Library

The by far most frequent comment of the CROSCAT users was that they would have

liked more graphical content to assemble comic frames from. This wish for a bigger

library of the CROSCAT system’s story building blocks (specifically mentioned were

more facial expressions, alternative body postures, more items and more locations)

was mentioned by 12 of the 45 users.

Several users not only expressed a wish for more content but also were interested

in adding their own content. The advantage of the comics medium is that such a

feature can be realized technically without too much effort, especially for items and

locations. A minimal implementation would allow users to upload new image files,

188

Chapter 9: Experimental Results And Analysis

resize and crop them and after giving them a name they could be incorporated into

the pool of available content. Supporting user generated characters would be slightly

more difficult though, as character resources consist of a single body and multiple

matching heads (one for each facial expression).

Allowing user generated graphical content might introduce several risks. For one, the

story constraints (e.g. in the case of “Seagnomes” remaining on the deserted island)

can no longer be enforced as rigidly. This may not be a problem though, if one can

rely on the cooperation of the crowd. Similarly uploaded images may be inappropriate

and offensive or violating copyright law, so some additional filtering would be needed,

although again this may not be an issue with a fully cooperative crowd. Finally the

principal author, i.e. the initiator of the story collection will lose control over the

visual appearance of the created story world. The clash of various visual styles may

not lead to aesthetically pleasing results. Given these potential problems, for future

systems it may be worth to experiment with larger pre-selected content libraries first,

before resorting to support user-generated graphical content.

9.3.3 Accommodating Deliberation

In hindsight, the restriction imposed on the “Seagnomes” experiment participants to

create the entire story in one continuous session may have affected their creativity in

some cases. The spontaneity required to finish the story on the spot may not come

natural to everyone. Several experiment participants related that they would have

preferred to “sleep on it”. It is possible that the overall story quality would have

been improved if such deliberation would not have been explicitly discouraged by the

experiment. The meandering that was observed in many of the stories may also be

partially attributable to insufficient deliberation time.

The reason for requiring completion of a story in a single session was a side effect of

optimising the experimental conditions so as to achieve the best back story selection

results as explained in the last chapter. By locking the story graph for each experi-

mental condition after each login we avoided concurrent effects to influence the back

story selection algorithm.

In practice, such a restriction may not be required and unnecessarily restrictive. By

implementing a more advanced session management including the saving and restor-

ing of a user’s session state, the system could allow users to return to their story

later, without having to select a new back story for them. That their story does

not contribute to the overall graph and thus does not affect the back story selection

algorithm until it is completed should not cause any problems when crowdsourcing

on a larger scale. Accommodating deliberation is thus a definite recommendation for

future authoring systems similar to ours.

189

Chapter 9: Experimental Results And Analysis

9.3.4 Storytelling Modality

The majority of users of the CROSCAT system (30) indicated that they found the

use of the software comics editor preferable to drawing the comics themselves, but

8 users expressed a preference for hand drawing, while 7 indicated no preference for

either. It is possible that those users who did not prefer the software were missing

some of the expressive freedom offered by hand drawing. A future system that takes

into account the user feedback regarding more detailed control of the comic frames

visual appearance and that possibly also offers users to incorporate their own visuals

may possibly help change the minds of some of this group of users.

The question regarding the use of comics versus written text produced similar results,

with 31 users preferring the offered storytelling modality of comics, while 8 users

would prefer writing and 6 had no preference for either modality. These results sug-

gest that comics overall are a suitable storytelling medium for authoring tools that

should be easily accessible by the masses. However, an indication that the preference

for comics may be different across demographics, is given by the observed demo-

graphics differences between the authors for the “Point Nautilus” and “Seagnomes”

experiment. As mentioned above, the “Point Nautilus” authors were more than 6

years older on average that the “Seagnomes” authors. We already discussed that this

might explain the difference in video game familiarity between the two groups, but

the fact that this age difference exists in the first place, suggests that there maybe

some aspects of the two different experimental tasks that appealed to a different de-

mographic. Possibly the prospect of writing a story seemed overall more appealing to

a slightly older demographic, while the use of a comics generator software appealed

to a younger participant profile. However, this hypothesis could not be confirmed

when comparing the mean age of CROSCAT users that indicated they would prefer

comics (32.38) with that of those who prefer writing (33.37), as they only differ by

one year. Whether there exist demographic-specific storytelling modality preferences

for authoring tools, remains an open question that may be worth pursuing further in

future work in order to understand how to tailor tools for crowdsourced authoring to

the particular audience of authors that are targeted.

Finally, CROSCAT authors were also asked if they thought the story would have

turned out better, if they would have been allowed to write, for which the results are

presented in Table 9.2.

Note that this is a different question from the storytelling modality preference, as

it addresses the quality of the results and not the experience of creating them and

interestingly the answers to the two questions are not identical. They are consistent

in that all 11 users that selected option 2 (story would have been worse if I had to

write) were part of the 31-strong majority that preferred the comics modality. But

surprisingly, the belief that one could create a better or equally good story using

190

Chapter 9: Experimental Results And Analysis

Option Count
1) Yes, I think the story would have been better 14
2) No, I think the story would have been worse if I had to write 11
3) I don’t think it would have made a big difference 13
4) I don’t know 7

Table 9.2: Answers to the multiple choice question “Do you think you would have cre-
ated a better story if you were writing instead of using the comics editor?” presented
as participant count per available option.

writing instead of CROSCAT was a lot stronger than the preference expressed for

writing. This conflict may be explained by the constraints that are enforced when

writing a story with CROSCAT. Participants may have felt that the small selection of

characters / items / locations restricted their ability to express themselves creatively.

Therefore, several participants while having enjoyed using the comics editor, at the

same time may have had several ideas that they could not realize with the offered

content and thus felt a written story, where no such constraints are imposed, would

have been superior.

9.4 Conclusion

In this chapter the results of the experiments performed for this thesis were discussed.

Most importantly it has presented some evidence for this thesis’ claim that incorpo-

rating Crowd Task Adaptation into a crowdsourced authoring process can make a

positive difference. Specifically, it was found that subjects being exposed to both IS

artefacts created using Crowd Task Adaptation (in particular a strategy incorporat-

ing Back Story Modification with Antonym Selection) and created with the equivalent

process without Crowd Task Adaptation found they had significantly more influence

over the course of the story in the former compared to the latter.

Besides this main result, an analysis of the experimental data also revealed several

other interesting facts. For example, it was found that many stories collected during

the CROSCAT experiment were at times meandering aimlessly through stretches of

very little action. Several potential reasons for this were suggested, e.g. the story set-

ting itself, the lack of initial conflict in the back story, the difficulty of editing stories

in the CROSCAT software and the experimental setup that may not have allowed for

enough deliberation time. We also found that several authors resisted the attempts of

being steered along a certain story path by the back story. This implies that maybe

participants should be educated so as to be more cooperative, similarly to actors in

improvisational theatre, who follow a behavioural codex to accept “offers” from their

peers.

191

Chapter 9: Experimental Results And Analysis

Properties of story settings suitable for crowdsourced authoring were also discussed.

In particular the amount of background information provided and of established con-

flict may influence the degree of variety and consistency in the collected results. We

did however not manage to elicit entirely consistent contributions in any of our exper-

iments. This is in line with the observation of Tapscott et al. (2013) that ”producing

consistent stories that share a common narrative space when multiple authors are

involved is not a trivial task.” A solution similar to their work on formal models for

imposing consistency constraints may be needed to elicit entirely consistent stories.

Finally, several lessons learnt regarding the design of authoring tools for crowdsourced

story collection were discussed. The results suggest that comics are a suitable story

telling medium for these type of applications. Given the use of comics, lower-level

visual editing facilities than what is currently offered by CROSCAT seem to be im-

portant to at least some users and an extensive library of graphical materials or the

ability to add custom visuals is deemed important by many. Story-level, i.e. event

flow editing facilities are essential: moving, deleting and inserting events or sections

of events, should be made simple and effective.

192

Chapter 10

Reflection

This final short chapter attempts to reflect on the work presented in this thesis. We

first summarize the contents of the preceding chapters and restate the contributions

made by this work. We then discuss the practicality of authoring interactive stories

in the way advocated throughout this thesis. Finally, some ideas for future work are

presented.

10.1 Summary of Thesis

The difficulty of authoring IS story-worlds that provide a true sense of agency and

are also dramatically engaging (referred to here as fully realized IS story-worlds) was

the central motivating problem of this work. Wardrip-Fruin (2008) has coined the

term “Tale-Spin Effect” to describe an interactive AI system that despite great inter-

nal complexity produces outputs that are relatively underwhelming for the end-user.

Wardrip-Fruin contrasts this to the “Eliza-Effect” observed during user interaction

with the early chat bot system Eliza (Weizenbaum, 1966), which despite its simple,

almost trivial internal implementation was regarded as possessing almost human-level

intelligence by many end users.

We experienced the Tale-Spin effect first hand during the creation of the educational

interactive drama FearNot!, the creation process of which was related in Chapter 2 as

a detailed IS authoring case study. Despite its complex agent architecture (FAtiMA)

and spending of considerable authoring effort and resources, the end-result “FearNot!”

was a far cry from the goal of producing a fully-realized IS artefact. Frustration with

this state of affairs was the main motivator for focussing on the authoring bottle-

neck as a topic for this PhD. As is shown in Chapter 3, the problem is universal and

applies to both explicitly specified story graphs and a wide spectrum of generative

AI based solutions. While the latter reduce the overall amount of content that has

to be authored through recombination of content and more efficient representation,

the former explicit representation provides much more authorial intent. In practise,

193

Chapter 10: Reflection

achieving fully-realized IS with either approach is always primarily a scalability prob-

lem. Chapter 4 discussed existing IS authoring tools and found that scalability has

not been a design criterion for them. Existing data-driven authoring efforts on the

other hand seem to offer a solution to the scalability aspect, especially if input data

is produced by an online crowd.

In Chapter 5 we discussed different ways in which authoring data could be collected

online and identified a crowdsourced collection of example stories as the most promis-

ing approach. We then suggested the concept of Crowd Task Adaptation as an im-

provement of the typical crowdsourcing process, that allows the elicitation of more

relevant contributions by adapting the task for a crowd worker in realtime, based on

the current collection state. Chapter 6 describes how this idea was applied to the

design of an authoring tool called ENIGMA, which aims to derive story-world repre-

sentations compatible with the FAtiMA architecture from collected example stories.

However during implementation and early testing it became apparent that the en-

visaged design and necessary usability improvements were outwith the scope of what

could be achieved within this PhD. The focus of the authoring tool therefore changed

to a simpler story representation based on explicit branching. Chapter 7 described

this second incarnation of the tool called CROSCAT. CROSCAT can adapt authoring

crowd tasks by modifying the back story contributors are asked to continue.

Chapter 8 explained how, armed with the CROSCAT tool, a collaborative authoring

experiment could be designed that would be able to shed some light on the validity

of our Crowd Task Adaptation hypothesis. A preparatory experiment for piloting a

story scenario using hand-written stories was also described. Finally Chapter 9 pre-

sented the results of these experiments and most importantly found that the use of

Crowd Task Adaptation significantly improved how end users rated the authored IS

artefact.

By completing this work the following contributions were made (listed in order of

estimated significance).

1. The novel content creation method of Crowd Task Adaptation was introduced

and shown experimentally to be beneficial for authoring IS story worlds in at

least one concrete realization of the idea.

2. Two exemplary designs for how to apply this method in an authoring tool are

provided, one of which is fully and one of which is partially implemented.

3. Our experiments of running a crowdsourced collection of dramatically impro-

vised stories are novel in many aspects compared to similar studies found in the

literature and thus provide useful authoring case studies. Their novel aspects

are listed in detail in Section 4.3.3.

194

Chapter 10: Reflection

4. As a side product of our experiments we are able to provide some recommen-

dations for the design of future IS authoring tools.

5. This thesis includes a case-study of the major IS system FearNot! that includes

novel results of an analysis of the authoring process and produced artefact.

6. The authoring tools and stories produced for this work are available to interested

parties and may be used in future research.

10.2 Practicality of Crowdsourced Authoring

Throughout this thesis we have worked under the assumption that creative human

labour is readily available through the internet. Of course the reality is somewhat

more complicated. While the technical possibilities for reaching out to millions of

possible collaborators exist, one has to compete with an almost infinite amount of

other online activities for their attention. Realizing a crowdsourced authoring effort

in practise therefore also poses the additional challenge of recruitment. The way in

which subjects for the authoring experiments presented in this thesis were recruited

is not necessarily a good sustainable model for carrying out such activities in earnest,

when the primary goal is to produce a real IS artefact and not just as in our case

to study the authoring process itself. For our studies, we recruited subjects through

word of mouth and social media. Thus our contributors were primarily friends, fam-

ily, co-workers and acquaintances. Their primary motivation for participation was

goodwill and altruism, helping a friend with their research project. A weaker sec-

ondary motivation was probably curiosity, but this again was probably mostly based

on knowing this thesis’ author personally and wanting to find out what that PhD

work was all about. A strength of social media is that they allow sharing content

and several people reposted our call for participation. Through this, we managed to

recruit a number of second-degree acquaintances, who were probably again motivated

by altruism, doing a favour to a first-degree acquaintance by helping a second-degree

acquaintance. Goodwill or altruism alone however are not good enough incentives to

achieve a viral effect. That is not to say that crowdsourcing tasks with mainly altru-

istic incentives cannot be spread virally through social media, on the contrary. But

the altruistic motivation for helping in our case a PhD student with their research or

more generally an IS author with creating an IS artefact is arguably weak, compared

to for example helping to locate a plane crash site by reviewing satellite data. A

direct or at least indirect connection to the person orchestrating the effort is needed

for people to care enough, which limits the scalability of this approach.

If in practise altruism is not a good enough incentive, which other ones could then be

employed to recruit a pool of authors? Curiosity is certainly an option, as was shown

195

Chapter 10: Reflection

by e.g. “the Restaurant” project (Orkin and Roy, 2007), whose subjects were largely

recruited from the readers of media news stories that covered and “advertised” the

experiment as an innovative new type of video game. The problem with this approach

is of course that it is not sustainable in the long term. Curiosity of both the media

and its readers wears off quickly and once the novelty of this new approach to story

creation is gone, a better incentive will be needed once again.

There are of course crowdsourcing platforms such as Amazon’s Mechanical Turk or

Crowdflower, whose workers main incentive is of a financial nature. If a budget is avail-

able paying participants may be a viable option. Participants for the Scheherazade

system Li et al. (2012) are for example recruited this way. However, if creativity in

the collected stories is important, the average quality of contributions gathered this

way is questionable as most workers on crowd platforms just want to get the job done

and move on to the next one quickly. This is less of an issue for the Scheherazade

system, which aims to construct primarily situational scripts that require less creative

input than the type of authoring we have introduced in this thesis. Another possi-

ble problem with using paid workers from crowdsourcing platforms may be a lack of

common cultural understanding among the workers, which is arguably a necessary

prerequisite for jointly creating a story. As was mentioned in the previous chapter,

we also utilised the platform Crowdflower for our initial collection of story ratings,

but not for authoring. Nevertheless some of the comments left by these workers after

rating the Seagnomes artefact reveal a very different cultural understanding of the

provided story, which suggests that such issues would also arise, if such a platform

was used for the recruitment of authors. The following two comments exemplify this:

“I don’t like the ending by the way mostly because if i to choose a leader i

won’t pick a man who wears trouser with pink heart on it.”

“In my opinion, the brief story does not appeal to kids (equal gender rights,

spirituality, this are mind impressionable motives and should be avoided).”

We see the most promising sustainable way for recruiting subjects in connect-

ing authoring efforts as described in this thesis with online communities centered

around a common (narrative) interest. Fan communities for popular fictional uni-

verses are a perfect example of this. At the time of writing the website http:

//www.harrypotterfanfiction.com/ has for example claimed to have more than

90.000 members, more than 37.000 of which have been actively authoring a total of

more than 81.000 Harry Potter fan fiction stories. The members of such communities

clearly possess the required motivation and their love of the fictional universe is a bet-

ter incentive than any of the ones mentioned above. Of course involving fan fiction

communities means restricitng oneself to a particular pre-existing fictional universe

196

http://www.harrypotterfanfiction.com/
http://www.harrypotterfanfiction.com/

Chapter 10: Reflection

and there may be copyright issues to consider so if a similar community could be built

from the ground up on the creator’s own terms this would be even better.

10.3 Future Work

Like any piece of research, this work opens up ample opportunities for follow up

investigations. Below future work is listed grouped into potential follow-up work to

specific software and experiments discussed in this thesis and more general future

investigations into the Crowd Task Adaptation Concept.

10.3.1 Specific Follow-ups

As discussed in the previous chapter, we derived a list of possible improvements for

the CROSCAT system from user feedback. An obvious next step in the continuation

of this work would be an implementation of these items, followed by a repetition of

the “Seagnomes” experiment using the improved CROSCAT software. By keeping

the same story setting, the results of this repeated experiment could be directly com-

pared with the previous ones. Particularly interesting would be whether the addition

of more user friendly story editing facilities would lead to less “meandering” stories

as we hypothesized.

In general, however, none of these additions would make a fundamental difference to

Crowd Task Adaptation, which we have already shown to work in the CROSCAT

setting. One specific idea for a more substantial change to the CROSCAT system, is

to present choices to end-users in more intriguing ways. For example, when using a

foreshadowing technique similar to that described by Bae and Young (2008), choices

might appear less arbitrary and Crowd Task Adaptation, which produces more and

higher quality choices may be valued even more.

With regards to CROSCAT, we have already mentioned (in Section 7.5) the scala-

bility issues our naive implementation would probably encounter with a contributor

pool some orders of magnitude larger than during our experimental studies. Further

work would be required to solve these issues. For example one could imagine several

ways for improving the scoring algorithm, either by reducing its runtime, making it

iterative (so that rescoring does not need to process the entire graph) or by chang-

ing the heuristics in some way. Realistically though, if someone should be willing to

expend the effort and resources required for such an endeavour, they would probably

want to make many other changes to the system too. In this hypothetical situation

where the CROSCAT system needs to scale up way beyond its current possibilities we

would recommend a complete re-design and a fresh implementation as such a system

would have very different requirements since CROSCAT was designed as a proof of

197

Chapter 10: Reflection

concept research prototype.

A large scale future work project would be to have another attempt at realizing the

design plans we had for ENIGMA with more resources. This is of course unlikely to

happen in reality, but if it were to happen then we would advocate one important

change based on what was learned in this thesis: as was discussed in the last chapter,

based on the two experiments we conducted it seems difficult to collect a corpus of

entirely consistent stories even when imposing strong narrative constraints. In either

experiment, character behaviour in different stories did not always match up in ways

that it could be attributed to the same personality. Therefore we would suggest to

drop the consistency requirement in future attempts of crowdsourced IS authoring.

In order to build sensible story world representations from inconsistent input stories

a future version of ENIGMA (or indeed any system that makes similar attempts of

learning character-centric story representations from example stories) should not tar-

get the limited story representation of the “vanilla” FAtiMA system. This is because

the FAtiMA story representation has no way of expressing contradicting behaviours.

For example if in one story a wife forgives her husband after she finds him cheating,

whereas in another one she attempts to murder him, we cannot reconcile both be-

haviours and easily express both behavioural variants in the same character. What

is needed is something like the late commitment strategy of the Virtual Storyteller

system (Swartjes et al., 2008). Unknown character traits should not be fixed at the

start of the simulation but instead be chosen at runtime. With such a scheme we

could allow characters to be different across collected stories.

10.3.2 General Follow-ups

There are also many possible lines of investigation following on from the work dis-

cussed in this thesis that need not be directly based on the specific tools and ex-

periments we produced. Implementing the Crowd Task Adaptation paradigm in a

different IS authoring context (e.g. for producing a different story representation or

using a different user interface for creating stories) would help in further understand-

ing how to effectively employ it. And with such future work hopefully resulting in

a bigger and more convincing body of evidence for our hypothesis that Crowd Task

Adaptation is a useful “design pattern”, it would help to pave the way towards its

adoption in producing real (i.e. non-trivial) IS artefacts.

A general open question about the crowdsourced authoring style following from the

work in this thesis was how to define a story context so as to elicit contributions

that are both varied and consistent. Investigating this question would be valuable for

crowdsourced authoring in general, even if Crowd Task Adaptation is not used. On

the other hand, however, it might be interesting to investigate how Crowd Task Adap-

tation may be employed to counteract the consistency problems we have found, e.g. by

198

Chapter 10: Reflection

continually modifying or adding to initially incomplete character profile sheets given

to authors, based on character profile information gathered from already collected

example stories. This is similar to CROSCAT’s backstory modification approach,

but technically more challenging, as a way to reliably extract this information from

collected stories is needed.

Another question which we did not need to address for the small scale studies per-

formed for this PhD but which may become relevant for more large scale authoring

projects is how to perform quality control and filter out inappropriate or low quality

contributions which may be caused by vandalism, technical problems or unqualified

contributors. The unique challenge for Crowd Task Adaptation is that such filtering

would ideally have to occur in realtime. Filtering the corpus only after all data has

been collected may be too late, as by then invalid contributions will probably have

influenced the tasks handed out to subsequent contributors in unwanted ways. Re-

lated to the question of how to perform quality control is that of recruitment, as the

quality of contributions will to a large degree depend on who the contributors are.

We have discussed above some possibilities and challenges for recruiting collaborators

through e.g. social networks, crowdsourcing platforms or fan communities. A useful

strand of future work would be to investigate what effects employing these different

pools of workers have on the results of crowdsourced authoring tasks and to develop

guidelines for effective recruitment.

10.4 Concluding Remarks

We hope to have made a convincing case for strongly considering the use of crowd-

sourcing in future IS endeavours in the first half of the thesis, while the second half

demonstrates that if crowdsourcing is indeed being used, there are many ways in which

the process can be further enhanced through Crowd Task Adaptation. The long term

impact we would hope this work to have is for the creators of future IS systems to be

aware of the Crowd Task Adaptation paradigm. We believe the concept to be strong,

convincing and versatile enough to fit into many different contexts, some of which we

have demonstrated here. Thus, awareness may really be all that stands in the way of

its adoption, which has the potential of being a further step along the road towards

fully-realized Interactive Stories.

199

Glossary

CBR Case-Based Reasoning

eCIRCUS Education through Characters with emotional Intelligence and Role-

playing Capabilities that Understand Social Interaction

FAtiMA FearNot AffecTIve Mind Architecture

HSP Heuristic Search Planning

HTN Hierarchical Task Network

IS Interactive Storytelling

OCC Ortony, Clore and Collin’s Taxonomy of Emotions

STRIPS Stanford Research Institute Problem Solver

VICTEC Virtual ICT with Empathic Characters

200

References

Alves, T., Simoes, A., Figueiredo, R., Vala, M., Paiva, A., and Aylett, R. (2008).

So tell me what happened: turning agent-based interactive drama into comics. In

Proceedings of the 7th international joint conference on Autonomous agents and

multiagent systems - Volume 3, pages 1269–1272.

Arinbjarnar, M. and Kudenko, D. (2008). Schemas in directed emergent drama.

In First Joint International Conference on Interactive Digital Storytelling, ICIDS

2008, Erfurt, Germany, page 180–185. Springer.

Arinbjarnar, M. and Kudenko, D. (2009). Duality of actor and character goals in

virtual drama. In Intelligent Virtual Agents, page 386–392. Springer.

Aristotle (330 BC). The Poetics. Mineola, New York: Dover, 1997.

Aylett, R. (1999). Narrative in virtual environments: Towards emergent narrative.

In Mateas, M. and Sengers, P., editors, AAAI Fall Symposium, Technical report

FS-99-01, pages 83–86. AAAI Press.

Aylett, R. (2000). Emergent narrative, social immersion and storyfication. In Pro-

ceedings, Narrative Interaction for Learning Environments, Edinburgh, UK.

Aylett, R., Dias, J., and Paiva, A. (2006a). An affectively driven planner for synthetic

characters. In International Conference on Automated Planning and Scheduling

(ICAPS), pages 2–10. AAAI press.

Aylett, R., Louchart, S., Dias, J., Paiva, A., Vala, M., Woods, S., and Hall, L.

(2006b). Unscripted narrative for affectively driven characters. IEEE Computer

Graphics and Applications, 26(3):42–52.

Aylett, R., Vala, M., Sequeira, P., and Paiva, A. (2007). FearNot! - an emergent

narrative approach to virtual dramas for anti-bullying education. In Virtual Sto-

rytelling, 4th International Conference, ICVS 2007, pages 202–205, Saint-Malo,

France.

Aylett, R. S., Louchart, S., Dias, J., Paiva, A., and Vala, M. (2005). FearNot! - an

experiment in emergent narrative. In Intelligent Virtual Agents, pages 305–316.

201

REFERENCES

Aylett, R. S., Louchart, S., Tychsen, A., Hitchens, M., Figueiredo, R., and Del-

gado Mata, C. (2008). Managing emergent character-based narrative. In Proceed-

ings of the 2nd international conference on INtelligent TEchnologies for interactive

enterTAINment, INTETAIN.

Bae, B.-C. and Young, R. M. (2008). A use of flashback and foreshadowing for surprise

arousal in narrative using a plan-based approach. In First Joint International

Conference on Interactive Digital Storytelling, ICIDS 2008, Erfurt, Germany, page

156–167. Springer.

Baldwin, C. Y. and Clark, K. B. (2006). The architecture of participation: Does code

architecture mitigate free riding in the open source development model? Manage.

Sci., 52(7):1116–1127.

Balet, O. (2007). Inscape: An authoring platform for interactive storytelling. In

Virtual Storytelling, 4th International Conference, ICVS 2007, page 176–177, Saint-

Malo, France. Springer.

Barber, H. and Kudenko, D. (2007a). Dynamic generation of dilemma-based interac-

tive narratives. In Proceedings Of The Third Artificial Intelligence and Interactive

Digital Entertainment Conference (AIIDE ’07), pages 2–7, Stanford, CA.

Barber, H. and Kudenko, D. (2007b). A user model for the generation of dilemma-

based interactive narratives. In AIIDE’07 Workshop on Optimising Player Satis-

faction, pages 13–18.

Benkler, Y. and Nissenbaum, H. (2006). Commons-based peer production and virtue.

Journal of Political Philosophy, 14(4):394–419.

Boal, A. (2000). Theatre of the Oppressed. Pluto, London.

Bond, S. (2007). Storytron review. Retrieved 20th February 2014. Available from:

http://plover.net/~bonds/storytron.html.

Bonet, B. and Geffner, H. (2001). Planning as heuristic search. Artificial Intelligence,

129(1–2):5–33.

Bremond, C. (1974). Logique du récit. Seuil.

Brom, C., B́ıda, M., Gemrot, J., Kadlec, R., and Plch, T. (2009). Emohawk: Searching

for a “Good” emergent narrative. In Second Joint International Conference on

Interactive Digital Storytelling, ICIDS 2009, Guimaraes, Portugal, pages 86–91.

Campbell, J. (1972). The Hero With A Thousand Faces. Princeton University Press.

202

http://plover.net/~bonds/storytron.html

REFERENCES

Cardona-Rivera, R. E., Robertson, J., Ware, S. G., Harrison, B., Roberts, D. L.,

and Young, R. M. (2014). Foreseeing meaningful choices. In Proceedings of the

Tenth Annual AAAI Conference on Artificial Intelligence and Interactive Digital

Entertainment (AIIDE 2014).

Cavazza, M., Charles, F., and Mead, S. (2002). Character-based interactive story-

telling. IEEE Intelligent Systems, 17(4):17–24.

Cavazza, M., Charles, F., and Mead, S. J. (2003). Generation of humorous situations

in cartoons through plan-based formalisations. In CHI-2003 Workshop: Humor

Modeling in the Interface.

Cavazza, M., Charles, F., and Mead, S. J. (2004). Developing re-usable interactive

storytelling technologies. In IFIP World Computer Congress, Toulouse, France,

pages 39–44.

Chernov, S., Iofciu, T., Nejdl, W., and Zhou, X. (2006). Extracting semantics rela-

tionships between wikipedia categories. Proceedings of 1st International Workshop:

”SemWiki2006 - From Wiki to Semantics” (SemWiki 2006), co-located with the

ESWC2006 in Budva.

Costikyan, G. (2007). Games, storytelling, and breaking the string. In Second Person:

role-playing and story in games and playable media, pages 5–14. MIT Press.

Crawford, C. (1999). Assumptions underlying the Erasmatron interactive storytelling

engine. In Proc. AAAI Fall Symposium on Narrative Intelligence, North Falmouth

MA. AAAI Press.

Crawford, C. (2005). Chris Crawford on Interactive Storytelling. New Riders.

Crawford, C. (2007). Storytron - interactive storytelling. Retrieved 12th July 2007.

Available from: http://www.storytron.com.

Crawford, C. (2008). Deikto: An application of the weak Sapir-Whorf hypothesis.

In Proceedings of the hypertext 2008 workshop on Creating out of the machine:

hypertext, hypermedia, and web artists explore the craft, Creating ’08, page 1–4,

New York, NY, USA. ACM.

Crawford, C. (2012a). Storytron: Plans for the future. Retrieved 17th February 2014.

Available from: http://www.storytron.com/PlansForFuture.html.

Crawford, C. (2012b). Storytron: What went wrong with the previous effort.

Retrieved 26th January 2014. Available from: http://www.storytron.com/

WhatWentWrong.html.

203

http://www.storytron.com
http://www.storytron.com/PlansForFuture.html
http://www.storytron.com/WhatWentWrong.html
http://www.storytron.com/WhatWentWrong.html

REFERENCES

Cypher, A., editor (1993). Watch What I Do: Programming by Demonstration. MIT

Press.

Dang, K. D., Hoffmann, S., Champagnat, R., and Spierling, U. (2011). How authors

benefit from linear logic in the authoring process of interactive storyworlds. In

Fourth International Conference on Interactive Digital Storytelling, ICIDS 2011,

pages 249–260, Berlin, Heidelberg. Springer Berlin Heidelberg.

Dias, J. and Paiva, A. (2005). Feeling and reasoning: A computational model for

emotional characters. In EPIA 2005, pages 127–140.

Dias, J. and Paiva, A. (2011). Agents with emotional intelligence for storytelling.

In Proceedings of the 4th International Conference on Affective Computing and

Intelligent Interaction, ACII 2011, Lecture Notes in Computer Science, pages 77–

86, Memphis, TN, USA. Springer Berlin Heidelberg.

Doan, A., Ramakrishnan, R., and Halevy, A. (2010). Mass collaboration systems on

the world wide web. Communications of the ACM, pages 86–96.

Doerner, D. (2005). The mathematics of emotions. In Fifth International Conference

on Cognitive Modelling, pages 75–80.

Donikian, S. and Portugal, J. N. (2004). Writing interactive fiction scenarii with

DraMachina. In Technologies for Interactive Digital Storytelling and Entertainment

(TIDSE), pages 101–112. Springer.

Engel, R. (2006). SPIN: a semantic parser for spoken dialog systems. In Proceedings of

the 5th Slovenian and First International Language Technology Conference (IS-LTC

2006).

Evans, R. and Short, E. (2014). Versu - a simulationist storytelling system. IEEE

Transactions on Computational Intelligence and AI in Games, 6(2):113–130.

Fairclough, C. (2004). Story Games and the OPIATE System. PhD thesis, University

of Dublin - Trinity College.

Fendt, M. W., Harrison, B., Ware, S. G., Cardona-Rivera, R. E., and Roberts, D. L.

(2012). Achieving the illusion of agency. In Proceedings of the 5th International

Conference on Interactive Storytelling, ICIDS’12, page 114–125, Berlin, Heidelberg.

Springer-Verlag.

Field, A. and Hole, G. (2003). How to design and report experiments. Sage publications

Ltd.

204

REFERENCES

Figueiredo, R., Brisson, A., Aylett, R., and Paiva, A. (2008). Emergent stories facil-

itated. In First Joint International Conference on Interactive Digital Storytelling,

ICIDS 2008, Erfurt, Germany, pages 218–229. Springer.

Figueiredo, R. and Paiva, A. (2010). ”I want to slay that dragon!”: influencing choice

in interactive storytelling. In Proceedings of the Third joint conference on Interactive

digital storytelling, ICIDS’10, page 26–37, Berlin, Heidelberg. Springer-Verlag.

Fikes, R. and Nilsson, N. J. (1971). STRIPS: a new approach to the application of

theorem proving to problem solving. Artif. Intell., 2(3/4):189–208.

Freytag, G. (1863). Technique of the Drama. Benjamin Blom.

Gerke, J. (2010). Plot versus character a balanced approach to writing great fiction.

Writer’s Digest Books, Cincinnati, Ohio.

Gervás, P., Dı́az-Agudo, B., Peinado, F., and Hervás, R. (2005). Story plot generation

based on CBR. Know.-Based Syst., 18(4-5):235–242.

Grasbon, D. and Braun, N. (2001). A morphological approach to interactive story-

telling. In Proc. CAST01, Living in Mixed Realities. Special issue of Netzspannung.

org/journal, the Magazine for Media Production and Inter-media Research, page

337–340.

Guibas, L. J. and Sedgewick, R. (1978). A dichromatic framework for balanced trees.

In Proceedings of the 19th Annual Symposium on Foundations of Computer Science,

page 8–21, Washington, DC, USA. IEEE Computer Society.

Gócza, Z. (2010). Myth #23: Choices should always be limited to 7+/-2 - UX myths.

Retrieved 5th July 2013. Available from: http://uxmyths.com/post/931925744/

myth-23-choices-should-always-be-limited-to-seven.

Hoffmann, S., Spierling, U., and Struck, G. (2011). A practical approach to introduce

story designers to planning. In Proceedings of GET 2011, IADIS International

Conference Game and Entertainment Technologies,, pages 22–24, Rome, Italy.

Hofstede, G., Hofstede, G. J., and Minkov, M. (1997). Cultures and organizations.

McGraw-Hill New York.

Howe, J. (2006). The rise of crowdsourcing. Wired Magazine, 06(14):1–4.

Iurgel, I. A. (2006). Cyranus-an authoring tool for interactive edutainment applica-

tions. In Proceedings of Edutainment 2006, Int. Conf on E-Leraning and Games,

Zhejiang, pages 577–580.

205

http://uxmyths.com/post/931925744/myth-23-choices-should-always-be-limited-to-seven
http://uxmyths.com/post/931925744/myth-23-choices-should-always-be-limited-to-seven

REFERENCES

Kelleher, C. (2009). Supporting storytelling in a programming environment for middle

school children. In Second Joint International Conference on Interactive Digital

Storytelling, ICIDS 2009, Guimaraes, Portugal, pages 1–4.

Koenitz, H. (2011a). Extensible tools for practical experiments in IDN – the Advanced

Stories Authoring and Presentation System. In Fourth International Conference

on Interactive Digital Storytelling, ICIDS 2011, pages 79–84, Vancouver, Canada.

Springer Berlin Heidelberg.

Koenitz, H. (2011b). An iterative approach towards interactive digital narrative –

early results with the Advanced Stories Authoring and Presentation System. In

Proceedings Of The 10th International Conference on Web-based Learning (ICWL

2011), pages 59–68, Hong Kong.

Koenitz, H. and Chen, K.-J. (2012). Genres, structures and strategies in interactive

digital narratives: analyzing a body of works created in ASAPS. In Proceedings of

the 5th international conference on Interactive Storytelling, ICIDS’12, page 84–95,

Berlin, Heidelberg. Springer-Verlag.

Kolodner, J. L. (1992). An introduction to case-based reasoning. Artificial Intelligence

Review, 6(1):3–34.

Kriegel, M. and Aylett, R. (2007). A mixed initiative authoring environment for emer-

gent narrative planning domains. In Proceedings of the AISB Annual Convention,

pages 453–456.

Kriegel, M. and Aylett, R. (2008). Emergent narrative as a novel framework for

massively collaborative authoring. In Intelligent Virtual Agents, 8th International

Conference, IVA 2008, Tokyo, Japan, volume 5208, pages 73–80.

Kriegel, M. and Aylett, R. (2010). Crowd-sourced AI authoring with ENIGMA.

In Proceedings of the Third joint conference on Interactive digital storytelling,

ICIDS’10, page 275–278, Berlin, Heidelberg. Springer-Verlag.

Kriegel, M., Aylett, R., Dias, J., and Paiva, A. (2007). An authoring tool for an

emergent narrative storytelling system. In Papers from the AAAI Fall Symposium

on Intelligent Narrative Technologies, Technical Report FS-07-05, pages 55–62.

Kriegel, M., Lim, M. Y., Nazir, A., Aylett, R., Cawsey, A., Enz, S., Rizzo, P., and

Hall, L. (2008). ORIENT: an inter-cultural role-play game. In 5th International

Conference on Narrative and Interactive Learning Environments Edinburgh, Scot-

land.

206

REFERENCES

Larkey, L. B. and Love, B. C. (2003). CAB: connectionist analogy builder. Cognitive

Science, 27(5):781–794.

Laurel, B. (1993). Computers as theatre. Addison-Wesley Pub. Co., Reading, Mass.

Law, E. L. M., von Ahn, L., Dannenberg, R. B., and Crawford, M. (2007). Tagatune:

A game for music and sound annotation. In Proc. Intl. Symp. Music Information

Retrieval, page 361–364.

Lazarus, R. S. and Folkman, S. (1984). Stress, appraisal and coping. New York:

Springer.

Lebowitz, M. (1985). Story-telling as planning and learning. Poetics, 14(6):483–502.

Lenat, D. B. (1995). CYC: a large-scale investment in knowledge infrastructure.

Commun. ACM, 38(11):33–38.

Li, B. (2012). Narrative intelligence without (domain) boundaries. In Eighth Artificial

Intelligence and Interactive Digital Entertainment Conference.

Li, B., Lee-Urban, S., and Riedl, M. O. (2012). Toward autonomous crowd-powered

creation of interactive narratives. In 5th Workshop on Intelligent Narrative Tech-

nologies, volume 8, pages 25–52, Palo Alto, CA.

Li, B., Thakkar, M., Wang, Y., and Riedl, M. O. (2014a). Data-driven alibi story

telling for social believability. In Proceedings of the 2014 Foundations of Digital

Games Workshop on Social Behavior in Games, Ft. Lauderdale, Florida, USA.

Li, B., Thakkar, M., Wang, Y., and Riedl, M. O. (2014b). Storytelling with adjustable

narrator styles and sentiments. In Proceedings of the 2014 International Conference

on Interactive Digital Storytelling, pages 1–12, Singapore.

Lieberman, H., Smith, D., and Teeters, A. (2007). Common Consensus: a web-

based game for collecting commonsense goals. In Workshop on Common Sense for

Intelligent Interfaces, ACM International Conference on Intelligent User Interfaces

(IUI-07).

Lim, M. Y., Dias, J., Aylett, R., and Paiva, A. (2008). Improving adaptiveness in

autonomous characters. In Intelligent Virtual Agents, page 348–355. Springer.

Lin, G. and Walker, M. (2011). All the world’s a stage: Learning character models

from film. In Seventh Artificial Intelligence and Interactive Digital Entertainment

Conference.

207

REFERENCES

Louchart, S., Aylett, R., and Dias, J. (2007a). Double appraisal for synthetic char-

acters. In Proceedings of the 7th International Conference on Intelligent Virtual

Agents, IVA ’07, page 393–394, Berlin, Heidelberg. Springer-Verlag.

Louchart, S., Aylett, R., Kriegel, M., Dias, J., Figueiredo, R., and Paiva, A.

(2007b). Authoring emergent narrative-based games. Journal of Game Devel-

opment, 3(1):19–37.

Louchart, S., Swartjes, I., Kriegel, M., and Aylett, R. (2008). Purposeful authoring for

emergent narrative. In First Joint International Conference on Interactive Digital

Storytelling, ICIDS 2008, Erfurt, Germany, pages 273–284. Springer.

Macvean, A., Hajarnis, S., Headrick, B., Ferguson, A., Barve, C., Karnik, D., and

Riedl, M. O. (2011). WeQuest: scalable alternate reality games through end-user

content authoring. In Proceedings of the 8th International Conference on Advances

in Computer Entertainment Technology, page 22. ACM.

Magerko, B. (2002). A proposal for an interactive drama architecture. In AAAI 2002

Spring Symposium Series: Artificial Intelligence and Interactive Entertainment.

Marsella, S. C., Pynadath, D. V., and Read, S. J. (2004). PsychSim: agent-based

modeling of social interactions and influence. In Proceedings of the international

conference on cognitive modeling, volume 36, page 243–248.

Mascarenhas, S., Dias, J., Afonso, N., Enz, S., and Paiva, A. (2009). Using rituals

to express cultural differences in synthetic characters. In Proceedings of The 8th

International Conference on Autonomous Agents and Multiagent Systems - Volume

1, AAMAS ’09, page 305–312.

Mason, B. and Thomas, S. (2008). A million penguins research report. Technical

report, Institute of Creative Technologies, De Montfort University, Leicester, UK.

Mateas, M. and Stern, A. (2003). Façade: An experiment in building a fully-realized

interactive drama. In Proceedings of Game Developer’s Conference: Game Design

Track, San Jose, California, USA.

Mateas, M. and Stern, A. (2005). Structuring content in the facade interactive drama

architecture. In Artificial Intelligence and Interactive Digital Entertainment (AI-

IDE), pages 93–98. AAAI press.

McCoy, J., Treanor, M., Samuel, B., Reed, A., Mateas, M., and Wardrip-Fruin, N.

(2014). Social story worlds with comme il faut. IEEE Transactions on Computa-

tional Intelligence and AI in Games, 6(2):97–112.

208

REFERENCES

McCoy, J., Treanor, M., Samuel, B., Tearse, B., Mateas, M., and Wardrip-Fruin,

N. (2010a). Authoring game-based interactive narrative using social games and

comme il faut. In Proceedings of the 4th International Conference & Festival of the

Electronic Literature Organization: Archive & Innovate (ELO 2010).

McCoy, J., Treanor, M., Samuel, B., Tearse, B., Mateas, M., and Wardrip-Fruin, N.

(2010b). Comme il faut 2: A fully realized model for socially-oriented gameplay.

In INT3 2010: Proceedings of the Intelligent Narrative Technologies III Workshop,

New York, NY, USA.

Medler, B. and Magerko, B. (2006). Scribe: A tool for authoring event driven in-

teractive drama. In 3rd International Conference on. Technologies for Interactive

Digital Storytelling and Entertainment (TIDSE 2006), pages 139–150, Darmstadt

(Germany). Springer.

Mehta, M., Corradini, A., Ontañón, S., and Henrichsen, P. J. (2010). Textual vs.

graphical interaction in an interactive fiction game. In Proceedings of the Third Joint

Conference on Interactive Digital Storytelling, ICIDS’10, page 228–231, Berlin, Hei-

delberg. Springer-Verlag.

Miller, G. A. (1956). The magical number seven, plus or minus two: some limits on

our capacity for processing information. Psychological Review, 63(2):81–97.

Miller, G. A. (1995). WordNet: a lexical database for english. Commun. ACM,

38(11):39–41.

Mitchell, A. and McGee, K. (2012). Reading again for the first time: a model of

rereading in interactive stories. In Proceedings of the 5th international conference

on Interactive Storytelling, ICIDS’12, page 202–213, Berlin, Heidelberg. Springer-

Verlag.

Mitchell, T. M. (1997). Machine learning. McGraw-Hill, New York, NY [u.a.

Murray, J. H. (1998). Hamlet on the Holodeck. The MIT Press.

Nazir, A., Ritter, C., Aylett, R., Krumhuber, E., Swiderska, A., Degens, N., Endrass,

B., Hume, C., Hodgson, J., and Mascarenhas, S. (2012). eCute: difference is good.

In Proc. of the IADIS International Conference e-Learning, page 425–429.

Orkin, J. (2011). Using online games to capture, generate, and understand natu-

ral language. In Proceedings of the 13th European Workshop on Natural Language

Generation, ENLG ’11, page 71–71, Stroudsburg, PA, USA. Association for Com-

putational Linguistics.

209

REFERENCES

Orkin, J. and Roy, D. (2007). The restaurant game: Learning social behavior and

language from thousands of players online. Journal Of Game Development, 3(1):39–

60.

Orkin, J. and Roy, D. (2009). Automatic learning and generation of social behavior

from collective human gameplay. In Proceedings of the 8th International Conference

on Autonomous Agents and Multiagent Systems (AAMAS), pages 385–392.

Orkin, J., Smith, T., Reckman, H., and Roy, D. (2010). Semi-automatic task recogni-

tion for interactive narratives with EAT & RUN. In Proceedings of the 3rd Intelligent

Narrative Technologies Workshop (INT3).

Ortony, A., Clore, G. L., and Collins, A. (1988). The cognitive structure of emotions.

Cambridge University Press.

Pizzi, D. and Cavazza, M. (2008). From debugging to authoring: Adapting productiv-

ity tools to narrative content description. In First Joint International Conference

on Interactive Digital Storytelling, ICIDS 2008, Erfurt, Germany, pages 285–296.

Springer.

Pizzi, D., Charles, F., Lugrin, J.-L., and Cavazza, M. (2007). Interactive storytelling

with literary feelings. In Proceedings of the Second International Conference on

Affective Computing and Intelligent Interaction (ACII ’07), page 630–641. Springer.

Polti, G. (1921). The thirty-six dramatic situations. J.K. Reeve, Franklin, O.

Propp, V. (1968). Morphology of the Folktale. University Of Texas Press.

Pynadath, D. V. and Marsella, S. C. (2005). PsychSim: modeling theory of mind

with decision-theoretic agents. In IJCAI, volume 5, page 1181–1186.

Rank, S. and Petta, P. (2012). Backstory authoring for affective agents. In Proceed-

ings of the 5th international conference on Interactive Storytelling, ICIDS’12, page

144–149, Berlin, Heidelberg. Springer-Verlag.

Rao, A. S., Georgeff, M. P., et al. (1995). BDI agents: From theory to practice. In

Proceedings of the first international conference on multi-agent systems (ICMAS-

95), pages 312–319.

Riedl, M. (2004). Narrative Generation: Balancing Plot and Character. PhD thesis,

Department of Computer Science, North Carolina State University.

Riedl, M., Saretto, C. J., and Young, R. M. (2003). Managing interaction between

users and agents in a multi-agent storytelling environment. In Proceedings of the

Second International Joint Conference on Autonomous Agents and Multiagent Sys-

tems, AAMAS ’03, page 741–748, New York, NY, USA. ACM.

210

REFERENCES

Riedl, M. O. (2009). Incorporating authorial intent into generative narrative sys-

tems. In Intelligent Narrative Technologies II, Papers from the 2009 AAAI Spring

Symposium, pages 91—94. AAAI Press.

Riedl, M. O. and Bulitko, V. (2013). Interactive narrative: An intelligent systems

approach. AI Magazine, 34(1).

Riedl, M. O. and Stern, A. (2006). Failing believably: Toward drama management

with autonomous actors in interactive narratives. In 3rd International Conference

on. Technologies for Interactive Digital Storytelling and Entertainment (TIDSE

2006), page 195–206, Darmstadt (Germany). Springer.

Riedl, M. O. and Sugandh, N. (2008). Story planning with vignettes: Toward over-

coming the content production bottleneck. In First Joint International Conference

on Interactive Digital Storytelling, ICIDS 2008, Erfurt, Germany, pages 168–179.

Springer.

Riedl, M. O. and Young, R. M. (2010). Narrative planning: Balancing plot and

character. Journal of Artificial Intelligence Research, 39(1):217–268.

Robertson, J. and Nicholson, K. (2007). Adventure author: a learning environment

to support creative design. In Proceedings of the 6th international conference on

Interaction design and children, page 37–44. ACM.

Russell, S. and Norvig, P. (2003). Artificial Intelligence, A modern Approach. Prentice

Hall, 2nd edition edition.

Sapouna, M., Wolke, D., Vannini, N., Watson, S., Woods, S., Schneider, W., Enz, S.,

Hall, L., Paiva, A., André, E., Andre, E., Dautenhahn, K., and Aylett, R. (2010).

Virtual learning intervention to reduce bullying victimization in primary school: a

controlled trial. Journal of child psychology and psychiatry, and allied disciplines,

51(1):104–112.

Sauer, S., Osswald, K., Wielemans, X., and Stifter, M. (2006). U-create: Creative

authoring tools for edutainment applications. In 3rd International Conference on.

Technologies for Interactive Digital Storytelling and Entertainment (TIDSE 2006),

pages 163–168, Darmstadt (Germany). Springer.

Schank, R. C. and Abelson, R. P. (1977). Scripts, Plans, Goals, and Understanding.

Psychology Press.

Seif El-Nasr, M. (2007). Interaction, narrative, and drama: Creating an adap-

tive interactive narrative using performance arts theories. Interaction Studies,

8(2):209–240.

211

REFERENCES

Si, M., Marsella, S., and Pynadath, D. (2009). Directorial control in a decision-

theoretic framework for interactive narrative. In Second Joint International Con-

ference on Interactive Digital Storytelling, ICIDS 2009, Guimaraes, Portugal, pages

221–233.

Si, M. and Marsella, S. C. (2010). Modeling rich characters in interactive narrative

games. GAMEON-ASIA, Shanghai, China.

Si, M., Marsella, S. C., and Pynadath, D. V. (2005). Thespian: Using MultiAgent

fitting to craft interactive drama. In Autonomous Agents and Multi Agent Systems

(AAMAS), pages 21–28. IEEE Computer Society.

Si, M., Marsella, S. C., and Pynadath, D. V. (2006). Social norms models in thespian:

Using decision theoretical framework for interactive drama. In AISB 06 Proceedings,

vol. 3.

Si, M., Marsella, S. C., and Riedl, M. O. (2008). Integrating story-centric and

character-centric processes for authoring interactive drama. In AIIDE.

Sina, S., Rosenfeld, A., and Kraus, S. (2013). Social narrative adaptation using

crowdsourcing. In 2013 Workshop on Computational Models of Narrative, pages

238–256, Hamburg, Germany.

Singh, P. (2002). The open mind common sense project. Retrieved 22nd Oct 2008.

Available from: http://web.media.mit.edu/~push/Kurzweil.html.

Skorupski, J., Jayapalan, L., Marquez, S., and Mateas, M. (2007). Wide ruled: A

friendly interface to author-goal based story generation. In Virtual Storytelling, 4th

International Conference, ICVS 2007, Saint-Malo, France, pages 26–37.

Skorupski, J. and Mateas, M. (2009). Interactive story generation for writers: Lessons

learned from the wide ruled authoring tool. In Proceedings of the 8th Digital Art

and Culture Conference (DAC 2009), Irvine, CA.

Skorupski, J. and Mateas, M. (2010). Novice-friendly authoring of plan-based inter-

active storyboards. In AIIDE.

Spierling, U. (2007). Adding aspects of “Implicit creation” to the authoring process in

interactive storytelling. In International Conference on Virtual Storytelling, pages

13–25, Saint Malo, France.

Spierling, U. and Iurgel, I. (2008). Workshop and panel: The authoring process

in interactive storytelling. In First Joint International Conference on Interactive

Digital Storytelling, ICIDS 2008, Erfurt, Germany, page 331. Springer.

212

http://web.media.mit.edu/~push/Kurzweil.html

REFERENCES

Spierling, U., Iurgel, I., Richle, U., and Szilas, N. (2009). Workshop on authoring

methods and conception in interactive storytelling. In Second Joint International

Conference on Interactive Digital Storytelling, ICIDS 2009, Guimaraes, Portugal,

pages 356–357.

Spierling, U. and Szilas, N. (2009). Authoring issues beyond tools. In Second Joint In-

ternational Conference on Interactive Digital Storytelling, ICIDS 2009, Guimaraes,

Portugal, pages 50–61.

Stern, A. (2008). Embracing the combinatorial explosion: A brief prescription for in-

teractive story R&D. In First Joint International Conference on Interactive Digital

Storytelling, ICIDS 2008, Erfurt, Germany, pages 1–5. Springer.

Struck, H.-G. (2005). Telling stories knowing nothing: Tackling the lack of common

sense knowledge in story generation systems. In Proceedings of the International

Conference on Virtual Storytelling 2005, page 189–198. Springer.

Swanson, R. and Gordon, A. S. (2008). Say anything: A massively collaborative

open domain story writing companion. In First Joint International Conference

on Interactive Digital Storytelling, ICIDS 2008, Erfurt, Germany, pages 32–40.

Springer.

Swanson, R. and Gordon, A. S. (2009). A comparison of retrieval models for open

domain story generation. In AAAI 2009 Spring Symposium on Intelligent Narrative

Technologies II, Stanford, CA.

Swanson, R. and Gordon, A. S. (2010). A data-driven case-based reasoning approach

to interactive storytelling. In Third International Conference on Interactive Digital

Storytelling, ICIDS 2010, pages 186–197, Edinburgh, UK. Springer Berlin Heidel-

berg.

Swartjes, I. (2007). Using narrative cases to author interactive story content. In

Proceedings of the Sixth International Conference on Entertainment Computing

(ICEC 2007), pages 205–210.

Swartjes, I. (2010). Whose story is it anyway? How improv informs agency and

authorship of emergent narrative. PhD thesis, University of Twente.

Swartjes, I., Kruizinga, E., and Theune, M. (2008). Let’s pretend I had a sword:

Late commitment in emergent narrative. In First Joint International Conference

on Interactive Digital Storytelling, ICIDS 2008, Erfurt, Germany, pages 264–267.

Springer.

213

REFERENCES

Swartjes, I. and Theune, M. (2009). Iterative authoring using story generation feed-

back: Debugging or co-creation? In Second Joint International Conference on

Interactive Digital Storytelling, ICIDS 2009, Guimaraes, Portugal, pages 62–73.

Swartjes, I. M. T. and Theune, M. (2008). The Virtual Storyteller: Story generation

by simulation. In Proceedings 20th Belgian-Netherlands Conference on Artificial

Intelligence, pages 257–264.

Szilas, N. (2002). Structural models for interactive drama. In Proceedings of the 2nd

International Conference on Computational Semiotics for Games and New Media.

Szilas, N. (2003). IDtension: a narrative engine for interactive drama. In 1st Inter-

national Conference on Technologies for Interactive Digital Storytelling and Enter-

tainment (TIDSE 2003), pages 187–203.

Tapscott, A., Colas, J., Moghnieh, A., and Blat, J. (2013). Writing consistent sto-

ries based on structured multi-authored narrative spaces. In 2013 Workshop on

Computational Models of Narrative, pages 277–292, Hamburg, Germany.

Theune, M., Faas, S., Heylen, D. K. J., and Nijholt, A. (2003). The Virtual Storyteller:

Story creation by intelligent agents. In 1st International Conference on Technologies

for Interactive Digital Storytelling and Entertainment (TIDSE 2003), pages 204–

215, Darmstadt (Germany).

Thomas, J. and Young, R. M. (2006). Author in the loop: Using mixed-initiative plan-

ning to improve interactive narrative. In ICAPS 2006 Workshop on AI Planning

for Computer Games and Synthetic Characters.

Thompson, S. (1955). Motif Index of Folk Literature. Indiana University Press,

Bloomington.

Thue, D., Bulitko, V., Spetch, M., and Wasylishen, E. (2007). Interactive story-

telling: A player modelling approach. In Proceedings Of The Third Artificial Intel-

ligence and Interactive Digital Entertainment Conference (AIIDE ’07). Stanford,

CA., pages 43–48.

Todorov, T. (1970). Les transformations narratives. Poétiques, 3:322–333.

Tomaszewski, Z. and Binsted, K. (2007). The limitations of a propp-based approach

to interactive drama. In Intelligent Narrative Technologies: Papers from the AAAI

Fall Symposium, volume 7, page 05.

Turner, S. R. (1993). Minstrel: A Computer Model of Creativity and Storytelling.

PhD thesis, University of California at Los Angeles.

214

REFERENCES

von Ahn, L. and Dabbish, L. (2004). Labeling images with a computer game. In

Proceedings of the SIGCHI conference on Human factors in computing systems,

pages 319–326. ACM New York, NY, USA.

von Ahn, L., Kedia, M., and Blum, M. (2006a). Verbosity: a game for collecting

common-sense facts. In Proceedings of the SIGCHI conference on Human Factors

in computing systems, pages 75–78. ACM New York, NY, USA.

von Ahn, L., Liu, R., and Blum, M. (2006b). Peekaboom: a game for locating objects

in images. In Proceedings of the SIGCHI conference on Human Factors in computing

systems, pages 55–64. ACM New York, NY, USA.

Wardrip-Fruin, N. (2008). The tale-spin effect: Toward an acknowledgement of process

in digital literature. Media-Space Journal, 1(1).

Watson, S. E., Vannini, N., Woods, S., Dautenhahn, K., Sapouna, M., Enz, S., Schnei-

der, W., Wolke, D., Hall, L., Paiva, A., André, E., and Aylett, R. (2010). Inter-

cultural differences in response to a computer-based anti-bullying intervention. Ed-

ucational Research, 52(1):61–80.

Weallans, A., Louchart, S., and Aylett, R. (2012). Distributed drama management:

beyond double appraisal in emergent narrative. In Proceedings of the 5th inter-

national conference on Interactive Storytelling, ICIDS’12, page 132–143, Berlin,

Heidelberg. Springer-Verlag.

Wei, H. (2011). Structuring narrative interaction: What we can learn from Heavy

Rain. In Fourth International Conference on Interactive Digital Storytelling, ICIDS

2011, pages 338–341, Berlin, Heidelberg. Springer Berlin Heidelberg.

Weiss, C., Oliveira, L. C., Paulo, S., Mendes, C., Figueira, L., Vala, M., Sequeira,

P., Paiva, A., Vogt, T., and André, E. (2007). ECIRCUS: building voices for

autonomous speaking agents. In Proceedings of the 6th ISCA Workshop on Speech

Synthesis, SSW-6, pages 300–303, Bonn, Germany.

Weiss, S., Müller, W., Spierling, U., and Steimle, F. (2005). Scenejo–an interactive

storytelling platform. In Proceedings of the International Conference on Virtual

Storytelling 2005, page 77–80. Springer.

Weizenbaum, J. (1966). ELIZA - a computer program for the study of natural lan-

guage communication between man and machine. Communications of the ACM,

9(1):36–45.

Young, R. M. (2001). An overview of the mimesis architecture: Integrating intelligent

narrative control into an existing gaming environment. In The Working Notes of the

215

REFERENCES

AAAI Spring Symposium on Artificial Intelligence and Interactive Entertainment,

page 78–81.

Young, R. M., Riedl, M. O., Branly, M., Jhala, A., Martin, R. J., and Saretto,

C. J. (2004). An architecture for integrating plan-based behavior generation with

interactive game environments. Journal of Game Development, 1(1):51–70.

Zancanaro, M., Cappelletti, A., Signorini, C., and Strapparava, C. (2001). An author-

ing tool for intelligent educational games. In Virtual Storytelling: Using Virtual

Reality Technologies for Storytelling, International Conference, ICVS 2001, page

61–68. Springer.

Zucker-Scharff, A. (2011). Crowd-sourced television with Bar Karma and

Storymaker | hack text. Retrieved 15th Aug 2013. Available from:

http://hacktext.com/2011/02/crowd-sourced-television-goes-to-the-

next-level-with-bar-karma-and-storymaker-477/.

216

http://hacktext.com/2011/02/crowd-sourced-television-goes-to-the-next-level-with-bar-karma-and-storymaker-477/
http://hacktext.com/2011/02/crowd-sourced-television-goes-to-the-next-level-with-bar-karma-and-storymaker-477/

Appendices

217

Appendix A

Complete List of FearNot! agent

goals

The following table lists all 83 active pursuit FAtiMA goals that were authored for the

emergent episodes in FearNot! The victim’s goals for controlling the dialogue with the

user in the interaction episodes are excluded from this list. Besides the goal names

the table also lists for each goal the number of possible unique partially ordered plans

(i.e. where the ordering of some actions is flexible, different orderings are not counted

as different plans) and the average length (number of actions) of these plans. Only

rational plans that the planner would actually construct are considered.

Goal Name Unique POPs Avg. Plan Length

ReplyPositively 1 1

ReplyNegatively 1 1

ReplyPositivelyNoChoice 1 1

AssistBully 1 1

AssistBullyJoinGroupNegativeAnswer 1 1

DefendVictimFrom 1 2

DefendFriendFrom 1 2

JoinGroup 3 5.67

ConvinceOtherNoJoinGroupOf2 1 3

ConvinceOtherJoinGroupOf2 1 3

JoinGroupAccept 1 1

JoinGroupRefuse 1 1

ConvinceGroupAccept 1 1

ConvinceGroupRefuse 1 1

ConvinceOtherNoJoinGroupOf2Accept 1 1

ConvinceOtherNoJoinGroupOf2Refuse 1 1

ConvinceOtherJoinGroupOf2Accept 1 1

218

Chapter A: Complete List of FearNot! agent goals

ConvinceOtherJoinGroupOf2Refuse 1 1

JoinGroupThreatLeaveAccept 1 1

JoinGroupThreatLeaveRefuse 1 1

ConfrontVictimTellTeacher 1 1

IgnoreBully 1 1

StandUpToBully 1 1

MakeNewFriend 1 3

TellFriend 2 3

RunAway 1 1

WalkAway 1 1

LaughOff 1 1

FightBack 1 3

Insult 1 1

InsultBack 1 1

Fight 1 2

FightSuccess 1 1

GloatVictory 1 1

HelpInvite 1 2

DeceiveVictim 1 3

InviteToParty 1 2

AcceptInvitation 1 1

CancelPartyInvitation 1 1

RefuseParty 1 1

SabotagePartyInvitation 1 2

Bully 1 1

Tease 1 1

TeaseDefend 1 1

PickFromFloor 1 1

BullyObject 1 1

StealItem 1 1

ClaimBackItem 1 2

ClaimItem 1 2

DestroyItem 1 1

ItemDestroyedComplain 1 1

AskNotToThrowObject 1 1

WarnVictimBeforeThrowingObject 1 2

GotHitComplain 1 1

OrderToLeave 1 1

Attack 1 1

219

Chapter A: Complete List of FearNot! agent goals

AskPity 1 1

WalkAwayVictim 1 1

GloatVictory 1 1

AnnoyVictim 2 1

LeaveFrom 1 1

AggressiveQuestion 1 1

Humiliate 1 1

RespondToHumiliationPositive 1 1

RespondToHumiliationNegative 1 1

HumiliateThreat 1 1

RespondToHumiliationThreatPositive 1 1

HumiliateVictory 1 1

Follow 1 1

FollowAskWhy 1 1

FollowDontCare 1 1

FollowLeave 1 1

FollowLeaveFollow 1 1

Gossip 1 1

GossipLeave 1 1

GossipReinforce 1 1

GossipObject 1 1

GossipObjectAgree 1 1

GossipObjectDisagree 1 1

GossipReport 1 1

GossipReportAngryAnswer 1 1

GossipReportDontCareAnswer 1 1

GossipReportHelplessAnswer 1 1

220

Appendix B

The Point Nautilus Story

The back story that was given to participants of the Point Nautilus Experiment is

provided below for reference.

Point Nautilus

About 2 miles off the west coast of Canada lies Seagull Island, a tiny rocky island

that one can walk round in about 2 hours. The only building on Seagull Island is the

lighthouse Point Nautilus, which since the 70s has also doubled as a hotel. The hotel

guests are typically people that need a break from the stresses of modern life without

losing certain comforts. It is a cosy place where guests sit warming themselves by the

fireplace with a cup of tea or glass of whisky in one hand and a good book in the other.

A lot of the recent popularity of Point Nautilus is due to the hard work of Claire,

the current owner. Claire practically runs the place by herself and is determined to

make every guest feel as comfortable as possible. She prides herself on her cooking

skills and prepares wonderful meals for her guests, mostly using the fresh catch of

the day. All this kitchen work together with managing and cleaning the hotel keep

Claire extremely busy. Her only assistance and the only other permanent resident

of Seagull Island is Jack the old lighthouse keeper who helps by ferrying guests to

and from the mainland. Jack’s boat is the only way on and off Seagull Island. On

his daily boat trips Jack also brings supplies, such as fish caught by the local fishermen.

Claire became the owner of Point Nautilus 5 years ago. Originally a city-dweller,

10 years ago she found out her fiance had cheated on her and felt she had to get

away from everything. She ended up taking refuge from the world in Point Nau-

tilus. She fell in love with the landscape, the solitude, the fresh air and the sounds

of nature, unspoilt by the noise of civilisation. The owner back then was an old lady,

Mrs. Miller, who like Jack the lighthouse keeper immediately took a liking to this

221

Chapter B: The Point Nautilus Story

sad young woman. Claire ended up helping Mrs. Miller out and became the cook of

Point Nautilus. After 5 years Mrs. Miller died and it came as a big surprise to Claire

to hear that she had inherited the place.

With the inheritance came more responsibility and while she loved this new chal-

lenge in her life, something was still missing. While she got over the sadness about

her fiance’s betrayal, she often felt lonely. She had always imagined that by now,

well into her 30s, she would have a little family, a handsome husband, 2 children and

maybe a dog. She felt that it might be time to move on and get back to the city. But

who would take care of the hotel then?

The answer seemed to arrive one day when a young writer from Calgary named

Humphrey began a long term residency at Point Nautilus in search of a quiet place

to finish his novel. It was love at first sight. Claire and Humphrey took long walks

on the beach together, he would read to her what he had written in the evenings at

the fireplace and on clear nights they would hold hands and watch the stars. Their

romance had gone on for 3 months when he finished his book. For the first time since

he arrived he had to leave the island to talk to publishers in Calgary.

They could hardly stand being separated and Claire eagerly waited for his return.

After he had left for only a few hours she needed to hear his voice again. By now

he should have arrived in Calgary. When the mobile phone number he had given her

did not work, she was not overly worried at first. The plane must be delayed, she

thought. But as the hours passed, she grew uneasy. Eventually Claire’s worry turned

into panic. The agreed date of Humphrey’s return passed and there was still no word

from him. The police were of little help. They told her that no airline had any records

of a passenger by his name travelling into Calgary.

Claire had a million questions going through her head: Had something happened

to him? Or could he have abandoned her? She couldn’t believe that but then again,

she had misplaced her trust in men before. Was everything he told her a lie including

his name? That could explain why his phone number didn’t work and why he was not

listed on any of the flights? He hadn’t paid for his 3 month stay, was he just trying

to avoid the hotel bill? Was he on his way to another remote hotel by now, charming

his way into the heart of another lonely hotel keeper with his romantic poet routine?

Claire was conflicted and didn’t know what to think but as the weeks passed, she

knew one thing with certainty: she was expecting his child.

Humphrey did not, in fact, want to leave Claire and his love for her was genuine.

222

Chapter B: The Point Nautilus Story

When he left Seagull Island he felt really bad that he hadn’t told her the truth about

his phobia of flying, but it was something he was inexplicably ashamed of. He had

told her he was taking the plane when he was really travelling by train, because the

truth would have undoubtedly led to more questions and eventually have exposed his

phobia. But the choice of transportation turned out to have fateful consequences.

At his change in Vancouver where he had a few hours to kill until boarding the

next train, he ventured into town to find something to eat. After his meal he was on

his way back to the train station when he realised that he had left his bag, containing

his wallet, his tickets, his phone and his novel, in the restaurant. Worried that some-

one might have stolen it, he rushed back to the restaurant. Crossing a street without

looking, he ran directly into an oncoming bus. The mobile phone in his bag had been

switched off, after all he had to pretend to be on a plane.

7 months later

It is a stormy day. The work at Nautilus Point has become increasingly difficult

for Claire to manage as her pregnancy progresses and as a result the lighthouse hotel

is temporarily closed. Claire is sitting in front of the fireplace, imagining her future

with a baby and wondering where Humphrey is right now. The telephone rings. It is

Jack calling from the main land telling her that the storm is worsening and that he

can’t make it to the island in this weather. She can only barely make out what he is

saying and before they can finish their conversation the phone goes dead. This hap-

pens regularly out here in bad weather but Claire is a bit worried about her isolation

given her pregnancy. The due date is still 4 weeks away, but she would feel better if

she knew that she was not alone on an island without any means of communication.

Just as she thinks this, there is a knock on the door and she hears a female voice

shouting:

“Hello, is anybody there?”

Surprised, Claire opens the door and finds a woman in a soaking wet rain coat stand-

ing in front of her.

““Oh thank God, someone is here. We were sailing but the weather was so bad, I

thought we might be shipwrecked, but then we saw this lighthouse and made it to the

dock. My boyfriend is sailing, he is mooring the boat right now. I’m so terribly sorry

to intrude on you like this but could we please come in?” the woman blurts out.

“Of course” Claire answers.

“This is normally a hotel, when I’m not...” she points at her belly “...like this.”

The woman smiles at her.

223

Chapter B: The Point Nautilus Story

“So we have plenty of space here and this is no weather for you to be out sailing.

Please come in. Oh and my name is Claire.”

“Thank you so much and nice to meet you Claire, I am Susan and my boyfriend’s

name is John.” the woman replies.

“He should be here in a minute.”

As the two women enter the corridor Susan says:

“What a beautiful place you have Claire, I really like it.”

She pauses awkwardly.

”Oh, before I forget, there is something about John I should tell you, in case you find

his behaviour a bit peculiar.”

Claire raises her eyebrows, curious what this is supposed to mean and wondering

whether she may have made the wrong decision letting this woman in. Susan doesn’t

seem to notice as her gaze trails off into the distance and her face takes on a sad look.

“John suffers from amnesia and we have no idea who he really is. I am a doctor at

a hospital in Vancouver and he was brought in one day run over by a bus. He is very

lucky to even be alive. When he came out of his coma it soon became clear he had

completely lost his memory. He couldn’t remember his name or where he came from.

He didn’t have any ID on him when he was brought in, so we gave him a name and

started to call him John. The hospital staff were the only people he knew in the whole

world.”

”But I thought you said you were his girlfriend, not his doctor?” Claire says in con-

fusion.

Susan blushes

“We fell in love. I couldn’t help myself. But a doctor can’t be romantically involved

with a patient - I had to resign. But I didn’t care. I’d had enough of my job at the

hospital anyway, too long hours and no time for a private life. So we decided to start

a new life somewhere together and here we are, sailing the world. Oh, I’m sorry, I

just keep on talking.”

“Oh no, don’t worry” Claire interrupts.

“What an extraordinary story, I thought this only happens in films. Is there a chance

he can remember who he is?”

“Hard to say.” Susan replies. “There is a lot about how the human brain works that

we don’t understand. But you know, sometimes I hope he won’t remember. We are

so happy right now and who knows what the memories could destroy.”

224

Chapter B: The Point Nautilus Story

As they talk, the two women hear footsteps approaching through the rain.

“John, we were very lucky, we can stay here for the night, isn’t this great news? And

it’s such a cosy place.” Susan excitedly calls out.

“Come and meet Claire.”

As the man steps into the light, Claire cannot believe her eyes as she sees Humphrey

coming in, but it suddenly all makes sense. All these months that she thought he left

her like she was left before. He hadn’t betrayed her after all. Or did he? What was

he doing in Vancouver? Was he running away from her after all and this was how fate

decided to punish him? Or was it all a tragic accident? Did it even matter? Was he

not a totally different man now anyway? He patiently holds out his hand and with a

friendly smile repeats:

“Nice to meet you Claire.”

“Claire, are you alright?” Susan asks.

Claire feels a sharp bolt of pain in her belly and thinks oh no, the baby. His baby.

...

225

Appendix C

The Seagnomes Story

The initial pre-authored comics back story provided to the participants of the Seag-

nomes experiment is shown below.

226

Chapter C: The Seagnomes Story

227

Chapter C: The Seagnomes Story

228

Appendix D

CROSCAT usage instructions

The following usage instructions were given to participants of the CROSCAT study.

How to use the CROSCAT software

The screenshot below shows what CROSCAT looks like.

Toolbar (1a): There are five buttons on the toolbar. The instructions button will

open a browser and bring you back to this website. Use the ”complete story” button

to finish the experiment. ”show comics viewer opens a dialog which displays all the

back story comic plus all the frames you have created so far. Finally undo and redo

allow you to correct mistakes (e.g. when you accidentally deleted a frame).

229

Chapter D: CROSCAT usage instructions

Timeline (1b): The time line shows all the comics frames that you have created

so far in order (from left to right). After a few frames have been created it will display

a scrollbar at the bottom. The timeline does not show the back story (to view that,

you need to use the comics viewer). Double click on any frame to display it in full

size in the comics viewer. Underneath each frame there are buttons that allow you to

change the order of frames, delete or edit a frame. The right most frame of the time

line is always called ”new event”. This is a placeholder for the next frame that will

be created. New frames are therefore always inserted at the end (right) but can be

moved around afterwards. If the frame editor does not allow you to edit a new frame,

click on the ”new event” frame once to select it.

The bottom third of the screen is the frame editor. It consists of:

Location Picker (1c): Allows you to change the background / location of the

comics frame.

Character Panel (1d): Lists all the characters (in order) that will appear in this

frame. Press the green plus button to add a character and the red x underneath a

character to remove it. The green arrows (min 2 characters) allow you to change the

location of the characters (in which order from left to right are they shown in the

frame). The smiley icon allows you to change the facial expression of a character and

the hand item allows you to put a single item into a character’s hand (or to remove

an item from a character’s hand).

Text Panel (1e): This allows you to place a bubble and /or narration box in the

frame. You can chose between speech and thought bubbles. For bubbles you also

have to chose a speaker / thinker (from one of the characters listed in the character

panel obviously).

Create Frame Button (1f): When you have selected a location, characters and

some text you can press the create frame button. You can then directly proceed to

edit the next frame. If you want to change something you can use the edit button in

the time line to make minor changes to your frame. When editing instead of ”Cre-

ate Frame” you will see 2 buttons to ”Update Frame” and ”Cancel Editing”. After

editing you need to manually click on the ”new event” in the time line to continue

making new frames.

230

Appendix E

CROSCAT Graph Scoring

Implementation

The following listing provides implementation details of the CROSCAT graph scoring

implementation, specifically, the methods of the StoryNode class used for recursively

resetting the score, calculating scoring prerequisites and calculating the final score.

This appendix is an extension to Section 7.4, which describes the algorithm at a high

level.

Listing E.1: Implementation details of the CROSCAT graph scoring implementation

public class StoryNode {

/** children of this node */

protected List<StoryNode> children;

/** parent node or null if this is the root node*/

private StoryNode parent;

/** this will contain the final score for the node */

private double score;

/** what is the distance (in nodes) to a branching point in front */

private int distBranchFront;

/** what is the distance (in nodes) to a branching point at the back */

private int distBranchBack;

/** how many of this node’s ancestors are branching points */

private int noOfAncestorsThatBranch;

/** a list with the distances from this node to each descendant leaf node */

private List<Integer> distsEnd;

231

Chapter E: CROSCAT Graph Scoring Implementation

...

public void resetScoreRecurse() {

score = 0;

distBranchFront = 0;

distBranchBack = 0;

distsEnd.clear();

noOfAncestorsThatBranch = 0;

for (StoryNode child : children)

child.resetScoreRecurse();

}

public void calcScoringPrerequisitesRecurse() {

// calc dist front

if (children.size() > 1)

distBranchFront = 0;

else if (parent==null) // root node with only 1 child,

// set distBranchFront to 0 (treat beggining like a branching point)

distBranchFront = 0;

else // any other node that is not root and has not more than one child

distBranchFront = parent.distBranchFront + 1;

if (parent==null)

noOfAncestorsThatBranch = 0;

else if (parent.children.size() > 1)

noOfAncestorsThatBranch = parent.noOfAncestorsThatBranch + 1;

else

noOfAncestorsThatBranch = parent.noOfAncestorsThatBranch;

for (StoryNodeBase child : children)

child.calcScoringPrerequisitesRecurse();

// if we reach an end node start a linear backward recursion up the tree

// note: we will traverse some nodes (e.g.) root node multiple times this way,

// but that doesn’t matter: the result will always be the same

if (children.size()==0)

{

// set our distBranchBack rating to 0 (treat end like a branching point)

distBranchBack = 0;

// same for distance to end

distsEnd.add(0);

parent.calcScoringPrerequisitesRecurseBackwards(this,0);

}

}

private void calcScoringPrerequisitesRecurseBackwards(

232

Chapter E: CROSCAT Graph Scoring Implementation

StoryNode origin,

int distEnd) {

// score distance from back branching point

if (children.size() > 1)

distBranchBack = 0;

else

distBranchBack = origin.distBranchBack + 1;

// score distance from this end (bonus points for being far away from end)

distsEnd.add(distEnd+1);

// move along in backwards direction

if (parent!=null)

parent.calcScoringPrerequisitesRecurseBackwards(this,distEnd+1);

}

public void scoreRecurse()

{

// assign branch distance bonus

score += Math.min(distBranchFront, distBranchBack) * BRANCH_DISTANCE_BONUS_FACTOR;

// calculate and assign end distance bonus (avg of all end distances)

double avgDistEnd = 0;

for (int distEnd : distsEnd)

avgDistEnd += distEnd;

avgDistEnd /= distsEnd.size();

score += avgDistEnd * END_DISTANCE_BONUS_FACTOR;

// determine if antonym bonus is due and award it

if (allowsAntonymExtension()) score+= ANTONYM_BONUS;

// add branch extension penalty

if (children.size()>MAX_BRANCH_FACTOR)

score -= EXTEND_BRANCH_ABOVE_MAX_PENALTY * (children.size() - MAX_BRANCH_FACTOR);

// penalty points for having branching ancestors

score -= this.noOfAncestorsThatBranch * BRANCHING_ANCESTOR_PENALTY;

// recursively score all children

for (StoryNode child : children)

child.scoreRecurse();

}

}

233

Appendix F

Supplementary Digital Materials

Some materials that have been produced during the course of this PhD, may be of

interest to the reader but do not fit reasonably within this appendices section. This

includes the source code for the two authoring systems implemented in the course

of this PhD (ENGIMA and CROSCAT) and the experimental data collected during

the course of conducting the “Point Nautilus” and “Seagnomes” experiments. These

materials are collected and provided on the accompanying DVD. Please refer to the

README.txt file in the DVD’s root directory for more information.

234

	List of Figures
	Introduction
	Motivation
	Interactive Digital Storytelling
	Story Worlds and Runtime Engines
	Fully Realized IS Artefacts
	The Authoring Bottleneck

	Crowdsourced Authoring
	Collecting Linear Example Stories
	The Crowd Task Adaptation Hypothesis

	Summary Of Contributions
	Thesis structure

	I The Authoring Bottleneck
	Creating FearNot! - An Authoring Case Study
	FearNot! Overview
	FearNot Creation Stages

	An Overview of the FAtiMA Architecture
	Planning
	Emotions
	Reactive Behaviour
	Agents and their environment
	Personality

	Integrating FAtiMA into an IS Runtime Engine
	The Story Facilitator

	Story World Contents
	Character Configuration Content
	Dialogue Content
	Interaction Rules
	Presentational Content
	Story Structure Content

	FearNot! Authoring Process
	Resources
	Workflow
	Knowledge Representation Encoding

	Authoring Observations
	Actual Use of Planning
	Decision Making
	Use of Emotion Model
	Interactivity
	Content Reuse and Abstraction

	Conclusion

	Data Structures for Story Representation
	Explicit Specification of Branches
	Plot-centric Story Representation
	Planning
	Case-Based Reasoning
	Narrative Theories
	User Models

	Character-centric Story Representation
	Agents Using STRIPS-like Planning
	Agents Using Hierarchical Task Networks
	Agents Using Heuristic Search Planning
	Decision Theoretic Agents
	Other Approaches

	Hybrid Solutions
	Character Autonomy For Plot-Centric Systems
	Drama Management For Character-Centric Systems

	Conclusion

	Authoring Methods And Tools
	Defining The Authoring Process
	Who are the authors?
	Authoring Metaphors

	Authoring Tools
	Prototyping
	Authoring Explicit Branching
	Authoring Generative Data Structures
	Debugging
	Affecting Story Presentation
	Educational Authoring

	Data Driven Authoring
	The Restaurant and Improviso
	Scheherazade
	Comparison

	Conclusion

	II Crowdsourced Authoring
	Crowd Task Adaptation
	Defining Crowdsourcing
	Crowdsourcing and other crowd-powered approaches
	Storytelling Examples

	Attacking the Authoring Bottleneck with a Crowd
	Useful Data
	Finding a suitable crowd-powered approach

	Crowd Task Adaptation: A Novel Process Improvement Proposal
	Definition
	Crowd Task Adaptation Strategies for IS Authoring
	Expected Benefits

	Conclusion

	The ENIGMA Authoring System
	Design
	Overview
	Storytelling Interface
	Annotations
	Mixed Initiative

	Implementation
	Technology Overview
	User Interface

	From Stories to FAtiMA Agents
	Formalization as a machine learning problem
	The probabilistic domain model
	The ENIGMA learning cycle
	Updating the probabilistic domain model

	Usability Trial
	Setup
	Observations
	Implications
	Ways Forward

	Conclusion

	The CROSCAT Authoring System
	Overview
	User Perspective
	System Perspective

	The Back Story Selection Algorithm
	Heuristic Function 1: Distance From Branching Points and Leafs
	Heuristic Function 2: Adding Branching Ancestor Penalty
	Heuristic Function 3: Adding Child Branch Penalty
	Other Heuristics

	Antonym Insertion
	Using Antonyms
	Obtaining Antonyms

	Algorithm Implementation
	Scalability
	Concurrent Use
	Scoring Algorithm Performance

	The CROSCAT Viewer
	Conclusion

	III Authoring Experiments
	Study Descriptions
	The Point Nautilus Study
	Story Setting
	Execution
	Data Sources For Evaluation

	The Seagnomes Study
	Participant Assignment
	Story Setting
	Execution
	Data Sources For Evaluation

	Data Analysis Plans
	Primary Research Question
	Secondary Research Questions

	Conclusion

	Experimental Results And Analysis
	Evaluating Crowd Task Adaptation
	Seagnomes Author Profiles
	Seagnomes Story Graphs
	Seagnomes Interactive Story Ratings
	Story Analysis
	End User Feedback
	Choice Analysis
	Author Feedback

	Story World Properties
	Results of The Point Nautilus Study
	Comparison of Point Nautilus and Seagnomes stories

	Authoring Tool Design Lessons
	User Interface
	Content Library
	Accommodating Deliberation
	Storytelling Modality

	Conclusion

	Reflection
	Summary of Thesis
	Practicality of Crowdsourced Authoring
	Future Work
	Specific Follow-ups
	General Follow-ups

	Concluding Remarks

	Glossary
	References
	Appendices
	Complete List of FearNot! agent goals
	The Point Nautilus Story
	The Seagnomes Story
	CROSCAT usage instructions
	CROSCAT Graph Scoring Implementation
	Supplementary Digital Materials

