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It is generally accepted that the transition into the twist–bend nematic phase (NTB) is driven by an
elastic instability related to the reduction of the bend elastic constant. Here we use a molecular–statistical
theory to show that sufficiently strong polar interactions between bent–shaped molecules may lead to
experimentally observed reduction of the bend elastic constant in the nematic phase even if electrostatic
dipole-dipole interactions are not taken into account. We propose a simple model of bent–core particles
and derive explicit analytical expressions which enable one to understand how polar molecular shape
affects the elastic constants, and, in particular, the important role of the bend angle. Numerical graphs
showing temperature variations of all elastic constants are also presented including the variation of the
bend and splay elastic constants before and after the renormalization determined by local polar order of
molecular steric dipoles and the corresponding polar correction to the one–particle distribution function.

Keywords: Elasticity, liquid crystals, thermodynamics, analytical and numerical techniques,
twist–bend, nematics

1. Introduction

In recent years the new inhomogeneous nematic phases have been observed [1–13], and the study of
the detailed structure of these phases is currently the most topical issue in liquid crystals research.
The experiments for oligomers and bent–core systems indicate that there are at least two types
of modulated nematic structures with one-dimensional periodicity. One of them is the so called
twist–bend nematic phase (NTB) in which the director is assumed to precess on the cone [14] at
the molecular length–scale, while the other is the splay–bend nematic phase (NSB) where the main
director performs modulations in a plane. The transition into these phases is generally explained
by an elastic instability related to a strong decrease and even vanishing of the effective bend elastic
constant. This, in turn, can be explained by assuming that the system is close to the virtual
ferroelectric phase. Then the reduction may be determined by the negative flexoelectric [15, 16]
correction which is anomalously large due to pretransitional effects [17, 18]. In our recent paper
[18] we have calculated the flexoelectric coefficients and the effective elastic constants of bent–core
nematics with transverse electric dipoles using the same molecular model and have shown how the
bend elastic constant can vanish at a certain temperature. On the other hand, it has been shown
that the NTB phase with very low values of the elastic constants may be exhibited by the system
of bent particles without electric dipoles [19].
The transition to the NTB phase can also be driven entropically [20] without taking flexoelec-

tricity into account. In this paper we present a molecular theory which enables one to understand
why anomalously low values of the effective bend elastic constant can be obtained taking into
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consideration only the polar molecular shape. We employ our previous simple molecular models
[21, 22] together with some approximations to explain the origin of the elastic instability which
drives a transition into a modulated phase with spontaneous bend deformations. Here it is worth
noting that in principle such periodic director distributions may differ from the conventional ones
[14]. For example, the periodic structures may contain various polarization waves [23], and one
nonconventional has indeed been confirmed by simple molecular modeling [24]. Further extension
of the phenomenological model [17] takes into account also the biaxial ordering in bent–core sys-
tems [25]. More general phenomenological approach is built upon an extension of the Landau–de
Gennes theory [26] with a possibility of the direct transition from the isotropic to the NTB phase
[27] which has recently been observed experimentally [28, 29]. One notes that there exists also an
alternative description based on the analogy between one period of the NTB phase and one smectic
layer [30–32]. In addition, phenomenological models of the NTB phase have been proposed [33, 34]
where the vanishing bend elastic constant is not necessary for stabilization of the corresponding
modulated structure.

2. Microscopic theory of nematic elasticity

When the pair interaction potential between two particles Veff (1, 2) = Veff (r12,a1,a2,b1,b2) is
given explicitly as a function of orientational and positional variables, the free energy density of
the nematic phase in the molecular field approximation can is expressed as:

F

V
= ρkBT

∫

f1(1)lnf1(1)d(1) +
1

2
ρ2

∫

Veff (1, 2)f1(1)f1(2)d(1)d(2)dr12, (1)

where (i) means the set of orientational and translational coordinates of the molecule ’i’, i.e.

(i) = (ri,ai,bi) where ai and bi are the unit vectors along the long and the short molecular axis,
respectively. Note that eq.(1) is also valid in the distorted state, that is when the director n = n(r)
is positionally dependent.

2.1 Distortion free energy of nematic phases

In the homogenous uniaxial nematic state the orientational one-particle distribution function f1 =
f0(n,a,b) = f0((n · a)2, (n · b)2) because the phase is nonpolar hence there is only a quadratic
dependence on all orientational variables. In contrast, in the distorted nematic state the distribution
function generally possesses a small polar correction (h) which is linear in both the polar vectors
of bend (B = n× (∇× n)) and splay (S = n(∇ · n)) deformations. In the first approximation the
orientational distribution function of the distorted nematic can be expressed as:

f1(n(r),a,b) = f0((n · a)2, (n · b)2)[1 + h(n(r),a,b)]. (2)

In the general case eq.(1) presents the free energy of the inhomogeneous state and it can be
expressed as a sum of the free energy of the homogenous phase F0 and the distortion free energy:

Fd =

∫

Fd(r)dr, (3)

where Fd(r) is the distortion free energy density which is expressed in terms of the gradient of the
director and the corresponding elastic constants. The distortion free energy can be separated from
F0 by using the gradient expansion of the distribution function f1(2) = f1(n(r2),a2,b2) in eq.(1):

f1(2) = f1(1) + (r12 · ∇)f1(1) +
1

2
(r12 · ∇)2f1(1) + ..., (4)

2
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where r12 is the intermolecular vector. Now equations (2) and (4) can be substituted into eq.(1)
keeping the terms which are quadratic in the gradients of the director and in h. One notes that
the linear terms vanish due to symmetry reasons, and as a result the distortion free energy density
can be expressed as:

Fd = 1
2kBTρ

∫

f0(ω1,n(r1))h
2(ω1)dω1 (5)

+1
2ρ

2
∫

f0(ω1,n(r1))Veff (r12, ω1, ω2)h(ω1)h(ω2)f0(ω2,n(r1))dω1dω2dr12

+1
2ρ

2
∫

f0(ω1,n(r1))Veff (r12, ω1, ω2)h(ω1)(r12 · ∇)f0(ω2,n(r1))dω1dω2dr12

+1
4ρ

2
∫

f0(ω1,n(r1))Veff (r12, ω1, ω2)(r12 · ∇)2f0(ω2,n(r1))dω1dω2dr12,

where ωi = (ai,bi) are all orientational degrees of freedom of the molecule i. This general formulae
can in principle be applied to any effective pair potential with polar contributions. One notes that
the last term in eq.(5) yields the expressions for the so–called undressed elastic constants which are
calculated without taking into account any polar intermolecular interactions. A detailed molecular
theory of undressed elastic constants of nematics is presented in our previous paper [18] (see also
earlier works [35–39]). At the same time the corrections to the elastic constants, determined by
various polar intermolecular interactions are determined by all other terms in the distortion free
energy density (5).

2.2 Corrections to the elastic constants

The general equation (5) can be employed to calculate the elastic constants only if explicit expres-
sions for the effective pair interaction potential are known. On the other hand some results can
be obtained in a generic form. In the general case the effective potential Veff (r12, ω1, ω2) can be
decomposed into a sum of polar and nonpolar parts

Veff (r12, ω1, ω2) = V0(r12, ω1, ω2) + Vp(r12, ω1, ω2), (6)

where V0(r12, ω1, ω2) is invariant under sign inversion of both as and bs while Vp(r12, ω1, ω2) changes
sign under sign inversion of the vector b for molecules having C2v symmetry.
One notes that nonpolar potential V0(r12, ω1, ω2) does not contribute to the integrals in the

second and in the third terms in the r.h.s of eq.(5) if the molecules are nonchiral. Indeed, under the
integrals in these terms in eq.(5) the functions h are polar in bs while the potential V0(r12, ω1, ω2)
is nonpolar in these vectors, and as a result the integrals vanish after integration over b1 and b2.
The polar vectors of splay S and bend B deformations induce the polar order of the short

molecular axis bi in the nematic phase characterized by polar order parameter P = ⟨bi⟩. This
order parameter is expected to be very small as it is proportional to weak director gradients. Then
the polar interaction potential Vp(r12, ω1, ω2) can be expanded in powers of b1 and b2 up to first
order:

Vp(r12, ω1, ω2) ≈ b1αTαβb2β + b1αNαβγq
(2)
βγ + b2αNαβγq

(1)
βγ (7)

+ b1αNαβγq
(2)
βµ q

(1)
µγ + b2αNαβγq

(1)
βµ q

(2)
µγ ,

where q
(i)
βγ = a1αa2α−

1
3δαβ . In eq.(7) the tensors T̂ and N̂ depend on the intermolecular vector r12.

Taking into account only linear and quadratic terms in the unit vector u12 = r12/r12 one obtains

Tαβ = I0(r12)δαβ + I1(r12)uαuβ + I2(r12)
(

q
(1)
αβ + q

(2)
αβ

)

, (8)

3
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Nαβγ = J1(r12)δαβuγ + J2(r12)δαγuβ + J3(r12)δγβuα. (9)

Such a polar interaction can now be used in eq.(5). The term b1 · T̂ ·b2 is polar in both b1 and b2,

and therefore it contributes only to the second term in eq.(5). At the same time the terms with N̂
tensor contribute only to the third term in eq.(5) as they are odd in u12. Finally, the first term in
eq.(5) is evaluated by expanding the polar correction h in powers of the unit vector b along the
short molecular axis. Keeping the first order terms one obtains

h(i) ≈ bi ·m, (10)

where m is a constant vector which can be expressed in terms of the polar order parameter P as

P =

∫

f0(ω)h(ω)bdω ≈ µ̂ ·m, (11)

where

µαβ = ⟨bαbβ⟩ ≈
1

6
((2 + S)δαβ − 3Snαnβ) . (12)

Here we neglect the small biaxial order parameter D = ⟨(b · n)2⟩ − ⟨(c · n)2⟩ where c = b × a is
the unit vector in the direction of the second short axis. Inverting eq.(11) one obtains

m =
6

(2 + S)
p⊥ +

3

1− S
p∥, (13)

where S = ⟨P2(a · n)⟩ and P = p⊥ + p∥ and where p∥ is parallel to n while p⊥ is normal to the
director n. Substituting eqs.(10-13) into the first term of eq.(5) one obtains

Fd1 =
1

2
ρkBT ⟨h

2(ω1)⟩0 ≈
1

2
ρkBTpαµ

−1
αβpβ =

3

1− S
p2∥ +

6

2 + S
p2⊥. (14)

After substitution of eqs.(7-9) the third term in eq.(5) for J0 ≡ J1 = J2 = J3 (i.e. for the case
when the tensor Nαβγ weights equally all intermolecular directions) can be expressed as:

Fd3 =
1

3
ρ2SJ03

[

(p⊥ ·B) + (p∥ · S)
]

, (15)

while the second term can be be written in the following form

Fd2 =
1

2
ρ2(I −

1

3
SI22)p

2
⊥ +

1

2
ρ2(I +

2

3
SI22)p

2
∥, (16)

where I = I02 + I12/3 and J03 =
∫

J0(r)r
3dr, I02 =

∫

I0(r)r
2dr, I12 =

∫

I1(r)r
2dr, I22 =

∫

I2(r)r
2dr. Here we have decoupled the averages of short and long molecular axes assuming that

⟨bαqαβ⟩ ≈ ⟨bα⟩⟨qαβ⟩.
The sum of these three terms Fd(P) = Fd1 + Fd2 + Fd3 describes the part of the distortion free

energy which depends on the polar order parameter P. Minimization of Fd(P) with respect to P
yields

P =
1

3

8SJ03

ρI − 1
3ρSI22 +

6kBT
2+S

B+
ρS(1− S)J03

ρ(1− S)(3I + 2SI22) + 9kBT
S. (17)

4
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The expression for P can now be substituted into the distortion free energy Fd(p). After doing this
the contribution Fd to the total distortion free energy is reduced to the standard form −∆K11S

2−
∆K33B

2 where −∆K11 and −∆K33 are the corresponding negative corrections to the splay and
bend elastic constants respectively, determined by polar interactions. As a result one obtains the
following expressions for the effective splay and bend elastic constants:

K11 = K0
11 −

1

6

ρ3S2(1− S)J2
03

ρ(1− S)(3I + 2SI22) + 9kBT
, (18)

K33 = K0
33 −

1

6

ρ3S2(2 + S)J2
03

ρ(2 + S)(3I − SI22) + 18kBT
, (19)

where K0
11 and K0

33 are the bare splay and bend elastic constants, respectively which are not
related to polar intermolecular interactions and are determined by the forth term in eq.(5). Explicit
expressions for these constants will be presented in the following section.
One notes that according to eqs.(18)-(19) there indeed exist negative corrections to both bend

and splay elastic constants which are determined by polar intermolecular interactions of the proper
mathematical form. In particular, the corrections are proportional to the coupling constant J03
which enters the eq.(9) for the tensor N̂ , that is the coupling constant between the short axis of
one bent-core molecule and the molecular quadrupole tensor of the neighboring molecule.

3. Molecular model for the bent–core nematic

In this paper we incorporate the simple model for the intermolecular interaction, which we have
studied earlier [21]. In this model the arms of bent–core molecules interact with the arms of the
neighbouring molecules via the second Legendre polynomial term (Maier–Saupe type interaction):

Veff (r12, ω1, ω2) = −J
∑

i,j

P2 (e1,i · e2,j)

r6ij
, (20)

where the distance between interacting centers are given by: rij = r12+L(e2,j−e1,i)/2. Summation
in eq.(20) runs over all arms (↑ and ↓) of the two interacting bent-shaped molecules (see Fig.1), so
consequently there are four terms in this sum. Each part is then expanded in powers of ϵ equal to
arm–length over intermolecular distance which is assumed to be less than one. The effective pair
potential reads:

Veff (r12, ω1, ω2) ≈ − J
r6
12

∑

i,j P2 (e1,i · e2,j)× (21)

×
(

1− 3ϵu12 · (e2,j − e1,i) + 3ϵ2(2 (u12 · (e2,j − e1,i))
2 − 1

2(1− e2,j · e1,i))
)

.

Undressed elastic constants are determined by those parts of potential (21) which are even in u12,
a1 and a2. We assume here that the biaxiality order parameter D can be neglected for undressed
elastic constants. These elastic constants can be expressed by substituting the potential (21) into
the last term in eq.(5) and using the method described in detail in our previous paper [18]. Finally,
after all integrations and averaging the potential (21) makes the following contribution to the bare

5
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Figure 1. (Colour online) The model two bent–shaped molecules where each of them is composed of two uniaxial arms which
interact between different molecules via second Legendre polynomial. Opening angle of the molecule is given by π − 2α and
the distance between the two molecules is equal to: r12 = rij + L(e1,i − e2,j)/2 for i and j being either ↑ or ↓, and where rij

corresponds to distance between vectors located at the half–length (L
2
) along of the attracting arms.

elastic constants

K0
11 = K0 + κ

[

−
4

105
S⟨P4⟩+

8

315
S2

]

, (22)

K0
22 = K0 − κ

[

4

105
S⟨P4⟩+

16

315
S2

]

, (23)

K0
33 = K0 + κ

[

16

105
S⟨P4⟩+

8

315
S2

]

, (24)

where

K0 =

(

3J cos4(α)ρ2[2σ−1 − 3L2σ−3] +
4

9
κ

)

S2, (25)

κ = 54L2Jρ2σ−3 cos6(α) (26)

and where σ is the average steric cut-off distance. In the majority of intermolecular configurations
one arm of a bent-core molecule touches one arm of the neighbouring molecule amd thus the
distance σ varies between L and D. Taking into account that the results are not very sensitive to
the particular values of σ, one may use the following estimate σ ≈ (L + d)/2 for simplicity. One
notes also that for the Maier–Saupe type distribution function the order parameter ⟨P4⟩ is not
independent [40] and can be expressed explicitly in terms of the interaction constant and the order
parameter S:

⟨P4⟩ =
7

12
+

5

12
S −

35

12

kBT

J
. (27)

Behaviour of bare elastic constants in reduced units (Kred
ii = d

Jρ2K0
ii) are presented in Figs.2-

3, where temperature is also given in dimensionless units: t = kBT
J . The largest values of elastic

constants are for rod–like particles, and it is diminished when the molecular polarity is increased.
All elastic constants are positive and exhibit monotonic behaviour as a function of temperature.
Modification of temperature variations of the elastic constants by polar terms in the one–particle
distribution function can introduce the divergent contributions and exact formulas for this model
are given in the following paragraph.

6
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Figure 2. (Colour online) Undressed elastic constants in reduced units Kred
ii = d

Jρ2
K0

ii where K0

ii are given by eqs.(22)-(24)

for σ = 0.7L and for four opening angles from the very top: 180◦ (red), 160◦ (green), 140◦ (orange) and 120◦ (blue), which
correspond to the parameter α equal to: 0, π

18
, π

9
and π

6
, respectively.

The corrections to the elastic constants in the total distortion free energy (5) stem from the
linear terms in b1 and b2 in the potential (21). Substituting the potential (21) into the first three
terms of the general eq.(5) one obtains the following contribution to the distortion free energy

7
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Figure 3. (Colour online) Undressed elastic constants in reduced units Kred
ii = d

Jρ2
K0

ii where K0

ii are given by eqs.(22)-(24)

for σ = L and for four opening angles from the very top: 180◦ (red), 160◦ (green), 140◦ (orange) and 120◦ (blue), which
correspond to the parameter α equal to: 0, π

18
, π

9
and π

6
, respectively.

which depends on the polar order parameter P = ⟨b⟩:

Fd(P) =
1

2

(

A+B + ρkBT
3

1− S

)

P 2
∥ +

1

2

(

A+ ρkBT
6

2 + S

)

P 2
⊥ (28)

−C
[

(2S + 1)(P⊥ ·B) + (1− S)(P∥ · S)
]

,

8
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where

C = πρ2SJLσ−3 sinα cos4 α, (29)

B = −
192π

5
ρ2JL2σ−5 sin2 α(5S2 − 2S), (30)

A =
4π

5
ρ2JL2σ−5 sin2 α

[

5− 9 cos4 α

(

5

3
(2S2 + 1) +

16

9

)]

. (31)

Minimization of the distortion free energy Fd(P) given by eq.(28) with respect to P yields:

P∥ =
C(1− S)2

3ρkBT + (A+B)(1− S)
S, (32)

P⊥ =
C(2S + 1)(2 + S)

6ρkBT +A(2 + S)
B. (33)

Substituting these expressions back into the equation for Fd(p) one obtains the following expres-
sions for the effective splay and bend elastic constants which contain the negative corrections:

K11 = K0
11 −

1

2

C2(1− S)3

3ρkBT + (A+B)(1− S)
, (34)

K33 = K0
33 −

1

2

C2(2S + 1)2(2 + S)

6ρkBT +A(2 + S)
, (35)

where the bare elastic constants are given by eqs.(22)-(24). Here one notes that the quantity C
given by (29) vanishes when α = 0, and hence the polar order parameter P = P∥ +P⊥ vanishes.
As a result there are no corrections to the elastic constants when α = 0 as it should be for rod–like
molecules. One notes that the denominators of corrections in eqs.(34)-(35) may produce divergence

Figure 4. (Colour online) Effective bend elastic constant in reduced units K̃red
33

= d
Jρ2

K33 where K33 is given by eq.(35) for

σ = 0.7L, α = π
6

and for four values of ρ∗ = ρ

d2L
from the very top: 0.01 (blue), 0.02 (orange), 0.03 (green), and 0.04 (red).

at some non–zero temperature and thus strongly renormalize the corresponding elastic constants.
However, it is reasonable to assume that the corresponding temperatures are well below the nematic
range. Temperature variation of the effective bend elastic constants is presented in Fig.4 in reduced
units (K̃red

33 = d
Jρ2K33) for σ = 0.7L and α = π

6 . Here we have introduced the scaled number density

9
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ρ∗ = ρd−2L−1. The effective bend elastic constant given by eq.(35), is always smaller then the bare
constant presented in Fig.2, and vanishes at some temperature which increases with the increasing
parameter ρ∗ which is proportional to the number density and inversely proportional to the product
of d2 and L i.e. the average molecular volume. The variation of the effective bend elastic constants
for another value of σ = L is presented in Fig.5, where one can see that all curves are not so steep
as in the case of σ = 0.7L. It is also possible to calculate numerically the effective splay elastic

Figure 5. (Colour online) Effective bend elastic constant in reduced units K̃red
33

= d
Jρ2

K33 where K33 is given by eq.(35) for

σ = L, α = π
6

and for four values of ρ∗ = ρ

d2L
from the very top: 0.01 (blue), 0.02 (orange), 0.03 (green), and 0.04 (red).

constant, but for values of the parameters used in this paper the effective splay elastic constant does
not differ from the undressed splay elastic constant and thus we do not present the corresponding
curves. Here we obtained the reduction only for bend elastic constants originating from the steric
polarity of molecules which may be considered as a source of instability towards the stabilization
of modulated phases with bend deformations.

4. Summary

In this paper we have presented a general molecular-statistical theory of the effective elastic con-
stants for bent-core nematics taking into account the polar contribution to the one–particle ori-
entational distribution function. Explicit expressions for the effective elastic constants have been
obtained which contain negative corrections determined by polar intermolecular interactions. The
correction to the bend elastic constant can be sufficiently large and as a result the bend con-
stant may vanish at some temperature within the nematic range. Moreover, the correction may
even diverge at some non–zero temperature but it is reasonable to assume that the corresponding
temperature is below the range of stability of the nematic phase. In contrast, the correction to
the splay elastic constant appears to be negligibly small which is mainly related to the fact that
molecules having C2v symmetry possess only transverse steric dipoles. The analytical expressions
(and the profiles of the bend elastic constant presented in the figures) have been obtained using
a simple model interaction potential between bent–core molecules based on the Maier–Saupe type
of interaction between uniaxial arms of such molecules [21]. This model contains only one coupling
constant, and consequently it is possible to study directly the effect of the molecular bend angle
and the armlength (or equivalently the average intermolecular distance) on the effective elastic
constants.
The expressions for the so–called bare elastic constants, which do not contain corrections de-

termined by polar interactions, have also been obtained. The bare elastic constants reach their
largest values for rod–like molecules which corresponds to the zero value of the bend angle α. The
bare constants decrease monotonically with the increasing bend angle but the corresponding re-

10
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duction is not very large for all reasonable values of the bend angle α. At the same time sufficiently
strong polar interactions contribute to the large negative correction to the effective bend elastic
constant which may vanish at some temperature. At this temperature the homogeneous nematic
phase looses its stability and the system may undergo a transition into a modulated nematic phase
with a spontaneous bend deformation. Moreover, the results of the present paper indicate that
a dramatic decrease of the bend elastic constant above the transition into the twist–bend phase
may be described qualitatively taking into account only polar interactions determined by the polar
shape of the bent–shaped molecules. In this case the agreement between the theoretical and the
experimental temperature variations of the bend elastic constant is not very good but it can be
improved by taking transverse electric dipoles into consideration [18]. Finally, we note that in the
analyzed model with the inclusion of steric polar corrections the effective splay elastic constants
remain unaffected.
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