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Abstract

This thesis investigates both theoretically and numerically the stability of travelling

wave solutions using Fredholm determinants, on the real line. We identify a class of

travelling wave problems for which the corresponding integral operators are of trace

class. Based on the geometrical interpretation of the Evans function, we give an al-

ternative proof connecting it to (modified) Fredholm determinants. We then extend

that connection to the case of front waves by constructing an appropriate integral

operator. In the context of numerical evaluation of Fredholm determinants, we prove

the uniform convergence associated with the modified/regularised Fredholm deter-

minants which generalises Bornemann’s result on this topic. Unlike in Bornemann’s

result, we do not assume continuity but only integrability with respect to the second

argument of the kernel functions. In support to our theory, we present some numerical

results. We show how to compute higher order determinants numerically, in particular

for integral operators belonging to classes I3 and I4 of the Schatten–von Neumann

set. Finally, we numerically compute Fredholm determinants for some travelling wave

problems e.g. the ‘good’ Boussinesq equation and the fifth-order KdV equation.
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Chapter 1

Introduction

1.1 Introduction

In nature we often observe coherent structures. These include localised objects such

as atoms or molecules, or light pulses propagating along optical fibres, and so forth.

To understand these natural processes, one is often required to develop a mathe-

matical model in which the observed phenomena are among the solutions to that

model. Of particular interest to us are travelling waves, these are steady/stationary

solutions to models such as those for chemical reactions (reaction-diffusion equation),

quantum states (Schrödinger equation) and so forth. For these solutions to represent

the observed phenomena, they must be stable, in particular, linearly stable. By this

we mean that, if we perturb the travelling waves a little bit and if they settle back

to the original form with time, then they are stable and we are likely to observe

them in nature since they will have some permanence. If not, they are unstable and

we are unlikely ever to see them. By linearising the nonlinear differential operator

associated with the model about its stationary solution, the stability analysis of trav-

elling waves is reduced to computing eigenvalues associated with a linear differential

operator. Typically under suitable conditions and in the one dimensional case partic-

ularly, these eigenvalues are inferred from a system of algebraic equations obtained by

some discretisation method like finite differences and Galerkin methods. In our case,

the essential spectrum associated with the linear differential operator is not empty.

Therefore in the case of finite differences, one needs to increase the size of the system

of algebraic equations in order to track the isolated non-moving points (eigenvalues)
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Chapter 1: Introduction

in the complex plane. Over the last half century, another competitive method has

emerged for such a purpose. This method computes the zeros of an analytic function

which is similar in construction to the characteristic polynomial for finite dimensional

matrices. More precisely, the analytic function, introduced by J.W. Evans [23] in his

study on the stability of nerve axons, is the determinant of the set of solutions as-

sociated with the eigenvalue problem. We will call this function the Evans function.

Others communities call m-function or Weyl-Titchmarsh function or miss-distance

function [53]. A more precise definition of the Evans function was introduced in [1].

This definition, based on the exterior algebra framework, measures if whether the sub-

spaces decaying at infinity associated with the eigenvalue problem intersect or not.

The first numerical computation of the Evans function goes back to Evans himself

where he dealt with one dimensional subspace that decays at either plus/minus in-

finity (see also [56]). Unfortunately if both subspaces are of dimension greater than

one, then numerical problems arise due to different exponentially growing/decaying

solutions (the spanning vectors of the subspaces decaying at infinity) associated with

the problem. Lifting the problem into the exterior algebra framework resolves these

numerical problems, since the subspaces decaying at infinity correspond to a single

subspace in the exterior system (cf. [2], [14], [13], [45], [26], [9]). However the dimen-

sion of the lifted problem increases exponentially with the order of the problem. To

circumvent this, methods such as continuous orthogonalisation [40] or Grassmannian-

shooting [52] are employed.

The approach taken in this thesis is a very different one as it is based on computing

the zeros of the Fredholm determinant. The Fredholm determinant, introduced by

Fredholm [24], is an entire function of the spectral parameter which characterises the

solvability of what are called Fredholm integral equations of the second kind. In order

to derive the Fredholm determinant, Fredholm assumed that the kernel function asso-

ciated with the integral operator is continuous in both arguments over a finite interval

of the real line. Using the rectangular rule to approximate the integral operator, he

replaced the integral equations by a system of algebraic equations whose determi-

nant was then computed as the rectangles width goes to zero. The convergence of

the scheme was proved by Hilbert [37] and then was generalised by Bornemann [10]
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Chapter 1: Introduction

for any quadrature rule (e.g. Gaussian quadrature) which converges for continuous

functions. Hilbert [37] relaxed the continuity ansatz of the kernel assumed by Fred-

holm, and considered kernel functions that are square integrable. He observed that

in order to achieve convergence of the determinant it suffices to set the diagonal el-

ements of the kernel to zero. The development of the theory of integral equations

with square integrable kernels was also conducted by Calerman [15], Smithies [68],

Plemelj [58] and others, and the generalisation to other than square integrable ker-

nel functions is given by Gohberg and Krein [33] and Dunford and Schwartz [20],

for example. This generalisation of the Fredholm determinant led to what are called

regularised or modified Fredholm determinants. Under this generalisation, the Fred-

holm determinant is then given as the determinant of a trace class perturbation of the

identity operator, for integral operators with continuous kernels in particular. Among

the applications of Fredholm determinants, we cite for example from mathematical

physics [66], [25], [46], [42], [28] and [29] where the authors used the Fredholm deter-

minant to compute eigenvalues or resonances associated with Schrödinger problems.

1.2 Motivation and aim

Like the Evans function, the zeros of Fredholm determinant coincide in location and

multiplicity with eigenvalues of the underlying integral operator. Therefore, we aim

to reformulate the linear differential eigenvalue problem into an integral equations

and then compute the corresponding eigenvalues. What motivate us to pursue this

direction is the following:

• To our knowledge, no has numerically computated the Fredholm determinant

associated with the linear stability of travelling waves.

• The natural extension of (modified) Fredholm determinants to higher dimen-

sional problem.

• In [27], [30], [66] and [46], the authors have established the connection between

the Fredholm determinant and the Evans function.

• Bornemann [10] proved the exponential convergence when computing the Fred-

holm determinant for smooth kernel functions.

4



Chapter 1: Introduction

The last two items suggest that if the kernel of the corresponding integral is smooth,

then computing the Fredholm determinant might be a better option than the Evans

function.

1.3 Contribution

Although the connection between the Fredholm determinant and the Evans function

has been already established by B. Simon [66] and Gesztesy et al. [27], our approach

to achieve this result is different. For clarity, the connection found in [27] relies on the

fact that the kernel of the integral operator is semi-separable. Hence a decomposition

into a finite rank and a Volterra operator is available. This yields a reduction of the

infinite determinant to a finite dimensional one. To reduce the Fredholm determinant

to the Evans function through the latter finite dimensional determinant, a first order

system of differential equations is introduced. The determinant of the fundamental

matrix solution corresponding to the system coincides with the finite dimensional

determinant (Fredholm determinant). Our approach is rather geometrical. That is, if

the unstable subspace (the subspace decaying at −∞) is orthogonal to a given stable

subspace (the subspace decaying at +∞) defined by the set of solutions of the adjoint

problem, then necessary we must have that the stable and the unstable subspaces

intersect. This is because the unstable subspace and that of the adjoint problem are

orthogonal. To measure the orthogonality condition of subspaces, we introduce a finite

dimensional matrix whose determinant is equal to the Fredholm determinant. It turns

out that this determinant is nothing other than the determinant of a block matrix

of the matrix defining the Evans function. Hence our finite dimensional determinant

(Fredholm determinant) is equal to the Evans function, up to a nonvanishing analytic

function. As noted in our approach:

• The semi-separability property of the kernel function is not needed;

• Our approach enables us to directly extend the connection between the Evans

function and the Fredholm determinants associated with other than trace class

or Hilbert–Schmidt operators;

• The finite dimensional determinant that we have introduced is, in fact, equal

to the determinant of the fundamental matrix solution given in [27] and [30].

5



Chapter 1: Introduction

Hence the determinant of the fundamental matrix solution has a geometrical

interpretation which, in our opinion, was not clear in [27].

We remark that our relation connecting the Fredholm determinant and the Evans

function translates the method used in [40] and [52] to avoid the numerical stiffness

in computing the Evans function, in some sense. Indeed, the nonvanishing analytic

function in our relation corresponds to the extraction of different exponentially grow-

ing/decaying solutions associated with the problem. Therefore by analogy to the

method of [40] and [52], the other function (Fredholm determinant in our case) given

in the relation connecting the Evans function is the one which is numerically sta-

ble. As further contributions, we have identified a class of travelling wave problem

for which the corresponding integral operators are of trace class. Moreover, we have

constructed the Fredholm determinant for front waves.

In the context of computing the Fredholm determinant, we have extended Borne-

mann’s result on the uniform convergence of Fredholm determinants associated with

continuous kernels to those that are Lebesgue integrable with respect to the second

argument. Moreover, we showed how to (numerically) compute the p-modified Fred-

holm determinants, in particular for p = 3, 4.

For the numerical evaluation of Fredholm determinants associated with the linear

stability of travelling waves, we numerically investigated the accuracy and the perfor-

mance in computing the zeros of Fredholm determinants and that of Evans function.

1.4 Organisation of the thesis

The organisation of the thesis is as follows. In Chapter 2, we recall some properties

about compact operators and the p-regularised Fredholm determinants that we shall

use throughout the thesis. In Chapter 3, we introduce the Evans function as well as

its different constructions. Chapter 4 is aimed at showing the connection between the

Evans function and the Fredholm determinants associated with pulse and front waves.

Also, we identify a class of eigenvalue problems for which the associated integral

operators are of trace class. In Chapter 5, we discuss the numerical evaluation of

6



Chapter 1: Introduction

the p-modified Fredholm determinants. We show the uniform convergence associated

with any operator in the Schatten–von Neumann class. Additionally, we demonstrate

how to compute higher order Fredholm determinants. In Chapter 6, we numerically

compute the Fredholm determinant for a class of travelling wave problems. We then

compare the error in computing eigenvalues (zeros) by the Evans function and the

Fredholm determinant approaches.
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Chapter 2

Compact operators and Fredholm

determinants

In this chapter, we recall some basic material about compact operators and the reg-

ularised Fredholm determinants. Throughout this thesis, H is the Hilbert space with

inner-product 〈·, ·〉. Typically, H will be separable, but it will not be assumed until

it is needed. When dealing with integrals, H = L2.

2.1 Fredholm determinants

In this section, we briefly recall the construction of the Fredholm determinant as given

in the book of Riesz and Sz.-Nagy [63]. Fredholm in [24] was interested in solving,

for all x ∈ [a, b] ⊂ R, the following equation

f(x) + z

∫ b

a

k(x, y)f(y)dy = g(x), (2.1)

where f is the unknown, z ∈ C is a given parameter, and the nonzero functions g and

k are assumed to be continuous on [a, b] and [a, b]2, respectively. Approximating the

integral in (2.1) by the rectangular rule yields the system of linear algebraic equations

fi + zh

n∑
j=1

kijfj = gi, (i, j = 1, . . . , n), (2.2)
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Chapter 2: Compact operators and Fredholm determinants

where fi = f(xi), kij = k(xi, yj), gi = g(xi) and h = (b− a)/n with xi = a + ih and

yj = a+ jh. Thus equation (2.2) is solvable depending on whether the determinant

Pn(z) = det


1 + zhk11 zhk12 · · · zhk1n

zhk21 1 + zhk22 · · · zhk2n
...

...
...

...

zhkn1 zhkn2 · · · 1 + zhknn

 (2.3)

is zero or not. Since Pn(z) is a polynomial in z, equation (2.2) has a unique solution

for all values of z except for at most a finite number of values (eigenvalues). Taking

the limit as n goes to infinity of Pn(z) results in the entire function (a non-obvious

computation see [63])

d(z) =
∞∑
n=0

zn

n!

∫ b

a

· · ·
∫ b

a

det(k(xp, xq))
n
p,q=1dx1 · · · dxn (2.4)

called the Fredholm determinant. The series in (2.4) converges for all z ∈ C (see [63]).

This follows by applying Hadamard inequality1.

Let D be the space of integral operators with continuous kernels acting on C[a, b],

the space of continuous functions in [a, b], and let Dn×n be the space of matrices with

entries from D see [32, Sec. VI.1.1]. Then for systems of integral equations, we have

the following:

Theorem 2.1 (Gohberg et al. [32, Chap. VI, p. 128]). Let Kjm be integral operators

with continuous kernels kjm(x, y) (a 6 x, y 6 b), K = (Kjm)Nj,m=1 ∈ DN×N and let

detDN×N (id + zK) = 1 +
∞∑
n=1

cn(K)

n!
zn. (2.5)

The cn(K) are given by

cn(K) =
N∑

i1,i2,...,in=1

∫ b

a

· · ·
∫ b

a

det
(
kipiq(xp, xq)

)n
p,q=1

dx1 · · · dxn. (2.6)

1If the entries aij of an n×n matrix A satisfy |aij | 6M for all i, j, then |det(A)| 6Mnnn/2, for
some constant M > 0.

9



Chapter 2: Compact operators and Fredholm determinants

In particular, we see

c1(K) =
N∑
i=1

∫ b

a

kii(x, x)dx =
N∑
i=1

trKii = trK, (2.7)

where trK denote the trace of K (see subsection 2.3.1 ahead).

(2.5) defines the Fredholm determinant for a system of integral equations and

converges for all z ∈ C (see [32]). Note that when N = 1 (the scalar case), the

Fredholm determinant in (2.5) reduces to that given in (2.4). If k(x, x) /∈ L1
(
(a, b)

)
,

both series in (2.6) and (2.4) might not converge. However Hilbert [37] (see also [10]

and [67]) observed that, in order to get convergence for square-integrable kernels

(k ∈ L2
(
(a, b)2

)
), it suffices to redefine the kernel as follows

k̃(x, y) =

0, if x = y

k(x, y), otherwise.

In this case (square integrability), the modified Fredholm determinant

d2(z) =
∞∑
n=0

zn

n!

∫ b

a

· · ·
∫ b

a

det(k̃(xp, xq))
n
p,q=1dx1 · · · dxn (2.8)

converges for all z ∈ C.

For a system of integral equations, if the series

trKmm :=
∞∑
n=1

〈un,Kmmun〉

converges for any independent orthonormal basis {un}n>1 of L2
(
(a, b)

)
and Kmm are

Hilbert–Schmidt operators, Gohberg et al. [32, Theorem 6.2, p. 131] have defined the

following

k̃jm(x, y) =


1

b− a
trKmm, if x = y and i = j

kjm(x, y), otherwise.

Note that if b − a = ∞ or if the above infinite sum does not converge, the diagonal

elements of the matrix-valued function k̃jm(x, y) are set to zero.

10



Chapter 2: Compact operators and Fredholm determinants

2.2 Bounded operators

Most of the results in this section are collected from Reed and Simon [60].

Definition 2.1. A bounded linear operator from a Banach space (E, ‖·‖1) to Banach

space (F, ‖·‖2) is a function K : E → F which satisfies, for all u1, u2 ∈ E and α, β ∈ C,

1. K(αu1 + βu2) = αKu1 + βKu2;

2. For some C > 0, ‖Ku1‖2 6 C‖u1‖1.

The operator norm is then given by

‖K‖ = sup
u6=0

‖Ku‖2
‖u‖1

(2.9)

Let B(E,F ) denote the set of bounded operators from E onto F . We write B(E) =

B(E,E). In what follows, Hi are Hilbert spaces, for i = 1, 2.

Definition 2.2 (Positive operator). An operator K ∈ B(H) is called positive if

〈Ku, u〉 > 0 for all u ∈ H. We write K > 0 for such an operator and, for exam-

ple, K1 6 K2 if K2 −K1 > 0.

Note that every bounded positive operator on H is self-adjoint: K∗ = K. For any

K > 0 there is a unique operator
√
K such that K = (

√
K)2. For any K ∈ B(H), note

that K∗K > 0 since 〈K∗Ku, u〉 = ‖Ku‖2H > 0. In particular, we define |K| =
√
K∗K.

Lastly note that ‖|K|u‖2H = ‖Ku‖2H.

Definition 2.3 (The resolvent). Let K ∈ B(H). A complex number λ is in the

resolvent set ρ(K) of K if K − λid is a bijection with a bounded inverse.

Definition 2.4 (The spectrum). Let K ∈ B(H). Then

1. Any complex number λ /∈ ρ(K) is said to be in the spectrum σ(K) of K;

2. The set of λ ∈ σ(K) for which K− λid is not injective is called the point spectrum

of K and is denoted by σp(K). Every number λ ∈ σp(K) is called an eigenvalue

of K, and every function u 6= 0 with (K − λid)u = 0 for λ ∈ σp(K) is called an

eigenfunction of K.

11



Chapter 2: Compact operators and Fredholm determinants

2.3 Compact operators

Definition 2.5 (Reed and Simon [60] ). A bounded operator K ∈ B(H1,H2) is

compact (or completely continuous) if K takes bounded sets in H1 into precompact

sets in H2. Equivalently, K is compact if and only if for every bounded sequence

{xn}∞n=1 ⊂ H1, {Kxn} has a subsequence convergent in H2.

Let the set of compact operators from H1 onto H2 be denoted by I∞(H1,H2), and

write I∞ = I∞(H,H).

Definition 2.6 (Singular value). Let K ∈ I∞ and |K| its associated positive operator.

Then any number µ ∈ σp(|K|) is called singular value ofK or eigenvalue of the operator

|K|.

Theorem 2.2 (Reed and Simon [60] ). Let K ∈ I∞. Then there exist (not necessarily

complete) orthonormal sets {un}n>1 and {vn}n>1 and positive real numbers {µn}n>1

(singular values) so that

K =
∞∑
n=1

µn〈un, ·〉vn.

Theorem 2.3 (Reed and Simon [60] ). Let K ∈ I∞. Then the spectrum of K, σ(K)

is a discret set having no limit points except perhaps λ = 0. Further, any nonzero

λ ∈ σ(K) is an eigenvalue and the corresponding space of eigenfunctions is finite

dimensional (geometric multiplicity).

The above theorem simply means that if K ∈ I∞ then the spectrum of K consist

of nonzero eigenvalues σp(K) and a possible accumulation point at the origin. Thus,

the compactness property of an operator guarantees that either (id − K)−1 exists or

Ku = u has nontrivial solution (Fredholm alternative).

Theorem 2.4 (Reed and Simon [60] ). Let H be a separable Hilbert space. Then every

compact operator on H is the norm limit of a sequence of operators of finite rank.

The above theorem means that the closure in the operator norm of the set of finite

rank operators in B(H) is the set of compact operators (the approximation property).

That is, the approximation property holds in a separable Hilbert space. If dimH <∞,

then any bounded operator K ∈ B(H) is finite rank and hence compact.

Theorem 2.5 (Reed and Simon [60] ). Let K1,K2 ∈ B(H). Then

12
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1. If {Kn}n>1 are compact and Kn → K1 in the operator norm, then K1 is compact;

2. K1 is compact if and only if its adjoint K∗1 is compact;

3. If K1 (or K2) is compact then K1K2 (or K2K1) is compact.

Two important classes of compact operators that we shall consider in this thesis

are the trace class and the Hilbert–Schmidt operators. In the next two subsections, we

only give properties which are specific to trace class and Hilbert–Schmidt operators.

2.3.1 Trace class operators

Definition 2.7. Let H be a separable Hilbert space with orthonormal basis {um}∞m=1.

Then for any positive operator K ∈ B(H), we define

trK :=
∞∑
m=1

〈um,Kum〉,

where trK (see Definition 2.9) is independent of the orthonormal basis chosen.

The trace has the following properties:

1. tr(K1 +K2) = trK1 + trK2;

2. tr(zK1) = z̄trK1, for all z ∈ C \ {0};

3. tr(UK1U
−1) = trK1 for any unitary operator U ;

4. If 0 6 K1 6 K2, then trK1 6 trK2.

Definition 2.8 (Trace class). An operator K ∈ B(H) is called trace class if and only

if tr |K| <∞. The family of all trace class operators is denoted I1 = I1(H).

Definition 2.9 (Reed and Simon [60] ). The map tr : I1 → C given by
∑
n>1

〈um,Kum〉

where {um} is any orthonormal basis is called the trace.

Theorem 2.6 (Reed and Simon [60] ). If K ∈ I1 and {um}∞m=1 is any orthonormal

basis, then trK converges absolutely and the limit is independent of the choice of basis.

Suppose that K is a trace class operator. Then we have (Lidskii’s Theorem [65])

trK =
∞∑
n=1

λn, (2.10)

13



Chapter 2: Compact operators and Fredholm determinants

where {λn}n>1 are the eigenvalues of the operator K. In fact, the above infinite sum

converges absolutely. Then the infinite product
∞∏
n=1

(1 + λn) converges 2 (see [65]).

Therefore one can define the determinant of id + zK (cf. [67], for all z ∈ C, by

∞∏
n=1

(1 + zλn). (2.11)

Remark 2.1. 1. In particular if K ∈ I1 is an integral operator with continuous

kernel, then the Fredholm determinant d(z) is equal to (2.11), i.e.

d(z) =
∞∏
n=1

(1 + zλn). (2.12)

2. The Fredholm determinant d(z) (cf. (2.4)) makes sense independently of whether

the integral operator K with continuous kernel is of trace class or not. That is,

suppose that the integral operator K with continuous kernel is not of trace class,

then the infinite product in (2.11) will not necessarily converge. Consequently

equality (2.12) will not make sense though the Fredholm determinant d(z) is well

defined, for all z ∈ C.

Let K be an integral operator acting on the Hilbert space L2
(
(a, b)

)
, defined for

all x ∈ [a, b] ⊂ R by

Ku(x) =

∫ b

a

k(x, y)u(y)dy,

where k(x, y) is continuous on [a, b]× [a, b]. If K is of trace class, then

trK =

∫ b

a

k(x, x)dx. (2.13)

Unfortunately, the converse of this statement is not true. That is, only the continuity

of the kernel does not imply that the corresponding integral operator is of trace class.

Hence, equality (2.13) might not make sense 3 since trK might not converge. An

example of such an operator was discovered by Calerman (see Gohberg et al. [32]).

Fortunately, each of the following conditions is sufficient to define trace class operator

(see Bornemann [10]):

2
∞∏

n=1
(1 + an) converges if and only if

∞∑
n=1
|an| <∞

3
∫ b

a
k(x, x)dx is finite but trK can diverge.

14



Chapter 2: Compact operators and Fredholm determinants

1. If the continuous kernel, k can be represented in the form

k(x, y) =

∫ d

c

k1(x, z)k2(z, y)dz, (x, y ∈ [a, b])

with k1 ∈ L2
(
[a, b]× [c, d]

)
and k2 ∈ L2

(
[c, d]× [a, b]

)
;

2. If the kernel k(x, y) is smooth on [a, b]× [a, b];

3. If the continuous Hermitian4 kernel k(x, y) satisfies, for all x, y1, y2 ∈ [a, b] and

α > 1/2, the following inequality

|k(x, y1)− k(x, y2)| 6 c|y1 − y2|α.

4. If K is self-adjoint, positive semidefinite operator with a continuous kernel.

2.3.2 Hilbert–Schmidt operators

Definition 2.10 (Hilbert–Schmidt operator). An operatorK ∈ B(H) is called Hilbert–

Schmidt if tr |K|2 < ∞. The family of Hilbert–Schmidt operators is denoted I2 =

I2(H).

The space I2 with the inner-product

〈K1,K2〉I2 :=
∞∑
n=1

〈K1un,K2un〉, (2.14)

where {un}n>1 is any orthonormal basis of H and K1,K2 ∈ I2, is a Hilbert space. The

above sum converges absolutely and is independent of the orthonormal basis chosen.

Theorem 2.7 (Reed and Simon [60]). Let X ⊆ R. The operator K ∈ B(H) is

Hilbert–Schmidt if and only if there is a function k ∈ L2(X ×X) with

Ku(x) =

∫
X

k(x, y)u(y)dy.

Further, we have that

‖K‖2I2 =

∫
X

∫
X

|k(x, y)|2 dxdy.

4An L2-kernel is Hermitian if k(x, y) = k(y, x).

15



Chapter 2: Compact operators and Fredholm determinants

For general Hilbert–Schmidt operators, the sum
∞∑
n=1

λ2n converges absolutely (cf.

equation (2.14) or (2.18)). However, the convergence of
∞∑
n=1

λn is not guaranteed, and

so the infinite product
∞∏
n=1

(1 + λn) might not converge. To resolve this and be able

to define a notion of determinant in I2, it suffices to consider the infinite product
∞∏
n=1

(1 + λn)e−λn which is finite. Therefore if K ∈ I2, the determinant of the operator

(id + zK) is given, for all z ∈ C, by

∞∏
n=1

(1 + zλn)e−zλn . (2.15)

Remark 2.2. 1. Note that in the expansion of the above infinite product, the

value
∑
n>1

λn vanishes due to opposite signs.

2. In particular, if K ∈ I2 is an integral operator, the modified Fredholm determi-

nant d2(z) (2.8) is equal to (2.15), i.e.

d2(z) =
∞∏
n=1

(1 + zλn)e−zλn .

3. If K ∈ I2 is an integral operator with continuous kernel k(x, y) in [a, b]× [a, b],

then the Fredholm determinant d(z) and the modified Fredholm determinant

d2(z) satisfy (cf. [38, p. 205])

d(z) = d2(z) exp
(
z

∫ b

a

k(x, x)dx
)
.

If K is of trace class then the above relation holds with trK =
∫ b
a
k(x, x)dx.

2.3.3 The Schatten–von Neumann class

We have just seen two classes of the Schatten–von Neumann classes of compact op-

erator, namely, trace class and Hilbert–Schmidt operators. Here, we discuss more

general classes of compact operators. The Schatten–von Neumann classes of compact

operators are defined, for 1 6 p <∞, by

Ip = {K ∈ I∞ : tr|K|p <∞}.
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The above space equipped with the norm ‖K‖pIp := tr|K|p is a Banach space. More-

over, the classes Ip are two sided operator ideals in B(H), i.e. for any K ∈ Ip and

K1,K2 ∈ B(H) we have K1KK2 ∈ Ip and

‖K1KK2‖Ip 6 ‖K1‖‖K‖Ip‖K2‖, (2.16)

where ‖ · ‖ is the operator norm defined in (2.9).

Theorem 2.8 (Gohberg et al. [32, Theorem 11.1, Chap IV]). For p > 1, the space

(Ip, ‖ · ‖p) is an embedded subalgebra of B(H) with the approximation property. The

algebra Ip is complete.

This implies that for any K1,K2 ∈ Ip, we have (embedded algebra)

‖K1‖ 6 ‖K1‖Ip and ‖K1K2‖Ip 6 ‖K1‖Ip‖K2‖Ip .

It also implies that the set of finite rank operators is ‖·‖Ip-dense in Ip (approximation

property).

Theorem 2.9 (Gohberg et al. [32, Theorem 11.2, Chap IV]). Let p, p1, . . . , pn be some

positive numbers such that

1

p
6

1

p1
+

1

p2
+ · · ·+ 1

pn
.

If Kj ∈ Ipj (j = 1, 2, . . . , n), then the operator K = K1K2 · · · Kn ∈ Ip and

‖K‖Ip 6
n∏
j=1

‖Kj‖Ipj .

Clearly from the above theorem, we have if K = K1K2 with K1,K2 ∈ I2 that

‖K‖I1 6 ‖K1‖I2‖K‖I2 .

Moreover, for any p 6 q, the following inequality holds (the continuous embeddings):

‖K‖Iq 6 ‖K‖Ip . (2.17)

17
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By Weyl’s inequality, we have

|trKp| 6 ‖Kp‖Ip 6 ‖K‖
p
Ip
. (2.18)

2.4 Modified/regularised Fredholm determinants

Let K ∈ Ip with eigenvalues {λn}n>1. Then for all z ∈ C and p ∈ N \ {0}, the

Plemelj–Smithies formula for p-modified Fredholm determinants is given by (cf. [32]

and [67])

detp(id + zK) =
∞∑
n=0

znα(p)
n /n!, (2.19)

where α
(p)
0 = 1, and

α(p)
n = detCn


ν
(p)
1 n− 1 0 · · · 0
...

...
...

...
...

ν
(p)
n−1 ν

(p)
n−2 · · · · · · 1

ν
(p)
n ν

(p)
n−1 · · · · · · ν

(p)
1

 (2.20)

with

ν
(p)
j =

trKj, j > p

0, j 6 p− 1.

(2.21)

For all natural numbers p > 1, the coefficients α
(p)
n satisfy (Simon [67])

α(p)
n =

n∑
j=1

(−1)j+1α
(p)
n−jν

(p)
j

(n− 1)!

(n− j)!
. (2.22)

Equivalently, p-modified Fredholm determinants can be expressed as follows:

1. For all z ∈ C (cf. [65], [32] and [67]),

detp(id + zK) =
∞∏
n=1

[
(1 + zλn) exp

(p−1∑
j=1

zj(−λn)j/j
)]

; (2.23)
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2. For small z ∈ C, Plemelj’s formula is given by (cf. [65], [32] and [67])

detp(id + zK) = exp
( ∞∑
n=p

(−1)n+1zntrKn/n
)

(2.24)

which can be analytically continued as an entire function to all z ∈ C;

We have for any K ∈ Ip−1 (p > 2) that (cf. [65], [32] and [67])

detp(id + zK) = detp−1(id + zK) exp
(
(−z)p−1trKp−1/(p− 1)

)
. (2.25)

Theorem 2.10 (Gohberg et al. [32]). Let K ∈ Ip. Then, the operator (id + K) is

invertible if and only if detp(id +K) 6= 0.

Theorem 2.11 (Gohberg et al. [32]). If z = −λ−10 is a zero with a given order of the

entire function detp(id + zK) then λ0 is an eigenvalue of the operator K ∈ Ip with

the exact same algebraic multiplicity.

We have collected some inequalities, theorems and properties we use in this thesis.

For other results on infinite determinants, see for example [67] and [32]. The next

chapter concerns the Evans function and its properties.

Remark 2.3. Throughout this thesis, the trace ‘tr’ is associated with bounded op-

erators in Hilbert space, and ‘trFn ’ will refer to the trace of any square matrix over

the field F. The determinant of a square matrix will be denoted by detFn , for n ∈ N.
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Chapter 3

The Evans function

This chapter presents the formulation of the concerned eigenvalue problems, and

also some constructions of the Evans function. We consider eigenvalue problems

arising from linearising a nonlinear partial differential equation about its stationary

solution. Thus, the stability analysis of the stationary solution reduces to computing

eigenvalues of the linear differential operator associated with the problem. Although

there are many methods for computing these eigenvalues, in this thesis we focus on

the Evans function and the Fredholm determinant (see previous chapter). The Evans

function, first introduced in [23] and then generalised in [1], is an analytic function

of the spectral parameter whose zeros of a given order coincide in location and in

algebraic multiplicity to eigenvalues of the corresponding linear differential operator.

The Evans function is a major tool used in the stability analysis of travelling waves

(see, e.g. [9], [14], [26], [40], [45], and [52]).

3.1 Set up for the eigenvalue problem

Consider a system of nonlinear partial differential equations (PDEs) given by

∂tU = L0U +N (U), (3.1)

where as a function of x ∈ R, U(·, t) ∈ Cn (n > 1) is in some appropriate Banach

space, L0 denote a closed, densely defined linear differential operator with respect to

the space variable x, N denotes the nonlinearity defined not necessarily on the entire

space associated with U , t is the time variable.
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Chapter 3: The Evans function

Changing the coordinates (x, t) to a moving frame (x → x − ct, t), equation (3.1)

becomes

∂tU = L0U + c∂xU +N (U). (3.2)

Definition 3.1. A travelling wave φ of (3.2) is a solution of the form

U(x, t) = φ(x− ct)

corresponding to a fixed profile φ that travels to the right (c > 0) or to the left (c < 0)

as a function of time t ∈ R+, where x ∈ R is the space coordinate and c is the wave

speed.

If it exists, the travelling wave φ satisfies the following equation

L0φ+ c∂xφ+N (φ) = 0. (3.3)

In this thesis, we will only consider travelling waves with finite limits at infinity, i.e.

lim
x→±∞

φ(x) = φ± ∈ Rn. (3.4)

A travelling wave φ is a pulse if φ− = φ+, otherwise it is a front. In turns, these

correspond to homoclinic and heteroclinic orbits associated with homogeneous fixed

points of problem (3.3) respectively. Assuming the existence and the uniqueness of the

travelling wave φ, the goal is to determine its stability, in particular linear stability.

Note that, if φ(x) is a travelling wave then so is φ(x+ ν), for any ν ∈ R.

Definition 3.2. [1, p. 170] A travelling wave φ is said to be asymptotically stable

relative to (3.2), if there is a neighborhood N of φ in some appropriate Banach space

so that for a given initial condition U0 ∈ N and U a solution of problem (3.2), then

there is a ν for which

‖U(·, t)− φ(·+ ν)‖ → 0, as t→∞.

‖ · ‖ is the norm in an appropriate Banach space.

As in the stability analysis of autonomous dynamical systems, the problem in the
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moving frame (3.2) is linearised about the travelling wave φ, with perturbation u off

φ given, for λ ∈ C, by

u(x, t) = u(x)eλt.

Upon neglecting the nonlinear terms in u, and using the equation for the travelling

wave (3.3), this yields

λu = L0u+ c∂xu+ ∂φN (φ)u. (3.5)

Setting

L := L0 + c∂x + ∂φN (φ), (3.6)

the stability of the travelling wave φ reduces to computing eigenvalues associated with

the closed, densely defined operator L. Note that the spectrum of operator L is non-

empty, since λ = 0 is an eigenvalue associated with translational invariance. In fact, if

the differential operator L0 has constant coefficients then dφ/dx is the corresponding

eigenfunction. Indeed, substituting dφ/dx in the eigenvalue problem (3.5) and using

(3.3), we see that

L0
d

dx
φ+ c∂x

d

dx
φ+ ∂φN (φ)

d

dx
φ =

d

dx

(
L0φ+ c∂xφ+N (φ)

)
= 0.

3.2 The Evans functions

A convenient way to deal with the eigenvalue problem (3.5) is to rewrite it as a first

order linear system of differential equations (ODEs)

d

dx
Y = A(x, λ)Y, (3.7)

where A(x, λ) is analytic in λ ∈ C and Y ∈ C2n. Note that due to the asymptotic

limits of the travelling wave φ in (3.4), the matrix-valued function A(x, λ) has finite

far field limits:

lim
x→±∞

A(x, λ) = A±(λ). (3.8)

The essential spectrum σe(L) of a closed, densely defined operator L is defined

as the complement of the pure point specturm in σ(L). Throughout this thesis,

Λ ⊆ (C \ σe(L)) is an open connected subregion of the λ-complex plane to the right
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of σe(L). If σe(L) impinges onto the right-half plane, we can always invoke weight

functions to push σe(L) into the left-half plane.

Let λ ∈ Λ. For j = 1, . . . , r, let κ−j (λ), denote eigenvalues of A−(λ) with positive

real parts, and for j = r + 1, . . . , 2n, let κ+j (λ) denote eigenvalues of A+(λ) with

negative real parts. For all λ ∈ Λ, we assume that κ±j = κ±j (λ) are simple and that

‖A(·, λ)− A±(λ)‖C2n×2n ∈ L1(R,C). (3.9)

Then there exists a r-dimensional unstable subspace E− and (2n − r)-dimensional

stable subspace E+ defined by

E± = {Y ±j ∈ C2n : lim
x→±∞

Y ±j (x, λ)e−κ
±
j x = η±j (λ)},

where Y ±j satisfy the first order system (3.7) and η±j (λ) are the eigenvectors associated

with the eigenvalues κ∓j . The first order systems (3.7) admits a square integrable

solution on the real line for a given λ ∈ C (i.e. λ is an eigenvalue of the operator

L) if and only if the subspaces E± have nontrivial intersection. In other words, λ is

an eigenvalue if and only if the spanning vectors of the subspaces E± are collectively

linearly dependent. The Evans function E(λ) as introduced in [23] enables us to

measure this linear dependence, and it is given by

E(λ) = exp
(
−
∫ x

0

trC2nA(s, λ)ds
)

detC2n

(
Y −1 · · · Y −k Y +

2n−r · · · Y +
2n

)
. (3.10)

Note that the Evans function E(λ) is independent of the variable x. The following

construction, due to Swinton [69], assumes that either κ+j or κ−j are simple, since it

relies on the formal adjoint problem of (3.7), i.e.,

d

dx
Z = −

(
A(x, λ)

)∗
Z, (3.11)
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where A∗ is the conjugate transpose of A, and Z ∈ C2n. For all Yj, Zi ∈ C2n satisfying

(3.7) and (3.11) respectively, the following equation holds

d

dx
(Z∗i Yj) = −(A(x, λ)∗Zi)

∗Yj + Z∗i A(x, λ)Yj

= −Z∗i A(x, λ)Yj + Z∗i A(x, λ)Yj

= 0.

This implies that the product Z∗i Yj is constant as a function of x and depends

only on the spectral parameter λ. In other words, the vectors Zi are orthogonal

to Yj. Let Z± denote the solutions of the adjoint problem (3.11) that decay at

±∞, and E±∗ the subspaces spanned by these solutions respectively. Note that since(
(Z±i )∗Y ±j

)
(±∞, λ) = 0, the subspaces E±∗ are orthogonal to the subspaces E± respec-

tively. Hence for a given λ ∈ Λ, if the subspaces E± are orthogonal to the subspaces

E∓∗ , then the subspaces E± have a nontrivial intersection.

The orthogonality condition of the subspaces E± and E∓∗ is measured by an analytic

function ES(λ) which is defined, for example, by

ES(λ) = detCr


〈Z−1 , Y +

1 〉Cn · · · 〈Z−1 , Y +
r 〉Cn

...
. . .

...

〈Z−r , Y +
1 〉Cn · · · 〈Z−r , Y +

r 〉Cn

 , (3.12)

where 〈Zi, Yj〉Cn =
2n∑
l=1

ZilYjl, where Yjl is the lth component of Yj. The zeros of the

Evans function ES(λ) coincide with eigenvalues of L. The simplicity assumption of

eigenvalues κ±j is not needed in the construction of the Evans function of Alexander et

al. [1]. This construction is based on expressing equation (3.7) in the exterior algebra

framework (see Appendix A). Consequently, the stable and unstable subspaces are

associated with a single exponential decay and growth mode respectively. The Evans

function of Alexander et al. is given by

EA(λ) = exp

(
−
∫ x

0

trC2n A(s, λ)ds

)
Y −(x, λ) ∧ Y +(x, λ), (3.13)
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where Y + ∈
∧2n−r C2n and Y − ∈

∧r C2n satisfy

d

dx
Y + = A(2n−r)(x, λ)Y + and

d

dx
Y − = A(r)(x, λ)Y − (3.14)

respectively. The matrices A(r) and A(2n−r) are those on
∧r C2n and

∧n−r C2n induced

by A, respectively. The forms Y + and Y − satisfy the asymptotic estimates

lim
x→±∞

e−κ̃
±xY ±(x, λ) = η̃±(λ),

where κ̃+ and κ̃− are the eigenvalues of A
(2n−r)
+ (λ) and A

(r)
− (λ) with negative and

positive real parts respectively, and η̃∓(λ) are the corresponding eigenvectors. The

Evans function of Alexander et al. EA(λ) satisfies (see Bridges and Derks [12] and [13])

EA(λ) ≡ 〚 ? Ỹ −, Y +〛2n−r

= C(λ)〚Z−, Y +〛2n−r,

where Ỹ − = e−
∫ x
0 trC2n A(s,λ)dsY −, Z− ∈

∧2n−r C2n satisfies the adjoint problem of the

first equation in (3.14), C(λ) is a nonvanishing analytic function, 〚·, ·〛2n−r is the inner

product on
∧2n−r C2n and ? denotes the Hodge star operator (see Appendix A). Note

that if either κ−j or κ+j are simple then 〚Z−, Y +〛2n−r = ES(λ), since the (2n−r)-forms

Z− and Y + can be recovered with (2n− r)-analytic basis vector solutions of problems

(3.11) and (3.7), respectively. When κ±j are not simple, Bridges and Derks [13] have

shown that one can still construct analytic basis vectors associated with the forms

Y + and Z−. Hence an equality similar to that between ES(λ) and the inner product

of Z− and Y + on
∧2n−r C2n holds. Furthermore, Kapitula and Sandstede [45] have

shown how to analytically extend the Evans function EA(λ) to some points λ where

A±(λ) fails to be hyperbolic. All the Evans functions are equal up to a nonvanishing

analytic function. Hence for any Evans function, we have the following.

Theorem 3.1. [64] The Evans function E(λ) in (3.10) is analytic in λ ∈ Λ with the

following properties:

1. The value of the Evans function E(λ) at λ = 0 is 0.

2. The Evans function E(λ) is real whenever λ ∈ Λ is real.
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3. E(λ) = 0 if and only if λ is an eigenvalue of L.

4. The order of any zero of the Evans function E(λ) is equal to the algebraic multi-

plicity of the corresponding eigenvalue.
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Fredholm determinants and the

Evans function

This chapter establishes the connection between the Fredholm determinant and the

Evans function. This in turns yields a reduction to a finite dimensional determinant,

the determinant of the differential operator associated with the eigenvalue problem.

The connection found in Gesztesy et al. [27] is based on the semi-separability prop-

erty of the kernel function, whereas in this chapter a finite dimensional determinant

which measures the intersection of the subspaces decaying at plus/minus infinity is

constructed. That is, if the subspaces decaying at plus/minus infinity of the per-

turbed and unperturbed adjoint problems are orthogonal, then the subspaces decay-

ing at plus/minus infinity of the perturbed problem intersect (i.e. an eigenvalue is

detected). This is because the subspaces decaying at plus/minus infinity associated

with the unperturbed and its adjoint problems are orthogonal. Thus, measuring the

orthogonality is equivalent to computing a determinant similar to that given in (3.12)

which is evaluated at infinity. By analogy to the transmission coefficient in Scattering

Theory, the matrix associated with the finite dimensional determinant is called the

matrix transmission coefficient. The basic details reducing the Fredholm determinant

to the Evans function are as follows.

1. Proving that the determinant of the matrix transmission coefficient is equal to

the Fredholm determinant associated with the underlying trace class integral

operator;

2. Showing that the determinant of the matrix transmission coefficient is equal to
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the Evans function, up to a nonvanishing analytic function. Combining this

relation with that of item 1, the connection between the Evans function and the

Fredholm determinant follows;

3. Given both the connections in item 2 and 1, the reduction of item 2 is extended

to any operator in the Schatten–von Neumann class;

4. Exploiting the multiplicative property of the determinant for an unbounded

elliptic operator and a trace class perturbation of the identity operator, the

determinant of the differential operator associated with the eigenvalue problem

reduces to the Evans function, up to a non-vanishing analytic function.

4.1 The integral reformulation

In this section, we reformulate the first order systems given in (3.7) of the travelling

wave problem of Chapter 3 into an integral problem. We then analyse the properties

of the corresponding integral operator. We also identify a class of eigenvalue problems

for which the associated integral operator is of trace class.

Theorem 4.1 (Green’s function, [49]). Let L be an nth order ordinary differential

operator with bounded and continuous coefficients aj = aj(x), j = 0, . . . , n. Then the

Green’s function g(x, y) satisfies

Lg(x, y) = δ(x− y)

in the sense of distributions if and only if :

1. g(x, y) is (n− 2) times continuously differentiable in x at x = y;

2.
[
∂n−1x g(x, y)

]x=y+
x=y−

= 1
an

(jump condition).

3. The Green’s function g(x, y) satisfies the appropriate boundary conditions in the

x-variable.

If K denotes the right inverse of L, then the solution of Lu = f is given by

u(x) = Kf(x) =

∫
R
g(x, y)f(y)dy.
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The Green’s function of a closed ordinary differential operator in any interval, in

particular on the real line, is semi-separable. This means that,

g(x, y) =

F1(x)G1(y), y 6 x,

F2(x)G2(y), x < y,

(4.1)

where Fj ∈ L2(R,Cn×nj) and Gj ∈ L2(R,Cnj×n) for j = 1, 2 and 1 6 nj 6 n.

Definition 4.1 (Fredholm operator, [31]). A bounded operator K acting between

Banach spaces (normed spaces) E and F is Fredholm if its range ran(K) is closed and

the numbers

n(K) = dim(Ker(K)) and d(K) = dim(F/ran(K)) (4.2)

are finite. The index of K is given by ind(K) = n(K)− d(K).

For any compact operatorK, the operator id+K is Fredholm of index zero (cf. [31]).

In what follows, we shall denote by detF (A) the determinant of any Fredholm operator

A (cf. Section 4.4 for the well definedness of the determinant). If A = id + K with

K ∈ Ip, we write

detF (A) := detp(id +K).

Throughout this thesis, for n ∈ N, Hn will denote the Sobolev space of functions with

derivative up to order n in L2 on R.

4.1.1 The integral operator and its properties

Consider the following eigenvalue problem

T (λ)Y = 0, (4.3)

where Y ∈ C2n with n > 1, and

T (λ) := d/dx− A(·, λ) (4.4)
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is a closed, densely defined operator for λ in some suitable region of C. Assume that

A : R× C→ C2n×2n is analytic in λ ∈ C and decomposes into

A(·, λ) = A0(·, λ) + V (·), (4.5)

where the bounded and continuous operator A0(x, ·) represents the unperturbed part

of A(x, ·), and the perturbation V satisfies

‖V ‖C2n×2n ∈ L1(R,C) ∩ L∞(R,C). (4.6)

Our objective is to determine the values of λ ∈ C for which dim Ker T (λ) > 0, where

T (λ) : H1(R,C2n)→ L2(R,C2n)

In other words, we seek λ ∈ C such that the eigenvalue problem (4.3) has nontrivial

solutions in the L2 sense.

Remark 4.1. Assume that the perturbation V satisfies lim|x|→∞ V (x) = V0, where

V0 is nonzero matrix. If ‖V −V0‖C2n×2n ∈ L1(R,C), then the same analysis holds with

V − V0 and A0(·, λ) + V0 substituted for V and A0(·, λ) respectively.

Remark 4.2. For travelling wave problems, the following statements are valid:

1. The nonzero entries in the perturbation matrix V depend on the travelling wave

φ;

2. We have λ = 0 is an eigenvalue due to the translational invariance (cf. Chapter 3).

In what follows, we assume the non-emptiness of the resolvent set ρ associated

with the operator

T0(λ) := d/dx− A0(·, λ), (4.7)

and we denote by K0(λ) the corresponding resolvent operator. Then given the de-

composition of the matrix A in (4.5), we write

T (λ) = T0(λ)
(
id−K0(λ)V

)
. (4.8)

Consequently, if T0(λ) is invertible then the invertibility of T (λ) depends on that of
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(
id−K0(λ)V

)
. Therefore, if the operator K0(λ)V , which is analytic in λ ∈ ρ (cf. [31]

and [60]) is compact, then λ is an eigenvalue of the operator T (·) if and only if

detF
(
id−K0(λ)V

)
= 0. (4.9)

Indeed, using the decomposition of A in (4.5), the first order system (4.3) becomes,

for all λ ∈ C,

T0(λ)Y = V Y. (4.10)

For now suppose that T0(λ) is invertible (this shall be proved later). Then, for all

λ ∈ ρ, we have (
id−K0(λ)V

)
Y = 0. (4.11)

That is, the eigenvalue problem (4.3) is reduced to an integral eigenvalue problem

given as above. Note that equation (4.8) assumes the existence of the right inverse

which follows from the existence of the Green’s function (cf. Theorem 4.1). To obtain

equation (4.11) from equation (4.10), we moreover assume the existence of the left

inverse. Therefore by invertibility we mean the existence of the left and the right

inverse, i.e.,

KL = LK = id, (4.12)

where L is an operator in some Banach space and K its inverse.

Given the resolvent operator K0(λ), there exists an exponential dichotomy on R

(see [64, Theorem 3.2]) of the following equation

T0(λ)Y = 0. (4.13)

We recall that for fixed λ ∈ ρ, equation (4.13) has an exponential dichotomy on R, if

for some positive constants κ′, κ and c, the following inequalities hold for all x, y ∈ R

‖Φ(x, λ)QΦ−1(y, λ)‖C2n×2n 6 c(κ′)e−κ
′(y−x), x 6 y

‖Φ(x, λ)(id2n −Q)Φ−1(y, λ)‖C2n×2n 6 c(κ)e−κ(x−y), x > y,

(4.14)

where Q is the projection operator onto the subspace decaying at −∞ associated with
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problem (4.13), and Φ(·, λ) is a fundamental matrix which is chosen to be analytic in

λ ∈ ρ. Φ(·, λ) is a fundamental matrix solution if its column vectors are 2n linearly

independent solutions of (4.13), i.e. T0(λ)Φ(x, λ) = 0. Since ρ 6= ∅, the operator

T0(λ) is closed (cf. [31, Chap XIV]). Hence the Green’s function k0 associated with

the operator T0(λ) is of the form given by (4.1), i.e.

k0(x, y;λ) =

−Φ(x, λ)QΦ−1(y, λ), x 6 y

Φ(x, λ)(id2n −Q)Φ−1(y, λ), x > y.

(4.15)

The resolvent operator K0(λ) with the above kernel is invertible, i.e. it satisfies the

invertibility equations (4.12). Indeed from Theorem 4.1, it follows that

T0(λ)
(
K0(λ)Y

)
= Y

and by integration by parts we have

K0(λ)
(
T0(λ)Y (x)

)
=

∫
R
k0(x, y;λ)T0(λ)Y (y)dy

= k0(x, y;λ)Y (y)
∣∣∣y=+∞

y=−∞
−
∫
R
T ∗0 (λ)k0(x, y;λ)Y (y)dy

= Y (x)

where T ∗0 (λ) is the formal adjoint of T0(λ), and Y (x) := Y (x, λ). Assume for the mo-

ment that K0(λ)V is compact. Then invoking the Fredholm alternative, we have that

either 1 is an eigenvalue of K0(λ)V or detF
(
id−K0(λ)V

)
is nonzero. Consequently,

if 1 is an eigenvalue of K0(λ)V , then λ is eigenvalue of T (·). However, it is not clear

that the order of the zeros of detF
(
id − K0(λ)V

)
and the algebraic multiplicities of

eigenvalues of T (·) coincide.

By rewriting the operator K0(λ)V in an appropriate form, the multiplicity issue is

resolved by the Birman–Schwinger principle. To this end, let V = U |V | be the po-

lar decomposition, where U is a partial isometry, and Ψ = U |Y |1/2. Then for all
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Ψ ∈ L2(R,C2n) and λ ∈ ρ, the integral equation (4.11) becomes,

(
id−K(λ)

)
Ψ = 0, (4.16)

where

K(λ) = |V |1/2K0(λ)Ṽ (4.17)

is the Birman–Schwinger operator with Ṽ = U |V |1/2. The Birman–Schwinger prin-

ciple states that 1 is an eigenvalue of K(λ), if and only if, λ is an eigenvalue of T (·)

with the same algebraic multiplicity (defined as the order of the zero of detF T (λ))

(cf. [28] and [66]). For all λ ∈ ρ, the kernel associated with the operator K(λ) is

k(x, y;λ) = |V (x)|1/2k0(x, y;λ)Ṽ (y). (4.18)

Given the exponential dichotomy inequalities in (4.14), there exists a positive constant

κ̃ 6 min{κ′, κ} and c(κ̃) > 0 such that, for fixed λ ∈ ρ and for all x, y ∈ R,

‖k(x, y;λ)‖C2n×2n 6 c(κ̃)‖V (x)‖1/2C2n×2ne−κ̃|x−y|‖V (y)‖1/2C2n×2n . (4.19)

The above estimate follows from using the inequalities

‖Ṽ ‖C2n×2n 6 ‖V ‖1/2C2n×2n and ‖|V |1/2‖C2n×2n 6 ‖V ‖1/2C2n×2n . (4.20)

Since e−κ̃|x−y| is bounded (say by M > 0 up to c(κ̃)) and continuous in R × R, it

follows that

∫∫
‖k(x, y;λ)‖2C2n×2ndxdy 6M2

∫∫
‖V (x)‖C2n×2n‖V (y)‖C2n×2ndxdy

= M2
(∫

R
‖V (x)‖C2n×2ndx

)2
. (4.21)

Consequently, the right-hand side of (4.19) is in L2(R2,C). Hence, the integral oper-

ator K(λ) is of Hilbert–Schmidt class in L2(R,C2n). However in the next theorem, we

show for some classes of operator T0(λ) that the compact operator K(λ) is, in fact, a

trace class operator. First, we recall the following proposition.

Proposition 4.1 (Simon [66]). Let f = f(x), h = h(x) denote the maximally defined
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multiplication operators by f, h, respectively, and g = g(p) the maximal multiplication

operator by g in the Fourier space. If f, h ∈ L2 and g ∈ L1 then fgh is a trace class

operator and

‖fgh‖I1 6 (2π)−1‖f‖L2‖h‖L2‖g‖L1 . (4.22)

We now present one of our main results.

Theorem 4.2. Assume that A0(λ) is a constant matrix. Then, for all λ ∈ ρ, the

corresponding Birman–Schwinger operator K(λ) = |V |K0(λ)Ṽ 1/2 is of trace class.

Proof. Let κl := κ±l (λ), l = 1, . . . , 2n, be the eigenvalues of A0(λ) for all λ ∈ ρ. For

clarity, we first suppose that P = P (λ) diagonalises A0(λ), i.e.

P−1A0(λ)P = Π0(λ),

and we refer to Remark 4.3 below for the case A0(λ) is not diagonalisable. For all

λ ∈ ρ, let k̂0 denote the Fourier transform of K0. Then, for all ξ ∈ R, we have

k̂0(ξ, λ) =
(
iξid2n − A0(λ)

)−1
= P

(
iξid2n − Π0(λ)

)−1
P−1

= P


(iξ − κ1)−1 0 · · · 0

0 (iξ − κ2)−1 · · · 0
...

...
...

0 0 · · · (iξ − κ2n)−1

P−1

= detC2n

((
iξid2n − A0(λ)

)−1)× PB(ξ, λ)P−1,

where B(ξ, λ) is defined as the matrix



∏
l 6=1

(iξ − κl) 0 · · · 0

0
∏
l 6=2

(iξ − κl) · · · 0

...
...

...

0 0 · · ·
∏
l 6=2n

(iξ − κl)


.
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Consider the decomposition of K0(λ) as K0(λ) =
(
K(1)

0 K
(2)
0

)
(λ), where the operators

K(1)
0 (λ) and K(2)

0 (λ) are defined through their Fourier transforms by

k̂
(1)
0 (ξ, λ) = detC2n

((
iξid2n − A0(λ)

)−1)
and k̂

(2)
0 (ξ, λ) = PB(ξ, λ)P−1. (4.23)

The operator K(1)
0 (λ) is an integral operator defined in L2(R,C), and K(2)

0 (λ) is a

closed operator from a subset of H1(R,C2n) to L2(R,C2n). Indeed, the domain of

K(2)
0 (λ) follows from the fact that domK(2)

0 (λ) ⊂ L2(R,C2n) and also from the fact

that, when n = 1, domK(2)
0 (λ) = H1(R,C2) since K(2)

0 (λ) is a differential operator

similar to T0(λ). Therefore, if |V |1/2K(1)
0 (λ)Ṽ is of trace class then K(λ) is of trace

class, as well. This follows from (cf. equation (2.16) of Chapter 2)

‖K(λ)‖I1 =
∥∥|V |1/2(K(1)

0 (λ)K(2)
0 (λ)

)
Ṽ
∥∥
I1

6
∥∥|V |1/2K(1)

0 (λ)Ṽ
∥∥
I1

∥∥|V |1/2K(2)
0 (λ)Ṽ

∥∥. (4.24)

where ‖ · ‖ is the operator norm. To show that the operator |V |1/2K(1)
0 (λ)Ṽ is of trace

class, observe that

k̂
(1)
0 (ξ, λ) =

2n∏
j=1

(κj − iξ)−1. (4.25)

Therefore,

∣∣k̂(1)0 (ξ, λ)
∣∣ 6 2n∏

j=1

|κj − iξ|−1

6
(

max
j=1,...,2n

{|κj − iξ|−1}
)2n

6 |κ∗ − iξ|−2, (4.26)

where κ∗ = minj=1,...,2n{|κj|}. For n > 1, it then follows from the last estimate and

|V |1/2, Ṽ ∈ L2 (cf. (4.6) and (4.20)) that |V |1/2K(1)
0 (λ)Ṽ is of trace class. Hence by

Proposition 4.1, K(λ) is of trace class.

Remark 4.3. When the matrix A0(λ) is not diagonalisable (cf. [47]), we write it in

the Jordan form and the above proof remains the same. The only change is in the
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entries of the matrix B(ξ, λ) which are given by

2n∏
j=1
l 6=j

(iξ − κj)J̃l(ξ, λ),

where the J̃l(ξ, λ) are the upper triangular matrices of the block matrices (iξid2n −

Jl(λ))−1 with Jl as Jordan segments.

Remark 4.4. Since Ip are two-sided operator ideals in the set of bounded linear

operators (cf. equation (2.16)), we have, under the closedness assumption of the

operator T0(λ), that (cf. equation (4.24))

|V |1/2K(1)
0 (λ)Ṽ ∈ Ip implies that K(λ) ∈ Ip.

Suppose that T0(λ) is derived from a scalar problem. Then the integral operator

K(1)
0 (λ) is precisely the resolvent operator associated with the scalar problem, i.e.,

K(1)
0 (λ) =

(
L0 − λid

)−1
, where L0 is a constant-coefficient differential operator. This

can be seen when considering the scalar eigenvalue problem L0u = λu, where for

aj ∈ R,

L0 =
2n∑
j=0

ajd
j/dxj (4.27)

is defined in L2(R,C) with domain H2n(R,C). The Fourier transform of
(
L0−λid

)−1
,

which is
2n∏
j=1

(κj − iξ)−1, is exactly equal to k̂0(ξ, λ), up to nonvanishing constant.

Therefore, if the integral operator corresponding to the scalar problem is of trace

class, so is the Birman–Schwinger operator K corresponding to the first order system.

We summarise the result in a proposition.

Proposition 4.2. Let the Birman–Schwinger operator K(λ) be derived from the scalar

problem (L0 + v − λid)u = 0, where v ∈ L1. If the integral operator corresponding to

the scalar problem is of trace class, so is K(λ).

For general matrix-valued function A0, let us assume that K(λ) is of trace class.

Then we state the conditions under which one can compute its trace in terms of its

kernel function k(x, y;λ) which a-priori is discontinuous. We start by introducing the
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following notation

Φ =
(
Y −0 Y +

0

)
,

Φ−1 =

Z+
0

Z−0

 ,

where Y −0 ∈ L2(R−,C2n×r) and Y +
0 ∈ L2(R+,C2n×(2n−r)) satisfy (4.13), and Z+

0 ∈

L2(R+,Cr×2n) and Z−0 ∈ L2(R−,C(2n−r)×2n) satisfy the adjoint problem of (4.13) with

r as the rank of the projection operator Q given in (4.14). Then with O denoting the

null matrix, we have

ΦQ =
(
O Y −0

)
, (id−Q)Φ−1 =

Z−0
O

 , for x 6 0, (4.28)

Φ(id−Q) =
(
Y +
0 O

)
, QΦ−1 =

 O

Z+
0

 , for x > 0, . (4.29)

Since Φ(x, λ)Φ−1(x, λ) = Φ−1(x, λ)Φ(x, λ) = id2n, it follows that

Y −0 Z
+
0 + Y +

0 Z
−
0 = id2n, (4.30)

and

Z+
0 Y

−
0 = idr,

Z−0 Y
+
0 = id2n−r,

Z+
0 Y

+
0 = O(2n−r)×r,

Z−0 Y
−
0 = Or×(2n−r).

(4.31)

Thus

Y −0 (x, λ)Z+
0 (y, λ) = Φ(x, λ)QΦ−1(y, λ),

Y +
0 (x, λ)Z−0 (y, λ) = Φ(x, λ)(id2n −Q)Φ−1(y, λ).

(4.32)
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Since K(λ) is of trace class, we explicitly have (cf. [30, Theorem 3.2] and [32, Theo-

rem 4.1, Chap XIV])

trK(λ) =

∫
R

trC2n

(
±Y ±0 (x, λ)Z∓0 (x, λ)V (x)

)
dx. (4.33)

The above equation is obtained after substituting the left-hand side of (4.32) in the

expression of the kernel k in (4.18), and using the invariance of trace for a cyclic

rotation of three matrices. From equation (4.30), an immediate consequence of the

above equality is ∫
R

trC2n V (x)dx = 0.

Let us assume that V is continuous and that

∫ ±∞
0

trC2n V (x)dx = 0. (4.34)

Then the trace of K in terms of its kernel k is given by

trK(λ) =

∫
R

trC2n k(x, x, λ)dx. (4.35)

Indeed, observe that

∫
R

trC2n k(x, x, λ)dx =

∫ +∞

0

trC2n |V (x)|1/2Y +
0 (x, λ)Z−0 (x, λ)Ṽ (x)dx

−
∫ 0

−∞
trC2n |V (x)|1/2Y −0 (x, λ)Z+

0 (x, λ)Ṽ (x)dx

=

∫ ±∞
0

trC2n |V (x)|1/2(id2n − Y ∓0 (x, λ)Z±0 (x, λ))Ṽ (x)dx

−
∫ 0

∓∞
trC2n |V (x)|1/2Y ∓0 (x, λ)Z±0 (x, λ)Ṽ (x)dx

=

∫ ±∞
0

trC2n V (x)dx+

∫
R

trC2n

(
±Y ±0 (x, λ)Z∓0 (x, λ)V (x)

)
dx.

Using (4.30) and (4.34), the trace of K in (4.35) follows. Note that any Green’s

function associated with the first order system of differential equations is discontinuous

on the diagonal (jump condition, cf. Theorem 4.1). With the condition (4.34), one
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expresses the trace of the corresponding Birman–Schwinger operator K(λ) in terms of

its kernel. Therefore, the right-hand side of (4.35) can be viewed as a generalisation

of integral trace for trace class operators which do not have continuous kernels, in

particular.

Remark 4.5. We claim that in addition to the continuity of the perturbation V , if

the diagonal elements of V are equal to zero, the integral kernel k is continuous. To

see this, consider for example a Schrödinger problem rewritten as a first order system

of differential equations
d

dx
Y =

(
A0(λ) + V (x)

)
Y,

where

A0(λ) =

 0 1

κ2 0

 and V =

0 0

v 0


with v continuous in L1. Then the kernel of the Birman–Schwinger operator K(λ) is

given by

k(x, y;κ) =
1

2κ



−|V (x)|1/2

 κeκ(x−y) eκ(x−y)

κ2eκ(x−y) κeκ(x−y)

 Ṽ (y), x 6 y

|V (x)|1/2

 κe−κ(x−y) −e−κ(x−y)

−κ2eκ(x−y) κe−κ(x−y)

 Ṽ (y), x > y

=
1

2κ

|v(x)|1/2e−κ|x−y|v(y)/|v(y)|1/2 0

0 0

 ,

where

|V |1/2 =

|v|1/2 0

0 0

 and Ṽ =

 0 0

v/|v|1/2 0

 .

We can see that the kernel k is continuous and its corresponding Birman–Schwinger

operator K(λ) is of trace class (cf. Theorem 4.2 or Proposition 4.2 with [66] and [25]).

We shall prove our claim for systems deriving from scalar problems of higher order in

the next subsection.
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4.1.2 A class of travelling wave problem

We consider a class of eigenvalue problems that arise in the stability analysis of trav-

elling waves. In this class which includes for example the generalised or regularised

Boussinesq equation, (generalised) Korteweg–de Vries equation, the fifth-order KdV

equation, (generalised) Benjamin–Bona–Mahoney equation and so on, the correspond-

ing first order system of the differential operator T0(λ) has constant coefficients. We

restrict our attention to the scalar case. However, we might use the corresponding

first order system formulation, if required. Our objective is to show that the corre-

sponding Birman–Schwinger operators are of trace class. We consider perturbations

given as differential operators with smooth coefficients belonging to L1(R).

Let the differential operator associated with our eigenvalue problem

L : Hn(R,C)→ L2(R,C)

be given by

L = L0 + v, (4.36)

where n > 2, L0 is an nth order ordinary differential operator with constant coeffi-

cients (cf. (4.27)), and for m = 0, . . . , n− 2,

v =
m∑
i=0

φi(x)
di

dxi
(4.37)

with

φi =

(
m

i

)
dm−i

dxm−i
φ. (4.38)

The above perturbation arises in the study of KdV equations, for example. Note that

the range of m in (4.37) is suitably chosen so that no jump discontinuity occurs on

the diagonal of the Green’s function associated with
(
L0 − λid

)
.

For all λ ∈ ρ, let

Pn(κ) = κn + an−1κ
n−1 + . . .+ a1κ+ a0 − λ (4.39)
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be the characteristic polynomial associated with (L0 − λid).

In what follows, we shall assume the following hypothesis.

Hypothesis 4.1. Assume that the roots of Pn(λ) are simple and have nonzero real

parts.

We denote by κ+j , j = 1, . . . , r, the roots with positive real parts, and by κ−j , j =

r + 1, . . . , n, the roots with negative real parts. Under Hypothesis 4.1, the operator

(L0 − λid) is Fredholm. Therefore, the Green’s function g0 of the resolvent operator

(L0 − λid)−1 is given, for all x, y ∈ R and λ ∈ ρ, by

g0(x, y;λ) =


r∑
j=1

α+
j eκ

+
j (x−y), x 6 y

n−r∑
j=1

α−j eκ
−
j (x−y), y < x,

(4.40)

where αj = α±j (λ) ∈ C. The coefficients α±j satisfy the following matrix equation


1 . . . 1 −1 . . . −1

κ+1 . . . κ+k −κ−k+1 . . . −κ−n
...

...
...

...
...

...

(κ+1 )n−1 . . . (κ+k )n−1 −(κ−k+1)
n−1 . . . −(κ−n )n−1




α1

α2

...

αn

 =


0

0
...

−1

 . (4.41)

Note that since (L0−λid) is a constant coefficient differential operator, the projection

Q is constant. From the previous subsection, the eigenvalue problem associated with

the operator L reduces to an integral eigenvalue problem given, for all λ ∈ ρ and

u ∈ L2, by

u = (L0 − λid)−1vu. (4.42)

With integration by parts, the above equation becomes

u(x) = (−1)m+1

∫
R

(
∂my g0(x, y;λ)

)
φ(y)u(y) dy, (4.43)

where the Green’s function g is given in (4.40), and u(x) := u(x, λ). Note that the

factor (−1)m in the above equation is multiplied by that of the mth derivative of g0

with respect to y, ∂my g0. We set ψ := |φ|1/2u and φ̃ := φ/|φ|1/2. Then the integral
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equation (4.43) is equivalent, for all λ ∈ ρ and ψ ∈ L2, to

(
id + Gm(λ)

)
ψ = 0,

where the Birman–Schwinger operator Gm(λ) is given by

Gm(λ) = |φ|1/2G(0)m (λ)φ̃, (4.44)

with G(0)m (λ) the resolvent operator associated with the kernel function ∂my g0. Explic-

itly, the kernel gm associated with Gm(λ) is given, for all λ ∈ ρ, by

gm(x, y;λ) =


|φ(x)|1/2

r∑
j=1

(κ+j )mα+
j eκ

+
j (x−y)φ̃(y), x 6 y

|φ(x)|1/2
n∑

j=r+1

(κ−j )mα−j eκ
−
j (x−y)φ̃(y), y < x.

(4.45)

Observe that the kernel gm ∈ L2(R2 × ρ,C) and so Gm(λ) are of Hilbert–Schmidt

class, for all m. Indeed, since the Green’s function ∂my g0 is continuous for all x, y ∈ R,

λ ∈ ρ and m = 0, . . . (n − 2), and φ ∈ L1, then following the computational steps in

(4.21), we arrive at the conclusion.

Proposition 4.3. For a general constant coefficient operator L0−λid, where the roots

of its characteristic polynomial Pn(κ) have non-zero real parts, the Birman–Schwinger

operator Gm(λ) is of trace class, for all λ ∈ ρ and m = 0, . . . , (n− 2).

Proof. For all λ ∈ ρ and m = 0, . . . , (n−2), let us denote by ĝm the Fourier transform

of the resolvent operator G(0)m (λ). For m = 0, the Fourier transform ĝ0 of the resolvent

operator G(0)0 (λ) is equal to 1/Pn(iξ), where Pn is defined in (4.39). By Hypothesis 4.1,

ĝ0 satisfies the following

|ĝ0(ξ, λ)| 6
n∏
j=1

|κj − iξ|−1

6 |κ∗ − iξ|−2

where κ∗ is given in (4.26). For m = 0, . . . , (n−2), there is some nonvanishing constant
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cm depending on λ, such that the Fourier transform ĝm satisfies the following

ĝm(ξ, λ) =

∫
R
∂mx g0(x, λ)e−iξxdx

= cm(λ)

∫
R
g0(x, λ)e−iξxdx

= cm(λ)ĝ0(ξ, λ).

Hence by the above inequality and Proposition 4.1, the Gm(λ) are of trace class, for

all λ ∈ ρ and m = 0, . . . , (n− 2).

Remark 4.6. Note that for a general constant coefficient differential operator L0 −

λid, the Green’s function g0 is not usually in the form given in (4.40).

Since Gm(λ) are of trace class, the corresponding Fredholm determinants are given

by

det1
(
id + Gm(λ)

)
= 1 +

∞∑
l=1

dl(λ), (4.46)

where

dl(λ) =
1

l!

∫
R
· · ·
∫
R

detCl

(
[gm(xi, xj;λ)]i,j=1,...,l

)
dx1 · · · dxl. (4.47)

For all λ ∈ ρ and m = 0, . . . (n− 2), the function ∂my g0 is continuous in R×R, and in

particular, on the diagonal x = y, thus

n∑
j=r+1

(κ−j )mαj =
r∑
j=1

(κ+j )mαj.

When l = 1 in (4.47), we have

d1(λ) = trGm(λ)

=

∫
R
gm(x, x;λ)dx

=
r∑
j=1

(κ+j )mαj

∫
R
φ(x)dx

=
n∑

j=r+1

(κ−j )mαj

∫
R
φ(x)dx.
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The claim in Remark 4.5, suggesting the continuity of the Birman–Schwinger kernel

k associated with the system, can now be proved. Rewrite the eigenvalue problem as

a first order system of differential equations, where the perturbation

V =

O O

vm O

 (4.48)

with O as the zero matrix of appropriate size and vm = (φ0, · · · , φm), and

A0(λ) =



0 1 0 · · · 0

0 0 1 · · · 0
... 0

0 0 1

λ− a0 −a1 · · · −an−1


.

By Proposition 4.2, the corresponding Birman–Schwinger operator K for the system

is of trace class. Note that since trCn V = 0 in (4.48), and that the Jordan-block

structures of the operators (L− λid) (resp. L0 − λid) and T (λ) (resp. T0(λ)) are the

same (cf. [64, Example 1 (continued)]),

trK(λ) =

∫
R

trCn k(x, x;λ)dx

=

∫
R
gm(x, x;λ)dx

= trGm(λ).

To show the continuity of the kernel k, one needs to show, for all x ∈ R and λ ∈ ρ,

that trCn k(x, x;λ) = gm(x, x;λ). To this end, it is sufficient to show that it is true

for m = 0 since gm(x, x, λ) = cm(λ)g0(x, x, λ). We write the kernel k as follows

k =

k11 k12

k21 k22

 ,
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where, for l, j = 1, 2, n1 = r and n2 = n− r, klj ∈ Cnl×nj . Moreover, we write

|V |1/2 = diag
(
|φ|1/2, 0, · · · , 0

)
and Ṽ =

 O O

φ|φ|−1/2 O

 . (4.49)

It follows that

Ψ = |V |1/2Y =
(
|φ|1/2u 0 · · · 0

)T
.

Given the sparse structure of the matrix-valued functions |V |1/2 and Ṽ in (4.49), we

have that the block matrices k12, k21 and k22 are identically zero. The only nonzero

entry in the r × r block matrix k11 is the top level entry g0(x, y;λ) (since |φ|1/2u 6= 0

and Ψ = (|φ|1/2u, 0, . . . , 0)T = K(λ)Ψ, it follows that the first entry G0(λ) is the only

nonzero operator in K(λ)), for all x, y ∈ R and λ ∈ ρ. Hence, we have

k(x, y;λ) = diag (g0(x, y;λ), 0, · · · , 0) .

Consequently, the continuity of k follows.

Now assume that φi do not have the form given in (4.38). Then we proceed by

integration by parts to avoid an integro-differential equation in (4.42). If not, the

computation of the determinant can be difficult. Alternatively, suppose that the left

inverse of L0 − λid exists. Then from Subsection 4.1.1, we have, for all λ ∈ ρ and

u ∈ L2, (
id + v(L0 − λid)−1

)
u = 0. (4.50)

For m = 0, . . . , (n− 2), the kernel function of v(L0 − λid)−1 is

m∑
j=0

φj(x)∂jxg0(x, y;λ),

where g0 is the Green’s function associated with the differential operator (L0 − λid).

Let G̃m(λ) denote the Birman–Schwinger operator when φi is of general form. We

claim that the determinant of
(
id + v(L0 − λid)−1

)
is equal to the determinant of(

id + G̃m(λ)
)
, up to a nonvanishing analytic function. Indeed when m = 0, the co-

efficients in the Fredholm determinant series (cf. equation. (4.47)) associated with

both operators G̃m(λ) and v(L0 − λid)−1 are equal. Hence, the zeros of detp
(
id +
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v(L0 − λid)−1
)

coincide in order (location) to algebraic multiplicity of eigenvalues of

L. Thus one can choose either one of the determinants for computing eigenvalues of L.

The pure point spectrum of a constant coefficient differential operator is empty

(cf. [21]). Therefore, the resolvent set ρ of the operator L0 is given by

ρ = C \ σe(L0), (4.51)

where the essential spectrum σe(L0) is the complement of the pure point spectrum

in σ(L0). Due to the invariance of essential spectra under compact perturbation, the

essential spectra of L0 and L coincide, and it is given by

σe(L0) = closure(
{
λ ∈ C : λ =

n∑
j=0

aj(iξ)
j, ξ, aj ∈ R

}
),

or, equivalently

σe(L0) = closure({λ ∈ C : detCn

(
A0(λ)− iξid

)
= 0, ξ ∈ R}).

Note that λ = 0 is an eigenvalue of the operator L which is embedded in the essential

spectrum, since lim|x|→∞ v(x) = 0.

4.2 The Evans function

In this section, we show that the Evans function is proportional to a finite dimensional

determinant associated with a matrix of length r or n− r.

The (matrix-valued) Jost solution (cf. [69] and [28])) is an analytic solution in λ ∈ ρ of

T (λ)Y = 0 which is asymptotically close to a square integrable solution of T0(λ)Y = 0,

at infinity.

Definition 4.2. Assume that the matrix-valued Jost solutions exist. Then for all

λ ∈ ρ, we define the matrix transmission coefficient D(λ) by

D(λ) := lim
x→+∞

Z+
0 (x, λ)Y −(x, λ) (4.52)
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where Z+
0 satisfies T ∗0 (λ)Z+

0 = 0 and Y − is the matrix-valued Jost solution which

decays at −∞, and satisfies T (λ)Y − = 0.

In what follows, we suppress the λ dependence in any concerned function, i.e. we

simply write Y (x) = Y (x, λ) for example.

For some appropriate β > 0, we consider matrix-valued Jost solutions of the following

form (cf. [28] and [69])

Y ± = e∓βxỸ ±, (4.53)

where the matrix-valued solutions Ỹ ± satisfy the following Volterra equations

Ỹ ±(x) = e±βxY ±0 (x)−
∫ ±∞
x

e±β(x−y)Φ(x)Φ−1(y)V (y)Ỹ ±(y)dy (4.54)

with Y ±0 satisfying T0(λ)Y ±0 = 0, Φ = (Y −0 Y +
0 ) a fundamental matrix solution and

‖V ‖Cn×n ∈ L1(R,C, eβ|x|dx). For such a β > 0, the Jost solutions can be uniquely de-

termined by solving the above equation without the exponential factors (see Gesztesy

et al. [28]). In fact, they can be expressed as Neumann series since the Volterra oper-

ators defined in the above equation are of Hilbert–Schmidt class in L2(R±,C), for all

λ ∈ ρ and ‖V ‖Cn×n ∈ L1(R,C, eβ|x|dx). Indeed, let us suppose that β > max{κ, κ′},

where κ, κ′ are introduced in the definition of the exponential dichotomy in (4.14).

Then for all x 6 0, using the inequalities in (4.14) and writing the matrix norm

‖ · ‖ = ‖ · ‖Cn×n , it follows, for some constant c(κ, κ′) > 0, that

∫ x

−∞

∥∥Φ(x)Φ−1(y)V (y)
∥∥dx =

∫ x

−∞

∥∥(Φ(x)QΦ−1(y) + Φ(x)(idn −Q)Φ−1(y))V (y)
∥∥dy

6 c(κ′, κ)

∫ x

−∞
eκ
′(x−y)‖V (y)‖dy

6 c(κ′, κ)

∫ x

−∞
eκ
′xe(β−κ

′)ydy <∞. (4.55)

For all x > y, we use eκ
′(x−y) + e−κ(x−y) 6 2eκ

′(x−y) in the second line of the above

inequality. Observe that the last estimate implies the compactness of the Volterra

operator, for all x 6 0. We remark that our assumption on β is quite stronger than

that given in Gesztesy et al. [28].
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Remark 4.7. 1. In our case, β is such that the following inequality holds

∥∥Φ(x)QΦ−1(y) + Φ(x)(idn −Q)Φ−1(y)
∥∥ 6 c(κ′)eκ

′(x−y) + c(κ)e−κ(x−y)

6 c(κ′, κ)eβ|x−y|.

Hence this implies that β must be chosen greater or equal to the max{κ, κ′}.

2. If the strict inequality β > max{κ, κ′} is replaced by a less strict one, then from

(4.55), the uniqueness of matrix-valued Jost solutions is not guaranteed.

3. The matrix-valued solutions Ỹ ± in (4.54) satisfy the following differential equa-

tion
d

dx
Ỹ ± = (A(x, λ)± βidn)Ỹ ±.

In the context of the Evans function, λ is an eigenvalue if the subspaces, defined

by the set of solutions of T (λ)Y = 0 that decay at ±∞, have nontrivial intersection.

In fact, this coincides with the geometric interpretation of Definition 4.2. That is, if

for some λ ∈ ρ and as x goes to ∞, the subspaces E− and E+
∗ , spanned respectively

by the column vectors of Y − and Z−0 , are orthogonal, then the subspaces E− and E+
0

have nontrivial intersection. This is because for all x ∈ R and λ ∈ ρ, the subspaces

E+
0 (spanned by the column vectors of Y +

0 ) and E+
∗ are orthogonal. In other words,

if for some λ ∈ ρ, the subspaces E− and E+ (spanned by the column vectors of Y +)

have nontrivial intersection, so do the subspaces E− and E+
0 as x tends to ∞.

Lemma 4.1. Assume that ‖V ‖Cn×n ∈ L1(R,C, eβ|x|dx), for some β > 0. Then, for

all λ ∈ ρ, the finite dimensional matrix D(λ) in (4.52) satisfies

detCr D(λ) = lim
x→+∞

detCr Z+(x)Y −(x), (4.56)

where Z+ is the matrix-valued Jost solution of the adjoint problem, i.e. solution of

Z±(x) = Z±0 (x) +

∫ ±∞
x

Z±(y)V (y)H(y, x)dy (4.57)

decaying at ±∞ with

H(x, y) = Y −0 (x)Z+
0 (y) + Y +

0 (x)Z−0 (y) = Φ(x)Φ−1(y). (4.58)
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Proof. Using equation (4.31) which resulted from the identity Φ(x)Φ−1(x) = idn, the

right-hand side of the matrix transmission coefficient (4.52) becomes

Z+
0 (x)Y −(x) = Z+

0 (x)
(
Y −0 (x) +

∫ x

−∞
H(x, y)V (y)Y −(y)dy

)

= idr +

∫ x

−∞
Z+

0 (y)V (y)Y −(y)dy.

(4.59)

Observe that the above equation is independent of the variable x. Therefore,

detCr D(λ) = lim
x→+∞

detCr Z+
0 (x)Y −(x). (4.60)

Substituting the matrix-valued Jost solution Y − in the right-hand side of (4.56) and

using again (4.31), it implies that

Z+(x)Y −(x) = Z+
0 (x)Y −0 (x) + Z+

0 (x)

∫ x

−∞
H(x, y)V (y)Y −(y)dy

+ Y −0 (x)

∫ +∞

x

Z+(y)V (y)H(y, x)dy

+

∫ +∞

x

Z+(y)V (y)H(y, x)dy

∫ x

−∞
H(x, y)V (y)Y −(y)dy.

Similarly, the above equation is independent of the variable x. Hence taking the limit

as x goes ∞, the third and the fourth terms in the right-hand side of the above

equation vanish, and so the result coincides with equation (4.60). Consequently,

equation (4.56) in the above lemma follows.

Hypothesis 4.2. For all λ ∈ ρ, assume that A0(x, λ) = A0(λ) is a constant-valued

matrix.

Remark 4.8. Under the above hypothesis, the exponential decay condition of the

perturbation can be relaxed, i.e. ‖V ‖Cn×n ∈ L1(R,C, (1+ |x|)qdx) (q > 1) when A0(λ)

is not diagonalisable and ‖V ‖Cn×n ∈ L1 otherwise (cf. [27, Section 8 and Theorem

8.3]).

Let the Evans function E(λ) be given by

E(λ) = detCn

(
Y −(x) Y +(x)

)
, (4.61)
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where Y − and Y + are the matrix-valued Jost solutions decaying at ±∞. Then the

following result holds.

Theorem 4.3. For all λ ∈ ρ, the Evans function E(λ) and the determinant of the

matrix transmission coefficient D(λ) satisfy

detCr D(λ) =
E(λ)

c(λ)
, (4.62)

where c(λ) is a nonvanishing analytic function.

Proof. For all λ ∈ ρ, we have

E(λ) = detCn

(
Y −(x) Y +(x)

)
= detCn

(
Y −0 (x) Y +

0 (x)
)

detCn

id +

Z+
0 (x)

Z−0 (x)

(H−(λ)Y −(x) H+(λ)Y +(x)
) ,

where the Volterra operators H±(λ) are given by

H±(λ)Y ±(x) = −
∫ ±∞
x

H(x, y)V (y)Y ±(y)dy

with H is given by (4.58). Using equation (4.31), it follows that

E(λ) = c(λ) detCn

idr O

O idn−r



+

∫ x−∞ Z+
0 (y)V (y)Y −(y)dy −

∫∞
x
Z+

0 (y)V (y)Y +(y)dy∫ x
−∞ Z

−
0 (y)V (y)Y −(y)dy −

∫∞
x
Z−0 (y)V (y)Y +(y)dy

 ,
(4.63)

where c(λ) = detCn

(
Y −0 (x) Y +

0 (x)
)
. Note again that the integrands in the above

equation are independent of the variable x. Hence taking the limit as x goes for

example to ∞,

E(λ) = c(λ) detCr D(λ). (4.64)
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As a result of (4.64), the determinant of the matrix transmission coefficient detCr D(λ)

enjoys the same properties of the Evans function E(λ)—the zeros of detCr D(λ) co-

incide in location and multiplicity to eigenvalue of T (λ).

Remark 4.9. The exponential factor in the expression of the Evans function E(λ)

in (4.61) is omitted because both E(λ) and c(λ) have the same trace.

Remark 4.10. Note that in the case the eigenvalues κ+j or κ−j of A0(λ) are simple,

the determinant of the matrix transmission coefficient D(λ) is the Evans function

ES(λ) in (3.12) of Chapter 3 (cf. [69] and [12]).

4.3 Regularised Fredholm determinants

In this section, we show that the p-regularised Fredholm determinants associated with

K(λ) is equal to the determinant of the matrix transmission coefficient D(λ), up to

a nonvanishing analytic function. We start with the case K(λ) being of trace class.

This will then facilitate the proof in case K(λ) ∈ Ip, for p > 2.

4.3.1 Trace class operators

For all λ ∈ ρ, we assume that K(λ) is of trace class. Then the following result holds.

Theorem 4.4. For all λ ∈ ρ, the determinant of the matrix transmission coefficient

D(λ) equals the Fredholm determinant, that is

detCr D(λ) = det1
(
id−K(λ)

)
.

Moreover, we have

det1
(
id−K(λ)

)
=
E(λ)

c(λ)
. (4.65)

Proof. Taking the limit as x→∞ in (4.59), we have

detCr D(λ) = detCr

(
idr +M(λ)

)
, (4.66)

where

M(λ) =

∫
R
Z+

0 (x)V (x)Y −(x)dx.

51



Chapter 4: Fredholm determinants and the Evans function

Since the finite rank operator M(λ) is analytic in λ, then the finite dimensional

determinant detCr

(
idr +M(λ)

)
, as well as, detCr D(λ) are analytic in λ ∈ ρ. In fact,

the analyticity follows from considering an analytic fundamental matrix solution Φ in

λ ∈ ρ. Explicitly, the left-hand side of equation (4.66) is given by

detCr

(
idr +M(λ)

)
= 1 +

r∑
m=1

1

m!

r∑
i1,... ,im=1

detCim


Mi1i1(λ) · · · Mi1im(λ)

...
...

Mimi1(λ) · · · Mimim(λ)

 .

(4.67)

Expanding the right-hand side of the above equation, substituting the Neumann series

for the Jost solution Y − and reordering the multiple integrals, it follows that

detCr D(λ) = 1 +

∫
R

trCn

(
Y −0 (x)Z+

0 (x)V (x)
)

dx+
∞∑
j=2

1

j!
α
(1)
j (λ). (4.68)

We can define B(λ) as an integral operator associated with α
(1)
j (λ) as coefficients of

its regularised Fredholm determinant expansion (see Chapter 2). The existence of

integral operator B(λ) is justified by the following arguments:

1. Since M(λ) is finite rank operator and the set of finite rank operators is dense in

I1, there exists an operator B(λ) ∈ I1 such that ‖M(λ)− B(λ)‖I1 6 ε. Hence,∣∣ detCr(idr +M(λ))− det1
(
id + B(λ)

)∣∣ 6 ε (for any two operators K1,K2 ∈ I1,

we have | det1(id−K1)− det1(id−K2)| 6 ‖K1−K2‖I1 exp(1+‖K1‖I1 +‖K2‖I1)).

2. The determinant expansion in (4.67) with the Neumann series of the matrix-

valued Jost solution Y − substituted is similar to the determinant expansion of

trace class operators (e.g. Plemelj–Smithies’ formula (2.19) of Chapter 2). We

note the similarity in the first two terms in the expansion (4.68), in particular the

second term coincides with the integral trace of trace class operators (cf. (4.33)).

Note from (4.68) that the trace of B(λ) satisfies

trB(λ) =

∫
R

trCn

(
±Y ±0 (x)Z∓0 (x)V (x)

)
dx. (4.69)

The minus sign in the right-hand side of (4.69) comes from using the other equivalent
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definition of D(λ), that is

D(λ) = lim
x→−∞

Z−0 (x)Y +(x).

Since both functions detCr D(λ) and det1
(
id − K(λ)

)
are analytic and vanish at

eigenvalues of the operator T (·) with equal multiplicity, they are equal, up to a non-

vanishing analytic function. However, given that the first two terms (cf. (4.68)) in

their series expansion are equal (e.g. (4.69) is equal to trK(λ) cf. (4.33)), it follows

that

detCr D(λ) = det1
(
id−K(λ)

)
.

Hence equation (4.65) follows from Theorem 4.3.

Example 4.1 (KdV/mKdV equation [57, Theorem 3.1]). Consider the eigenvalue

problem associated with the KdV/mKdV equation

−d3u

dx3
+ c

du

dx
− d

dx
(φqu) = λu, (4.70)

where φq(x) = 1
2
c(q+1)(q+2)sech2

(
1
2
xq
√
c
)
. For Reλ > 0, the constant matrix A0(λ)

associated with the first order system of (4.70) has 2 eigenvalues κj with Reκj >

0, (j = 2, 3), and one eigenvalue κ1 with Reκ1 < 0. For q = 1, 2, the Evans function

E(λ) is given explicitly by

E(λ) =

(
κ∗ +

√
c

κ∗ −
√
c

)2

, (4.71)

where κ∗ = min{Reκj, j = 1, 2, 3}. From Proposition 4.3, it follows that the integral

operator G1(λ) (cf. equations (4.44),(4.45)) associated with problem (4.70) is of trace

class, for all q > 1. Hence considering the (n − r) × (n − r) matrix transmission

coefficient D(λ) (n = 3, r = 2), we have, for all q > 1,

det1
(
id−K(λ)

)
= 1−

∫
R
Z−0 (x)V (x)Y +(x)dx

= 1− κ1
(κ1 − κ2)(κ1 − κ3)

∫
R

e−κ1xφq(x)u+(x)dx

= det1
(
id− G1(λ)

)
.
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In Figure 4.1, we display the Evans function E(λ) and the Fredholm determinant

det1
(
id− G1(λ)

)
, for q = 1. Figure 4.1 indicates, for q = 1, 2, that that

det1
(
id− G1(λ)

)
=

(
κ∗ +

√
c

κ∗ −
√
c

)2

,

Figure 4.1: The Evans function given by (4.71) and the Fredholm determinant for
q = 1 and c = 1.

Now we establish the connection between the Evans function and the determi-

nant of the elliptic operator T (λ). Let detζ denote the zeta-regularised determinant

(cf. [59]). Then given an elliptic operator A with positive order and admitting a ray

of minimal growth, its zeta-regularised determinant is given by (cf. [59])

detζ(A) := exp
(
− ∂

∂s
ζA(s)|s=0

)
,

where

ζA(s) = trA−s =
∑

λn∈σd(A)
λn 6=0

λ−sn

with σd(A) denoting the discrete spectrum of A and Re(s) � 0. We remark that if
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an elliptic operator A is Fredholm then we can define

detF (A) := detζ(A). (4.72)

From [50, Lemma 2.1], we know that the determinant of an elliptic operator given by

PQ, where P is elliptic operator and Q is Fredhlom operator of the form Q = id +K

with K a trace class operator, satisfies the following relation

detζ(PQ) = detζ(P) det1(id +K). (4.73)

Recall that T (λ) = T0(λ)
(
id−K0(λ)V

)
and T0(λ) are Fredholm, for all λ ∈ ρ. Then

it follows from (4.72) and the above relation that

detF T (λ) = detF

(
T0(λ)

(
id−K0(λ)V

))
= detF T0(λ) det1

(
id−K0(λ)V

)
. (4.74)

Hence combining equation (4.74) and equation (4.62) connecting the Evans function

with the determinant of D(λ) in Theorem 4.3 yields

detF T (λ)

detF T0(λ)
=
E(λ)

c(λ)
. (4.75)

Therefore

detF T (λ) = c̃(λ)E(λ), (4.76)

where c̃(λ) = detF T0(λ)/c(λ). In particular if c̃(λ) ≡ 1, we have, for all λ ∈ ρ, x0 ∈ R,

detF T0(λ) = detCn Φ(x)

= exp
(∫ x

x0

trCnA0(y, λ)dy
)

detCn Φ(x0).

In conclusion, the determinant of the Fredholm operator T (λ) or its zeta-regularised

determinant reduces to the Evans function.
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4.3.2 Hilbert–Schmidt operators

As seen in Subsection 4.1.1, the Birman–Schwinger operator K(λ), associated with

the one dimensional travelling wave problems, is of Hilbert–Schmidt class for all λ ∈

ρ. Observe that Theorem 4.3 (connecting detCr D(λ) and E(λ)) and Definition 4.2

(defining D(λ) and (4.68), in particular) make sense independently of whether the

operator K(λ) is of trace class or not. For some λ ∈ ρ such that ‖K(λ)‖I2 < 1, the

Plemelj’s formula for detp (cf. Chapter 2) and in particular for p = 2 is given by

det2

(
id−K(λ)

)
= exp

( ∞∑
l=2

1

l
trKl(λ)

)
.

Similarly, for some λ ∈ ρ such that ‖B(λ)‖I1 < 1, we have

detCr D(λ) = det1
(
id + B(λ)

)
= exp

( ∞∑
l=1

1

l
trBl(λ)

)
. (4.77)

From Theorem 4.4, if K(λ) is of trace class, we must have that trKl(λ) = trBl(λ), for

all l > 1. However if K(λ) is a Hilbert–Schmidt operator, then its trace might not be

defined or might not be equal to trB(λ). Therefore trKl(λ) = trBl(λ), for all l > 2.

Hence using equation (4.77),

detCr D(λ) = exp
(
trB(λ)

)
det2

(
id−K(λ)

)
, (4.78)

where trB(λ) is defined in (4.69). Combining the above equation and equation (4.62)

of Theorem 4.3, it follows that

det2
(
id−K(λ)

)
=
E(λ)

c(λ)
exp
(
−trB(λ)

)
.

Consequently from equations (4.62) and (4.75),

det2
(
id−K(λ)

)
exp
(
trB(λ)

)
=

detF T (λ)

detF T0(λ)
. (4.79)
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Note that the above relation extends the one given in (4.73) for trace class operators,

i.e. K is Hilbert–Schmidt operator in Q = id +K given in (4.73).

Remark 4.11. Suppose that the perturbation V decays slowly so that it does not

belong to L1. Then the corresponding integral operator K(λ) is neither trace class nor

Hilbert–Schmidt operator (‖V ‖ /∈ L1). However it is in Ip for some p > 3. Following

the same arguments which resulted in equation (4.78) and combining with equation

(4.62), one establishes, for all λ ∈ ρ and some p > 3, that

detp
(
id−K(λ)

)
=
E(λ)

c(λ)
exp
(p−1∑
l=1

(−1)l

l
trBl(λ)

)
.

Therefore relation similar to equation (4.79) follows, for some p > 3.

4.4 Regularised Fredholm determinants for fronts

In this section, we construct an integral operator associated with the p-regularised

Fredholm determinants for the perturbation ‖V ‖Cn×n /∈ L1(R,C). More often in

our case, if supx∈R ‖V (x)‖Cn×n is finite, then the travelling waves involved in the

perturbation V are fronts. We focus on the case A0(x, λ) = A0(λ) is constant and is

analytic in λ ∈ C, but the idea in this subsection can be extended to the x-dependent

case. We also assume the following hypothesis.

Hypothesis 4.3. Suppose that limx→±∞ V (x) = V ±, where V + 6= V − are constant-

valued matrices, that

‖V − V ±‖Cn×n ∈ L1(R±,C).

Moreover, assume that eigenvalues of the matrices A±0 (λ) := A0(λ) + V ± are semi-

simple, for all λ ∈ Λ ⊂ C, where Λ is the region introduced in Chapter 3.

By κ±j = κ±j (λ), j = 1, . . . , r, we denote the eigenvalues of A±0 (λ) with positive

real parts and by τ±j = τ±j (λ), j = r + 1, . . . , n, the other eigenvalues with negative

real parts, for all λ ∈ Λ. When limx→±∞ V (x) = V ±, the construction of the Green’s

function associated with the unperturbed problem T ±0 (λ) := d/dx − A±0 (λ) is not

obvious as in Section 4.1. To circumvent this, we remark that it is possible to construct

57



Chapter 4: Fredholm determinants and the Evans function

a constant-coefficient differential operator defined, for all λ ∈ Λ, by

T̃0(λ) := d/dx− Ã0(λ), (4.80)

where

P−1(λ)Ã0(λ)P (λ) = diag
(
κ−1 , . . . , κ

−
k , τ

+
k+1, . . . , τ

+
n

)
,

with

P (λ) =
(
P−(λ) P+(λ)

)
.

The columns of the matrices P±(λ) are the eigenvectors associated with eigenvalues

τ+j and κ−j respectively. If the eigenvalues of A±0 (λ) are simple, the matrix P (λ) is

given, for all λ ∈ Λ, by

P (λ) =


1 · · · 1 1 · · · 1

κ−1 · · · κ−r τ+r+1 · · · τ+n
... · · · ...

... · · · ...

(κ−1 )n−1 · · · (κ−r )n−1 (τ+r+1)
n−1 · · · (τ+n )n−1

 .

Note that any nontrivial solution of T ±0 (λ)Y = 0 satisfies T̃0(λ)Y = 0 as well. And

also choosing analytic eigenvectors of A±0 (λ), the constructed matrix Ã0(λ) is analytic

in λ ∈ Λ. Therefore, for all λ ∈ Λ, the differential operator T̃0(λ) is analytic in λ, and

so is its corresponding resolvent operator K̃0(λ). The kernel of the resolvent operator

K̃0(λ) is given by

k̃0(x, y;λ) =

−Φ(x, λ)QΦ−1(y, λ), x 6 y,

Φ(x, λ)(id−Q)Φ−1(y, λ), y < x,

(4.81)

where Q is the projection operator onto the subspace decaying at −∞ corresponding

to the problem T̃0(λ)Y = 0, and Φ is the fundamental matrix solution satisfying

T̃0(λ)Φ = 0. The Birman–Schwinger operator corresponding to our new problem

d

dx
Y =

(
Ã0(λ) +R(x)

)
Y (4.82)
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is given by

K̃(λ) = |R|1/2K̃0(λ)R̃,

where

R(x) =

V (x)− V −, x 6 0

V (x)− V +, x > 0,

(4.83)

and R̃ = U |R|1/2 with U a partial isometry. Since Ã0(λ) is constant-valued matrix and

‖R‖Cn×n ∈ L1, it follows from Theorem 4.2 that the operator K̃(λ) defined as above

is of trace class, for all λ ∈ Λ. Given that the matrix-valued Jost solutions Y ± of the

original problem and that of the modified one Ỹ ± corresponding to problem (4.82)

are both exponentially bounded and their asymptotic limits coincide at ±∞, their

column vectors are linearly dependent. Hence applying Theorem 4.4 for the modified

problem (4.82), the Evans function E(λ) of the original problem and the regularised

Fredholm determinant associated with problem (4.82) satisfy the following equation

E(λ) = detCn

(
Y − Y +

)
= c̃(λ) detCn

(
Ỹ − Ỹ +

)
= c(λ) det1

(
id + K̃(λ)

)
, (4.84)

where c̃(λ) and c(λ) are nonvanishing analytic functions. The analytic function c̃(λ)

is due to the linear dependence of the matrices Y ± and Ỹ ±, and c(λ) is the product

of c(λ) and the nonvanishing analytic function connecting the Evans function and

Fredholm determinants of problem (4.82).

The subregion Λ when V − 6= V + is given by (cf. [36, Lemma 2, p.138])

Λ = C \
(
σ−e ∪ σ+

e

)
,

where σ±e are the essential spectrum of T ±0 respectively.

Suppose that one considers the decomposition of the operator T given in (4.8) with-

out taking into account the asymptotic limits of V . If for some p ∈ N, the integral
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operator |V |1/2
(
d/dx − A0(λ)

)−1
Ṽ ∈ Ip, then the zeros of its regularised Fredholm

determinants might not coincide with eigenvalues of T (λ). This is because the domain

in which |V |1/2
(
d/dx− A0(λ)

)−1
Ṽ is defined, might is a subregion of, or contains, Λ

given above. Therefore, this is one of the reasons why the construction of the Green’s

function is difficult for the case when V ± are different. However, we have readily

resolved this difficulty here.

Example 4.2. We consider the Fisher’s equation written as a first order system of

differential equations

d

dx
Y =

 0 1

λ− 1 + 2φ(x) −c

Y,

where φ(x) = 1/
(
1 + exp(x/

√
6
)−2

and c = 5/
√

6 is the speed of the travelling

wave solution. In this example, we apply our method for constructing the Fredholm

determinant when the perturbation V satisfies Hypothesis 4.3. The perturbation

V =

 0 0

2φ 0


is such that ‖V ‖C2×2 /∈ L1 and ‖V ‖C2×2 is equal to 2 when x goes to −∞ and 0

otherwise. We display the Fredholm determinant associated with the modified prob-

lem (4.82) without the nonvanishing function c(λ) (only zeros of Fredholm deter-

minants are important) and the Evans function E(λ) corresponding to the original

problem divided by detCn(Y −0 Y +
0 ), in Figure 4.2. It can be seen from Figure 4.2,

that relation (4.84) holds with the nonvanishing analytic function c(λ)→ 1 as λ→∞.

Numerically, our method presents an additional discontinuity in the kernel of the inte-

gral operator K̃(λ) due to the discontinuity of the perturbation R in (4.83). Therefore,

a suitable numerical method, which takes into account the discontinuity in the kernel

function both on the diagonal and in the perturbation R, is required for best results.

4.5 Concluding remarks

We have shown in this chapter that for a class of travelling wave problems (those

with constant-valued matrix A0(λ)), the associated Birman–Schwinger operator is of

trace class. Moreover, we have shown the connection between the Evans function
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Figure 4.2: The Evans function of the original problem divided by detCn(Y −0 Y +
0 )

(red) and the Fredholm determinant for the modified problem (blue).

and modified Fredholm determinants through introducing the determinant of a finite

dimensional determinant D(λ) that we call the matrix transmission coefficients. Fi-

nally, we have constructed an appropriate integral operator in the case the matrix

perturbation V is not in L1(R,Cn×n).
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Numerical evaluation of modified

Fredholm determinants

5.1 Introduction

This chapter focuses on computing eigenvalues of integral operators in Hilbert space.

To achieve this, numerical computation of p-modified Fredholm determinants (cf. [67]

and [32]) is considered, since they locate eigenvalues of the corresponding integral

operator, as well as their algebraic multiplicities (see [68], [32], [67], [34] and [11]).

Recently, the numerical evaluation of the Fredholm determinant was reintroduced by

Bornemann in [10] for the purpose of computing distribution functions in random ma-

trix theory. In particular, Bornemann generalised Hilbert’s result to any quadrature

rules which converge for continuous functions (Hilbert applied the rectangular rule to

show the uniform convergence of the Fredholm determinant). In this chapter however,

the uniform convergence is proved under a weaker assumption—the kernel is assumed

to be integrable with respect to its second argument. Consequently, our uniform

convergence result generalises that of Bornemann. Hence we extend the numerical

evaluation of the Fredholm determinant to the p-modified Fredholm determinants.

The difference between these two determinants is that the Fredholm determinant is

associated with continuous kernels (the case studied by Bornemann) unlike the modi-

fied ones (our case), in the integral context. To prove our result, we use a result from

collective compactness theory of Anselone [3]. Indeed we use the fact, that if the set
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of finite rank operators approximating the integral operator is collectively compact,

then the error converges uniformly in a totally bounded set. Consequently, the error

in approximating eigenvalues of the integral operator, which is bounded by the error

approximating the integral operator, converges uniformly (cf. [3], [5], [6] and [70]).

This in turn yields uniform convergence of the p-modified Fredholm determinants.

From the numerical aspect, using the numerical method of Kang et al. [43] for solving

integral equations, results in a uniform convergence in the resolvent set and exactness

in the spectrum. Indeed, this suggests that computing the determinant is nothing

other than an interpolation in which the zeros are the interpolation points. From this

point of view, the convergence result is confirmed, since from interpolation theory, uni-

form convergence is guaranteed for any continuous function in a bounded domain. To

compute the infinite determinants numerically, the integral equation is approximated

by a system of algebraic equations whose determinant is then computed. Further-

more, the computation of higher order determinants is demonstrated, in particular

for p = 3, 4.

5.2 Convergence analysis

Let [a, b] be a finite interval of R, and let C
(
[a, b]

)
be the space of continuous functions

on [a, b], equipped with the uniform norm ‖ · ‖∞. For all z ∈ C and u ∈ C
(
[a, b]

)
, the

eigenvalue problem reads

(id + zK)u = 0, (5.1)

where, for all x ∈ (a, b),

Ku(x) =

∫ b

a

k(x, y)u(y)dy (5.2)

with k(x, y) a measurable function.

In this section, we prove uniform convergence of the modified/regularised Fredholm

determinants for bounded z ∈ C . As a result, we give the rate of convergence in the

spectrum and in the resolvent set of K. Moreover, we demonstrate how to compute

the modified/regularised Fredholm determinants numerically.
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To solve problem (5.1), two methods are generally used: the expansion or projection,

and the quadrature methods (Nyström-type). Here we focus on the latter method.

However, the results in this chapter are also applicable for the projection methods,

under the hypotheses stated in [70]. These hypotheses roughly assume that K is com-

pact and that both ‖K−PNK‖ and ‖KN−PNK‖ tend to zero as N →∞, where PN is

a projection operator and KN is an approximation of K. The type of kernel functions

k(x, y) that we shall consider are continuous everywhere in the domain except on the

diagonal, i.e., the set {(x, y) ∈ [a, b]× [a, b] : x = y}, and they also satisfy the following

hypotheses.

Hypothesis 5.1. Assume that for all x ∈ [a, b], k(x, ·) ∈ L1
(
[a, b]

)
,

sup
x∈[a,b]

∫ b

a

|k(x, y)|dy <∞, (5.3)

and for x1, x2 ∈ [a, b]

∫ b

a

∣∣k(x1, y)− k(x2, y)
∣∣dy → 0, as x1 → x2. (5.4)

Any integral operator K associated with problem (5.1) and with kernel k(x, y)

satisfying the above hypothesis maps C
(
[a, b]

)
into itself, and is compact. Indeed for

all x1, x2 ∈ [a, b] and u ∈ C
(
[a, b]

)
, we have

|Ku(x1)−Ku(x2)| 6 ‖u‖∞
∫ b

a

∣∣k(x1, y)− k(x2, y)
∣∣dy. (5.5)

As x1 goes to x2, and using (5.4), it follows that the integral operator K maps C
(
[a, b]

)
the space of continuous functions into itself. Let

S = {u ∈ C
(
[a, b]

)
: ‖u‖∞ 6 1}. (5.6)

To show the compactness of K, we need to show that the set K(S) is totally bounded

in C(a, b). This is equivalent to showing that K(S) is bounded and equicontinuous

in C
(
[a, b]

)
(Arzelà–Ascoli theorem). The boundedness of K(S) follows directly from

(5.3), i.e. for all u ∈ S,

‖Ku‖ <∞
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since for all x ∈ [a, b] and u ∈ S

|Ku(x)| 6 sup
x∈[a,b]

∫ b

a

|k(x, y)|dy.

For all u ∈ S and x1, x2 ∈ [a, b], the equicontinuity of K(S) follows from taking the

limit as x1 goes to x2 in equation (5.5) and invoking (5.4). Consequently we have

that the operator K is compact.

Henceforth, we shall assume that the kernel function k satisfying Hypothesis 5.1 is

given by

k = g × h, (5.7)

where g satisfies Hypothesis 5.1 and h is continuous everywhere in the domain. Note

that with Hypothesis 5.1, we can consider g(x, y) = |x−y|−α with 0 6 α < 1 since the

corresponding integral operator is compact. Assume for all x ∈ [a, b], u ∈ C
(
[a, b]

)
and for sufficiently large N that

‖h(x, ·)u(·)−
N∑
j=1

hj(x)u(yj)Pj(·)‖∞ → 0, (5.8)

where the Pj is a polynomial interpolation of order j in C
(
[a, b]

)
, yj are the nodal

points in [a, b] and hj(x) = h(x, yj). Then we define the operator KN by

KNu(x) =
N∑
j=1

wj(x)hj(x)u(yj), (5.9)

where for fixed x ∈ [a, b] and j = 1, . . . , N

wj(x) =

∫ b

a

g(x, y)Pj(y)dy.

Under Hypothesis 5.1, the operator KN maps C
(
[a, b]

)
to itself. Indeed, note that the

continuity of wj follows directly from the assumption on the function g. Therefore, it

follows from the continuity assumption of h that the product wj(x)hj(x) is continuous

for all x ∈ [a, b]. For N > 1, x ∈ [a, b], there exists a constant cN > 0 such that for
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all u ∈ S (i.e. ‖u‖∞ 6 1), we have

∣∣KNu(x)
∣∣ 6 N∑

j=1

∣∣wj(x)hj(x)
∣∣

6 sup
x∈[a,b]

N∑
j=1

∣∣wj(x)hj(x)
∣∣

6 cN‖hj‖∞ sup
x∈[a,b]

∫ b

a

|g(x, y)|dy <∞. (5.10)

The last estimate implies that KNu is bounded in C
(
[a, b]

)
, for N > 1. Moreover,

we have that KN is compact since it is finite rank operator, as dim(ranKN) 6 N . In

conclusion, the operator KN maps C
(
[a, b]

)
to itself, and is compact.

Remark 5.1. Alternatively for fixed x ∈ [a, b], we can approximate h(x, y)u(y) with

some orthogonal polynomial basis in L2 in equation (5.8). This method is also used

in Section 5.3.

Given the operator KN , equation (5.1) is replaced, for all x ∈ [a, b], by

uN(x) = −z
N∑
j=1

wj(x)hj(x)uN(yj). (5.11)

Applying the Nyström method (cf. [55]) in the above equation, i.e., substituting x = yi

in equation (5.11), yields a finite dimensional eigenvalue problem given by

uN(yi) = −z
N∑
j=1

wj(yi)hj(yi)uN(yj), i = 1, . . . , N. (5.12)

Note that the two equations (5.11) and (5.12) are equivalent. That is, if uN(x) sat-

isfies (5.11) then it also satisfies (5.12) when x = yi. Conversely, if uN(yi) satisfies

(5.12) then uN(x) is uniquely determined by its values at the node points {yi} in (5.11).

To illustrate the use of Fredholm determinants, suppose that the kernel k is con-

tinuous and that the associated integral operator K is approximated by a Gaussian

quadrature in [a, b] (any Gaussian quadrature for finite domain is valid, e.g. Cheby-

shev, Legendre). Then for all x ∈ [a, b] and j = 1, . . . , N , the quadrature weights
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wj(x) = wj are constant in (5.11), and k = h in the product defining the kernel k

from (5.7), i.e. g ≡ 1. From equation (5.12), one can then deduce that eigenvalues of

KN are precisely the zeros of the function dN(z) defined by

dN(z) = detCN (idN + zA), (5.13)

where A =
(
(wjk(yi, yj)

)N
i,j=1

. Given that the kernel k is continuous everywhere in

the domain, then for bounded z ∈ C, the determinant dN(z) converges uniformly to

the Fredholm determinant d(z) defined in (2.4) (cf. [10, Theorem 6.1]).

Remark 5.2. Implicitly, the collective compactness of the set of operators {KN}N>1

(see Definition 5.1 below) is used in Theorem 6.1 of [10], since the continuity of the

kernel k and the application of a Gaussian quadrature to approximate the integral

operator are the guaranteeing sufficient conditions (cf. [3]).

Let B denote the set of bounded linear operators on C
(
[a, b]

)
. To generalise

Theorem 6.1 in [10] to any integral operator K ∈ Ip with kernel given by (5.7) and g

satisfying Hypothesis 5.1, we shall need the following definition:

Definition 5.1 (Collectively compact, Anselone [3]). A set of operators {Kn}n≥1 ⊂ B

is called collectively compact if

A. K and Kn are linear operators on the Banach space B into itself.

B. Knu→ Ku as n→∞, for all u ∈ B and n > 1.

C. The set {Knu : n > 1, ‖u‖ 6 1} has compact closure in B.

Definition 5.2 (Anselone [3]). A set of operators A ⊂ B is collectively compact, if

the set

A(S) = {Ku : K ∈ A, u ∈ S},

where S is given for example by (5.6), is relatively compact (relatively compact,

sequentially compact and totally bounded are equivalent in a complete space [3]). A

sequence of operators in B is collectively compact whenever the corresponding set is.

In what follows, c is always a positive constant. Under Hypothesis 5.1, we show

that the set of operators {KN}N>1 defined in (5.9) is collectively compact. Indeed, the
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operator KN satisfies A. Regarding B, observe that for all x ∈ [a, b] and u ∈ C
(
[a, b]

)
,

|Ku(x)−KNu(x)| 6 c sup
x∈[a,b]

∫ b

a

∣∣h(x, y)u(y)− [h(x, y)u(y)]N
∣∣dy

= c sup
x∈[a,b]

‖h(x, ·)u− [h(x, ·)u]N‖L1 ,

where [h(x, y)u(y)]N approximates h(x, y)u(y), i.e. it is given by the right-hand side

of (5.8). For all x, y ∈ [a, b] since the function h(x, y)u(y) is continuous, it follows

from interpolation theory that the right-hand side of the above inequality converges

to zero as N goes to infinity. Hence for large N ,

KNu→ Ku. (5.14)

To show condition C, we again use the Arzelà–Ascoli theorem. Given the above

pointwise convergence (5.14), the set of operators {KN}N>1 is uniformly bounded [3],

i.e., for all N > 1 there exists a positive constant c (different from the previous one)

such that

‖KN‖ 6 c.

Therefore the set {KN(S)}N>1 is uniformly bounded as well. For all x1, x2 ∈ [a, b],

observe that

|KNu(x1)−KNu(x2)| 6
N∑
j=1

|wj(x1)hj(x1)− wj(x2)hj(x2)|

6
N∑
j=1

(
|(wj(x1)− wj(x2))hj(x1)|

+
∣∣(hj(x1)− hj(x2))wj(x2)∣∣)

6
N∑
j=1

(
‖hj‖

∣∣wj(x1)− wj(x2)∣∣
+ ‖wj‖

∣∣hj(x1)− hj(x2)∣∣).
Since the functions wj and hj are continuous for all yj ∈ [a, b], it follows that for all
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N > 1 and as x1 goes to x2,

|KNu(x1)−KNu(x2)| → 0.

Hence the equicontinuity is established. By Arzelà–Ascoli theorem, the set of func-

tions {KN(S)}N>1 has a compact closure, and so by Definition 5.2 we have that the

set of operators {KN}N>1 is collectively compact.

Having proved the compactness property of the operators K and {KN}N>1, we are now

ready to show the uniform convergence result for integral operator K ∈ Ip for p > 1.

The outline of our proof is as follows: assume that the set of operators {KN}N>1, ob-

tained either by quadrature or by projection methods, is collectively compact. Then

an eigenvalue λ of K is the limit of a sequence of eigenvalues λN of KN (cf. [5,70]). It

follows that the nth power of λ is also the limit of the nth power of λN . Consequently,

for bounded z ∈ C, one gets uniform convergence in approximating the p-modified

Fredholm determinants. This is because the error in approximating the p-modified

Fredholm determinants depends on the error approximating eigenvalue, λ of K, which

is in turn bounded uniformly by Ku−KNu. In brief, the uniform convergence of the

eigenvalues implies the uniform convergence of the p-modified Fredholm determinants.

Remark 5.3. There exist integral operators, K that do not fully satisfy Hypothe-

sis 5.1 but are compact. The integral kernel of such operators are given, for example,

by h(x, y)|x−y|−α where h(x, y) is assumed to be continuous and α > 1. In particular

for α = 3/2, the integral operator K ∈ I4 (cf. [11]). In that case, the convergence

analysis of this chapter no longer applies since wj(x) is not Lebesgue integrable. How-

ever, as long as one is interested in eigenvalues, one strategy that could be used is

to compute the Fredholm determinant of the nth power of the operator K, since for

some n ∈ N, the nth power integral operator Kn is of trace class and its kernel is

continuous. From this, a relation between the Fredholm determinant corresponding

to Kn and the p-modified Fredholm determinants associated with K, is established.

Therefore one deduces the p-modified Fredholm determinants associated with K from

the Fredholm determinant associated with Kn (cf. Theorem 5.1 and Remark 5.4).
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Theorem 5.1. Suppose that K ∈ I2, then

det1(id− z2K2) = det2(id− zK) det2(id + zK).

Moreover, if det2(id− zK) = det2(id + zK) then

( det2(id− zK))2 = det1(id− z2K2).

If K ∈ I3 then K2 ∈ I2 and we have

det2(id− z2K2) = det3(id− zK) det3(id + zK).

Proof. Since the product of two Hilbert–Schmidt operators is of trace class, we have

det1(id− z2K2) =
∞∏
n=1

(1− z2λ2n)

=
∞∏
n=1

[
(1− zλn) exp(λnz)(1 + zλn) exp(−λnz)

]

=
∞∏
n=1

[
(1− zλn) exp(λnz)

] ∞∏
n=1

[
(1 + zλn) exp(−λnz)

]

= det2(id− zK) det2(id + zK)

Now if K ∈ I3 then observe that K2 satisfies (cf. [32, Theorem 11.2, Chap IV])

tr |K2|2 6 (tr |K|4)1/2 6 (tr |K|3)2/3 <∞. (5.15)
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Hence K2 is Hilbert–Schmidt. It then follows that

det2(id− z2K2) =
∞∏
n=1

(1− z2λ2n) exp(z2λ2n)

=
∞∏
n=1

(
(1− zλn) exp(λnz + z2λ2n/2)

× (1 + zλn) exp(−λnz + z2λ2n/2)
)

(5.16)

= det3(id− zK) det3(id + zK).

The inequalities (5.15) are obtained by combining the following inequalities

tr |K2|2 6 (tr |K|3)2/3, tr |K2|2 6 (tr |K|4)1/2 and (tr |K2|4)1/4 6 (tr |K|3)1/3.

Remark 5.4. If K ∈ I4 then K2 ∈ I2 (cf. tr |K2|2 6 (tr |K|4)1/2 < ∞). Indeed we

have

det2(id− z2K2) = det4(id− zK) det4(id + zK).

The proof is as above, we replace (5.16) by

det4(id± zK) =
∞∏
n=1

(1± zλn) exp(∓λnz + z2λ2n/2∓ z3λ3n/3).

In what follows, we set for all p > 1 and z ∈ C,

dp(z) := detp(id + zK) and dNp(z) :=
∞∑
k=0

α
(p)
(kN)z

k/k!.

where α
(p)
(kN) are defined by (2.20) and (2.21) with trKN substituted by trK.

Remark 5.5. 1. Note that the function dNp(z) is equal to the finite dimensional

determinant associated with the matrix A =
(
(wj(yi)h(yi, yj)

)N
i,j=1

, i.e.

dNp(z) = detCN (idN + zA). (5.17)
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2. As mentioned in Bornemann [10] and proved in Meyer [54, p. 492], the series

defining the finite dimensional determinant dNp(z) must stop at n = N , since it is

a polynomial of degree at most N .

3. Since KN is a finite rank operator and equations (5.11) and (5.12) are equivalent,

then trKN = trCNA.

Theorem 5.2. Assume that K given in (5.7) is in Ip, and {KN}N>1 is collectively

compact with KN defined by (5.9). Then for p > 1, we have

dNp(z)→ dp(z)

converges uniformly for all bounded z as N →∞.

Proof. Let z ∈ C be bounded by M > 0. Then

|dp(z)− dNp(z)| 6
∞∑
j=0

|α(p)
j − α

(p)
(jN)| M

j/j!. (5.18)

Observe from (2.21) and (2.22) that

|α(p)
j − α

(p)
(jN)| 6

j∑
l=1

|α(p)
j−lν

(p)
l − α

(p)
((j−l)N)ν

(p)
(lN)|

6
j∑
l=1

(
|α(p)
j−l − α

(p)
((j−l)N)| |ν

(p)
l |+ |ν

(p)
l − ν

(p)
(lN)| |α

(p)
((j−l)N)|

)

6
j∑
l=1

cl|ν(p)l − ν
(p)
(lN)|

6 c

j∑
l=1

∣∣ν(p)l − ν
(p)
(lN)

∣∣, (5.19)

where cl are positive coefficients and c = maxl=1,...,j{cl}. For all j > p,
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|ν(p)l − ν
(p)
(lN)| = |trKl − trKlN |. Therefore

|trKl − trKlN | =
∣∣∣ ∞∑
n=1

λln −
N∑
n=1

λl(nN)

∣∣∣
6
∣∣∣ N∑
n=1

λln −
N∑
n=1

λl(nN)

∣∣∣+
∣∣∣ ∞∑
n=N+1

λln

∣∣∣,
where λn and λnN are eigenvalues of the operators K and KN respectively.

As N goes to infinity,
∞∑

n=N+1

|λn|l → 0.

Hence ∣∣∣ ∞∑
n=N+1

λln

∣∣∣ 6 ∞∑
n=N+1

∣∣λn∣∣l → 0.

Given that {KN}N>1 is collectively compact, for sufficiently large N , ε > 0 and for

n ∈ {1, . . . , N} (cf. [5] and [70] and [3, Theorem 4.8])

|λn − λ(nN)| 6 ε.

Hence it follows that

|λln − λl(nN)| =
∣∣λn − λ(nN)

∣∣∣∣∣ l−1∑
m=0

λmn λ
l−m
(nN)

∣∣∣
6
∣∣λn − λ(nN)

∣∣ l−1∑
m=0

∣∣λmn λl−m(nN)

∣∣ (5.20)

6 l
∣∣λn∣∣lε. (5.21)

Since for sufficiently large N ,

l−1∑
m=0

λmn λ
l−m
(nN) ≈ l|λn|l. (5.22)

From inequality (5.21) and the continuous embedding of Ip ⊂ Iq for p < q (cf (2.17)
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of Chapter 2), we have

N∑
n=1

∣∣λln − λl(nN)

∣∣ 6 εl
N∑
n=1

∣∣λn∣∣l 6 εl‖K‖pIp .

Thus for N large enough and ε chosen arbitrarily small,

|trKl − trKlN | 6 ε. (5.23)

Consequently combining (5.23), (5.19) and (5.18),

|dp(z)− dNp(z)| 6 ε as N →∞.

Under the assumption that the set of operators {KN}N>1 is collectively compact

and exploiting the results of [6], [5] and [70], we now estimate the rate of convergence

in evaluating the determinant dNp(z) at the spectrum of K, σd(K).

Theorem 5.3. Assume that K and {KN}N>1 are given as in Theorem 5.2. Let

n0 < N be fixed and λn0 6= 0 and λn0N denote the eigenvalues of K ∈ Ip and KN ,

respectively. Then for some N sufficiently large and for p > 1, we have

|dp(zn0)− dNp(zn0)| 6 c max
16i6m

{‖Kui −KNui‖1/ν}, (5.24)

where zn0 = λ−1n0
, {u1, · · · , um} is a basis for Ker(K − λn0 id)ν and m and ν are the

multiplicity and the index2 of λn0, respectively.

Proof. For simplicity, we consider the case p = 1. However the proof holds for p > 2

by using a finite dimensional version of p-modified Fredholm determinants in (2.23)

of Chapter 2. Evaluating the Fredholm determinant at its zero zn0 = λ−1n0
, for fixed

2The smallest positive integer l such that Ker(K − λn0
id)l = Ker(K − λn0

id)l+1
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n0 < N and λn0 6= 0, we have

|d(zn0)− dN(zn0)| = |dN(zn0)|

=
∣∣∣ N∏
n=1

(1− λ−1n0
λ(nN))

∣∣∣
=
∣∣∣ N∏
n=1

[
λ−1n0

(
λn0 − λ(nN)

)]∣∣∣
= |λn0|

−N
N∏
n=1

|λn0 − λ(nN)|. (5.25)

Since the set of operators {KN}N>1 is collectively compact, it follows from [6] and [70,

Theorem 3] when n = n0 in the right-hand side of (5.25), for sufficiently large N , that

|d(zn0)− dN(zn0)| 6 c max
16i6m

{‖Kui −KNui‖1/ν}.

Pointwise convergence implies uniform convergence in a totally bounded set [3,

Proposition 1.7]. Therefore, since the set {KN(S)}N>1 is totally bounded, KNui
converges uniformly to Kui as N →∞, i.e.

‖Kui −KNui‖ → 0 as N →∞.

For the projection method, it suffices to replace the right-hand side of (5.24) by the

error bound in [70, Theorem 3].

Theorem 5.4. Assume that K and {KN}N>1 are given as in Theorem 5.3. Then for

some sufficiently large N and z an element of the resolvent set ρ(K), we have

|dp(z)− dNp(z)| 6 cβ(N, νn0)‖K‖
p
Ip
, (5.26)

where

β(N, νn0) = max
16i6mn0

{‖Kui −KNui‖1/νn0} (5.27)

and νn0 = max
n=1,...,N

{νn} with νn are the indices of the eigenvalues λn.
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Proof. Suppose that z ∈ ρ(K). Then combining equation (5.20) and (5.22), and the

error estimate of [6] for each λn, n = 1, · · · , N , we have for all k > p and for some

sufficiently large N ,

|trKk − trKkN | 6 ck
N∑
n=1

|λn|k max
16i6mn

{‖Kui −KNui‖1/νn}.

Given νn0 then for all n = 1, . . . , N ,

max
16i6mn

{‖Kui −KNui‖1/νn} 6 β(N, νn0)

with β(N, νn0) given in (5.27). It then follows for sufficiently large N that

|trKk − trKkN | 6 ckβ(N, νn0)‖K‖
p
Ip
.

Hence equation (5.26) follows.

Observe from equation (5.26) and equation (5.24), that for a given eigenvalue z−10

of index ν 6 νn0 , we have for some sufficiently large N and z ∈ ρ(K), that

|dp(z0)− dNp(z0)| 6 |dp(z)− dNp(z)|. (5.28)

Corollary 5.1. Let the integral operator K be in Ip and let the set of operators

{KN}N>1 be collectively compact. Assume that K has simple eigenvalues λn, and that

the basis eigenfunctions {un} are either purely real or imaginary. Then for some

sufficiently large N and for all z ∈ C and c > 0, we have

|dp(z)− dNp(z)| 6 c‖Ku1 −KNu1‖, (5.29)

where ‖Ku1 −KNu1‖ = sup
n>1
{‖Kun −KNun‖}

Indeed since for all n > 1, eigenvalues λn of K are simple, it follows that their

corresponding indices νn are equal to 1 (index of an eigenvalue is less than or equal

to its algebraic multiplicity). Since for all n > 1, the regularity of eigenfunctions un

associated with the compact integral operator K is the same, it follows, for example
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n = 1, that

‖Ku1 −KNu1‖ = sup
n>1
{‖Kun −KNun‖}.

For n > 1, we have that ‖Kun −KNun‖ = O
(
‖Ku1 −KNu1‖

)
. It follows from (5.24),

(5.26) and (5.28) that

|dp(z)− dNp(z)| = c|dp(zn)− dNp(zn)|,

where z−1n ∈ σ(K). Hence equation (5.29) follows. In other words, Corollary 5.1

tells us that for z−1 ∈ σ(K) or z ∈ ρ(K), the rate of convergence in computing the

p-modified Fredholm determinants associated with K is the same, up to a nonzero

constant (cf. Figure 5.1).

Remark 5.6. If λn are semisimple then their indices νn are equal to 1 (mentioned

as an exercise in Meyer [54, p. 596]). However the rate of convergence will not be

the same for all z ∈ C like in Corollary 5.1. Instead, the maximum error in (5.26)

as well as (5.24), will depend on the propreties of each corresponding eigenfunction

(e.g. parity, regularity, etc). We encounter this situation in the case of self-adjoint

and normal operators with semisimple eigenvalues, for example (see Example 5.3 and

5.2).

Remark 5.7. Suppose for example that K in Corollary 5.1 is associated with a

kernel which has a jump discontinuity in the first derivative on the diagonal. Then

for a given quadrature method which integrates through the discontinuity region, the

rate of convergence is the same for all z ∈ C like in Corollary 5.1. However, if the

method takes into account the discontinuity, we might expect better convergence for

z−10 ∈ σ(K) than for z ∈ ρ(K) (cf. Figure 5.1).

5.3 Numerical Results

In this section we numerically evaluate the p-modified Fredholm determinants asso-

ciated with the integral operator K given by (5.2), where its corresponding kernel is
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given, for all x, y ∈ [a, b] ⊂ R, by

k(x, y) =

k
(1)(x, y), a 6 y 6 x

k(2)(x, y), x < y 6 b.

(5.30)

The functions k(1) and k(2) are the restrictions of the kernel k in the lower and upper

triangular domains of the square [a, b] × [a, b]. We follow Kang et al.’s [43] method

(see below) for solving Fredholm integral equations of second kind, since it leads to

high accuracy when computing the zeros of Fredholm determinants, in particular for

integral operators with semi-separable kernel. For weakly singular kernels (cf. Exam-

ple 5.4), the interpolation method described in Section 5.2 will be used to compute

eigenvalues associated with the integral operator K. We briefly give the construction

of the method of Kang et al. Assume that k(1)(x, y)u(y) and k(2)(x, y)u(y) can be

approximated by Chebyshev polynomials Tn(x), i.e. for fixed xm ∈ [−1, 1] (a map

from [a, b]→ [−1, 1]) and m = 1, · · · , N ,

k(1)(xm, y)u(y) =
N∑
n=0

amnTn(y)

k(2)(xm, y)u(y) =
N∑
n=0

ãmnTn(y),

where the amn and ãmn are real-valued constants. Then we replace the eigenvalue

problem (5.1) by (cf. [43])

(
idN + z

1

2

(
CSrC

−1 ◦ A1 + CSlC
−1 ◦ A2

))
u = 0, (5.32)

where ◦ denotes pointwise multiplication, Sr, Sl are the right and the left spec-

tral integration matrix respectively (see Appendix B), C =
(
Tn(xm)

)N
n,m=0

, A1 =(
k(1)(xm, xn)

)N
n,m=0

, A2 =
(
k(2)(xm, xn)

)N
n,m=0

and u =
(
u(x1), . . . , u(xN)

)T
.

One of the advantages of using Chebyshev polynomials is that the coefficients in the

expansion of an indefinite integral can be easily obtained from that of the series expan-

sion of the integrand in terms of the Chebyshev polynomial [16]. With this property,

the Chebyshev polynomials are extremely useful for integral equations associated with
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kernel functions having jump discontinuity along the diagonal. In all our examples

below, we use the Nyström–Clenshaw–Curtis and the Nyström–Gauss–Legendre re-

ferred to NCC as in [43] and NGL, respectively. The latter method integrates through

the discontinuity of the kernel k, since it approximates the function k(x, y)u(y), for all

y ∈ [−1, 1] and fixed x ∈ [−1, 1]. Hence, this results in a poor convergence compared

to the NCC which does not integrate through the discontinuity because it approxi-

mates each function k(i)(x, y)u(y) for all y ∈ [−1, 1], fixed x ∈ [−1, 1] and i = 1, 2.

Example 5.1. For our first example, we consider the problem studied by Bornemann

in [10], i.e.

u = zKu, (5.33)

where, for all x, y ∈ [0, 1], the kernel k of the integral operator K is given by

k(x, y) =

x(1− y), x 6 y

y(1− x), y < x.

Our goal here is not to compute the Fredholm determinant, but to emphasise Corol-

lary 5.1 and Remark 5.7. For this example, the operator K is trace class and self-

adjoint. The corresponding set of operators {KN}N≥1 is collectively compact since k is

continuous (cf. [3]). The eigenvalues of K are simple and are given, for all n = 1, 2, . . . ,

by

z−1n = λn =
1

π2n2
.

Accordingly, Corollary 5.1 tells us that the rate of convergence in evaluating the

Fredholm determinant at the spectrum and the resolvent set are the same up to

a nonzero positive constant. The rate of convergence for this example is O(N−2)

(cf. [10]), for the NGL. Indeed this is seen in Figure 5.1 where we display the error

|d(z)− dN(z)| computed by the NGL and the NCC methods at the eigenvalue, z1 =

λ−11 = π2 and at z = 1. At the eigenvalue, the NCC method converges very fast as N

gets bigger (see Figure 5.1 (left)). In fact, the accuracy for the NCC method reaches

machine precision for just N = 16, but at z = 1 it converges at the rate of O(N−2)

(see Figure 5.1 (right)). We recall that at the roots zn, the p-Fredholm determinants

dp(zn) = 0 so that the error is just |dNp(zn)|.
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Figure 5.1: log10 of the error evaluated at z1 = λ−11 = π2 (left) and at z = 1 (right) of
Example 5.1.

Example 5.2. Our goal in this example is to show that for a self-adjoint operator

with semi-simple eigenvalues, Corollary 5.1 does not hold, i.e. the rate of convergence

in evaluating the Fredholm determinant at the spectrum and at the resolvent set are

not the same for the NGL method. The kernel function associated with the integral

operator K is given, for all x, y ∈ [0, 1], by

k(x, y) =
1

12
− 1

2
|x− y|+ 1

2
(x− y)2.

The operator K is self-adjoint with eigenvalues given by (cf. [38])

z−1n = λn =
1

4n2π2
, n = 1, 2, . . . .

Since
∞∑
n=1

|λn| = ‖K‖I1 < ∞, the operator K is of trace class and its corresponding

Fredholm determinant is

d(z) =
∞∏
n=1

(
1− z

4n2π2

)
=
(sin(

√
z/2)√
z/2

)2
.

For n > 1, each eigenvalue λn has an algebraic multiplicity mn = 2 with index νn = 1

(cf. Theorem 5.3) since K is self-adjoint operator. Therefore following the same line of

arguments (in particular, the hat like shape of a section of the kernel k) of Bornemann
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Figure 5.2: log10 of the error evaluated at z1 = λ−11 = 4π2 (left) and at z = 1 (right)
for Example 5.2.

in [10] which led to an error of order O(N−2) in Example 5.1, we conclude that

β(N, 1) = max{‖Ku1n −KNu1n‖, ‖Ku2n −KNu2n‖}

= O(N−2),

where, for n > 1, the eigenfunctions u1n(x) =
√

2 cos(2nπx) and u2n(x) =
√

2 sin(2nπx)

(cf. [38, Example 5, p. 74]) are associated with the eigenvalue λn. However we see

from Figure 5.2 that the convergence error of the NGL method is O(N−4) at the

eigenvalue z1 = 4π2 (see Figure 5.2 (left)) whereas at z = 1 it is O(N−2) (see Fig-

ure 5.2 (right)). The NCC method has the same error convergence as the previous

example (see Figure 5.2). Note from Figure 5.2 that the rate of convergence for the

NGL at the eigenvalue behaves like the square of the rate of convergence at the resol-

vent set. We also note that after the machine precision, the values in the vertical axis

in Figure 5.2 (right) are squared, for the NCC. In conclusion, the error convergence

at the spectrum and at the resolvent set are in general not the same for self-adjoint

operators with semi-simple eigenvalues when using NGL method.

Example 5.3. Here we numerically compute a 2-modified Fredholm determinant. We

also show that for a normal operator with simple eigenvalues and complex eigenfunc-

tions, Corollary 5.1 does not hold. The kernel k associated with the integral operator
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K is given, for all x, y ∈ [−1, 1], by

k(x, y) =

1, y 6 x

−1, x < y.

Note that k is of the form given in (5.7), where g(x, y) = sign(x− y) and h(x, y) = 1.

The integral operatorK associated with the above kernel function is a Hilbert–Schmidt

operator since ‖k‖L2([−1,1]2) <∞ (see more details below), and it is a normal operator

3 as well, i.e. K∗K = KK∗. The coefficients α
(2)
n (cf. (2.20) of Chapter 2) in the

expression of the 2-modified Fredholm determinant d2(z) are easily computed via

(2.22) of Chapter 2 by setting trK to zero (Hilbert. [37]). They are given explicitly,

for q = 0, 1, 2, . . . , by

α(2)
n =

1

n!

2n, n = 2q

0, n = 2q + 1.

Hence the 2-modified Fredholm determinant is

d2(z) = cosh(2z) (5.34)

with simple pure imaginary zeros zk satisfying

z−1n = λn = −i 4
π

1

2n+ 1
, n ∈ Z. (5.35)

The eigenfunctions un associated with the eigenvalues λn are given by

un(x) =
1√
2

exp (iπ(2n+ 1)x/2) . (5.36)

From (5.35), it is clear that the trace ofK is divergent but the trace ofK2 is convergent,

i.e.

trK2 = −2
16

π2

∞∑
n=0

1

(2n+ 1)2
= −4. (5.37)

The factor of 2 before the sum in (5.37) comes from the fact that λ̄n (conjugates

of λn) are also eigenvalues of K, i.e. d2(z̄n) = d2(zn) = 0 for all n ∈ Z. Hence

3The kernel k2 of KK∗ given by (5.38) satisfies k2 = k∗2 .
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∑
n>0

λ2n + (λ̄n)2 = 2
∑
n>0

λ2n. Equivalently, the determinant in (5.34) is given by

d2(z) =
∞∏
n=0

[(
1− i4z/π(2n+ 1)

)
exp
(
i4z/π(2n+ 1)

)]
.

For plotting the approximation of d2(z), we compute the determinant of the linear

Figure 5.3: The graph of d2(z) and d2N(z), for real values of z and N = 30.

system arising from applying the Nyström-rectangular rule to the integral equation

(5.33). In Figure 5.3, we display the finite dimensional determinant d2N(z) and the

2-modified Fredholm determinant d2(z), for real values of z ∈ [0, 1].

Note that the eigenfunctions (5.36) of K have nonzero real/imaginary parts. Hence

Corollary 5.1 does not hold for the operator K. In fact, it is seen in Figure 5.4 (left)

and (right) that the rate of convergence of
∣∣d2(z)−d2N(z)

∣∣ at z0 = λ−10 = iπ/4 ∈ σd(K)

and at z = 1 ∈ ρ(K) is O(N−2) and O(N−1) respectively. The rate of O(N−1) was

expected due to the discontinuity of the kernel k.

To implement the strategy mentioned in the paragraph preceding Theorem 5.1, we

compute the iterated integral operator. The 2-iterated kernel, k2 of this example, is
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Figure 5.4: log10 of the error evaluating at z1 = λ−11 = iπ/4 (left) and at z = 1 (right)
for Example 5.3.

continuous Hermitian, and it is given, for all x, y ∈ [−1, 1], by

k2(x, y) = −2 + 2|x− y|. (5.38)

The integral operator K2 associated with the kernel k2 is of trace class since k2 satisfies

Item 3 defining trace class operators of Subsection 2.3.1 in Chapter 2 with α > 1/2.

Therefore its trace trK2 in (5.37) is also given by (cf. [68] and [38])

trK2 =

∫ 1

−1
k2(x, x)dx

=

∫ 1

−1

∫ 1

−1
k(x, y)k(y, x)dxdy = −4.

The coefficients in the Fredholm determinant series of K2 are given, for all q > 1, by

α
(1)
2q = 42q/2(2q)! and α

(1)
0 = 1. Hence, the Fredholm determinant associated with the

operator K2 is

det1
(
id− z2K2

)
=

1

2
(cosh(4z) + 1). (5.39)

Since d2(z) = d2(−z), we must have from Theorem 5.1 that

(d2(z))2 = det1
(
id− z2K2

)
. (5.40)
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Indeed the above equality holds because

(cosh(2z))2 =
1

2
(cosh(4z) + 1).

Note that due to the discontinuity in the kernel function k, the approximation d2N(z)

converges slowly to d2(z). Since relation (5.40) holds and that k2 is continuous, one can

improve the order of convergence in computing d2(z) by approximating det1(id−z2K2)

instead.

Remark 5.8. The same behaviour of the error holds for the self-adjoint operator iK

with eigenvalues ±iλn, as well.

Figure 5.5: The graphs of d3N(z) and d2N(z) (left) and d2N(z)d2N(−z) and d3N(z)
(right), for real values of z ∈ [0, 0.3] and N = 30.

Example 5.4. In this example, we compute the 3-modified Fredholm determinant.

Numerically, we shall observe the uniform convergence of Theorem 5.2. For all x, y ∈

[−1, 1] and α ∈ [0, 1[, the kernel k(x, y) associated with the integral operator K is

given by

k(x, y) =
1

|x− y|α
.

The kernel function k(x, y) is of the form given in (5.7) with h(x, y) = 1. Hence the

integral operator K associated with the above kernel is compact and positive definite,
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self-adjoint operator [5]. In particular, for 0 < α < 1/2 the integral operator K is

Hilbert–Schmidt (cf. [38] and [8]). Therefore, the 2-modified Fredholm determinant is

computed as in Example 5.3 by substituting zero in the kernel function at x = y [37].

For this reason, we shall only focus on the case α = 1/2. For this particular case, the

integral operator K is not Hilbert–Schmidt operator since ‖k‖L2([−1,1]2) is unbounded,

it is possibly in Ip for p > 3. The 3-iterated kernel k3 is continuous (cf. [8]), and the

corresponding integral operator K3 is a positive definite, self-adjoint operator. In fact

the positiveness and the self-adjointness of K3 follow from that of K. From Item 4

defining trace class operators of Subsection 2.3.1 in Chapter 2, it follows that K3 is

of trace class with

trK3 =

∫ 1

−1
k3(x, x)dx = ‖K3‖I3 <∞.

Since K is positive definite, self-adjoint operator, it implies that

‖K‖3I3 = tr |K|3 = trK3 <∞.

Hence the integral operator K is in I3. For the numerical computation of the 3-

modified Fredholm determinant d3(z) = det3(id− zK), we need to compute numeri-

cally the eigenvalues of K and form the finite dimensional version of equation (2.23)

of Chapter 2. However given Theorem 5.1 we are not required to, we only need to

have an explicit expression of the 2-iterated kernel k2 and set its diagonal values to

zero. Using Maple, the 2-iterated kernel k2 is given, for all x, y ∈ [−1, 1], by

k2(x, y) =



− ln
(

2− y − x− 2
√

(1− y)(1− x)
)

+ π

+ ln
(

2 + y + x+ 2
√

(1 + y)(1 + x)
)
, x < y

− ln
(

2 + y + x− 2
√

(1 + y)(1 + x)
)

+ π

+ ln
(

2− y − x+ 2
√

(1− y)(1− x)
)
, x > y.

In Figure 5.5 (left), we display the approximation d3N(z) of d3(z) computed using the

five eigenvalues of largest modulus and the approximation d2N(z) of det2
(
id − zK2

)
obtained by applying the Nyström-rectangular rule on the eigenvalue problem. In

Figure 5.5 (right), we display d2N(z)d2N(−z) and d3N(z). Clearly we see that the

product d2N(z)d2N(−z) coincides with d3N(z) which confirm Theorem 5.1. Therefore,
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eigenvalues of K can be deduced from those of K2.

5.4 Concluding remarks

In this chapter, we have given theoretical and numerical results concerning the ap-

proximation error (dp − dNp), where dp is the p-modified Fredholm determinants and

dNp is the finite dimensional determinants associated with dp. These results are as

follows: first, we have shown that the approximation error (dp − dNp) is uniform in

a bounded domain. Second, we have given the rate of convergence when evaluating

(dp− dNp) lies in the spectrum or in the resolvent set. As a consequence, we have ob-

served that numerical evaluation of the p-modified Fredholm determinants is nothing

other than an interpolation in which the interpolation points are the eigenvalues of

the operator K. Although we dealt with a bounded domain of R, an extension of the

present analysis to a bounded subset of Rn is possible. This is of course under the

assumption that the K is compact and that the set {KN}N>1 is collectively compact.
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Chapter 6

Computing Fredholm determinants

for travelling wave problems

6.1 Introduction

This chapter aims at numerically compute the Fredholm determinant associated with

travelling wave problems, and then compare its accuracy with that of the Evans

function. The numerical evaluation of the Fredholm determinant here differs slightly

from that of the previous chapter, since the underlying integral operator K(λ) is not

linear in λ. Consequently, one needs to compute the matrix approximating the in-

tegral equation for each value of λ ∈ Λ ⊂ C. This might seem a disadvantage but

since exponential convergence can be achieved for smooth kernels when applying the

Nyström-quadrature methods, and moreover since the Fredholm determinants extend

naturally to higher dimensions, it is then an interesting direction to pursue.

Numerically the Evans function can be difficult to compute due to different exponen-

tial growth of solutions in the semi-bounded intervals. However, this can be resolved

once the problem is expressed in an exterior algebra framework (see [14]). Unfortu-

nately the size of the new problem increases exponentially with the order of the orig-

inal problem. Methods such as continuous-orthogonalisation [40] or Grassmannian-

shooting (cf. [52]) resolve this problem of high dimensionality. When computing the

Fredholm determinant, these issues do not arise.
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To compute the eigenfunctions for general problems, one usually needs to compute

the eigenvalues first. This can be achieved by the shooting method—fix a boundary

condition and integrate the problem for different values of λ until the other boundary

condition is matched. By doing so, both eigenvalues and eigenfunctions are simul-

taneously computed. A further alternative involves approximating the differential

equations by a system of algebraic equations and then computing the eigenvalues and

eigenvectors of the corresponding matrix. However, since the essential spectrum of the

differential operator is not empty (in our case), one needs to refine the (uniform) mesh-

grids in order to track the isolated non-moving points (eigenvalues) in the complex

plane, for the finite differences method. In the integral formulation, the computation

of the eigenfunctions is almost identical to the shooting method. That is, in order to

convert the differential problem into an integral equation, an appropriate construction

of the Green’s function is needed. In the travelling wave problems, this corresponds

to the projection of the evolution onto the stable/unstable subspaces. Therefore any

nontrivial square integrable solution is an eigenfunction associated with a nonzero

eigenvalue. This follows from the compactness property of the underlying integral

operator. The analogy with the shooting method is that the eigenfunctions satisfy

suitable boundary conditions which follow from the Green’s function.

To compute the Fredholm determinants numerically, the integral equation is approx-

imated by a system of algebraic equations whose determinant is then computed. In

this chapter, the Nyström-type quadrature methods considered to reduce the integral

equation to a system of equations are the following:

1. Gaussian quadrature in an unbounded domain;

2. Truncation of the domain and application of the trapezoidal rule; and

3. Mapping of the infinite domain to a finite one and application of Gaussian quadra-

ture.

For a kernel function with a jump discontinuity in the first derivative, Nyström-

product-integration based on Lagrange interpolation is considered. This allows us to

generate a method whose rate of convergence is comparable to that of the Runge–

Kutta method of order four, depending on the smoothness of the function of course.
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However for a sufficiently smooth kernel, the Nyström-trapezoidal rule is applied since

it is computationally less expensive than product-integration or Gaussian quadratures,

for an equivalent convergence rate. methods which are, in our case, the step size.

6.2 The numerical approach

In this section, the numerical approach that we use for computing the Fredholm de-

terminant associated with the travelling waves is presented. We approximate the

integral equation by a system of linear algebraic equations arising from applying a

Nyström-type method [55]. We then compute its determinant.

Since our concern is to compute eigenvalues associated with the travelling wave prob-

lems, we recall that the underlying kernel k satisfies, for a given perturbation v ∈ L1,

λ ∈ Λ ⊂ C, some constants c > 0 and κ > 0 and for all x, y ∈ R (cf. (4.19) of

Chapter 4), the following inequality

∣∣k(x, y;λ)
∣∣ 6 c v(x)e−κ|x−y|ṽ(y), (6.1)

where ṽ = v|v|−1/2. With the above condition, the underlying integral operator K(λ)

is compact in L2(R), i.e. K(λ) ∈ I2, since k ∈ L2(R2×Λ,C) (cf. (4.21) of Chapter 4).

Furthermore, for all u ∈ L2(R), x1, x2 ∈ R and λ ∈ Λ, we have

|K(λ)u(x1)−K(λ)u(x2)| 6 ‖u‖L2

(∫
R
|k(x1, y;λ)− k(x2, y;λ)|2dy

)1/2
.

Hence for the integral eigenvalue problem K(λ) maps L2(R) into the space of functions

in L2(R) which are continuous, i.e. C(R) ∩ L2(R).

Remark 6.1. The analysis that we carry out holds for kernel k : R2 × Λ → Cn×n,

where the absolute value | · | is replaced by the norm of a matrix ‖ · ‖Cn×n or the norm

of a vector ‖ · ‖Cn for ku : R2 × Λ→ Cn accordingly.

As in the previous chapter, we assume that the kernel function k is given by

k = g × h (6.2)
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where the function g is analytic in λ such that the above product is in L2(R2×Λ,C),

and h is continuous and analytic in R2 × Λ satisfying

sup
(x,y)∈R2

∣∣h(x, y;λ)
∣∣ <∞. (6.3)

Note that the advantage of assuming k of the form (6.2) is to include more general

function spaces and hence extend the quadrature methods for continuous functions

to such spaces.

If we assume that the above function k in (6.2) is continuous in R× R, then Gauss–

Hermite quadrature might not be the best choice since the exponential decay of the

kernel k is slower than that of Hermite functions. Therefore, to solve the integral

equation (
id−K(λ)

)
u = 0,

for all u ∈ L2 and λ ∈ Λ, we proceed either by truncating the domain or transform-

ing the unbounded domain to a finite one and then apply the appropriate Gauss-

quadrature.

6.2.1 Domain truncation

For kernel functions satisfying the exponential decay in (6.1), truncation methods

might be more effective than applying a Gaussian quadrature either for unbounded

domain or (finite) truncated domain. To this end, for some suitable chosen R > 0

(truncation point), λ ∈ Λ, x ∈ [−R,R], we define the operator KR,N(λ) by

KR,N(λ)u(x) =
N∑
j=1

wj(x, λ)h(x, yj;λ)u(yj), (6.4)

where {yj} are the nodal points in [−R,R] and

wj(x, λ) =

∫ R

−R
g(x, y;λ)Pj(y)dy (6.5)
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with Pj is a polynomial interpolation of order j. We also define the truncated integral

operator KR(λ), for all x ∈ [−R,R] and λ ∈ Λ, by

KR(λ)u(x) =

∫ R

−R
k(x, y;λ)u(y)dy, (6.6)

and assume, for sufficiently large N and for x ∈ [−R,R], that

KR(λ)u(x) ≈ KR,N(λ)u(x). (6.7)

Since k ∈ L2(R2 × Λ,C) (i.e. K(λ) ∈ I2), we choose the functions g so that the

function wj(·, λ) is continuous, for j = 1, . . . N and λ ∈ Λ. Consequently the set

of operators {KR,N(λ)}N>1 is collectively compact in the set of bounded linear op-

erators in C[−R,R]. We omit the proof since it is the same as in the previous chapter.

Suppose for instance that K(λ) ∈ I1, and we denote by d(λ) its corresponding Fred-

holm determinant. We also denote by dR(λ) the Fredholm determinant of the re-

stricted operator KR(λ) in C[−R,R] and dR,N(λ) its approximation. Let λ0 be an

eigenvalue of the operator
(
id−K(λ)

)
. We now show, for some R > 0, that the error∣∣d(λ0)−dN,R(λ0)

∣∣ is very small asN goes to infinity. Since {KR,N(λ)}N>1 is collectively

compact, we have, for fixed λ ∈ Λ and sufficiently large N , that (Anselone. [3, Propo-

sition 1.7])

‖KR(λ)u−KR,N(λ)u‖ 6 ε/2. (6.8)

On the other hand, given that k ∈ L2(R2×Λ,C), we have, for u ∈ C(R)∩L2(R) and

λ ∈ Λ,

‖K(λ)u−KR(λ)u‖2L2 6
∫
|x|>R

(∫
|y|>R

|k(x, y, λ)u(y)|dy
)2

dx

6 ‖u‖2L2(R\[−R,R])

∫
|x|>R

∫
|y|>R

|k(x, y, λ)|2dydx

6 ε2/4. (6.9)
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Hence combining (6.8) and (6.9) we have, for u ∈ C(R) ∩ L2(R), some large N and

λ ∈ Λ, that

‖K(λ)u−KR,N(λ)u‖ 6 ε.

Suppose that k ∈ C(R2 × Λ) ∩ L2(R2 × Λ) and (6.4) is reduced to the trapezoidal

rule. Then if y 7→ k(x, y;λ) is twice differentiable, we have, for all λ ∈ Λ, a positive

constant c and a suitably chosen R > 0, the well-known upper bound

∥∥K(λ)u−KR,N(λ)u
∥∥ 6

c

N2
.

Given the estimate (6.8), we have, for some suitably chosen R and sufficiently large

N , (recall that d(λ0) = 0 and that |dR(λ0)| 6 ε which follows from (6.9)) that

|d(λ0)− dN,R(λ0)| 6 |dR(λ0)|+ |dR(λ0)− dN,R(λ0)|

6 c max
i=1,...,m

{‖KR(λ0)ui −KR,N(λ0)ui‖1/ν},

where ν and m are the index and the algebraic multiplicity of the eigenvalue 1 of

K(λ) respectively and {u1, · · · , um} is a basis for Ker
(
K(λ) − id

)ν
(cf. [5, 6], or see

Chapter 5).

Remark 6.2 (Domain mapping). Assume that k ∈ C(R2×Λ)∩L2(R2×Λ), and let

(a, b) be an interval of R. Given a smooth transformation g : (a, b)→ R such that

y = g(t),

the integral problem becomes

u(g(s)) =

∫ b

a

k(g(s), g(t);λ)u(g(t))∂tg(t)dt.

Thus, the analysis of the previous chapter also applies here. We can then apply the

Nyström-Gaussian quadratures method to the above integral equation. We use the

Clenshaw–Curtis method for computing numerically integrals on the whole real line
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R, i.e. for some L > 0, we take g(t) = Lcot(t), t ∈ [0, π] and consider

KN(λ)u(x) =
N−1∑
j=1

wjk(x, yj;λ)u(yj),

where wj = L π
N
∂tg(tj) and tj = jπ/N .

Clearly for simple eigenvalues and a suitably chosen R, the error in computing

the Fredholm determinants for the truncation and mapping method (the above re-

mark) differ by an O(ε). The product-integration method, i.e. (6.4) and (6.15),

might be more advantageous since it allows using higher degree polynomial interpo-

lation unlike Gaussian quadratures. Therefore if the kernel k is given by (6.2) with

h sufficiently smooth, the product-integration may result in faster convergence than

Gaussian quadratures (see next section).

6.3 Numerical results

Here we present some numerical results for the computation of the Fredholm deter-

minants and the Evans function. We consider the scalar problem with perturbation

v given by (4.37) (cf. Subsection 4.1.2 of Chapter 4). For the numerical evaluation

of the Evans function, we use the Riccati–Runge–Kutta method (cf. [52]). For clar-

ity, we present a brief explanation of the method. Assume that the matrices Y ±,

solutions of the first order system that decay at ±∞ (cf. Chapter 3 or 4), are given

by Y − = (u− v−) ∈ Cn×r and Y + = (u+ v+) ∈ Cn×(n−r), where u− and v+ are

invertible square matrices. Then the Evans function E(λ) is given by

E(λ) = detCn

 idr y+(x, λ)

y−(x, λ) idn−r

u− O

O v+



= detCr u− detCn−r v+ detCn×n

 idr y+(x, λ)

y−(x, λ) idn−r


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where O denotes the null matrix with appropriate size, y− = v−(u−)−1 and y+ =

u+(v+)−1 satisfy Riccati equations as follows. Assume that

A(x, λ) =

a(x, λ) b(x, λ)

c(x, λ) d(x, λ)

 ,

where a, b, c and d are appropriate block matrices. Then the equations dY ±/dx =

A(x, λ)Y ± become

d

dx

 id

y−

u−

 =

(a+ by−)u−

(c+ dy−)u−

 .

Hence
d

dx
y− = c+ dy− − y−(a+ by−) and

d

dx
u− = (a+ by−)u− (6.10)

and
d

dx
y+ = b+ ay+ − y+(d+ cy+) and

d

dx
v+ = (d+ cy+)v+. (6.11)

The Riccati equations are then given by the left-hand side of equations (6.10) and

(6.11). They can be solved in the finite intervals [±R, x∗], for example, by application

of Runge–Kutta methods. We take x∗ = 0 and carefully check that no singularities

occur in the Riccati solutions. The product detCr u− detCn−r v+ is thus nonzero. Since

we are interested in zeros of the Evans function, we compute

E(λ) ≡ detCn×n

 idr ŷ+(0, λ)

ŷ−(0, λ) idn−r

 . (6.12)

In the following examples, we use the explicit Runge–Kutta method of order four

(RK4). In our examples below, we consider travelling waves that are continuous and

exponentially bounded, i.e. given a travelling wave φ, we have, for some constant

β > 0, ∣∣φ(x)
∣∣ 6 c exp (−β|x|).

To compute the Fredholm determinant by the Nyström method based on the product-

integration method, we take h and g in the expression of kernel k to be

h(x, y;λ) = f(φ)(y),
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where φ is the travelling wave, f a monomial function, and

g0(x, y;λ) =


r∑
j=1

αje
κ+j (x−y), x 6 y

n∑
j=r+1

αje
κ−j (x−y), y < x,

(6.13)

with κ±j the roots of the characteristic polynomial associated with the linear constant-

coefficients differential operator
(
L0−λid

)
and αj ∈ R (cf. (4.40) and (4.41) of Chap-

ter 4).

Typically, if one uses a linear interpolation, the right-hand side of (6.4) is

N−1∑
j=0

γj(x, λ)f(φ)(yj)u(yj) + δj(x, λ)f(φ)(yj+1)u(yj+1), (6.14)

where hj = yj+1 − yj and for xi ∈ R

γj(xi, λ) =
1

hj

∫ yj+1

yj

g0(xi, y;λ)(yj+1 − y)dy

δj(xi, λ) =
1

hj

∫ yj+1

yj

g0(xi, y;λ)(y − yj)dy.

(6.15)

Let Cn+1([a, b]) denote the set of functions with (n + 1)th continuous derivative in

[a, b] ⊂ R. As mentioned previously, we can apply the trapezoidal rule on the integral

operator over a finite domain. Alternatively, we could map the infinite domain to a

finite one and then use an appropriate Gaussian quadrature. For n > 2 in (6.13),

both methods are satisfactory since the Green’s function g0 in (6.13) is (n− 2)th con-

tinuously differentiable and decays exponentially, for all x, y ∈ R and λ ∈ Λ. However

when n = 2, both methods are not well suited if one wants to achieve equivalent

accuracy to the method used for computing the Evans function. We use the product-

integration method, since the weights wj in (6.15) can be analytically computed as in

(6.15), for example. Thus, the (n − 1)th jump discontinuity of the Green’s function

g0 along the diagonal is absorbed in the computation of wj. Hence, the error con-

vergence will entirely depend on the smoothness of the function hu. Therefore, if a

given function f ∈ Cn+1([a, b]), then using nth degree polynomial interpolation will
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result in an O(N−n−1) order of convergence, for uniform mesh xi (cf. [4, p. 340]). In

fact, numerically we have observed that choosing uniformly distributed nodes xi in

the finite domain yields better convergence than considering Gauss–Hermite quadra-

ture rule. Thus, we choose the product-integration and the mapping method over

Gauss–Hermite quadrature rule in all our examples.

Remark 6.3. Since we assume that the differential operator (L0− λid) has constant

coefficients, the associated integral operator K(λ) is of trace class (cf. Theorem 4.2 or

Proposition 4.3 of Chapter 4).

Example 6.1 (Schrödinger equation). We consider the Schrödinger problem [44]

given by
d2u

dx2
+
(
6φ2(x)− 1

)
u = λu

where φ(x) = sech(x) is the steady wave. The essential spectrum for this example is

(−∞,−1]. Therefore Λ = C \ (−∞,−1]. For λ ∈ Λ and u ∈ L2(R), the associated

integral equation is

u = 6K(λ)u,

where

K(λ)u(x) =
1

2
√
λ+ 1

∫
R
φ(x)e−

√
λ+1|x−y|φ(y)u(y)dy.

For λ ∈ Λ, the Fourier transform of the resolvent operator (d2/dx2 −
√
λ+ 1

2
)−1 on

R is −1/(ξ2 +
√
λ+ 1

2
) for which its inverse transform is e−

√
λ+1|x|/2

√
λ+ 1. Hence

the above integral operator follows.

Our aim in this example is to test the effectiveness of our method. Computing the

Fredholm determinant by the trapezoidal rule, the mapping method or the generalised

trapezoidal, i.e. equation (6.14) and (6.15), we obtain an O(N−2) order of conver-

gence, at the eigenvalue λ = 3. However, the second degree polynomial interpolation

yields an O(N−4) order of convergence which is similar to that of the Evans function

(see Figure 6.1 (left)). For comparison reasons, we implement a non-adaptive Runge–

Kutta method when computing numerically the Evans function E(λ). We truncate

the infinite domain at R = ±5. In Figure 6.1 (left), we plot the errors of the Evans

function and the Fredholm determinant denoted by |EN(λ)| and |dN(λ)|, respectively.

Since the eigenvalues λ0 = 0 and λ0 = 3 of K(λ) are simple, we have for all λ ∈ Λ,
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that

|EN(λ)| = |cN(λ)dN(λ)|

6 c|cN(λ)|max
i=1,2
{‖K(λ)ui −KN(λ)ui‖},

where |cN(λ)| is a nonvanishing analytic function and where ui are the eigenfunctions

corresponding to the eigenvalue λ0 = 0 or 3. In particular, when cN(λ) → 1 as

N → ∞ (the nonvanishing analytic function connecting the Fredholm determinant

and the Evans function c(λ) = 1), the error in the Evans function denoted by RK4a

in the legend of Figure 6.1 (left) and the Fredholm determinant coincide. In Figure

6.1 (left), the legend RK4b corresponds to the error in the Evans function divided by

c(λ) = 2
√
λ+ 1. Despite the fact that the RK4 is computationally less expensive than

our method, we nevertheless display CPU time versus error, in Figure 6.1 (right).

Figure 6.1: Error in the Evans function and the Fredholm determinant versus the
discretisation points N (left), and versus CPU time (right), at the eigenvalue λ = 3 .

In the next two examples, our aim is to numerically compute the Fredholm deter-

minant d(λ) and the Evans function E(λ). In these examples, the coefficients φi in

the perturbation v are given by (4.38). In that case, we integrate by parts. We do not

focus on the error analysis in Example 6.2 since it is similar to Example 6.1, i.e. the
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new kernel (obtained after integration) has a jump discontinuity in the first deriva-

tive, and the corresponding integral operator has simple eigenvalue λ0 ∈ [0, 0.02] (see

Figure 6.2).

Example 6.2 (Boussinesq system [40,52]). We consider the ‘good’ Boussinesq equa-

tion given by

λ2u− 2cλ
du

dx
= (1− c2)d2u

dx2
− d4u

dx4
− d2

dx2
(2φ(x)u) (6.16)

where |c| < 1 and

φ(x) =
3

2
(1− c2)sech2

(√
1− c2

2
x

)
.

Here the essential spectrum is σe = {λ ∈ C : λ2 − i2cλξ = −(1− c2)ξ2 − ξ4, ξ ∈ R}.

Hence Λ = C \ σe. The travelling wave φ is stable for 1/2 < |c| < 1 and unstable

when |c| < 1/2. In Figure 6.2, we plot the Fredholm determinant and the Evans

function for λ ∈ [0, 0.2] and c = 0.4. The truncation point of the infinite domain is

R = ±8. The coordinate patches are identified by i− = {1, 2} and i+ = {3, 4} which

are chosen as the pivot rows of the matrices Y − and Y + respectively. The eigenvalue

λ of equation (6.16) is located at approximately 0.155. |dm(λ)| at the eigenvalue

λ ≈ 0.155 is roughly the same as in Example 6.1 since the kernel associated to the

Boussinesq problem is similar to the kernel in Example 6.1.

Figure 6.2: Fredholm determinant (left) and Evans function (right) for the Boussinesq
equation.
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Suppose that the kernel function k is sufficiently smooth. Then product-integration

may not be needed if we are seeking only reasonable accuracy. Instead, we can simply

apply the regular trapezoidal rule (in a truncated domain) or a Gaussian quadra-

ture on a finite domain (obtained by transformation) to get the desired accuracy.

For instance, the kernel function k associated with the 5th order KdV in Example

6.3 is in C3(R2 × C+) and decays exponentially. Therefore mapping a subset L2(R)

to C
(
(−1, 1)

)
and using Chebyshev quadrature for fixed x ∈ (−1, 1) (a section of

the kernel), we expect an O(N−4) order of convergence deduced from that of the

Chebyshev coefficients of the section y 7→ k(x, y, λ). More generally, if a function is

Cn−2((−1, 1)
)
, then the order of convergence is O(N−n+1) for the Chebyshev quadra-

ture (cf. [18, p. 52] or [22] for the rate of convergence associated with the Chebyshev

coefficients and [18, p. 55-56] for the quadrature error). Thus the rate of conver-

gence of the Fredholm determinants is O(N−n+1), since the convergence rate of the

Nyström method (i.e. ‖Ku−KNu‖, K an integral operator in C
(
(−1, 1)

)
and KN its

approximation) is the same as the underlying quadrature rule for continuous functions

(cf. [18]).

Figure 6.3: Fredholm determinant (left) and the Evans function (right) for the fifth
order KdV equation with q = 10.
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Example 6.3 (Fifth-order KdV equation [14]).

d5u

dx5
− d3u

dx3
+ c

du

dx
− (q + 1)

d

dx
(φq(x)u) = λu

where

c = 4(q + 2)(q2 + 4q + 8)−2

φ(x) = α1/qsech4/q(βx)

with α = (q + 4)(3q + 4)(q + 2)(q2 + 4q + 8)−2/2 and β = q2(q2 + 4q + 8)−1/4. Here

the essential spectrum is σe = {λ ∈ C : λ = i(ξ5 + ξ3 + cξ), ξ ∈ R}, and so Λ = C\σe.

For q > 5, the travelling wave φ is known to be unstable with real eigenvalue Reλ > 0

and stable for q 6 4. For q = 10, the eigenvalue is approximately 0.02457274 (see

Figure 6.3). The coordinate patches for the fifth-order KdV equation are identified

by i− = {2, 3, 4} and i+ = {1, 5} which again represent the row pivots of Y − and Y +

respectively.

N RK4 Trapezoidal rule Domain mapping
256 0.024582699170801733 0.024572650133556081 0.024572769465875954
512 0.024573330975408373 0.024572765920538326 0.024572773336776935
1024 0.024572805577677628 0.024572773115652344 0.024572773578513393

Table 6.1: Eigenvalue of the 5th order KdV equation computed for different value of
N and q = 10.

The values in Table 6.1 are obtained from calling the scipy.fsolve1 (a root solver)

to compute the zeros of the Evans function and the Fredholm determinant with the

truncation point R = ±20. the trapezoidal rule. For comparison, the scipy.odeint2

solver, with relative tolerance 10−12 and absolute tolerance 10−14, was used to compute

the Evans function leading to the eigenvalue λ = 0.0245727735871733. eigenvalue

is 0.0245726200928363. Theoretically, the rate of convergence of both trapezoidal

1scipy is a scientific module for Python, and fsolve is a wrapper around MINPACK’s hybrd and
hybrj algorithms (a root-finding method)

2It uses LSODA from the Fortran library odepack that implements Adam’s method for non-stiff
problem with default order 12.
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rule and mapping method applied to a section of the kernel is at least O(N−2) and

O(N−4) respectively. Accordingly, these rates are those of Nyström methods as well.

We observe from Table 6.1 that the trapezoidal rule is more accurate than the RK4

method. Thus one might argue that its rate of convergences is proportional to that

of RK4 or the constant of proportionality (in O(N−2)) for the trapezoidal rule is very

small. However, we see from Figure 6.4 (left), where we display the error |λ − λN |

versus the number of points N , that the order of convergence of the trapezoidal

rule is O(N−4). This, in fact, is due to the regularity of the kernel, C3(R2) and the

boundedness of the 4th order derivative with respect to the second argument (see [22]).

The set of zeros {λN}N>1 corresponds to both the finite dimensional determinant

dN(λ), computed using the trapezoidal rule, and the approximate Evans function. In

Figure 6.4 (right) we plot the error |λ−λN | versus the CPU time. It is seen from Figure

6.4 (right) that high accuracy in computing of eigenvalues can be obtained by the use

of the trapezoidal rule with minimum effort for N 6 N0. In fact, assuming that

the eigenvalues κ±j are given explicitly, then the effort in forming the determinant

in (6.12) is O(N(n − k)2k2) when applying the Riccati-RK4. While applying the

trapezoidal rule, the finite dimensional determinant dN(λ) is O(N2 + nα), where nα

is the complexity for solving the linear systems (4.41) of Chapter 4.

Figure 6.4: Error in the eigenvalue versus discretisation points N (left), and versus
the CPU time (right).
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6.4 Concluding remarks

Depending on accuracy, we favour product-integration method over other quadra-

ture methods. This is because if the function h × u is sufficiently smooth then

high degree polynomial interpolation can be used for the approximation. As con-

sequence, improved convergence than that of RK4 used for computing Evans func-

tion can be achieved unless one implements a Runge–Kutta method of order equal

to that of the product-integration method. When it comes to CPU time, product-

integration/trapezoidal rule is inferior to Runge–Kutta method for some range of

discretisation points, but also there is a range in which it is faster (see Figure 6.4).

Nevertheless, by converting the eigenvalue problem into an integral eigenvalue prob-

lem, we have the following advantages:

1. Partially solving the problem;

2. Any λ ∈ Λ satisfying detp
(
id + K(λ)

)
= 0 is an eigenvalue of the corresponding

differential operator with algebraic multiplicity equal to that the eigenvalue −1;

3. We do not encounter the numerical stiffness problem. This is because the Green’s

function is the projection of the evolution (or propagator) onto the appropriate

subspaces which are associated with a single exponential growth and decay modes.

The effort in computing the Fredholm determinants can be considerably reduced, if

adaptive algorithms are implemented in choosing the correct quadrature points. The

problem is then we need to find a suitable residual to implement ’adaptive’ steps.

If both the numerical Fredholm determinant and the Evans function are coded in a

compiling language, then the effort of both methods is the same.
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Conclusion and future work

The aim of this thesis was to theoretically and numerically investigate the stabil-

ity of travelling wave solutions by employing Fredholm determinants. During our

investigation, several results were obtained/improved which we now recall.

7.1 Conclusion

Chapter 2 and 3 recall some essentials about compact operators and Fredholm deter-

minants and introduce the Evans function as well as the considered problem.

In Chapters 4, we have shown that for a class of eigenvalue problems, the associated

integral operators are of trace class, in particular for constant coefficient differen-

tial operators corresponding to the unperturbed eigenvalue problem. Through the

determinant of the matrix transmission coefficient, we have established the connec-

tion between the Fredholm determinant associated with trace class operators and the

Evans function, and then extended it to any integral operator in the Schatten–von

Neumann class. This has led to connecting the Evans function and the determinant

of the linear differential operator associated with the eigenvalue problem. Further-

more we have shown how to construct the Fredholm determinant associated with the

linear stability of front waves, and hence its connection with the Evans function of the

original problem follows. Based on the connection for the one dimensional problem,

one can extend it to the higher dimensional context. One way this is accomplished,

it is to convert the higher dimensional problem to a one dimensional one. This can
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be achieved by projecting a chosen direction associated with the higher dimensional

problem onto a finite dimensional basis, for example by Fourier transform (Gesztesy

et al [29]) (e.g projecting the transverse direction of travelling wave problems in a

infinite cylinder).

Chapter 5 has dealt mainly with the numerical evaluation of the modified or regu-

larised Fredholm determinants, for integral operators depending linearly on the spec-

tral parameter λ. We have proved the uniform convergence of the modified Fredholm

determinants. Thus we have generalised the uniform convergence result for integral

operators with continuous kernels due to Bornemann. Moreover, we have shown that

the rate of convergence is different when evaluating the modified Fredholm determi-

nants at the resolvent set and at the spectrum. We have also provided numerical

examples from which we have observed exactness when evaluating the determinant

at an eigenvalue. Consequently, this exactness implies that computing the Fredholm

determinants is nothing other than an interpolation in which the zeros are the inter-

polating points. Furthermore, we have proposed a method to compute higher order

determinants, in particular for integral operators belonging to the Schatten–von Neu-

mann class I3 and I4.

In Chapter 6, we have turned our attention to the case of Fredholm determinants

associated with integral operators that do not depend linearly on λ. In our case, this

arises when computing the Fredholm determinant associated with linear stability of

travelling waves. Numerically we have compared both accuracy and time execution

of the Fredholm determinant and the Evans function. This has led us to the follow-

ing conclusion: depending on the smoothness of the Green’s function, high accuracy

is achievable within or outside the range in which the computation of the Fredholm

determinants requires less effort. However for the method considered in this thesis,

the numerical computation of the Evans function requires minimum effort but is less

accurate, depending on the degree of the problem and the order of the Runge–Kutta

method being implemented.
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7.2 Future work

In multidimensional travelling wave problems, besides projection to create an alge-

braic eigenvalue problem approximation, there are not many approaches. A future

direction would be to use the (infinite dimensional) centre manifold which might re-

duce the high dimensionality of the problem, and then investigate the relation between

the Fredholm determinant and the Evans function associated with the lower dimen-

sional problem. Since the modified Fredholm determinants extend naturally to higher

dimension, a connection with the generalised Evans function defined as the determi-

nant bundle over the Fredholm Grassmannian space (cf. Deng et al. [19]) is another

direction to pursue. The major problem in this approach is the construction of the

Green’s function for the corresponding integral operator.

To our knowledge, the generalised Evans function due to Deng et al. has not been yet

computed numerically. Hence this is a direction to consider together with the numeri-

cal computation of the modified Fredholm determinants. In the one dimensional case,

improving the complexity effort in computing the Fredholm determinant by taking

advantages on the properties of the Green’s function is an interesting direction for

future investigation. Computing resonances for travelling wave problems using the

Fredholm determinants is a prospect of future research as well.
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Exterior Product

Let V be a finite dimensional vector space over the field of scalars F.

Definition A.1. An alternating multilinear form of degree k on a vector space V is

a map f : V × V · · · × V → F such that, for ui,v1,v2 ∈ V and α1, α2 ∈ F,

• f(u1, . . . ,ui, . . . , uj, . . . ,uk) = −f(u1, . . . ,uj, . . . ,ui, . . . ,uk)

• f(α1v1 + α2v2,u2, . . . ,un) = α1f(v1,u2, . . . ,un) + α2f(v2,u2, . . . ,un)

• f(u1, . . . ,ui, . . . ,uj, . . . ,uk) = 0, if i = j.

The set of all alternating multilinear forms on V is a vector space.

Example A.1. Let u1, . . . ,un be column vectors in V = Rn. Then

f(u1, . . . ,un) = detRn

(
u1 u2 · · · un

)
is an alternating multilinear form of degree n.

Definition A.2. The k-th exterior power
∧k V of a finite dimensional vector space

is the dual space of the vector space of alternating multilinear forms of degree k on

V . Elements of
∧k V are called k-vectors or k-forms.

Definition A.3. Given u1, . . . ,uk ∈ V , the exterior product u1∧u2∧· · ·∧uk ∈
∧k V

is the linear map to F which, on an alternating multilinear form M takes the values

(u1 ∧ u2 ∧ · · · ∧ uk)(f) = f(u1, . . . ,uk).
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If the dimension of the vector space V is n and {ei}i=1,...,n is a basis of V , then

the set

{ei1 ∧ ei2 ∧ · · · ∧ eik : 1 6 i1 < i2 < · · · < ik 6 n}

is a basis of
∧k V . The dimension of the vector spaces

∧k V is

(
n

k

)
.

If k = n then
∧n V is a one dimensional vector space. By convention

∧0 V = F.

Proposition A.1. The exterior product u1∧u2∧· · ·∧uk of k vectors ui ∈ V vanishes

if and only if the vectors are linearly dependent.

Definition A.4. A k-form is decomposable if it is wedge product between k linearly

independent vectors in V .

Let F = C and V = Cn. The inner product on V , represented by 〈·, ·〉, is the map

from V × V to C satisfying, for all uj ∈ V and αj ∈ C (j = 1, 2, 3), the following

1. 〈α1u1 + α2u2,u3〉 = α1〈u1,u3〉+ α2〈u2,u3〉;

2. 〈u1, α2u2 + α3u3〉 = ᾱ2〈u1,u2〉+ ᾱ3〈u1,u3〉;

3. 〈u1,u1〉 > 0 and 〈u1,u1〉 = 0 implies that u1 = 0;

4. 〈u1,u2〉 = 〈u2,u1〉.

The inner product 〚·, ·〛k of two decomposables k-forms

U = u1 ∧ . . . ∧ uk and V = v1 ∧ . . . ∧ vk

on
∧k Cn with ui,vj ∈ Cn is defined by

〚U,V〛k = detCk

((
〈ui,vj〉

)k
i,j=1

)
.

The vector spaces
∧k Cn and

∧n−k Cn are isomorphic and the natural isomorphism

is given by the Hodge star operator ?. Fixing an orientation, the Hodge star is a map

from
∧k Cn to

∧n−k Cn (vice versa), defined, for any U ∈
∧k Cn, by

?U ∈
∧n−k

Cn.
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The isomorphism of the vector spaces
∧k Cn and

∧n−k Cn is then given, for any

U ∈
∧k Cn,V ∈

∧n−k Cn, by

U ∧V = 〚U, ?V〛kV ,

where V = e1 ∧ . . . ∧ en ∈
∧nCn is a volume form, and {ei}i=1...n is a basis for Cn.
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Matrices Sl and Sr

Sl =



1 1 −1 1 · · · (−1)n

0 1 0 0 · · · 0

0 0 1 0 · · · 0
...

...
. . . . . . . . .

...

0 0 · · · 0 1 0

0 0 · · · 0 0 1





0 0 0 0 · · · 0

1 0 −1
2

0 · · · 0

0 1
4

0 −1
4
· · · 0

...
...

. . . . . . . . .
...

0 0 · · · 1
2(n−1) 0 − 1

2(n−1)

0 0 · · · 0 1
2n

0



Sr =



1 1 1 1 · · · 1

0 −1 0 0 · · · 0

0 0 −1 0 · · · 0
...

...
. . . . . . . . .

...

0 0 · · · 0 −1 0

0 0 · · · 0 0 −1





0 0 0 0 · · · 0

1 0 −1
2

0 · · · 0

0 1
4

0 −1
4
· · · 0

...
...

. . . . . . . . .
...

0 0 · · · 1
2(n−1) 0 − 1

2(n−1)

0 0 · · · 0 1
2n

0


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Birkhäuser Verlag, Basel, 2000.

[33] I. Gohberg and M. Krein. Introduction to the Theory of Linear Nonselfadjoint

Operators, volume 18. Trans. Math. Monographs, 1969.

113



BIBLIOGRAPHY

[34] A. Grothendieck. La théorie de Fredholm. Bull. Soc. Math, 84:319–384, 1956.

[35] H. Hanche-Olsen and H. Holden. The Kolmogorov–Riesz compactness theorem.

Expositiones Mathematicae, 28:385–394, 2010.

[36] D. Henry. Geometric Theory of Semilinear Parabolic Equations. Springer-Verlag,

Berlin, 1981.
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