
Data Layout Types:
a type-based approach to automatic

data layout transformations for
improved SIMD vectorisation

by

Artjoms Šinkarovs

Submitted for the degree of Doctor of Philosophy
at Heriot Watt University

on Completion of Research in the
School of Mathematical and Computer Sciences

5th August 2015

The copyright in this thesis is owned by the author. Any quotation from this thesis or use
of any of the information contained in it must acknowledge this thesis as the source of the

quotation or information.



Abstract

The increasing complexity of modern hardware requires sophisticated programming
techniques for programs to run efficiently. At the same time, increased power of
modern hardware enables more advanced analyses to be included in compilers. This
thesis focuses on one particular optimisation technique that improves utilisation
of vector units. The foundation of this technique is the ability to chose memory
mappings for data structures of a given program.

Usually programming languages use a fixed layout for logical data structures
in physical memory. Such a static mapping often has a negative effect on usability
of vector units. In this thesis we consider a compiler for a programming language
that allows every data structure in a program to have its own data layout. We
make sure that data layouts across the program are sound, and most importantly
we solve a problem of automatic data layout reconstruction. To consistently do this,
we formulate this as a type inference problem, where type encodes a data layout
for a given structure as well as implied program transformations. We prove that
type-implied transformations preserve semantics of the original programs and we
demonstrate significant performance improvements when targeting SIMD-capable
architectures.
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Notations and definitions

N Natural numbers starting with zero: 0,1,2,. . .

Z+ Natural numbers starting with one: 1,2,3,. . .

div A binary function denoting integer division. In the context
of this thesis it is applied on N numbers only. Notation is:
a div b, which denotes ⌊ab ⌋. For example: 7 div 3 ≡ 2.

mod A binary function denoting modulo operation. In the con-
text of this thesis it is applied on N numbers only. Notation
is: a mod b, which denotes a−⌊ab ⌋b. For example: 7 mod 3 ≡ 1.

data layout A mapping of a data structure into flat memory.

e ∶∶ τ An expression e has data layout encoded by τ .

e ∶ σ An expression e is of type σ, e.g. integer, a vector of integers,
etc.

CPU Central Processing Unit (CPU) is an electronic device
within a computer that executes instructions of the speci-
fied program performing arithmetic, logical, input/output
operations specified by the program.

GPU Graphics Processor Unit (GPU) is an electronic device
within a computer that is designed to accelerate creation of
images that will be output on a display. Nowadays GPUs
are used not only for display-related graphics computa-
tions but also for general applications. This approach is
usually called General-Purpose computing on Graphics
Processing Units (GPGPU) and it is being actively used
in high-performance systems.
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HPC High Performance Computing (HPC) is an area of research
and engineering that has to do with very high-level com-
putation capacities. Usually, the interest of HPC lies in
building supercomputers and running applications on them
efficiently.

ISA Instruction Set Architecture (ISA) specifies a set of com-
mands available for a given CPU.

SIMD Single Instruction, Multiple Data (SIMD), is a class of
parallel computers in Flynn’s taxonomy [43]. It describes
computers with multiple processing elements that perform
the same operation on multiple data points simultaneously.

SIMT Single Instruction,Multiple Thread (SIMT) is an execution
model and abstraction on top of SIMD where multiple
independent threads execute concurrently using a single
instruction. Used primarily in GPUs.

SPMD Single Program, Multiple Data (SPMD) is a technique of
parallel programming when one and the same task is being
executed in parallel on different input data.
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Chapter 1

Introduction

The problems are solved, not by
giving new information, but by
arranging what we have known
since long.

Ludwig Wittgenstein [147]

According to the TOP500 (November 2014) [138] the world fastest supercomputer
achieves about 60% of its peak performance. This figure is obtained using a set
of benchmarks called LINPACK [37] which is considered by most supercomputer
manufacturers while building the machines. Realistically, this number can be treated
as performance upper bound of a given machine. Such a difference between the peak
and sustained performances is usually referred as “performance gap” [118]. HPC
machines cost millions of pounds, and in the light of exascale computing, such a
price is likely to increase. Losing 40% of the performance is an economical waste,
therefore there is an increasing need to tackle this problem and close the performance
gap.

H. Seutter in his “Free lunch is over” manifesto [135] gives accounts for the roots
of the problem in the context of CPUs. He demonstrates that the usual assumption
that next generation CPUs will get faster does not hold anymore. Instead of CPUs
with higher frequencies manufacturers switched to CPUs with higher number of
cores. F. Pollack in [111] formulates his famous “rule” which says that performance
of uni-processors increases with the square root of their complexity. R. Ronen et. al
in [114] demonstrate that single-threaded performance does not scale with frequency
and area. Memory latencies and bandwidth would not scale as well. Power density
of a microprocessor is reaching levels close to nuclear reactors. As a consequence, old
programs as they are, originally designed for sequential hardware, do not benefit from
new multiprocessor architectures because the code is not aware of newly available
resources.

Nowadays modern hardware trends propose even more radically diverse archi-
tecture designs. While GPUs or coprocessors offer higher computing power at lower
costs, their success on the mass market suddenly makes the overall design of ordinary
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computers not that different from HPC machines. This brings all the existing HPC
challenges, most importantly the performance gap, to ordinary machines.

The big questions are how to write new programs for diverse hardware architec-
tures and how to make the existing programs run efficiently? When a supercomputer
costs billions of pounds and is bought to run a single program, one can hire a team of
programmers to optimise the application to perfection. Although, even in such ideal-
istic scenario, at the example of TOP500 and LINPACK we can see how challenging
such a task actually is. For the clusters built of multicores, the gap is relatively small:
the machines three and four in the TOP500 list (as of November 2014) achieve 85%
and 93% of their peak performance respectively. The machine number one in the
same list is equipped with Xeon Phi [66] coprocessors, achieving 60% of the peak
performance. The same percentage is achieved by the machine number two which is
equipped with NVIDIA GPUs [146].

If we are required to “squeeze” some performance out of an ordinary machine,
the manual optimisation of every program in most cases is not economically viable.
Not only is it unrealistic to find a highly professional programmer for every existing
program, but also hardware-specific manual optimisations proliferate the amount
of code variants of an algorithm. Those variants have to be maintained, supported,
tested, etc., which contradicts modern software engineering practices.

An alternative approach to manual optimisation is compiler technology. The power
of compiler technology lies in its ability to replicate the effort of manual optimisations
making them applicable to all the programs recognised by a compiler. To achieve
the effects of manual optimisation from within a compiler is a very challenging
task as the process has to be formalised not only for a single application but for
as wide as possible class of applications. Nevertheless, we believe that at least for
mainstream programs, this is the only way to preserve performance portability on
diverse hardware and to make existing programs benefit from it.

This thesis focuses on the one particular aspect that contributes significantly
to the performance gap, which is underutilisation of vector instructions. Vector
instructions provide a way to apply an operation on a vector of values simultaneously.
The length of such vectors depends on the type of the data the vector stores. Today
vectors typically can accommodate four or eight values of 4-byte real values. Every
core of a CPU is equipped with vector units. This means that if the core part of
an application is left unvectorised, the consequences are twofold. First, performance
may be n times slower than in the vectorised case, where n is a number of elements
per vector. Secondly, such a slow-down will happen on every core, which means that
for multi-threaded applications the overall slow-down will be even larger. Given that
the length of vector registers increases with new generations of hardware, such a
penalty will grow larger.

There exists a number of limiting factors for getting full performance on a vector-
capable architecture. Considering past experiences of manual vectorisation of sci-
entific and high performance applications, it can be seen that such a process often
requires radical program rewrites [46, 68, 6]. Such rewrites are challenging. First

2



of all, there is no widely adopted standard to target vector operations from within
the program. Usually the choices are either to program vector devices directly using
machine instructions (possibly in a form of intrinsics) or to rely on auto-vectorisers.
Neither of the approaches are satisfactory. Direct programming in assembly is tedious,
error-prone, and most importantly the result is non-portable. Auto-vectorisers tend
to improve the portability problem by introducing an optimisation that analyses
a program, identifies the parts that can be executed using vector instructions and
rewrites the code accordingly. Despite the great advances in the algorithms used in
auto-vectorisers [39, 96, 74] the performance of the resulting code is far beyond the
processor peak.

Part of the reason for auto-vectorisers to fail is the inability to recognise a number
of important patterns [88]. Secondly, fully implicit approach means that there is no
way to help an auto-vectoriser to recover from failure. Finally, and this is going to
be the main interest of our investigation, the way data structures are mapped in
memory has a very large effect on an application’s vectorisation potential.

Generally, for vector instructions to be efficient, the data that they operate on
must be consecutive in memory. However, most programming languages directly
relate type definitions and type declarations to one particular data layout in memory.
For example, Fortran maps arrays in a column-major order into memory, whereas
C uses a row major scheme. The fields of records or objects are typically adjacent
in memory and algebraic data types such as those in many functional languages
typically are mapped to pointer connected graphs in memory.

In languages that support an explicit notion of memory and pointers there is
very little that can be done about this tight coupling between types and their
corresponding mapping into memory. One can create yet another level of abstraction
between objects/arrays and the way they are being accessed for further manual data
layout manipulation. However, such a level of abstraction has to be maintained and
for it to be efficient, the underlying compiler has to know how to eliminate it in the
resulting binaries. In contrast, languages that completely abstract away from the
notion of memory, such as purely functional languages, allow for almost arbitrary
mappings of data into memory. While this opportunity may be less relevant in the
context of algebraic data types, it can have a huge impact on the performance of
programs that operate on arrays.

It is well known from the optimisation of compute-intensive applications in For-
tran or C, that a reorganisation of order of data accesses can vastly improve the
overall runtime [16, 139, 87]. Improvements typically do not only stem from better
cache locality but also from improved chances of the utilisation of vector instructions.
However, data dependencies in programs and a fixed data-layout often constrain
what can be achieved. The high-performance computing literature provides many
cases where re-writes for enforcing different memory layouts are crucial for achieving
a sufficient level of performance [77, 107, 151, 150, 136].
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1.1 Thesis

“The process of identifying data layouts that are better suited for vectorisation than
those directly specified and corresponding semantic-preserving program transforma-
tions can be automated.”

1.2 Approach

To modify data layouts in a systematic way we have to be able to track data layouts
of all the data structures in a given program. As data structures in principle can be
mapped in memory in various different ways, we have to find a way to choose the
best configuration of data layouts for a given hardware. Our approach is to use types
to encode constraints on the mapping of each data structure and employ a type
system to resolve those constraints. By treating data layouts as types, cross-function
optimisation becomes possible and type checking guarantees that data layouts in a
program are consistent. Type inference techniques allow to reconstruct data layouts
for every expression in a program with a programmer providing any data layout
annotations.

The newly inferred layouts imply program transformation, as access and traversals
of data structures depends on their mapping in memory. Furthermore, one and the
same function may be applied in various contexts where its arguments may have
different layout types. The implication is that several versions of one and the same
function have to be created. Finally, external interfaces of a program may imply
memory mappings for certain data structures. Such mappings must be preserved in
the original form.

After the program is transformed we have to generate the code that will be able
to target vector instructions of the underlying hardware. Our goal is to generate
such a code in a portable fashion, yet guaranteeing performance portability across
SIMD-capable hardware.

1.3 Contributions

The major contributions of this thesis are as follows:

1. We formalise the idea of data layout annotations using types and we introduce
a type inference that is capable to generate all the valid layout configurations
(according to the type system) for a given program.

2. We introduce automatic high-level program transformations based on the pre-
viously inferred layout types and prove that transformed programs preserve
the semantics of the original programs.

3. We solve the vector portability problem by extending the C language with
explicit vector operations, which we have implemented in the context of GNU

4



GCC.

4. We implement the proposed inference, transformations and vectorised code
generation in terms of the programming language called SaC and its compiler
called sac2c.

5. We evaluate our approach using a set of benchmarks which is known to be
challenging to vectorise and demonstrate the effectiveness of vectorisation by
comparing the runtimes with the automatically and manually vectorised C
versions.

1.4 Thesis structure

The thesis consists of eight chapters.
Chapter two gives an overview of the existing vectorisation techniques and ap-

proaches and presents work done so far with respect to data layout mappings.
Chapter three presents an extension of the C language implemented in terms of

the GNU GCC compiler providing performance portable means of expressing vector
operations in C.

Chapter four introduces the input language and layout type system used to infer
all the possible data layouts for a given program.

Chapter five introduces our program transformation scheme with respect to vector-
capable hardware.

Chapter six discusses technical details of the inference and transformations in
terms of the sac2c compiler.

Chapter seven presents a performance evaluation before we conclude in Chapter
eight.
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Chapter 2

State of the art

History may not repeat itself but it
does rhyme.

Joseph Anthony Wittreich [148]

In this chapter, we explore the context around vector hardware. We start with
very basic principles, then, to understand design decisions and potential future de-
velopments, we consider the evolution of vector architectures starting from early
machines till our time. Next we discuss what kind of vector hardware is available on
the market today and classify functionality of commonly available vector operations.
Then we consider the way vector hardware can be programmed and what are the
main difficulties while doing so. Finally, we discuss the work in the area of data
layout modification and its applications.

2.1 Vector hardware basics

+ =

Scalar operation Vector operation

+

+

+

=

=

=

+ =

Figure 2.1: Scalar vs SIMD addition.

When we talk about vector hardware, technically we mean SIMD (Single In-
struction Multiple Data) parallel hardware according to Flynn’s taxonomy [43]. A
distinctive feature of such a hardware is availability of multiple processing elements
that are capable to perform one and the same operation simultaneously. Such a classi-
fication consider only macroscopic level of hardware organisation, therefore the exact
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implementation of SIMD processors may vary significantly. Nevertheless, to develop
an intuition, let us consider a classical use case of SIMD hardware. As it can be seen
from Fig. 2.1 a SIMD operation replaces multiple identical scalar operations with
a semantically equivalent one, e.g. four additions are replaced with a single vector
addition. Keep in mind that the performance of such a SIMD operation, the number
of elements that can be processed simultaneously and programming interfaces fully
depend on the architecture.

2.2 History of parallel and vector hardware

SIMD architectures are a special case of parallel architectures and their design has a
lot of historical reasons. By looking at how parallel hardware appeared and evolved,
we can explore the versatility of the existing designs and get a better understanding
of why certain things are as they are and what we could expect in the future.

As a general observation, a lot of decisions in computer science are based on
trade-offs. For some algorithms, memory consumption can be increased in favour
of faster execution times. Sometimes we can decrease the precision of an answer in
favour of faster computations, and so on. In hardware design, trends shift when a
certain technology gets cheaper or simpler. Tannenbaum in [137] gives the following
example when discussing the existence of caches:

In particular, it frequently happens that a change in technology renders
some idea obsolete and it quickly vanishes. However, another change in
technology could revive it again. This is especially true when the change
has to do with the relative performance of different parts of the system.
For instance, when CPUs became much faster than memories, caches
became important to speed up the “slow” memory. If new memory tech-
nology someday makes memories much faster than CPUs, caches will
vanish. And if a new CPU technology makes them faster than memories
again, caches will reappear. In biology, extinction is forever, but in com-
puter science, it is sometimes only for a few years. [137, Section 1.5.7,
page 44]

As we shall see in the rest of this chapter, such a pattern is generic. In the context
of our work it means that instead of focusing on hardware-specific solutions we want
to understand basic underlying principles of the problem, as any specific hardware
may be rendered obsolete in favour of future technologies.

The second observation is that early machines were designed for a restrictive
application domain. The main purpose of first computers was to serve as large pro-
grammable calculators. Starting from Charles Babbage [52] designing a mechanical
calculator to tabulate polynomial functions in the 19th century; continuing with
early electro mechanical computers like the Harvard Mark I which were used for
war-related calculations like problems associated with the protection of ships from
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the destructive action of magnetic mines [34]. Most of the later machines were reusing
ideas and technologies of previous generations and even nowadays a large part of
instructions of the modern CPUs have to do with numerical operations. We would
rarely find instructions designed specifically for domains like text or sound processing.

After the success of early machines in 1940s, the diversity of tasks that could have
been solved with later computers substantially increased. In the 1960s it became
clear that for a number of real world problems like linear programming or solving sets
of partial differential equations over grids the computing power of existing machines
was several orders of magnitude lower than required. It became clear that strictly
sequential computers would not be able to provide desirable computing speeds [11]
because of the signal propagation speed barrier. This gave a rise to the idea of using
multiple processing units on a single machine.

A variety of designs has been proposed in the early stages of research. For example,
one of the earliest papers [130] presents a SOLOMON computer which proposes a
design based on a 2-d array of processing units each of which is interconnected with
its four neighbours, yet controlled by a single control unit. The SOLOMON itself
was never actually built, but the ideas were used in further projects like ILLIAC
IV [11].

Another kind of parallel design manifested itself in vector processors which still
exist and are being actively developed nowadays. The first vector machines like TI-
ASC [143] and STAR-100 [58] appeared in the early 1970s and gave rise to vector
supercomputers. The main idea lies in having a vector unit that takes streams
of data from memory, operates on them and puts results back into the memory.
Conceptually such a vector operation was happening in a single instruction, although
that individual scalar operations (steps of the vector operation) did not have to
happen simultaneously. Such a design required advanced high-bandwidth memory
systems together with long pipelines to make vector operations efficient. On the
other hand, the entire loop could have been reduced to a single instruction. That in
itself was a great advantage, as it removed the necessity to stall the pipeline at every
element and spending time on fetching and decoding instructions of the loop body.
Let us consider example codes taken from [54] to demonstrate the approach. This is
a classic DAXPY benchmark which can be formulated as:

Y = a ⋅X + Y

where a is a scalar and X and Y are vectors.
L.D F0 , a ; l oad s c a l a r a
DADDIU R4 ,Rx,#512 ; l a s t address to load

Loop : L.D F2 , 0 (Rx) ; l oad X( i )
MUL.D F2 , F2 , F0 ; a x X ( i )
L.D F4 , 0 (Ry) ; l oad Y( i )
ADD.D F4 , F4 , F2 ; a x X( i ) + Y( i )
S.D 0(Ry) ,F4 ; s t o r e in t o Y( i )
DADDIU Rx,Rx,#8 ; increment index to X
DADDIU Ry,Ry,#8 ; increment index to Y
DSUBU R20 ,R4 ,Rx ; compute bound
BNEZ R20 ,Loop ; check i f done

Listing 2.1: Scalar code implementing DAXPY
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The scalar version is presented in Listing 2.1, the vector version of the same code
is presented in Listing 2.2.

L.D F0 , a ; l oad s c a l a r a
LV V1 ,Rx ; l oad vec t o r X
MULVS.D V2 ,V1 , F0 ; vec tor − s c a l a r mu l t i p l y
LV V3 ,Ry ; l oad vec t o r Y
ADDV.D V4 ,V2 ,V3 ; v e c t o r add
SV Ry,V4 ; s t o r e the r e s u l t

Listing 2.2: Vector code implementing DAXPY

The disadvantage though was the high latency of the vector unit and as a result
very long switches between vector and scalar modes. This problem was addressed
in the CRAY-1 [116], which according to [40] was the beginning of “Golden Era” of
vector supercomputers. The solution was to introduce vector registers, very similarly
to what we have nowadays. The advantage was that the data in registers could be
reused, in case an algorithm performed multiple operations on the same data. Vector
registers allowed one to save successive memory reads and writes. This approach had
some limitations — vector registers were expensive in terms of circuitry, so only a
limited number could be provided. That had an impact on the sizes of the vectors
that could be processed. Vector operations had to be performed in chunks limited
by the length of vector registers, but multiple operations could have been executed
on each chunk.

Complex instructions Early machines were equipped with what is now called
CISC1 instructions. Some of the instructions were representing very complex oper-
ations. For example, TI-ASC provided matrix multiply in a single instruction, or
IBM 3090 [18] vector load instruction which were combining multiple actions in one
instruction. This is helpful in case one writes code in assembly directly, however,
when targeting such an architecture from a compiler, it gets very hard to do so
efficiently.

Dawn of vector supercomputers2 In the early 1990s it became technologically
possible to put many more transistors on a single die than earlier. Microprocessors
made a significant progress, their clock frequency steadily increased every year and
their performance started to be comparable with processors used in expensive vector
supercomputers. Due to their mass production microprocessors also were substan-
tially cheaper than tailor-made ones used in supercomputers. That introduced a shift
in supercomputer design towards building machines using many microprocessors.

2.3 Vector architectures today

Despite the shift of technologies in supercomputers, the key ideas that were un-
derstood in vector supercomputers manifest themselves in modern CPUs and are

1Complex Instruction Set Computing (CISC) is a CPU design where single instructions can
execute several low-level operations.

2This paragraph is based on [40].
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known as SIMD extensions. Later the same SIMD extensions appeared on GPUs
and accelerators like Intel Xeon Phi [66]. These extensions are the primary focus of
our thesis.

The important property all the extensions share is that SIMD operations are just
usual instructions, same as scalar arithmetic operations or data movement operations.
To execute a SIMD instruction its operands have to be loaded into SIMD registers.
SIMD registers are not very different from scalar registers, except for their size. For
example, if we assume that the operation on Fig 2.1 uses registers, then SIMD
registers on that picture can accommodate four scalar elements. The exact length of
SIMD registers varies from platform to platform.

The length of a SIMD register is most commonly defined in bits, rather than in
a number of scalar elements. Similarly to scalar registers, the type of its value is
not fixed and may be interpreted differently depending on the instruction that is
being executed. The same holds for SIMD registers — a 128-bit SIMD register can
accommodate four 32-bit floats or 16 eight-bit characters.

All SIMD extensions provide instructions to load data from memory into SIMD
registers and to store data from SIMD registers back into the memory. The way
it works is that a SIMD register is mapped into a continuous region of memory of
the size equal to the SIMD register. On some of the architectures, like for example
Intel, load and store instructions can be of two kinds: aligned and unaligned. Aligned
load/store implies that the memory address used to load/store a SIMD register
is a multiple of the size of a SIMD register. Aligned operations are usually faster.
Application of aligned move operations to unaligned memory results in a hardware
exception.

Operations provided by SIMD extensions vary significantly on different plat-
forms, but usually all of the extensions provide some form of arithmetic operations
on integers and floats, some element reordering operations, comparisons and math-
ematical functions. For more details on the functional classification please refer to
Section 2.4.1.

2.3.1 CPUs

The primarily motivation to introduce SIMD extensions on CPUs was to accelerate
multimedia-related tasks. That is why very often early SIMD instructions were re-
ferred as “multimedia extensions”. Most of the modern CPUs nowadays are equipped
with some form of SIMD instructions. Here are several examples: MVI (Alpha) [115],
Altivec (IBM) [47], MAX (HP) [83], MMX/SSE/AVX (Intel) [60], VIS (SPARC) [132],
NEON (ARM) [5], etc. All these architectures provide a set of vector registers and
some form of floating point arithmetic, logical operations, comparisons and data
movements.

The table in Fig. 2.2 shows the evolution of various SIMD instruction sets in
time. From these figures we can see that the size of vector registers doubles every
few years. Such a growth suggests that SIMD technology is unlikely to disappear in
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ISA extension name Year Bits First appeared

MAX-1 1994 32 bits HP, PA-7100LC
MAX-2 1996 64 bits HP, PA-8000
MMX 1997 64 bits Intel, Pentium I
ALTIVEC 1998 128 bits Apple, IBM, Motorola
3DNOW! 1998 64 bits AMD, K6
SSE 1999 128 bits Intel, Pentium III
SSE2 2001 128 bits Intel, Pentium IV
SSE3 2004 128 bits Intel, Pentium IV
SSSE3 2006 128 bits Intel, Xeon
SSE4 2007 128 bits Intel, Core 2
AVX 2011 256 bits Intel, Sandy bridge
AVX2 2013 256 bits Intel, Haswell
MIC 2012 512 bits Intel, Xeon Phi

Figure 2.2: Length of a vector register

the near future, unless a very radical breakthrough in hardware happens. Also, there
is still a large room for improvement. For instance, the latest vector supercomputer
SX-ACE [91] from NEC is equipped with vector registers which can accommodate
256 doubles. That is an order of magnitude larger than what we have on standard
CPUs. That suggests that speedups we can achieve today due to SIMD will get
larger on the newer generations of hardware.

SIMD operations on the Xeon Phi accelerator are not very different from those
that can be found on latest Intel CPUs. The important difference though is the
long vector register (512 bits) and support for predicated execution of operations, i.e.
normal operations like for example addition can get a mask that determines which
of the elements in the register to add. Predication is very useful when expressing
conditions in vector form.

2.3.2 Graphics Processing Units (GPUs)

Latest generations of Nvidia’s GPUs introduce [98] SIMD instructions as part of their
pseudo-assembly language specification. At first glance it seem to be controversial
as GPUs according to Flynn’s taxonomy are clearly SIMD processors. However,
SIMD instructions provide much more fine-grain parallelism than the same code
implemented in a usual GPU programming model — when a kernel is executed
by a number of SIMT threads. Most importantly, for the diverging program flow,
SIMD operations allow to avoid lock-step execution, which is the way SIMT threads
evaluate a conditional statement.

The usefulness of having SIMD instructions on the GPUs is demonstrated for
example in the work of Y. Liu et. al. [86] where authors demonstrate significant
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speedups of the protein sequence database search algorithm over existing GPU
implementations. The main reason lies in gaining more data parallelism beyond the
SIMT execution model on CUDA-enabled GPUs because of using n CUDA PTX
SIMD video instructions.

Currently the set of supported SIMD operations is not very rich: PTX ISA
v4.1 [98] defines integer addition and subtraction, average, absolute differences, min-
imum/maximum and masking. Most likely the capabilities of SIMD instructions on
GPUs will get more and more advanced, which means that any results obtained for
SIMD instructions on a CPU can be transfered to GPUs.

2.4 SIMD functionality

As it can be seen from Fig. 2.2 there exists a large number of different SIMD
instruction sets available on the market. Despite being non-uniform in the way the
code has to be expressed and exact operations they support, they all share common
functionality. We are going to survey this functionality based on the analysis of
instruction sets provided by three most widely used manufacturers. After that we
will consider potential difficulties when integrating SIMD operations into programs.

2.4.1 Classes of SIMD instructions

We propose a macroscopic classification of the operations of the following instruction
sets: Intel (MMX/SSE/AVX) [60], Altivec [47] and ARM’s NEON [5]. The classifi-
cation is concerned with the functionality of vector operations that a programmer
can use in the code replacing scalar operations with vector ones. By joining the
functionalities of individual architectures we get the following list.

Data movement defines instructions to load and store data from vector regis-
ters to memory and vice versa.

Scientific codes like stencil computations or image processing often require
non-continuous memory access. Such an operation, when elements are be-
ing loaded/stored from/to non-continuous memory are usually referred as
gather/scatter. Some of the latest architectures provide native support for
scatter/gather operations, but it is limited and not very efficient.

One important data movement operation that is found on almost all (but
not every) architecture is broadcast which assigns a scalar value to all the
elements of a vector.

Basic arithmetic defines arithmetic operations like addition, multiplication,
etc. which usually work as ai + bi, where a and b are vector operands.

Advanced arithmetic defines operations that involve more sophisticated pat-
terns compared to basic arithmetics. As an example Intel SSSE3 introduces
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horizontal operations like PHSUBW, PHSUBD which for two operands a
and b compute [a0 − a1, a2 − a3, . . . b0 − b1, b2 − b3, . . . ]. ARM NEON’s VPADD,
VPADAL instructions operate in a similar fashion, performing addition.

Another example of advanced arithmetic are MIN/MAX instructions that
chose a minimum/maximum element of the given vector.

Comparison operations define the element-wise application of standard com-
parison operations like equal, less than, etc. The result is usually a vector of
boolean values which indicates result of the comparison for every pair. Later
such a result is commonly used in masking operations which select compo-
nents either from the first or second operand according to the boolean vector.
Such operations are essential for vectorising the code containing control-flow
like:

for ( i = . . . )
i f ( a [ i ] > 3)

b [ i ] = 5 ;
else

b [ i ] = 6 ;

in which case it is being transformed into something similar to:
for ( vec_i = . . . )

vec_b [ vec_i ] = mask ( vec_lt ( vec_a [ vec_i ] , [ 3 , 3 , . . . ] ) ,
[ 5 , 5 , . . . ] , [ 6 , 6 , . . . ] )

where mask choses elements from the second operand at positions where the
first operand is true and from the third operand at positions where first
operand is false.

Finally, some of the architectures have instructions to set the flag that can
trigger branching if all the elements in a boolean vector are true/false. For
example Intel’s PTEST instruction sets the Zero flag to the result of bitwise
and of all vector components. Altivec defines all and any variants of compar-
ison operations which are element-wise conjunctions and disjunctions of the
vector elements accordingly.

Mathematical operations defines the element-wise application of a mathemat-
ical operation like sin, sqrt, etc. Most of the mathematical instructions operate
on a single or floating point vectors, however for the sake of classification, we
do not fix the type of mathematical operations.

Logical operations are element-wise applications of scalar logical operations
like bitwise and, bitwise or, etc.

Shift operations define element-wise shifts of vector components.

Conversion operations define conversions between different data types. For
example, a vector of integers can be converted to a vector of floats, or first
two elements of a vector of four floats can be converted into a vector of two
doubles.
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Element reordering define instructions that change the order of elements in a
given vector. Those operations are very broad, and can vary from interleaving
odd and even elements from two vectors to reversing elements to performing
a general permutation of elements.

Operations on parts of the vector operate not on all the elements of the
vector but on some subset. For example, indexing operations and assigning
an element of a vector are of that nature. Intel SSE defines a set of operations
with a -SS postfix which operate on the low values of vectors only.

Complex operations define operations that combine several actions in one.
For example: multiply-add (a ∶= a + (b × c)), absolute difference (∣a∣ − ∣b∣), etc.

Application-specific instructions define instructions that implements appli-
cation-specific functions in hardware. For example Intel AVX introduces a set
of AES3-specific instructions for faster cryptography.

Such a classification covers nearly all the instructions of the architectures we
have considered. Please note that as SIMD instructions encode the expected type of
the elements in SIMD registers, we have to be careful when we say that a certain
functionality is present. It often happens that an architecture supports an operation
on vectors of floats, but does not support the same operation on 8-bit integers. This
is especially noticeable on Intel-based CPUs as SIMD extensions were introduced
gradually, not only introducing functionally new operations, but extending the types
that the existing operation can be applied to.

Some specific instructions like memory prefetching or data movement without
polluting caches are left outside of this classification. Their functions do not reflect
any logical operations that help to express parts of algorithms, but they are more of
architecture-specific tricks to optimise data movement.

Most of the SIMD instructions in the proposed classification have standard scalar
counterpart, i.e. their functionality can be directly mapped into several scalar in-
structions from the basic instruction set of a given architecture. However, there are
exceptions from this rule, specifically we are talking about group of instructions for:

• saturated arithmetics4,

• half-floating point (16-bit floats) arithmetics, and

• estimated mathematical functions, for example estimated reciprocal — a faster
but less precise version of the expression 1/x

which all the three manufacturers support. The proposed classification covers the
functionality that these instructions provide, but from a programmability perspective
we believe that they deserve a special treatment.

3Advanced Encryption Standard (AES) is a specification for the encryption of data established
by the National Institute of Standards and Technology (NIST) in 2001.

4A standard arithmetic on integers, but in case the result of an operation overflows, either a
minimum or maximum value of the integer type is returned.
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2.4.2 Known difficulties

Programs that target SIMD architectures in replacing some scalar instructions with
vector ones does not necessarily results in faster execution. One can construct a
number of cases when SIMD implementations will run slower than its scalar analogues.
The main reasons for that are as follows:

Scatter/Gather Gathering data into SIMD registers and scattering it into the
memory is tricky and can be inefficient. Some of the architectures do not
provide any instructions to address this, those that provide them are not very
efficient. This means that whenever operations include non-continuous access
to memory, a programmer has to make choices on how to implement it.

Alignment For sequential memory loads one has to be aware of alignment
issues. Some of the architectures due to technical limitations with load/store
operation require memory address to be aligned. This means that whenever
one loads/stores non-aligned data, two vector loads/stores are required. That
might be done via a special instruction, to avoid manual scaffolding, but the
execution time will be still lower than the aligned counterpart. In order to
tolerate that one would have to align the data in memory (if possible) or
fallback to unaligned loads/stores in case alignment is unknown, like in the
case when a function gets a pointer.

Missing instructions Some instruction sets might not include operations that
might be required in terms of an algorithm. For example shuffling or rotates.
In that case one could try to emulate an operation using existing instructions,
but the risk is that its performance would be so bad that all the achieved
gains will be lost. Alternatively one could fall back on scalar mode, but again,
instruction pipelining, and accessing vector elements might destroy all the
vectorisation gains.

Conditions When vectorising conditions, the usual technique is to execute both
branches and then mask the result. This is inefficient from the power perspec-
tive as we compute vector elements which are going to be discarded. In case
conditions are nested we will have to execute twice the number of operations
than in the original program. To address this problem, the latest instruction
sets introduce predication. This allows one to pass a mask to every vector
instruction and avoid operations on the elements that will be discarded. If
predication is not present, it has to be carefully emulated. This is tricky and
might be inefficient.

Loops In imperative languages like C or Fortran loops are the natural source of
data parallelism. However, building a generic loop vectorisation framework is
challenging, as such a framework has to perform non-trivial code analysis and
capture pretty large context. Loops might contain conditions, control flow or
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other loops. The iterations of the loop might have dependencies. The iteration
space of the loop might be unknown at compile time.

2.5 Programming models

Programming SIMD architectures is a big challenge, as it requires to reformulate
algorithms in a data-parallel style and to take into account all the above-mentioned
difficulties. Programming SIMD architectures in a portable way is a double challenge,
as the means of programming either target a limited number of instruction sets or
have severe limitations on expressibility. Finding the right programming abstractions
that will maximise program performance on the SIMD-capable architectures is an
open problem. Performance characteristics of the instructions vary from architecture
to architecture at the same time exactly those characteristics determine the way
algorithms have to be expressed.

The existing programming models for SIMD architectures very often depend
on the surrounding context. The way a programming model and a programming
language target parallelism in general very much determine how one can program
SIMD. To understand the SIMD choices better we are going to review them in the
context of programming models and languages for general parallelism.

2.5.1 Programming languages overview

Almost all of the early programming languages happened to be imperative. One of
the reasons for that is that most of the early computer architectures were based on
the von Neumann model [141] which is imperative itself, and a lot of languages were
developed by creating abstractions for the parts that were hard to read or long to
write. The first such an abstraction was an assembly language which was just a sym-
bolic representation of machine codes. Further, languages like Fortran [9], Algol [92],
Cobol [117] started to appear, providing higher and higher levels of abstractions. As
a consequence, the mapping from the language into hardware was not so obvious
anymore, plus, when a level of abstraction reached a certain threshold the complexity
of compilers increased dramatically. That in turn had an influence on the quality of
the generated code.

The next non-trivial problem was automatic refactoring. Programming languages
do evolve and introduce new features especially on the early stages of development.
Sometimes it comes as a desire to abstract a certain hardware feature, like for
example the ++ operator being a direct abstraction of an increment instruction;
sometimes it can be a revisit of some earlier design decisions. However, such changes
in programming languages impact existing codes, requiring them to be modified.
Ideally, one would like to refactor the code automatically and to get new language
features for free. Unfortunately, this is not a simple task, especially in the imperative
setup. Realisation of this problem raised a number of proposals explaining how to
make languages more analysable. Peter Landin in [80, 81] demonstrated how the
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semantics of Algol 60 can be formalised using Church’s lambda calculus. Later in 1977
John Backus named his Turing award lecture [10] “Can Programming Be Liberated
from the von Neumann Style?”, where he proposed to use functional programming
to reason about programs using what he calls an algebra of programs. It seems that
the trend was to get rid of imperative programming style and use a functional style
instead. One could claim that this is still valid today.

The main difficulty with such a language shift is the amount of code that exists
and is actively used in day-to-day life. Large projects like OS kernels or compilers
have accumulated millions of lines of code during several decades and they are still
being actively developed. Rewriting them in a new language is a major undertaking,
and as not all the imperative constructions can be easily mapped into declarative
languages, automating this process is arbitrarily hard. Finally, before embarking on
such a rewriting journey, one has to be absolutely sure that the new compilers will
generate code at least as good as the existing one. Unfortunately, none of the existing
functional languages can give such guarantees today.

A lot of mainstream programming languages today were originally designed for
sequential hardware, therefore they do not provide any parallel constructs. When
intending to target parallel hardware using such languages, there is a choice of how
to express parallelism. Most commonly in practice the following three ways are being
used:

1. To use low-level abstractions like inline assembly in the case of SIMD in-
structions or threading libraries in case of multicores. The problem with this
approach is the lack of code portability — to support a new hardware a new
version of the code has to be written.

2. Extending a language. The problem with language extensions lies in finding a
compromise between genericity of extensions and tight control of the underlying
hardware.

3. Recognising parallelism by means of program analysis. Although this is a very
desirable solution, as we mentioned above, analysing imperative languages is
a very challenging problem.

Further we are going to consider existing solutions to the parallel language co-
nundrum as well as to the general SIMD portable programming problem.

2.5.2 Low-level approaches to SIMD programming

The standard way of programming SIMD directly is either by using assembly (if a
language allows, it can be inline assembly), or to use compiler intrinsics. The latter
is a compiler-defined functions that expand into specific assembly instructions. As
we have mentioned earlier, such an approach is bound to produce non-portable code.
At the same time, it allows to explore all the possible capabilities of the architecture,
as the programming happens at the lowest possible level.
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Library-based

To abstract things away, a number of projects propose tailor-made libraries to target
SIMD instructions [142, 75, 41]. For example, M. Kretz et. al. describe a C++ library
called Vc [75] and they demonstrate that the overheads of the library are negligible
which means that it can be used as a replacement for intrinsics or assembly kernels.
In despite of someone has to create and maintain a library, updating it whenever a
new architecture appears etc., for performance reasons the level of abstraction that
the library creates has to be eliminated by the underlying compiler. Guaranteeing
such a behaviour is very difficult, but the performance penalty might get rather high.

Intrinsics to intrinsics mapping

To increase a portability of architecture-specific codes [152] presents a mapping from
the ARM intrinsics to MMX/SSE intrinsics, allowing one to run applications created
for ARM-tuned applications on Intel.

Virtual instruction sets

The HSA5 foundation proposes [45] a design of a processor which integrates heteroge-
neous hardware, most importantly CPUs and GPUs, on the same bus and provides a
unified programming model to target them. HSA introduces virtual memory address
space which can be mapped into the main memory and the memory of GPUs. The
virtual instruction set is kept ISA-agnostic, providing support for parallel sections of
the algorithm. Virtual instructions are dispatched to concrete devices by the runtime
system which is a part of the HSA programming model. One of such devices can be
SIMD, although while the project is at the design phase and no actual hardware is
built, for the time being it is difficult to evaluate the validity of such an approach in
application to SIMD.

R. Bocchino et. al. [15] address the problem of portability of SIMD instructions
by introducing a virtual instruction set specially designed for vector operations. The
main design criteria is to provide an abstraction for various vector architectures and
architecture classes. Architecture classes include sub-word SIMD like Intel SSE and
PowerPC Altivec and streaming processors like RSVP [30]. The proposed virtual
instruction set allows both arbitrary length and fixed vectors providing asynchronous
load and store semantics for long vectors and introducing alignment attributes. The
compilation scheme involves a compiler which can generate a portable vector code
and a translator with full information about the target architecture and system
configuration.

5Heterogeneous System Architecture (HSA) foundation is a not-for-profit industry standards
body focused on making it dramatically easier to program heterogeneous computing devices.

18



2.5.3 Annotations

One of the most pragmatic and yet powerful approach to extending a programming
language with extra functionality is to come up with a set of annotations on top of
the existing syntax. OpenMP [102] has started out as a set of extensions for C and
Fortran for multi-platform shared memory multiprocessing programming. OpenMP
uses a fork-join multithreaded execution: it spawns a group of tasks at the beginning
of a parallel section and waits until all the tasks are terminated at the end of the
section. OpenMP provides a set of directives to orchestrate the process. A typical
example is:

#pragma omp p a r a l l e l for pr i va t e ( i ) shared (x )
for ( i = 0 ; i < N; i++)

x [ i ] = x [ i ] + 1 ;

The annotation on top of the for-loop informs the compiler that the loop should
be executed in parallel, that the variable x should be shared between the threads and
that the variable i is private for the individual threads. The variable i is an iteration
variable of the loop, so every thread would range over the slice of the iteration space.
How exactly the iteration space is going to be divided between the threads depends
on the implementation of OpenMP. However, the default schedulers can be controlled
for every parallel section.

Comparing with manual approaches for multi-threaded execution, like for exam-
ple when using pthreads [93], OpenMP is much simpler for a programmer and the
resulting code is suitable for both single threaded and multi threaded executions.
The annotations can be ignored by means of a compiler switch. The latest OpenMP
standard (version 4.0) allows one to use the code on GPUs.

OpenMP 4.0 [103] and Cilk+ [62] introduce high-level constructs targeted at
SIMD instructions. Cilk+ introduces a pragma called simd with the following de-
scription: “The pragma can be applied to a loop, to indicate the intention that the
loop needs to be implemented using vector instructions.” OpenMP 4.0 introduces an
analogous prgama called pragma omp for simd. Both extensions introduce a way
to annotate a function operating on scalar elements, which creates a version of the
function where scalar operations are projected into corresponding SIMD operations,
and as a result a function can be applied to SIMD arguments. Cilk+ calls this
elemental functions, and OpenMP 4.0 — declare simd construct.

The limitations of the annotation-based approach are first of all that the annota-
tions have to be inserted manually. That raises risks for introducing race conditions
and synchronisation bugs which are really hard to find. OpenMP uses a threading
model called fork-join model in which program execution branches off at designated
points in the program and has to be joined at a subsequent point, resuming sequential
execution. Such a high level threading abstraction does not allow one to fine-tune
the parallel execution. Finally, a compiler has to support OpenMP which implies
that various compilers may not produce equally performing code (time wise).

OpenACC [101] is another set of compiler directives for C and Fortran with a
primary goal to offload computations to accelerators. A typical code looks like this:
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#pragma acc data copyin (A[ 0 : n∗n ] ,B [ 0 : n∗n ] , n ) , \
copyout (C[ 0 : n∗n ] ) , c r e a t e (tmp , i , j , k )

{
#pragma acc p a r a l l e l loop p r i va t e (tmp)
for ( i = 0 ; i < n ; i++)

#pragma acc loop p r i va t e (tmp)
for ( j = 0 ; j < n ; j++) {

tmp = 0 ;
#pragma acc loop reduct ion (+:tmp)
for ( k = 0 ; k < n ; k++)

tmp += A[ i ∗n+k ] ∗ B[ k∗n+j ] ;

C[ i ∗n+j ] = tmp ;
}

}

This is a matrix multiply example. The annotations on top of the loops are
very similar to what we have seen in the case of OpenMP. They indicate that the
annotated loop should be executed in parallel and specify which variables are not
shared. In reduction loops, as in the case of the inner loop that sums results into tmp
variable, the annotation indicates the reduction operation and reduction variable.
Also, we have to specify which data has to be transferred to an accelerator and which
should be copied back to the host.

OpenCL [73] is another popular approach that allows to target CPUs and accel-
erators like GPUs. OpenCL positions itself as a standard for writing programs to
be executed on heterogeneous systems. It is not directive-based, instead it views a
computing system as consisting of compute devices which normally are CPUs and
accelerators, and it defines a C-like language to create kernels that execute on com-
pute devices. This approach still allows one to reuse existing programs written in C,
but it requires one to introduce a lot of boilerplate code to establish communication
with compute devices.

The C-like language for kernel programming defines abstractions to express SIMD
operations. In case kernels are executed on a CPU, depending on the implementation
of OpenCL, these operations may be mapped into SIMD extensions of the given
processor. In case kernels are executed on GPUs, the abstractions may be mapped
into SIMD instructions of a graphics card.

2.5.4 Extensions of the existing languages

An alternative to using annotations is to introduce new constructs in the language.
The main difference between the two approaches is that annotations can be easily
ignored and the program would be still usable in terms of the original language,
where extensions irrevocably change semantics of programs.

Languages like UPC [20], Coarray Fortran [94], HPF [56] follow this approach.
UPC extends C99, Coarray Fortran extends Fortran 95/2003 and HPF extends For-
tran 90. HPF (High Performance Fortran) uses a data parallel view of computations
which allows one to spread a computation on a given array across several processors.
HPF defines an implicit parallel statement such as FORALL and introduces a way
to define side-effect-free procedures via the IMPLICIT keyword. Additionally HPF
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allows one to control how data is being distributed across processors by annotating
data allocations. Finally it defines additional routines for message passing, in case
parallelism does not fit into HPF model and a number of library routines.

UPC and Coarray Fortran are based on the PGAS [32] model. The main idea
of PGAS (Partitioned Global Address Space) is to introduce locality awareness on
top of message passing. PGAS presents distributed memory as a continuous address
space. However, the address space is also logically partitioned between threads or
processes which allows local computations, and at the same time all the memory is
shared which allows SPMD style programming. Both UPC and CAF use source-to-
source translation, producing the C or Fortran code appended with communication
routines. The main difference between the languages is that UPC allows uniform
access to any memory cell (potentially with some time overheads) when CAF is strict
with respect to the boundaries of distributed arrays. In the case of the need to access
remote memory a special syntax has to be used.

All the above mentioned examples did not target SIMD instructions as their
primary goal. The main architectures in mind were multi-threaded machines or
clusters. However, the presence of FORALL-like parallel constructions in the language
allows a compiler to chose how to implement an operation. For example a compiler
can chose to express it via SIMD instructions.

2.5.5 Fully implicit parallelism

All the languages we have discussed so far require a programmer, in one form or
another, to take decisions on how to parallelise the program. For example explicit
annotations as in case of OpenMP or the way data is going to be distributed across
the cluster. In principle, there is nothing wrong with being explicit, however, by
providing explicit information one lowers portability of such a code. For example,
different architectures may require different ways of program parallelisation. As a
consequence, in the explicit case a program would have to be rewritten manually.

Languages with fully implicit parallelism solve this problem by prohibiting any
user annotations on how to parallelise programs. It is assumed that a programmer
provides a specification and nothing more and then the compiler, by means of anal-
ysis and heuristics decides how to execute it for a given architecture. This shifts
responsibility from programmers to a compiler. Also, in case a compiler made a
wrong or inefficient choice, a programmer can do very little. However, assuming that
compilers do a good job, we will get a program which is much more likely to be
ported on a novel hardware architecture than its explicit counterparts; and a pro-
grammer would be able to concentrate his or her time on more important issues than
low-level optimisations. The question whether compilers can make better choices
than humans is of a philosophical nature, however one might think of the following
analogy. In the early days when most of the programs were written in assembly a
lot of programmers sincerely believed that languages like Fortran would never be
able to replace skilled assembly programmers. In principle it might be true, but
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from the practical perspective, we do not have a lot of assembly code around these
days. Implicit languages are an important instrument in a toolbox of a performance
engineer, the more is done by a compiler successfully, the more time an engineer has
to work on

Examples for languages with fully implicit parallelism are SaC [50] and NESL [13].
Both are functional languages and both were developed in the early 1990s. NESL uses
the sequence as a basic building block to express parallelism, and the main power
of the language lies in ability to flatten algorithms on nested sequences, preserving
parallelism. SaC uses arrays as building blocks, borrowing ideas from APL [65] (not
the syntax though), defining all the APL-like combinators via a single data-parallel
primitive called the with-loop. This approach allows compilers to perform aggressive
cross-operator optimisations and to generate code performance-wise compatible with
C programs. The compiler sac2c [119] in its current state supports compilation for
shared memory machines and for NVIDIA GPU cards. Both languages are strongly
typed first order functional languages.

Another language that builds on the ideas of NESL is DpH (Data Parallel
Haskell) [21]. The functional setup of Haskell seem to be very useful to support
data parallel operations. However, the fact that it uses lazy evaluation makes it
rather difficult to generate high-performing parallel code. DpH introduces unboxed
arrays, which are the main building blocks for data parallelism and explicit primitives
that allow one to distribute an array between threads and join it back. These mech-
anisms allow one to implement data-parallel operators and a number of techniques
like flattening (similar to NESL) and fusion (similar to SaC with-loop fusion) are
employed to make it efficient.

Automatic vectorisation

Automatic vectorisation is one of the standard ways to target SIMD and is being
supported by most of the existing compilers. The general idea is to perform program
analysis, identify the parts of a program that can be executed on the underlying SIMD
hardware and rewrite those parts accordingly. Automatic code vectorisation has
been known [2, 48] since the appearance of first vector supercomputers. Most of the
programs those days were written in imperative languages like Fortran. Consequently
all the vectorisation techniques assumed a Fortran-like input language. The main
challenge there is to identify identical operations and rewrite them into vector form.
The main source of identical operations is a loop, or generally speaking a loop-nest.
When transforming loops into vector form like as proposed in [2] the main challenge
is to identify dependencies between the statements in the loop nest. This can be
understood from the following example:

for ( i = 0 ; i < N; i++)
x [ i ] = x [ i ] + e ;

where all the iterations can be done concurrently; however, consider this:
for ( i = 0 ; i < N−1; i++)

x [ i +1] = x [ i ] + e ;
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where dependencies make this loop non-vectorisable. A lot of research [105, 76,
79] has been dedicated to developing a theory of dependencies and further loop
transformations.

A more advanced technique which continues the idea of loop dependencies is
the polyhedral model [42]. In classical dependency analysis [71], the fundamental
representation is a dependency graph. All the reasoning is based on this graph. In the
polyhedral model, the dependency graph is represented by means of a system of linear
inequalities. The representation allows one to use linear programming techniques
to identify all semantically preserving orders in which the statements inside the
loop-nest can be executed. The order in which iterations are being executed is called
a schedule. Depending on the kind of optimisation we are after, we might chose
different schedules.

Both, the polyhedral model and classical dependency analysis allow one to au-
tomatically vectorise some programs. The problems with both approaches are the
following:

• As optimisations are performed on an imperative language it becomes difficult
to deal with function calls inside loop nests. Functions are not pure, as they
might have side effects, and in case a function cannot be inlined, the analysis
might just give up. The effect system is not decomposable across function
boundaries, so vectorisation decisions have to be taken locally.

• Data layouts are statically fixed. In a number of cases that inhibits vectorisation,
as strided loads and stores are inefficient for both cache locality reasons and
vector load/store reasons.

Modern compilers like GCC [44], LLVM [28] and ICC [61] are equipped with
auto-vectorisers. Auto-vectoriser’s code base is large and complex — occupying
about 25 000 lines of code in GCC, an auto-vectoriser considers data dependencies
of the loops, internals of the target architecture and using a cost-model it determine
whether it is reasonable to vectorise a given loop. A cost model is the essential part
of any auto-vectoriser. SIMD instructions, as any parallel technology can not only
increase performance of programs, but also decrease it dramatically when being used
inconsiderately. Many factors have an influence on vectorisation. SIMD instructions
can take different number of cycles to execute; memory alignment has a large effect on
some architectures; high level operations can be implemented with a large number
of expensive SIMD instructions. In order to tackle these problems most modern
compilers include a cost model for every supported CPU, where each instruction is
annotated with its execution time. Based on this information the auto-vectorisers
checks if a certain vectorised operation does not decrease performance (in comparison
with the original code).

An automatic vectoriser does not require any effort from the side of a programmer,
who just compiles the code and the vectoriser uses knowledge and heuristics to do
the job. This is a very pragmatic approach to exploit SIMD instructions. As a result,
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the program is being decoupled from a programmer’s intuition about hardware and
in case patterns are recognised, the original program starts to perform much better
with no effort from the side of a programmer. However, in case an auto-vectoriser
fails to identify vectorisable parts of a program, there is no way for a programmer
to pass extra information to it.

2.5.6 New languages

There are a number of proposals for new languages that improve the programmabil-
ity of vector instructions. As one such example consider the ISPC6 language [109]
proposed by Intel. The language uses what they call an SPMD on SIMD computation
model which is very similar to the GPU programming approach, but in the case
of ISPC exclusively targets the SIMD instructions of normal CPUs. The syntax is
based on C89 [3] with some support for C99 [63] features. The underlying execution
model assumes multiple programming instances running concurrently. The group of
running program instances is called a gang and usually equals the number of SIMD
lanes available. The gang always runs on a single core and never introduces implicit
thread creation or context switches. Writing an ISPC program largely reminds one
of writing a kernel for CUDA or OpenCL. For example primitives like the thread
identifier in the gang and the number of threads in the gang are made explicitly
available to a programmer. Explicit synchronisation primitives are not present as
convergence guarantees during the execution are stricter. The language introduces
uniform and varying qualifiers for data types to mark if a variable has to be repli-
cated across program instances or not. The language allows one to annotate an array
of structures to be stored in memory as a hybrid structure of arrays which allows to
store multiple fields of multiple data structures adjacent in memory. That in turn
allows one to load and store data into SIMD very efficiently. Pointer operations are
extended to SPMD, which allows one to mimic vector operations on pointers.

Another language that is concerned with targeting SIMD instructions of standard
CPUs is Vector Pascal [33]. Vector Pascal enriches the standard Pascal language
with data parallel abstractions inspired by APL and functional programming. Arith-
metic operations are applicable to whole arrays and APL-like combinators (reduce,
slice, etc.) are added as new primitives. The language is concerned with data paral-
lelism and uses sophisticated code generation techniques to implement data parallel
operations efficiently on SIMD-capable hardware.

6Intel SPMD Program Compiler (ISPC) is a compiler for a variant of the C programming
language, with extensions for “single program, multiple data” (SPMD) programming. ISPC targets
the SIMD units of CPUs and the Intel Xeon Phi architecture. For more details see https://ispc.
github.io/
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2.5.7 High productivity languages7

In 2002, DARPA launched the HPCS [38] (High Productivity Computing Systems)
programme to fund research and development of high performance computing systems
focusing on high productivity. The main motivation of the project was an observation
that modern HPC systems lack programmability. As HPC systems became more and
more advanced it is getting more and more difficult to exploit the resources of such
systems. The languages developed under the programme should increase productivity
by supporting general parallelism and separating algorithms from implementations.

As a result of this program three new languages were proposed: X10 [23], Chapel [22]
and Fortress [1]. Fortress is a language developed by SUN with the intention to be
syntactically very close to mathematical notation, yet providing all the abstractions
for handling parallelism. It is assumed that parallelism would be achieved implicitly
via constructions like parallel for, do . . . also do . . . end, tuples, etc.; however explicit
threads can be spawned as well. The memory consists of locations, which are placed
in specified regions, which in turn are organised in a tree structure, describing the
structure of the machine. The Fortress implementation is interpreted running on top
of JVM.

X10 is developed by IBM and is an extension to Java. X10 uses the notion of
places which is a computational unit with a local shared memory. Each X10 program
runs over a set of places, where each place either hosts data or runs an activity. X10
also differentiates values (read only data) from referenced objects (read and write
data). A number of explicit synchronisation mechanisms like barriers are introduced
in order to drive parallel execution. X10 compiles down to Java.

Chapel does not directly extend the syntax of any existing language but borrows
it from the languages: C, Fortran, Java and Ada. It does support object oriented
features, and similarly to X10 introduces a notion of value classes. When normal
classes are passed by reference, value classes are similar to C structures. Similarly to
X10, Chapel introduces a notion of locales which intuitively corresponds to a shared
memory node in a cluster. A program is presented with an array of locales which
represents the memory of the machine that can be accessed. Parallelism is mainly
achieved implicitly via parallel constructions. The Chapel compiler generates C code.

All of the languages support explicit distribution of data structures (mainly mutli-
dimensional arrays) across the available memory. The mapping is done explicitly by
choosing a distribution for a particular data.

Similarly to the languages discussed in Section 2.5.4, HPCS did not include any
explicit means to target SIMD instructions. Nevertheless, the availability of general
parallel constructions makes potential vectorisation of such programs easier.

7This description is largely based on the Michele Weiland report [144]
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2.6 Data layout transformations

In our work we have identified that fixed data layouts in many cases prevent efficient
vectorisation. The observation that fixed data layouts prevent some of the optimisa-
tions and relaxing data mappings can lead to more efficient code is not new and was
observed in various contexts. Let us explore the existing techniques in the context
of data layout problem.

2.6.1 Data distribution on clusters

When computation happens on a distributed system, the data used in a program is
distributed across the nodes of the system. Normally, communication between the
nodes is expensive, so ideally we want all the data required for a computation to
be available on a local node. In order to do so one has to decide how to distribute
the data in the first place. This problem is addressed by Kennedy et. al. [72] where
they propose an automatic tool that performs a whole program analysis, generates
layouts for program parts and uses integer programming techniques to select optimal
layout combination for the overall program under a given cost model. [110] solve a
similar problem, but additionally to data distribution they ensure that in terms of
one parallel loop, arrays are aligned towards each other with respect to offsets, strides
and general axes relations. For clusters such an alignment results in more efficient
runtime. Their technique allows to analyse whole programs including branching,
loops and nested parallelism. As a result of such an analysis arrays might change
dimensionality, or padding, or store data in a strided fashion, i.e. use every n-th
element.

2.6.2 Optimisation of cache misses

Data layouts are known to be used for optimising cache misses. One of the simplest
techniques briefly discussed in [29] is to transpose an array. In case of two dimensions,
transpose means switching from row-major to column major representation. One
of the simplest examples to illustrate the benefit is a standard matrix multiply:
Cij = ∑

k
AikBkj. From the indexes we can see that if the data layouts of A and B are

the same, then one of the arrays will have strided access, which increases cache misses.
In case A is row-major and B is column-major, both accesses will happen with stride
one. [113] decrease cache misses by adding paddings to the arrays used in a program.
Paddings are added on the individual dimensions of the arrays as well as between the
allocated arrays. This is useful because, as the authors identified, when arrays are
allocated at addresses which are multiples of the cache size, they might be mapped
into the same cache-line when loading the data. This results in a cache miss on every
access. This does not happen when paddings are introduced. [24] investigates usage
of non-linear data layouts. Non-linear means that the mapping of the array indexes
cannot be expressed as a linear function. They consider two cases of such layouts:
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blocked layout and Morton order. The idea to cut arrays into blocks comes from the
result obtained in [78] that if an array of size tR× tC is continuous in memory and fits
in cache then it creates no self-interference misses. Such a block is used as a building
block for new data layouts. One layout that is considered converts a two-dimensional
array m × n into a four-dimensional m div tR × n div tC ×m mod tR × n mod tC .
Another layout considered is Morton order. Morton order is one of the recursive
data layouts, discussed in [25] and can be described as follows: divide the original
matrix into four quadrants, and lay out these sub-matrices in memory in the order
NW, NE, SW, SE, then apply the same procedure to every quadrant. The stopping
point could be either when 1 × 1 size is reached, or as in the case of [24] when the
quadrant size reaches tR × tC which is laid in memory using row-major order. Both
cases introduce better spatial locality, and as authors suggest, are better suited for
hierarchical memory systems. Finally, [145] introduces a source to source compiler
for the C language that implements matrices in Morton order.

Typical questions for the layout type analysis are:

1. What to do with conflicting data layouts? For example, in the case of trans-
posing arrays, what happens if the same array is referenced in two expressions
which imply contradicting layouts. We can either abandon layout transforma-
tion for such an array, or try to estimate which layout is more beneficial, or to
change the layout dynamically.

2. How to make sure that transformation does not decrease performance? We
can be either very conservative and reject programs that might decrease per-
formance or we can try to use a cost model to decide.

3. Applicability. Are there any factors which make it impossible to transform
layouts? One of the factors could be hard-analysable language constructs. For
example, in C one can obtain a pointer into an array and access data via
this pointer. And what happens if a program is split into modules which are
compiled separately?

2.6.3 Vectorisation

When looking at manual optimisations of data layouts for better vectorisation, trans-
posing the data becomes very important as it improves vector loads and stores. These
transformations are commonly known as “transforming array of structures into struc-
ture of arrays” or (AoS-to-SoA). Here is an example described in [108]. Assume that
we store an array of triplets in the following way:

/∗ Define a s t r u c t u r e t ha t ho l d s t h r e e e lements . ∗/
struct t r i p l e t {

double x , y , z ;
} ;

/∗ Define an array o f t r i p l e t s o f s i z e N. ∗/
struct t r i p l e t A[N ] ;

and we access it like this:
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for ( i = 0 ; i < N; i++) {
. . .
A[ i ] . x
. . .

}

Let us assume that the above loop can be vectorised over i, which means that we
replace V subsequent loop iterations with vector operations, where V is a number
of elements in a SIMD register. In that case we will have to load V components
of the array A at positions i, i + 1, . . . , i + V − 1. This creates a strided access into
memory. To accommodate this we need to reshuffle the elements. This is what is
called AoS-to-SoA transformation. There are number of different ways to do this:

1. We can do it dynamically on every load. Some of the architectures provide
instructions to make such a load. If not, we can manually access individual
components in memory and put them in the corresponding positions of a vector.
Usually this is not very efficient, as we mix vector and scalar instructions, which
affects pipelines and strided access affects caches. Alternatively we can load 3V

elements into SIMD vectors, and reshuffle them within registers. In that case
after reshuffling we get three vectors with x, y and z components accordingly.
This improves memory access, but reshuffling pattern gets rather complicated
and might be inefficient.

2. We can change data layouts and store a transposed version of A in memory:
struct t r i p l e t_ t r {

double x [N] , y [N] , z [N ] ;
} ;

struct t r i p l e t_ t r A_tr ;

This can be done locally i.e. before entering a loop we want to vectorise, we
transpose an array, either in-place or copying data to a newly allocated memory
and then we update data accesses to the array replacing it with accesses to the
transposed data structure. For the considered example it will look like:

/∗ Transpose . ∗/
for ( i = 0 ; i < N; i++) {

A_tr . x [ i ] = A[ i ] . x ;
A_tr . y [ i ] = A[ i ] . y ;
A_tr . z [ i ] = A[ i ] . z ;

}

/∗ Updated r e f e r enc e s in the loop . ∗/
for ( i = 0 ; i < N; i++) {

. . .
A_tr . x [ i ]
. . .

}

/∗ Update array A, in case i t i s in use . ∗/

Note that if the elements of the array A are in use after the loop, array A has to
be updated by copying data from the A_tr. This approach is described in [106],
where the authors pay attention on how to do vectorise the transpose itself.

Alternatively, data layouts can be changed globally. For our example it means
that we replace all the references to A with a modified reference to A_tr which
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means that we do not need to copy memory at runtime, but the price for that
is a whole program analysis.

The program analysis that is required to change data layouts automatically across
the whole program is highly non-trivial process. There were a number of attempts
to formalise such a process, for example in the work of O’Boyle et. al. in [100, 99].
The authors describe an algebraic transformation framework for data layouts and
introduce how it can be modified with polyhedral-like local loop transformations.
The main idea is to present data accesses to arrays inside a loop-nest as a system of
linear inequalities. Further, layouts of the arrays can be transformed in a systematic
way even in the presence of loop transformations. However, the global layout trans-
formations involving data-layout-related questions formulated above are left out of
the scope.

2.7 Summary

From this chapter we have seen that in principle automating the process of changing
data layouts is technically possible. If the desired data layout is known, there are
very powerful code generation techniques allowing to achieve this. From previous
manual optimisation experiences we have seen that automating support for certain
kinds of data layouts for better vectorisation is very desirable. However, none of the
works as it seems explains how to choose data layouts in a systematic way for the
overall program, how to express the transformed code in a portable fashion and how
to make sure that the code with adjusted layouts preserves semantics of the original
program. These are the questions that we are going to answer further in the thesis.
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Chapter 3

Portable vectorisation as a backend

In this chapter we present an abstraction layer implemented as a set of C lan-
guage extensions within the GNU GCC compiler which provides an interface for
SIMD vectors and operations independently from the architecture. First of all, these
abstractions allow to exploit SIMD extensions of a CPU explicitly, which is useful
when an auto-vectoriser fails. Secondly, the abstractions are general enough to be
mapped to any hardware supporting SIMD paradigms; hence the new abstractions
could be considered as a step forward to a new C language standard. Most impor-
tantly we argue that for the best performance and the least implementation effort,
the abstraction layer for explicit SIMD should be implemented as a language exten-
sion, which allows to reuse large parts of the existing infrastructure of compilers like
auto-vectorisation backends and general optimisations on scalars.

3.1 Introduction

In an ideal world we would like all the inner-loop refactoring to happen automatically
under the hood of a compiler. A lot of successful research in this direction has been
done already [95, 131, 112, 28]. Most modern compilers including GNU’s GCC,
Intel’s ICC, and LLVM are equipped with some form of auto-vectoriser. However,
even the smartest auto-vectoriser is bound to be limited to the code pattern it has
been programmed to recognise.

We are concerned with the cases when auto-vectorisers fail despite dealing with
some code that can be transformed into a SIMD suitable form. In that situation,
it would be desirable if a programmer could explicitly instruct the compiler where
to insert SIMD instructions. While this can always be achieved by inserting inline-
assembly into the program, this constitutes an inherently non-portable solution.
Not only does this imply a lock-in into a particular architecture, it also inhibits an
immediate benefit from larger vector sizes in the next generation.

Secondly, it puts some additional burden on the programmer as she has to acquire
an in-depth understanding of the architecture that is being targeted. She also has

This chapter is based on the CPC-2012 paper [124]
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to make sure that the interfacing between the inline assembly and the C context is
handled properly which either requires some difficult to read and maintain wrapper
code or the use of intrinsic operations, which are provided by most modern compilers.
However, these are typically translated into literal wrappers which improve readability
but do not resolve any of the other issues.

Also, an inline assembly approach inhibits any optimisations across these oper-
ations such as constant propagation, code reorganisation or any optimisation that
requires in-depth knowledge of the operation. Truth to be told, this is applicable to
compilers that can target multiple architectures. For instance the Intel compiler can
incorporate some of the intrinsics into optimisation cycle, but the binary it generates
can only run on Intel architectures.

The situation gets even worse when C is being used as a backend language
for some compiler. This is an example we are dealing with in this thesis — the
SaC compiler generates C code on output, and during compilation we possess the
knowledge that some of the code can be vectorised. How could we express this fact
being sure that C compilers could pick it up?

We propose a set of C language extensions which provide full support for vectors
and vector-operations independently from the architecture. The vector operations are
being dispatched to the SIMD extensions of a CPU if they are present, or implemented
with a number of scalar operations, otherwise. The key design criteria is to come up
with as small as possible set of extensions that is large enough to:

1. benefit from the various existing SIMD instruction sets available on the market
today, and

2. enable the programmer to conveniently express various SIMD applications.

Rather than inventing a completely new set of abstractions that suit these criteria,
we build on the set of abstractions for SIMD operations that have been proposed in
the context of OpenCL [73]. However, in contrast to OpenCL, we have integrated
these operations into the GNU GCC compiler [44].

3.2 Motivation

As a running example we will consider a Move To Front (MTF) transformation which
is used in modern compressing algorithms like BZIP2 [120]. This algorithm can be
vectorised, however the pattern of the vectorisation is non-trivial and none of the
auto-vectorisers we have tried out succeeded.

3.2.1 Move To Front (MTF) Algorithm

In order to improve compression algorithms which use the Burrows-Wheeler Trans-
formation (BWT) [19] as an additional post-processing step one can use the Move
To Front (MTF) transformation. After applying BWT we expect to get a string
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containing groups of repeating characters; for example ‘bbbcccaaa’. In order to de-
crease the entropy of the message and improve the efficiency of further Huffman
encoding [59] we replace each symbol of the message with its index in the list of
recently used symbols. The way the MTF works can be understood in Fig. 3.1. As

Original message Encoded message Alphabet

bbbcccaaa ∅ abcdefghijklmnopqrstuvwxyz
bbbcccaaa 1 abcdefghijklmnopqrstuvwxyz
bbbcccaaa 1,0 bacdefghijklmnopqrstuvwxyz
bbbcccaaa 1,0,0 bacdefghijklmnopqrstuvwxyz
bbbcccaaa 1,0,0,2 bacdefghijklmnopqrstuvwxyz
bbbcccaaa 1,0,0,2,0 cbadefghijklmnopqrstuvwxyz
bbbcccaaa 1,0,0,2,0,0 cbadefghijklmnopqrstuvwxyz
bbbcccaaa 1,0,0,2,0,0,2 cbadefghijklmnopqrstuvwxyz
bbbcccaaa 1,0,0,2,0,0,2,0 acbdefghijklmnopqrstuvwxyz
bbbcccaaa 1,0,0,2,0,0,2,0,0 acbdefghijklmnopqrstuvwxyz
∅ 1,0,0,2,0,0,2,0,0 acbdefghijklmnopqrstuvwxyz

Figure 3.1: The MTF transformation steps

it can be seen, the encoding process at each step consists of finding an index of the
symbol in the current state of the alphabet followed by the alphabet update, where
the symbol is being moved to the first position of the alphabet.

The MTF is being used in BZIP2 compression, but while decompression the
reverse version (unMTF) is used. This reverse version and its vectorisation will be
used as a motivating example in this chapter. The decoding procedure is very similar
to the encoding one. We will need the encoded message and the original alphabet
used during encoding. We traverse the encoded message from left to right and replace
every number it with the symbol in the alphabet at the position equal to the number,
and, as during the encoding, move the symbol to the front of the alphabet. Fig 3.2
demonstrates this process.

Encoded message Decoded message Alphabet

1,0,0,2,0,0,2,0,0 ∅ abcdefghijklmnopqrstuvwxyz
1,0,0,2,0,0,2,0,0 b abcdefghijklmnopqrstuvwxyz
1,0,0,2,0,0,2,0,0 bb bacdefghijklmnopqrstuvwxyz
1,0,0,2,0,0,2,0,0 bbb bacdefghijklmnopqrstuvwxyz
1,0,0,2,0,0,2,0,0 bbbc bacdefghijklmnopqrstuvwxyz
1,0,0,2,0,0,2,0,0 bbbcc cbadefghijklmnopqrstuvwxyz
1,0,0,2,0,0,2,0,0 bbbccc cbadefghijklmnopqrstuvwxyz
1,0,0,2,0,0,2,0,0 bbbccca cbadefghijklmnopqrstuvwxyz
1,0,0,2,0,0,2,0,0 bbbcccaa acbdefghijklmnopqrstuvwxyz
1,0,0,2,0,0,2,0,0 bbbcccaaa acbdefghijklmnopqrstuvwxyz
∅ bbbcccaaa acbdefghijklmnopqrstuvwxyz

Figure 3.2: The unMTF transformation steps

The trivial implementation of a single step of unMTF is the following one:
char unMTF(char alphabet [ 2 5 6 ] , int idx )
{

char c = alphabet [ idx ] ;

for ( ; idx > 0 ; idx −−)
a lphabet [ idx ] = alphabet [ idx −1 ] ;
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return alphabet [ 0 ] = c ;
}

The variable idx is a number in the encoded message, and alphabet is the current
state of the alphabet. The algorithm implemented as above is uses inefficient alphabet
rotation — it has O(N) worst case complexity, where N is the length of the alphabet.
This rotation happens on every symbol of the encoded message so BZIP2 uses a
more advanced implementation which makes it possible to reduces the worst case
complexity to O(

√
N).

By dividing the alphabet into
√
N chunks, the chunk that contains the symbol

has to be updated, shifting the elements as in the above code, but all the chunks
before can be updated by changing their first and last symbols. The implementation
of this approach looks as follows:

#define N 4096
char alphabet [N ] ;
short ptr [ 1 6 ] = {N−256 , N−256+16 , N−256+16∗2 , N−256+16∗3 , . . . } ;

void rotate_segment (char ∗v , int idx )
{

i f ( idx == 0)
return ;

do
v [ idx ] = v [ idx −1 ] ;

while (−− idx ) ;
}

void rearrange_alphabet ( )
{

int i , j , k = N−1;
for ( i = 15 ; i >= 0 ; i −−)

{
for ( j = 15 ; j >= 0 ; j −−)

a lphabet [ k ] = alphabet [ ptr [ i ] + j ] , k−−;
ptr [ i ] = k + 1 ;

}
}

void unMTF( int idx )
{

int i , q , r , c ;

i f ( idx == 0)
return ;

q = idx / 16 ;
r = idx % 16 ;
c = alphabet [ ptr [ q ] + r ] ;

rotate_segment(&alphabet [ ptr [ q ] ] , r ) ;

ptr [ q]++;
for ( i = q ; i > 0 ; i −−)

{
ptr [ i ] − − ;
a lphabet [ ptr [ i ] ] = alphabet [ ptr [ i −1 ]+15 ] ;

}

a lphabet [−− ptr [ 0 ] ] = c ;
i f ( ptr [ 0 ] == 0)

rearrange_alphabet ( ) ;

return c ;
}
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The chunk q contains the symbol we are after (stored in c) at position r. The
alphabet is stored in the variable alphabet which has bigger size than the length of
the actual alphabet. Chunks are represented as parts of alphabet of a constant size.
Shifting all the elements of a chunk one element to the right is achieved by decreasing
the starting position of the chunk by one element and updating the element at this
position. The variable ptr is an array of starting positions of the chunks in alphabet.

The chunk q is updated by moving the elements from r-1 to 0 one element to
the right (this is done by rotate_segment). The element at position 0 in the chunk
q is replaced with the last element from the chunk q-1. For all the chunks from q-1
to 0 we decrease its starting index by one, and put the last element of the previous
chunk into the position 0 of the chunk we currently update. The first symbol of the
very first chunk is replaced with the c.

As each unMTF step potentially moves chunks to the left, eventually the first
chunk will reach the first position in alphabet, in which case the alphabet-array has
to be rearranged by putting all the chunks at the end of the array; this is done using
rearrange_alphabet function.

In BZIP2 the length of the alphabet is 256 which after dividing into chunks gives
us 16 chunks each of which is 16 characters long. Conveniently enough standard
SIMD registers these days are 128-bit long which is exactly one chunk. This means
that rearrange_alphabet can move chunks with two vector instructions rather
than with 16 scalar ones. The fact that most of the SIMD architectures support
permutations within a vector gives us a chance to implement a vectorised version of
rotate_segment. Now, how can the desired vectorisation be expressed?

Auto-vectorisers we tried out (GCC, ICC) did not consider any of the functions
suitable for the vectorisation. There are several reasons for that: first of all, the
rotate_segment signature does not contain any information about the maximal
values of idx, so a compiler can only deduce this information from the calling context.
Secondly, a compiler needs to apply a cost model to show that the transformation is
beneficial, but this is not an easy task as a potential vectorisation may increase the
number of instructions which affects an instruction pipeline; or add conditions which
affect branch prediction; or change the memory access; or similar transformations
that may harm program performance. Without the knowledge that a particular
function is a hot-spot, a compiler can take a decision not to vectorise a function even
if it is possible in theory.

In order to express rotate_segment explicitly in a portable SIMD way we have
to have an interface for vector permutation. In GCC it was impossible before we
added this to version 4.7. Alternatively one can express a permutation using inline
assembly, but disregard the fact it is non-portable, even for one architecture one may
end-up creating several variants of the code. For example: Intel SSE3 has a PSHUFB
instruction which does a byte-level permutation; any lower version of SSE supports
32-bit elements permutations only which require a programmer to come-up with
vector shifting and masking scheme which is less efficient and in case the architecture
uses AVX another version of the code is needed.
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Vectorisation of rearrange_alphabet can be done in a portable way starting
from GCC v3.2, declaring a variable of vector type and for every chunk loading it
to the variable and storing it back into the memory. The code for the function looks
as following:

#define vec to r ( e lcount , type ) \
__attribute__ ( ( vec to r_s i z e ( ( e l count )∗ s izeof ( type ) ) ) ) type
typedef char __attribute__ ( ( vec to r_s i z e (16 ) , a l i gned ( 4 ) ) ) xchar ;
#define unal igned (x ) ( ( xchar ∗) x )
void rearrange_alphabet ( )
{

int i ;
for ( i = 15 ; i >= 0 ; i −−)

{
vec to r (16 , char ) vec = ∗ unal igned (&alphabet [ ptr [ i ] ] ) ;
short idx = N−256+16∗ i ;

∗( vec to r (16 , char ) ∗)&alphabet [ idx ] = vec ;
ptr [ i ] = idx ;

}
}

Some architectures, for example Intel, differentiate aligned and unaligned vector
loads providing two separate instructions for this purpose. In the code above, we have
to take care of the cases when a vector-assignment accesses unaligned memory. In
order to inform the compiler, we mark potentially unaligned memory by converting
it to the vector type with minimal alignment.

3.3 C vector extensions

Turns out that vector permutation is not the only missing feature which makes
the vector programming framework incomplete. Analysing common operations in
different SIMD accelerators and combining them with scalar operations available in
C, we managed to identify the set of operations which is complete enough to cover
a large part of the commonly available SIMD instructions. We base our framework
on GCC, and the following features were missing:

1. Vector indexing in the same style as arrays indexed;

2. Vector element-wise and whole vector shifting. Element-wise shifting should
take special care when a target supports a vector/scalar operand combination.

3. Scalar/vector and vector/scalar operations like 1 + {2, 3}1.

4. Vector comparison using standard comparison operations: >, <, ==, >=, <=, !=;

5. Vector permutation;

The missing functionality has been implemented by the author of the thesis and
is now an official part of GCC since version 4.7. All the changes have been im-
plemented as a series of patches that went through a reviewing process via the

1Please note that this is not a conceptual problem, but rather syntactic sugar. One can always
broadcast the scalar value to the elements of a vector.
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gcc-patches@gcc.gnu.org mailing list and have been approved by the maintainers of
the relevant part of GCC.

Further down we make an overview of GCC explicit SIMD framework in its
current state and discuss the parts which have been added by the author of the
thesis.

3.3.1 Vector types

The first step towards explicit SIMD programming is to declare a vector type which
can be done using a notion of attributes. Consider the following variable declaration
example:

int __attribute__ ( ( vec to r_s i z e ( 1 6 ) ) ) var ;

The int type specifies the base type of the vector, and the attribute specifies
the length of the vector type measured in bytes. In the declaration above, given that
int is a 32-bit type we define a vector of 4 ints. The basic type of the vector can be
both signed and unsigned integer types: char, short, int, long and long long. In
addition float and double can be used to define a floating-point vector types. The
size of the vector type can be any number which is a power of two. Vector types are
treated in the same way as C base types, which means that one can create variables
of vector types, create pointers to vector types and use sizeof operator, use vector
type when declaring a function argument or function return type, make type-casts.
In the latter case of casting from one vector type to another, one must make sure
the types are of the same size.

3.3.2 Vector value

Defining a vector variable one can assign a constant value using an array notation.
Consider the following example:

#define vec to r ( e lcount , type ) \
__attribute__ ( ( vec to r_s i z e ( ( e l count )∗ s izeof ( type ) ) ) ) type

vec to r (4 , f loat ) pp = {3 . , . 1 , . 4 , . 1 } ;

Here we declare a variable pp of vector type of 4 floats and initialize the variable
with values 3.0, 0.1, 0.4 and 0.1. If the initialisation vector contains less elements
than the type, the missing elements will be implicitly filled with zeroes without a
warning being produced. For example:

vec to r (8 , short ) v = {1 , 2 , 3} ;

In this case the compiler would initialize v with {1, 2, 3, 0, 0, 0, 0, 0}.
Constant vector-values are defined in the same way as when initialising a variable,

but with an explicit type-cast. For example:
vec to r (4 , int ) a , b ;
a = b + ( vec to r (4 , int ) ) {1 , 2 , 3 , 4} ;
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3.3.3 Vector operations

Vector shifts were implemented by A.Š.
optimising cases when vector/scalar shifts are

supported by the underlying hardware.

Vector types can be used within a subset of normal C operations. Currently GCC
allows using the following operations on vector types: +, -, *, /, %, unary minus, >>,
<<, ^, |, &, ~. All the binary operations perform an element-wise operation on vector
elements. For example:

vec to r (4 , int ) a , b , c ;
a = b + c ;

This code for each of the four elements of b will add the corresponding four elements
of c and store the result in a.

Assigning expression of vector types, it is allowed to use a short form of the binary
operation like +=, -=, etc. The semantics of the operation is going to be the same as
in the scalar case. For example:

vec to r (4 , int ) a , b , c ;
a += b ; /∗ a = a + b ; ∗/
b <<= c ; /∗ b = b << c ; ∗/

3.3.4 Mixed vector/scalar operations

This was implemented by A.Š.

Following the OpenCL conventions we also allow both scalar/vector and vector/scalar
variants of binary expression. In that case the scalar is transformed to the vector of
corresponding type where all the elements are equal to the given scalar. Consider
the following example:

vec to r (4 , f loat ) a , b , c ;

a = b + 1 . ; /∗ a = b + {1 . , 1 . , 1 . , 1 .} ∗/
a = 1 . + b ; /∗ a = {1 . , 1 . , 1 . , 1 .} + b ∗/

Note that the transformation will happen only when the scalar can be safely trans-
formed to the vector type. For example, the following code would produce an error,
as converting long to int includes a truncation.

vec to r (4 , int ) a , b ;
long l ;

a = b + l ; /∗ Error , cannot conver t long to i n t . ∗/

When shifting is used on the vector types, we do not follow OpenCL in the case
when right-hand side of the shifting expression is greater than log2N . Following the
C standard of scalar shifting we leave this situation undefined. This choice was made
deliberately to avoid runtime masking of the right-hand side.
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3.3.5 Vector indexing

Vector indexing was implemented by A.Š.
together with bound checking flag.

Vectors can be indexed in the same way as if they were arrays with the same number
of elements and base-type. Out of bound access invokes undefined behaviour at
runtime, however, the warnings can be enabled using -Warray-bounds. Consider the
following example:

vec to r (4 , int ) a = {1 , 2 , 3 , 4} ;
int i = 3 , sum = a [ 0 ] + a [ 1 ] + a [ 2 ] + a [ i ] ;

3.3.6 Vector comparisons

This was implemented by A.Š.
including code generation for

x86 architectures.

Vector comparison is supported within the standard comparison operators: ==, !=,
<, <=, >, >=. Comparison operands can be either both integer type or both real type.
Comparisons between integer-type vectors and real-type vectors are not supported.
The result of vector comparison is a vector of the same width and number of el-
ements as the comparison operands with a signed integer base type. Vectors are
compared element-wise producing 0 when comparison is false and -1 (constant of
the appropriate type where all the bits are set) otherwise. Consider the following
example:

vec to r (4 , int ) a = {1 ,2 , 3 , 4} ;
vec to r (4 , int ) b = {3 ,2 , 1 , 4} ;
vec to r (4 , int ) c ;

c = a > b ; /∗ The r e s u l t would be {0 , 0 ,−1 , 0} ∗/
c = a == b ; /∗ The r e s u l t would be {0 ,−1 , 0 ,−1} ∗/

3.3.7 Vector permutation

This was implemented by A.Š.
including code generation for

x86 architectures.

Vector shuffling is available using two and three argument __builtin_shuffle func-
tions: __builtin_shuffle (vec, mask) and __builtin_shuffle (vec0, vec1,
mask). Both functions construct a permutation of elements from one or two vec-
tors and return a vector of the same type as the input vector (s). The mask is an
integral vector with the same width (W) and element count (N) as the output vector.

The elements of the input vectors are numbered in memory ordering of vec0
beginning at 0 and vec1 beginning at N. The elements of mask are considered modulo
N in the single-operand case and modulo 2 ∗N in the two-operand case. Consider
the following example:
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vec to r (4 , int ) a = {1 ,2 , 3 , 4} ;
vec to r (4 , int ) b = {5 ,6 , 7 , 8} ;
vec to r (4 , int ) mask1 = {0 ,1 , 1 , 3} ;
vec to r (4 , int ) mask2 = {0 ,4 , 2 , 5} ;
vec to r (4 , int ) r e s ;

r e s = __bui l t in_shuf f l e ( a , mask1 ) ; /∗ re s i s {1 ,2 ,2 ,4} ∗/
r e s = __bui l t in_shuf f l e ( a , b , mask2 ) ; /∗ re s i s {1 ,5 ,3 ,6} ∗/

3.3.8 Vector operation performance

This was implemented by A.Š.

As vector operations might be implemented with scalars or vectors of a smaller
type, for the convenience of a programmer we introduce a flag called:

-Wvector-operation-performance

which emits warnings in case this happens. This is a useful tool to identify per-
formance problems in the code or unimplemented features of GCC explicit vector
extensions

3.3.9 Still missing

Currently GCC (starting from version 4.7) includes all the missing features except
whole vector-shifting and does not support the following operations in vector mode:
++, --, !, &&, ||.

3.4 Case-study

Getting back to our running example, let us study the effects of vectorisation and eval-
uate performance. We are not going to make extensive performance measurements,
because the figures mainly depend on the quality of a particular code-generator. The
main purpose is to demonstrate that using GCC vector extensions we can address
complicated patterns producing code which is portable across all the platforms sup-
ported by the compiler and which can efficiently use SIMD accelerators in case they
are present.

In order to implement rotate_segment in a vectorised way we would load a
16-symbol chunk into a vector register, perform a permutation in-place and store it
back into the memory. All the chunks are potentially unaligned, so we mark it in
the same way as in rearrange_alphabet. The code looks as follows:

const vec to r (16 , char ) perms [ 1 6 ] = {
( vec to r (16 , char ) ) {0 , 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 , 11 , 12 , 13 , 14 , 15} ,
( vec to r (16 , char ) ) {1 , 0 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 , 11 , 12 , 13 , 14 , 15} ,
( vec to r (16 , char ) ) {2 , 0 , 1 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 , 11 , 12 , 13 , 14 , 15} ,
/∗ . . . ∗/

} ;

void rotate_segment (char ∗v , int idx )
{
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vec to r (16 , char ) t , vec ;

i f ( idx == 0)
return ;

t = ∗ unal igned (v ) ;
vec = __bui l t in_shuf f l e ( t , perms [ idx ] ) ;
∗ unal igned (v ) = vec ;

}

As all the permutation masks are static, the compiler can perform an optimisation
of each particular permutation. For example, it can replace the case when idx is
one with something like: swap (v[0], v[1]). Note that in the OpenCL framework
permutation is a library function call and the above optimisation cannot be achieved
unless link time optimisation is used, in which case the library must be compiled
with special flags.
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Figure 3.3: Vectorised and non-vectorised versions of unMTF measured in clock-
cycles. All the measurements were repeated 30 times sequentially using an output of
a previous run as an input for the next one. The first input is a file of 105 random
characters.

Consider Fig. 3.3 which shows how the vectorised and non-vectorised versions
of rotate_segment and rearrange_alphabet impact performance of unMTF. The
base-line of the experiment is a fully scalar implementation. We observe the best
performance improvement on both architectures when rotate_segment is vectorised
and rearrange_alphabet is not: we have about 20% and 30% speed-ups on these
architectures. We observe a negative impact from vectorising rearrange_alphabet.
In order to explain this we have to realise that unaligned move on Intel is expensive
and it also creates additional pressure on the memory. The operation itself happens
quite rarely (once per length of the alphabet-array) so the initialisation overheads
are bigger than the performance gain.

As another experiment we include the newly implemented function in the original
implementation of BZIP2 in order to see the impact of this function on the overall
decompression process. As input data we use an encoded 347MB video-file and as
a measurement unix time command taking user’s time. On a Intel Core2 duo we
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observed 18% speed-up (36.6s vs 30.2s) but on the Core i5, the run-time difference
was in the order of the measurement error (26s both). As BZIP2 is a pipe-line we can
see that the improvement of a single part may not affect the whole process; hence
unMTF is not a hot-spot on Core i5 processor. Identifying a new hot-spot of the
algorithm requires an analysis which is outside of the scope of this chapter.

We have demonstrated how easily one can experiment with the potential benefits
of using SIMD extensions. All the results on both architectures were obtained from
one and the same source code which would also work on any architecture supported
by GCC.

3.5 Related work

In this section we will make an overview of existing concepts and approaches which
allow one to exploit the SIMD extensions of a CPU. As a general remark, there
exists a number of attempts to unify diverse SIMD instructions and come up with
a portable level of abstraction. Our main claim here is that in order to maximise
optimisation potential of programs and share a large portion of the code used in auto-
vectorisers, the abstraction layer has to be implemented in a compiler as language
extensions, not as a library or a novel programming language.

3.5.1 New languages e.g. ISPC

The language demonstrates quite good performance, however, we believe that it is not
the best possible way to program SIMD extensions explicitly. The level of abstraction
is too high which means that a lot of decisions is taken by the compiler without
a programmer being able to control them. Expressing code as kernels, similarly to
OpenCL or CUDA, opens a potential to reuse the same code not only on SIMD
architectures, but at the same time, requires significant program rewrites. The set
of supported SIMD architectures for the time being is limited to SSE2, SSE4, AVX,
AVX2, and Xeon Phi.

3.5.2 Library-based solutions

The main drawback of any library approach is that dispatching from the API down
to intrinsics or assembly has to be implemented at the level of the library. This
means that parts of the compiler has to be reimplemented at the level of the library,
and, for example, auto-vectorisers will not be able to benefit directly from the library.
Or, if a compiler cannot optimise across intrinsics, then this functionality has to
be implemented in the library. Ideally we would like to see a symbiosis between
auto-vectorisers and explicit SIMD. One practical benefit of the library approach
is an ability to make experiments very quickly, but in general it seems that library
solutions do not scale.
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3.5.3 Intrinsics to intrinsics mapping

That could have been a valid approach, however the variety of hardware changes
quite rapidly, and if we will start to create mappings, we would need to create every-
to-every instruction set mappings, or chose a canonical one. Both of the options are
not desirable, not to mention, creating such a mapping requires a lot of work, for
example, the mapping described in [152] is a 1MB file, and does not include AVX
extensions.

3.5.4 C++ standard proposal

Independently from our work, A. Naumann et. al indicated the importance of having
vectorisation as a language feature in [8]. The line of reasoning is very similar to
ours — vectorisation is important, and it cannot realistically be automated or fitted
into existing parallel models. They demonstrate a practical micro-kernel used in
CERN and use the same arguments, i.e. more tightly integrated optimisations and
implementation reusability, when discussing why they think vectorisation should be
a part of the language.

3.5.5 Automatic vectorisation

The downside of automatic vectorisation is a lack of opportunities to influence the
decision of the vectoriser. The number of supported patterns is always limited, and
in the cases of non-trivial data-dependencies the vectoriser would give-up. In order to
get the best performance from an auto-vectoriser in case of floating-point operations
one has to specify flags that violate the IEEE implementation of floating point [104].
As an example we can consider the case of horizontal sums:

f loat ∗array , r e s u l t ;

for ( i = 0 ; i < N; i++)
r e s u l t += array [ i ] ;

f loat ∗array , r e s u l t ;
f l oat_vec reg ;

/∗ Assume N % 4 == 0 ∗/
for ( i = 0 ; i < N; i += 4)

reg += ∗( f l oat_vec ∗)&array [ i ] ;

r e s u l t = reg [ 0 ] + reg [ 1 ]
+ reg [ 2 ] + reg [ 3 ] ;

According to the IEEE floating point standard, the order of operations can change
the result; hence the above optimisation is illegal. In order to legalise it in GCC,
one needs to specify the -ffast-math flag when compiling and it is impossible to
use it on a given loop only. It means that in order to make auto-vectoriser perform
the optimisation, a programmer has to switch a flag potentially violating all the
floating-point operations.

The auto-vectoriser cannot properly handle the loops with the control-flow, e.g.
conditions, gotos, and uncountable loops, e.g. while (*x != NULL).
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3.5.6 Virtual instruction set

The LLVA approach provides a portable standard for SIMD operations. However,
this approach raises several practical and theoretical questions. Practically, the ar-
chitecture exists only as a prototype with implemented translators for several ISA-s.
This means that in order to integrate LLVA in any existing compiler, we will have
to provide a translation from the intermediate language of a compiler to the LLVA.
Assuming that we did that, we will have to implement the translators for all the
targets we want to support. Keep in mind that LLVA provides instructions only for
vector operations, this means that all the non-vector operations have to be integrated
into the representation as well. Assuming that we did that, we come to the point
when we will have to instruct our auto-vectoriser and possibly other optimisations
to generate the code using LLVA. How can we estimate the cost of the operation, if
we do not know the target architecture?

As several architecture classes are supported within LLVA, and there are mecha-
nisms allowing careful tuning for each processor class, how efficient would it be to
run an LLVA code tuned for class A on class B?

3.5.7 OpenCL

In terms of portability our approach is very similar to OpenCL and we borrow the
syntax of SIMD operations, however; there are a number of important distinctions.
The intent of OpenCL is very different from ours. OpenCL operates with a large-scale
problem trying to target many different diverse architectures, e.g. SPMDs, GPUs;
where our approach solves a single issue. The OpenCL C programming language
is based on ISO/IEC 9899:1999 C language standard (a.k.a C99) [63], but it also
introduces a number of restrictions. Most importantly, OpenCL tries to cover all the
undefined or ambiguous cases of the C99 standard. For example, basic types, like
int, char and long get a fixed size; C99 in this cases fixes only the relation of the
type-sizes i.e char ≤ int ≤ long. Defining bit-shift operations e1 << e2, OpenCL
states that only the lower log2N bits of e2 will be used during the operation; C99
in this case states that if e2 > log2N , the result is undefined.

Arguably, the restrictions of OpenCL increase the portability of programs but at
the same time they remove backward-compatibility with ISO C code. Practically it
means that existing C code may not work within the OpenCL compiler.

Technically, OpenCL provides a set of libraries, and header files, but the actual
compilation is done by a C compiler of the users choice. This is a key difference from
the approach we are taking, as we implement SIMD operations as an integral part
of the C language; hence as a part of the compiler. Decoupling a framework from
the compiler gives you freedom when you choose a compiler, but in terms of SIMD
operations we see the following problems with this approach:

1. In order to define a SIMD vector OpenCL provides the typen construction,
where n can be 2,3,4,8 or 16 and the type is a basic scalar type, e.g. char,
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int, float, etc. As there is no way to override selection operator [] in C,
OpenCL introduces a new scheme for enumerating vector components intro-
ducing the notion of lo, hi components x, y, z, w, etc. The vector type
is mapped to the hardware-specific SIMD vector type or static array in case
SIMD accelerators are not present within the architecture. Such a design makes
it complicated to support vectors of arbitrary length, as each typen is defined
as a new structure and the chosen indexing scheme leads to a combinatorial
explosion. Also, each time the length of vector register doubles, a standard cor-
rection is required. For example, currently, it is impossible to define a char32
type, however, it is supported by Intel AVX.

Our approach allows one to define a vector of the arbitrary length, where the
length is a power of two. To index elements we use a standard selection []
operator and during compilation vector operations are compiled to the longest
vectors supported by the architecture.

2. Basic vector operations like arithmetic, comparison, shuffling are, whether
aliases to the intrinsic functions or external functions, defined in the library.
From the performance point of view both cases are harmful as they decrease the
chance for optimisations. Library function calls prohibit2 even simple constant
propagation; intrinsic functions normally do not participate in the optimisation
cycle. If vector operations would be inlined, the compiler can generate better
code with respect to the pipelining and register pressure.

3. OpenCL SDKs are mainly closed-source products which are released for some
combination of hardware architecture and operating system. This means that
there is a chance that all these products perform slightly differently. Our
approach does not solve this problem fully, as code-generators are unique for
every hardware architecture as well; however, most of the optimisations happen
in the middle-end. Also, as GCC compiler is an open-sourced product, anyone
has a chance to identify the reason of the undesired behaviour by means of
code inspection or debugging.

3.6 Extended standard

In this section we sketch a proposal to extend the existing C standard to include
the work we have implemented in terms of GCC. We start with the set of general
assumptions we had in mind.

3.6.1 General principle

• Vectors can be of size 2n bytes, n > 0. We want to make vector types extensible
for future architectures. The 2n property comes from observing sizes of the

2Unless link-time optimisations is considered.
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SIMD registers and considering the sizes of the built-in types. Implementation-
wise, operations on large vectors can be implemented using smaller vectors or
scalars.

• We aim at supporting the intersection of the various instruction sets in the
C language. For instructions outside the intersection, we explore if they can
be expressed with a combination of the instructions from the intersection. For
example, some of the architectures define multiply-add as a single instruction.
We are not going to include multiply-add as a C primitive, as there is a way
to express it with a combination of multiplication and addition. On the other
hand it would be much more difficult to express the rotation operation without
the designated primitive operation.

• We assume that compilers can perform complicated pattern matching to recog-
nise the cases when several operations can be replaced by a single one on given
hardware.

• Large vectors should be implemented with the largest hardware vector available
on a given target or by scalar operations. Exact choices can be dictated by a
cost model used for auto-vectorisation.

• A compiler shall provide a flag which would report the cases when a vector
operation was implemented by scalar operations. Alternatively a user would
have to analyse a final output, but she will not be able to reason if the generated
code is optimal, or the fallback implementation has been used.

• The math library has to be extended by the vector variants of all the existing
operations. Semantically, an operation on a vector type is an application of
the scalar operation to all vector components. In this case we would be able
to support hardware implemented mathematical functions for SIMD vectors.

• We should support estimated mathematical operations. Some of the instruction
sets define estimated mathematical operations (like estimated square root) on
vector types. These instructions are normally faster, but are less precise. In
order to support them we propose to extend the math library by introducing
estimated variants for all the operations. Semantically, if there is no implemen-
tation for estimated operation, we alias estimated operation to the normal one,
or map it to hardware instruction otherwise.

Now we are going to describe extensions to the standard, identify the sections of
ISO/IEC 9899:2011 [64] which would need altering and give a rationale regarding
each operation.

3.6.2 Vector types

We introduce a notion of a new derived type [64, 6.2.5] which we are going to call
a vector type. We do this by duplicating a passage about an array type with some

45



added restrictions:

A vector type describes a contiguously allocated nonempty set of ob-
jects with a particular member object type, called the element type. The
element type shall be complete whenever the vector type is specified.
Element types must be evaluated either to integral type or a floating
point type. Vector types are characterized by their element type and by
the number of elements in the vector. The number of elements must be
a compile time constant. The length of the vector type (the number of
elements multiplied by the size of the element type) must be a power
of two. A vector type is said to be derived from its element type, and
if its element type is T, the number of elements is N, the vector type is
sometimes called “vector of N T”.

A syntax for vector types has to be chosen and should be described in the new
subsection of [64, 6.7.2].

vector-type:
vector ( vector-size , type-specifier )

vector-size:
constant-expression

A vector-size multiplied by the size of type-specifier must evaluate to 2k,
where k is an integer and k > 0.

An element type of the vector type shall be either integer or floating
point.

The way we define a vector type is very similar to OpenCL, however we allow
arbitrary long vectors and we are not restricting element types to the base types
only allowing to use enums or user-defined types (assuming they can be evaluated
to floats or integral types).

3.6.3 Declaration and initialisation

Now we need to define how the values of the new type can be constructed. We are
going to borrow the syntax described in the Compound literals section [64, 6.5.2.5],
allowing one to initialise an object of a vector type as if it were an array of known
size. For example:

vec to r (4 , int ) x = {1 , 2 , 3 , 4} ;
vec to r (4 , int ) y = {1} ;
f ( ( vec to r (4 , int ) ) { 5 , 6 , 7 , 8 } ) ;

According to [64, 6.5.2.5], [64, 6.7.9] this syntax should be supported automatically,
as vector types are complete.

If we want to allow the following syntax for vectors:
vec to r (4 , int ) z = { [2 ]=42} ;
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we would have to adjust the Initialization section [64, 6.7.9] paragraph 6 like
this3:

The type of the entity to be initialized shall be an array of unknown size
or a complete object type that is not a variable length array type.

If a designator has the form

[ constant-expression ]

then the current object (defined below) shall have array or vector type
and the expression shall be an integer constant expression. If the array
is of unknown size, any nonnegative value is valid.

3.6.4 Vector subscript

Vectors can be subscripted as if the vector were an array with the same number
of elements and base type. Formal addition would require a new subsection in [64,
6.5.2]:

Vector subscripting.

Constraints.

The first expression shall have type “vector of basetype type”, the second
expression (inside square brackets) shall have integer type and the result
of type “type”.

Semantics

A postfix expression followed by an expression in square brackets [] is a
subscripted designation of an element of a vector object. The definition
of the subscript operator [] is that E1[E2] designates the E2-th element
of E1 (counting from zero).

3.6.5 Arithmetic operations

The vector operations we are going to support can be divided into 4 groups:

• Arithmetic operations (+, -, *, /, %, unary +, unary -);

• Bitwise operations (&, |, ^, ~);

• Comparison operations (>, <, ==, <=, >= !=);

• Vector shifts (>>, <<); and

• Vector shuffle (shuffle (v1, v2, mask)).
3Here and further we mark introduced changes in red.

47



All the binary operations mentioned above except shuffle are operating on
vector of floating-point types or integral types of the same signedness, with the
same number of elements. The semantics of the vector operation is component-wise
application of the according operation on all the elements of the vector.

Any vector comparison operation returns a mask (vector of signed integer), where
false is represented with value 0, and true with value -1 (all bits set) and the size of
the mask element type is the same as the size of the operand’s element.

Vector shuffle is defined similarly to the OpenCL shuffle and shuffle2 functions:

Vector shuffling is available using functions shuffle (vec, mask) and
shuffle (vec0, vec1, mask). Both functions construct a permutation
of elements from one or two vectors and return a vector of the same type
as the input vector (s). The mask is an integral vector with the same
width (W) and element count (N) as the output vector.

The elements of the input vectors are numbered in memory ordering of
vec0 beginning at 0 and vec1 beginning at N . The elements of the mask
are considered modulo N in the single-operand case and modulo 2N in
the two-operand case.

Consider the following example,
typedef vec to r (4 , int ) v4 s i ;

v 4 s i a = {1 ,2 , 3 , 4} ;
v4 s i b = {5 ,6 , 7 , 8} ;
v4 s i mask1 = {0 ,1 , 1 , 3} ;
v4 s i mask2 = {0 ,4 , 2 , 5} ;
v4 s i r e s ;

/∗ re s i s {1 ,2 ,2 ,4} ∗/
r e s = s h u f f l e ( a , mask1 ) ;

/∗ re s i s {1 ,5 ,3 ,6} ∗/
r e s = s h u f f l e ( a , b , mask2 ) ;

In order to include changes to +,- in the standard, the following fixes are needed
in [64, 6.5.6]:

For scalar addition, either both operands shall have arithmetic type, or
one operand shall be a pointer to a complete object type and the other
shall have integer type. (Incrementing is equivalent to adding 1.) For
vector addition, either both operands shall have arithmetic vector type
with equal number of elements and signedness, or one operand shall have
pointer vector type and the other shall have integer vector type, assuming
that the number of elements in both operands is the same.

Fixes for all the other operations are similar.

3.6.6 Future extensions

For conversions we do not need to add anything new. Initialisation by means of
compound literals (6.5.2.5) would automatically propagate standard conversions to
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the vector components and cast operation (6.5.4) would take care of reinterpreting
bytes of data as a given type.

3.6.7 Things to consider

Here is a list of features that are not in the proposed standard but might be added
later:

• Horizontal reduction operations. A number of architectures e.g. SSE2, SSE3
support reductions over vectors (often called horizontal operations). The way
we propose to deal with them is by recognising patterns in the program. That
gives a good potential for using a target architecture more effectively, as the
patterns can be found in ordinary programs and replaced with corresponding
vector operations.

• Printf/Scanf extensions. AltiVec proposes convenient extensions for printing
out vectors and reading in vectors. Currently one would need to implement
vector IO by hand.

• Mixed scalar/vector operations. OpenCL supports arithmetic operations where
one operand is a vector and another is a scalar, in which case the scalar operand
is being promoted to a vector. That seems to be pure syntactic sugar, or is
there a good usecase?

• Scatter/Gather operations. Some of the ISAs allow loads and stores from/to
non-contiguous memory. Normally they are not very efficient, so it might be a
good idea to discourage people from using them.

• Predication. Newest architectures e.g. MIC support masked execution of stan-
dard instructions. For example, we may add only those elements of two vectors
that are marked as true in the corresponding mask. This is usually called
“predicated instructions” and is used in the branches of vectorised conditionals.

3.7 Towards the existing instruction sets

In this section we study the coverage of the existing SIMD instructions. In other
words, does the proposed standard give a handle on existing SIMD instructions, how
it can be expressed and how much work compilers would have to do.

The number of SIMD-capable architectures is quite large, however most of them
became rare and esoteric. In this chapter we to concentrate on those sets which are,
to our opinion, to be found on modern CPUs. These are Intel’s (MMX, SSE, SSEx,
AVX), IBM’s Altivec and ARM’s NEON.

We are going to skip instructions that can be trivially obtained from the C
operations. For example, all the instruction sets under consideration allow vector
addition, so we will not pay extra attention to the addition on vectors. Instead we
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are going to consider those instructions that are available but cannot be directly
mapped from the C operation. For those we propose a compilation scheme, if we
can, or admit that they are going to stay unavailable to a programmer.

3.7.1 Intel

This overview is based on [60] volume 1, Chapters 8–14 and volume 2, Chapters
3,4. In general, for all the Intel extended instructions, we omit support for saturated
arithmetics. There is no support for saturated scalar operations in C, so getting
vector saturated operations only would make a standard incomplete.

MMX

MMX technology operates on 64-bit vectors and supports only integer types of size
1,2 or 4 bytes. It supports arithmetic and logical instructions, shifts, comparisons
and data movement instructions. Here is a list of those instructions that cannot be
directly mapped into the proposed operations:

— Complex operations —

• Fused instruction PMADD multiplies elements and adds adjacent pairs. It is im-
portant to mention that the resulting vector changes the size (and the number)
of its components. In general we express those cases using vector construction.
For example, the following pattern could be recognised:

vec to r (4 , in t16 ) a , b ;
vec to r (2 , in t32 ) c = {a [ 3 ] ∗ b [ 3 ] + a [ 2 ] ∗ b [ 2 ] ,

a [ 1 ] ∗ b [ 1 ] + a [ 0 ] ∗ b [ 0 ] } ;

• ANDN is a bitwise and with a first operator negated. This can be pattern-matched
from ~a & b. Please note, that there is no support for bitwise not, so ~x could
be implemented as x ^ broadcast(-1) — xor with all bits set.

— Element reordering —

• Unpacking instructions interleave lower or higher parts of two operands like
this: PUNPCKHW([0,1,2,3], [4,5,6,7]) = [2,6,3,7]. This can be expressed
via shuffle operation.

— Inapplicable —

• Logical left and right shifts (PSLLx, PSRLx) are supported as well as arithmetic
right shifts: (PSRAx). Arithmetic shifts are not directly expressible in case of
scalar operations in C, so we will not support it in vector mode either.

• PMULLW keeps higher bits of integer multiplication. This instruction would be
unavailable, as there is no universal way to do that in C for scalars. Normally
one would cast operands to a wider type, perform a multiplication there, and
take the higher bits. Unfortunately that will not work for the highest type.
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SSE

Intel MMX technology introduced single-instruction multiple-data (SIMD) capability
into the IA-32 architecture, with the 64-bit MMX registers, 64-bit packed integer data
types, and instructions that allowed SIMD operations to be performed on packed
integers. SSE extensions expand the SIMD execution model by adding facilities for
handling packed and scalar single-precision floating-point values contained in 128-bit
registers. Here is a list of non-trivial instructions:

— Operations on parts of a vector —

• Operations on the lowest value, preserving other values, like ADDSS, these can
be recognised from the assignment to the lowest component. For example:
b[0] = b[0] + a[0]. Other SS-prefixed instructions can be handled similarly.

— Mathematical operations —

• Reciprocal, square root, reciprocal of square root on floating point data, these
should be available through the expansion of math library functions. Please
note, that reciprocal and reciprocal of square root are approximate, where the
square root is precise.

— Advanced arithmetic —

• Min and Max on packed data. Recognise the following pattern:
m = (a > b ) ; m & a | ~m & b

• Average (PAVGx). Recognise the following pattern:
r e s = ( a + b) / broadcast ( 2 ) ;

— Element reordering —

• Shuffle and Unpack instructions are available via shuffle.

— Conversion operations —

• Conversions are available via typecasts, like
r e s = ( vec to r (4 , f loat ) ) { 1 , 2 , 3 , 4 } ;

— Complex operations —

• The PSADBW (compute sum of absolute differences). In principle, this in-
struction can be recognised via patterns, but the pattern becomes too big. So
it might be worthwhile to avoid its recognition.

— Inapplicable —

• The PMOVMSKB (move byte mask) instruction creates an 8-bit mask from the
packed byte integers in an MMX register and stores the result in the low byte of
a general-purpose register. We consider this instruction to be too architecture-
specific, hence it will not be available from the C level.
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SSE2

SSE2 introduces operations on double-precision floating point values.

— Conversion operations —

• Conversions are available via recognising vector reconstructions. For example,
for CVTPD2PS the following pattern can be used:

vec to r (2 , double ) d = . . .
vec to r (4 , f loat ) x = {( f loat )d [ 0 ] , ( f loat )d [ 1 ] }

— Element reordering —

• Shuffles and unpacks are available via the shuffle operation.

— Inapplicable —

• The MOVMSKPD (move packed double-precision floating-point mask) instruction
extracts the sign bit of each of the two packed double-precision floating-point
numbers in an XMM register and saves them in a general-purpose register.
This 2-bit value can then be used as a condition to perform branching. This is
architecture-specific so will not be supported directly.

SSE3, SSSE3, SSE4

— Advanced arithmetic —

• ADDSUBPx mixed addition and subtraction, can be recognised via the vector
construction:

{a [0 ] −b [ 0 ] , a [1 ]+b [ 1 ] , a [2 ] −b [ 2 ] , a [3 ]+b [ 3 ] }

• HADDPx horizontal addition and subtraction can be recognised via the vector
construction:

{a [0 ]+ a [ 1 ] , a [2 ]+ a [ 3 ] , b [0 ]+b [ 1 ] , b [2 ]+b [ 3 ] }

Other horizontal additions/subtractions can be expressed in a similar fashion.

— Complex operations —

• PSIGNBx negates each negative element. The instruction can be recognised via
the following pattern:

m = a < broadcast ( 0 ) ;
r e s = ( a & m) ∗ broadcast (−1) | a & ~m;

• Dot products allow one to chose which partial multiplications to add and where
to put a result by using vector masks. The operation can be recognised via:

p = a ∗ b ; /∗ dot product o f a l l components ∗/
t = p [ 0 ] + p [ 3 ] ; /∗ any combination here ∗/
r e s = {t , 0 , t , t } ; /∗ any d u p l i c t a t i o n here ∗/
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— Element reordering —

• MOVxDUP instructions get the higher or lower part of a vector and duplicate
its elements. For example, MOVSHDUP(a, [1,2,3,4]) = [3,3,4,4]. This can
be expressed via shuffle operation. MOVSHDUP on vectors a and b can be
expressed as a = shuffle (b, (vint){1,1,3,3}.

• PALIGNR (Packed Align Right) instruction concatenates two vectors and shifts
the result right by the number specified via the third operand. Such a pattern
is expressible via shuffle operation on char vectors.

• Blending instructions implement conditional selection of elements based on
mask. These can be implemented via a & m | b & ~m

— Mathematical operations —

• Integer absolute values. The function abs that can be found in stdlib.h can
be extended to recognise a vector argument.

• Round instructions can be accessed via an extended math library.

— Comparison operation —

• PTEST sets the zero flag of a CPU with a bitwise and of all vector elements. It
can be recognised as a reduction of scalar && operation over all the elements
of the vector with further branching. For example:

i f (m[ 0 ] && m[ 1 ] && . . . )
{

. . .
}

— Inapplicable —

• MPSADBW and PHMINPOSUW are special instruction designed for some HD codecs.
We will not recognise them due to the complexity of the pattern.

• CRC32 is used to accumulate values while implementing Cyclic Redundancy
Check (CRC) with a pre-defined polynomial. This is application-specific in-
struction, it will not be supported.

• PMULHRSW (Packed Multiply High with Round and Scale) — unavailable, as it
is intended to operate on a specific kinds of fixed point numbers.

• String search routines will not be available. These instructions return the index
of the element, where a certain condition holds — there is no simple way to
express that in C.
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AVX

— Data movement —

• Broadcast instructions can be recognised via vector constructions, for example:
(vint){x,x,x,x}.

• Masked moves can be recognised via fusing mask and move operations, like:
a = a & ~m | b & m where m choses which elements of b to be moved.

• Scatter/Gather instructions can be recognised via memory moves of vector
components.

— Complex operations —

• Fused-multiply-add instructions can be recognised by fusing multiply and add
instructions.

— Inapplicable —

• Advanced Encryption Standard (AES) instructions implement a set of specific
actions required for implementing AES cryptographic algorithm. This is an
application specific set of instructions so it will not be available.

3.7.2 Altivec

Altivec is an extension to the PowerPC architecture. It has a very rich API which
is available not only via assembly, but also via C operations. For the overview we
are using [47] and as previously, concentrate on the primitives that are not identical
with the operations in the proposed standard.

General features

• Vector literals a la OpenCL, for example, (vector int)(3) would mean a
broadcast of value 3 to all the positions of the vector. This is supported by
recognising identical elements in a vector construction: (vint){x,x,x,x}.

• vec_step operator takes a vector type argument and returns an integer value
representing the amount by which a pointer to a vector element should be
incremented to move by 16 bytes. This can be trivially expressed without
introducing a special function.

• printf and scanf extension are supported by introducing separators and new
modifiers for vector types. That is a very convenient thing to do, but it will
not be available via the proposed standard.
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Operations

We do not consider any operation involving saturation on its evaluation step. We
will not consider operations on fixed-point data types. Most of the patterns we are
going to describe are going to be very similar to the Intel patterns, so sometimes we
are going to avoid details.

• vec_ld*, vec_st* — specific load/store operation, should not be available to
a programmer directly, but can be used during the implementation of vector
assignments.

— Advanced arithmetic —

• d = vec_avg(a,b) (Vector Average) can be recognised via the
r e s = ( a + b + broadcast ( 1 ) ) / broadcast (2 )

pattern.

• vec_max, vec_min — maximum/minimum of the corresponding elements can
be recognised using pattern matching similarly to Intel’s min/max instructions.

• vec_mule, vec_mulo — multiply even/odd elements of the operands. Please
note that the resulting vector has double-sized element type, so the pattern we
are looking for is:

vec to r (4 , in t32 ) a , b ;
vec to r (2 , in t64 ) r e s = {( in t64 ) a [ 0 ] ∗ b [ 0 ] , ( in t64 ) a [ 2 ] ∗ b [ 2 ] } ;

— Mathematical operations —

• vec_abs is obtainable through the math library.

• vec_ceil (Vector Ceiling) is obtainable through the math library.

• vec_expte (Estimate of 2 raised to the corresponding vector element of the
argument) is obtainable via the math library.

• vec_floor — obtainable via math library.

• vec_loge (Estimated logarithm base two) is obtainable via the math library.

• vec_re Vector Reciprocal Estimate can be accessed via the math library.

• vec_round vector round. Should be obtainable via math library.

• vec_sqrte estimate square root, should be obtainable via the math library.

— Complex instructions —

• vec_andc(a,b) (Vector Logical AND with Complement) can be recognised
via a & ~b.
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• vec_madd, vec_mladd — multiply and add, can be recognised via the
a ∗ b + c

pattern

• d = vec_nmsub(a,b,c) — negative multiply subtract is recognised via the
−RndToFPNearest ( a ∗ b − c )

pattern.

• vec_nor — not or is found through pattern matching.

• vec_sel select bits of the operands depending on the value of mask should be
pattern-matched with: m & a | ~m & b.

— Element reordering —

• vec_merge, vec_mergeh — interleave elements from two operands in a way:
d[2*i] = a[i]; d[2*i+1] = b[i] can be recognised via pattern matching
shuffle operation.

• vec_pack — extract even bytes of the first operand and pack them in the first
half of the result; extract even bytes from the second operand, pack them in
the second half of the result. This can be found on pattern matching on shuffle,
probably with special masks being pre-defined.

• vec_pack* same as above.

• vec_sld (Vector Shift Left Double) is similar to Intel’s PALIGNR and can be
recognised via shuffle.

• d = vec_slo (a, b) Vector Shift Left by Octet. The contents of a are shifted
left by the number of bytes specified by bits b15[1:4]; only these 4 bits in b
are significant for the shift value. Bytes shifted out of byte 0 are lost. Zeros are
supplied to the vacated bytes on the right. The result is placed into d. This is
found by pattern-matching shuffle operations.

• vec_splat* — broadcast a value into all the elements of the vector. This is
found by pattern-matching.

• vec_trunc — truncate floating point, should be available via the math library.

• vec_unpackh, vec_unpackl — sign-extend the first V/2 elements into V/2-
element vector.

— Comparison operations —

• vec_allx — recognise the reduction of scalar &&.

• vec_anyx — recognise the reduction of scalar ||.
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— Inapplicable —

• vec_sll Whole vector shift is currently not expressible. The C way of doing it
would be by performing an operation on casted value, but we normally do not
have a scalar type of the according size. Introducing a new type for a single
operation might be an overkill.

• vec_rl Vector Rotate Left. There is no such an operation on scalars in C,
so probably we will not introduce it on vectors as well. Hopefully it can be
pattern-matched as:

( va lue << s h i f t ) | ( va lue >> ( s izeof ( va lue )∗8 − s h i f t ) )

Rotate right can be treated similarly.

• vec_msum(a,b,c) — multiply a by b, sum horizontally group of four elements
of the multiplication. Add with c. This can be recognised, but the pattern
would be rather complicated.

• vec_mfvscr is architecture specific and is not supported.

• vec_cmpb (Vector Compare Bounds Floating-Point) is not supported, as the
result is not a standard mask.

• vec_ds* — interface for hints to the cache. This is architecture-specific and
not directly related to vector operations.

• vec_addc — get the carry of the operand summation is not supported. There
is no way in C to get carry information when doing standard addition, so we
will not support it in vector mode either.

• vec_lvsl, vec_lvsr — generates a permutation useful for aligning data from
an unaligned address. This can be useful for code generation, but it is too
architecture specific to be accessible directly.

3.7.3 Arm NEON extensions

Here is the same overview of ARM NEON SIMD extensions, based on [5, Chapter
5]. Again, we are not going to include any instructions which involve saturated
arithmetic, and we are going to exclude operations on half-precision types (float16).
As most of the patterns were already mentioned in the Intel and Altivec sections,
some of the descriptions will be very brief.

— Complex instructions —

• VABA (Vector Absolute Difference and Accumulate) subtracts the elements of
one vector from the corresponding elements of another vector, and accumulates
the absolute values of the results into the elements of the destination vector.
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VABD (Vector Absolute Difference) subtracts the elements of one vector from
the corresponding elements of another vector, and places the absolute values
of the results into the elements of the destination vector.

Both of the instructions can be recognised via abs(a - b), assuming that we
have abs that can recognise vector types.

• VMLA, VMLS, VNMUL, VNMLA, and VNMLS — Floating-point multiply
accumulate, with optional negation. These can be pattern-matched.

• VTST — (Vector Test Bits) can be recognised via the
a & b != broadcast (0 )

pattern.

• VACGE and VACGT (Vector Absolute Compare) can be found via pattern
matching.

• VMVN (Vector Move Not) can be recognised via a = ~b pattern.

• VBIF, VBIT, and VBSL — Bitwise select operations, can be recognised via
the

mask & a | ~mask & b

pattern

• VORN (Bitwise Or Not) can be found by pattern match on a | ~b.

— Reordering elements —

• VEXT (Vector Extract) extracts 8-bit elements from the bottom end of the
second operand vector and the top end of the first, concatenates them, and
places the result in the destination vector. This is found by permutation pattern
matching.

• VREV reverse the order of sub-elements within each element of the vector, for
example, reverse bytes in 32-bit vector components. This can be recognised via
the shuffle operation.

• VSWP (Vector Swap) exchanges the contents of two vectors. This can be found
by pattern-match in the same way as scalar swaps are found.

• VTRN (Vector Transpose) treats the elements of its operand vectors as elements
of 2 × 2 matrices, and transposes the matrices. This can be pattern-matched
from shuffle.

• VPADD (Vector Pairwise Add) adds adjacent pairs of elements of two vectors,
and places the results in the destination vector. Similarly to Intel’s horizontal
sums. Recognise the

{a [0 ]+ a [ 1 ] , a [2 ]+ a [ 3 ] , b [0 ]+b [ 1 ] , b [2 ]+b [ 3 ] }
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pattern.

— Mathematical operations —

• VABS and VSQRT can be obtained through the math library.

• VRECPE and VRSQRTE Vector Reciprocal Estimate and Reciprocal Square
Root Estimate. These can be obtainable via the math library.

— Data movement —

• VLD is a very powerful instruction, which comes with a form of scatter/gather
support. These can be found by pattern-matching independent load/stores of
vector components.

• VDUP Broadcasting an element. This can be found by pattern matching.

— Inapplicable —

• VTBL (Vector Table Lookup) uses byte indexes in a control vector to look up
byte values in a table and generate a new vector. Indexes out of range return
0. This is really useful, but this instruction is very specific for the particular
architecture, so it will not be directly available to a C programmer.

• Interleave instructions — not available. The pattern can be created to recognise
independent scalar moves, but it will be rather complex.

• VCLS, VCLZ, and VCNT — Vector Count Leading Sign bits, Vector Count
Leading Sign zeroes, Vector Count set bits. There seem to be no way one could
map this instruction directly into C. There is no such a thing for scalar cases.

3.8 Conclusions

In this chapter we have demonstrated a framework which allows one to encode explicit
vector computations in a portable fashion. The framework is implemented as a set of
C language extensions within the GCC compiler preserving backward compatibility
with ANSI C standards. This approach is beneficial because of the following reasons:

1. A programmer or a compiler which uses C as a target language gets a chance
to express vector computations of any complexity at the level of C without
involving any additional libraries or frameworks and without taking care about
the specifics of any particular architecture, but being sure that the vector code
would be executed within the SIMD accelerators in case they are present.

2. Backward compatibility makes it easy to change existing software by rewriting
a certain function or code region using vector types and operators.

59



3. The internal representation of vector operations is shared with the auto-vectoriser
which means that any architecture that supports auto-vectorisation also sup-
ports explicit vectorisation and vice-versa and any improvement affects both
parts of the compiler.

4. Vector operations within GCC are fully-fledged members of the flow-graph;
hence they participate in the optimisation cycle similarly to scalar operations.

The downsides of the proposed approach are the following:

1. Currently the framework is supported only within the GCC compiler, which
means that one will have difficulties in case of moving a code-base to a dif-
ferent compiler. One of the solutions to this problem is to make the language
extensions fit into a new C language standard, but unfortunately this is a long
and complicated process.

2. The price for the abstraction layer is a potential inability to use the newest
SIMD instructions. There is always a gap in time between the architecture
becoming available on the market and the code generator being able to use
it correctly. There is no good solution here; however the good thing is that a
programmer cannot and does not have to do much about it. Whenever a given
pattern would be incorporated in a code-generator, the code should start to
work faster automatically.

3.9 Future work

In the near term we aim to implement support for the missing operations available
in a scalar mode, but not available in a vector mode. These operations are: ++, --,
&&, ||, !. After that it is necessary to make more careful research with respect to the
common SIMD patterns supported by various architectures and provide according C
constructions. For example, currently there are no facilities to use horizontal vector
instructions like sum or min/max of the entire elements.

Another important issue that we aim to address is vector alignment. Some ISAs
have different instructions to load/store vectors from aligned and unaligned memory.
Normally unaligned variant of the instruction is less efficient. Currently in C we
cannot annotate a chunk of memory being aligned/unaligned and hence generate
an efficient load/store instruction. In auto-vectorisers a similar problem is partially
solved [39, 121] by transforming the computation. As we are in explicit mode, our
goal is to provide annotations and mechanisms to emit a suitable instruction. As C
arrays degenerate into pointers, aligned attribute does not give the desired effect.
When applied to a pointer, the pointer itself will be aligned (not the memory where
it is pointing). In case the attribute is applied to the type t and we construct a
one-dimensional “array” via t* syntax, we will align each element of the “array”,
but this is not what we want. A solution here is to introduce a new attribute for
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aligning a chunk of memory. After that pointer dereferences and pointer-arithmetics
must be analysed in order to see if the alignment gets changed. Unfortunately in
the general case such an analysis is impossible as variables and functions can be
external. However, we hope to address this problem by including the analysis in the
Link Time Optimisation (LTO) cycle when all the information is statically available.

In the long term we hope to include the described extensions into a new C
language standard and we even sketched the way it could be done. An extended
standard would allow one to use various compilers for one and the same code.
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Chapter 4

Layout-type system

In the previous chapter we have identified the necessity to express vectorisation
explicitly in a portable way. In this chapter, we focus on the challenge of identifying
suitable layout combinations that enable auto-vectorisation. In Chapter 5 we demon-
strate transformations that have to follow after the inference is done and prove that
the semantics of transformed programs is being preserved. We study experimental
results at the end of this chapter, and more extensively in Chapter 6.

4.1 Introduction

We propose a type inference that identifies data layouts suitable for vectorisation.
A functional core language serves as the basis for our formalisation. It constitutes
a stripped-down version of the programming language SaC [50] which we use as a
vehicle for our experiments and to implement the inference. Essential features of a
functional language that our system depends on are: pure functions, n-dimensional
arrays as first class citizens, data parallel loop-nests expressed using an explicit syntac-
tical construction, and memory management being fully implicit to allow adjustments
of data layouts.

We use the N-body problem as a case study throughout this chapter. It nicely
demonstrates the difficulties occurring when attempting the classical approach to
vectorisation and it also shows the effectiveness of our proposed approach.

4.2 Core programming language

The inference presented in this thesis is based on a functional language called SaC-
λ which is a stripped down version of SaC similar to what is described in [51].
The main reason we are not using the full version is to make our presentation
and reasoning simpler. Most of the constructions of SaC can be seen either as
syntactic sugar over SaC-λ, or they are irrelevant in terms of our discussion. For

This chapter is based on the HPCS-2013 paper [125]
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more details on the differences between SaC and SaC-λ please refer to Chapter 6.
The implementation of the inference uses full-fledged SaC.

The language contains only the bare essentials of the SaC language adjusted to
a λ-calculus style in order to facilitate a more concise description of our techniques.
Fig. 4.1 shows the syntax of our core language.

⟨program⟩ ::= letrec ⟨fundef ⟩* in ⟨expr⟩

⟨fundef ⟩ ::= ⟨id⟩ (⟨args⟩? ) = ⟨expr⟩

⟨expr⟩ ::= ⟨const⟩
| ⟨id⟩
| ⟨id⟩ ( ⟨exprs⟩? )
| ⟨prf ⟩ ( ⟨exprs⟩? )
| if ⟨expr⟩ then ⟨expr⟩ else ⟨expr⟩
| let ⟨id⟩ = ⟨expr⟩ in ⟨expr⟩
| map ⟨id⟩ < ⟨expr⟩ ⟨expr⟩
| reduce ⟨id⟩ < ⟨expr⟩ ( ⟨id⟩ ) ⟨expr⟩

⟨const⟩ ::= c | [ ⟨consts⟩ ]

⟨consts⟩ ::= ⟨const⟩ (, ⟨const⟩)*

⟨prf ⟩ ::= sel | + | - | . . .

⟨args⟩ ::= ⟨id⟩ (, ⟨id⟩)*

⟨exprs⟩ ::= ⟨expr⟩ (, ⟨expr⟩)*

Figure 4.1: The syntax of SaC-λ.

As in full-fledged SaC, programs in our stripped down version consists of a set of
potentially mutually recursive function definitions (⟨fundef ⟩* in the ⟨program⟩ rule)
and a dedicated goal expression (⟨expr⟩ in the same rule). Expressions are either
constants, variables or function applications (⟨expr⟩ sub-rules 1,2 and 3 accordingly).
Anonymous functions, i.e. lambda abstractions, are not supported — this makes
type inference and transformation of conditions easier (for more details please refer
to Subsections 4.5.1 and 5.2.6). Function applications are written in C style, i.e.
arguments is a comma-separated list of expressions wrapped in parentheses. Local
variable definitions are expressed as let-constructs (⟨expr⟩ sub-rule 6) and condi-

63



tionals (⟨expr⟩ sub-rule 5) exist in the form of if-then-else expressions. Primitive
operations (⟨prf ⟩ rule) contain a set of standard arithmetic operations, e.g. +, -, etc.,
comparisons and mathematical functions like sqrt, sin, etc. and selections sel. For
convenience, for selections we use e[iv] interchangeably with sel(iv, e). Addition-
ally, our core language contains two combinators, map and reduce (the last two
sub-rules of ⟨expr⟩). They serve as vehicle for expressing data parallel operations —
array comprehension combinators. See Subsections 4.2.1 and 4.2.2 for more details.

In SaC-λ every value, conceptually, is a multi-dimensional array which is being
represented as a pair: ⟨s, d⟩, where s is a shape and d is data. Both shape and data
are vectors, which are denoted in square brackets, e.g. [1,2,3]. For example, an
n-dimensional array is represented by the following pair:

⟨[s1, . . . , sn], [d1, . . . , dm]⟩

where [s1, . . . , sn] denotes the shape of the array, i.e. its extent with respect to n
individual axes, and the vector [d1, . . . , dm] contains all elements of the array in a
linearised form.

To describe the evaluation rules for SaC-λ we will use a natural operational
semantics as described in [67, 36] together with the proposed notation. A single
judgement of evaluation is denoted as:

ρ ⊢ E ⇓ α

where E is a SaC-λ expression, ρ is an environment and α is a result of the evaluation
of E in ρ. The value of an expression E depends on the identifiers that occur free in
E. These values are recorded in the environment. An environment ρ is an ordered
list of pairs v ↦ α where v is a name and α is a value. The symbol ⋅ separates the
elements of the list:

x↦ ⟨[], [1]⟩ ⋅ y ↦ ⟨[], [5]⟩ ⋅ x↦ ⟨[], [10]⟩

To look-up the environment it is scanned from left to right using the rules pre-
sented in Fig. 4.2.

x↦ v ⋅ ρ ⊢ x↦ v

ρ ⊢ x↦ v x ≠ y

y ↦ v1 ⋅ ρ ⊢ x↦ v

Figure 4.2: Variable look-up rules.

In the example environment from above x is associated with 1 and y gets a value
5. The old x’s value 10 is also present in the environment but is never accessed.
Additionally to array values, the environment is used to store function definitions.
More precisely we need to store a function definition and the environment in which
this function has been defined. That makes the domain of values stored in the
environment to be:

64



1. multi-dimensional arrays — ⟨s, d⟩, and

2. a closure of the form Jλx1, . . . , xn.e, ρK which denotes a pair of multi-argument
nameless function definition with body e and environment ρ.

The typical equation we want to solve with the formal system is:

ρ0 ⊢ P ⇓ v

where P is a program, v is unknown and ρ0 is an initial environment containing
evaluators for primitive functions like +, -, etc.

Now we present the rules of evaluation. Scalars are in a normal form so we cannot
reduce them any further. Constants of higher dimensions can be constructed using
nested lists of expressions. We evaluate it as shown in Fig. 4.3

Scalar
ρ ⊢ n is a scalar

ρ ⊢ n ⇓ ⟨[], [n]⟩

Array
n

∀
i=1
ρ ⊢ ei ⇓ ⟨[s1, . . . , sm], [di1, . . . , dip]⟩

ρ ⊢ [e1, . . . , en] ⇓ ⟨[n, s1, . . . , sm], [d11, . . . , d1p, . . . , dn1 , . . . , dnp ]⟩

Figure 4.3: Semantics of Arrays and Scalars in SaC-λ.

As an example consider expressions 5 and [[1,2], [3,4]]. They will be evaluated
as follows:

5 ⇓ ⟨[], [5]⟩ [[1,2], [3,4]] ⇓ ⟨[2,2], [1,2,3,4]⟩

For non-scalar values there has to be a mapping between a multi-dimensional array
and its flat representation. As a default mapping we use standard row-major order.
This mapping is fixed for any SaC-λ program. In order to define the semantics of
selections, we first formalise the mapping Rm of index vectors within n-dimensional
index spaces into offsets within the row-major representation of n-dimensional arrays:

Rm(⟨[n], [i1, . . . , in]⟩, ⟨[n], [s1, . . . , sn]⟩) = 1 +
n

∑
k=1

⎛
⎝

n

∏
j=k+1

sj
⎞
⎠
ik

Please note that we add one to the row-major order as our enumeration of array
elements in tuples starts with one while our row-major mapping Rm assumes the C
convention for indices, i.e., 0 is considered the lowest legal index.

For all legal indices, i.e., 0 ≤ ik < sk for all k ∈ {1, . . . , n},Rm is a bijective function
for which we can define Rm−1 using integer division operations denoted with div
and mod, where div is a quotient and mod is a modulo. We have

Rm−1(a, ⟨[n], [s1, . . . , sn]⟩) = ⟨[n], [a1, . . . , an]⟩
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where
∀k ∈ {1, . . . , n} ∶ ak = ((a − 1) mod

n

∏
i=k
si) div

n

∏
i=k+1

si.

Please also note that we subtract one from a as enumeration of elements in arrays
start from one.

With the definition ofRm at hand we obtain the semantics for selections presented
in Fig. 4.4.

Sel
ρ ⊢ iv ⇓ ⟨[n], [i1, . . . , in]⟩ ρ ⊢ e ⇓ ⟨[s1, . . . , sn], [d1, . . . , dm]⟩

l ≡Rm(iv, ⟨[n], [s1, . . . , sn]⟩)
ρ ⊢ sel(iv, e) ⇓ ⟨[], [dl]⟩

Figure 4.4: Semantics of selection in SaC-λ.

Binary scalar arithmetic functions like addition, multiplication, etc. are defined
on all the numerical types for scalar values only. Semantically this can be seen as a
function application of a function with a body which we cannot inspect, but with
the evaluator that is coming from the environment. The rule for primitive functions
is presented in Fig. 4.5. The sem(×) notation refers to the semantics of a primitive
operation defined by SaC-λ.

Prf
× ∈ {+, -, . . .}

ρ ⊢ e1 ⇓ ⟨[], [d1]⟩ ρ ⊢ e2 ⇓ ⟨[], [d2]⟩

ρ ⊢ e1 × e2 ⇓ ⟨[], [d1 sem(×) d2]⟩

Figure 4.5: Semantics of primitive functions in SaC-λ.

The semantics of let, app and if use standard rules as described in many
text books. The semantics of letrec has to deal with a set of mutually recursive
functions. In order to present this formally we follows the idea presented in [67] and
we construct an environment that contains closures containing self-references. It can
be also seen as an infinite tree of closures. That guarantees that a closure of one
function definition can reach all the other function definitions of the letrec. The
rules are presented in Fig. 4.6.

The only constructs that require special attention are the map and reduce oper-
ators as well as vectorised versions of primitive operations. Jointly, these constructs
play key roles in our inference.

The map and reduce operators constitute simplified versions of the with-loop
constructs in fully-fledged SaC1. They are array versions of the well-known com-
binators. Both operators compute expressions over an N -dimensional index space

1For details on with-loops in SaC see [50].
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If-true
ρ ⊢ e1 ⇓ ⟨[], [true]⟩ ρ ⊢ e2 ⇓ v

ρ ⊢ if e1 then e2 else e3 ⇓ v

If-false
ρ ⊢ e1 ⇓ ⟨[], [false]⟩ ρ ⊢ e3 ⇓ v

ρ ⊢ if e1 then e2 else e3 ⇓ v

Let
ρ ⊢ e1 ⇓ v1 x↦ v1 ⋅ ρ ⊢ e2 ⇓ v

ρ ⊢ let x = e1 in e2 ⇓ v

App
ρ ⊢ e1 ⇓ v1 . . . ρ ⊢ en ⇓ vn

ρ ⊢ f ⇓ Jλx1, . . . , xn.e, ρ1K x1 ↦ v1 ⋅ ⋅ ⋅ ⋅ ⋅ xn ↦ vn ⋅ ρ1 ⊢ e ⇓ v

ρ ⊢ f(e1, . . . , en) ⇓ v

Letrec
ρ′ = f1 ↦ Jλx1, . . . , x1A1

.e1, ρ
′K ⋅ ⋯ ⋅ fn ↦ Jλxn1 , . . . xnAn .en, ρ

′K ⋅ ρ
ρ′ ⊢ e ⇓ v

ρ ⊢ letrec f1(x11, . . . , x1A1
) = e1 . . . fn(xn1 , . . . , xnAn) = en in e ⇓ v

Figure 4.6: Semantics of conditions, applications, let expressions and letrec in SaC-λ.

and then either combine the results in an array (map variant) or fold them using a
binary operator.

4.2.1 Map

Map
ρ ⊢ eu ⇓ ⟨[n], [u1, . . . , un]⟩ ∧

n

∀
i=1
ui > 0

u1−1
∀
i1=1

. . .
un−1
∀
in=1

iv ↦ ⟨[n], [i1, . . . , in]⟩ ⋅ ρ ⊢ eop
⇓ ⟨[s1, . . . , sm], [d[i1,...,in]1 , . . . , d

[i1,...,in]
p ]⟩

smap ≡ [u1, . . . , un, s1, . . . , sm]
dmap ≡ [d[0,...,0]1 , . . . , d

[0,...,0]
p , . . . , d

[u1−1,...,un−1]
1 , . . . , d

[u1−1,...,un−1]
p ]

ρ ⊢map iv < eu eop ⇓ ⟨smap, dmap⟩

Figure 4.7: Semantics of map in SaC-λ.

The semantics of map is presented in Fig. 4.7. The Map-rule shows that the
upper limit eu has to reduce to an n-element vector which determines the outermost
n dimensions of the overall result. For each index vector iv within the n-dimensional
index range starting at [0, . . . ,0] to eu, the expression eop needs to evaluate to
an m-dimensional result of one fixed shape. These m-dimensional results are then
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composed to the overall result by concatenating their element values. Note that we
explicitly prohibit empty index spaces by requiring all the components of eu to be
greater than zero. This restriction avoids generating empty arrays as a result of the
map operation. Although it might be considered as a restriction, it is irrelevant in
terms of layout types.

Here is a short example to illustrate how map works:

map i < [2,3] 4
evaluates toÐÐÐÐÐÐ→ [[4,4,4], [4,4,4]]

Note that here we use SaC-λ syntax, which means that the constant [2,3] from
the perspective of the semantic rules is ⟨[2], [2,3]⟩, the constant 3 is ⟨[], [3]⟩, etc.
The iteration space always starts with the zero vector and ends with the upper bound
of the operator. For the above example the iterations space would be:

{[0,0], [0,1], [0,2], [1,0], [1,1], [1,2]}

An iteration space forms an array of the shape identical to the upper bound ([2,3]
in our example). The goal expression of the map (denoted with e) is being evaluated
at every iteration:

{i = [0,0] ∧ e ⇓ 4, i = [0,1] ∧ e ⇓ 4, i = [0,2] ∧ e ⇓ 4, i = [1,0] ∧ e ⇓ 4,

i = [1,1] ∧ e ⇓ 4, i = [1,2] ∧ e ⇓ 4}

The order of the evaluation is non-deterministic. Finally the map operator pro-
duces an array [[4,4,4], [4,4,4]] as a result. That is, according to Fig. 4.7 ⟨smap =
[2,3], dmap = [4,4,4,4,4,4]⟩.

4.2.2 Reduce

The semantics of the reduce operator is presented in Fig. 4.8.

Reduce
ρ ⊢ eu ⇓ ⟨[n], [u1, . . . , un]⟩ ρ ⊢ eneut ⇓ ⟨[s1, . . . , sm], [d′1, . . . , d′p]⟩

u1−1
∀
i1=1

. . .
un−1
∀
in=1

iv ↦ ⟨[n], [i1, . . . , in]⟩ ⋅ ρ ⊢ eop
⇓D[i1,...,in] ≡ ⟨[s1, . . . , sm], [d[i1,...,in]1 , . . . , d

[i1,...,in]
p ]⟩

u1⋅ ⋯ ⋅un³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
f(f(. . . f(eneut,D

[0,...,0]), . . .),D[u1−1,...,un−1]) ⇓ ⟨[s1, . . . , sm], [r1, . . . , rp]⟩

ρ ⊢ reduce iv < eu (f) eop ⇓ ⟨[s1, . . . , sm], [r1, . . . , rp]⟩

Figure 4.8: Semantics of reduce operator in SaC-λ.

Similar to the Map-rule, the reduce rule computes identically shaped values eop
for all indices within the index space defined by the upper limit vector eu. However,
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here the result is obtained by consecutive folding using the binary function f . As
one can see, the semantics definition prescribes left to right folding with respect to
a row-major unrolling in the index space. Despite this definition, we demand f to
be associative and commutative in order to enable arbitrary folding orders. Also,
we assume that the neutral element eneut can be inferred from the context of the
function f . If not we can require a user to provide one, as it is done in the original
SaC language. The presence of neutral element serves the only purpose to support
empty index ranges, which does not have any effect when inferring types, but it gets
more important during the code transformation.

To illustrate how reduce work consider the following example:

reduce i < [2,3] (+) 4
evaluates toÐÐÐÐÐÐ→ 24

As before we are using the SaC-λ syntax where [2,3] from the perspective of
semantic rules is ⟨[2], [2,3]⟩. The iteration space is identical to the iteration space
of map we have considered earlier: it starts with the zero vector and ends with the
upper bound of the operator:

{[0,0], [0,1], [0,2], [1,0], [1,1], [1,2]}

Expressions are evaluated on every iteration:

{i = [0,0] ∧ e ⇓ 4, i = [0,1] ∧ e ⇓ 4, i = [0,2] ∧ e ⇓ 4, i = [1,0] ∧ e ⇓ 4,

i = [1,1] ∧ e ⇓ 4, i = [1,2] ∧ e ⇓ 4}

where e is the goal expression of the reduce. Finally evaluated expressions are
combined using the binary function:

(i = [0,0] ∧ e ⇓ 4) + (i = [0,1] ∧ e ⇓ 4) + (i = [0,2] ∧ e ⇓ 4) +

(i = [1,0]∧e ⇓ 4) + (i = [1,1]∧e ⇓ 4) + (i = [1,2]∧e ⇓ 4) = 24

That is, according to Fig. 4.8 ⟨[], [24]⟩. Evaluation order is again non-deterministic.
A binary function for reduce must be associative and commutative and the shape of
the reduced result would be identical to the shape of the evaluated goal expression.

Note that in both operations map and reduce the indexing variable can be
referred to within the expression:

map i < [4] i evaluates toÐÐÐÐÐÐ→ [0,1,2,3] reduce i < [4] (+) i evaluates toÐÐÐÐÐÐ→ 6

4.2.3 Vector operations

We assume that every arithmetic primitive operation has its SIMD counterparts
operating on V -element vectors, where V is a given target architecture specific
constant. The semantics of the SIMD primitive functions can be defined as follows:

f⃗([a1, . . . , aV ]) = [f(a1), . . . , f(aV )]
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where f is a scalar operation and f⃗ is its SIMD counterpart.
The selection operation sel(iv, a) which selects the element at the index po-

sition iv of the array a also has a SIMD counterpart, but its semantics is not as
straight-forward. For more details please refer to Chapter 5.

4.3 Running example

The main motivating example that we are going to use throughout the chapter is
an implementation of the N-body problem. The problem is defined as an iterative
approximation of the movement of N planets. During each step, accelerations, ve-
locities and positions of all the planets are being recomputed. Acceleration of the
i-th planet is computed from the relative positions of all the other planets. Then
the velocity and, in turn, the position of the i-th planet is updated using the newly
computed acceleration. For more details, please refer to [129] which discusses the
N-body problem in more detail.

letrec
# ( f l o a t [ 3 ] , f l o a t [ 3 ] ) → f l o a t [ 3 ]
vplus (x , y ) = map i < [ 3 ] ( x [ i ] + y [ i ] )

# ( f l o a t [ 3 ] ) → f l o a t
l2norm (x ) =

sq r t ( ( reduce i < [ 3 ] (+) x [ i ]∗ x [ i ] ) + 0 . 01 )

# ( f l o a t [ 3 ] , f l o a t [ 3 ] , f l o a t ) → f l o a t [ 3 ]
a c c e l e r a t i o n ( posx , posy , mass ) =

let d i f f = map i < [ 3 ] ( posx [ i ] − posy [ i ] ) ;
norm = l2norm ( d i f f ) ;
norm3 = norm ∗ norm ∗ norm

in
map i < [ 3 ] ( d i f f [ i ] ∗ mass / norm3)

# ( f l o a t [ 3 ] , f l o a t [N, 3 ] , f l o a t [N] ) → f l o a t [ 3 ]
planet_acc ( pos , po s i t i on s , masses ) =

reduce i < [N] ( vplus )
let

p = map j < [ 3 ] p o s i t i o n s [ i ++ j ] ;
in

a c c e l e r a t i o n ( pos , p , masses [ i ] )

# ( f l o a t [N, 3 ] , f l o a t [N, 3 ] , f l o a t [N] , f l o a t )
# → ( f l o a t [N, 3 ] , f l o a t [N, 3 ] )
advance ( po s i t i on s , v e l o c i t i e s , masses , dt ) =

let
dt_vec = [ dt , dt , dt ] ;
acc = map i < [N]

let
p = map j < [ 3 ] p o s i t i o n s [ i ++ j ]

in
planet_acc (p , po s i t i on s , masses ) ;

v e l = map i v < [N, 3 ]
v e l o c i t i e s [ i v ] + acc [ i v ] ∗ dt_vec ;

pos = map i v < [N, 3 ]
p o s i t i o n s [ i v ] + ve l [ i v ] ∗ dt_vec

in
( pos , v e l )

in
. . .

Listing 4.1: Implementation of the N-body.
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We provide a core implementation of the benchmark using SaC-λ in Fig. 4.1. It
has been slightly adjusted from the version discussed in [129] to be better suited for
demonstrating our inference technique. We use the symbol # for inserting comments
and the symbol ; as a shortcut for nested let expressions.

The function advance is updating arrays of positions and velocities on each time
step. To do so, it first computes the mutual accelerations between all planets. This
computation is achieved by mapping the function planet_acc over all planets. The
function planet_acc computes the sum of forces that all planets have on the given
position pos. This reduction in turn makes use of the function acceleration which
computes the acceleration between two planets posx and posy.

Note that the N-body implementation grants a number of vectorisation opportu-
nities, most of which are not valid under classical auto-vectorisers. The main reason
is the way acceleration is computed between two planets. Acceleration, velocities and
positions are stored in arrays of shape [N,3]. The most compute-intensive operation
happens on the inner dimension of the position array. Theoretically, that would
be an ideal scenario for vectorisation; however, the problem is that the size of this
dimension is too small. For most of the architectures the length of the float vector
would be at least four, which means that loading/storing within a given layout would
require masking, and has an implication on the alignment of load/store which might
introduce overheads on targets like Intel. As a consequence, at that point classical
auto-vectorisers would typically give up.

As a programmer, one might predict such a behaviour, and extend the innermost
dimension to match the vector length. That might bring some performance gains,
but the danger is that the increased memory footprint of the array will slow down the
overall performance, as the inner dimension increased from 3 elements to V, which
overall increases the memory footprint by (V − 3)/3 times. This is an aspect that is
easy to overlook. More importantly, an alternative solution is typically being missed.

Rather than considering a vectorisation over the triplets, one might consider
a vectorisation of the array of accelerations over the components of triplets. In
that case the memory overhead would be substantially lower and the number of
elements processed per vector operation would be higher. The drawback is that such
a transformed data layout has an impact on the whole program. It might be:

1. arbitrarily difficult to rewrite large programs manually (which means that
automating this process is of practical interest); and

2. the transformation might not be beneficial because of potential overheads
introduced by vectorisation.

4.3.1 The key ideas in a nutshell

We generalise the idea of vectorisation across non-innermost dimensions as follows:
For any given array A with shape [s1, . . . , sn] we consider vectorisations in all possible
axes 1, . . . , n. A vectorisation in axis k will lead to a layout remapping into an array
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Ak of shape [s1, . . . , sk−1, ⌈sk/V ⌉, sk+1, . . . , sn, V ] where the V elements that in A are
adjacent in axis k are now adjacent in the innermost axis n + 1 of Ak.

The key problem then lies in the necessity to find out which layouts can result in
vectorisation. Vectorisation potential in general stems from applications of primitive
operations like + to elements of an array within the context of an independent loop.
In such a setting, any of the array’s axes can be chosen for vectorisation whose
corresponding index is traversed by an independent loop. However, in practice, the
choices in most cases are more limited due to other selections that are present within
such a nesting of independent loops. If selections into more than one array exist, we
get correlations between the layout choices of the arrays involved; examples can be
observed in the function vplus of our N-body application, where we receive corre-
lations between the arrays x and y. If several elements within the same array are
selected, axes with 2 or more different accesses require more involved code trans-
formations and are, therefore, less favourable. Furthermore, we have to take into
account that the same array can be used in several loop nests, all of which may
provide vectorisation opportunities; an example is the use of the array positions
within the body of the function advance in our running example. Finally, the nests
of independent loops may not exist within a single function body. Instead, layout
demands for vectorisations may need to be propagated through function calls; an
example is the function acceleration of the N-body application which exposes the
layout demands on its first two arguments to the calling context in planet_acc.

The layout type system presented in this chapter allows us to control all the
aforementioned aspects: we can propagate layouts through function calls, and we
can control tightly what happens to all loop indices involved. Furthermore, it takes
into account multiple uses of the same data structure within an entire application
and ensures consistent layout transformations throughout.

4.4 A type system for data layouts

Before we describe the layout types let us clarify the term type and put it into
the perspective of the language. We use layout types to denote transformations of
expressions. Additionally we have standard element types like: int, float, etc. and we
have shapes as a part of the types which form a subtyping hierarchy and participate in
function overloading. For more details refer to [50]. That means that every expression
of the language is annotated with a type that consists of three orthogonal components:
element type, shape and layout type. In further discussions we are going to consider
only layout types assuming that the element types and shapes have been inferred
and are sound.

As explained informally in the previous section, for a given n-dimensional array
we consider n different layout transformations. We denote these by the natural
numbers i ∈ {1, . . . , n}, where i refers to the layout transformation when the shape
of an array changes from [s1, . . . , sn] into [s1, . . . , ⌈si/V ⌉, . . . , sn, V ] and V neighbour
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elements at axis i are placed at the newly introduced n+1-th axis (see an example at
Subsection 4.4.1). In addition, we use 0 to denote the shape identity and we use △
to denote a shape extension from [s1, . . . , sn] into [s1, . . . , sn, V ]. The transformed
values are either replicated in case of constants or a represent V -fold selection. The
latter is needed for the vectorisation of expressions that happen inside our map or
reduce constructs. Finally, we add a layout type for index vectors. They play a crucial
role in the layout inference as they introduce constraints between layouts of different
arrays whenever they are used for selections from more than one array. Index vectors
can have types idx(m), m ∈ Z+ which denote that the m-th component of the index
vector is considered for vectorisation. Now, we can define the set or layout types as

L = N ∪ {△} ∪ idx(m),m ∈ Z+ (Layout types2)

We also introduce layout-type-signatures to denote the different possible layout
transformations an individual function can be applied to. Formally, an n-argument
function is described by a (τ1, . . . , τn) → τn+1 type where all τi are layout types as
defined above. We denote the union of L with all layout-type-signatures over L by
LT .

4.4.1 Example

Here is a simple example to develop an intuition for the layout types and correspond-
ing transformations. Let us consider a function that adds two matrices:

# ( f l o a t [N,N] , f l o a t [N,N] ) → f l o a t [N,N]
matplus ( a , b) =

map i < [N, N]
a [ i ] + b [ i ]

Both input matrices as well as the result are two dimensional arrays of shape
[N,N] with the element type float. Our goal is to find a valid layout transformation
for the arrays in the program which would lead to replacement of scalar primitive
operations with vector ones. In this work we restrict layout transformations of the
arrays and only consider tiling with tiles of size 1 × V across one of the array’s axes
and moving those tiles into newly created dimension. For our example we have the
following cases (assuming that N = 4 and V = 2):

M0 =
⎛
⎜⎜⎜
⎝

[01,02,03,04]
[05,06,07,08]
[09,10,11,12]
[13,14,15,16]

⎞
⎟⎟⎟
⎠

M1 = ([[01,05], [02,06], [03,07], [04,08]][[09,13], [10,14], [11,15], [12,16]]) M2 =
⎛
⎜⎜⎜
⎝

[[01,02], [03,04]]
[[05,06], [07,08]]
[[09,10], [11,12]]
[[13,14], [15,16]]

⎞
⎟⎟⎟
⎠

Here M i denotes a transformed array M with respect to the layout type i. Here
we assume that M i is flattened using row-major order. We expect from our inference
to identify two vectorisation possibilities for matplus : when both of the arguments

2Note here that despite of the infinite nature of the definition of L, for any given program L is
finite as the natural numbers are bound by the maximum number of array axes present.
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are of layout type 1 and both of the arguments are of layout type 2. Formally we
would expect to see the following typings:

# Corresponds to M1

# matplus ∶∶ (1,1)→ 1
matplus ( a , b) =

map i ∶∶ idx(1) < [N, N]
a[i] ∶∶ △ + b[i] ∶∶ △

# Corresponds to M2

# matplus ∶∶ (2,2)→ 2
matplus ( a , b) =

map i ∶∶ idx(2) < [N, N]
a[i] ∶∶ △ + b[i] ∶∶ △

Here and further we use e ∶∶ τ notation to denote that e is of layout type τ to
avoid confusion with standard typing for which we are using e ∶ float[N] notation.
The above typings will correspond to the following transformations:

# ( f l o a t [N/V,N,V] , f l o a t [N/V,N,V] )
# → f l o a t [N/V,N,V]
matplus ( a1 , b1 ) =

map i < [N/V, N]
vplus ( v s e l ( i , a1 ) ,

v s e l ( i , b1 ) )

# ( f l o a t [N,N/V,V] , f l o a t [N,N/V,V] )
# → f l o a t [N,N/V,V]
matplus ( a2 , b2 ) =

map i < [N, N/V]
vplus ( v s e l ( i , a2 ) ,

v s e l ( i , b2 ) )

where vplus and vsel correspond to vector variants of + and sel.

4.4.2 Environments

The purpose of the layout type system is to infer which combinations of layout
choices for all data structures will enable some code vectorisation. To describe n such
combinations within a single environment, we formalise environments as mappings
from identifiers to n-element vectors of types, i.e., we have environments E ⊂ Id×LT n.
We denote the lookup of a variable v in E by E(v) and E ⊕ (v, ⟨τ1, . . . , τn⟩) denotes
an environment that returns the vector type ⟨τ1, . . . , τn⟩ for the variable v. Empty
environment is denoted with {}.

Unless specified otherwise, we use small Greek letters to denote vectors of layout
types, and indexes to get individual components. For example: τ ≡ ⟨τ1, . . . , τn⟩, τi ∈ LT .
We use ∣τ ∣ to denote the number of components of a vector type τ , i.e. ∣⟨τ1, . . . , τn⟩∣ = n.

For a more succinct presentation of the type system, we use separate environments
for all functions. We denote the collection of all these environments by a “function
environment” F ⊂ Id × E . Lookup of a function identifier f and presence of function
identifiers are denoted in the same way as its done for standard environments, i.e.,
we use F(f) and F ⊕ E , respectively.

In order to access the resulting type of the function f we introduce a meta-
variable f in the relevant environment. We can look-up a function type using F(f)(f)
notation. As we require all entries of one variable environment to have the same
length, an environment E of a function f takes the general form:

E = {v1 ∶∶ ⟨τ 11 , . . . , τ 1n⟩, . . . vm ∶∶ ⟨τm1 , . . . , τmn ⟩, f ∶∶ ⟨τ f1 , . . . , τ fn ⟩}

It can be seen as a matrix of size (m + 1) × n, where m is the number of local
variables and arguments in the function this environment captures, +1 comes from
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the meta variable denoting the type of the function and n is the number of valid
layout combinations for that function.

Each column in the matrix represents a layout combination for all variables and
arguments of the function including its signature. We refer to the i-th column of an
environment E by E [i].

4.4.3 Ownership of idx(k) and △ types

The way we have presented idx(k) and △ types so far may lead to undesirable
typings. This can be understood from the following example:

map i < [N]
f (map j < [N] a [ i ] + b [ j ] )

In the scalar case the function f gets an array b where each element is increased
with a[i]. Now, the problem happens when both maps are vectorised. That is:

map i ∶∶ idx(1) < [N]
f (map j ∶∶ idx(1) < [N] a[i] ∶∶ △ + b[j] ∶∶ △)

Such a typing will lead to a wrong result. At the first iteration, we will add

[[a1, a2, a3, a4], [a1, a2, a3, a4], . . . ] + [[b1, b2, b3, b4], [b5, b6, b7, b8], . . . ]

assuming that V = 4. However, it does not mean that such a map cannot be vectorised.
Correct vectorisations would be:

[[a1, a1, a1, a1], [a1, a1, a1, a1], . . . ] + [[b1, b2, b3, b4], [b5, b6, b7, b8], . . . ]

in the case j ∶∶ idx(1) ∧ i ∶∶ 0 or

[[a1, a2, a3, a4], [a5, a6, a7, a8], . . . ] + [[b1, b1, b1, b1], [b1, b1, b1, b1], . . . ]

in the case of i ∶∶ idx(1) ∧ j ∶∶ 0.
The error happens because we lose a number of iterations in the first example

as compared to the last two. In the scalar case, when i ∶∶ 0 ∧ j ∶∶ 0 the number of
iterations is N2. In the last two cases, we cut one of the map iteration spaces by V ,
and we add V elements at a time: N/V ⋅N ⋅ V = N2. However, in the first example,
we cut both iteration spaces by V which results in N/V ⋅N/V ⋅ V = N2/V ≠ N2.

To solve this problem we have to track where the △ type is coming from. There
are two options:

1. it is either a replicated value, e.g. a constant; or

2. it is a selection into an array of layout type k using the index vector of layout
type idx(k).

For the first case, we are going to use △0 notation. For the second case, we need to
track which map/reduce “owns” this △ layout type. For that purpose, we enumerate
map/reduces in a function and annotate index variable with this index. We will use
#map and #reduce to denote the map/reduce indexes. As a result idx(k) types get
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an additional parameter which we express as: idx(k,α), where α is an index of some
map/reduce. Selections on the layout-type idx(k,α) result in △α. By doing so, we
will be able to verify that goal expressions of map/reduces will carry the right index,
in case the body is of layout-type △ and the index is of layout type idx(k).

For our example we will have:
map i ∶∶ idx(1, α) < [N]

f (map j ∶∶ idx(1, β) < [N] a[i] ∶∶ △α + b[j] ∶∶ △β )

Such a typing will be rejected, because plus imposes an equality constraint on △
argument indexes.

To summarise: idx and △ types are annotated with a parameter. For △ types
there are two kinds of concrete types: △0 which denotes a replicated value and △#map

which means that the value was obtained via selection at the type idx(k,#map) —
the only possible family of concrete idx types. Note that for △0 there is no dual idx
type. Also, function signatures may contain polymorphic idx and △ types: idx(k,α)
and △α respectively. During the application of a polymorphic type we run unification
over the polymorphic parameters (α-s).

4.4.4 Type rules

With these definitions at hand, we can define a deduction system to characterise the
validity of layout-transformations. The judgements of this deduction system are of
the form F ,E ⊢ expr ∶∶ ⟨τ1, . . . , τm⟩ where

F is a function environment; it contains separate environments for all functions,

E is an environment containing valid layout transformations for the identifiers in
the current context,

expr is an expression,

m is the number of valid layout transformations for the function under considera-
tion, and

τi are the m layout-transformations that expr can undergo within the current
function.

The type rules for the non-array-specific core of the language can be seen on Fig. 4.9.
Note that in the rest of the thesis we use D (e) to denote a number of axes in e

and the length of the vector S0 (e) to denote the length of the first dimension.

e ⇓ ⟨[s1, . . . , sn], [d1, . . . , dp]⟩

D (e) = n

e ⇓ ⟨[n], [d1, . . . , dp]⟩

S0 (e) = n

Most of these rules are multi-type versions of the standard rules for typing a first
order applied λ-calculus: they only differ from their standard counterparts by dealing
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Const
n

∀
i=1
τi ∈ {0, . . . ,D (c)} ∪ {△0}

F ,E ⊢ c ∶∶ ⟨τ1, . . . , τn⟩

Var

F ,E ⊢ x ∶∶ E(x)

App
t

∀
i=1
F ,E ⊢ ei ∶∶ ⟨τ i1, . . . , τ in⟩

F ,F(f) ⊢ f ∶∶ ⟨(σ1
1, . . . , σ

t
1)→ σ1, . . . , (σ1

m, . . . , σ
t
m)→ σm⟩

n

∀
i=1

∃j ∈ {1, . . . ,m}
t

∀
k=1

σkj = τ ki ∧ σj = τi

F ,E ⊢ f(e1, . . . , et) ∶∶ ⟨τ1, . . . , τn⟩

Let
F ,E ⊢ e1 ∶∶ τ F ,E ⊕ (x, τ) ⊢ e2 ∶∶ σ

F ,E ⊢ let x = e1 in e2 ∶∶ σ

Letrec

F ′ = F
n

⊕
i=1

(fi,F(fi)⊕ (fi, ⟨(τ 11 , . . . , τ 1Ai)→ σ1, . . . , (τVi1 , . . . , τ
Vi
Ai

)→ σVi⟩))

n

∀
i=1
F ′,F ′(fi)

Ai

⊕
j=1

(aij, ⟨τ 1j , . . . , τVij ⟩) ⊢ ei ∶∶ ⟨σ1, . . . , σVi⟩

F ′,E ⊢ e ∶∶ ρ

F ,E ⊢ letrec f1(a11, . . . , a1A1
) = e1, . . . , fn(an1 , . . . , anAn) = en in e ∶∶ ρ

Figure 4.9: Non array-specific layout rules.

with vectors of n types for each identifier rather than a single type. Two rules are of
special interest here: the Const rule for typing constants and the App rule for
typing function applications.

The Const rule allows us to attribute any layout transformation type as long
as we stay within the dimensionality of the constant or we choose to extend the shape.
As a consequence, any possible type inference will have to imply type constraints
from the context in order to constrain the types for constants.

The App rule correlates n potential layout combinations within the calling
context with m potential layout combinations of the called context. This ensures
that only those layout combinations are present for which suitable function layout
transformations exist, which effectively ensures consistency throughout the entire
program.

The rules that give rise to layout transformations are those for primitive opera-
tions and those for the map and reduce constructs are shown in Fig. 4.10.

As explained informally, in the previous section, we look for patterns where a
primitive operation with a vector counterpart (Prf[△] rule) is applied to element
selections (Sel[△] rule) into arrays that are located within a data parallel context
(Map[△] rule or Red[△] rule). As we have seen in matplus, a vector version of
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Prf[△]
F ,E ⊢ e1 ∶∶ ⟨τ1, . . . , τn⟩

F ,E ⊢ e2 ∶∶ ⟨σ1, . . . , σn⟩

ρi
1≤i≤n

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎩

0 τi = 0 ∧ σi = 0

△
α τi ∈ {△

0,0} ∧ σi =△
α

△
α τi =△

α
∧ σi ∈ {△

0,0}

△
α τi =△

α
∧ σi =△

α

F ,E ⊢+(e1, e2) ∶∶ ⟨ρ1, . . . , ρn⟩

Map[△]
F ,E ⊕ (j, ⟨τ1, . . . , τn⟩) ⊢ e ∶∶ ⟨σ1, . . . , σn⟩

F ,E ⊢ u ∶∶ ⟨φ1, . . . , φn⟩ ∧
n
∀
i=1
φi = 0

ρi
1≤i≤n

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎩

k
τi = idx(k,α) ∧ σi ∈ {△

α,△0
}

k ∈ Z+, α
def
= #map

△
α τi = 0 ∧ σi =△

α

0 τi = 0 ∧ σi = 0

S0 (j) + k τi = 0 ∧ σi = k ∈ Z+

F ,E ⊢map j < u e ∶∶ ⟨ρ1, . . . , ρn⟩

Red[△]
F ,F(f) ⊢ f ∶∶ ⟨(υ1, υ1)→ υ1, . . . , (υm, υm)→ υm⟩

F ,E ⊕ (j, ⟨τ1, . . . , τn⟩) ⊢ e ∶∶ ⟨σ1, . . . , σn⟩

F ,E ⊢ u ∶∶ ⟨φ1, . . . , φn⟩ ∧
n
∀
i=1
φi = 0

n
∀
i=1

∃j ∈ {1, . . . ,m} σi = υj

ρi
1≤i≤n

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎩

0
τi = idx(k,α) ∧ σi ∈ {△

α,△0
}

k ∈ Z+, α
def
= #reduce

△
α τi = 0 ∧ σi =△

α

σi τi = 0 ∧ σi ∈ N

F ,E ⊢ reduce j < u (f) e ∶∶ ⟨ρ1, . . . , ρn⟩

If[△]
F ,E ⊢ p ∶∶ ⟨τ1, . . . , τn⟩

F ,E ⊢ t ∶∶ ⟨σ1, . . . , σn⟩

F ,E ⊢ f ∶∶ ⟨φ1, . . . , φn⟩

ρi
1≤i≤n

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎩

φi τi = 0 ∧ σi = φi ∧ σi, φi ≠△

△
α τi ∈ {△

α,△0,0} ∧ σi ∈ {△
0,0} ∧ φi =△

α

△
α τi ∈ {△

α,△0,0} ∧ σi =△
α
∧ φi ∈ {△

0,0}

△
α τi ∈ {△

α,△0,0} ∧ σi =△
α
∧ φi =△

α

F ,E ⊢ if (p) then t else f ∶∶ ⟨ρ1, . . . , ρn⟩

Idx[△]
F ,E ⊢ j ∶∶ ⟨τ1, . . . , τn⟩

F ,E ⊢ h ∶∶ ⟨σ1, . . . , σn⟩

ρi
1≤i≤n

=

⎧
⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪
⎩

idx(k,α) τi = idx(k,α) ∧ σi = 0

idx(S0 (j) + k,α) τi = 0 ∧ σi = idx(k,α)

0 τi = 0 ∧ σi = 0

F ,E ⊢ j h ∶∶ ⟨ρ1, . . . , ρn⟩

Sel[△]
F ,E ⊢ j ∶∶ ⟨τ1, . . . , τn⟩

F ,E ⊢ a ∶∶ ⟨σ1, . . . , σn⟩

ρi
1≤i≤n

=

⎧
⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪
⎩

△
α τi = idx(k,α) ∧ σi = k ∧ k ∈ Z+

△
α τi = 0 ∧ σi =△

α

0 τi = 0 ∧ σi ∈ N

F ,E ⊢ sel (j, a) ∶∶ ⟨ρ1, . . . , ρn⟩

Figure 4.10: Layout rules enabling layout transformations.

plus is applied to selections to the arrays inside the map.
Depending on the nesting of map constructs, the Map[△] rule propagates type

relations in a different way. We have to distinguish four different cases:

1. The map construct may control a layout transformation, i.e., it may be respon-
sible for the data-parallel loop that is due to be vectorised. In this case, the
corresponding axis k is attributed as type idx(k,α) for the index variable and
the expression e needs to be of expansion type (△α).

2. The map-construct can be syntactically located between the controlling map
construct and the expression that is to be vectorised. In this case, the type for
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the index j has to be of type 0 and the expression is of expansion type.

3. If we do not have a vectorisation at all, the types for the index, expression and
the entire map construct are all 0.

4. Finally, the map construct may surround a map construct that controls a vec-
torisation. In that case, the expression is of some type k already and the result
type of the map-construct has to reflect that we have a layout transformation
on an inner dimensionality. This is done by adding the number of axes of the
surrounding map to k.

The Prf[△] rule captures all possible vectorisation cases: vectorisation is pos-
sible (indicated by the expansion type △), whenever at least one argument has an
expansion type. Finally, the only rule that gives rise to such an expansion type is
the Sel[△] rule for array selections. Similar to the Map[△] rule, the Sel[△]
rule has to deal with potential nesting of array selections:

1. The case that gives rise to vectorisation is where the index has type idx(k,α)
and the array to select from has a matching layout transformation k.

2. If a selection is applied to an array that has given rise to vectorisation already
(it is of type △α) but the selection is still located inside the controlling map
construct, the index needs to be of type 0 and the expansion type is propagated
on.

3. Finally, the selection can be located outside of a controlling map construct, in
which case the array is of type k and the result type as well as the index type
are both of type 0.

The Idx[△] rule allows for nested map/reduce constructs to be typeable. The main
use case for that is a function application on non-scalar selections from an array.

4.5 Layout inference

Layout inference can be directly deduced from the layout rules similarly to monomor-
phic type systems. However, the main challenges come from:

1. The lengths of vector types in the environment are not known at the time we
start the inference;

2. Const defines the valid layout-types for components of the vector type, but
we do not know which variant we should use for a certain component;

3. Recursive functions require a fixed point iteration; and

4. Parametrised idx and △ types require unification.
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The overall intuition behind the algorithm is that we start by adding all the
valid type combinations and we cross out those combinations that have proven to be
untypeable at each step of the inference. Every time we see a constant, we expand
the existing environment by assuming that every column in the environment is
compatible with any valid layout type for the given constant. Finally, as for recursive
functions, we introduce a � type when the type of the function is not yet known
and we use a fixed-point iteration to eliminate � types. As for unification, we follow
the ideas of Hindley-Milner type inference [57, 90]. That is: we introduce a type-
variable whenever the argument type is of type idx or △; at function applications
we instantiate polymorphic variables of the function signature and unify them with
the existing variables; for all the other cases we unify the idx and △ parameters
according to the type rules.

The algorithm can be seen as a top-down traversal over the program, where for
every term the layout rule corresponding to the type of the term is applied. We start
the inference with an empty function F which is extended whenever a function is
being processed.

4.5.1 The inference algorithm

We formulate the inference using Tinf schemata. The algorithm is a top-down traversal
and the type of the overall program can be inferred by applying Tinf to the letrec
expression. Further in this section we define Tinf application for all the expression
kinds according to Fig. 4.1 and explain the details. That allows us to infer types for
all the programs in our language.

Formally a Tinf application has the following form:

Tinf(F ,E , e)

where F is a function environment, E is an environment related to an expression e
we are inferring a type for. The inference step evaluates to a triplet:

(F ′,E ′, τ) = Tinf(F ,E , e)

with potentially modified function environment F ′, potentially modified environment
E ′ and a type (in the sense of environments, i.e. a tuple of layout types) τ . The
meaning of this application is the following:

(F ′,E ′, τ) = Tinf(F ,E , e)

F ′,E ′ ⊢ e ∶ τ

Before we formalise the algorithm we have to introduce a couple of new meta-
operators and meta-types. First of all, we introduce a bottom type, denoted with
�. This type is used only in terms of the inference algorithm to drive a fixed point
iteration and does not represent any valid layout. Intuitively it denotes the lowest
type in a subtyping hierarchy: ∀τ ∈ L � <∶ τ , if we have had sub-typing. The
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second meta-type is called nil and is denoted with ◻. Semantically it means that in
a given environment at the position where ◻ appears, an expression is proven to be
untypeable. The main purpose of ◻ is to mark a column in the environment that
has to be deleted.

The variable typing rule Var says that the type of a variable is found by a
lookup in the environment. However, the variables have to get there somehow. If
we look at the inference rules, an environment is extended every time we use the ⊕
operator. Let expressions directly translates into the algorithm step. However, for
function arguments, map and reduce index variables and constants the type has to
be guessed. To solve this we are going to consider all the valid typings and eliminate
those that are not sound during the inference. We introduce the T meta-operator to
generate all the valid typings for an object x:

T (x) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

⟨0,1, . . . ,D (x) ,△0⟩ x is a constant

⟨0,1, . . . ,D (x) , idx(1, α1), . . . , idx(S0 (x) , αk),△0,△αk+1⟩ x is an argument

where αi is obtained by calling a globally stateful function newvar() which returns
a unique identifier to parametrise idx and △ types. Note that we have decided to
include △0 and △α explicitly, although △0 is an instance of a △α. The alternative
would be to start with △α and expand the environment whenever there is a special
case for △0, however, we believe that this is easier for presentation purposes. Also,
we cannot get rid of △0 cases entirely leaving polymorphic versions only, as △0

may remove an equality constraint on parameters. For example, think of a function
f (a, b) = a + b. If we type it (△α,△α) → △α, the unification of α and zero
would prohibit a typing (△α,△0)→△α, at the same time we cannot type the overall
function (△α,△β)→△α as it has an additional constraint that β = 0. Note that the
idx types can be omitted entirely if the argument base type is not integral or the
dimension of the argument is not one.

At every step we are going to reconstruct the environment by either expanding
it with a new layout or shrinking it in case a certain layout combination is proven
to be untypeable. In order to express this process formally, we introduce three more
meta-operators on types: n-times type replication R(τ, n), n-times type component
replication C(τ, n) and a helper meta-operator for tuple concatenation . We defined
those as follows:

τ σ = ⟨τ1, . . . , τ∣τ ∣, σ1, . . . , σ∣σ∣⟩
τ ⟨⟩ = ⟨⟩ τ = τ

C (⟨τ1, . . . , τ∣τ ∣⟩, n) = ∣τ ∣
i=1 ( n

j=1 ⟨τi⟩)
R (⟨τ1, . . . , τ∣τ ∣⟩, n) = n

i=1 τ

For example R(⟨1,2,3⟩,2) = ⟨1,2,3,1,2,3⟩ and C(⟨1,2,3⟩,2) = ⟨1,1,2,2,3,3⟩.
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Now, we define two operations on environments: environment extension ⊕ and
environment shrinking ⊖. Please note, that here ⊕ has a different semantics than in
the inference rules. However, they are related in the following sense: before we can
add a new variable, which relates to the inference rules ⊕, an environment has to
be extended using the ⊕ and the idx and △ parameters in new columns have to be
renamed. Environment extension is defined as:

E ⊕ τ = {(v,R (σ, ∣τ ∣)) ∣ (v, σ) ∈ E}

For every parameter variable in the environment column we generate a new
name and replace old names with new names. Such a procedure preserves original
constraints, but renames every variable in a column. We do this as unification happens
in terms of a single column.

For example, if
E = {(v, ⟨0,1,△α⟩)}

then

E ⊕ ⟨2,3⟩ = {(v, ⟨0,1,△β,0,1,△γ⟩)}.

Note that the number of components of every type in the environment is an invariant
denoted with l(E).

Environment shrinking is defined using a helper rm meta-operator as follows:

E ⊖ τ = E ′ where

E ′ = {(v, rm(σ, τ) ∣ (v, σ) ∈ E} where

rm(σ, τ) = ∣τ ∣
i=1 if τi ≠ ◻ then ⟨σi⟩ else ⟨⟩

For example, assuming that E = {(v1, ⟨1,0⟩), (v2, ⟨△α,1⟩)}, we delete the columns
of E at the position where we have ◻ in the right-hand side operator. E ⊖ ⟨◻,1⟩ =
{(v1, ⟨0⟩), (v2, ⟨1⟩)}. This is being used to remove columns of the environment which
are proven to be untypeable.

With these definitions at hand we can now formally describe individual cases of
the Tinf application.

[Alg-Letrec] — letrec expression

Letrec inference consists of two steps — inferring types for the functions and inferring
type for the goal expression. However, as functions might call each other in their
bodies and functions can be recursive, we populate F0 with function types that
return � for any possible layout combination that arguments can take. That ensures
that a look-up in the function environment F0 is always successful. After that we
infer types for all the functions again, considering their goal expressions. Formally
we say that the inference of letrec is an inference of its goal expression assuming
that functional environment Fn contains function types.
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Tinf ({},{}, letrec f1(a11, . . . , a1m1
) = e1, . . . , fn(an1 , . . . , anmn) = en in e) = Tinf(Fn,{}, e)

To construct the environment Fn we start by creating environments Ei for every
function fi. The environment Ei contains a Cartesian product of all the possible
argument types plus the type of the function. Components of this function type
will have a form (τ1, . . . , τn) → � for every possible layout combination of all the
arguments. A Cartesian product of the argument types is created by adding every
argument x to Ei using the following procedure: expand all the existing types of Ei
by applying Ei ⊕ T (x) and add the entry x ∶ C(T (x), l(E)). This can be formalised
as:

E1i = {(ai1, T (ai1))}
E2i = E1i ⊕ T (ai2) ∪ {(ai2,C(T (ai2), l(E1i ))}
⋯
Emii = Emi−1i ⊕ T (aimi) ∪ {(aimi ,C(T (aimi), l(E

mi−1
i ))}

∀l(E
mi
i )

j=1 ρj = (Emii (a1)j, . . . ,Emii (an)j)→ �
Emi+1i = Emii ∪ {(fi, ρ)}

Note that the ρj is a function type for the layout combination of the arguments in
the j-th column of Emii . The notation Emii (ak)j denotes j-th component of the type
that the argument ak has in the environment Emii . For example, for the following
function:

# ( f l o a t [N] ) → 1
f oo ( a ) = . . .

we expect the following environment:

a ∶ 0 1 △
0

△
α

foo ∶ (0)→ � (1)→ � (△
0
)→ � (△

α
)→ �

We can construct a functional environment F0 that captures all the functions
returning � for any valid layout combination of the arguments as follows:

F0 =
n

⋃
i=1

{(fi,Emi+1i )}

Now, using F0 we can precise function types by inferring the types of the goal
expressions. Formally we denote it as follows:

(F1,_,_) = Tinf(F0,F0(f1), f1(a11, . . . , a1m1
) = e1)

⋯
(Fn,_,_) = Tinf(Fn−1,Fn−1(fn), fn(an1 , . . . , anmn) = en)
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Fixed point iterator

We use a fixed point iterator as we can have recursive functions. The main principle
is that we introduce a bottom type if a function application hits a yet unfinished
function. The bottom types can be absorbed by the condition, which gives rise to the
fixed point. The step of a fixed point is an application of Tinf to the letrec expression.

The fixed point iteration stops when none of the types have been changed. The
fixed point terminates because the size of any environment is bounded by the product
of dimensionalities of the arguments, constants and map/reduce index variables. That
is because environments can grow only on application of ⊕ which happens in the
case of constants, arguments and map/reduce index variables. The let case does
not count, as environment expansion happens via the expression we substitute with.
This means that even if an environment would grow after elimination of a bottom
type, it would not grow bigger than the bound. And as bottom types never replace
non-bottom types, we can either precise a type (i.e. replace a bottom type with a
concrete type) or leave it unchanged.

[Alg-Fundef] — function definitions

When we start the inference of a function definition, the functional environment
will contain entries for all the functions from the letrec. Environments of individual
functions will at least contain the arguments and the function type. The only thing
that we need to do is to infer the type for the body of a function and replace the
functional type. Formally we denote it as follows:

Tinf (F ,F(f), f(a1, . . . , an) = e) = (F ′′,E ′,E ′(f)) where

(F ′,E , σ) = Tinf(F ,F(f), e)

∀l(E)i=1 ρi = (E(a1)i, . . . ,E(an)i)→ σi

E ′ = {(v, τ) ∣ (v, τ) ∈ E ∧ v ≠ f} ∪ {(f, ρ)}
F ′′ = {(g,Eg) ∣ (g,Eg) ∈ F ′ ∧ g ≠ f} ∪ {(f,E ′)}

In the last two steps we reconstruct environment E by removing potentially
imprecise type for f and adding a newly inferred one and we have updated functional
environment F replacing environment of f with E ′.

[Alg-VarConst] — variables and constants

As the Var rule suggests, the type of a variable can be obtained by looking-up the
environment:

Tinf(F ,E , v) = (F ,E ,E(v))

As we said earlier, for constants we need to guess the type, as they might have
a number of typings and we cannot say which of them are sound. We extend the
environment with T (c):
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Tinf (F ,E , c) = (F ,E ⊕ T (c),C(T (c), l(E)))

For example, assuming that we have an environment E :

a ∶ 1 2

and we apply the inference to the constant 42 — Tinf(F ,E ,42), we expect an envi-
ronment to become:

a ∶ 1 2 1 2

as T (42) = ⟨0,△0⟩.

[Alg-App] — function applications

Function applications require a bit more work. First we acquire layout types for
all the arguments. After that we generate valid types for the results and finally we
shrink the environment and add the resulting type.

The problem we potentially have is that the environment changes on every Tinf

reduction step. This means that if we have an application of f to e1, . . . , en and
we infer a type for e1 with (F ,E1, τ) = Tinf(F ,E , e1), it might be invalidated in
environment E1. For example, if we infer the type for the second argument: (F ,E2, σ) =
Tinf(F ,E1, e2), then the type of e1 in E2 might differ from τ . In other words for
a function application we need to find types of e1, . . . , en in environment En. The
easiest way to achieve that would be to keep expressions in the environment, in which
case the argument types would be automatically updated on every reconstruction.
For technical reasons we assume that all the argument expressions of a function
application are variables. That would allow us to add the type of the argument
expressions in the environment making sure that it is being updated properly; as
adding e2 has a potential effect on the type of e1.

The transformation itself is straight-forward: instead of f(e1, . . . , en) we consider
expression let v1 = e1 in let v2 = e2 . . . inf(v1, . . . , vn). We start with acquiring types
for the arguments.

Tinf (F ,E , f(v1, . . . , vn)) = (F ,E2, rm(ψ′, ψ′)

∀l(E
n)

i=1 φi = E(vi)

Every argument vi has type φi in environment E . The next step would be to get
a type of function f . We do that by enquiring functional environment F and then
the environment that is bound to f .

⟨(τ 11 , . . . , τ 1n)→ σ1, . . . , (τm1 , . . . , τmn )→ σm⟩ = F(f)(f)

At this point the F(f)(f) vector may contain repetitions which we have to
remove, as otherwise the fix-point iteration will never finish. This can be understood
from the following example:
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f oo ( a , . . . ) =
i f (p ( a ) ) then

f oo ( a , . . . )
else

a

This function has several arguments, so the first argument will be replicated
several times. Now, at the first fixed-point cycle we will discover a recursive call and
will use the types from the initial environment Fn, which may contain identical types
(0, . . . )→ � more than once. If we are going to consider all such typings during the
inference then every column of the environment where a ∶∶ 0 (and other types match)
will be replicated. On the next fixed-point cycle it will be extended again, and so on.
Conversion to a set consists of two steps:

1. remove identical types (up to the names of the idx and △ polymorphic param-
eters); and

2. remove the instances of polymorphic types (typically coming from including
△0 explicitly).

Consider an example:
f ( a ) = a + 1

The types for the expressions of this function will look like:

a ∶ 0 0 △
0

△
0

△
α

△
β

1 ∶ 0 △
0 0 △

0 0 △
0

a + 1 ∶ 0 △
0

△
0

△
0

△
α

△
β

which results in the following vector-type:

⟨(0)→ 0, (0)→△0, (△0)→△0, (△0)→△0, (△α)→△α, (△β)→△β⟩

The first step of converting this vector into a set will find out that (△0) → △0 is
repeated two times, and that (△α)→△α, (△β)→△β is the same type. By merging
those typings we get the following set:

{(0)→ 0, (0)→△0, (△0)→△0, (△α)→△α}

The second step will find out that (△0)→△0 is an instance of (△α)→△α and the
final set will look like:

{(0)→ 0, (0)→△0, (△α)→△α}

Coming back to our example — let us assume that while converting from a vector
type to a set we managed to merge some typings and now instead of m types in a
vector:

⟨(τ 11 , . . . , τ 1n)→ σ1, . . . , (τm1 , . . . , τmn )→ σm⟩

we have M types in a set:

86



{(τ 11 , . . . , τ 1n)→ σ1, . . . , (τM1 , . . . , τMn )→ σM}

Now we have to match the φ1
k, . . . , φ

n
k argument types with the arguments of a

function type τ i1, . . . , τ in. To avoid global unification of τ i∗ arguments with local idx
and △ parameters we are going to instantiate polymorphic variables of the function
signature and run unification on the new instances similarly to the way it is done in
the Hindley-Milner system. Let us denote this process by introducing a new set of
function signatures where polymorphic variables are instantiated (per environment
column) as:

{(τ̂ 11 , . . . , τ̂ 1n)→ σ̂1, . . . , (τ̂M1 , . . . , τ̂Mn )→ σ̂M}

Note that function type might be not unique, i.e. for a chosen φ1
k, . . . , φ

n
k we might

get several valid return types. For example, in function f above we have two return
types for the argument of type 0. To deal with this, the result of the match would
be a l(E)-element tuple of tuples, where every inner tuple consists of valid return
types. Keep in mind that this does not affect termination because we are restricted
with the dimensionality of arguments, and constructions like:

f ( a ) = map i < [N] f ( a )

where the shape of the result increases at each application, are prohibited by the
normal type system, and will not be typeable by the layout type system as well.

Also, some of the arguments might have � as a part of its types. They will not
match any function type, as the arguments are always consist of non-� types. However,
it does not mean that we have to consider this layout combination untypeable. We
say that if any of φ1

k, . . . , φ
n
k are �, then the result of the application is �. Here is how

we express it:

∀l(E)i=1 ψi =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

⟨σ′1, . . . , σ′x⟩ ∀xj=1σ′j = σ̂k Ô⇒ ∃k ≤M (∀nw=1φiw = τ̂ kw ∧ φiw ≠ �)

⟨�⟩ ∃k ≤ n (φik = �)

⟨◻⟩ otherwise

In case ∣ψi∣ > 1 we need to replicate the i-th column of E ∣ψi∣ times. Then we flatten
ψ by concatenating its components and finally we remove environment columns where
ψ has ◻ and we add updated ψ type for the function application.

E1 = {(e,R(τi, ∣ψi∣)) ∣ (e, τ) ∈ E}
ψ′ = m

i=1 ψi

E2 = E1 ⊖ ψ′

ψ′ is a flattened ψ and rm(ψ′, ψ′) is a ψ′ type with ◻ components being removed.
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[Alg-Let] — let expressions

The let expression is processed by inferring a type for the expression we are substi-
tuting with, adding the variable of this type to the environment and inferring a type
for the goal expression within the new environment.

Tinf (F ,E , letx = e1 in e2) = (F2,E3, τ ′′) where

(F1,E1, τ) = Tinf(F ,E , e1)
E2 = E1 ∪ {(x, τ)}

(F2,E3, τ ′) = Tinf(F1,E2, e2)

[Alg-Prf] — primitive functions

Primitive functions can be handled via constructing a function type for the primitive
function and adding it into the function environment:

τ+ = ⟨(0,0)→ 0, (0,△α)→△α, (△α,0)→△α,

(△α, △0)→△α (△0, △α)→△α (△α, △α)→△α⟩
Tinf(F ,E , a + b) = Tinf(F ∪ {(+,{(+, τ+)})},E ,+(a, b))

Please note, that by constructing the inference of primitive functions this way we
guarantee that the function will be still typeable even in case one of the arguments
is of type �. It would be desirable to use such an approach in other rules, however
some of the constraints are easily reconstructable as function types.

[Alg-MapRed] — map and reduce expressions

Similarly to application, we abstract the upper bound expression u into a variable
vu, we expand the environment with all the valid types for the index variable j and
infer a type for the goal expression e.
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Tinf (F ,E ,map j < vu e) = (F ,E3, rm(ψ,ψ)) where

τ = ⟨0, idx(1,#map), . . . , idx(S0 (j) ,#map)⟩
E1 = E ⊕ τ ∪ {(j,C(τ, l(E))}

(F ,E2, σ) = Tinf(F ,E1, e)
υ = E2(vu), τ = E2(j)

∀l(E
2)

i=1 ψi =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

k
τi = idx(k,α) ∧ σi ∈△α,△0 ∧ υi = 0

α =#map

△α τi = 0 ∧ σi =△α ∧ υi = 0

0 τi = 0 ∧ σi = 0 ∧ υi = 0

S0 (j) + k τi = 0 ∧ σi = k ∈ Z+ ∧ υi = 0

� τi = � ∨ σi = � ∨ υi = �

◻ otherwise

E3 = E2 ⊖ ψ

The inference for a reduce expression is made in a similar fashion up to the
generation of the ψ type which directly follows from the conditions on type ρ in the
Red[△] typing rule.

[Alg-Sel] — selections and index concatenations

Similarly to application, both arguments of the selection are abstracted into variables
vi and ve, and the resulting type is generated using conditions on the ρ type in the
Sel[△] rule.

Tinf (F ,E , sel(vi, ve)) = (F ,E ′, rm(ψ,ψ)) where

τ = E(vi), σ = E(ve)

∀l(E)i=1 ψi =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

△α τi = idx(k,α) ∧ σi = k ∧ k ∈ Z+

△α τi = 0 ∧ σi =△α

0 τi = 0 ∧ σi ∈ N

� τi = � ∨ σi = �

◻ otherwise

E ′ = E ⊖ ψ

The inference for the index concatenation is constructed similarly.

[Alg-If] — condition

Condition deserve special attention here as it is the only kind of expression that is
able to absorb � types in a branch, and propagate non-� layout-types. This is a basic
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mechanism of the fix point iterator — in case there is a recursive call to a not yet
inferred function in one of the branches, the return type of this function call would
be � and it would be propagated up to the branch expression. That would allow us
to infer the type of the function and on the next iteration of the fixed point to precise
it in case some of the layout combinations in the branch are untypeable. Similarly to
the case of application we abstract predicate, then branch and else branch expressions
into the variables vp, vt and vf accordingly. Here is the rule:

Tinf (F ,E , if vp then vt else vf) = (F ,E ′, rm(ψ,ψ)) where

τ = E(vp), σ = E(vt), φ = E(vf)

∀l(E)i=1 ψi =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

φi τi = 0 ∧ φi = σi ∧ σi, φi ≠△

△
τi ∈ {0,△0,△α}

∧ (τi, σi) ∈ {(0,△α), (△0,△α),

(△α,0), (△α,△0), (△α,△α)}

� τi = � ∨ (φi = � ∧ σi = �)

φi τi = 0 ∧ φi ≠ � ∧ σi = �

σi τi = 0 ∧ φi = � ∧ σi ≠ �

△0 τi =△0 ∧ φi ∈ {0,△0} ∧ σi = �

△α τi =△α ∧ φi ∈ {0,△0,△α} ∧ σi = �

△0 φi = � ∧ σi ∈ {0,△0}

△α τi =△α ∧ φi = � ∧ σi ∈ {0,△0,△α}

◻ otherwise

E ′ = E ⊖ ψ

4.5.2 Sample layout inference

We are going to consider an application of the inference algorithm to the vplus
function, which is a part of the N-body code. The function is defined as:

# ( f l o a t [ 3 ] , f l o a t [ 3 ] ) → f l o a t [ 3 ]
vplus (x , y ) = map i < [ 3 ] ( x [ i ] + y [ i ] )

It adds two three-element vectors component-wise.
For presentation purposes we are going to split the inference process into two

steps. First we are going to infer types ignoring the idx and △ parameters and then,
we will annotate the columns of the environment that contain the idx and △ types
with parameters and check if the typing still holds. We can always do this because,
by not considering parameters, we implicitly are able to unify arbitrary parameters.
That means that we can only get a larger (or equal) set of typings, which can be
further restricted. None of the types will be lost.
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When the inference of the function definition starts, the [Alg-Letrec] rule
has created an environment that consist of all the possible argument layout type
combinations returning bottom type. Here is how the environment F(vplus) looks:

x ∶ 0 1 idx(1) △ 0 1 idx(1) △ 0 1 idx(1) △ 0 1 idx(1) △
y ∶ 0 0 0 0 1 1 1 1 idx(1) idx(1) idx(1) idx(1) △ △ △ △
∗ ∶ � � � � � � � � � � � � � � � �

We use ∗ to denote the return type of the function body to save space on the
page.

Now, according to the [Alg-MapRed] inference rule, we expand E further
by adding a type for i and a type for the upper expression. The valid types for i
would be σ = ⟨0, idx(1)⟩. For presentation purposes we are going to add σ without
expanding the environment. As for the upper expression, we could have expanded the
environment with all the valid types for [3], but as we are inferring the type inside
the map expression, we know that all the types other than 0 would be cancelled out,
so we might just add a vector of zeroes. Here is an updated environment:

x ∶ 0 1 idx(1) △ 0 1 idx(1) △ 0 1 idx(1) △ 0 1 idx(1) △
y ∶ 0 0 0 0 1 1 1 1 idx(1) idx(1) idx(1) idx(1) △ △ △ △
i ∶ σ σ σ σ σ σ σ σ σ σ σ σ σ σ σ σ

[3] ∶ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
∗ ∶ � � � � � � � � � � � � � � � �

Note that when we use [3] in the environment we assume the matching variable
for the upper expression in the map. The body of the map is a primitive operation.
Following the primitive function rule [Alg-Prf], we assume that we have sur-
rounding variables for subexpression so we infer types for those first. The left-hand
side expression is a selection sel(i, x) which in this particular case would produce
a type for combinations: (0,0), (0,1), (idx(1),1), (0,△) and cross out all the rest
columns. After application of [Alg-Sel] inference rule, the environment looks
like:

i ∶ 0 0 idx(1) 0 0 0 idx(1) 0 0 0 idx(1) 0 0 0 idx(1) 0
x ∶ 0 1 1 △ 0 1 1 △ 0 1 1 △ 0 1 1 △
y ∶ 0 0 0 0 1 1 1 1 idx(1) idx(1) idx(1) idx(1) △ △ △ △

x[i] ∶ 0 0 △ △ 0 0 △ △ 0 0 △ △ 0 0 △ △
[3] ∶ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
∗ ∶ � � � � � � � � � � � � � � � �

Note that we got rid of all the σ-s at this step. The right-hand side of the plus
operation is also selection: sel(i, y), so we apply the [Alg-Sel] inference step
again and the new environment looks like:

i ∶ 0 0 0 0 0 idx(1) 0 0 0 0
x ∶ 0 1 △ 0 1 1 △ 0 1 △
y ∶ 0 0 0 1 1 1 1 △ △ △

x[i] ∶ 0 0 △ 0 0 △ △ 0 0 △
y[i] ∶ 0 0 0 0 0 △ 0 △ △ △
[3] ∶ 0 0 0 0 0 0 0 0 0 0
∗ ∶ � � � � � � � � � �

Finally, we apply the [Alg-Prf] inference rule to x[i] and y[i] which is an
inner body of the map. This allows us to infer the type for map which would also
be a type for the body of the function (denoted with ∗ in the environment). After
the application the environment would look like:

i ∶ 0 0 0 0 0 idx(1) 0 0 0 0
x[i] ∶ 0 0 △ 0 0 △ △ 0 0 △
y[i] ∶ 0 0 0 0 0 △ 0 △ △ △

x[i] + y[i] ∶ 0 0 △ 0 0 △ △ △ △ △
[3] ∶ 0 0 0 0 0 0 0 0 0 0
x ∶ 0 1 △ 0 1 1 △ 0 1 △
y ∶ 0 0 0 1 1 1 1 △ △ △
∗ ∶ 0 0 △ 0 0 1 △ △ △ △
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That finalises the first step of the inference for vplus. The function type can be
seen from the last three lines of the environment. Now let us annotate the idx and
△ types with parameters and perform unification. In this function we have one map
construct. Let us assume, that it has an index M and gives rise to idx(k,M) and
△M layout types. The new environment will look like:

i ∶ 0 0 0 0 0 idx(1,M) 0 0 0 0 0 0
x[i] ∶ 0 0 △α 0 0 △M △α 0 0 △α △0 △α
y[i] ∶ 0 0 0 0 0 △M 0 △α △α △α △α △0

x[i] + y[i] ∶ 0 0 △α 0 0 △M △α △α △α △α △α △α
[3] ∶ 0 0 0 0 0 0 0 0 0 0 0 0
x ∶ 0 1 △α 0 1 1 △α 0 1 △α △0 △α
y ∶ 0 0 0 1 1 1 1 △α △α △α △α △0

∗ ∶ 0 0 △α 0 0 1 △α △α △α △α △α △α

As we can see, none of the typings of the first step got cancelled, the typing
(1,1)→ 1 produces a concrete idx(1,M) type, after that both selections become of
type△M and finally it is consumed by themap that has initiated it. The third column
from the right has unified α-s in the arguments because of the plus primitive operation.
The last two columns are initiated by the (△α,△0)→△α and (△0,△α)→△α typings
of the plus.

The resulting type of a simple function like vector addition might be quite sur-
prising or counterintuitive, but let us try to develop some intuition regarding this
matter. The variety of possibilities comes from two facts:

1. We are allowed to perform a primitive operation on mixed scalar/vector argu-
ments. Despite that, it is not necessary for constants, as we can always promote
a scalar to a vector by assigning a △0 type to it; we cannot do that in case of ex-
pressions with dependencies. For example, in the expression a[i] ∶∶ △α+b[j] ∶∶ 0,
there is no way to promote b[j] to vector. However, we can still apply a vector
plus to it.

2. Scalar selection can be performed on arrays of layout-type k ∈ Z+. If an array
has a type k, then we group its elements across dimension k into vectors. But
we can still get a scalar component from the vectorised array by selecting a
vector and then selecting the component from the vector.

Intuitively, the vprod types (0,0) → 0, (1,1) → 1 and (△α,△α) → △α should be
valid for vector additions, and so they are. Now, in the (0,0)→ 0 type we can replace
the first or second or both arguments with 1 and we should still get a 0 type as a
result. Also, we can have (0,△α) → △α as we can promote the scalar selection via
vector plus. We can swap the arguments and get (△α,0) in the arguments, because
plus is commutative. Finally, if we make a scalar selection from 0 argument, we
should be able to select from the argument of type 1, which gives us types (1,△α)
and (△α,1) argument types.
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4.5.3 Inference complexity

From the inference algorithm we know that a variable environment can change its
size during inference, so let us estimate the upper bound. The size of the environment
depends on the dimensionality of the arguments, on the number of maps/reduces in
a function and on the number of constants per function. Putting these all together:

O(F(f)) =∏
a∈Args(f)

D (a) ⋅ ∏
m∈Maps(f)

S0 (index(m))

⋅ ∏
r∈Reduces(f)

S0 (index(r)) ⋅ ∏
c∈Consts(f)

D (c)

where index yields the index variable of the map/reduce.
The variables of lets are local and never expand the environment. Although

function applications can have multiple instances of the same type, those instances
usually come from the ability to promote type 0 into △0. This might create an
expansion of the environment a constant number of times, but in terms of big O the
complexity would stay the same.

It is important to note that the upper bound we have presented is reached only
when evaluated expressions are not combined together. For example, we compute n
maps, and drop n − 1 of them. In all the other cases the combinators of evaluated
expressions will generate constraints that will force us to cross out some columns of
the environment. Let us consider the evolution of the environment for the following
example:

f ( a ) =
let b = map i < [N,N] a [ i ] in

let c = map j < [N,N] b [ j ] in
let d = map k < [N,N] c [ k ] in

d

In map/reduce constructs, the main source of environment expansion is a scalar
selection on a k type. For the first map the environment will look like:

a ∶ 0 1 1 2 2 △
i ∶ 0 0 idx(1) 0 idx(2) 0
b ∶ 0 0 1 0 2 △

The next map will not multiply the size of the environment by S0 (index(j)) = 2.
Instead it will add two more columns, coming from scalar selections on k types:

a ∶ 0 1 1 1 2 2 2 △
i ∶ 0 0 idx(1) idx(1) 0 idx(2) idx(2) 0
b ∶ 0 0 1 1 0 2 2 △
j ∶ 0 0 0 idx(1) 0 0 idx(2) 0
c ∶ 0 0 0 1 0 0 2 △

So as the next map will add only two columns.
a ∶ 0 1 1 1 1 2 2 2 2 △
i ∶ 0 0 idx(1) idx(1) idx(1) 0 idx(2) idx(2) idx(2) 0
b ∶ 0 0 1 1 1 0 2 2 2 △
j ∶ 0 0 0 idx(1) idx(1) 0 0 idx(2) idx(2) 0
c ∶ 0 0 0 1 1 0 0 2 2 △
k ∶ 0 0 0 0 idx(1) 0 0 0 idx(2) 0
d ∶ 0 0 0 0 1 0 0 0 2 △

Here, the number of different typings did not grow exponentially with the number
of maps. That is because maps have interdependencies, and a large number of variants
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got cancelled. Environment extension in this case is determined by the ability to
make scalar selections on vectorised types.

As for constants, for most of practical cases, the number in a function is small.
Also, every constant can be treated as if it were coming from an argument. That
suggests that for practical purposes the environment size is mainly bound by the
number of arguments.

4.5.4 Parameters of idx and △ types

As we have said already the reason we introduce polymorphic parameters on △ and
idx layout types is to avoid iteration shadowing. However, there are further important
properties. First of all, the△0 type helps us to differentiate between a replicated value
and a “partial result” that has to be accumulated by some map/reduce. Although
there is a known duality between types 0 and △0, we cannot get rid of the △0 type
because of the following example:

# f l o a t [N] → f l o a t [N]
f oo ( a ) =

let b = map i < [N] 3 in
map j < [N] a [ j ] + b [ j ]

If we want this function to be of type (1) → 1 we have to allow selection b[j]
with j ∶∶ idx(1). In principle we could allow type-casting expressions of type 0 into
some type k (given that k is within the dimensionality of the expression), but such
a type-cast introduces memory copying which potentially is expensive.

Also, parameters allow us to avoid the following patterns:
f oo ( a , x ) =

. . .
map i < [N]

i f p ( a [ i ] ) then
f oo ( a , a [ i ] )

else
a

. . .

Such a pattern initiates transformations that our system is not yet ready to
deal with, i.e. recursive map/reduce. However, the typing of the foo (in case x ∶∶ △)
will contain a concrete parameter in the signature. That means that whenever we
apply foo in the context of map/reduce, we will have to unify two concrete △ types
resulting from two different map/reduces. As a consequence during the inference of
a function definition, we can immediately reject non-polymorphic idx or △ types,
except △0.

4.6 Initial evaluation

In this section we are going to present some preliminary experiments to demonstrate
the potential performance improvements that we can expect from the proposed
framework. Extensive measurements can be found in Chapter 7.

The measurements we are going to present consist of two benchmarks: the N-body
problem, our running example described in Fig 4.1, and the Mandelbrot problem.
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The properties of those benchmarks are rather different. The N-body is both memory
intensive and compute intensive involving an iterative update of a reasonably sized
multi-dimensional array. Such a pattern can be found in many scientific applications
such as solving partial differential equations numerically or other approximation
problems. The Mandelbrot benchmark represents a class of applications where most of
the execution time is spent on computations while the number of memory operations
is very small. Also, the Mandelbrot benchmark requires a more complex pattern
of vectorisation, as a computation of an individual element is expressed as a tail-
recursive function which has to be vectorised in order to match the new layout. This
requires additional effort when it comes to masking elements of individual vectors,
and this pattern is not present in the N-body benchmark.

Name Description

m-i3 “Intel (R) core (TM) i3-2310m CPU @ 2.10Ghz” processor, 2
cores with hyperthreading, equipped with AVX instruction set
(8 floats per SIMD register), running Gentoo Linux with kernel
version “3.14.4-gentoo” with GCC compiler version “Gentoo 4.8.2
p1.3r1, pie-0.5.8r1” and ICC version “14.0.3 20140422”.

m-i7 “Intel (R) Core (TM) i7-2600 CPU @ 3.40GHz” processor, 4 cores
with hyperthreading, equipped with AVX2 instruction set (8
floats per SIMD register), running Linux with kernel version
“2.6.32-431.17.1.el6.x86_64” and GCC version 4.9.0.

m-xeon Intel box with “Intel (R) Xeon (R) CPU X5650 @2.67Ghz”, 12
cores with hyperthreading, equipped with SSE4.2 instruction set
(4 floats per SIMD vector), running Linux with kernel version
“2.6.32-431.17.1.el6.x86_64” and GCC version 4.9.0.

Figure 4.11: Machines used to produce the measurements

In the current set of experiments we want to verify two things:

1. The proposed inference does improve vectorisation, and

2. The effects of vectorisation are orthogonal to multi-threaded execution.

To verify the first statement the only thing that matters is the availability of SIMD
instructions set on a CPU. For the second statement we require a CPU to have
multiple cores. We use three different machines whose descriptions are presented in
Fig 4.11. “m-i7” and “m-xeon” can be seen as typical nodes of a cluster which have
four and 12 cores with hyperthreading accordingly. “m-i3” is a low-profile machine,
but with a strong vectorisation capabilities. As a consequence our testbed allows us
to observe behaviour on a server-type hardware and verify both the vectorisation
and scalability, while experiments on “m-i3” put our vectorisation system in a more
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restrictive setup. This restrictiveness is very important for embedded or low-profile
devices like smartphones, where vectorisation plays a crucial role in image or video
processing applications. The SIMD instruction sets are different for all the three
machines: AVX, AVX2 and SSE4.2.

All the machines used in this set of measurements are Intel-based. We use GNU
GCC and Intel ICC compilers, and the perf tool to count a number of instructions
via performance counters of a CPU. The runtime is measured by putting a timer
around the core regions which excludes initialisation and output times. For every
data point a minimum of 5 runs is being taken. We compile all of the benchmarks
with the following compilation flags:

GCC -Ofast -Wall -Wextra -mtune=native -march=native
-std=gnu99 -fomit-frame-pointer -fopenmp -lm -lrt

ICC -gcc -Ofast -Wall -Wextra -mtune=native -march=native
-std=gnu99 -fomit-frame-pointer -openmp -lrt

The transformation of the program is happening to a very high-level language
which eventually has to be compiled down to some target language. The target
language of SaC is C. In this set of experiments we are going to hand-code C
programs which mimic the SaC output that we expect to get automatically by
the SaC compiler. This should give us an idea of what runtimes we can expect
excluding any potential overheads that SaC can bring. In order to mimic multi-
threaded execution we are using OpenMP annotations.

4.6.1 N-body

We start with observing runtime and instruction count relationships of different
implementations of the N-body on a single core in Fig. 4.12.
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Figure 4.12: Runtime and instruction count relationships for the N-body 1024 planets,
200 iterations on a “m-i3” machine.

On the left graph we can see runtime figures of the N-body with 1024 planets
and 200 iterations altering the level of optimisation between -O3 — the highest
level of safe optimisations and -Ofast — the highest level of optimisations with
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unsafe math enabled. Unsafe math mainly allows us to reduce floating-point values
in an arbitrary order. The right graph shows, for every measurement from the left
graph, the number of instructions obtained by the “perf” tool. The unit of measure
is instruction count per one N-body iteration which we obtain by: Inst300−Inst0300 , where
Insti is the number of instructions per i iterations of the N-body. The names of the
benchmarks on Fig. 4.12 mean the following:

Reference [N/2] is a reference C implementation of the N-body benchmark as
it can be found at the Debian Shootout3. Note that this benchmark uses the
fact that the absolute value of the acceleration for (i, j) planets is the same
as the acceleration for (j, i) planets, but has a different sign. We are going
to mark such a solution with [N/2] postfix and the program that computes
accelerations for all the pairs with [N] postfix. The version which is doing half
of the computations makes a lot of sense in a single-threaded environment
but makes it less favourable in a multi-threaded context, as the outer level
parallelisation introduces large overheads because of scheduling complexity.
See [129] for more details.

Vectorised [N/2] is the reference implementation vectorised across the inner
axis.

X-parallel [N] is vectorised across the inner (x) axis, with SIMD vectors of
length 4. It pads an array by adding dummy elements to the velocity triplet
and position triplet.

Y-parallel [N] is a vectorised implementation across the outer (y) axis. It does
not add dummy elements, so the amount of memory that planets take is the
same as in the reference implementation. One important property of this
benchmark is that it can efficiently use long SIMD vectors, as every vector
stores individual components of different planets, where the X-parallel version
requires one to pack individual triplets in the vector which is more expensive.
That is why we prefix this benchmark with the length of the vector we use:
either four elements (V=4) or eight elements (V=8).

SoA [N] is a reference implementation that computes all the pairs but which
transforms arrays of structures into structures of arrays.

The key observation from Fig. 4.12 is that vectorisation across the outer axis
performs the best and the main reason for that is the substantially smaller instruction
count. Note that instruction count is not the most precise metric, as it does not
directly correlate with runtime. In the case of Reference and X-parallel with -Ofast
we have more instructions but better runtime. However, for Y-parallel the difference
is too large to be ignored. As for the effects from turning on -Ofast, we can see that

3The Computer Language Benchmarks Game, see http://benchmarksgame.alioth.debian.
org/ for more details.
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GCC can do a better job, applying some vectorisation techniques and being able
to change the order of reductions. As in the case of Y-parallel we change the order
of the reduction anyway, we consider that an honest comparison would be in the
case of -Ofast. We would assume that main effects of -Ofast are in the application
of the vector variant of the square root (we do that explicitly in case of Y-parallel)
and from doing vector reduction in a more efficient way, as we express it as a sum
of components. Finally we can see that transforming an array of structures into a
structure of arrays (SoA benchmark) does not have the same effect as our layout
transformations (X-parallel and Y-parallel). Either none of the compilers recognised a
potential for vectorisation or the locality effect resulted in disappointing performance.
We are not going to consider SoA in further measurements.

Now, we would like to investigate how the implementations are going to behave
in the presence of multithreading. First we are going to run the experiment on the
Intel-based CPU with 4 hyperthreaded cores. We do not have the Intel compiler
installed as well as “perf” software on this machine so we are going to start with
single-core runtime relationships — see Fig. 4.13.
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Figure 4.13: Runtime relations for the N-body 1024 planets, 200 iterations on the
“m-i7” host.

We have a similar relationships as in Fig. 4.12. However, the difference between
X-parallel and Y-parallel is higher: 4.5 on “m-i3” and 6.5 here. The reason could be
either a newer instruction set or a newer compiler or faster memory or a combination
of these.
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Figure 4.14: Scaling of the N-body on the machine described at Fig. 4.13
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To observe the effects of multi-core presence, we are running three series of exper-
iments increasing the size of the input data to observe if larger memory footprints
influences the performance. The results are presented in Fig. 4.14.

The scaling across all the three figures is similar. The difference between X-
parallel and Y-parallel decreases when the structure does not fit in the cache, but
then it increases again in case of 6000 planets. From the graphs it might seem that
the Y-parallel scales worse and in case of larger amount of cores the runtimes of the
X-parallel and Y-parallel can merge, but this it is just the scale of the graph. In
order to demonstrate that, we are going to look at individual graphs of the N-body
with 6000 planets for X-parallel and Y-parallel versions. The runtimes are presented
at Fig. 4.15.
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Figure 4.15: Individual scaling of X-parallel and Y-parallel N-body versions.

The scaling graphs are very similar, and the Y-parallel version scales better. Both
benchmarks have a “jump” after 4 cores, which happens as there are only 4 physical
cores, which means that in the case of 5 and more threads two threads will share
one cache.

Finally, we measure the N-body scaling on the 24 core Intel machine (12 hyper-
threaded CPUs) and see how it scales. See Fig. 4.16.
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Figure 4.16: Scaling of the N-body implementations on the “m-xeon” machine.

This experiment confirms the scaling claim — having more CPUs does not merge
the runtimes of X-parallel and Y-parallel. The Y-parallel is four times faster than
the X-parallel on a single core and on 12 hyperthreaded cores.
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4.6.2 Mandelbrot

As a second example we look at a computation of Mandelbrot sets. The formulation
of the Mandelbrot algorithm in SaC-λ, assuming that complex numbers are built-in
and <a, b> denotes a complex constant a + bi, can be found in Fig. 4.17 on the left.
We assume that DEPTH, HEIGHT, WIDTH, X1, Y1, DX and DY are compile-time
constants.

letrec
i t e r ( i , z , a ) =

i f i < DEPTH
and cabs f ( a ) < 2

then
i t e r ( i + 1 , z ∗ z + a , a )

else
i

in
map i < HEIGHT

map j < WIDTH
i t e r (0 ,

<0, 0>,
<X1 + DX∗ j , Y1 + DY∗ i >)

letrec
i t e r ( i , z , a ) =

i f i < DEPTH and
sq r t ( z [ 0 ] ∗ z [ 0 ]

+ z [ 1 ] ∗ z [ 1 ] ) < 2
then

i t e r ( i + 1 ,
[ z [ 0 ] ∗ z [ 0 ] − z [ 1 ] ∗ z [ 1 ] + a [ 0 ] ,
z [ 0 ] ∗ z [ 1 ] + z [ 1 ] ∗ z [ 0 ] + a [ 1 ] ] ,

a )
else

i
in

map i < HEIGHT
map j < WIDTH

i t e r (0 , [ 0 , 0 ] ,
[X1 + DX∗ j , Y1 + DY∗ i ] )

Figure 4.17: Formulation of the Mandelbrot problem in SaC-λ using built-in com-
plex numbers on the left and using array-based representation of complex numbers
on the right.

No matter if complex numbers are built-in or not, at some point they are going to
be represented as two-element structures and scalar operations on complex numbers
will be expressed via normal scalar operations. We demonstrate this in Fig. 4.17 on
the right.
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Figure 4.18: Runtime relations for the Mandelbrot 2048×2048 floats with depth=4096
on the “m-i3” machine.

As in the case of the N-body we start with sequential runtime and instruction
count relationships obtained on “m-i3” — see Fig. 4.18. The names of the benchmarks
on Fig. 4.18 mean the following:
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Reference is a literal translation of the formulation found on the left hand side
of fig. 4.17 in C using float-based complex numbers.

No-complex is a literal translation of the formulation found on the right hand
side of Fig. 4.17 in C using floats. We also get avoid the square root compu-
tation by translating

√
z20 + z21 < 2 into z20 + z21 < 4.

Vectorised is a vectorisation of the No-complex function using a (△,△,△)→△
layout type for the function iter, which means that we compute V iterations
simultaneously. The function itself is simple, however the required code trans-
formation is non-trivial — it requires creating data-flow masks with further
predication and it all happens in the recursive context. The transformed code
will look like this:

# (float[V], float[2,V], float[2,V]) -> float[V]
iter (⃗i, z⃗, a⃗) =

let
m⃗ = (⃗i < d⃗) and (z⃗ * ⃗̄z < 4⃗);

in
if m⃗ == ⃗false then

i⃗;
else

let
t⃗1 = iter (⃗i + 1⃗, z⃗ * z⃗ + a⃗, a⃗);

in
select (m⃗, t⃗1, i⃗)

where x⃗ corresponds to the variable x with its shape being replicated V times;
z⃗ * ⃗̄z corresponds to vectorised version of z20 + z21 ; boolean operations are com-
puted component-wise; multiplication and addition are overloaded for complex
numbers and select(m,a,b) corresponds to if m[i] then a[i] else b[i]
applied to all V vector components.

This is similar to N-body with respect to runtime and instruction relationships —
the vectorised version runs much faster and has significantly less instructions. Note
that here we have measured instruction counts in the overall program. This does
include I/O operations, but their contribution to the overall instruction count is
negligible. As for the Reference version, we can see that GCC compiler can bring it
down to No-complex at -Ofast, where ICC fails to do so. We exclude this version
from further measurements.

The scaling runtimes on “m-i7” can be found in Fig. 4.19. Note that we are using
the default dynamic scheduler in OpenMP, as computations are non-uniform over
the grid.

Scaling is much smoother than in the case of the N-body and we do not have a
“jump” after 4 threads. That is because the Mandelbrot problem is more compute-
bound than memory bound.
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Figure 4.19: Scaling for the Mandelbrot implementations with 2048×2048 floats and
depth=4096 on the “m-i7” machine.

Finally we present scaling figures on “m-xeon” to ensure that adding more cores
does not make the runtimes merge. The results are presented in Fig. 4.20
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Figure 4.20: Scaling for the Mandelbrot implementations with 2048×2048 floats and
depth=4096 on the “m-xeon” machine.

4.6.3 Summary

Both benchmarks have demonstrated very good speed-ups relative to the reference
versions when compiling with GCC: 4.7x for the N-body and 7x for the Mandelbrot.
Also, when comparing hand-coded vectorisations with the versions obtained from the
Intel compiler with full optimisations we get: 2.8x for the N-body and 6.1x for the
Mandelbrot. The speed-up is preserved in presence of multi-threaded execution which
once again confirms that SIMD speed-ups are orthogonal to other parallelisation
techniques and can be used together.

4.7 Related work

The idea to modify data layouts by means of compiler transformations is not new.
There has been considerable work in the context of optimisations for improved cache
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behaviour [87, 69] and, more recently, for improved streaming through GPUs [85, 133].
In that work, improvements of spatial and temporal locality are the key goals. While
this may seem to be a goal very similar to what we propose here, spatial locality is
not sufficient for an efficient vectorisation, as we experienced in the N-body example
— vectorisation across the inner dimension has better spatial locality than the variant
we have inferred.

A number of works use the polyhedral model to optimise data layouts for a
given loop nest. On the one hand, polyhedral transformation, being formulated in
a mathematically rigorous way, takes away most of the considerations regarding
transformation correctness due to the known correctness of polyhedra itself. On the
other hand, it stays unclear how to apply such a transformation to the whole program,
where different loop nests potentially grant different layouts. The information has
to be propagated outside the loop-nests and the overall program has to be adjusted.
Alternatively, layout changes can be done for the variables used in the given loop-nest:
before entering the loop nest first, and restoring restoring original layouts on exit.
Some just-in-time compilation techniques might be helpful here. However, in this case
it is not clear how to justify performance penalty for memory copying operations.

In principle the work that we describe in this chapter can be formulated in terms
of the polyhedral model. The map/reduce constructs have similarities to loop-nests
and by trying to vectorise every loop in a loop nest using the “Direct outer loop
vectorisation” technique from [97] with further checks if the vectorisation succeeded,
we can generate layout types for the arrays referenced in this loop nest. Generated
constraints have to be resolved and the polyhedral model would not help here. After
that, the code has to be transformed which can be solved by the polyhedral model.
However, the main weakness of such a technique in our set-up is the lack of support
for function applications inside loop nests, and not all the functions can be inlined.
That would have a serious impact when it comes to inferring the layout types for
the overall program.

We plan to use this work as a basis for more complex vectorisations like grid
and stencil computations by introducing new kinds of layout types, in which case we
believe that our pure functional setup would allow more aggressive optimisations.

G. Chen et al. in [27] describe an approach which is very similar to ours. They
also propose to infer data layouts of the arrays in a whole program. The main focus
of their work is to formulate potential layouts for arrays as a constraint network
and solve it. The layouts are defined as vectors in an N -dimensional space. The
work is theoretical and the application is not described. There is no discussion about
the selection of the layout-setting for the whole program assuming that constraint
resolution returned a number of alternatives.

U. Bondhungula et al. in [16] present a polyhedral model based transformation
for tiling loop nests for further parallelisation by means of OpenMP. The polyhedral
framework described in their paper is able to handle sophisticated loop nests. However
the transformation changes only the order of the iterations which might not be
sufficient for efficient vectorisation. The transition from the inferred iteration order
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to the new layout is non-trivial, as the layouts have to match for the variables that
are being reused. Also, the locality considerations used in this paper are not always
sufficient for efficient vectorisation. At the example of the N-body we have seen that
the solution with the best spatial locality grants less vectorisation opportunities than
tiling across the first axis of a 2-d array, with subsequent reorganisation of the data
structure.

K. Trifunovic et al. in [139] present a polyhedral based transformation for auto-
matic vectorisation. Similar to [16], this work assumes that layouts are fixed and the
transformation is substituting identical arithmetic operations with vector ones.

T. Hanretty et al. in [55] present a framework to optimise alignment conflicts
caused by stencil computations. The key idea of the transformation is very similar
to what we do — interchanging dimensions with further transposition. The main
difference of the approaches is that in our work we are concerned that layout trans-
formations for the sake of optimisation of a certain operation may have a negative
effect on the overall performance. So we are concerned with generating all the po-
tential program vectorisations and choosing the best overall. On the other hand,
the transformation described in [55] would not currently be applicable in our setup
as it uses operations in selection functions (i.e. a[i - 1]) that are not allowed by
our type inference. However, by applying a preprocessing step on the stencil-like
computations we can express it in the acceptable form for our inference system.

Roland Leißa et al. in [84] demonstrate a language which is an extension of C, that
allows one to annotate data types which later are used by the type inference to infer
and propagate vector operations using scalar code. The main use-case demonstrated
in the paper is very similar to the N-body where vectors of triplets are vectorised
over the individual component axis rather than over the whole structure. The main
difference of the approaches is that we concentrate on an automatic inference of
the layout without providing any annotations. Another difference is that we use
multidimensional arrays instead of vectors of records.

P. Clauss and B. Meister in [31] present a framework to optimise the data locality
of the loop-nest by rearranging data layouts of arrays. The transformation proposed
in the paper, for a given loop-nest, generates new indexing functions for the dependent
arrays such that iterations would access arrays sequentially in terms of the loop nest.
This looks like an ideal solution from the theoretical point of view. However it is not
clear how to solve the same problem for multiple loop-nests.

M. Kandemir and I. Kadayif in [69] propose to change memory layouts dynami-
cally to achieve better locality in loop nests. This is an interesting approach which
can be considered as a next step for our framework, as currently we explicitly avoid
layout changes of any array at runtime. On the other hand, one can construct a sit-
uation where two expressions require one and the same array to have contradicting
layouts. The main idea the technique proposes is to estimate during execution if
changing a layout improves the cost of the loop-nest about to be executed, and if it
does, perform a dynamic adjustment. In our case we would have to adjust the cost
function, as we are not concerned with locality, but with runtime, which is harder to
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estimate. Also, the approach assumes that a program is a series of loop-nests joined
by control-flow, which is not directly applicable in our setup.

4.8 Conclusions

In this chapter we advocate a novel systematic approach towards data layout trans-
formation that enables vectorisation. This approach is motivated by the observation
that many scientific codes have vectorisation potential that cannot be utilised due to
an algorithm driven choice of data-layouts that is at odds with an effective vectorisa-
tion. We have demonstrated one such example, namely the naive N-body code and
discussed why a straight-forward formulation leads to an unfavourable data layout.

Building on the N-body example, we have developed our approach towards a sys-
tematic inference of layout transformations. By means of a type system we abstract
from all program details not relevant for a choice of data layouts. Using this abstrac-
tion facilitates not only the inference of layouts themselves but also guarantees the
consistency of all inferred layouts.

We describe the type system as well as an inference algorithm in detail and
we show how this identifies possible layout variations for our running example, the
N-body code.

We have also provided some initial performance figures. Manually modified codes
that reflect the inferred layout transformations show that substantial runtime im-
provements close to the vector-width of the chosen architecture are achieved over
competitive C implementations of the N-body problem. They also show that these
improvements are orthogonal to non-vector-based parallelisations that stem from
the use of multi-core CPUs.

The orthogonality between vectorisation and multi-threaded parallel execution
renders this work particularly powerful in the context of code generation for high-
performance execution. The complexity of the program transformations that might
be necessary to achieve the inferred layouts suggests that the full potential of this
approach would be ideally realised through a fully automated, compiler driven pro-
cess.
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Chapter 5

Program transformation and proof of
correctness

5.1 Introduction

We now present a formal layout-transformation scheme that takes a program an-
notated with layout types and transforms the program on the source level. This
approach allows layout transformations to be implemented as a high-level AST to
AST translation without requiring any adjustments to the low-level code generation.

Besides the type-driven code translation scheme we also provide a correctness
proof of our transformation. This is based on a correctness notion that captures
the essence of data-layout independence by looking at equality as being factored by
index-space transformations of function arguments and function results.

5.2 Program transformation

After the type inference is done we get a set of vectorisation possibilities for a given
program as a typing environment containing types which are n-element tuples. In
order to perform a transformation one has to chose one column from an environment.
Such a choice can be done either manually or by means of a cost model. For the
time being let us assume that the choice is made — we will demonstrate a simple
cost model in Section 6.2.1 in detail.

Even in terms of a single column of the environment, user-defined functions may
be applied multiple times on arguments of different layout types, which may result
into calls to different instances of the same function, i.e. to the different columns of
the function environment. In other words, we are dealing with function overloading
with respect to layout types. As all such overloadings can be resolved statically we
start our transformation with a preprocessing step where we:

This chapter is based on the FHPC-2013 paper [127]
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1. disambiguate function names for functions of different layout types and resolve
the names in applications; and

2. annotate every sub-expression with its layout type

We demonstrate this process by example. Consider the following code:
P = letrec

f ( x ) = e1
g (x ) = e2

in
f ( g (c ) )

where c is some constant. Let us assume that the types for the functions of P are:

f ∶∶ ⟨(α1)→ β1, . . . , (αn)→ βn⟩
g ∶∶ ⟨(γ1)→ δ1, . . . , (γm)→ δm⟩

and the types for the body are:

c ∶∶ ⟨γ̂1, . . . , γ̂p⟩
f(g(c)) ∶∶ ⟨β̂1, . . . , β̂p⟩

where γ̂i ∈ {γ1, . . . , γm}, and β̂i ∈ {β1, . . . , βn}. Choosing a vectorisation of P means
to chose a column of the goal expression in P , i.e. a number l ∈ {1, . . . , p}. As a
result, all the function applications in P will impose an instance of a function that is
required at a particular application. Therefore, we can rewrite P into Pl as follows:

Pl = letrec
f1 (x ∶∶ α1 ) = e1 ∶∶ β1
. . .
fn (x ∶∶ αn ) = e1 ∶∶ βn
g1 (x ∶∶ γ1 ) = e2 ∶∶ δ1
. . .
gm (x ∶∶ γm ) = e2 ∶∶ δm

in
fi (gj (c ∶∶ γj ) ) ∶∶ βi

After such preprocessing, Letrec and App can be used without further trans-
formations, assuming that inner bodies of function definitions and the arguments of
function applications are transformed. A Let expression requires its subexpressions
to be transformed. That makes Const, Sel, Prf, If, Map and Reduce
essential parts of the transformation.

Before we can formalise the transformation we introduce the new operators and
notation we are going to use. First of all, we relate an array of layout type 0 and
its transformation under layout type k ∈ Z+. We do this by introducing an index-
translating function Ik which for every index in the array of layout type 0 yields an
index in the k-vectorised array1.

Ik(⟨[n], [i1, . . . , in]⟩) = ⟨[n + 1], [i1, . . . , ik div V, . . . , in, ik mod V ]⟩

and the inverse variant of the same function:
1For our proofs we only require Ik to be bijective. As a consequence, our results could be

generalised beyond the particular mappings that our layout type system considers.
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I−1k (⟨[n], [i1, . . . , in]⟩) = ⟨[n − 1], [i1, . . . , V ik + in, . . . in−1]⟩

Secondly, we define the semantics of the helper operators. The operation
concatenates two arrays on the outer level, i.e. extending the first component of the
shape. works as follows:

[[1,2]] [[3,4], [5,6]] = [[1,2], [3,4], [5,6]]

The following semantic rule defines the operation:

e1 ⇓ ⟨[s1, s2, . . . , sn], [d1, . . . , dp]⟩ e2 ⇓ ⟨[s′1, s2, . . . , sn], [d′1, . . . , d′q]⟩

s ≡ [s1 + s′1, s2, . . . , sn] e1 e2 ⇓ ⟨s, [d1, . . . , dp, d′1, . . . , d′q]⟩

Another operation is called array stacking, denoted with ⊕. In contrast to it
concatenates n arrays on the inner level, i.e. adding a new dimension at the end of
shape vector. The application of ⊕ works as follows:

⊕([1,2,3], [4,5,6]) = [[1,4], [2,5], [3,6]]

This is an n-ary operation defined using the following rule:

⊕

e1 ⇓ ⟨[s1, s2, . . . , sm], [d11, . . . , d1p]⟩ . . . en ⇓ ⟨[s1, s2, . . . , sm], [dn1 , . . . , dnp ]⟩

s ≡ [s1, . . . , sm, n] ⊕(e1, . . . , en) ⇓ ⟨s, [d11, . . . , dn1 , . . . , d1p, . . . , dmp ]⟩

This works similarly to concatenation, but adds an extra dimension and does
concatenation on the last shape component rather than on the first one. In the rest
of the paper we are going to use the following notation: ⊕ni=0f(i) which is a shortcut
for ⊕(f(0), . . . , f(n − 1)).

The slicing of an array e with the last index component fixed at j is denoted
as e[∗, j]. For example, ([[1,2,3], [4,5,6]])[∗,1] = [2,5]. In essence this is a reverse
operation for ⊕ which allows to grab j-th component. Semantically it looks like this:

slice
e ⇓ ⟨[s1, . . . , sn−1, sn], [d1, . . . , dp⋅sn]⟩ iv ⇓ ⟨[], [j]⟩ ∧ j < sn

s ≡ [s1, . . . , sn−1] e[∗, iv] ⇓ ⟨s, [dj+1, dsn+j+1, . . . , d(p−1)⋅sn+j+1]⟩
Intuitively stacking helps us to create an array of the layout type △ out of V

arrays of layout type 0. Slicing is a dual operation that allows one to retrieve one of
the V components.

Now we define a program transformation formally using the T operator. It is
applied to a typed program P after the preprocessing step defined above is done:

T (P ) = P ′

where P ′ is a transformed program in SaC-λ. Note that in order to express vector
operations, P ′ will use a set of built-in vector operations that are not allowed in P .
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As function definitions are not first class expressions in SaC-λ, we introduce a
version of T that can be applied to function definitions. We denote it with Tf and
Tf(foo) refers to the transformed function foo.
T is a one-shot top-down transformation defined recursively on a syntax structure

of a program. We next present the definition of T for every term in SaC-λ.

5.2.1 Const

The base case of T is the transformation of constants. A constant c can get the
following layout types:

0 in which case the constant stays the same as in the original program;

1, . . . ,D (c) in which case the data is being vectorised over the axis encoded by
the layout type; and

△0 in which case the constant is being stacked V times.

Let us consider transformations for all three cases separately. Constant transfor-
mation under the layout type 0 is an identity function:

T (c) = c c ∶∶ 0

Constant vectorisation under the layout type τ = k ∈ Z+ is a cutting of an array
c over its axis τ using tiles of size 1 × V and putting V -sized chunks in such a way
that the elements become adjacent in flattened representation (in our cases under
Rm). Note that by doing so, we potentially increase the number of elements in the
vectorised array, as the size of the τ axis might be not divisible by V . This would be
a problem if we would ever make a reverse array vectorisation with further selection
at newly introduced indexes. We never do that, and we never shuffle elements of the
vector, so the new “phantom” elements of the array never participate in the original
computations. The only thing that we should show is that index translations within
the program stay sound.

To transform constants of the layout type k ∈ Z+ we use:

sc = [s1, . . . , sn] s′c = [s1, . . . , ⌈sτ/V ⌉, . . . , sn, V ]
p′ = (s1 ⋅ ⋯ ⋅ ⌈sτ/V ⌉ ⋅ ⋯ ⋅ sn ⋅ V )

c = ⟨sc, [d1, . . . , dp]⟩ c′ = ⟨s′c, [d′1, . . . , d′p′]⟩

∀k ∈ {1, . . . , p′}

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

cidx′ =Rm−1(k, s′c)
zero′ = [1, . . . ,1

´¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¶
n

,0]

d′k =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

dRm(I−1τ (cidx′),sc) I−1τ (cidx′) < sc
dRm(I−1τ (cidx′⋅zero′),sc) otherwise

T (c) = c′ c ∶∶ τ ∈ {1, . . . ,D (c)}
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In this case multiplication and less than operators in

cidx′ ⋅ zero′ and I−1τ (cidx′) < sc

expressions are used per vector component. Note the way we treat “phantom” elements
of the vectorised array — we fill the empty cells with the first element of each vector,
which should be always present, as zero axes sizes are not supported. As a result, any
vectorised operation on such a vector succeeds, if the corresponding scalar operation
succeeds in the original program. However, if the original program terminates with a
hardware exception due to invalid arguments of a certain operation, this behaviour
is going to be preserved.

Finally we consider the case when c is of layout-type △0 which means that the
array has to be stacked V times.

T (c) = ⊕Vi=0c c ∶∶ △0

5.2.2 sel

Selections can manifest themselves in three different ways: scalar selection, vector
selection and scalar selection on a vectorised array. To define the selection transfor-
mation formally, we introduce a primitive operation for vector selection called vsel.
Semantically, vector selection is a concatenation of V scalar selections on the last
dimension of a vectorised array. Keep in mind that the length of an index vector used
in vector selection is one element shorter than the dimensionality of the vectorised
array.

vsel
iv ⇓ ⟨[n − 1], [i1, . . . , in−1]⟩ e ⇓ ⟨⟨[n], [s1, . . . , sn−1, V ]⟩, [d1, . . . , dm]⟩

vsel(iv, e) ⇓ ⟨[V ], [d′1, . . . , d′i]⟩
where ∀i ∈ {0, . . . , V − 1} ∶ ⟨[], [d′i]⟩ = sel(iv [i], e)

Selection transformation is defined as:

T (sel(iv, a)) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

sel(T (iv),T (a)) iv ∶∶ 0 ∧ a ∶∶ 0

vsel(T (iv),T (a)) iv ∶∶ idx(k) ∧ a ∶∶ k

vsel(T (iv),T (a)) iv ∶∶ 0 ∧ a ∶∶ △

sel(Ik(T (iv)),T (a)) iv ∶∶ 0 ∧ a ∶∶ k

As it alway is, for layout types 0 the transformation is an identity function. Vector
selections can happen in two cases:

1. a ∶∶ k ∧ iv ∶∶ idx(k), which means that this selection is invoked within a map/re-
duce operation, and the index space is vectorised over the k-th axis. As an
example consider a map over a 1-d array where the inner operation uses selec-
tion:
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map i < [N] f ( a [ i ] )

in which case if i ∶∶ idx(1) ∧ a ∶∶ 1, the selection has to return an expression of
vector layout type rather than scalar;

2. a ∶∶ △ ∧ iv ∶∶ 0, which can be found in nested maps, when selection happens on
the axis which was not vectorised. For example, assume we have a 2-d array a
of shape [M,N]:

map i < [M]
let

l i n e = map j < [N] a [ i ++ j ]
in

f ( l i n e [ i v ] )

in this case, assuming that i ∶∶ idx(1), j can be only of type 0, and the line has
to become a 1-d array of vectors rather than of scalars, which means that line
gets a layout type △. Any further selections on line implies vector selections
with an index of layout type 0.

Finally, when selections on a vectorised array are performed outside the map/re-
duce operation, the result of the selection has to be scalar. To illustrate that assume
a data-parallel operation on the array a after which one scalar element is being
accessed:

let
r = map i < u f ( a [ i ] )

in
g ( r [ e ] )

Assuming that a ∶∶ k ∧ r ∶∶ k ∧ e ∶∶ 0, we adopt index e by applying the Ik index
transformation.

5.2.3 Primitive functions prf

All the binary primitive scalar operations have built-in vector variants, so the only
thing the transformation should take care of is vectorisation of the scalar component,
which is allowed by the layout-type system. Without loss of generality we consider the
plus operator as being a representative of all binary primitive functions in SaC-λ.

T (a + b) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

T (a) + T (b) a ∶∶ 0 ∧ b ∶∶ 0

(⊕Vi=0T (a)) +⃗T (b) a ∶∶ 0 ∧ b ∶∶ △

T (a) +⃗ (⊕Vi=0T (b)) a ∶∶ △ ∧ b ∶∶ 0

T (a) +⃗T (b) a ∶∶ △ ∧ b ∶∶ △

where +⃗ is a vector variant of +. Note that here the indexes of△ types are irrelevant, as
their correctness has been established by the layout type inference. As a consequence,
if any subexpression is of a △ layout type, a scalar plus is transformed into a vector
plus.
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5.2.4 map

To formalise map/reduce transformations we introduce a function Uk that updates
an upper-bound when the index of map/reduce is of layout-type idx(k).

Uk(⟨[n], [u1, . . . , un]⟩) = ⟨[n], [u1, . . . , ⌈uk/V ⌉, . . . , un]⟩

The application of Uk to some e is very similar to the result of Ik(e). The only
difference is that we omit the last vector component. We do this as vectorised selection
operates on n-element indexes, selecting from arrays of (n + 1)-element shapes.

We apply Uk when the index vector of the map is of layout type idx(k). In all
the other cases we only propagate the transformation into subexpressions.

T (map j < u e) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

map j < Uk(T (u)) T (e) j ∶∶ idx(k) ∧ e ∶∶ △

map j < T (u) T (e) otherwise

5.2.5 reduce

The only case when reduce requires a transformation is, similarly to map, when
the layout type of its index vector is idx(k) and the inner expression is of layout
type △. The upper bound expression has to be transformed in the same way as in
map. However, in contrast to map, the resulting layout type of reduce has to be 0.
This does not happen automatically as a return layout type of a reduction function
is △, which implies an extra step of reduction. First we consider the case when the
axis of vectorisation is divisible by V i.e. there are no “phantom” elements:

T (reduce i < u (f ) e) =
let

r = reduce i < Uk(T (u)) (Tf(f)) T (e)
in

reduce i < [V] (f ) r [∗ , i ]

In order to see this transformation in action, consider a summation (with +) of
a 1-dimensional array a of shape [N ⋅ V ]:

reduce i < [N ⋅ V ] (+) a [ i ]

Assuming that a has layout type 1 and i is of layout type idx(1), the following
vectorisation

r⃗ ≡ reduce i < [N] ( +⃗) a [ i ]

will be of shape [V ] which has to be reduced with a scalar plus:
reduce i < [V] (+) r⃗ [ i ]

Now let us consider the case when the size of the vectorisation axis is not di-
visible by V . We cannot perform a vector operation on the last vector (an ele-
ment of vectorised array which has ⌈sk/V ⌉ at its k-th position in the index), as
it will contain “phantom” elements. For example, if V ≡ 4 then the vectorised ar-
ray [1,2,3,4,5,6,7,8,9] will look like [[1,2,3,4], [5,6,7,8], [9, x, x, x]], x = 9 — we
cannot add the last vector, but we can still add the first two using +⃗.
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Using this observation we split the index space of vectorised reduce into two
parts:

[0, . . . ,0] ≤ i < [u1, . . . , ⌊uk/V ⌋, . . . , un]

and
[0, . . . , ⌊uk/V ⌋, . . . ,0] ≤ i < [u1, . . . , ⌈uk/V ⌉, . . . , un]

Formally we denote that as follows:
T (reduce i < u (f ) e) =

let
r⃗ = reduce i < [uT1 , . . . , uTk div V, . . . , uTn ] (Tf(f)) T (e) ;
r⃗′ = reduce i ’ < [uT1 , . . . , (if uk mod V == 0 then 1 else 0), . . . , uTn ] (Tf(f))

let
i = [i′1, . . . , i′k + (uTk div V ), . . . , i′n]

in
T (e)

in
let

r1 = reduce i < [V ] (f ) r⃗ [∗ , i ] ;
r2 = reduce i < [uTk mod V ] (f ) r⃗′ [∗ , i ] ;

in
f (r1 , r2 )

where uT = T (u) and uTi refers to the components of the vector uT .
In order to illustrate the final formula, consider a reduction with plus over an

array of shape [10,N] being of layout-type 1. In this case r⃗ would hold a result of
vectorised addition of vectors [0,∗,∗] and [1,∗,∗]. Then r⃗′ would sum-up vectors
[2,∗,∗], using vector plus. Note that we can do this, as an operation on “phantom”
elements would not affect the result. Finally, r1 would sum-up the elements inside
the vector and r2 would sum-up non-phantom elements of r⃗′. Also, when uk is a
multiple of V , the index range of r⃗′ will be empty, and r⃗ will get a vectorised neutral
element, which later will be reduced to the scalar neutral element.

Finally, when reduce is of layout type △ or k the transformation is defined as:
T (reduce i < u (f ) e) = reduce i < u (Tf(f)) T (e)

5.2.6 if

The transformation of a condition is the most complicated part of all the transfor-
mations we present in this work. There are two reasons for that:

1. vectorised conditions require control-flow to data-flow transformations; and

2. the branches of a conditional may contain recursive function calls.

The first problem has been studied in [122, 70, 26]. The proposed solution is to
evaluate masks for true and false branches from the predicate of a conditional and
propagate those masks into the branches. Such an approach potentially introduces a
large number of masking operations which can have a negative impact on the overall
performance. Our context offers us the following trade-off: instead of masking every
operation inside the branches while evaluating it, we can evaluate an expression first
and then mask out unnecessary results. This idea is going to guide our transformation.
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Assume that the condition we want to transform has the following form:

e = (if p ∶∶ α then e1 ∶∶ β else e2 ∶∶ γ)

Ideally, we would like to apply the following transformation:

T (e) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

if T (p) then T (e1) else T (e2) α = 0 ∧ β = γ ∧ β, γ ≠△

mask (T (p),T (e1), (⊕Vi=0T (e2))) α =△∧ β =△∧ γ = 0

mask (T (p), (⊕Vi=0T (e1)) ,T (e2)) α =△∧ β = 0 ∧ γ =△

mask (T (p),T (e1),T (e2)) α =△∧ β =△∧ γ =△

mask ((⊕Vi=0T (p)) ,T (e1), (⊕Vi=0T (e2))) α = 0 ∧ β =△∧ γ = 0

mask ((⊕Vi=0T (p)) , (⊕Vi=0T (e1)) ,T (e2)) α = 0 ∧ β = 0 ∧ γ =△

mask ((⊕Vi=0T (p)) ,T (e1),T (e2)) α = 0 ∧ β =△∧ γ =△

where mask works as:

mask (m,e1, e2) = ⊕Vi=0 (if m[i] then e1[∗, i] else e2[∗, i])

A real implementation might differ from the above definition as most of the
architectures support vector selections in which case instead of combining slices
we can combine individual vectors. Note that m in this case is a vector of shape
[V ], as predicates in non-vectorised conditions always evaluate to scalar booleans.
Expressions e1 and e2 can be non-scalar arrays.

By replacing a condition with a mask operation, we change the normal order
of evaluation (in case of the original if) into applicative order. This has two conse-
quences:

1. we can introduce hardware exceptions that were not present in the original
program; and

2. we can break the termination of a program and make turn some programs that
terminate originally into non-terminating programs after the transformations
is applied.

Hardware exceptions The first problem can be understood from the following
example:

map i < [N] i f a [ i ] == 0 then 0 else 1/a [ i ]

When the condition is vectorised, the else branch evaluation may result in a
hardware exception due to division by zero. This sort of exception happens not
because the original program were generating it but due to the way SIMD instructions
work. To deal with this we need to rewrite the expression in the branches propagating
the mask from the condition. Whenever a special operation like division of integers,
or square root is found, we need to mask the arguments with a neutral element for the
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given operation. Implementation of such an analysis can be done straightforwardly,
but for the sake of simplicity assume that the behaviour of transformed and non-
transformed code is the same with respect to hardware exceptions. In case it is not
statically decidable we reject the vectorisation.

Recursive calls The second problem happens when one of the branches contains
a recursive call. In this case the above transformation may lead to unbound recursion
as the function call is taken out of the condition branch. For example:

f oo (x) =
. . .
i f (p (x ) ) then

f oo (x)
else

e

is transformed into:
⃗foo ( x⃗) =

. . .
let

t = ⃗foo ( x⃗ ) ;
f = e⃗

in
mask ( p⃗ ( x⃗ ) , t , f )

It can be seen the function ⃗foo will never terminate, when foo itself might. To
avoid such cases, we have to identify recursive cycles and guard a recursive call with
a condition. Our type inference does not allow for unbound recursion, so functions
participating in a recursive cycle will have a case like that mentioned above. Our
language is first order and anonymous functions are not allowed so it is straight
forward to identify recursive cycles. After that at every exit from the recursive cycle
we need to guard the non-exit call. For example:

f oo ( . . . , x , . . .) =
. . .
i f (p (x ) ) then

f oo ( . . . , f (x ) , . . .)
else

e

will be transformed into
⃗foo ( . . . , x⃗ , . . .) =

. . .
let

m = p⃗ (x)
in

i f any (m) then
let

t = ⃗foo ( . . . , f⃗ ( x⃗ ) , . . . ) ;
f = e⃗ ;

in
mask (m, t , f )

else
e⃗

In this case any refers to the disjunction of all the elements of the vector m:

any(e) =⋁
i

ei any([m1, . . . ,mV ]) =
V

⋁
i=1
mi

Finally, we have to make sure that the recursive call of ⃗foo can be safely called on
the values of f⃗ (x⃗) that are masked by the current value of the mask and that are
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never passed to the original f. In case the hardware supports predication, we can
pass the mask to the call of f⃗. In other case we require the following property to
hold:

¬p(x) Ô⇒ ¬p(f∗(x))

where f∗(x) means any number of function compositions. Informally this property
means that if we took an exit on some value, then subsequent recursive calls will
still result in exit. Such an analysis can be tricky, however, it has a lot of similarities
with termination analysis that is usually done by theorem provers [89] or in the
context of embedded or reactive systems [35, 17]. For practical purposes, the most
common recursion we deal with is tail recursive functions that represent loops. There
we usually deal with one induction variable and its increment, and the predicate is
a comparison with a bound:

# for ( i = 0 ; i < N; i++)
for_loop ( i , . . .) =

. . .
i f i < N then

for_loop ( i +1, . . .)
else

. . .

in which case the required property holds.

Non-termination follow-up Besides the cases when non-termination is intro-
duced because of badly-treated recursion, non-termination may be introduced by
evaluating the cases of a conditional which are never evaluated in the original program.
Consider the following scenario:

i n f i n i t e ( x ) =
i f (1 == 1)

i n f i n i t e ( x )
else

0

This function never terminates. However, the calling site of such a function may be
constructed in such a way, that it never occurs. For example:

f oo (x ) =
let

y = x ∗ x
in

i f ( y > 0) then
y

else
i n f i n i t e ( x )

This is very unlikely to happen in practice, but in case we want to handle a
vectorised version of such a function we need to have the following transformation:

⃗foo ( x⃗) =
let

y⃗ = x⃗ ∗ x⃗ ;
m = y⃗ > [0 , . . . , 0 ]

in
i f ( a l l (m) ) then

y⃗
else i f ( not any (m) ) then

⃗infinite ( x⃗)
else
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mask (m, y⃗ , ⃗infinite ( x⃗ ) )

In this case all refers to conjunction of all the elements of the vector m:

all(e) =⋀
i

ei all([m1, . . . ,mV ]) =
V

⋀
i=1
mi

Also, in this particular case one might need to implement mask as a series of
scalar ifs, as ⃗infinite might be triggered by a specific value only. Generally speaking,
in this work our primarily goal is to deal with tail-recursive representation of loops
and our termination analysis is fairly trivial. In case we cannot prove termination
of the functions in the branches of a conditional, we implement vectorised condition
via series of scalar ifs.

5.2.7 Fundef, app, let and letrec

For the transformation of these expressions we propagate T into its subexpressions,
assuming that the preprocessing step described in the beginning of this section is
done.

Transformation of a function definition is transformation of its body expression:

Tf (fi(a1, . . . , an) = e) = (fi(a1, . . . , an) = T (e))

The transformation of a function application requires the arguments to be trans-
formed, as the layout-type overloading has been resolved during the preprocessing
step:

T (fi(e1, . . . , en)) = fi(T (e1), . . . ,T (en))

The same reasoning is applicable to let expressions:

T (let x = e1 in e2) = (let x = T (e1) in T (e2))

Finally the letrec construct is a vectorisation of its goal expression and all the
fundefs according to the new layout-type signatures.

T (letrec f1(. . .) = e1, . . . , fn(. . .) = en in e)
= letrec Tf(f1(. . .) = e1), . . . ,Tf(fn(. . .) = en) in T (e)

5.2.8 Transformation summary

All the variables in the original programs can be found in the transformed program,
as Fundef leaves the names of the arguments unmodified. The same holds for
Let expressions.

The way we formulate the transformation of conditions does not necessarily lead to
the best possible performance. For example, vectorisation of deeply nested conditions
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may perform worse than V original ones, when each branch implies a sufficient amount
of work. On the other hand, switching between scalar and vector modes or predicating
each operation with a mask has negative performance effects as well. In order to tell
for sure, we have to employ a cost model that is aware of the underlying hardware
and the cost of memory operations. For the time being, intuitively the proposed
transformations delivers speed-ups under the following assumptions:

1. Vector and scalar arithmetic instructions operate in the same time; and

2. For vectorised conditions minimum computations is being discarded, i.e. ex-
ecution of true and false branches is distributed evenly, or the less preferred
branch does not imply heavy computations.

Note that the transformation of conditions implicitly requires the shapes of the
expressions evaluated in both branches to be equal (because of the definition of the
⊕ operation). This restriction prevents our system from vectorising functions similar
to filter:

f i l t e r ( vec , x , r e s ) =
i f l en ( vec ) == 1 then

i f vec [ 0 ] < x then
[ vec [ 0 ] ] ++ re s

else
r e s

else
i f vec [ 0 ] < x then

f i l t e r ( drop ( [ 1 ] , vec ) , x , [ vec [ 0 ] ] ++ re s )
else

f i l t e r ( drop ( [ 1 ] , vec ) , x , r e s )

That is because masking [vec[0]] ++ res and res, when both have layout type
△ would result in a two-dimensional array with rows of different sizes. Although
it might be possible to support this in principle, for the context of this thesis we
disregard such cases.

5.3 Transformation correctness

After we have introduced the transformation we would like to make sure that trans-
formed programs evaluate the same values up to the layout mappings. In order to
verify this, first of all, we introduce correctness criteria for transformed programs of
a given type.

The body of a transformed program can only evaluate an expression of the k ∈ N
layout type. That is because the existence of △ or idx types suggests a map/reduce
context and as our programs are not allowed to have unbound variables, idx and △
types cannot appear in the resulting type of the goal expression of a program. For
those cases if

e′ = T (e) e ∶∶ k ∈ N

we say that program transformation is correct if we can demonstrate an element-wise
correspondence of two arrays:
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Eval(e′) = T (Eval(e)) and Eval(e) = T −1(Eval(e′))

In order to do so we will use index-mappings Ik and I−1k as follows:

∀j<see[j] = e′[Ik(j)] and ∀I−1
k

(j)<see
′[j] = e′[I−1k (j)]

where the quantification ∀j<se denotes the range of all valid indexes of the original
expression. From the construction of Ik and I−1k it is enough to show only one
correspondence, as the other will be directly deducible.

While this appears to be a straight-forward criterion, an inductive proof requires
more formalism as we have to deal with expressions of arbitrary layout types including
our special types △ and idx(k). The main difficulty with those types is that they
represent partial results appearing inside of a map/reduce. Evaluated expressions

e and T (e) e ∶∶ △

are not comparable with any equality criterion as T (e) carries V instances of e
coming from the different iterations of a map/reduce. To solve this problem we are
going to generalise the correctness criterion of the arithmetic operations:

f⃗([x1, . . . , xV ]) = [f(x1), . . . , f(xV )]

and prove that the transformed expression can be represented with V instances of the
original expression. For idx types we have to show that mappings from the original
index space into the vectorised index space holds.

Layout types idx(k) First of all, the idx layout types are being attributed only
to index vectors. The transformation T maps a tuple of V indexes in the original
program into a single index in the transformed program. To illustrate this, assume
that we have a set of indexes

I = {ı1, . . . , ın} and a transformed set T (I) = {ı⃗1, . . . , ı⃗m}

A bijective mapping M maps tuples of V indexes from I into indexes from T (I):

M(⟨̂ı1, . . . , ı̂V ⟩) = ˆ⃗ıj where ∀Vk=1ı̂k ∈ I and ˆ⃗ıj ∈ T (I)

The mapping M does not map arbitrary tuples of indexes to the vectorised set.
Instead we define a function that groups indexes from I into tuples of V indexes so
that G is a partition of I. For convenience we define G to operate on the elements
of I and to return a tuple where the given element belongs to:

G(ıj) = ⟨̂ı1, . . . , ı̂V ⟩ ∃k ∈ {1, . . . , V } ı̂k = ıj ∧ ∀Vk=1ı̂k ∈ I

For the expression e of layout type idx(k) and its transform e′ = T (e) we need
to show that:
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G(e) =M−1(e′) and e′ =M(G(e))

G is defined as:

G(e) = ⟨e{ek → ek − ek mod V }, e{ek → ek − ek mod V + 1},
. . . , e{ek → ek − ek mod V + V − 1}⟩

where e{ek → x} denotes that the k-th component of e has been substituted with x.
The M function is defined as:

M(⟨̂ı1, . . . , ı̂V ⟩) = ı̂1{ı̂1[k]→ ı̂1[k] div V }

where ı̂1[k] refers to the k-th component of the ı̂1.
The reverse M−1 function is defined as:

M−1(ı⃗) = ⟨⃗ı{ı⃗k → V ı⃗k}, ı⃗{ı⃗k → V ı⃗k + 1}, . . . , ı⃗{ı⃗k → V ı⃗k + V − 1}⟩

Note that the following transformation holds due to the nature of the mod and
div operations:

M(G(e)) = e{ek → ek div V }

Note that the boundaries of the array G return a tuple that contains indexes
which are illegal in terms of the original program. However, as indexes of idx layout
type will be used in selections into vectorised arrays (of layout type k) those indexes
will become valid, as k-type transformation pads the array. On the other hand, to
match the padding policy we can consider the following behaviour of G in case e is
at the boundary:

G([e]) = ⟨[e − e mod V ], [e − e mod V + 1] . . . , [e], . . . , [e]⟩

to replicate the last value V − e mod V times. In that case if g = G([e]), then:

vsel(M(g),T (a)) = [sel(g1, a), . . . , sel(gV , a)]

Layout types △ In order to prove that the transformation of expressions of layout
type △ is correct we want to ensure that it is safe to apply them in the context
of a vectorised map/reduce. To show this we are going to consider an expression
e ∶∶ △ being a function f(a1, . . . , an) where arguments ai are free variables of e. The
transformation of e is:

T (e) = e′ = f⃗(a′1, . . . , a′n)

in which case we need to demonstrate how the application of f⃗ can be replaced with
applications of the original f . To do so we show that:
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⊕Vj=1f(T −1(a′1, j), . . . ,T −1(a′n, j)) = f⃗(a′1, . . . , a′n)

where T −1 is the inverse transformation defined as follows:

T −1(x, j) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x x ∶∶ 0

x′∣x′[I−1k (i)] = x[i] x ∶∶ k

x{xk → V xk + j} x ∶∶ idx(k)

x[∗, j] x ∶∶ △

where x′∣x′[I−1k (i)] = x[i] means the reconstruction of the array x before the trans-
formation was applied. Here we use I−1 index mapping, and as we know the shape
relation of x and x′ we can do the reconstruction.

We factorise the arguments, which makes application of the original function
possible. Notice that idx and △ types with different parameters imply V iterations
per parameter. For example, if △α and △β are layout types of the f arguments, then
we have to consider not V applications of f but V ×V . However, such a function can
never be applied in the nest of map/reduces unless one of the arguments is dropped.
This can be proven using the following sketch:

1. if a function gets an idx or △ layout type with more than one parameter then
the function is being called from within a map/reduce nest (possibly spreading
across functions):

map i < u1

map j < u2

f (a[i] ∶∶ △α , b[j] ∶∶ △β )

2. if arguments of the function f are combined via primitive built-in language
combinators, then according to Fig. 4.10 parameters have to be unified;

3. if not then the parameters has to be dropped, as in the following example:
f (x ∶∶ △α , y ∶∶ △β ) = y

. . .
map i < u1

a [ i ] + ( reduce j < u2 (+)
f (a[i] ∶∶ △α , b[j] ∶∶ △β ) )

in which case the function can be replaced with a one-argument function where
all the idx and △ parameters are the same.

That suggests that functions applied inside map/reduces can only represent V
instances of the original function.

5.3.1 Correctness criteria

With these definitions we can now define correctness criteria for the proposed trans-
formation. We formalise the notion of correctness by means of a predicate:

C(T , e)↦ {T,F}
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where the co-domain is (true T or false F ). The predicate is defined separately for
expressions (E in SaC-λ grammar), function definitions Fundef and the whole
programs LetRec.

The expression e under transformation T is correct if:

e ≡ f(a1, . . . , an)
e′ = T (e) = f ′(a′1, . . . , a′n)

C(T , e) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

e′ ≡ e e ∶∶ 0

∀i<see[i] = e′[Ik(i)] e ∶∶ k ∈ Z+

⊕Vj=1f(T −1(a′1, j), . . . ,T −1(a′n, j)) = f ′(a′1, . . . , a′n) e ∶∶ △

G(e) =M−1(e′) ∧ e′ =M(G(e)) e ∶∶ idx(k)

where f(a1, . . . , an) is e with explicit free variables.
Expressions of layout-type 0 are correct if the transformed expression is equivalent

to the original one. Expressions of layout-type k, k ∈ Z+ are correct if every element
of e at position i evaluates to the same value as e′[Ik(i)] for all the valid indexes in e.
Expressions of layout-type △ are correct if the transformed function can be replaced
with V instances of the original function. Expressions of layout-type idx(k), k ∈ Z+

are correct if the index mapping between the transformed and the original expression
is preserved.

Finally, a function definition is correct when the function body is correct:

C(T , e) = T

C(T , f(a1, . . . , an) = e) = T

The overall program is correct if all the function-definitions are correct and the
goal expression is correct:

C(T , f1(. . . ) = e1) = T . . . C(T , fn(. . . ) = en) = T C(T , e) = T

C(T , letrec f1(. . . ) = e1, . . . , fn(. . . ) = en in e) = T

5.4 Proof of correctness

In this section we are going to sketch a proof that any program in SaC-λ transformed
by T is semantically correct in terms of C. We are going to use structural induction
over terms of the language proving that expressions constructed of correct subparts
under the given typing are correct.

Every case of the induction compares the original expression e, which has a
normal form e = f(a1, . . . , an) and its transformed counterpart: e′ = T (e) which also
has a normal form e′ = f ′(a′1, . . . , a′n). We are going to consider all the possible layout
typings of e and the transformation obtained by T under the given layout typing.

First of all let us start with simple general observations.
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Theorem 1. Transformation of an expression of layout type zero is correct, assuming
that all the subexpressions are correct.

f(a1, . . . , an) ∶∶ (0, . . . ,0)→ 0

C(T , a1) = T . . . C(T , an) = T

C(T , f(a1, . . . , an)) = T

Proof. Follows from the definition of T when all the subexpressions and the resulting
expression are of layout type 0 and they preserve the semantics of the original
program, then f ′ is equivalent to f as T is an identity function.

The second observation concerns expressions of the idx layout types.

Theorem 2. Transformation of an expression of idx(k) layout type is correct, as-
suming that all the subexpressions are correct.

e ∶∶ idx(k)

C(T , e) = T

Proof. Expressions of type idx(k) can appear either as variables inside map/reduce
expressions, as a result of a operation or by means of propagation via function
arguments. According to the definition of C we have to show that G(e) =M−1(e′)
and that e′ =M(G(e)).

In the case of map/reduce the transformation T updates the upper-bound of the
operation. We need to show that the transformed index space I ′ includes every index
from the original index space I under M and G. In other words:

{G(i) ∣ ∀i ∈ I} = {M−1(ı⃗) ∣ ∀ı⃗ ∈ I ′} and {M(G(i)) ∣ ∀i ∈ I} = I ′

If the original map/reduce is bound by the expression [u1, . . . , un], the index space
of the operation will be defined as:

I = {[0, . . . ,0], . . . , [u1 − 1, . . . , un − 1]}

as indexes in SaC-λ start with zero. In the case that the induction variable of the
map/reduce is of layout type idx(k) the transformation T applies Uk to the upper
bound of the map/reduce. That means that the transformed upper bound will look
like [u1 − 1, . . . , ⌈uk/V ⌉, . . . , un] and the transformed index space I ′ will look like:

I ′ = {[0, . . . ,0], . . . , [u1 − 1, . . . , (uk − 1) div V, . . . , un − 1]}}

because:

⌈x/V ⌉ − 1 ≡ (x − 1) div V

Due to the definitions of M and G the following equality holds:

I ′ =⋃
i∈I

{M(G(i))}
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as M(G(e)) = e{ek → ek div V } and due to the definition of M−1, reverse equality:

{M−1(ı⃗) ∣ ı⃗ ∈ I ′} = {G(i) ∣ ∀i ∈ I}

holds under the assumption that uk is available forM−1 and G to resolve the indexes
on the bounds of iteration space. This ensures that the transformed index set of a
map/reduce operation is correct.

Now we consider the cases when the layout type idx(k) is propagated or is
obtained via a operation. Let us consider an expression e in its normal form:
e = f(a1, . . . , an). In that case, if e ∶∶ idx(k) there exists a free variable of iv = ai of
layout type idx(m). In that case we have two possibilities:

1. propagation, k = m which means that the function returns iv, in which case
the correctness holds under assumption that iv is correct;

2. concatenation which means that iv ∶∶ idx(m) is a part of either iv v or v iv,
where v ∶∶ 0. According to the type rules:

e = iv v and e ∶∶ idx(k) k =m

and
e = v iv and e ∶∶ idx(k) k =m + S0 (v)

Let us expand both cases, assuming that:

iv = [iv1, . . . , ivm, . . . , ivn] v = [v1, . . . , vp]

In the first case the original expression would be:

e = [iv1, . . . , ivm, . . . , ivn, e1, . . . , ep]

and the transformed expression:

e′ = [iv1, . . . , ivm div V, . . . , ivn, e1, . . . , ep] = e{em → em div V }

which implies that M(G(e)) = e′ by definition and M−1(e′) = G(e) because

M−1(e′) def= ⟨e′{e′m → V e′m}, . . . ⟩ = ⟨e{em → V (em div V ) + 0}, . . . ⟩

which by definition is G(e).
The intuition here is that T divides the k-th component of the vector by V , so

as long as the position of the component is preserved, the transformation is correct.
Finally, when e ∶∶ idx(m + S0 (v)) the original expression is:

[v1, . . . , vp, iv1, . . . , ivm, . . . , ivn]

and similarly to the previous case, after the concatenation the component of the
vector that will be divided by V is shifted p elements to the right, and p = S0 (v). So
similarly to the previous case we have shown that the transformation is correct.

124



The rest of the proofs use structural induction over the terms. The base case
of the induction is a constant, as we do not allow external parameters, and all the
values are conceptually defined by means of constants.

Theorem 3. Constant transformation is semantically correct.

e is constant

C(T , e) = T

Proof. By the construction of const transformation. Let us consider three possible
cases of the layout-type of a transformed constant:

1. e ∶∶ 0 — non-vectorised case, follows from Theorem 1.

2. e ∶∶ △ in which case for f() = e and f ′() = e′ we show that:

⊕Vj=0f() = f ′() or ⊕Vj=0 e′[∗, j] = e

which directly follows from the definition of T for constants of layout type △0:
e′

def= ⊕Vi=0e2.

3. e ∶∶ k ∈ Z+ in which case we show that

∀i<se ∶ e[i] = e′[Ik(i)]

This follows from the construction of e′, and the phantom elements are not in
the range of i.

Theorem 4. Vectorisation of selections is semantically correct.

e ≡ sel(iv, a) C(T , iv) = T C(T , a) = T

C(T , e) = T

Proof. Let us consider all the legal layout types for e, iv and a:

1. e ∶∶ 0 ∧ a ∶∶ 0 ∧ iv ∶∶ 0 — non-vectorised case, follows from Theorem 1.

2. e ∶∶ △ ∧ a ∶∶ k ∧ iv ∶∶ idx(k) in which case we need to show that:

⊕Vj=0 sel(iv′{iv′k → V iv′k + j}, T −1(a′)) = vsel(iv′, a′)

From the definition of vsel we deduce the following equality:

vsel(iv′, a′) = ⊕Vj=0sel(iv′ [j], a′)
2By the way, this is the only case for expressions of layout type △ when the scalar elements of

the transformed one can be mapped to the scalar elements of the original one.
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From the reversed correctness criteria of a ∶∶ k we get the following mapping
between a′ and T −1(a′):

∀I−1
k

(i)<sa sel(I
−1
k (i),T −1(a′)) ≡ sel(i, a′)

From C(T , a) the shape of a′ is [s1, . . . , sn, V ]. The shape of iv′ is [s1, . . . , sn],
which allows one to rewrite the original expression as:

⊕Vj=0 sel(iv′{iv′k → V iv′k + j},T −1(a′)) = ⊕Vj=0sel(iv′ [j], a′)

which follows directly from the definition of I−1k .

3. e ∶∶ △ ∧ a ∶∶ △ ∧ iv ∶∶ 0 in which case we need to show that

⊕Vj=0 sel(iv, a′[∗, j]) = vsel(iv, a′)

From C(T , a) we deduce that a′ = ⊕Vj=0a′[∗, j] and from the construction of
vsel, correctness follows directly.

4. e ∶∶ 0 ∧ a ∶∶ k ∈ Z+ ∧ iv ∶∶ 0 in which case we need to show that

sel(iv, a) = sel(Ik(iv), a′)

which directly follows from C(T , a).

Theorem 5. Vectorisation of a primitive binary operation is semantically correct.

e ≡ x + y C(T , x) = T C(T , y) = T

C(T , e) = T

Proof. There are four possible layout-type combinations for a given expression.

1. e ∶∶ 0 ∧ x ∶∶ 0 ∧ y ∶∶ 0 — non-vectorised case, follows from Theorem 1.

2. e ∶∶ △ ∧ x ∶∶ △ ∧ y ∶∶ 0 in which case we need to show that:

⊕Vj=0(x′[j] + (⊕Vi=0y) [j]) = x′+⃗ (⊕Vi=0y)

Please note that x′ has a shape [V ] so we can replace slice operation with
a simple selection. From C(T , x) we can deduce that x′ = ⊕Vi=0x′[i]. By the
definition of built-in vector operations:

a+⃗b def= [a[0] + b[0], . . . , a[V − 1] + b[V − 1]] ≡ ⊕Vi=0 (a[i] + b[i])

as a and b are of shape [V ]. We can rewrite the original equality as:

⊕Vj=0(x′[j] + (⊕Vi=0y) [j]) = ⊕Vk=0 (x′[k]+⃗ (⊕Vi=0y) [k])

which makes it correct by definition of ⊕.
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3. e ∶∶ △ ∧ x ∶∶ 0 ∧ y ∶∶ △ — same reasoning as in the previous case.

4. e ∶∶ △∧x ∶∶ △∧y ∶∶ △ in which case C(T , a) Ô⇒ a′ = ⊕Vj=0a′[j] and C(T , b) Ô⇒
b′ = ⊕Vi=0b′[i] in which case we can use the same reasoning as in previous cases.

Theorem 6. Vectorisation of a map is semantically correct:

e ≡map i < u e1 C(T , u) = T C(T , e1) = T

C(T , e) = T

Proof. As e1 is correct there is a function f1 with body e1. Let us assume, without
loss of generality, that f1 arguments have i at the first position. In case i is not a free
variable of e1 this argument will be skipped, but we can still pass it. Let us consider
legal layout-type combinations of e, i and f .

1. e ∶∶ 0 ∧ i ∶∶ 0 ∧ f1 ∶∶ (0, . . . )→ 0 — non-vectorised case, follows from Theorem 1.

2. e ∶∶ k ∧ i ∶∶ idx(k) ∧ f1 ∶∶ (idx(k), . . . ) → △ Let us assume that the shape of
non-transformed e1 is scalar. Later we will demonstrate that the reasoning
works for non-scalars as well. We need to show that:

∀j<se (map i < u f1(i, . . .)) [j] = (map i′ < u{uk → ⌈uk/V ⌉} f ′1(i′, . . .)) [Ik(j)]

From the correctness of f1 we conclude that:

f ′1(i′, . . .) = ⊕Vj=1f(i′{i′k → V i′k + j}, . . .)

From the construction of Ik:

Ik(j) = j{jk → jk div V } [jk mod V ]

As we assumed that the shape of f1 is scalar, let us note that the index space
of j under the quantifier and i in the first map are the same. The index space
of j{jk → jk div V } and the index space of i′ are the same as well. The shape
of f ′1 is [V ], and we can rewrite the original expression as:

∀j<sef(j, . . .) = f ′(j{jk → jk div V }, . . .)[jk mod V ]

which is true due to the correctness of f .

3. e ∶∶ △ ∧ i ∶∶ 0 ∧ f1 ∶∶ (0, . . . )→△ in which case we need to show that

⊕Vj=0map i < u e′1[∗, j] ≡map i < u e′1

As e′1 ∶∶ △ and C(T , e1) Ô⇒ ⊕Vj=0e′1[∗, j] ≡ e′1 the correctness of the expression
follows from the semantics of map.
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4. e ∶∶ S0 (i) + k ∧ i ∶∶ 0 ∧ f ∶∶ (0, . . . )→ k ∈ Z+ In this case we need to show that

∀j<se (map i < u e1) [j] = (map i < u e′1) [IS0(i)+k(j)]

From C(T , e1) follows that ∀i ∶ ∀j < se1e1[j] = e′1[Ik(j)] and the expression of
interest reduces to this equality if for every index we drop S0 (i) first elements.

Finally we have to make sure that if e1 is not scalar, correctness still holds.
Assuming that the shape of e1 is se1 we apply the same reasoning considering that
all the values in our program are defined as

⟨[s1, . . . , sn], [d1, . . . , dp]⟩

where di is of shape se1 . That reduces a non-scalar map to a scalar one, and makes
the same reasoning applicable.

Theorem 7. Vectorisation of reduce is semantically correct:

e ≡ reduce i < u (fbin) e1 C(T , u) = T C(T , fbin) = T C(T , e1) = T

C(T , e) = T

Similarly to map, due to C(T , e1) there exists a function f1 for which without
lose of generality we introduce an argument i at the first position.

First of all let us consider the transformation informally, proving the properties
we will use later. A reduce operation can be considered as the following expression:

r = wi1 ×wi2 ×⋯ ×win

where wk is a result of the application of function f1(i, . . .) to (k, . . .) and × is fbin
written in the infix notation.

First of all, as × is associative (a × (b × c) ≡ (a × b) × c), the original expression
can be divided into two subgroups at index k where each subgroup can be computed
concurrently:

r1 = (wi1 ×⋯ ×wk)
r2 = (wk+1 ×⋯ ×win)
r = r1 × r2

The fact that × is commutative (a × b ≡ b × a) allows us to permute elements ek
in the r expression:

r = wψ(i1) ×wψ(i2) ×⋯ ×wψ(in)

where ψ(k) is a valid permutation in the range of {i1, . . . , in}.
Now let us consider what happens when vectorising r with ×⃗:

[w′
1. . . . ,w

′
V −1]×⃗[w′′

1 , . . . ,w
′′
V −1] ≡ [w′

1 ×w′′
1 , . . . ,w

′
V −1 ×w′′

V −1]
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as follows:

r⃗ = [w(1)
1 , . . . ,w

(1)
V −1]×⃗⋯×⃗[w

(n/V )
1 , . . . ,w

(n/V )
V −1 ]

r = r⃗[0] ×⋯ × r⃗[V − 1]

We assume here that n ≡ 0 mod V . The only thing we have to demonstrate for
operations to be identical is that for e(j)k and ei there exists a bijective mapping
between (j, k) and i.

Finally, if every vector in the vectorisation contains “phantom” elements starting
from the k-th to V − 1 position, then the operation has to be adjusted to:

r⃗ = [w(1)
1 , . . . ,w

(1)
k , x, . . . , x]×⃗⋯×⃗[w(n/V )

1 , . . . ,w
(n/V )
k , x, . . . , x]

r = r⃗[0] ×⋯ × r⃗[k]

Proof. Let us consider a combination of all valid types for T (e), T (i) and T (f).

1. e ∶∶ 0 ∧ i ∶∶ 0 ∧ f1 ∶∶ (0, . . . )→ 0 the non-vectorised case, follows from Theorem 1.

2. e ∶∶ τ ∧ i ∶∶ 0 ∧ f1 ∶∶ (τ, . . . )→ τ, τ ∈ Z+ ∪ {△} In this cases, as fbin is semantically
correct and fbin ∶∶ (τ, τ) → τ , the only difference to the previous case is the
non-scalar shape of the f1 application. Using the same argument of assuming
that the array components of e1 and e are of shape se1 we reduce the proof to
the previous case.

3. e ∶∶ 0 ∧ i ∶∶ idx(k) ∧ f1 ∶∶ (idx(k),△) → △ As we know, we can permute the
elements that we are reducing with fbin. We need to show that the mapping
between e1 and e′1 elements is bijective for all e1; that the number of scalar
reductions is the same in the transformed and original cases and that “phantom”
elements do not affect the result.

First of all, the mapping between e1 and e′1 is Ik, which is bijective by definition,
and as e1 is evaluated for every element in the index set, all the original e1 are
mapped. Secondly, “phantom” elements do not affect the result as every vector
in r⃗′ contains exactly uk mod V elements starting from the first position. As
fbin is correct, the operation happens component wise, so the resulting vector
is not affected and contains uk mod V “real” values. Finally, the construction
of r2 guarantees that only “real” values are reduced.

Now, let us count the number of elements in a non-vectorised case, which would

be N =
S0(u)
∏
j=0

u[j]. The number of fbin applications is N − 1. Next, consider the

r⃗ part of the transformation. Assuming that:

uk = V pk + qk

where 0 < qk < V , the number of scalar elements reduced in r⃗ is N
uk
pk. Each

vector operation is the same as V scalar operations, so we have ( N
uk
pk − 1)V

scalar operations for this part.
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For r⃗′ we have N
uk
⋅ 1 vector elements, where only qk of them are non-phantom.

This means that totally we have ( Nuk − 1)qk operations.

Finally, r1 adds V −1 operations to reduce r⃗, r2 adds qk−1 operations to reduce
r⃗′, and final call of fbin adds one more operation. If we sum these all together
we get:

(N
uk
pk − 1)V + (N

uk
− 1) qk + V − 1 + qk − 1 + 1

which adds up to N − 1.

For reduce, r⃗ might result in an empty range if uk < V in which case the neutral
element is being returned. Also, r⃗′ might result in empty range, if uk mod V = 0 in
which case, again, the neutral element would be used. One of r⃗ or r⃗′ is not empty as
uk ≥ 1.

Finally we consider if, app, let, fundef and letrec constructions. The
correctness of if follows directly from the correctness of the mask operation and the
assumption that the control-flow of a vectorised recursive function does not change.
The correctness of app follows directly from the definition of C under assumption
that the function itself and its arguments are correct. The same reasoning holds for
let.

For fundef, as T (f(a1, . . . , an) = e) = f(a1, . . . , an) = T (e), we can see that
correctness trivially holds under the assumption that e is correct.

The same reasoning holds for letrec. However, note that we might have
recursive functions in the body of function definitions, for which we need a fixed
point iteration, but for the co-domain of C the fixed point becomes trivial, so we
assume that the expression is correct and continue the induction.

5.5 Application

Now we are going to consider a small example of matrix multiplication to demonstrate
how the transformation is applied to real code. We are going to consider a single
function, assuming that it is being called in some letrec construct.

matmul ( a ,b) =
map i < [N]

map j < [N]
reduce k < [N] (+) a [ i++k ] ∗ b [ k++j ]

Both arguments a and b are of shape [N,N]. Now let us consider that the
layout type inference is done, and we have the following types for the transformed
expressions:

# matmul ∶∶ (2,1)→ 0
matmul (a ∶∶ 2 , b ∶∶ 1) =

map i ∶∶ 0 < [N]
map j ∶∶ 0 < [N]

reduce k ∶∶ idx(1) < [N] (+)
a [ (i++k) ∶∶ idx(2) ] ∶∶ △ ∗ b [ (k++j) ∶∶ idx(1) ] ∶∶ △

130



Next we can apply T on matmul which results in the following function:
matmul ( a , b) =

map i < [N]
map j < [N]

let
rv1 = reduce k < [N/V] ( vplus )

vmul ( v s e l ( i++k , a ) ,
v s e l ( k++j , b ) ) ;

rv2 = reduce k < [ i f N mod V == 0 then 0 else 1 ] ( vplus )
vmul ( v s e l ( i++[N/V] , a ) ,

v s e l ( [N/V]++j , b ) ) ;
in

( reduce i < [V] (+) rv1 [ i ] )
+ ( reduce i < [N mod V] (+) rv2 [ i ] )

Built-in vector operations are denoted as vplus and vmul for addition and multi-
plication accordingly. In the final step of the reduce transformation we use the fact
that both rv1 and rv2 return 1-d arrays of shape [V ]. That allows us to replace
slicing [*,i] with a standard selection [i].

5.6 Related work

As we have mentioned in 4.7 there are a number of works in the context of data
layouts that try to improve the cache behaviour or streaming through GPUs. Some
attempt to solve a very similar problem of transforming data layouts for better SIMD
usage. However, although the goals are very similar, to our knowledge none of the
existing work considered layout modifications as a whole program transformation
and to demonstrate how it might be correct.

Peter Hawkins et al. in [53] propose to synthesize data representations for concur-
rent programs written using concurrent relations. The main stress of this work lies in
optimising locks and synchronisations in concurrent environments, making sure that
the generated code stays correct. The overall technique they propose could be used
to solve the problem of finding optimal data layouts for vectorised array operations.
However, the proposed setup makes it very difficult to use existing languages and
codes. Our setting is more restrictive, as we do not allow tree-like or graph-like data
structures, and support multi-dimensional arrays only. Thus decisions about syn-
chronisation or locking placement are much simpler, as data structures are uniform.
At the same time this allows us to maintain a close gap between existing languages
like C and Fortran and the proposed transformation, making it applicable to these
languages. Here programs would have to be analysed in order to reveal data-parallel
operations. Large portion of such an analysis can be done using the polyhedral
model.

Finally, we give special attention to [134] where authors use data layout trans-
formation to optimise grid applications for efficient execution on GPUs. The overall
transformations they are studying are very similar to our work. However the ap-
plication domain is bounded to one particular class. The underlying programming
language used in the study is C with custom extensions for propagation of layout
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information. This makes it hard to judge how difficult would it be to generalise this
technique on a wider class of applications.

5.7 Conclusions

We have demonstrated how layout types can be used to transform data placement
in memory alongside the operations on these data structures. We have also demon-
strated that the transformed program stays correct with respect to the scalar elements
it computes. Finally we illustrated the proposed technique with the example of matrix
multiplication.

These contributions constitute a stepping stone towards automating the layout
transformation process. In particular our formulation of the correctness criterion plays
a key role as it enables formal reasoning about the correctness of our transformation.
It also is key for enabling a description of the layout transformation as a high-level
program transformation. This, in turn can serve as a blue-print for an effective
implementation.

When combining this work with the work on data layout inference presented
in Chapter 4 a fully automation of the entire process seems within reach. All that
is missing is a cost model to estimate the expected performance of transformed
programs. Even for simple examples the number of transformations can be quite
big. For example, for matrix multiplication several layout types are possible. And
this number, at least potentially, grows with the dimensionality of the function
arguments. We are confident that it will be possible to apply existing approaches
towards cost models for functional languages to close this gap and, thus, to achieve
a fully automated layout adjustment process.
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Chapter 6

Implementation

In this chapter we are going to relate SaC-λ and SaC, explain the differences in
the implementation of the inference and transformation when using SaC instead of
SaC-λ and discuss the cost model we use to chose the vectorisation of a program.

The reference implementation of the SaC language, called sac2c, is an optimising
compiler written in C consisting of 400K lines of code. It uses a standard compiler
architecture — a front-end which parses input files and performs basic syntax de-
sugaring, a middle-end which consists of a cycle of optimisations operating on the
Abstract Syntax Tree (AST) and the backend responsible for code generation for
various architectures. For more details refer to [50].

The proposed layout inference and transformations are integrated into sac2c and
consist of three main parts — the inference system, the cost model and transfor-
mations together consisting of 8K lines of C code. The inference happens between
the middle-end and the back-end after the optimisation cycle is finished. The trans-
formation system is designed to output SaC code with explicit vector operations
which is assumed to be compiled with sac2c to get binary. The staging provides a
convenient verification of the transformation system and the ability to repeat the
optimisations on the vectorised code.

6.1 SaC and SaC-λ relation

The main reason we used SaC-λ instead of SaC in our formalism is that SaC-λ
is very close to the intermediate representation of the AST in the middle-end.

The syntax of SaC is more advanced than the subset we have covered via SaC-
λ. However, most of the constructions that are left out are either syntactic sugar
for programmer convenience or means to deal with standard typing, module system,
etc., which are not relevant for the transformations we have presented.

6.1.1 De-sugaring SaC into SaC-λ

The syntax of SaC is designed to be close to C, while yet its semantics stays purely
functional. In C functions consist of statements; syntactically this is the same in
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SaC, but all the statements are transformed into pure functional expressions. The
chain of statements is transformed into a nested let expression. Here is an example:

## SaC ##
i n t foo ( i n t a , i n t b)
{

a = 5 ;
i = 0 ;
f o r ( i = 0 ; i < 10 ; i++)

a = . . .
r e turn a ;

}

## SaC−λ ##
f oo ( a , b) =

let a = 5 in
let i = 0 in

let a ’ = for_loop ( i , a ) in
a ’

Such a transformation happens when parsing SaC code and building the AST for
the program. Now let us explain how individual statements are mapped.

Return statement In SaC a return statement is allowed to appear only once
at the end of a function. An expression of the return statement will be treated as a
result of the function application. In SaC-λ the body of a function is an expression
itself, so there is no need to use return explicitly.

Assignments As it can be seen from the previous example, assignments are directly
mapped into let-expressions. This is done via transforming the original code into
Static Single Assignment (SSA) form, that is — if a variable is re-assigned in the
chain of expressions, a new variable name is created, and the variable is substituted
in the remainder of the assignment chain. Refer to [50] for more details. Consider
the following example:

## SaC ##
{

a = 5 ;
. . .
a = a + 5 ;
. . .
r e turn a ;

}

## SaC−λ ##

let a = 5 in
. . . in
let a ’ = a + 5 in
. . . in

a ’

Conditional statements An expression evaluated in a branch of the conditional
statement, it has to be assigned to a non-local variable. That gives rise to a control-
flow to data-flow transformation. We compute a union of variables that are modified
in both branches, and split the conditional statement into multiple statements each
of which updates one variable from the union using the predicate of the conditional
statement. Consider the following example:
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## SaC ##
a = 5 ;
b = foo ( a ) ;
i f (b > 0) {

a = 1 ;
b = 2 ;

}

## SaC−λ ##
let a = 5 in

let b = foo ( a ) in
let a ’ = i f (b > 0) then 1 else a in

let b ’ = i f (b > 0) then 2 else b

Variables a and b can be modified in the branches of the conditional statement. As
the else branch does not exist, we can assume that in the else branches variables are
being reassigned to their current values.

Loops SaC supports all three kinds of loops that are valid in C: for-loop, do-
loop and while-loop. Control-flow modifiers like break, continue and goto are not
supported, which makes it straight-forward to transform a loop into a call to a
tail-recursive function. We have to find variables that are modified inside the loop
which are going to be results of the tail-recursive function. Modified variables and
referenced variables of the loop will form a list of parameters. Consider an example:

## SaC ##
a = 5 ;
f o r ( i = 0 ; i < N; i++) {

a = a + f ( i ) ;
}

## SaC−λ ##
rec_for ( i ’ , a ’ , N) =

i f ( i ’ < N)
let a ’ ’ = a ’ + f ( i ’ ) in

let i ’ ’ = i ’ + 1 in
rec_for ( i ’ ’ , a ’ ’ , N)

else
a ’

. . .
let a = 5 in

let i = 0 in
rec_for ( i , a , N)

Do and while loops can be transformed similarly. Note that a loop can modify several
variables. In that case we can either support multiple return values (this is the way
it is implemented in SaC), or we can create a new recursive function for every vari-
able. This is going to be inefficient in terms of performance, but it will be equivalent
functionally, as functions and expressions in SaC do not have side effects.

Minor differences Other parts of SaC are either irrelevant in terms of transfor-
mations, for example: constructions to deal with the module system, element types
or constructions that can be trivially substituted.

For example, SaC allows one to fuse assignment and operation the same way
as it is done in C: a += b, which translates to a = a + b.

SaC mimics C’s lazy operations || and && by substituting for them with condi-
tionals:
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## SaC ##
f ( a && b ,

c | | d )

## SaC−λ ##
f ( i f a then b else f a l s e ,

i f c then t rue else d)

6.1.2 Non-de-sugarable differences

More significant distinctions between SaC and SaC-λ are concerned with shape-
invariant array programming and more advanced map/reduce syntax.

Shape-invariant programming One of the strong features of SaC is its ability
to handle arrays and operations on them without explicit knowledge of their shapes
or even ranks. This is achieved by introducing special types, which allow one to
define arrays where only the rank or the base type is known.

int[.,.,.] Three-dimensional array with element-
type int; exact size at each axis will be
known at runtime only.

float[*] An array with element-type float of un-
known rank and size. Can be also scalar.
The least precise type in SaC.

To handle data of such types SaC introduces two built-in operators, namely shape
and dim:

shape Returns a vector containing sizes of
an array at every axis. For exam-
ple, shape ([[1,2],[3,4]]) will return
[2,2].

dim Returns the rank of an array. For example,
dim ([[1,2],[3,4]]) will return 2.

Note that when using those operators we introduce a dependency between type
components and values of a program. Consider the following example:

int f oo ( int [ . , . , . ] x )
{

return sum ( shape (x ) ) ;
}

Here the components of the array type become values. Now consider:
int [ ∗ ] bar ( int x )
{

return genarray ( [ x , x ] , 0 ) ;
}
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In this case, a value becomes a part of the type of a generated array.
This has an impact on the layout transformations we can make. First of all, our

system cannot deal with arrays of unknown dimension. That is because Map[△]
and Idx[△] refer to the length of an index vector. In case all the array ranks are
known at compile time, we can compute the length of any index vector as well. In case
the length of an index vector is not known, our type constraints cannot be resolved
immediately, which makes our algorithm inapplicable in the form it is presented in
this thesis. Although it might be possible to postpone constraint resolutions, this is
out of the scope of this thesis.

Secondly, when using shape on the transformed programs with new data layouts it
has to return the original values, otherwise transformed programs will evaluate wrong
results — consider function foo above as an example. This means that we either have
to keep the original shapes, or recompute them from the new shapes. Unfortunately,
the latter is not possible due to the paddings we use. If the original shape is [N,N],
for the layout type 2, the new shape will be [N, (N + V − 1) div V,V ], and integer
division is irreversible. We solve this problem by introducing a new component of
the array in SaC programs — the original shape. Originally every SaC value was
formally described with a pair ⟨shape,data⟩. After the transformation we extend this
tuple with a new component, the original shape: ⟨shape,orig_shape,data⟩, and we
make sure that all applications of shape return the original shape.

Extended map/reduce Map and reduce operators in SaC-λ are restricted ver-
sions of the with-loop construct in SaC. The main difference is that map and
reduce in SaC-λ do not allow one to update regions of an iteration space. That is:

map i < u f ( i )

generates an index space of shape u and returns the result which is also of the shape
u. That implies that in order to update a region of an array, the body of a map has
to contain a condition. For example, in the case when we want to fill a region from
[20,20] to [40,40] with evaluated expression and make all the other elements of the
array a of shape [100,100] to be zero, we will have to write the following SaC-λ
code:

a = map i < [ 100 , 1 00 ]
i f i [ 0 ] >= 20 and i [ 0 ] < 40

and i [ 1 ] >= 20 and i [ 1 ] < 40 then
f ( i )

else
0

Semantically equivalent SaC code will look like this:
a = with {

( [ 2 0 , 2 0 ] <= i < [ 4 0 , 4 0 ] ) : f ( i ) ;
} : genarray ( [ 1 0 0 , 1 0 0 ] , 0)

Both codes evaluate to the same result. However, during the execution, a com-
parison on every iteration results in a large performance penalty. To avoid this SaC
generates code that splits the overall iteration space in subspaces, where all elements
in a subspace are evaluated unconditionally. In the given example we can evaluate
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zero on subspaces: ([0,0] to [20,100]), ([40,0] to [100,100]), ([20,0] to [40,20]) and
([20,40] to [40,100]); and we evaluate f (i) on the subspace ([20,20] to [40,40]). In
order to perform such an optimisation the subspaces have to be identified and as
the SaC form is more restrictive than the SaC-λ form with a general condition,
SaC is capable to perform more aggressive optimisations. This is a property that
we would like to preserve, which means that our transformations have to deal with
region-based map/reduces rather than with whole-range map/reduces.

Another form of with-loops in SaC that avoids a condition in the body is
modarray with-loops. It is a very common pattern that a region of an array e.g.
a single element has to be updated and all the other elements should be copied.
Consider an example when we update an element of a two-dimensional array a of
shape [100,100] at position [1,1] with a value x. The relevant SaC-λ code will look
as follows:

a ’ = map i < [ 100 , 1 00 ]
i f i [ 0 ] == 1 and i [ 1 ] == 1 then

x
else

a [ i ]

Semantically equivalent SaC code will look like:
a ’ = with {

( [ 1 , 1 ] <= i < [ 2 , 2 ] ) : x ;
} : modarray ( a )

Again, the reason for having a separate construction for such a case is to make
sure that the generated code will not execute condition on every iteration.

6.2 Transformations in details

Note that layout inference can be applied to SaC without any major adjustments.
The transformations on the other hand are getting more complexity due to the more
complicated nature of with-loops. We present how to transform all three kinds of
with-loops: genarray, modarray and fold. The key aspect which is different from
SaC-λ is to transform an index space bounded with lower and upper bounds. We
start with an example of a genarray with-loop to develop an intuition:

a = with {
( [ 1 2 , 1 0 ] <= iv < [ 3 3 , 1 7 ] ) : e ;

} : genarray ( [ 1 0 1 , 1 0 1 ] , de f ) ;

Given that e ∶∶ △ and iv ∶∶ idx(1) the shape of the result will be of layout type 1

and the shape of the new array will be [⌈101/V ⌉,101, V ].

Vector types Such a new array is a dual to the array of shape [⌈101/V ⌉,101] of
vector type. A vector type is a type that holds V elements of the original array type.
For example:

float[N,M,V ] is a dual to vfloat[N,M]
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where vfloat is defined as a vector of V floats. In SaC transformations, for
convenience reasons, we are using a form with a vector type, rather than the form
with extra dimension. So in our example the shape of the transformed result will be
[⌈101/V ⌉,101].

The original index space also has to be cut at the first dimension (as iv ∶∶ idx(1)).
We are looking at the new index space from [⌊12/V ⌋,10] to [⌈33/V ⌉,17]. The problem
we may face is that the original value at the first position of lower and upper bounds
is not divisible by V . The implication is that we will have to update a part of a
vector on those boundaries. In the given example, assume that V = 8 in which case
we will start from the second octet (⌊12/8⌋ = 1), but we will have to update only the
last four elements. A similar situation happens with the upper bound as well, except
we have to update the lower elements.

To solve this problem we divide the iteration space into three sub-spaces:

1. the inner space, where operations can be expressed on full vectors: [⌈12/V ⌉,10]
to [⌊33/V ⌋,17] for our example;

2. the lower bound,where higher elements of a vector may need update: [⌊12/V ⌋,10]
to [⌊12/V ⌋+1,17] and we update V −(12 mod V ) higher elements in the vector,
given that 12 mod V ≠ 0;

3. the upper bound,where lower elements of a vector may need update: [⌊33/V ⌋,10]
to [⌊33/V ⌋+ 1,17] updating the first 33 mod V elements of a vector, given that
33 mod V ≠ 0.

We can generalise this to a n-dimensional case in the following way. Given the
original code:

a = with {
([l1, . . . , lk, . . . , ln] <= iv < [u1, . . . , uk, . . . , un] ) : e ;

} : genarray (s , d ) ;

and iv ∶∶ idx(k) ∧ e ∶∶ △, we get the following result:
a ’ = with {

([l1, . . . , ⌈lk/V ⌉, . . . , ln] <= iv < [u1, . . . , ⌊uk/V ⌋, . . . , un] ) : T (e) ;
} : genarray (T (s) , T (d) ) ;

i f ( lk mod V ≠ 0)
a ’ ’ = with {

([l1, . . . , ⌊lk/V ⌋, . . . , ln] <= iv < [u1, . . . , ⌊lk/V ⌋ + 1, . . . , un])
: s e l e c t_ l a s t (V − (lk mod V ) , T (e) , a ’ [ i v ] ) ;

} : modarray (a ’ ) ;
else

a ’ ’ = a ’

i f (uk mod V ≠ 0)
a = with {

([l1, . . . , ⌊uk/V ⌋, . . . , ln] <= iv < [u1, . . . , ⌊uk/V ⌋ + 1, . . . , un])
: s e l e c t_ f i r s t (uk mod V , T (e) , a ’ ’ [ i v ] ) ;

} : modarray (a ’ ’ ) ;
else

a = a ’ ’

Selection functions when the shape of the body expression of the genarray is
scalar are defined as:
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type [V] s e l e c t_ l a s t ( i n t num, type [V] e1 , type [V] e2 )
{

re turn with {
( [ 0 ] <= [ iv ] < [V ] ) : ( i v < V − num) ? e2 [ i v ] : e1 [ i v ] ;

} : genarray ( [V] , 0 ) ;
}

type [V] s e l e c t_ f i r s t ( i n t num, type [V] e1 , type [V] e2 )
{

re turn with {
( [ 0 ] <= [ iv ] < [V ] ) : ( i v < num) ? e1 [ i v ] : e2 [ i v ] ;

} : genarray ( [V] , 0 ) ;
}

These select num lower or higher elements from the expression e1 and put correspond-
ing elements of e2 in the remaining positions. Keep in mind, that the last argument
of selection functions selects a vector of V elements.

In case the shape of the body expression of the genarray is not scalar, we need
to apply the above functions to every V elements of the last dimension.

The modarray with-loop is transformed in the same way with the difference that
a genarray in the first with-loop has to be substituted with modarray.

To transform a fold with-loop we use the same approach, but instead of selecting
lower and upper elements on every iteration, we reduce the relevant elements of the
resulting vector. Given the original code:

a = with {
([l1, . . . , lk, . . . , ln] <= iv < [u1, . . . , uk, . . . , un] ) : e ;

} : genarray (f , eneut ) ;

and iv ∶∶ idx(k) ∧ e ∶∶ △, we get the following result:
a ’ = with {

([l1, . . . , ⌈lk/V ⌉, . . . , ln] <= iv < [u1, . . . , ⌊uk/V ⌋, . . . , un] ) : T (e) ;
} : f o l d (T (f) , T (eneut) ) ;

i f ( lk mod V ≠ 0)
a ’ ’ = with {

([l1, . . . , ⌊lk/V ⌋, . . . , ln] <= iv < [u1, . . . , ⌊lk/V ⌋ + 1, . . . , un])
: T (e) ;

} : f o l d (T (f) , T (eneut))
else

a ’ ’ = T (eneut)

i f (uk mod V ≠ 0)
a ’ ’ ’ = with {

([l1, . . . , ⌊uk/V ⌋, . . . , ln] <= iv < [u1, . . . , ⌊uk/V ⌋ + 1, . . . , un])
: T (e)

} : f o l d (T (f) , T (eneut))
else

a ’ ’ ’ = T (eneut)

a = f ( with { ( [ 0 ] <= iv < [V ] ) : a ’ [ i v ] ; } : f o l d (f , eneut ) ,
f ( with { ( [ V − (lk mod V ) ] <= iv < [V ] ) : a ’ ’ [ i v ] ; } : f o l d (f , eneut ) ,

with { ( [ 0 ] <= iv < [uk mod V ] ) : a ’ ’ ’ [ i v ] ; } : f o l d (f , eneut ) ) )

6.2.1 Cost model

The layout type system presented earlier in Chapter 4 infers all the valid layout
typings for a given program. To transform a program we have to chose one of the
variants out of the inferred ones. The choice can be made by a user, but in case the
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number of variants is large, this process becomes tedious. If we want to automate this
process, we need to create a cost model that is going to estimate the performance
impacts of a transformation.

A building block of such a cost model is the application of vector operations, i.e.,
if the transformed program replaces a scalar operation with a vector one inside the
map/reduce context, we expect such a map/reduce operation to perform

N ⋅Cost(op) − N ⋅Cost(o⃗p)
V

time units faster, where op is a scalar operation and o⃗p is a vector counterpart and
N is a number of iterations in the map/reduce with-loop, assuming that op is being
executed on every iteration of the map/reduce.

Using such a technique we could sum-up such improvements per function and
compute the cost of the main function we want to execute. Such a technique has a
number of difficulties:

1. As the bounds of map/reduce operations are not always know, the impact will
depend on a set of parameters. That implies that not only have we to perform
symbolic evaluation when we compose two costs, but also we have to compare
symbolic expressions when choosing the best performing variant.

2. Conditions may have different costs on different branches, which means that
if we want to be precise, we have to know the distribution of true/false values
when evaluating the predicate.

3. Memory overheads are not being considered. When vectorising arrays the
memory footprint of an array might increase up to V times. This may have an
impact on access times for the array elements. Predicting exact consequences is
arbitrarily hard, as one would have to model the memory hierarchy and caches
for a given architecture.

Although the above approach can produce very precise performance estimates its
implementation is complex. In terms of this thesis we are going to apply the same
principles but in a much more simple fashion. The general idea is to approximate
the speed-ups that vector operations give us. The intuition is that by replacing a
scalar arithmetic operation a × b with a vector arithmetic operation a×⃗b we get a V
times speed-up per element for this operation. That is:

Cost(a × b) = x Cost(a×⃗b) = x Costpe(a×⃗b) =
V ⋅Cost(a × b)
Cost(a×⃗b)

= V ⋅ x
x

= V

where Cost is the time it takes to execute an operation and Costpe is the speed-up
per element. To simplify, we can assume that the cost of scalar arithmetic operations
is always the same:

Cost(×) = Cost(×⃗) = 1
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and equals to one. In that case the per element cost will be:

Costpe(×) = 1 Costpe(×⃗) = V

How can we compose those costs together? We expect that two vectorised arith-
metic operations preserve the per element speed-up:

Costpe(a×⃗(b×⃗c)) = V

as the first ×⃗ operates V elements per one unit of time, as does the second, and as a
result the speedup is 2V

2 = V . In case one operation is vectorised and one is not:

a × (b×⃗c)

In the scalar case we will spend V + 1 time units for the given operation and in the
vectorised case we will spend only two, which makes the expected speed-up V +1

2 .
We can see that the composition function is an arithmetic mean:

A(x1, . . . , xn) =
x1 +⋯ + xn

n

In order to apply the cost function over the structure of a program it has to be
homomorphic over terms, that is:

Cost-fun(e1 ○ e2) = Cost-fun(e1)⊕Cost-fun(e2)

Unfortunately, the arithmetic mean does not have this property. That is:

A(x1, x2, x3) ≠ A(x1,A(x2, x3))

In order to fix this we have to consider an arithmetic mean not as a single value but
as a pair (s, n), where s is a per-element speed-up and n is a number of operations.
In that case A will be defined as:

xi = (si, ni) A(x1, . . . , xn) = x1 +⋯ + xn = (s1 +⋯ + sn, n1 +⋯ + nn)

the above property will hold, as:

A(x1,A(x2, x3)) = A(x1, (s2 + s3, n1 + n2)) = (s1 + s2 + s3, n1 + n2 + n3)

Using this principle, we define a cost function C which can be applied to expres-
sions inductively in the following form:

C(e) = (se, ne) and C(a) +C(b) = (sa + sb, na + nb)

Further down we explain how to apply C to the individual terms.
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Inductive definition

Constants yield zero speed-up.

C(const) = (0,0)

The cost of a vectorised arithmetic primitive binary operation is (V,1), or (1,1) in
case the operation is scalar. Other primitive operations (for example selections) cost
(0,0).

C(a × b) = (V,1) where × ∈ {+,−, . . .}

The cost of variables can be looked-up in the variable environment, which is being
populated in the let-rule. Arguments result in zero cost.

C(variable) = look-up or (0,0) in case it is an argument

The cost of function application is the cost of the arguments plus the cost of the
function, unless it is an application of a recursive function, in which case it is only
the cost of the arguments.

C(App(f)) =∑
a∈Args(f)

C(a) +C(f)

The cost of a let is the cost of its goal expression, assuming that the cost of the
bound variable is the cost of the bound expression.

C(let x = e1 in e2) = C(e2) assuming that C(x) = C(e1) in e2

The cost of the map operator is the cost of its body expression.

C(map i < [N] e) = C(e)

Here we make another simplification to the cost model. If we know N at compile
time, then the cost of the map would be N ⋅C(e)1, in which case, the contribution
to the overall speed-up will be larger. Consider an example when the cost C(e1 ○ e2)
depends on a vectorised map and a scalar operation:

e1 = (map i < [100] e) e2 = (a + b)

with the associated costs: C(e1) = (V,1) and C(e2) = (1,1). If N is included we get:

C(e1) = (100 ⋅ V,N) and C(e1 ○ e2) = (100 ⋅ V + 1,100 + 1)

and this value is very close to V . Unfortunately the value of N is not statically
known, so we assume that for any map/reduce N = 1, which potentially lowers the
contribution of the map/reduce into the overall speed-up, as:

C(e1) = (V,1) and C(e1 ○ e2) = (V + 1,2)
1 In this case N ⋅C(e) is a scalar-tuple multiplication, i.e. every component of the C(e) tuple is

multiplied by N .
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and this value is close to V /2.
We count the cost of reduce similarly to the cost of map. However, we add a

speed-up for the reduce-function and we add a penalty, in case the layout-type of
reduce-function is (△,△) → △, but the layout type of the reduce is 0. This is the
price for reducing vectorised result into scalar.

C(reduce i ∶∶ idx(k) < N (f ∶∶ (△,△)→△) e) = C(e) +C(f) + (0, ξreduce)

In all the other cases, the cost of reduce is a cost of body expression plus the cost of
the reduce-function.

C(reduce i < N (f) e) = C(e) +C(f)

The cost of conditional operators must reflect that in the case when the condition
predicate is of layout type △, both branches are executed and then results are masked.
To compute a cost of condition we must divide the time it takes to execute V instances
of the scalar condition by the time it takes to execute the vectorised one. As we do
not know the distribution of true/false values of the predicate we can assume the
worst case scenario. That is every time the branch with larger number of operations
is being executed. In that case for the condition e ≡ if p ∶∶ △ then e1 else e2 the
cost will be:

Costpe(e) =
V ⋅max(Cost(e1),Cost(e2))

Cost(e⃗1) +Cost(e⃗2) +Cost(mask)
where mask is a masking operation that joins results evaluated in both branches.
Now, to construct such a value from C(e1) and C(e2) we will use:

C(e) = (se, ne) Ô⇒ Cost(e) = ne

as cost of scalar operations is one, and:

C(e) = (se, ne) Ô⇒ Cost(e⃗) = V ne/
se
ne

as se/ne is how many elements per time unit the operation e can process. Putting
all together we get the following formula:

C(e1) = (s1, n1)
C(e2) = (s2, n2)

n = max(n1, n2)

C(if p ∶∶ △ then e1 else e2) = C(p) + n ⋅ ( n

n2
1/s1 + n2

2/s2 + ξmask
,1)

Consider the following condition as an example:
i f ( x > 3)

a + b + c
else

x + y
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Assuming that both branches are vectorised, the cost of the branches will be (2V, 2)
and (V, 1) accordingly. The cost of the predicate is (V, 1). The cost of the condition
without the predicate is:

2 ⋅ ( 2

22/2V + 12/V + ξmask
,1) = ( 4

3/V + ξmask
,2)

When adding the predicate we get:

(V + 4

3/V + ξmask
,3)

If we assume that ξmask is zero, the speedup for the vectorised condition approximates
to 7V /9. This value is less than V despite all the operations in the condition are
vectorised. This is a price we pay for executing both branches.

If the layout type of the predicate in a conditional expression is zero then the
cost is just an average speed-up of the branches.

C(if p then e1 else e2) = C(p) +C(e1) +C(e2)

Finally, the cost of a function and the cost of the letrec is the cost of its body
expression.

Example Let us demonstrate the cost model in application to matrix multiply
example:

matmul ( a , b) =
map i < [N]

map j < [N]
reduce k < [N] (+) a [ i ++ k ] ∗ b [ k ++ j ]

If any of i, j, k is of layout-type idx(1) multiplication inside the reduce over
k is going to produce the cost (V,1) and, as reduce-function plus will have type
(△,△) → △, its cost will be (V,1) as well. Now, if i or j are vectorised, then the
cost of the function will be (2V,2), as the cost of the map is the cost of its body
(by construction of the map cost function). In case vectorisation happens across the
index k, the cost of matmul will be (2V,2 + ξreduce).

Consider another example with a conditional expression inside the map:
f oo ( a ) =

map i < [N]
i f ( a [ i ] > 3) then

a [ i ] + 1 ;
else

a [ i ] / 2 ;

In the case condition is vectorised, the cost of both branches and the predicate
will be (V,1). The overall cost of the function will be

(V,1) + ( 1

1/V + 1/V + ξmask
,1) = (V + 1

2/V + ξmask
,2)

In the case when all the subexpression in the program are of layout type 0, we
expect to get a cost (n,n), where n is a number of primitive operations.
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Application In order to apply the cost model to the typings produced by the
inference we apply the cost function to every column of the goal expression and
chose the column with the maximum speed-up.
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Chapter 7

Benchmarks

In Chapters 4 and 5 we used two examples to demonstrate particular aspects of the
type inference and transformation algorithms. In this chapter we extend the set of
examples and evaluate our approach using seven benchmarks and present runtime
figures obtained by compiling transformed SaC programs and their hand-written
analogues in C.

7.1 Methodology

The main question of our investigation lies in understanding effects and boundaries
of the proposed layout-transformations. We believe that the approach we took of
encoding layouts as types can generally improve auto-vectorisation. Therefore, the
first question is concerned with absolute performance improvement:

Q1 Given an abstract specification of a program with annotated layout-types, if
we derive a C implementation1 according to our transformation rules, does it
have an advantage over the automatically vectorised version obtained from the
C implementation where all the layout-types are 0.

In other words — does knowledge about layout-types improve state-of-the-art
auto-vectorisation and if so by how much. Now, if it does, the second question is how
close we can get to such a performance automatically.

We have introduced all our formalism and transformations using SaC-λ — an
abstract language that makes memory management fully implicit and data-parallel
constructs fully explicit. Such an abstract specification may come at a price as SaC-
λ code-generation has to make memory management explicit again in the resulting
C program. Therefore, the second question we would like to answer is:

Q2 What is the price for implementing a program in SaC (as a real-world imple-
mentation of SaC-λ) and not in C.

The third question is:
1Note that C in this case is a way to express an algorithm at the very low level, yet preserving

portability across various hardware architectures.
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Q3 What is the principal contribution of vectorisation for a given benchmark.

Intuitively we expect a good vectorisation to deliver a speed-up of factor V , the
number of elements that fits in a SIMD register. However, sometimes, vectorisation is
not the only contributing factor to the benchmark performance. For example, correct
memory organisation may be more beneficial than any vectorisation. For that reason,
in order to quantify vectorisation effects, we are going to include in the measurements
a reference C implementation with maximum optimisations turned on, except for
vectorisation. This is achieved by passing the -fno-tree-vectorize flag to GCC,
the -no-vec flag to ICC and the -fno-vectorize to Clang.

7.1.1 Presentation and measurements

For simplicity, the presentation of benchmarks, results and typings will use SaC-
λ. For every benchmark we run the inference, apply the cost model and perform
transformations. The transformations produce SaC code that we are going to
compile again, potentially with slight modifications. Those modifications have only
to do with limitations of SaC staging capabilities, not with conceptual problems.

All the measurements are taken by wrapping the core functionality of the bench-
mark with calls to the high-resolution timer. By doing this we exclude operations like
input/output or result verification. We use the CLOCK_REALTIME timer with resolution
10−9s supported by linux kernels and available via the rt system library. To minimise
measurement errors, for some of the benchmarks we run the core functionality several
times in a loop. This is always specified in the graphs.

The set of benchmarks is chosen to demonstrate properties and limitations of
the proposed approach on practical relevant problems. Vector sum and addition
are chosen for their simplicity, which allow us to study vectorisation properties
by analysing the assembly output. Matrix multiply is a classical high-performance
benchmark which represents a class of linear algebra problems on matrices. At
the example of matrix multiply we will study different non-trivial vectorisation
possibilities generated by our system. We will also compare the performance achieved
by vectorisation with one of the best implementations of matrix multiply using
OpenBLAS library. That will demonstrate if there is still a performance gap to be
bridged. The N-body and Mandelbrot problems were discussed already. Here we
are going to study the performance of the SaC versions and for the example of
N-body we are going to check if it would be possible in the generated C code to
replace the explicit vector instructions that we currently generate with scalar code
and rely on auto-vectorisers to reconstruct it back. The spectral norm benchmark will
demonstrate the case of vectorisation preserving the reduction order. We will conclude
with the reverse compliment benchmark that will demonstrate how vectorisation
achieves very large speed-up with a very counter intuitive implementation.

For our measurements we will use the following compilers:
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GCC gcc (Gentoo 4.8.3 p1.1, pie-0.5.9) 4.8.3
ICC icc (ICC) 15.0.1 20141023
CLANG clang version 3.5.0 (tags/RELEASE_350/final)

on the machine “m-i3” from Fig 4.11.

Nomenclature We are going to use the following notation on graphs throughout
this chapter:

-scal postfix in the name of the benchmark denotes that the code of the bench-
mark is expressed using scalar types and operations — no explicit vector
instructions. In case SaC version is postfixed with -scal and a specific com-
piler it means that the C code that SaC have produced was compiled with
the specified compiler;

-vec postfix means that the benchmark is written using explicit vector instruc-
tions in GCC-based syntax;

-novec postfix denotes the benchmark expressed using scalars with further pro-
hibition to auto-vectorise the code.

7.2 Vector addition
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Figure 7.1: Vector addition of two vectors of type float of size 2 ⋅ 108 in C.

This is a function that adds two vectors a and b element-wise.
# ( f l o a t [N] , f l o a t [N] ) → f l o a t [N]
vecadd (a , b) =

map i < [N] a [ i ] + b [ i ]

The only typing that allows to use vector instructions in this case is:
# vecadd ∶∶ (1,1)→ 1
vecadd (a ∶∶ 1 , b ∶∶ 1) =

map i ∶∶ idx(1) < [N] (a[i] ∶∶ △ + b[i] ∶∶ △)
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Given the straight-forward nature of this example, our assumption is that C
compilers should be able to vectorise such code. We start with running C versions
first, the runtime of which can be found in Fig. 7.1.

As it can be seen from Fig. 7.1, vector addition is recognised by the auto-
vectorisers of all the C compilers — manually vectorised version C-vec (GCC) per-
forms the same as -vec postfixed versions. Effects from the vectorisation for vector
addition (difference between -vec postfixed and -scal postfixed versions) are very
small (about 10%). This is because vector addition is a memory bound application:
we have two vectors to read data from and one vector to write the result. This means
that we have three times more memory access operations than arithmetic operations.
Note that -novec versions perform differently depending on the compiler. This is
achieved by different loop unrolling factors. Let us relate those figures to the SaC
runtime presented in Fig. 7.2.
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Figure 7.2: Vector addition of two vectors of type float of size 2 ⋅ 108 in SaC.

As can be seen, SaC versions perform on a par with C versions, although in
the -scal case SaC is about 3% slower. This may result from the custom memory
allocator that SaC uses, plus the measurements potentially include some memory
allocation/deallocation, where in C all the memory operations are done outside the
measurements.

Although for vector addition the auto-vectorisation of C compilers is doing a very
good job, making proposed transformations unnecessary, this benchmark demon-
strates several important properties. First of all, for the scalar version of vecadd
SaC generates 100 lines of non-trivial C code of total size 17K characters. Despite
this, we can confirm by inspecting assembly code that both for-loops are recognised
by auto-vectorisers and are compiled into identical instructions (up to the names of
registers):

# Inner loop o f SaC− s c a l and C− s c a l
401128: vmovups 0x0(%r13 ,%r9 ,1) ,%xmm0
40112 f : add $0x1 ,%r10
401133: vinsertf128 $0x1 , 0 x10(%r13 ,%r9 ,1) ,%ymm0,%ymm0
40113a :
40113b : vaddps (%r14 ,%r9 ,1) ,%ymm0,%ymm0
401141: vmovups %xmm0,(%r8 ,%r9 , 1 )
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401147: vextractf128 $0x1 ,%ymm0,0 x10(%r8 ,%r9 , 1 )
40114 e :
40114 f : add $0x20 ,%r9
401153: cmp %r10 ,%rbx
401156: ja 401128 <vecadd+0x138>

Alignment Another important observation can be obtained if we compare the
code above with the assembly output of the vectorised versions:

# Inner loop o f SaC−vec and C−vec
400 ac0 : vmovaps (%rbx ,%rdx ,1) ,%ymm0
400 ac5 : vaddps 0x0(%r13 ,%rdx ,1) ,%ymm0,%ymm0
400 acc : vmovaps %ymm0,(% r12 ,%rdx , 1 )
400ad2 : add $0x20 ,%rdx
400ad6 : cmp %r15 ,%rdx
400ad9 : jne 400 ac0 <main+0x350>

As can be seen from the two assembly snippets, the difference is in the way
data is being loaded to and from the registers. The auto-vectorised version uses a
combination of vmovups unaligned move of the lower part of ymm0 register followed
by insert/extract instructions. The manually vectorised version uses aligned moves
(vmovaps) instead. For this particular example those effects are barely noticeable.
However, our system solves the alignment problem in general. When we decide to
vectorise an array, the transformed array will use the vector type as its base type.
As a consequence, all the references into vectorised arrays will be aligned, given that
the array itself is aligned.

Verifying alignments in C is very challenging mainly because arrays degenerate
into pointers. This problem is well known but all the solutions that exist so far [39,
82, 12] to our knowledge propose workarounds that only reduce potentially unaligned
access. Most of the proposals are based on peeling loops until some of the references
inside become aligned.

7.3 Vector sum

This benchmark computes the sum of vector a. In SaC-λ it can be expressed as
follows:

# ( f l o a t [N] ) → f l o a t
vecred (x ) =

reduce i < N (+) a [ i ]

The only possible vectorisation is:
# vecred ∶∶ (1)→ 0
vecred (x ∶∶ 1) =

reduce i ∶∶ idx(1) < N (+) a[i] ∶∶ △

Similarly to vector addition we assume that the example is simple enough to
be recognised by the auto-vectorisers of the C compilers. The runtime results for C
versions can be found in Fig. 7.3.

As we can see, vector reduction has been also recognised by the C compilers
— -scal versions perform better than -novec versions. Automatically vectorised
versions perform on a par with the hand-written vector version C-vec (GCC). Note
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Figure 7.3: Sum of two vectors of type float of size 2 ⋅ 108 in C.

that there is a significant difference amongst the novec versions. The ICC compiler,
produces the binary without vector instructions, which yet performs almost three
times faster than the binaries produced by other compilers. As we can tell from
inspecting the assembly output, ICC unrolls the inner loop, apparently in a such a
way that the underlying hardware can run some of the scalar instructions in parallel.

In comparison to vector addition, the vectorisation improves the runtime by 72%
(3.5 times) which is due to to much smaller memory intensity. It is one memory read
per one arithmetic operation inside the for-loop. Let us now see in Fig. 7.4 how the
SaC runtime compares with C.
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Figure 7.4: Sum of two vectors of type float of size 2 ⋅ 108 in SaC.

As in case of vector addition, SaC reference versions SaC-scal are recognised
by all the auto-vectorisers — they perform on a par with the C-scal versions.
The transformed version SaC-vec (GCC) performs the same as manually vectorised
version C-vec (GCC).

Vectorisation of reductions When vectorising reductions we have to realise that
final results can differ. For example, when running the benchmark we have initialised
the vector with ai = 1000

1+i . Here are the results of summation using different compilers:
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GCC ICC Clang GCC -fno-tree-vectorize

342697.09375 356200.59375 369396.21875 307598.78125

We can see that all these values differ depending on the order of reduction. This
has to do with non-associativity of addition (and multiplication) when using the
machine representations of floating point numbers. This is also the reason why
optimised reduction is not a default optimisation even at the -O3 level in C compilers.
Practically this means that if we want to produce exactly the same results as the
original program, such reduction optimisations must be prohibited. However, for
most real world applications the non-determinism caused by reduction order changes
are deemed to be negligible.

Further investigation into the variants of results found requires a closer look into
the generated assembly code. Here is the code that GCC -Ofast generates:

/∗ GCC reduct ion ∗/
40091d : vaddps (%rd i ) ,%ymm2,%ymm2
400921: add $0x20 ,% rd i
400925: cmp %rs i ,%r9
400928: ja 400919 <main+0x199>

ICC does it in the following way:
/∗ ICC reduct ion ∗/
401377: vaddps (%r15 ,%r12 ,4) ,%ymm2,%ymm2
40137d : vaddps 0x20(%r15 ,%r12 ,4) ,%ymm0,%ymm0
401384: add $0x10 ,%r12
401388: cmp %r11 ,%r12
40138b : jb 401377 <main+0x817>

Here is the code that Clang generates:
/∗ Clang reduct i on ∗/
401010: vmovups −0x60(%rcx ) ,%xmm5
401015: vmovups −0x40(%rcx ) ,%xmm6
40101a : vmovups −0x20(%rcx ) ,%xmm7
40101 f : vmovups (%rcx ) ,%xmm8
401023: vinsertf128 $0x1 ,−0x50(%rcx ) ,%ymm5,%ymm5
40102a : vinsertf128 $0x1 ,−0x30(%rcx ) ,%ymm6,%ymm6
401031: vinsertf128 $0x1 ,−0x10(%rcx ) ,%ymm7,%ymm7
401038: vinsertf128 $0x1 , 0 x10(%rcx ) ,%ymm8,%ymm8
40103 f : vaddps %ymm5,%ymm1,%ymm1
401043: vaddps %ymm6,%ymm2,%ymm2
401047: vaddps %ymm7,%ymm3,%ymm3
40104b : vaddps %ymm8,%ymm4,%ymm4
401050: sub $ 0 x f f f f f f f f f f f f f f 8 0 ,%rcx
401054: add $ 0 x f f f f f f f f f f f f f f e 0 ,%rdx
401058: jne 401010 <main+0x7b0>

The main difference that we can see is in the number of vector registers that are
being used in order to implement reduction. GCC choses to use only one, when ICC
and Clang use two and four respectively. The situation also changes if we pass the
-funroll-all-loops option, which increases performance by about 2%.

7.4 Matrix multiplication

In the previous benchmarks we have seen that the capabilities of auto-vectorisers of
C compilers are strong. We have also seen that the proposed transformation system
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produces comparable results. However, for those two benchmarks, strictly speaking,
our system is not necessary. Let us now have a look at a set of more complicated
cases where the effects of the proposed transformations will be more visible. We start
with a matrix multiply benchmark. Here is how it can be formulated in SaC-λ:

# ( f l o a t [N,N] , f l o a t [N,N] ) → f l o a t [N] [N]
matmul ( a , b) =

map i < [N]
map j < [N]

reduce k < [N] (+) a [ i ++ k ] ∗ b [ k ++ j ]

Let us start by looking at runtime results in Fig. 7.5.
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Figure 7.5: Matrix multiplication of two square matrixes of type float, 1000 × 1000

elements each.

First of all, we can see that GCC and Clang decided not to vectorise the code at all
— the C-scal and C-novec runtimes for those compilers are the same. Secondly, the
scalar version of ICC is an order of magnitude faster than the scalar versions of GCC
and Clang. This is due to careful memory organisation, which most likely minimises
memory stalls. It seems that ICC (starting from version 15.0.0) is recognising matrix-
multiplication-like patterns and infers an efficient way to stream the data. Thirdly,
manual vectorisation derived from the proposed transformation system substantially
decreases the runtime: 7.5 times (the cost model has chosen the (0,2)->2 layout-type
of matmul). Now let us compare these figures with the SaC versions. The runtimes
can be found in Fig. 7.6 perform on par with the hand-coded implementations.

First of all, the automatic SaC version SaC-vec (GCC) performs the same as
manually coded C version C-vec (GCC). Secondly, the C code that the SaC com-
piler produces is not recognised by ICC — the runtimes of SaC-scal (ICC) and
C-scal (ICC) versions differ. We will discuss the implications of this at the end of
this section.

The layout transformations generated by the inference that leads to some vec-
torisation can be divided into three classes. Further down we are going to consider
one key representative of each class. Other variants in the class can be obtained by
replacing the layout type 0 with any allowed k layout type — 1 and 2 in the case of
two-dimensional arrays. Consider the first variant:
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Figure 7.6: Matrix multiplication of two square matrices of type float, 1000 × 1000

elements each.

# matmul ∶∶ (2,1)→ 0
matmul (a ∶∶ 2 , b ∶∶ 1) =

map i ∶∶ 0 < [N]
map j ∶∶ 0 < [N]

reduce k ∶∶ idx(1) < [N] (+)
a[i ++ k] ∶∶ △ ∗ b[k ++ j] ∶∶ △

for ( i = 0 ; i < N; i++)
for ( j = 0 ; j < N; j++) {

v e c f l o a t s = {0 f , . . . , 0 f } ;
for ( k = 0 ; k < N; k += V)

s += a [ i ] [ k : ( k+V) ]
∗ b [ k : ( k+V) ] [ j ] ;

c [ i ] [ j ] = sum ( s ) ;
}

In this case we vectorise array a across the rows and b across the columns. The result
is not vectorised. On the right, we can see how the transformed code for this variant
can be expressed in pseudo-C. The inner loop (index k) is the source of vectorisation.
We initialise a vector accumulator s with zeroes, and we select a vector of V sequential
elements from the row starting at a[i][k], (denoted with a[i][k:(k+V)]). Then
we select a vector of V sequential elements from the column starting at b[k][j],
multiply these two vectors and accumulate the result in s. After the loop we sum-up
the elements of the accumulator which gives us the value for the c[i][j] element.

The less obvious typings are: (0,2)->2 and (1,0)->1. Here is how it looks like:

# matmul ∶∶ (0,2)→ 2
matmul (a ∶∶ 0 , b ∶∶ 2) =

map i ∶∶ 0 < [N]
map j ∶∶ idx(1) < [N]

reduce k ∶∶ 0 < [N] (+)
a[i ++ k] ∶∶ 0 ∗ b[k ++ j] ∶∶ △

for ( i = 0 ; i < N; i++)
for ( j = 0 ; j < N; j += V) {

v e c f l o a t s = {0 f , . . . , 0 f } ;
for ( k = 0 ; k < N; k++)

s += broadcast ( a [ i ] [ k ] )
∗ b [ k ] [ j : ( j+V) ] ;

c [ i ] [ j : ( j+V) ] = s ;
}

At every [i, j] iteration we compute V adjacent row elements of the resulting array
starting from c[i,j] (denoted with c[i,j:(j+V)]). This is achieved by replicating
a[i][k] V times (the broadcast function call).

Finally, we can vectorise the computation of c across columns, which gives us
the following variant:
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# matmul ∶∶ (1,0)→ 1
matmul (a ∶∶ 1 , b ∶∶ 0) =

map i ∶∶ idx(1) < [N]
map j ∶∶ 0 < [N]

reduce k ∶∶ 0 < [N] (+)
a[i ++ k] ∶∶ △ ∗ b[k ++ j] ∶∶ 0

for ( i = 0 ; i < N; i += V)
for ( j = 0 ; j < N; j++) {

v e c f l o a t s = {0 f , . . . , 0 f } ;
for ( k = 0 ; k < N; k++)

s += a [ i : ( i+V) ] [ k ]
∗ broadcast (b [ k ] [ j ] ) ;

c [ i : ( i+V) ] [ j ] = s ;
}

Note that from our cost model perspective, the last two variants have an advantage
over the first layout typing because we avoid an extra fold step on every [i, j] iteration.
Also the costs of the latter two variants are the same (as they are symmetric). The
runtime of all the three versions are in Fig 7.7.
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Figure 7.7: Matrix multiplication of two square matrices of type float, 1000 × 1000

elements each (SaC).

The layout (2,1)->0 is about two times faster than the other two variants, which
suggests that our simplistic cost model did not pick the fastest variant this time.
The exact reason of the difference is not obvious and some further investigation is
required. Possible explanations could be that scalar reads from an array of layout
type 0 with further broadcasting of the element break the instruction pipeline, or
the broadcast operation is slow.

However, despite the chosen layout (0,2)->2 being slower than the alternative,
note that (0,2)->2 preserves the original data in memory up to array paddings.
This is a general property of the presented transformation system: an n-dimensional
array of layout-type n preserves the flattened representation of the array up to the
paddings. As a consequence, such a typing allows one to generate vectorisations on
the original layouts by introducing code for boundary conditions of arrays. That
might be very useful when we have some external constraints on the array types.

Absolute performance Finally, we would like to emphasise that the speed-up
graphs presented for the matrix multiplication are mainly concerned with studying
the effects of vectorisation. This is not sufficient, if we are looking for the absolute
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performance of this benchmark. It is well known, that matrix multiplication is a
memory bound problem [49], and the key aspect to the efficient solution is blocking,
and only then vectorisation. Blocking is out of the scope of the layout-type system,
so in terms of absolute performance there is room for improvement. See Fig. 7.8 for
the runtime results.
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Figure 7.8: Matrix multiplication of two square matrices of type float, 1000 × 1000

elements each.

As we can see, the OpenBLAS [149] version reduces the runtime we have achieved
eight times. It is remarkable that ICC can achieve a runtime Reference (ICC) that
is only two times slower than the highly-optimised library from the box-standard C
specification. To our knowledge this became possible only starting from version 15.
However, such an optimisation brings the question — to what extent can we rely on
this optimisation if we generate C code?

From Fig. 7.8 we can see that the ICC optimisation is very fragile. For example, the
Reference (ICC) version was implemented using dynamic two-dimensional arrays:

f loat (∗ a ) [ n ] [ n ] ;
f loat (∗b ) [ n ] [ n ] ;
f loat (∗ c ) [ n ] [ n ] ;
. . .
for ( s i ze_t i = 0 ; i < n ; i++)

for ( s i ze_t j = 0 ; j < n ; j++) {
f loat s = 0 ;
for ( s i ze_t k = 0 ; k < n ; k++)

s += (∗ a ) [ i ] [ k ] ∗ (∗b ) [ k ] [ j ] ;
(∗ c ) [ i ] [ j ] = s ;

}

When we write the code on the flattened arrays, the runtime gets two times
slower (the Reference-flat (ICC)) version in Fig. 7.7:

f loat ∗a ;
f loat ∗b ;
f loat ∗c ;
. . .
for ( s i ze_t i = 0 ; i < n ; i++)

for ( s i ze_t j = 0 ; j < n ; j++) {
r e a l s = 0 ;
for ( s i ze_t k = 0 ; k < n ; k++)

s += a [ i ∗n+k ] ∗ b [ k∗n+j ] ;
c [ i ∗n+j ] = s ;

}
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Also, if we try to apply Intel’s compiler to the SaC generated code, it does not
recognise the matrix multiply pattern and produces the same code as GCC or Clang.
From the perspective of the code generation targeting C this situation is worrying,
as on the one hand C compilers can do very successful optimisations, but on the
other hand, an incorrect format of the C code may cancel those optimisations out.
Formats are compiler-specific, so the code generation has to guess the right one.

7.5 N-body

We have discussed the runtime of the N-body benchmark based on the hand-written
C implementations in Chapter 4. Here we look at the SaC version of the benchmark
to see if we can match the hand-written C implementation. Secondly, we are going
to test the following hypothesis:

Would it be possible to avoid explicit GCC vector operations in the generated
C code by making an auto-vectoriser reconstruct vector operations. In other
words — can we transform the layouts of the data structures in a program,
adjust the code using scalar operations and still get the desired vectorisation?

The runtimes are presented in Fig. 7.9.
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Figure 7.9: N-body problem for 1024 planets, using type float.

The automatically transformed SaC version SaC-vec (GCC) matches the per-
formance of the C version C-vec (GCC). The C-vec version in Fig 7.9 is the
Reference [N/2] version from Fig. 4.12. Note that although ICC generates a binary
that runs 1.6 times faster than binaries produced by GCC and Clang, the version
with modified layout can reduce the runtime at least three times.

As for expressing vector operations with scalars (-vec/scal postfix) — it did
not work with any of the C compilers and even made the code run slower than
the reference implementation. The lesson we can learn from this is that right now
we cannot avoid using manual vector instructions, as auto-vectorisers are not as
advanced yet to reconstruct vector operations from a scalar representation.
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7.6 Mandelbrot

The Mandelbrot example nicely demonstrates the way our system can vectorise
recursive functions. Let us start with the formulation of the benchmark in SaC-λ
which matches our experiment.

# ( f l o a t , f l o a t , f l o a t , f l o a t , f l o a t ) → f l o a t
i t e r ( i , z0 , z1 , a0 , a1 ) =

i f i < DEPTH and ( z0∗ z0 + z1∗ z1 < 4) then
i t e r ( i + 1 ,

z0∗ z0 − z1∗ z1 + a0 ,
z0∗ z1 + z1∗ z0 + a1 ,
a0 ,
a1 )

else
i

# ( f l o a t , f l o a t , f l o a t , f l o a t ) → f l o a t [HEIGHT,WIDTH]
mandel ( height , width , x1 , dx , y1 , dy ) =

map i < [HEIGHT]
map j < [WIDTH]

i t e r ( 0 . 0 , 0 . 0 , 0 . 0 , x1+dx∗ j [ 0 ] , y1+dy∗ i [ 0 ] )

The function mandel generates a matrix of size HEIGHT×WIDTH using scalar
type float. Note that we deliberately use floats instead of integers, as our implemen-
tation for the time being only considers vectors of base type float. This is not a
conceptual limitation; it is just a restriction of the implementation.

The result that we expect from when transformation is to get the function iter
to return the type △, when one of the maps of the mandel function can be vectorised
and the vectorised iter will be applied.

In order to make it work, we need to introduce a mechanism of projecting a
idx(k) layout type in the value domain. In the way we have presented the layout
type system, the only operation which is allowed on idx(k) is selection into arrays
of type k. This restriction can be relaxed, as we will discuss in Section 8.1, and to
do so formally we are going to introduce a layout-type conversion primitive for the
idx types.

A new primitive function idxtoval serves this purpose. Semantically (in the
scalar case) this is just an identity function:

IdxToVal
ρ ⊢ e ⇓ v

ρ ⊢ idxtoval (e) ⇓ v

The inference rule for idxtoval should convert idx(k) types into △ and bypass
0 types. The rule looks like:

IdxToVal
F ,E ⊢ e ∶ ⟨τ1, . . . , τn⟩

ρi
1≤i≤n

=
⎧⎪⎪⎪⎨⎪⎪⎪⎩

△ τi = idx(k)

0 τi = 0

F ,E ⊢ idxtoval (e) ∶ ⟨ρ1, . . . , ρn⟩
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Finally, the transformation rule for the index vector of idx(k) layout type looks
like:

T (idxtoval (e ≡ [e1, . . . , en])) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

[e1, e1, . . . , e1],

[e2, e2, . . . , e2],

⋯

[V ⋅ ek + 0, V ⋅ ek + 1, . . . , V ⋅ ek + V − 1]

⋯

[en, en, . . . , en]

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

e ∶∶ idx(k)

e e ∶∶ 0

We reconstruct V values of the indexes in the original program that correspond to
the index vector of type idx(k). As a result of the application of idxtoval we get
a vector of layout-type △ and as an index vector is always a one-dimensional array,
the resulting vector is going to be a two-dimensional array with the inner dimension
being V .

With these definitions at hand, we can adjust the mandel function like this:
mandel ( height , width , x1 , dx , y1 , dy ) =

map i < [HEIGHT]
map j < [WIDTH]

i t e r ( 0 . 0 ,
0 . 0 , 0 . 0 ,
x1+dx∗ i dx tova l ( j ) [ 0 ] , y1+dy∗ i dx tova l ( i ) [ 0 ] )

As we expected, this produces two typings. The first one is coming from vectori-
sation of the outer map in the mandel:

# iter ∶∶ (△,△,△,0,△)→△
i t e r ( i ∶∶ △ , z0 ∶∶ △ , z1 ∶∶ △ , a0 ∶∶ 0 , a1 ∶∶ △) =

i f (i < DEPTH) ∶∶ △ and (z0*z0 + z1*z1 < 4) ∶∶ △ then
i t e r ((i + 1) ∶∶ △ ,

(z0*z0 - z1*z1 + a0) ∶∶ △ ,
(z0*z1 + z1*z0 + a1) ∶∶ △ ,
a0 ∶∶ 0 ,
a1 ∶∶ △)

else
i ∶∶ △

# mandel ∶∶ (0,0,0,0)→ 1)
mandel ( he ight } , width , x1 , dx , y1 , dy ) =

map i ∶∶ idx(1) < [HEIGHT]
map j ∶∶ 0 < [WIDTH]

i t e r (0.0 ∶∶ △ , 0.0 ∶∶ △ , 0.0 ∶∶ △ ,
x1+dx∗( idxtoval(j) ∶∶ 0 ) [ 0 ] ,
y1+dy∗( idxtoval(i) ∶∶ △ ) [ 0 ] )

The other variant stems from the vectorisation of the inner map of the mandel:
# iter ∶∶ (△,△,△,△,0)→△
i t e r ( i ∶∶ △ , z0 ∶∶ △ , z1 ∶∶ △ , a0 ∶∶ 0 , a1 ∶∶ △) =

i f (i < DEPTH) ∶∶ △ and (z0*z0 + z1*z1 < 4) ∶∶ △ then
i t e r ((i + 1) ∶∶ △ ,

(z0*z0 - z1*z1 + a0) ∶∶ △ ,
(z0*z1 + z1*z0 + a1) ∶∶ △ ,
a0 ∶∶ 0 ,
a1 ∶∶ △)

else
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i ∶∶ △

# mandel ∶∶ (0,0,0,0)→ 2)
mandel ( he ight } , width , x1 , dx , y1 , dy ) =

map i ∶∶ 0 < [HEIGHT]
map j ∶∶ idx(1) < [WIDTH]

i t e r (0.0 ∶∶ △ , 0.0 ∶∶ △ , 0.0 ∶∶ △ ,
x1+dx∗( idxtoval(j) ∶∶ △ ) [ 0 ] ,
y1+dy∗( idxtoval(i) ∶∶ 0 ) [ 0 ] )

Now, similarly to N-body, we are going to consider how the SaC implementation
compares to a hand-written C implementation. See Fig. 7.10.
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Figure 7.10: Mandelbrot 2048 × 2048 with depth 4096. Compiler: GCC -Ofast
-march=native -mtune=native.

First of all, it does not matter which map of the mandel we decide to vectorise —
the bars with postfixes (...)->1 and (...)->2 perform the same. This is because
the Mandelbrot benchmark is compute bound, and the effects of memory access are
negligible. Secondly, hand-written C code is about 20% faster. Let us investigate
where the runtime difference is coming from.

First of all, the exit from the recursive function, that is z02 + z12 < 4 in the SaC
code, is expressed using the following primitive:

vec_mask_t cond = z0∗ z0 + z1∗ z1 < __simd_broadcast__ (4 . 0 f ) ;
. . .
i f (__simd_any__ ( cond ) ) {

. . .
}

We carry on with a recursive call if any of the elements of the resulting vector
are less than four. The implementation of __simd_any__ that we use in SaC looks
like:

stat ic i n l i n e bool __simd_any__ (vec_mask_t x ) {
return ( bool ) ( x [ 0 ] | x [ 1 ] | x [ 2 ] | x [ 3 ] | x [ 4 ] | x [ 5 ] | x [ 6 ] | x [ 7 ] ) ;

}

for the cases when V is 8. The hope was that on Intel architectures supporting AVX
extensions such a reduction can be replaced with a VMOVMSKPS instruction (or an
intrinsic _mm256_movemask_ps), which computes a bit mask of the argument. This
means that __simd_any__ can be implemented as:
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stat ic i n l i n e bool __simd_any__ (vec_mask_t x ) {
return (_mm256_movemask_ps ( (__m256)x ) & 255) != 0 ;

}

As it does not happen, the original SaC code runs slower. Such an optimisation
should be added to the GCC vector framework.

The second part of the slowdown lies in a shortcut of the masking operation.
On every recursive call of iter we add one to i if the predicate of the surrounding
condition holds. In SaC we implement this using masking in the following way:

. . .
i f (__simd_any__ ( cond ) ) {

i 1 = i ;
i 2 = i + __simd_broadcast__ ( 1 ) ;
i 3 = __simd_select__ ( cond , i1 , i 2 ) ;
i t e r ( i3 , . . . ) ;

}

The observation made of the hand-written C code is that the __simd_select__
call can be avoided in the following way:

. . .
i f (__simd_any__ ( cond ) ) {

i 3 = i + (__simd_broadcast__ (1) & cond ) ;
i t e r ( i3 , . . . ) ;

}

This is valid, because zero is a neutral element of addition, and we select from i + 1
and i. This duality was mentioned in [12] in Section 3.8 — if the semantics of
__simd_select__ (mask, a, b) is:

(m ∧ a) ∨ (¬m ∧ b)

then the following substitution is valid:

(m ∧ (e ⊕ x)) ∨ (¬m ∧ e) → e⊕ (m ∧ x)

for ⊕ ∈ {+,−}. Unfortunately such an optimisation is not implemented either in SaC
or in C.

To conclude: if we fix both issues, then the runtime of the C and SaC vectorised
versions will match.

7.7 Spectral norm

This benchmark2 is computing a spectral norm of an infinite matrix A with elements:

a11 = 1, a12 = 1/2, a21 = 1/3, a13 = 1/4, a22 = 1/5, a31 = 1/6, . . .

The formulation in SaC-λ looks as follows:
eval_A ( i , j ) =

1 .0 / ( ( i + j ) ∗ ( i + j + 1) / 2 + i + 1)

2See http://benchmarksgame.alioth.debian.org/u32/performance.php?test=
spectralnorm for more details.
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eval_A_times_u (u) =
map i < [N]

reduce j < [N] (+) eval_A ( idx tova l ( i ) , i dx tova l ( j ) ) ∗ u [ j ]

eval_At_times_u (u) =
map i < [N]

reduce j < [N] (+) eval_A ( idx tova l ( j ) , i dx tova l ( i ) ) ∗ u [ j ]

eval_AtA_times_u (u) =
eval_At_times_u ( eval_A_times_u (u ) )

The structure of this benchmark is very similar to that of the Mandelbrot problem.
In functions eval_A_times_u and eval_AtA_times_u there is a reduce construct
inside the map, where the body of the inner reduce does an arithmetic operation on
indexes. The operation is defined in the function eval_A and it is much simpler than
the iter function of mandelbrot, as it is not recursive and does not have conditions.

Vectorisation of such a benchmark is straight-forward. All three compilers figure
out that both inner reduces can be executed in parallel. They all generate code for
that, and probably it is the best vectorisation for this problem. See the runtime in
Fig. 7.11.
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Figure 7.11: Spectral norm N = 2000, element type is float. Compilers: GCC/ICC/-
Clang -Ofast -march=native -mtune=native.

We can see that all the compilers managed to vectorise this code, even in case
when it was generated by SaC. It is also remarkable, that ICC is able to perform
three times faster without using any vector instructions. Nevertheless, vectorisation
is achieved and our proposed framework is not necessary in this case.

However, the results in Fig. 7.11 are obtained using -Ofast which allows one to
perform unsafe floating-point optimisations. When we want to preserve the order of
reduction and use safe math, all the compilers fall back to scalar mode. It is still
possible to preserve reductions and use vector operations at the same time. All we
need to do is to vectorise the outer-most maps in functions eval_A_times_u and
eval_AtA_times_u (the maps over index i).

In Fig. 7.12 we present runtime figures for the variants preserving reductions and
using safe math. That is: compilation with -O3 enforcing IEEE 754 compliance, i.e.
passing
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-frounding-math -fsignaling-nans and -fno-unsafe-math-optimizations

to GCC/Clang and passing -fp-mode strict to ICC.
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Figure 7.12: Spectral norm N = 2000, element type is float.

The C-vec and SaC-vec versions that are vectorising the outer loop are faster
than any automatically produced version. SaC version is twice as fast as C version,
which is not a better vectorisation, but an effect of high-level optimisations reducing
the memory footprint.

7.8 Reverse complement

The final benchmark3 demonstrates how modern hardware may break the standard
algorithmic intuition of a programmer. Here is the code of the reverse compliment
benchmark in SaC-λ.

revcomp ( a ) =
map i < [N]

i f a [ i ] = ’A’ then
else i f a [ i ] = ’A’ then ’T’
else i f a [ i ] = ’B’ then ’V’
else i f a [ i ] = ’C’ then ’G’
else i f a [ i ] = ’D’ then ’H’
else i f a [ i ] = ’G’ then ’C’
else i f a [ i ] = ’H’ then ’D’
else i f a [ i ] = ’K’ then ’M’
else i f a [ i ] = ’M’ then ’K’
else i f a [ i ] = ’R’

or a [ i ] = ’T’ then ’Y’
else i f a [ i ] = ’U’ then ’A’
else i f a [ i ] = ’V’ then ’B’
else i f a [ i ] = ’Y’ then ’R’
else a [ i ]

Given a string where every character belongs to a certain set, the algorithm
replaces every character in the set using a set of rules, which can be represented as
a table where one character replaces the other.

3See http://benchmarksgame.alioth.debian.org/u32/performance.php?test=revcomp#
about for more details
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Note that as the implementation of the transformations currently supports only
arrays of floats, we cannot derive the transformed version of the problem in SaC
automatically. However, we can obtain layout types for the vectorised transform
function by substituting char with float and running the type inference. We will
use those layout types as a guideline to the first implementation.

The standard intuition suggests that a look-up table implemented as a switch op-
erator or as a constant array in memory should provide the best possible performance.
In C, it would be common to implement it as:

void trans form (char ∗ l , s i z e_t l en )
{

for ( s i ze_t i = 0 ; i < l en ; i++)
{

switch ( l [ i ] )
{

case ’A’ : l [ i ] = ’T’ ; break ;
case ’B’ : l [ i ] = ’V’ ; break ;
case ’C’ : l [ i ] = ’G’ ; break ;
case ’D’ : l [ i ] = ’H’ ; break ;
case ’G’ : l [ i ] = ’C’ ; break ;
case ’H’ : l [ i ] = ’D’ ; break ;
case ’K’ : l [ i ] = ’M’ ; break ;
case ’M’ : l [ i ] = ’K’ ; break ;
case ’R’ : l [ i ] = ’Y’ ; break ;
case ’T’ :
case ’U’ : l [ i ] = ’A’ ; break ;
case ’V’ : l [ i ] = ’B’ ; break ;
case ’Y’ : l [ i ] = ’R’ ; break ;
/∗ We can l e a v e those cases as i t i s

a mapping to the same va lue .

case ’N ’ : l [ i ] = ’N ’ ; break ;
case ’W’ : l [ i ] = ’W’ ; break ;
case ’S ’ : l [ i ] = ’S ’ ; break ; ∗/

}
}

}

If our architecture supports SIMD operations on characters, we can vectorise
the function revcomp, i.e. to type a function with (△) → △. This is the kind of
vectorisation inferred by the inference. The induced transformation will split the
input string into vectors and for each vector we can update all the elements that are
equal to a pattern. Here is an example if we want to replace all characters ‘a’ with a
character ‘t’:
. . .
vecchar x = {’a’ , ’b’ , ’a’ , ’c’ } ;
vecchar mask_a = (x == ’a’ ) /∗ w i l l r e s u l t in {−1 , 0 , −1 , 0 } ∗/
vecchar y = ’t’ & mask_a | x & ~mask_a ; /∗ w i l l r e s u l t in { ’ t ’ , ’ b ’ , ’ t ’ , ’ c ’} ∗/

This can be applied to all the cases and we will have the first version of the
vectorised transformation, which can be expressed in C with GCC extensions as
follows:
void vec_transform (char ∗ l , s i z e_t l en )
{

a s s e r t ( l en % V == 0 ) ;
for ( s i ze_t i = 0 ; i < l en ; i += V)

{
vecchar vc = ∗( vecchar ∗)& l [ i ] ;
vecchar vc1 = vc ;
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vecchar vcA = ( vc == ’A’ ) ; vc1 = (vcA & ’T’ ) | (~vcA & vc1 ) ;
vecchar vcB = ( vc == ’B’ ) ; vc1 = (vcB & ’V’ ) | (~vcB & vc1 ) ;
vecchar vcC = ( vc == ’C’ ) ; vc1 = (vcC & ’G’ ) | (~vcC & vc1 ) ;
vecchar vcD = ( vc == ’D’ ) ; vc1 = (vcD & ’H’ ) | (~vcD & vc1 ) ;
vecchar vcG = ( vc == ’G’ ) ; vc1 = (vcG & ’C’ ) | (~vcG & vc1 ) ;
vecchar vcH = ( vc == ’H’ ) ; vc1 = (vcH & ’D’ ) | (~vcH & vc1 ) ;
vecchar vcK = ( vc == ’K’ ) ; vc1 = (vcK & ’M’ ) | (~vcK & vc1 ) ;
vecchar vcM = ( vc == ’M’ ) ; vc1 = (vcM & ’K’ ) | (~vcM & vc1 ) ;
vecchar vcR = ( vc == ’R’ ) ; vc1 = (vcR & ’Y’ ) | (~vcR & vc1 ) ;
vecchar vcTU = (( vc == ’T’ ) | ( vc == ’U’ ) ) ; vc1 = (vcTU & ’A’ )

| (~vcTU & vc1 ) ;
vecchar vcV = ( vc == ’V’ ) ; vc1 = (vcV & ’B’ ) | (~vcV & vc1 ) ;
vecchar vcY = ( vc == ’Y’ ) ; vc1 = (vcY & ’R’ ) | (~vcY & vc1 ) ;

∗( vecchar ∗)& l [ i ] = vc1 ;
}

}

Please note that in the above version we apply select operation on every condi-
tion. We also had to copy the vector vc into vc1 to avoid manifold replacements, i.e.
if an algorithm replaces ’a’ with ’b’ and ’b’ with ’c’, by not copying vc into vc1
the string "aabb" will turn into "cccc" instead of "bbcc".

For this particular benchmark, we can perform an optimisation based on the
knowledge that the range of values we can find in the input string is restricted and
small. In that case we can drop the ~m part of the select operation, as we will have
a mask for every possible value. Here is the code for such an approach:
void vec_transform_set (char ∗ l , s i z e_t l en )
{

a s s e r t ( l en % V == 0 ) ;
for ( s i ze_t i = 0 ; i < l en ; i += V)

{
vecchar vc = ∗( vecchar ∗)& l [ i ] ;

vecchar vcA = ( vc == ’A’ ) & ’T’ ;
vecchar vcB = ( vc == ’B’ ) & ’V’ ;
vecchar vcC = ( vc == ’C’ ) & ’G’ ;
vecchar vcD = ( vc == ’D’ ) & ’H’ ;
vecchar vcG = ( vc == ’G’ ) & ’C’ ;
vecchar vcH = ( vc == ’H’ ) & ’D’ ;
vecchar vcK = ( vc == ’K’ ) & ’M’ ;
vecchar vcM = ( vc == ’M’ ) & ’K’ ;
vecchar vcR = ( vc == ’R’ ) & ’Y’ ;
vecchar vcTU = (( vc == ’T’ ) | ( vc == ’U’ ) ) & ’A’ ;
vecchar vcV = ( vc == ’V’ ) & ’B’ ;
vecchar vcY = ( vc == ’Y’ ) & ’R’ ;
vecchar v c r e s t = ( ( vc == ’N’ ) | ( vc == ’S’ ) | ( vc == ’W’ ) ) & vc ;

vc = vcA | vcB | vcC | vcD | vcG | vcH | vcK
| vcM | vcR | vcTU | vcV | vcY | v c r e s t ;

∗( vecchar ∗)& l [ i ] = vc ;
}

}

As can be seen the number of vector operations has been significantly reduced.
Let us now see if any of the proposed vectorisations improve the runtime.

The measurements for the reference version Reference compiled with all three
C compilers, the straight-forward vectorisation VecTransform and for the optimised
vectorisation VecTransformSet are presented in Fig. 7.13.

The speed-up of the vectorised versions is very impressive (about 20 times).
VecTransform and VecTransformSet runtimes are 0.07 and 0.06 seconds accordingly.
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Figure 7.13: Reverse complement on a 100 MB random string, using 16-character
vector type.

In order to automate such a pattern we have to:

1. Find the cost model that can estimate if vectorisation of such nested conditions
is not harmful; and

2. Introduce a way in the language to express a enum-like type in order to get
the optimised transformation.

The main conclusion from this benchmark is that efficient implementation of
some algorithms (even trivially simple like this one) might be counter-intuitive. That
is why we believe that the form of expression of an algorithm must be as compiler-
friendly as possible. In that case we can hope that automatic tools will be able to
deduce the best possible implementations not only for today’s hardware but also for
the future hardware as well.

7.9 Summary

In this chapter we have seen how the application of the proposed inference and
transformation systems. We have seen a 3 times improvement for the N-body bench-
mark and 6.5 times improvement for Mandelbrot examples, when compared with
the Intel compiler with all the optimisations turned on. We have seen an 8 times
improvement for matrix multiplication resulting only from better vectorisation in
the case of GCC. We have demonstrated a 2 times improvement comparing with
the Intel compiler for the spectral norm benchmark in the case of preserved order of
reductions. Finally we have seen a proof of concept implementation of the reverse
complement benchmark which results in a 20 times speed-up in comparison with the
Intel compiler. From that we can conclude that the answer for Q1 is yes — we can
improve existing state-of-the-art auto-vectorisers if we consider data layouts.

As for Q2 we have seen that, for the given set of benchmarks, automatically
derived SaC versions perform similarly to manually encoded C versions and we
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identified several optimisations that would be desirable to have in SaC and GCC
to make the runtimes identical.

The contribution of vectorisation in the overall runtime varies from benchmark
to benchmark, but for most of the benchmarks it is very significant.

As a side-effect of the proposed transformation we solved an alignment problem
in a systematic way.

We have also observed that the proposed cost model is too simple, at least for the
hardware that we ran our experiments on. The cost model helps to eliminate layout
types that do not lead to vectorisation, but in order to chose the right vectorisation
it has to be improved.
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Chapter 8

Conclusions and future work

Most programming languages fix the way data structures are mapped into the mem-
ory. In this thesis we relax this constraint and allow every data structure in a program
to have its own data layout. By doing so we have demonstrated that carefully chosen
data layouts for arrays have a very noticeable impact on program vectorisation. One
of the consequences when relaxing a data layout mapping strategy is a large set of
possible data layout configurations per program. As every array in principle can be
mapped in memory in at least n! different ways, where n is a number of elements,
for the overall program we have to consider a Cartesian product of the individual
mappings of each array. Besides that, changing the data layout of a data structure
impacts the way this data structure has to be referenced and traversed. As a con-
sequence the program has to be modified to adhere to the new layouts and we are
required to verify if functions and operators are compatible with the data structures
of given layouts. Finally we have to find suitable data abstractions to express the
resulting programs.

The main insight we discovered while searching for a solution to the above problem
is that using a type system for representing data layouts not only allows an elegant
and compact formulation of the problem but this approach also has a number of
important advantages. First of all, type checking guarantees consistency of data
layouts in a given program. Secondly, the ability to type check functions in isolation
solves the problem of separate compilation and allows one to split a program into
various modules, where each module can be type checked separately. Finally, type
inference techniques allow us to reconstruct data layouts automatically. Further
code transformations, that are required for a program to adhere to the inferred data
layouts, are based on types. This makes it easier to guide the code generation and
reason about correctness of the transformations.

The main technical contributions of this thesis lie in the implementation of the
type inference and code generation in SaC; providing a proof that the transforma-
tions preserve semantics of the original program; extending C language with vector
operations, as discussed in Chapter 3, and implementing them in the context of GNU
GCC; evaluating the quality of vectorisation delivered by the proposed approach on
a set of benchmarks.
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We compare the impact of our transformation for several examples that are known
to be difficult to vectorise. Despite being a prototypical implementation, we have seen
that the system delivers results that outperform autogenerated code and are on a
par with manually written one. We believe that the nature of the chosen benchmarks
represents a large class of applications all of which could benefit from the proposed
technique. The transformation happens in a fully automatic manner which suggests
that the thesis we have formulated in Chapter 1 is satisfied.

We believe that by bringing the proposed approach in the existing widely used
compilers will lead to significant advances in closing performance gap for the cases
when it is caused by underutilisation of SIMD instructions.

In future research we would like to:

1. understand the limits of the proposed layout-type-based analysis and apply
it to more complex vectorisation patterns or even outside the vectorisation
problem.

2. apply our framework in the context of languages like C or Fortran to bring the
power of the proposed technique into existing scientific applications.

3. build a more reliable and configurable cost model that will consider hardware
properties and user annotations.

4. allow for runtime layout modifications so we can change layout dynamically
for the benefit of a hotspot.

8.1 Layout types generalisations

First we are going to consider the way layout types can be extended to cover the
cases when data layout transformations get more complicated than tilings across one
of the array dimensions. The real power of the layout type system as we see it is in
its genericity with respect to the transformation each layout type encodes.

Let us present layout types from a different perspective than we have done so far.
First of all, let us note that the formal representation of arrays can be approached
from at least two different perspectives; on the one hand an array is a tuple of values:

Arr ∶ ⟨v1, . . . , vn⟩,where vi is a value

This representation reflects the way arrays are stored in memory and the only
possible indexing of such an array is a position in the tuple. On the other hand
arrays can be seen as a function from indexes into values:

Arr ∶ Idx→ V al

where Idx is a finite set of indexes and V al is a finite set of values. All the values in
V al are indexed at least by one index from Idx which makes Arr a surjection. Also,
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to relate this representation to the first one, we can say that:

V al =⋃
i

{vi}

Now, from a programmer or program perspective the first representation might
not even be relevant, as algorithms are written in terms of indexes and selection on
a certain index implies a value. The process of mapping an index to the position in
the tuple is irrelevant. Conceptually it is not important. However a mapping implies
a cost, especially if it has to happen at runtime.

Vectorisation is a process when selections start to operate not on a single index,
but on a tuple of indexes to yield a tuple of values. So if in the scalar case we have:

sel ∶ Arr × Idx→ V al

in the vectorised case we have:

vsel ∶ Arr × ⟨Idx, . . . , Idx
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

V times

⟩→ ⟨V al, . . . , V al
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

V times

⟩

Semantically these functions are related as follows:

vsel(a, ⟨i1, . . . , iV ⟩) ≡ ⟨sel(a, i1), . . . , sel(a, iV )⟩

That is the most generic view of vectorisation. In reality this is usually not very
efficient. The point of vectorisation is to perform concurrent operations on the values
inside the tuple. That implies that every element of a non-vectorised array resides
in only one tuple. Otherwise we have to deal with locking, race conditions, element
invalidation or similar problems that will dramatically increase complexity of the
model. If index tuples never share an index we can regroup indexes of the original
array into groups of V -element tuples, index the tuples and reason about selection
on those new indexes. Formally the vectorisation of an array a ∶ Idx × V al is:

a⃗ = Vec(a) where a⃗ ∶ IdxV → ⟨V al, . . . , V al
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

V times

⟩

where IdxV is a set of new indexes that have a mapping into the original set Idx.
The vectorisation is defined by this mapping. Let us call it ξ. It maps every iv ∈ IdxV
into a V -element tuple of indexes from the original index set Idx of the array a:

∀iv ∈ IdxV ∶ ξ(iv) = ⟨idxiv1 , . . . , idxivV ⟩, where idxivi ∈ Idx

We require vectorisation to map all the indexes of the original array into the
vectorised one in a unique way. Formally it can be expressed as:

∀i ∈ Idx ∃iv ∈ IdxV ∃j ∈ {1, . . . , V }∶ ξ(iv)[j] = i

where ξ(iv)[j] refers to the j-th element of the tuple ξ(iv). The reverse property
should hold as well:

∀iv ∈ IdxV ∀1 ≤ j ≤ V ∃i ∈ Idx∶ ξ(iv)[j] = i
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Finally, uniqueness is defined as:

ξ(iv)[j] = i ∧ ξ(jv)[k] = i Ô⇒ iv = jv ∧ j = k

and
i = ξ(iv)[k] ∧ j = ξ(iv)[k] Ô⇒ i = j

Now let us consider what happens when the number of elements in the array is
not divisible by V . We can still regroup indexes in V -element tuples, but we will
need a notion of holes in both index domain and in the value domain. We could
regroup indexes of an array the a in M groups of V elements where:

∣Idx∣
V

≤M ≤ ∣Idx∣

which allows us to have holes in vectors, but at the same time does not allow vectors
to be empty:

ξ(iv) = ⟨idxiv1 , . . . , idxivV ⟩, where idxivi ∈ Idx ∪ {ε}

All the properties we have defined for ξ must hold in this case as well for non-empty
elements.

Finally, for all practical purposes ξ must have a closed form, as we cannot afford
to have a lookup table for index translation. Such a mapping ξ is the essence of any
layout type, assuming that linearisation of IdxV is fixed.

8.1.1 Current types

Using this idea we can describe current layout types as follows. In the case of a
multidimensional array A of shape [s1, . . . , sm], vectorisation of type k yields M
groups of V -element tuples of indexes where:

M = s1 ⋅ ⋯⌈sk/V ⌉⋯ ⋅ sm

Idx is defined as a set of m-element tuples ranging from [0, . . . ,0] to [s1 −
1, . . . , sm − 1]. The vectorised set of indexes is also an m-element tuple, ranging from
[0, . . . ,0] to [s1−1, . . . , ⌈sk/V ⌉−1, . . . , sm−1]. The mapping represented by the layout
type k is defined as:

k([i1, . . . , im]) = ⟨[i1, . . . , V ik + 0, . . . , im], . . . [i1, . . . , V ik + V − 1, . . . , im]⟩

Let us consider some of the properties of such a vectorisation. First of all we use
the same representation for vectorised and non-vectorised indexes, which is mainly
chosen for convenience reasons, but in principle is not fixed. Secondly, we are free to
chose a mapping for the vectorised indexes (assuming it has a closed form) as it will
not impact vectorisation. Now, for all practical purposes, we want to linearise IdxV
in an order of its potential traversal, so it will be natural to put elements in some
lexicographical order, for example row-major order.
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8.1.2 Adding new type

When we are adding a new kind of layout type, we have to consider several aspects.

Composability Layout types usually come in families because of the way multidi-
mensional arrays are constructed. That is, if we have arrays ei of dimension d, then
the following language construct:

[e1, . . . , en]

is going to produce an array of dimension d + 1. The same property holds for the
map construct. That is:

map i < u ei

is perfectly legal and will produce an array of dimension d +D (u).
This is possible due to the nature of index linearisation, which allows one to

add an extra dimension without changing the order of the existing elements in the
array. The layout types presented in this thesis also support this property, as extra
dimensions on the vectorised arrays do not change the existing layout.

However, it does not have to be like that for every layout type family. For example
one could think of aggressive element reshuffling which will not be able to easily
accommodate an extra dimension. For example, think of layout type that transposes
an array. In this case we can prohibit array constructors out of elements of a certain
type as well as maps that result in non-scalar body expressions.

Dual index types In our setup every layout type k has a dual index type idx(k),
which indicates that we traverse an array not scalar by scalar but vector by vector.
Selections on such a type will result in a △ type.

A new family of layout types has to come with its own index types that are going
to be dual to the array layout types and with a version of a △ type which may or
may not be compatible with the original △ layout type.

Values of index types Index types are special, as the only way we use them is
to mark index variables of map/reduce constructs and see if selection happens on
such a type. However, index types can potentially be used as values. For example
consider the following expression:

map i ∶∶ idx(k) < u i

The questions are do we allow this and what would be the resulting type? In case
of the layout types used in the thesis, this is straight forward to support. However
in general case it might be not that simple.
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Coexisting with other layout types Further questions include what would be
the semantics of the operations that are performed on the objects belonging to
various layout type families. Do we allow this and if so, how do we make sure that
it is sound?

8.1.3 Reverse-friendly layout

As an exercise let us consider a layout type to perform fast reverse operations on
strings. Now, in order to develop an intuition, let us consider an in-place reverse
operation implemented in C:

char s [N ] ;

for ( s i ze_t i = 0 ; i < N/2 ; i++)
swap ( s [ i ] , s [N− i − 1 ] ) ;

This is not a candidate for vectorisation if the choices of layout types are limited
to the family of k-types. However, if we are going to lay our string as ⟨0,N −
1,1,N−2,2, . . . ⟩ then the string could be reversed by swapping neighbouring elements.
Vectorisation will be possible in this case, as the string can be divided into chunks
of size V (assuming that V is even) and each chunk can be reversed in place.

First of all let us construct the index mapping. We shall have an index relation
function R and define it as:

R(x,n) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

x/2 x = 0 mod 2

n − x/2 − 1 x = 1 mod 2

Now we can construct an index-mapping function for the layout type ξr:

ξr(iv) = ⟨R(V iv,N), . . . ,R(V iv + V − 1,N)⟩

With those definitions we can address the questions from the previous section:

Composability In this case we can introduce composability by vectorising the
inner rows of the multi-dimensional array. Keep in mind that we do not need
a family of types in this case.

Dual index type We need to introduce a dual index layout type for the reversed
layout.

Values of index types The values of index types are defined by ξr so we can
allow index types to act as values.

Coexistence The newly introduced type will not be able to share any vector
operations on the new layout. Index types inside the map will be either idx(k)
or of a new dual type, which means that selections will happen either from
reversed array or from an array of layout type k. However, compatibility is
still achievable on scalars.
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8.1.4 Further type extensions

Layout types can be used in much wider contexts than program vectorisation. For
example, [7] demonstrates how layout types can be used to optimise data distributions
of arrays when running programs on a cluster. Their approach allows one to “cut”
an array in parts and distribute those parts across the cluster via MPI. Such a
cutting and distribution is described as one type. If we combine this work with the
framework proposed in this thesis, then on the one hand the two kinds of layout types
are orthogonal, as distributed types are responsible for cutting array at a high-level
and the layout types described in this thesis are used on the parts of arrays on the
individual nodes. On the other hand those types form a hierarchy — that is the way
individual parts of the array will be vectorised depends on how we cut the overall
array. Such a hierarchy opens interesting research opportunities. First of all the size
of the hierarchy can be larger than two levels, as certain operations we may want
to optimise might require specific data layouts. Secondly, we can shift optimisation
efforts from level to level. For example, we can cut an array into less parts to get
more advanced vectorisation, or vice versa — we can decide not to vectorise parts
of the array, but increase the number of parts. It is likely that such hierarchical
types can be formulated using Homotopy Type Theory [140]. The possible levels
of layout types can be: SIMD vector units, multi-threaded execution, execution on
GPUs, distributed execution on a cluster.

8.2 Using C or Fortran as input languages

Most of the existing applications that could benefit from the proposed technique are
written in imperative languages like C/C++, Fortran, etc. Our formalism is presented
using a functional language where all the parallel constructs are made explicit. In
order to apply our technique to a C/Fortran program, it has to be transformed
in a functional form. There are existing approaches that bridge the gap between
functional and imperative styles. For example, as noticed by Appel [4], the Static
Single Assignment (SSA) form which all the modern compilers use to represent the
control-flow of programs is a functional program. In the example of SaC we have
seen that some of the C constructions can be transformed into a purely functional
form.

Nevertheless, the transition from the C world into a functional world is very chal-
lenging for the following reasons. First of all, there are no explicit parallel constructs
in C/Fortran which means that they have to be identified. The polyhedral model is
at our services, in case parallel constructs are expressed as loop-nests. If a parallel
construction is expressed by means of recursive functions or using non-trivial goto
operations, another kind of analysis will be necessary to identify it. Luckily this does
not happen very often in practice.

Secondly, a number of low-level constructions like longjmp or complex pointer
arithmetic, where aliasing cannot be resolved, will make transition undecidable. This
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means that we will have to consider a subset of possible C/Fortran programs.
Thirdly, in C, there is no arrays may degenerate into pointers which makes it

very hard to determine if we are doing an operation on an array or there is some
value passed by reference. Also, we always assume that all the references in the array
of vector base type are aligned. In C that has to be proven and as arrays are not
first class types, that can be undecidable. For example, in:

void f oo (void ∗ p)
{

vec to r (4 , f loat ) (∗ a ) [ 1 0 0 ] = ( vec to r (4 , f loat ) ( ∗ ) [ 1 0 0 ] ) p ;
}

we might not know where the pointer p is coming from. It is likely that for C it will
be necessary to add a way to annotate if a certain pointer is an array.

Finally, as C programs can be split in multiple translation units and joined
together during linking, the information regarding layout types has to be propagated
outside modules. That can be done by extending the language or performing layout
transformation during the linking phase when the whole program will be available.

Although the above challenges are non trivial we believe that it would be worth
while to tackle this problem.

8.3 Better cost models & advanced vectorisation

The cost model presented in this work is too simple to make correct choices all
the time. The main problem is that the cost model does not take into account the
sizes of map/reduce operations. It also does not differentiate between the costs of
individual vector and scalar operations which can be different on some hardware.
Finally, the cost model does not consider memory operations — when we pad we
can substantially increase the amount of memory it takes to store a data structure.
That in principle can destroy our vectorisation efforts.

We can solve the problem of varying costs of vector operations by reusing the
information available to existing auto-vectorisers. For example, in GCC for every sup-
ported backend each instruction gets a cost, which makes it possible to approximate
the cost of expressions.

If we want to consider the sizes of map/reduce operations, the problem is that
they might be not statically known. One possible solution could be to employ sym-
bolic evaluation and to compare the overall costs based on comparison of symbolic
expressions. This approach has severe limitations as map/reduce sizes may depend on
conditions, recursive functions or external parameters. Another possibility would be
to ask a programmer to provide annotations for some of the variables or map/reduce
constructs. When a programmer annotates a range we can apply interval analysis
techniques. Alternatively annotations could use some different form of algebra that
allows one to compare the cost of map/reduce expressions.

Considering memory operations properly is very hard because of the presence of
caches. It is possible to approximate or model this behaviour like in [14] to reason
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about costs. In case the cost of memory operations can be established, we can look
into dynamic layout transformations. Currently it is possible to construct an example
where different layout requirements for a given array will prohibit vectorisation of a
program. In the case of a more advanced cost model we can either decide to satisfy
all the operations by changing layouts dynamically before and after the operation,
or we can chose the most expensive operation and vectorise only it.

Further we intend to use our framework as a basis for more complicated vectori-
sation patterns, for example the stencil-like computations. Currently they are not
supported, i.e. if we have an expression similar to:

map i < N
a [ i −1] + a [ i ] + a [ i +1]

our system will not vectorise it. In order to make this possible we can consider
techniques described in [55]. To do so we will need to introduce new data layouts
and to run an analysis on boundary conditions to regroup computations according
to the new data layouts.
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