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Abstract

This thesis is about trying to understand various aspects of partial symmetry using
ideas from semigroup and category theory. In Chapter 2 it is shown that the left Rees
monoids underlying self-similar group actions are precisely monoid HNN-extensions.
In particular it is shown that every group HNN-extension arises from a self-similar
group action. Examples of these monoids are constructed from fractals. These ideas
are generalised in Chapter 3 to a correspondence between left Rees categories, self-
similar groupoid actions and category HNN-extensions of groupoids, leading to a
deeper relationship with Bass-Serre theory. In Chapter 4 of this thesis a functor K
between the category of orthogonally complete inverse semigroups and the category
of abelian groups is constructed in two ways, one in terms of idempotent matrices
and the other in terms of modules over inverse semigroups, and these are shown to be
equivalent. It is found that the K-group of a Cuntz-Krieger semigroup of a directed
graph G is isomorphic to the operator K°-group of the Cuntz-Krieger algebra of G
and the K-group of a Boolean algebra is isomorphic to the topological K°-group of

the corresponding Boolean space under Stone duality.
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Chapter 1

Introduction

1.1 Overview

A semigroup is a set with an associative binary operation and a monoid is a semigroup
with identity. Introductions to semigroup theory include [27], [28], [49]. Some of the
earliest work on semigroups was done by Suschkewitsch and Rees, and in fact one of
the fundamental objects of study in Chapter 2 of this thesis are left Rees monoids,
named in honour of David Rees who studied a particular class of such semigroups in
his paper [105]. A monoid M is right rigid if aM NbM # () implies that aM C bM
or bM C aM; this terminology is derived from Cohn [29]. A left Rees monoid is a
right rigid left cancellative monoid which satisfies an ascending chain condition on the
chains of principal right ideals. Right Rees monoids are defined to be the right-hand
dual, i.e. left rigid right cancellative monoids with an ascending chain condition on
chains of principal left ideals. A Rees monoid is one which is both left and right Rees.
It is proved in [76] that every right cancellative left Rees monoid is in fact a Rees
monoid. Semigroups and monoids can often be thought of in a similar manner to
rings, the idea being that the multiplicative structure of a ring has the structure of
a semigroup and if the ring has an identity then this semigroup is a monoid. This
thought will be pursued further later, suffice to say for the moment that one of the
most important initial considerations of a semigroup is its ideal structure, and this
gives an indication as to why Rees was already thinking about similar structures to
those which we will be studying so early on in the history of semigroup theory. Self-
similar group actions were introduced by Nivat and Perrot ( [99], [102], [101]) in the
study of certain 0-bisimple inverse monoids, though this is not the terminology they
used. We will see how their ideas came about in Section 3.9. The concept of self-similar
group actions re-emerged with the work of Grigorchuk, Bartholdi, Nekrashevych and
others in the study of groups generated by automata. We will study such automata
with examples in Section 2.7. Cain ( [25]) has generalised these ideas to the notion

of a self-similar semigroup. Lawson in [76] showed that there is in fact a one-one
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correspondence between left Rees monoids and self-similar group actions. The idea
here is that given a self-similar group action of a group GG on a free monoid X*, when
one takes their Zappa-Szép product (essentially a two-sided semidirect product) the
resulting structure is a left Rees monoid, and all left Rees monoids can be constructed
in this manner. We will summarise the details of this in Section 2.2. In Section 2.4 we
will consider when one can extend a self-similar group action of a group G on a free
monoid X* to self-similar action of the group G on the free group FG(X); this turns
out to be precisely when the left Rees monoid is symmetric. We will briefly consider
the representation theory of left Rees monoids in Section 2.8.

One way of viewing self-similar group actions is in terms of homomorphisms into
the automorphism groups of regular rooted trees, giving rise to the so-called wreath
recursion, details of which are summarised in Section 2.2. The salient point to note is
that we have a group acting on a tree. Groups acting on trees give rise to graphs of
groups ( [87], [109]). A number of interesting groups arise as the fundamental groups
of graphs of groups. Perhaps the simplest situation is where one has a single vertex
with associated group G, and |I| loops from the vertex to itself, each labelled by an
injective homomorphism «; from a subgroup H; of GG into G. The fundamental group
of such a graph of groups is called an HNN-extension. The resulting group I' has

group presentation
F:<G,tzZ€[|R(G),htl:tzal(h) hEHi,iEI>,

where R(G) denotes the relations of G. Note that several authors have the condition
reversed, i.e. they adopt the convention ¢;h = «;(h)t;. One of the main results of this
thesis is that if one takes such a presentation, and let us not assume that the maps are
injective, then if we instead take a monoid presentation the resulting monoid is a left
Rees monoid, and every left Rees monoid is such a monoid HNN-extension (see Section
2.3). It then follows as a corollary that if we in fact have a Rees monoid then its group
of fractions is a group HNN-extension, and every group HNN-extension arises in this
way. In addition one finds that if the Rees monoid is symmetric then this group HNN-
extension is a Zappa-Szép product of a free group and a group. Part of the inspiration
for this result is a theorem by Cohn on the embeddability of cancellative right rigid
monoids into groups, whose proof in [29] has the flavour of taking the fundamental
group of a graph of groups. The author suspects that in fact this proof doesn’t quite
work, and this is further evidenced by the fact that Cohn utilises a different proof in
the second edition of the same book ( [30]) (see more details in Section 2.3). These
results were then to some extent generalised to the situation of categories embedding
in groupoids by von Karger ( [120]). The notion of HNN-extension has previously
been generalised to the situation of semigroups in [41], [48] and [122]. Gilbert and
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Yamamura consider the case where the semigroup is inverse and Howie considers the
situation where ¢t and 't are idempotents for some ¢'.

The term fractal was coined by Mandelbrot in the 1970’s to describe a number of
geometric structures which were very jagged in structure (here fractal is derived from
the Latin word fractum meaning broken). One of the key properties many fractals
share is that of self-similarity. The idea here is that if we zoom in on a fractal we find
a structure similar to the one with which we started. Self-similarity can be seen as one
form of partial symmetry, a notion to be considered again later. Fractal-like structures
appear in a variety of contexts in the natural world, for example in modelling coastlines
and certain ferns ( [103]). They have also been used in the modelling of electrical
resistance networks ( [12], [23]). Another application is in optimising reception while
at the same time minimising surface area in mobile telephone aerials ( [104]). It has
been realised for some time that there exist connections between self-similar group
actions and fractals and other interesting geometric structures (see for example [16],
[17], [43], [54], [96], [98]). In many of the examples considered the fractal is obtained
as a kind of limit space of a self-similar group action; that is, the regular rooted
tree modulo the action in a specified way gives rise to a geometric structure with
fractal-like properties. In this thesis it will in fact be shown that the monoid of
similarity transformations of the attractor of an iterated function system is often a
Rees monoid. This will be proved in Section 2.5 and a number of examples will
be considered. This fact is actually used implicitly in the calculations of [12]. The
idea is that given an iterated function system fi,...,f, : I — F, one finds in a
number of examples that the semigroup generated by these maps is free and thus
letting X = {f1,..., fu} we can sometimes get a self-similar action of the group of
isometries GG of F on X*. Moreover, the group G is in several cases finite and so one
has associated an automaton which gives rise to this self-similar action. One can then
view the automaton as describing a computer programme with two recursively defined
functions, one for the action and the other for the restriction, together with a number
of base cases. A Scala programme is given in Appendix A which models this situation.
The algebraic properties of transformations on fractals have previously been studied
in [38], [113] and [114]. Bandt and Retta ( [14]) have discovered a number of fractal-
like structures whose properties depend only up to homeomorphism, and such that
every into-homeomorphism is in fact a similarity transformation. We describe some
corollaries of their work in Section 2.6.

Another mathematical structure which will be important in this thesis is a cate-
gory. Categories were introduced by Samuel Eilenberg and Saunders MacLane in the
1940’s in the study of the many functors arising in algebraic topology. Since then
categories have found their way into many other areas of mathematics. For example,

Lawvere and Rosebrugh have shown that much of axiomatic set theory can be refor-
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mulated in the language of category theory [84]. All undefined terms from category
theory can be found in [10], [21], [66], [93]. We will say more about categories in the
following section.

Left Krieger semigroups were introduced by Lawson in [77] as a generalisation of
left Rees monoids, these being precisely left Krieger semigroups which do not have
a zero element. It was found that there existed a similar description of arbitary left
Krieger semigroups in terms of Zappa-Szép products. The underlying category of a
left Krieger semigroup categorical at zero was termed a left Rees category. These
left Rees categories were then further investigated in [51] in the study of graph in-
verse semigroups. By adapting slightly the notions and results of [77] one is led to a
correspondence between left Rees categories and self-similar groupoids (here the free
monoid on a set X will be replaced by the free category on a graph G). In Chapter
3 we will show that many of the concepts and properties of left Rees monoids and
self-similar group actions can be generalised to the context of left Rees categories and
self-similar groupoids. In Section 3.2 we will briefly describe how one arrives at the
correspondence between left Rees categories and self-similar groupoid actions from the
work of [77] and [51]. In Sections 3.3 we will see that our results about monoid HNN-
extensions can be rephrased for the categorical context. This will then lead to further
connections with Bass-Serre theory. We will then see in Sections 3.4 and 3.5 that, un-
der suitable assumptions on the graphs and categories in question, we can replace the
concepts of automorphism group of the regular rooted tree and the wreath recursion
by suitable categorical notions. We also, in Section 3.6, define automaton groupoids
analogously to the group situation. A different form of automaton groupoids had
previously been considered in [26]. An indication will be given in Section 3.7 of how
one might want to generalise the results about iterated function systems to graph
iterated function systems. In Section 3.8 we will consider the representation theory
of left Rees categories. One of the curious aspects about left Rees categories (unlike
the situation for left Rees monoids) is that one can get finite examples which are not
just groupoids. This will then lead to a connection with the representation theory of
finite-dimensional algebras. Finally, in Section 3.9 we will see how one can naturally
associate an inverse semigroup to a left Rees category, and this section will act as a
bridge between the work of Chapters 2 and 3 and that of Chapter 4. Examples that
can be constructed in this manner include the polycyclic monoids and graph inverse
semigroups.

In recent decades it has been realised that there exist deep connections between
three mathematical structures: inverse semigroups, topological groupoids and C*-
algebras (for example, see [35], [62], [78], [80], [81], [82], [83], [85], [90], [92], [94], [106],
[107], [118]). Good introductions to inverse semigroups, topology and C*-algebras
are [70], [110] and [65]. The connection between C*-algebras and topological groupoids
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can be seen as a generalisation of the Gelfand representation theorem viewing com-
mutative C*-algebras as rings of functions over topological spaces. Chapter 4 of this
thesis can be considered as fitting within this framework. Jones and Lawson have
shown that the representation theory of the Cuntz C*-algebras as considered in [24]
can be thought in terms of the representation theory of the polycyclic monoid ( [52]).
It was mentioned earlier that semigroups can often be thought of in similar ways to
rings. An example of this is in the study of Morita equivalence in the context of
semigroups ( [63], [69], [116]). More recently it has been realised that one can de-
scribe Morita equivalence for inverse semigroups in a manner analogous to C*-algebras
( [6], [39], [79], [112]). One example of the correspondence between these three math-
ematical structures is given by the polycyclic monoids P,, the Cuntz groupoids G,
and Cuntz algebras O,,. The Cuntz algebra was introduced by Cuntz in [32] and can
be constructed from the Cuntz groupoid. The Cuntz monoid considered by Lawson
in [75] is the distributive completion of the polycyclic monoid. One can construct
the Cuntz groupoid from the Cuntz monoid via the theory of [80] and [81]. This
construction is an example of a non-commutative Stone duality. Graph inverse semi-
groups are a generalisation of the polycyclic monoids. The C*-algebra associated to a
graph inverse semigroup is then the Cuntz-Krieger algebra, and again one can use the
Cuntz-Krieger semigroups, the distributive completions of graph inverse semigroups,
to construct the Cuntz-Krieger algebras. Leavitt path algebras ( [117]) are the alge-
bras generated in the same way as the Cuntz-Krieger algebras without requiring one
ends up with a C*-algebra. It has been shown in [7] that these are Morita equivalent
to the Cuntz-Krieger algebras. Lawson [68] has introduced AF-monoids as the inverse
semigroup counterpart to AF-algebras [119].

The aim of Chapter 4 of this thesis is to define a functor K from the category of
orthogonally complete inverse semigroups to the category of abelian groups, in analogy
with the Kjy-group of algebraic K-theory. Other homological approaches to inverse
semigroups include those in [42], [67], [86]. The K-theory of C*-algebras associated to
inverse semigroups has previously been investigated in [34], [91] and [100]. Standard
references on K-theory include [9], [19] and [108]. We will give a brief overview of
some aspects of topological and algebraic K-theory in Section 1.4. K-theory was
originally introduced by Grothendieck in the study of coherent sheaves over algebraic
varieties. Atiyah and Hirzebruch then introduced topological K°-groups by observing
that vector bundles over manifolds are in some sense akin to coherent sheaves over
algebraic varieties. The Serre-Swan theorem then says that these vector bundles
are in one-one correspondence with the finitely generated projective modules of a
C*-algebra of continuous functions. This then gave rise to algebraic and operator
K-theories. It is also possible to define higher K-groups. K-theory is used in the

classification of topological spaces, rings and operator algebras. The author believes
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that the classification of semigroup C*-algebras by their Ky-groups is really a K-
theoretic classification of inverse semigroups. We will see that if S is a (unital)
Boolean algebra then K (S) will be isomorphic to (topological) K°(B(S)), where B(S)
denotes the corresponding Boolean space and if C'Kg is the Cuntz-Krieger semigroup
of a graph G then K(CKg) will be isomophic to (operator) K°(Og). Topological
K-theory is used in the study of characteristic classes in differential topology and
operator K-theory is employed in Connes’ programme of non-commutative differential
geometry ( [31]). Operator K-theory is also used in the gap-labelling theory of tilings
( [11], [18], [36], [55], [56], [57], [58], [60], [59], [61]). It is believed that it might be
possible to describe this gap-labelling theory in terms of the tiling semigroups by
using inverse semigroup K-theory.

An inverse semigroup S is a semigroup such that for each element s € S there
exists a unique element s™! € S with ss™!s = s and s7'ss™! = s7!. Inverse semi-
groups were introduced independently by Viktor Wagner and Gordon Preston in the
1950’s. In the same way that we can think of groups as describing symmetry, we can
view inverse semigroups as describing partial symmetry. The idea here is that each
element of the semigroup can be thought of as describing a bijective map from part
of a structure to another part of the structure. For example, if this structure is a
set, then our inverse semigroup is simply a subsemigroup of the symmetric inverse
monoid on that set. In fact, the Wagner-Preston representation theorem says that
every inverse semigroup embeds in a symmetric inverse monoid. This can be thought
of as being analogous to Cayley’s theorem for groups. Another example of our semi-
group describing partial symmetry is when our structure is a topological space and
our inverse semigroup is a pseudogroup of transformations of this space. Associated
with a pseudogroup of transformations one has the groupoid of germs of the action.
This is an example of how one can naturally associate topological groupoids to in-
verse semigroups, and Paterson’s universal groupoid is a generalisation of this idea.
Some of the connections between inverse semigroups and topological groupoids can
be thought of as non-commutative versions of the natural dualities between certain
classes of lattice-like algebraic structures and discrete topological spaces. These du-
alities are collectively known as Stone dualities, named in honour of Marshall Stone
who introduced the original example relating Boolean algebras and Boolean spaces
( [50]). The important point here is that an inverse semigroup comes equipped with
a natural partial order. We say s < t if s = ts~'s. In the case where these are maps
on a set, this should be interpreted as saying that the domain of s is a subset of the
domain of ¢, and that ¢ restricted to this subset is equal to s. The set of idempotents
E(S) of a semigroup S forms a meet semilattice, where the natural partial order on
E(S) is given by e < f if and only if e = ef, so that in general the product ef of
elements e, f € FE(S) should be thought of as their order-theoretic meet (greatest
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lower bound). Given an element s € S there are two idempotents which we associate
with s: the range of s given by r(s) = ss~! and the domain of s given by d(s) = s7's.
We write e > f to mean e = d(s) and f = r(s). In terms of the symmetric monoid
this is saying that the set-theoretic domain of s has identity map on this set given by
s~ !s and likewise for the range of s. All the inverse semigroups we will be considering
will have a zero: an element 0 with 0 = Os = s0 for all s € S. This will be the
least element in the natural partial order. We will say that two elements s,t € S
are orthogonal, and write s L t, if st™! = s7't = 0. Again, thinking in terms of the
symmetric inverse monoid, this means that the domains and ranges of s and ¢ do
not intersect. An equivalent condition for elements s,t € S to be orthogonal is that
d(s)Ad(t) =0 and r(s) Ar(t) = 0. We will denote, if it exists, the least upper bound
(join) of two elements s,t € S by sV t. We will call an inverse semigroup with 0
orthogonally complete if every pair of orthogonal elements has a join and multiplica-
tion distributes over finite orthogonal joins. It was shown in [74] that every inverse
semigroup S with 0 has an orthogonal completion; that is, we take the semigroup S
and force every pair of orthogonal elements to have a join in such a way that we end

up with an orthogonally complete inverse semigroup.

1.2 Categories and groupoids

A few remarks might now be helpful to clarify the notation and terminology which
will be used with respect to categorical constructions found in this thesis. We will
treat small and large categories in different ways. All categories in Chapter 3 will
be assumed to be small and all categories in Chapter 4 will be assumed to be large.
A small category is one such that the classes of objects and arrows of the category
are actually sets. For us, a large category will simply be any category which is not
assumed to be small. That is, a large category may in fact be small. The point of
this distinction is that the objects of a large category will be important whereas we
will merely be interested in the arrows of a small category. Large categories will be
denoted by bold font, as in C. The class of objects of the category C will be denoted
by Obj(C) and the class of arrows will be denoted by Arr(C). The class of arrows
from an object A € Obj(C) to an object B € Obj(C) will be denoted C(A4, B). Our
categories will mainly be locally small; that is, the classes C(A, B) are all sets, in
which case we call C(A, B) the hom-set between A and B.

We will treat small categories as algebraic structures, i.e. as sets with partially
defined binary operations. The elements of these small categories are the arrows, and
we will replace objects by identity arrows. Each arrow x has a domain, denoted by
d(z), and a codomain denoted by r(z), both of these are identities and = = zd(x) =

r(z)r. We will write this as d(z) = r(z). The set of all identity arrows of a small
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category C' will be denoted by Cj and the set of all non-identity arrows by C', so that
C is the disjoint union of Cy and C. Given an identity e the set eCe of all arrows
that begin and end at e forms a monoid called the local monoid at e. An arrow x is
invertible if there is an arrow 7! such that 7'z = d(z) and 2z~ = r(z). We call the
element ! the inverse of x; this element is necessarily unique. We shall say that a
pair of identities e and f in a category C are strongly connected if and only if eC'f # ()
and fCe # (0. A small category in which every arrow is invertible is called a groupoid.
We denote the subset of invertible elements of C' by G(C'). This forms a groupoid. If
G(C) = Cp then we shall say that the groupoid of invertible elements is trivial. We
say that a category C has trivial subgroups if the only invertible elements in the local
monoids are the identities. A category C' will be said to be totally disconnected if
r(z) = d(z) for all z € C. This means that the category C' is just a disjoint union
of monoids. Two categories C' and D are isomorphic if there is a bijective functor
f:C — D (so that f|c, and f|e, are both bijections).

A directed graph G is a collection of vertices Gy and a collection of edges G; together
with two functions d,r : G; — G called the domain and the range, respectively. All
graphs in this thesis will be assumed to be directed. Two edges x and y are said to
be composable if r(y) = d(z). A route in G is any sequence of edges z ...z, such
that x; and x;,, are composable for all © = 1,...,n. The free category G* generated
by the directed graph G is the category with G§ = {1, : v € Gy}, where we have again
identified identity arrows with objects of the category and the non-identity arrows,
Gy, is the set of all non-empty routes in G and composition of composable routes is
by concatenation. We will view G; as being a subset of G; and we will identify G, and
Gg. Given an edge x in a graph G we can consider the formal reversed edge ! which
has d(z7!) = r(z) and r(z7') = d(z). A path in G consists of a sequence z{' ...z

where each z; is an edge, ¢; is either 1 or —1 and for each ¢ we have r(z;}') = d(zf").
We will say a path is reduced if it has no subpath of the form zz~! or z7'z. Two
paths will be considered equivalent if they can be reduced to the same path. The free
groupoid G' generated by the directed graph G will have gg = {1, : v € Gy} and the
non-identity arrows are all reduced paths in G. Multiplication in Gt will consist of
concatenation of composable reduced paths plus reduction if possible. Observe that
if a graph G has a single vertex and has edge set G; = X then the free category on
G is isomorphic to the free monoid X* on the set X and the free groupoid on G is
isomorphic to the free group F'G(X) on the set X.

A category presentation for a small category C' is written as follows
C=(Glr; =y, vi,y: €G" i € 1),

where G is a directed graph, I is an index set, elements of C' are equivalence classes
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of elements of G*, d(z;) = d(y;) and r(x;) = r(y;) for each i € I, and the relation
x; = y; tells us that every time we have a route wx;v in G then this is equivalent to
the route wy;v and vice versa.

In a similar manner a groupoid presentation for a groupoid G is written as follows
G =(Glz; =y, y; €Giel)

where G is a directed graph, I is an index set, elements of G are now equivalence
classes of elements of G, d(z;) = d(y;) and r(x;) = r(y;) for each i € I, and the
relation z; = y; tells us that every time we have an element wz;v in G' then this
equivalent to wy;v and vice versa.

It is possible by being careful to give presentations of categories and groupoids
where d(z;) # d(y;) (see for example [44] or [95] for details) but we will not often be
considering this situation. In order to avoid confusion whenever both category and
groupoid presentations are being used we may denote category presentations by (|)¢
and groupoid presentations by (|)q.

Given a small category C' there is a (unique up to isomorphism) groupoid U(C)
and functor v : €' — U(C) such that if f : C — G is any functor from C to a
groupoid G then there is a unique functor g : U(C) — G such that gu = f. We
call the groupoid U(C') the groupoid of fractions of C' ( [40]). Some authors use
the terminology universal groupoid (and hence our usage of the notation U(C')), but
this phrase is used to describe a slightly different construction in [44] and [95], and
there is in addition Paterson’s universal groupoid of an inverse semigroup, so to avoid
confusion we will always call it the groupoid of fractions. Other authors use the term
groupoid of fractions as a synonym for what [40] calls a category of left fractions which
is the situation where every element of the groupoid of fractions U(C) has the form
271y for some z,y € C. In most of our examples what we are calling the groupoid of
fractions is not a category of left fractions.

The following is a rephrased version of how to construct the groupoid of fractions

found in [40] in terms of our language of category presentations.

Proposition 1.2.1. Let
C = (GR)c

be a category given by category presentation and let
G = (G|R)c

be the groupoid generated by the same generating graph and relations but such that we

are working with a groupoid presentation. Then G is isomorphic to the groupoid of

fractions U(C') of C.
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Proof. Let H be the same graph as G except with all edges reversed. We will identify
the vertices of G and H. The element x € G will have corresponding element 2! in
H; so that d(z) = r(z!) and d(z™!) = r(x). Let M be the union of the graphs G

and H. Observe that G can be given in terms of a category presentation as:

G = (M|R,S)c,

1 1

where S denotes the set of relations saying xz~" and z7'x are identities for each
x € G1. We have a functor v : €' — G given by u(z) = .

Now let f : C' — H be any functor from the category C' to a groupoid H. Then
since f is a functor we must be able to write H in terms of the following category

presentation:

H = (N|R,S,T)c,

where M is a subgraph of N' and T are any additional relations needed to define H
(for example identifying some of the edges of M). We have assumed that f will map
x € G tox €N

We now define the functor g : G — H to be the one which maps elements of M
to elements of M in Nj. Observe that gu = f. To see that g is unique, suppose that
h : G — H is a functor such that hu = f. Then h must agree with g on elements of

Gi. Now let z € G; viewed as an element of G. Then

and so h(z™) = (g(z))~! = g(x1). Thus g = h.
Since universal groups are unique up to isomorphism, G and U(C) must be iso-

morphic as categories. O

In particular, if M is a monoid given by monoid presentation, then the group G
with the same presentation instead viewed as a group presentation will be the group
of fractions of M.

Now suppose G is a groupoid given by groupoid presentation G = (G|R(G)) ,
where here we are denoting the relations of G by R(G) and suppose there is an index
set I, subgroups H; : ¢« € I of G and functors «; : H; — G. Let ¢;, fi € Gy be such
that H; C e;Ge; and K; = «;(H;) C f;Gf;. Define H to be the graph with Hy = Gy
and

Hy =G U{tili e I}

where r(t;) = e; and d(t;) = f;. We will say that I' is a groupoid HNN-extension of
G if ' is given by the groupoid presentation:

10
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We call the arrows t; stable letters. Note that since «; is injective it follows that
K; is a subgroup of G isomorphic to H;. Groupoid HNN-extensions have previously
been considered by Moore ( [95]) and Gilbert ( [41]). In the case of [95], H is a
wide subgroupoid of G rather than being a subgroup and the situation where H is
an arbitrary subgroupoid of G is considered in [41]. In both cases, they define the
HNN-extension as a pushout of a certain diagram of functors. It can be checked that
their definition is equivalent to the one given here when H is a subgroup of G. If G
is a group then I' is a group HNN-extension.

Let G be a groupoid, H a subgroup of G with identity e € Go and let
K ={geGld(g) =e}.

Then a transversal T of H is a subset of K such that
K=]]gH.

Each set gH will have cardinality equal to the cardinality of H. Furthermore, the
cardinality of T is independent of the choice of representatives so we define |G : H| =
|T|.

The following is a straightforward generalisation of Higgins’ unique normal form
theorem for fundamental groupoids ( [45]), as stated without proof as Theorem 2.1.26
in [95].

Proposition 1.2.2. Let

be a groupoid HNN-extension of a groupoid G, for each subgroup H; let T; be a
transversal of H; in G and for each subgroup K; = «(H;) let T! be a transversal

of K; in G. Then each element g of I' can be written uniquely in the form
9 = Gt gots - gmliu

where ¢, € {=1,1}, gx € T, if . = 1 and g, € T if e, = —1, u € G is arbitrary
subject to the condition that the domains and ranges match up appropriately and if
t;, =t and € + €x+1 = 0 then ggy1 1S not an identity.

i Tk+1

Proof. Let g € I'. Then g can definitely be written in the form

€

— 1 €2 .. €m
g = sity Saty, -+ St U,

where si,u € G are arbitrary but such that all the domains and ranges match up

11
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correctly. If e = 1 then we can write s; uniquely in the form
s1= g1l
where g; € T}, and hy; € H;,. We can then rewrite g as
g = qiti, vy (hy)satyl -+ - st .
If ¢, = —1 then we can write s; uniquely in the form

51 = gihi

where g € T} and h; € K;,. We can then rewrite g as

g= glti_llaal(hl)sztgj o Syt

We then continue along in a similar manner, by rewriting «;, (hx)Sk+1 = Grt1hkt1

where hy 1 € T;,  if €441 = 1 and hyyq € Ti’k+1 if ¢,41 = —1, and then moving the

k+1
hi41 beyond ;. by applying «;, ., or its inverse, while at the same time cancelling
any pair tkt,zl or t,;ltk. We now wish to prove that these normal forms are unique
normal forms. We will do this using an Artin-van der Waerden type argument. Let
us denote by X the set of normal form words (where words which are equal in I' are
not equated) and let X, be the set of normal forms w € X with r(w) = a. We can
define a groupoid B as follows. By will just be equal to I'y (and therefore also to
Gy). Elements of B; will be bijections 7 : X, — X;, where we define d(7) = a and
r(m) = bin B. It is readily verified that this gives B the structure of a groupoid.
We will define a functor I' — B. For g € G with d(g) = a, r(g) = b let us define

Ty : Xq — Xj to be the map with
€1 €m _ 61 5n
Wg(gltil e 'gmtimu) = 91tj1 e 'gntjnv

where what we have done is premultiplied g1t;! got;> - - - gmt;™u by g and then rewritten
this in normal form using the algorithm described above. Observe that 7y, = m,m,
for g,h € G with d(g) = r(h). In particular, my,-1 = 7y(g) so that m, € B for each
g € G. Define m, : Xy, — X, as follows. We define

o (b L rtsh -+ - g™ u) = gitsh -+ gt u.
Otherwise we define

T, (g1t5) - gl u) = treguts) - gt u.

12



Chapter 1: Introduction

In a similar manner we define T Xe, — Xy, We define
Tt (g tss - gt u) = Git§) - gl .
Otherwise we define
o1 (it - gmtimu) =t it - gt

Observe that Ty Tyt = Myt = T, and T ATy, = Tyl = Tfy, SO that m,, Tt € B
for each k € I. We will now check that m,m, = m, 7, 1) for every h € Hy,. We have

two cases. First,
T (e (G it} gtirw)) = mlgits) - gt u)

where g’ltil1 e gntin is hgit;! - - gmt;"u reduced using the algorithm described above.
On the other hand, noting that ay(h)t;' =t 'h,

o (Tagn (G 015 -+ gmtmw)) = o, (8 g8 - gty )
= gitf'i . .gntj,:u
Now the second case:
(T (9rtiy -+ gty ) = Tn(tegity) - - gty u)
= M) (91t -+ Gmtim )
= T (Tpumy (a5 - - - gmtimw)).
Thus 7,7, = 74, Mo, n) for every h € Hy. It follows that the map 7 : I' — B defined

by

€1 €m —_
T(sitsd - Sptimu) = R

is a functor. Finally, to see that the normal forms are unique note that if
€1 €m 1 401 n
gity - gmtimu, gyt - gntitu €T
are elements written in normal form both with domain e € I'y then

T(gitil - gmtiu)(e) = gitil - gmtiu

13
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while
TGt -+ gatSrv)(e) = gyt -+ gut'v

and thus they are mapped to different elements of B, so must be distinct in T'. O

1.3 A brief foray into Bass-Serre theory

We will now give a brief outline of some aspects of Bass-Serre theory. Our definition of
graph of groups is taken from [95], except that we do not assume that the underlying
graph is connected. The definition of [109] is equivalent. For us a graph of groups Gg

will consist of:
e A graph G.

An involution ¢ — ¢ on the edges of G.

A group G, for each vertex a € Gj.

A subgroup Gy < Gy for each edge t € Gy.
e An isomorphism ¢; : Gy — Gj for each edge t € G, such that ¢7 = ¢; *.

A path in Gg consists of a sequence g1t1gats - - - gmtmgmi1 Where tp € Gy for each
k, gr € Gy for K = 1,...,m and gpy1 € Gau,) for & = 1,...,m. We allow
for the case m = 0, i.e. paths of the form ¢ € G, for some a € G,. We write
d(git192ts - GmtmGm+1) = d(ty) and r(git1gats - - - Gmtmgms1) = r(ty). For g € G,
viewed as a path we write d(g) = r(g) = a. Let ~ be the equivalence relation on
paths in Gg generated by pthtq ~ pdi(h)q, where p,q are paths and h € G;. We say
that po.(h)q is a reduction of pthtq. It can be shown that every path reduces to a
unique fully reduced path.

Given a graph of groups Gg, we define its fundamental groupoid T'(Gs) ( [45]) to
be the groupoid whose arrows correspond to equivalence classes of ~. Composition
of arrows is simply concatenation of composable paths multiplying group elements
at each end. The fundamental groupoid of a graph of groups is precisely a groupoid
HNN-extension of a totally disconnected groupoid.

To see this, suppose

is a groupoid HNN-extension of a totally disconnected groupoid G. Then the associ-
ated graph of groups G will have vertices corresponding to the identities of I'. The
group at the vertex corresponding to the identity a € Gy will be the local monoid

aGa. The edges of G5 will be the generating elements t; and their inverses. The

14
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involution in the graph will map ¢; to t; b and t; ' to t;. The groups H;, associated
with the edges t; will be the groups H; and the groups H,-: associated to the edges
t; 1 will be the groups o;(H;). We define ¢;, = a; and ¢tf11 = a;'. We then see that
the fundamental groupoid of G4 will be isomorphic to F.Z

On the other hand, suppose Gg is a graph of groups. We let G be the disjoint
union of all the vertex groups of Gs viewed as a totally disconnected groupoid with
identities corresponding to the vertices of Gg. For each pair {¢,t} where ¢ is an edge
in G we pick one edge; these edges will be our arrows ¢;. We define H; = G, and let
a; = ¢,. Then it is easy to see that the groupoid HNN-extension I' of G with respect
to the subgroups H;, stable letters ¢; and monomorphisms «a; will be isomorphic to
the fundamental groupoid of Gg.

Let I'(G¢) be the fundamental groupoid of a graph of groups G and for each edge
t € Gy let T; be a transversal of the left cosets of H; in G,(;. Using the normal form
result Proposition 1.2.2 we see that each element of I'(Gg) can be written uniquely in

the form

gitigata - - gmtmu

where git1gats - -+ gmtmu is a path in Gg, g; € T}, for 1 = 1,...,m and u € Gy, is
arbitrary, subject to the condition that if g; = d(t;_1) = r(t;) then t;_; # t,.

If G¢ is a graph of groups and a is a vertex in G (which we have identified with
the identity element of G, ) then the fundamental group of G at a, denoted 7 (G, a),
is al'(Gg)a, the local group at a, i.e. all paths in Gg which start and end at a.
Fundamental groups with respect to vertices in the same connected component of G
will be isomorphic. If G has a single vertex a then 7 (Gg, a) = I'(Gg) will be a group
HNN-extension, and every group HNN-extension is the fundamental group of a graph
of groups with a single vertex.

We have seen that given a graph of groups G we can construct its fundamental
groupoid I'(Gg) and the fundamental groups 7 (Gg, a). It will now be shown how the
groups 71 (Gg, a) have natural actions on trees.

Let Gg be a graph of groups, let a be a vertex of Go and let P, denote the set
of paths in G; with range a. For p,q € P, we will write p ~ ¢ if d(p) = d(¢) and
p ~ qg for some g € Ggq(p). This defines an equivalence relation on F,. We will denote
the ~-equivalence class containing the path p by [p]. We now define the (undirected)
Bass-Serre tree T with respect to the vertex a as follows. The vertices of T" are -
equivalence classes of paths in P,. Two vertices [p], [¢] € Tj are connected by an edge
if there are g € Ggq(,) and ¢ € G; such that

q ~ pgt.

15
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It can be verified that T is indeed a tree. We will now define an action of m(Gg, a)
on Ty by

g [p] = [gp]-

This will then naturally extend to an action of m;(Gg,a) on T.

Let us now consider these ideas from the point of view of groupoid HNN-extensions.
By definition two paths p,q in G5 are ~-related if they correspond to the same el-
ements of I'(Gg). So let I' be an arbitrary groupoid HNN-extension of a totally
disconnected groupoid G, let a € I'y = G and let

Py ={g€lr(g) =a}.

For p,q € P,, we define p =~ ¢ if p = qg for some g € G. This defines an equivalence
relation on P, and we denote the m-equivalence class containing p by [p]. We now
define an undirected tree T with respect to the identity a as follows. The vertices of
T will correspond to ~-equivalence classes of elements of P,. Two vertices [p], [¢] € T
are connected by an edge if

q = pgtih

for some g,h € G, i € I, e € {—1,1}. We then have an action of al'a on Ty given by

g [pl = [gp]

which naturally extends to an action of al'a on T. We can in fact make the tree T’
directed by specifying that if [p], [¢] € Ty then there is an edge s € T} with r(s) = [p]
and d(s) = [q] if ¢ = pgt;h for some g,h € G, i € I. It is then clear that this
construction works for an arbitrary groupoid HNN-extension, so we do not require
that G is totally disconnected.

16
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1.4 Topological and algebraic K-theory

Let us begin by recalling the definition of the Grothendieck group of a commutative
semigroup. If S is a commutative semigroup then there is a unique (up to isomor-
phism) commutative group G = G(S), called the Grothendieck group of S, and a
homomorphism ¢ : S — G, such that for any commutative group H and homomor-
phism ¢ : S — H, there is a unique homomorphism 6 : G — H with ¢ = 6o¢. In fact
G is really a functor from commutative semigroups to abelian groups. It is easy to
check that the Grothendieck group of a commutative semigroup is precisely its group
of fractions.

Let us now briefly outline topological and algebraic K-theory in order to motivate
the theory of Chapter 4. Our treatment follows that of [108]. Suppose X is a compact
Hausdorff topological space (it is possible to extend the definition of Ky-group to
locally-compact spaces, but we will leave that aside for the moment). Let [ be either
R or C. An F-vector bundle consists of a topological space E and a continuous open

surjective map p : F — X, with extra structure defined by the following:
e Each fibre p~'(z) of p for € X is a finite-dimensional vector space over F.

e There are continuous maps £ x £ — F and F x £ — E which restrict to vector

addition and scalar multiplication on each fibre.

We will denote such a vector bundle by E % X or by (E,p). One can consider the
category Veck of all F-vector bundles over X. The morphisms in this category are
continuous maps f : (E,p) — (F,q) such that they are linear on each fibre and such
that ¢f = p. The category has a binary operation & called Whitney sum defined on
objects (FE,p), (F,q) by

E®F ={(z,y) € E x Flp(z) = q(y)}

withp®¢: E® F — X given by (p @ q)(z,y) = p(z) = q(y).
For a space X and n € N the trivial vector bundle of rank n is (X x F",7,) where
T X X" — X is given by m,(x, 2) = z. A locally trivial F-vector bundle is a vector

bundle (£, p) such that for each x € X there is an open set U containing = and vector

pl,—
" U to a trivial bundle of some rank over U.

bundle isomorphism from p~!(U)
The rank of such a bundle (E,p) is then a continuous function rankg : X — N given
by rankg(z) = dim(p~!(z)).

Let us denote the set of locally trivial F-vector bundles over X by VF(X). Then
(VF(X),®) is a commutative monoid with identity the trivial vector bundle of rank

0. We define
Kp(X) = G(Ve(X)).

17
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We will only be concerned with complex topological K-theory in this thesis so we
write K%(X) = K2(X).

There is an alternative way of computing the Ky-group of a compact Hausdorff
space X. Let C(X) be the set of complex-valued continuous functions on X. C(X)
has the structure of a commutative ring under pointwise addition and multiplication
(in fact it can be given the structure of a C*-algebra). Let 'y be the set of finitely
generated projective modules of C'(X). Then (I'y,®) is a commutative monoid. In

fact, we have the following theorem:
Theorem 1.4.1. (Serre-Swan) There is a monoid isomorphism ¢ : Ve(X) — I'x.

It then follows that K°(X) = G(I'x). This then leads to the definition of algebraic
K-theory. If we let Proj(R) denote the set of finitely generated projective modules
of a ring R then we define Ky(R) = G(Proj(R)). Viewing C'(X) as a C*-algebra we
can give another definition of KY(X) in terms of this structure, and when generalised
this gives operator K-theory.

It is possible give an alternative description of algebraic K-theory. Let M, (R) be
the set of n x n matrices over R and let M (R) denote the set of N by N matrices over
R with finitely many non-zero entries. One can think of M (R) as being the union of
all the M,,(R). Given an idempotent matrix F € M(R), viewed as a homomorphism
R™ — R", the image of E is a projective R-module. On the other hand if P is
a projective module, there is an idempotent matrix £ with image P. We will say
idempotent matrices E, F € M,(R) are similar, and write F ~ F| if E = XY and
F =YX for some matrices X,Y € M(R). This will define an equivalence relation on
the set of idempotent matrices Idem(R). We have the following proposition:

Proposition 1.4.2. Idempotent matrices E, F € Idem(R) define the same projective
module if and only if E ~ F.

Denote the set of idempotent matrices by Idem(R) and define a binary operation
on Idem(R)/ ~ by
[E] + [F] = [E"+ F,

where if a row in E’ has non-zero entries then that row in F” has entries only zeros,
similarly for columns of E’, and for rows and columns of F’, and such that E' ~ F
and F' ~ F. We then have the following result:

Proposition 1.4.3. This is a well-defined operation and the monoids Idem(R)/ ~

and Projg, are isomorphic.

This then gives us an alternative way of viewing Ky(R). We have

Ko(R) = G(Idem(R)/ ~).

18



Chapter 2

Left Rees Monoids

2.1 Outline of chapter

The aim of this chapter is to study left Rees monoids in detail. We will consider the
correspondence found in [76] between left Rees monoids and self-similar group actions
in Section 2.2. In Section 2.3 we will see that left Rees monoids and monoid HNN-
extensions of groups are one and the same thing. We will then use this to investigate
the structure of left Rees monoids in more detail. In Section 2.4 we will show that the
group of fractions of a symmetric Rees monoid is a Zappa-Szép product of groups.
It will also be shown that every Rees monoid with finite group of units is in fact a
symmetric Rees monoid. From this we deduce that a group HNN-extension of a finite
group G is isomorphic to a Zappa-Szép product of a free group and the group G.
Sections 2.5 and 2.6 are devoted to the study of Rees monoids arising from fractals.
In Section 2.7 we will look at examples of left Rees monoids described in terms of
automata. Finally, in Section 2.8, we will briefly explore the representation theory of

left Rees monoids.

2.2 The correspondence

All unproved assertions in this section are proved in [76]. Recall from the introduction

that a monoid M will be called a left Rees monoid if it satisfies the following conditions:
(LR1) M is a left cancellative monoid.
(LR2) M is right rigid: incomparable principal right ideals are disjoint.

(LR3) Each principal right ideal is properly contained in only a finite number of
principal right ideals.

We shall always assume that left Rees monoids are not groups. We define right

Rees monoids dually. Every left Rees monoid M admits a surjective homomorphism
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A: M — N such that A™1(0) = G(M), the group of units of M. Any such homomor-
phism we call a length function. Such functions can always be chosen so that their
value on generators of maximal proper principal right ideals is one. Left Rees monoids
with trivial groups of units are precisely the free monoids, and so our monoids are
natural generalisations of free monoids. It is worth recalling here that a free monoid
X* on aset X consists of all finite sequences of elements of X called strings, including
the empty string e, which we often denote by 1, with multiplication given by concate-
nation of strings. The length |z| of a string z is the total number of elements of X
that occur in it. If x = yz then y is called a prefiz of x. A left Rees monoid which is
cancellative is automatically a right Rees monoid, and a monoid which is both a left
Rees monoid and a right Rees monoid is called a Rees monoid.

We will now describe the construction of the Zappa-Szép product of two monoids.
These were first considered by Zappa ( [123]) for groups and then later developed in
a series of papers by Szép, beginning with [115]. Kunze then considered the setup for
two semigroups ( [64]); in this situation the lack of identities means one only uses the
first 4 of the axioms listed below. Our treatment follows that of Wazzan’s PhD thesis
( [121]).

We will say two monoids A and S form a matched pair if there are two maps
A x S — S denoted (a,s) — acots and A x S — A denoted (a, s) — als satisfying
the following eight axioms, for a,b € A, s,t € S and 14, 1g denoting the identities,
respectively, of A and S:

(ZS1) (ab) - s = s.
(282) a- (st) = (a-s)(als - 1),
(ZS3) als = (als)ls-

(ZS4) (ab)ls = alp.sb]s.

(ZS5) a-1g = 1g.

(Z86) a1, = a.

(ZST) 14+ 5 =s.

(Z88) 1als = 1]a.

Given a matched pair (A, S) denote by S a1 A the Cartesian product of S and A

endowed with the following binary operation:

(s,a)(t,b) = (s(a 1), (al:)b).
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We call this the Zappa-Szép product of S and A. One can check that S A is in fact
a monoid with identity (1g,14), the sets

S ={(s,14)|s € S}
and
A"'={(1g,a)la € A}

are isomorphic, respectively, to S and A as monoids and that S < A = S’ A" uniquely.
On the other hand, if M is a monoid and S, A are submonoids of M such that
M = S A uniquely then one can define maps A x S — S and A x S — A by

as = (a-s)(als)

and one can check that these maps will satisfy (ZS1) - (ZS8).
Thus we have the following, originally proved in [64]:

Theorem 2.2.1. Let M be a monoid and let A, S be submonoids of M. Then
M = SA uniquely if and only if there are maps A xS — S and A x S — A satisfying
(Z51) - (ZS8) such that M = S A.

We will be interested in a particular case of Zappa-Szép products where A is a
group, now denoted G, and S is the free monoid on a set X. We will identify the
identities of G and X* and we will now relabel the axioms as follows for this special

(SS1) 1 2z =x.
(SS2) (gh)-z=g-(h-x).
(SS3) g-1=1.

(SS4) g - (zy) = (9-2)(gl. - y)-

(SS5) gli = g.
(SSG) g|zy = <g|m>|y
(SS7) 1, = 1.

We will then say that there is a self-similar action of the group G on the free monoid
X*. When we refer to a ‘self-similar group action (G, X)’, we shall assume that the
action and restriction have been chosen and are fixed. It is easy to show that such

an action is length-preserving, in the sense that |g - x| = |z| for all x € X*, and
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prefiz-preserving, in the sense that © = yz implies that g-z = (¢-y)z’ for some string

2.

The following was proved in [76].
Lemma 2.2.2. Let (G, X) be a self-similar group action.
(i) (glz)"' =g yu for allz € X* and g € G.

(i) (97Y2) ™ = gly-1a for allz € X* and g € G. m

If © € G then G, is the stabiliser of x in G with respect to the action and so a

subgroup of G. The following lemma will play a useful role in what follows.
Lemma 2.2.3. Let (G, X) be a self-similar group action.
(i) The function ¢,.: G, — G given by g — g|, is a homomorphism.

(11) Let Yy=4g-x. Then Gy = gGa:gfl and
dy(h) = glata(g " hg)(gla) "

(iii) If ¢, is injective then ¢g., is injective.
(iv) ¢, is injective for all x € X iff ¢, is injective for all x € X*.

(v) The function p, from G to G defined by p, : g — g|. is injective for all x € X iff

it 1s injective for all v € X*.

(vi) The function p, from G to G defined by p, : g — gl. is injective for all x € X
iff for all x € X, if gl =1 then g = 1.

(vii) The function ¢, is surjective for all x € X iff it is surjective for all x € X*.

(viii) The function p, from G to G given by p, : g — gl. is surjective for all v € X
off it 1s surjective for all x € X*.

Proof. (i) Let g,h € G,. Then

¢x(gh) = (9h)]z = glnzhle = glahle = ¢=(9)¢x(h),

using (SS8), as required.
(i) Let h € gGpg~t. Then h = gkg™" for some k € G, and so

hey=(gkg™ ") (g-a)=g-(k-x)=g-2=y.
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Thus h € G,. On the other hand, let A € G,,. Then

1

(g'hg) =g y=9g"' (g-2)=2

and so h € gG,g~'. If h € G, then

dy(h) = hly = (99 hgg™ ga = (99 h9)|eg  gx = 9ladalg " hg)(gl) "

(iii) This follows by (ii) above.

(iv) We need only prove one direction. We prove the result by induction on the
length of . The result is true for strings of length one by assumption. We assume
the result is true for strings of length n. We now prove it for strings of length n + 1.
Let y € X* be of length n + 1. Then y = zx where 2z has length n and x has length
one. We prove that ¢, is injective on G,. Let h,k € G,. Then h-y =y =k -y. By
comparing lengths, it follows that h-z =z =4k -z and h|, - © = x = k|, - z. Suppose
that ¢,(h) = ¢, (k). Then h|, = k|,. By axiom (SS6), we have that (hl|,)|, = (k|.)|-
But h|,, k|. € G, and so by injectivity for letters h|, = k|,. Also h,k € G, and so
by the induction hypothesis h = k, as required.

(v) Just one direction needs proving. We again prove the result by induction. It
is true for strings of length one by assumption. Let us assume it is true for strings
of length n. Let y € X* be a string of length n + 1 and suppose g|, = h|, for some
g,h € G. Then y = zz for some z,z € X* with |z] = n and |z| = 1. It follows from
(SS8) that (g].)|= = (h].)|.. Since p, is injective we see that g|, = h, and since p, is
injective we must have g = h.

(vi) One direction is clear. We prove the other direction. Suppose that for all
x € X, if g, = 1 then g = 1. We prove that the function from G to G defined by
g — gl. is injective for all z € X. Suppose that g|, = h|,. Then g|.(h|,)~! = 1. By
Lemma 2.2.2, (h|,)"' = h™!}... Put y = h-xz. Then

L= gla(hle)™" = (glh-1y)(h7"]y) = (gh ™)y

by (SS8). By assumption gh~! =1 and so g = h.

(vii) Only one direction needs to be proved. We assume the result holds for strings
of length 1. Suppose that the result holds for strings n. Let y be a string of length
n+ 1. Then y = zx where x is a letter and z has length n. Let ¢ € G. Then because
¢, 1s surjective, there exists h € G, such that ¢, (h) = ¢g. By the induction hypothesis,
there exists k € G, such that ¢.(k) = h. We now calculate

k-y=k-(zx)=(k-2)(kl, x)=zx=uy.
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Thus k € G, and ¢, (k) = k|., = (k|.)| = h|. = ¢, as required using axiom (SS6).

(viii) We need only prove one direction. Again we prove by induction. Assume
that p, is surjective for all x € X. Suppose p, is surjective for all z of length n. Let
y be a string of length n + 1 so that y = zx for some strings z, x with |z| = n and
|z| = 1 and let h € G be arbitrary. Then there exist g € G with ¢g|, = h and k € G
with k|, = ¢ by the induction hypotheses so that using (SS6) we have

k|y = k|zx = <k|z)|x = g\x = h.

Thus p, is surjective. 0

Let M be a left Rees monoid, let G = G(M) be its group of units, let X be a
transversal of the generators of the maximal proper principal right ideals, and denote
by X* the submonoid generated by the set X. Then X* is free, M = X*G, and
each element of M can be written uniquely as a product of an element of X* and an
element of G. Let ¢ € G and x € X*. Then gr € M and so can be written uniquely
in the form gxr = 2'¢’ where 2/ € X* and ¢’ € G. Define 2/ = ¢g-x and ¢’ = g|,. Then
it is easy to check that this defines a self-similar action of G' on X*.

Let (G, X) be an arbitrary self-smilar group action. On the set X* x G define its
Zappa-Szép product as above by

(2, 9)(y, h) = (z(g - y), gly ).

Then X* x G is a left Rees monoid containing copies of X* and G such that X* x G
can be written as a unique product of these copies.

It follows that a monoid is a (non-group) left Rees monoid if and only if it is
isomorphic to a Zappa-Szép product of a free monoid by a group.

In turn, Zappa-Szép products of free monoids by groups determine, and are de-
termined by, self-similar group actions. We have therefore set up a correspondence
between left Rees monoids and self-similar group actions in which each determines
the other up to isomorphism.

Throughout this section let M = X*G be a left Rees monoid. Define

K(M)={ge€G: gse€sG for all s € S},

a definition due to Rees [105]. This is a normal subgroup of G’ which we call the kernel
of the left Rees monoid. Left Rees monoids S for which (M) = {1} are said to be
fundamental. It can be checked that IC(M) = (,cx- Gz, and so a left Rees monoid is
fundamental iff the corresponding group action is faithful.

Let us summarise some facts and notions relating to self-similar group actions

which are described in detail in [98]. A group G acts by automorphisms on a regular
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rooted tree if the action is level-preserving, if it does not move the root and if d(g-x) =
g-d(z) and r(g-x) = g - r(z) for each edge z. Viewing X* as a tree, we see that
in a self-similar action GG acts on X* in a length-preserving manner and therefore by
automorphisms. We see that G < Aut(X*) if and only if G acts faithfully.

Let G < Aut(X*) be a subgroup acting on the left on the rooted tree X* (so, in
particular, it acts faithfully). Then for each x € X* and g € G there is a unique
automorphism ¢g|, € Aut(X™*) such that g - (zy) = (¢ - )(g|. - y) for each y € X*.
Call this the restriction of g by x. Denote both the identity of G and the root of the
tree by 1. It can be checked that restrictions satisfy the following properties, for all
g,h € Gand z,y € X™

Lgh=g

2. g|xy = (g‘x)’y

3.1, =1

4. (gh)le = 9lhagle

So we see that subgroups of the automorphism group of X* which are closed under
restriction give rise to unique fundamental left Rees monoids. On the other hand,
given a fundamental left Rees monoid M = X*G, then G is a subgroup of Aut(X*)
closed under the restriction maps.

Let H be a group acting on the left by permutations on a set X and let G be an
arbitrary group. Then the (permutational) wreath product H ! G is the semi-direct
product H x GX, where H acts on the direct power G* by the respective permutations
of the direct factors.

Let M = X*G be a left Rees monoid, | X| = d and let S(X) denote the symmetric
group on the set X. Then we have a homomorphism ¢ : G — S(X) ! G given by:

w(g) = U(g’ma s 7g|zd>7

where o is the permutation on X determined by the action of g on X. On the other
hand, given a homomorphism ¢ : G — S(X )G, we have a unique induced self-similar
action. The map 1 is called the wreath recursion.

We know that the definition of left Rees monoids involves principal right ideals.
Green’s R-relation is defined on monoids M by sRt if sM = tM; that is, they generate

the same principal right ideals. In our situation we have the following lemma:

Lemma 2.2.4. Let xg,yh € M. Then xg Ryh iff x =y. In particular, each R-class

contains exactly one element from X*.
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Proof. We see that xgg~'h = xh and xhh~'g = xg so that xgRxh. On the other
hand if xgRyh then zgu = yh and yhv = xg for some u,v € M. Thus xguv = xg
and yhvu = yh. By left cancellativity uv = vu = 1 and so u,v € G. Thus since
elements of M can be uniquely written in the form zg for x € X*, g € G it follows
that x = y. O]

In fact if z,y € X* then «M C yM it x = yz for some z € X*. Combined
with Lemma 2.2.4, this tells us that the partially ordered set M /R of R-classes is
order-isomorphic to the set X* equipped with the prefix ordering.

Green’s J-relation is defined on monoids by s 7 t iff MsM = MtM; that is, the
principal two-sided ideals generated by s and t are equal. We have the following for

left Rees monoids:
Lemma 2.2.5. (i) MaxgM C MyhM implies |y| < |z|.

(i) Let xg,yh € M. Then xg J yh iff x and y are in the same orbit under the action
of G.

Proof. (i) If MxgM C MyhM then there exist s,t € M with syht = xg and so
lyl < [z.

(ii) By (i), if MaxgM = MyhM then there exist u, v, w, z € G with uzgv = yh and
wyhz = xg and so by the unique normal form of elements of M we have y = u - z.
Thus x and y are in the same orbit under the action of G.

Let g, h € G be arbitrary. If x,y € X* are such that y = u-x for some u € G then
urgg (ul,)"th = yh and v ryhh~tu|,g = vg. Thus MaxgM = MyhM. O

We will say the a self-similar group action (G, X) is transitive if the action of G
on X is transitive and level-transitive if the action of G on X" is transitive for each

n. We then have the following corollaries of Lemma 2.2.5:

Corollary 2.2.6. (i) A self-similar group action (G, X) is transitive if and only if
the associated left Rees monoid has a unique maximal proper principal two-sided

1deal.

(i) A self-similar group action (G, X) is level-transitive if and only if the principal
two-sided ideals of the associated left Rees monoid form an infinite descending

chain.

It will be useful later to know whether our left Rees monoid is in fact cancellative
(and therefore a Rees monoid). The following will be proved for the more general case

of left Rees categories as Lemma 3.2.7 in Chapter 3:

Lemma 2.2.7. Let M be a left Rees monoid. Then the following are equivalent.
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(i) The functions ¢.: G, — G are injective for all x € X*.

(ii) The monoid M is right cancellative (and so cancellative).

2.3 Monoid HNN-extensions

We have seen above that left Rees monoids and self-similar group actions are two
different, but equivalent, ways of viewing the same mathematical idea. In this section,
we describe a third way, namely, in terms of monoid HNN-extensions. We will only
sketch the proof as the theorem will appear in greater generality as Theorem 3.3.1
in Chapter 3. We will then explain some consequences of this result, and touch on
the relationship with Bass-Serre theory which will be expanded further in Chapter 3.
Finally, we will demonstrate the main theorem with a simple example.

First, let us briefly explain the motivation behind the main result, which comes
from a result of Cohn on proving certain monoids embed in their groups of fractions,
as found in [29]. It is difficult to see how his proof works and he uses a completely
different proof in terms of string rewriting appears in the second edition of the same
book ( [30]). Let us outline his argument. Let M be a cancellative right rigid monoid,
let G be its group of units and for each a € M let

G1(a) ={u € Glua € aG}

and
G_1(a) ={u € Glau € Ga}.

Define a ~ b in M if a = ubv for some u,v € G. One can easily verify that
G1(a),G_1(a) are subgroups of G, if a ~ b then G;(a) = G;(b) and for any u € G we
have Gy(u) = G_1(u) = G. Let Ti(a),T-1(a) be complete sets of left coset represen-
tatives of Gy(a), G_1(a) respectively in G with 1 represented by itself and let A be
a complete set of representatives of ~-classes of M with G represented by 1. Cohn

then considers the set of expressions
tiai'teas’ - - - tpaimu

where t; € T, (a;), a; € A, ¢, € {—1,1}, u € G, subject to the condition that if
t; =1 and a;_1 = a; then ¢;_1 +¢; # 0 for : = 2,...,r. He then claims that it is
a routine though tedious exercise to verify that the permutation group on the set of
such expressions contains the original monoid as a subsemigroup and that elements of
this permutation group have a unique normal form, namely as one of the expressions.
To see why I am unclear how this would work suppose M = X*G is a Rees monoid.
Let 1,20 € X and let y = x129 € X* be such that these are each in A. Then the
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expressions x1x, and y are distinct according to Cohn’s rule but clearly they represent
the same element of M. It is difficult to see therefore how one would embed M in
the permutation group on such expressions. The key idea, however, that seems to
have something to it is that there might be a connection between certain cancellative
right rigid monoids and Bass-Serre theory (compare the preceding argument and
Proposition 1.2.2).

Let S be a monoid, I an index set, S = S\ {1}, H; : i € I submonoids of S and let
pi - H; — S be homomorphisms for each ¢ € I. Then M is a monoid HNN-extension
of S if M can be defined by the following monoid presentation

v

where R(S) denotes the relations of S. We will call the the generators t; : i € I stable
letters, and say that M is a monoid HNN-extension on a single stable letter if |I| = 1.
For the moment, the use of the phrase monoid HNN-extension is simply based on
the similarity of presentation to that of a group HNN-extension (c.f. Sections 1.2
and 1.3). In Chapter 3 we will see that they in fact appear in the study of graphs of
groups and have natural actions on trees.

The following is the main result of this section, though we will only sketch the

proof as a more general version will appear as Theorem 3.3.1 in Chapter 3.

Theorem 2.3.1. Let M be a monoid HNN-extension of a group G where each as-
sociated submonoid H; is in fact a subgroup of G. Then M 1is a left Rees monoid.
On the other hand, if M is a left Rees monoid then M s isomorphic to a monoid
HNN-extension of a group.

Proof. (Sketch) Suppose that M is a monoid given by the following presentation:

v

For each 7 € I, let T; be a transversal of left coset representatives of H;. Note that for
each ¢ an element u € G can be written uniquely in the form u = gh, where g € T;
and h € H;. We further suppose that 1 € T; for each 1.

One can show that every element s € M can be written in the form

s = giti, gatiy - Gmti,, U

where g, € T;, and u € G (in fact it will turn out this is a unique normal form).
Letting X = {gt;|g € T;,i € I} one can define a self-similar group action of G on
X* by rewriting gxr = (¢ - x)x for g € G, x € X*. The resulting left Rees monoid will

be isomorphic to the original monoid M.

28



Chapter 2: Left Rees Monoids

Now suppose M = X*G is a left Rees monoid. For each orbit of the action of G
on X choose an element z; € X, i € I where |/| is the number of orbits. For each
1 € I'let H; = G, be the stabiliser of G acting on z; and let T; be a transversal of left
coset representatives of H; in G. An arbitrary element x € X can be written uniquely
in the form = = gx;(p;(g9))~" where i € I and g € T;. Now define I" to be the monoid

given by monoid presentation:

v

One can then check that every element of I' can be written uniquely in the form

g1ti, (i (91)) " gty (Pin(92)) ™" - Gimti, (i (gm)) '

where g € T;, and v € G. It is then easy to see that the map ¢ : I' — M given on
generators by «(t;) = z; for i € I and ((g) = g for g € G is an isomorphism. O

Combining Theorem 2.3.1, Lemma 2.2.3 (iii) and Lemma 2.2.7, we have the fol-

lowing.

Corollary 2.3.2. Let M be a monoid HNN-extension of a group G where each as-
sociated submonoid H; is in fact a subgroup of G with associated maps p; : H; — G.
Then M 1is cancellative and therefore a Rees monoid if and only if the maps p; are

injective for each i € I.

Note the above construction tells us that the action of the group G is transitive
on X if and only if the HNN-extension is on a single stable letter. Let M = X*G be

a left Rees monoid and suppose we split X into its orbits X; : ¢ € I under the action

of G, so that
X =Jx.
i€l

Given the self-similar action of G on X* there is an induced self-similar action of G
on X as none of the axioms of self-similar group actions move elements of X} outside
an orbit. We therefore have submonoids M; = X G < M, where we are identifying
the identity element of M; with that of M. Observe that M; N M; = G for i # j. We
can then form a semigroup amalgam, in the sense of Chapter 8 of [49]. Viewing the
M;’s as disjoint monoids and letting a; be the embedding of the group G into each
M;, A = [G; M;; ;] is a semigroup amalgam. We can then form the amalgamated
free product S = xgM; of the amalgam A.

We now make use of the following classical theorem of Bourbaki ( [22]), in the left

hand dual of the form given by Dekov in [33].

Theorem 2.3.3. Let M; : i € I be a family of monoids, let G be a submonoid of
M; for each i € I and let G = M; N M; for alli,j € I with i # j. Assume that for
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each i € I there exists a subset S; of M; containing the identity 1 and such that the
mapping ¥ : S; x G — M, given by (x,g) = xg is a bijection. Then every s € xgM,;

can be written uniquely in the form
S=1X1 - Tpg

where x, € S;, \ {1} and iy, # g4 for each k=1,...,n, and g € G.

Applying this theorem to the setup above with S; = X7 it follows that each
element of S = *gM; can be uniquely written in the form xg where x € X* and

g € G. Consequently we have the following result.

Theorem 2.3.4. Let M = X*G be a left Rees monoid, X; : i € I the orbits of X
under the action of G and let M; = X;G for each i. Then

*GMi = M

In terms of monoid HNN-extensions what we are saying is that the monoids

%

and
% (G, 4| R(G), ht; = t;p;(h)Vh € H;)

are isomorphic.

Let us therefore now consider the case of left Rees monoids given as monoid HNN-
extensions which have a single stable letter. Recall that this is equivalent to the group
of units acting transitively on the elements of X, and to the monoid having a single
maximal proper two-sided principal ideal.

If H is a subgroup of a group G, then a homomorphism ¢ : H — G will be
called a partial endomorphism. Nekrashevych ( [98]) calls such homomorphisms virtual
endomorphisms in the case where H is a finite index subgroup of G. Two partial
endomorphisms ¢; : Hy — G, ¢o : Hy — G will be said to be conjugate if there
exist inner automorphisms «, 3 of G with a(H;) = Hy and ¢ = ¢oc. Partial
endomorphisms ¢; : Hy — G1, ¢ : Hy — G5 will be said to be isomorphic if there
exist group isomorphisms o, : G; — Gy with a(H;) = Hy and (o1 = ¢ If
¢ : H — G is a partial endomorphism then we will define M(¢) to be the left Rees

monoid with presentation
M(¢) = (G, t|R(G), ht = to(h)Yh € H).

Proposition 2.3.5. Let ¢, : H — G, ¢ : Hy — G be conjugate partial endomor-
phisms. Then the monoids M (¢1) and M(¢2) are isomorphic.
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Proof. We have
M(¢1) = (G, t1|R(G), hty = ti¢y (h)Vh € Hy)

and
M(¢3) = (G, t5|R(G), hty = taga(h)Vh € Hy).

Since ¢1 and ¢, are conjugate there exist inner automorphisms «, 3 of G with a(H;) =
Hy and ¢ = ¢oa. Suppose a(g) = a 'ga and 3(g) = bgb~! for some a,b € G. Define
f:M(p1) — M(p2) by f(g) = g for g € G and f(t1) = atab. To verify that f is a
homomorphism we just need to check that f(h)f(t1) = f(t1)f(¢1(h)) for every h € Hy
since it is clear that f(gh) = f(g)f(h) for every g,h € G. For h € H; we have

f(R)f(t)) = hatyb = aa ‘hatyb = atygo(a™ ha)b = atygo(a(h))b

= atx3(1(h))b = at2b(¢1(h))b~'b = atab(¢1(h)) = f(t1) f(d1(h)).

Thus f is a homomorphism. Since f(a™1t;b71) = t5, f is also surjective. Let Ty and
T5 be transversals of the left coset representatives of H; and Hs in G. Our final task

is to check that f is injective. Suppose

flgits - gmtiw) = f(g1t1 - - gptav),

where gi, g, € Ti for each k. Observe that the number of ¢]s mapped across is

constant so that m = n. So
gratab - - gmatabu = gratab- - - gl atabv.

Reducing this into normal form and using the fact that o : H; — H, we see that

there must exist unique ¢y, ..., ¢y, € Ty, by, ... hy, By, ... B, € Hy with
gia = cia(hy), gia = cia(hl),

cra(hy) = ga(a(hi—1))bgra = B(¢1(hi—1))bgra = b1 (hi—1)gra,
cea(hy) = b1 (hy,_1)gra,

for k=2,...,m and
b1 (hm )b bu = by (B! )b~ bo.

Thus
G1(hm)u = d1(hy,)v
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and so

hmtlu = h;ntlv

from which it follows that

ac, 01 (hy—1)gmtiu = ac, béy (R, g, tiv.

Cancelling on the left we have
G1(hin—1)gmt1u = ¢1(hy,_1) g t10-
From this we deduce that
hp—1t1gmtiu = Rl t1g t1v.
Continuing in this way we find that

git1 -+ gmtru = gty - g tiv

and so f is indeed injective. m
We now have the following straightforward corollary.

Corollary 2.3.6. Let G be a group, H;, H! : i € I subgroups of G and let ¢; : H; — G,
¢, Hl — G be partial endomorphisms such that ¢; is conjugate to ¢ for each i € I.
Then the monoids xcM (¢;) and xcM(¢}) are isomorphic.

Proposition 2.3.7. Let G, Gy be groups, H; : i € I subgroups of Gy, Hj : j € J
subgroups of Go, ¢; : Hy — Gy, ¢ : Hi — Gy partial endomorphisms for each i € I,
j € J and suppose that My = *g, M (¢;) and My = g, M(¢}) are isomorphic left Rees
monoids. Then there is a bijection v : I — J such that the partial endomorphisms ¢;

and ¢fy(i) are isomorphic for each i € I.
Proof. We can write M; and M, in terms of monoid presentations as
My = (Gy,t; - i € I|R(G), ht; = t;0;(h)Vh € H;,i € I)
and
My = (Ga,7; : j € J|R(Ga), hr; = r;¢,(h)Vh € H}, j € J).

Suppose f : M; — M, is an isomorphism. Note that f(G;) = G2. Each maximal
proper principal two-sided ideal of M; is generated by a ¢; and likewise for M,. Since
these monoids are isomorphic there must be a bijection between principal two-sided

ideals. It follows that there is a bijection v : I — J and elements a;,b; € Gy for
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each ¢ € I with f(t;) = a;ryu)b;. Define maps o, 5; : Gi — G5 for each i € I by
ai(g) = a; ' f(g)a; and Bi(g) = bif(g)b;*. We now verify that o; : H; — H;(i) and
Bii = ¢,y for each i € I. If h € H; then

ai(h)ryey = a7 f(R)airyey = a; ' f(R)airy@bib; ' = a; ' f(h) f(t:)b;
= a; ()bt = a;  f(tga()bi = ag F(t) f(a(R))b; !
= yobif (Pi(h)b; ' = ry@Bi(di(h)).

Thus «;(H;) C H!

o

@ and Gig; = ’W)ai. Further, if h € H;(A then

i)
flai ' (h)t) = f(fNasha; Y)t) = asha; airy@b; = aihry@bi = air@dle (h)b;
= air’y(i)bibi_lgbty(i)(h)bi = f(tif_1<bz‘_1¢i/(i)(h)bi))'

Since f is an isomorphism this therefore implies that a; ' (h)t; = ¢;f~(b; Ly ()b:)
and so ozi_l(H;(i)) = H;. Thus ¢; and qb'w.) are isomorphic for each i € I. O

Note that if in the previous result we had G = Gy = Gy and f(g) = g for each
g € G in our isomorphism f : M; — M, then the partial endomorphisms ¢; and gb’V @)
would in fact be conjugate.

Let G be a group, H; : ¢ € I subgroups of G and p; : H; — G be injective partial
endomorphisms for each 7. Recall that I' is a group HNN-extension of G if I' can be
defined by the following group presentation

where R(G) denotes the relations of G.

If a monoid M embeds in its group of fractions then it has to be cancellative
(though the converse is not in general true). If M is a Rees monoid then combining
Theorem 2.3.1 and Proposition 1.2.1 we see that its group of fractions U (M) is a group
HNN-extension and noting the normal form results for monoid HNN-extensions and
group HNN-extensions we see that in fact M consists of every element of U (M) which

does not contain any ¢;'. So we have the following:
Lemma 2.3.8. Rees monoids embed in their groups of fractions.

On the other hand, we see that every group HNN-extension of a group G is the
group of fractions of a Rees monoid, and so there is an underlying self-similar group
action.

Proposition 2.3.9. Let G, Gy be groups, H; : i € I subgroups of Gy, Hj : j € J
subgroups of G, p; : Hy — G, p}y : H] — Go partial endomorphisms for each i € I
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and j € J and let
M, = ( Gy, t; - i € I|R(Gy), ht; = tip;(h)Vh € Hy,i € 1)

and

My = ( Ga,7;: j € JIR(G2), hrj = r;p(h)Vh € H},j € J)

be the associated monoid HNN-extensions. Let K be a group and let oy : K — My,
as : K — M,y be injective homomorphisms. Then Mixg My is a left Rees monoid.
Further U(Myx M) = U(My) x5 U(My).

Proof. Observe that a1 (K) C G and as(K) C G. Since K is a unitary subsemigroup
of My and M, it follows ( [47]) that M; and My embed in My*x M,. We have

Ml*KM2 = < le,Gvg,ti 11 € I,?"j . j € J’R(Gl),R(GQ),htz = tlpl(h)Vh S HZ,Z € [,
hry =r;p(h)Vh € Hj, j € J,a1(g) = as(g)Vg € K) .
Now let G = G *x G5 so that G is given by the following group presentation
G = ( G1,Go|R(G1), R(Ga), a1(g) = aa(g)Vg € K) .

We can therefore write

v

Mi* e My = < G,tz 11 € I,Tj ] S JlR(G),htl = tlpz<h)\V/h c Hl,l c I,

hry = r;p5(h)Vh € Hj,j € J) .

We then see that Mix* g M, is a monoid HNN-extension of G with associated subgroups
H;:7€ 1 and H]" : 7 € J. Thus MyxxMs is a left Rees monoid. Note that

U(M,) = ( Gy, t; i € I|R(Gy), ht; = tipi(h)Vh € Hy i € I)

and

U(M,) = ( Go,7; : j € JIR(Go), hry = r;p(h)Vh € Hj,j € J),

where these are now group presentations. So

I

U(Ml) 97¢ U(MQ) < él,ég,ti NS [,T’j j S J’R(Gl),htz = tzpl<h)Vh € Hl,l € [,

R(Ga), hrj = rjp(h)Vh € H}, j € J,a1(g) = ax(g)Vg € K) = U(My*gMy).
[

To demonstrate the above theory, let us now consider an example. Let G = Z x Z,
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H =27 x 2Z, an index 4 subgroup of G, and let p: H — G be given by
p(2m,2n) = (m, 3n),

for m,n € Z. We see that this is a monomorphism and so we can therefore define an
associated group HNN-extension I' of G on a single stable letter ¢ given as a group
presentation by

I'={(abt | ab=ba,d’t=ta,b’t=1tb")

by noting that
ZxZ={ab | ab=ba),

where we identify (1,0) with @ and (0, 1) with b. We see that I" is the group of fractions
of the Rees monoid M with monoid presentation

M={a,a,bb""t | ab=ba,aa" ' =ata=0bb"=b"'b=1,d% = ta,b’t = tb*) .

Since |G : H| = 4, the monoid M has 4 maximal proper principal right ideals so that
M = X* < G for some X with 4 elements. Observe that G = H UaH UbH U abH.
Let x1,..., 24 be defined by

r1=t, x9=uat, x3=>0 x4=abl

and let X = {1, 29, 23,74}. We define a self-similar group action of G on X as
follows:

a-r1 =29, a-Ty=2x1, b-x1=123 b 13=10)
a-T3 ==y, a-Ty=2x3, b-To=1x4, b -14=129,
a|$1:b|2?1:a|933:b’:r2:17
a|x2:a|$4:a

and
blog = ble, = b,

Note that since G is abelian, there won’t be any partial endomorphisms conjugate to

p.
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2.4 Symmetric Rees monoids

We will say that a left Rees monoid M = X* 1 G is symmetric if the functions
pz » G — G defined in Lemma 2.2.3 are bijective for every = € X.

Let X be a set. We will denote by FG(X) the free group on X. The Zappa-Szép
product is defined for any monoid S and group G by replacing z € X* with s € §' in
the self-similarity axioms. A natural question now arises: when is it possible to extend
a self-similar action of a group G on a free monoid X* to an action of G on FG(X)
such that X* a1 G < FG(X) b1 G? The next theorem will give us the necessary and

sufficient condition for this to be the case.

Theorem 2.4.1. Let M = X* > G be a left Rees monoid. Then the Zappa-Szép
product X* 1 G can be extended to a Zappa-Szép product FG(X) <1 G respecting the

actions if and only if M is symmetric.

Proof. (=) Suppose for a left Rees monoid M = X* 1 G the Zappa-Szép product
I' = FG(X) > G exists such that M is a submonoid of I'." We need to show that
pe is bijective for all x € X*. Let z,y € X* and g € G. Then since (SS6) says

g|xy = (g‘z)|y, we have
qg= g|1 = g|z71$ = (g|$71)|$ (1)

=01 = glez—r = (gla)]z—1  (2)

Letting h = g|,-1, (1) implies that for every x € X* and g € G there exists an h € G
such that h|, = g, and so p, is surjective for every z € X*. Now suppose ¢|, = h|,.
Then (2) implies, upon restriction to =1, that g = h, and so p, is injective.

(<) Let M = X*G be a symmetric left Rees monoid. For x € X*, g € G, define
(pz © py)(9) = py(pz(g)). Axiom (SS6) tells us that the map p : X* — S given by
p(x) = p, is a monoid homomorphism. For z € X, g € G define

glo—1 = p; ().

This is well defined since p is injective. Now extend the restriction to g|, for z €
FG(X) by using rule (SS6):

o).
Tg

9lasiogz. e = ((glagr) cn x; € X, 6 ==£1.
The preceding remarks tell us that this definition makes sense. Now forz € X, g € G
define

g -zt i=(gly-r )7
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For z,y € FG(X), define
g-xy:=(9-2)(gly).

To see that this is morally the correct definition, let us check that for all x € X*,
g € GG we have

g (@) = (gler - 2) 7

We will prove this claim by induction. By definition the claim is true for |z| =1, i.e.
x € X. So let us assume that this holds for all z € X* with |z| < n for some n € N.
Suppose z = yx where |y, |z| < n and let g € G be arbitrary. Then

1

g-(z ) =g-(x)" =(g-27")(glar -y ")

First, let k = g[(y)-1. Applying the rules,

(927 ) (gl -y = (glor - @) (glo=1) g1 1) = (glamr - 2) (k- y) 7"

Then,
(glor - 2) 7 k)™ = (k- y) (gl - 2)) 7" = (k- y) (K], - 2)) 7

But now we can use (SS4) for M to get

(k- y)(kly - 2)) ™ = (k- (y2)) ™" = (glayr - () = (gl - 2) 7,

and the claim is proved.
We now need to show that the above definitions taken together give us a well-
defined group action of G and FG(X) satisfying axioms (SS1)-(SS8). Note that in

our definition, we are assuming (SS4) and (SS6).
(SS3) and (SS5) only involve M and so are true.
(SS7) For x € X, 1],-1 = p,*(1) = 1, and so it follows by (SS6) for all x € FG(X).

(SS1) Forr e X, 1-27 ' =(1]p-1-2) ' =(1-2)"' =27 | and so it follows by (SS4)
for all z € FG(X).

(SS8) We need to show that for every z € X and g,h € G

(9h)]a=1 = glna—yhlar-

First note gl(no-1) = gl _,.0)-1- We will in fact show that p.((gh)|,-1) =

(9| (hz-1yh]s-1) and the result will follow since p, is a bijection. So,

P9l (), 1 a)-1Ple=1) = (9l s 2)-1Ple-1)|e = (9l 1 )1 (0], 1) (Bla-12),
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using (SS8) for M. But this is simply

glihly = gh = pa((gh)]a-1).
The result holds for z € FG(X) by (SS4) and (SS6).

(SS2) We need to show for every g,h € G and x € X that (gh) -zt =g (h-2z7!).
So,
g (h-a™t)y =g (hlo-1-2)™" = (glan), o)1 - (Al - )™

= ((glw,—r-y-1hlo1) - 2) 7" = ((glnarPlo-1) - 2) 7 = ((gh)]o-r - 2) 7"
But this is just the definition of (gh) - z71.

]

We will now show that if M = X* > GG is a symmetric Rees monoid then the group
of fractions of M is isomorphic to the extension F'G(X) > G described in Theorem
2.4.1.

Theorem 2.4.2. Let M = X*G be a symmetric Rees monoid. Then the group of
fractions of M is isomorphic to a Zappa-Szép product of the free group on X and G.
That 1is,

UM)=FGX) =G,

Proof. Let {z; :i € I} be a set of representatives for orbits of X (where |X| = |I|),
let H! = G,, be the stabiliser of z;, let p; = p,,, let T} be a transversal of left coset
representatives for H}, let H; ' = p;(H}) and let T, ' be a transversal of left coset
representatives for H; '. Assume that 1 € T} and 1 € T; ! for each i € I.

For each i € I, ¢ € {—1,1}, define maps B; : G — G by B;1(9) = (pi(g))~" and
Bi—1(g9) = (p; *(g9))~*. Since p; : G — G is a bijection for each i € I, this latter map
is well-defined.

By Theorem 2.3.1, M is isomorphic to the following monoid presentation:

%

M = (G, t;:i € I|R(G),ht; = tips(h),h € H} i € I) .

It follows that

%

U(M) 2 (G, t;:i€I|R(G),ht; =tip;(h),h € H i€ T),

where here we are working with a group presentation.
We know from Proposition 1.2.2 that every element of U(M) can be uniquely
written in the form

g = giti gotsl -+ Gmti" U,
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where ¢, € {—1,1}, g» € T;*, u € G is arbitrary all subject to the condition that if
t =t

1k k41

normal form.

and €, + €11 = 0 then gx.1 is not an identity. We call this the Britton
We claim that every element of U(M) can in fact be uniquely written in the form

9 = 9183 Biv e (91) 92132 Bin e (92) * + + Gt Biv e (G )4

where €, € {—1,1}, gx € T;F, u € G is arbitrary all subject to the condition that

1
gkt;]zﬁlk,ek (gk) 7£ (gk+1tz:+1 5Zk+1,6k+1 (gk-‘rl)) !

for any k. An element in such a form will be said to be in Rees normal form. Observe
that part of our claim is that the elements gt;'3; 11(g) generate a free subgroup of
U(M).

Let us first show that every element of U(M) can be written in such a form. Let
g = giti} - - - gmt;"u be an arbirtary element of U (M) written in Britton normal form.
There exist unique elements gy € 172, hy € H? with ghhy = (B;,.¢,(91)) ' g2. We then
define g; € T;¥, hy, € H;} inductively for 3 <k < m to be the unique elements with

g;chk = (6¢k71,5k71 (g;cfl))ilp’ik71 (h‘kfl)gk

if ¢,_.1 =1 and
g;chk - (61'1@71,61@71(g;cfl))_lpz’;1_1<hk—1)gk

if e,.1 = —1. Finally we let ' = (8, ., (9,)) ' pi,,(hm)u if €, = 1 and v =
(Bisem (9i)) 7 (B ) if €, = —1. One then finds that

glt“ ﬁll,ﬂ (91)92 512,62 (92) mtemﬁzm €m (gm)

One then reduces if possible by cancelling inverses so that ¢ is in Rees normal form.

Now suppose that

glt’bilﬁilael (g1> : t67"6Zm €m (gm)u = gltjlﬁjl,(sl (gl) tgnﬁjn,(sn (gTL)

where these are both in Rees normal form and assume n < m. Then since the Britton
normal form is a unique normal form and by our reduction method in Proposition
1.2.2 it follows that g; = ¢} and ¢! = t?;. We therefore cancel to get

92t§§6i2762 (92) “Gm 2mﬂlm,6m (gm)u = th ﬁjz,t?z (g;) t(SnﬁJn, ( )
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We then continue in this way to find

gn'f'lt’f:_tllﬁin—&-lyfn-‘—l (gn-i—l) T 'gmt;ﬂ:ﬁim,em (gm)u =".

Suppose n + 1 < m. It then follows that there exists k, n + 1 < k < m, such that
gkt::ﬁikyfk (gkz)gk-l—lt;]:llﬁikﬂ,ekﬂ (gk-i-l) €G.

This means that iy = ix,; = j for some j € I and €, + €41 = 0. There are two
possibilities: either ¢, = 1 and €x;1 = —1 or ¢, = —1 and €, = 1. Suppose first that

€x = 1. Then we are saying that
grti (pi(gr)) " geat; (05 (gen)) Tt € G
with gp € T} and ge1 € T; ' Then (p;(gr)) " grs1 = p;(h) for some h € Hj. Thus
giti (0 ()) " grats (05 (aer) ™ = grtypi (M)t (05 (grn)) ™

= gitjt; h(p; ' (grs1)) ™
= gkh(p; (pi(gr)ps(h)) ™"
= grh(p; ' (ps(gxh))) ™!
= gh(gh)™ = 1.

This contradicts the assumption that our initial word was in Rees normal form and
so n = m. It follows that g, = g,., ix = Ji, Ok = € for each k and u = v. Now suppose

€, = —1. Then we have

gty (05 (9k) " gkt (pj(gh)) " € G
with g, € T, ' and ge1 € T} Then (p; ' (gx)) ' gr+1 = h for some h € Hj. Thus
gty (05 (k) " gkt (i (k)™ = gty thti(p(gke))
= gkt]'_ltjpj(h)(Pj(gk+1))_l
= gipi(M)(p;(p;* (g)h) "
= grpi () (grp;(h) ™ = 1.
Again this contradicts the assumption that our initial word was in Rees normal form
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and so n = m. It follows that gx = g}, ix = Jk, 0k = € for each k and u = v.

We have shown that the Rees normal form is a unique normal form for elements
of U(M). Let us now consider the monoid M. Recall that every element = € X can
be uniquely written in the form x = gz;(p;(g))~! for some i € I and g € T}}. We will
now show that every element z € X can be written uniquely as = = p; '(g)x;g~" with
iel, geT .

First, let # € X. Then z = gx;(p;(g))~" for unique i € I and g € T}'. We can

write p;(g) = gl., uniquely in the form g|,, = uh|,, where u € T, ' and h € H}. Now

v o= gri(hle)ut = gri(h )Tt = ghTle = o ((ghT) s )Jm

—1 —1 —1
o h .

— p M (w)a,u

(I e

Now let i € I, g € T, . We will show that p; '(g)z;g7' € X. Let u € T}, h € H} be
the unique elements with uh = p;*(g). Then p;(uh) = g and so g = p;(u)p;(h). Then

pi (gwig™t = whaig™ = uxipi(h)g™" = uxi(ghl,!) !

ol

= uzi(pi(u)hlshl; )7 = uri(pi(u) T € X

Finally let p;'(g1)zigr ' = pj ' (g2)zj95 " in X with 4,5 € I, g1 € T; g2 € T; .
First, since the z;’s are representatives of orbits, it follows that ¢ = j. Now suppose
pit(g1) = wihy and p;t(ga) = ughy for ui,uy € T}, hy,hoy € H}. We must have

u; = uy. We therefore have

pi(ur) = Qlﬂi(hfl) = gzpi(hz’l).

Since g1,9> € T, ! and p;(hy'), pi(hy ') € H;* it follows by the unique decomposition
of elements into the product of a coset representative and an element of a subgroup
that g; = g». Thus, every element # € X can be written uniquely as z = p; *(g)z;g~"
withi e I, g€ T, "

Since FG(X) 1 G is generated by elements of the form (1, g) for g € G and (z;,1)

for i € I we see that we can write F'G(X) < GG in terms of a group presentation as
FG(X)x G2 ( Gz i€ I|R(G), ha; = zipi(h),S)

where S is some set of extra relations which are needed to make this really a pre-
sentation for FG(X) > G. It follows that there is a surjective homomorphism
[ UM) — FG(X) > G given on generators by f(g) = (1,9) for ¢ € G and
f(t;) = (x;,1) for i € I. All of the above argument tells us that two elements of

U(M) written in Rees normal form map to the same elements in FG(X) <t G under
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f if and only if they are equal. Thus f is also injective. m

Let M = X* 1 G be a left Rees monoid. We will call X a basis for M. If Y is
such that M = Y* 1 G, then we will say Y is a change of basis of X.

Lemma 2.4.3. Let M = X*G be a left Rees monoid such that the action of G on X
is transitive and G is finite. If, for some x € X, p, is bijective, then p, is bijective
for ally € X*.

Proof. Let y € X and suppose y = g - x for some g € G. Suppose p,, is not injective.
Then by Lemma 2.2.3 (vi) there exists h € G with h|, =1 and h # 1. Then

(hg)lz = hlgazgle = gla-

But by assumption, p, was injective, and thus h = 1, a contradiction. An injective
map from a finite set into itself must also be surjective and thus p, must be bijective.
It then follows by Lemma 2.2.3 (v) and (viii) that p, is bijective for all y € X*. O

Proposition 2.4.4. Let M = X*G be a Rees monoid with G finite. Then there exists
a change of basis Y of X such that M = Y* 1 G is a symmetric Rees monoid.

Proof. In what follows, we will be working with orbits of elements and so without
loss of generality let us assume the action of G on X is transitive. Let x € X. We
know ¢, is injective. We will form a change of basis such that p, is injective. So
suppose g, h € G are such that g|, = h|,. By the right cancellativity of M, we know
g-x# h-x. Suppose y = g - x and suppose k & im(p,). Let v/ = y(g|.)k~'. Then

gz =ygl, = y'k.

So changing y to ', we have g -x = ¢ and g|, = k # h|,. Repeat this process for
each g € G and we will have constructed a change of basis so that p, is bijective, and

thus by Lemma 2.4.3 the theorem has been proven. ]

Combining Theorem 2.4.2 and Proposition 2.4.4 we have the following:

Corollary 2.4.5. Let I be a group HNN-extension of a finite group G. Then there
is a set X such that ' = FG(X) >~ G.

If M = X*G is a Rees monoid with ¢, : G, — G bijective for each x € X* (e.g.
the adding machine Rees monoid described in Section 2.7.1) then one cannot use the
same change of basis argument as Proposition 2.4.4 to write U(M) as the Zappa-Szép
product of a free group and G since every element of G is in the image of ¢, for each
x € X*. It therefore seems unlikely that Corollary 2.4.5 will still be true in general
if the finiteness assumption on G is removed. On the other hand, if M = X*G is a
Rees monoid such that |G : G| = |G : ¢.(G,)| for each x € X then one may be able

adapt the argument of Proposition 2.4.4 for this situation.
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2.5 Iterated function systems

In this section we will provide examples of iterated function systems which give rise to
fractals with a Rees monoid as similarity monoid. For undefined notions from fractal
geometry see [37].

Let D be a compact subset of R¥. A map f : D — D is a similarity contraction if f
is continuous, injective and there exists a constant 0 < ¢ < 1 such that d(f(z), f(y)) =
cd(z,y) for every z,y € D.

Let M (D) denote the monoid of all similarity contractions and isometries of D
(where (ab)(z) = a(b(x)) for a,b € M (D) and x € D). We will denote by dimy (D) the
Hausdorff dimension of D. Since injective maps are monics in the category Top this
monoid M (D) will be left cancellative. We will now investigate further this monoid

M(D).

Lemma 2.5.1. Let D C R* be compact and let a € M (D). Then
dimgy (D) = dimg(a(D))

Proof. Let § > 0. Denote by |a| the contraction factor of a. Suppose {U;} is a d-cover
for D. Then {a(U;)} will be a §/|a|-cover of a(D). It is clear that all coverings of
a(D) can be constructed in this manner. It therefore follows that for each s we have

H*(a(D)) = 1|SHS(D) and so dimg (D) = dimg(a(D)). O

la

Lemma 2.5.2. Let D be a compact subset of R¥ such that dimy(D) > k — 1. Let
Y C D be such that for some b,c € M, b # ¢, b(x) = c(x) for all x € Y. Then

Proof. We will prove for the case when k£ = 2. The argument can easily be generalised
to the case k > 3 by working with k£ — 1-dimensional hyperplanes. So let D be a subset
of R? such that dimg(D) > 1, let Y C D be such that for some b,c € M, b(x) = c(z)
for all z € Y and suppose that dimy(Y) > 1. Let x,y,2z € Y and assume wlog that
x,y, z are not collinear (if all points in Y are collinear then dimgy(Y) < 1). Now let T’
be the triangle in R? with vertices at z, %, z. Then since b and ¢ must have the same
contraction factor, by length considerations, b(t) = c(t) for every t € T'N D. It then
follows since b and ¢ are similarity transformations that b(t) = ¢(t) for every t € D.
O

Lemma 2.5.3. Let D be a compact subset of RF such that dimg(D) > k — 1. Then
M (D) is right cancellative.

Proof. Suppose a,b,c € M are such that ac = be. Let Y = ¢(D). By Lemma 2.5.1
we have dimy(Y) > k—1 and a(x) = b(z) for all x € Y. It thus follows from Lemma
2.5.2 that a = b. O
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Let D be a compact subset of R¥. An iterated function system (IFS) is a finite
family of similarity contractions fi,..., f, : D — D. Theorem 9.1 of [37] says that

there is a unique non-empty compact subset F' of D satisfying

which we call the attractor of fi,..., fa.

Theorem 2.5.4. Let D C R* be a compact path-connected subspace, let fi,..., fn :
D — D be an IFS with attractor F C D, d = dimg(F) and let p = H?, the d-
dimensional Hausdorff measure and assume d > k —1 and 0 < p(F) < co. Let G
be the group of isometries of F' and denote by X = {f1,...,fu}, I ={1,...,n} and
suppose further the following:

(1) For everyi,j € I, we have p(f;(F) N f;(F)) = 0.

(ii) There are no contractions h of F such that f;(F) C h(F) for somei € I.
(i1i) For everyi € I, g € G there exists j € I such that g(f;(F)) = f;(F)
Then we have the following:

1. (X) is a free subsemigroup of M(F') (and so we denote by X* = (X, 1)).
2. Let M = (X,G) C M(F). Then M = X*G uniquely.
3. M is a Rees monoid.

4. If for every element s € M(F) there is an f € X* with s(F) = f(F) then
M = M(F) and M is a fundamental Rees monoid.

Proof. 1. We know that f;,(---(f;.(F))) C fi (F) and Lemma 2.5.1 tells us that
pw(fir (- (fi,(F)))) = d. Suppose fi, -+ fi, = fj, -+ fj,- Then condition (i) and
the previous remark tells us that f;, = f;,. These are elements of M (F') which
is right cancellative and thus f;, --- fi,_, = f;, -+ f;,_,. Continuing in this way
and using condition (ii) (where h here is in fact an element of X) tells us that

r=sand f;, = fj, for each k. Thus < X > is free.

2. Let fi € X and g € G. We know by (i) and (iii) that g(fi(F)) = f;(F) for a
unique j € I. Further the group of isometries of f;(F') is isomorphic to G and
each isometry of f;(F) is the restriction from F' to f;(F") of a unique element of
G. Thus there exists a unique h € G with f;h = gf; as maps F' — F. We can
then use this argument and (i) to show that for each x € X* and g € G there
are unique elements y € X* and h € G with gr = yh as maps F' — F. Thus
M = X*G uniquely.
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3. We know by Lemma 2.5.3 that M is cancellative. We see that M satisfies the

conditions of Theorem 2.2.1. Thus M is a Rees monoid.

4. Let s € M(F) and let f € X* be such that s(F) = f(F). Note that f is
necessarily unique. Since s is a similarity transformation there must exist g €
G(f(F)) with s = ¢gf. But as noted above we can extend every g € G(f(F')) to
a g € G. Thus s € M. The fact that G is the group of isometries tells us that

M is fundamental.
]

Suppose we have two fractals F; C R™ and F; C R” satisfying the conditions of
Theorem 2.5.4. If 6§ : F; — F, is an isometry between them, we see that we can
map similarity transformations of Fj bijectively to similarity transformations of Fj
by defining ¢(s) = #sf~*. Thus we have the following:

Theorem 2.5.5. Let I} C R™ and F5 C R™ be compact spaces satisfying the conditions
of Theorem 2.5.4, and let My = M (Fy) and My = M(F,) be their associated similarity

monoids. If Fy and Fy are isometric, then My and My are isomorphic.
It would be nice if one could prove a result of the following kind:

Conjecture 2.5.6. Let C' be the category with objects fractals as in Theorem 2.5.4 and
arrows suitable homeomorphisms and let D be the category with objects Rees monoids

and arrows suitable homomorphisms. Then there is a functor from C to D.

We will now show that a number of interesting fractals satisfy the conditions of
Theorem 2.5.4.

2.5.1 Sierpinski gasket

This example appeared in [76] and was in fact the motivation for the above theorem.
Consider the monoid M of similarities of the Sierpinski gasket (Figure 1). Let R, L
and T be the maps which quarter the size of the gasket and translate it, respectively,
to the right, left and top of itself, p be rotation by 27 /3 degrees and o be reflection
in the verticle axis. Then the monoid generated by L, R and T is free and the group
of units G = (o, p) = Ds. We see that the conditions of Theorem 2.5.4 are satisfied
and so M = (R, L, T,o,p) is a symmetric Rees monoid. Explicitly,

pT'=Rp, pL=Tp, pR=1Lp
and

ol'=To, oL=Ro, ocR=Lo.
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We see that the action of G on X = {L, R, T'} is transitive and noting that Gy = {1, 0}

we can apply Theorem 2.3.1 to give M by the following monoid presentation:

M = {o,p,tlo® = p* = 1,0p = p*o, ot = to).

Figure 1: Sierpinski gasket (source [1])

Let us suppose the corners of the Sierpinski gasket to be at the points (0, 1),

(—\/75, —0.5) and (‘/73, —0.5) so that it is centred on (0,0). Then simple calculations

give:
—05 ¥
(% )
and
(-1 0
““\o 1
Further, . .
L(x) = Q(X - 5(\/37 1)),
R(<) = 3 0x+ 5 (V3. ~1).
and | |
T(x) = §(x + 5(0, 1)).

Since M is symmetric, it can be extended to a Zappa-Szép product of a free group

and a group, which is the universal group of M. So,
UM) = FG(X) =G = (o,p,tlo? =p* =1,0p = p*o, ot = ta),

where this is a group presentation.

2.5.2 Cantor set

Consider the monoid M of similarities of the Cantor set F' (construction shown in
Figure 2). Let R and L be the maps which divide the Cantor set by 3 and move it,
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respectively, to the right and left of itself and o be reflection in the verticle axis. We

have the following relations:
oL = Ro, ocR = Lo.

Then the monoid generated by L and R is free, the group of units G = (o) = C5 and
M = (R, L,o0). We see that the conditions of Theorem 2.5.4 are satisfied and so M
is a symmetric Rees monoid. Since Gg = G = {1}, we find that M is given by the

following monoid presentation:

M = {(o,t|c* =1).

Figure 2: Construction of Cantor set (source [2])

Notice that each element of F' can be written as an infinite word over X. We see
in fact that we can identify elements of the free monoid with self-similar subsets of
the Cantor set. Using this same identification with the random Cantor set, we see
that if we add a random element to the construction, as in Chapter 15 of [37], then we

have an action of a Rees monoid on a random fractal, where the action is piece-wise.

2.5.3 Sierpinski carpet

In this section we will see a group action which is not transitive. Consider the monoid
M of similarities of the Sierpinski carpet F' (Figure 3). Let Ly, Lo, Ry, Rs, T, Sy,
S, and B be the maps which map F', respectively, to the top left, bottom left, top
right, bottom right, top centre, left centre, right centre and bottom centre of itself,
p be rotation by m/4 degrees and o be reflection in the verticle axis. We have the

following relations:
O'leRlO', O'LQIRQO', O'RlleO', O'RQILQO',

ol'=To, oB= Bo, 0S5 =050, 05 =50,

pLi = Rip, pLs = Lip, pRi= Rep, pRy= Lop
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and
pT = Syp, pSy= Bp, pB=5p, pS =Tp.

Let X = {Ly, Lo, Ry, Ry, T, 51,55, B}. Then the monoid generated by X is free,
the group of units G = (o, p) = Dg and M = (L1, Ly, Ry, Ro, T, 51, 52, B, 0, p). Again,
the conditions of Theorem 2.5.4 are satisfied and so we see that M is a symmetric Rees
monoid. We see there are two orbits of G on X; {Lq, Lo, Ry, Ro} and {T, S;,Ss, B}.
We find that

Gr, ={1,0p}, Gr={l,0}.

Applying Theorem 2.3.1, M is thus given by the following monoid presentation:

M = {o,pt,rlo” = p* =1,0p0 = p’,opt = top,or =r0).

Figure 3: Sierpinski carpet (source [3])

2.5.4 Von Koch curve

Consider the monoid M of similarities of the von Koch curve F' (Figure 4). Let L be
the map which rotates I’ by 37/4 radians about the central axis and sends it to the
left hand side and let R be the map which rotates F' by 57/4 radians and sends it to
the right hand side. Letting X = {L, R}, G = Cy = (o) we see that L = Ro and
oR = Lo. The conditions of Theorem 2.5.4 are satisfied and so

M = {(o,tlo* = 1),

which is isomorphic to the monoid for the Cantor set. This demonstrates that fractals
with the same similarity monoids can have very different geometric structures.

Let Ly, Ly, Ry and Ry be the maps which map F', respectively, to the far left, the
left diagonal, the right diagonal and the far right of itself and ¢ again be reflection in
the verticle axis. We see that L; = LR, Ly = L?, R, = R? and R, = RL. We have
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the following relations:
oLy = Ryo, oLy = Ri0, oR;=Lso, o0Ry;=1lL40.

Then the monoid generated by X = {Li, Lo, Ry, Ro} is free, the group of units
G = (o) 2 Cy and N = (Ly, Ly, Ry, Re,0) will again be a Rees monoid, this time
a submonoid of the monoid of similarity transformations of F. N is given by the

following monoid presentation:

N = (o,t,r|o* = 1).

Figure 4: Von Koch curve (source [4])

2.5.5 Some examples in R?

We can also consider examples in 3 dimensional space. We can define the Sierpinski
tetrahedron, Cantor cylinder and Sierpinski cube in analogy with the constructions
described in the previous section. Note that the Sierpinski tetrahedron and Sierpinski
cube satisfy the conditions of Theorem 2.5.4. We find that for the Sierpinski tetra-
hedron | X| =4 and G is the isometry group of a tetrahedron, and for the Sierpinski
cube |X| = 20 and G is the isometry group of a cube.

The Cantor cylinder doesn’t quite work as the obvious contraction maps are not
similarity transformations, but there is still a nice associated Rees monoid, where we
set | X|=2,G=8"xCy, G, =G, =5"and gz = xg for all g € S*.

2.6 Topological fractals

In this section we describe a construction of a fractal-like topological space found
in Bandt and Retta [14]. They show that certain fractals are really determined up
to homeomorphism. We prove that the monoid of into-homeomorphisms of certain
examples arising from their construction is a left Rees monoid.

Let S = {1,...,m} be a finite set, C' = S the space of sequences s = s1s. ..

with the product topology, S* the free monoid on S and S<" the set of words of length
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smaller than n. If s € C'U S*, then the prefix word of length k£ of s is denoted by
S|k = $1...Sk. An equivalence relation ~ on C' will be called invariant if ~ is a closed
set in C' x C' and for all s,t € C'and ¢ € S

§~1&1s~it,

that is, it is a left congruence with respect to S. A = C'/ ~ will be called an invariant

factor for C'. Let us now fix such a relation ~. Let
M={seC3teC: s~t AN s1#t}.

We will call Q = M/ ~ the critical points of A. Let p : C' — A be the associated
projection with respect to ~. We will say p is finite-to-one if M is finite and contains
no periodic sequence. If there do not exist s € M and w € S* such that ws also
belongs to M, the relation ~ and the factor A are called simple.

For w € S* denote by C,, = {ws|s € C'} and let A, = p(C,,). It was proved in [13]
that there is a unique homeomorphism f,, : A — A such that f,(p(s)) = p(ws).

We will now define a sequence of undirected hypergraphs G,,. The vertex set of G,,
is S™ and the edge set is S<" x ). The endpoints of the edge (v, q) will be the words
(vS)|n, with s € g. If each equivalence class ¢ € @) contains less than 2 elements, then
these will in fact be graphs.

A connected graph G is said to be 2-connected if G\ {u} is connected for each
u € V(G). A connected graph G with m vertices and ¢ edges is said to be edge-balanced
if for each k£ with 1 < k < m, the graph cannot be divided into & components by
deleting (k — 1)¢/(m — 1) or less edges.

Let M(A) denote the set of homeomorphisms from A into subspaces of A and let
G(A) be the group of homeomorphisms from A to itself. Bandt and Retta proved the
following result [14]:

Theorem 2.6.1. Let A be a simple finite-to-one invariant factor such that Gy is
edge-balanced and Gy is 2-connected. Then for each f € M(A), there exists w € S*
such that im(f) = A,.

We then get the following immediate corollary.

Corollary 2.6.2. Each element of h € M(A) can be written h = f,g, where w € S*
and g € G(A).

Proof. If h(A) = Ay, then g = f'h. O

Proposition 2.6.3. For A as above, M(A) is a left Rees monoid.
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Proof. M(A) is clearly left cancellative since by assumption its elements are injective.
Identifying an element f,, with w € S*, we see that M(A) = S*G(A) uniquely. Thus
by Theorem 2.2.1, M(A) is a left Rees monoid. O

Example 2.6.4. Let S = {1,2,3}, denote by i the sequence consisting just of the
character i, say ij ~ ji fori,j = 1,2,3, and extend this equivalence relation to C.
Then A = C/ ~ is homeomorphic to the Sierpinski gasket and the conditions of
Theorem 2.6.1 are satisfied.

Proposition 2.6.5. Let A and B be two invariant factors such that f : A — B is a
homeomorphism. Then M(A) is isomorphic to M (B).

Proof. Define S : M(A) — M(B) by S(h) = fhf~™'. Then S is clearly an isomor-
phism. O

2.7 Automaton presented groups

We now describe how self-similar group actions arise from automata. This is described

in detail in [98]. For the present an automaton A = (A, X, A\, ) consists of
e a set A whose elements are called states;
e a set X called the alphabet;
e amap A: A x X — X called the output function;
e amap 7m: A X X — A called the transition function.

In theoretical computer science, these structures are normally called deterministic

real-time synchronous transducers [25]. We will denote A(g, x) by ¢ -z and 7(q, x) by
q|z-

We can use Moore diagrams to represent automata as follows. The states are
represented by labelled circles. For a € A and x € X, there exists an arrow from a to
al, labelled by the ordered pair (z,a - z).

Let us define:

® qlp=q
o q-0=10

Given an automaton (A, X)) we can construct an automaton (A, X™) for each n

by defining the transition and output functions recursively as follows, for x,y € X*:
L. Q|acy = (Q|x)|y
2. q-(zy) =q- (2)qla -y
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Let (A, X), (B, X) be two automata. Then we can define their composition automaton

(A x B, X) with transition and output functions as follows:
L (pg)-z=p-(q-2)
2. (p9)lz = Plga)dla

We see that states of automata describe endomorphisms of free monoids as trees.
An automaton is invertible if each of its states describes an invertible transformation of
a free monoid. That is, an automaton is invertible if and only if A(a, -) is a bijection for
each a € A. Given an invertible automaton (A, X), we can construct an automaton
(A1, X)) whose states are in bijective correspondence with those of A and whose
transition and output functions are inverted. We call an automaton whose states
each define different endomorphism of X* reduced. We thus have a homomorphism
FG(A) — Aut(X™*). The group generated by the image of this homomorphism we
will denote by G or G(.A). Each of the elements of G will correspond to one or more
compositions of states of A. We see that G acts on X* self-similarly and faithfully.
Note that the kernel of this homomorphism will be

K(A) = [ G

reX*

So by the first isomorphism theorem, we have
G=FGA)/K(A).

We call a left Rees monoid finite-state if each of the sets {¢|, : z € X*} for g € G
is finite.

We now see that given an invertible reduced automaton A with a finite number of
states over a finite alphabet, we can then construct a fundamental left Rees monoid
M(A). On the other hand, given a finite state fundamental left Rees monoid with
finitely generated group of units and finite X, then we can describe it by a finite-state
reduced invertible automaton.

Let A = (A, X,\,m) and B = (B,Y, Ay, m2) be finite state automata. We will

say A and B are computationally equivalent and write A ~ B if
1. There is an isomorphism 6 : X* — Y™*.

2. For all a € FG(A) there exists b € FG(B) such that a -z = b-0(x) for all
r e X*.

3. For all b € FG(B) there exists a € FG(B) such that a -0~ (y) = b -y for all
yeyr

52



Chapter 2: Left Rees Monoids

It is clear that ~ defines an equivalence relation.

Proposition 2.7.1. Let A, B be automata. Then A ~ B if and only if M(A) and

M (B) are isomorphic monoids.

Proof. (=) Let A= (A, X, \,m)~B=(B,Y,\,m). Then we can assume X =Y
by (1). By (2) and (3), we have a bijective map f : G(A) — G(B). Further since in
group actions (ab) -z =a- (b-x), f is a homomorphism and thus an isomorphism

(<) This is clear. O

2.7.1 Adding machine

Let us describe an example found in [98]. Let G = (a) = Z and X = {z,y}. Then
define a-z =y, a-y =z, a|, = 1 and a|, = a. This defines a self-similar action.
In terms of the wreath recursion we have a = o(1, a), where o is the permutation in
S(X) permuting x and y. Let us denote this left Rees monoid by M. It is called
the dyadic adding machine. Identify x with 0 and y with 1 so that finite and infinite
words over X become expansions of dyadic integers. The action of a on a word w
is then equivalent to adding 1 to the dyadic integer corresponding to w. We can see

that M acts on the Cantor set by identifying elements of the Cantor set with dyadic

integers. The associated automaton has the following Moore diagram:

(1,1)

Figure 5: Moore diagram of the dyadic adding machine

We see that G, = G, = {a®" : n € Z}. We have that

¢2(a%) = (0|, = (alux)(als) = (al,)(al,) = a.

Then for n > 1 we have

¢a(a™) = (@™o = (@ |a20)(0*|s) = ¢2(a™)a

and so by induction ¢,(a®") = a™. Similarly ¢,(a*") = a". Therefore ¢, and ¢, are

both injective so M is in fact a Rees monoid. The action is transitive and so the Rees
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monoid will have the following monoid presentation
M = {a,a " tlaa ' =ata=1,ta" = a*t,n € Z),
which can be further reduced to give
M = {(a,a } tlaa™' = a"'a = 1,ta = a*t).
Therefore the universal group will be
U(M) = (a,t|tat™" = a®) = BS(1,2),

where the Baumslag-Solitar group BS(m,n) is given by the following group pre-
sentation
BS(m,n) = {(a,t|ta™t = a").

We can in fact generalise the above to construct an automaton whose associated
monoid’s universal group is BS(k,n), where k < n. Let A = {a,1} and X =
{0,...,n —1}. There will be n arrows starting at a and these will be labelled by
tuples (z,z + 1 mod n), € X. The first k& arrows will be from «a to itself, and the
remaining n — k arrows will go from a to 1. The arrows from 1 to itself will be labelled
by pairs (x,x), z € X. We have that G = Z and for each z € X, we have G, = (a")

and a"|, = a*. This gives a monoid with presentation:
M = {(a,a " tlaa ' = a 'a = 1,ta" = a"t)

and so
U(M) = {(a,t|ta"t™" = a") = BS(k,m).

Note that BS(k, m) = BS(m, k) and so this really gives us all of the Baumslag-Solitar

groups.

2.7.2 Baumslag-Solitar group actions

The following example is adapted from one given in [17]. Consider the automaton A

given by the following Moore diagram.
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Figure 6: Baumslag-Solitar machine

Thinking of = as representing 0 mod 2 and y as 1 mod 2 and identifying X* with
Z5 we can consider a, 3 and v as the maps defined on the dyadic integers given by
a(X) =3X, f(X)=3X +1and y(X) = 3X + 2. Letting

G = FG(a, 8,7)/K(A),

we have G = BS(1,3) where the isomorphism 6 : BS(1,3) — G is given on generators
by 0(t) = o and 6(a) = o', viewing t and a as the maps on Z given by ¢(X) = 3X
and a(X) = X +1. The action of G on X = {x,y} is transitive. An arbitrary element
g € G can be written

n

g=([]t*a™)r,

k=1
where 1y, Jx, 7 € Z. We see that

0t) - z=a-xz=x

and
0(a) -x=(Bat) -z =y,

Similarly, 0(t) -y = y and 6(a) - y = x. From this we deduce that

G, =Gy = {(ﬁ thale )t zn:jk even} :

k=1 k=1

Note that

ale=a, al,=8=0(at), (fa)=aa"'=1 (Ba)|,=78"=pa"".

Now the group G, is generated as a group by the elements a?, ata and t. We see that

when we consider the monoid presentation of the monoid M of the automaton A, if
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we have the relation gr = rh for some g, h € G then this gives for free
g lr=gtgrht =rh7t
Thus M has monoid presentation

M= {(a,a ', t,t 7 'r | aa'=ata=tt""=t""t =1,ta = a’t,

atar = ra*t, tr = rt,a*r = ra).

It is not clear whether M is right cancellative or not. Its universal group U (M) has

group presentation

U(M) = {(a,t,r|ta = a’t, atar = ra*t, tr = rt,a*r = ra).

2.7.3 Sierpinski gasket

Let G = Dg, X = {L, R, T} and suppose M is the monoid of similarity transforma-
tions of the Sierpinski gasket as described in Section 2.5.1. Observe that M is in fact

the monoid associated with the following automaton:

Figure 7: Moore diagram of Sierpinski gasket automaton

2.7.4 Grigorchuk group

Here we give an example taken from [98] of a left Rees monoid which is not a Rees
monoid. The Grigorchuk group G is defined to be the group of units of the left Rees

monoid generated by four elements a, b, ¢,d with X = {0, 1} and wreath recursion
a=o0, b=(a,c), c=/(a,d), d=(1,b),

where 0 € §(X) is again the flip map and the associated Moore diagram is:
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Figure 8: Moore diagram of Grigorchuk group action automaton

It is not a Rees monoid because b, c € Gy and ¢o(b) = ¢o(c) = a.

2.8 Associated bialgebra

The following construction is based on ideas found in [53]. Let K be a field and let
M be a monoid. We can form the monoid bialgebra KM as follows. An element v of

KM is a finite sum
n
v = g ;g
i=1

where o; € K and x; € M. We define addition +, convolution o and scalar multipli-

cation as follows:
n+m

n m
E ;T; + g Biyi = g Q;T;,
i—1 i=1 i=1

where forn+1<i<n-+m, o; = §;_, and x; = y;_,,

Z Q;T; O Z Biyi = Z Z i 3;1yj,
i=1 i=1

i=1 j=1

where z;y; is the product in M and

n n
A E ;X = E )\Ctifﬂi,
i=1 =1

where for all of the above A\, oy, 3; € K and x;,y; € M. This gives KM the structure

of a unital K-algebra. (Note if K = C, we may want to take the complex conjugate
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of the ;’s in the definition of the convolution.) We can make KM a cocommutative

bialgebra by specifying the comultiplication A on the elements x € M to be
Alz)=z®«z

and counit € to be €(z) = 1. If M is a group, we can make K'M into a Hopf algebra by
defining the antipode S(g) = g~'. Now suppose M = X* 1 G is a left Rees monoid.
Then KM is isomorphic to the bicrossed product bialgebra ( [89]) KX* <t KG with

unit 1 ® 1, multiplication on generators given by

(z@9)(y@h)=2(9-y) @ (gl,)h,

comultiplication A(z® g) = (r®¢g) ® (x® g), counit €(x ® g) = 1. If M is symmetric,
then we can form KT' = KFG(X) > KG, as above with antipode S(z X g) =
(g7 a7 @ (g7 )

As in the representation theory of finite groups, we see that if f : M — M, (K) is
a homomorphism, then K™ can naturally be given the structure of a finitely generated
left K M-module, by setting

(Z OéiSZ') X = Zaz(f(sz) - x),

for a; € K, s; € M and x € K.
We now consider what the ring KM looks like. Throughout M = X*G is a left
Rees monoid and R = KM. We will view R as a left R-module.

Lemma 2.8.1. R is not artinian.

Proof. Consider the chain of left ideals Rz O Rz? O Rz® D .... Then this chain is

infinite and so R does not satisfy the descending chain condition. O]
Lemma 2.8.2. [f | X| > 2 then R is not noetherian.

Proof. Let J; be the left ideal generated by the set {yx,ny, e ,y:vk}. Then J; C

Jry1 for k> 1, and so R does not satisfy the ascending chain condition. O

We can give R a grading by letting Ry be the set of elements of R with maximal
length of a string from X* being k.

For a ring R let the Jacobson radical be defined as follows

J(R) =1,
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where the intersection is taken over all maximal proper right ideals [ of R. If J(R) = 0,
then R is said to be semisimple. By Lemma 1.1.3 of [8] and the fact that an element

r € X is not invertible we have
Lemma 2.8.3. If | X| > 1, G arbitrary then R is semisimple.

Now consider K X™ as a k"-dimensional vector space, viewed as the nth tensor
power of K X. We will now construct an embedding of KG into M (K'), which will
act in a nice way on K X".

Let s; : KG — M (K) be defined as follows. For each g € G, 1 < i < k, if
g - x; = x;, then there will be a 1 in the (j,¢)th entry of the matrix s;(g). All other
entries will be 0. We see that s1(g) is a doubly stochastic matrix with a single 1 in

every row and column. Now define

|G| G|

81(2 ig;) = Z @;51(7i)-

We will now describe inductively s, : KG — My (K) for k > 1. For g € G, let
sk(g) be as s1(g), except that the 1 in the (j,4)th position is replaced by a k"~ x k™!
matrix A;, and the 0’s are replaced by blocks of 0’s. Here

Aj = sp-1(9lz,)-

Similarly,
|G| |G|

Sk(z ig;) = Z ;sk(gi)-

For example, let us consider the monoid M of similarity transformations of the
Sierpinski gasket. In order to clarify the construction, we will change the basis from
the one used above. We will define L to be the map which rotates the gasket by 27/3
radians and then maps to the bottom left hand corner. R and T will still map the
gasket to the bottom right and top parts and p and ¢ will remain unchanged. So, our

new relations will be

pT = Rp, pL=Tp*, pR=1L

and
oT =To, oL = Rp*c, oR= Lp%.

Then we have

s1(p) =

= O O
o O =
o = O
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oS O

— O O

o - O
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Chapter 3

Left Rees Categories

3.1 Outline of chapter

The aim of this chapter is to generalise ideas from the theory of left Rees monoids
and self-similar group actions to the context of left Rees categories and self-similar
groupoid actions. The hope is that by generalising these ideas, one can apply the
algebraic theory of self-similarity more widely. In Section 3.2 we will describe how
the correspondence between left Rees monoids and self-similar group actions outlined
in Section 2.2 can naturally be generalised to a correspondence between left Rees
categories and self-similar groupoid actions. This can essentially be deduced from
the work of [51] and [77]. We will here flesh out the details for the sake of com-
pleteness. We will show in Section 3.3 that every left Rees category is the category
HNN-extension of a groupoid. From this we will deduce several facts relating self-
similar groupoid actions to Bass-Serre theory, in particular showing that fundamental
groupoids of graphs of groups are precisely the groupoids of fractions of Rees cate-
gories with totally disconnected groupoids of invertible elements. In Section 3.4 we
will encounter the notion of a path automorphism groupoid of a graph. This is a di-
rect generalisation of the automorphism group of a regular rooted tree, as the vertices
of a regular n-rooted tree can be viewed as paths in a graph with one vertex and n
edges. We will see that certain self-similar groupoid actions can be described in terms
of a functor into a path automorphism groupoid. In Section 3.5 we will consider how
one might define wreath products in the context of groupoid theory and we will see
how one might generalise the wreath recursion to the context of self-similar groupoid
actions. We will see in Section 3.6 a method of obtaining self-similar groupoid actions
from automata. In Section 3.7 an indication will be given as to how one might gener-
alise the ideas of self-similar group actions arising from iterated function systems to
self-similar groupoid actions arising from graph iterated function systems. We will in-
vestigate the representation theory of left Rees categories in Section 3.8 and will show

a connection with the representation theory of finite-dimensional algebras when the
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left Rees category is finite. Finally, in Section 3.9 we will see how one can associate
an inverse semigroup to a left Rees category in a natural way. This will allow us to
connect this work with the work of Nivat and Perrot, and will be useful in tackling

examples in Chapter 4.

3.2 Left Rees categories and self-similar groupoid

actions

We begin by giving the background definitions required for this chapter. As stated in
the introduction all categories in this chapter will be assumed to be small.

A principal right ideal in a category C'is a subset of the form zC' where x € C.
Analogously to the case of monoids, a category C will be said to be right rigid if
xC NyC # () implies that xC C yC or yC C zC. We will then use the term left
Rees category to describe a left cancellative, right rigid small category in which each
principal right ideal is properly contained in only finitely many distinct principal right
ideals. A left Rees monoid is then precisely a left Rees category with a single object.
A Leech category is a left cancellative small category such that any pair of arrows with
a common range that can be completed to a commutative square have a pullback and
so left Rees categories are examples of Leech categories. Analogously, a right Rees
category is a right cancellative, left rigid category in which each principal left ideal is
properly contained in only finitely many distinct principal left ideals. A category is
Rees if it is both a left and right Rees category.

An element z in a category C' is said to be indecomposable iff + = yz implies that
either y or z is invertible. A principal right ideal xC' is said to be submaximal if
xC # r(x)C and there are no proper principal right ideals between xC' and r(z)C.

We will now summarise some results about left cancellative categories whose proofs

can be found in [51].
Lemma 3.2.1. Let C' be a left cancellative category.
1. If a = xy is an identity then x is invertible with inverse y.
2. We have that xC = yC' iff x = yg where g is an invertible element.
3. xC = aC for some identity a € Cy iff x is invertible.
4. The maximal principal right ideals are those generated by identities.
5. The non-invertible element x is indecomposable iff xC is submazximal.

6. The set of invertible elements s trivial iff for all identities a € Cy we have that

a = xy 1mplies that either x ory is an identity.
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One is then ( [51]) led to the following result which is a generalisation of a similar

result for free monoids.

Proposition 3.2.2. A category is free if and only if it is a left Rees category having

a trivial groupoid of invertible elements.

It follows from Lemma 3.6 of [77] that a left Rees category which is right cancella-
tive is in fact a Rees category.

We shall now describe the structure of arbitrary left Rees categories in terms of
free categories. One can view this as a generalisation of the connection between self-
similar group actions and left Rees monoids. Let G be a groupoid with set of identities
Gy and let C be a category with set of identities Cj. We shall suppose that there is
a bijection between G, and Cj and, to simplify notation, we shall identify these two
sets. Denote by G * C' the set of pairs (g, x) such that g7'g = r(z). We shall picture

such pairs as follows:

We suppose that there is a function

G x C — C denoted by (g,2) — gz
which gives a left action of G on C' and a function

G x C — G denoted by (g,2) — g

which gives a right action of C' on G such that
(C1) r(g-z) =gg"
(C2) d(g- ) = gla(gl) "

(C3) d(z) = (glz) " 9la-
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This information is summarised by the following diagram

g g|z

We also require that the following axioms be satisfied:

(SS1) r(z) - x = x.

(SS2) If gh is defined and h~'h = r(x) then (gh) -z =g (h- ).
(SS3) g9 =g-97'g.

(554) r(z)|. = d().

(SS5) glg-14 = g

(SS6) If xy is defined and g~'g = r(z) then gl.y, = (9:)ly-

(SS7) If gh is defined and h~'h = r(x) then (gh)|. = g|nuhl..

(SS8) If zy is defined and g~'g = r(z) then g - (zy) = (9 2)(g. - y).

If there are maps ¢ -z and g|, satisfying (C1)-(C3) and (SS1)—(SS8) then we say that
there is a self-similar action of G on C.
Put
CxG={(r,9) €eCxG: d(x)=gg '}

We represent (z, g) by the diagram
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Given elements (z,g) and (y, h) satisfying g~'g = r(y) we then have the following

diagram

Completing the square enables us to define a partial binary operation on C' > G by

(z,9)(y, h) = (z(g - y), glyh).

The following is now a straightforward reinterpretation of Theorem 4.2 of [77].

Proposition 3.2.3. Let G be a groupoid having a self-similar action on the category

C.
1. C>G s a category.

2. C'x1 G contains copies C' and G' of C and G respectively such that each element
of C'>x1 G can be written as a product of a unique element from C" followed by

a unique element from G'.

3. If C has trivial invertible elements then the set of invertible elements of C <1 G
is G'.

4. If C' is left cancellative then so too is C' 1 G.

5. If C is left cancellative and right rigid then so too is C' <1 G.

D

. If C is a left Rees category then so too is C' <1 G.

Proof. (1) Define d(z,9) = (979,97 '9) and r(x, g) = (r(z),r(x)). The condition for
the existence of (x, g)(y, h) is that d(z, g) = r(y, h). Axioms (C1),(C2) and (C3) then

guarantee the existence of (z(g - y), g/,h) and we can see from the diagram that

d((z,9)(y,h)) = d(y, h) and r((z, g)(y, h)) = r(z, g).
It remains to prove associativity.
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Suppose first that
[(z, 9)(y, h)](2, k)

exists. The product (z, g)(y, h) exists and so we have the following diagram

T gy
-~ -~
g gly
Yy
B ——

similarly [(z, ¢)(y, h)](z, k) exists and so we have the following diagram

z(g-y) (glyh)-=

glyh (glyh)|=

resulting in the product

(z(g - »)l(glyh) - 2], (glyh)]k).

By assumption, z(g - y)[(g],h) - 2] exists and so (g - y)[(g|,h) - 2] is non-zero. Pre-
multiplying by ¢! we find that y(h - z) exists and we use (SS7) and (SS6) to show
that

(g|yh)|zk = g|y(h-Z)h|zk‘
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By (552),
z(g - y)[(glyh) - 2] = 2(g - y)(gly - (h - 2)).

It now follows that
(y, h)(2, k) = (y(h - 2), h|.k)

exists. It also follows that (z,¢)[(y, h)(z, k)] exists and is equal to

[(z,9)(y, h)](2, k).

Next suppose that
(@, 9)[(y, h) (2, k)]

exists. This multiplies out to give (z[g - (y(h - 2))], glyn-2)P|-k). By (SS6) and (SS7)
we get that

g|y(h-z)h|zk = (glyh)|zk5>

and by (SS8) and (SS2) we get that z[g- (y(h-2))] = 2(g-vy)[(g9]yh) - z]. This completes
the proof that C' > G is a category.

(2) Define 1c: C' — C =<1 G by to(z) = (z,d(x)). Denote the image of (¢ by C”.
Note that there exists tc(z)ic(y) iff d(z) = r(y) iff 3xy. In this case

wo()ic(y) = (v, d(z))(y,d(y)) = (zy, d(zy)) = o(zy).

Thus the categories C' and C” are isomorphic.

Now define 1g: G — C <1 G by 1g(g9) = (997", g) and denote the image by G'.
Then once again the categories G and G’ are isomorphic.

Finally, if we now pick an arbitrary non-zero element (z, ¢g), then we can write it as
(z,9) = (z,d(z))(gg™", g) using the fact that gg~*|,-» = g¢~" and d(z)-gg~' = gg~".

(3) Suppose that C' has trivial invertible elements. We need to check that (z, g) is
invertible if and only if = is an identity. Suppose (z, g) is invertible. Let (y, k) be its
inverse. Calculating (z,g)(y, h) and (y, h)(z, g) gives y(h-z) = r(y), (g -y) = r(z),
g' = h|, and h™! = g|,. To show that z is invertible, we just need to show that
(9 -y)xr = d(x) and we will have proved x is invertible and thus by assumption an
identity. We have that d(z) =g-r(y) =¢g- (y(h-z)) = (9-y)(9|,h) -z = (g9 - y)z.

Now suppose x is an identity. Then (x,g) = (997, g) € G’ and since G is a
groupoid, we have (z, g) is invertible.

(4) Suppose that C' is left cancellative. We prove that C 1 G is left cancellative.
Suppose that (z,g)(y,h) = (z,9)(z, k). Then 2(g-y) = (g - 2) and g|,h = g|.k. By
left cancellation in C' it follows that g -y = ¢ - z and by (SS1) we deduce that y = z.
Hence h = k. We have therefore proved that (y,h) = (z, k), as required.

(5) Suppose now that C' is left cancellative and right rigid. By (4), we know that
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C > G is left cancellative so it only remains to be proved that C' > G is right rigid.
Suppose that

(z,9)(y, h) = (u, k)(v,1)

From the definition of the product it follows that z(g - y) = u(k - v) and g|,h = k[,!.
From the first equation we see that zC' NuC # (). Without loss of generality, suppose
that z = uw. Then by left cancellation w(g - y) = k - v. Observe that k="' - (k- v) is
defined and so k™! - (w(g - y)) is defined by (SS2). Thus by (SS8), k=1 - w is defined.

It is now easy to check that

(z,9) = (u, k) (k™" - w, (kli-1.0) " 9)-

(6) Let C be a left Rees category and let M = C' > G. By (4) and (5), it remains
to prove that every principal right ideal is only contained in finitely many distinct
principal right ideals. We show that (z,¢9)M C (y,h)M iff xC C yC, from which
it will follow that M is a left Rees category. If (x,g)M C (y,h)M then there exists
(z,k) € M with (z,g9) = (y,h)(z, k). That is,

(x,9) = (y(h - 2), h|:k)

and so zC' C yC'. Now suppose that x,y € C are such that xC' C yC'. Then there
exists z € C' with x = yz. Let g,h € G be arbitrary elements with d(z) = gg~' and
d(y) = hh~'. Tt can easily be verified that

(Rt 2, (hlp-1.)"tg) e M

and that
(‘T>g) = (y7 h)(h_l "2, (h|h*1-z)_lg)'

[]

We call C' 1 G the Zappa-Szép product of the category C' by the groupoid G by
analogy to the monoid situation. It follows from Proposition 3.2.3 that the Zappa-
Szép product of a free category by a groupoid is a left Rees category. In fact an

arbitrary left Rees category is a Zappa-Szép product of a free category by a groupoid.

Proposition 3.2.4. Fvery left Rees category is isomorphic to a Zappa-Szép product
of a free category by a groupoid.

Proof. Let M be a left Rees category. First, let X be a transversal of the generators
of the submaximal principal right ideals of M. We claim that X*, the subcategory of

M consisting of all allowed products of elements of X, is free. Suppose

1. - T = Y1-.-Yn,
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where x;,y; € X and this product exists. Then from the above y; ...y, M C x1 M.
Thus y; M Nz M # (). By assumption y; and z; are indecomposable and so y; M =
x1M. On the other hand, X was defined to be a transversal and so z; = y;. By left

cancellativity we thus have

To2... Ty = Y2...Yn.

Suppose m < n. Continue cancelling and we get ¥,,11 ...y, = e for some identity e.
But that would imply eM C y,,+1 M, which cannot happen by Lemma 3.2.1. Thus
m = n, and we have x; = y; for each i.

Let G be the graph with edges elements of X and vertices identities and let G*
be the free category on G. We have shown that G* and X* are isomorphic, so view
G* as the subcategory of M containing products of elements of X. Let G = G(M)
be the groupoid of invertible elements of M and let s € M \ G be arbitrary. Since
the submaximal ideals of M are generated by indecomposable elements it follows that
sM C x;M for some x; € X. If this is equality then s = z;¢9 for some g € G.
Otherwise s = x1y; for some y; € M. Now we repeat the same argument for y; to get
Y1 = X2y for some x5 € X, yo € M. Continuing in this way we find s = z1... 2,9
for some x1,...,2z, € X and g € (G, this process terminating since s is only contained
in finitely many principal right ideals. To see that this decomposition is unique,
suppose T ...Tng = Y1 ...Ymh where z;,y; are in X and g,h € G. It follows that
1M Ny M # (. Since z1,y; are indecomposable, we must have xz; = y;. We then
cancel on the left and continue in this manner to find that m = n, x; = y; for each ¢
and g = h. Thus every element s € M can be written uniquely in the form s = zg
where x € G* and g € G.

Now define, for g € G, x € G* such that dgz,

gz =: (g 7)(gls)-

By the above this is well-defined. We claim that this gives a self-similar action of G
on G*. We thus need to show it satisfies (C1) - (C3) and (SS1) - (SS8).

(C1) r(g-x) =r((g-)(gl.)) = r(g92) = r(g9) = g9~
(C2) d(g-z) =r(gl.) = gla(gls) "
(C3) d(z) = d(gz) =d((g - z)(gl.)) = d(gle) = (g9l=) " gle-

(SS1) and (SS4) zd(x) = = = r(x)z = (r(z) - z)(r(z)|,) giving r(z) - x = x and
r(z)|, = d(x).

In a similar manner, using uniqueness of the decomposition,
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(SS2) and (SS7) (gh)z = ((gh) - x)(gh)|. and
g(hx) = g(h-2)(hls) = g - (h- 2)glnzhle.

(SS3) and (SS5) g =997 'g=9-(97'9)9|4-14-

(SS6) and (SS8) g(zy) = g (zy)glsy and
(92)y = (9 2)(gl=)y = (g - 7)(gle - ) ((gl2)]y)-

]

Let M be a left Rees category which is the Zappa-Szép product of a free category
G* and a groupoid G. For z € G*, let

G*={geGlr(z) =g 'g}

and let
‘G={geGldz)=g""g}.

We define the map p, : G* — *G by p.(g) = g|.. A left Rees category is symmetric
if the maps p, : G* — *(G are bijections for each z € G*.
Let us define for x € G* the stabiliser of =, G, and the orbit of x, 2., as follows:

G.={9eG® | g-x=uz}
and
Q. ={yegG” | JgelG:g-z=y}.

It follows from the fact that r(g) = r(g - z) that G, is in fact a group. We define
the map ¢, : G, — G by ¢.(9) = ¢gl., so that ¢, is the restriction of p, to the
stabiliser of x.

Analogously to Lemma 2.2.3 of Chapter 2 it is easy to see that we have the

following:
Lemma 3.2.5. Let (G,G*) be a self-similar groupoid action.
(i) The map ¢, is a functor for each x € G*.

(ii) Lety=g-x. Then G, = gG,g~" and
¢y (h) = glaa(9~ " hg)(gla) "

(ili) If ¢, is injective then ¢q., is injective.
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(iv) ¢, is injective for all x € Gy iff ¢, is injective for all x € G*.
(V) ¢n is surjective for all x € Gy iff ¢, is surjective for all x € G*.
(Vi) pe is injective for all x € Gy iff p, is injective for all x € G*.
(vii) p, is surjective for all x € Gy iff p, is surjective for all v € G*.

Let us define the length of a non-identity element of G* to be the number of

elements of G; in its unique decomposition, and say that an identity has length 0.
Lemma 3.2.6. The action of G on G* is length-preserving

Proof. Consider an identity e € G*. Then g - e exists iff e = g7'g and so g - e = gg~!
by (SS3), which is an identity. Suppose the claim is true for all € G* with [(z) < n
for some n > 1. Let z € G* be such that I(z) = n. We see that if g € G” then
I(g-x) > n as otherwise I(z) = I((¢7'g) - ) < n, a contradiction. So suppose
g-x = yz for some y,z € G* with I(y) =n — 1. Then g~' - (yz) exists and equals .
But g7' - (y2) = (g7 - y)(g7 |, - 2). Thus l(g7 ', 2)=1and so l(g-z)=n. O

Lemma 3.2.7. A left Rees category M is right cancellative if and only if we have

that ¢, s injective for every x € G*.

Proof. (=) Suppose g|, = h|, for some ¢, h € G,,. Then

(z,9)(y,r(v) = (vy,9,) = (zy, hly) = (z, h)(y,(y)).

It then follows by right cancellativity that g = h.
(<) Suppose (x,9)(y,h) = (z,k)(y, h). We want to show z = z and g = k. Since

(z(g - y), glyh) = (2(k - y), kl,h),

we must have z(g - y) = z(k - y) and g|,h = k|,h. By the cancellativity of G, length-
preservation and uniqueness, =z, g-y =k -y and g|, = k|,. Let t =g-y =k - .
We have

(9o = gle-rek ™ = glyk™ e = klyk™ e = klprk ™ e = (k7).

Since gk~! € G, and ¢; is injective, we have gk~! = kk~! and so g = k. O

Proposition 3.2.8. Let M be a left Rees category and let a € My be an identity.

Then the local monoid aMa is a left Rees monoid.

Proof. Let M = G*G be a left Rees category and let a € My. A subcategory of a left

cancellative category will again be left cancellative, so aMa must be left cancellative.
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Suppose z,y € G*, g,h € G are such that zg,yh € aMa and xgaMa N yhaMa # ().
Then there exist z1, 29 € G* and uy, us € G such that xgziu; = yhzous. It therefore
follows that there exists t € G* with xt = y or yt = x. Suppose zt = y. Observe that
g 'th € aMa and so xgg~'th = yh in aMa. Thus yhaMa C xgaMa. In a similar
way if yt = = we find xgaMa C yhaMa. It therefore follows that aMa is right rigid.
Note that if zg,yh € aMa are such that xgaMa C yhaMa then y is a prefix of x.
Since x has finite length, there are only finitely many prefixes of  and so there can
only be finitely many principal right ideals containing xzgaMa. Thus aMa is a left

Rees monoid. 0

3.3 Category HNN-extensions and Bass-Serre the-
ory

In this section we will prove left Rees categories are precisely what we will call category
HNN-extensions of groupoids. We will further see how one can interpret ideas from
Bass-Serre theory in the context of Rees categories.

Suppose C' is a category given by category presentation C' = (G|R(C)) , where
here we are denoting the relations of C' by R(C') and suppose there is an index set I,
submonoids H; : ¢ € I of C' and functors «; : H; — C. Let e;, fi € Gy be such that
H; Ce;Ce; and o;(H;) C f;C f;. Define H to be the graph with Hy = Gy and

Hy =G U{tili e I}

where r(t;) = e¢; and d(t;) = f;. We will say that M is a category HNN-extension of
C if M is given by the category presentation:

Theorem 3.3.1. Category HNN-extensions M of groupoids G such that each associ-
ated submonoid H; in the definition above is a subgroup of G are precisely left Rees

categories M = G* 1 G for some graph G.

Proof. Let G be a groupoid, H; : ¢ € I subgroups of G, a; : H; — G group ho-
momorphisms and let M be the category HNN-extensions of the groupoid G with
associated submonoids H; = e; H;e;, stable letters t; : i € I and let f; € Gy be such
that f; = f;c;(H;)fi. We will now prove that M is a left Rees category such that

M=G" >xd
for some graph G.
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For each i € I, let T; be a transversal of left coset representatives of H;. Note
that for each i an element u € G with d(u) = e; can be written uniquely in the form
u = gh, where g € T; and h € H;. We will assume that e; € T; for each 1.

We claim that a normal form for elements s € M is

s = giti, gatiy - Gmti,, U

where g, € T;, and u € G.

An element s € M can definitely be written in the form
S = U1, Vatiy, + * - Uy, W
with v, w € G. There will be a unique ¢, € T;,, hy € H;, such that
vy = gihy.

So

s = grhiti, vatiy - - Uty W.
We see that hit;, = t;,p;, (h1) and thus
§= gltilpil (h1>v2ti2 e 'Umtimw.

We can continue this process by writing

Piy, (hk)vk-i-l = Gr+1hrt1

with gp1 € T; hii1 € H;, , and then noting

k+17 k+1

hk+1tik+1 - tik+1pik+1(hk+1>'
So we see that we can write s in the form

s = giti, gatiy - Gmti,, U

where g, € T;, and u € G. We will see in due course that this is in fact a unique
normal form.
Let G be the graph with Gy = Gg = My and

G1={gtilg e T;,i € I},

where the domain of the edge gt; will be d(gt;) € My, similarly for ranges.
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We will now consider the free category G*. Note that since we haven’t yet shown
that the normal forms above are unique normal forms, distinct elements of G* might
correspond to the same element of M. We will now define a self-similar action of G
on G*.

Let y = x1...2, € G" and g € GG. Each x; is of the form z, = wuit;, where

i
up € T;,. Now there exist unique elements g; € T;,, hy € H;, with gu; = g1hy in G.
Then for each 1 < k < m we will let g, € T;,, hy, € H;, be the unique elements with
a;,_, (hg—1)ur, = grhy in G. Finally we will let v = o, (hy,). We thus define

g-(T1...Tm) = Y1 Ynm
where yi, = git;, and
g|(x1xm) =u.
We will define g - d(g) = r(g) and gla¢) = g for g € G. We now check this describes
a self-similar groupoid action:
(SS3), (SS5), (SS6) and (SS8) These are true by construction.
(SS1) and (SS4) These follow from the fact that e; € T; and «;(e;) = f; for each i € I.

(SS2) and (SS7) If hu = g1hy and (gh)u = gohy for g,h € G, u, g1,92 € Tj,, h1,hy €
Hik then
991 = ghuhi' = gahsh!

and since «;, is a functor we also have
i, (ha) = ay (hohi e, ().

Thus (gh) -z =g¢- (h-z) and (gh)|: = g|ph|. for all g,h € G and x € G* with
d(g) =r(h) and d(h) = r(z).

Let C' = G* x G be the associated Zappa-Szép product. We define a map 6 : C' — M
by
O(x1...Tm,g) = gitiy - - - Gmti,, g

where z;, = git;, for each 1 <k < m. By the above work on normal forms for M, we
see that 6 is surjective. We now check that 6 is a functor. Let (z1 ...z, v1), (Y1 ... Y, V2) €
C be arbitrary with d(v1) = r(y1). Suppose x = uit;, and y, = git;, for each k. Let

g1 € T;,, b1 € Hj, be such that v191 = gjhq, for each 1 < k <rlet g, € T}, hyp € Hj,

be such that aj,_, (hg—1)9x = gphx, let u = o (h,)vy and let y;, = gt;, € G for

1 <k <r. Then

(X1 Ty 01) (Y1 -+ Yy 02) = (21 T YL - Y, 1)
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and so

O((x1 . Ty, 01) (Y1 -+ Yy 02)) = O(z1 ... 20y; ... Y., 1)
= ity .. Ut Gitj, . Gt
= Uil .. Upt;, V101t ... grtj U2
= O(x1...Tpm,v1)0(y1 ... Y, Vo).

Thus 6 is a functor. Since e; € T} for each i there exist x; € G; with z; = t;. We see
that 0(z;,d(x;)) = t; for each ¢ and 6(r(g), g) = g for each g € G. We know from the
earlier theory that

' ={(z,d(z))|lre g} cC

and
G ={(r(9),9)lg € G} CC.

Let us denote the element (z;,d(x;)) € C by y;, the image of G in C' by G’, the
image of H; in C' by H] and let us denote by «} the functor o : H] — G’ given
by afi(1,h) = (fi,i(h)). Then we see that G’ U {y; : i € I} generates C. Further,
for each h € H! we have hy; = y;al(h). Let ‘H be the graph with Hy = G}, and
Hi =G U{y; i € I}. Then we see that C' is given by the category presentation

C= <H ‘ R<G/)7 hyZ = yla;(h),z € [> S>7

where R(G’) denotes the relations of G in terms of G’ and S denotes whatever relations
are needed so that C really is given by this presentation. Since 6(r(g), g) = g for each
(r(g),9) € G', 0(y;) = t; for each i and all the relations of M hold in C' it follows from
the fact that 6 is an surjective functor that # is in fact an isomorphism.

We have therefore shown that every category HNN-extension of a groupoid is a
left Rees category. We will now show that every left Rees category is a category
HNN-extension.

Let M = G*G be a left Rees category. We will say two elements x,y € G; are in
the same orbit under the action of G if there exist elements g, h € G with gz = yh.
This defines an equivalence relation on G;. Let X be a subset of G; such that X
contains precisely one element in each orbit of the action of G on G;.

Let us write

X ={t;lie I}

and let X* denote the set of all allowed products of elements of X together with all
the identity elements of M.

75



Chapter 3: Left Rees Categories

Define p; := p;,, the map which sends an element g € G with d(g) = r(¢;) to
the element g|;,, € G. Let H; = Gy, be the stabiliser of ¢; under the action of G let
T; be a transversal of H; and let H be the directed graph with Hy = Gy = G, and
Hy =G, U X.

Define T" by the following category presentation:

I'=(H|R(G), hti=tipi(h) Vhe Hyi€l),

where R(G) denotes the relations of G, so that I' is a category HNN-extension of
G.

A few observations:

1. Each x € G; is given uniquely by x = g - t; for some i, where g € T;.

2. For g € T; we have g - t; = gti(gl.,) "' = gti(pi(g)) "

3. For each i every element u € G with d(u) = r(¢;) can be written uniquely in

the form u = gh, where g € T; and h € H;.

One can check in exactly the same way as for the first half of this theorem that

every element of I can be written in the form

g1ti, (0iy (91)) 9oty (pin(92)) ™" - Gt (0 (gm)) '

where g, € T;, and u € G.

Let us check that this is a unique normal form for elements of I'. Note first that
the relations of I' do not allow us to swap or remove t;’s, so two equal elements of I’
must have the same number of ¢;’s and they must be in the same positions relative to
each other.

Now suppose

g1t (pi (90) 7 Gt (Pin (9m)) " = g1ts, (03 (91)) 7"+ -+ Gt (i (Gi)) 0

in I', where these elements are written in the above form. Then by the unique normal

form for elements of I' we must have g; = g|. Thus by left cancellativity of I" we have

Continuing in this way one see that g, = g}, for each k and u = v.

Observe that the left Rees category M can be given by category presentation as
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where § are any additional relations required to make this really a presentation for
M. 1t is now easy to see that the map f : I' — M defined on generators by f(t;) =t;
for i € I and f(g) = g for g € G is an isomorphism of categories.

O

If G be a groupoid and H a subgroup of G then we will call a functor ¢ : H — G
a partial endomorphism of G. Given a groupoid G and partial endomorphisms ¢; :
H; — G then Theorem 3.3.1 says that we can form a left Rees category M (¢; : i € I)
as follows. For each i € I let a;,b; € Gy be such that H; = a;H;a; and ¢;(H;) =
b;p;(H;)b;. Define H to be the graph with Hy = G and H; = G1 U{t; : i € I} where
the edge t; has r(t;) = a; and d(t;) = b;. Then M(¢; : i € I) will have category

presentation

By Lemma 3.2.7 and Lemma 3.2.5 (iii) and (iv) we see that a left Rees category
M (¢; : i € I) is right cancellative (and so a Rees category) if and only if ¢; is injective
for each 7 € 1.

We have the following theorem which describes in terms of partial endomorphisms

when two left Rees categories are isomorphic.

Theorem 3.3.2. Let G, G’ be groupoids, H; : i € I subgroups of G, H} : j € J
subgroups of G' and suppose ¢; : H; — G, ¢ : H; — G" are partial endomorphisms
for each i € I, j € J. Then the left Rees categories M(¢; : i € I) and M(¢} : j €
J) are isomorphic if and only if there is an isomorphism f : G — G', a bijection
v : I — J and elements u;,v; € G' with u; ' f(H;)u; = H. ;) and vif(gi(h))v; ! =

;(i)(u;lf(h)ui) for every i € I and h € H;.

Proof. (=) For each i € I, j € J let a;,b; € G, a},b; € G’ be the identities with
H; = a;H;a;, ¢i(H;) = bigi(H;)bs, H; = ajHja) and ¢(Hj}) = bi¢i(H;)b;. Let G
and H be the graphs with Gy = Gy and G; = G U {t; : i € I} where q; & b; and
Ho = G and Hy = G} U {r; : j € J} where d & b;. We can write M(¢; : i € I) and

M (¢} : j € J) in terms of category presentation as

and
M(gb; cjedJ)=(H|R(G), hr;= rjgb;(h) Vh € H;,j eJ).

Suppose f : M(¢; : i € I) — M(¢; : j € J) is an isomorphism. Note that
f(G) = G'. Each submaximal principal two-sided ideal of M(¢; : i € I) is generated
by at; and likewise for M (¢} : j € J). It follows that there is a bijection v : I — J and
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elements u;,v; € G’ for each ¢ € I with f(t;) = u;ryv;. Define maps o; : a;Ga; —
aiG'al, B; : b;Gb; — b.G'Y, for each i € I by a;(g) = u; f( Yu; and B;(g9) = vif(g)v; *.
It is clear that a; and (3; are isomorphisms for each ¢ € I since local groups on the
same connected component of a groupoid are isomorphic.

We now verify that «o; : H; — H’ and By = ¢/7(i)04i foreachi e I. If h € H;
then

ai(h)ryey = f(R)uirsey = u; ' f(R)wrago;t =gt f(R) f(t)v
=y  f(ht)o; = ug  f(tigi(h)oy = ugt f () f(di(h))u;
= @i (Gi(h)v; " =1y Bi(¢s(h)).

Thus «;(H;) C H’

v(#)

and [;¢; = ¢7( Q. Further, if h € H’() then
fla (ht) = FF N (whug M) = wibug  ugrs v = wilrs v = wirs yPLiiy ()i
ity Vity Bl (h)o = F(tf 7 (0] @l (R)vi)).

Since f is an isomorphism this therefore implies that o '(h)t; = t;f~ (v; Ly ()vi)
and so ozi_l(H;(i)) = H;.

(«) For each i € I, j € J let a;,b; € G, a},b; € G be the identities with
H; = a;H;a;, ¢i(H;) = bigi(H;)b;, H; = ajHja) and ¢}(H}) = bi¢i(H;)b:. Let G
and ‘H be the graphs with Gy = Gy and G; = Gy U {t; : i € I} where q; & b; and
Ho = G and Hy = G} U {r; : j € J} where d & b;. We can write M (¢; : i € I) and

M(¢); : j € J) in terms of category presentation as

and
M(¢;:j€J)=HIR(G), hr;= rjd);(h) Vh € H]’-,j eJ).

J

Define f : M(¢; : i € I) — M(¢; : j € J) on generators by f(g) = f(g) for
each ¢ € G and f(t;) = wiryuv; for each ¢ € I. Observe that by construction

f(gh) = f(g9)f(h) for each g, h € G. We now check that for each i € I and h € H; we
have f(h)f(t:) = f(t;)f(¢s(R)). Let i € I and h € H;. Then

f(h)f(tz) = f(h)uzr'y( YU = Uy u f( )uzr'y( YU = uzrfy(z)gbl (i )(uz_lf<h)uz)vz

u;T,

S@if ($i(R)v; v = wirsyvif (¢s(h)) = F(ti) f(9i(h))

and so f is a functor. To see that f is surjective note that for each j € J there exists i €
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Iwith (i) = g, f~H(ui Vtaf (v ') € M(¢y =i € I) and f(f " (ui Ntif (v ")) = 1.
We must finally verify that f is injective. Suppose gits, - .. gmti,, T1, its, - - - gti, T2 €
M(¢; : i € I) are such that

flgitiy - gmti, 1) = f(giti, - - - Gnltin T2).

Note that we have assumed that the ¢'s in both expressions are the same since our

relations don’t allow us to swap them. We therefore have

F(g0) Ui, 7(6) Vi - F (G ) Ui, T (i) Vi £ (1) = F(G1) W0, Ty(i1)Viy - -+ F (G ) Wi Ty (i) Vi f (22).

For each v € I let T; be a transversal of H; in G and for each j € J let TJ’ be a
transversal of H} in G'. Let y; € Té(il), hy, b € H;(z.l) be such that

yihy = f(g1)us,
and

For k=2,...,mlet y, € TA;( o P, h € H;(Z.k) be such that

i
Yrhr = &y (he-1)vi,_, f(gr)uiy
and

Yeht, = &y (Wem1)vi_ f (G )iy -

Then by the uniqueness of normal forms we have

O i) (o Vi f (21) = &3, (i, )0, f (2).

!/

By assumption, h,, = ui_mlf(zm)uim for some z,, € H; and h!, = ui_mlf(zm)uim for

some 2, € H; . It follows that

<Z5/7(im)(ufmlf(zm)uim)vimf(xl) = ¢;(im)(uﬁj (2 )i,y )i, f (02)

and so
Vi f (G () 03, 01, (1) = 03 £ (1 (21) )07, 03, f (02)
giving
F(@i () [ (1) = F(i (22)) f(2).
Since f is an isomorphism this implies that

Gir (Zm)T1 = G5, (Z;n)@
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and so

/
thim.ﬁﬂl = thim.ﬁﬂg.

Rewriting this in terms of h,, and h], we have

—1 —1 —1 -1
7 (i haug, Ve = f7 (i, by ug )t @

im im “tm

and so

S i U i 0y P 0i s (g ) i1 = F 7 (i 00 iy Bl 1)0i f(G00) Vi 2.

Cancelling on the left gives

Ty ()i ) gmtie 21 = FH ) (B 1) Vi) )i, T
Note that hy,—1 =u; " f(zm-1)ui,_, for some z,,_1 € H;,,_, and bl | = u; ' f(2h, 1)U, ,

for some 2;, _, € H;,, ,. Using this we have

F D o Wi F(Zmat )iy Vi ) gmbi s = [ (D (i (2 )iy )0y )Gt T

Thus

S Wit f(Diy )0 i ) gimtintr = 7 Wiy f(Diy (2 ))VI iy ) G b T
This gives
Ginr (Zm—1)Imlbin T1 = Pipu_y (Zry_1) Grlin T2

and so

/ /
Zm—ltimflgmtimxl = Zm—ltimflgmtimx2'

We then continue in this way to discover that
gltil Ce gmtimxl = git“ . g;ntiml’g

and so f is injective. O

Let ¢ : H — G, ¢ : H — G be partial endomorphisms of a groupoid G and
suppose that ay, as, b1, by € G are identities such that H = ayHay, ¢(H) = bip(H)by,
H' = ayH'ay and ¢'(H') = b/ (H')by. Then ¢ and ¢’ will be said to be conjugate
if there exist a1 <= ag, by <~ by in G such that the maps a : a1Ga; — aGao,
B : biGby — byGhy defined by a(g) = u'gu, B(g) = vgv! satisfy a(H) = H' and
Bo = ¢'a.

Corollary 3.3.3. Let G be a groupoid, H;, H; : i € I subgroups of G and let ¢; :
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H; — G and ¢, : H] be partial endomorphisms for each i € I. If ¢; is conjugate to ¢,
for every i € I then the categories M(¢p; :i € I) and M(¢, : i € I) are isomorphic.

Let ¢ : H — G, ¢ : H — G be partial endomorphisms of groupoids G and G’
and suppose that ay,b; € G and as, by € G’ are identities such that H = a;Hay,
O(H) =bip(H)by, H = asH'as and ¢'(H') = by’ (H')by. Then ¢ and ¢’ will be said
to be isomorphic if there exist isomorphisms « : a;Gay — a2G'aq, 3 : b1Gby — byG'by
with a(H) = H' and (¢ = ¢'av.

Corollary 3.3.4. Let G, G’ be groupoids, H; : i € I subgroups of G, H : j € J
subgroups of G', ¢; : Hy — G, ¢}« H; — G' partial endomorphisms for each i € I,
J € J and suppose that M(¢; : i € I) and M(¢} : j € J) are isomorphic left Rees
categories. Then there is a bijection v : I — J such that the partial endomorphisms

¢; and ¢,7(i) are isomorphic for each i € 1.

Using Proposition 1.2.1 we see that the groupoid of fractions of a Rees category is a
groupoid HNN-extension and in addition by comparing the normal forms of elements
of a Rees category and Proposition 1.2.2 it is clear that a Rees category embeds
in its groupoid of fractions. Since the fundamental groupoid of a graph of groups
is a groupoid HNN-extension of a totally disconnected groupoid, every fundamental
groupoid of a graph groups is the groupoid of fractions of a Rees category with totally
disconnected groupoid of invertible elements, and so there is an underlying self-similar
groupoid action.

To explore this connection further we will require the notion of a diagram of
partial homomorphisms which we now define. A diagram of partial homomorphisms

G consists of
e A (not necessarily connected) graph G.
e A group G, for each vertex a € Gy.
e A subgroup Gy < Gy for each edge t € Gy.
e A homomorphism ¢, : G; — Ggq() for each edge t € G;.

In other words, a diagram of partial homomorphisms is just a graph of groups without
an involution on the underlying graph and such that the maps ¢; are not necessarily
injective.

We will say two diagrams of partial homomorphisms G; and G/, with underlying

graphs G and G’ are equivalent if

e There are bijections g : Go — G and 11 : G — G with vo(d(t)) = d(71(¢))
and vo(r(t)) = r(y1(t)) for each t € G;.

81



Chapter 3: Left Rees Categories

e For each a € Gy there is an isomorphism f, : Go — G (a)-

e For each ¢t € G; there are elements u; € Gy, (1)), V¢ € Gagy, (1)) With

ut_lfr(t)(Gt)ut = G’yl(t)

and
e fae) (De(h)vy = dayy (" freey (h)ue)

for every h € G;.

A route in Gg consists of a sequence g1t1gats -+ - gmtmgms1 Where t, € Gy for each
k, g € Gy, for k= 1,...,m and gpy1 € Gau,) for & = 1,...,m. We allow
for the case m = 0, i.e. routes of the form g € G, for some a € G,. We write
d(g1t1gota - - Gmtmgms1) = d(tn) and r(giti1gots - - Gmtmgma1) = r(t1). For g € G,
viewed as a route we write d(g) = r(g) = a. Let ~ be the equivalence relation on
routes in Gg generated by phtq ~ pté(h)q, where p, g are routes and h € G;.

Given a diagram of partial homomorphisms G, we define its fundamental cat-
egory C(Gg) to be the category whose arrows correspond to equivalence classes of
~. Composition of arrows is simply concatenation of composable paths multiplying
group elments at each end.

Let G be a diagram of partial homomorphisms, let G be the groupoid which is
the disjoint union of all the vertex groups of Go and let ‘H be the graph with Hy = Gq
and H; = Gy U {t:t € G}. We can then write the fundamental category of Gg in

terms of a category presentation as
C(Ga) = (H|R(G), ht =t (h)Vh € Gy, t € Gy).

It then follows that C(Gg) is a left Rees category with totally disconnected groupoid
of invertible elements. On the other hand, if we have a left Rees category with totally
disconnected groupoid of invertible elements we can just reverse this process to get a

fundamental category of a diagram of partial homomorphisms. Thus,

Proposition 3.3.5. Fundamental categories of diagrams of partial homomorphisms
are precisely left Rees categories with totally disconnected groupoids of invertible ele-

ments.
Combining Proposition 3.3.5 and Theorem 3.3.2 we have

Proposition 3.3.6. Two diagrams of partial homomorphisms are equivalent if and

only if their fundamental categories are isomorphic.

If G is a diagram of partial homomorphisms we will denote by 7} a transversal of

the left cosets of G in Gy for each edge . We then see that an arbitrary element s

82



Chapter 3: Left Rees Categories

of C(G¢) can be written uniquely in the form

s = gltl e gmtmu

where d(t;) = r(tgs1) for each k =1,...,m — 1, g, € Ty, for each k = 1,...,m and
u € Gq(t,,) is arbitrary.

Given a diagram of partial homomorphisms G, and a vertex a € Gy we define the
fundamental monoid of G at a to be M(Gg,a) = aC(Gg)a, the local monoid at a of
C(Gg). By Proposition 3.2.8 M(Gg, a) will be a left Rees monoid with group of units
G,.

Let G4 be a diagram of partial homomorphisms, let a be a vertex of G4 and let
P, denote the set of routes in Gg with range a. For p,q € P, we will write p ~ ¢
if d(p) = d(q) and p ~ qg for some g € Gqpy. This defines an equivalence relation
on P,. We will denote the m-equivalence class containing the route p by [p]. An

arbirtrary element of P,/ ~ can then be written uniquely in the form

[z] = [g1t1 - - Gmlm]

where r(ty) = a, d(tg) = r(tgy1) for each k = 1,...,m — 1 and g, € T}, for each
k=1,...,m. We now define the Bass-Serre tree T" with respect to the vertex a as
follows. The vertices of T are ~-equivalence classes of routes in P,. Two vertices

[z], [y] € Ty are connected by an edge s € T} if there are g € G, and t € G, such that
Yy~ xgt.

Here d(s) = y and r(s) = z. In other words there is an edge connecting [g1¢1 - * - gmlm]
and [g1t1 - - gmtmGmi1tms1] where g, € Ty, for each k, and every edge arises in this
way. It therefore follows that 7" is a tree. We will now define an action of M (Gg, a)
on Ty by

p-[] = [pz].

This will then naturally extend to an action of M(Gg,a) on T.
Let us rewrite this in our earlier notation for left Rees categories. Suppose M =
G*G is a left Rees category and a € M is an identity. We will define T" to be the tree

with vertices
Ty ={r € G*r(z) = a}

and two vertices x,y € Ty will be connected by an edge s € T} with d(s) = y and
r(s) =z if y = xz for some z € G*. We then have an action of aMa on T given on

vertices by

(zg9) -y =x(g-y)
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and then extended to the edge s with r(s) = y and d(s) = yz by defining the edge
(xg) - s to be the one connecting x(g-y) and x(g-y)(gl, - 2). If Gg has a single vertex,
then then this action just described will essentially be the action of a left Rees monoid
M = X*G on the tree X* given by

(29) -y =x(g-v).

As a final remark to this section, we note that all of the results of Section 2.4
should transfer to the categorical setting without any problems, so that a Zappa-Szép
product of a free category and a groupoid can only be extended to a Zappa-Szép
product of a free groupoid and a groupoid if it is symmetric, the groupoid of fractions
of a symmetric Rees category is isomorphic to the Zappa-Szép product of a free
groupoid and a groupoid and every Rees category with finite groupoid of invertible

elements is isomorphic to a symmetric Rees category.

3.4 Path automorphism groupoids

In this section we will define the path automorphism groupoid of a graph. This is
a generalisation of the notion of the automorphism group of a regular rooted tree.
Throughout G will denote an arbitrary directed graph. In addition, in both this
section and the following section we will use the word path to mean what we earlier
called a route, since all routes are paths in the previous sense.

For each e € Gy, let [(e) be the length of the longest path p with r(p) = e. If there
are no paths p (aside from the empty path) with r(p) = e then we will say l(e) = 0
and if there are paths of arbitrary length then we say I(e) = co.

For example, let G be the following graph:

X

et f

Y

t
O+

Here we have I(e) = 2, I(f) = 1, l(g) = oo and I(h) = 0. If M = G*G is a left
Rees category and if e, f € Gy are such that g-e = f for some g € G, then l(e) = I(f)
(here we are again identifying Gy and Gf).

We say a graph G satisfies the infinite path condition (IPC) if I(e) = oo for every
e € Gyg. Let G be a directed graph satisfying (IPC). For each e € Gy, let P, be the
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set of infinite paths p in G with r(p) = e, PF be the set of finite paths p in G with
r(p) = e and let F, ; be the set of bijective maps g : .U P, — Py U P satisfying the

e

following conditons:
e If p € P then I(p) = I(g(p))

e If r € P* is a subpath of p € P,, then g(p) = g(r)q for some infinite path ¢ in

e

G. In other words, if p, g € P. are of the form p = rp, ¢ = rq where r € P’ with
| = n, then g(p) = sp', g(q) = sq’ where |s| = n.

We will call such maps g : P, U P — Py U P} path automorphisms. Note that in
general in a graph satisfying (IPC) often F, ; will be empty. Let

Then we can give 4 the structure of a groupoid by composing path automorphisms
whose domains and ranges match up and we call this the path automorphism groupoid
of G. When G has a single vertex and edge set X, then 4 will be the automorphism

group of X*, where we view X* as a regular rooted tree.

Proposition 3.4.1. Let G be a graph satisfying (IPC) and G* the free category on
G. Then the path automorphism groupoid ¢ of Gy has a natural faithful self-similar

action on G*.

Proof. Firstly, identify the idenities of 4 and G*. Let x € G*, let e = r(x), let f € Gy
and let g € F, ;. Define g -z to be g(x) and define g|, € Fq(z)d(gz)) to be the map
which satisfies the following: for every q € Py,

9(xq) = g(x)gl(q).

We need to check this satisfies the axioms for a self-similar action. Firstly, d(g) = r(x),
so this is all well-defined. We thus need to show it satisfies (C1) - (C3) and (SS1) -
(SS8).

(C1) - (C3) These follow from how we have defined g - z and g¢/|,.
(SS8) This follows from the definition of the restriction.

(SS1), (SS3), (SS4) and (SS5) These are all clear.

(SS2) This follows from the definition of composition of functions.

(SS6) We will prove this by computing g - (xyz) in 2 different ways:

g (wyz) = (g (2y))(glay - 2)
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and
g-(zyz) = (9-2)(9lz - (y2)) = (g 2)(gle - y)((gla)y - 2)-

By using (¢ (zy)) = (¢ - z)(g. - y) and cancelling we get the desired result.

(SS7) We will prove this by computing (gh) - (zy) in 2 different ways:

(gh) - (zy) = ((gh) - 2)((gh)]. - y)

and

(gh) - (zy) = g - (h-(zy)) = g - ((h-2)(hlz - y)) = ((gh) - 2)((g]nahlz) - ).
Cancelling gives the desired result.

]

It follows from Proposition 3.4.1 that if G is a groupoid acting faithfully and
self-similarly on G* for a graph G satisfying the infinite path condition then G is a
subgroupoid of ¥.

Let G be a directed graph. An automorphism g of G consists of bijective maps
Go — Go and G; — G such that d(g(z)) = g(d(x)) and r(g(z)) = g(r(z)) for each
edge x € G;. The set of all automorphisms forms a group under composition, which
we will denote by Aut(G). If G satisfies (IPC) then every element of Aut(G) can be
extended to a path automorphism. Let us denote the set of such path automorphisms
by G. We see that G is a subgroupoid of ¢ which is closed under restriction and thus

acts self-similarly on G*.

3.5 Wreath products

In this section we will define wreath products for groupoids. This definition is not
equivalent to that of Houghton [46]. Essentially his definition generalises to groupoids
that of functions from a set X to a group GG, whereas ours generalises to groupoids the
notion of the Xth direct power of the group G. Throughout this section all graphs will
be finite and will be assumed to satisfy (IPC). We also suppose that F, ; is non-empty
for all e, f € Gy.

Let G be a graph, let e € Gy and let E, be the set of edges x € G; with r(x) = e.
Let e, f € Gy be such that |E,| = |E|. Then a bijection £, — E; will be called an
edge bijection. Let B(G) be the groupoid of all edge bijections where the product is
composition whenever it is defined.

Let G be a graph, let H be a subgroupoid of B(G) and let G be a groupoid such
that we can identify Go = Hy = Gy. For each e fix an order on E.. Then the
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permutational wreath product of G and H, denoted H ! G, is defined to be the set of

elements

0’(93717 A 7g.l’n)7

where 0 € H, xy,...,x, are all the edges in G such that r(z;) = d(o), and for all
iy gz, € G, d(gz,) = d(z;) and r(g,,) = d(o(z;)). We define a product between two
elements o(ga,, .-, gz,) and 7(hy,, ..., hy,,) iff o7 is defined (in which case n = m).

The product is defined as follows:

0(Gzrs s 9o )T (Pyrs ooy ) = 0T (Gr) Py - - - Gryn) Py )-

Lemma 3.5.1. With G, H as in the previous definition, H G is a groupoid.
Proof. We have that

d(0(gays- .- 02,)) =0 to(d(xy),...,d(x,))

and
r(0(Gars - -5 Gun)) = 00 H(d(0(21)), .., d(o(2n))),

1 1

noting that for each i we have 0='c = r(x;) and oo~! = r(o(z;)). It is easy to see

that
(0<g$1’ - 7g$n))_1 - U_I(hyl’ SRR hyn)?

where hg(2,) = 9. ! The difficult thing to see is that this multiplication is associative.
So let 0(Guys---y9un)s T(hyy, ..., hy,) and w(k,,, ..., k;,) be such that orm exists.
Then

0(Gzrs -3 9o )T(hyrs oo s hy) = 0T(GrPyrs - - s Grya)iyn) = 0T (Uyy s -2 1y,,),
SO
(0(Gzrs -3 9o )T(hyys oo Ry )T (Reys oo kL) = 0T (Uray By s o Un(a) K, )-
On the other hand,
T(hyys o hy )T (ke o k) = T (ke - P kz,) = 770(V2, -0, 02,),
SO
0(Gars s Gan ) (T(hyys oo hy )T (Ray o K2)) = OTT(Grn(a)Vats - - s Grn(en) Vo) -

Now

gTﬂ(zi)’Uzi - g‘rﬂ’(zz)(hﬂ(zl)kzl) - (gTﬂ(zl)hﬁ(zz))kaZ = uﬂ(zi)kzi
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and so we are done. O

We can now prove a result analogous to Proposition 1.4.2 of [98].

Proposition 3.5.2. Let G be a finite directed graph satisfying (IPC), H = B(G) and
G =%. Then there is a bijective functor

V.G — HG.
Proof. Define ¢ : G — H1G by

V(9) = 0(glars - Glen),

where {z;} are the edges with r(x;) = d(g), o describes the action of g on the edges
») = d(z)

x; and g|,, is just the restriction of g by z;. We have that o € B(G), d(g
and r(g|,,) = d(o(z;)). Thus ¢(z) € H1G.
Let us prove first that 1 is a functor. Let g, h € G be such that gh exists. Then

V(g)p(h) = 0(Glars s 9lan)T(hlyy, -5 hly,) = UT(Q‘T(yl)Myu e 79‘T(yn)h’yn)
= o7((gM)ly:, - -, (gh)ly,) = Y (gh).

Now suppose 9(g) = 1(h). Then ¢ = 7 and for each ¢ we have g|,, = h|,,. But
this means the actions of g and h are equivalent, and so g = h in G, since the action
of G on G* is faithful.

Finally, let o(g1,...,9,) € H1G, e = d(0) and f = r(o). Since o(g1,...,9,) €
H G, there are n edges x1,...,x, € G; with r(z;) = e and such that d(z;) = d(g;)
and d(o(z;)) = r(g;). Define g to be the unique element of F, ,, satisfying

g(zip) = o(x:)gi(p)-

for p € Py(z,). Then
U(g) =0o(g1,- -, 9n).

Thus if G is a groupoid acting self-similarly on G* then there is a functor
V:G— B(G) 9.

On the other hand, given a groupoid G with finitely many identities, any functor
¥ : G — B(G)1¥Y, where G is a finite graph satisfying (IPC) and with F(e, f) non-
zero for all e, f € Gy such that 1 is surjective on identities gives rise to a self-similar

action of GG on G*.
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3.6 Automaton groupoids

We can generalise the notion of an automaton group as defined in Section 2.7. The
following definition describes a typed-automaton in the sense of [15], but which also
has an output function.

A finite-state generalised invertible automaton A = (A, X, f, A\, m) will consist of

a finite set A whose elements are called states;

a finite set X called the alphabet;

a subset I, C X for each a € A called the input alphabet of a;

a subset P, C X for each a € A called the output alphabet of a;

a bijection A\, : I, — P, for each a € A;
e amap 7, : [, — A foreacha € A

satisfying the following:
1. for each a € A there exists b € A such that I, = BP;
2. for each a € A there exists b € A such that P, = I;
3. for every a,b € A either I, = I, or I, N I, = ;
4. for every a,b € A either P, = B, or P, N B, = (;

5. for each x € X, if a = m(z) and ¢ = my(z), then I, = I. - and so we define
T, = 1g;

6. if x € I, then Pﬂ.a(x) = T/\a(x)‘

Axioms 1-4 say that the input and output sets partition X, and both do so in the
same way. Axiom 5 will allows us to define a multiplication on the alphabet and axiom
6 will allow us to construct a self-similar action. We can describe these automata by
Moore diagrams, in an analogous fashion to Section 2.7.

Suppose we have partitioned X into n subsets X;, so that

where each X; = I, for some a. Let us now create two graphs, G and ‘H. Both ¢
and H will have as their vertex sets Gy = Ho = {e1,...,e,}. G will have as its edge
set Gy = X and ‘H will have as its edge set H; = A. Edges will connect vertices as

follows in G:
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o d(z) =¢; iff X; =T,
o r(x)=¢; iff z € X
Edges will connect vertices as follows in H:
e d(a) =¢; iff X; =1,
e r(a)=¢; iff X; =P,

We can define a partial action of G on H; by a|, = m,(z) for r(z) = d(a) and
an action of H; on G; by a - x = A\, (z) for r(z) = d(a). Let H' be the free groupoid
on H and G* the free category on G. In a similar manner to Section 2.7 we can
extend the actions of G; on H; and H; on G in a unique way to actions of G* on HT
and H' on G* by using axioms (SS1)-(SS8) and requiring that a - (¢! - ) = x and
a |, = (a]s-1.,)~t. This then gives a self-similar groupoid action of H' on G*.

If g,h € H' are such that g7'g = h™'h and gg~! = hh~! then we will write g ~ h
if g-x = h-x for all z € G* with r(z) = g~'g. This defines a congruence on H'. If
a € A is such that I, = P, = () then we say a ~ a 'a = aa~!'. We then define G by

G=H/~

and call G the automaton groupoid of A. We see from its construction that G will
act faithfully on G* in a self-similar manner.

Note that if M is a fundamental left Rees category generated by a finite generalised
invertible automaton then M is finite if, and only if, A has no cycles. On the other
hand, given a finite fundamental left Rees category with a single sink, we can construct

such an automaton which generates it.

Example 3.6.1. The following example is analogous to the dyadic adding machine,
except that in addition to adding two dyadic integers, it turns 0’s and 1’s into x’s and

y’s. Here is the Moore diagram:
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(z,0)
Figure 9: Moore diagram of analogue of dyadic adding machine

Here X ={0,1,z,y} and A = {a,b,c,d}. Let X; = {0,1} and Xo = {x,y} (so
that X = X7 U Xy). Then

Xio=1l,=0,=P.=F;=T,=T,
and

Xy=P,=P=I=1,=T,=T.

Let V- ={ey,ea}. The associated graphs G and H will be as follows:

g ,y H

a,b
—_—

_—

0,1

c,d
Now

(bd) - (zw) = x(bd)|, - w = x(bd) - w

and

(bd) - (yw) = y(bd)|, - w = y(bd) - w.

Thus bd ~ ey. In a similar way we have db ~ e; and so b=' ~ d. Now

(ac) - (xw) = z(ac)|, - w = x(ac) - w

and
(ac) - (yw) = y(ac)l, - w = y(bd) - w = yw.
Thus ac ~ eq, by symmetry ca ~ e; and a~' ~ c. So the groupoid G = HI/ ~ will

have 4 non-identity elements.

We can view the element a as adding 1 to a dyadic integer, where we have identified
0’s and x’s, and 1’s and y’s.

Example 3.6.2. Consider the automaton described by the Moore diagram in Figure
10.
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($5, 556)

(x6, 5)

Figure 10: Moore diagram of automaton

Let X; = {xy, 23}, Xo = {x2}, X3 ={as}, Xy = {x5,26} and X5 =0. Then
Xl:lglnglv X2:Ig2:Pg3:TI17 X3 = gsZszszw

Xo=1, =P, Xs=T, =T, =T, =Ty,

In this case we have the following graphs:

x
€1<73 €2
T Ty
) ¢,
€3«— €5 €4
B —— e
Te
H g1 Js
g3l |92
ga

Q h h

Note that the free category G* on the graph G is finite. Now we assume gy ~ ey
since I,, = Py, = 0. Now

(9392) - (x2w) = ®2(9392) |, - w = 72(g3) - (w) = wow.
Thus gsga ~ e3. By symmetry gags ~ €2 and so g5+ = g3. We have

g7 (rw) = 21(gD) ey - w = 21(g392) - w = T1W.
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Similarly g? - z3w = w3w. Thus g? = ey. Finally,

93 - (w5w) = 25(g2) |as - w = 5(g3) - (W) = w5W

and g2 - (vew) = xew. Thus g2 = es. It therefore follows that G = HT/ ~ will be finite
and consequently M = G* > G will be finite. This makes sense since A is finite and

acyclic.

3.7 Graph iterated function systems

In Section 2.5 it was shown that many fractals defined by iterated function systems
have a left Rees monoid as their monoid of similarity transformations. In this sec-
tion we suggest how this might be generalised to graph iterated function systems by
considering the example of the Von Koch snowflake. The von Koch snowflake can
be regarded as 3 von Koch curves attached to each other in a triangle, giving the

following fractal:

Figure 11: von Koch snowflake (source [5])

One possible way to construct the von Koch snowflake is as the attractor of a
graph iterated function system. Let us describe each von Koch curve C, Cy and Cs
by iterated function systems. C} is the attractor with maps Ly, Ry, Cs with maps
Lo, Ry and ('35 with maps L3, R3. Then consider a graph Y with 3 vertices ey, e, €3,
and maps L; and R; represented as edges from vertex ¢ to itself. Let C' be the free
category of Y and let G be the groupoid with 3 objects, and 3 non-identity maps oy,
o9 and o3 each from the kth object to iself, such that 0,3 = idi. Then we have the
same self-similar action of G on C' as with the von Koch curve above, giving rise to a

Rees category M.

3.8 Algebras and representation theory

Here we generalise the ideas of Section 2.8. Let K be a field and let M be a category.

Assume M, is finite. We can form the category algebra KM as follows. An element
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v of KM is a finite sum
n
v = E (673 ir
i=1

where «; € K and x; € M. We define addition +, convolution o and scalar multipli-

cation as follows:
n+m

n m
E ;i + E Biyi = E ;T
i—1 i=1 i=1

where forn+1<i<n-+m, o; = G;_, and x; = y;_,,

Z Q;T; © Z Biyi = Z Z i BiiY;,
=1 =1

i=1 j=1

where z;y; is the product in M (set it equal to 0 if it does not exist) and

n n
A E G r; = E )\Oéiﬂli,
i=1 =1

where for all of the above \, o, ; € K and z;,y; € M.
Let

The above gives KM the structure of a unital K-algebra with unit e.

Observe that if M = G* x G is a left Rees category then KM will be finite
dimensional over K if and only if G, G are finite and G is acyclic. Note that in
representation theory the algebra KG* is often called a quiver algebra.

Let G be a finite directed graph. A (K-linear) representation R of G is defined by
the following data:

1. To each vertex e € G is associated a K-vector space R,.
2. To each arrow o : e — f in G, is associated a K-linear map ¢, : R. — Ry.

Now there is an abelian category well-studied in the representation theory of as-
sociative algebras whose objects are all K-linear representations of some specified
directed graph (see Chapter 3 of [8]). The morphisms in this category motivated the
following theory.

We call a representation finite dimensional if each of the vertex vector spaces are
finite dimensional over K. We will assume from now on that all our representations
are finite dimensional.

Observe that in the above definition it is possible that in a representation of a
directed graph some of the vector spaces assigned to vertices are isomorphic.

Let G be a finite directed graph and let R be a representation of G. A collection of
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inner morphisms G for R consists of a collection G of invertible linear maps g between

vector spaces appearing in the representation satisfying the following properties:

1. For every e € Gy there exists an identity map ¢ : R. — R, in G.

2. For all ey,e9,e3 € Gy, for every g : R.;, — R, in G and every arrow map
®q : Re, — Re,, there exists e4 € Gy, a unique arrow map ¢g : R., — R, and a

unique map h : R., — R., in G such that h¢, = ¢3g.

Note that for a particular representation there might be infinitely many such
collections or there might be none.

Let G be a finite graph, let R be a representation of G and let G be a collection
of inner morphisms for R. If for every vertex e € Gy there is an edge o € G; with
d(«) = e then G has the structure of a groupoid whose arrows are the elements of G

and composition of arrows is just composition of linear maps.

Proposition 3.8.1. Let G, R and G be as in the preceding paragraph. Then there is

a natural self-similar action of G on G*.

Proof. For x € Gy, g € G with r(z) = d(g) define g - z and g¢|, to be the unique

elements of, respectively, G and G; satisfying the equation

gz = (9-2)(gls).

One considers the identity elements of G* to be the identity maps on the vertex vector
spaces and paths in G* to be the composition of linear maps. It then follows by a
categorical version of Theorem 2.2.1 that this extends to a self-similar action of G on
G* satisfying axioms (C1)-(C3) and (SS1)-(SS8). O

Morally, the self-similarity in the last result follows from the associativity of matrix
multiplication.
Let C' be a small category with Cy finite. A (finite dimensional K-linear) repre-

sentation R of C consists of:

1. For each idenitity e € Cy there is associated a (finite dimensional) K-vector

space R, and corresponding identity morphism ¢, : R, — R.

2. For each each arrow z : e — f in C is associated a K-linear map ¢, : R. — Ry

such that zy = 2z in C implies ¢,¢, = ¢..

Note that representations of free categories and directed graphs are effectively the
same.

Now suppose that we have a self-similar action of a groupoid G on a free category
G*, and M is the associated left Rees category. Suppose that R is a representation of
M. Then this gives rise to a representation S of the quiver G with G a collection of

inner morphisms for S.
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3.9 Associated inverse semigroup

In this section we will see how the work of the past two chapters connects to the work
of Nivat and Perrot, and how it relates to ideas in the following chapter. We will also
use the results of this section for calculations in Section 4.9.

Given a Leech category C, of which left Rees categories are an example, there is a
general way of forming an inverse semigroup S(C'), which we will call the associated
inverse semigroup. We will briefly describe this construction (see [51], [71], [72] and
[73] for more details). Let C' be a Leech category, let G(C) denote the groupoid of

invertible elements of C' and let
U={(r,y) € CxCl|d(z) =d(y)} .

Define (z,y) ~ (z,w) in U if there is an isomorphism g € G(C) with (z,y) = (zg, wg).

This is an equivalence relation and so we let

S(€)=u/~ | J{o}.

We denote the equivalence class containing (z,y) by [z, y]. We define a multiplication
for elements [x,y], [z, w] € S(C) as follows. If there are elements u,v € C with
yu = zv we define [z, y|[z, w] = [zu, wv]. Otherwise the product is defined to be 0. It
turns out that S(C) is an inverse semigroup with 0. The inverse of an element [z, 3]
is [y, x| and idempotents are of the form [z, x].

We have the following, proved in [51]:

Lemma 3.9.1. 1. [z,y] L[z, w] if and only if y = wg for some isomorphism g €
G(C).

2. [z, y| R [z,w] if and only if x = zg for some isomorphism g € G(C')

3. [x,y] Dz, w] if and only if d(x) and d(z) are isomorphic.

4. [z, y] T |z, w] if and only if the identities d(x) and d(z) are strongly connected.
5. S(C) is E*-unitary if and only if the Leech category C' is right cancellative.

If M is a left Rees monoid then it follows by Lemma 3.9.1 (1) that the £-class of
[1,1] in S(M) is isomorphic to M. This is how Nivat and Perrot came across self-
similar group actions - they were studying a particular class of inverse semigroups for
which this turns out to be the case.

It follows from Lemma 3.9.1 (3) that S(C) is 0-bisimple if and only if C' is equiv-
alent to a monoid. If C' is a free monoid X* with |X| = 1 then S(C) is the bicyclic
monoid plus a 0 adjoined and if C' is a free monoid X* with |X| > 1 then S(C) is

96



Chapter 3: Left Rees Categories

the polycyclic monoid Px. If C' is a free category G* then S(C) = Py is a graph in-
verse semigroup. We see that both polycyclic monoids and graph inverse semigroups
are E*-unitary since free categories are right cancellative. This means that they are
inverse A-semigroups; that is, s A t exists for all s,¢ € S(C). Inverse A-semigroups
S have a distributive completion, which we denote by D(S), which means they are
in particular orthogonally complete and so Rees categories give natural examples to
which we can apply the theory of the following chapter. If C' is a left Rees monoid,
then the semigroups S(C) give rise to the Cuntz-Pimsner algebras of [97] in much the
same way as polycyclic monoids give rise to Cuntz algebras.

If M = G*G is a left Rees category then because of the unique decomposition of
elements of left Rees categories we can write an arbitrary element of S(M) in the

form [zg,y], where 2,y € G* and g € G. We now consider the natural partial order
for S(M).

Lemma 3.9.2. Let M be a left Rees category and S(M) be its associated inverse
semigroup. Then [xg,y] < [zh,w] in S(M) if and only if there is a v € G* with
y=wv, x = z(h-v) and g = hls,.

Proof. Let [xg,y] < [zh,w] in S(M). Then
29, y] = [2h, wl[y, y].

First suppose that y is a prefix of w. Then w = yv for some v € G* and so

29,y = [zh, yolly, y] = [zh, yo] = [zh, w].
Thus w must be a prefix of y, so y = wv for some v € G*. Now

[zg,y] = [zh, w][wv, wv] = [zhw, wv] = [z(h - W)h|y, Y]
and so x = z(h - w) and g = hl,. On the other hand,
[zh, w][wv, wu] = [zhv,wv] = [z(h - v)h],, W]

and so [z(h - v)h|,, wv] < [zh, w]. O
The following curious result may be deduced from Lemma 1.7 of [51].

Lemma 3.9.3. Let M be a Rees category and let S(M) be its associated inverse
semigroup. If s;,t € S(M) are such that s N\t # 0 then s <t ort <s.

Proof. Now suppose [z1h1, w1], [20he, ws] € S are such that [z1hy, w1 A [22hs, ws] # 0.
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Then there exists [xg,y] € S with
[2g,y] < [21h1, W], [22ha, wo).
Thus Lemma 3.9.2 tells us there exist u,v € G* with
y =wiu = wev, x = 21(hy-u)=29(hs-v)

and

g = hl‘u = h2’v-
We must have either w; is a prefix of wy or wy is a prefix of w;. Suppose without loss
of generality that w; is a prefix of w,. Then there is r € G* with wy = wyr. It then

follows that u = rv. Now

hl U = (hl . T)(hllr . U)

and
hl‘u = (h1|r)|'u-

By the uniqueness of the decomposition of elements of M and length considerations

we must have zo = z1(hy - r) and hy - v = hy|, - v. Thus
hil,v = (hilr - v)hi|y = (he - v)haly, = hov
and so by right cancellativity hi|, = hy. Now
[21h1, w1 [wa, we] = [z1hir, we] = [21(hy - 7)haly, wa] = [22h2, W]

and so [z2hg, wo] < [21hy, w1]. If we had been a prefix of w; then an identical argument

would have shown that [z1hy,w1] < [29h9, w]. Thus the claim is proved. O

We know from the above that the associated inverse semigroups of Rees monoids

are F*-unitary. In fact, they are strongly E*-unitary.

Lemma 3.9.4. Let M = X*G be a Rees monoid, let S(M) be its associated inverse
semigroup and let U(M) be the universal group of M. Then there is an idempotent

pure partial homomorphism
0:S(M)—U(M)

gien by

0([xg,y]) = zgy".

Proof. We can describe elements of U (M) as products of elements of X, G and their
inverses. We know from the above theory that M actually embeds in U(M) if M is
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a Rees monoid. Firstly,

O([zgh, yh]) = xghh™'y ™" = zgy~" = 0([zg, y])

and so this map is well-defined. Let [xg, y], [zh, w] € S(M) be such that [xg, y][zh, w] #

0. First suppose z = yu for some u € X*. Then
0([zg,yl[zh, w]) = O([zguh, w]) = zguhw™ = zgy~ yuhw™" = 0([zg, y])0([zh, w]).
Now suppose y = zu. Then
0([zg,yllzh, w)) = 0([zg, zullz, wh™"]) = 0([zg, wh™"u]) = zgu” hw™
= agu” 'z zhw™ = 0([zg, y))0([zh, w)).

To see it is idempotent pure, note that 6([xg,y]) = 1 implies zgy~' = 1 and so
xrg = y. Since the decomposition of elements of M is unique and the homomorphism
from M to U(M) is injective, we must have x = y and g = 1. Thus [zg,y] is an
idempotent. O

Let FF C R™ be a fractal-like structure satisfying the conditions of Theorem 2.5.4
and let M be the monoid of similarity transformations of F' which we know from
earlier is a Rees monoid. Then U(M) is a subgroup of the affine group of R”. Lemma
3.9.4 tells us we can view elements of S(M) as restrictions of affine transformations
to certain subsets of F'.

Now suppose M is an arbitrary left Rees category. Consider the subset T'(M) of
S(M) given by

T(M) ={0# [zg,y] € S(M)[«| = |y|} | {0}

It is easy to check that T'(M) is in fact a normal inverse subsemigroup of S(M),
which we call the gauge inverse subsemigroup. When S(M) is the polycylic monoid
this subsemigroup plays an important role in its representation theory [52]. When M
is the monoid of similarity transformations of a fractal F' then T'(M) corresponds to

the elements of S(M) which are restrictions of Euclidean transformations.
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Chapter 4

K-Theory of Inverse Semigroups

4.1 Outline of chapter

The aim of this chapter is to define a functor K from the category of orthogonally
complete inverse semigroups and orthogonal join preserving maps to the category of
abelian groups in analogy with algebraic K-theory. In Section 4.2, we give an abstract
definition of K (S) for a particular class of inverse semigroups, which we call K-inverse
semigroups. This is motivated by the definition in terms of idempotents for regular
rings and C*-algebras. We will see in Section 4.3 that this definition does not depend
on the inverse semigroup structure and so can in fact be defined for the underlying
groupoid. Motivated by the module approach to Ky-groups in algebraic K-theory
in Section 4.4 we give a definition of a module for an orthogonally complete inverse
semigroup, and use this to associate a group K (S) to orthogonally complete inverse
semigroups such that for K-inverse semigroups this definition agrees with the one of
Section 4.2. In Section 4.5, we define the K-group in terms of idempotent matrices in
analogy with algebraic K-theory. In particular, we show that the definitions of Section
4.4 and 4.5 are equivalent. We will see in Section 4.6 that K is actually a functor
from the category of orthogonally complete inverse semigroups and orthogonal join
preserving maps to the category of abelian groups. In Section 4.7 it will be shown that
more can be said about K (S) for commutative inverse semigroups. We will extend
the ideas of states and traces of C*-algebras to the situation of inverse semigroups in
Section 4.8 and we will see that, analogously to the case of C*-algebras, traces extend
to homomorphisms on the K-groups. In Section 4.9, we compute the K-group for a

number of examples.

4.2 K-Inverse semigroups

Throughout this section let S be an orthogonally complete inverse semigroup. It is
well-known (c.f. [70]) that two idempotents e, f € E(S) are D-related if and only
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if there exists an s € S with e = f. An equivalent statement is that idempotents
e, f € E(S) are D-related if and only if there exist s,t € S with st = e and ts = f.
Thus we will replace the concept of similarity from algebraic K-theory with the D-

relation for inverse semigroups.

Lemma 4.2.1. Let ey, e, f1, fo € E(S) be idempotents such that ey L ey, fi L fo,
e1D fi and es D f5. Then
erVerDfiV fo

Proof. Let s,t € S be such that e; = f; and e; — fo. Since d(s) A d(f) = 0 and
r(s) Ar(t) =0 it follows that s and ¢ are orthogonal, and so there exists s V ¢. Now
d(sVt)=d(s)vd(t) =e Ve

and
r(sVt)=r(s)Vr(t)= fiV fo
Thus 61\/62Df1\/f2. ]

We will say an inverse semigroup with zero is orthogonally separating if for any
pair of idempotents e and f there are idempotents ¢’ and f’ such that ¢ De, f'D f
and e L f'. A K-inverse semigroup will be an orthogonally complete orthogonally
separating inverse semigroup. The previous lemma tells us that we can define a binary
operation on the D classes of such a semigroup.

So let S be a K-inverse semigroup and denote by [e] the D-class of the idempotent
ein E(S). Let A(S) = E(S)/D and define an operation + on A(S) by

el +[f] ="V f]

where €/, f" € E(S) are such that ¢ De, f'D f and ¢ L f’. We see from Lemma 4.2.1

this operation is well-defined. We in fact have the following:
Lemma 4.2.2. (A(S),+) is a commutative monoid.

Proof. Commutativity follows from the commutativity of the join operation on S and
the identity element is easily seen to be [0]. Thus we just need to check that + is
associative. Let e, f, g € E(S) be arbitrary. We want to show that

in A(S).
Suppose that €', ", f', f", ¢, ¢", h, ' € E(S) are idempotents such that

6/2626//, f,gfgf”,
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g=g93g RSV, (V) BN

and
€/f/:hglzf”g”:h/€”:0

for some s1, 89, t1, to, Urln, Wy, Wy € S.
We then have
(le] +[f]) +[g] =[h V4]

and
le] + ([f1 +[g]) = [¢" Vv 1.

So our task is to show that
(hV ¢g)D(e" V).
Let x1 = s9s51wq, T9 = walotiwy and x3 = wauguy. Then
1wyt = sysie/ (€ Vv f) fit ey fwg =0,

1

w7 ey = wits sy e Mwatatw, = 0,

r1r3" = sesjwihg'uy uy twy =0,
xy twy = wy sy tsy e W wyupuy = 0,
Toxy " = wotatywihg'uy tuy fwyt =0

and

x;lxs — w;ltfltglf//(f// \/ g//)g///u2/u1 — 0

Thus we may form the orthogonal join x = z1 V 25 V x3. We see that
vzt = (") V (vaxy ) V (w33 )
= (sgs1wiwy ts7 sy )V (watatiwywy i iy ws ) v (wauguguy tug twy )
= (s951€/ (' V [)e/s7 sy ) V (watat f/(€V f) ftHy  wy )V (waugguy twy )
= ¢V (waf"w; ) V (wag"w; )
= "V (w(f'Vgh wt)=e" VI

Similarly, 7'z = h V ¢’. Thus (hV ¢')D (" V I). O
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For S a K-inverse semigroup we define

where G(M) is the Grothendieck group of M, as defined in Section 1.4.

As an example let S = I;(N) be the symmetric inverse monoid on N with finite
support. Then S is a K-inverse semigroup. Further for e, f € F(S) we have eD f if
and only if [Supp(e)| = [Supp(f)|- In addition if e, f € FE(S) are such that ef = 0
then |Supp(e V f)| = |Supp(e)| + |Supp(f)|. We therefore have:

4.3 K-Groupoids

In this section it will be demonstrated that we do not require the full inverse semigroup
structure of a K-inverse semigroup in defining K(S) by showing that we can work
through all the arguments above for the underlying groupoid.

If G is a groupoid, we will denote by d(z) = 7'z and r(z) = zz™! for z € G.
We will say two identities e, f € Gg are D-related if they are in the same connected
component of G.

An ordered groupoid (G, <) is a groupoid equipped with a partial order < satisfying

the following four axioms:
1. If z <y then 27! <y~ L.
2. If x <y, 2’ <9y and the products zz’ and yy’ are defined then zx’ < yy'.

3. If e € Gy is such that e < d(z) then there exists a unique element (z|e) € G
such that (z|e) < z and d(z|e) = e.

4. If e € Gy is such that e < r(z) then there exists a unique element (e|z) € G
such that (e|z) < z and r(e|z) =e.

An ordered groupoid is said to be inductive if the partially ordered set of identities
forms a meet-semilattice. An ordered groupoid with zero is an ordered groupoid G
with a distinguished identity 0 € G| such that 0 < e for all e € GGy and such that for
all x € G, d(z) # 0 and r(z) # 0. We will say two elements z,y € G are orthogonal
and write x L y if d(z) Ad(y) = 0 and r(x) Ar(y) = 0. It is clear that x L y implies
71 Ly~ An inductive groupoid G with zero is orthogonally complete if joins of
orthogonal elements always exist and multiplication distributes over orthogonal joins
when the multiplication is defined.

We want our groupoid G to satisfy three further conditions:
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1. Ife L f, e, f € Gy, and x € G is such that d(x) = e V f then r(z|e) L r(z|f)
and r(zle) Vr(z|f) = r(z) and if e L f, e, f € Gy, and y € G is such that
r(y) = eV f then d(ely) L d(fly) and d(e[y) v d(fly) = d(y).

2. For every e, f € G there exist ¢/, f' € Gy with ¢ L f' eDe’ and fDf'.

xVy

3. If # Ly then d(x) vd(y) — r(x) Vr(y).

We will define a K-groupoid to be an orthogonally complete inductive groupoid
with 0 satisfying conditions (1), (2) and (3). If S is a K-inverse semigroup, then
the associated ordered groupoid by endowing S with the restricted product is a K-
groupoid. This is the motivating example. Throughout what follows G will be a
K-groupoid.

Lemma 4.3.1. Let eq,es, f1,fo € Gy be such that e Dey, f1Dfy, 1 L f1 and
es L fo. Then by the assumptions on G there exist e1 V f1 and es V fo, and

(e1V fi)D(es V fa).

Proof. Since e; D ey and f; D fo, there exist z,y € G with e; % ey and fi =N fa. Since
er L fyand eg L fo, x L y. Then by condition (3), e; V fi 2y, e V fa. O

Let A(G) = Go/D and define [e] + [f] to be [¢' V f] for € De and f'D f. This is
a well-defined binary operation by Lemma 4.3.1 and condition (2).

Lemma 4.3.2. (A(G),+) is a commutative monoid.

Proof. Firsly, as above, we see that + is commutative since V is commutative and 0
will be the identity of A(G) (note that by assumption 0 is not in the same connected
component as any other element). So it remains to prove that + is associative.
Suppose that €', ¢”, f', f"”, 4, g", h, h' € Gy are identities such that

6/2)62)6//, f,gfzfﬁ,

g =939 hS(EVE), (f'vg) 3N,
elLf,, th,, J[‘//_Lg//7 h//J_ell.

Let x = sas1(€'|wy), y = (wa| fM)tat1(f' |w1) and z = (we|g”)usuy. These elements are
well-defined because all the domains and ranges match up. We have d(z) = d(e'|w,),
r(z) =€’ d(y) = d(f'|wr), r(y) = r(ws|f"), d(2) = ¢ and r(z) = r(ws|¢g”). By
condition (1), d(e'|wy) L d(f'|wy) and r(ws|f”) L r(ws|g”). Further, d(e'|wy) V
d(f'|wy) = d(wy) = h, h L ¢’ and so d(z), d(y) and d(z) are all mutually orthogonal.
Similarly, r(z), r(y) and r(z) are mutually orthogonal. Thus 3z V y V z. Further
d(z)vd(y)vd(z) = hVg and r(z)Vr(y)Vr(z) = €’VR'. Hence (hVg' ) D (¢"VhR'). O
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We then define K(G) = G(A(G)), as in Section 4.2. Now suppose S is a K-
inverse semigroup and G(.S) is the underlying K-groupoid obtained by restricting the
multiplication in S. Then by construction D is the same in both G(S) and S and
the order is the same (thus the same elements are orthogonal and joins of orthogonal
elements are the same in both S and G(5)). It therefore follows that

In fact we could even have deduced Lemma 4.2.2 from Lemma 4.3.2.

4.4 Modules over inverse semigroups

In this section, we define the concept of module for an orthogonally complete inverse
semigroup. We will use this to define a K-group for arbitrary orthogonally complete
inverse semigroups in such a way that if the semigroup is a K-inverse semigroup this
definition will agree with that of Section 4.2.

Let S be a fixed orthogonally complete inverse semigroup. We shall only be dealing
with unitary right actions of S [116]; that is, actions X x.S — X such that X -S = X.
Furthermore, rather than arbitrary actions, we shall work with (right) étale actions
(c.f. [83], [112]), whose definition we now recall.

An action X x S — X is said to be a (right) étale action if there is also a function
p: X — E(S) such that the following two axioms hold:

(E1) x-p(x) = z.
(E2) p(z-s) =s"1p(x)s.

We refer to the étale set (X,p). On such a set, we may define a partial order <
as follows: x <y if and only if z = y - p(z). If (X,p) and (Y, q) are étale sets, then a

morphism is a function « : X — Y such that
(EM1) a(z-s) = a(z) - s.
(EM2) p(x) = q(a(z)).

Since we are working with inverse semigroups with zero, we shall actually only
consider a special class of étale sets. An étale set (X, p) is called pointed if there is a

distinguished element Oy € X, called a zero, such that the following axioms hold:

(P1) p(0x) =0 and if p(xz) = 0 then = = Ox.

(P2) O0x -s=0x forall s € S.
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(P3) z-0=0x for all z € X.

Since Oy = x-0 =z -p(0x), we have Ox < z for all x € X. Thus the distinguished
element Ox in X is actually the minimum element of the poset X. Usually we shall
write 0 instead of Ox. A pointed morphism of pointed étale sets is an étale morphism
which preserves the minimum elements of the étale sets (PM). We denote the category
of right pointed étale S-sets and their pointed morphisms by Etaleg.

Let (X, p) be a pointed étale set and x,y € X. Define = L y if p(z)p(y) = 0 and
say that z and y are orthogonal. We will say elements x,y € X are strongly orthogonal
if v Ly, JzVyand p(x)Vpy) =plxzVy).

A pointed set (X, p) is a (right) premodule if it satisfies the following axioms:

(PRM1) If 2,y € X are strongly orthogonal then for all s € S we have x-s and y - s
are strongly orthogonal and (x Vy)-s=(z-s)V (y-s).

(PRM2) If s,t € S are orthogonal then x - s and x - ¢ are strongly orthogonal for all
r e X.

A premodule morphism of premodules is a pointed morphism f : X — Y such
that if z,y € X are strongly orthogonal, then f(z), f(y) € Y are strongly orthogonal
and f(zVy) = f(x)V f(y) (PRMM). We will denote the category of right premodules

and their premodule morphisms by Premodg.

Proposition 4.4.1. Let I be a right ideal of S, define an action I xS — I by s-t = st
and define p: I — S by p(s) = s~ 's. Then (I,p) is a premodule.

Proof. To see that (I,p) is an étale set note that

and
p(s-t) = (st)'(st) =t ts st =t Ip(s)t.

It is pointed since I necessarily contains 0. Now we have to be a little cautious as
there are potentially two partial orders on elements of I: the order in I viewed as
an étale set and the natural partial order of the semigroup S. Fortunately, these two
orders coincide since p(s) = s7's and so s = ¢ - p(s) iff s = ts~'s. Consequently,
we are able to write s < ¢t without there being any ambiguity. We will now show
that if s, are strongly orthogonal elements of I then s L ¢ in S. Let s,t be strongly
orthogonal elements of I. Then 0 = p(s)p(t) = s~ st~ 't and so premultiplying by s
and postmultiplying by ¢t~! we have st™! = 0. Let u = sV t be the join of s and ¢ in T
(which since the orders coincide will be the join in S). We then have u-p(s) = us™'s = s
and u - p(t) = ut™'t = t. Since s7's L ¢t7't in S, we must have us~'s L ut~'t in S

and thus s 1 ¢ in S. Let us now check the axioms for a premodule.

106



Chapter 4: K-Theory of Inverse Semigroups

(PRM1) If s,t € I are strongly orthogonal then since s L ¢ in S we must have su and
tu are orthogonal in S for all u € S, and therefore also orthogonal in I. Further

since S is orthogonally complete there exists su V tu in S and
suVitu = (sVt)u.

Since [ is a right ideal and sV ¢t € I by assumption then (s V ¢)u € I. Thus
suVtu € I and p(su V tu) = p(su) V p(tu).

(PRM2) If s,t € S are orthogonal and u € I then us and ut are orthogonal in S, and
us,ut,u(s Vt) € I. In addition

u(sVt) =usVut

and p(us) V p(ut) = p(us V ut). Thus us and ut are strongly orthogonal in I.
[

If a € S then we can consider the principal right ideal a.S generated by a and this

will be a premodule. In this case if s L ¢t in S and s = as, t = at then
sVt=asVat=a(sVt)€aS

and so s,t are strongly orthogonal in aS. Since aS = aa™'S we will mainly be
considering principal right ideals generated by idempotents.

The following lemma will be used often:

Lemma 4.4.2. Let X be a premodule and x,y,z € X be such that p(z)p(y) = 0,
p(z) =p(x) Vply) and z > z,y. Then z=xVy

Proof. Since X is a premodule and p(x)p(y) = 0, (PRM2) implies that = = z - p(x)
and y = z - p(y) are strongly orthogonal, and so there exists = V y with p(z V y) =
p(z) V p(y) = p(z). Furthermore, since z,y < z it follows that  V y < z. Thus,

z=z-p(z)=z-plxVy =zxVy.
[l

A pointed set (X, p) is called a (right) module if it satisfies the following axioms:

(M1) If z L y then 3z V y and p(z Vy) = p(z) V p(y).

(M2) If L y then (zVy)-s=x-sVy-s.
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Observe that (M2) makes sense, because

pla-s)p(y-s) = s 'p(x)ss 'p(y)s = s 'p(x)p(y)s = 0

if x L y. Note that in general for a module (X, p) we cannot simplify - sV z -t to

x-(sVt) as s and t need not be orthogonal. We do however have the following lemma:

Lemma 4.4.3. If s and t are orthogonal and (X, p) is a module, then
r-sVao-t=x-(sVt)

forall z € X.

Proof. We have p(z - s)p(z - t) = s p(x)st~'p(x)t = 0 since s and ¢ are orthogonal

and thus there exists z - s V x - t. Further

ves=a-(p(x)s) =z ((sVt)s 'p(a)s) = (z- (sV1) pla-s)

and therefore (z - 5)V (z-£) < - (s V1). Now

plx-(sVit)=(sVt)"'p(x)(s Vi) = (s 'p(a)s) vV (t'p(a)t) = plz - s) Vp(z - 1).
We then have

rosVa-t=(z-(sVi) ple-sVa-t)=(z-(sVD) plx-(sVE) =x-(sV).

[]

Let (X,p) and (Y,q) be modules. A module morphism is a pointed morphism
a: X — Y such that if x L y then a(zVy) = a(z) Va(y) (MM). Observe that this is
well-defined because g(a(x))q(a(y)) = p(z)p(y) = 0if z L y. We denote the category
of right modules of S together with their module morphisms by Modg. If (X, p) is
a module then Y C X is called a submodule of X if y € Y implies y - s € Y for all
seSandifu,v €Y withu L vthenuVoveyY.

Lemma 4.4.4. Let (X,p) and (Y,q) be modules. Then the image im(0) of a module
morphism 0 : X —'Y is a submodule of Y.

Proof. Suppose 6(z) L 6(y). Then q(6(z))q(0(y)) = 0. But ¢(6(z)) = p(z) and
q(0(y)) = p(y). Thus p(z)p(y) = 0 and so = L y. It follows that x V y exists and since
0 is a module morphism we have that 0(z V y) = 6(z) V 0(y). Thus the image of 4 is
closed under orthogonal joins. It is immediate that the image of € is closed under the
action of S. O
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Let (X, p) be a module. We define a congruence on X to be an equivalence relation

p such that the following conditions hold:
(C1) xpy implies that - spy - s.
(C2) z py implies that p(z) = p(y).
(C3) z1 L xq, y1 L yo and z; py; implies that x; V 22 py; V ya.
We will now prove some facts about congruences which we will use later.

Lemma 4.4.5. Let 0 : (X,p) — (Y, q) be a module homomorphism. Define the kernel
of 0 by
ker() = {(z,y) € X x X|0(z) =0(y)} .

Then ker(0) is a congruence.

Proof. ker(#) is clearly an equivalence relation. Let us check the congruence axioms:
(C1) 0(x) = 6(y) implies O(x - s) = O(y - ).

(C2) 0(z) = 0(y) implies p(x) = q(0(z)) = q(0(y)) = p(y).

(C3) @y L a9, y1 L yo and 6(z;) = O(y;) implies

Oz V x9) = 0(x1) V O(x2) = 0(11) V O(y2) = 0(y1 V ya).

]

Lemma 4.4.6. Let p be a congruence on a module (X,p). Then X/p can naturally

be endowed with the structure of a module.

Proof. Denote the equivalence class of an element # € X by [z]. Let zpy. Then
x-spy-sand p(x) = p(y), thus the action [z] - s = [z - s] and map p([z]) = p(x) are

well-defined. Checking the axioms, we have

(E1) [2] - p([z]) = [z - p(2)] = [2].

(B2) p([2] - s) = p([z - s]) = p(z - 5) = s7'p(x)s = s 'p([])s.

(P1) - (P3) are clear since Ox will always be in an equivalence class on its own.
(M1) If [z] L [y], then = L y and so the axiom follows by (C2) and (C3).

(M2) If [x] L [y], then

([ZIViy)-s=[zvyl-s=lxVvy)-s]=[z-sVy-s]=z-s]V]y-s].
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]

Lemma 4.4.7. Let p be a congruence on a module (X, p) and denote the equivalence
class of an element v € X by [x]. Then the map m: X — X/p defined by 7(z) = [z]

is a module morphism.

Proof. We check the axioms:

(EM1) n(z-s) =[z-s] = [1] - s = m(z) - s.

(EM2) p(z) = p([z]) = p(n()).

(PM) 7(0) = [0] and 7 (z) = [0] implies x = 0.

(MM) Suppose p(z)p(y) = 0. Then p([z])p([y]) = 0 and

m(xVy) = [z Vy] = [z]VI[y]

]

Lemma 4.4.8. Let 0 : (X,p) — (Y, q) be a module homomorphism. Then im(0) and

X/ ker(0) are isomorphic as modules.

Proof. Define
a: X/ker(f) — im(0)

by a([z]) = 6(x). By construction, if (z,y) € ker(f) then §(z) = 0(y) and so « is a

well-defined map. Let us check that it is a module morphism:
(EM1) a([z] - s) = a([z - s]) = 0(z - 5) = O(z) - s.

(EM2) p([z]) = p(z) = q(6(x)).

(PM) 6(0) = 0 and 6(z) = 0 implies z = 0.

(MM) Suppose p(z)p(y) = 0. Then p([z])p([y]) = 0 and

afe Vy]) =0(z Vy) = 0(x) v (y) = a([z]) Vv a(ly]).

]

Lemma 4.4.9. Let p and o be congruences on a module (X,p). Then their intersec-

tion p N o 1S a congruence.
Proof. pNo is clearly an equivalence relation. We now check the congruence axioms:

(C1) Suppose z (pNo)y. Then xpy and zoy. Sox-spy-sand z-soy-s.
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(C2) xpy and xoy implies p(x) = p(y).
(C3) z1 L @9, y1 L yo and z; (pNo) y; implies that x1 Vg py; Vys and x1 Vs oy Vys.
]

Lemma 4.4.10. Let (X, p) be a module and let pyay be the equivalence relation defined
on X by  pmax y if p(x) = p(y). Then pmax is a congruence. Furthermore, pyax is

the largest congruence defined on X.

Proof. pmax is clearly an equivalence relation. We now check the congruence axioms:

(C1) p(x) = p(y) implies p(z - s) = p(y - 5).
(C2) T pmax v implies by definition that p(z) = p(y).

(C3) z1 L xq, y1 L yo and p(z;) = p(y;) implies that
p(a1V 2) = p(a1) V p(w2) = p(y1) V py2) = p(y1 V 42).

It is the largest congruence on X by (C2). [

Let (X, p) be a module. We will call X/pmax the submodule of E(S) generated by
(X, p). By the above, we see that X/pnax is the smallest submodule of (X, p).

A finitely generated order ideal A of a premodule X is said to be orthogonal if there
exist xq, ..., 2, € Asuch that the x;’s are pairwise orthogonal and A = {z, ... ,:cm}l;
that is, all elements € X with z < 2; for some i. Let X be the set of all finitely
generated orthogonal order ideals of the premodule X. We will denote by z! = {a:}l .

Let X be a premodule. Let = be the smallest equivalence relation on X such that if
x1 and x9 are strongly orthogonal then {x1, o, 3, . .. ,.7cn}l = {(z1 Vx2),x3,... ,3cn}l
and let

X' =X/=.

If A={xy,..., 2} is an element of X* (with the z;’s pairwise orthogonal), then
define

and

A-s={x1-5,... ,ap-s}.

Then p*(A) is well-defined and A - s € X* since p(z; - s)p(z; - s) = 0 for i # j and
if <y and p(z)p(y) = 0 then = = 0.

Lemma 4.4.11. Let (X,p) be a premodule. The above gives (X*, p*) the structure of

a module.
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Proof. Let A = {xy,... ,xm}l and B = {y,... ,yn}l, where the generators are pair-

wise orthogonal. First, we check it is a pointed set:

(E1) A-p(A) = {1 - p(A), .. - A} = {1, 2} =

(E2) p*(A-s) = ViLip(z; - s) = s 'pH(A)s.

(P1) - (P3) follow from the fact that p*(A) = 0 iff A = 0.

Thus (X*, p) is a pointed étale set. Let us now show X* is a premodule:

(PRM1) Let A = {xl,...,xm}l,B = {yl,...,yn}l € X* be strongly orthogonal.
Since p*(A)p*(B) = 0 we have that p(z;)p(y;) = 0 for all i, j. Let

C':{xl,...,xm,yl,...,yn}l.

Then A = C - p*(A) and B = C - p*(B). So A, B < C and therefore AV B < C.
Further
P(C) =P (A) VP (B) = p(AV B).

Thus,
AVB=C-p(AvB)=C-pC)=C.

Now suppose s € S. Then p*(C-s) = p(A-s)Vp*(B-s)and A-s,B-s < C-s.
So A-s, B-s are bounded above. Let D = {zl,...,zk}l > A-s,B-s with
p*(D) = p*(C - 5). Then for each z;, z; - s < z; for some z; and similarly for the

Yi'S. Suppose z; > Tjy + S, ... Ti, * S, Yj, S,y Yy, - S and
p(zi) = Vilip(zi, - \/\/k; 1Y, - 8).
Then, since X is a premodule, Lemma 4.4.2 tells us that
zi = Vil (i, - s \/\/k (Y, - s

and S0 Ty, - S, ... Ti, S, Yj * S, . Yy, - S are strongly orthogonal. Thus D = C'-s.

We therefore see that A - s, B - s are strongly orthogonal and

(AVB)-s=(A-s)V(B-s).

(PRM2) Let A = {xzy,... ,Jcm}i € X* be arbitrary, let s, € S be orthogonal and let
u = sVt. Then

PHA-s)PHA 1) = s 1P (A)st P (At =0
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and so A-s L A-t. Now
(A-u) - p(A-s) = A (us'pH(A)s) = A- (P(A)s) = A+ s
giving A-s < A-u. In a similar manner we obtain A -t < A - u. Further,
PF(A-u) = w P (Au= (s VT (A)(s V)
s (A)s VTP (A = pF(A - s) V pP(A - t).

Let B = {y1,...,yn}' € X? be such that B > A-s, A-t and p*(B) = p'(A - u).
Then for each z; we have z; - s < y; for some j and z; -t < y; for some k.
Suppose

Yk = Tiy * 8y Ty = 8, T4y o Ly 2, - 1
and
p(yr) = Vilip(zi, - s \/Vl (-

Then as above we have

Yk = vl 1 xll ) \/vl 1 x]l )

and so Ty, +S, ..., Ti, *S, T4 ot ..., T, - T are strongly orthogonal. Thus B = A-u
and so

A-u=(A-s)V(A-1),
yielding that A - s and A -t are strongly orthogonal.

Thus X* is a premodule. Let us now show X* is a module. Suppose A =
{z1,.. ., 2m}* B ={y1,...,yn}" € Xt aresuch that p*(A)p*(B) = 0. Then p(z;)p(y;) =
0 for all 7, 5. Let

O:{1'17---7$m7y17"'ayn}l'

Then A = C-p*(A) and B = C-p*(B). So A, B < C. Further p*(C) = p*(A)Vp*(B).
Lemma 4.4.2 then tells us that C = AV B. We have (AV B)-s=A-sV B-s. Thus
(X*, p*) is a module. O

We can think of = in a slightly different way. If A = {zy,...,2}', B =
{y1,...,y.}" are finitely generated orthogonal order ideals then A = B if and only if
for each z; there exist b, ..., by, € B strongly orthogonal with z; = v.l;izlbij and for

each y; there exist a;1, ..., a;, € A strongly orthogonal with y; = \/fizlaij.

Lemma 4.4.12. If X is a module then X is isomorphic to X*.
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Proof. Firstly, every element of X* is of the form z! for some # € X since all orthog-
onal joins satisfy the required properties. On the other hand z! is not equivalent to
y! for x # y. Define g : X — X* by g(x) = x. It is now easy to see this is a bijective

module morphism. O

Let o : X — Y be a premodule morphism and define of : X! — Y* as follows.
Let A= {21,...,2m}" € X!. Define

ot (A) = {a(zr), ..., alzm)}

Lemma 4.4.13. With the above definition o is a module morphism and if o is

surjective then of is surjective.

Proof. Let o : (X,p) — (Y,q). Firstly of is well-defined since if A = {zy,..., zm}
with the z;’s pairwise orthogonal, then g(a(z;))q(a(x;)) = p(x;)p(z;) = 0 for i # j,
so af(A) € Y* and if a1, 75 are strongly orthogonal then

of ({1, 22}) = {a(@1), a(z2)} = {a(z1) V alz)}

= {afzy Vaa)t = of({zy V 2y }h).

Let A= {x,..., xm}l with the z;’s pairwise orthogonal. We check the axioms for

a module morphism:

(EM1) of(A-s) = a¥(A) - s.

(EM2) ¢*(a*(A)) = VI g(a(z:) = ViLp(r:) = pH(A).

(PM) o#(0x) = {a(0x)}' = {0y}" = Oys.

(MM) Suppose A L B with A= {zy,...,zm}", B={y1,...,yn}". Then

AVB:{xl,...,xm,yl,...,yn}l.

So
AV B) = {a(x1),...,ozm), aly), ..., oly)H

= {alzy), ...,z )Y V{ay),. .., aly)} = of(A) Vot (B).

Thus of is a module morphism. The second part of the lemma follows immediately.
m

We have therefore defined a functor R from Premodg to Modg given by R(X) =
X* and R(a) = of.
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Proposition 4.4.14. The functor R is left adjoint to the forgetful functor.

Proof. First for a premodule X we show that the map ¢ : X — X* given by «(z) = 2!

is a premodule morphism:

(EM1) v(z-s) = (x-s) =zt -s=1(z)-s.
(EM2) p*(u(2)) = p(z!) = p(2).

(PM) 1(0x) = O% = Oxs.

(PRMM) This is clear.

Now suppose X is a premodule and let # : X — Y be a premodule morphism to
the module (Y, q). Define ¢ : X* — Y by

Pz, amt) =\ ().

i=1

Firstly, this is well-defined since the 6(x;)’s are pairwise orthogonal. Let us now

prove that v is a module morphism. It is an étale morphism since
V{1, amttos) = O{rr s, - sH) = VL 0(x - s)
= (VO(z:) - s = p({m1, o wm}) - s
and
a@{arxn}t) = a(Vi0(x)) = Vita(0(xs)
= V(@) = ({en. . a)t).

It is pointed since 1(0y:) = 0(0x) = Oy. Finally let A = {21,...,z,}", B =
{y1, .- ,yn}l be orthogonal. Then

WAV B) = (VI2,8(x:) \/ (Vi_18(y5)) = ©(A) V ¥(B).

We claim that (X*, 1) is a reflection of X along the forgetful functor F : Modg —
Premodg, and that ¢ will be the unique map such that ¥ = 6 for § : X — Y a
premodule morphism to a module.

Let z € X. Then ¢(i(x)) = ¢ (z') = 0(z) and so 1 = 6.

Let X be a premodule, Y a module and let # : X — Y be a premodule morphism.
Suppose that 7 : X* — Y is a module morphism with 7 = 0. We claim that = = 1.
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Let z € X. Then 7(x!) = mi(z) = 6(z). Now suppose x,y € X with z L y. Then
2!t Lyl so that zt vyl = {9c,y}l € X* Thus

m({z,y}") = w(2h) v r(y) = 0(z) v O(y) = v({z, y}).

It therefore follows by induction that m = . Thus (X¥,¢) is a reflection of X along

the forgetful functor. Define a natural transformation
n: 1Prem0d5 — FoR

by nx(z) = 2! for X a premodule and 2 € X. This is a natural transformation since

if #: X — Y is a premodule morphism, then

(F o R)(8)(nx(2)) = (F o R)(#)(«") = {8(2)}" = 1y (Leremoas (6)(2))-

Let (X, p) be a premodule and let
xS ={z-s|lseS}.

Then (xS, p) naturally inherits the structure of a pointed étale set. In fact:
Lemma 4.4.15. Let (X, p) be a premodule. Then (xS, p) is a premodule.

Proof. Suppose that x - s, x - t are strongly orthogonal in xS with xs V ot = zu for
some u € S (note that x-s and x -t might be strongly orthogonal in X without being
strongly orthogonal in S). Let v € S. Then

plzsv)p(atv) = v 'p(zs)vv " plat)v = 0
and
plauv) = v 'plew)o = v (p(as) V p(at))o
= (v 'p(zs)v) V (v p(at)v) = plasv) V p(atv).

Further, xuv > xsv, xtv. Thus by Lemma 4.4.2, and the fact that X is a premodule,
rsv V xtv = zuv in X and thus also in xS. Now suppose s,t € S are orthogonal.
Then x - s,z - t are strongly orthogonal in X with xs V xt = z(sV t) € xS. Thus =S

is a premodule. O

We will therefore call xS the cyclic premodule generated by the element x € X,

where X is a premodule.
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Lemma 4.4.16. Let (S, p) be a cyclic premodule. Then the map 6 : p(x)S — =S

given by 0(s) = xs is a surjective premodule morphism.

Proof. Let q : p(x)S — E(S) be given by ¢(s) = s~'s. We prove first that 0 is a

pointed morphism:

(EM1) (s - ) = O(st) =z - (st) = (z - 5) - t = O(s) - .
(EM2) p(0(s)) = p(z - s) = s~ 'p(z)s = s7's = q(s).
(PM) O(p(z)-0) =2 -0 = 0.

Next we prove surjectivity. Let x - s € xS. Then 0(p(x)s) =z - s.

Let us now check that # is a premodule morphism. Let s = p(z)s, t = p(z)t be
strongly orthogonal in p(x)S. Then s,t are orthogonal in S and so z - s and z - t are
strongly orthogonal in xS with z - (s Vt) = xs Vat and so 0(s V) =0(s) VO(t). O

Lemma 4.4.17. Let (X,p) be a module and let x € X. Define f, : (£S)* — X by
fol{msy, ... zspm}) = \/ Ts;.
i=1

Then f, is a (well-defined) module morphism.

Proof. 1t is well-defined since xsy, ..., xs,, are orthogonal and X is a module, so the
join exists, and if A, B € xS with A = B, then f,(A) = f.(B). It is an étale morphism

since

fol{asy, .. wsp}t - t) = VI asit = (V™ xs;) - t = fo{wsy, ... xsm}t) -t

and

p(fe({xsy,. .. ,:L‘Sm}l)) =p(VIi,zs;) = VIt p(zs;) = pﬁ({xsl, . ,:CSm}l).

It is obviously pointed. Let us now check that it is a module morphism. Let A =
{zs1,... x50}, B = {xty,... at,}' € (£5)* be orthogonal. Then

fo(AVB) = fo{xsi,... wsp, aty, . oty }') = (Vityas;) \[ (Visat) = fo(A)V fo(B).

]

Observe that Modg is a concrete category and so we will denote the underlying
set of a module X by [X] if we want to view it as an object in Set. It is clear that
every injective module morphism will be monic. As for modules over rings, it turns

out the converse is also true.
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Lemma 4.4.18. In Modg every monomorphism is injective.

Proof. Let (X,p) and (Y, q) be modules and let @ : X — Y be a monomorphism.
Suppose that a(x) = a(y) where 2,y € X. Observe that p(z) = p(y). By Lemmas
4.4.16, 4.4.13 and 4.4.17 there are surjective module morphisms % : (p(z)S)* — (z.9)*
and v : (p(z)S)* — (yS)*, and module morphisms f, : (#S)* — X and f, : (yS)* —
X. We have that

(afoBY ({51, sm}) = (afe){z 51, 0 sm}) = (V- s;)
= V™ia(@) s =Viay) - si = (@f, ) {S1s- 0 8mh).

Thus af,3* = af,~*. Since a is monic, f,3* = f,7*. But

(foB) (p(2)') = fo(a') ==
and
(f, p)) = f,(h) = v

Thus z = y and so « is injective. O

The one element set {z} is a module when we define z - s = z for all s € S and
p(z) = 0. This is an initial object in Modg but not a terminal object because of
condition (EM2).

We will now define a coproduct in Modg. Let (X,p), (Y,q) be modules. De-
fine X @Y to be the subset of X x Y consisting of all those pairs (z,y) such that
p(x)q(y) = 0. If (z,y) € X @Y then define (p ® ¢)(z,y) = p(z) V q(y). This makes
sense since p(z)q(y) = 0 and so the orthogonal join p(x) V ¢(y) exists. We define an
action X@PY xS - X@PY by (z,y)-s = (x-s,y-s). This is well-defined since
p(z-s)a(y - s) = s™'p(x)ssq(y)s = s~'p(x)q(y)s = 0 for (z,y) € X PY.

Lemma 4.4.19. (X @Y, p @ q) is a module.

Proof. (E1) (z,y) - (p® q)(z,y) = (z,y) - (p(x) V q(y)) = (,y).

(E2) (p@q)(z-s,y-s)=plz-s)Valy s)=s"(px)Vay)s=s"p&ql(zy)s.
(P1) - (P3) These are clear since p(z) V q(y) > p(z), q(y) (here (0,0) is the zero).

(M1) If (p @ ¢)(z,y)(p & ¢)(w, 2) = 0 then p(z)p(w) = 0 and ¢(y)g(z) = 0. Thus
there exists (z V w,y V z). Further

(zVw,yVz) (poq)(z,y) = (z,y)
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and
(VwyVvz) (p&q)(wz)=(uv,z)

so (z,y), (w,z) < (x Vw,yV z). Now suppose that (u,v) € X @Y is such

(
that (z,y), (w,2) < (w,v). Then w- (p(z) V q(y)) = =, v- (p(x) V q(y)) = v,
u- (p(w) Vq(z)) =wand v - (p(w) V q(z)) = z. Thus

u-((p®g)(zVwyVz))=u-(plz)Vpw)Vaqly) Vae()=zVuw.
Similarly v- ((p® ¢)(zVw,yV2)) =yVz So (zVw,yVz) = (z,y)V(w, z) and
(P @q)(zVw,yVz)=p)Vpw)Vaqly)Vaq).
(M2) For (z,y) L (w, 2) we have
(xVw,yVz)-s=((xVw) s (yVvz)--s)=(x-s,y-s)V(w-s,z-s).

]

Let (X,p), (Y,q),(Z,r) be modules and suppose that f: X — Zandg:Y — Z

are module morphisms. Then we can define a map
fhg: X GB Y -7

by (f ® g)(z,y) = f(x)V g(y). Note that this makes sense since r(f(z))r(g(y)) =
p(z)q(y) = 0. In fact:

Lemma 4.4.20. With X,Y, Z, f, g as above, f ® g is a module morphism.
Proof. 1t is an étale morphism since
(f@g)x-sy-s)=flz-s)Vgly-s)=(fDg)z,y) s

and

r((f@®g)(z,y)) =r(f(x)Vgly) =r(f(z) Vrigy) =px)Valy) =@ q9(z,y).

It is pointed since (f @ ¢)(0,0) = p(0) V ¢(0) = 0 and for z # 0,y # 0, we have
(f ® g)(x,y) # 0. Finally, to check that it is a module morphism, suppose (p &
q)(z,y)(p® q)(w, z) = 0. Then by the above (z,y) V (w, z) = (x Vw,y V z) and

(feglxVvwyVvz) = flzvw)VglyVz)=fx)V fw)Vgly)Vg(z)

= (fog)(z,y)V(f®g)(w,=).
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]

Define t1 : X — X @Y by t1(x) = (2,0) and 12 : Y — X PY by wa(y) = (0,y).

It is easy to see that ¢; and ¢y are module morphisms.
Lemma 4.4.21. (X @Y, t1,t2) is a coproduct in Modg.

Proof. We need to show that if « : X — Z, §:Y — Z are module morphisms to
a module (Z,r) then there exists a unique module morphism v : X @Y — Z with
a =1, and 3 = yi3. We claim v = a @ .
Firstly,
(@ p)(u(z)) = (@ f)(x,0) = alz)
and

(@ B)(ta(y)) = (e ® B)(0,y) = B(y).

Now suppose § : X P Y — Z is a module morphism with o = d¢; and 5 = ds.
Then 0(¢1(z)) = a(x) and so §(z,0) = a(z). Similarly 6(0,y) = 5(y). For p(x)q(y) =
0 we have (z,0) L (0,y) and (z,0) V (0,y) = (z,y). Thus

6(z,y) = 6(x,0) V(0,y) = a(z) V B(y) = (o @ B)(z,y).

]

We may define coproducts of an arbitrary set of modules {X; : i € I} by consid-
ering those elements of the direct product x;c;X; which have only a finite number of

non-zero elements.

Lemma 4.4.22. Let (Xap); (}/17Q1): (}/éaq2> be mOdU’leS; fl : X - le CLTLd f2 : X - }/2
module morphisms and suppose that ker(fy) = ker(fy). Then there exists a pushout

of fi and fs.

Proof. Let (X,p), (Y1,q1), (Y2,¢2) be modules, f; : X — Y; and f5 : X — Y3 module
morphisms with ker(f;) = ker(f2). Define a binary relation o on Y; @ Y, by

((ll, bl) ag (CLQ, bg)

if there exist z1,22 € X, y1 € Y1, y2 € Yo with f;(z;) L y; fori,j =1,2,

(a1, 01) = (1 V fi(z1), 92 V fo(22))

and
(a2, b9) = (1 V fi(w2), 92 V falz1)).

We prove that o is a congruence. It is clear that o is reflective and symmetric. Let

us check transitivity. Suppose (ai,b1), (a2, b2), (a3, b3) € Y1 @Y, are elements with
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(a17b1>a(a27b2) and (a27b2)a(a37b3)' Let L1,X2,T3, T4 S XJ Y1, 21 S }/17 Y2, 22 S }/2
be such that f;(x;) Ly, fori,j=1,2, fi(z;) L z fori=1,2, j =3,4 and

(a1,01) = (11 V fi(z1),92 V fa(z2)),

(ag,b2) = (11 V fi(x2),y2 V fa(x1)) = (21 V fi(xs), 22 V fo(2s))

and
(as,b3) = (21 V fi(74), 22 V fa(x3)),

so that 1 V fi(72) = 21V fi(wz) and yo V fo(21) = 22 V fo(w4). Define
ur = y1-qi(z1) V fi(z1 - p(xa)),

uy = fa(wa - p(3)) V Y2 - q2(22),
v = T2 - q1(21) V T4 - 2(yo)

and

vy =3 - q1(y1) V 21 - g2(22),

where each of the joins is the join of two orthogonal elements of modules. Then
w €Yy, ug € Ys, v1,v2 € X are such that fi(v;) L u,; for 4,5 =1,2,

(a1,01) = (w1 V fi(va),u2 V fo(v1))
and
(as,b3) = (w1 V fi(vi),ua V fa(va)).

Thus (a1, b1) o (as, b3) and so o is transitive. It is clear that axioms (C1) and (C2)
for a congruence hold. Let us check (C3). Suppose (a1, b1), (az,b2), (c1,dy), (co,da) €

Y1 @ Y; are elements with (a;, b;) L (¢;,d;), 1 = 1,2, (a1,b1) 0 (az, be) and (c1, dq) 0 (ca, da).
Let z1, 29,23, 24 € X, y1,21 € Y1, Y2, 22 € Y5 be such that fij(x;) Ly, fori,j = 1,2,
filz;) Lz fori=1,2, j=3,4 and

(a1,01) = (11 V fi(z1),92 V fa(z2)),

(az2,b2) = (y1 V fi(z2), 42 V fa(z1)),
(c1,dy) = (=1 V fi(ws), 22 V fa(s))

and
(ca,da) = (21 V fi(w4), 22V fo(3)).

Let uy = y1 V 21, us = ys V 29, v1 = 21 V 23, V9 = o V x4. Then uy € Y7, us € Y,
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v1,v9 € X are such that f;(v;) L w; fori,j=1,2,

(a1 Vv C1, bl V dl) = (Ul V fl(Ul), U9 V fz(’lig))
and
(a2 V g, by V da) = (ur V fi(v2),uz V fa(v1)).

Thus o is a congruence. Define Z = (Y1 @ Y2)/0, denote elements by [y1, 2], define
ki Yy — Z by ki(y) = [y,0] and ks : Yo — Z by ko(y) = [0,y]. It follows from
Lemma 4.4.7 that k;, ke are module morphisms. We claim (Z, k1, ko) is the pushout
of X. Firstly,

k1 (fi(2)) = [fi(2), 0] = [0, fa(2)] = ka(fa(2)).

Now suppose (Z’,r) is another module and ¢, : Y1 — 7', g5 : Yo — Z’ are module

morphisms with ¢; fi = gafe. Define g : Z — Z' by g([y1,v2]) = 91(y1) V g2(y2). Let
us verify that ¢ is well-defined. Suppose (a1,b) o (asg,b2) and x1, 29 € X, y; € Y7,
Yo € Yy are such that f;(z;) Ly fori,j =1,2,

(a1,01) = (11 V fi(z1), 92 V fa(z2))

and
(az2,b2) = (11 V fi(z2), 42 V fa(z1)).

Then

g([ar.b1]) = g1(y1) V 91(f1(21)) V g2(2) V g2(f2(2))
= g1(y) V g2(f2(21)) V g2(32) V g1 (fi(w2)) = g([az, be]).
We see that g is an étale morphism since
9y, 1e] - s) = gy~ 5,92 8)) = 911 - 8) V g2(y2 - 5) = (91(1) V g2(2)) - s

and

(1 ®© @) (W1, v2) = qi(y1) V @2(y2) = r(9(y1)) V 7(g9(y2)).

It is obviously pointed and it is a module morphism by construction. Furthermore, it
is readily verified that gk; = g1 and gky = g2. Uniqueness follows from the fact that
if h: Z — 7' is such that hk; = g1 and hky = g9 then

h(ly1, y2]) = R([y1, 0]) V 1([0, y2]) = g1(y1) V g2(y2) = g([y1,¥2])-
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Lemma 4.4.23. In Modg every epimorphism is a surjection.

Proof. Let (X,p), (Y,q) be modules, let # : X — Y be a module epimorphism and
let Z be the categorical cokernel of 6, i.e. the pushout of # with itself as described
in Lemma 4.4.22. Explicitly, Z = (Y@ Y)/o where (x,y)o (u,v) if and only if
there exist x1,y1 € Y, X9,y € im(0) with z7 L xo, 1 L yo, y1 L x9, y1 L yo,
(x,y) = (x1 V22,11 V y2) and (u,v) = (1 V Y2, y1 V T2).

Now assume @ is not surjective. We will reach a contradiction. Recall ki, ks : Y —
Z are given by ki(y) = [(y,0)], k2(y) = [(0,y)] and observe that ki (0(x)) = k2(0(z)).

We say that a pair (z,y) € Y @Y is odd if x belongs to the image of § and y
does not. We claim that if (x,y) o (u,v) then (z,y) is odd if and only if (u,v) is odd.
Suppose that (x,y) is odd. Let (z,y) = (x1 V22, y1 Vy2) and (u,v) = (x1Vya, y1 V2),
where 5,y € im(f). Now if x is in the image of # then so too are both x; and x5
since the image of a module morphism is an order ideal. By assumption, ¥, is in the
image of 6 and so w is in the image of #. If v were in the image of 6 then so too would
y1 and x9. But this would imply that y was in the image. It follows that (u,v) is odd.
The reverse direction follows by symmetry.

Let y be an element of Y that is not in the image of . Then (0,y) is odd and
(y,0) is not. If follows that (0,y) and (y,0) are not o-related. We have therefore
proved that k; # ks, a contradiction. n

Let I be a set and let

Fr = (I x(5\{0}))u{0}.

Define (i,s) -t = (i, st) if st # 0, and 0 otherwise. Also define 0-s =0 for all s € S.
Let p : F; — E(S) be defined by p(i,s) = s7's and p(0) = 0. Then this gives F}
the structure of a premodule via Proposition 4.4.1. We will say a module X is free
with respect to a set I if there is a premodule morphism o : F; — X such that for
any premodule morphism f : F; — Y where Y is a module there is a unique module
morphism ¢g : X — Y such that go = f and such that if a module X’ together with a

map o’ : F; — X' also satisfies these conditions then X = X’/p for some congruence

p.

Lemma 4.4.24. Let I be a non-empty set. The module

D

el

is the unique (up to isomorphism) free module with respect to the set I.
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Proof. Let X = @,.; S*. Define o : F; — X by
o(i,s) =(0,...,0,5,0,...)

where s is in the ¢th position of X. This will be a premodule morphism essentially
for the same reason as ¢ is in Proposition 4.4.14. Now suppose Y is a module and

f : F; — Y is a premodule morphism. Define g : X — Y by
mg
g({sl,la CC 751,1%1}i ) {82,17 CRC 782,1’rL2}l P ) — \/ \/ f(ka Sk,i)'
kel i=1

It is easy to see that g will be a module morphism and that go = f. Suppose that
X" is a module such that ¢’ : F; — X’ also satisfies the above condition. Then there

exists a module morphism ¢ : X’ — X such that go’ = 0. Let

Z ZZ({SlJ,...,Slﬂnl}l7{82J7...,82Jn2}l,...) e X

be arbitrary. Then

oV V otk 00)

kel i=1

Thus g is surjective and so by Lemma 4.4.8 we have X = X'/ ker(g). It is easy to see
that X will then be unique up to isomorphism. O

Lemma 4.4.25. Modg has all coequalisers.

Proof. Let fi, fo: (X,p) — (Y, q) be two module morphisms. We will say a <> bin Y
if there exist 1,2, € X and y € Y such that

p(x1)p(z2) = p(r1)q(y) = p(x2)q(y) =0,

a= fi(z1)V folw2) Vy

and
b= fi(za) V falx1) Vy.

Note that this implies that g(a) = ¢(b). Let o be the transitive closure of «». We now
show that o is a congruence on Y. It is easy to see that (C1) and (C2) hold, so we
just check (C3). The key observation is that if a <= b, ¢ <> d, a L c and b L d then
a 1 dand ¢ L b. Suppose x1, 2o, 23,24 € X and y1yo € Y are such that

p(x1)p(z2) = p(r1)q(y1) = p(r2)9(Y1) = 0,

p(z3)p(rs) = p(23)q(y2) = p(x4)q(12) = 0,
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a= fi(x1) V fo(x2) V1,
b= fi(x2) V fo(21) V1,
c= fi(zz) V fax4) V yo

and
d = fi(zs) V f2(x3) V .

Then
aVe= (fi(z)V fa(z2) Vyr) V (f1(z3) V fa(za) Vi) = fr(ziVas)V fa(ze Vo) V(Y1 VYy2)

and

bvd = (fi(z2)V fo(w1) Vyr) V (fi(z4)V fo(23) Vo) = fol@1Vas)V fi(zeVas) V(v Vi),

so that aVec < bVd. It is then easy to see that the transitive closure, o, of <> will be a
congruence. Let K =Y /o and let k: Y — K be the projection map, which we know
by the preceding theory is a module morphism. Then by construction kf; = kfs.
Now suppose g : (Y,q) — (Z,r) is a module morphism such that gf; = gfs. Let
a,b €Y be <-related and suppose that 1,2, € X and y € Y are such that

p(x1)p(w2) = p(x1)q(y) = p(r2)q(y) =0,

a= fi(z1) V fo(z2) Vy
and

b= fi(za) V fa(21) Vy.
Then

g(a) = g(fi(x1)) V g(fa(x2)) V g(y) = g(fa(x1)) V g(fi(22)) V g(y) = g(b).

More generally, if a o b then g(a) = g(b). Since k is surjective, for each ¢ € K, k7'(c)
is non-empty. We therefore define ¢ : K — Z by

g (k(a)) = g(a).

The preceding remarks tell us that this map is well-defined. It is easy to check that
¢’ is a pointed étale morphism. It is in fact a module morphism since if k(a) L k(b)
then

g'(k(a) V k(b)) = ¢'(k(a Vb)) = g(aV b) = g(a) V g(b) = ¢'(k(a)) V ¢'(k(D)).
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We have ¢’k = g by construction, and this is the unique map satisfying these proper-
ties. Thus (K, k) is the coequaliser of fi, fa. ]

It follows from Lemma 4.4.25 and the fact that Modg allows arbitrary coproducts
that Modg is cocomplete (and so in fact all pushouts exist, not just those of Lemma
4.4.22). On the other hand, it is not complete as it is not possible to define a product
on modules because of axiom (EM2) for module morphisms. Furthermore, not all
pullbacks exist. For example, if (X, p) and (Y, q) are such that | X|,|Y| > 1 then the
maps (1 : X — X@PVY and 12 : Y — X EPY will not have a pullback. We do have

the following consolatory lemma:
Lemma 4.4.26. Modg has all equalisers.

Proof. Let (X, p), (Y,q) be modules, f,g: X — Y be module morphisms and let

K = {o € X|f(x) = g(a)} .

Then K has the structure of a module since z, x5 € K with ;1 L x5 implies 21V xy €
K. It inherits the map ¢ : X — E(S) from X. Define ¢ : K — X to be the embedding
map. This is readily seen to be a module monomorphism. Suppose (Z,r) is a module
and h : Z — X is a module morphism with fh = gh. Then this implies im(h) C K
and so there is a module morphism A’ : 7 — K with A = (b’ and this morphism is

unique by construction. Thus (K ¢) is the equaliser of (f, g). O

A module P is said to be projective if for every module morphism 7 : P — Y and
module epimorphism « : X — Y there exists a module morphism  : P — X such
that aff = 7.

Lemma 4.4.27. Let Py, P, be projective modules. Then P, @ P» is projective.

Proof. Let m : PL@ P, — Y be a module morphism and « : X — Y a module
epimorphism. Define ¢; : P, — P, @ P, by t1(x) = (2,0) and define 15 : P, — P, P P»
by t2(y) = (0,y). Then mey : P, — Y and mip : P, — Y are module morphisms and
so there are maps (1 : P, — X and (5 : P, — X such that mt; = af; and 7y = afs.
Let v =01 @ fy: PLEP P, — X so that v is given by v(z,y) = Bi(z) V G2(y). We
know from Lemma 4.4.20 that v is a module morphism. Further

(@y)(,y) = a(fu(z) V Ba(y)) = a(Bu(x)) V a(F2(y)) = (ma(2)) V (me2(y))

=7(z,0) V7(0,y) = 7(z,y).
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We can extend the previous lemma: if Py, ..., P, are projective modules then

ey
=1

is projective. The converse is also true:

Lemma 4.4.28. Let P = P, @ P> be a projective module. Then Py and P are

projective.

Proof. We will prove P; is projective. The proof for P, is similar. Let 7 : P, — Y
be a module morphism and let @ : X — Y be a module epimorphism. Define
T PP@PP,—YEPP by

Wl(plapQ) = (W(pl)7p2)
and define o/ : X P Po - Y P P, by

o' (z, pa) = (a(x), pa).

It is easy to check that n’ is a module morphism and o' is a module epimorphism.
There is thus a module morphism ' : PP P, — X @ P, such that o/ = 7.
Denote by

B'(p1,p2) = (B1(p1,p2), B5(p1, p2))-
We thus have

(m(p1),0) = 7'(p1,0) = o'(F(p1,0)) = &' (Bi(p1,0), B3(p1,0))
= (a(Bi(p1,0)), B3(p1,0)).
It follows that B}(py,0) = 0. So define 3 : P, — X by
B(p1) = Bi(p1,0).
By the above this is a module morphism. Further
a(B(p1)) = a(By(p1,0)) = 7(p1)

and so aff = 7. n
Lemma 4.4.29. (eS)* is a projective module for each idempotent e € E(S).

Proof. Let 7 : (eS)* — Y be a module morphism, o : X — Y a module epimorphism
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and y € a~!(w(e!)) be a fixed element. Define 3 : (eS)* — X by

B({s1, .. .,sm}l) — \/y . 5.

If s1,s9 € S are orthogonal in S then
B({s1,...,5m}") = \/y s =y (51V s9) \/(\/Z’%y -5i) = B({s1V 52,55 .., 5m}).
i=1

It follows that ( is well-defined. It is easy to see that it is a pointed étale morphism.
If {s1,...,8m}" {t1,...,tn}' € (eS)! are orthogonal then

B({s1, - smd VAt ) = B{s1, s Smatis ot}
= (Vi - si) \/(\/zﬂ:l?/ 1)
B{s1, .. smt )V Bt ..t}

Thus § is a module morphism. Further
(@B)({s1,- -, sm}) = a(Vilyy-s) = Vitaly) s = Vi m(e) - s

= VE(s) = a(Vitis) = m({sn . smd).

The following will be used shortly:

Lemma 4.4.30. If X and Y are isomorphic as premodules then X* and Y* are

1somorphic as modules.

Proof. Suppose 6 : (X,p) — (Y,q) is a bijective premodule morphism. Then 6% :
X* — Y*is a surjective module morphism by Lemma 4.4.13. We will now prove that
if {xq,..., xm}l € X*is such that none of the z;’s are strongly orthogonal to each other
then {0(z1),...,0(z;)}' € X is such that none of the (z;)’s are strongly orthogonal
to each other. Suppose on the contrary that x; L x5 € X are such that they are
not strongly orthogonal but such that 0(x;) and 6(z5) are strongly orthogonal. Since
O(z1) and 6(zy) are strongly orthogonal and 6 is surjective there is a z € X with
0(2) = 0(z1) V B(x2) and p(2) = p(a1) V ples). Let gy = 2 - pla1) and gy = 2 - p(z2).
Then p(y;) = p(z1) and p(y2) = p(x2). Thus by Lemma 4.4.2) z = y; V yo and yy, yo

are strongly orthogonal. We then have

0(y1) = 0(z - p(y1)) = 0(2) - p(1) = O(x1).
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Similarly, 0(y2) = 6(z2). Since @ is injective we must have y; = 1 and y, = x9, which
implies z; and x5 are strongly orthogonal, contradicting our original assumption. Now

suppose
O ({z1, 2w }) = F({wr, - yn})

with none of the x;’s strongly orthogonal to each other and none of the y;’s strongly

orthogonal to each other. Then we have

{9(1'1)7 s 79(37771)}l = {e(yl)v s ’e(yn)}l )

with none of the 0(x;)’s strongly orthogonal to each other and none of the 6(y;)’s
strongly orthogonal to each other. Thus n = m and by the injectivity of 6,

{xl,...,xm}l = {yl,...,yn}l

and so 6% is injective. O

Lemma 4.4.31. Let e, f € E(S) be idempotents in S. Then eS and fS are isomor-
phic as premodules if and only if e D f.

Proof. (<) Suppose e = s7's and f = ss™!. Define 6 : eS — fS by 0(t) = st. This a
well-defined surjective premodule morphism by Lemma 4.4.16 since sS' is isomorphic
to fS. Further, if 0(t) = 0(u) then st = su which implies s~!st = s~ su and so t = w.
Thus 0 is also injective.

(=) Suppose «a : (eS,p) — (fS, q) is a bijective premodule morphism with inverse
(3 and suppose a(e) = s = fse and B(f) =t = etf. Then s7's = q(s) = p(e) = e and
t~'t = f. Further

and so

sl=s1lf=slst=et=t
Thus f = ss~! and eD f. O

Lemma 4.4.32. Let e, f € E(S) be idempotents in S. Then (eS)* and (fS)* are

isomorphic as modules if and only if e D f.

Proof. (<) eD f implies eS and fS are isomorphic as premodules and so by Lemma
4.4.30 (eS)* and (fS)* are isomorphic as modules.

(=) Suppose 8 : (eS)* — (fS)F and ¢ : (fS)* — (eS)* are mutually inverse module
isomorphisms and suppose 0(e!) = {s1,..., s, }" € (fS) and ¢(f}) = {u1, ..., u.}' €
(eS)*. Then

Fr=\0(u;) =\ 0e)u; = \/ \/ (s5u)".

=1 i=1 i=1j=1
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Thus

n m
=V Vi),
i=1j5=1

with sju;, s,u; strongly orthogonal for all ¢, 7,7, k. It then follows that s;u; L s,y in

S for all ¢, 5, r, k. Similarly,

with w;s; L wgs, in S for all ¢,7,r, k. Furthermore, e, f € E(S) implies that

w;S;j, s;u; € E(S). Since 6 and ¢ are module morphisms, we must also have

and .
f= \/ u; M.
i=1
So postmultiplying f by u; ' gives
J= =\ (s,

Jj=1

Since sju; € E(S), u; 's;' = sju;. Thus

So
m
uu; b = \/(u,u 1 u; ) \/ Y uug ),

-1
J

n

\/s-u = s;s7 %
J i J°j

i=1

Since Vi_,s;ju; is orthogonal in S to Vi_;siu; for k # j, we have

.. -1 _ _ 1 o -1 .o
giving s;u;u; - = s;s; u; and so sju; = sjs; u; u; for all 4, 5. Thus

1, —1 _
sjs; skSp =0

for j # k. Thus s; L s and u; L u; in S for j # k and so for some s € fS and
u € eS we have f(e!) = s! and ¢(f') = ul. We also have e = s71s and f = ulu.
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Now
fr=0wh) =0(e")  u=s"u=(su)

Thus f = su and so s ! = s71f = s7lsu = eu = u, giving e D f. O
Lemma 4.4.33. Let e, f € E(S) be such that ef = 0. Then (eS)* @(fS)* is isomor-
phic to ((eV f)S)*.

Proof. Define a map h : (eS)*@(f9)* — ((eV f)S)* by

{s1, . smb  {ty, ot YY) = {1, Sty b M

Then since s; = es; and t; = ft;, using the orthogonality conditions we see this is a
valid element of ((eV f)S)%. It is easy to see that h is an injective module morphism.
Let us check that & is surjective. Let {s1,...,sm}" € ((e V £)S)E. Then

h({esi,... ,esm}l Afst, - ,fsm}l) ={s1,.. .,sm}l.

O

We will now prove a couple of related results which we will use later. For X =
D", (e:S)*, denote by
e; =(0,...,0,e,0,...,0)

where the e; is in the 7th position.

Lemma 4.4.34. Let

n

0: D (e:S) — P (/i)

=1

be a module isomorphism. Then for each i, there exist a;, € frS with
0(e;) = (al,...,ak).
Proof. Let ¢ = 6~1. Suppose

9(ei) = ({am, e 70l1m-1}l yeees {anila cee 7anirm}l)

and
¢(fl) = ({blib s 7blisi1}l PICIEI {bmib ey bmlslm}l)

We will prove for all ¢,j that ajz,...,a;,, are orthogonal elements of S and the

-1

lemma will then follow. By constuction, aj,a;;, = 0 for u # v. Thus we just need to
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prove a;,-},ajm = 0 for u # v. Since € is a bijection, we have
_ ! 1
eil — ¢({a1i17 s 7a1i7“i1} PRI {anila s 7anirm} )

= ¢(\/;ilf1l'alija--'av;i:nlfi'anij)

n Tk

=V Vo) - anyy

k=1j=1

n Tk

- \/ \/ ({b1g1, - - - ,bucs,ﬂ}l vy {Omkas - - - 7bmkskm}l> * Aij

k=1 j=1

We therefore have

n Tk Ski

\/ \/ \/ bikuakij =€

k=1j=1u=1

and
n Tik Skv

\/ \/ \/ bvkuakij =0

k=1 j=1u=1

—1
viw

for v # 4. Since agija,;, = 0 unless £ = v and j = w, postmultiplying the first

equation by a,;% gives
Ski
-1 -1
\/ bikuakijakij - a]ﬂ'j'
u=1
It then follows that bix,ak;; € E(S) for all ¢, 7, k, w and so bjx,aki; = a,;éb;kt. Similarly,
applying this argument for f; instead gives g, bri, € E(S) for all i, k, u,v. Thus, for

j # v, we have

Ski Ski
~1 = . cala,. — —1p—1,-1_
u=1 u=1
Skt Ski
-1 1
= \/ a’kijakijbikua'k‘iv - \/ bikuakivakijaki]‘ = 0
u=1 u=1

]

Since 0 € S, we can assume in such calculations that m = n, by letting some of

the e;’s be equal to 0.

Lemma 4.4.35. Let

m

g : (e;5)F — @ (f:S)*

i=1 =1
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be a module isomorphism with

and

Then
1. For all i and for j # k, we have a;jlaik =0.
2. For alli,j, we have a;; = b;il.

Proof. Firstly, we can assume that a;. = f;a;er and by, = e;b; fr.. We have,
fi = O(bi- .- b)) =\ Oex) - b
k=1

= (\/Z‘:lalkbki, ey \/lelamkbki).
So Vi aby; = 0 for © # j and V}a;tby; = f;. Postmultiplying by b,:ilbki gives
b = bl;-lbki-

A similar argument gives

-1
birar; = Qp; Qi

and for i # j

bjkaki =0.

Let us now prove the claims:

1

1. Using the fact that bjzay; = a,;lbi_kl, a;pbr; = b,;lai_k, and a,;.l = bikakia,;il, we

have, for all ¢ and for j # k,

1 1

Qi Qi = bﬂawaij Qi = Q;; bjl- Qi = Q5 a;jbjia, = bﬂazkaij a;; = 0.
- -1 _ -1 -1
2. For all 7,7, we have bjaja;; = aj and so a;; < bj. On the other hand,

=71 giving bi_j1 < aj; and therefore b;; < aj_il. Thus b;; = aj_il.

ajibijby; P

O

We denote the full subcategory of Modg consisting of all projective modules
isomorphic to @;_, (e;S)* for some idempotents e; € E(S) by Projg. By definition,
D gives (Projg, @) the structure of a commutative monoid, where the identity is the

one element module. For S an arbitrary orthogonally complete inverse semigroup we
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will define K(S) to be the Grothendieck group of (Projg, ). It is clear by Lemmas
4.4.32 and 4.4.33 that if S is a K-inverse semigroup, this definition agrees with our

earlier definition of a K-group.

Remark 4.4.36. It may in fact be possible to rework quite a bit of this section for the
more general setting of orthogonally complete ordered groupoids. Here is a suggestion
for one possible approach. Let G be an orthogonally complete ordered groupoid. We
will say X is an étale set if there is a map p : X — Gg and a partially defined function
X x G — X, denoted (z,g) — x - g such that

o [or each v € X we have 3z - p(z) and x - p(r) = x.

o forze X, ee€ Gy, Jr-eiff e Ap(x) # 0 in which case v-e = x - (e A p(x)).

o forxe X, g€ G, dx-qgiff Jxr - r(g) in which case x - g =z - (r(g) A p(x)|g).

e forxze X, g heG, if Agh and x - g then Iz - (gh) and x - (gh) = (x - g) - h.

e Forx € X, g € G with 3z - g we have p(z-g) = (r(g9) Ap(x)|g) *(r(g) Ap(z)|g).

One then defines pointed sets, premodules and modules analogously to the case of

INVETSE SEMIGroups.

4.5 Matrices over inverse semigroups

In the previous section we described how to define the K-group of an arbitrary orthog-
onally complete inverse semigroup using certain finitely generated projective modules.
In this section we shall show that there is another way of calculating the same group
but this time using matrices over inverse semigroups. We shall generalise the rook
matrices of Solomon [111].

Throughout this section let S be an orthogonally complete inverse semigroup. An
m x n matrix A with entries in .S is said to be a rook matrix if it satisfies the following
conditions:

(RM1): If a and b lie in the same row of A then a~'b = 0.

(RM2): If @ and b lie in the same column of A then ab™! = 0.

We denote the set of all finite-dimensional rook matrices over S by R(S). In what
follows a matrix denoted A will have ¢, jth entry given by a;;. Let A be an m x n

rook matrix and B an n X p rook matrix. The m x p matrix C = AB has entries
Cij = vZ:1&ikbkj-

That this join is well-defined is guaranteed by axioms (RM1) and (RM2).
We use the term semigroupoid to mean a structure that is the same as a category

but does not necessarily have identities.
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Lemma 4.5.1. R(S) is a semigroupoid.

Proof. We need to show this operation when defined returns a rook monoid and is
associative. First we show that for A an m x n rook matrix, B an n X p rook matrix
the product C = AB is an m X p rook matrix. That is, we need to show that for all
allowable i, j, k with ¢ # j, we have c,;.lckj =0 and cz-kcj_k1 =0.

One easily verifies using standard properties of orthogonal joins (e.g. see [74]) that

for all allowable i, 7 we have
n
-1 _ —1, -1
%—V%%-
k=1
Thus, for ¢ # j, we have
n n n n
~1 —1, -1 1,1 —1,-1 -1
Cri Ckj = \/ by ay \/ arby | = \/ by g arby; = \/ by gy aribiiby; by =0
=1 =1 =1 =1
and
n n n n
-1 _ } —1,-1) _ A -1 -1 _ 1 -1, -1 _
Cikcjk = \/azlblk \/ blk ajl = \/azlblkblk aﬂ = \/ a,lajl a]lblkblk Cle = 0.
=1 =1 =1 =1

Now let us prove that R(S) is associative. We want to show (when the dimensions

match up appropriately)
(A-B)-C=A-(B-C).

Let M=A-B,P=B-C,N=M-C,Q=A-P. Then

= Vs =V (Vata ) ) = Y Vs,
k k r k r

and
4ij = \/ QikPkj = \/ (aikz (\/ bm&g)) = \/ \/ @i bprCrj.
k k T kK r
Thusnwzqmandso(AB)C’zA(BC’) ]

Observe that if S were chosen to be the two element Boolean algebra then rook

matrices over S are essentially the same as the rook matrices of Solomon [111].

Lemma 4.5.2. The idempotents of R(S) are square matrices whose diagonal entries

are idempotents in E(S) and whose off-diagonal entries are 0.

Proof. Let E be an n x n rook matrix with £2 = E. We have for all i, j:

n
Cij = \/ CikChj-
k=1
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So

n

-1 —1 -1
Cij = €ijC5 Cij = \/ €ijCj CikChkj = CijC;5 €ijCj5 = €ijCjj-
k=1
Thus for all 7, j we have e;; € E(S). For i # j, we have

€ij = €jj€jj = €;j€;; = 0.

O

Lemma 4.5.3. The n x n idempotent matrices of R(S) commute and their product

s again idempotent.

Proof. Let E,F € E(R(S)) be n x n idempotent matrices, G = EF and H = FE.
Then for 7 # j we have

gij = \/ eikfkj =0
k=1

and
n

Gii = \/ €ik fri = €ii fii-

k=1

On the other hand,
hij = \/ firer; =0
k=1
and .
hi = \/ Jireri = fiiCii-
k=1
m

Lemma 4.5.4. R(S) is an inverse semigroupoid. In particular, for an m X n matriz
A € R(S), letting B denote the n x m matriz with b;; = OLj_Z-1 for all i,j, we have
B=A"

Proof. First we need to check that B is a rook matrix. We have for 7 # j,
b,;ilbkj = aika;kl =0

and

bzkbj_kl = a,;lakj =0.
We want to show ABA = A and BAB = B. Let M = AB, N = ABA, P = BAB.
For i # j,

1
mij = \/aikbkj = \/aikajk =0
k K
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and
-1
mg; = \/ @b = \/ Qi Qg -
k k

So, for all 7, j, we have

-1
Nij = \/ Mk Qs = MiiQi; = \/ Aik Qg Qij = Qg
k k

and

= . = b = -1 -1 _ -1 _ 7
P = \/ birmm; = bijmy; = \/aji Ak, = a0 = by.
k k

It is easy to see that a regular semigroupoid whose idempotents commute is an inverse

semigroupoid. (Explicitly, suppose C' is another inverse for A. Then
C=CAC =CABAC =CACAB =CAB =CABAB

— BACAB = BAB = B.)
m

If n is a finite non-zero natural number, define M, (S) to be the inverse semigroup
of all n x n rook matrices over S. For n x n rook matrices A, B € M, (S) we will

denote the natural partial order by <.
Lemma 4.5.5. For A, B € M,(S), we have A < B if and only if a;; < b;; for alli,j.

Proof. A< B means A= BA'A. Let C = A™', D=CA and F = BD. Then from
the above, we have d;; = 0 for ¢ # j and

n

—1
dz‘z‘ = \/ aki Q-

k=1
So . )
Cij = \/ bzkdkj = bijdjj = \/ bija,;jlakj.
k=1 k=1
So, if A = BA~'A then

Qij = QijQ;; Qij = €50 Qij = \/ bijag; akja;; aij = bijag; aiiag; a; = bijag; ag;.
k=1
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Suppose now that a;; = bija;jlaij for all 7, j and let C, D, E be as above. Then
n n n
Cij = \/ bijay; ar; = \/ bijay; ar;by; brjay; ar; = \/ bijbyj ity arjay; ar;
k=1 k=1 k=1
_ “1p -1 -1 -1
= bijbz‘j bijaij QG5 Qij = bijaij Ajj = Qgj-

]

Lemma 4.5.6. If A, B € M, (S) are orthogonal, then their join exists. Furthermore,
letting C = AV B, we have

Cij = aij V bij
foralli,j.

Proof. If A, B € M, (S) are orthogonal, then

\/ (l,;-lbkj =0= \/ aikbj_kl.

k=1 k=1

Thus for all i, 5, k, we have al;.lbkj = aikbj’kl = 0 and so for all 7, j, Ja;; V b;; and
Elai_j1 v bi_jl. Let C' be the matrix with entries ¢;; = a;; V b;;. We need to show that
C € M,(S). It will then be clear by the previous lemma that C' = AV B. So we will
therefore verify that for all i, j, k with i # j we have ¢;'cy; = 0 and cikcj’kl = 0. First
note that (a; V b;) ™" = a;;' V b;'. So

i Crj = (ag; V by ) (ar; V bg) = 0

and

G = (@i V bi) (az; V by!) = 0.
[

Lemma 4.5.7. Let A, B € M, (S) be orthogonal. Then for all D € M, (S) we have
D(AV B) = DAV DB,

Proof. Let A, B, D € M,(S) with A orthogonal to B, let C = AV B be as above, and
let E = DA, F = DB. First we must check that 3£V F. To this end, let G = EF~!
and H = E~'F. Orthogonality of A and B gives G = 0 and

H=A"'"D'DB=A"1AA"'D'DB=A"'D'DAA'B =0.
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Thus dEV F. Let M = FEV F and N = DC. Then

mi; = e V fij = (\/ dikaki) v <\/ d““bkj) B
k=1 k=1

dik (akj V bk])
1

n
k=

n
= \/ dikCrj = Nij.
k=1

Combining the previous three lemmas we have
Theorem 4.5.8. M, (S) is orthogonally complete for each n € N.

We now define what we mean by M, (S). Its elements are N x N matrices whose
entries are elements of S, such that these matrices are rook matrices in that they
satisfy conditions (RM1) and (RM2), and there are only finitely many non-zero entries.

It is clear that by replacing n by oo in the previous lemmas we have the following
Theorem 4.5.9. M (S) is an orthogonally complete inverse semigroup.

Let us now determine the form of Green’s D-relation on the set of idempotents of
M,(S). For e = (ey,...,e,), where ¢; € E(S) for each i, we will denote by A(e) the

matrix F € M, (S) with entries e; = e; for i = 1,...,n and 0 everywhere else.

Lemma 4.5.10. Let e = (ey,...,e,), £ = (es,e1,€3,...,¢€,), where n > 2. Then
A(e) D A(f).

Proof. Let A € M,(S) be the matrix with entries a;o = €1, as; = ey, a; = ¢; for
i=3,...,n and 0 everywhere else. An easy calculation shows that AA™! = A(e) and
A71TA = A(f). O

The fact that we swapped the first two diagonal entries of the matrix was unim-
portant. Thus we can slide entries in the diagonal and remain in the same D-class.
In particular, this tells us that M, (S) is orthogonally separating and is therefore a

K-inverse semigroup.

Lemma 4.5.11. Lete = (e, e3,...,¢e,), f = (e1 Ve, es,...,e,) whereey L ey. Then
A(e) D A(f).

Proof. Let A € M, (S) be the matrix with entries a;; = e, asy; = ey, a; = e; for
i=3,...,n and 0 everywhere else. An easy calculation shows that AA™! = A(e) and
A7TA = A(f). O
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Thus, we can also combine and split orthogonal joins.

Lemma 4.5.12. Let e = (e, e, ...,¢,), £ = (f1,€2,...,€,) where e D fi. Then
A(e) D A(f).

Proof. Suppose a € S is such that aa™! = e; and a 'a = f;. Let A € M,(S) be the
matrix with entries a;; = a, a; = e; for © = 2,...,n and 0 everywhere else. An easy

calculation shows that AA™' = A(e) and A™*A = A(f). O

This tells us that we can swap entries for D-related elements. In fact, these three

types of moves completely describe the D-classes of E(M,(S)).

Lemma 4.5.13. Let E,F € M,(S) be idempotent matrices in the same D-class.
Then one can go from E to F in a finite number of slide, combining, splitting and

swap 1Mmoves.

Proof. Suppose E = AA™', FF'= A7'A for some A € M_(S). Then

o
_ -1
€ii = \/ Qi Ay,
k=1

and
D

-1
fii = \/ Qp; Q-

k=1
Firstly, since A only has finitely many non-zero entries, these joins are over a finite
number of orthogonal elements. So, we can split the joins and slide the entries along
the diagonal in F, so that each diagonal entry is now of the form aikai_kl for some 1, k.
Then we can replace each aikai_kl with ai_klaik by performing a swap move. Finally,

joining enough orthogonal elements together will then give F'. O]
Let S be an orthogonally complete inverse semigroup and let
0D (e:5) — P (5
i=1 i=1

be a module isomorphism with e;, f; € E(S) for each i. Then we know by Lemmas
4.4.34 and 4.4.35 that there exist a;; € f;Se; with aija,:jl =0 for i # k, ai’jlaik =0 for
J#k,

(e;) = (a%j, . ,ainj)

and
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Thus the matrix A with entries a;; (and 0’s everywhere else) is an element of
M,(S), A(e) = A7 A and A(f) = AA™!. In fact, the converse is also true:

Lemma 4.5.14. Let e = (e1,...,en), £ = (f1,..., fm) and let A € M,(S) be such
that A(e) = A7*A and A(f) = AA™L. Then the map

given on generators by
0(0,...,0,e5,0,...,0) = (al;,...,a )

18 a module isomorphism.

Proof. First, since A € M,,(S) we must have ay;a;;' = 0 for all 4, k, [ with k # [. Thus

(a%m s 7a7lm') = @(fzs)ﬁ

i=1

for all i =1,...,m. To see that 0 is a module morphism, note that

q(alm"'a \/a]m Qi = €.

Let us now check that 6 is surjective. We claim that for all = 1,...,m we have

Firstly,

i=1

m
—1 -1 -1 —1, -1 —1
Ckly, = (\/ Qg aik) i = Qg Qiklye = gy, -

Secondly, aikai’klailai’ll =0if k #1. Now

m
0(a;"t, ... alh) = \/ ((awa; )Y, - .o (ampagh)?)
k=1

m l
= [o,...,0, (\/aika;,j> .0,...,0
k=1

= (0,...,0,f1,0,...,0).

[
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Thus @ is surjective. Finally, let us check that # is injective. Let

Tr = ({xlla s 7*,L.1T1}l R {xmla s axmrm}i) € @(ezs)ﬁ

i=1

and .
y={y st Yt Ums ) € @P(€S)

i=1

be such that #(x) = 6(y). Then for all k = 1,..., m we have

m T m  S;

\/ \/ (agiric)' = \/ \/ (akiyae)t

i=1t=1 i=1t=1

in (fxS)*. So premultiplying both sides of the equation by a;;' gives
\/ (al;ilakimit)l = \/ (a;;ilakz’yit)l

t=1 t=1

in (e;S)?. Taking the join over all k gives

T4 m T m  S; Si
\/ xft = \/ \/ (al%lakiff?z‘t)l = \/ \/ (a/?ilalm'Z/z't)l = \/ Z/#
t=1 k=11t=1 k=11t=1 t=1
Thus x = y and so 6 is injective. O]

It therefore follows that the objects of Projg are in one-one correspondence with

the D-classes of idempotents of M,,(S). Thus, we have proved:

Theorem 4.5.15. Let S be an orthogonally complete inverse semigroup. Then

Lemma 4.5.13 tells us how to give A(S) in terms of a semigroup presentation. Let
X ={Acle € E(S)} and let R be the set of relations given by:

1. ALAp = AfA. for all e, f € E(S).
2. Ae:Af 1f€Df
3. AeAf = Ae\/f if ef =0.

Then A(S) has the following semigroup presentation:
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4.6 Functorial properties of M, and K

A homomorphism ¢ : S — T between orthogonally complete inverse semigroups is
said to be orthogonal join preserving if s L t implies ¢(s V t) = ¢(s) V ¢(t) for all
s,t € S (both sVt and ¢(s) V ¢(t) exist since S and T are orthogonally complete
and if s L ¢ in S, then ¢(s) L ¢(t) in T'). We will always assume ¢(0) = 0 for any
homomorphism ¢.

Let ¢ : S — T be an orthogonal join preserving homomorphism between two
orthogonally complete inverse semigroups. Define ¢* : M,,(S) — M, (T) by ¢*(A) =
B, where b;; = ¢(a;;) for all 4, j.

Lemma 4.6.1. ¢* is a well-defined homomorphism. In addition, ¢* is orthogonal
join preserving.

Proof. Firstly, we see for A € M, (S) that ¢*(A) will satisfy the same orthogonally
conditions as for A, so ¢*(A) € M,(T). Let A,B € M,(S), C = ¢*(AB) and
D = ¢*(A)¢*(B). Then for all 4, j we have

cij = ¢ (\/ az’kbkj> =\ dlaw)d(by) = dy;
k=1

k=1

and so ¢*(AB) = ¢*(A)¢*(B). Now let us show that ¢* preserves orthogonal joins.
Let AL B, C=¢(AV B) and D = ¢(A) V ¢(B) (D exists by an earlier remark).
Then

cij = ¢(ai; V bi;) = ¢(ai;) V ¢(by;) = dij.
]

If ¢ is injective then ¢* must also be injective. Suppose ¢ is surjective. Then ¢*

will be surjective if and only if ¢$~1(0) = 0.

Lemma 4.6.2. Let S,T be K-inverse semigroups with ¢ : S — T an orthogonal join
preserving homomorphism. Then there is a homomorphism ¢ : K(S) — K(T). If ¢

15 surjective then ¢ is surjective.

Proof. Let e, f € E(S) with ef = 0. Then ¢(e V f) = ¢(e) V o(f).
Define ¢f : A(S) — A(T) by ¢'(le]) = [¢(e)]. If e, f € E(S) with eD f then
#(e) D ¢(f) and so ¢! is well-defined. Further for e, f € E(S), we have

o' ([e] + ) = oM [+ [fN) =o'l vV f]) = o(c' vV )] = [o(c) v o(f)]
= [o(e)] +[o(f)] = [e(e)] + [o(f)] = o' ([e]) + ' ([f]),

where ¢/f' =0, eDe’ and fD f'. If ¢ is surjective then it is clear that ¢' is surjective.
Standard theory (c.f. [108]) then tells us that we can lift ¢" : A(S) — A(T) to a
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homomorphism ¢ : K(S) = G(A(S)) — K(T) = G(A(T)) and that if ¢ is surjective

then ¢ will be surjective. [
Combining Lemmas 4.6.1 and 4.6.2 we have

Theorem 4.6.3. Let S, T be orthogonally complete inverse monoids with ¢ : S —
T an orthogonal join preserving homomorphism. Then there is a homomorphism
K(S) — K(T). If ¢ is surjective and ¢~'(0) = 0 then this homomorphism is surjec-

tive.

If S, T are inverse semigroups then their cartesian product S x T" will also be an
inverse semigroup. It is easy to see that if S and T' are both orthogonally complete

then S x T will be orthogonally complete. S x T will satisfy the following properties:
e E(SxT)=E(S)x E().
o (s,t)y t= (st ) forse S, teT.

o (s1,t1) < (s9,tz) if and only if s; < so and t; < ¢y, where 51,89 € S and
ti,to €T

e (e1, f1) D (ea, f2) if and only if e; Dey and f1 D fo, where ej,e5 € E(S) and
fi, fa € E(T).

e (e1, f1) L (e, fo) if and only if e; L ey and f; L fo, where e1,e2 € E(S) and
Ji, f2 € E(T).

o Ifs; L sy eSandt; Lty €T then

(Sl,tl) V (Sg,tg) = (81 V SQ,tl vV tg).

Lemma 4.6.4. For S, T be orthogonally complete inverse semigroups, we have
A(ML(S X T)) = A(M,(S)) x A(M(T)).

Proof. Let A(e) € E(M,(S x T)) be an idempotent matrix with e = (e1,...,epn).
Then e; will be of the form e; = (a;, b;), where a; € E(S) and b; € E(T) are idempo-

tents. Observe that for each 7 we have
€; = (aia bl) = (aia O) \ (0’ bl)>
where this is the join of two orthogonal elements. Thus A(e) D A(f) where

f=((a1,0),...,(am,0),(0,b1),...,(0,by)).
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It follows that there is a bijection
0 : AM,(S x T)) — A(M,(S)) x AM.(T))
given by
O([A((ar,b1), ..., (am,bm))]) = ([Alar, ..., am)], [A(b1, ..., bm)]).
If a;,c; € S, b;,d; € T are such that a; L ¢; and b; L d; for each i then
O([A((ar,01), - (@m, bn))] + [A(cr, da), - -5 (6, din))])

_ 0([A((a1,b1), - - (@, b)) V A((cr,dr), - - (s di))])

= O([A((ar1 Ve, by Vdi), ... (am V Cpy by V diy))])

- ([A(ar Ver, o am V e)] [AD V dy, by V dy)])

= ([Alay,...,an)], [A(r,. ... b)) + ([Alcr, ..., el [Aldy, .. ., dn)])

= O([A((a1,b1), .. (m, b))]) + O([A((c1,dr), - - -, (Cmydim))]).
Thus 6 is an isomorphism. O

Lemma 4.6.5. Let S,T be commutative monoids. Then G(S x T) = G(S) x G(T).

Proof. Let ¢1 : S — G(S) and ¢o : T — G(T') be the universal maps and let ¢ :
Sx T — G(S) x G(T) be given by ¢(s,t) = (p1(s), Pa(t)). Let 6 : S x T — G be a
monoid homomorphism to a commutative group G. Thus ¢, : S — Gand 6, : T — G
given by 6,(s) = 0(s,0) and 05(t) = 6(0,¢) are homomorphisms. There are therefore
unique maps 7 : G(S) — G and 7 : G(T') — G such that m;¢; = 0; for i = 1,2. Let
m:G(S) x G(T) — G be given by 7(s,t) = m(s) + ma(t). It is easy to check 7 is a
homomorphism and 7¢ = 6. On the other hand, suppose ¢ : G(S) x G(T) — G is
a homomorphism with ¢ = 6. By the uniqueness of the maps m; and m,, we must
have 0(g,0) = m1(g) and (0, h) = ma(h). Thus o(g, h) = m1(g9) + m2(h) = 7(g, h). O

Combining Lemmas 4.6.4 and 4.6.5 we see that

Theorem 4.6.6. Let S, T be orthogonally complete inverse semigroups. Then

K(SxT)=K(S)x K(T).
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4.7 Commutative inverse semigroups

It turns out one can say more about commutative orthogonally complete inverse
semigroups. Suppose S is such a semigroup. Then s L t is equivalent to s~ 'st~'t = 0.
It therefore follows that eS is in fact a module for each e € E(.S). Let us now consider
matrices over such semigroups. For any idempotents e, f € E(S) we have e D f if and
only if e = f. Thus when considering the D-classes of the idempotents of M, (S5),
we can only slide along the diagonal or combine / split up orthogonal joins, but
not swap D-related elements of S. It follows that for all idempotent rook matrices
E,F € E(M,(S)) we have ED F in M,,(S) if and only if ED F in M, (E(S)). Taking
joins is independent of the non-idempotent elements and so we have just argued for

the following:

Theorem 4.7.1. Let S be a commutative orthogonally complete inverse semigroup.
Then

Let S be a commutative orthogonally complete inverse semigroup. We can define
a tensor / Kronecker product on R(S). Let A be an n x m rook matrix and let B be

a p X ¢ rook matrix. Define A ® B to be the np x mq rook matrix

anB apB - a,B
A 2 B ag‘lB GQ?B s CLQ,,TLB
anlB an2B e ant

It is easy to see that the tensor product of matrices over commutative orthogonally

complete inverse semigroups satisfies the following properties:
Lemma 4.7.2. Let A, B,C, D € R(S) be finite dimensional rook matrices. Then
1. ( A B)@C=A® (B®C(C).
2. If there exist AC' and BD then (A® B)(C ® D) = (AC) ® (BD).
3. (A B)"'=A"1@ B
We now deduce the following:

Lemma 4.7.3. Let Ey, Es, F1, Fy € R(S) be idempotent finite dimensional rook ma-
trices with 1D Fy and Ey D Fy. Then

E,®@ E;DFy @ Fo.
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Proof. Suppose Aj, Ay € R(S) are such that AZ-A;1 = F; and A;lAi = F; and let
B = A; ® Ay. Then by Lemma 4.7.2 (2) and (3) we have BB™' = E; ® E» and
B 'B = Fi ® F,. O

We can therefore define £ ® F' up to D-class for two idempotent matrices E, F' €
M, (S) by sliding entries around.

Lemma 4.7.4. Let E, F € M, be idempotent matrices. Then
EQFDF®E.

Proof. Use the preamble to Theorem 4.7.1. [

Thus (A(S),+,®) is a commutative semiring. In fact, it easy to see that if S
were required to be the Boolean completion of a 0-bisimple inverse semigroup instead
of being commutive then (A(S),+,®) might be a semiring. If S has an identity,
then (A(S), ®) becomes a semiring with identity. It follows that K(S) can sometimes

inherit the structure of a ring from A(S5).

4.8 States and traces

In this section we will define states and traces for orthogonally complete inverse
monoids by analogy to the definitions in C*-algebra theory (for states, see [65] §2.8
and for traces, see [61] §7).

We will define a state on an orthogonally complete inverse monoid S to be a map
7:85 — C that is

1. Positive: 7(e) is a non-negative real number for all idempotents e € F(S)
2. Normalised: (1) =1

3. Linear: If s,t € S are orthogonal elements of S then 7(sV t) = 7(s) + 7(¢).

A trace will be a state 7 : S — C such that 7(st) = 7(ts) for all s,t € S.

It is of course possible that a given semigroup S may have no states or traces
which can be defined on it. For example, the Cuntz monoid C,, will only have traces
defined on it if n = 1.

Note that the linearity condition on states implies that 7(0) = 0 and that for any
trace 7 : S — C if e D f are idempotents then 7(e) = 7(f) since 7(ss™!) = 7(s71s).

We now use this to connect the idea of traces with our notion of a K-group for S.

Lemma 4.8.1. Let S be an orthogonally complete inverse monoid and let 7 : S — C

be a trace on S. Then there is an induced group homomorphism
7:K(S)—R
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Proof. Define 7 : A(M,(S)) — R by

=1

We check that 7 is well-defined by noting the fact that D-related idempotents of S
are sent to the same number. It is easy to see that 7 is a monoid homomorphism and

so this induces a group homomorphism 7 : K(S) — R. O

4.9 Examples

We will now calculate K (.S) for a number of examples.

4.9.1 Symmetric inverse monoids

We saw earlier (Section 4.2) that if S were the set of bijections on the natural numbers
with finite support that K(S) = Z.

Now let S = I,, be the symmetric inverse monoid on a set of size n, where n < oo.
Then S is an orthogonally complete inverse semigroup. Again for e, f € E(S) we have
eD f if and only if |[Supp(e)| = [Supp(f)| and if e, f € E(S) are such that ef = 0
then |Supp(e V f)| = |Supp(e)| + |Supp(f)|. We therefore again have:

4.9.2 Groups with adjoined zero

Let G be a group and let S be G with a 0 adjoined. Then S is an inverse A-semigroup
(in fact it is E*-unitary) and it is orthogonally complete. We see that E(S) = {0,1}
and so K(S) = Z.

4.9.3 Boolean algebras

Suppose S is an arbitrary (possibly infinite) unital Boolean algebra, viewed as an
inverse semigroup by defining ab = a A b, B(S) is the associated Boolean space and
for each element a € S denote by V, the set of ultrafilters of S containing a.

We have the following facts which follow from results in [80] and [81], but we prove

here for completeness.
Lemma 4.9.1. 1. For all a,b € S we have Vyyp =V, U V.

2. For all a,b € S we have V,, =V, N V.
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3. Vo =V, implies a = b.

Proof. 1. It is clear that V, UV, C V,us, so we just prove the other inclusion. Let
F € V,. Suppose first that ac # 0 for all ¢ € F. Then F U {a} will generate
a proper filter. Since F' is an ultrafilter, it follows that a € F. Now suppose
a,b ¢ F. There must be ¢,d € F with ac = 0 = bd. Since ¢,d € F, we must
have c¢d € F and cd(a V b) € F. But

cd(aVb)=cdaVcdb=0V0=0,

a contradiction. Thus either a € F' or b € F.

2. Let I € V,NV,. Then a,b € F and thus ab € F. On the other hand, if F' € V,
then a,b € F and so F' € V, NV,.

3. Suppose V, = V,. Then
Va/\b = Va N Vb = Va.

Let ¢ = (1\ ab)a. Then abc = 0 and abV ¢ = a. Let F' € V.. Then ¢ € F implies
a € Fl'and so F' € V, = V. But then ab € F' which implies 0 = abc € F', a

contradiction.

]

Since B(S) has the sets V,, a € S, as a basis, for each open set U there exist a
collection of elements a;, i € I, with U = U;¢[V,,. Further, V; = B(S). Let N(B(S))
denote the set of continuous functions from B(S) to NU {0}. It is easy to see that
N(B(S)) forms a ring under pointwise multiplication.

For 0 # a € S, define f, : B(S) — N by f.(x) = 1 if x € V, and 0 otherwise.
Then f, is a continuous function since V, is open and B(S) \ V, = Vi\a 1 open.

For

a=(a,as,...,a,),

let A(a) = E € M,(S) be the matrix with entries e; = a; for i = 1,...,m and 0
everywhere else. Define f, : B(S) — N by fa = fa, + ...+ fa,,- This again will be a
continuous function.

Suppose a1, as € S are such that ajas = 0. Then we have V,, N V,, = 0 and so
flar,a2) = farva,- Thus A(a) D A(b) implies fa = fp. On the other hand Lemma 4.9.1
(3) tells us that if fa = f, then A(a) D A(b).

It follows that we have a well-defined semigroup monomorphism 6 : A(M,(S)) —
N(B(S)) given by

0([A(a)]) = fa-

Now let f € N(B(S)) be an arbitrary continuous function. Then since f is

continuous and B(S) is compact, im(f) is compact and therefore |im(f)| is finite.
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Further, for all z € NU {0} we have f~!(z) is clopen (and therefore compact) and so
f~Yz) = U, for some a. Thus 6 is an isomorphism.

Let Z(B(S)) denote the set of continuous functions from B(S) — Z. It follows
from the remarks of the preceding paragraph that

K(S) = Z(B(S)).

Since S is commutative, we know that A(S) will be a semiring. In fact, we see
that 0(F ® F) = 0(E)0(F), where (0(E)0(F))(z) = 0(E)(x)0(F)(x). Thus K(S) has
the structure of a ring.

We can actually view the Boolean algebra S as a ring by defining + to be symmetric

difference:
et f=(\HV(f\e)
In the case where ef =0, e+ f =eV f. It follows from [88] that (algebraic)

Now let us consider the topological K-theory of the space X = B(S). Letp: £ —
X be a locally-trivial finite-dimensional vector bundle over C. For each n € N U {0}

we define
U, = {x € X|rankg(z) =n}.

Since the function rankg : X — N U {0} is continuous, there are only finitely many
n with U, non-zero. Furthermore each U, is a compact open subset of X. Thus
U, =V, for some e, € S. Since p : F — X is locally-trivial, for each z € U, there

is an open set U, containing x with

p|P71(U:c) :p_l(U:c) — U,

vector bundle isomorphic to the trivial bundle U, x C* — U,. Since open sets are
unions of compact open sets it follows that we can pick U, to be V, for some e € S.
Lemma 4.9.1 then tells us that we may assume that U, NU, is either empty or U, = U,
for each x,y € U,. It then follows that

p|P71(Un) :p_l(Un) — Uy,

is isomorphic to a trivial vector bundle for each n. Thus p : E — U is isomorphic to

the disjoint union of a finite number of trivial vector bundles, so we may assume

E = ﬁvek x C"*
k=1
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and p: E — X is given by p(z,v) = x.

Let f : X — NU{0} be an arbitrary continuous function with im(f) = {xy,...,zn}
and let ai,...,a, € S be such that f~!(z) = V,,. Then define a vector bundle on
B(S) by

B =TT )

It is now not hard to see that such vector bundles are in 1 — 1 correspondence
with continuous functions on X. Further, the vector bundle associated to f + ¢ will
be isomorphic to £y & E,. Thus

4.9.4 Cuntz-Krieger semigroups

We will now compute the K-groups of the Boolean completions of graph inverse
semigroups whose underlying graph is finite. Before going further let us recall the
Lenz arrow relation —. Let S be an inverse A-semigroup with 0 and let s, € S.
We will write s — ¢ if for all non-zero t < s we have t A s’ # 0. If s,s1,...,8,, are

elements of S then we will write

s —{S1,.. ., Sm}

if for every non-zero t < s we have t A's; # 0 for some 1 < i < m. We write
{s1,..y8m} — {t1,.. ., tu} if s; = {t1,...,t,} for each 1 < i < m. We say s « ¢ if
s —tandt— s, and

{1,y 8m} < {t1,...,tn}

if {s1,...,8m} — {t1,....tn}and {t1,....t,} — {s1,...,sm}

Let G be a finite directed graph and Fg be the associated graph inverse semigroup
(see Section 3.9 for the construction). We will denote the orthogonal completion of
Pg by Dg. Elements of Dg are of the form A° where A is a finite, possibly empty, set
of mutually orthogonal non-zero elements of Pg and A” is AU{0}. Under elementwise
multiplication Dg forms an orthogonally complete inverse semigroup (for details see
[74]). An element A° € Dg is idempotent if and only if every element of A is an
idemptotent in Fg.

We can define a congruence on Dg by A° = B iff A < B as sets of elements of
Pg (recall that graph inverse semigroups are E*-unitary and are therefore examples
of inverse A-semigroups and so we can consider — on FPg). We denote Dg/ = by
CKg and call it the Cuntz-Krieger semigroup of G. These semigroups are studied

in detail in [51], as a generalisation of the Cuntz monoids introduced in [75]. It was
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shown in [51] that CKg is a Boolean inverse monoid and therefore in particular an
orthogonally complete inverse semigroup. Denote elements of C'Kg by [A°] where
AY € Dg. Clearly if A° € Dg is an idempotent then [AY] is an idempotent in C'Kg.

It was shown in [51] that = is an idempotent pure congruence. In fact:

Lemma 4.9.2. If [AY] is an idempotent element of CKg then A° is an idempotent in
Dg

2

Proof. Let s = {[xl,yl],...,[xm,ym]}o € Dg, m > 1, and suppose s* = s in Dg.

Since m > 1 we must have [x;,y;|[z;,y;] # 0 for some 1 < 4,5 < m. We have two
cases: either z; is a prefix of y; or y; is a prefix of ;. First suppose z; = y;p for some
element p € G*. Then

(i, yil[xj, 93] = [zip, yj]

2 —

Since s* = s we must have [z;p, y;] A [z, yx] for some 1 < k < m. By Lemma 3.9.3

and the fact that elements of s are orthogonal we have y; = vy, z; = x, and p is
empty. Thus z; = y; = x; = y;. A similar argument shows that if z;p = y; then we
again have x; = y; = z; = y;. It follows that

0

52 ={[z, 21, 2w, 20}

for some z;’s in G*. Since < is idempotent pure, we must have

s={[z1,21], - [Zn 2] }°

A couple of remarks:

Remark 4.9.3. 1. We have

{[xbxl]? T [mmxn]}o D {[ylayl]a Tt [ymyn]}o

in Dg if d(z;) = d(y;) for each i, and up to re-ordering of elements this describes
D completely for idempotent elements of Dg.

2. If y is a route in G and xq, ..., x, are all the edges of G with r(x;) = d(y) then

{lyz1,yzi], . .., [yzn, yaa]} < {ly, y]}

in Pg. In fact, = on E(CKg) is the equivalence relation generated by

{[ylxbylle ceey [yleL?len]? [927y2]7 EEE [yma ym]}o = {[yhylL R [ym7ym}}0 ’
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where [Y1, 1], - - -, [Ym, Ym] are mutually orthogonal elements of E(Pg) and
T1,..., Ty € Gy are all the edges with r(z;) = d(y1).

Since [z, ] D [d(z),d(x)] in Py for every € G* and since
{len, 21, e, 2]} = \/ {[wi, 2]}
i=1

in C'Kg it follows that the group K(CKg) can be generated by the elements {[a, a]}°
where a € Go. For brevity we will denote the element [{[a,a]}"] in K(CKg) by a.
Remark 4.9.3 (2) tells us that

{la,a]}" = \/ {lz,a]}’

€y
r(z)=a

in CKg. By splitting up this join in M,(CKg) and replacing [z,z] by [d(z),d(z)]

using the D-relation for P; we obtain the relation

in K(CKg). More generally, consider the relation

{brzy,mm),  @a 1@al, W2, el - s Y]} = Lyl - - s Y] 2

in Dg where [y1,11], .-, [Ym,Ym] are mutually orthogonal elements of E(FPg) and
x1,...,T, € Gy are all the edges with r(z;) = d(y;). Then splitting up the joins
in M,(CKg) and replacing [z,z] by [d(z),d(x)] for each route x € G* using the

D-relation for Py gives the relation

m m

>_d(w) + Y d(y) = > dly)

Jj=2 Jj=1

in K(CKg). Since K(CKyg) is cancellative this gives

S d(w) = d(y).
i=1
which we knew already. Thus
K(CKg) = FCG(Gy)/N
where FCG denotes taking the free commutative group (written additively and with
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0 as identity) and N is the normal subgroup generated by the relations

This agrees with K°(Og) for Og the Cuntz-Krieger algebra on the graph G (see
e.g. Remark 4.6 of [34]).

For example, suppose G is a graph with a single vertex and n edges where n > 2.
Then Py is simply the polycyclic monoid on n generators and C'Kg = C),, the Cuntz
monoid on n generators. In this case K(C'Kg) will be generated by a single element

a (corresponding to the one vertex) and subject to the relation

and so
K(CKg) = (ala=a") = 7,1,

which agrees with K°(0,,) (see e.g. Example V.I1.3.4 of [20]). As C, is the Boolean
completion of a 0-bisimple inverse semigroup the natural ring structure of Z,,_; arises
because of the natural semiring structure on A(C,,) (since the tensor product described

in Section 4.7 makes sense).
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Chapter 5
Discussion and Further Directions

We have seen in this thesis that self-similar group actions and left Rees monoids appear
in a number of different places, with the underlying theme being self-similarity. This
self-similarity can be seen in the similarity transformations of attractors of iterated
function systems, recursion in automata and in the normal form of HNN-extensions.
One might hope that it may be possible to describe further ideas from self-similar
group actions and fundamental groups of graphs of groups in terms of the structure
of some underlying semigroups. It seems that although the fractals which appear in
this theory can be geometrically very different that at least some properties of certain
classes of fractals will be incorporated in the associated Rees monoid. One may also
be able to study the representation theory of the inverse semigroups associated to left
Rees monoids in a similar manner to the representation theory of polycyclic monoids.

In Chapter 3 we saw that left Rees categories have a number of different char-
acterisations. It was indicated in Section 3.8 that there exist connections with the
representation theory of algebras. The author believes that there may be some fruitful
future work in pursuing this further. The automata in Section 3.6 are similar to ones
appearing in theoretical computer science. It may therefore be possible to apply ideas
about left Rees categories to understand ideas there better. The theory of graph it-
erated function systems is not as well-developed as that for iterated function systems
and so it may be discovered in the future that Rees categories have a role to play in
this area.

In Chapter 4 I gave a possible definition of a K-group of an orthogonally complete
inverse semigroup S, by analogy with algebraic K-theory. This definition was given
in terms of an appropriate notion of projective modules and in terms of idempotent
matrices over S, and these definitions were shown to be equivalent. It was found
that for several examples that the group one calculates is isomorphic to the Ky-group
of an associated C*-algebra. The next step would be to characterise the classes of

semigroups for which this is true. It may also be possible to prove a result along the
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lines of
Ko(D(S) ® K) = Ko(C(S5))

where S is a particular kind of inverse semigroup with 0 (for example, strongly E*-
unitary or F-inverse), D(S) is its distributive completion, K is a semigroup analogue
of operators on a compact space, ® is some form of tensor product of inverse semi-
groups and C'(S) is some form of C*-algebra constructed from S via D(S).

One motivation for the theory that has been developed comes from tilings. Given
a tiling, one can define a tiling semigroup S and from that a tiling C*-algebra C(.5).
These C*-algebras are used to model observables in certain quantum systems ( [58]).
It was proposed by Bellissard ( [18]) that one can use trace functions defined on
C'(S) and thus also on Ky(C(5)) as part of a gap-labelling theory, giving information
about quantum mechanics on certain tilings appearing in solid state physics. Tiling
semigroups are an example of semigroups to which one should be able to apply the
above the theory. It was shown in Section 4.8 that one can define trace functions on
orthogonally complete inverse semigroups and by extension on their K-groups, and
this suggests that one might be able to describe this gap-labelling theory in terms of
inverse semigroups.

We saw in Section 4.4 that these K-groups could be defined in terms of modules. It
was found that the category of modules Modg over an orthogonally complete inverse
semigroup S is in fact a cocomplete concrete category and so I believe one should be
able to study the representation theory of such inverse semigroups via this category,
and by extension the representation theory of the corresponding C*-algebras. In
addition, it might be possible to make use of the fact that right ideals of orthogonally
complete inverse semigroups are premodules in this representation theory.

Lawson and I are in the process of studying more about the rook matrices and their
properties. This may yield additional insight into how to take this theory further. In
particular, it may be possible to define higher K-groups for inverse semigroups in
terms of these matrices.

In the introduction it was mentioned that Morita equivalence has recently been
found to work in a nice way for inverse semigroups, and that the different definitions
one might want to use to describe Morita equivalence are in fact equivalent ( [39]).
One might hope to relate K(.S) to morita equivalence, in particular by studying the

underlying inductive groupoid of the inverse semigroup as in Section 4.3.
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Appendix A

Scala Implementation

It is possible to describe in Scala a self-similar action, which allows one to easily
perform calculations with the associated left Rees monoid. What follows is an im-
plementation of the similarity monoid of the Sierpinski gasket. The procedures re-
strictionGX, actionGX and productXGYH will be the same whatever the left Rees

monoid is.

def genAction(x:String, g:String) = (x,g) match {
case ("L","s") => ("R", "s")
case ("R","s") => ("L", "s")
case ("T","s") => ("T", "s")
case ("L","r") => ("T", "r")
case ("R","r") => ("L", "r")

case ("T","r") => ("R", uru)

def restrictionGX(x:String,g:String):String=(x,g) match{

case ("", ") => nn
case ("", h) =>h
case (y, "") => "
case (y,h) if (y+h).size == 2 => genAction(y,h)._2

case (y,h) => restrictionGX(y.tail,restrictionGX(
actionGX(Character.toString(y.head),
Character.toString(h.last)),h.init)
+ restrictionGX(Character.toString(y.head),
Character.toString(h.last)))

def actionGX(x:String, g:String): String = (x,g) match {
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case

case

case

case

case

R
("", h) => "
(y, "") =>y
(y,h) if (y+h).size == 2 => genAction(y,h)._1

(y,h) => actionGX(actionGX(Character.toString(
y.head) ,Character.toString(h.last)),h.init)
+ actionGX(actionGX(y.tail,restrictionGX(
Character.toString(y.head),
Character.toString(h.last))) ,restrictionGX(
actionGX(Character.toString(y.head),
Character.toString(h.last)),h.init))

def productXGYH(x:String,g:String,y:String,h:String):

(String,String) = {

(x + actionGX(y,g), restrictionGX(y,g) + h)

println(

productXGYH("L","rsr","RTL","s"))

After this program has been run, the output is (LLTR,rsrs)
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