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Abstract

This thesis is about trying to understand various aspects of partial symmetry using

ideas from semigroup and category theory. In Chapter 2 it is shown that the left Rees

monoids underlying self-similar group actions are precisely monoid HNN-extensions.

In particular it is shown that every group HNN-extension arises from a self-similar

group action. Examples of these monoids are constructed from fractals. These ideas

are generalised in Chapter 3 to a correspondence between left Rees categories, self-

similar groupoid actions and category HNN-extensions of groupoids, leading to a

deeper relationship with Bass-Serre theory. In Chapter 4 of this thesis a functor K

between the category of orthogonally complete inverse semigroups and the category

of abelian groups is constructed in two ways, one in terms of idempotent matrices

and the other in terms of modules over inverse semigroups, and these are shown to be

equivalent. It is found that the K-group of a Cuntz-Krieger semigroup of a directed

graph G is isomorphic to the operator K0-group of the Cuntz-Krieger algebra of G

and the K-group of a Boolean algebra is isomorphic to the topological K0-group of

the corresponding Boolean space under Stone duality.
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Chapter 1

Introduction

1.1 Overview

A semigroup is a set with an associative binary operation and a monoid is a semigroup

with identity. Introductions to semigroup theory include [27], [28], [49]. Some of the

earliest work on semigroups was done by Suschkewitsch and Rees, and in fact one of

the fundamental objects of study in Chapter 2 of this thesis are left Rees monoids,

named in honour of David Rees who studied a particular class of such semigroups in

his paper [105]. A monoid M is right rigid if aM ∩ bM 6= ∅ implies that aM ⊆ bM

or bM ⊆ aM ; this terminology is derived from Cohn [29]. A left Rees monoid is a

right rigid left cancellative monoid which satisfies an ascending chain condition on the

chains of principal right ideals. Right Rees monoids are defined to be the right-hand

dual, i.e. left rigid right cancellative monoids with an ascending chain condition on

chains of principal left ideals. A Rees monoid is one which is both left and right Rees.

It is proved in [76] that every right cancellative left Rees monoid is in fact a Rees

monoid. Semigroups and monoids can often be thought of in a similar manner to

rings, the idea being that the multiplicative structure of a ring has the structure of

a semigroup and if the ring has an identity then this semigroup is a monoid. This

thought will be pursued further later, suffice to say for the moment that one of the

most important initial considerations of a semigroup is its ideal structure, and this

gives an indication as to why Rees was already thinking about similar structures to

those which we will be studying so early on in the history of semigroup theory. Self-

similar group actions were introduced by Nivat and Perrot ( [99], [102], [101]) in the

study of certain 0-bisimple inverse monoids, though this is not the terminology they

used. We will see how their ideas came about in Section 3.9. The concept of self-similar

group actions re-emerged with the work of Grigorchuk, Bartholdi, Nekrashevych and

others in the study of groups generated by automata. We will study such automata

with examples in Section 2.7. Cain ( [25]) has generalised these ideas to the notion

of a self-similar semigroup. Lawson in [76] showed that there is in fact a one-one

1



Chapter 1: Introduction

correspondence between left Rees monoids and self-similar group actions. The idea

here is that given a self-similar group action of a group G on a free monoid X∗, when

one takes their Zappa-Szép product (essentially a two-sided semidirect product) the

resulting structure is a left Rees monoid, and all left Rees monoids can be constructed

in this manner. We will summarise the details of this in Section 2.2. In Section 2.4 we

will consider when one can extend a self-similar group action of a group G on a free

monoid X∗ to self-similar action of the group G on the free group FG(X); this turns

out to be precisely when the left Rees monoid is symmetric. We will briefly consider

the representation theory of left Rees monoids in Section 2.8.

One way of viewing self-similar group actions is in terms of homomorphisms into

the automorphism groups of regular rooted trees, giving rise to the so-called wreath

recursion, details of which are summarised in Section 2.2. The salient point to note is

that we have a group acting on a tree. Groups acting on trees give rise to graphs of

groups ( [87], [109]). A number of interesting groups arise as the fundamental groups

of graphs of groups. Perhaps the simplest situation is where one has a single vertex

with associated group G, and |I| loops from the vertex to itself, each labelled by an

injective homomorphism αi from a subgroup Hi of G into G. The fundamental group

of such a graph of groups is called an HNN-extension. The resulting group Γ has

group presentation

Γ = 〈G, ti : i ∈ I|R(G), hti = tiαi(h) h ∈ Hi, i ∈ I〉,

where R(G) denotes the relations of G. Note that several authors have the condition

reversed, i.e. they adopt the convention tih = αi(h)ti. One of the main results of this

thesis is that if one takes such a presentation, and let us not assume that the maps are

injective, then if we instead take a monoid presentation the resulting monoid is a left

Rees monoid, and every left Rees monoid is such a monoid HNN-extension (see Section

2.3). It then follows as a corollary that if we in fact have a Rees monoid then its group

of fractions is a group HNN-extension, and every group HNN-extension arises in this

way. In addition one finds that if the Rees monoid is symmetric then this group HNN-

extension is a Zappa-Szép product of a free group and a group. Part of the inspiration

for this result is a theorem by Cohn on the embeddability of cancellative right rigid

monoids into groups, whose proof in [29] has the flavour of taking the fundamental

group of a graph of groups. The author suspects that in fact this proof doesn’t quite

work, and this is further evidenced by the fact that Cohn utilises a different proof in

the second edition of the same book ( [30]) (see more details in Section 2.3). These

results were then to some extent generalised to the situation of categories embedding

in groupoids by von Karger ( [120]). The notion of HNN-extension has previously

been generalised to the situation of semigroups in [41], [48] and [122]. Gilbert and

2



Chapter 1: Introduction

Yamamura consider the case where the semigroup is inverse and Howie considers the

situation where tt′ and t′t are idempotents for some t′.

The term fractal was coined by Mandelbrot in the 1970’s to describe a number of

geometric structures which were very jagged in structure (here fractal is derived from

the Latin word fractum meaning broken). One of the key properties many fractals

share is that of self-similarity. The idea here is that if we zoom in on a fractal we find

a structure similar to the one with which we started. Self-similarity can be seen as one

form of partial symmetry, a notion to be considered again later. Fractal-like structures

appear in a variety of contexts in the natural world, for example in modelling coastlines

and certain ferns ( [103]). They have also been used in the modelling of electrical

resistance networks ( [12], [23]). Another application is in optimising reception while

at the same time minimising surface area in mobile telephone aerials ( [104]). It has

been realised for some time that there exist connections between self-similar group

actions and fractals and other interesting geometric structures (see for example [16],

[17], [43], [54], [96], [98]). In many of the examples considered the fractal is obtained

as a kind of limit space of a self-similar group action; that is, the regular rooted

tree modulo the action in a specified way gives rise to a geometric structure with

fractal-like properties. In this thesis it will in fact be shown that the monoid of

similarity transformations of the attractor of an iterated function system is often a

Rees monoid. This will be proved in Section 2.5 and a number of examples will

be considered. This fact is actually used implicitly in the calculations of [12]. The

idea is that given an iterated function system f1, . . . , fn : F → F , one finds in a

number of examples that the semigroup generated by these maps is free and thus

letting X = {f1, . . . , fn} we can sometimes get a self-similar action of the group of

isometries G of F on X∗. Moreover, the group G is in several cases finite and so one

has associated an automaton which gives rise to this self-similar action. One can then

view the automaton as describing a computer programme with two recursively defined

functions, one for the action and the other for the restriction, together with a number

of base cases. A Scala programme is given in Appendix A which models this situation.

The algebraic properties of transformations on fractals have previously been studied

in [38], [113] and [114]. Bandt and Retta ( [14]) have discovered a number of fractal-

like structures whose properties depend only up to homeomorphism, and such that

every into-homeomorphism is in fact a similarity transformation. We describe some

corollaries of their work in Section 2.6.

Another mathematical structure which will be important in this thesis is a cate-

gory. Categories were introduced by Samuel Eilenberg and Saunders MacLane in the

1940’s in the study of the many functors arising in algebraic topology. Since then

categories have found their way into many other areas of mathematics. For example,

Lawvere and Rosebrugh have shown that much of axiomatic set theory can be refor-

3



Chapter 1: Introduction

mulated in the language of category theory [84]. All undefined terms from category

theory can be found in [10], [21], [66], [93]. We will say more about categories in the

following section.

Left Krieger semigroups were introduced by Lawson in [77] as a generalisation of

left Rees monoids, these being precisely left Krieger semigroups which do not have

a zero element. It was found that there existed a similar description of arbitary left

Krieger semigroups in terms of Zappa-Szép products. The underlying category of a

left Krieger semigroup categorical at zero was termed a left Rees category. These

left Rees categories were then further investigated in [51] in the study of graph in-

verse semigroups. By adapting slightly the notions and results of [77] one is led to a

correspondence between left Rees categories and self-similar groupoids (here the free

monoid on a set X will be replaced by the free category on a graph G). In Chapter

3 we will show that many of the concepts and properties of left Rees monoids and

self-similar group actions can be generalised to the context of left Rees categories and

self-similar groupoids. In Section 3.2 we will briefly describe how one arrives at the

correspondence between left Rees categories and self-similar groupoid actions from the

work of [77] and [51]. In Sections 3.3 we will see that our results about monoid HNN-

extensions can be rephrased for the categorical context. This will then lead to further

connections with Bass-Serre theory. We will then see in Sections 3.4 and 3.5 that, un-

der suitable assumptions on the graphs and categories in question, we can replace the

concepts of automorphism group of the regular rooted tree and the wreath recursion

by suitable categorical notions. We also, in Section 3.6, define automaton groupoids

analogously to the group situation. A different form of automaton groupoids had

previously been considered in [26]. An indication will be given in Section 3.7 of how

one might want to generalise the results about iterated function systems to graph

iterated function systems. In Section 3.8 we will consider the representation theory

of left Rees categories. One of the curious aspects about left Rees categories (unlike

the situation for left Rees monoids) is that one can get finite examples which are not

just groupoids. This will then lead to a connection with the representation theory of

finite-dimensional algebras. Finally, in Section 3.9 we will see how one can naturally

associate an inverse semigroup to a left Rees category, and this section will act as a

bridge between the work of Chapters 2 and 3 and that of Chapter 4. Examples that

can be constructed in this manner include the polycyclic monoids and graph inverse

semigroups.

In recent decades it has been realised that there exist deep connections between

three mathematical structures: inverse semigroups, topological groupoids and C∗-

algebras (for example, see [35], [62], [78], [80], [81], [82], [83], [85], [90], [92], [94], [106],

[107], [118]). Good introductions to inverse semigroups, topology and C∗-algebras

are [70], [110] and [65]. The connection between C∗-algebras and topological groupoids
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Chapter 1: Introduction

can be seen as a generalisation of the Gelfand representation theorem viewing com-

mutative C∗-algebras as rings of functions over topological spaces. Chapter 4 of this

thesis can be considered as fitting within this framework. Jones and Lawson have

shown that the representation theory of the Cuntz C∗-algebras as considered in [24]

can be thought in terms of the representation theory of the polycyclic monoid ( [52]).

It was mentioned earlier that semigroups can often be thought of in similar ways to

rings. An example of this is in the study of Morita equivalence in the context of

semigroups ( [63], [69], [116]). More recently it has been realised that one can de-

scribe Morita equivalence for inverse semigroups in a manner analogous to C∗-algebras

( [6], [39], [79], [112]). One example of the correspondence between these three math-

ematical structures is given by the polycyclic monoids Pn, the Cuntz groupoids Gn

and Cuntz algebras On. The Cuntz algebra was introduced by Cuntz in [32] and can

be constructed from the Cuntz groupoid. The Cuntz monoid considered by Lawson

in [75] is the distributive completion of the polycyclic monoid. One can construct

the Cuntz groupoid from the Cuntz monoid via the theory of [80] and [81]. This

construction is an example of a non-commutative Stone duality. Graph inverse semi-

groups are a generalisation of the polycyclic monoids. The C∗-algebra associated to a

graph inverse semigroup is then the Cuntz-Krieger algebra, and again one can use the

Cuntz-Krieger semigroups, the distributive completions of graph inverse semigroups,

to construct the Cuntz-Krieger algebras. Leavitt path algebras ( [117]) are the alge-

bras generated in the same way as the Cuntz-Krieger algebras without requiring one

ends up with a C∗-algebra. It has been shown in [7] that these are Morita equivalent

to the Cuntz-Krieger algebras. Lawson [68] has introduced AF-monoids as the inverse

semigroup counterpart to AF-algebras [119].

The aim of Chapter 4 of this thesis is to define a functor K from the category of

orthogonally complete inverse semigroups to the category of abelian groups, in analogy

with the K0-group of algebraic K-theory. Other homological approaches to inverse

semigroups include those in [42], [67], [86]. The K-theory of C∗-algebras associated to

inverse semigroups has previously been investigated in [34], [91] and [100]. Standard

references on K-theory include [9], [19] and [108]. We will give a brief overview of

some aspects of topological and algebraic K-theory in Section 1.4. K-theory was

originally introduced by Grothendieck in the study of coherent sheaves over algebraic

varieties. Atiyah and Hirzebruch then introduced topological K0-groups by observing

that vector bundles over manifolds are in some sense akin to coherent sheaves over

algebraic varieties. The Serre-Swan theorem then says that these vector bundles

are in one-one correspondence with the finitely generated projective modules of a

C∗-algebra of continuous functions. This then gave rise to algebraic and operator

K-theories. It is also possible to define higher K-groups. K-theory is used in the

classification of topological spaces, rings and operator algebras. The author believes
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Chapter 1: Introduction

that the classification of semigroup C∗-algebras by their K0-groups is really a K-

theoretic classification of inverse semigroups. We will see that if S is a (unital)

Boolean algebra then K(S) will be isomorphic to (topological) K0(B(S)), where B(S)

denotes the corresponding Boolean space and if CKG is the Cuntz-Krieger semigroup

of a graph G then K(CKG) will be isomophic to (operator) K0(OG). Topological

K-theory is used in the study of characteristic classes in differential topology and

operator K-theory is employed in Connes’ programme of non-commutative differential

geometry ( [31]). Operator K-theory is also used in the gap-labelling theory of tilings

( [11], [18], [36], [55], [56], [57], [58], [60], [59], [61]). It is believed that it might be

possible to describe this gap-labelling theory in terms of the tiling semigroups by

using inverse semigroup K-theory.

An inverse semigroup S is a semigroup such that for each element s ∈ S there

exists a unique element s−1 ∈ S with ss−1s = s and s−1ss−1 = s−1. Inverse semi-

groups were introduced independently by Viktor Wagner and Gordon Preston in the

1950’s. In the same way that we can think of groups as describing symmetry, we can

view inverse semigroups as describing partial symmetry. The idea here is that each

element of the semigroup can be thought of as describing a bijective map from part

of a structure to another part of the structure. For example, if this structure is a

set, then our inverse semigroup is simply a subsemigroup of the symmetric inverse

monoid on that set. In fact, the Wagner-Preston representation theorem says that

every inverse semigroup embeds in a symmetric inverse monoid. This can be thought

of as being analogous to Cayley’s theorem for groups. Another example of our semi-

group describing partial symmetry is when our structure is a topological space and

our inverse semigroup is a pseudogroup of transformations of this space. Associated

with a pseudogroup of transformations one has the groupoid of germs of the action.

This is an example of how one can naturally associate topological groupoids to in-

verse semigroups, and Paterson’s universal groupoid is a generalisation of this idea.

Some of the connections between inverse semigroups and topological groupoids can

be thought of as non-commutative versions of the natural dualities between certain

classes of lattice-like algebraic structures and discrete topological spaces. These du-

alities are collectively known as Stone dualities, named in honour of Marshall Stone

who introduced the original example relating Boolean algebras and Boolean spaces

( [50]). The important point here is that an inverse semigroup comes equipped with

a natural partial order. We say s ≤ t if s = ts−1s. In the case where these are maps

on a set, this should be interpreted as saying that the domain of s is a subset of the

domain of t, and that t restricted to this subset is equal to s. The set of idempotents

E(S) of a semigroup S forms a meet semilattice, where the natural partial order on

E(S) is given by e ≤ f if and only if e = ef , so that in general the product ef of

elements e, f ∈ E(S) should be thought of as their order-theoretic meet (greatest

6



Chapter 1: Introduction

lower bound). Given an element s ∈ S there are two idempotents which we associate

with s: the range of s given by r(s) = ss−1 and the domain of s given by d(s) = s−1s.

We write e
s→ f to mean e = d(s) and f = r(s). In terms of the symmetric monoid

this is saying that the set-theoretic domain of s has identity map on this set given by

s−1s and likewise for the range of s. All the inverse semigroups we will be considering

will have a zero: an element 0 with 0 = 0s = s0 for all s ∈ S. This will be the

least element in the natural partial order. We will say that two elements s, t ∈ S

are orthogonal, and write s ⊥ t, if st−1 = s−1t = 0. Again, thinking in terms of the

symmetric inverse monoid, this means that the domains and ranges of s and t do

not intersect. An equivalent condition for elements s, t ∈ S to be orthogonal is that

d(s)∧d(t) = 0 and r(s)∧ r(t) = 0. We will denote, if it exists, the least upper bound

(join) of two elements s, t ∈ S by s ∨ t. We will call an inverse semigroup with 0

orthogonally complete if every pair of orthogonal elements has a join and multiplica-

tion distributes over finite orthogonal joins. It was shown in [74] that every inverse

semigroup S with 0 has an orthogonal completion; that is, we take the semigroup S

and force every pair of orthogonal elements to have a join in such a way that we end

up with an orthogonally complete inverse semigroup.

1.2 Categories and groupoids

A few remarks might now be helpful to clarify the notation and terminology which

will be used with respect to categorical constructions found in this thesis. We will

treat small and large categories in different ways. All categories in Chapter 3 will

be assumed to be small and all categories in Chapter 4 will be assumed to be large.

A small category is one such that the classes of objects and arrows of the category

are actually sets. For us, a large category will simply be any category which is not

assumed to be small. That is, a large category may in fact be small. The point of

this distinction is that the objects of a large category will be important whereas we

will merely be interested in the arrows of a small category. Large categories will be

denoted by bold font, as in C. The class of objects of the category C will be denoted

by Obj(C) and the class of arrows will be denoted by Arr(C). The class of arrows

from an object A ∈ Obj(C) to an object B ∈ Obj(C) will be denoted C(A,B). Our

categories will mainly be locally small ; that is, the classes C(A,B) are all sets, in

which case we call C(A,B) the hom-set between A and B.

We will treat small categories as algebraic structures, i.e. as sets with partially

defined binary operations. The elements of these small categories are the arrows, and

we will replace objects by identity arrows. Each arrow x has a domain, denoted by

d(x), and a codomain denoted by r(x), both of these are identities and x = xd(x) =

r(x)x. We will write this as d(x)
x→ r(x). The set of all identity arrows of a small

7



Chapter 1: Introduction

category C will be denoted by C0 and the set of all non-identity arrows by C1, so that

C is the disjoint union of C0 and C1. Given an identity e the set eCe of all arrows

that begin and end at e forms a monoid called the local monoid at e. An arrow x is

invertible if there is an arrow x−1 such that x−1x = d(x) and xx−1 = r(x). We call the

element x−1 the inverse of x; this element is necessarily unique. We shall say that a

pair of identities e and f in a category C are strongly connected if and only if eCf 6= ∅
and fCe 6= ∅. A small category in which every arrow is invertible is called a groupoid.

We denote the subset of invertible elements of C by G(C). This forms a groupoid. If

G(C) = C0 then we shall say that the groupoid of invertible elements is trivial. We

say that a category C has trivial subgroups if the only invertible elements in the local

monoids are the identities. A category C will be said to be totally disconnected if

r(x) = d(x) for all x ∈ C. This means that the category C is just a disjoint union

of monoids. Two categories C and D are isomorphic if there is a bijective functor

f : C → D (so that f |C0 and f |C1 are both bijections).

A directed graph G is a collection of vertices G0 and a collection of edges G1 together

with two functions d, r : G1 → G0 called the domain and the range, respectively. All

graphs in this thesis will be assumed to be directed. Two edges x and y are said to

be composable if r(y) = d(x). A route in G is any sequence of edges x1 . . . xn such

that xi and xi+1 are composable for all i = 1, . . . , n. The free category G∗ generated

by the directed graph G is the category with G∗0 = {1v : v ∈ G0}, where we have again

identified identity arrows with objects of the category and the non-identity arrows,

G∗1 , is the set of all non-empty routes in G and composition of composable routes is

by concatenation. We will view G1 as being a subset of G∗1 and we will identify G0 and

G∗0 . Given an edge x in a graph G we can consider the formal reversed edge x−1 which

has d(x−1) = r(x) and r(x−1) = d(x). A path in G consists of a sequence xε11 . . . x
εn
n

where each xi is an edge, εi is either 1 or −1 and for each i we have r(x
εi+1

i+1 ) = d(xεii ).

We will say a path is reduced if it has no subpath of the form xx−1 or x−1x. Two

paths will be considered equivalent if they can be reduced to the same path. The free

groupoid G† generated by the directed graph G will have G†0 = {1v : v ∈ G0} and the

non-identity arrows are all reduced paths in G. Multiplication in G† will consist of

concatenation of composable reduced paths plus reduction if possible. Observe that

if a graph G has a single vertex and has edge set G1 = X then the free category on

G is isomorphic to the free monoid X∗ on the set X and the free groupoid on G is

isomorphic to the free group FG(X) on the set X.

A category presentation for a small category C is written as follows

C = 〈G|xi = yi, xi, yi ∈ G∗, i ∈ I〉 ,

where G is a directed graph, I is an index set, elements of C are equivalence classes

8
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of elements of G∗, d(xi) = d(yi) and r(xi) = r(yi) for each i ∈ I, and the relation

xi = yi tells us that every time we have a route wxiv in G then this is equivalent to

the route wyiv and vice versa.

In a similar manner a groupoid presentation for a groupoid G is written as follows

G = 〈G|xi = yi, xi, yi ∈ G†, i ∈ I〉

where G is a directed graph, I is an index set, elements of G are now equivalence

classes of elements of G†, d(xi) = d(yi) and r(xi) = r(yi) for each i ∈ I, and the

relation xi = yi tells us that every time we have an element wxiv in G† then this

equivalent to wyiv and vice versa.

It is possible by being careful to give presentations of categories and groupoids

where d(xi) 6= d(yi) (see for example [44] or [95] for details) but we will not often be

considering this situation. In order to avoid confusion whenever both category and

groupoid presentations are being used we may denote category presentations by 〈|〉C
and groupoid presentations by 〈|〉G.

Given a small category C there is a (unique up to isomorphism) groupoid U(C)

and functor u : C → U(C) such that if f : C → G is any functor from C to a

groupoid G then there is a unique functor g : U(C) → G such that gu = f . We

call the groupoid U(C) the groupoid of fractions of C ( [40]). Some authors use

the terminology universal groupoid (and hence our usage of the notation U(C)), but

this phrase is used to describe a slightly different construction in [44] and [95], and

there is in addition Paterson’s universal groupoid of an inverse semigroup, so to avoid

confusion we will always call it the groupoid of fractions. Other authors use the term

groupoid of fractions as a synonym for what [40] calls a category of left fractions which

is the situation where every element of the groupoid of fractions U(C) has the form

x−1y for some x, y ∈ C. In most of our examples what we are calling the groupoid of

fractions is not a category of left fractions.

The following is a rephrased version of how to construct the groupoid of fractions

found in [40] in terms of our language of category presentations.

Proposition 1.2.1. Let

C = 〈G|R〉C

be a category given by category presentation and let

G = 〈G|R〉G

be the groupoid generated by the same generating graph and relations but such that we

are working with a groupoid presentation. Then G is isomorphic to the groupoid of

fractions U(C) of C.

9
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Proof. Let H be the same graph as G except with all edges reversed. We will identify

the vertices of G and H. The element x ∈ G1 will have corresponding element x−1 in

H1 so that d(x) = r(x−1) and d(x−1) = r(x). Let M be the union of the graphs G
and H. Observe that G can be given in terms of a category presentation as:

G = 〈M|R, S〉C ,

where S denotes the set of relations saying xx−1 and x−1x are identities for each

x ∈ G1. We have a functor u : C → G given by u(x) = x.

Now let f : C → H be any functor from the category C to a groupoid H. Then

since f is a functor we must be able to write H in terms of the following category

presentation:

H = 〈N |R, S, T 〉C ,

where M is a subgraph of N and T are any additional relations needed to define H

(for example identifying some of the edges ofM). We have assumed that f will map

x ∈ G1 to x ∈ N1.

We now define the functor g : G→ H to be the one which maps elements of M1

to elements ofM1 in N1. Observe that gu = f . To see that g is unique, suppose that

h : G → H is a functor such that hu = f . Then h must agree with g on elements of

G1. Now let x ∈ G1 viewed as an element of G. Then

d(x) = h(x−1x) = h(x−1)h(x) = h(x−1)g(x)

and so h(x−1) = (g(x))−1 = g(x−1). Thus g = h.

Since universal groups are unique up to isomorphism, G and U(C) must be iso-

morphic as categories.

In particular, if M is a monoid given by monoid presentation, then the group G

with the same presentation instead viewed as a group presentation will be the group

of fractions of M .

Now suppose G is a groupoid given by groupoid presentation G = 〈G|R(G)〉 ,

where here we are denoting the relations of G by R(G) and suppose there is an index

set I, subgroups Hi : i ∈ I of G and functors αi : Hi → G. Let ei, fi ∈ G0 be such

that Hi ⊆ eiGei and Ki = αi(Hi) ⊆ fiGfi. Define H to be the graph with H0 = G0

and

H1 = G1 ∪ {ti|i ∈ I}

where r(ti) = ei and d(ti) = fi. We will say that Γ is a groupoid HNN-extension of

G if Γ is given by the groupoid presentation:

Γ = 〈H|R(G), xti = tiαi(x)∀x ∈ Hi, i ∈ I〉 .

10
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We call the arrows ti stable letters. Note that since αi is injective it follows that

Ki is a subgroup of G isomorphic to Hi. Groupoid HNN-extensions have previously

been considered by Moore ( [95]) and Gilbert ( [41]). In the case of [95], H is a

wide subgroupoid of G rather than being a subgroup and the situation where H is

an arbitrary subgroupoid of G is considered in [41]. In both cases, they define the

HNN-extension as a pushout of a certain diagram of functors. It can be checked that

their definition is equivalent to the one given here when H is a subgroup of G. If G

is a group then Γ is a group HNN-extension.

Let G be a groupoid, H a subgroup of G with identity e ∈ G0 and let

K = {g ∈ G|d(g) = e} .

Then a transversal T of H is a subset of K such that

K =
∐
g∈T

gH.

Each set gH will have cardinality equal to the cardinality of H. Furthermore, the

cardinality of T is independent of the choice of representatives so we define |G : H| =
|T |.

The following is a straightforward generalisation of Higgins’ unique normal form

theorem for fundamental groupoids ( [45]), as stated without proof as Theorem 2.1.26

in [95].

Proposition 1.2.2. Let

Γ = 〈H|R(G), xti = tiαi(x)∀x ∈ Hi, i ∈ I〉

be a groupoid HNN-extension of a groupoid G, for each subgroup Hi let Ti be a

transversal of Hi in G and for each subgroup Ki = α(Hi) let T ′i be a transversal

of Ki in G. Then each element g of Γ can be written uniquely in the form

g = g1t
ε1
i1
g2t

ε2
i2
· · · gmtεmimu

where εk ∈ {−1, 1}, gk ∈ Tik if εk = 1 and gk ∈ T ′ik if εk = −1, u ∈ G is arbitrary

subject to the condition that the domains and ranges match up appropriately and if

tik = tik+1
and εk + εk+1 = 0 then gk+1 is not an identity.

Proof. Let g ∈ Γ. Then g can definitely be written in the form

g = s1t
ε1
i1
s2t

ε2
i2
· · · smtεmimu,

where sk, u ∈ G are arbitrary but such that all the domains and ranges match up

11
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correctly. If ε1 = 1 then we can write s1 uniquely in the form

s1 = g1h1

where g1 ∈ Ti1 and h1 ∈ Hi1 . We can then rewrite g as

g = g1ti1αi1(h1)s2t
ε2
i2
· · · smtεmimu.

If ε1 = −1 then we can write s1 uniquely in the form

s1 = g1h1

where g1 ∈ T ′i1 and h1 ∈ Ki1 . We can then rewrite g as

g = g1t
−1
i1
α−1
i1

(h1)s2t
ε2
i2
· · · smtεmimu.

We then continue along in a similar manner, by rewriting αik(hk)sk+1 = gk+1hk+1

where hk+1 ∈ Tik+1
if εk+1 = 1 and hk+1 ∈ T ′ik+1

if εk+1 = −1, and then moving the

hk+1 beyond tik+1
by applying αik+1

or its inverse, while at the same time cancelling

any pair tkt
−1
k or t−1

k tk. We now wish to prove that these normal forms are unique

normal forms. We will do this using an Artin-van der Waerden type argument. Let

us denote by X the set of normal form words (where words which are equal in Γ are

not equated) and let Xa be the set of normal forms w ∈ X with r(w) = a. We can

define a groupoid B as follows. B0 will just be equal to Γ0 (and therefore also to

G0). Elements of B1 will be bijections π : Xa → Xb, where we define d(π) = a and

r(π) = b in B. It is readily verified that this gives B the structure of a groupoid.

We will define a functor Γ → B. For g ∈ G with d(g) = a, r(g) = b let us define

πg : Xa → Xb to be the map with

πg(g1t
ε1
i1
· · · gmtεmimu) = g′1t

δ1
j1
· · · gntδnjnv

where what we have done is premultiplied g1t
ε1
i1
g2t

ε2
i2
· · · gmtεmimu by g and then rewritten

this in normal form using the algorithm described above. Observe that πgh = πgπh

for g, h ∈ G with d(g) = r(h). In particular, πgg−1 = πr(g) so that πg ∈ B for each

g ∈ G. Define πtk : Xfk → Xek as follows. We define

πtk(t
−1
k g1t

ε1
i1
· · · gmtεmimu) = g1t

ε1
i1
· · · gmtεmimu.

Otherwise we define

πtk(g1t
ε1
i1
· · · gmtεmimu) = tkg1t

ε1
i1
· · · gmtεmimu.

12
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In a similar manner we define πt−1
k

: Xek → Xfk . We define

πt−1
k

(tkg1t
ε1
i1
· · · gmtεmimu) = g1t

ε1
i1
· · · gmtεmimu.

Otherwise we define

πt−1
k

(g1t
ε1
i1
· · · gmtεmimu) = t−1

k g1t
ε1
i1
· · · gmtεmimu.

Observe that πtkπt−1
k

= πtkt−1
k

= πek and πt−1
k
πtk = πt−1

k tk
= πfk so that πtk , πt−1

k
∈ B1

for each k ∈ I. We will now check that πhπtk = πtkπαk(h) for every h ∈ Hk. We have

two cases. First,

πh(πtk(t
−1
k g1t

ε1
i1
· · · gmtεmimu)) = πh(g1t

ε1
i1
· · · gmtεmimu)

= g′1t
δ1
j1
· · · gntδnjnv,

where g′1t
δ1
k1
· · · gntδnknv is hg1t

ε1
i1
· · · gmtεmimu reduced using the algorithm described above.

On the other hand, noting that αk(h)t−1
k = t−1

k h,

πtk(παk(h)(t
−1
k g1t

ε1
i1
· · · gmtεmimu)) = πtk(t

−1
k g′1t

δ1
k1
· · · gntδnknv)

= g′1t
δ1
j1
· · · gntδnjnv.

Now the second case:

πh(πtk(g1t
ε1
i1
· · · gmtεmimu)) = πh(tkg1t

ε1
i1
· · · gmtεmimu)

= tkπρk(h)(g1t
ε1
i1
· · · gmtεmimu)

= πtk(πρk(h)(g1t
ε1
i1
· · · gmtεmimu)).

Thus πhπtk = πtkπαk(h) for every h ∈ Hk. It follows that the map π : Γ → B defined

by

π(s1t
ε1
i1
· · · smtεmimu) = πs1πtε1i1

· · · πsmπtεmimπu

is a functor. Finally, to see that the normal forms are unique note that if

g1t
ε1
i1
· · · gmtεmimu, g

′
1t
δ1
j1
· · · gntδnjnv ∈ Γ

are elements written in normal form both with domain e ∈ Γ0 then

π(g1t
ε1
i1
· · · gmtεmimu)(e) = g1t

ε1
i1
· · · gmtεmimu

13
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while

π(g′1t
δ1
j1
· · · gntδnjnv)(e) = g′1t

δ1
j1
· · · gntδnjnv

and thus they are mapped to different elements of B, so must be distinct in Γ.

1.3 A brief foray into Bass-Serre theory

We will now give a brief outline of some aspects of Bass-Serre theory. Our definition of

graph of groups is taken from [95], except that we do not assume that the underlying

graph is connected. The definition of [109] is equivalent. For us a graph of groups GG
will consist of:

• A graph G.

• An involution t 7→ t̄ on the edges of G.

• A group Ga for each vertex a ∈ G0.

• A subgroup Gt ≤ Gr(t) for each edge t ∈ G0.

• An isomorphism φt : Gt → Gt̄ for each edge t ∈ G1 such that φt̄ = φ−1
t .

A path in GG consists of a sequence g1t1g2t2 · · · gmtmgm+1 where tk ∈ G1 for each

k, gk ∈ Gr(tk) for k = 1, . . . ,m and gk+1 ∈ Gd(tk) for k = 1, . . . ,m. We allow

for the case m = 0, i.e. paths of the form g ∈ Ga for some a ∈ G0. We write

d(g1t1g2t2 · · · gmtmgm+1) = d(tm) and r(g1t1g2t2 · · · gmtmgm+1) = r(t1). For g ∈ Ga

viewed as a path we write d(g) = r(g) = a. Let ∼ be the equivalence relation on

paths in GG generated by pt̄htq ∼ pφt(h)q, where p, q are paths and h ∈ Gt. We say

that pφt(h)q is a reduction of pt̄htq. It can be shown that every path reduces to a

unique fully reduced path.

Given a graph of groups GG, we define its fundamental groupoid Γ(GG) ( [45]) to

be the groupoid whose arrows correspond to equivalence classes of ∼. Composition

of arrows is simply concatenation of composable paths multiplying group elements

at each end. The fundamental groupoid of a graph of groups is precisely a groupoid

HNN-extension of a totally disconnected groupoid.

To see this, suppose

Γ = 〈H|R(G), hti = tiαi(h)∀h ∈ Hi, i ∈ I〉

is a groupoid HNN-extension of a totally disconnected groupoid G. Then the associ-

ated graph of groups GG will have vertices corresponding to the identities of Γ. The

group at the vertex corresponding to the identity a ∈ G0 will be the local monoid

aGa. The edges of GG will be the generating elements ti and their inverses. The

14
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involution in the graph will map ti to t−1
i and t−1

i to ti. The groups Hti associated

with the edges ti will be the groups Hi and the groups Ht−1
i

associated to the edges

t−1
i will be the groups αi(Hi). We define φti = αi and φt−1

i
= α−1

i . We then see that

the fundamental groupoid of GG will be isomorphic to Γ.

On the other hand, suppose GG is a graph of groups. We let G be the disjoint

union of all the vertex groups of GG viewed as a totally disconnected groupoid with

identities corresponding to the vertices of GG. For each pair {t, t̄} where t is an edge

in GG we pick one edge; these edges will be our arrows ti. We define Hi = Gti and let

αi = φti . Then it is easy to see that the groupoid HNN-extension Γ of G with respect

to the subgroups Hi, stable letters ti and monomorphisms αi will be isomorphic to

the fundamental groupoid of GG.

Let Γ(GG) be the fundamental groupoid of a graph of groups GG and for each edge

t ∈ G1 let Tt be a transversal of the left cosets of Ht in Gr(t). Using the normal form

result Proposition 1.2.2 we see that each element of Γ(GG) can be written uniquely in

the form

g1t1g2t2 · · · gmtmu

where g1t1g2t2 · · · gmtmu is a path in GG, gi ∈ Tti for i = 1, . . . ,m and u ∈ Gd(tm) is

arbitrary, subject to the condition that if gi = d(ti−1) = r(ti) then ti−1 6= ti.

If GG is a graph of groups and a is a vertex in G (which we have identified with

the identity element of Ga) then the fundamental group of GG at a, denoted π1(GG, a),

is aΓ(GG)a, the local group at a, i.e. all paths in GG which start and end at a.

Fundamental groups with respect to vertices in the same connected component of G
will be isomorphic. If GG has a single vertex a then π1(GG, a) = Γ(GG) will be a group

HNN-extension, and every group HNN-extension is the fundamental group of a graph

of groups with a single vertex.

We have seen that given a graph of groups GG we can construct its fundamental

groupoid Γ(GG) and the fundamental groups π1(GG, a). It will now be shown how the

groups π1(GG, a) have natural actions on trees.

Let GG be a graph of groups, let a be a vertex of GG and let Pa denote the set

of paths in GG with range a. For p, q ∈ Pa we will write p ≈ q if d(p) = d(q) and

p ∼ qg for some g ∈ Gd(p). This defines an equivalence relation on Pa. We will denote

the ≈-equivalence class containing the path p by [p]. We now define the (undirected)

Bass-Serre tree T with respect to the vertex a as follows. The vertices of T are ≈-

equivalence classes of paths in Pa. Two vertices [p], [q] ∈ T0 are connected by an edge

if there are g ∈ Gd(p) and t ∈ G1 such that

q ≈ pgt.

15
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It can be verified that T is indeed a tree. We will now define an action of π1(GG, a)

on T0 by

g · [p] = [gp].

This will then naturally extend to an action of π1(GG, a) on T .

Let us now consider these ideas from the point of view of groupoid HNN-extensions.

By definition two paths p, q in GG are ∼-related if they correspond to the same el-

ements of Γ(GG). So let Γ be an arbitrary groupoid HNN-extension of a totally

disconnected groupoid G, let a ∈ Γ0 = G0 and let

Pa = {g ∈ Γ|r(g) = a} .

For p, q ∈ Pa, we define p ≈ q if p = qg for some g ∈ G. This defines an equivalence

relation on Pa and we denote the ≈-equivalence class containing p by [p]. We now

define an undirected tree T with respect to the identity a as follows. The vertices of

T will correspond to ≈-equivalence classes of elements of Pa. Two vertices [p], [q] ∈ T0

are connected by an edge if

q = pgtεih

for some g, h ∈ G, i ∈ I, ε ∈ {−1, 1}. We then have an action of aΓa on T0 given by

g · [p] = [gp]

which naturally extends to an action of aΓa on T . We can in fact make the tree T

directed by specifying that if [p], [q] ∈ T0 then there is an edge s ∈ T1 with r(s) = [p]

and d(s) = [q] if q = pgtih for some g, h ∈ G, i ∈ I. It is then clear that this

construction works for an arbitrary groupoid HNN-extension, so we do not require

that G is totally disconnected.
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1.4 Topological and algebraic K-theory

Let us begin by recalling the definition of the Grothendieck group of a commutative

semigroup. If S is a commutative semigroup then there is a unique (up to isomor-

phism) commutative group G = G(S), called the Grothendieck group of S, and a

homomorphism φ : S → G, such that for any commutative group H and homomor-

phism ψ : S → H, there is a unique homomorphism θ : G→ H with ψ = θ◦φ. In fact

G is really a functor from commutative semigroups to abelian groups. It is easy to

check that the Grothendieck group of a commutative semigroup is precisely its group

of fractions.

Let us now briefly outline topological and algebraic K-theory in order to motivate

the theory of Chapter 4. Our treatment follows that of [108]. Suppose X is a compact

Hausdorff topological space (it is possible to extend the definition of K0-group to

locally-compact spaces, but we will leave that aside for the moment). Let F be either

R or C. An F-vector bundle consists of a topological space E and a continuous open

surjective map p : E → X, with extra structure defined by the following:

• Each fibre p−1(x) of p for x ∈ X is a finite-dimensional vector space over F.

• There are continuous maps E×E → E and F×E → E which restrict to vector

addition and scalar multiplication on each fibre.

We will denote such a vector bundle by E
p→ X or by (E, p). One can consider the

category VecFX of all F-vector bundles over X. The morphisms in this category are

continuous maps f : (E, p)→ (F, q) such that they are linear on each fibre and such

that qf = p. The category has a binary operation ⊕ called Whitney sum defined on

objects (E, p), (F, q) by

E ⊕ F = {(x, y) ∈ E × F |p(x) = q(y)}

with p⊕ q : E ⊕ F → X given by (p⊕ q)(x, y) = p(x) = q(y).

For a space X and n ∈ N the trivial vector bundle of rank n is (X ×Fn, πn) where

πn : X×Fn → X is given by πn(x, z) = z. A locally trivial F-vector bundle is a vector

bundle (E, p) such that for each x ∈ X there is an open set U containing x and vector

bundle isomorphism from p−1(U)
p|p−1(U)−→ U to a trivial bundle of some rank over U .

The rank of such a bundle (E, p) is then a continuous function rankE : X → N given

by rankE(x) = dim(p−1(x)).

Let us denote the set of locally trivial F-vector bundles over X by VF(X). Then

(VF(X),⊕) is a commutative monoid with identity the trivial vector bundle of rank

0. We define

K0
F
(X) = G(VF(X)).
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We will only be concerned with complex topological K-theory in this thesis so we

write K0(X) = K0
C
(X).

There is an alternative way of computing the K0-group of a compact Hausdorff

space X. Let C(X) be the set of complex-valued continuous functions on X. C(X)

has the structure of a commutative ring under pointwise addition and multiplication

(in fact it can be given the structure of a C∗-algebra). Let ΓX be the set of finitely

generated projective modules of C(X). Then (ΓX ,⊕) is a commutative monoid. In

fact, we have the following theorem:

Theorem 1.4.1. (Serre-Swan) There is a monoid isomorphism φ : VC(X)→ ΓX .

It then follows that K0(X) ∼= G(ΓX). This then leads to the definition of algebraic

K-theory. If we let Proj(R) denote the set of finitely generated projective modules

of a ring R then we define K0(R) = G(Proj(R)). Viewing C(X) as a C∗-algebra we

can give another definition of K0(X) in terms of this structure, and when generalised

this gives operator K-theory.

It is possible give an alternative description of algebraic K-theory. Let Mn(R) be

the set of n×n matrices over R and let M(R) denote the set of N by N matrices over

R with finitely many non-zero entries. One can think of M(R) as being the union of

all the Mn(R). Given an idempotent matrix E ∈M(R), viewed as a homomorphism

Rn → Rn, the image of E is a projective R-module. On the other hand if P is

a projective module, there is an idempotent matrix E with image P . We will say

idempotent matrices E,F ∈ Mn(R) are similar, and write E ∼ F , if E = XY and

F = Y X for some matrices X, Y ∈M(R). This will define an equivalence relation on

the set of idempotent matrices Idem(R). We have the following proposition:

Proposition 1.4.2. Idempotent matrices E,F ∈ Idem(R) define the same projective

module if and only if E ∼ F .

Denote the set of idempotent matrices by Idem(R) and define a binary operation

on Idem(R)/ ∼ by

[E] + [F ] = [E ′ + F ′],

where if a row in E ′ has non-zero entries then that row in F ′ has entries only zeros,

similarly for columns of E ′, and for rows and columns of F ′, and such that E ′ ∼ E

and F ′ ∼ F . We then have the following result:

Proposition 1.4.3. This is a well-defined operation and the monoids Idem(R)/ ∼
and ProjR are isomorphic.

This then gives us an alternative way of viewing K0(R). We have

K0(R) = G(Idem(R)/ ∼).
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Chapter 2

Left Rees Monoids

2.1 Outline of chapter

The aim of this chapter is to study left Rees monoids in detail. We will consider the

correspondence found in [76] between left Rees monoids and self-similar group actions

in Section 2.2. In Section 2.3 we will see that left Rees monoids and monoid HNN-

extensions of groups are one and the same thing. We will then use this to investigate

the structure of left Rees monoids in more detail. In Section 2.4 we will show that the

group of fractions of a symmetric Rees monoid is a Zappa-Szép product of groups.

It will also be shown that every Rees monoid with finite group of units is in fact a

symmetric Rees monoid. From this we deduce that a group HNN-extension of a finite

group G is isomorphic to a Zappa-Szép product of a free group and the group G.

Sections 2.5 and 2.6 are devoted to the study of Rees monoids arising from fractals.

In Section 2.7 we will look at examples of left Rees monoids described in terms of

automata. Finally, in Section 2.8, we will briefly explore the representation theory of

left Rees monoids.

2.2 The correspondence

All unproved assertions in this section are proved in [76]. Recall from the introduction

that a monoidM will be called a left Rees monoid if it satisfies the following conditions:

(LR1) M is a left cancellative monoid.

(LR2) M is right rigid: incomparable principal right ideals are disjoint.

(LR3) Each principal right ideal is properly contained in only a finite number of

principal right ideals.

We shall always assume that left Rees monoids are not groups. We define right

Rees monoids dually. Every left Rees monoid M admits a surjective homomorphism
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Chapter 2: Left Rees Monoids

λ : M → N such that λ−1(0) = G(M), the group of units of M . Any such homomor-

phism we call a length function. Such functions can always be chosen so that their

value on generators of maximal proper principal right ideals is one. Left Rees monoids

with trivial groups of units are precisely the free monoids, and so our monoids are

natural generalisations of free monoids. It is worth recalling here that a free monoid

X∗ on a set X consists of all finite sequences of elements of X called strings, including

the empty string ε, which we often denote by 1, with multiplication given by concate-

nation of strings. The length |x| of a string x is the total number of elements of X

that occur in it. If x = yz then y is called a prefix of x. A left Rees monoid which is

cancellative is automatically a right Rees monoid, and a monoid which is both a left

Rees monoid and a right Rees monoid is called a Rees monoid.

We will now describe the construction of the Zappa-Szép product of two monoids.

These were first considered by Zappa ( [123]) for groups and then later developed in

a series of papers by Szép, beginning with [115]. Kunze then considered the setup for

two semigroups ( [64]); in this situation the lack of identities means one only uses the

first 4 of the axioms listed below. Our treatment follows that of Wazzan’s PhD thesis

( [121]).

We will say two monoids A and S form a matched pair if there are two maps

A × S → S denoted (a, s) 7→ a cot s and A × S → A denoted (a, s) 7→ a|s satisfying

the following eight axioms, for a, b ∈ A, s, t ∈ S and 1A, 1S denoting the identities,

respectively, of A and S:

(ZS1) (ab) · s = s.

(ZS2) a · (st) = (a · s)(a|s · t).

(ZS3) a|st = (a|s)|t.

(ZS4) (ab)|s = a|b·sb|s.

(ZS5) a · 1S = 1S.

(ZS6) a|1S = a.

(ZS7) 1A · s = s.

(ZS8) 1A|s = 1|A.

Given a matched pair (A, S) denote by S ./ A the Cartesian product of S and A

endowed with the following binary operation:

(s, a)(t, b) = (s(a · t), (a|t)b).
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We call this the Zappa-Szép product of S and A. One can check that S ./ A is in fact

a monoid with identity (1S, 1A), the sets

S ′ = {(s, 1A)|s ∈ S}

and

A′ = {(1S, a)|a ∈ A}

are isomorphic, respectively, to S and A as monoids and that S ./ A = S ′A′ uniquely.

On the other hand, if M is a monoid and S, A are submonoids of M such that

M = SA uniquely then one can define maps A× S → S and A× S → A by

as = (a · s)(a|s)

and one can check that these maps will satisfy (ZS1) - (ZS8).

Thus we have the following, originally proved in [64]:

Theorem 2.2.1. Let M be a monoid and let A, S be submonoids of M . Then

M = SA uniquely if and only if there are maps A×S → S and A×S → A satisfying

(ZS1) - (ZS8) such that M ∼= S ./ A.

We will be interested in a particular case of Zappa-Szép products where A is a

group, now denoted G, and S is the free monoid on a set X. We will identify the

identities of G and X∗ and we will now relabel the axioms as follows for this special

case:

(SS1) 1 · x = x.

(SS2) (gh) · x = g · (h · x).

(SS3) g · 1 = 1.

(SS4) g · (xy) = (g · x)(g|x · y).

(SS5) g|1 = g.

(SS6) g|xy = (g|x)|y.

(SS7) 1|x = 1.

(SS8) (gh)|x = g|h·xh|x.

We will then say that there is a self-similar action of the group G on the free monoid

X∗. When we refer to a ‘self-similar group action (G,X)’, we shall assume that the

action and restriction have been chosen and are fixed. It is easy to show that such

an action is length-preserving, in the sense that |g · x| = |x| for all x ∈ X∗, and
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prefix-preserving, in the sense that x = yz implies that g ·x = (g · y)z′ for some string

z′.

The following was proved in [76].

Lemma 2.2.2. Let (G,X) be a self-similar group action.

(i) (g|x)−1 = g−1|g·x for all x ∈ X∗ and g ∈ G.

(ii) (g−1|x)−1 = g|g−1·x for all x ∈ X∗ and g ∈ G.

If x ∈ G then Gx is the stabiliser of x in G with respect to the action and so a

subgroup of G. The following lemma will play a useful role in what follows.

Lemma 2.2.3. Let (G,X) be a self-similar group action.

(i) The function φx : Gx → G given by g 7→ g|x is a homomorphism.

(ii) Let y = g · x. Then Gy = gGxg
−1 and

φy(h) = g|xφx(g−1hg)(g|x)−1.

(iii) If φx is injective then φg·x is injective.

(iv) φx is injective for all x ∈ X iff φx is injective for all x ∈ X∗.

(v) The function ρx from G to G defined by ρx : g 7→ g|x is injective for all x ∈ X iff

it is injective for all x ∈ X∗.

(vi) The function ρx from G to G defined by ρx : g 7→ g|x is injective for all x ∈ X
iff for all x ∈ X, if g|x = 1 then g = 1.

(vii) The function φx is surjective for all x ∈ X iff it is surjective for all x ∈ X∗.

(viii) The function ρx from G to G given by ρx : g 7→ g|x is surjective for all x ∈ X
iff it is surjective for all x ∈ X∗.

Proof. (i) Let g, h ∈ Gx. Then

φx(gh) = (gh)|x = g|h·xh|x = g|xh|x = φx(g)φx(h),

using (SS8), as required.

(ii) Let h ∈ gGxg
−1. Then h = gkg−1 for some k ∈ Gx and so

h · y = (gkg−1) · (g · x) = g · (k · x) = g · x = y.
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Thus h ∈ Gy. On the other hand, let h ∈ Gy. Then

(g−1hg) · x = g−1 · y = g−1 · (g · x) = x

and so h ∈ gGxg
−1. If h ∈ Gy then

φy(h) = h|y = (gg−1hgg−1)|g·x = (gg−1hg)|xg−1|g·x = g|xφx(g−1hg)(g|x)−1.

(iii) This follows by (ii) above.

(iv) We need only prove one direction. We prove the result by induction on the

length of x. The result is true for strings of length one by assumption. We assume

the result is true for strings of length n. We now prove it for strings of length n+ 1.

Let y ∈ X∗ be of length n + 1. Then y = zx where z has length n and x has length

one. We prove that φy is injective on Gy. Let h, k ∈ Gy. Then h · y = y = k · y. By

comparing lengths, it follows that h · z = z = k · z and h|z · x = x = k|z · x. Suppose

that φy(h) = φy(k). Then h|y = k|y. By axiom (SS6), we have that (h|z)|x = (k|z)|x.
But h|z, k|z ∈ Gx, and so by injectivity for letters h|z = k|z. Also h, k ∈ Gz, and so

by the induction hypothesis h = k, as required.

(v) Just one direction needs proving. We again prove the result by induction. It

is true for strings of length one by assumption. Let us assume it is true for strings

of length n. Let y ∈ X∗ be a string of length n + 1 and suppose g|y = h|y for some

g, h ∈ G. Then y = zx for some z, x ∈ X∗ with |z| = n and |x| = 1. It follows from

(SS8) that (g|z)|x = (h|z)|x. Since ρx is injective we see that g|z = hz and since ρz is

injective we must have g = h.

(vi) One direction is clear. We prove the other direction. Suppose that for all

x ∈ X, if g|x = 1 then g = 1. We prove that the function from G to G defined by

g 7→ g|x is injective for all x ∈ X. Suppose that g|x = h|x. Then g|x(h|x)−1 = 1. By

Lemma 2.2.2, (h|x)−1 = h−1|h·x. Put y = h · x. Then

1 = g|x(h|x)−1 = (g|h−1·y)(h
−1|y) = (gh−1)|y

by (SS8). By assumption gh−1 = 1 and so g = h.

(vii) Only one direction needs to be proved. We assume the result holds for strings

of length 1. Suppose that the result holds for strings n. Let y be a string of length

n+ 1. Then y = zx where x is a letter and z has length n. Let g ∈ G. Then because

φx is surjective, there exists h ∈ Gx such that φx(h) = g. By the induction hypothesis,

there exists k ∈ Gz such that φz(k) = h. We now calculate

k · y = k · (zx) = (k · z)(k|z · x) = zx = y.
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Thus k ∈ Gy and φy(k) = k|zx = (k|z)|x = h|x = g, as required using axiom (SS6).

(viii) We need only prove one direction. Again we prove by induction. Assume

that ρx is surjective for all x ∈ X. Suppose ρx is surjective for all x of length n. Let

y be a string of length n + 1 so that y = zx for some strings z, x with |z| = n and

|x| = 1 and let h ∈ G be arbitrary. Then there exist g ∈ G with g|x = h and k ∈ G
with k|z = g by the induction hypotheses so that using (SS6) we have

k|y = k|zx = (k|z)|x = g|x = h.

Thus ρy is surjective.

Let M be a left Rees monoid, let G = G(M) be its group of units, let X be a

transversal of the generators of the maximal proper principal right ideals, and denote

by X∗ the submonoid generated by the set X. Then X∗ is free, M = X∗G, and

each element of M can be written uniquely as a product of an element of X∗ and an

element of G. Let g ∈ G and x ∈ X∗. Then gx ∈ M and so can be written uniquely

in the form gx = x′g′ where x′ ∈ X∗ and g′ ∈ G. Define x′ = g · x and g′ = g|x. Then

it is easy to check that this defines a self-similar action of G on X∗.

Let (G,X) be an arbitrary self-smilar group action. On the set X∗ ×G define its

Zappa-Szép product as above by

(x, g)(y, h) = (x(g · y), g|yh).

Then X∗ ×G is a left Rees monoid containing copies of X∗ and G such that X∗ ×G
can be written as a unique product of these copies.

It follows that a monoid is a (non-group) left Rees monoid if and only if it is

isomorphic to a Zappa-Szép product of a free monoid by a group.

In turn, Zappa-Szép products of free monoids by groups determine, and are de-

termined by, self-similar group actions. We have therefore set up a correspondence

between left Rees monoids and self-similar group actions in which each determines

the other up to isomorphism.

Throughout this section let M = X∗G be a left Rees monoid. Define

K(M) = {g ∈ G : gs ∈ sG for all s ∈ S},

a definition due to Rees [105]. This is a normal subgroup of G which we call the kernel

of the left Rees monoid. Left Rees monoids S for which K(M) = {1} are said to be

fundamental. It can be checked that K(M) =
⋂
x∈X∗ Gx, and so a left Rees monoid is

fundamental iff the corresponding group action is faithful.

Let us summarise some facts and notions relating to self-similar group actions

which are described in detail in [98]. A group G acts by automorphisms on a regular
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rooted tree if the action is level-preserving, if it does not move the root and if d(g ·x) =

g · d(x) and r(g · x) = g · r(x) for each edge x. Viewing X∗ as a tree, we see that

in a self-similar action G acts on X∗ in a length-preserving manner and therefore by

automorphisms. We see that G ≤ Aut(X∗) if and only if G acts faithfully.

Let G ≤ Aut(X∗) be a subgroup acting on the left on the rooted tree X∗ (so, in

particular, it acts faithfully). Then for each x ∈ X∗ and g ∈ G there is a unique

automorphism g|x ∈ Aut(X∗) such that g · (xy) = (g · x)(g|x · y) for each y ∈ X∗.

Call this the restriction of g by x. Denote both the identity of G and the root of the

tree by 1. It can be checked that restrictions satisfy the following properties, for all

g, h ∈ G and x, y ∈ X∗:

1. g|1 = g

2. g|xy = (g|x)|y

3. 1|x = 1

4. (gh)|x = g|h·xg|x

So we see that subgroups of the automorphism group of X∗ which are closed under

restriction give rise to unique fundamental left Rees monoids. On the other hand,

given a fundamental left Rees monoid M = X∗G, then G is a subgroup of Aut(X∗)

closed under the restriction maps.

Let H be a group acting on the left by permutations on a set X and let G be an

arbitrary group. Then the (permutational) wreath product H o G is the semi-direct

product HnGX , where H acts on the direct power GX by the respective permutations

of the direct factors.

Let M = X∗G be a left Rees monoid, |X| = d and let S(X) denote the symmetric

group on the set X. Then we have a homomorphism ψ : G→ S(X) oG given by:

ψ(g) = σ(g|x1 , . . . , g|xd),

where σ is the permutation on X determined by the action of g on X. On the other

hand, given a homomorphism ψ : G→ S(X)oG, we have a unique induced self-similar

action. The map ψ is called the wreath recursion.

We know that the definition of left Rees monoids involves principal right ideals.

Green’sR-relation is defined on monoids M by sRt if sM = tM ; that is, they generate

the same principal right ideals. In our situation we have the following lemma:

Lemma 2.2.4. Let xg, yh ∈M . Then xgR yh iff x = y. In particular, each R-class

contains exactly one element from X∗.
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Proof. We see that xgg−1h = xh and xhh−1g = xg so that xgRxh. On the other

hand if xgRyh then xgu = yh and yhv = xg for some u, v ∈ M . Thus xguv = xg

and yhvu = yh. By left cancellativity uv = vu = 1 and so u, v ∈ G. Thus since

elements of M can be uniquely written in the form xg for x ∈ X∗, g ∈ G it follows

that x = y.

In fact if x, y ∈ X∗ then xM ⊆ yM iff x = yz for some z ∈ X∗. Combined

with Lemma 2.2.4, this tells us that the partially ordered set M/R of R-classes is

order-isomorphic to the set X∗ equipped with the prefix ordering.

Green’s J -relation is defined on monoids by sJ t iff MsM = MtM ; that is, the

principal two-sided ideals generated by s and t are equal. We have the following for

left Rees monoids:

Lemma 2.2.5. (i) MxgM ⊆MyhM implies |y| ≤ |x|.

(ii) Let xg, yh ∈M . Then xgJ yh iff x and y are in the same orbit under the action

of G.

Proof. (i) If MxgM ⊆ MyhM then there exist s, t ∈ M with syht = xg and so

|y| ≤ |x|.
(ii) By (i), if MxgM = MyhM then there exist u, v, w, z ∈ G with uxgv = yh and

wyhz = xg and so by the unique normal form of elements of M we have y = u · x.

Thus x and y are in the same orbit under the action of G.

Let g, h ∈ G be arbitrary. If x, y ∈ X∗ are such that y = u ·x for some u ∈ G then

uxgg−1(u|x)−1h = yh and u−1yhh−1u|xg = xg. Thus MxgM = MyhM .

We will say the a self-similar group action (G,X) is transitive if the action of G

on X is transitive and level-transitive if the action of G on Xn is transitive for each

n. We then have the following corollaries of Lemma 2.2.5:

Corollary 2.2.6. (i) A self-similar group action (G,X) is transitive if and only if

the associated left Rees monoid has a unique maximal proper principal two-sided

ideal.

(ii) A self-similar group action (G,X) is level-transitive if and only if the principal

two-sided ideals of the associated left Rees monoid form an infinite descending

chain.

It will be useful later to know whether our left Rees monoid is in fact cancellative

(and therefore a Rees monoid). The following will be proved for the more general case

of left Rees categories as Lemma 3.2.7 in Chapter 3:

Lemma 2.2.7. Let M be a left Rees monoid. Then the following are equivalent.
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(i) The functions φx : Gx → G are injective for all x ∈ X∗.

(ii) The monoid M is right cancellative (and so cancellative).

2.3 Monoid HNN-extensions

We have seen above that left Rees monoids and self-similar group actions are two

different, but equivalent, ways of viewing the same mathematical idea. In this section,

we describe a third way, namely, in terms of monoid HNN-extensions. We will only

sketch the proof as the theorem will appear in greater generality as Theorem 3.3.1

in Chapter 3. We will then explain some consequences of this result, and touch on

the relationship with Bass-Serre theory which will be expanded further in Chapter 3.

Finally, we will demonstrate the main theorem with a simple example.

First, let us briefly explain the motivation behind the main result, which comes

from a result of Cohn on proving certain monoids embed in their groups of fractions,

as found in [29]. It is difficult to see how his proof works and he uses a completely

different proof in terms of string rewriting appears in the second edition of the same

book ( [30]). Let us outline his argument. Let M be a cancellative right rigid monoid,

let G be its group of units and for each a ∈M let

G1(a) = {u ∈ G|ua ∈ aG}

and

G−1(a) = {u ∈ G|au ∈ Ga} .

Define a ∼ b in M if a = ubv for some u, v ∈ G. One can easily verify that

G1(a), G−1(a) are subgroups of G, if a ∼ b then G1(a) ∼= G1(b) and for any u ∈ G we

have G1(u) = G−1(u) = G. Let T1(a), T−1(a) be complete sets of left coset represen-

tatives of G1(a), G−1(a) respectively in G with 1 represented by itself and let A be

a complete set of representatives of ∼-classes of M with G represented by 1. Cohn

then considers the set of expressions

t1a
ε1
1 t2a

ε2
2 · · · tmaεmm u

where ti ∈ Tεi(ai), ai ∈ A, εi ∈ {−1, 1}, u ∈ G, subject to the condition that if

ti = 1 and ai−1 = ai then εi−1 + εi 6= 0 for i = 2, . . . , r. He then claims that it is

a routine though tedious exercise to verify that the permutation group on the set of

such expressions contains the original monoid as a subsemigroup and that elements of

this permutation group have a unique normal form, namely as one of the expressions.

To see why I am unclear how this would work suppose M = X∗G is a Rees monoid.

Let x1, x2 ∈ X and let y = x1x2 ∈ X∗ be such that these are each in A. Then the
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expressions x1x2 and y are distinct according to Cohn’s rule but clearly they represent

the same element of M . It is difficult to see therefore how one would embed M in

the permutation group on such expressions. The key idea, however, that seems to

have something to it is that there might be a connection between certain cancellative

right rigid monoids and Bass-Serre theory (compare the preceding argument and

Proposition 1.2.2).

Let S be a monoid, I an index set, S̆ = S \{1}, Hi : i ∈ I submonoids of S and let

ρi : Hi → S be homomorphisms for each i ∈ I. Then M is a monoid HNN-extension

of S if M can be defined by the following monoid presentation

M = 〈S̆, ti : i ∈ I|R(S), hti = tiρi(h) ∀h ∈ Hi, i ∈ I〉,

where R(S) denotes the relations of S. We will call the the generators ti : i ∈ I stable

letters, and say that M is a monoid HNN-extension on a single stable letter if |I| = 1.

For the moment, the use of the phrase monoid HNN-extension is simply based on

the similarity of presentation to that of a group HNN-extension (c.f. Sections 1.2

and 1.3). In Chapter 3 we will see that they in fact appear in the study of graphs of

groups and have natural actions on trees.

The following is the main result of this section, though we will only sketch the

proof as a more general version will appear as Theorem 3.3.1 in Chapter 3.

Theorem 2.3.1. Let M be a monoid HNN-extension of a group G where each as-

sociated submonoid Hi is in fact a subgroup of G. Then M is a left Rees monoid.

On the other hand, if M is a left Rees monoid then M is isomorphic to a monoid

HNN-extension of a group.

Proof. (Sketch) Suppose that M is a monoid given by the following presentation:

M = 〈Ğ, ti : i ∈ I|R(G), hti = tiρi(h) ∀h ∈ Hi, i ∈ I〉.

For each i ∈ I, let Ti be a transversal of left coset representatives of Hi. Note that for

each i an element u ∈ G can be written uniquely in the form u = gh, where g ∈ Ti
and h ∈ Hi. We further suppose that 1 ∈ Ti for each i.

One can show that every element s ∈M can be written in the form

s = g1ti1g2ti2 · · · gmtimu

where gk ∈ Tik and u ∈ G (in fact it will turn out this is a unique normal form).

Letting X = {gti|g ∈ Ti, i ∈ I} one can define a self-similar group action of G on

X∗ by rewriting gx = (g · x)x for g ∈ G, x ∈ X∗. The resulting left Rees monoid will

be isomorphic to the original monoid M .
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Now suppose M = X∗G is a left Rees monoid. For each orbit of the action of G

on X choose an element xi ∈ X, i ∈ I where |I| is the number of orbits. For each

i ∈ I let Hi = Gxi be the stabiliser of G acting on xi and let Ti be a transversal of left

coset representatives of Hi in G. An arbitrary element x ∈ X can be written uniquely

in the form x = gxi(ρi(g))−1 where i ∈ I and g ∈ Ti. Now define Γ to be the monoid

given by monoid presentation:

Γ = 〈Ğ, ti : i ∈ I|R(G), hti = tiρi(h) ∀h ∈ Hi, i ∈ I〉.

One can then check that every element of Γ can be written uniquely in the form

g1ti1(ρi1(g1))−1g2ti2(ρi2(g2))−1 · · · gmtim(ρim(gm))−1u

where gk ∈ Tik and u ∈ G. It is then easy to see that the map ι : Γ → M given on

generators by ι(ti) = xi for i ∈ I and ι(g) = g for g ∈ G is an isomorphism.

Combining Theorem 2.3.1, Lemma 2.2.3 (iii) and Lemma 2.2.7, we have the fol-

lowing.

Corollary 2.3.2. Let M be a monoid HNN-extension of a group G where each as-

sociated submonoid Hi is in fact a subgroup of G with associated maps ρi : Hi → G.

Then M is cancellative and therefore a Rees monoid if and only if the maps ρi are

injective for each i ∈ I.

Note the above construction tells us that the action of the group G is transitive

on X if and only if the HNN-extension is on a single stable letter. Let M = X∗G be

a left Rees monoid and suppose we split X into its orbits Xi : i ∈ I under the action

of G, so that

X =
⋃
i∈I

Xi.

Given the self-similar action of G on X∗ there is an induced self-similar action of G

on X∗i as none of the axioms of self-similar group actions move elements of X∗i outside

an orbit. We therefore have submonoids Mi = X∗i G ≤ M , where we are identifying

the identity element of Mi with that of M . Observe that Mi ∩Mj = G for i 6= j. We

can then form a semigroup amalgam, in the sense of Chapter 8 of [49]. Viewing the

Mi’s as disjoint monoids and letting αi be the embedding of the group G into each

Mi, A = [G;Mi;αi] is a semigroup amalgam. We can then form the amalgamated

free product S = ∗GMi of the amalgam A.

We now make use of the following classical theorem of Bourbaki ( [22]), in the left

hand dual of the form given by Dekov in [33].

Theorem 2.3.3. Let Mi : i ∈ I be a family of monoids, let G be a submonoid of

Mi for each i ∈ I and let G = Mi ∩Mj for all i, j ∈ I with i 6= j. Assume that for
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each i ∈ I there exists a subset Si of Mi containing the identity 1 and such that the

mapping ψ : Si ×G→Mi given by ψ(x, g) = xg is a bijection. Then every s ∈ ∗GMi

can be written uniquely in the form

s = x1 · · ·xng

where xk ∈ Sik \ {1} and ik 6= ik+1 for each k = 1, . . . , n, and g ∈ G.

Applying this theorem to the setup above with Si = X∗i it follows that each

element of S = ∗GMi can be uniquely written in the form xg where x ∈ X∗ and

g ∈ G. Consequently we have the following result.

Theorem 2.3.4. Let M = X∗G be a left Rees monoid, Xi : i ∈ I the orbits of X

under the action of G and let Mi = X∗i G for each i. Then

∗GMi
∼= M.

In terms of monoid HNN-extensions what we are saying is that the monoids

〈Ğ, ti : i ∈ I|R(G), hti = tiρi(h)∀h ∈ Hi, i ∈ I〉

and

∗G〈Ğ, ti|R(G), hti = tiρi(h)∀h ∈ Hi〉

are isomorphic.

Let us therefore now consider the case of left Rees monoids given as monoid HNN-

extensions which have a single stable letter. Recall that this is equivalent to the group

of units acting transitively on the elements of X, and to the monoid having a single

maximal proper two-sided principal ideal.

If H is a subgroup of a group G, then a homomorphism φ : H → G will be

called a partial endomorphism. Nekrashevych ( [98]) calls such homomorphisms virtual

endomorphisms in the case where H is a finite index subgroup of G. Two partial

endomorphisms φ1 : H1 → G, φ2 : H2 → G will be said to be conjugate if there

exist inner automorphisms α, β of G with α(H1) = H2 and βφ1 = φ2α. Partial

endomorphisms φ1 : H1 → G1, φ2 : H2 → G2 will be said to be isomorphic if there

exist group isomorphisms α, β : G1 → G2 with α(H1) = H2 and βφ1 = φ2α. If

φ : H → G is a partial endomorphism then we will define M(φ) to be the left Rees

monoid with presentation

M(φ) = 〈Ğ, t|R(G), ht = tφ(h)∀h ∈ H〉.

Proposition 2.3.5. Let φ1 : H1 → G, φ2 : H2 → G be conjugate partial endomor-

phisms. Then the monoids M(φ1) and M(φ2) are isomorphic.
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Proof. We have

M(φ1) = 〈Ğ, t1|R(G), ht1 = t1φ1(h)∀h ∈ H1〉

and

M(φ2) = 〈Ğ, t2|R(G), ht2 = t2φ2(h)∀h ∈ H2〉.

Since φ1 and φ2 are conjugate there exist inner automorphisms α, β of G with α(H1) =

H2 and βφ1 = φ2α. Suppose α(g) = a−1ga and β(g) = bgb−1 for some a, b ∈ G. Define

f : M(φ1) → M(φ2) by f(g) = g for g ∈ G and f(t1) = at2b. To verify that f is a

homomorphism we just need to check that f(h)f(t1) = f(t1)f(φ1(h)) for every h ∈ H1

since it is clear that f(gh) = f(g)f(h) for every g, h ∈ G. For h ∈ H1 we have

f(h)f(t1) = hat2b = aa−1hat2b = at2φ2(a−1ha)b = at2φ2(α(h))b

= at2β(φ1(h))b = at2b(φ1(h))b−1b = at2b(φ1(h)) = f(t1)f(φ1(h)).

Thus f is a homomorphism. Since f(a−1t1b
−1) = t2, f is also surjective. Let T1 and

T2 be transversals of the left coset representatives of H1 and H2 in G. Our final task

is to check that f is injective. Suppose

f(g1t1 · · · gmt1u) = f(g′1t1 · · · g′nt1v),

where gk, g
′
k ∈ T1 for each k. Observe that the number of t′1s mapped across is

constant so that m = n. So

g1at2b · · · gmat2bu = g′1at2b · · · g′mat2bv.

Reducing this into normal form and using the fact that α : H1 → H2 we see that

there must exist unique c1, . . . , cm ∈ T2, h1, . . . , hm, h
′
1, . . . , h

′
m ∈ H1 with

g1a = c1α(h1), g′1a = c1α(h′1),

ckα(hk) = φ2(α(hk−1))bgka = β(φ1(hk−1))bgka = bφ1(hk−1)gka,

ckα(h′k) = bφ1(h′k−1)g′ka,

for k = 2, . . . ,m and

bφ1(hm)b−1bu = bφ1(h′m)b−1bv.

Thus

φ1(hm)u = φ1(h′m)v
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and so

hmt1u = h′mt1v

from which it follows that

ac−1
m bφ1(hm−1)gmt1u = ac−1

m bφ1(h′m−1)g′mt1v.

Cancelling on the left we have

φ1(hm−1)gmt1u = φ1(h′m−1)g′mt1v.

From this we deduce that

hm−1t1gmt1u = h′m−1t1g
′
mt1v.

Continuing in this way we find that

g1t1 · · · gmt1u = g′1t1 · · · g′mt1v

and so f is indeed injective.

We now have the following straightforward corollary.

Corollary 2.3.6. Let G be a group, Hi, H
′
i : i ∈ I subgroups of G and let φi : Hi → G,

φ′i : H ′i → G be partial endomorphisms such that φi is conjugate to φ′i for each i ∈ I.

Then the monoids ∗GM(φi) and ∗GM(φ′i) are isomorphic.

Proposition 2.3.7. Let G1, G2 be groups, Hi : i ∈ I subgroups of G1, H ′j : j ∈ J

subgroups of G2, φi : Hi → G1, φ′j : H∗j → G2 partial endomorphisms for each i ∈ I,

j ∈ J and suppose that M1 = ∗G1M(φi) and M2 = ∗G2M(φ′j) are isomorphic left Rees

monoids. Then there is a bijection γ : I → J such that the partial endomorphisms φi

and φ′γ(i) are isomorphic for each i ∈ I.

Proof. We can write M1 and M2 in terms of monoid presentations as

M1 = 〈Ğ1, ti : i ∈ I|R(G1), hti = tiφi(h)∀h ∈ Hi, i ∈ I〉

and

M2 = 〈Ğ2, rj : j ∈ J |R(G2), hrj = rjφ
′
j(h)∀h ∈ H ′j, j ∈ J〉.

Suppose f : M1 → M2 is an isomorphism. Note that f(G1) = G2. Each maximal

proper principal two-sided ideal of M1 is generated by a ti and likewise for M2. Since

these monoids are isomorphic there must be a bijection between principal two-sided

ideals. It follows that there is a bijection γ : I → J and elements ai, bi ∈ G2 for
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each i ∈ I with f(ti) = airγ(i)bi. Define maps αi, βi : G1 → G2 for each i ∈ I by

αi(g) = a−1
i f(g)ai and βi(g) = bif(g)b−1

i . We now verify that αi : Hi → H ′γ(i) and

βiφi = φ′γ(i)αi for each i ∈ I. If h ∈ Hi then

αi(h)rγ(i) = a−1
i f(h)airγ(i) = a−1

i f(h)airγ(i)bib
−1
i = a−1

i f(h)f(ti)b
−1
i

= a−1
i f(hti)b

−1
i = a−1

i f(tiφi(h))b−1
i = a−1

i f(ti)f(φi(h))b−1
i

= rγ(i)bif(φi(h))b−1
i = rγ(i)βi(φi(h)).

Thus αi(Hi) ⊆ H ′γ(i) and βiφi = φ′γ(i)αi. Further, if h ∈ H ′γ(i) then

f(α−1
i (h)ti) = f(f−1(aiha

−1
i )ti) = aiha

−1
i airγ(i)bi = aihrγ(i)bi = airγ(i)φ

′
γ(i)(h)bi

= airγ(i)bib
−1
i φ′γ(i)(h)bi = f(tif

−1(b−1
i φ′γ(i)(h)bi)).

Since f is an isomorphism this therefore implies that α−1
i (h)ti = tif

−1(b−1
i φ′γ(i)(h)bi)

and so α−1
i (H ′γ(i)) = Hi. Thus φi and φ′γ(i) are isomorphic for each i ∈ I.

Note that if in the previous result we had G = G1 = G2 and f(g) = g for each

g ∈ G in our isomorphism f : M1 →M2 then the partial endomorphisms φi and φ′γ(i)

would in fact be conjugate.

Let G be a group, Hi : i ∈ I subgroups of G and ρi : Hi → G be injective partial

endomorphisms for each i. Recall that Γ is a group HNN-extension of G if Γ can be

defined by the following group presentation

Γ = 〈G, ti : i ∈ I|R(G), hti = tiρi(h) ∀h ∈ Hi, i ∈ I〉,

where R(G) denotes the relations of G.

If a monoid M embeds in its group of fractions then it has to be cancellative

(though the converse is not in general true). If M is a Rees monoid then combining

Theorem 2.3.1 and Proposition 1.2.1 we see that its group of fractions U(M) is a group

HNN-extension and noting the normal form results for monoid HNN-extensions and

group HNN-extensions we see that in fact M consists of every element of U(M) which

does not contain any t−1
i . So we have the following:

Lemma 2.3.8. Rees monoids embed in their groups of fractions.

On the other hand, we see that every group HNN-extension of a group G is the

group of fractions of a Rees monoid, and so there is an underlying self-similar group

action.

Proposition 2.3.9. Let G1, G2 be groups, Hi : i ∈ I subgroups of G1, H ′j : j ∈ J

subgroups of G2, ρi : Hi → G1, ρ′j : H ′i → G2 partial endomorphisms for each i ∈ I
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and j ∈ J and let

M1 = 〈 Ğ1, ti : i ∈ I|R(G1), hti = tiρi(h)∀h ∈ Hi, i ∈ I〉

and

M2 = 〈 Ğ2, rj : j ∈ J |R(G2), hrj = rjρ
′
j(h)∀h ∈ H ′j, j ∈ J〉

be the associated monoid HNN-extensions. Let K be a group and let α1 : K → M1,

α2 : K → M2 be injective homomorphisms. Then M1∗KM2 is a left Rees monoid.

Further U(M1∗KM2) ∼= U(M1) ∗K U(M2).

Proof. Observe that α1(K) ⊆ G1 and α2(K) ⊆ G2. Since K is a unitary subsemigroup

of M1 and M2 it follows ( [47]) that M1 and M2 embed in M1∗KM2. We have

M1∗KM2 = 〈 Ğ1, Ğ2, ti : i ∈ I, rj : j ∈ J |R(G1),R(G2), hti = tiρi(h)∀h ∈ Hi, i ∈ I,

hrj = rjρ
′
j(h)∀h ∈ H ′j, j ∈ J, α1(g) = α2(g)∀g ∈ K〉 .

Now let G = G1 ∗K G2 so that G is given by the following group presentation

G = 〈 G1, G2|R(G1),R(G2), α1(g) = α2(g)∀g ∈ K〉 .

We can therefore write

M1∗KM2
∼= 〈 Ğ, ti : i ∈ I, rj : j ∈ J |R(G), hti = tiρi(h)∀h ∈ Hi, i ∈ I,

hrj = rjρ
′
j(h)∀h ∈ H ′j, j ∈ J〉 .

We then see that M1∗KM2 is a monoid HNN-extension of G with associated subgroups

Hi : i ∈ I and H ′j : j ∈ J . Thus M1∗KM2 is a left Rees monoid. Note that

U(M1) ∼= 〈 Ğ1, ti : i ∈ I|R(G1), hti = tiρi(h)∀h ∈ Hi, i ∈ I〉

and

U(M2) = 〈 Ğ2, rj : j ∈ J |R(G2), hrj = rjρ
′
j(h)∀h ∈ H ′j, j ∈ J〉,

where these are now group presentations. So

U(M1) ∗K U(M2) ∼= 〈 Ğ1, Ğ2, ti : i ∈ I, rj : j ∈ J |R(G1), hti = tiρi(h)∀h ∈ Hi, i ∈ I,

R(G2), hrj = rjρ
′
j(h)∀h ∈ H ′j, j ∈ J, α1(g) = α2(g)∀g ∈ K〉 ∼= U(M1∗KM2).

To demonstrate the above theory, let us now consider an example. Let G = Z×Z,
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H = 2Z× 2Z, an index 4 subgroup of G, and let ρ : H → G be given by

ρ(2m, 2n) = (m, 3n),

for m,n ∈ Z. We see that this is a monomorphism and so we can therefore define an

associated group HNN-extension Γ of G on a single stable letter t given as a group

presentation by

Γ = 〈 a, b, t | ab = ba, a2t = ta, b2t = tb3〉

by noting that

Z× Z ∼= 〈 a, b | ab = ba〉 ,

where we identify (1, 0) with a and (0, 1) with b. We see that Γ is the group of fractions

of the Rees monoid M with monoid presentation

M = 〈 a, a−1, b, b−1, t | ab = ba, aa−1 = a−1a = bb−1 = b−1b = 1, a2t = ta, b2t = tb3〉 .

Since |G : H| = 4, the monoid M has 4 maximal proper principal right ideals so that

M ∼= X∗ ./ G for some X with 4 elements. Observe that G = H ∪ aH ∪ bH ∪ abH.

Let x1, . . . , x4 be defined by

x1 = t, x2 = at, x3 = bt, x4 = abt

and let X = {x1, x2, x3, x4}. We define a self-similar group action of G on X as

follows:

a · x1 = x2, a · x2 = x1, b · x1 = x3, b · x3 = x1,

a · x3 = x4, a · x4 = x3, b · x2 = x4, b · x4 = x2,

a|x1 = b|x1 = a|x3 = b|x2 = 1,

a|x2 = a|x4 = a

and

b|x3 = b|x4 = b3.

Note that since G is abelian, there won’t be any partial endomorphisms conjugate to

ρ.
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2.4 Symmetric Rees monoids

We will say that a left Rees monoid M = X∗ ./ G is symmetric if the functions

ρx : G→ G defined in Lemma 2.2.3 are bijective for every x ∈ X.

Let X be a set. We will denote by FG(X) the free group on X. The Zappa-Szép

product is defined for any monoid S and group G by replacing x ∈ X∗ with s ∈ S in

the self-similarity axioms. A natural question now arises: when is it possible to extend

a self-similar action of a group G on a free monoid X∗ to an action of G on FG(X)

such that X∗ ./ G ≤ FG(X) ./ G? The next theorem will give us the necessary and

sufficient condition for this to be the case.

Theorem 2.4.1. Let M = X∗ ./ G be a left Rees monoid. Then the Zappa-Szép

product X∗ ./ G can be extended to a Zappa-Szép product FG(X) ./ G respecting the

actions if and only if M is symmetric.

Proof. (⇒) Suppose for a left Rees monoid M = X∗ ./ G the Zappa-Szép product

Γ = FG(X) ./ G exists such that M is a submonoid of Γ. We need to show that

ρx is bijective for all x ∈ X∗. Let x, y ∈ X∗ and g ∈ G. Then since (SS6) says

g|xy = (g|x)|y, we have

g = g|1 = g|x−1x = (g|x−1)|x (1)

g = g|1 = g|xx−1 = (g|x)|x−1 (2)

Letting h = g|x−1 , (1) implies that for every x ∈ X∗ and g ∈ G there exists an h ∈ G
such that h|x = g, and so ρx is surjective for every x ∈ X∗. Now suppose g|x = h|x.
Then (2) implies, upon restriction to x−1, that g = h, and so ρx is injective.

(⇐) Let M = X∗G be a symmetric left Rees monoid. For x ∈ X∗, g ∈ G, define

(ρx ◦ ρy)(g) = ρy(ρx(g)). Axiom (SS6) tells us that the map ρ : X∗ → SG given by

ρ(x) = ρx is a monoid homomorphism. For x ∈ X, g ∈ G define

g|x−1 := ρ−1
x (g).

This is well defined since ρ is injective. Now extend the restriction to g|x for x ∈
FG(X) by using rule (SS6):

g|xε11 x
ε2
2 ...xεnn

= ((g|xε11 )|xε22 ) . . . |xεnn xi ∈ X, εi = ±1.

The preceding remarks tell us that this definition makes sense. Now for x ∈ X, g ∈ G
define

g · x−1 := (g|x−1 · x)−1.
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For x, y ∈ FG(X), define

g · xy := (g · x)(g|x · y).

To see that this is morally the correct definition, let us check that for all x ∈ X∗,

g ∈ G we have

g · (x−1) = (g|x−1 · x)−1.

We will prove this claim by induction. By definition the claim is true for |x| = 1, i.e.

x ∈ X. So let us assume that this holds for all x ∈ X∗ with |x| ≤ n for some n ∈ N.

Suppose z = yx where |y|, |x| ≤ n and let g ∈ G be arbitrary. Then

g · (z−1) = g · (yx)−1 = (g · x−1)(g|x−1 · y−1).

First, let k = g|(yx)−1 . Applying the rules,

(g · x−1)(g|x−1 · y−1) = (g|x−1 · x)−1((g|x−1)|y−1 · y)−1 = (g|x−1 · x)−1(k · y)−1.

Then,

(g|x−1 · x)−1(k · y)−1 = ((k · y)(g|x−1 · x))−1 = ((k · y)(k|y · x))−1.

But now we can use (SS4) for M to get

((k · y)(k|y · x))−1 = (k · (yx))−1 = (g|(yx)−1 · (yx))−1 = (g|z−1 · z)−1,

and the claim is proved.

We now need to show that the above definitions taken together give us a well-

defined group action of G and FG(X) satisfying axioms (SS1)-(SS8). Note that in

our definition, we are assuming (SS4) and (SS6).

(SS3) and (SS5) only involve M and so are true.

(SS7) For x ∈ X, 1|x−1 = ρ−1
x (1) = 1, and so it follows by (SS6) for all x ∈ FG(X).

(SS1) For x ∈ X, 1 · x−1 = (1|x−1 · x)−1 = (1 · x)−1 = x−1 , and so it follows by (SS4)

for all x ∈ FG(X).

(SS8) We need to show that for every x ∈ X and g, h ∈ G

(gh)|x−1 = g|(h·x−1)h|x−1 .

First note g|(h·x−1) = g|(h|x−1 ·x)−1 . We will in fact show that ρx((gh)|x−1) =

ρx(g|(h·x−1)h|x−1) and the result will follow since ρx is a bijection. So,

ρx(g|(h|x−1 ·x)−1h|x−1) = (g|(h|x−1 ·x)−1h|x−1)|x = (g|(h|x−1 ·x)−1(h|x−1 ·x))(h|x−1x),
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using (SS8) for M . But this is simply

g|1h|1 = gh = ρx((gh)|x−1).

The result holds for x ∈ FG(X) by (SS4) and (SS6).

(SS2) We need to show for every g, h ∈ G and x ∈ X that (gh) · x−1 = g · (h · x−1).

So,

g · (h · x−1) = g · (h|x−1 · x)−1 = (g|(h|x−1 ·x)−1 · (h|x−1 · x))−1

= ((g|(h|x−1 ·x)−1h|x−1) · x)−1 = ((g|h·x−1h|x−1) · x)−1 = ((gh)|x−1 · x)−1.

But this is just the definition of (gh) · x−1.

We will now show that if M = X∗ ./ G is a symmetric Rees monoid then the group

of fractions of M is isomorphic to the extension FG(X) ./ G described in Theorem

2.4.1.

Theorem 2.4.2. Let M = X∗G be a symmetric Rees monoid. Then the group of

fractions of M is isomorphic to a Zappa-Szép product of the free group on X and G.

That is,

U(M) ∼= FG(X) ./ G.

Proof. Let {xi : i ∈ I} be a set of representatives for orbits of X (where |X| = |I|),
let H1

i = Gxi be the stabiliser of xi, let ρi = ρxi , let T 1
i be a transversal of left coset

representatives for H1
i , let H−1

i = ρi(H
1
i ) and let T−1

i be a transversal of left coset

representatives for H−1
i . Assume that 1 ∈ T 1

i and 1 ∈ T−1
i for each i ∈ I.

For each i ∈ I, ε ∈ {−1, 1}, define maps βi,ε : G → G by βi,1(g) = (ρi(g))−1 and

βi,−1(g) = (ρ−1
i (g))−1. Since ρi : G → G is a bijection for each i ∈ I, this latter map

is well-defined.

By Theorem 2.3.1, M is isomorphic to the following monoid presentation:

M ∼= 〈 Ğ, ti : i ∈ I|R(G), hti = tiρi(h), h ∈ H1
i , i ∈ I〉 .

It follows that

U(M) ∼= 〈 Ğ, ti : i ∈ I|R(G), hti = tiρi(h), h ∈ H1
i , i ∈ I〉 ,

where here we are working with a group presentation.

We know from Proposition 1.2.2 that every element of U(M) can be uniquely

written in the form

g = g1t
ε1
i1
g2t

ε2
i2
· · · gmtεmimu,
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where εk ∈ {−1, 1}, gk ∈ T εkik , u ∈ G is arbitrary all subject to the condition that if

tik = tik+1
and εk + εk+1 = 0 then gk+1 is not an identity. We call this the Britton

normal form.

We claim that every element of U(M) can in fact be uniquely written in the form

g = g1t
ε1
i1
βi1,ε1(g1)g2t

ε2
i2
βi2,ε2(g2) · · · gmtεmimβim,εm(gm)u,

where εk ∈ {−1, 1}, gk ∈ T εkik , u ∈ G is arbitrary all subject to the condition that

gkt
εk
ik
βik,εk(gk) 6= (gk+1t

εk+1

ik+1
βik+1,εk+1

(gk+1))−1

for any k. An element in such a form will be said to be in Rees normal form. Observe

that part of our claim is that the elements gt±1
i βi,±1(g) generate a free subgroup of

U(M).

Let us first show that every element of U(M) can be written in such a form. Let

g = g1t
ε1
i1
· · · gmtεmimu be an arbirtary element of U(M) written in Britton normal form.

There exist unique elements g′2 ∈ T
ε2
i2

, h2 ∈ Hε2
i2

with g′2h2 = (βi1,ε1(g1))−1g2. We then

define g′k ∈ T
εk
ik

, hk ∈ Hεk
ik

inductively for 3 ≤ k ≤ m to be the unique elements with

g′khk = (βik−1,εk−1
(g′k−1))−1ρik−1

(hk−1)gk

if εk−1 = 1 and

g′khk = (βik−1,εk−1
(g′k−1))−1ρ−1

ik−1
(hk−1)gk

if εk−1 = −1. Finally we let u′ = (βim,εm(g′m))−1ρim(hm)u if εm = 1 and u′ =

(βim,εm(g′m))−1ρ−1
im

(hm)u if εm = −1. One then finds that

g = g1t
ε1
i1
βi1,ε1(g1)g′2t

ε2
i2
βi2,ε2(g

′
2) · · · g′mtεmimβim,εm(g′m)u′.

One then reduces if possible by cancelling inverses so that g is in Rees normal form.

Now suppose that

g1t
ε1
i1
βi1,ε1(g1) · · · gmtεmimβim,εm(gm)u = g′1t

δ1
j1
βj1,δ1(g

′
1) · · · g′ntδnjnβjn,δn(g′n)v

where these are both in Rees normal form and assume n ≤ m. Then since the Britton

normal form is a unique normal form and by our reduction method in Proposition

1.2.2 it follows that g1 = g′1 and tε1i1 = tδ1j1 . We therefore cancel to get

g2t
ε2
i2
βi2,ε2(g2) · · · gmtεmimβim,εm(gm)u = g′2t

δ2
j2
βj2,δ2(g

′
2) · · · g′ntδnjnβjn,δn(g′n)v.
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We then continue in this way to find

gn+1t
εn+1

in+1
βin+1,εn+1(gn+1) · · · gmtεmimβim,εm(gm)u = v.

Suppose n+ 1 < m. It then follows that there exists k, n+ 1 ≤ k < m, such that

gkt
εk
ik
βik,εk(gk)gk+1t

εk+1

ik+1
βik+1,εk+1

(gk+1) ∈ G.

This means that ik = ik+1 = j for some j ∈ I and εk + εk+1 = 0. There are two

possibilities: either εk = 1 and εk+1 = −1 or εk = −1 and εk+1 = 1. Suppose first that

εk = 1. Then we are saying that

gktj(ρj(gk))
−1gk+1t

−1
j (ρ−1

j (gk+1))−1 ∈ G

with gk ∈ T 1
j and gk+1 ∈ T−1

j . Then (ρj(gk))
−1gk+1 = ρj(h) for some h ∈ H1

j . Thus

gktj(ρj(gk))
−1gk+1t

−1
j (ρ−1

j (gk+1))−1 = gktjρj(h)t−1
j (ρ−1

j (gk+1))−1

= gktjt
−1
j h(ρ−1

j (gk+1))−1

= gkh(ρ−1
j (ρj(gk)ρj(h)))−1

= gkh(ρ−1
j (ρj(gkh)))−1

= gkh(gkh)−1 = 1.

This contradicts the assumption that our initial word was in Rees normal form and

so n = m. It follows that gk = g′k, ik = jk, δk = εk for each k and u = v. Now suppose

εk = −1. Then we have

gkt
−1
j (ρ−1

j (gk))
−1gk+1tj(ρj(gk+1))−1 ∈ G

with gk ∈ T−1
j and gk+1 ∈ T 1

j . Then (ρ−1
j (gk))

−1gk+1 = h for some h ∈ H1
j . Thus

gkt
−1
j (ρ−1

j (gk))
−1gk+1tj(ρj(gk+1))−1 = gkt

−1
j htj(ρj(gk+1))−1

= gkt
−1
j tjρj(h)(ρj(gk+1))−1

= gkρj(h)(ρj(ρ
−1
j (gk)h))−1

= gkρj(h)(gkρj(h))−1 = 1.

Again this contradicts the assumption that our initial word was in Rees normal form
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and so n = m. It follows that gk = g′k, ik = jk, δk = εk for each k and u = v.

We have shown that the Rees normal form is a unique normal form for elements

of U(M). Let us now consider the monoid M . Recall that every element x ∈ X can

be uniquely written in the form x = gxi(ρi(g))−1 for some i ∈ I and g ∈ T 1
i . We will

now show that every element x ∈ X can be written uniquely as x = ρ−1
i (g)xig

−1 with

i ∈ I, g ∈ T−1
i .

First, let x ∈ X. Then x = gxi(ρi(g))−1 for unique i ∈ I and g ∈ T 1
i . We can

write ρi(g) = g|xi uniquely in the form g|xi = uh|xi where u ∈ T−1
i and h ∈ H1

i . Now

x = gxi(h|xi)−1u−1 = gxi(h
−1)|xiu−1 = gh−1xiu

−1 = ρ−1
i ((gh−1)|xi)xiu−1

= ρ−1
i (g|xih−1|xi)xiu−1 = ρ−1

i (u)xiu
−1.

Now let i ∈ I, g ∈ T−1
1 . We will show that ρ−1

i (g)xig
−1 ∈ X. Let u ∈ T 1

i , h ∈ H1
i be

the unique elements with uh = ρ−1
i (g). Then ρi(uh) = g and so g = ρi(u)ρi(h). Then

ρ−1
i (g)xig

−1 = uhxig
−1 = uxiρi(h)g−1 = uxi(gh|−1

xi
)−1

= uxi(ρi(u)h|xih|−1
xi

)−1 = uxi(ρi(u))−1 ∈ X.

Finally let ρ−1
i (g1)xig

−1
1 = ρ−1

j (g2)xjg
−1
2 in X with i, j ∈ I, g1 ∈ T−1

i , g2 ∈ T−1
j .

First, since the xi’s are representatives of orbits, it follows that i = j. Now suppose

ρ−1
i (g1) = u1h1 and ρ−1

i (g2) = u2h2 for u1, u2 ∈ T 1
i , h1, h2 ∈ H1

i . We must have

u1 = u2. We therefore have

ρi(u1) = g1ρi(h
−1
1 ) = g2ρi(h

−1
2 ).

Since g1, g2 ∈ T−1
i and ρi(h

−1
1 ), ρi(h

−1
2 ) ∈ H−1

i it follows by the unique decomposition

of elements into the product of a coset representative and an element of a subgroup

that g1 = g2. Thus, every element x ∈ X can be written uniquely as x = ρ−1
i (g)xig

−1

with i ∈ I, g ∈ T−1
i .

Since FG(X) ./ G is generated by elements of the form (1, g) for g ∈ G and (xi, 1)

for i ∈ I we see that we can write FG(X) ./ G in terms of a group presentation as

FG(X) ./ G ∼= 〈 Ğ, xi : i ∈ I|R(G), hxi = xiρi(h),S〉 ,

where S is some set of extra relations which are needed to make this really a pre-

sentation for FG(X) ./ G. It follows that there is a surjective homomorphism

f : U(M) → FG(X) ./ G given on generators by f(g) = (1, g) for g ∈ G and

f(ti) = (xi, 1) for i ∈ I. All of the above argument tells us that two elements of

U(M) written in Rees normal form map to the same elements in FG(X) ./ G under
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f if and only if they are equal. Thus f is also injective.

Let M = X∗ ./ G be a left Rees monoid. We will call X a basis for M . If Y is

such that M ∼= Y ∗ ./ G, then we will say Y is a change of basis of X.

Lemma 2.4.3. Let M = X∗G be a left Rees monoid such that the action of G on X

is transitive and G is finite. If, for some x ∈ X, ρx is bijective, then ρy is bijective

for all y ∈ X∗.

Proof. Let y ∈ X and suppose y = g · x for some g ∈ G. Suppose ρy is not injective.

Then by Lemma 2.2.3 (vi) there exists h ∈ G with h|y = 1 and h 6= 1. Then

(hg)|x = h|g·xg|x = g|x.

But by assumption, ρx was injective, and thus h = 1, a contradiction. An injective

map from a finite set into itself must also be surjective and thus ρy must be bijective.

It then follows by Lemma 2.2.3 (v) and (viii) that ρy is bijective for all y ∈ X∗.

Proposition 2.4.4. Let M = X∗G be a Rees monoid with G finite. Then there exists

a change of basis Y of X such that M ∼= Y ∗ ./ G is a symmetric Rees monoid.

Proof. In what follows, we will be working with orbits of elements and so without

loss of generality let us assume the action of G on X is transitive. Let x ∈ X. We

know φx is injective. We will form a change of basis such that ρx is injective. So

suppose g, h ∈ G are such that g|x = h|x. By the right cancellativity of M , we know

g · x 6= h · x. Suppose y = g · x and suppose k /∈ im(ρx). Let y′ = y(g|x)k−1. Then

gx = yg|x = y′k.

So changing y to y′, we have g · x = y′ and g|x = k 6= h|x. Repeat this process for

each g ∈ G and we will have constructed a change of basis so that ρx is bijective, and

thus by Lemma 2.4.3 the theorem has been proven.

Combining Theorem 2.4.2 and Proposition 2.4.4 we have the following:

Corollary 2.4.5. Let Γ be a group HNN-extension of a finite group G. Then there

is a set X such that Γ ∼= FG(X) ./ G.

If M = X∗G is a Rees monoid with φx : Gx → G bijective for each x ∈ X∗ (e.g.

the adding machine Rees monoid described in Section 2.7.1) then one cannot use the

same change of basis argument as Proposition 2.4.4 to write U(M) as the Zappa-Szép

product of a free group and G since every element of G is in the image of φx for each

x ∈ X∗. It therefore seems unlikely that Corollary 2.4.5 will still be true in general

if the finiteness assumption on G is removed. On the other hand, if M = X∗G is a

Rees monoid such that |G : Gx| = |G : φx(Gx)| for each x ∈ X then one may be able

adapt the argument of Proposition 2.4.4 for this situation.
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2.5 Iterated function systems

In this section we will provide examples of iterated function systems which give rise to

fractals with a Rees monoid as similarity monoid. For undefined notions from fractal

geometry see [37].

Let D be a compact subset of Rk. A map f : D → D is a similarity contraction if f

is continuous, injective and there exists a constant 0 < c < 1 such that d(f(x), f(y)) =

cd(x, y) for every x, y ∈ D.

Let M(D) denote the monoid of all similarity contractions and isometries of D

(where (ab)(x) = a(b(x)) for a, b ∈M(D) and x ∈ D). We will denote by dimH(D) the

Hausdorff dimension of D. Since injective maps are monics in the category Top this

monoid M(D) will be left cancellative. We will now investigate further this monoid

M(D).

Lemma 2.5.1. Let D ⊆ Rk be compact and let a ∈M(D). Then

dimH(D) = dimH(a(D))

Proof. Let δ > 0. Denote by |a| the contraction factor of a. Suppose {Ui} is a δ-cover

for D. Then {a(Ui)} will be a δ/|a|-cover of a(D). It is clear that all coverings of

a(D) can be constructed in this manner. It therefore follows that for each s we have

Hs(a(D)) = 1
|a|sH

s(D) and so dimH(D) = dimH(a(D)).

Lemma 2.5.2. Let D be a compact subset of Rk such that dimH(D) > k − 1. Let

Y ⊂ D be such that for some b, c ∈ M , b 6= c, b(x) = c(x) for all x ∈ Y . Then

dimH(Y ) ≤ k − 1

Proof. We will prove for the case when k = 2. The argument can easily be generalised

to the case k ≥ 3 by working with k−1-dimensional hyperplanes. So let D be a subset

of R2 such that dimH(D) > 1, let Y ⊆ D be such that for some b, c ∈M , b(x) = c(x)

for all x ∈ Y and suppose that dimH(Y ) > 1. Let x, y, z ∈ Y and assume wlog that

x, y, z are not collinear (if all points in Y are collinear then dimH(Y ) ≤ 1). Now let T

be the triangle in R
2 with vertices at x, y, z. Then since b and c must have the same

contraction factor, by length considerations, b(t) = c(t) for every t ∈ T ∩D. It then

follows since b and c are similarity transformations that b(t) = c(t) for every t ∈ D.

Lemma 2.5.3. Let D be a compact subset of Rk such that dimH(D) > k − 1. Then

M(D) is right cancellative.

Proof. Suppose a, b, c ∈ M are such that ac = bc. Let Y = c(D). By Lemma 2.5.1

we have dimH(Y ) > k− 1 and a(x) = b(x) for all x ∈ Y . It thus follows from Lemma

2.5.2 that a = b.
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Let D be a compact subset of Rk. An iterated function system (IFS) is a finite

family of similarity contractions f1, . . . , fn : D → D. Theorem 9.1 of [37] says that

there is a unique non-empty compact subset F of D satisfying

F =
n⋃
i=1

fi(F )

which we call the attractor of f1, . . . , fn.

Theorem 2.5.4. Let D ⊆ R
k be a compact path-connected subspace, let f1, . . . , fn :

D → D be an IFS with attractor F ⊆ D, d = dimH(F ) and let µ = Hd, the d-

dimensional Hausdorff measure and assume d > k − 1 and 0 < µ(F ) < ∞. Let G

be the group of isometries of F and denote by X = {f1, . . . , fn}, I = {1, . . . , n} and

suppose further the following:

(i) For every i, j ∈ I, we have µ(fi(F ) ∩ fj(F )) = 0.

(ii) There are no contractions h of F such that fi(F ) ⊂ h(F ) for some i ∈ I.

(iii) For every i ∈ I, g ∈ G there exists j ∈ I such that g(fi(F )) = fj(F )

Then we have the following:

1. 〈X〉 is a free subsemigroup of M(F ) (and so we denote by X∗ = 〈X, 1〉).

2. Let M := 〈X,G〉 ⊆M(F ). Then M = X∗G uniquely.

3. M is a Rees monoid.

4. If for every element s ∈ M(F ) there is an f ∈ X∗ with s(F ) = f(F ) then

M = M(F ) and M is a fundamental Rees monoid.

Proof. 1. We know that fi1(· · · (fir(F ))) ⊆ fir(F ) and Lemma 2.5.1 tells us that

µ(fi1(· · · (fir(F )))) = d. Suppose fi1 · · · fir = fj1 · · · fjs . Then condition (i) and

the previous remark tells us that fir = fjs . These are elements of M(F ) which

is right cancellative and thus fi1 · · · fir−1 = fj1 · · · fjs−1 . Continuing in this way

and using condition (ii) (where h here is in fact an element of X) tells us that

r = s and fik = fjk for each k. Thus < X > is free.

2. Let fi ∈ X and g ∈ G. We know by (i) and (iii) that g(fi(F )) = fj(F ) for a

unique j ∈ I. Further the group of isometries of fj(F ) is isomorphic to G and

each isometry of fj(F ) is the restriction from F to fj(F ) of a unique element of

G. Thus there exists a unique h ∈ G with fjh = gfi as maps F → F . We can

then use this argument and (i) to show that for each x ∈ X∗ and g ∈ G there

are unique elements y ∈ X∗ and h ∈ G with gx = yh as maps F → F . Thus

M = X∗G uniquely.
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3. We know by Lemma 2.5.3 that M is cancellative. We see that M satisfies the

conditions of Theorem 2.2.1. Thus M is a Rees monoid.

4. Let s ∈ M(F ) and let f ∈ X∗ be such that s(F ) = f(F ). Note that f is

necessarily unique. Since s is a similarity transformation there must exist g ∈
G(f(F )) with s = gf . But as noted above we can extend every g ∈ G(f(F )) to

a g ∈ G. Thus s ∈ M . The fact that G is the group of isometries tells us that

M is fundamental.

Suppose we have two fractals F1 ⊆ R
n and F2 ⊆ R

n satisfying the conditions of

Theorem 2.5.4. If θ : F1 → F2 is an isometry between them, we see that we can

map similarity transformations of F1 bijectively to similarity transformations of F2

by defining φ(s) = θsθ−1. Thus we have the following:

Theorem 2.5.5. Let F1 ⊆ Rn and F2 ⊆ Rn be compact spaces satisfying the conditions

of Theorem 2.5.4, and let M1 = M(F1) and M2 = M(F2) be their associated similarity

monoids. If F1 and F2 are isometric, then M1 and M2 are isomorphic.

It would be nice if one could prove a result of the following kind:

Conjecture 2.5.6. Let C be the category with objects fractals as in Theorem 2.5.4 and

arrows suitable homeomorphisms and let D be the category with objects Rees monoids

and arrows suitable homomorphisms. Then there is a functor from C to D.

We will now show that a number of interesting fractals satisfy the conditions of

Theorem 2.5.4.

2.5.1 Sierpinski gasket

This example appeared in [76] and was in fact the motivation for the above theorem.

Consider the monoid M of similarities of the Sierpinski gasket (Figure 1). Let R, L

and T be the maps which quarter the size of the gasket and translate it, respectively,

to the right, left and top of itself, ρ be rotation by 2π/3 degrees and σ be reflection

in the verticle axis. Then the monoid generated by L, R and T is free and the group

of units G = 〈σ, ρ〉 ∼= D6. We see that the conditions of Theorem 2.5.4 are satisfied

and so M = 〈R,L, T, σ, ρ〉 is a symmetric Rees monoid. Explicitly,

ρT = Rρ, ρL = Tρ, ρR = Lρ

and

σT = Tσ, σL = Rσ, σR = Lσ.
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We see that the action ofG onX = {L,R, T} is transitive and noting thatGT = {1, σ}
we can apply Theorem 2.3.1 to give M by the following monoid presentation:

M = 〈σ, ρ, t|σ2 = ρ3 = 1, σρ = ρ2σ, σt = tσ〉.

Figure 1: Sierpinski gasket (source [1])

Let us suppose the corners of the Sierpinski gasket to be at the points (0, 1),

(−
√

3
2
,−0.5) and (

√
3

2
,−0.5) so that it is centred on (0, 0). Then simple calculations

give:

ρ =

(
−0.5

√
3

2

−
√

3
2
−0.5

)
and

σ =

(
−1 0

0 1

)
Further,

L(x) =
1

2
(x− 1

2
(
√

3, 1)),

R(x) =
1

2
(x +

1

2
(
√

3,−1)),

and

T (x) =
1

2
(x +

1

2
(0, 1)).

Since M is symmetric, it can be extended to a Zappa-Szép product of a free group

and a group, which is the universal group of M . So,

U(M) ∼= FG(X) ./ G ∼= 〈σ, ρ, t|σ2 = ρ3 = 1, σρ = ρ2σ, σt = tσ〉,

where this is a group presentation.

2.5.2 Cantor set

Consider the monoid M of similarities of the Cantor set F (construction shown in

Figure 2). Let R and L be the maps which divide the Cantor set by 3 and move it,
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respectively, to the right and left of itself and σ be reflection in the verticle axis. We

have the following relations:

σL = Rσ, σR = Lσ.

Then the monoid generated by L and R is free, the group of units G = 〈σ〉 ∼= C2 and

M = 〈R,L, σ〉. We see that the conditions of Theorem 2.5.4 are satisfied and so M

is a symmetric Rees monoid. Since GR = GL = {1}, we find that M is given by the

following monoid presentation:

M = 〈σ, t|σ2 = 1〉.

Figure 2: Construction of Cantor set (source [2])

Notice that each element of F can be written as an infinite word over X. We see

in fact that we can identify elements of the free monoid with self-similar subsets of

the Cantor set. Using this same identification with the random Cantor set, we see

that if we add a random element to the construction, as in Chapter 15 of [37], then we

have an action of a Rees monoid on a random fractal, where the action is piece-wise.

2.5.3 Sierpinski carpet

In this section we will see a group action which is not transitive. Consider the monoid

M of similarities of the Sierpinski carpet F (Figure 3). Let L1, L2, R1, R2, T , S1,

S2 and B be the maps which map F , respectively, to the top left, bottom left, top

right, bottom right, top centre, left centre, right centre and bottom centre of itself,

ρ be rotation by π/4 degrees and σ be reflection in the verticle axis. We have the

following relations:

σL1 = R1σ, σL2 = R2σ, σR1 = L1σ, σR2 = L2σ,

σT = Tσ, σB = Bσ, σS1 = S2σ, σS2 = S1σ,

ρL1 = R1ρ, ρL2 = L1ρ, ρR1 = R2ρ, ρR2 = L2ρ
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and

ρT = S2ρ, ρS2 = Bρ, ρB = S1ρ, ρS1 = Tρ.

Let X = {L1, L2, R1, R2, T, S1, S2, B}. Then the monoid generated by X is free,

the group of units G = 〈σ, ρ〉 ∼= D8 and M = 〈L1, L2, R1, R2, T, S1, S2, B, σ, ρ〉. Again,

the conditions of Theorem 2.5.4 are satisfied and so we see that M is a symmetric Rees

monoid. We see there are two orbits of G on X; {L1, L2, R1, R2} and {T, S1, S2, B}.
We find that

GL1 = {1, σρ} , GT = {1, σ} .

Applying Theorem 2.3.1, M is thus given by the following monoid presentation:

M = 〈σ, ρ, t, r|σ2 = ρ4 = 1, σρσ = ρ3, σρt = tσρ, σr = rσ〉.

Figure 3: Sierpinski carpet (source [3])

2.5.4 Von Koch curve

Consider the monoid M of similarities of the von Koch curve F (Figure 4). Let L be

the map which rotates F by 3π/4 radians about the central axis and sends it to the

left hand side and let R be the map which rotates F by 5π/4 radians and sends it to

the right hand side. Letting X = {L,R}, G = C2 = 〈σ〉 we see that σL = Rσ and

σR = Lσ. The conditions of Theorem 2.5.4 are satisfied and so

M = 〈σ, t|σ2 = 1〉,

which is isomorphic to the monoid for the Cantor set. This demonstrates that fractals

with the same similarity monoids can have very different geometric structures.

Let L1, L2, R1 and R2 be the maps which map F , respectively, to the far left, the

left diagonal, the right diagonal and the far right of itself and σ again be reflection in

the verticle axis. We see that L1 = LR, L2 = L2, R1 = R2 and R2 = RL. We have
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the following relations:

σL1 = R2σ, σL2 = R1σ, σR1 = L2σ, σR2 = L1σ.

Then the monoid generated by X = {L1, L2, R1, R2} is free, the group of units

G = 〈σ〉 ∼= C2 and N = 〈L1, L2, R1, R2, σ〉 will again be a Rees monoid, this time

a submonoid of the monoid of similarity transformations of F . N is given by the

following monoid presentation:

N = 〈σ, t, r|σ2 = 1〉.

Figure 4: Von Koch curve (source [4])

2.5.5 Some examples in R
3

We can also consider examples in 3 dimensional space. We can define the Sierpinski

tetrahedron, Cantor cylinder and Sierpinski cube in analogy with the constructions

described in the previous section. Note that the Sierpinski tetrahedron and Sierpinski

cube satisfy the conditions of Theorem 2.5.4. We find that for the Sierpinski tetra-

hedron |X| = 4 and G is the isometry group of a tetrahedron, and for the Sierpinski

cube |X| = 20 and G is the isometry group of a cube.

The Cantor cylinder doesn’t quite work as the obvious contraction maps are not

similarity transformations, but there is still a nice associated Rees monoid, where we

set |X| = 2, G = S1 o C2, Gx = Gy = S1 and gx = xg for all g ∈ S1.

2.6 Topological fractals

In this section we describe a construction of a fractal-like topological space found

in Bandt and Retta [14]. They show that certain fractals are really determined up

to homeomorphism. We prove that the monoid of into-homeomorphisms of certain

examples arising from their construction is a left Rees monoid.

Let S = {1, . . . ,m} be a finite set, C = S∞ the space of sequences s = s1s2 . . .

with the product topology, S∗ the free monoid on S and S<n the set of words of length

49



Chapter 2: Left Rees Monoids

smaller than n. If s ∈ C ∪ S∗, then the prefix word of length k of s is denoted by

s|k = s1 . . . sk. An equivalence relation ∼ on C will be called invariant if ∼ is a closed

set in C × C and for all s, t ∈ C and i ∈ S

s ∼ t⇔ is ∼ it,

that is, it is a left congruence with respect to S. A = C/ ∼ will be called an invariant

factor for C. Let us now fix such a relation ∼. Let

M = {s ∈ C|∃t ∈ C : s ∼ t ∧ s1 6= t1} .

We will call Q = M/ ∼ the critical points of A. Let p : C → A be the associated

projection with respect to ∼. We will say p is finite-to-one if M is finite and contains

no periodic sequence. If there do not exist s ∈ M and w ∈ S∗ such that ws also

belongs to M , the relation ∼ and the factor A are called simple.

For w ∈ S∗ denote by Cw = {ws|s ∈ C} and let Aw = p(Cw). It was proved in [13]

that there is a unique homeomorphism fw : A→ A such that fw(p(s)) = p(ws).

We will now define a sequence of undirected hypergraphs Gn. The vertex set of Gn

is Sn and the edge set is S<n ×Q. The endpoints of the edge (v, q) will be the words

(vs)|n, with s ∈ q. If each equivalence class q ∈ Q contains less than 2 elements, then

these will in fact be graphs.

A connected graph G is said to be 2-connected if G \ {u} is connected for each

u ∈ V (G). A connected graphG withm vertices and c edges is said to be edge-balanced

if for each k with 1 < k < m, the graph cannot be divided into k components by

deleting (k − 1)c/(m− 1) or less edges.

Let M(A) denote the set of homeomorphisms from A into subspaces of A and let

G(A) be the group of homeomorphisms from A to itself. Bandt and Retta proved the

following result [14]:

Theorem 2.6.1. Let A be a simple finite-to-one invariant factor such that G1 is

edge-balanced and G2 is 2-connected. Then for each f ∈ M(A), there exists w ∈ S∗

such that im(f) = Aw.

We then get the following immediate corollary.

Corollary 2.6.2. Each element of h ∈M(A) can be written h = fwg, where w ∈ S∗

and g ∈ G(A).

Proof. If h(A) = Aw, then g = f−1
w h.

Proposition 2.6.3. For A as above, M(A) is a left Rees monoid.
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Proof. M(A) is clearly left cancellative since by assumption its elements are injective.

Identifying an element fw with w ∈ S∗, we see that M(A) = S∗G(A) uniquely. Thus

by Theorem 2.2.1, M(A) is a left Rees monoid.

Example 2.6.4. Let S = {1, 2, 3}, denote by ī the sequence consisting just of the

character i, say ij̄ ∼ jī for i, j = 1, 2, 3, and extend this equivalence relation to C.

Then A = C/ ∼ is homeomorphic to the Sierpinski gasket and the conditions of

Theorem 2.6.1 are satisfied.

Proposition 2.6.5. Let A and B be two invariant factors such that f : A→ B is a

homeomorphism. Then M(A) is isomorphic to M(B).

Proof. Define S : M(A) → M(B) by S(h) = fhf−1. Then S is clearly an isomor-

phism.

2.7 Automaton presented groups

We now describe how self-similar group actions arise from automata. This is described

in detail in [98]. For the present an automaton A = (A,X, λ, π) consists of

• a set A whose elements are called states ;

• a set X called the alphabet ;

• a map λ : A×X → X called the output function;

• a map π : A×X → A called the transition function.

In theoretical computer science, these structures are normally called deterministic

real-time synchronous transducers [25]. We will denote λ(q, x) by q · x and π(q, x) by

q|x.
We can use Moore diagrams to represent automata as follows. The states are

represented by labelled circles. For a ∈ A and x ∈ X, there exists an arrow from a to

a|x labelled by the ordered pair (x, a · x).

Let us define:

• q|∅ = q

• q · ∅ = ∅

Given an automaton (A,X) we can construct an automaton (A,Xn) for each n

by defining the transition and output functions recursively as follows, for x, y ∈ X∗:

1. q|xy = (q|x)|y

2. q · (xy) = q · (x)q|x · y
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Let (A,X), (B,X) be two automata. Then we can define their composition automaton

(A×B,X) with transition and output functions as follows:

1. (pq) · x = p · (q · x)

2. (pq)|x = p|(q·x)q|x

We see that states of automata describe endomorphisms of free monoids as trees.

An automaton is invertible if each of its states describes an invertible transformation of

a free monoid. That is, an automaton is invertible if and only if λ(a, ·) is a bijection for

each a ∈ A. Given an invertible automaton (A,X), we can construct an automaton

(A−1, X) whose states are in bijective correspondence with those of A and whose

transition and output functions are inverted. We call an automaton whose states

each define different endomorphism of X∗ reduced. We thus have a homomorphism

FG(A) → Aut(X∗). The group generated by the image of this homomorphism we

will denote by G or G(A). Each of the elements of G will correspond to one or more

compositions of states of A. We see that G acts on X∗ self-similarly and faithfully.

Note that the kernel of this homomorphism will be

K(A) =
⋂
x∈X∗

Gx.

So by the first isomorphism theorem, we have

G ∼= FG(A)/K(A).

We call a left Rees monoid finite-state if each of the sets {g|x : x ∈ X∗} for g ∈ G
is finite.

We now see that given an invertible reduced automaton A with a finite number of

states over a finite alphabet, we can then construct a fundamental left Rees monoid

M(A). On the other hand, given a finite state fundamental left Rees monoid with

finitely generated group of units and finite X, then we can describe it by a finite-state

reduced invertible automaton.

Let A = (A,X, λ1, π1) and B = (B, Y, λ2, π2) be finite state automata. We will

say A and B are computationally equivalent and write A ∼ B if

1. There is an isomorphism θ : X∗ → Y ∗.

2. For all a ∈ FG(A) there exists b ∈ FG(B) such that a · x = b · θ(x) for all

x ∈ X∗.

3. For all b ∈ FG(B) there exists a ∈ FG(B) such that a · θ−1(y) = b · y for all

y ∈ Y ∗.
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It is clear that ∼ defines an equivalence relation.

Proposition 2.7.1. Let A, B be automata. Then A ∼ B if and only if M(A) and

M(B) are isomorphic monoids.

Proof. (⇒) Let A = (A,X, λ1, π1) ∼ B = (B, Y, λ2, π2). Then we can assume X = Y

by (1). By (2) and (3), we have a bijective map f : G(A) → G(B). Further since in

group actions (ab) · x = a · (b · x), f is a homomorphism and thus an isomorphism

(⇐) This is clear.

2.7.1 Adding machine

Let us describe an example found in [98]. Let G = 〈a〉 ∼= Z and X = {x, y}. Then

define a · x = y, a · y = x, a|x = 1 and a|y = a. This defines a self-similar action.

In terms of the wreath recursion we have a = σ(1, a), where σ is the permutation in

S(X) permuting x and y. Let us denote this left Rees monoid by M . It is called

the dyadic adding machine. Identify x with 0 and y with 1 so that finite and infinite

words over X become expansions of dyadic integers. The action of a on a word w

is then equivalent to adding 1 to the dyadic integer corresponding to w. We can see

that M acts on the Cantor set by identifying elements of the Cantor set with dyadic

integers. The associated automaton has the following Moore diagram:

"!
# -

(1, 0)

an -(0, 1)
1n"!
# -(1, 1)

"!
# 
-
(0, 0)

Figure 5: Moore diagram of the dyadic adding machine

We see that Gx = Gy = {a2n : n ∈ Z}. We have that

φx(a
2) = (a2)|x = (a|a·x)(a|x) = (a|y)(a|x) = a.

Then for n > 1 we have

φx(a
2n) = (a2n)|x = (a2n−2|a2·x)(a

2|x) = φx(a
2n−2)a

and so by induction φx(a
2n) = an. Similarly φy(a

2n) = an. Therefore φx and φy are

both injective so M is in fact a Rees monoid. The action is transitive and so the Rees
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monoid will have the following monoid presentation

M = 〈a, a−1, t|aa−1 = a−1a = 1, tan = a2nt, n ∈ Z〉,

which can be further reduced to give

M = 〈a, a−1, t|aa−1 = a−1a = 1, ta = a2t〉.

Therefore the universal group will be

U(M) = 〈a, t|tat−1 = a2〉 ∼= BS(1, 2),

where the Baumslag-Solitar group BS(m,n) is given by the following group pre-

sentation

BS(m,n) = 〈a, t|tamt−1 = an〉.

We can in fact generalise the above to construct an automaton whose associated

monoid’s universal group is BS(k, n), where k < n. Let A = {a, 1} and X =

{0, . . . , n− 1}. There will be n arrows starting at a and these will be labelled by

tuples (x, x + 1 mod n), x ∈ X. The first k arrows will be from a to itself, and the

remaining n−k arrows will go from a to 1. The arrows from 1 to itself will be labelled

by pairs (x, x), x ∈ X. We have that G = Z and for each x ∈ X, we have Gx = 〈an〉
and an|x = ak. This gives a monoid with presentation:

M = 〈a, a−1, t|aa−1 = a−1a = 1, tak = ant〉

and so

U(M) = 〈a, t|takt−1 = an〉 ∼= BS(k,m).

Note that BS(k,m) ∼= BS(m, k) and so this really gives us all of the Baumslag-Solitar

groups.

2.7.2 Baumslag-Solitar group actions

The following example is adapted from one given in [17]. Consider the automaton A
given by the following Moore diagram.
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"!
# -
(x, x)

αn -
(y, y)

�

(x, y)

βn -
(y, x)

�

(x, x)

γn"!
# -
(y, y)

Figure 6: Baumslag-Solitar machine

Thinking of x as representing 0 mod 2 and y as 1 mod 2 and identifying Xω with

Z2 we can consider α, β and γ as the maps defined on the dyadic integers given by

α(X) = 3X, β(X) = 3X + 1 and γ(X) = 3X + 2. Letting

G = FG(α, β, γ)/K(A),

we have G ∼= BS(1, 3) where the isomorphism θ : BS(1, 3)→ G is given on generators

by θ(t) = α and θ(a) = βα−1, viewing t and a as the maps on Z2 given by t(X) = 3X

and a(X) = X+1. The action of G on X = {x, y} is transitive. An arbitrary element

g ∈ G can be written

g = (
n∏
k=1

tikajk)tr,

where ik, jk, r ∈ Z. We see that

θ(t) · x = α · x = x

and

θ(a) · x = (βα−1) · x = y.

Similarly, θ(t) · y = y and θ(a) · y = x. From this we deduce that

Gx = Gy =

{
(
n∏
k=1

tikajk)tr|
n∑
k=1

jk even

}
.

Note that

α|x = α, α|y = β = θ(at), (βα−1)|x = αα−1 = 1, (βα−1)|y = γβ−1 = βα−1.

Now the group Gx is generated as a group by the elements a2, ata and t. We see that

when we consider the monoid presentation of the monoid M of the automaton A, if
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we have the relation gr = rh for some g, h ∈ G then this gives for free

g−1r = g−1grh−1 = rh−1.

Thus M has monoid presentation

M = 〈a, a−1, t, t−1, r | aa−1 = a−1a = tt−1 = t−1t = 1, ta = a3t,

atar = ra2t, tr = rt, a2r = ra〉.

It is not clear whether M is right cancellative or not. Its universal group U(M) has

group presentation

U(M) = 〈a, t, r|ta = a3t, atar = ra2t, tr = rt, a2r = ra〉.

2.7.3 Sierpinski gasket

Let G = D6, X = {L,R, T} and suppose M is the monoid of similarity transforma-

tions of the Sierpinski gasket as described in Section 2.5.1. Observe that M is in fact

the monoid associated with the following automaton:

"!
# -

(L,T)

"!
# -

(T,R)

"!
# 
-
(R,L)

ρn "!
# -

(L,R)

"!
# -

(T,T)

"!
# 
-
(R,L)

σn

Figure 7: Moore diagram of Sierpinski gasket automaton

2.7.4 Grigorchuk group

Here we give an example taken from [98] of a left Rees monoid which is not a Rees

monoid. The Grigorchuk group G is defined to be the group of units of the left Rees

monoid generated by four elements a, b, c, d with X = {0, 1} and wreath recursion

a = σ, b = (a, c), c = (a, d), d = (1, b),

where σ ∈ S(X) is again the flip map and the associated Moore diagram is:
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Figure 8: Moore diagram of Grigorchuk group action automaton

It is not a Rees monoid because b, c ∈ G0 and φ0(b) = φ0(c) = a.

2.8 Associated bialgebra

The following construction is based on ideas found in [53]. Let K be a field and let

M be a monoid. We can form the monoid bialgebra KM as follows. An element v of

KM is a finite sum

v =
n∑
i=1

αixi,

where αi ∈ K and xi ∈ M . We define addition +, convolution ◦ and scalar multipli-

cation as follows:
n∑
i=1

αixi +
m∑
i=1

βiyi =
n+m∑
i=1

αixi,

where for n+ 1 ≤ i ≤ n+m, αi = βi−n and xi = yi−n,

n∑
i=1

αixi ◦
m∑
i=1

βiyi =
n∑
i=1

m∑
j=1

αiβjxiyj,

where xiyj is the product in M and

λ
n∑
i=1

αixi =
n∑
i=1

λαixi,

where for all of the above λ, αi, βi ∈ K and xi, yi ∈M . This gives KM the structure

of a unital K-algebra. (Note if K = C, we may want to take the complex conjugate
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of the βi’s in the definition of the convolution.) We can make KM a cocommutative

bialgebra by specifying the comultiplication ∆ on the elements x ∈M to be

∆(x) = x⊗ x

and counit ε to be ε(x) = 1. If M is a group, we can make KM into a Hopf algebra by

defining the antipode S(g) = g−1. Now suppose M = X∗ ./ G is a left Rees monoid.

Then KM is isomorphic to the bicrossed product bialgebra ( [89]) KX∗ ./ KG with

unit 1⊗ 1, multiplication on generators given by

(x⊗ g)(y ⊗ h) = x(g · y)⊗ (g|y)h,

comultiplication ∆(x⊗ g) = (x⊗ g)⊗ (x⊗ g), counit ε(x⊗ g) = 1. If M is symmetric,

then we can form KΓ = KFG(X) ./ KG, as above with antipode S(x × g) =

(g−1 · x−1)⊗ (g−1|x−1).

As in the representation theory of finite groups, we see that if f : M →Mn(K) is

a homomorphism, then Kn can naturally be given the structure of a finitely generated

left KM -module, by setting(∑
i

αisi

)
· x =

∑
i

αi(f(si) · x),

for αi ∈ K, si ∈M and x ∈ Kn.

We now consider what the ring KM looks like. Throughout M = X∗G is a left

Rees monoid and R = KM . We will view R as a left R-module.

Lemma 2.8.1. R is not artinian.

Proof. Consider the chain of left ideals Rx ⊇ Rx2 ⊇ Rx3 ⊇ .... Then this chain is

infinite and so R does not satisfy the descending chain condition.

Lemma 2.8.2. If |X| ≥ 2 then R is not noetherian.

Proof. Let Jk be the left ideal generated by the set
{
yx, yx2, . . . , yxk

}
. Then Jk ⊆

Jk+1 for k ≥ 1, and so R does not satisfy the ascending chain condition.

We can give R a grading by letting Rk be the set of elements of R with maximal

length of a string from X∗ being k.

For a ring R let the Jacobson radical be defined as follows

J(R) =
⋂
I

I,
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where the intersection is taken over all maximal proper right ideals I of R. If J(R) = 0,

then R is said to be semisimple. By Lemma I.1.3 of [8] and the fact that an element

x ∈ X is not invertible we have

Lemma 2.8.3. If |X| ≥ 1, G arbitrary then R is semisimple.

Now consider KXn as a kn-dimensional vector space, viewed as the nth tensor

power of KX. We will now construct an embedding of KG into Mkn(K), which will

act in a nice way on KXn.

Let s1 : KG → Mk(K) be defined as follows. For each g ∈ G, 1 ≤ i ≤ k, if

g · xi = xj, then there will be a 1 in the (j, i)th entry of the matrix s1(g). All other

entries will be 0. We see that s1(g) is a doubly stochastic matrix with a single 1 in

every row and column. Now define

s1(

|G|∑
i=1

αigi) =

|G|∑
i=1

αis1(gi).

We will now describe inductively sk : KG → Mkn(K) for k > 1. For g ∈ G, let

sk(g) be as s1(g), except that the 1 in the (j, i)th position is replaced by a kn−1×kn−1

matrix Aj, and the 0’s are replaced by blocks of 0’s. Here

Aj = sk−1(g|xi).

Similarly,

sk(

|G|∑
i=1

αigi) =

|G|∑
i=1

αisk(gi).

For example, let us consider the monoid M of similarity transformations of the

Sierpinski gasket. In order to clarify the construction, we will change the basis from

the one used above. We will define L to be the map which rotates the gasket by 2π/3

radians and then maps to the bottom left hand corner. R and T will still map the

gasket to the bottom right and top parts and ρ and σ will remain unchanged. So, our

new relations will be

ρT = Rρ, ρL = Tρ2, ρR = L

and

σT = Tσ, σL = Rρ2σ, σR = Lρ2σ.

Then we have

s1(ρ) =

0 1 0

0 0 1

1 0 0

 ,
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s1(σ) =

0 1 0

1 0 0

0 0 1

 ,

s2(ρ) =



0 0 0 1 0 0 0 0 0

0 0 0 0 1 0 0 0 0

0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 1

0 0 0 0 0 0 1 0 0

0 0 1 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0


and

s2(σ) =



0 0 0 0 0 1 0 0 0

0 0 0 0 1 0 0 0 0

0 0 0 1 0 0 0 0 0

0 0 1 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 1


.

60



Chapter 3

Left Rees Categories

3.1 Outline of chapter

The aim of this chapter is to generalise ideas from the theory of left Rees monoids

and self-similar group actions to the context of left Rees categories and self-similar

groupoid actions. The hope is that by generalising these ideas, one can apply the

algebraic theory of self-similarity more widely. In Section 3.2 we will describe how

the correspondence between left Rees monoids and self-similar group actions outlined

in Section 2.2 can naturally be generalised to a correspondence between left Rees

categories and self-similar groupoid actions. This can essentially be deduced from

the work of [51] and [77]. We will here flesh out the details for the sake of com-

pleteness. We will show in Section 3.3 that every left Rees category is the category

HNN-extension of a groupoid. From this we will deduce several facts relating self-

similar groupoid actions to Bass-Serre theory, in particular showing that fundamental

groupoids of graphs of groups are precisely the groupoids of fractions of Rees cate-

gories with totally disconnected groupoids of invertible elements. In Section 3.4 we

will encounter the notion of a path automorphism groupoid of a graph. This is a di-

rect generalisation of the automorphism group of a regular rooted tree, as the vertices

of a regular n-rooted tree can be viewed as paths in a graph with one vertex and n

edges. We will see that certain self-similar groupoid actions can be described in terms

of a functor into a path automorphism groupoid. In Section 3.5 we will consider how

one might define wreath products in the context of groupoid theory and we will see

how one might generalise the wreath recursion to the context of self-similar groupoid

actions. We will see in Section 3.6 a method of obtaining self-similar groupoid actions

from automata. In Section 3.7 an indication will be given as to how one might gener-

alise the ideas of self-similar group actions arising from iterated function systems to

self-similar groupoid actions arising from graph iterated function systems. We will in-

vestigate the representation theory of left Rees categories in Section 3.8 and will show

a connection with the representation theory of finite-dimensional algebras when the
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left Rees category is finite. Finally, in Section 3.9 we will see how one can associate

an inverse semigroup to a left Rees category in a natural way. This will allow us to

connect this work with the work of Nivat and Perrot, and will be useful in tackling

examples in Chapter 4.

3.2 Left Rees categories and self-similar groupoid

actions

We begin by giving the background definitions required for this chapter. As stated in

the introduction all categories in this chapter will be assumed to be small.

A principal right ideal in a category C is a subset of the form xC where x ∈ C.

Analogously to the case of monoids, a category C will be said to be right rigid if

xC ∩ yC 6= ∅ implies that xC ⊆ yC or yC ⊆ xC. We will then use the term left

Rees category to describe a left cancellative, right rigid small category in which each

principal right ideal is properly contained in only finitely many distinct principal right

ideals. A left Rees monoid is then precisely a left Rees category with a single object.

A Leech category is a left cancellative small category such that any pair of arrows with

a common range that can be completed to a commutative square have a pullback and

so left Rees categories are examples of Leech categories. Analogously, a right Rees

category is a right cancellative, left rigid category in which each principal left ideal is

properly contained in only finitely many distinct principal left ideals. A category is

Rees if it is both a left and right Rees category.

An element x in a category C is said to be indecomposable iff x = yz implies that

either y or z is invertible. A principal right ideal xC is said to be submaximal if

xC 6= r(x)C and there are no proper principal right ideals between xC and r(x)C.

We will now summarise some results about left cancellative categories whose proofs

can be found in [51].

Lemma 3.2.1. Let C be a left cancellative category.

1. If a = xy is an identity then x is invertible with inverse y.

2. We have that xC = yC iff x = yg where g is an invertible element.

3. xC = aC for some identity a ∈ C0 iff x is invertible.

4. The maximal principal right ideals are those generated by identities.

5. The non-invertible element x is indecomposable iff xC is submaximal.

6. The set of invertible elements is trivial iff for all identities a ∈ C0 we have that

a = xy implies that either x or y is an identity.

62



Chapter 3: Left Rees Categories

One is then ( [51]) led to the following result which is a generalisation of a similar

result for free monoids.

Proposition 3.2.2. A category is free if and only if it is a left Rees category having

a trivial groupoid of invertible elements.

It follows from Lemma 3.6 of [77] that a left Rees category which is right cancella-

tive is in fact a Rees category.

We shall now describe the structure of arbitrary left Rees categories in terms of

free categories. One can view this as a generalisation of the connection between self-

similar group actions and left Rees monoids. Let G be a groupoid with set of identities

G0 and let C be a category with set of identities C0. We shall suppose that there is

a bijection between G0 and C0 and, to simplify notation, we shall identify these two

sets. Denote by G ∗ C the set of pairs (g, x) such that g−1g = r(x). We shall picture

such pairs as follows:

g

OO

x

oo

We suppose that there is a function

G ∗ C → C denoted by (g, x) 7→ g · x

which gives a left action of G on C and a function

G ∗ C → G denoted by (g, x) 7→ g|x

which gives a right action of C on G such that

(C1) r(g · x) = gg−1.

(C2) d(g · x) = g|x(g|x)−1.

(C3) d(x) = (g|x)−1g|x.
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This information is summarised by the following diagram

g·x

oo

g

OO

x

oo

g|x

OO

We also require that the following axioms be satisfied:

(SS1) r(x) · x = x.

(SS2) If gh is defined and h−1h = r(x) then (gh) · x = g · (h · x).

(SS3) gg−1 = g · g−1g.

(SS4) r(x)|x = d(x).

(SS5) g|g−1g = g.

(SS6) If xy is defined and g−1g = r(x) then g|xy = (g|x)|y.

(SS7) If gh is defined and h−1h = r(x) then (gh)|x = g|h·xh|x.

(SS8) If xy is defined and g−1g = r(x) then g · (xy) = (g · x)(g|x · y).

If there are maps g ·x and g|x satisfying (C1)–(C3) and (SS1)–(SS8) then we say that

there is a self-similar action of G on C.

Put

C ./ G = {(x, g) ∈ C ×G : d(x) = gg−1}.

We represent (x, g) by the diagram

x

oo

g

OO
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Given elements (x, g) and (y, h) satisfying g−1g = r(y) we then have the following

diagram

x

oo

g

OO

y

oo

h

OO

Completing the square enables us to define a partial binary operation on C ./ G by

(x, g)(y, h) = (x(g · y), g|yh).

The following is now a straightforward reinterpretation of Theorem 4.2 of [77].

Proposition 3.2.3. Let G be a groupoid having a self-similar action on the category

C.

1. C ./ G is a category.

2. C ./ G contains copies C ′ and G′ of C and G respectively such that each element

of C ./ G can be written as a product of a unique element from C ′ followed by

a unique element from G′.

3. If C has trivial invertible elements then the set of invertible elements of C ./ G

is G′.

4. If C is left cancellative then so too is C ./ G.

5. If C is left cancellative and right rigid then so too is C ./ G.

6. If C is a left Rees category then so too is C ./ G.

Proof. (1) Define d(x, g) = (g−1g, g−1g) and r(x, g) = (r(x), r(x)). The condition for

the existence of (x, g)(y, h) is that d(x, g) = r(y, h). Axioms (C1),(C2) and (C3) then

guarantee the existence of (x(g · y), g|yh) and we can see from the diagram that

d((x, g)(y, h)) = d(y, h) and r((x, g)(y, h)) = r(x, g).

It remains to prove associativity.
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Suppose first that

[(x, g)(y, h)](z, k)

exists. The product (x, g)(y, h) exists and so we have the following diagram

x

oo

g·y

oo

g

OO

g|y

OO

y

oo

h

OO

similarly [(x, g)(y, h)](z, k) exists and so we have the following diagram

x(g·y)

oo

(g|yh)·z

oo

g|yh

OO

(g|yh)|z

OO

z

oo

k

OO

resulting in the product

(x(g · y)[(g|yh) · z], (g|yh)|zk).

By assumption, x(g · y)[(g|yh) · z] exists and so (g · y)[(g|yh) · z] is non-zero. Pre-

multiplying by g−1 we find that y(h · z) exists and we use (SS7) and (SS6) to show

that

(g|yh)|zk = g|y(h·z)h|zk.
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By (SS2),

x(g · y)[(g|yh) · z] = x(g · y)(g|y · (h · z)).

It now follows that

(y, h)(z, k) = (y(h · z), h|zk)

exists. It also follows that (x, g)[(y, h)(z, k)] exists and is equal to

[(x, g)(y, h)](z, k).

Next suppose that

(x, g)[(y, h)(z, k)]

exists. This multiplies out to give (x[g · (y(h · z))], g|y(h·z)h|zk). By (SS6) and (SS7)

we get that

g|y(h·z)h|zk = (g|yh)|zk,

and by (SS8) and (SS2) we get that x[g ·(y(h ·z))] = x(g ·y)[(g|yh) ·z]. This completes

the proof that C ./ G is a category.

(2) Define ιC : C → C ./ G by ιC(x) = (x,d(x)). Denote the image of ιC by C ′.

Note that there exists ιC(x)ιC(y) iff d(x) = r(y) iff ∃xy. In this case

ιC(x)ιC(y) = (x,d(x))(y,d(y)) = (xy,d(xy)) = ιC(xy).

Thus the categories C and C ′ are isomorphic.

Now define ιG : G → C ./ G by ιG(g) = (gg−1, g) and denote the image by G′.

Then once again the categories G and G′ are isomorphic.

Finally, if we now pick an arbitrary non-zero element (x, g), then we can write it as

(x, g) = (x,d(x))(gg−1, g) using the fact that gg−1|gg−1 = gg−1 and d(x)·gg−1 = gg−1.

(3) Suppose that C has trivial invertible elements. We need to check that (x, g) is

invertible if and only if x is an identity. Suppose (x, g) is invertible. Let (y, h) be its

inverse. Calculating (x, g)(y, h) and (y, h)(x, g) gives y(h · x) = r(y), x(g · y) = r(x),

g−1 = h|x and h−1 = g|y. To show that x is invertible, we just need to show that

(g · y)x = d(x) and we will have proved x is invertible and thus by assumption an

identity. We have that d(x) = g · r(y) = g · (y(h · x)) = (g · y)(g|yh) · x = (g · y)x.

Now suppose x is an identity. Then (x, g) = (gg−1, g) ∈ G′ and since G is a

groupoid, we have (x, g) is invertible.

(4) Suppose that C is left cancellative. We prove that C ./ G is left cancellative.

Suppose that (x, g)(y, h) = (x, g)(z, k). Then x(g · y) = x(g · z) and g|yh = g|zk. By

left cancellation in C it follows that g · y = g · z and by (SS1) we deduce that y = z.

Hence h = k. We have therefore proved that (y, h) = (z, k), as required.

(5) Suppose now that C is left cancellative and right rigid. By (4), we know that
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C ./ G is left cancellative so it only remains to be proved that C ./ G is right rigid.

Suppose that

(x, g)(y, h) = (u, k)(v, l)

From the definition of the product it follows that x(g · y) = u(k · v) and g|yh = k|vl.
From the first equation we see that xC ∩uC 6= ∅. Without loss of generality, suppose

that x = uw. Then by left cancellation w(g · y) = k · v. Observe that k−1 · (k · v) is

defined and so k−1 · (w(g · y)) is defined by (SS2). Thus by (SS8), k−1 · w is defined.

It is now easy to check that

(x, g) = (u, k)(k−1 · w, (k|k−1·w)−1g).

(6) Let C be a left Rees category and let M = C ./ G. By (4) and (5), it remains

to prove that every principal right ideal is only contained in finitely many distinct

principal right ideals. We show that (x, g)M ⊆ (y, h)M iff xC ⊆ yC, from which

it will follow that M is a left Rees category. If (x, g)M ⊆ (y, h)M then there exists

(z, k) ∈M with (x, g) = (y, h)(z, k). That is,

(x, g) = (y(h · z), h|zk)

and so xC ⊆ yC. Now suppose that x, y ∈ C are such that xC ⊆ yC. Then there

exists z ∈ C with x = yz. Let g, h ∈ G be arbitrary elements with d(x) = gg−1 and

d(y) = hh−1. It can easily be verified that

(h−1 · z, (h|h−1·z)
−1g) ∈M

and that

(x, g) = (y, h)(h−1 · z, (h|h−1·z)
−1g).

We call C ./ G the Zappa-Szép product of the category C by the groupoid G by

analogy to the monoid situation. It follows from Proposition 3.2.3 that the Zappa-

Szép product of a free category by a groupoid is a left Rees category. In fact an

arbitrary left Rees category is a Zappa-Szép product of a free category by a groupoid.

Proposition 3.2.4. Every left Rees category is isomorphic to a Zappa-Szép product

of a free category by a groupoid.

Proof. Let M be a left Rees category. First, let X be a transversal of the generators

of the submaximal principal right ideals of M . We claim that X∗, the subcategory of

M consisting of all allowed products of elements of X, is free. Suppose

x1 . . . xm = y1 . . . yn,
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where xi, yi ∈ X and this product exists. Then from the above y1 . . . ynM ⊆ x1M .

Thus y1M ∩ x1M 6= ∅. By assumption y1 and x1 are indecomposable and so y1M =

x1M . On the other hand, X was defined to be a transversal and so x1 = y1. By left

cancellativity we thus have

x2 . . . xm = y2 . . . yn.

Suppose m < n. Continue cancelling and we get ym+1 . . . yn = e for some identity e.

But that would imply eM ⊆ ym+1M , which cannot happen by Lemma 3.2.1. Thus

m = n, and we have xi = yi for each i.

Let G be the graph with edges elements of X and vertices identities and let G∗

be the free category on G. We have shown that G∗ and X∗ are isomorphic, so view

G∗ as the subcategory of M containing products of elements of X. Let G = G(M)

be the groupoid of invertible elements of M and let s ∈ M \ G be arbitrary. Since

the submaximal ideals of M are generated by indecomposable elements it follows that

sM ⊆ x1M for some x1 ∈ X. If this is equality then s = x1g for some g ∈ G.

Otherwise s = x1y1 for some y1 ∈M . Now we repeat the same argument for y1 to get

y1 = x2y2 for some x2 ∈ X, y2 ∈ M . Continuing in this way we find s = x1 . . . xng

for some x1, . . . , xn ∈ X and g ∈ G, this process terminating since s is only contained

in finitely many principal right ideals. To see that this decomposition is unique,

suppose x1 . . . xng = y1 . . . ymh where xi, yj are in X and g, h ∈ G. It follows that

x1M ∩ y1M 6= ∅. Since x1, y1 are indecomposable, we must have x1 = y1. We then

cancel on the left and continue in this manner to find that m = n, xi = yi for each i

and g = h. Thus every element s ∈ M can be written uniquely in the form s = xg

where x ∈ G∗ and g ∈ G.

Now define, for g ∈ G, x ∈ G∗ such that ∃gx,

gx =: (g · x)(g|x).

By the above this is well-defined. We claim that this gives a self-similar action of G

on G∗. We thus need to show it satisfies (C1) - (C3) and (SS1) - (SS8).

(C1) r(g · x) = r((g · x)(g|x)) = r(gx) = r(g) = gg−1.

(C2) d(g · x) = r(g|x) = g|x(g|x)−1.

(C3) d(x) = d(gx) = d((g · x)(g|x)) = d(g|x) = (g|x)−1g|x.

(SS1) and (SS4) xd(x) = x = r(x)x = (r(x) · x)(r(x)|x) giving r(x) · x = x and

r(x)|x = d(x).

In a similar manner, using uniqueness of the decomposition,
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(SS2) and (SS7) (gh)x = ((gh) · x)(gh)|x and

g(hx) = g(h · x)(h|x) = g · (h · x)g|h·xh|x.

(SS3) and (SS5) g = gg−1g = g · (g−1g)g|g−1g.

(SS6) and (SS8) g(xy) = g · (xy)g|xy and

(gx)y = (g · x)(g|x)y = (g · x)(g|x · y)((g|x)|y).

Let M be a left Rees category which is the Zappa-Szép product of a free category

G∗ and a groupoid G. For x ∈ G∗, let

Gx =
{
g ∈ G|r(x) = g−1g

}
and let

xG =
{
g ∈ G|d(x) = g−1g

}
.

We define the map ρx : Gx → xG by ρx(g) = g|x. A left Rees category is symmetric

if the maps ρx : Gx → xG are bijections for each x ∈ G∗.
Let us define for x ∈ G∗ the stabiliser of x, Gx, and the orbit of x, Ωx, as follows:

Gx = {g ∈ Gx | g · x = x}

and

Ωx = {y ∈ G∗ | ∃g ∈ G : g · x = y} .

It follows from the fact that r(g) = r(g · x) that Gx is in fact a group. We define

the map φx : Gx → xG by φx(g) = g|x, so that φx is the restriction of ρx to the

stabiliser of x.

Analogously to Lemma 2.2.3 of Chapter 2 it is easy to see that we have the

following:

Lemma 3.2.5. Let (G,G∗) be a self-similar groupoid action.

(i) The map φx is a functor for each x ∈ G∗.

(ii) Let y = g · x. Then Gy = gGxg
−1 and

φy(h) = g|xφx(g−1hg)(g|x)−1.

(iii) If φx is injective then φg·x is injective.
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(iv) φx is injective for all x ∈ G1 iff φx is injective for all x ∈ G∗.

(v) φx is surjective for all x ∈ G1 iff φx is surjective for all x ∈ G∗.

(vi) ρx is injective for all x ∈ G1 iff ρx is injective for all x ∈ G∗.

(vii) ρx is surjective for all x ∈ G1 iff ρx is surjective for all x ∈ G∗.

Let us define the length of a non-identity element of G∗ to be the number of

elements of G1 in its unique decomposition, and say that an identity has length 0.

Lemma 3.2.6. The action of G on G∗ is length-preserving

Proof. Consider an identity e ∈ G∗. Then g · e exists iff e = g−1g and so g · e = gg−1

by (SS3), which is an identity. Suppose the claim is true for all x ∈ G∗ with l(x) < n

for some n ≥ 1. Let x ∈ G∗ be such that l(x) = n. We see that if g ∈ Gx then

l(g · x) ≥ n as otherwise l(x) = l((g−1g) · x) < n, a contradiction. So suppose

g · x = yz for some y, z ∈ G∗ with l(y) = n− 1. Then g−1 · (yz) exists and equals x.

But g−1 · (yz) = (g−1 · y)(g−1|y · z). Thus l(g−1|y · z) = 1 and so l(g · x) = n.

Lemma 3.2.7. A left Rees category M is right cancellative if and only if we have

that φx is injective for every x ∈ G∗.

Proof. (⇒) Suppose g|y = h|y for some g, h ∈ Gy. Then

(x, g)(y, r(y)) = (xy, g|y) = (xy, h|y) = (x, h)(y, r(y)).

It then follows by right cancellativity that g = h.

(⇐) Suppose (x, g)(y, h) = (z, k)(y, h). We want to show x = z and g = k. Since

(x(g · y), g|yh) = (z(k · y), k|yh),

we must have x(g · y) = z(k · y) and g|yh = k|yh. By the cancellativity of G, length-

preservation and uniqueness, x = z, g · y = k · y and g|y = k|y. Let t = g · y = k · y.

We have

(gk−1)|t = g|k−1·tk
−1|t = g|yk−1|t = k|yk−1|t = k|k−1·tk

−1|t = (kk−1)|t.

Since gk−1 ∈ Gt and φt is injective, we have gk−1 = kk−1 and so g = k.

Proposition 3.2.8. Let M be a left Rees category and let a ∈ M0 be an identity.

Then the local monoid aMa is a left Rees monoid.

Proof. Let M = G∗G be a left Rees category and let a ∈M0. A subcategory of a left

cancellative category will again be left cancellative, so aMa must be left cancellative.
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Suppose x, y ∈ G∗, g, h ∈ G are such that xg, yh ∈ aMa and xgaMa ∩ yhaMa 6= ∅.
Then there exist z1, z2 ∈ G∗ and u1, u2 ∈ G such that xgz1u1 = yhz2u2. It therefore

follows that there exists t ∈ G∗ with xt = y or yt = x. Suppose xt = y. Observe that

g−1th ∈ aMa and so xgg−1th = yh in aMa. Thus yhaMa ⊆ xgaMa. In a similar

way if yt = x we find xgaMa ⊆ yhaMa. It therefore follows that aMa is right rigid.

Note that if xg, yh ∈ aMa are such that xgaMa ⊂ yhaMa then y is a prefix of x.

Since x has finite length, there are only finitely many prefixes of x and so there can

only be finitely many principal right ideals containing xgaMa. Thus aMa is a left

Rees monoid.

3.3 Category HNN-extensions and Bass-Serre the-

ory

In this section we will prove left Rees categories are precisely what we will call category

HNN-extensions of groupoids. We will further see how one can interpret ideas from

Bass-Serre theory in the context of Rees categories.

Suppose C is a category given by category presentation C = 〈G|R(C)〉 , where

here we are denoting the relations of C by R(C) and suppose there is an index set I,

submonoids Hi : i ∈ I of C and functors αi : Hi → C. Let ei, fi ∈ G0 be such that

Hi ⊆ eiCei and αi(Hi) ⊆ fiCfi. Define H to be the graph with H0 = G0 and

H1 = G1 ∪ {ti|i ∈ I}

where r(ti) = ei and d(ti) = fi. We will say that M is a category HNN-extension of

C if M is given by the category presentation:

M = 〈H|R(C), xti = tiαi(x)∀x ∈ Hi, i ∈ I〉 .

Theorem 3.3.1. Category HNN-extensions M of groupoids G such that each associ-

ated submonoid Hi in the definition above is a subgroup of G are precisely left Rees

categories M ∼= G∗ ./ G for some graph G.

Proof. Let G be a groupoid, Hi : i ∈ I subgroups of G, αi : Hi → G group ho-

momorphisms and let M be the category HNN-extensions of the groupoid G with

associated submonoids Hi = eiHiei, stable letters ti : i ∈ I and let fi ∈ G0 be such

that fi = fiαi(Hi)fi. We will now prove that M is a left Rees category such that

M ∼= G∗ ./ G

for some graph G.
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For each i ∈ I, let Ti be a transversal of left coset representatives of Hi. Note

that for each i an element u ∈ G with d(u) = ei can be written uniquely in the form

u = gh, where g ∈ Ti and h ∈ Hi. We will assume that ei ∈ Ti for each i.

We claim that a normal form for elements s ∈M is

s = g1ti1g2ti2 · · · gmtimu

where gk ∈ Tik and u ∈ G.

An element s ∈M can definitely be written in the form

s = v1ti1v2ti2 · · · vmtimw

with vk, w ∈ G. There will be a unique g1 ∈ Ti1 , h1 ∈ Hi1 such that

v1 = g1h1.

So

s = g1h1ti1v2ti2 · · · vmtimw.

We see that h1ti1 = ti1ρi1(h1) and thus

s = g1ti1ρi1(h1)v2ti2 · · · vmtimw.

We can continue this process by writing

ρik(hk)vk+1 = gk+1hk+1

with gk+1 ∈ Tik+1
, hk+1 ∈ Hik+1

and then noting

hk+1tik+1
= tik+1

ρik+1
(hk+1).

So we see that we can write s in the form

s = g1ti1g2ti2 · · · gmtimu

where gk ∈ Tik and u ∈ G. We will see in due course that this is in fact a unique

normal form.

Let G be the graph with G0 = G0 = M0 and

G1 = {gti|g ∈ Ti, i ∈ I} ,

where the domain of the edge gti will be d(gti) ∈M0, similarly for ranges.
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We will now consider the free category G∗. Note that since we haven’t yet shown

that the normal forms above are unique normal forms, distinct elements of G∗ might

correspond to the same element of M . We will now define a self-similar action of G

on G∗.
Let y = x1 . . . xm ∈ G∗ and g ∈ G. Each xk is of the form xk = uktik where

uk ∈ Tik . Now there exist unique elements g1 ∈ Ti1 , h1 ∈ Hi1 with gu1 = g1h1 in G.

Then for each 1 < k ≤ m we will let gk ∈ Tik , hk ∈ Hik be the unique elements with

αik−1
(hk−1)uk = gkhk in G. Finally we will let u = αim(hm). We thus define

g · (x1 . . . xm) = y1 . . . ym

where yk = gktik and

g|(x1...xm) = u.

We will define g · d(g) = r(g) and g|d(g) = g for g ∈ G. We now check this describes

a self-similar groupoid action:

(SS3), (SS5), (SS6) and (SS8) These are true by construction.

(SS1) and (SS4) These follow from the fact that ei ∈ Ti and αi(ei) = fi for each i ∈ I.

(SS2) and (SS7) If hu = g1h1 and (gh)u = g2h2 for g, h ∈ G, u, g1, g2 ∈ Tik , h1, h2 ∈
Hik then

gg1 = ghuh−1
1 = g2h2h

−1
1

and since αik is a functor we also have

αik(h2) = αik(h2h
−1
1 )αik(h1).

Thus (gh) · x = g · (h · x) and (gh)|x = g|h·xh|x for all g, h ∈ G and x ∈ G∗ with

d(g) = r(h) and d(h) = r(x).

Let C = G∗ ./ G be the associated Zappa-Szép product. We define a map θ : C →M

by

θ(x1 . . . xm, g) = g1ti1 . . . gmtimg

where xk = gktik for each 1 ≤ k ≤ m. By the above work on normal forms for M , we

see that θ is surjective. We now check that θ is a functor. Let (x1 . . . xm, v1), (y1 . . . yr, v2) ∈
C be arbitrary with d(v1) = r(y1). Suppose xk = uktik and yk = gktjk for each k. Let

g′1 ∈ Tj1 , h1 ∈ Hj1 be such that v1g1 = g′1h1, for each 1 < k ≤ r let g′k ∈ Tjk , hk ∈ Hjk

be such that αjk−1
(hk−1)gk = g′khk, let u = αjr(hr)v2 and let y′k = g′ktjk ∈ G for

1 ≤ k ≤ r. Then

(x1 . . . xm, v1)(y1 . . . yr, v2) = (x1 . . . xmy
′
1 . . . y

′
r, u)
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and so

θ((x1 . . . xm, v1)(y1 . . . yr, v2)) = θ(x1 . . . xmy
′
1 . . . y

′
r, u)

= u1ti1 . . . umtimg
′
1tj1 . . . g

′
rtjru

= u1ti1 . . . umtimv1g1tj1 . . . grtjrv2

= θ(x1 . . . xm, v1)θ(y1 . . . yr, v2).

Thus θ is a functor. Since ei ∈ Ti for each i there exist xi ∈ G1 with xi = ti. We see

that θ(xi,d(xi)) = ti for each i and θ(r(g), g) = g for each g ∈ G. We know from the

earlier theory that

G∗ ∼= {(x,d(x))|x ∈ G∗} ⊆ C

and

G ∼= {(r(g), g)|g ∈ G} ⊆ C.

Let us denote the element (xi,d(xi)) ∈ C by yi, the image of G in C by G′, the

image of Hi in C by H ′i and let us denote by α′i the functor α′i : H ′i → G′ given

by α′i(1, h) = (fi, αi(h)). Then we see that G′ ∪ {yi : i ∈ I} generates C. Further,

for each h ∈ H ′i we have hyi = yiα
′
i(h). Let H be the graph with H0 = G′0 and

H1 = G′1 ∪ {yi : i ∈ I}. Then we see that C is given by the category presentation

C ∼= 〈H | R(G′), hyi = yiα
′
i(h), i ∈ I, S〉,

whereR(G′) denotes the relations ofG in terms ofG′ and S denotes whatever relations

are needed so that C really is given by this presentation. Since θ(r(g), g) = g for each

(r(g), g) ∈ G′, θ(yi) = ti for each i and all the relations of M hold in C it follows from

the fact that θ is an surjective functor that θ is in fact an isomorphism.

We have therefore shown that every category HNN-extension of a groupoid is a

left Rees category. We will now show that every left Rees category is a category

HNN-extension.

Let M = G∗G be a left Rees category. We will say two elements x, y ∈ G1 are in

the same orbit under the action of G if there exist elements g, h ∈ G with gx = yh.

This defines an equivalence relation on G1. Let X be a subset of G1 such that X

contains precisely one element in each orbit of the action of G on G1.

Let us write

X = {ti|i ∈ I}

and let X∗ denote the set of all allowed products of elements of X together with all

the identity elements of M .
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Define ρi := ρti , the map which sends an element g ∈ G with d(g) = r(ti) to

the element g|ti ∈ G. Let Hi = Gti be the stabiliser of ti under the action of G let

Ti be a transversal of Hi and let H be the directed graph with H0 = G0 = G0 and

H1 = G1 ∪X.

Define Γ by the following category presentation:

Γ = 〈H|R(G), hti = tiρi(h) ∀h ∈ Hi, i ∈ I〉,

where R(G) denotes the relations of G, so that Γ is a category HNN-extension of

G.

A few observations:

1. Each x ∈ G1 is given uniquely by x = g · ti for some i, where g ∈ Ti.

2. For g ∈ Ti we have g · ti = gti(g|xi)−1 = gti(ρi(g))−1.

3. For each i every element u ∈ G with d(u) = r(ti) can be written uniquely in

the form u = gh, where g ∈ Ti and h ∈ Hi.

One can check in exactly the same way as for the first half of this theorem that

every element of Γ can be written in the form

g1ti1(ρi1(g1))−1g2ti2(ρi2(g2))−1 · · · gmtim(ρim(gm))−1u

where gk ∈ Tik and u ∈ G.

Let us check that this is a unique normal form for elements of Γ. Note first that

the relations of Γ do not allow us to swap or remove ti’s, so two equal elements of Γ

must have the same number of ti’s and they must be in the same positions relative to

each other.

Now suppose

g1ti1(ρi1(g1))−1 · · · gmtim(ρim(gm))−1u = g′1ti1(ρi1(g
′
1))−1 · · · g′mtim(ρim(g′m))−1v

in Γ, where these elements are written in the above form. Then by the unique normal

form for elements of Γ we must have g1 = g′1. Thus by left cancellativity of Γ we have

g2ti2(ρi2(g2))−1 · · · gmtim(ρim(gm))−1u = g′2ti2(ρi2(g
′
2))−1 · · · g′mtim(ρim(g′m))−1v.

Continuing in this way one see that gk = g′k for each k and u = v.

Observe that the left Rees category M can be given by category presentation as

M = 〈H|R(G), hti = tiρi(h) ∀h ∈ Hi, i ∈ I, S〉,
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where S are any additional relations required to make this really a presentation for

M . It is now easy to see that the map f : Γ→M defined on generators by f(ti) = ti

for i ∈ I and f(g) = g for g ∈ G is an isomorphism of categories.

If G be a groupoid and H a subgroup of G then we will call a functor φ : H → G

a partial endomorphism of G. Given a groupoid G and partial endomorphisms φi :

Hi → G then Theorem 3.3.1 says that we can form a left Rees category M(φi : i ∈ I)

as follows. For each i ∈ I let ai, bi ∈ G0 be such that Hi = aiHiai and φi(Hi) =

biφi(Hi)bi. Define H to be the graph with H0 = G0 and H1 = G1 ∪ {ti : i ∈ I} where

the edge ti has r(ti) = ai and d(ti) = bi. Then M(φi : i ∈ I) will have category

presentation

M(φi : i ∈ I) = 〈H|R(G), hti = tiρi(h) ∀h ∈ Hi, i ∈ I〉.

By Lemma 3.2.7 and Lemma 3.2.5 (iii) and (iv) we see that a left Rees category

M(φi : i ∈ I) is right cancellative (and so a Rees category) if and only if φi is injective

for each i ∈ I.

We have the following theorem which describes in terms of partial endomorphisms

when two left Rees categories are isomorphic.

Theorem 3.3.2. Let G,G′ be groupoids, Hi : i ∈ I subgroups of G, H ′j : j ∈ J

subgroups of G′ and suppose φi : Hi → G, φ′j : H ′j → G′ are partial endomorphisms

for each i ∈ I, j ∈ J . Then the left Rees categories M(φi : i ∈ I) and M(φ′j : j ∈
J) are isomorphic if and only if there is an isomorphism f : G → G′, a bijection

γ : I → J and elements ui, vi ∈ G′ with u−1
i f(Hi)ui = H ′γ(i) and vif(φi(h))v−1

i =

φ′γ(i)(u
−1
i f(h)ui) for every i ∈ I and h ∈ Hi.

Proof. (⇒) For each i ∈ I, j ∈ J let ai, bi ∈ G, a′j, b
′
j ∈ G′ be the identities with

Hi = aiHiai, φi(Hi) = biφi(Hi)bi, H
′
j = a′jH

′
ja
′
j and φ′j(H

′
j) = b′jφ

′
j(H

′
j)b
′
j. Let G

and H be the graphs with G0 = G0 and G1 = G1 ∪ {ti : i ∈ I} where ai
ti← bi and

H0 = G′0 and H1 = G′1 ∪ {rj : j ∈ J} where a′j
rj← b′j. We can write M(φi : i ∈ I) and

M(φ′j : j ∈ J) in terms of category presentation as

M(φi : i ∈ I) = 〈G|R(G), hti = tiφi(h) ∀h ∈ Hi, i ∈ I〉

and

M(φ′j : j ∈ J) = 〈H|R(G), hrj = rjφ
′
j(h) ∀h ∈ H ′j, j ∈ J〉.

Suppose f : M(φi : i ∈ I) → M(φ′j : j ∈ J) is an isomorphism. Note that

f(G) = G′. Each submaximal principal two-sided ideal of M(φi : i ∈ I) is generated

by a ti and likewise for M(φ′j : j ∈ J). It follows that there is a bijection γ : I → J and
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elements ui, vi ∈ G′ for each i ∈ I with f(ti) = uirγ(i)vi. Define maps αi : aiGai →
a′iG

′a′i, βi : biGbi → b′iG
′b′i for each i ∈ I by αi(g) = u−1

i f(g)ui and βi(g) = vif(g)v−1
i .

It is clear that αi and βi are isomorphisms for each i ∈ I since local groups on the

same connected component of a groupoid are isomorphic.

We now verify that αi : Hi → H ′γ(i) and βiφi = φ′γ(i)αi for each i ∈ I. If h ∈ Hi

then

αi(h)rγ(i) = u−1
i f(h)uirγ(i) = u−1

i f(h)uirγ(i)viv
−1
i = u−1

i f(h)f(ti)v
−1
i

= u−1
i f(hti)v

−1
i = u−1

i f(tiφi(h))v−1
i = u−1

i f(ti)f(φi(h))v−1
i

= rγ(i)vif(φi(h))v−1
i = rγ(i)βi(φi(h)).

Thus αi(Hi) ⊆ H ′γ(i) and βiφi = φ′γ(i)αi. Further, if h ∈ H ′γ(i) then

f(α−1
i (h)ti) = f(f−1(uihu

−1
i )ti) = uihu

−1
i uirγ(i)vi = uihrγ(i)vi = uirγ(i)φ

′
γ(i)(h)vi

= uirγ(i)viv
−1
i φ′γ(i)(h)vi = f(tif

−1(v−1
i φ′γ(i)(h)vi)).

Since f is an isomorphism this therefore implies that α−1
i (h)ti = tif

−1(v−1
i φ′γ(i)(h)vi)

and so α−1
i (H ′γ(i)) = Hi.

(⇐) For each i ∈ I, j ∈ J let ai, bi ∈ G, a′j, b
′
j ∈ G′ be the identities with

Hi = aiHiai, φi(Hi) = biφi(Hi)bi, H
′
j = a′jH

′
ja
′
j and φ′j(H

′
j) = b′jφ

′
j(H

′
j)b
′
j. Let G

and H be the graphs with G0 = G0 and G1 = G1 ∪ {ti : i ∈ I} where ai
ti← bi and

H0 = G′0 and H1 = G′1 ∪ {rj : j ∈ J} where a′j
rj← b′j. We can write M(φi : i ∈ I) and

M(φ′j : j ∈ J) in terms of category presentation as

M(φi : i ∈ I) = 〈G|R(G), hti = tiφi(h) ∀h ∈ Hi, i ∈ I〉

and

M(φ′j : j ∈ J) = 〈H|R(G), hrj = rjφ
′
j(h) ∀h ∈ H ′j, j ∈ J〉.

Define f̄ : M(φi : i ∈ I) → M(φ′j : j ∈ J) on generators by f̄(g) = f(g) for

each g ∈ G and f̄(ti) = uirγ(i)vi for each i ∈ I. Observe that by construction

f̄(gh) = f̄(g)f̄(h) for each g, h ∈ G. We now check that for each i ∈ I and h ∈ Hi we

have f̄(h)f̄(ti) = f̄(ti)f̄(φi(h)). Let i ∈ I and h ∈ Hi. Then

f̄(h)f̄(ti) = f(h)uirγ(i)vi = uiu
−1
i f(h)uirγ(i)vi = uirγ(i)φ

′
γ(i)(u

−1
i f(h)ui)vi

= uirγ(i)vif(φi(h))v−1
i vi = uirγ(i)vif(φi(h)) = f̄(ti)f̄(φi(h))

and so f̄ is a functor. To see that f̄ is surjective note that for each j ∈ J there exists i ∈
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I with γ(i) = j, f−1(u−1
i )tif

−1(v−1
i ) ∈M(φi : i ∈ I) and f̄(f−1(u−1

i )tif
−1(v−1

i )) = rj.

We must finally verify that f̄ is injective. Suppose g1ti1 . . . gmtimx1, g
′
1ti1 . . . g

′
mtimx2 ∈

M(φi : i ∈ I) are such that

f̄(g1ti1 . . . gmtimx1) = f̄(g′1ti1 . . . g
′
mtimx2).

Note that we have assumed that the t′s in both expressions are the same since our

relations don’t allow us to swap them. We therefore have

f(g1)ui1rγ(i1)vi1 . . . f(gm)uimrγ(im)vimf(x1) = f(g′1)ui1rγ(i1)vi1 . . . f(g′m)uimrγ(im)vimf(x2).

For each i ∈ I let Ti be a transversal of Hi in G and for each j ∈ J let T ′j be a

transversal of H ′j in G′. Let y1 ∈ T ′γ(i1), h1, h
′
1 ∈ H ′γ(i1) be such that

y1h1 = f(g1)ui1

and

y1h
′
1 = f(g′1)ui1 .

For k = 2, . . . ,m let yk ∈ T ′γ(ik), hk, h
′
k ∈ H ′γ(ik) be such that

ykhk = φ′γ(ik−1)(hk−1)vik−1
f(gk)uik

and

ykh
′
k = φ′γ(ik−1)(h

′
k−1)vik−1

f(g′k)uik .

Then by the uniqueness of normal forms we have

φ′γ(im)(hm)vimf(x1) = φ′γ(im)(h
′
m)vimf(x2).

By assumption, hm = u−1
im
f(zm)uim for some zm ∈ Him and h′m = u−1

im
f(z′m)uim for

some z′m ∈ Him . It follows that

φ′γ(im)(u
−1
im
f(zm)uim)vimf(x1) = φ′γ(im)(u

−1
im
f(z′m)uim)vimf(x2)

and so

vimf(φim(zm))v−1
im
vimf(x1) = vimf(φim(z′m))v−1

im
vimf(x2)

giving

f(φim(zm))f(x1) = f(φim(z′m))f(x2).

Since f is an isomorphism this implies that

φim(zm)x1 = φim(z′m)x2
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and so

zmtimx1 = z′mtimx2.

Rewriting this in terms of hm and h′m we have

f−1(uimhimu
−1
im

)timx1 = f−1(uimh
′
imu

−1
im

)timx2

and so

f−1(uimy
−1
m φ′γ(im−1)(hm−1)vim−1f(gm))timx1 = f−1(uimy

−1
m φ′γ(im−1)(h

′
m−1)vim−1f(g′m))timx2.

Cancelling on the left gives

f−1(φ′γ(im−1)(hm−1)vim−1)gmtimx1 = f−1(φ′γ(im−1)(h
′
m−1)vim−1)g

′
mtimx2.

Note that hm−1 = u−1
im−1

f(zm−1)uim−1 for some zm−1 ∈ Him−1 and h′m−1 = u−1
im−1

f(z′m−1)uim−1

for some z′m−1 ∈ Him−1 . Using this we have

f−1(φ′γ(im−1)(u
−1
im−1

f(zm−1)uim−1)vim−1)gmtimx1 = f−1(φ′γ(im−1)(u
−1
im−1

f(z′m−1)uim−1)vim−1)g
′
mtimx2.

Thus

f−1(vim−1f(φim−1(zm−1))v−1
im−1

vim−1)gmtimx1 = f−1(vim−1f(φim−1(z
′
m−1))v−1

im−1
vim−1)g

′
mtimx2.

This gives

φim−1(zm−1)gmtimx1 = φim−1(z
′
m−1)g′mtimx2

and so

zm−1tim−1gmtimx1 = z′m−1tim−1g
′
mtimx2.

We then continue in this way to discover that

g1ti1 . . . gmtimx1 = g′1ti1 . . . g
′
mtimx2

and so f̄ is injective.

Let φ : H → G, φ′ : H ′ → G be partial endomorphisms of a groupoid G and

suppose that a1, a2, b1, b2 ∈ G are identities such that H = a1Ha1, φ(H) = b1φ(H)b1,

H ′ = a2H
′a2 and φ′(H ′) = b2φ

′(H ′)b2. Then φ and φ′ will be said to be conjugate

if there exist a1
u← a2, b1

v← b2 in G such that the maps α : a1Ga1 → a2Ga2,

β : b1Gb1 → b2Gb2 defined by α(g) = u−1gu, β(g) = vgv−1 satisfy α(H) = H ′ and

βφ = φ′α.

Corollary 3.3.3. Let G be a groupoid, Hi, Hi : i ∈ I subgroups of G and let φi :
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Hi → G and φ′i : H ′i be partial endomorphisms for each i ∈ I. If φi is conjugate to φ′i

for every i ∈ I then the categories M(φi : i ∈ I) and M(φ′i : i ∈ I) are isomorphic.

Let φ : H → G, φ′ : H ′ → G′ be partial endomorphisms of groupoids G and G′

and suppose that a1, b1 ∈ G and a2, b2 ∈ G′ are identities such that H = a1Ha1,

φ(H) = b1φ(H)b1, H ′ = a2H
′a2 and φ′(H ′) = b2φ

′(H ′)b2. Then φ and φ′ will be said

to be isomorphic if there exist isomorphisms α : a1Ga1 → a2G
′a2, β : b1Gb1 → b2G

′b2

with α(H) = H ′ and βφ = φ′α.

Corollary 3.3.4. Let G,G′ be groupoids, Hi : i ∈ I subgroups of G, H ′j : j ∈ J

subgroups of G′, φi : Hi → G, φ′j : H ′j → G′ partial endomorphisms for each i ∈ I,

j ∈ J and suppose that M(φi : i ∈ I) and M(φ′j : j ∈ J) are isomorphic left Rees

categories. Then there is a bijection γ : I → J such that the partial endomorphisms

φi and φ′γ(i) are isomorphic for each i ∈ I.

Using Proposition 1.2.1 we see that the groupoid of fractions of a Rees category is a

groupoid HNN-extension and in addition by comparing the normal forms of elements

of a Rees category and Proposition 1.2.2 it is clear that a Rees category embeds

in its groupoid of fractions. Since the fundamental groupoid of a graph of groups

is a groupoid HNN-extension of a totally disconnected groupoid, every fundamental

groupoid of a graph groups is the groupoid of fractions of a Rees category with totally

disconnected groupoid of invertible elements, and so there is an underlying self-similar

groupoid action.

To explore this connection further we will require the notion of a diagram of

partial homomorphisms which we now define. A diagram of partial homomorphisms

GG consists of

• A (not necessarily connected) graph G.

• A group Ga for each vertex a ∈ G0.

• A subgroup Gt ≤ Gr(t) for each edge t ∈ G0.

• A homomorphism φt : Gt → Gd(t) for each edge t ∈ G1.

In other words, a diagram of partial homomorphisms is just a graph of groups without

an involution on the underlying graph and such that the maps φt are not necessarily

injective.

We will say two diagrams of partial homomorphisms GG and G ′G with underlying

graphs G and G ′ are equivalent if

• There are bijections γ0 : G0 → G ′0 and γ1 : G1 → G ′1 with γ0(d(t)) = d(γ1(t))

and γ0(r(t)) = r(γ1(t)) for each t ∈ G1.
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• For each a ∈ G0 there is an isomorphism fa : Ga → Gγ0(a).

• For each t ∈ G1 there are elements ut ∈ Gr(γ1(t)), vt ∈ Gd(γ1(t)) with

u−1
t fr(t)(Gt)ut = Gγ1(t)

and

vtfd(t)(φt(h))v−1
t = φγ1(t)(u

−1
t fr(t)(h)ut)

for every h ∈ Gt.

A route in GG consists of a sequence g1t1g2t2 · · · gmtmgm+1 where tk ∈ G1 for each

k, gk ∈ Gr(tk) for k = 1, . . . ,m and gk+1 ∈ Gd(tk) for k = 1, . . . ,m. We allow

for the case m = 0, i.e. routes of the form g ∈ Ga for some a ∈ G0. We write

d(g1t1g2t2 · · · gmtmgm+1) = d(tm) and r(g1t1g2t2 · · · gmtmgm+1) = r(t1). For g ∈ Ga

viewed as a route we write d(g) = r(g) = a. Let ∼ be the equivalence relation on

routes in GG generated by phtq ∼ ptφt(h)q, where p, q are routes and h ∈ Gt.

Given a diagram of partial homomorphisms GG, we define its fundamental cat-

egory C(GG) to be the category whose arrows correspond to equivalence classes of

∼. Composition of arrows is simply concatenation of composable paths multiplying

group elments at each end.

Let GG be a diagram of partial homomorphisms, let G be the groupoid which is

the disjoint union of all the vertex groups of GG and let H be the graph with H0 = G0

and H1 = G1 ∪ {t : t ∈ G1}. We can then write the fundamental category of GG in

terms of a category presentation as

C(GG) ∼= 〈H|R(G), ht = tφt(h)∀h ∈ Gt, t ∈ G1〉.

It then follows that C(GG) is a left Rees category with totally disconnected groupoid

of invertible elements. On the other hand, if we have a left Rees category with totally

disconnected groupoid of invertible elements we can just reverse this process to get a

fundamental category of a diagram of partial homomorphisms. Thus,

Proposition 3.3.5. Fundamental categories of diagrams of partial homomorphisms

are precisely left Rees categories with totally disconnected groupoids of invertible ele-

ments.

Combining Proposition 3.3.5 and Theorem 3.3.2 we have

Proposition 3.3.6. Two diagrams of partial homomorphisms are equivalent if and

only if their fundamental categories are isomorphic.

If GG is a diagram of partial homomorphisms we will denote by Tt a transversal of

the left cosets of Gt in Gr(t) for each edge t. We then see that an arbitrary element s
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of C(GG) can be written uniquely in the form

s = g1t1 · · · gmtmu

where d(tk) = r(tk+1) for each k = 1, . . . ,m − 1, gk ∈ Ttk for each k = 1, . . . ,m and

u ∈ Gd(tm) is arbitrary.

Given a diagram of partial homomorphisms GG and a vertex a ∈ G0 we define the

fundamental monoid of GG at a to be M(GG, a) = aC(GG)a, the local monoid at a of

C(GG). By Proposition 3.2.8 M(GG, a) will be a left Rees monoid with group of units

Ga.

Let GG be a diagram of partial homomorphisms, let a be a vertex of GG and let

Pa denote the set of routes in GG with range a. For p, q ∈ Pa we will write p ≈ q

if d(p) = d(q) and p ∼ qg for some g ∈ Gd(p). This defines an equivalence relation

on Pa. We will denote the ≈-equivalence class containing the route p by [p]. An

arbirtrary element of Pa/ ≈ can then be written uniquely in the form

[x] = [g1t1 · · · gmtm]

where r(t1) = a, d(tk) = r(tk+1) for each k = 1, . . . ,m − 1 and gk ∈ Ttk for each

k = 1, . . . ,m. We now define the Bass-Serre tree T with respect to the vertex a as

follows. The vertices of T are ≈-equivalence classes of routes in Pa. Two vertices

[x], [y] ∈ T0 are connected by an edge s ∈ T1 if there are g ∈ Ga and t ∈ G1 such that

y ≈ xgt.

Here d(s) = y and r(s) = x. In other words there is an edge connecting [g1t1 · · · gmtm]

and [g1t1 · · · gmtmgm+1tm+1] where gk ∈ Ttk for each k, and every edge arises in this

way. It therefore follows that T is a tree. We will now define an action of M(GG, a)

on T0 by

p · [x] = [px].

This will then naturally extend to an action of M(GG, a) on T .

Let us rewrite this in our earlier notation for left Rees categories. Suppose M =

G∗G is a left Rees category and a ∈M0 is an identity. We will define T to be the tree

with vertices

T0 = {x ∈ G∗|r(x) = a}

and two vertices x, y ∈ T0 will be connected by an edge s ∈ T1 with d(s) = y and

r(s) = x if y = xz for some z ∈ G∗. We then have an action of aMa on T given on

vertices by

(xg) · y = x(g · y)
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and then extended to the edge s with r(s) = y and d(s) = yz by defining the edge

(xg) · s to be the one connecting x(g · y) and x(g · y)(g|y · z). If GG has a single vertex,

then then this action just described will essentially be the action of a left Rees monoid

M = X∗G on the tree X∗ given by

(xg) · y = x(g · y).

As a final remark to this section, we note that all of the results of Section 2.4

should transfer to the categorical setting without any problems, so that a Zappa-Szép

product of a free category and a groupoid can only be extended to a Zappa-Szép

product of a free groupoid and a groupoid if it is symmetric, the groupoid of fractions

of a symmetric Rees category is isomorphic to the Zappa-Szép product of a free

groupoid and a groupoid and every Rees category with finite groupoid of invertible

elements is isomorphic to a symmetric Rees category.

3.4 Path automorphism groupoids

In this section we will define the path automorphism groupoid of a graph. This is

a generalisation of the notion of the automorphism group of a regular rooted tree.

Throughout G will denote an arbitrary directed graph. In addition, in both this

section and the following section we will use the word path to mean what we earlier

called a route, since all routes are paths in the previous sense.

For each e ∈ G0, let l(e) be the length of the longest path p with r(p) = e. If there

are no paths p (aside from the empty path) with r(p) = e then we will say l(e) = 0

and if there are paths of arbitrary length then we say l(e) =∞.

For example, let G be the following graph:

e �
x

f

"!
# -

t

g�
z

h

6

y

Here we have l(e) = 2, l(f) = 1, l(g) = ∞ and l(h) = 0. If M = G∗G is a left

Rees category and if e, f ∈ G0 are such that g · e = f for some g ∈ G, then l(e) = l(f)

(here we are again identifying G0 and G∗0).

We say a graph G satisfies the infinite path condition (IPC) if l(e) =∞ for every

e ∈ G0. Let G be a directed graph satisfying (IPC). For each e ∈ G0, let Pe be the
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set of infinite paths p in G with r(p) = e, P ∗e be the set of finite paths p in G with

r(p) = e and let Fe,f be the set of bijective maps g : Pe ∪P ∗e → Pf ∪P ∗f satisfying the

following conditons:

• If p ∈ P ∗e then l(p) = l(g(p))

• If r ∈ P ∗e is a subpath of p ∈ Pe, then g(p) = g(r)q for some infinite path q in

G. In other words, if p, q ∈ Pe are of the form p = rp̃, q = rq̃ where r ∈ P ∗e with

|r| = n, then g(p) = sp′, g(q) = sq′ where |s| = n.

We will call such maps g : Pe ∪ P ∗e → Pf ∪ P ∗f path automorphisms. Note that in

general in a graph satisfying (IPC) often Fe,f will be empty. Let

G =
⋃

e,f∈G0

Fe,f .

Then we can give G the structure of a groupoid by composing path automorphisms

whose domains and ranges match up and we call this the path automorphism groupoid

of G. When G has a single vertex and edge set X, then G will be the automorphism

group of X∗, where we view X∗ as a regular rooted tree.

Proposition 3.4.1. Let G be a graph satisfying (IPC) and G∗ the free category on

G. Then the path automorphism groupoid G of G0 has a natural faithful self-similar

action on G∗.

Proof. Firstly, identify the idenities of G and G∗. Let x ∈ G∗, let e = r(x), let f ∈ G0

and let g ∈ Fe,f . Define g · x to be g(x) and define g|x ∈ Fd(x),d(g(x)) to be the map

which satisfies the following: for every q ∈ Pd(x),

g(xq) = g(x)g|x(q).

We need to check this satisfies the axioms for a self-similar action. Firstly, d(g) = r(x),

so this is all well-defined. We thus need to show it satisfies (C1) - (C3) and (SS1) -

(SS8).

(C1) - (C3) These follow from how we have defined g · x and g|x.

(SS8) This follows from the definition of the restriction.

(SS1), (SS3), (SS4) and (SS5) These are all clear.

(SS2) This follows from the definition of composition of functions.

(SS6) We will prove this by computing g · (xyz) in 2 different ways:

g · (xyz) = (g · (xy))(g|xy · z)
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and

g · (xyz) = (g · x)(g|x · (yz)) = (g · x)(g|x · y)((g|x)|y · z).

By using (g · (xy)) = (g · x)(g|x · y) and cancelling we get the desired result.

(SS7) We will prove this by computing (gh) · (xy) in 2 different ways:

(gh) · (xy) = ((gh) · x)((gh)|x · y)

and

(gh) · (xy) = g · (h · (xy)) = g · ((h · x)(h|x · y)) = ((gh) · x)((g|h·xh|x) · y).

Cancelling gives the desired result.

It follows from Proposition 3.4.1 that if G is a groupoid acting faithfully and

self-similarly on G∗ for a graph G satisfying the infinite path condition then G is a

subgroupoid of G .

Let G be a directed graph. An automorphism g of G consists of bijective maps

G0 → G0 and G1 → G1 such that d(g(x)) = g(d(x)) and r(g(x)) = g(r(x)) for each

edge x ∈ G1. The set of all automorphisms forms a group under composition, which

we will denote by Aut(G). If G satisfies (IPC) then every element of Aut(G) can be

extended to a path automorphism. Let us denote the set of such path automorphisms

by G. We see that G is a subgroupoid of G which is closed under restriction and thus

acts self-similarly on G∗.

3.5 Wreath products

In this section we will define wreath products for groupoids. This definition is not

equivalent to that of Houghton [46]. Essentially his definition generalises to groupoids

that of functions from a set X to a group G, whereas ours generalises to groupoids the

notion of the Xth direct power of the group G. Throughout this section all graphs will

be finite and will be assumed to satisfy (IPC). We also suppose that Fe,f is non-empty

for all e, f ∈ G0.

Let G be a graph, let e ∈ G0 and let Ee be the set of edges x ∈ G1 with r(x) = e.

Let e, f ∈ G0 be such that |Ee| = |Ef |. Then a bijection Ee → Ef will be called an

edge bijection. Let B(G) be the groupoid of all edge bijections where the product is

composition whenever it is defined.

Let G be a graph, let H be a subgroupoid of B(G) and let G be a groupoid such

that we can identify G0 = H0 = G0. For each e fix an order on Ee. Then the
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permutational wreath product of G and H, denoted H oG, is defined to be the set of

elements

σ(gx1 , . . . , gxn),

where σ ∈ H, x1, . . . , xn are all the edges in G such that r(xi) = d(σ), and for all

i, gxi ∈ G, d(gxi) = d(xi) and r(gxi) = d(σ(xi)). We define a product between two

elements σ(gx1 , . . . , gxn) and τ(hy1 , . . . , hym) iff στ is defined (in which case n = m).

The product is defined as follows:

σ(gx1 , . . . , gxn)τ(hy1 , . . . , hyn) = στ(gτ(y1)hy1 , . . . , gτ(yn)hyn).

Lemma 3.5.1. With G,H as in the previous definition, H oG is a groupoid.

Proof. We have that

d(σ(gx1 , . . . , gxn)) = σ−1σ(d(x1), . . . ,d(xn))

and

r(σ(gx1 , . . . , gxn)) = σσ−1(d(σ(x1)), . . . ,d(σ(xn))),

noting that for each i we have σ−1σ = r(xi) and σσ−1 = r(σ(xi)). It is easy to see

that

(σ(gx1 , . . . , gxn))−1 = σ−1(hy1 , . . . , hyn),

where hσ(xi) = g−1
xi

. The difficult thing to see is that this multiplication is associative.

So let σ(gx1 , . . . , gxn), τ(hy1 , . . . , hyn) and π(kz1 , . . . , kzn) be such that στπ exists.

Then

σ(gx1 , . . . , gxn)τ(hy1 , . . . , hyn) = στ(gτ(y1)hy1 , . . . , gτ(yn)hyn) = στ(uy1 , . . . , uyn),

so

(σ(gx1 , . . . , gxn)τ(hy1 , . . . , hyn))π(kz1 , . . . , kzn) = στπ(uπ(z1)kz1 , . . . , uπ(zn)kzn).

On the other hand,

τ(hy1 , . . . , hyn)π(kz1 , . . . , kzn) = τπ(hπ(z1)kz1 , . . . , hπ(zn)kzn) = τπ(vz1 , . . . , vzn),

so

σ(gx1 , . . . , gxn)(τ(hy1 , . . . , hyn)π(kz1 , . . . , kzn)) = στπ(gτπ(z1)vz1 , . . . , gτπ(zn)vzn).

Now

gτπ(zi)vzi = gτπ(zi)(hπ(zi)kzi) = (gτπ(zi)hπ(zi))kzi = uπ(zi)kzi
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and so we are done.

We can now prove a result analogous to Proposition 1.4.2 of [98].

Proposition 3.5.2. Let G be a finite directed graph satisfying (IPC), H = B(G) and

G = G . Then there is a bijective functor

ψ : G→ H oG.

Proof. Define ψ : G→ H oG by

ψ(g) = σ(g|x1 , . . . , g|xn),

where {xi} are the edges with r(xi) = d(g), σ describes the action of g on the edges

xi and g|xi is just the restriction of g by xi. We have that σ ∈ B(G), d(g|xi) = d(xi)

and r(g|xi) = d(σ(xi)). Thus ψ(x) ∈ H oG.

Let us prove first that ψ is a functor. Let g, h ∈ G be such that gh exists. Then

ψ(g)ψ(h) = σ(g|x1 , . . . , g|xn)τ(h|y1 , . . . , h|yn) = στ(g|τ(y1)h|y1 , . . . , g|τ(yn)h|yn)

= στ((gh)|y1 , . . . , (gh)|yn) = ψ(gh).

Now suppose ψ(g) = ψ(h). Then σ = τ and for each i we have g|xi = h|yi . But

this means the actions of g and h are equivalent, and so g = h in G, since the action

of G on G∗ is faithful.

Finally, let σ(g1, . . . , gn) ∈ H o G, e = d(σ) and f = r(σ). Since σ(g1, . . . , gn) ∈
H o G, there are n edges x1, . . . , xn ∈ G1 with r(xi) = e and such that d(xi) = d(gi)

and d(σ(xi)) = r(gi). Define g to be the unique element of Fv,w satisfying

g(xip) = σ(xi)gi(p).

for p ∈ Pd(xi). Then

ψ(g) = σ(g1, . . . , gn).

Thus if G is a groupoid acting self-similarly on G∗ then there is a functor

ψ : G→ B(G) o G .

On the other hand, given a groupoid G with finitely many identities, any functor

ψ : G → B(G) o G , where G is a finite graph satisfying (IPC) and with F (e, f) non-

zero for all e, f ∈ G0 such that ψ is surjective on identities gives rise to a self-similar

action of G on G∗.
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3.6 Automaton groupoids

We can generalise the notion of an automaton group as defined in Section 2.7. The

following definition describes a typed-automaton in the sense of [15], but which also

has an output function.

A finite-state generalised invertible automaton A = (A,X, f, λ, π) will consist of

• a finite set A whose elements are called states ;

• a finite set X called the alphabet ;

• a subset Ia ⊆ X for each a ∈ A called the input alphabet of a;

• a subset Pa ⊆ X for each a ∈ A called the output alphabet of a;

• a bijection λa : Ia → Pa for each a ∈ A;

• a map πa : Ia → A for each a ∈ A

satisfying the following:

1. for each a ∈ A there exists b ∈ A such that Ia = Pb;

2. for each a ∈ A there exists b ∈ A such that Pa = Ib;

3. for every a, b ∈ A either Ia = Ib or Ia ∩ Ib = ∅;

4. for every a, b ∈ A either Pa = Pb or Pa ∩ Pb = ∅;

5. for each x ∈ X, if a = πb(x) and c = πd(x), then Ia = Ic - and so we define

Tx := Ia;

6. if x ∈ Ia then Pπa(x) = Tλa(x).

Axioms 1-4 say that the input and output sets partition X, and both do so in the

same way. Axiom 5 will allows us to define a multiplication on the alphabet and axiom

6 will allow us to construct a self-similar action. We can describe these automata by

Moore diagrams, in an analogous fashion to Section 2.7.

Suppose we have partitioned X into n subsets Xi, so that

X =
n⋃
i=1

Xi,

where each Xi = Ia for some a. Let us now create two graphs, G and H. Both G
and H will have as their vertex sets G0 = H0 = {e1, . . . , en}. G will have as its edge

set G1 = X and H will have as its edge set H1 = A. Edges will connect vertices as

follows in G:
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• d(x) = ei iff Xi = Tx

• r(x) = ei iff x ∈ Xi

Edges will connect vertices as follows in H:

• d(a) = ei iff Xi = Ia

• r(a) = ei iff Xi = Pa

We can define a partial action of G1 on H1 by a|x = πa(x) for r(x) = d(a) and

an action of H1 on G1 by a · x = λa(x) for r(x) = d(a). Let H† be the free groupoid

on H and G∗ the free category on G. In a similar manner to Section 2.7 we can

extend the actions of G1 on H1 and H1 on G1 in a unique way to actions of G∗ on H†

and H† on G∗ by using axioms (SS1)-(SS8) and requiring that a · (a−1 · x) = x and

a−1|x = (a|a−1·x)
−1. This then gives a self-similar groupoid action of H† on G∗.

If g, h ∈ H† are such that g−1g = h−1h and gg−1 = hh−1 then we will write g ∼ h

if g · x = h · x for all x ∈ G∗ with r(x) = g−1g. This defines a congruence on H†. If

a ∈ A is such that Ia = Pa = ∅ then we say a ∼ a−1a = aa−1. We then define G by

G = H†/ ∼

and call G the automaton groupoid of A. We see from its construction that G will

act faithfully on G∗ in a self-similar manner.

Note that if M is a fundamental left Rees category generated by a finite generalised

invertible automaton then M is finite if, and only if, A has no cycles. On the other

hand, given a finite fundamental left Rees category with a single sink, we can construct

such an automaton which generates it.

Example 3.6.1. The following example is analogous to the dyadic adding machine,

except that in addition to adding two dyadic integers, it turns 0’s and 1’s into x’s and

y’s. Here is the Moore diagram:

"!
# -

(1, x)

an -(0, y)
bn"!
# -(1, y)

"!
# 
-
(0, x)
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"!
# -

(x, 1)

cn -(y, 0)
dn"!
# -(y, 1)

"!
# 
-
(x, 0)

Figure 9: Moore diagram of analogue of dyadic adding machine

Here X = {0, 1, x, y} and A = {a, b, c, d}. Let X1 = {0, 1} and X2 = {x, y} (so

that X = X1 ∪X2). Then

X1 = Ia = Ib = Pc = Pd = Tx = Ty

and

X2 = Pa = Pb = Ic = Id = T0 = T1.

Let V = {e1, e2}. The associated graphs G and H will be as follows:

G

e1
-
-

x, y

�
�

0, 1

e2

H

e1
-
-

a, b

�
�

c, d

e2

Now

(bd) · (xw) = x(bd)|x · w = x(bd) · w

and

(bd) · (yw) = y(bd)|y · w = y(bd) · w.

Thus bd ∼ e2. In a similar way we have db ∼ e1 and so b−1 ∼ d. Now

(ac) · (xw) = x(ac)|x · w = x(ac) · w

and

(ac) · (yw) = y(ac)|y · w = y(bd) · w = yw.

Thus ac ∼ e2, by symmetry ca ∼ e1 and a−1 ∼ c. So the groupoid G = H†/ ∼ will

have 4 non-identity elements.

We can view the element a as adding 1 to a dyadic integer, where we have identified

0’s and x’s, and 1’s and y’s.

Example 3.6.2. Consider the automaton described by the Moore diagram in Figure

10.
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g1��� -(x1, x3)
g2���

g3��� -(x4, x2)
g4���� (x5, x6)

�
(x6, x5)

g5���?

(x3, x1)

?

(x2, x4)

Figure 10: Moore diagram of automaton

Let X1 = {x1, x3}, X2 = {x2}, X3 = {x4}, X4 = {x5, x6} and X5 = ∅. Then

X1 = Ig1 = Pg1 , X2 = Ig2 = Pg3 = Tx1 , X3 = Ig3 = Pg2 = Tx3 ,

X4 = Ig5 = Pg5 , X5 = Tx2 = Tx4 = Tx5 = Tx6 .

In this case we have the following graphs:

G

e1�
x3 e2

6

x1

e3�
x2 e5

6

x4

e4
-x5

-
x6

H

"!
# -

g1

e1 e2

"!
# -

g4

e4 e3

6

?

g2g3

"!
# -

g5

e5

Note that the free category G∗ on the graph G is finite. Now we assume g4 ∼ e4

since Ig4 = Pg4 = ∅. Now

(g3g2) · (x2w) = x2(g3g2)|x2 · w = x2(g2
4) · (w) = x2w.

Thus g3g2 ∼ e3. By symmetry g2g3 ∼ e2 and so g−1
2 = g3. We have

g2
1 · (x1w) = x1(g2

1)|x1 · w = x1(g3g2) · w = x1w.
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Similarly g2
1 · x3w = x3w. Thus g2

1 = e1. Finally,

g2
5 · (x5w) = x5(g2

5)|x5 · w = x5(g2
4) · (w) = x5w

and g2
5 · (x6w) = x6w. Thus g2

5 = e5. It therefore follows that G = H†/ ∼ will be finite

and consequently M = G∗ ./ G will be finite. This makes sense since A is finite and

acyclic.

3.7 Graph iterated function systems

In Section 2.5 it was shown that many fractals defined by iterated function systems

have a left Rees monoid as their monoid of similarity transformations. In this sec-

tion we suggest how this might be generalised to graph iterated function systems by

considering the example of the Von Koch snowflake. The von Koch snowflake can

be regarded as 3 von Koch curves attached to each other in a triangle, giving the

following fractal:

Figure 11: von Koch snowflake (source [5])

One possible way to construct the von Koch snowflake is as the attractor of a

graph iterated function system. Let us describe each von Koch curve C1, C2 and C3

by iterated function systems. C1 is the attractor with maps L1, R1, C2 with maps

L2, R2 and C3 with maps L3, R3. Then consider a graph Y with 3 vertices e1, e2, e3,

and maps Li and Ri represented as edges from vertex i to itself. Let C be the free

category of Y and let G be the groupoid with 3 objects, and 3 non-identity maps σ1,

σ2 and σ3 each from the kth object to iself, such that σ2
k = idk. Then we have the

same self-similar action of G on C as with the von Koch curve above, giving rise to a

Rees category M .

3.8 Algebras and representation theory

Here we generalise the ideas of Section 2.8. Let K be a field and let M be a category.

Assume M0 is finite. We can form the category algebra KM as follows. An element
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v of KM is a finite sum

v =
n∑
i=1

αixi,

where αi ∈ K and xi ∈ M . We define addition +, convolution ◦ and scalar multipli-

cation as follows:
n∑
i=1

αixi +
m∑
i=1

βiyi =
n+m∑
i=1

αixi,

where for n+ 1 ≤ i ≤ n+m, αi = βi−n and xi = yi−n,

n∑
i=1

αixi ◦
m∑
i=1

βiyi =
n∑
i=1

m∑
j=1

αiβjxiyj,

where xiyj is the product in M (set it equal to 0 if it does not exist) and

λ
n∑
i=1

αixi =
n∑
i=1

λαixi,

where for all of the above λ, αi, βi ∈ K and xi, yi ∈M .

Let

e =
∑
ei∈M0

ei.

The above gives KM the structure of a unital K-algebra with unit e.

Observe that if M = G∗ ./ G is a left Rees category then KM will be finite

dimensional over K if and only if G, G are finite and G is acyclic. Note that in

representation theory the algebra KG∗ is often called a quiver algebra.

Let G be a finite directed graph. A (K-linear) representation R of G is defined by

the following data:

1. To each vertex e ∈ G0 is associated a K-vector space Re.

2. To each arrow α : e→ f in G1 is associated a K-linear map φα : Re → Rf .

Now there is an abelian category well-studied in the representation theory of as-

sociative algebras whose objects are all K-linear representations of some specified

directed graph (see Chapter 3 of [8]). The morphisms in this category motivated the

following theory.

We call a representation finite dimensional if each of the vertex vector spaces are

finite dimensional over K. We will assume from now on that all our representations

are finite dimensional.

Observe that in the above definition it is possible that in a representation of a

directed graph some of the vector spaces assigned to vertices are isomorphic.

Let G be a finite directed graph and let R be a representation of G. A collection of
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inner morphisms G for R consists of a collection G of invertible linear maps g between

vector spaces appearing in the representation satisfying the following properties:

1. For every e ∈ G0 there exists an identity map g : Re → Re in G.

2. For all e1, e2, e3 ∈ G0, for every g : Re1 → Re2 in G and every arrow map

φα : Re2 → Re3 , there exists e4 ∈ G0, a unique arrow map φβ : Re1 → Re4 and a

unique map h : Re4 → Re3 in G such that hφα = φβg.

Note that for a particular representation there might be infinitely many such

collections or there might be none.

Let G be a finite graph, let R be a representation of G and let G be a collection

of inner morphisms for R. If for every vertex e ∈ G0 there is an edge α ∈ G1 with

d(α) = e then G has the structure of a groupoid whose arrows are the elements of G

and composition of arrows is just composition of linear maps.

Proposition 3.8.1. Let G, R and G be as in the preceding paragraph. Then there is

a natural self-similar action of G on G∗.

Proof. For x ∈ G1, g ∈ G with r(x) = d(g) define g · x and g|x to be the unique

elements of, respectively, G and G1 satisfying the equation

gx = (g · x)(g|x).

One considers the identity elements of G∗ to be the identity maps on the vertex vector

spaces and paths in G∗ to be the composition of linear maps. It then follows by a

categorical version of Theorem 2.2.1 that this extends to a self-similar action of G on

G∗ satisfying axioms (C1)-(C3) and (SS1)-(SS8).

Morally, the self-similarity in the last result follows from the associativity of matrix

multiplication.

Let C be a small category with C0 finite. A (finite dimensional K-linear) repre-

sentation R of C consists of:

1. For each idenitity e ∈ C0 there is associated a (finite dimensional) K-vector

space Re and corresponding identity morphism φe : Re → Re

2. For each each arrow x : e→ f in C is associated a K-linear map φx : Re → Rf

such that xy = z in C implies φxφy = φz.

Note that representations of free categories and directed graphs are effectively the

same.

Now suppose that we have a self-similar action of a groupoid G on a free category

G∗, and M is the associated left Rees category. Suppose that R is a representation of

M . Then this gives rise to a representation S of the quiver G with G a collection of

inner morphisms for S.

95



Chapter 3: Left Rees Categories

3.9 Associated inverse semigroup

In this section we will see how the work of the past two chapters connects to the work

of Nivat and Perrot, and how it relates to ideas in the following chapter. We will also

use the results of this section for calculations in Section 4.9.

Given a Leech category C, of which left Rees categories are an example, there is a

general way of forming an inverse semigroup S(C), which we will call the associated

inverse semigroup. We will briefly describe this construction (see [51], [71], [72] and

[73] for more details). Let C be a Leech category, let G(C) denote the groupoid of

invertible elements of C and let

U = {(x, y) ∈ C × C|d(x) = d(y)} .

Define (x, y) ∼ (z, w) in U if there is an isomorphism g ∈ G(C) with (x, y) = (zg, wg).

This is an equivalence relation and so we let

S(C) = U/ ∼
⋃
{0} .

We denote the equivalence class containing (x, y) by [x, y]. We define a multiplication

for elements [x, y], [z, w] ∈ S(C) as follows. If there are elements u, v ∈ C with

yu = zv we define [x, y][z, w] = [xu,wv]. Otherwise the product is defined to be 0. It

turns out that S(C) is an inverse semigroup with 0. The inverse of an element [x, y]

is [y, x] and idempotents are of the form [x, x].

We have the following, proved in [51]:

Lemma 3.9.1. 1. [x, y]L [z, w] if and only if y = wg for some isomorphism g ∈
G(C).

2. [x, y]R [z, w] if and only if x = zg for some isomorphism g ∈ G(C)

3. [x, y]D [z, w] if and only if d(x) and d(z) are isomorphic.

4. [x, y]J [z, w] if and only if the identities d(x) and d(z) are strongly connected.

5. S(C) is E∗-unitary if and only if the Leech category C is right cancellative.

If M is a left Rees monoid then it follows by Lemma 3.9.1 (1) that the L-class of

[1, 1] in S(M) is isomorphic to M . This is how Nivat and Perrot came across self-

similar group actions - they were studying a particular class of inverse semigroups for

which this turns out to be the case.

It follows from Lemma 3.9.1 (3) that S(C) is 0-bisimple if and only if C is equiv-

alent to a monoid. If C is a free monoid X∗ with |X| = 1 then S(C) is the bicyclic

monoid plus a 0 adjoined and if C is a free monoid X∗ with |X| > 1 then S(C) is
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the polycyclic monoid PX . If C is a free category G∗ then S(C) = PG is a graph in-

verse semigroup. We see that both polycyclic monoids and graph inverse semigroups

are E∗-unitary since free categories are right cancellative. This means that they are

inverse ∧-semigroups; that is, s ∧ t exists for all s, t ∈ S(C). Inverse ∧-semigroups

S have a distributive completion, which we denote by D(S), which means they are

in particular orthogonally complete and so Rees categories give natural examples to

which we can apply the theory of the following chapter. If C is a left Rees monoid,

then the semigroups S(C) give rise to the Cuntz-Pimsner algebras of [97] in much the

same way as polycyclic monoids give rise to Cuntz algebras.

If M = G∗G is a left Rees category then because of the unique decomposition of

elements of left Rees categories we can write an arbitrary element of S(M) in the

form [xg, y], where x, y ∈ G∗ and g ∈ G. We now consider the natural partial order

for S(M).

Lemma 3.9.2. Let M be a left Rees category and S(M) be its associated inverse

semigroup. Then [xg, y] ≤ [zh, w] in S(M) if and only if there is a v ∈ G∗ with

y = wv, x = z(h · v) and g = h|v.

Proof. Let [xg, y] ≤ [zh, w] in S(M). Then

[xg, y] = [zh, w][y, y].

First suppose that y is a prefix of w. Then w = yv for some v ∈ G∗ and so

[xg, y] = [zh, yv][y, y] = [zh, yv] = [zh, w].

Thus w must be a prefix of y, so y = wv for some v ∈ G∗. Now

[xg, y] = [zh, w][wv,wv] = [zhw,wv] = [z(h · w)h|w, y]

and so x = z(h · w) and g = h|w. On the other hand,

[zh, w][wv,wv] = [zhv, wv] = [z(h · v)h|v, wv]

and so [z(h · v)h|v, wv] ≤ [zh, w].

The following curious result may be deduced from Lemma 1.7 of [51].

Lemma 3.9.3. Let M be a Rees category and let S(M) be its associated inverse

semigroup. If s, t ∈ S(M) are such that s ∧ t 6= 0 then s ≤ t or t ≤ s.

Proof. Now suppose [z1h1, w1], [z2h2, w2] ∈ S are such that [z1h1, w1] ∧ [z2h2, w2] 6= 0.
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Then there exists [xg, y] ∈ S with

[xg, y] ≤ [z1h1, w1], [z2h2, w2].

Thus Lemma 3.9.2 tells us there exist u, v ∈ G∗ with

y = w1u = w2v, x = z1(h1 · u) = z2(h2 · v)

and

g = h1|u = h2|v.

We must have either w1 is a prefix of w2 or w2 is a prefix of w1. Suppose without loss

of generality that w1 is a prefix of w2. Then there is r ∈ G∗ with w2 = w1r. It then

follows that u = rv. Now

h1 · u = (h1 · r)(h1|r · v)

and

h1|u = (h1|r)|v.

By the uniqueness of the decomposition of elements of M and length considerations

we must have z2 = z1(h1 · r) and h2 · v = h1|r · v. Thus

h1|rv = (h1|r · v)h1|u = (h2 · v)h2|v = h2v

and so by right cancellativity h1|r = h2. Now

[z1h1, w1][w2, w2] = [z1h1r, w2] = [z1(h1 · r)h1|r, w2] = [z2h2, w2]

and so [z2h2, w2] ≤ [z1h1, w1]. If w2 had been a prefix of w1 then an identical argument

would have shown that [z1h1, w1] ≤ [z2h2, w2]. Thus the claim is proved.

We know from the above that the associated inverse semigroups of Rees monoids

are E∗-unitary. In fact, they are strongly E∗-unitary.

Lemma 3.9.4. Let M = X∗G be a Rees monoid, let S(M) be its associated inverse

semigroup and let U(M) be the universal group of M . Then there is an idempotent

pure partial homomorphism

θ : S(M)→ U(M)

given by

θ([xg, y]) = xgy−1.

Proof. We can describe elements of U(M) as products of elements of X, G and their

inverses. We know from the above theory that M actually embeds in U(M) if M is
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a Rees monoid. Firstly,

θ([xgh, yh]) = xghh−1y−1 = xgy−1 = θ([xg, y])

and so this map is well-defined. Let [xg, y], [zh, w] ∈ S(M) be such that [xg, y][zh, w] 6=
0. First suppose z = yu for some u ∈ X∗. Then

θ([xg, y][zh, w]) = θ([xguh,w]) = xguhw−1 = xgy−1yuhw−1 = θ([xg, y])θ([zh, w]).

Now suppose y = zu. Then

θ([xg, y][zh, w]) = θ([xg, zu][z, wh−1]) = θ([xg, wh−1u]) = xgu−1hw−1

= xgu−1z−1zhw−1 = θ([xg, y])θ([zh, w]).

To see it is idempotent pure, note that θ([xg, y]) = 1 implies xgy−1 = 1 and so

xg = y. Since the decomposition of elements of M is unique and the homomorphism

from M to U(M) is injective, we must have x = y and g = 1. Thus [xg, y] is an

idempotent.

Let F ⊆ R
n be a fractal-like structure satisfying the conditions of Theorem 2.5.4

and let M be the monoid of similarity transformations of F which we know from

earlier is a Rees monoid. Then U(M) is a subgroup of the affine group of Rn. Lemma

3.9.4 tells us we can view elements of S(M) as restrictions of affine transformations

to certain subsets of F .

Now suppose M is an arbitrary left Rees category. Consider the subset T (M) of

S(M) given by

T (M) = {0 6= [xg, y] ∈ S(M)||x| = |y|}
⋃
{0} .

It is easy to check that T (M) is in fact a normal inverse subsemigroup of S(M),

which we call the gauge inverse subsemigroup. When S(M) is the polycylic monoid

this subsemigroup plays an important rôle in its representation theory [52]. When M

is the monoid of similarity transformations of a fractal F then T (M) corresponds to

the elements of S(M) which are restrictions of Euclidean transformations.
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Chapter 4

K-Theory of Inverse Semigroups

4.1 Outline of chapter

The aim of this chapter is to define a functor K from the category of orthogonally

complete inverse semigroups and orthogonal join preserving maps to the category of

abelian groups in analogy with algebraic K-theory. In Section 4.2, we give an abstract

definition of K(S) for a particular class of inverse semigroups, which we call K-inverse

semigroups. This is motivated by the definition in terms of idempotents for regular

rings and C∗-algebras. We will see in Section 4.3 that this definition does not depend

on the inverse semigroup structure and so can in fact be defined for the underlying

groupoid. Motivated by the module approach to K0-groups in algebraic K-theory

in Section 4.4 we give a definition of a module for an orthogonally complete inverse

semigroup, and use this to associate a group K(S) to orthogonally complete inverse

semigroups such that for K-inverse semigroups this definition agrees with the one of

Section 4.2. In Section 4.5, we define the K-group in terms of idempotent matrices in

analogy with algebraic K-theory. In particular, we show that the definitions of Section

4.4 and 4.5 are equivalent. We will see in Section 4.6 that K is actually a functor

from the category of orthogonally complete inverse semigroups and orthogonal join

preserving maps to the category of abelian groups. In Section 4.7 it will be shown that

more can be said about K(S) for commutative inverse semigroups. We will extend

the ideas of states and traces of C∗-algebras to the situation of inverse semigroups in

Section 4.8 and we will see that, analogously to the case of C∗-algebras, traces extend

to homomorphisms on the K-groups. In Section 4.9, we compute the K-group for a

number of examples.

4.2 K-Inverse semigroups

Throughout this section let S be an orthogonally complete inverse semigroup. It is

well-known (c.f. [70]) that two idempotents e, f ∈ E(S) are D-related if and only
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if there exists an s ∈ S with e
s→ f . An equivalent statement is that idempotents

e, f ∈ E(S) are D-related if and only if there exist s, t ∈ S with st = e and ts = f .

Thus we will replace the concept of similarity from algebraic K-theory with the D-

relation for inverse semigroups.

Lemma 4.2.1. Let e1, e2, f1, f2 ∈ E(S) be idempotents such that e1 ⊥ e2, f1 ⊥ f2,

e1D f1 and e2D f2. Then

e1 ∨ e2D f1 ∨ f2.

Proof. Let s, t ∈ S be such that e1
s→ f1 and e2

t→ f2. Since d(s) ∧ d(t) = 0 and

r(s) ∧ r(t) = 0 it follows that s and t are orthogonal, and so there exists s ∨ t. Now

d(s ∨ t) = d(s) ∨ d(t) = e1 ∨ e2

and

r(s ∨ t) = r(s) ∨ r(t) = f1 ∨ f2.

Thus e1 ∨ e2D f1 ∨ f2.

We will say an inverse semigroup with zero is orthogonally separating if for any

pair of idempotents e and f there are idempotents e′ and f ′ such that e′D e, f ′D f
and e′ ⊥ f ′. A K-inverse semigroup will be an orthogonally complete orthogonally

separating inverse semigroup. The previous lemma tells us that we can define a binary

operation on the D classes of such a semigroup.

So let S be a K-inverse semigroup and denote by [e] the D-class of the idempotent

e in E(S). Let A(S) = E(S)/D and define an operation + on A(S) by

[e] + [f ] = [e′ ∨ f ′]

where e′, f ′ ∈ E(S) are such that e′D e, f ′D f and e′ ⊥ f ′. We see from Lemma 4.2.1

this operation is well-defined. We in fact have the following:

Lemma 4.2.2. (A(S),+) is a commutative monoid.

Proof. Commutativity follows from the commutativity of the join operation on S and

the identity element is easily seen to be [0]. Thus we just need to check that + is

associative. Let e, f, g ∈ E(S) be arbitrary. We want to show that

([e] + [f ]) + [g] = [e] + ([f ] + [g])

in A(S).

Suppose that e′, e′′, f ′, f ′′, g′, g′′, h, h′ ∈ E(S) are idempotents such that

e′
s1→ e

s2→ e′′, f ′
t1→ f

t2→ f ′′,
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g′
u1→ g

u2→ g′′, h
w1→ (e′ ∨ f ′), (f ′′ ∨ g′′) w2→ h′

and

e′f ′ = hg′ = f ′′g′′ = h′e′′ = 0

for some s1, s2, t1, t2, u1u2, w1, w2 ∈ S.

We then have

([e] + [f ]) + [g] = [h ∨ g′]

and

[e] + ([f ] + [g]) = [e′′ ∨ h′].

So our task is to show that

(h ∨ g′)D (e′′ ∨ h′).

Let x1 = s2s1w1, x2 = w2t2t1w1 and x3 = w2u2u1. Then

x1x
−1
2 = s2s1e

′(e′ ∨ f ′)f ′t−1
1 t−1

2 w−1
2 = 0,

x−1
1 x2 = w−1

1 s−1
1 s−1

2 e′′h′w2t2t1w1 = 0,

x1x
−1
3 = s2s1w1hg

′u−1
1 u−1

2 w−1
2 = 0,

x−1
1 x3 = w−1

1 s−1
1 s−1

2 e′′h′w2u2u1 = 0,

x2x
−1
3 = w2t2t1w1hg

′u−1
1 u−1

2 w−1
2 = 0

and

x−1
2 x3 = w−1

1 t−1
1 t−1

2 f ′′(f ′′ ∨ g′′)g′′u2u1 = 0.

Thus we may form the orthogonal join x = x1 ∨ x2 ∨ x3. We see that

xx−1 = (x1x
−1
1 ) ∨ (x2x

−1
2 ) ∨ (x3x

−1
3 )

= (s2s1w1w
−1
1 s−1

1 s−1
2 ) ∨ (w2t2t1w1w

−1
1 t−1

1 t−1
2 w−1

2 ) ∨ (w2u2u1u
−1
1 u−1

2 w−1
2 )

= (s2s1e
′(e′ ∨ f ′)e′s−1

1 s−1
2 ) ∨ (w2t2t1f

′(e′ ∨ f ′)f ′t−1
1 t−1

2 w−1
2 ) ∨ (w2u2gu

−1
2 w−1

2 )

= e′′ ∨ (w2f
′′w−1

2 ) ∨ (w2g
′′w−1

2 )

= e′′ ∨ (w2(f ′′ ∨ g′′)w−1
2 ) = e′′ ∨ h′

Similarly, x−1x = h ∨ g′. Thus (h ∨ g′)D (e′′ ∨ h′).
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For S a K-inverse semigroup we define

K(S) = G(A(S)),

where G(M) is the Grothendieck group of M , as defined in Section 1.4.

As an example let S = If (N) be the symmetric inverse monoid on N with finite

support. Then S is a K-inverse semigroup. Further for e, f ∈ E(S) we have eD f if

and only if |Supp(e)| = |Supp(f)|. In addition if e, f ∈ E(S) are such that ef = 0

then |Supp(e ∨ f)| = |Supp(e)|+ |Supp(f)|. We therefore have:

K(S) ∼= Z.

4.3 K-Groupoids

In this section it will be demonstrated that we do not require the full inverse semigroup

structure of a K-inverse semigroup in defining K(S) by showing that we can work

through all the arguments above for the underlying groupoid.

If G is a groupoid, we will denote by d(x) = x−1x and r(x) = xx−1 for x ∈ G.

We will say two identities e, f ∈ G0 are D-related if they are in the same connected

component of G.

An ordered groupoid (G,≤) is a groupoid equipped with a partial order≤ satisfying

the following four axioms:

1. If x ≤ y then x−1 ≤ y−1.

2. If x ≤ y, x′ ≤ y′ and the products xx′ and yy′ are defined then xx′ ≤ yy′.

3. If e ∈ G0 is such that e ≤ d(x) then there exists a unique element (x|e) ∈ G
such that (x|e) ≤ x and d(x|e) = e.

4. If e ∈ G0 is such that e ≤ r(x) then there exists a unique element (e|x) ∈ G

such that (e|x) ≤ x and r(e|x) = e.

An ordered groupoid is said to be inductive if the partially ordered set of identities

forms a meet-semilattice. An ordered groupoid with zero is an ordered groupoid G

with a distinguished identity 0 ∈ G0 such that 0 ≤ e for all e ∈ G0 and such that for

all x ∈ G, d(x) 6= 0 and r(x) 6= 0. We will say two elements x, y ∈ G are orthogonal

and write x ⊥ y if d(x) ∧ d(y) = 0 and r(x) ∧ r(y) = 0. It is clear that x ⊥ y implies

x−1 ⊥ y−1. An inductive groupoid G with zero is orthogonally complete if joins of

orthogonal elements always exist and multiplication distributes over orthogonal joins

when the multiplication is defined.

We want our groupoid G to satisfy three further conditions:
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1. If e ⊥ f , e, f ∈ G0, and x ∈ G is such that d(x) = e ∨ f then r(x|e) ⊥ r(x|f)

and r(x|e) ∨ r(x|f) = r(x) and if e ⊥ f , e, f ∈ G0, and y ∈ G is such that

r(y) = e ∨ f then d(e|y) ⊥ d(f |y) and d(e|y) ∨ d(f |y) = d(y).

2. For every e, f ∈ G0 there exist e′, f ′ ∈ G0 with e′ ⊥ f ′, eDe′ and fDf ′.

3. If x ⊥ y then d(x) ∨ d(y)
x∨y−→ r(x) ∨ r(y).

We will define a K-groupoid to be an orthogonally complete inductive groupoid

with 0 satisfying conditions (1), (2) and (3). If S is a K-inverse semigroup, then

the associated ordered groupoid by endowing S with the restricted product is a K-

groupoid. This is the motivating example. Throughout what follows G will be a

K-groupoid.

Lemma 4.3.1. Let e1, e2, f1, f2 ∈ G0 be such that e1D e2, f1D f2, e1 ⊥ f1 and

e2 ⊥ f2. Then by the assumptions on G there exist e1 ∨ f1 and e2 ∨ f2, and

(e1 ∨ f1)D (e2 ∨ f2).

Proof. Since e1D e2 and f1D f2, there exist x, y ∈ G with e1
x→ e2 and f1

y→ f2. Since

e1 ⊥ f1 and e2 ⊥ f2, x ⊥ y. Then by condition (3), e1 ∨ f1
x∨y−→ e2 ∨ f2.

Let A(G) = G0/D and define [e] + [f ] to be [e′ ∨ f ′] for e′D e and f ′D f . This is

a well-defined binary operation by Lemma 4.3.1 and condition (2).

Lemma 4.3.2. (A(G),+) is a commutative monoid.

Proof. Firsly, as above, we see that + is commutative since ∨ is commutative and 0

will be the identity of A(G) (note that by assumption 0 is not in the same connected

component as any other element). So it remains to prove that + is associative.

Suppose that e′, e′′, f ′, f ′′, g′, g′′, h, h′ ∈ G0 are identities such that

e′
s1→ e

s2→ e′′, f ′
t1→ f

t2→ f ′′,

g′
u1→ g

u2→ g′′, h
w1→ (e′ ∨ f ′), (f ′′ ∨ g′′) w2→ h′,

e′ ⊥ f ′, h ⊥ g′, f ′′ ⊥ g′′, h′ ⊥ e′′.

Let x = s2s1(e′|w1), y = (w2|f ′′)t2t1(f ′|w1) and z = (w2|g′′)u2u1. These elements are

well-defined because all the domains and ranges match up. We have d(x) = d(e′|w1),

r(x) = e′′, d(y) = d(f ′|w1), r(y) = r(w2|f ′′), d(z) = g′ and r(z) = r(w2|g′′). By

condition (1), d(e′|w1) ⊥ d(f ′|w1) and r(w2|f ′′) ⊥ r(w2|g′′). Further, d(e′|w1) ∨
d(f ′|w1) = d(w1) = h, h ⊥ g′ and so d(x), d(y) and d(z) are all mutually orthogonal.

Similarly, r(x), r(y) and r(z) are mutually orthogonal. Thus ∃x ∨ y ∨ z. Further

d(x)∨d(y)∨d(z) = h∨g′ and r(x)∨r(y)∨r(z) = e′′∨h′. Hence (h∨g′)D (e′′∨h′).
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We then define K(G) = G(A(G)), as in Section 4.2. Now suppose S is a K-

inverse semigroup and G(S) is the underlying K-groupoid obtained by restricting the

multiplication in S. Then by construction D is the same in both G(S) and S and

the order is the same (thus the same elements are orthogonal and joins of orthogonal

elements are the same in both S and G(S)). It therefore follows that

K(G(S)) ∼= K(S).

In fact we could even have deduced Lemma 4.2.2 from Lemma 4.3.2.

4.4 Modules over inverse semigroups

In this section, we define the concept of module for an orthogonally complete inverse

semigroup. We will use this to define a K-group for arbitrary orthogonally complete

inverse semigroups in such a way that if the semigroup is a K-inverse semigroup this

definition will agree with that of Section 4.2.

Let S be a fixed orthogonally complete inverse semigroup. We shall only be dealing

with unitary right actions of S [116]; that is, actions X×S → X such that X ·S = X.

Furthermore, rather than arbitrary actions, we shall work with (right) étale actions

(c.f. [83], [112]), whose definition we now recall.

An action X×S → X is said to be a (right) étale action if there is also a function

p : X → E(S) such that the following two axioms hold:

(E1) x · p(x) = x.

(E2) p(x · s) = s−1p(x)s.

We refer to the étale set (X, p). On such a set, we may define a partial order ≤
as follows: x ≤ y if and only if x = y · p(x). If (X, p) and (Y, q) are étale sets, then a

morphism is a function α : X → Y such that

(EM1) α(x · s) = α(x) · s.

(EM2) p(x) = q(α(x)).

Since we are working with inverse semigroups with zero, we shall actually only

consider a special class of étale sets. An étale set (X, p) is called pointed if there is a

distinguished element 0X ∈ X, called a zero, such that the following axioms hold:

(P1) p(0X) = 0 and if p(x) = 0 then x = 0X .

(P2) 0X · s = 0X for all s ∈ S.
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(P3) x · 0 = 0X for all x ∈ X.

Since 0X = x ·0 = x ·p(0X), we have 0X ≤ x for all x ∈ X. Thus the distinguished

element 0X in X is actually the minimum element of the poset X. Usually we shall

write 0 instead of 0X . A pointed morphism of pointed étale sets is an étale morphism

which preserves the minimum elements of the étale sets (PM). We denote the category

of right pointed étale S-sets and their pointed morphisms by EtaleS.

Let (X, p) be a pointed étale set and x, y ∈ X. Define x ⊥ y if p(x)p(y) = 0 and

say that x and y are orthogonal. We will say elements x, y ∈ X are strongly orthogonal

if x ⊥ y, ∃x ∨ y and p(x) ∨ p(y) = p(x ∨ y).

A pointed set (X, p) is a (right) premodule if it satisfies the following axioms:

(PRM1) If x, y ∈ X are strongly orthogonal then for all s ∈ S we have x · s and y · s
are strongly orthogonal and (x ∨ y) · s = (x · s) ∨ (y · s).

(PRM2) If s, t ∈ S are orthogonal then x · s and x · t are strongly orthogonal for all

x ∈ X.

A premodule morphism of premodules is a pointed morphism f : X → Y such

that if x, y ∈ X are strongly orthogonal, then f(x), f(y) ∈ Y are strongly orthogonal

and f(x∨y) = f(x)∨f(y) (PRMM). We will denote the category of right premodules

and their premodule morphisms by PremodS.

Proposition 4.4.1. Let I be a right ideal of S, define an action I×S → I by s·t = st

and define p : I → S by p(s) = s−1s. Then (I, p) is a premodule.

Proof. To see that (I, p) is an étale set note that

s · p(s) = ss−1s = s

and

p(s · t) = (st)−1(st) = t−1s−1st = t−1p(s)t.

It is pointed since I necessarily contains 0. Now we have to be a little cautious as

there are potentially two partial orders on elements of I: the order in I viewed as

an étale set and the natural partial order of the semigroup S. Fortunately, these two

orders coincide since p(s) = s−1s and so s = t · p(s) iff s = ts−1s. Consequently,

we are able to write s ≤ t without there being any ambiguity. We will now show

that if s, t are strongly orthogonal elements of I then s ⊥ t in S. Let s, t be strongly

orthogonal elements of I. Then 0 = p(s)p(t) = s−1st−1t and so premultiplying by s

and postmultiplying by t−1 we have st−1 = 0. Let u = s∨ t be the join of s and t in I

(which since the orders coincide will be the join in S). We then have u·p(s) = us−1s = s

and u · p(t) = ut−1t = t. Since s−1s ⊥ t−1t in S, we must have us−1s ⊥ ut−1t in S

and thus s ⊥ t in S. Let us now check the axioms for a premodule.
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(PRM1) If s, t ∈ I are strongly orthogonal then since s ⊥ t in S we must have su and

tu are orthogonal in S for all u ∈ S, and therefore also orthogonal in I. Further

since S is orthogonally complete there exists su ∨ tu in S and

su ∨ tu = (s ∨ t)u.

Since I is a right ideal and s ∨ t ∈ I by assumption then (s ∨ t)u ∈ I. Thus

su ∨ tu ∈ I and p(su ∨ tu) = p(su) ∨ p(tu).

(PRM2) If s, t ∈ S are orthogonal and u ∈ I then us and ut are orthogonal in S, and

us, ut, u(s ∨ t) ∈ I. In addition

u(s ∨ t) = us ∨ ut

and p(us) ∨ p(ut) = p(us ∨ ut). Thus us and ut are strongly orthogonal in I.

If a ∈ S then we can consider the principal right ideal aS generated by a and this

will be a premodule. In this case if s ⊥ t in S and s = as, t = at then

s ∨ t = as ∨ at = a(s ∨ t) ∈ aS

and so s, t are strongly orthogonal in aS. Since aS = aa−1S we will mainly be

considering principal right ideals generated by idempotents.

The following lemma will be used often:

Lemma 4.4.2. Let X be a premodule and x, y, z ∈ X be such that p(x)p(y) = 0,

p(z) = p(x) ∨ p(y) and z ≥ x, y. Then z = x ∨ y

Proof. Since X is a premodule and p(x)p(y) = 0, (PRM2) implies that x = z · p(x)

and y = z · p(y) are strongly orthogonal, and so there exists x ∨ y with p(x ∨ y) =

p(x) ∨ p(y) = p(z). Furthermore, since x, y ≤ z it follows that x ∨ y ≤ z. Thus,

z = z · p(z) = z · p(x ∨ y) = x ∨ y.

A pointed set (X, p) is called a (right) module if it satisfies the following axioms:

(M1) If x ⊥ y then ∃x ∨ y and p(x ∨ y) = p(x) ∨ p(y).

(M2) If x ⊥ y then (x ∨ y) · s = x · s ∨ y · s.
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Observe that (M2) makes sense, because

p(x · s)p(y · s) = s−1p(x)ss−1p(y)s = s−1p(x)p(y)s = 0

if x ⊥ y. Note that in general for a module (X, p) we cannot simplify x · s ∨ x · t to

x ·(s∨ t) as s and t need not be orthogonal. We do however have the following lemma:

Lemma 4.4.3. If s and t are orthogonal and (X, p) is a module, then

x · s ∨ x · t = x · (s ∨ t)

for all x ∈ X.

Proof. We have p(x · s)p(x · t) = s−1p(x)st−1p(x)t = 0 since s and t are orthogonal

and thus there exists x · s ∨ x · t. Further

x · s = x · (p(x)s) = x · ((s ∨ t)s−1p(x)s) = (x · (s ∨ t)) · p(x · s)

and therefore (x · s) ∨ (x · t) ≤ x · (s ∨ t). Now

p(x · (s ∨ t)) = (s ∨ t)−1p(x)(s ∨ t) = (s−1p(x)s) ∨ (t−1p(x)t) = p(x · s) ∨ p(x · t).

We then have

x · s ∨ x · t = (x · (s ∨ t)) · p(x · s ∨ x · t) = (x · (s ∨ t)) · p(x · (s ∨ t)) = x · (s ∨ t).

Let (X, p) and (Y, q) be modules. A module morphism is a pointed morphism

α : X → Y such that if x ⊥ y then α(x∨ y) = α(x)∨α(y) (MM). Observe that this is

well-defined because q(α(x))q(α(y)) = p(x)p(y) = 0 if x ⊥ y. We denote the category

of right modules of S together with their module morphisms by ModS. If (X, p) is

a module then Y ⊆ X is called a submodule of X if y ∈ Y implies y · s ∈ Y for all

s ∈ S and if u, v ∈ Y with u ⊥ v then u ∨ v ∈ Y .

Lemma 4.4.4. Let (X, p) and (Y, q) be modules. Then the image im(θ) of a module

morphism θ : X → Y is a submodule of Y .

Proof. Suppose θ(x) ⊥ θ(y). Then q(θ(x))q(θ(y)) = 0. But q(θ(x)) = p(x) and

q(θ(y)) = p(y). Thus p(x)p(y) = 0 and so x ⊥ y. It follows that x∨ y exists and since

θ is a module morphism we have that θ(x ∨ y) = θ(x) ∨ θ(y). Thus the image of θ is

closed under orthogonal joins. It is immediate that the image of θ is closed under the

action of S.

108



Chapter 4: K-Theory of Inverse Semigroups

Let (X, p) be a module. We define a congruence on X to be an equivalence relation

ρ such that the following conditions hold:

(C1) x ρ y implies that x · s ρ y · s.

(C2) x ρ y implies that p(x) = p(y).

(C3) x1 ⊥ x2, y1 ⊥ y2 and xi ρ yi implies that x1 ∨ x2 ρ y1 ∨ y2.

We will now prove some facts about congruences which we will use later.

Lemma 4.4.5. Let θ : (X, p)→ (Y, q) be a module homomorphism. Define the kernel

of θ by

ker(θ) = {(x, y) ∈ X ×X|θ(x) = θ(y)} .

Then ker(θ) is a congruence.

Proof. ker(θ) is clearly an equivalence relation. Let us check the congruence axioms:

(C1) θ(x) = θ(y) implies θ(x · s) = θ(y · s).

(C2) θ(x) = θ(y) implies p(x) = q(θ(x)) = q(θ(y)) = p(y).

(C3) x1 ⊥ x2, y1 ⊥ y2 and θ(xi) = θ(yi) implies

θ(x1 ∨ x2) = θ(x1) ∨ θ(x2) = θ(y1) ∨ θ(y2) = θ(y1 ∨ y2).

Lemma 4.4.6. Let ρ be a congruence on a module (X, p). Then X/ρ can naturally

be endowed with the structure of a module.

Proof. Denote the equivalence class of an element x ∈ X by [x]. Let x ρ y. Then

x · s ρ y · s and p(x) = p(y), thus the action [x] · s = [x · s] and map p([x]) = p(x) are

well-defined. Checking the axioms, we have

(E1) [x] · p([x]) = [x · p(x)] = [x].

(E2) p([x] · s) = p([x · s]) = p(x · s) = s−1p(x)s = s−1p([x])s.

(P1) - (P3) are clear since 0X will always be in an equivalence class on its own.

(M1) If [x] ⊥ [y], then x ⊥ y and so the axiom follows by (C2) and (C3).

(M2) If [x] ⊥ [y], then

([x] ∨ [y]) · s = [x ∨ y] · s = [(x ∨ y) · s] = [x · s ∨ y · s] = [x · s] ∨ [y · s].
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Lemma 4.4.7. Let ρ be a congruence on a module (X, p) and denote the equivalence

class of an element x ∈ X by [x]. Then the map π : X → X/ρ defined by π(x) = [x]

is a module morphism.

Proof. We check the axioms:

(EM1) π(x · s) = [x · s] = [x] · s = π(x) · s.

(EM2) p(x) = p([x]) = p(π(x)).

(PM) π(0) = [0] and π(x) = [0] implies x = 0.

(MM) Suppose p(x)p(y) = 0. Then p([x])p([y]) = 0 and

π(x ∨ y) = [x ∨ y] = [x] ∨ [y].

Lemma 4.4.8. Let θ : (X, p)→ (Y, q) be a module homomorphism. Then im(θ) and

X/ ker(θ) are isomorphic as modules.

Proof. Define

α : X/ ker(θ)→ im(θ)

by α([x]) = θ(x). By construction, if (x, y) ∈ ker(θ) then θ(x) = θ(y) and so α is a

well-defined map. Let us check that it is a module morphism:

(EM1) α([x] · s) = α([x · s]) = θ(x · s) = θ(x) · s.

(EM2) p([x]) = p(x) = q(θ(x)).

(PM) θ(0) = 0 and θ(x) = 0 implies x = 0.

(MM) Suppose p(x)p(y) = 0. Then p([x])p([y]) = 0 and

α([x ∨ y]) = θ(x ∨ y) = θ(x) ∨ θ(y) = α([x]) ∨ α([y]).

Lemma 4.4.9. Let ρ and σ be congruences on a module (X, p). Then their intersec-

tion ρ ∩ σ is a congruence.

Proof. ρ∩ σ is clearly an equivalence relation. We now check the congruence axioms:

(C1) Suppose x (ρ ∩ σ) y. Then x ρ y and x σ y. So x · s ρ y · s and x · s σ y · s.
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(C2) x ρ y and x σ y implies p(x) = p(y).

(C3) x1 ⊥ x2, y1 ⊥ y2 and xi (ρ∩σ) yi implies that x1∨x2 ρ y1∨y2 and x1∨x2 σ y1∨y2.

Lemma 4.4.10. Let (X, p) be a module and let ρmax be the equivalence relation defined

on X by x ρmax y if p(x) = p(y). Then ρmax is a congruence. Furthermore, ρmax is

the largest congruence defined on X.

Proof. ρmax is clearly an equivalence relation. We now check the congruence axioms:

(C1) p(x) = p(y) implies p(x · s) = p(y · s).

(C2) x ρmax y implies by definition that p(x) = p(y).

(C3) x1 ⊥ x2, y1 ⊥ y2 and p(xi) = p(yi) implies that

p(x1 ∨ x2) = p(x1) ∨ p(x2) = p(y1) ∨ p(y2) = p(y1 ∨ y2).

It is the largest congruence on X by (C2).

Let (X, p) be a module. We will call X/ρmax the submodule of E(S) generated by

(X, p). By the above, we see that X/ρmax is the smallest submodule of (X, p).

A finitely generated order ideal A of a premodule X is said to be orthogonal if there

exist x1, . . . , xm ∈ A such that the xi’s are pairwise orthogonal and A = {x1, . . . , xm}↓;
that is, all elements x ∈ X with x ≤ xi for some i. Let X be the set of all finitely

generated orthogonal order ideals of the premodule X. We will denote by x↓ = {x}↓.
Let X be a premodule. Let ≡ be the smallest equivalence relation on X such that if

x1 and x2 are strongly orthogonal then {x1, x2, x3, . . . , xn}↓ ≡ {(x1 ∨ x2), x3, . . . , xn}↓

and let

X] = X/ ≡ .

If A = {x1, . . . , xm}↓ is an element of X] (with the xi’s pairwise orthogonal), then

define

p](A) =
m∨
i=1

p(xi)

and

A · s = {x1 · s, . . . , xm · s}↓ .

Then p](A) is well-defined and A · s ∈ X] since p(xi · s)p(xj · s) = 0 for i 6= j and

if x ≤ y and p(x)p(y) = 0 then x = 0.

Lemma 4.4.11. Let (X, p) be a premodule. The above gives (X], p]) the structure of

a module.
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Proof. Let A = {x1, . . . , xm}↓ and B = {y1, . . . , yn}↓, where the generators are pair-

wise orthogonal. First, we check it is a pointed set:

(E1) A · p](A) =
{
x1 · p](A), . . . , xm · p](A)

}↓
= {x1, . . . , xm}↓ = A.

(E2) p](A · s) = ∨mi=1p(xi · s) = s−1p](A)s.

(P1) - (P3) follow from the fact that p](A) = 0 iff A = 0↓.

Thus (X], p]) is a pointed étale set. Let us now show X] is a premodule:

(PRM1) Let A = {x1, . . . , xm}↓ , B = {y1, . . . , yn}↓ ∈ X] be strongly orthogonal.

Since p](A)p](B) = 0 we have that p(xi)p(yj) = 0 for all i, j. Let

C = {x1, . . . , xm, y1, . . . , yn}↓ .

Then A = C · p](A) and B = C · p](B). So A,B ≤ C and therefore A∨B ≤ C.

Further

p](C) = p](A) ∨ p](B) = p](A ∨B).

Thus,

A ∨B = C · p](A ∨B) = C · p](C) = C.

Now suppose s ∈ S. Then p](C · s) = p](A · s)∨ p](B · s) and A · s, B · s ≤ C · s.
So A · s, B · s are bounded above. Let D = {z1, . . . , zk}↓ ≥ A · s, B · s with

p](D) = p](C · s). Then for each xi, xi · s ≤ zj for some zj and similarly for the

yi’s. Suppose zi ≥ xi1 · s, . . . xir1 · s, yj1 · s, . . . yjr2 · s and

p(zi) = ∨r1k=1p(xik · s)
∨
∨r2k=1p(yjk · s).

Then, since X is a premodule, Lemma 4.4.2 tells us that

zi = ∨r1k=1(xik · s)
∨
∨r2k=1(yjk · s)

and so xi1 ·s, . . . xir1 ·s, yj1 ·s, . . . yjr2 ·s are strongly orthogonal. Thus D ≡ C ·s.
We therefore see that A · s, B · s are strongly orthogonal and

(A ∨B) · s = (A · s) ∨ (B · s).

(PRM2) Let A = {x1, . . . , xm}↓ ∈ X] be arbitrary, let s, t ∈ S be orthogonal and let

u = s ∨ t. Then

p](A · s)p](A · t) = s−1p](A)st−1p](A)t = 0
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and so A · s ⊥ A · t. Now

(A · u) · p](A · s) = A · (us−1p](A)s) = A · (p](A)s) = A · s

giving A · s ≤ A · u. In a similar manner we obtain A · t ≤ A · u. Further,

p](A · u) = u−1p](A)u = (s−1 ∨ t−1)p](A)(s ∨ t)

= s−1p](A)s ∨ t−1p](A)t = p](A · s) ∨ p](A · t).

Let B = {y1, . . . , yn}↓ ∈ X] be such that B ≥ A · s, A · t and p](B) = p](A · u).

Then for each xi we have xi · s ≤ yj for some j and xi · t ≤ yk for some k.

Suppose

yk ≥ xi1 · s, . . . , xir1 · s, xj1 · t, . . . , xjr2 · t

and

p(yk) = ∨r1l=1p(xil · s)
∨
∨r2l=1p(xjl · t).

Then as above we have

yk = ∨r1l=1(xil · s)
∨
∨r2l=1(xjl · t)

and so xi1 ·s, . . . , xir1 ·s, xj1 ·t, . . . , xjr2 ·t are strongly orthogonal. Thus B ≡ A ·u
and so

A · u = (A · s) ∨ (A · t),

yielding that A · s and A · t are strongly orthogonal.

Thus X] is a premodule. Let us now show X] is a module. Suppose A =

{x1, . . . , xm}↓ , B = {y1, . . . , yn}↓ ∈ X] are such that p](A)p](B) = 0. Then p(xi)p(yj) =

0 for all i, j. Let

C = {x1, . . . , xm, y1, . . . , yn}↓ .

ThenA = C·p](A) andB = C·p](B). SoA,B ≤ C. Further p](C) = p](A)∨p](B).

Lemma 4.4.2 then tells us that C = A∨B. We have (A∨B) · s = A · s∨B · s. Thus

(X], p]) is a module.

We can think of ≡ in a slightly different way. If A = {x1, . . . , xm}↓ , B =

{y1, . . . , yn}↓ are finitely generated orthogonal order ideals then A ≡ B if and only if

for each xi there exist bi1, . . . , biki ∈ B strongly orthogonal with xi = ∨kij=1bij and for

each yi there exist ai1, . . . , aiki ∈ A strongly orthogonal with yi = ∨kij=1aij.

Lemma 4.4.12. If X is a module then X is isomorphic to X].
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Proof. Firstly, every element of X] is of the form x↓ for some x ∈ X since all orthog-

onal joins satisfy the required properties. On the other hand x↓ is not equivalent to

y↓ for x 6= y. Define g : X → X] by g(x) = x↓. It is now easy to see this is a bijective

module morphism.

Let α : X → Y be a premodule morphism and define α] : X] → Y ] as follows.

Let A = {x1, . . . , xm}↓ ∈ X]. Define

α](A) = {α(x1), . . . , α(xm)}↓ .

Lemma 4.4.13. With the above definition α] is a module morphism and if α is

surjective then α] is surjective.

Proof. Let α : (X, p) → (Y, q). Firstly α] is well-defined since if A = {x1, . . . , xm}↓

with the xi’s pairwise orthogonal, then q(α(xi))q(α(xj)) = p(xi)p(xj) = 0 for i 6= j,

so α](A) ∈ Y ] and if x1, x2 are strongly orthogonal then

α]({x1, x2}↓) = {α(x1), α(x2)}↓ = {α(x1) ∨ α(x2)}↓

= {α(x1 ∨ x2)}↓ = α]({x1 ∨ x2}↓).

Let A = {x1, . . . , xm}↓ with the xi’s pairwise orthogonal. We check the axioms for

a module morphism:

(EM1) α](A · s) = α](A) · s.

(EM2) q](α](A)) = ∨mi=1q(α(xi)) = ∨mi=1p(xi) = p](A).

(PM) α](0X]) = {α(0X)}↓ = {0Y }↓ = 0Y ] .

(MM) Suppose A ⊥ B with A = {x1, . . . , xm}↓, B = {y1, . . . , yn}↓. Then

A ∨B = {x1, . . . , xm, y1, . . . , yn}↓ .

So

α](A ∨B) = {α(x1), . . . , α(xm), α(y1), . . . , α(yn)}↓

= {α(x1), . . . , α(xm)}↓ ∨ {α(y1), . . . , α(yn)}↓ = α](A) ∨ α](B).

Thus α] is a module morphism. The second part of the lemma follows immediately.

We have therefore defined a functor R from PremodS to ModS given by R(X) =

X] and R(α) = α].

114



Chapter 4: K-Theory of Inverse Semigroups

Proposition 4.4.14. The functor R is left adjoint to the forgetful functor.

Proof. First for a premodule X we show that the map ι : X → X] given by ι(x) = x↓

is a premodule morphism:

(EM1) ι(x · s) = (x · s)↓ = x↓ · s = ι(x) · s.

(EM2) p](ι(x)) = p](x↓) = p(x).

(PM) ι(0X) = O↓X = 0X] .

(PRMM) This is clear.

Now suppose X is a premodule and let θ : X → Y be a premodule morphism to

the module (Y, q). Define ψ : X] → Y by

ψ({x1, . . . , xm}↓) =
m∨
i=1

θ(xi).

Firstly, this is well-defined since the θ(xi)’s are pairwise orthogonal. Let us now

prove that ψ is a module morphism. It is an étale morphism since

ψ({x1, . . . , xm}↓ · s) = ψ({x1 · s, . . . , xm · s}↓) = ∨mi=1θ(xi · s)

= (∨mi=1θ(xi)) · s = ψ({x1, . . . , xm}↓) · s

and

q(ψ({x1, . . . , xm}↓)) = q(∨mi=1θ(xi)) = ∨mi=1q(θ(xi))

= ∨mi=1p(xi) = p]({x1, . . . , xm}↓).

It is pointed since ψ(0X]) = θ(0X) = 0Y . Finally let A = {x1, . . . , xm}↓, B =

{y1, . . . , yn}↓ be orthogonal. Then

ψ(A ∨B) = (∨mi=1θ(xi))
∨

(∨nj=1θ(yj)) = ψ(A) ∨ ψ(B).

We claim that (X], ι) is a reflection of X along the forgetful functor F : ModS →
PremodS, and that ψ will be the unique map such that ψι = θ for θ : X → Y a

premodule morphism to a module.

Let x ∈ X. Then ψ(ι(x)) = ψ(x↓) = θ(x) and so ψι = θ.

Let X be a premodule, Y a module and let θ : X → Y be a premodule morphism.

Suppose that π : X] → Y is a module morphism with πι = θ. We claim that π = ψ.
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Let x ∈ X. Then π(x↓) = πι(x) = θ(x). Now suppose x, y ∈ X with x ⊥ y. Then

x↓ ⊥ y↓ so that x↓ ∨ y↓ = {x, y}↓ ∈ X]. Thus

π({x, y}↓) = π(x↓) ∨ π(y↓) = θ(x) ∨ θ(y) = ψ({x, y}↓).

It therefore follows by induction that π = ψ. Thus (X], ι) is a reflection of X along

the forgetful functor. Define a natural transformation

η : 1PremodS → F ◦R

by ηX(x) = x↓ for X a premodule and x ∈ X. This is a natural transformation since

if θ : X → Y is a premodule morphism, then

(F ◦R)(θ)(ηX(x)) = (F ◦R)(θ)(x↓) = {θ(x)}↓ = ηY (1PremodS(θ)(x)).

Let (X, p) be a premodule and let

xS = {x · s|s ∈ S} .

Then (xS, p) naturally inherits the structure of a pointed étale set. In fact:

Lemma 4.4.15. Let (X, p) be a premodule. Then (xS, p) is a premodule.

Proof. Suppose that x · s, x · t are strongly orthogonal in xS with xs ∨ xt = xu for

some u ∈ S (note that x · s and x · t might be strongly orthogonal in X without being

strongly orthogonal in xS). Let v ∈ S. Then

p(xsv)p(xtv) = v−1p(xs)vv−1p(xt)v = 0

and

p(xuv) = v−1p(xu)v = v−1(p(xs) ∨ p(xt))v

= (v−1p(xs)v) ∨ (v−1p(xt)v) = p(xsv) ∨ p(xtv).

Further, xuv ≥ xsv, xtv. Thus by Lemma 4.4.2, and the fact that X is a premodule,

xsv ∨ xtv = xuv in X and thus also in xS. Now suppose s, t ∈ S are orthogonal.

Then x · s, x · t are strongly orthogonal in X with xs ∨ xt = x(s ∨ t) ∈ xS. Thus xS

is a premodule.

We will therefore call xS the cyclic premodule generated by the element x ∈ X,

where X is a premodule.
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Lemma 4.4.16. Let (xS, p) be a cyclic premodule. Then the map θ : p(x)S → xS

given by θ(s) = xs is a surjective premodule morphism.

Proof. Let q : p(x)S → E(S) be given by q(s) = s−1s. We prove first that θ is a

pointed morphism:

(EM1) θ(s · t) = θ(st) = x · (st) = (x · s) · t = θ(s) · t.

(EM2) p(θ(s)) = p(x · s) = s−1p(x)s = s−1s = q(s).

(PM) θ(p(x) · 0) = x · 0 = 0.

Next we prove surjectivity. Let x · s ∈ xS. Then θ(p(x)s) = x · s.
Let us now check that θ is a premodule morphism. Let s = p(x)s, t = p(x)t be

strongly orthogonal in p(x)S. Then s, t are orthogonal in S and so x · s and x · t are

strongly orthogonal in xS with x · (s ∨ t) = xs ∨ xt and so θ(s ∨ t) = θ(s) ∨ θ(t).

Lemma 4.4.17. Let (X, p) be a module and let x ∈ X. Define fx : (xS)] → X by

fx({xs1, . . . , xsm}↓) =
m∨
i=1

xsi.

Then fx is a (well-defined) module morphism.

Proof. It is well-defined since xs1, . . . , xsm are orthogonal and X is a module, so the

join exists, and if A,B ∈ xS with A ≡ B, then fx(A) = fx(B). It is an étale morphism

since

fx({xs1, . . . , xsm}↓ · t) = ∨mi=1xsit = (∨mi=1xsi) · t = fx({xs1, . . . , xsm}↓) · t

and

p(fx({xs1, . . . , xsm}↓)) = p(∨mi=1xsi) = ∨mi=1p(xsi) = p]({xs1, . . . , xsm}↓).

It is obviously pointed. Let us now check that it is a module morphism. Let A =

{xs1, . . . , xsm}↓ , B = {xt1, . . . , xtn}↓ ∈ (xS)] be orthogonal. Then

fx(A∨B) = fx({xs1, . . . , xsm, xt1, . . . , xtn}↓) = (∨mi=1xsi)
∨

(∨ni=1xti) = fx(A)∨fx(B).

Observe that ModS is a concrete category and so we will denote the underlying

set of a module X by [X] if we want to view it as an object in Set. It is clear that

every injective module morphism will be monic. As for modules over rings, it turns

out the converse is also true.

117



Chapter 4: K-Theory of Inverse Semigroups

Lemma 4.4.18. In ModS every monomorphism is injective.

Proof. Let (X, p) and (Y, q) be modules and let α : X → Y be a monomorphism.

Suppose that α(x) = α(y) where x, y ∈ X. Observe that p(x) = p(y). By Lemmas

4.4.16, 4.4.13 and 4.4.17 there are surjective module morphisms β] : (p(x)S)] → (xS)]

and γ] : (p(x)S)] → (yS)], and module morphisms fx : (xS)] → X and fy : (yS)] →
X. We have that

(αfxβ
])({s1, . . . , sm}↓) = (αfx)({x · s1, . . . , x · sm}↓) = α(∨mi=1x · si)

= ∨mi=1α(x) · si = ∨mi=1α(y) · si = (αfyγ
])({s1, . . . , sm}↓).

Thus αfxβ
] = αfyγ

]. Since α is monic, fxβ
] = fyγ

]. But

(fxβ
])(p(x)↓) = fx(x

↓) = x

and

(fyγ
])(p(x)↓) = fy(y

↓) = y.

Thus x = y and so α is injective.

The one element set {z} is a module when we define z · s = z for all s ∈ S and

p(z) = 0. This is an initial object in ModS but not a terminal object because of

condition (EM2).

We will now define a coproduct in ModS. Let (X, p), (Y, q) be modules. De-

fine X
⊕

Y to be the subset of X × Y consisting of all those pairs (x, y) such that

p(x)q(y) = 0. If (x, y) ∈ X
⊕

Y then define (p ⊕ q)(x, y) = p(x) ∨ q(y). This makes

sense since p(x)q(y) = 0 and so the orthogonal join p(x) ∨ q(y) exists. We define an

action X
⊕

Y × S → X
⊕

Y by (x, y) · s = (x · s, y · s). This is well-defined since

p(x · s)q(y · s) = s−1p(x)ss−1q(y)s = s−1p(x)q(y)s = 0 for (x, y) ∈ X
⊕

Y .

Lemma 4.4.19. (X
⊕

Y, p⊕ q) is a module.

Proof. (E1) (x, y) · (p⊕ q)(x, y) = (x, y) · (p(x) ∨ q(y)) = (x, y).

(E2) (p⊕ q)(x · s, y · s) = p(x · s) ∨ q(y · s) = s−1(p(x) ∨ q(y))s = s−1(p⊕ q)(x, y)s.

(P1) - (P3) These are clear since p(x) ∨ q(y) ≥ p(x), q(y) (here (0, 0) is the zero).

(M1) If (p ⊕ q)(x, y)(p ⊕ q)(w, z) = 0 then p(x)p(w) = 0 and q(y)q(z) = 0. Thus

there exists (x ∨ w, y ∨ z). Further

(x ∨ w, y ∨ z) · (p⊕ q)(x, y) = (x, y)
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and

(x ∨ w, y ∨ z) · (p⊕ q)(w, z) = (w, z)

so (x, y), (w, z) ≤ (x ∨ w, y ∨ z). Now suppose that (u, v) ∈ X
⊕

Y is such

that (x, y), (w, z) ≤ (u, v). Then u · (p(x) ∨ q(y)) = x, v · (p(x) ∨ q(y)) = y,

u · (p(w) ∨ q(z)) = w and v · (p(w) ∨ q(z)) = z. Thus

u · ((p⊕ q)(x ∨ w, y ∨ z)) = u · (p(x) ∨ p(w) ∨ q(y) ∨ q(z)) = x ∨ w.

Similarly v · ((p⊕ q)(x∨w, y∨ z)) = y∨ z. So (x∨w, y∨ z) = (x, y)∨ (w, z) and

(p⊕ q)(x ∨ w, y ∨ z) = p(x) ∨ p(w) ∨ q(y) ∨ q(z).

(M2) For (x, y) ⊥ (w, z) we have

(x ∨ w, y ∨ z) · s = ((x ∨ w) · s, (y ∨ z) · s) = (x · s, y · s) ∨ (w · s, z · s).

Let (X, p), (Y, q), (Z, r) be modules and suppose that f : X → Z and g : Y → Z

are module morphisms. Then we can define a map

f ⊕ g : X
⊕

Y → Z

by (f ⊕ g)(x, y) = f(x) ∨ g(y). Note that this makes sense since r(f(x))r(g(y)) =

p(x)q(y) = 0. In fact:

Lemma 4.4.20. With X, Y, Z, f, g as above, f ⊕ g is a module morphism.

Proof. It is an étale morphism since

(f ⊕ g)(x · s, y · s) = f(x · s) ∨ g(y · s) = (f ⊕ g)(x, y) · s

and

r((f ⊕ g)(x, y)) = r(f(x) ∨ g(y)) = r(f(x)) ∨ r(g(y)) = p(x) ∨ q(y) = (p⊕ q)(x, y).

It is pointed since (f ⊕ g)(0, 0) = p(0) ∨ q(0) = 0 and for x 6= 0, y 6= 0, we have

(f ⊕ g)(x, y) 6= 0. Finally, to check that it is a module morphism, suppose (p ⊕
q)(x, y)(p⊕ q)(w, z) = 0. Then by the above (x, y) ∨ (w, z) = (x ∨ w, y ∨ z) and

(f ⊕ g)(x ∨ w, y ∨ z) = f(x ∨ w) ∨ g(y ∨ z) = f(x) ∨ f(w) ∨ g(y) ∨ g(z)

= (f ⊕ g)(x, y) ∨ (f ⊕ g)(w, z).
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Define ι1 : X → X
⊕

Y by ι1(x) = (x, 0) and ι2 : Y → X
⊕

Y by ι2(y) = (0, y).

It is easy to see that ι1 and ι2 are module morphisms.

Lemma 4.4.21. (X
⊕

Y, ι1, ι2) is a coproduct in ModS.

Proof. We need to show that if α : X → Z, β : Y → Z are module morphisms to

a module (Z, r) then there exists a unique module morphism γ : X
⊕

Y → Z with

α = γι1 and β = γι2. We claim γ = α⊕ β.

Firstly,

(α⊕ β)(ι1(x)) = (α⊕ β)(x, 0) = α(x)

and

(α⊕ β)(ι2(y)) = (α⊕ β)(0, y) = β(y).

Now suppose δ : X
⊕

Y → Z is a module morphism with α = δι1 and β = δι2.

Then δ(ι1(x)) = α(x) and so δ(x, 0) = α(x). Similarly δ(0, y) = β(y). For p(x)q(y) =

0 we have (x, 0) ⊥ (0, y) and (x, 0) ∨ (0, y) = (x, y). Thus

δ(x, y) = δ(x, 0) ∨ δ(0, y) = α(x) ∨ β(y) = (α⊕ β)(x, y).

We may define coproducts of an arbitrary set of modules {Xi : i ∈ I} by consid-

ering those elements of the direct product ×i∈IXi which have only a finite number of

non-zero elements.

Lemma 4.4.22. Let (X, p), (Y1, q1), (Y2, q2) be modules, f1 : X → Y1 and f2 : X → Y2

module morphisms and suppose that ker(f1) = ker(f2). Then there exists a pushout

of f1 and f2.

Proof. Let (X, p), (Y1, q1), (Y2, q2) be modules, f1 : X → Y1 and f2 : X → Y2 module

morphisms with ker(f1) = ker(f2). Define a binary relation σ on Y1

⊕
Y2 by

(a1, b1)σ (a2, b2)

if there exist x1, x2 ∈ X, y1 ∈ Y1, y2 ∈ Y2 with fi(xj) ⊥ yi for i, j = 1, 2,

(a1, b1) = (y1 ∨ f1(x1), y2 ∨ f2(x2))

and

(a2, b2) = (y1 ∨ f1(x2), y2 ∨ f2(x1)).

We prove that σ is a congruence. It is clear that σ is reflective and symmetric. Let

us check transitivity. Suppose (a1, b1), (a2, b2), (a3, b3) ∈ Y1

⊕
Y2 are elements with
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(a1, b1)σ (a2, b2) and (a2, b2)σ (a3, b3). Let x1, x2, x3, x4 ∈ X, y1, z1 ∈ Y1, y2, z2 ∈ Y2

be such that fi(xj) ⊥ yi for i, j = 1, 2, fi(xj) ⊥ zi for i = 1, 2, j = 3, 4 and

(a1, b1) = (y1 ∨ f1(x1), y2 ∨ f2(x2)),

(a2, b2) = (y1 ∨ f1(x2), y2 ∨ f2(x1)) = (z1 ∨ f1(x3), z2 ∨ f2(x4))

and

(a3, b3) = (z1 ∨ f1(x4), z2 ∨ f2(x3)),

so that y1 ∨ f1(x2) = z1 ∨ f1(x3) and y2 ∨ f2(x1) = z2 ∨ f2(x4). Define

u1 = y1 · q1(z1) ∨ f1(x1 · p(x4)),

u2 = f2(x2 · p(x3)) ∨ y2 · q2(z2),

v1 = x2 · q1(z1) ∨ x4 · q2(y2)

and

v2 = x3 · q1(y1) ∨ x1 · q2(z2),

where each of the joins is the join of two orthogonal elements of modules. Then

u1 ∈ Y1, u2 ∈ Y2, v1, v2 ∈ X are such that fi(vj) ⊥ ui for i, j = 1, 2,

(a1, b1) = (u1 ∨ f1(v2), u2 ∨ f2(v1))

and

(a3, b3) = (u1 ∨ f1(v1), u2 ∨ f2(v2)).

Thus (a1, b1)σ (a3, b3) and so σ is transitive. It is clear that axioms (C1) and (C2)

for a congruence hold. Let us check (C3). Suppose (a1, b1), (a2, b2), (c1, d1), (c2, d2) ∈
Y1

⊕
Y2 are elements with (ai, bi) ⊥ (ci, di), i = 1, 2, (a1, b1)σ (a2, b2) and (c1, d1)σ (c2, d2).

Let x1, x2, x3, x4 ∈ X, y1, z1 ∈ Y1, y2, z2 ∈ Y2 be such that fi(xj) ⊥ yi for i, j = 1, 2,

fi(xj) ⊥ zi for i = 1, 2, j = 3, 4 and

(a1, b1) = (y1 ∨ f1(x1), y2 ∨ f2(x2)),

(a2, b2) = (y1 ∨ f1(x2), y2 ∨ f2(x1)),

(c1, d1) = (z1 ∨ f1(x3), z2 ∨ f2(x4))

and

(c2, d2) = (z1 ∨ f1(x4), z2 ∨ f2(x3)).

Let u1 = y1 ∨ z1, u2 = y2 ∨ z2, v1 = x1 ∨ x3, v2 = x2 ∨ x4. Then u1 ∈ Y1, u2 ∈ Y2,
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v1, v2 ∈ X are such that fi(vj) ⊥ ui for i, j = 1, 2,

(a1 ∨ c1, b1 ∨ d1) = (u1 ∨ f1(v1), u2 ∨ f2(v2))

and

(a2 ∨ c2, b2 ∨ d2) = (u1 ∨ f1(v2), u2 ∨ f2(v1)).

Thus σ is a congruence. Define Z = (Y1

⊕
Y2)/σ, denote elements by [y1, y2], define

k1 : Y1 → Z by k1(y) = [y, 0] and k2 : Y2 → Z by k2(y) = [0, y]. It follows from

Lemma 4.4.7 that k1, k2 are module morphisms. We claim (Z, k1, k2) is the pushout

of X. Firstly,

k1(f1(x)) = [f1(x), 0] = [0, f2(x)] = k2(f2(x)).

Now suppose (Z ′, r) is another module and g1 : Y1 → Z ′, g2 : Y2 → Z ′ are module

morphisms with g1f1 = g2f2. Define g : Z → Z ′ by g([y1, y2]) = g1(y1) ∨ g2(y2). Let

us verify that g is well-defined. Suppose (a1, b1)σ (a2, b2) and x1, x2 ∈ X, y1 ∈ Y1,

y2 ∈ Y2 are such that fi(xj) ⊥ yi for i, j = 1, 2,

(a1, b1) = (y1 ∨ f1(x1), y2 ∨ f2(x2))

and

(a2, b2) = (y1 ∨ f1(x2), y2 ∨ f2(x1)).

Then

g([a1, b1]) = g1(y1) ∨ g1(f1(x1)) ∨ g2(y2) ∨ g2(f2(x2))

= g1(y1) ∨ g2(f2(x1)) ∨ g2(y2) ∨ g1(f1(x2)) = g([a2, b2]).

We see that g is an étale morphism since

g([y1, y2] · s) = g([y1 · s, y2 · s]) = g1(y1 · s) ∨ g2(y2 · s) = (g1(y1) ∨ g2(y2)) · s

and

(q1 ⊕ q2)(y1, y2) = q1(y1) ∨ q2(y2) = r(g(y1)) ∨ r(g(y2)).

It is obviously pointed and it is a module morphism by construction. Furthermore, it

is readily verified that gk1 = g1 and gk2 = g2. Uniqueness follows from the fact that

if h : Z → Z ′ is such that hk1 = g1 and hk2 = g2 then

h([y1, y2]) = h([y1, 0]) ∨ h([0, y2]) = g1(y1) ∨ g2(y2) = g([y1, y2]).
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Lemma 4.4.23. In ModS every epimorphism is a surjection.

Proof. Let (X, p), (Y, q) be modules, let θ : X → Y be a module epimorphism and

let Z be the categorical cokernel of θ, i.e. the pushout of θ with itself as described

in Lemma 4.4.22. Explicitly, Z = (Y
⊕

Y )/σ where (x, y)σ (u, v) if and only if

there exist x1, y1 ∈ Y , x2, y2 ∈ im(θ) with x1 ⊥ x2, x1 ⊥ y2, y1 ⊥ x2, y1 ⊥ y2,

(x, y) = (x1 ∨ x2, y1 ∨ y2) and (u, v) = (x1 ∨ y2, y1 ∨ x2).

Now assume θ is not surjective. We will reach a contradiction. Recall k1, k2 : Y →
Z are given by k1(y) = [(y, 0)], k2(y) = [(0, y)] and observe that k1(θ(x)) = k2(θ(x)).

We say that a pair (x, y) ∈ Y ⊕ Y is odd if x belongs to the image of θ and y

does not. We claim that if (x, y)σ (u, v) then (x, y) is odd if and only if (u, v) is odd.

Suppose that (x, y) is odd. Let (x, y) = (x1∨x2, y1∨y2) and (u, v) = (x1∨y2, y1∨x2),

where x2, y2 ∈ im(θ). Now if x is in the image of θ then so too are both x1 and x2

since the image of a module morphism is an order ideal. By assumption, y2 is in the

image of θ and so u is in the image of θ. If v were in the image of θ then so too would

y1 and x2. But this would imply that y was in the image. It follows that (u, v) is odd.

The reverse direction follows by symmetry.

Let y be an element of Y that is not in the image of θ. Then (0, y) is odd and

(y, 0) is not. If follows that (0, y) and (y, 0) are not σ-related. We have therefore

proved that k1 6= k2, a contradiction.

Let I be a set and let

FI = (I × (S \ {0})) ∪ {0} .

Define (i, s) · t = (i, st) if st 6= 0, and 0 otherwise. Also define 0 · s = 0 for all s ∈ S.

Let p : FI → E(S) be defined by p(i, s) = s−1s and p(0) = 0. Then this gives FI

the structure of a premodule via Proposition 4.4.1. We will say a module X is free

with respect to a set I if there is a premodule morphism σ : FI → X such that for

any premodule morphism f : FI → Y where Y is a module there is a unique module

morphism g : X → Y such that gσ = f and such that if a module X ′ together with a

map σ′ : FI → X ′ also satisfies these conditions then X ∼= X ′/ρ for some congruence

ρ.

Lemma 4.4.24. Let I be a non-empty set. The module⊕
i∈I

S]

is the unique (up to isomorphism) free module with respect to the set I.
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Proof. Let X =
⊕

i∈I S
]. Define σ : FI → X by

σ(i, s) = (0, . . . , 0, s↓, 0, . . .)

where s is in the ith position of X. This will be a premodule morphism essentially

for the same reason as ι is in Proposition 4.4.14. Now suppose Y is a module and

f : FI → Y is a premodule morphism. Define g : X → Y by

g({s1,1, . . . , s1,m1}
↓ , {s2,1, . . . , s2,m2}

↓ , . . .) =
∨
k∈I

mk∨
i=1

f(k, sk,i).

It is easy to see that g will be a module morphism and that gσ = f . Suppose that

X ′ is a module such that σ′ : FI → X ′ also satisfies the above condition. Then there

exists a module morphism g : X ′ → X such that gσ′ = σ. Let

x = ({s1,1, . . . , s1,m1}
↓ , {s2,1, . . . , s2,m2}

↓ , . . .) ∈ X

be arbitrary. Then

x = g
(∨
k∈I

mk∨
i=1

σ′(k, sk,i)
)
.

Thus g is surjective and so by Lemma 4.4.8 we have X ∼= X ′/ ker(g). It is easy to see

that X will then be unique up to isomorphism.

Lemma 4.4.25. ModS has all coequalisers.

Proof. Let f1, f2 : (X, p)→ (Y, q) be two module morphisms. We will say a↔ b in Y

if there exist x1, x2 ∈ X and y ∈ Y such that

p(x1)p(x2) = p(x1)q(y) = p(x2)q(y) = 0,

a = f1(x1) ∨ f2(x2) ∨ y

and

b = f1(x2) ∨ f2(x1) ∨ y.

Note that this implies that q(a) = q(b). Let σ be the transitive closure of↔. We now

show that σ is a congruence on Y . It is easy to see that (C1) and (C2) hold, so we

just check (C3). The key observation is that if a ↔ b, c ↔ d, a ⊥ c and b ⊥ d then

a ⊥ d and c ⊥ b. Suppose x1, x2, x3, x4 ∈ X and y1y2 ∈ Y are such that

p(x1)p(x2) = p(x1)q(y1) = p(x2)q(y1) = 0,

p(x3)p(x4) = p(x3)q(y2) = p(x4)q(y2) = 0,
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a = f1(x1) ∨ f2(x2) ∨ y1,

b = f1(x2) ∨ f2(x1) ∨ y1,

c = f1(x3) ∨ f2(x4) ∨ y2

and

d = f1(x4) ∨ f2(x3) ∨ y2.

Then

a∨c = (f1(x1)∨f2(x2)∨y1)∨(f1(x3)∨f2(x4)∨y2) = f1(x1∨x3)∨f2(x2∨x4)∨(y1∨y2)

and

b∨d = (f1(x2)∨f2(x1)∨y1)∨(f1(x4)∨f2(x3)∨y2) = f2(x1∨x3)∨f1(x2∨x4)∨(y1∨y2),

so that a∨c↔ b∨d. It is then easy to see that the transitive closure, σ, of↔ will be a

congruence. Let K = Y/σ and let k : Y → K be the projection map, which we know

by the preceding theory is a module morphism. Then by construction kf1 = kf2.

Now suppose g : (Y, q) → (Z, r) is a module morphism such that gf1 = gf2. Let

a, b ∈ Y be ↔-related and suppose that x1, x2 ∈ X and y ∈ Y are such that

p(x1)p(x2) = p(x1)q(y) = p(x2)q(y) = 0,

a = f1(x1) ∨ f2(x2) ∨ y

and

b = f1(x2) ∨ f2(x1) ∨ y.

Then

g(a) = g(f1(x1)) ∨ g(f2(x2)) ∨ g(y) = g(f2(x1)) ∨ g(f1(x2)) ∨ g(y) = g(b).

More generally, if a σ b then g(a) = g(b). Since k is surjective, for each c ∈ K, k−1(c)

is non-empty. We therefore define g′ : K → Z by

g′(k(a)) = g(a).

The preceding remarks tell us that this map is well-defined. It is easy to check that

g′ is a pointed étale morphism. It is in fact a module morphism since if k(a) ⊥ k(b)

then

g′(k(a) ∨ k(b)) = g′(k(a ∨ b)) = g(a ∨ b) = g(a) ∨ g(b) = g′(k(a)) ∨ g′(k(b)).
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We have g′k = g by construction, and this is the unique map satisfying these proper-

ties. Thus (K, k) is the coequaliser of f1, f2.

It follows from Lemma 4.4.25 and the fact that ModS allows arbitrary coproducts

that ModS is cocomplete (and so in fact all pushouts exist, not just those of Lemma

4.4.22). On the other hand, it is not complete as it is not possible to define a product

on modules because of axiom (EM2) for module morphisms. Furthermore, not all

pullbacks exist. For example, if (X, p) and (Y, q) are such that |X|, |Y | > 1 then the

maps ι1 : X → X
⊕

Y and ι2 : Y → X
⊕

Y will not have a pullback. We do have

the following consolatory lemma:

Lemma 4.4.26. ModS has all equalisers.

Proof. Let (X, p), (Y, q) be modules, f, g : X → Y be module morphisms and let

K = {x ∈ X|f(x) = g(x)} .

Then K has the structure of a module since x1, x2 ∈ K with x1 ⊥ x2 implies x1∨x2 ∈
K. It inherits the map q : X → E(S) from X. Define ι : K → X to be the embedding

map. This is readily seen to be a module monomorphism. Suppose (Z, r) is a module

and h : Z → X is a module morphism with fh = gh. Then this implies im(h) ⊆ K

and so there is a module morphism h′ : Z → K with h = ιh′ and this morphism is

unique by construction. Thus (K, ι) is the equaliser of (f, g).

A module P is said to be projective if for every module morphism π : P → Y and

module epimorphism α : X → Y there exists a module morphism β : P → X such

that αβ = π.

Lemma 4.4.27. Let P1, P2 be projective modules. Then P1

⊕
P2 is projective.

Proof. Let π : P1

⊕
P2 → Y be a module morphism and α : X → Y a module

epimorphism. Define ι1 : P1 → P1

⊕
P2 by ι1(x) = (x, 0) and define ι2 : P2 → P1

⊕
P2

by ι2(y) = (0, y). Then πι1 : P1 → Y and πι2 : P2 → Y are module morphisms and

so there are maps β1 : P1 → X and β2 : P2 → X such that πι1 = αβ1 and πι2 = αβ2.

Let γ = β1 ⊕ β2 : P1

⊕
P2 → X so that γ is given by γ(x, y) = β1(x) ∨ β2(y). We

know from Lemma 4.4.20 that γ is a module morphism. Further

(αγ)(x, y) = α(β1(x) ∨ β2(y)) = α(β1(x)) ∨ α(β2(y)) = (πι1(x)) ∨ (πι2(y))

= π(x, 0) ∨ π(0, y) = π(x, y).
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We can extend the previous lemma: if P1, . . . , Pn are projective modules then

n⊕
i=1

Pi

is projective. The converse is also true:

Lemma 4.4.28. Let P = P1

⊕
P2 be a projective module. Then P1 and P2 are

projective.

Proof. We will prove P1 is projective. The proof for P2 is similar. Let π : P1 → Y

be a module morphism and let α : X → Y be a module epimorphism. Define

π′ : P1

⊕
P2 → Y

⊕
P2 by

π′(p1, p2) = (π(p1), p2)

and define α′ : X
⊕

P2 → Y
⊕

P2 by

α′(x, p2) = (α(x), p2).

It is easy to check that π′ is a module morphism and α′ is a module epimorphism.

There is thus a module morphism β′ : P1

⊕
P2 → X

⊕
P2 such that α′β′ = π′.

Denote by

β′(p1, p2) = (β′1(p1, p2), β′2(p1, p2)).

We thus have

(π(p1), 0) = π′(p1, 0) = α′(β′(p1, 0)) = α′(β′1(p1, 0), β′2(p1, 0))

= (α(β′1(p1, 0)), β′2(p1, 0)).

It follows that β′2(p1, 0) = 0. So define β : P1 → X by

β(p1) = β′1(p1, 0).

By the above this is a module morphism. Further

α(β(p1)) = α(β′1(p1, 0)) = π(p1)

and so αβ = π.

Lemma 4.4.29. (eS)] is a projective module for each idempotent e ∈ E(S).

Proof. Let π : (eS)] → Y be a module morphism, α : X → Y a module epimorphism
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and y ∈ α−1(π(e↓)) be a fixed element. Define β : (eS)] → X by

β({s1, . . . , sm}↓) =
m∨
i=1

y · si.

If s1, s2 ∈ S are orthogonal in S then

β({s1, . . . , sm}↓) =
m∨
i=1

y · si = y · (s1 ∨ s2)
∨

(∨mi=3y · si) = β({s1 ∨ s2, s3 . . . , sm}↓).

It follows that β is well-defined. It is easy to see that it is a pointed étale morphism.

If {s1, . . . , sm}↓ , {t1, . . . , tn}↓ ∈ (eS)] are orthogonal then

β({s1, . . . , sm}↓ ∨ {t1, . . . , tn}↓) = β({s1, . . . , sm, t1, . . . , tn}↓)

= (∨mi=1y · si)
∨

(∨ni=1y · ti)

= β({s1, . . . , sm}↓) ∨ β({t1, . . . , tn}↓).

Thus β is a module morphism. Further

(αβ)({s1, . . . , sm}↓) = α(∨mi=1y · si) = ∨mi=1α(y) · si = ∨mi=1π(e↓) · si

= ∨mi=1π(s↓i ) = π(∨mi=1s
↓
i ) = π({s1, . . . , sm}↓).

The following will be used shortly:

Lemma 4.4.30. If X and Y are isomorphic as premodules then X] and Y ] are

isomorphic as modules.

Proof. Suppose θ : (X, p) → (Y, q) is a bijective premodule morphism. Then θ] :

X] → Y ] is a surjective module morphism by Lemma 4.4.13. We will now prove that

if {x1, . . . , xm}↓ ∈ X] is such that none of the xi’s are strongly orthogonal to each other

then {θ(x1), . . . , θ(xm)}↓ ∈ X] is such that none of the θ(xi)’s are strongly orthogonal

to each other. Suppose on the contrary that x1 ⊥ x2 ∈ X are such that they are

not strongly orthogonal but such that θ(x1) and θ(x2) are strongly orthogonal. Since

θ(x1) and θ(x2) are strongly orthogonal and θ is surjective there is a z ∈ X with

θ(z) = θ(x1) ∨ θ(x2) and p(z) = p(x1) ∨ p(x2). Let y1 = z · p(x1) and y2 = z · p(x2).

Then p(y1) = p(x1) and p(y2) = p(x2). Thus by Lemma 4.4.2, z = y1 ∨ y2 and y1, y2

are strongly orthogonal. We then have

θ(y1) = θ(z · p(y1)) = θ(z) · p(x1) = θ(x1).
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Similarly, θ(y2) = θ(x2). Since θ is injective we must have y1 = x1 and y2 = x2, which

implies x1 and x2 are strongly orthogonal, contradicting our original assumption. Now

suppose

θ]({x1, . . . , xm}↓) = θ]({y1, . . . , yn}↓)

with none of the xi’s strongly orthogonal to each other and none of the yi’s strongly

orthogonal to each other. Then we have

{θ(x1), . . . , θ(xm)}↓ ≡ {θ(y1), . . . , θ(yn)}↓ ,

with none of the θ(xi)’s strongly orthogonal to each other and none of the θ(yi)’s

strongly orthogonal to each other. Thus n = m and by the injectivity of θ,

{x1, . . . , xm}↓ = {y1, . . . , yn}↓

and so θ] is injective.

Lemma 4.4.31. Let e, f ∈ E(S) be idempotents in S. Then eS and fS are isomor-

phic as premodules if and only if eD f .

Proof. (⇐) Suppose e = s−1s and f = ss−1. Define θ : eS → fS by θ(t) = st. This a

well-defined surjective premodule morphism by Lemma 4.4.16 since sS is isomorphic

to fS. Further, if θ(t) = θ(u) then st = su which implies s−1st = s−1su and so t = u.

Thus θ is also injective.

(⇒) Suppose α : (eS, p)→ (fS, q) is a bijective premodule morphism with inverse

β and suppose α(e) = s = fse and β(f) = t = etf. Then s−1s = q(s) = p(e) = e and

t−1t = f . Further

f = α(t) = α(e) · t = st

and so

s−1 = s−1f = s−1st = et = t.

Thus f = ss−1 and eD f .

Lemma 4.4.32. Let e, f ∈ E(S) be idempotents in S. Then (eS)] and (fS)] are

isomorphic as modules if and only if eD f .

Proof. (⇐) eD f implies eS and fS are isomorphic as premodules and so by Lemma

4.4.30 (eS)] and (fS)] are isomorphic as modules.

(⇒) Suppose θ : (eS)] → (fS)] and φ : (fS)] → (eS)] are mutually inverse module

isomorphisms and suppose θ(e↓) = {s1, . . . , sm}↓ ∈ (fS)] and φ(f ↓) = {u1, . . . , un}↓ ∈
(eS)]. Then

f ↓ =
n∨
i=1

θ(u↓i ) =
n∨
i=1

θ(e↓)ui =
n∨
i=1

m∨
j=1

(sjui)
↓.

129



Chapter 4: K-Theory of Inverse Semigroups

Thus

f =
n∨
i=1

m∨
j=1

(sjui),

with sjui, sruk strongly orthogonal for all i, j, r, k. It then follows that sjui ⊥ sruk in

S for all i, j, r, k. Similarly,

e =
n∨
i=1

m∨
j=1

(uisj),

with uisj ⊥ uksr in S for all i, j, r, k. Furthermore, e, f ∈ E(S) implies that

uisj, sjui ∈ E(S). Since θ and φ are module morphisms, we must also have

e =
m∨
i=1

s−1
i si

and

f =
n∨
i=1

u−1
i ui.

So postmultiplying f by u−1
i gives

u−1
i = fu−1

i =
m∨
j=1

(sjuiu
−1
i ).

Since sjui ∈ E(S), u−1
i s−1

j = sjui. Thus

u−1
i =

m∨
j=1

(u−1
i s−1

j u−1
i ).

So

uiu
−1
i =

m∨
j=1

(uiu
−1
i s−1

j u−1
i ) =

m∨
j=1

(s−1
j u−1

i uiu
−1
i ),

giving sjuiu
−1
i = sjs

−1
j u−1

i and so sjui = sjs
−1
j u−1

i ui for all i, j. Thus

n∨
i=1

sjui = sjs
−1
j .

Since ∨ni=1sjui is orthogonal in S to ∨ni=1skui for k 6= j, we have

sjs
−1
j sks

−1
k = 0

for j 6= k. Thus sj ⊥ sk and uj ⊥ uk in S for j 6= k and so for some s ∈ fS and

u ∈ eS we have θ(e↓) = s↓ and φ(f ↓) = u↓. We also have e = s−1s and f = u−1u.
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Now

f ↓ = θ(u↓) = θ(e↓) · u = s↓ · u = (su)↓.

Thus f = su and so s−1 = s−1f = s−1su = eu = u, giving eD f .

Lemma 4.4.33. Let e, f ∈ E(S) be such that ef = 0. Then (eS)]
⊕

(fS)] is isomor-

phic to ((e ∨ f)S)].

Proof. Define a map h : (eS)]
⊕

(fS)] → ((e ∨ f)S)] by

h({s1, . . . , sm}↓ , {t1, . . . , tn}↓) = {s1, . . . , sm, t1, . . . , tn}↓ .

Then since si = esi and ti = fti, using the orthogonality conditions we see this is a

valid element of ((e∨ f)S)]. It is easy to see that h is an injective module morphism.

Let us check that h is surjective. Let {s1, . . . , sm}↓ ∈ ((e ∨ f)S)]. Then

h({es1, . . . , esm}↓ , {fs1, . . . , fsm}↓) = {s1, . . . , sm}↓ .

We will now prove a couple of related results which we will use later. For X =⊕m
i=1 (eiS)], denote by

ei = (0, . . . , 0, e↓i , 0, . . . , 0)

where the ei is in the ith position.

Lemma 4.4.34. Let

θ :
m⊕
i=1

(eiS)] →
n⊕
i=1

(fiS)]

be a module isomorphism. Then for each i, there exist aik ∈ fkS with

θ(ei) = (a↓1i, . . . , a
↓
ni).

Proof. Let φ = θ−1. Suppose

θ(ei) = ({a1i1, . . . , a1iri1}
↓ , . . . , {ani1, . . . , anirin}

↓)

and

φ(fi) = ({b1i1, . . . , b1isi1}
↓ , . . . , {bmi1, . . . , bmisim}

↓).

We will prove for all i, j that aji1, . . . , ajirij are orthogonal elements of S and the

lemma will then follow. By constuction, ajiua
−1
jiv = 0 for u 6= v. Thus we just need to
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prove a−1
jivajiu = 0 for u 6= v. Since θ is a bijection, we have

ei
↓ = φ({a1i1, . . . , a1iri1}

↓ , . . . , {ani1, . . . , anirin}
↓)

= φ(∨ri1j=1f
↓
1 · a1ij, . . . ,∨rinj=1f

↓
n · anij)

=
n∨
k=1

rik∨
j=1

φ(fk) · akij

=
n∨
k=1

rik∨
j=1

({b1k1, . . . , b1ksk1}
↓ , . . . , {bmk1, . . . , bmkskm}

↓) · akij

We therefore have
n∨
k=1

rik∨
j=1

ski∨
u=1

bikuakij = ei

and
n∨
k=1

rik∨
j=1

skv∨
u=1

bvkuakij = 0

for v 6= i. Since akija
−1
viw = 0 unless k = v and j = w, postmultiplying the first

equation by a−1
kij gives

ski∨
u=1

bikuakija
−1
kij = a−1

kij.

It then follows that bikuakij ∈ E(S) for all i, j, k, u and so bikuakij = a−1
kijb
−1
iku. Similarly,

applying this argument for fi instead gives aikvbkiu ∈ E(S) for all i, k, u, v. Thus, for

j 6= v, we have

a−1
kijakiv =

ski∨
u=1

bikuakija
−1
kijakiv =

ski∨
u=1

a−1
kijb
−1
ikua

−1
kijakiv

=

ski∨
u=1

a−1
kijakijbikuakiv =

ski∨
u=1

bikuakiva
−1
kijakij = 0.

Since 0 ∈ S, we can assume in such calculations that m = n, by letting some of

the ei’s be equal to 0.

Lemma 4.4.35. Let

θ :
m⊕
i=1

(eiS)] →
m⊕
i=1

(fiS)]
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be a module isomorphism with

θ(ei) = (a↓1i, . . . , a
↓
mi)

and

θ−1(fi) = (b↓1i, . . . , b
↓
mi),

Then

1. For all i and for j 6= k, we have a−1
ij aik = 0.

2. For all i, j, we have aij = b−1
ji .

Proof. Firstly, we can assume that aik = fiaikek and bik = eibikfk. We have,

fi = θ(b↓1i, . . . , b
↓
mi) =

m∨
k=1

θ(ek) · bki

= (∨mk=1a1kbki, . . . ,∨mk=1amkbki).

So ∨mk=1ajkbki = 0 for i 6= j and ∨mk=1aikbki = fi. Postmultiplying by b−1
ki bki gives

aikbki = b−1
ki bki.

A similar argument gives

bikaki = a−1
ki aki

and for i 6= j

bjkaki = 0.

Let us now prove the claims:

1. Using the fact that bikaki = a−1
ki b
−1
ik , aikbki = b−1

ki a
−1
ik and a−1

ki = bikakia
−1
ki , we

have, for all i and for j 6= k,

a−1
ij aik = bjiaija

−1
ij aik = a−1

ij b
−1
ji a

−1
ij aik = a−1

ij aijbjiaik = bjiaika
−1
ij aij = 0.

2. For all i, j, we have bijajia
−1
ji = a−1

ji and so a−1
ji ≤ bij. On the other hand,

ajibijb
−1
ij = b−1

ij , giving b−1
ij ≤ aji and therefore bij ≤ a−1

ji . Thus bij = a−1
ji .

We denote the full subcategory of ModS consisting of all projective modules

isomorphic to
⊕n

i=1 (eiS)] for some idempotents ei ∈ E(S) by ProjS. By definition,⊕
gives (ProjS,

⊕
) the structure of a commutative monoid, where the identity is the

one element module. For S an arbitrary orthogonally complete inverse semigroup we
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will define K(S) to be the Grothendieck group of (ProjS,
⊕

). It is clear by Lemmas

4.4.32 and 4.4.33 that if S is a K-inverse semigroup, this definition agrees with our

earlier definition of a K-group.

Remark 4.4.36. It may in fact be possible to rework quite a bit of this section for the

more general setting of orthogonally complete ordered groupoids. Here is a suggestion

for one possible approach. Let G be an orthogonally complete ordered groupoid. We

will say X is an étale set if there is a map p : X → G0 and a partially defined function

X ×G→ X, denoted (x, g) 7→ x · g such that

• For each x ∈ X we have ∃x · p(x) and x · p(x) = x.

• For x ∈ X, e ∈ G0, ∃x · e iff e ∧ p(x) 6= 0 in which case x · e = x · (e ∧ p(x)).

• For x ∈ X, g ∈ G, ∃x · g iff ∃x · r(g) in which case x · g = x · (r(g) ∧ p(x)|g).

• For x ∈ X, g, h ∈ G, if ∃gh and ∃x · g then ∃x · (gh) and x · (gh) = (x · g) · h.

• For x ∈ X, g ∈ G with ∃x · g we have p(x · g) = (r(g)∧ p(x)|g)−1(r(g)∧ p(x)|g).

One then defines pointed sets, premodules and modules analogously to the case of

inverse semigroups.

4.5 Matrices over inverse semigroups

In the previous section we described how to define the K-group of an arbitrary orthog-

onally complete inverse semigroup using certain finitely generated projective modules.

In this section we shall show that there is another way of calculating the same group

but this time using matrices over inverse semigroups. We shall generalise the rook

matrices of Solomon [111].

Throughout this section let S be an orthogonally complete inverse semigroup. An

m×n matrix A with entries in S is said to be a rook matrix if it satisfies the following

conditions:

(RM1): If a and b lie in the same row of A then a−1b = 0.

(RM2): If a and b lie in the same column of A then ab−1 = 0.

We denote the set of all finite-dimensional rook matrices over S by R(S). In what

follows a matrix denoted A will have i, jth entry given by aij. Let A be an m × n
rook matrix and B an n× p rook matrix. The m× p matrix C = AB has entries

cij = ∨nk=1aikbkj.

That this join is well-defined is guaranteed by axioms (RM1) and (RM2).

We use the term semigroupoid to mean a structure that is the same as a category

but does not necessarily have identities.
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Lemma 4.5.1. R(S) is a semigroupoid.

Proof. We need to show this operation when defined returns a rook monoid and is

associative. First we show that for A an m× n rook matrix, B an n× p rook matrix

the product C = AB is an m× p rook matrix. That is, we need to show that for all

allowable i, j, k with i 6= j, we have c−1
ki ckj = 0 and cikc

−1
jk = 0.

One easily verifies using standard properties of orthogonal joins (e.g. see [74]) that

for all allowable i, j we have

c−1
ij =

n∨
k=1

b−1
kj a

−1
ik .

Thus, for i 6= j, we have

c−1
ki ckj =

(
n∨
l=1

b−1
li a

−1
kl

)(
n∨
l=1

aklblj

)
=

n∨
l=1

b−1
li a

−1
kl aklblj =

n∨
l=1

b−1
li a

−1
kl aklblib

−1
li blj = 0

and

cikc
−1
jk =

(
n∨
l=1

ailblk

)(
n∨
l=1

b−1
lk a

−1
jl

)
=

n∨
l=1

ailblkb
−1
lk a

−1
jl =

n∨
l=1

aila
−1
jl ajlblkb

−1
lk a

−1
jl = 0.

Now let us prove that R(S) is associative. We want to show (when the dimensions

match up appropriately)

(A ·B) · C = A · (B · C).

Let M = A ·B, P = B · C, N = M · C, Q = A · P . Then

nij =
∨
k

mikckj =
∨
k

((∨
r

airbrk

)
ckj

)
=
∨
k

∨
r

airbrkckj

and

qij =
∨
k

aikpkj =
∨
k

(
aik

(∨
r

bkrcrj

))
=
∨
k

∨
r

aikbkrcrj.

Thus nij = qij and so (A ·B) · C = A · (B · C).

Observe that if S were chosen to be the two element Boolean algebra then rook

matrices over S are essentially the same as the rook matrices of Solomon [111].

Lemma 4.5.2. The idempotents of R(S) are square matrices whose diagonal entries

are idempotents in E(S) and whose off-diagonal entries are 0.

Proof. Let E be an n× n rook matrix with E2 = E. We have for all i, j:

eij =
n∨
k=1

eikekj.
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So

eij = eije
−1
ij eij =

n∨
k=1

eije
−1
ij eikekj = eije

−1
ij eijejj = eijejj.

Thus for all i, j we have ejj ∈ E(S). For i 6= j, we have

eij = eijejj = eije
−1
jj = 0.

Lemma 4.5.3. The n × n idempotent matrices of R(S) commute and their product

is again idempotent.

Proof. Let E,F ∈ E(R(S)) be n × n idempotent matrices, G = EF and H = FE.

Then for i 6= j we have

gij =
n∨
k=1

eikfkj = 0

and

gii =
n∨
k=1

eikfki = eiifii.

On the other hand,

hij =
n∨
k=1

fikekj = 0

and

hii =
n∨
k=1

fikeki = fiieii.

Lemma 4.5.4. R(S) is an inverse semigroupoid. In particular, for an m× n matrix

A ∈ R(S), letting B denote the n × m matrix with bij = a−1
ji for all i, j, we have

B = A−1.

Proof. First we need to check that B is a rook matrix. We have for i 6= j,

b−1
ki bkj = aika

−1
jk = 0

and

bikb
−1
jk = a−1

ki akj = 0.

We want to show ABA = A and BAB = B. Let M = AB, N = ABA, P = BAB.

For i 6= j,

mij =
∨
k

aikbkj =
∨
k

aika
−1
jk = 0
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and

mii =
∨
k

aikbki =
∨
k

aika
−1
ik .

So, for all i, j, we have

nij =
∨
k

mikakj = miiaij =
∨
k

aika
−1
ik aij = aij

and

pij =
∨
k

bikmkj = bijmjj =
∨
k

a−1
ji ajka

−1
jk = a−1

ji = bij.

It is easy to see that a regular semigroupoid whose idempotents commute is an inverse

semigroupoid. (Explicitly, suppose C is another inverse for A. Then

C = CAC = CABAC = CACAB = CAB = CABAB

= BACAB = BAB = B.)

If n is a finite non-zero natural number, define Mn(S) to be the inverse semigroup

of all n × n rook matrices over S. For n × n rook matrices A,B ∈ Mn(S) we will

denote the natural partial order by ≤.

Lemma 4.5.5. For A,B ∈Mn(S), we have A ≤ B if and only if aij ≤ bij for all i, j.

Proof. A ≤ B means A = BA−1A. Let C = A−1, D = CA and E = BD. Then from

the above, we have dij = 0 for i 6= j and

dii =
n∨
k=1

a−1
ki aki.

So

eij =
n∨
k=1

bikdkj = bijdjj =
n∨
k=1

bija
−1
kj akj.

So, if A = BA−1A then

aij = aija
−1
ij aij = eija

−1
ij aij =

n∨
k=1

bija
−1
kj akja

−1
ij aij = bija

−1
ij aija

−1
ij aij = bija

−1
ij aij.
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Suppose now that aij = bija
−1
ij aij for all i, j and let C,D,E be as above. Then

eij =
n∨
k=1

bija
−1
kj akj =

n∨
k=1

bija
−1
kj akjb

−1
kj bkja

−1
kj akj =

n∨
k=1

bijb
−1
kj bkja

−1
kj akja

−1
kj akj

= bijb
−1
ij bija

−1
ij aija

−1
ij aij = bija

−1
ij aij = aij.

Lemma 4.5.6. If A,B ∈Mn(S) are orthogonal, then their join exists. Furthermore,

letting C = A ∨B, we have

cij = aij ∨ bij

for all i, j.

Proof. If A,B ∈Mn(S) are orthogonal, then

n∨
k=1

a−1
ki bkj = 0 =

n∨
k=1

aikb
−1
jk .

Thus for all i, j, k, we have a−1
ki bkj = aikb

−1
jk = 0 and so for all i, j, ∃aij ∨ bij and

∃a−1
ij ∨ b−1

ij . Let C be the matrix with entries cij = aij ∨ bij. We need to show that

C ∈Mn(S). It will then be clear by the previous lemma that C = A ∨B. So we will

therefore verify that for all i, j, k with i 6= j we have c−1
ki ckj = 0 and cikc

−1
jk = 0. First

note that (aij ∨ bij)−1 = a−1
ij ∨ b−1

ij . So

c−1
ki ckj = (a−1

ki ∨ b
−1
ki )(akj ∨ bkj) = 0

and

cikc
−1
jk = (aik ∨ bik)(a−1

jk ∨ b
−1
jk ) = 0.

Lemma 4.5.7. Let A,B ∈Mn(S) be orthogonal. Then for all D ∈Mn(S) we have

D(A ∨B) = DA ∨DB.

Proof. Let A,B,D ∈Mn(S) with A orthogonal to B, let C = A∨B be as above, and

let E = DA, F = DB. First we must check that ∃E ∨F . To this end, let G = EF−1

and H = E−1F . Orthogonality of A and B gives G = 0 and

H = A−1D−1DB = A−1AA−1D−1DB = A−1D−1DAA−1B = 0.
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Thus ∃E ∨ F . Let M = E ∨ F and N = DC. Then

mij = eij ∨ fij =

(
n∨
k=1

dikakj

)
∨

(
n∨
k=1

dikbkj

)
=

n∨
k=1

dik(akj ∨ bkj)

=
n∨
k=1

dikckj = nij.

Combining the previous three lemmas we have

Theorem 4.5.8. Mn(S) is orthogonally complete for each n ∈ N.

We now define what we mean by Mω(S). Its elements are N× N matrices whose

entries are elements of S, such that these matrices are rook matrices in that they

satisfy conditions (RM1) and (RM2), and there are only finitely many non-zero entries.

It is clear that by replacing n by ∞ in the previous lemmas we have the following

Theorem 4.5.9. Mω(S) is an orthogonally complete inverse semigroup.

Let us now determine the form of Green’s D-relation on the set of idempotents of

Mω(S). For e = (e1, . . . , en), where ei ∈ E(S) for each i, we will denote by ∆(e) the

matrix E ∈Mω(S) with entries eii = ei for i = 1, . . . , n and 0 everywhere else.

Lemma 4.5.10. Let e = (e1, . . . , en), f = (e2, e1, e3, . . . , en), where n ≥ 2. Then

∆(e)D∆(f).

Proof. Let A ∈ Mω(S) be the matrix with entries a12 = e1, a21 = e2, aii = ei for

i = 3, . . . , n and 0 everywhere else. An easy calculation shows that AA−1 = ∆(e) and

A−1A = ∆(f).

The fact that we swapped the first two diagonal entries of the matrix was unim-

portant. Thus we can slide entries in the diagonal and remain in the same D-class.

In particular, this tells us that Mω(S) is orthogonally separating and is therefore a

K-inverse semigroup.

Lemma 4.5.11. Let e = (e1, e2, . . . , en), f = (e1∨ e2, e3, . . . , en) where e1 ⊥ e2. Then

∆(e)D∆(f).

Proof. Let A ∈ Mω(S) be the matrix with entries a11 = e1, a21 = e2, aii = ei for

i = 3, . . . , n and 0 everywhere else. An easy calculation shows that AA−1 = ∆(e) and

A−1A = ∆(f).
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Thus, we can also combine and split orthogonal joins.

Lemma 4.5.12. Let e = (e1, e2, . . . , en), f = (f1, e2, . . . , en) where e1D f1. Then

∆(e)D∆(f).

Proof. Suppose a ∈ S is such that aa−1 = e1 and a−1a = f1. Let A ∈ Mω(S) be the

matrix with entries a11 = a, aii = ei for i = 2, . . . , n and 0 everywhere else. An easy

calculation shows that AA−1 = ∆(e) and A−1A = ∆(f).

This tells us that we can swap entries for D-related elements. In fact, these three

types of moves completely describe the D-classes of E(Mω(S)).

Lemma 4.5.13. Let E,F ∈ Mω(S) be idempotent matrices in the same D-class.

Then one can go from E to F in a finite number of slide, combining, splitting and

swap moves.

Proof. Suppose E = AA−1, F = A−1A for some A ∈Mω(S). Then

eii =
∞∨
k=1

aika
−1
ik

and

fii =
∞∨
k=1

a−1
ki aki.

Firstly, since A only has finitely many non-zero entries, these joins are over a finite

number of orthogonal elements. So, we can split the joins and slide the entries along

the diagonal in E, so that each diagonal entry is now of the form aika
−1
ik for some i, k.

Then we can replace each aika
−1
ik with a−1

ik aik by performing a swap move. Finally,

joining enough orthogonal elements together will then give F .

Let S be an orthogonally complete inverse semigroup and let

θ :
m⊕
i=1

(eiS)] →
m⊕
i=1

(fiS)]

be a module isomorphism with ei, fi ∈ E(S) for each i. Then we know by Lemmas

4.4.34 and 4.4.35 that there exist aij ∈ fiSej with aija
−1
kj = 0 for i 6= k, a−1

ij aik = 0 for

j 6= k,

θ(ej) = (a↓1j, . . . , a
↓
mj)

and

θ−1(fi) = ((a−1
i1 )↓, . . . , (a−1

im)↓).
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Thus the matrix A with entries aij (and 0’s everywhere else) is an element of

Mω(S), ∆(e) = A−1A and ∆(f) = AA−1. In fact, the converse is also true:

Lemma 4.5.14. Let e = (e1, . . . , em), f = (f1, . . . , fm) and let A ∈ Mω(S) be such

that ∆(e) = A−1A and ∆(f) = AA−1. Then the map

θ :
m⊕
i=1

(eiS)] →
m⊕
i=1

(fiS)]

given on generators by

θ(0, . . . , 0, e↓i , 0, . . . , 0) = (a↓1i, . . . , a
↓
mi)

is a module isomorphism.

Proof. First, since A ∈Mω(S) we must have akia
−1
li = 0 for all i, k, l with k 6= l. Thus

(a↓1i, . . . , a
↓
mi) ∈

m⊕
i=1

(fiS)]

for all i = 1, . . . ,m. To see that θ is a module morphism, note that

q(a↓1i, . . . , a
↓
mi) =

m∨
k=1

a−1
ki aki = ei.

Let us now check that θ is surjective. We claim that for all i = 1, . . . ,m we have

(a−1↓
i1 , . . . , a−1↓

im ) ∈
m⊕
k=1

(ekS)].

Firstly,

eka
−1
ik =

(
m∨
i=1

a−1
ik aik

)
a−1
ik = a−1

ik aika
−1
ik = a−1

ik .

Secondly, aika
−1
ik aila

−1
il = 0 if k 6= l. Now

θ(a−1↓
i1 , . . . , a−1↓

im ) =
m∨
k=1

((a1ka
−1
ik )↓, . . . , (amka

−1
ik )↓)

=

0, . . . , 0,

(
m∨
k=1

aika
−1
ik

)↓
, 0, . . . , 0


= (0, . . . , 0, f ↓i , 0, . . . , 0).
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Thus θ is surjective. Finally, let us check that θ is injective. Let

x = ({x11, . . . , x1r1}
↓ , . . . , {xm1, . . . , xmrm}

↓) ∈
m⊕
i=1

(eiS)]

and

y = ({y11, . . . , y1s1}
↓ , . . . , {ym1, . . . , ymsm}

↓) ∈
m⊕
i=1

(eiS)]

be such that θ(x) = θ(y). Then for all k = 1, . . . ,m we have

m∨
i=1

ri∨
t=1

(akixit)
↓ =

m∨
i=1

si∨
t=1

(akiyit)
↓

in (fkS)]. So premultiplying both sides of the equation by a−1
ki gives

ri∨
t=1

(a−1
ki akixit)

↓ =

si∨
t=1

(a−1
ki akiyit)

↓

in (eiS)]. Taking the join over all k gives

ri∨
t=1

x↓it =
m∨
k=1

ri∨
t=1

(a−1
ki akixit)

↓ =
m∨
k=1

si∨
t=1

(a−1
ki akiyit)

↓ =

si∨
t=1

y↓it.

Thus x = y and so θ is injective.

It therefore follows that the objects of ProjS are in one-one correspondence with

the D-classes of idempotents of Mω(S). Thus, we have proved:

Theorem 4.5.15. Let S be an orthogonally complete inverse semigroup. Then

K(S) ∼= K(Mω(S)).

Lemma 4.5.13 tells us how to give A(S) in terms of a semigroup presentation. Let

X = {Ae|e ∈ E(S)} and let R be the set of relations given by:

1. AeAf = AfAe for all e, f ∈ E(S).

2. Ae = Af if eD f .

3. AeAf = Ae∨f if ef = 0.

Then A(S) has the following semigroup presentation:

A(S) = 〈X | R〉.
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4.6 Functorial properties of Mω and K

A homomorphism φ : S → T between orthogonally complete inverse semigroups is

said to be orthogonal join preserving if s ⊥ t implies φ(s ∨ t) = φ(s) ∨ φ(t) for all

s, t ∈ S (both s ∨ t and φ(s) ∨ φ(t) exist since S and T are orthogonally complete

and if s ⊥ t in S, then φ(s) ⊥ φ(t) in T ). We will always assume φ(0) = 0 for any

homomorphism φ.

Let φ : S → T be an orthogonal join preserving homomorphism between two

orthogonally complete inverse semigroups. Define φ∗ : Mω(S) → Mω(T ) by φ∗(A) =

B, where bij = φ(aij) for all i, j.

Lemma 4.6.1. φ∗ is a well-defined homomorphism. In addition, φ∗ is orthogonal

join preserving.

Proof. Firstly, we see for A ∈ Mω(S) that φ∗(A) will satisfy the same orthogonally

conditions as for A, so φ∗(A) ∈ Mω(T ). Let A,B ∈ Mω(S), C = φ∗(AB) and

D = φ∗(A)φ∗(B). Then for all i, j we have

cij = φ

(
∞∨
k=1

aikbkj

)
=
∞∨
k=1

φ(aik)φ(bkj) = dij

and so φ∗(AB) = φ∗(A)φ∗(B). Now let us show that φ∗ preserves orthogonal joins.

Let A ⊥ B, C = φ(A ∨ B) and D = φ(A) ∨ φ(B) (D exists by an earlier remark).

Then

cij = φ(aij ∨ bij) = φ(aij) ∨ φ(bij) = dij.

If φ is injective then φ∗ must also be injective. Suppose φ is surjective. Then φ∗

will be surjective if and only if φ−1(0) = 0.

Lemma 4.6.2. Let S, T be K-inverse semigroups with φ : S → T an orthogonal join

preserving homomorphism. Then there is a homomorphism φ : K(S) → K(T ). If φ

is surjective then φ is surjective.

Proof. Let e, f ∈ E(S) with ef = 0. Then φ(e ∨ f) = φ(e) ∨ φ(f).

Define φ† : A(S) → A(T ) by φ†([e]) = [φ(e)]. If e, f ∈ E(S) with eD f then

φ(e)D φ(f) and so φ† is well-defined. Further for e, f ∈ E(S), we have

φ†([e] + [f ]) = φ†([e′] + [f ′]) = φ†([e′ ∨ f ′]) = [φ(e′ ∨ f ′)] = [φ(e′) ∨ φ(f ′)]

= [φ(e′)] + [φ(f ′)] = [φ(e)] + [φ(f)] = φ†([e]) + φ†([f ]),

where e′f ′ = 0, eD e′ and f D f ′. If φ is surjective then it is clear that φ† is surjective.

Standard theory (c.f. [108]) then tells us that we can lift φ† : A(S) → A(T ) to a
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homomorphism φ : K(S) = G(A(S)) → K(T ) = G(A(T )) and that if φ† is surjective

then φ will be surjective.

Combining Lemmas 4.6.1 and 4.6.2 we have

Theorem 4.6.3. Let S, T be orthogonally complete inverse monoids with φ : S →
T an orthogonal join preserving homomorphism. Then there is a homomorphism

K(S)→ K(T ). If φ is surjective and φ−1(0) = 0 then this homomorphism is surjec-

tive.

If S, T are inverse semigroups then their cartesian product S × T will also be an

inverse semigroup. It is easy to see that if S and T are both orthogonally complete

then S×T will be orthogonally complete. S×T will satisfy the following properties:

• E(S × T ) = E(S)× E(T ).

• (s, t)−1 = (s−1, t−1) for s ∈ S, t ∈ T .

• (s1, t1) ≤ (s2, t2) if and only if s1 ≤ s2 and t1 ≤ t2, where s1, s2 ∈ S and

t1, t2 ∈ T .

• (e1, f1)D (e2, f2) if and only if e1D e2 and f1D f2, where e1, e2 ∈ E(S) and

f1, f2 ∈ E(T ).

• (e1, f1) ⊥ (e2, f2) if and only if e1 ⊥ e2 and f1 ⊥ f2, where e1, e2 ∈ E(S) and

f1, f2 ∈ E(T ).

• If s1 ⊥ s2 ∈ S and t1 ⊥ t2 ∈ T then

(s1, t1) ∨ (s2, t2) = (s1 ∨ s2, t1 ∨ t2).

Lemma 4.6.4. For S, T be orthogonally complete inverse semigroups, we have

A(Mω(S × T )) ∼= A(Mω(S))×A(Mω(T )).

Proof. Let ∆(e) ∈ E(Mω(S × T )) be an idempotent matrix with e = (e1, . . . , em).

Then ei will be of the form ei = (ai, bi), where ai ∈ E(S) and bi ∈ E(T ) are idempo-

tents. Observe that for each i we have

ei = (ai, bi) = (ai, 0) ∨ (0, bi),

where this is the join of two orthogonal elements. Thus ∆(e)D∆(f) where

f = ((a1, 0), . . . , (am, 0), (0, b1), . . . , (0, bm)).
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It follows that there is a bijection

θ : A(Mω(S × T ))→ A(Mω(S))×A(Mω(T ))

given by

θ([∆((a1, b1), . . . , (am, bm))]) = ([∆(a1, . . . , am)], [∆(b1, . . . , bm)]).

If ai, ci ∈ S, bi, di ∈ T are such that ai ⊥ ci and bi ⊥ di for each i then

θ([∆((a1, b1), . . . , (am, bm))] + [∆((c1, d1), . . . , (cm, dm))])

= θ([∆((a1, b1), . . . , (am, bm)) ∨∆((c1, d1), . . . , (cm, dm))])

= θ([∆((a1 ∨ c1, b1 ∨ d1), . . . , (am ∨ cm, bm ∨ dm))])

= ([∆(a1 ∨ c1, . . . , am ∨ cm)], [∆(b1 ∨ d1, . . . , bm ∨ dm)])

= ([∆(a1, . . . , am)], [∆(b1, . . . , bm)]) + ([∆(c1, . . . , cm)], [∆(d1, . . . , dm)])

= θ([∆((a1, b1), . . . , (am, bm))]) + θ([∆((c1, d1), . . . , (cm, dm))]).

Thus θ is an isomorphism.

Lemma 4.6.5. Let S, T be commutative monoids. Then G(S × T ) ∼= G(S)× G(T ).

Proof. Let φ1 : S → G(S) and φ2 : T → G(T ) be the universal maps and let φ :

S × T → G(S) × G(T ) be given by φ(s, t) = (φ1(s), φ2(t)). Let θ : S × T → G be a

monoid homomorphism to a commutative group G. Thus θ1 : S → G and θ2 : T → G

given by θ1(s) = θ(s, 0) and θ2(t) = θ(0, t) are homomorphisms. There are therefore

unique maps π1 : G(S)→ G and π2 : G(T )→ G such that πiφi = θi for i = 1, 2. Let

π : G(S) × G(T ) → G be given by π(s, t) = π1(s) + π2(t). It is easy to check π is a

homomorphism and πφ = θ. On the other hand, suppose σ : G(S) × G(T ) → G is

a homomorphism with σφ = θ. By the uniqueness of the maps π1 and π2, we must

have σ(g, 0) = π1(g) and σ(0, h) = π2(h). Thus σ(g, h) = π1(g) +π2(h) = π(g, h).

Combining Lemmas 4.6.4 and 4.6.5 we see that

Theorem 4.6.6. Let S, T be orthogonally complete inverse semigroups. Then

K(S × T ) ∼= K(S)×K(T ).
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4.7 Commutative inverse semigroups

It turns out one can say more about commutative orthogonally complete inverse

semigroups. Suppose S is such a semigroup. Then s ⊥ t is equivalent to s−1st−1t = 0.

It therefore follows that eS is in fact a module for each e ∈ E(S). Let us now consider

matrices over such semigroups. For any idempotents e, f ∈ E(S) we have eD f if and

only if e = f . Thus when considering the D-classes of the idempotents of Mω(S),

we can only slide along the diagonal or combine / split up orthogonal joins, but

not swap D-related elements of S. It follows that for all idempotent rook matrices

E,F ∈ E(Mω(S)) we have ED F in Mω(S) if and only if ED F in Mω(E(S)). Taking

joins is independent of the non-idempotent elements and so we have just argued for

the following:

Theorem 4.7.1. Let S be a commutative orthogonally complete inverse semigroup.

Then

K(S) ∼= K(E(S)).

Let S be a commutative orthogonally complete inverse semigroup. We can define

a tensor / Kronecker product on R(S). Let A be an n×m rook matrix and let B be

a p× q rook matrix. Define A⊗B to be the np×mq rook matrix

A⊗B =


a11B a12B · · · a1mB

a21B a22B · · · a2mB
...

...
. . .

...

an1B an2B · · · anmB

 .

It is easy to see that the tensor product of matrices over commutative orthogonally

complete inverse semigroups satisfies the following properties:

Lemma 4.7.2. Let A,B,C,D ∈ R(S) be finite dimensional rook matrices. Then

1. (A⊗B)⊗ C = A⊗ (B ⊗ C).

2. If there exist AC and BD then (A⊗B)(C ⊗D) = (AC)⊗ (BD).

3. (A⊗B)−1 = A−1 ⊗B−1.

We now deduce the following:

Lemma 4.7.3. Let E1, E2, F1, F2 ∈ R(S) be idempotent finite dimensional rook ma-

trices with E1D F1 and E2D F2. Then

E1 ⊗ E2D F1 ⊗ F2.

146



Chapter 4: K-Theory of Inverse Semigroups

Proof. Suppose A1, A2 ∈ R(S) are such that AiA
−1
i = Ei and A−1

i Ai = Fi and let

B = A1 ⊗ A2. Then by Lemma 4.7.2 (2) and (3) we have BB−1 = E1 ⊗ E2 and

B−1B = F1 ⊗ F2.

We can therefore define E ⊗ F up to D-class for two idempotent matrices E,F ∈
Mω(S) by sliding entries around.

Lemma 4.7.4. Let E,F ∈Mω be idempotent matrices. Then

E ⊗ F D F ⊗ E.

Proof. Use the preamble to Theorem 4.7.1.

Thus (A(S),+,⊗) is a commutative semiring. In fact, it easy to see that if S

were required to be the Boolean completion of a 0-bisimple inverse semigroup instead

of being commutive then (A(S),+,⊗) might be a semiring. If S has an identity,

then (A(S),⊗) becomes a semiring with identity. It follows that K(S) can sometimes

inherit the structure of a ring from A(S).

4.8 States and traces

In this section we will define states and traces for orthogonally complete inverse

monoids by analogy to the definitions in C∗-algebra theory (for states, see [65] §2.8

and for traces, see [61] §7).

We will define a state on an orthogonally complete inverse monoid S to be a map

τ : S → C that is

1. Positive: τ(e) is a non-negative real number for all idempotents e ∈ E(S)

2. Normalised : τ(1) = 1

3. Linear : If s, t ∈ S are orthogonal elements of S then τ(s ∨ t) = τ(s) + τ(t).

A trace will be a state τ : S → C such that τ(st) = τ(ts) for all s, t ∈ S.

It is of course possible that a given semigroup S may have no states or traces

which can be defined on it. For example, the Cuntz monoid Cn will only have traces

defined on it if n = 1.

Note that the linearity condition on states implies that τ(0) = 0 and that for any

trace τ : S → C if eD f are idempotents then τ(e) = τ(f) since τ(ss−1) = τ(s−1s).

We now use this to connect the idea of traces with our notion of a K-group for S.

Lemma 4.8.1. Let S be an orthogonally complete inverse monoid and let τ : S → C

be a trace on S. Then there is an induced group homomorphism

τ̃ : K(S)→ R.
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Proof. Define τ : A(Mω(S))→ R by

τ([E]) =
∞∑
i=1

(τ(eii)).

We check that τ is well-defined by noting the fact that D-related idempotents of S

are sent to the same number. It is easy to see that τ is a monoid homomorphism and

so this induces a group homomorphism τ̃ : K(S)→ R.

4.9 Examples

We will now calculate K(S) for a number of examples.

4.9.1 Symmetric inverse monoids

We saw earlier (Section 4.2) that if S were the set of bijections on the natural numbers

with finite support that K(S) ∼= Z.

Now let S = In be the symmetric inverse monoid on a set of size n, where n <∞.

Then S is an orthogonally complete inverse semigroup. Again for e, f ∈ E(S) we have

eD f if and only if |Supp(e)| = |Supp(f)| and if e, f ∈ E(S) are such that ef = 0

then |Supp(e ∨ f)| = |Supp(e)|+ |Supp(f)|. We therefore again have:

K(S) ∼= Z.

4.9.2 Groups with adjoined zero

Let G be a group and let S be G with a 0 adjoined. Then S is an inverse ∧-semigroup

(in fact it is E∗-unitary) and it is orthogonally complete. We see that E(S) = {0, 1}
and so K(S) ∼= Z.

4.9.3 Boolean algebras

Suppose S is an arbitrary (possibly infinite) unital Boolean algebra, viewed as an

inverse semigroup by defining ab = a ∧ b, B(S) is the associated Boolean space and

for each element a ∈ S denote by Va the set of ultrafilters of S containing a.

We have the following facts which follow from results in [80] and [81], but we prove

here for completeness.

Lemma 4.9.1. 1. For all a, b ∈ S we have Va∨b = Va ∪ Vb.

2. For all a, b ∈ S we have Va∧b = Va ∩ Vb.
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3. Va = Vb implies a = b.

Proof. 1. It is clear that Va ∪ Vb ⊆ Va∨b, so we just prove the other inclusion. Let

F ∈ Va∨b. Suppose first that ac 6= 0 for all c ∈ F . Then F ∪ {a} will generate

a proper filter. Since F is an ultrafilter, it follows that a ∈ F . Now suppose

a, b /∈ F . There must be c, d ∈ F with ac = 0 = bd. Since c, d ∈ F , we must

have cd ∈ F and cd(a ∨ b) ∈ F . But

cd(a ∨ b) = cda ∨ cdb = 0 ∨ 0 = 0,

a contradiction. Thus either a ∈ F or b ∈ F .

2. Let F ∈ Va∩Vb. Then a, b ∈ F and thus ab ∈ F . On the other hand, if F ∈ Va∧b
then a, b ∈ F and so F ∈ Va ∩ Vb.

3. Suppose Va = Vb. Then

Va∧b = Va ∩ Vb = Va.

Let c = (1\ab)a. Then abc = 0 and ab∨ c = a. Let F ∈ Vc. Then c ∈ F implies

a ∈ F and so F ∈ Va = Vab. But then ab ∈ F which implies 0 = abc ∈ F , a

contradiction.

Since B(S) has the sets Va, a ∈ S, as a basis, for each open set U there exist a

collection of elements ai, i ∈ I, with U = ∪i∈IVai . Further, V1 = B(S). Let N(B(S))

denote the set of continuous functions from B(S) to N ∪ {0}. It is easy to see that

N(B(S)) forms a ring under pointwise multiplication.

For 0 6= a ∈ S, define fa : B(S) → N by fa(x) = 1 if x ∈ Va and 0 otherwise.

Then fa is a continuous function since Va is open and B(S) \ Va = V1\a is open.

For

a = (a1, a2, . . . , am),

let ∆(a) = E ∈ Mω(S) be the matrix with entries eii = ai for i = 1, . . . ,m and 0

everywhere else. Define fa : B(S)→ N by fa = fa1 + . . . + fam . This again will be a

continuous function.

Suppose a1, a2 ∈ S are such that a1a2 = 0. Then we have Va1 ∩ Va2 = ∅ and so

f(a1,a2) = fa1∨a2 . Thus ∆(a)D∆(b) implies fa = fb. On the other hand Lemma 4.9.1

(3) tells us that if fa = fb then ∆(a)D∆(b).

It follows that we have a well-defined semigroup monomorphism θ : A(Mω(S))→
N(B(S)) given by

θ([∆(a)]) = fa.

Now let f ∈ N(B(S)) be an arbitrary continuous function. Then since f is

continuous and B(S) is compact, im(f) is compact and therefore |im(f)| is finite.
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Further, for all x ∈ N∪ {0} we have f−1(x) is clopen (and therefore compact) and so

f−1(x) = Ua for some a. Thus θ is an isomorphism.

Let Z(B(S)) denote the set of continuous functions from B(S) → Z. It follows

from the remarks of the preceding paragraph that

K(S) ∼= Z(B(S)).

Since S is commutative, we know that A(S) will be a semiring. In fact, we see

that θ(E ⊗ F ) = θ(E)θ(F ), where (θ(E)θ(F ))(x) = θ(E)(x)θ(F )(x). Thus K(S) has

the structure of a ring.

We can actually view the Boolean algebra S as a ring by defining + to be symmetric

difference:

e+ f = (e \ f) ∨ (f \ e).

In the case where ef = 0, e+ f = e ∨ f . It follows from [88] that (algebraic)

K0(S) ∼= Z(B(S)).

Now let us consider the topological K-theory of the space X = B(S). Let p : E →
X be a locally-trivial finite-dimensional vector bundle over C. For each n ∈ N ∪ {0}
we define

Un = {x ∈ X|rankE(x) = n} .

Since the function rankE : X → N ∪ {0} is continuous, there are only finitely many

n with Un non-zero. Furthermore each Un is a compact open subset of X. Thus

Un = Ven for some en ∈ S. Since p : E → X is locally-trivial, for each x ∈ Un there

is an open set Ux containing x with

p|p−1(Ux) : p−1(Ux)→ Ux

vector bundle isomorphic to the trivial bundle Ux × Cn → Ux. Since open sets are

unions of compact open sets it follows that we can pick Ux to be Ve for some e ∈ S.

Lemma 4.9.1 then tells us that we may assume that Ux∩Uy is either empty or Ux = Uy

for each x, y ∈ Un. It then follows that

p|p−1(Un) : p−1(Un)→ Un

is isomorphic to a trivial vector bundle for each n. Thus p : E → U is isomorphic to

the disjoint union of a finite number of trivial vector bundles, so we may assume

E =
m∐
k=1

Vek × Cnk
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and p : E → X is given by p(x, v) = x.

Let f : X → N∪{0} be an arbitrary continuous function with im(f) = {x1, . . . , xm}
and let a1, . . . , am ∈ S be such that f−1(xk) = Vak . Then define a vector bundle on

B(S) by

Ef =
m∐
k=1

(Vak × Cxk).

It is now not hard to see that such vector bundles are in 1 − 1 correspondence

with continuous functions on X. Further, the vector bundle associated to f + g will

be isomorphic to Ef ⊕ Eg. Thus

K0
C
(X) ∼= K(S).

4.9.4 Cuntz-Krieger semigroups

We will now compute the K-groups of the Boolean completions of graph inverse

semigroups whose underlying graph is finite. Before going further let us recall the

Lenz arrow relation →. Let S be an inverse ∧-semigroup with 0 and let s, s′ ∈ S.

We will write s → s′ if for all non-zero t ≤ s we have t ∧ s′ 6= 0. If s, s1, . . . , sm are

elements of S then we will write

s→ {s1, . . . , sm}

if for every non-zero t ≤ s we have t ∧ si 6= 0 for some 1 ≤ i ≤ m. We write

{s1, . . . , sm} → {t1, . . . , tn} if si → {t1, . . . , tn} for each 1 ≤ i ≤ m. We say s ↔ t if

s→ t and t→ s, and

{s1, . . . , sm} ↔ {t1, . . . , tn}

if {s1, . . . , sm} → {t1, . . . , tn} and {t1, . . . , tn} → {s1, . . . , sm}.
Let G be a finite directed graph and PG be the associated graph inverse semigroup

(see Section 3.9 for the construction). We will denote the orthogonal completion of

PG by DG. Elements of DG are of the form A0 where A is a finite, possibly empty, set

of mutually orthogonal non-zero elements of PG and A0 is A∪{0}. Under elementwise

multiplication DG forms an orthogonally complete inverse semigroup (for details see

[74]). An element A0 ∈ DG is idempotent if and only if every element of A is an

idemptotent in PG.

We can define a congruence on DG by A0 ≡ B0 iff A ↔ B as sets of elements of

PG (recall that graph inverse semigroups are E∗-unitary and are therefore examples

of inverse ∧-semigroups and so we can consider → on PG). We denote DG/ ≡ by

CKG and call it the Cuntz-Krieger semigroup of G. These semigroups are studied

in detail in [51], as a generalisation of the Cuntz monoids introduced in [75]. It was

151



Chapter 4: K-Theory of Inverse Semigroups

shown in [51] that CKG is a Boolean inverse monoid and therefore in particular an

orthogonally complete inverse semigroup. Denote elements of CKG by [A0] where

A0 ∈ DG. Clearly if A0 ∈ DG is an idempotent then [A0] is an idempotent in CKG.

It was shown in [51] that ≡ is an idempotent pure congruence. In fact:

Lemma 4.9.2. If [A0] is an idempotent element of CKG then A0 is an idempotent in

DG

Proof. Let s = {[x1, y1], . . . , [xm, ym]}0 ∈ DG, m ≥ 1, and suppose s2 ≡ s in DG.

Since m ≥ 1 we must have [xi, yi][xj, yj] 6= 0 for some 1 ≤ i, j ≤ m. We have two

cases: either xj is a prefix of yi or yi is a prefix of xj. First suppose xj = yip for some

element p ∈ G∗. Then

[xi, yi][xj, yj] = [xip, yj]

Since s2 ≡ s we must have [xip, yj] ∧ [xk, yk] for some 1 ≤ k ≤ m. By Lemma 3.9.3

and the fact that elements of s are orthogonal we have yj = yk, xi = xk and p is

empty. Thus xi = yi = xj = yj. A similar argument shows that if xjp = yi then we

again have xi = yi = xj = yj. It follows that

s2 = {[z1, z1], . . . , [zn, zn]}0

for some zi’s in G∗. Since ↔ is idempotent pure, we must have

s = {[z1, z1], . . . , [zn, zn]}0 .

A couple of remarks:

Remark 4.9.3. 1. We have

{[x1, x1], . . . , [xn, xn]}0 D {[y1, y1], . . . , [yn, yn]}0

in DG if d(xi) = d(yi) for each i, and up to re-ordering of elements this describes

D completely for idempotent elements of DG.

2. If y is a route in G and x1, . . . , xn are all the edges of G1 with r(xi) = d(y) then

{[yx1, yx1], . . . , [yxn, yxn]} ↔ {[y, y]}

in PG. In fact, ≡ on E(CKG) is the equivalence relation generated by

{[y1x1, y1x1], . . . , [y1xn, y1xn], [y2, y2], . . . , [ym, ym]}0 ≡ {[y1, y1], . . . , [ym, ym]}0 ,
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where [y1, y1], . . . , [ym, ym] are mutually orthogonal elements of E(PG) and

x1, . . . , xn ∈ G1 are all the edges with r(xi) = d(y1).

Since [x, x]D [d(x),d(x)] in PG for every x ∈ G∗ and since

{[x1, x1], . . . , [xn, xn]}0 =
n∨
i=1

{[xi, xi]}0

in CKG it follows that the group K(CKG) can be generated by the elements {[a, a]}0

where a ∈ G0. For brevity we will denote the element [{[a, a]}0] in K(CKG) by a.

Remark 4.9.3 (2) tells us that

{[a, a]}0 =
∨
x∈G1

r(x)=a

{[x, x]}0

in CKG. By splitting up this join in Mω(CKG) and replacing [x, x] by [d(x),d(x)]

using the D-relation for PG we obtain the relation

a =
∑
x∈G1

r(x)=a

d(x)

in K(CKG). More generally, consider the relation

{[y1x1, y1x1], . . . , [y1xn, y1xn], [y2, y2], . . . , [ym, ym]}0 ≡ {[y1, y1], . . . , [ym, ym]}0

in DG where [y1, y1], . . . , [ym, ym] are mutually orthogonal elements of E(PG) and

x1, . . . , xn ∈ G1 are all the edges with r(xi) = d(y1). Then splitting up the joins

in Mω(CKG) and replacing [x, x] by [d(x),d(x)] for each route x ∈ G∗ using the

D-relation for PG gives the relation

n∑
i=1

d(xi) +
m∑
j=2

d(yj) =
m∑
j=1

d(yj)

in K(CKG). Since K(CKG) is cancellative this gives

n∑
i=1

d(xi) = d(y1),

which we knew already. Thus

K(CKG) ∼= FCG(G0)/N

where FCG denotes taking the free commutative group (written additively and with
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0 as identity) and N is the normal subgroup generated by the relations

a =
∑
x∈G1

r(x)=a

d(x).

This agrees with K0(OG) for OG the Cuntz-Krieger algebra on the graph G (see

e.g. Remark 4.6 of [34]).

For example, suppose G is a graph with a single vertex and n edges where n ≥ 2.

Then PG is simply the polycyclic monoid on n generators and CKG ∼= Cn, the Cuntz

monoid on n generators. In this case K(CKG) will be generated by a single element

a (corresponding to the one vertex) and subject to the relation

a =
∑
x∈G1

r(x)=a

d(x) =
n∑
i=1

a

and so

K(CKG) ∼= 〈a|a = an〉 ∼= Zn−1,

which agrees with K0(On) (see e.g. Example V.I.3.4 of [20]). As Cn is the Boolean

completion of a 0-bisimple inverse semigroup the natural ring structure of Zn−1 arises

because of the natural semiring structure on A(Cn) (since the tensor product described

in Section 4.7 makes sense).
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Discussion and Further Directions

We have seen in this thesis that self-similar group actions and left Rees monoids appear

in a number of different places, with the underlying theme being self-similarity. This

self-similarity can be seen in the similarity transformations of attractors of iterated

function systems, recursion in automata and in the normal form of HNN-extensions.

One might hope that it may be possible to describe further ideas from self-similar

group actions and fundamental groups of graphs of groups in terms of the structure

of some underlying semigroups. It seems that although the fractals which appear in

this theory can be geometrically very different that at least some properties of certain

classes of fractals will be incorporated in the associated Rees monoid. One may also

be able to study the representation theory of the inverse semigroups associated to left

Rees monoids in a similar manner to the representation theory of polycyclic monoids.

In Chapter 3 we saw that left Rees categories have a number of different char-

acterisations. It was indicated in Section 3.8 that there exist connections with the

representation theory of algebras. The author believes that there may be some fruitful

future work in pursuing this further. The automata in Section 3.6 are similar to ones

appearing in theoretical computer science. It may therefore be possible to apply ideas

about left Rees categories to understand ideas there better. The theory of graph it-

erated function systems is not as well-developed as that for iterated function systems

and so it may be discovered in the future that Rees categories have a rôle to play in

this area.

In Chapter 4 I gave a possible definition of a K-group of an orthogonally complete

inverse semigroup S, by analogy with algebraic K-theory. This definition was given

in terms of an appropriate notion of projective modules and in terms of idempotent

matrices over S, and these definitions were shown to be equivalent. It was found

that for several examples that the group one calculates is isomorphic to the K0-group

of an associated C∗-algebra. The next step would be to characterise the classes of

semigroups for which this is true. It may also be possible to prove a result along the
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lines of

K0(D(S)⊗K) ∼= K0(C(S))

where S is a particular kind of inverse semigroup with 0 (for example, strongly E∗-

unitary or F -inverse), D(S) is its distributive completion, K is a semigroup analogue

of operators on a compact space, ⊗ is some form of tensor product of inverse semi-

groups and C(S) is some form of C∗-algebra constructed from S via D(S).

One motivation for the theory that has been developed comes from tilings. Given

a tiling, one can define a tiling semigroup S and from that a tiling C∗-algebra C(S).

These C∗-algebras are used to model observables in certain quantum systems ( [58]).

It was proposed by Bellissard ( [18]) that one can use trace functions defined on

C(S) and thus also on K0(C(S)) as part of a gap-labelling theory, giving information

about quantum mechanics on certain tilings appearing in solid state physics. Tiling

semigroups are an example of semigroups to which one should be able to apply the

above the theory. It was shown in Section 4.8 that one can define trace functions on

orthogonally complete inverse semigroups and by extension on their K-groups, and

this suggests that one might be able to describe this gap-labelling theory in terms of

inverse semigroups.

We saw in Section 4.4 that these K-groups could be defined in terms of modules. It

was found that the category of modules ModS over an orthogonally complete inverse

semigroup S is in fact a cocomplete concrete category and so I believe one should be

able to study the representation theory of such inverse semigroups via this category,

and by extension the representation theory of the corresponding C∗-algebras. In

addition, it might be possible to make use of the fact that right ideals of orthogonally

complete inverse semigroups are premodules in this representation theory.

Lawson and I are in the process of studying more about the rook matrices and their

properties. This may yield additional insight into how to take this theory further. In

particular, it may be possible to define higher K-groups for inverse semigroups in

terms of these matrices.

In the introduction it was mentioned that Morita equivalence has recently been

found to work in a nice way for inverse semigroups, and that the different definitions

one might want to use to describe Morita equivalence are in fact equivalent ( [39]).

One might hope to relate K(S) to morita equivalence, in particular by studying the

underlying inductive groupoid of the inverse semigroup as in Section 4.3.
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Appendix A

Scala Implementation

It is possible to describe in Scala a self-similar action, which allows one to easily

perform calculations with the associated left Rees monoid. What follows is an im-

plementation of the similarity monoid of the Sierpinski gasket. The procedures re-

strictionGX, actionGX and productXGYH will be the same whatever the left Rees

monoid is.

def genAction(x:String, g:String) = (x,g) match {

case ("L","s") => ("R", "s")

case ("R","s") => ("L", "s")

case ("T","s") => ("T", "s")

case ("L","r") => ("T", "r")

case ("R","r") => ("L", "r")

case ("T","r") => ("R", "r")

}

def restrictionGX(x:String,g:String):String=(x,g) match{

case ("","") => ""

case ("", h) => h

case (y, "") => ""

case (y,h) if (y+h).size == 2 => genAction(y,h)._2

case (y,h) => restrictionGX(y.tail,restrictionGX(

actionGX(Character.toString(y.head),

Character.toString(h.last)),h.init)

+ restrictionGX(Character.toString(y.head),

Character.toString(h.last)))

}

def actionGX(x:String, g:String): String = (x,g) match {
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case ("","") => ""

case ("", h) => ""

case (y, "") => y

case (y,h) if (y+h).size == 2 => genAction(y,h)._1

case (y,h) => actionGX(actionGX(Character.toString(

y.head),Character.toString(h.last)),h.init)

+ actionGX(actionGX(y.tail,restrictionGX(

Character.toString(y.head),

Character.toString(h.last))),restrictionGX(

actionGX(Character.toString(y.head),

Character.toString(h.last)),h.init))

}

def productXGYH(x:String,g:String,y:String,h:String):

(String,String) = {

(x + actionGX(y,g), restrictionGX(y,g) + h)

}

println(productXGYH("L","rsr","RTL","s"))

After this program has been run, the output is (LLTR,rsrs)
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[36] R. Exel, D. Gonçalves, and C. Starling. The tiling C∗-algebra viewed as a tight

inverse semigroup algebra. arXiv:1106.4535v1.

[37] K. J. Falconer. Fractal Geometry: Mathematical Foundations and Applications.

Wiley, Chichester, 2003.

[38] K. J. Falconer and J. J. O’Connor. Symmetry and enumeration of self-similar

fractals. Bull. Lond. Math. Soc., 39:272–282, 2007.

[39] J. Funk, M. V. Lawson, and B. Steinberg. Characterizations of Morita equivalent

inverse semigroups. J. Pure Appl. Algebra, 215:2262–2279, 2011.

[40] P. Gabriel and M. Zisman. Calculus of Fractions and Homotopy Theory.

Springer-Verlag, Berlin, 1967.

[41] N. D. Gilbert. HNN extensions of inverse semigroups and groupoids. J. Algebra,

272:27–45, 2004.

[42] N. D. Gilbert. Derivations and relation modules for inverse semigroups. Algebra

Discrete Math., 12:1–19, 2011.

[43] R. I. Grigorchuk, V. V. Nekrashevich, and V. I. Sushchanskii. Automata, dy-

namical systems and groups. Proc. Steklov Inst. Math., 231:134–214, 2000.

[44] P. J. Higgins. Categories and Groupoids. Van Nostrand Reinhold, London, 1971.

[45] P. J. Higgins. The fundamental groupoid of a graph of groups. J. Lond. Math.

Soc. (2), 13:145–149, 1976.

[46] C. H. Houghton. Wreath products of groupoids. J. Lond. Math. Soc., 10:179–

188, 1975.

161



BIBLIOGRAPHY

[47] J. M. Howie. Embedding theorems with amalgamation for semigroups. Proc.

Lond. Math. Soc., 12:511–534, 1962.

[48] J. M. Howie. Embedding theorems for semigroups. Quart. J. Math., 14:254–258,

1963.

[49] J. M. Howie. Fundamentals of Semigroup Theory. Clarendon Press, Oxford,

1995.

[50] P. T. Johnstone. Stone Spaces. Cambridge University Press, Cambridge, 1982.

[51] D. G. Jones and M. V. Lawson. Graph inverse semigroups: their characterization

and completion. arXiv:1106.3644v1.

[52] D. G. Jones and M. V. Lawson. Strong representations of the polycyclic inverse

monoids: cycles and atoms. Period. Math. Hungar., 64:53–87, 2012.

[53] C. Kassel. Quantum Groups. Springer-Verlag, New York, 1995.

[54] D. J. Kelleher, B. A. Steinhurst, and C.-M. M. Wong. From self-similar struc-

tures to self-similar groups. Internat. J. Algebra Comput., 22, 2012.

[55] J. Kellendonk. Gap labelling for Schrödinger operators on quasiperiodic tilings.

arXiv:cond-mat/9406107v1.

[56] J. Kellendonk. On K0-groups for substitution tilings. arXiv:cond-

mat/9503017v2.

[57] J. Kellendonk. Non commutative geometry of tilings and gap labelling. Rev.

Math. Phys., 7:1133–1180, 1995.

[58] J. Kellendonk. The local structure of tilings and their integer group of coinvari-

ants. Comm. Math. Phys., 187:115–157, 1997.

[59] J. Kellendonk and M. V. Lawson. Universal groups for point-sets and tilings.

arXiv:math/0209250v1.

[60] J. Kellendonk and M. V. Lawson. Tiling semigroups. J. Algebra, 224:140–150,

2000.

[61] J. Kellendonk and I. F. Putnam. Tilings, C∗-algebras andK-theory. In M. Baake

and R. Moody, editors, Directions in Mathematical Quasicrystals, CRM Mono-

graph Series, pages 177–206. AMS Providence, 2000.

[62] M. Khoshkam and G. Skandalis. Regular representation of groupoid C∗-algebras

and applications to inverse semigroup. J. Reine Angew. Math., 546:47–72, 2002.

162



BIBLIOGRAPHY

[63] U. Knauer. Projectivity of acts and Morita equivalence of monoids. Semigroup

Forum, 3:359–370, 1972.

[64] M. Kunze. Zappa products. Act. Math. Hung., 41:225–239, 1983.

[65] N. P. Landsman. Lecture notes on C∗-algebras, Hilbert C∗-modules, and quan-

tum mechanics. arXiv:1106.3644v1.

[66] S. Mac Lane. Categories for the Working Mathematician. Springer-Verlag, New

York, 1998.

[67] H. Lausch. Cohomology of inverse semigroups. J. Algebra, 35:273–303, 1975.

[68] M. V. Lawson. AF inverse monoids. in preparation.

[69] M. V. Lawson. Morita equivalence of semigroups with local units.

arXiv:0904.3848v2.

[70] M. V. Lawson. Inverse Semigroups. World Scientific, Singapore, 1998.

[71] M. V. Lawson. Constructing inverse semigroups from category actions. J. Pure

Appl. Algebra, 137:57–101, 1999.

[72] M. V. Lawson. The structure of 0-E-unitary inverse semigroups I: the monoid

case. Proc. Edinb. Math. Soc., 42:497–520, 1999.

[73] M. V. Lawson. Ordered groupoids and left cancellative categories. Semigroup

Forum, 68:458–476, 2004.

[74] M. V. Lawson. Orthogonal completions of the polycyclic monoids. Comm.

Algebra, 35:1651–1660, 2007.

[75] M. V. Lawson. The polycyclic monoids Pn and the thompson groups Vn,1.

Comm. Algebra, 35:4068–4087, 2007.

[76] M. V. Lawson. A correspondence between a class of monoids and self-similar

group actions I. Semigroup Forum, 76:489–517, 2008.

[77] M. V. Lawson. Semigroups related to subshifts of graphs. Mathematics Studies

of the Estonian Mathematical Society, 3:92–107, 2008.

[78] M. V. Lawson. A non-commutative generalization of Stone duality. J. Aust.

Math. Soc., 88:385–404, 2010.

[79] M. V. Lawson. Generalized heaps, inverse semigroups and Morita equivalence.

Algebra Universalis, 66:317–330, 2011.

163



BIBLIOGRAPHY

[80] M. V. Lawson. Non-commutative Stone duality: inverse semigroups, topological

groupoids, C∗-algebras. Internat. J. Algebra Comput., 22, 2012.

[81] M. V. Lawson and D. H. Lenz. Pseudogroups and their étale groupoids.

arXiv:1107.5511v2.

[82] M. V. Lawson, S. Margolis, and B. Steinberg. The étale groupoid of an inverse

semigroup as a groupoid of filters. arXiv:1106.5198v3.

[83] M. V. Lawson and B. Steinberg. Ordered groupoids and étendues. Cah. Topol.
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