Patterns in Supraicosahedral Metallacarboranes

Amelia McAnaw Faulds

Submitted for the degree of Doctor of Philosophy at Heriot-Watt University, on completion of research in the School of Engineering and Physical Sciences

August 2013

The copyright in this thesis is owned by the author. Any quotation from the thesis or use of any of the information contained in it must acknowledge this thesis as the source of the quotation or information.

Abstract

Chapter one gives an introduction into heteroborane chemistry focussing on supraicosahedral metallacarboranes.

Chapter two describes the first examples of untethered $4,1,2-MC_2B_{10}$ 13-vertex metallacarboranes prepared by polyhedral expansion of a tethered carborane precursor. C,C'-dimethyl $4,1,6-MC_2B_{10}$ compounds were afforded as co-products of the reactions. In contrast to the analogous 1,2- to 1,6- carborane rearrangement, experimental observations and DFT calculations reveal that 4,1,2- to 4,1,6- metallacarborane isomerisation does not occur under standard laboratory conditions.

Chapter three constitutes the most extensive examination to date of the relationship between ligand orientational preference and bond strength in supraicosahedral molecules. A structural study of nine 13-vertex indenyl cobaltacarboranes supplemented by DFT calculations on models of related naphthalene ferracarboranes provided information on the relative trans influences of facial cage atoms.

Chapter four describes the synthesis and characterisation of 1,14,2,9- and 1,14,2,10- $M_2C_2B_{10}$ 14-vertex cobaltacarboranes. The first unambiguous confirmation of 1,14,2,9- $M_2C_2B_{10}$ architecture from crystallographic studies and supporting spectroscopic data is presented.

A series of six asymmetric, 14-vertex, bicapped hexagonal antiprismatic bimetallacarboranes with 1,8/13,2,x-Co₂C₂B₁₀ atom arrangements, thought to be the results of direct electrophilic insertion reactions, are reported in chapter five. A detailed analysis of crystallographic data resulted in the identification of cage C atom positions in all six isomers.

Chapter six contains experimental procedures and characterisation details for all the new compounds reported herein. Crystallographic data is listed in appendices A and B (CD) along with structure solution and refinement details.

Acknowledgements

First of all my sincerest thanks go to my supervisor, Prof Alan J. Welch. I'm so very grateful for all his help and support, for his insightful and innovative ideas, for his infectious enthusiasm and positivity, and for his patience. It would be impossible to imagine a better supervisor.

I'd like to thank Dr Dave Ellis for his helpful assistance, problem solving skills, excellent advice and for generally being such a great person.

In fact each and every member of the Boron Group I've had the privilege of getting to know deserves my gratitude. I've been fortunate to have worked with incredibly friendly and supportive people. Special thanks go to Ross, Brian, Hugo and Peter with whom I've shared many good times and have countless fond memories. I'll remember Peter for being helpful and mannerly, Hugo for his confidence, Brian for pure entertainment value and mostly Ross for always being there for chats about chemistry or just about life in general.

I would like to gratefully acknowledge Greig Scott for his contribution to chapter three, Dr David McKay for DFT calculations, Christina Graham for CHN analysis, Dr Alan Boyd for NMR spectroscopy and Dr Georgina Rosair for all her hard work in *X*-ray crystallography.

I would also like to thank the Carnegie Trust for funding my PhD.

Finally I want to say how much I appreciate the love and support of my family. Thank you to David for being the definition of a perfect son and to Martin for his unwavering encouragement.

I hereby declare that the work presented in this thesis was carried out by myself at Heriot-Watt University, Edinburgh, except where due acknowledgement is made, and has not been submitted for any other degree.

Amelia McAnaw Faulds (Candidate)

Prof. Alan J Welch

Date

Table of Contents

Abbreviations	i
Abbreviations for Specific Compounds	iii

Chapter 1 Introduction

1.1	Overview	1
1.2	Boranes	3
1.3	Bonding in Boranes and Heteroboranes	6
1.4	Carboranes	12
1.5	Metallacarboranes	17
1.6	Supraicosahedral 13-Vertex Metallacarboranes	20
1.7	Supraicosahedral 14- and 15-Vertex Metallacarboranes	26
1.8	Supraicosahedral Carboranes	31
1.9	Scope of Thesis	35
1.10	References	36

Chapter 2 13-Vertex C,C'-Dimethyl Metallacarboranes

2.1	Introduction	41
2.2	Synthesis of 1,2-Me ₂ -4-Cp-4,1,2- $closo$ -CoC ₂ B ₁₀ H ₁₀ (1) and	45
	$1,6-Me_2-4-Cp-4,1,6-closo-CoC_2B_{10}H_{10}$ (2)	
2.3	Preferred Synthesis of 1,6-Me ₂ -4-Cp-4,1,6- $closo$ -CoC ₂ B ₁₀ H ₁₀ (2)	50
2.4	Preparation of 1,8-Me ₂ -4-Cp-4,1,8- <i>closo</i> -CoC ₂ B ₁₀ H ₁₀ (3)	53
2.5	Synthesis of 1,2-Me ₂ -4-(<i>p</i> -cymene)-4,1,2- <i>closo</i> -RuC ₂ B ₁₀ H ₁₀ (4)	57
	and 1,6-Me ₂ -4-(<i>p</i> -cymene)-4,1,6- <i>closo</i> -RuC ₂ B ₁₀ H ₁₀ (5)	
2.6	NMR Spectroscopy	64
2.7	Structural Discussion of Compounds 1 and 4	66
2.8	Synthesis and Isomerisation	71
2.9	Summary	77
2.10	References	80

Chapter 3	Supraicosahedral Indenyl (Cobaltacarboranes
-----------	----------------------------	-------------------

3.1	Introduction	82
3.2	Synthesis of $4-(\eta-C_9H_7)-4,1,6-closo-CoC_2B_{10}H_{12}$ (6)	86
3.3	Synthesis of 1,6-Me ₂ -4-(η -C ₉ H ₇)-4,1,6- <i>closo</i> -CoC ₂ B ₁₀ H ₁₀ (7)	89
3.4	Preparation of $4-(\eta-C_9H_7)-4,1,8-closo-CoC_2B_{10}H_{12}$ (8)	91
3.5	Preparation of 1,8-Me ₂ -4-(η -C ₉ H ₇)-4,1,8- <i>closo</i> -CoC ₂ B ₁₀ H ₁₀ (9)	92
3.6	Synthesis of 1(or 6)-Me-4-(η -C ₉ H ₇)-4,1,6- <i>closo</i> -CoC ₂ B ₁₀ H ₁₁ (10)	94
3.7	Preparation of 8-Me-4-(η -C ₉ H ₇)-4,1,8- <i>closo</i> -CoC ₂ B ₁₀ H ₁₁ (11) and	96
	$1-Me-4-(\eta-C_{9}H_{7})-4,1,8-closo-CoC_{2}B_{10}H_{11}$ (12)	
3.8	Synthesis of $4-(\eta-C_9H_7)-4,1,10-closo-CoC_2B_{10}H_{12}$ (13)	99
3.9	Preparation of $4-(\eta-C_9H_7)-4,1,12-closo-CoC_2B_{10}H_{12}$ (14)	102
3.10	Preparation of 1,12-Me ₂ -4-(η -C ₉ H ₇)-4,1,12- <i>closo</i> -CoC ₂ B ₁₀ H ₁₀ (15)	104
3.11	Synthesis of 1,2-Me ₂ -4-(η -C ₉ H ₇)-4,1,2- <i>closo</i> -CoC ₂ B ₁₀ H ₁₀ (16)	106
3.12	Synthesis of 1,2- μ -(CH ₂) ₃ -4-(η -C ₉ H ₇)-4,1,2- <i>closo</i> -CoC ₂ B ₁₀ H ₁₀ (17)	109
3.13	NMR Spectroscopy	112
3.14	Molecular Structure	114
3.15	Indenyl Orientation	123
3.16	DFT Calculations	137
3.17	Summary	142
3.18	References	145

Chapter 4 14-Vertex Cobaltacarboranes by Polyhedral Expansion

4.1	Introduction	147
4.2	13-Vertex Precursors	151
4.3	Synthesis of 1,14-Cp ₂ -1,14,2,9- <i>closo</i> -Co ₂ C ₂ B ₁₀ H ₁₂ (18) and side	153
	products 1-Cp-14-C ₅ H ₄ CH(OH)CH ₂ CH ₂ CH ₃ -1,14,2,9-closo-	
	$Co_2C_2B_{10}H_{12}$ (19) and 1,13- Cp_2 -1,13,2,9- <i>closo</i> - $Co_2C_2B_{10}H_{12}$ (20)	
4.4	Synthesis of 2,9-Me ₂ -1,14-Cp ₂ -1,14,2,9- <i>closo</i> -Co ₂ C ₂ B ₁₀ H ₁₀ (21)	159
4.5	Synthesis of 2,10-Me ₂ -1,14-Cp ₂ -1,14,2,10- $closo$ -Co ₂ C ₂ B ₁₀ H ₁₀ (22)	161
4.6	Synthesis of 1,14- $(\eta$ -C ₉ H ₇) ₂ -1,14,2,9- <i>closo</i> -Co ₂ C ₂ B ₁₀ H ₁₂ (23)	163
4.7	Synthesis of $1,14-(\eta-C_9H_7)_2-1,14,2,10-closo-Co_2C_2B_{10}H_{12}$ (24)	165

4.8	NMR Spectroscopy	167
4.9	Molecular Structure and the Vertex-to-Centroid Distance (VCD)	170
	Method	
4.10	Indenyl Orientation	175
4.11	Reaction Products	178
4.12	Summary	182
4.13	References	184

Chapter 5 14-Vertex Cobaltacarboranes by Electrophilic Insertion

5.1	Introduction	186
5.2	Asymmetric 14-Vertex Products	187
5.3	Attempted Synthesis of [K(18-crown)-6)][1,1'-Co-closo-(14-Cp-	189
	1,14,2,10-Co ₂ C ₂ B ₁₀ H ₁₂) ₂] leading to the Synthesis of 2-OEt-4-Cp-	
	4,1,12- <i>closo</i> -CoC ₂ B ₁₀ H ₁₁ (25) and 3-OEt-1,8-Cp ₂ -1,8,2,10- <i>closo</i> -	
	$Co_2C_2B_{10}H_{11}$ (26)	
5.4	Asymmetric 14-Vertex Products: 1,13-Cp ₂ -1,13,2,4-closo-	192
	$Co_2C_2B_{10}H_{12}$ (27) and 1,8-Cp ₂ -1,8,2,4- <i>closo</i> -Co ₂ C ₂ B ₁₀ H ₁₂ (28)	
5.5	Asymmetric 14-Vertex Product: 1,8-Cp ₂ -1,8,2,5- <i>closo</i> -Co ₂ C ₂ B ₁₀ H ₁₂	196
	(29)	
5.6	Product Summary	198
5.7	NMR Spectroscopy	199
5.8	Cage C Atom Identification using VCD and BHD Methods	200
5.9	Asymmetric Product Rationalisation	206
5.10	Structural Comparison of 13-Vertex Precursor with 14-Vertex	210
	Products	
5.11	Summary	215
5.12	References	216

Conclusions and Further Work

218

Chapter 6 Experimental Section

6.1	General Experimental	220
6.2.1	Synthesis of 1,2-Me ₂ -4-Cp-4,1,2- $closo$ -CoC ₂ B ₁₀ H ₁₀ (1) and	222
	$1,6-Me_2-4-Cp-4,1,6-closo-CoC_2B_{10}H_{10}(2)$	
6.2.2	Preferred Synthesis of 1,6-Me ₂ -4-Cp-4,1,6- $closo$ -CoC ₂ B ₁₀ H ₁₀ (2)	225
6.2.3	Preparation of 1,8-Me ₂ -4-Cp-4,1,8- <i>closo</i> -CoC ₂ $B_{10}H_{10}$ (3)	226
6.2.4	Synthesis of 1,2-Me ₂ -4-(<i>p</i> -cymene)-4,1,2- <i>closo</i> -RuC ₂ B ₁₀ H ₁₀ (4)	228
	and 1,6-Me ₂ -4-(<i>p</i> -cymene)-4,1,6- <i>closo</i> -RuC ₂ B ₁₀ H ₁₀ (5)	
6.3.1	Synthesis of 4-(η-C ₉ H ₇)-4,1,6- <i>closo</i> -CoC ₂ B ₁₀ H ₁₂ (6)	231
6.3.2	Synthesis of 1,6-Me ₂ -4-(η-C ₉ H ₇)-4,1,6- <i>closo</i> -CoC ₂ B ₁₀ H ₁₀ (7)	233
6.3.3	Preparation of $4-(\eta-C_9H_7)-4, 1, 8-closo-CoC_2B_{10}H_{12}$ (8)	235
6.3.4	Preparation of 1,8-Me ₂ -4-(η -C ₉ H ₇)-4,1,8- <i>closo</i> -CoC ₂ B ₁₀ H ₁₀ (9)	237
6.3.5	Synthesis of 1(or 6)-Me-4-(η -C ₉ H ₇)-4,1,6- <i>closo</i> -CoC ₂ B ₁₀ H ₁₁ (10)	239
6.3.6	Preparation of 8-Me-4-(η -C ₉ H ₇)-4,1,8- <i>closo</i> -CoC ₂ B ₁₀ H ₁₁ (11) and	241
	1-Me-4- $(\eta$ -C ₉ H ₇)-4,1,8- <i>closo</i> -CoC ₂ B ₁₀ H ₁₁ (12)	
6.3.7	Synthesis of 4-(η-C ₉ H ₇)-4,1,10- <i>closo</i> -CoC ₂ B ₁₀ H ₁₂ (13)	244
6.3.8	Preparation of $4-(\eta-C_9H_7)-4, 1, 12$ - <i>closo</i> -CoC ₂ B ₁₀ H ₁₂ (14)	246
6.3.9	Preparation of 1,12-Me ₂ -4-(η -C ₉ H ₇)-4,1,12- <i>closo</i> -CoC ₂ B ₁₀ H ₁₀ (15)	248
6.3.10	Synthesis of 1,2-Me ₂ -4-(η-C ₉ H ₇)-4,1,2- <i>closo</i> -CoC ₂ B ₁₀ H ₁₀ (16)	250
6.3.11	Synthesis of $1,2-\mu-(CH_2)_3-4-(\eta-C_9H_7)-4,1,2-closo-CoC_2B_{10}H_{10}$ (17)	252
6.4.1	Synthesis of 1,14-Cp ₂ -1,14,2,9- <i>closo</i> -Co ₂ C ₂ B ₁₀ H ₁₂ (18) and side	254
	products 1-Cp-14-C ₅ H ₄ CH(OH)CH ₂ CH ₂ CH ₃ -1,14,2,9-closo-	
	$Co_2C_2B_{10}H_{12}$ (19) and 1,13- Cp_2 -1,13,2,9- <i>closo</i> - $Co_2C_2B_{10}H_{12}$ (20)	
6.4.2	Synthesis of 2,9-Me ₂ -1,14-Cp ₂ -1,14,2,9- <i>closo</i> -Co ₂ C ₂ B ₁₀ H ₁₀ (21)	258
6.4.3	Synthesis of 2,10-Me ₂ -1,14-Cp ₂ -1,14,2,10- <i>closo</i> -Co ₂ C ₂ B ₁₀ H ₁₀ (22)	260
6.4.4	Synthesis of 1,14- $(\eta$ -C ₉ H ₇) ₂ -1,14,2,9- <i>closo</i> -Co ₂ C ₂ B ₁₀ H ₁₂ (23)	261
6.4.5	Synthesis of 1,14- $(\eta$ -C ₉ H ₇) ₂ -1,14,2,10- <i>closo</i> -Co ₂ C ₂ B ₁₀ H ₁₂ (24)	263
6.5.1	Attempted Synthesis of [K(18-crown)-6)][1,1'-Co-closo-(14-Cp-	265
	1,14,2,10-Co ₂ C ₂ B ₁₀ H ₁₂) ₂] Leading to the Synthesis of 2-OEt-4-Cp-	
	4,1,12-closo-CoC ₂ B ₁₀ H ₁₁ (25) and 3-OEt-1,8-Cp ₂ -1,8,2,10-closo-	
	$Co_2C_2B_{10}H_{11}$ (26)	

6.5.2	One-Electron Reduction of 4-Cp-4,1,6- <i>closo</i> -CoC ₂ B ₁₀ H ₁₂ :	268
	Direct Synthesis of 1,13-Cp ₂ -1,13,2,4- <i>closo</i> -Co ₂ C ₂ B ₁₀ H ₁₂ (27) and	
	$1,8-Cp_2-1,8,2,4-closo-Co_2C_2B_{10}H_{12}$ (28)	
6.5.3	One-Electron Reduction of 4-Cp-4,1,10- <i>closo</i> -CoC ₂ B ₁₀ H ₁₂ :	271
	Direct Synthesis of 1,8-Cp ₂ -1,8,2,5- <i>closo</i> -Co ₂ C ₂ B ₁₀ H ₁₂ (29)	
6.5.4	One-Electron Reduction of 4-Cp-4,1,12- <i>closo</i> -CoC ₂ B ₁₀ H ₁₂ :	273
	Direct Synthesis of 1,13-Cp ₂ -1,13,2,10- <i>closo</i> -Co ₂ C ₂ B ₁₀ H ₁₂ (S)	
6.5.5	One-Electron Reduction of 4-Cp-4,1,8-closo-CoC ₂ B ₁₀ H ₁₂	274
6.6	References	275

Appendix A	Crystal Data and Structure Refinements	276
Appendix B	Crystallography Files	CD

Published Papers

- Supraicosahedral indenyl cobaltacarboranes, Dalton Trans., 2010, 39, 5286.
- Untethered 4,1,2-MC₂B₁₀ supraicosahedral metallacarboranes, their C,C'-dimethyl 4,1,6-, 4,1,8- and 4,1,12-MC₂B₁₀ analogues, and DFT study of the (4,)1,2- to (4,)1,6-isomerisations of C₂B₁₁ carboranes and MC₂B₁₀ metallacarboranes, *Dalton Trans.*, 2012, **41**, 10957.
- The VCD method a simple and reliable way to distinguish cage C and B atoms in (hetero)carborane structures determined crystallographically, *Dalton Trans.*, 2013, **42**, 645.
- The synthesis and characterisation of homo- and heterobimetallic 1,14,2,9and 1,14,2,10-M₂C₂B₁₀ 14-vertex metallacarboranes, *Dalton Trans.*, 2013, 42, 671.

Abbreviations

40-60	Boiling between 40 and 60 $^{\circ}$ C (petroleum ether)
2c-2e	Two centre two electron
3c-2e	Three centre two electron
18-crown-6	1,4,7,10,13,16-hexanoxacyclooctadecane
δ	Chemical shift in ppm
$\langle \delta(^{11}{ m B}) angle$	Weighted average chemical shift in ppm
η	Ligand hapticity
μ	Bridging
${\it \Omega}$	Overall root-mean square deviation
Å	Ångström, 1 x 10^{-10} m
app	apparent
bha	bicapped hexagonal antiprism
BHD	B-H Distance
bipy	2,2'-bipyridine (C ₅ H ₄ N) ₂
BMOs	Bonding Molecular Orbitals
BNCT	Boron Neutron Capture Therapy
br	broad
CHN	Elemental analysis
Ср	Cyclopentadienyl (C ₅ H ₅)
Cp*	Pentamethylcyclopentadienyl (C ₅ Me ₅)
d	doublet
DFT	Density Functional Theory
dppe	1,2-bis(diphenylphosphino)ethane
DSD	Diamond-Square-Diamond
EIMS	Electron Ionisation Mass Spectrometry
Et	Ethyl group (-CH ₂ CH ₃)
Et ₂ O	Diethyl ether (CH ₃ CH ₂)O
FMOs	Frontier Molecular Orbitals
g	gram(s)
h	hour(s)

HIV	Human Immunodeficiency Virus
Κ	Kelvin
kcal mol ⁻¹	kilocalories per mole
m	multiplet
М	Molar concentration (molarity)
M^+	Molecular parent ion
Me	Methyl group (-CH ₃)
mg	milligram(s)
ml	millilitre(s)
MHz	megahertz
mmol	millimole(s)
MO	Molecular Orbital
MW	Molecular Weight
<i>m/z</i> ,	mass-to-charge ratio
n-BuLi	<i>n</i> -butyl lithium, C ₄ H ₉ Li
NMR	Nuclear Magnetic Resonance
OEt	Ethoxy group (-OCH ₂ CH ₃)
<i>p</i> -cymene	1-methyl-4-isopropylbenzene
Ph	Phenyl group $(-C_6H_5)$
ppm	parts per million
PSEPT	Polyhedral Skeletal Electron Pair Theory
q	quartet
$R_{\rm f}$	Retention factor
S	singlet
t	triplet
TFR	Triangular Face Rotation
THF	Tetrahydrofuran
TLC	Thin Layer Chromatography
$U_{ m eq}$	Isotropic displacement parameter
VCD	Vertex-to-Centroid Distance

Chapter 2	1	1,2-Me ₂ -4-Cp-4,1,2- <i>closo</i> -CoC ₂ B ₁₀ H ₁₀
	2	1,6-Me ₂ -4-Cp-4,1,6- <i>closo</i> -CoC ₂ B ₁₀ H ₁₀
	3	$1,8-Me_2-4-Cp-4,1,8-closo-CoC_2B_{10}H_{10}$
	4	1,2-Me ₂ -4-(<i>p</i> -cymene)-4,1,2- <i>closo</i> -RuC ₂ B ₁₀ H ₁₀
	5	$1,6-Me_2-4-(p-cymene)-4,1,6-closo-RuC_2B_{10}H_{10}$
	6	$4-(\eta-C_9H_7)-4,1,6-closo-CoC_2B_{10}H_{12}$
	7	$1,6-Me_2-4-(\eta-C_9H_7)-4,1,6-closo-CoC_2B_{10}H_{10}$
	8	$4-(\eta-C_{9}H_{7})-4,1,8-closo-CoC_{2}B_{10}H_{12}^{*}$
	9	$1,8-Me_2-4-(\eta-C_9H_7)-4,1,8-closo-CoC_2B_{10}H_{10}$
	10	$1(\text{ or } 6)$ -Me-4-(η -C ₉ H ₇)-4,1,6- <i>closo</i> -CoC ₂ B ₁₀ H ₁₁ *
Chapter	11	8-Me-4-(η -C ₉ H ₇)-4,1,8- <i>closo</i> -CoC ₂ B ₁₀ H ₁₁
3	12	$1-Me-4-(\eta-C_9H_7)-4,1,8-closo-CoC_2B_{10}H_{11}^*$
	13	$4-(\eta-C_{9}H_{7})-4,1,10-closo-CoC_{2}B_{10}H_{12}$
	14	$4-(\eta-C_{9}H_{7})-4,1,12-closo-CoC_{2}B_{10}H_{12}$
	15	$1,12$ -Me ₂ -4-(η -C ₉ H ₇)-4,1,12- <i>closo</i> -CoC ₂ B ₁₀ H ₁₀
	16	$1,2-Me_2-4-(\eta-C_9H_7)-4,1,2-closo-CoC_2B_{10}H_{10}$
	17	$1,2-\mu-(CH_2)_3-4-(\eta-C_9H_7)-4,1,2-closo-CoC_2B_{10}H_{10}$
	18	1,14-Cp ₂ -1,14,2,9- <i>closo</i> -Co ₂ C ₂ B ₁₀ H ₁₂ *
	19	$1-Cp-14-C_5H_4CH(OH)CH_2CH_2CH_3-1, 14, 2, 9-{\it closo-Co_2C_2B_{10}H_{12}}$
Chapter	20	$1,13-Cp_2-1,13,2,9-closo-Co_2C_2B_{10}H_{12}$
Chapter 4	21	$2,9-Me_2-1,14-Cp_2-1,14,2,9-{\it closo-Co_2C_2B_{10}H_{10}}$
	22	$2,10 \text{-} Me_2 \text{-} 1,14 \text{-} Cp_2 \text{-} 1,14,2,10 \text{-} closo \text{-} Co_2 C_2 B_{10} {H_{10}}^*$
	23	$1,14-(\eta-C_9H_7)_2-1,14,2,9-closo-Co_2C_2B_{10}H_{12}$
	24	$1,14 \text{-} (\eta \text{-} C_9 H_7)_2 \text{-} 1,14,2,10 \text{-} closo \text{-} Co_2 C_2 B_{10} H_{12}$
	25	2-OEt-4-Cp-4,1,12- <i>closo</i> -CoC ₂ B ₁₀ H ₁₁
Chapter 5	26	$3-OEt-1, 8-Cp_2-1, 8, 2, 10-closo-Co_2C_2B_{10}H_{11}$
	27	1,13-Cp ₂ -1,13,2,4- <i>closo</i> -Co ₂ C ₂ B ₁₀ H ₁₂
	28	$1,8-Cp_2-1,8,2,4-closo-Co_2C_2B_{10}H_{12}$
	29	1,8-Cp ₂ -1,8,2,5- <i>closo</i> -Co ₂ C ₂ B ₁₀ H ₁₂

Abbreviations for Specific Compounds

*No crystallographic details.

Α	$1-Me-4-(PEt_3)-4, 6/7-\mu-\{Co(PEt_3)_2-\mu-(H)_2\}-4, 1, 2-closo-CoC_2B_{10}H_{10}$
В	1,2-µ-(CH ₂) ₃ -4-Cp-4,1,2- <i>closo</i> -CoC ₂ B ₁₀ H ₁₀
С	$1,2-\mu-(CH_2)_3-4-(p-cymene)-4,1,2-closo-RuC_2B_{10}H_{10}$
D	$4-Cp-4, 1, 6-closo-CoC_2B_{10}H_{12}$
Ε	1,12-Me ₂ -4-Cp-4,1,12- <i>closo</i> -CoC ₂ B ₁₀ H ₁₀
F	$1,8-Ph_2-4-Cp-4,1,8-closo-CoC_2B_{10}H_{10}$
G	2,3,5,7,9,11,12,13-Me ₈ -4-Cp-4,1,8- <i>closo</i> -CoC ₂ B ₁₀ H ₄
Н	$1,8\text{-}Et_2\text{-}2,5,6,7,9,11,12,13\text{-}Me_8\text{-}4\text{-}Cp\text{-}4,1,8\text{-}closo\text{-}CoC_2B_{10}H_2$
J	$4-Cp-4, 1, 8-closo-CoC_2B_{10}H_{12}$
K	$4-Cp-4, 1, 12-closo-CoC_2B_{10}H_{12}$
L	1-CN-4-Cp-4,1,2- <i>closo</i> -CoC ₂ B ₁₀ H ₁₁
Μ	1,2-µ-(CH ₂) ₃ -4-dppe-4,1,2- <i>closo</i> -NiC ₂ B ₁₀ H ₁₀
Ν	$1,2-\mu-(CH_2)_3-4-(PMe_2Ph)_2-4,1,2-closo-PtC_2B_{10}H_{10}$
Р	4-Cp-4,1,10- <i>closo</i> -CoC ₂ B ₁₀ H ₁₂
Q	4,5-Cp ₂ -4,5,1,6- <i>closo</i> -Co ₂ C ₂ B ₉ H ₁₁
R	1,14-Cp ₂ -1,14,2,10- <i>closo</i> -Co ₂ C ₂ B ₁₀ H ₁₂
S	1,13-Cp ₂ -1,13,2,10- <i>closo</i> -Co ₂ C ₂ B ₁₀ H ₁₂
Т	3-Cp-3,1,2- <i>closo</i> -CoC ₂ B ₉ H ₁₁