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Abstract 

In view of current interest in geological CO2 sequestration and EOR, this study investigated 

water-based and gas-based CO2 injection strategies for coupled EOR and storage purposes.   

For water-based CO2 injection strategy, carbonated water injection (CWI) was 

investigated as an alternative injection mode that could improve sweep efficiency and 

provide safe storage of CO2.  Despite its potential, CWI has not been very much studied.  

This thesis presents the details on the performance of CWI of moderately viscous oil 

(>100 cP), which has not been reported before.  The effects of oil viscosity, rock 

wettability and brine salinity on oil recovery from CWI were also studied and 

significant findings were observed.  To the author’s knowledge, no attempt has been 

made to experimentally quantify the CO2 storage by CWI process and to model the non-

equilibrium effects in the CWI at the core scale using the commercial reservoir 

simulators.  These are amongst the main innovative aspects of this thesis.   

The experimental results reveal that CWI under both secondary and tertiary recovery modes 

increase oil recovery and CO2 storage with higher potential when using light oil, low salinity 

carbonated brine and mixed-wet core.  In this study, the compositional simulator over-

predicts the oil recovery.  The instantaneous equilibrium and complete mixing assumptions 

appear to be inappropriate, where local equilibrium was not in fact achieved during the CW 

process at this scale.  The author evaluated the use of the transport coefficient (the α-factor) 

to account for the dispersive mixing effects, and found that the approach gives a more 

accurate prediction of the CWI process.   

For the gas-based CO2 injection strategies, a practical yet comprehensive approach using 

reservoir simulation, Design of Experiment (DOE) and the Response Surface Model (RSM) 

to screen for and co-optimize the most technically and economically promising injection 

strategy for coupled EOR and CO2 storage is presented.  For the reservoir model used in this 

study, miscible WAG was found to be most economically promising, while miscible 

continuous CO2 injection was ranked as the most technically viable.  The duration of the 

preceding waterflood, relative permeability (wettability) and injected gas composition are the 

three most significant factors to the profitability of oil recovery and CO2 storage through 

tertiary WAG injection.    
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Chapter 1  

Introduction 

 

1.1. Background 

The theme of this thesis is CO2 EOR and storage.  Currently around 86% of the world 

primary energy use is supplied by oil, gas and coal and the demand is anticipated to increase 

with the increasing global energy consumption between now and 2030 (IEA, 2009).  The 

increasing fossil fuel consumption irrefutably brings the damaging increase in the 

concentration of the anthropogenic greenhouse gases (GHG), particularly carbon dioxide 

(CO2), which is believed to have contributed to the problem of global warming.  As of 

December 2010, CO2 concentration in the atmosphere has increased to 389 ppm (NOAA 

Research, 2011) from 380 ppm in 1994 (IPCC, 2007).   

CO2 from the burning of the fossil fuel represents the majority of the anthropogenic GHG 

emissions in the atmosphere, Figure 1.1.  In 2006, slightly more than 29 million metric tons 

of CO2 was released worldwide from the consumption and flaring of fossil fuels (IEA, 

2006).  The energy related CO2 emissions was predicted to escalate from 27 Gt (gigatonnes) 

in 2005 to 42 Gt by 2030.  Without proper mitigation measures the continuing increase in 

CO2 concentration in the atmosphere could lead to a rise in global temperature with 

disastrous consequences for the climate (IEA, 2009).   

Massive decarbonisation of the energy system by reducing our dependence on fossil fuels 

and increasing energy production from renewable resources is required if significant CO2 

emission reduction is to be achieved.  However, the relevant measures such as energy 

conservation, energy efficiency improvement, and use of renewable resources (IEA, 2009), 

are either insufficient on their own at present, or take some time to be developed and applied 

at large-scale.   
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Figure 1.1: Global anthropogenic greenhouse gas emissions in 2004 (IPCC, 2007). 

 

Continuing oil production is therefore necessary to provide time for other energy sources to 

be established to meet the increasing energy demand.  However, conventional oil production 

generally is in the decline.  The global output from the existing oil fields is predicted to drop 

by almost two-third by 2030 (World Energy Outlook, 2009).  Most of the new discoveries 

are just small accumulations and exploration for new discoveries is becoming increasingly 

more difficult and costly.   

Many reservoirs today are produced efficiently with water injection and have been for some 

time.  However, after water flooding, quite a large volume of oil is still left in the reservoir.  

There is thus scope for processes that can unlock some of the remaining oil to maximise oil 

recovery from the existing reservoirs.  Increasing the ultimate oil recovery from the available 

resources through enhanced oil recovery (EOR) methods is thus becoming more significant.  

EOR here is defined as the method of producing oil by the introduction of external fluids or 

the use of external energy into the reservoir fluid system to increase the oil production above 

the amounts that could be recovered during primary or secondary recovery.   

CO2 injection solely for EOR has been in practice for more than 40 years, and mostly in 

onshore oil reservoirs.  The motivation for EOR is mainly to produce 65-75 % of the original 

oil in place (OOIP) remained in the reservoir after the conventional gas or water drives (van 
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Poolen, 1980).  The remaining oil can either be bypassed due to poor sweep efficiency or 

trapped by capillary force as the consequence of the interfacial tension (IFT) between the oil 

and displacing fluid that prevents complete displacement.  While the bypassed oil can be 

recovered by many improved oil recovery (IOR) methods such as production enhancement 

techniques, recompletion, workover or infill drilling and better reservoir management, the 

trapped oil however can only be mobilized and produced through EOR.  The associated 

economic benefits of the trapped oil could be lost if EOR is not implemented.   

In EOR, the target is to reduce the residual oil saturation to its lowest possible value, which 

gives the highest oil recovery.  As shown in Figure 1.2, very low residual oil saturation can 

be reached if the capillary number becomes infinite, which in turn can be achieved when the 

IFT between the oil and the displacing fluid becomes zero i.e., when the two phases become 

miscible with each other.  Miscible CO2 flooding is one of the effective EOR techniques for 

achieving low IFT.   

Cap. no = uµµµµ/σσσσ
where u = velocity
           µ = viscosity
           σ = interfacial tension
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Figure 1.2: Dependence of residual oil saturation on capillary number (Stalkup, 1984). 

 

The capture of man-made CO2 and its subsequent storage in geological formations, such as 

deep saline aquifers, depleted oil and gas reservoirs and un-mineable coal beds, is one of the 

important, immediately available and technologically feasible strategies for achieving 
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substantial reductions in anthropogenic CO2 emissions levels while enabling continued use 

of existing energy supply (IPCC, 2007).   

Storing CO2 through EOR is more likely to be implemented first even though saline aquifers 

represent a much larger storage capacity compared to hydrocarbon reservoirs.  The revenue 

from the incremental oil, which may partly offset the CO2 storage cost, the existence of an 

infrastructure, the wealth of data on the geological structure and physical properties of the 

reservoirs, the presence of proven structural traps to hold the injected CO2 (Stevens et al., 

2000, Bachu, 2008, Kuuskra and Ferguson, 2008), a more or less established legal and 

regulatory framework (Marston and More, 2008) as well as widespread expertise and 

experience in the industry, are amongst the main advantages of exploiting CO2 EOR for CO2 

storage.  Moreover, CO2 injection can be continued after the end of the EOR phase, 

converting the oil reservoir into underground storage.  IEA (2006) estimated that at the cost 

of $20/t of CO2 stored, approximately 130 Gt of CO2 could be stored in depleted and 

depleting oilfields through CO2 EOR worldwide.   

 

1.2. Problem statement and research objectives 

In view of the renewed global interest in CO2 EOR for CO2 storage, many other reservoir 

settings in addition to the conventional light oil reservoirs and injection strategies are being 

considered for CO2 injection, especially those fit for offshore reservoirs or in cases where the 

supply of CO2 can be variable or limited.  This study looked into a water-based CO2 EOR 

that could address this scenario as well as evaluated, through numerical simulation, the 

potential of various gas-based CO2 injection methods for coupled EOR and CO2 storage 

purpose.   

 

1.2.1. Carbonated water injection 

Gas-based CO2 EOR is a more commonly studied and applied form of CO2 injection in the 

field.  One of the characteristics of these gas-based injection strategies, such as the CO2 
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flooding, is that they require relatively large quantities of CO2 and thus making them ideal as 

CO2 storage measures.  The most probable source of the anthropogenic CO2 is from the coal-

fired plants, which contribute approximately 40% of the total CO2 emission (Key World 

Energy Statistics, 2009).  However, the high cost associated with the capture, pressurization 

and transport of CO2 from these plants (Bachu, 2008) and their location that is normally far 

from the oil fields, is unlikely to make the conventional CO2 flooding using this CO2 source 

economical.  There are, however, smaller sources of anthropogenic CO2 located closer to the 

candidate fields, such as CO2 separated from natural or associated gas, or from refineries and 

petrochemicals plants, that might be available at much lower price.  

CO2 gas-based injections are also well-known to experience poor sweep efficiency due to the 

high mobility of the CO2 gas as compared to the displaced oil bank.  The adverse mobility 

ratio leads to undesirable gravity override, channelling and viscous fingering (Perkins et al., 

1965; Juanes et al., 2007; Berenblyum et al., 2008), which in turn result in premature CO2 

breakthrough causing serious curtailment of oil production and requiring significant CO2 

separation and re-injection.  

In this study, carbonated water injection (CWI) was investigated as an alternative injection 

mode with potential of exploiting smaller sources of CO2 that could improve sweep 

efficiency and provide safe storage of CO2.  Despite its potential, this injection mode has not 

been very much studied, especially the experimental work related to CO2 storage aspect.  

Most of the information was dated way back in the 1950s and 60s.  Reported field 

implementation of CWI was mainly as the secondary recovery method.  In spite of the 

extensive modelling studies reported on CO2 EOR, very limited attempts of modelling CWI 

have been published.   

The important contribution of this study would be therefore, to further understand the oil 

recovery mechanisms of CWI and to quantify the increase in the oil recovery and the amount 

of CO2 stored by both secondary and tertiary CWI particularly for moderately viscous oil (81 

and 145 cP).  Through a series of high temperature and high pressure coreflood experiments 

using outcrop and reservoir cores at temperature and pressures typical of reservoir 

conditions, this research further adds to the knowledge about the effects of the oil viscosity, 

rock wettability and brine salinity on the performance of CWI.  The results of CWI on 
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medium viscous oil are relatively novel in the industry as the limited information available in 

the literature thus far is only on light oils.  Significant findings were recorded on the mixed 

wet case.  Another contribution of this study is the quantification of CO2 storage through 

CWI.  The CO2 front propagation was monitored to understand the behaviour of the 

dissolved CO2 at the displacement front.   This provides the evidence of diffusion/dispersion 

as one of the recovery mechanisms in CWI at the core scale and good delivery of CO2 from 

CW to oil. 

This research also assessed three compositional reservoir simulators namely E300, GEM and 

STARS for their suitability in modelling the CWI process, as no similar simulation study of 

the process, to the best of the author’s knowledge, has ever been reported.  The results of the 

study demonstrate that the inherent simultaneous equilibrium and complete mixing 

assumptions in the compositional reservoir simulators cannot adequately model the physics 

of CWI at the core scale.  The use of the transient coefficient (α-factor) and several 

simulation approaches to model CWI process at the core scale were also examined.   

 

1.2.2. Co-optimization of CO2 EOR and storage 

Most of CO2 EOR projects to date are driven to improve oil production from the field only, 

without much regard to CO2 storage.  Consequently, despite the long successful history of 

CO2 EOR implementation in the industry, requirements for integrating CO2 EOR projects 

with CO2 storage have not yet clearly established.  Storing CO2 through EOR in an oilfield 

not only aims to increase the oil recovery but also to maximize the amount of CO2 left 

behind at the end of the recovery.  These objectives are significantly different from 

maximizing the oil recovery alone and require optimization.  Co-optimization in the flood 

design is therefore necessary for the integrated processes to be technically and economically 

viable.   

In this thesis, a practical yet comprehensive approach was developed to screen for the most 

promising (technically and economically) CO2 injection strategy for CO2 EOR and storage.  

Using Design of Experiment (DOE) and the associated technique of Response Surface 

Model (RSM) to make effective use of reservoir simulation, this study examined the 
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requirements for an optimized CO2 EOR coupled with storage by evaluating several gas-

based CO2 EOR injection schemes.  Whilst almost all of the published studies were focusing 

on CO2I and conventional WAG injections only, this study also evaluated the potential of 

newly conceptualized intermittent WAG (INTWAG) injection and three other WAG 

injection schemes namely hybrid WAG (HYWAG), tapered WAG (TAPWAG) and 

selective simultaneous WAG (SSWAG) injection for EOR and CO2 storage.  The oil 

recovery and storage from these injection strategies were evaluated and ranked, based solely 

on technical viability as well as with the economic factors incorporated.   

As optimization requires understanding of how all the pertinent operational factors interact to 

change the project response, a parametric simulation study was then carried out on the most 

favourable injection scheme to identify the influential factors on the oil recovery and CO2 

stored.  The most influential flood design parameters were then optimized for maximum 

profit of the oil recovery and CO2 storage.   

 

1.3. Review of chapters 

This thesis is divided into two main parts, with a total of seven chapters including this 

chapter.  As there are remarkable amount of field and laboratory studies on CO2 EOR and 

more recently on the combination of EOR and storage, the research was kicked-off with a 

literature review aimed at better understanding the major contributing factors affecting CO2 

injection into the depleting oil fields for both CO2 EOR and storage.  Chapter 2 presents 

some theories and the screening criteria of the processes.  The available approaches, issues 

and challenges to implement the integrated project are reviewed.  Background information 

on modelling the CWI process is also presented.  

The two main parts are not explicitly related.  Each of the chapters discussed slightly 

different aspects of CO2 EOR and storage.  The first main part of the thesis consists of 

Chapter 3 and Chapter 4, which deal with the experimental studies and numerical simulation 

studies of CWI as a water-based CO2 injection technique, respectively.  A thorough 

discussion from the literature on CWI from both EOR and CO2 storage perspectives is first 

given in Chapter 3, followed by details on the CWI coreflood experimental facilities, 



Chapter 1: Introduction 

_____________________________________________________________________________________ 

 

8 

 

procedures and results.  This chapter ends with a discussion on the potential of CWI 

application in the North Sea reservoirs.  In Chapter 4, the simulation study of the CWI 

process is presented.  This involves the evaluation of three commonly used compositional 

reservoir simulators and the alternative approaches in modelling CWI process.  A simulation 

approach to appropriately model the CWI at the core scale is also presented.  

Chapters 5 and 6 represent the second part of the thesis, concentrating on the evaluation of 

several gas-based CO2 injection strategies for EOR and storage and examine the co-

optimization of enhancing oil recovery and storing CO2 from technical and economic point 

of view.  In Chapter 5, advantages and drawbacks of several commonly used CO2 injection 

strategies are reviewed.  Details are also given of the compositional reservoir simulations of 

various CO2 injection strategies in finding the one with the highest potential for co-

optimizing the profitability of the oil recovery and CO2 storage.  The author also discusses 

on the potential of a newly conceptualised injection scheme, the intermittent WAG 

(INTWAG) injection, as an EOR and CO2 storage injection strategy in this chapter.   

Chapter 6 deals with the investigation of the factors affecting the performance of CO2 EOR 

and storage of the selected injection scheme identified in Chapter 5 in both homogeneous 

and heterogeneous reservoirs.  One of the main outcomes from this investigation is the 

identification of the most influential factors of the coupled process using the selected 

injection scheme to the oil recovery and CO2 stored.  Based on the identified influential 

operational factors, the co-optimization of the integrated CO2 EOR and storage process using 

a real reservoir model is then detailed.   

The thesis is concluded with Chapter 7 with a summary and conclusions drawn from the 

current research work.  Recommendations for future research work are also given.  
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Chapter 2  

 

Literature Review  

 

2.1. Introduction 

This chapter presents an overview of CO2 EOR and CO2 storage processes in near-depleted 

oil reservoirs.  Basic properties of CO2 are given first, followed by a review of the screening 

criteria and the main mechanisms involved in CO2 EOR and storage processes.  Next is a 

brief review of CO2 sources, CO2 capture technology, reservoir selection, implementation 

approaches as well as issues and challenges in implementing the coupled CO2 EOR and 

storage process.  Finally, a review of models of CWI process is also given. 

 

2.2. CO2 properties 

When CO2 contacts the fluids in the reservoir, mass transfer will occur bringing about the 

changes in the fluid properties, which in turn mainly depends on the reservoir pressure, 

temperature and the composition of the reservoir fluids.  Understanding the phase behaviour 

of CO2 and the reservoir fluids is therefore essential in order to accurately model the CO2 

EOR and storage processes, especially since the reservoir pressure will change throughout 

the life of the project.   

At room pressure and temperature, CO2 exists as a thermodynamically stable gas phase with 

density of 1.872 kg/m3; heavier than that of air (Vesovic et al., 1990).  CO2 reaches 

supercritical conditions at 1030 psig (7.377 MPa) and 87.8 oF (31 oC), at which it behaves 

like a gas but has a liquid-like density. It is a good solvent for oils at typical reservoir 

pressures and temperatures.  Increasing pressure and decreasing temperature increase CO2 
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solubility in oil (Simon, 1964).  CO2 EOR and storage processes would normally involve 

injecting CO2 at its supercritical state.  In this thesis, the term CO2 gas is used to refer to the 

gas in the form of a “supercritical fluid” unless otherwise stated.  Figure 2.1 shows the phase 

plot of CO2 calculated by the Peng Robinson Equation-of-State (PREOS) (PVTi, 2007.1) 

while Figure 2.2 shows the CO2 density and viscosity as a function of pressure and 

temperature.   

Figure 2.3 shows pressure, temperature and salinity effect on solubility of CO2 in water, 

(Baviere, 1991).  CO2 solubility in water increases with pressure but inversely related to 

temperature and brine salinity.  The increase in CO2 solubility is more pronounced at lower 

pressure.  CO2 has the highest solubility in water as compared with hydrocarbon gases found 

in the oil and gas fields (e.g., Bando et al., 2003).  It is this property that leads to CO2 

sequestration in the saline aquifer being extensively pursued as one of the Carbon Capture 

and geological Storage (CCS) strategies.  CCS is “the removal of CO2 directly from 

anthropogenic sources (capture) prior to potential release and its disposal in geological 

media, either permanently (sequestration) or for significant time periods (storage)” (Bachu, 

2008).  It involves separation and capture of the CO2 from large stationary sources such as 

power plants and refineries, transportation to a storage site and isolation from the atmosphere 

for long periods of time, in the order of centuries to millions of years.   

 

 

Figure 2.1: Phase plot of CO2 showing the critical point. 
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Figure 2.2: CO2 density and viscosity as a function of temperature and pressure (Bachu, 
2002). 

 

 

Figure 2.3: The effect of pressure, temperature and salinity on CO2 solubility in water 
(Baviere, 1991). 

 

2.3. CO2 Enhanced Oil Recovery and Storage 

2.3.1. The target resources 

The application of CO2 EOR is influenced by the availability of suitable resources.  The 

most suitable EOR process for a reservoir depends largely on the depositional environment 
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of the reservoir, fluid properties, and reservoir pressure, temperature and heterogeneity 

(Taber et al., 1983, 1997).  CO2 EOR is suitable for reservoirs having oil gravity greater than 

22 oAPI (oil density < 920 kg/m3), viscosity less than 10 cP and depth of 600 m (2500 feet) 

or more, which relates to the pressure at which CO2 is in supercritical condition (Taber et al., 

1983; Rivas and Bolivar, 1994).   

Field experiences indicate that the remaining oil saturation should be at least 25% or Soφ 

where φ is the porosity, between 0.05-0.07 (Kovscek, 2002) for economic success.  A large 

gas cap is not favourable for CO2 EOR due to the large amount of gas which needs to be 

injected to reach the minimum miscibility pressure (MMP).  MMP, more details are given 

later, is the minimum pressure at which the injected gas becomes miscible with the reservoir 

oil.  The oil achieves dynamic miscibility with CO2 at relatively lower pressure than with 

natural gas, flue gas or nitrogen (Stalkup, 1984).  The vertical heterogeneity (reflected in the 

vertical to horizontal permeability ratio, kv/kh) is also very important, as it controls the rate at 

which CO2 segregates.  Since fractures provide conduit from the injection to the production 

well resulting in early gas breakthrough and hence poor sweep efficiency, highly fractured 

reservoirs are not preferred.  Thin reservoirs might have an advantage of lesser gravity 

override but thick reservoirs are advantageous in terms of oil volume (Jarrel et al., 2002).  

Despite the wide variety of factors which can affect the suitability of reservoirs for CO2 

EOR, it is one of the most commonly used gas injection EOR techniques in the world 

particularly in the onshore United States (US) oilfields, where abundant natural resources of 

CO2 are available.  The process, nevertheless, has not been used at field scale offshore, so 

far.  In 2008, there were 72 active CO2-floods worldwide producing around 206,000 bpd of 

incremental oil (Oil & Gas Journal, 2008).  The US Department of Energy (US DOE, 2006) 

predicted that as much as 43 billion barrels of “stranded” oil in six basins and areas in the US 

could become technically recoverable by this EOR method.   

The literature review indicates that the field application of CO2 EOR will be successful if the 

candidate reservoir meets the technical criteria for miscible flooding and favourable 

economic factors, such as having reliable sources of CO2 at affordable costs, appropriate oil 

price and availability of capital and technical expertise.  More often applied as tertiary oil 

recovery method, successful CO2 injections can yield 7-23% of OOIP in additional oil 

recovery (Martin, 1992; Christensen et al., 1998; Rogers and Grigg, 2000).   
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Most of the CO2 EOR projects to date are designed and implemented to increase the oil 

production and to extend the productive life of the assets with additional reserves.  But much 

of this injected CO2 remains trapped in the reservoir and this presents an opportunity to 

employ EOR as CO2 storage strategy.  Holt and Lindeberg (1993) estimated that the world 

technical CO2 storage potential in petroleum reservoirs corresponds to two thirds of the CO2 

produced by combustion of the reserves.  A study by Kuuskraa et al. (2008) identifies 39 to 

48 billion barrels of incremental oil could economically be produced and 5 to 6 Mcf of CO2 

per barrel of oil is used by timely application of CO2 EOR technology in the US, while 

Bergen et al. (2004) identify 420 possible CO2 EOR opportunities for CO2 capture and 

storage/sequestration worldwide.   

Unlike the CO2 EOR process, for which the screening criteria are based on the history of 

successful projects worldwide, no similar data is yet available for coupled CO2 EOR and 

storage projects.  Since the oil production in the miscible displacement is highest, and thus 

can offset the cost of storage more, it is expected that miscible CO2 EOR is aimed for in the 

coupled process.  The screening criteria, particularly the fluid properties, favourable for 

miscible CO2 EOR should be preferred for the coupled process as well (Kovscek, 2002; 

Holtz, 2009).  However, the immiscible CO2 injection may also be economically viable if the 

sequestration capacity of the reservoir is large.  The candidate reservoir must also have the 

capacity to store the intended volume of CO2 over the life of the project and the necessary 

injectivity to take in the CO2 at the rate that it is supplied from the source.  The integrity of 

the reservoirs’ containment also needs to be ascertained.   

Kovscek (2002) has proposed screening criteria for coupled EOR and CO2 storage 

encompassing the geophysical, reservoir engineering and surface facilities aspects of the 

process (Table 2.1).  Specific sequestration capacity as described by Equation 2.1 was used 

to compare various reservoirs with respect to depth, porosity and moveable fluid saturation.   

� � ��� � ��	� �
�	� � �
�	��                                                                                   (2.1) 

where C is the sequestration capacity of the rock expressed as the mass of CO2 per volume of 

rock (kg-CO2/m3-rock), ρ is the density of CO2 (kg/m3) as a function of pressure and 

temperature, Sor is the residual oil saturation (in fraction), Swir is the irreducible water 

saturation (in fraction), φ is the porosity (in fraction) and Cs is the mass of CO2 dissolved per 
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unit volume of water (kg-CO2/m3).  From this equation, high CO2 density, reservoir porosity 

and fraction of moveable fluids are favourable for CO2 storage.  

Table 2.1: Screening criteria for anthropogenic CO2 EOR and CO2 sequestration 
(Kovscek, 2002). 

Reservoir 
properties Positive indicators Cautionary indicators 

��φ� � 0.05 < 0.05 - Consider filling reservoir 
voidage if capacity is large. 

kh (m3) � 10-14 – 10-13 <10-14 if kh is less, consider whether 
injectivity will be sufficient. 

Capacity (kg/m3) >10 < 10 

Pre pressure 

gradient (kPa/m) 

� 17.4 > 17.4 

Location Divergent basin Convergent basin 

Seals Adequate characterization 
of caprock; minimal 
formation damage. 

Areas prone to fault slippage. 

Oil properties   
ρ���API�� > 22 < 22 - Consider immiscible CO2 EOR, 

fill reservoir voidage if C is large. 

µ��mPas�� < 5 > 5 - Consider immiscible CO2 EOR. 

Composition High concentration of C5-
C12, relatively few 
aromatics. 

 

Surface facilities   
Corrosion CO2 can be separated to 

90% purity economically. 
H2O and H2S concentration above 500 
ppm each. 

Pipelines Anthropogenic CO2 
source is within 500 km 
of a CO2 pipeline or 
oilfield. 

Source to sink distance is more than 
500 km. 

Synergy Pre-existing oil 
production and surface 
facilities expertise. 

Little or no expertise in CO2 EOR 
within a geographic region. 

 

Injectivity is directly proportional to permeability and affected by the reservoir thickness, 

therefore, the product of permeability and thickness, kh, is also used as a screening 

parameter, which value should preferably be greater than 10-14 m3.  It is also crucial that the 
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overlying caprock of the reservoir still provides an effective seal: it is favourable if the 

reservoir is located in a divergent basin and adequate characterization of the caprock has 

been carried out.  Other criteria are shown in Table 2.1.  Rock compressibility and water 

salinity have also been found to influence the storage processes (Codreanu and Gallo, 2003; 

Jessen et al., 2005). 

Shaw and Bachu (2002) developed an analytical method and a ranking procedure to rapidly 

estimate oil recovery and CO2 storage for a large number of reservoirs prior to engineering 

and economic evaluation.  They screened 8,637 oil reservoirs, based on technical criteria for 

application of CO2 EOR published by various authors, which include the oil gravity and 

viscosity, reservoir depth, temperature and pressure, MMP and remaining oil saturation, to 

determine their suitability for CO2 flooding.  Then the incremental oil recovery at 

breakthrough and the reservoir capacity for CO2 sequestration were estimated.  Weights 

were assigned to technical and reservoir performance parameters and the reservoirs were 

ranked according to the final score.  They found that the top ranked reservoirs are 

characterized by light oil, high initial reservoir pressure, low-range reservoir temperature, 

and low heterogeneity.   

Damen et al. (2005) used a more or less similar approach of multi-criteria analysis of 

weighted summation to select and rank the oilfields for CO2 sequestration.  They extended 

the criteria used to include the techno-economic aspect such as emission source and socio-

economic criteria like the population density and the quality of government.  For each weight 

factor a higher total score indicates the more promising opportunity. 

 

2.3.2. Mechanisms of oil recovery and CO2 storage 

Depending on the pressure and temperature of the reservoir during injection, CO2 flooding 

can be a miscible, near miscible or immiscible process.  Figure 2.4 shows the pressure-

temperature region of applicability of CO2 injection and the corresponding simulation 

technique (in brackets) appropriate for the region whether by black oil or compositional 

model (Klins, 1984).   

For optimal displacement efficiency, CO2 flooding should be conducted at pressures greater 
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than the MMP.  At or above the MMP, CO2 dynamically develops miscibility as it mixes 

with the oil in the porous media, where a mixing zone between oil and CO2 is developed at 

the displacement front.  The supercritical CO2 vaporizes the lighter oil fractions of the oil 

into the CO2 phase, creating a CO2-rich phase and an oil-rich phase.  As the mass transfer 

between the CO2 and the oil continues, the CO2-rich phase becomes heavier and is a better 

solvent than the originally injected CO2, extracting heavier portions of the oil.  Eventually, 

the fluid properties of the two mixtures become identical.  Gardner and Ypma (1984) 

reported that the capillary forces, which initially hold the oil immobile, diminish as 

miscibility is reached.  The resulting single phase fluid has improved mobility to flow to the 

producing well.   

 

 

Figure 2.4: The effect of reservoir temperature and pressure on CO2 injection displacement 
mechanisms and the applicable simulation technique (Klins, 1984). 

 

The overall recovery efficiency, ER, of the CO2 flood, described by Equation 2.2, is governed 

by microscopic and macroscopic displacement efficiency (Klins, 1984) viz:   

MDVAR EEEEE ...=                                                                                                     (2.2) 
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where E refers to efficiency, while subscripts A, V, D and M refer to areal sweep, vertical 

sweep, displacement and mobilization, respectively.  The displacement efficiency, which is 

the fraction of mobile oil being swept, is defined by Equation 2.3:  

orpoi

ooi
piD SS

SS
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−
−

=
−

)(                                                                                                    (2.3) 

where Soi is the initial oil saturation, Sorp is the ultimate residual oil, −

oS is the average oil 

saturation in the swept zone and Vpi is the pore volume injected.   

The microscopic displacement efficiency (ED) is greatly influenced by the solubility of CO2 

in the oil, which in turn is strongly influenced by pressure, temperature, the oil composition, 

purity of the injected CO2 stream, reservoir heterogeneity and gravity segregation (Klins, 

1984).  We can see from Equation 2.3 that the displacement efficiency is high when the 

residual oil saturation is low, as in the miscible displacement.   

The macroscopic sweep efficiency is affected by the areal and vertical sweep efficiencies.  

The areal sweep efficiency (EA) is “the fraction of the total reservoir area that is invaded by 

the injected fluid” (Klins, 1984) and is affected by permeability variations in the reservoir 

rocks, the mobility ratio, the injection-production well patterns and the injection scheme used 

(Araktingi et al., 1990).  Mobility ratio, M, measures the mobility of the displacing phase 

relative to that of the displaced fluid: 

� � �����������������                                                                                                            (2.4) 

where kr is the relative permeability and µ is the viscosity.  At M greater than 1, the injected 

fluid has higher mobility than the displaced fluid, leading to viscous instability or preferential 

flow of the injected phase through the oil.  Caudle and Witte (1959) showed that the areal 

sweep efficiency for a five-spot pattern decrease as the mobility ratio increases and for any 

given M, areal sweep efficiency increases with continued injection after breakthrough. 

Vertical sweep efficiency, EV, is the fraction of the vertical section of a reservoir that has 

been contacted by the injected fluid.  It is affected by the viscous/gravity ratio, Equation 2.5, 

dip angle, and vertical heterogeneity (Gardner and Ypma, 1984).   
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                                                                                                        (2.5) 

where u the Darcy velocity, µo the oil viscosity, L the distance between wells, k the 

permeability, g the gravity force, ∆ρ the density difference between the fluids and h the 

height of the displacement zone.   

Figure 2.5 shows the breakthrough sweep-out efficiency as a function of viscous/gravity 

ratio and mobility ratio for miscible displacement at irreducible water saturation.  For a given 

mobility ratio, increasing the viscous/gravity ratio increases the sweep efficiency whilst the 

efficiency reduces with increasing mobility ratio.  In Region I, the flow is characterized by a 

single gravity tongue overriding the oil.  In Region II, the single gravity tongue persists but 

the vertical sweep out becomes independent of viscous/gravity ratio until a critical value is 

reached.  Secondary fingers start to form beneath the gravity tongue in Region III where 

increasing the viscous/gravity ratio increases the vertical sweep out efficiency markedly.  At 

very high viscous/gravity ratio in Region IV, displacement is dominated by multiple 

fingering across the cross section (Stalkup, 1983). 

Gravity override (or tonguing) develops when the fluid velocity, u, is higher than the critical 

rate, uc, given by Equation 2.6.  Vertical sweep is dominated by viscous fingering at rates 

exceeding the critical rate, which is given by:   

                                                                                         (2.6) 

where ρ is the density, µ is the viscosity, k is the endpoint relative permeability and θ is the 

dip angle (Klins, 1984).   

Inefficient sweep and filling the reservoir voidage causes part of the injected CO2 left in the 

reservoir.  Four trapping mechanisms i.e., stratigraphical/structural, residual, solubility and 

mineral trapping maybe involved (Bachu et al., 1994).  CO2 is less dense than the oil and 

formation water even at supercritical state, thus, it rises upwards but is prevented from 

moving further upward by the structural trap, such as the top of an anticline, or a tilted fault 

block along the flow pathway (structural trapping).  However, CO2 is still in the mobile 
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phase and leakage from the formation can occur if the sealing is compromised. 

 

 

Figure 2.5: Schematic of the flow regimes in a 2D, uniform linear system (Stalkup, 1983). 

 

CO2 can also be hold in place by solubility trapping through its dissolution in oil and 

formation water.  When dissolved in water, CO2 reacts with water to form carbonic acid 

(CO2 + H2O  H2CO3) with a pH between 3 and 4.  The carbonic acid reacts with the 

minerals of the rock, causing dissolution of mineral components as well as precipitation of 

carbonate minerals such as calcite, dolomite and siderite (Bachu et al., 1994; Linderberg et 

al., 2002; Nghiem et al., 2009).  CO2 trapped in the form of carbonate (mineral trapping) is 

considered the safest form of storage as the immobile gas can be kept away from the caprock 

but this is a very slow process that may take thousands of years. 

Part of the injected CO2 is also stored in empty pores in the rock that were once filled with 

oil.  Maximizing the oil production would ideally maximize the volume available for storage.  

Some of the CO2 bubbles are snapped-off and trapped in pore spaces between the rock due 

to capillary force from the water particularly in low permeability reservoirs (residual trapping 

or capillary trapping).  Injecting water alternating with or after the CO2 injection is found to 

accelerate this trapping (Juanes et al., 2006; Qi et al., 2008).   



Chapter 2: Literature Review  

 

23 

 

2.3.3. CO2 sources and capture technology 

Adequate and continuous source of the CO2 gas is crucial to the implementation of CO2 EOR 

in the field.  Most of the major CO2 EOR projects in the US, such as the Permian Basins in 

West Texas, benefit from natural CO2 supply from Colorado and New Mexico (US DOE, 

2011).  However, new capture technologies enable CO2 from industrial applications such as 

natural gas processing, power generation, and petrochemical plants to be used for EOR in 

locations where naturally occurring reservoirs are not available.  In 2008, 17% of the CO2 

used for EOR in the US came from the anthropogenic sources (Moritis, 2010). 

The coal-fired plants, cement manufacturing and petroleum refinery are the three biggest 

contributors to CO2 emission followed by the steel and petrochemicals industry (World 

Energy Outlook, 2009).  However, not all of these sources are applicable to EOR.  Apart 

from impurities in the gas stream that imposes significant increase in capture and separation 

costs, the long distance from the candidate oil reservoirs further prohibits some man-made 

CO2 from being used in the EOR application.   

Another source of CO2 is the CO2 produced offshore as a by-product of oil extraction or 

high-CO2 gas fields production.  However, smaller volumes and inaccessibility makes this 

source of CO2 more unlikely to be captured for conventional CO2 EOR than that generated 

onshore.  Furthermore, offshore platforms are space-constrained to accommodate the 

necessary infrastructure for capturing and separating the CO2, hence necessitates extensive 

investment in platform extension.  But, this source of CO2 can be exploited for the non-

conventional CO2 injection such as the CO2-enriched water injection, which the author will 

discuss in more detail in the next chapter. 

The number of field scale CO2 EOR using anthropogenic CO2 is presently still limited, but is 

increasing.  Examples include the Weyburn-Midale project where 1 Mt of CO2 from a coal 

gasification plant was injected per year (Preston et al., 2005), the Rangely Weber Sand 

project, which is supplied by the La Barge gas processing plant in Southwest Wyoming, and 

the Salt Creek project (Anadarko, 2010).  There are plans for similar project in the Daqing 

and Liaohe fields in China (NETL, 2010), the Hobbs carbonate oil field in New Mexico and 

the Northwest McGregor Oil Field (Carbon Capture Journal, 2011).  In the North Sea, the 

CENS project plans to bring man-made CO2 from factories and power stations around the 
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North Sea Basin to depleted oilfields for EOR. 

Most of the anthropogenic CO2 sources emit CO2 streams diluted with contaminants such as 

hydrogen sulphide, hydrogen cyanide, ammonia, particulates and alkali (CCSTRM, 2006).  

The CO2 partial pressure would be low and this increases the cost of compression and 

transportation of the gas.  Moreover, the contaminants would also increase the MMP that 

adversely affect the oil recovery.  Thus, the CO2 needs to be separated from the other 

components before it can be used for EOR or stored.  For economy of scale, the capture 

process is applicable only to major CO2 source points such as energy generation and 

industrial plants.  In the U.K, capturing and storing from 85% of the largest 25 industrial 

sources would contribute to a 17% reduction in total U.K emission (POST, 2005). 

CO2 capture technologies available can be classified as post-, pre- and oxy-combustion 

capture, which could involve either chemical or physical absorption or adsorption, 

membranes or cryogenic fractionation (Feron, 2005; Ravagnani, 2007; Figueroa et al., 2008).  

The pre-combustion process involves the extraction of carbon from the fuel before the fuel is 

combusted for energy generation (Aasen et al., 2004).  The separation is carried out by 

integrated coal-fired combined cycle systems or natural gas-fired combined cycle systems 

that convert the fossil fuel to a hydrogen rich stream and a carbon rich stream.  In the post-

combustion processes, CO2 is recovered from flue gases through chemical cleansing using 

an absorbent such as monoethanolamine (MEA) solution.  The oxy-fuel combustion uses 

oxygen in the separation process that could results in almost all the CO2 being removed.   

Hendriks et al. (2004) and Damen et al. (2005) estimated the typical costs of CO2 capture for 

power plants and industrial sources are more or less within the same range of $37-$62/tCO2 

and $40-$60/tCO2 avoided, respectively.  The costs mainly depend on the capture system 

used, which in turn depends on many factors such as the partial pressure of CO2 in the gas 

stream, the recovery and purity of the CO2 required.  If we look from capture system point of 

view, the cost ranges approximately from $50-$70/tCO2 captured for post-combustion 

systems, to $20-$50/tCO2 captured for pre-combustion and to $13-$80/tCO2 captured for 

oxy-fuel combustion (Thambimuthu, 2004 as quoted in CCSTRM, 2006).  The oxy-fuel 

combustion seems much cheaper since the input gas has high CO2 concentration.  Most of 

the approaches available are nevertheless still under investigation or at the stage of 

development not economically feasible on a large-scale CO2 capture due to high use of 
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energy.   

The high cost associated with the capture of CO2 from these plants, its pressurization and 

transport dominates the CCS cost and is one of the key barriers to the introduction of CO2 

sequestration technology (Bergen et al., 2004; Bachu, 2008).  This is where the revenue from 

the additional oil recovery is advantageous to offset some of these costs.  Many research and 

development projects in reducing the CO2 capture costs are directed towards the use of 

membrane, cryogenic and amine process (Steven and Gale, 2000).  A recent development 

includes a post-combustion VeloxoTherm™ technology that uses a proprietary structured 

adsorbent that is able to capture CO2 from industrial flue gas streams for US$15 per tonne of 

CO2 (http://www.inventysinc.com/technology/).  Other related initiatives are the Basic 

Immobilized Amine Sorbent (BIAS) process that uses low-cost, regenerable, solid CO2 

sorbents (NETL, 2011) and European CO2 Test Centre at Mongstad, Norway, built to test 

improved CO2 capture technology (Kaarstad, 2008). 

 

2.3.4. Implementation approach 

In traditional CO2 EOR, the flood is designed to minimize the CO2 retention and the 

decommissioning of the project usually involves reservoir depressurisation (blowdown) to 

maximize oil recovery (Irwin and Batycky, 1997).  This is not beneficial for the CO2 storage 

since only a minimum amount of CO2 remains stored in the immobile phases in the 

reservoir.  Storing CO2 through EOR implementation requires different injection/production 

designs and strategies as compared with those for CO2 EOR or CO2 storage alone.  For 

coupled EOR and storage, it is envisaged that early in the CO2 injection phase, the aim is to 

optimize the oil recovery, which is later switched to maximising the amount of CO2 stored 

towards the end of the project.  This will looked at in more detail in Chapter 5 and 6. 

The author is of the opinion that with some additions of appropriate parameters, the 

parameters for the injection design and their interaction for CO2 sequestration in a deep 

saline aquifer suggested by Davis et al. (2001) and by Bachu (2002), shown in Figure 2.6 

and 2.7, respectively, are relevant to and can be adopted for integrated CO2 EOR and storage 

projects.  These additional design parameters may include the technical screening criteria for 
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the miscible displacement as discussed earlier, the estimates of the oil recovery and the 

amount of CO2 stored, the number of wells required to inject the CO2 and the best injection 

strategy (location and intervals, injection pressure, injection rate and, injection pump 

requirement, economics) that results in co-optimized oil recovery and CO2 storage.   

 

 

Figure 2.6: Parameters for the injection design and their interaction to provide assurance for 
the CO2 sequestration in deep saline aquifer (Davis et al., 2001). 

 

2.3.5. Issues and challenges  

Despite years of CO2 EOR experience of the industry that can be drawn upon, there are 

nonetheless several technical, economic and social issues and challenges in materializing the 

coupled CO2 EOR and storage projects.   
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Figure 2.7: Recommended steps toward the geosciences-based assessment of site selection 
for CO2 geological sequestration, and the main drivers of respective activity (Bachu, 2002). 

 

Technical/economic issues and challenges 

Storage integrity: One of the major risks associated with sequestration in a geological 

formation is the potential leakage of CO2 through caprock, overburden and aging wells 

leading to the escape of CO2 into shallow potable aquifers or into the atmosphere.  Mapping 

and characterizing the geological features of the reservoir such as the spill points, caprock, 

faults and fractures thoroughly is therefore essential so that seal integrity over time can be 

ensured and the injected CO2 remains safely trapped over the required timescale (Stevens et 
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al, 2002; Espie, 2005; Nghiem et al., 2009).  CO2 can cause Portland cement, typically used 

for well completion, to lose its strength over time.  The seal and well integrity requires on-

going risk assessment and monitoring. 

Costs: The higher cost of anthropogenic CO2, mainly due to the cost of CO2 capture from its 

industrial sources, transportation to the candidate oilfields and the energy required for further 

compression of CO2 prior to injection, is a key barrier to the implementation of the integrated 

process at commercial scale (Stevens et al., 2000).  Significant reductions in the cost, 

particularly that of the capture of CO2 from combustion processes, are required to overcome 

this barrier.  Incorporation of CCS with new advanced coal-fuelled power plant was found 

not to be economically realistic due to the increase in energy required that reduces plant’s 

efficiency.  The revenues from selling captured CO2 emissions into the CO2 EOR market 

can, however change the competitive outlook (CCSTRM, 2006). 

The price of an emissions permit, as well as incentives for CO2 EOR application, is also 

affecting the viability of the coupled CO2 EOR and storage projects.  For example, Norway’s 

carbon emission tax of about �40/tCO2 ($57/tCO2) encourages CO2 storage in the Sleipner 

field (Kongsjorden et al., 1997; Torp and Gale, 2004).  

Stability of CO2 supply: CO2 EOR creates an early opportunity for CO2 storage.  However, 

this early storage is temporary in nature, since most of the CO2 will be produced and 

recycled during the flooding until the reservoirs become available for permanent CO2 

sequestration, which time in the future depends on the economics. 

At the beginning of the injection phase, the CO2 volume required is large.  Over time, the 

volume of CO2 being recycled will increase especially after the gas breakthrough and this 

may upset the planned injection and storage, to the extent that there might be excess of CO2 

that requires separate handling.  On the other hand, there is also the possibility of CO2 source 

plant shutdown that might affect the continuity of CO2 supply to the reservoir.  Therefore, in 

the integrated process, the candidate oilfield and project design must be able to receive the 

amount of CO2 produced from the anthropogenic source as well as accommodating to the 

fluctuation in the CO2 supply and demand.    

Performance prediction: Despite the fast-paced development of reservoir modelling, 
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uncertainties in the reservoir performance and recovery efficiency predictions remains one of 

the challenges in the planning of the project.  This is particularly true for complex or highly 

heterogeneous reservoirs with high uncertainty in the geological characterization.  As 

highlighted by Stevens et al. (2000), besides the complex nature of CO2 compositional phase 

behaviour effects and fluid flow in the porous media, the use of un-scaled laboratory data for 

field scale simulation may also affect the prediction reliability. 

Operational challenges: Conflicts between oil recovery and CO2 storage may arise, as field 

operations can differ significantly for CO2 EOR and storage.  In the coupled CO2 EOR and 

storage projects, the main objective is no longer just maximizing the oil recovery but also 

maximizing the amount of CO2 stored in the reservoir at the end of the process.  Co-

optimization is necessary yet finding the optimal flood design to result in co-optimized oil 

recovery and CO2 storage is rather challenging.  

CO2 has the potential to increase corrosion rates in wells, flow lines and facilities.  

Nevertheless, corrosion has been reported to be a common problem in many CO2 EOR 

projects, particularly in the wet CO2 portion of the injection system, such as in meter runs, 

wellheads and tubing.  With the extensive experience in CO2 EOR worldwide, material for 

combating corrosion, such as the corrosion-inhibitor, corrosion-resistant alloys, stainless 

steel and anticorrosive equipment (Jarrel et al., 2002) has already been established with 

reasonable cost (Mcintyre, 1986). 

Hydrate formation and asphaltene precipitation in the wellbore and production facilities may 

also pose operational challenges in the process (Christensen et al., 1998; Rogers and Grigg, 

2000).  Dissolution of reservoir minerals into the acidic displacing fluids will often result in 

an increase in wellbore scaling after gas breakthrough.  

Challenges in operation are also foreseeable for offshore CO2 EOR and storage application 

as the existing experience and technology are predominantly for onshore application.  Apart 

from being much more expensive than the onshore venture, the offshore challenges include 

the weight, space and power limitations of retrofitting existing offshore facilities; and fewer 

more widely spaced wells contributing to displacement, sweep and lag time. 



Chapter 2: Literature Review  

 

30 

 

Social issues and challenges 

One of the social challenges of geological storage is the acceptance of the public as to 

whether sequestering CO2 underground is a safe alternative to emitting CO2 to the 

atmosphere (Bryant, 2007; Bachu, 2008).  A survey of public perceptions conducted in the 

U.K (Gough et al., 2004) shows that majority of people, in the absence of information as to 

its purpose; either does not have an opinion at all or are somewhat sceptical of the 

technology.  As CCS is still considered in its infancy, lack of case studies and experience 

makes the convincing the public a challenging task.  But the public support is getting better 

with time as a result of more support from the government and relevant authorities especially 

when CCS was put clearly into the context of climate change and the need for large long-

term reductions in CO2 emissions into the atmosphere, together with portfolio including 

renewable energy technologies, energy efficiency and lifestyle changes.  

Another significant barrier is the lack of policy, legislation and a proper regulatory 

framework, such as a taxation or credit system (Stevens et al., 2002; Espie, 2005; Bachu, 

2008).  This includes legislation on the ownership of the pore space and the competition 

between storage rights and other mineral rights as well as long-term financial and operational 

liability, credits and third party transfer.  Without these being established, the economics and 

financial risk of the process cannot be finalized and will cause delay in the commercial 

deployment of CCS. 

 

2.4. A review of models of CWI process  

Mathematical models and numerical simulation tools play an important role in evaluating the 

feasibility of any process in the oil reservoirs.  This section is aimed at reviewing the 

modelling of CWI process in porous media.   

Injection of CWI in a reservoir may involve a number of physical and chemical phenomena 

such as dissolution of CO2 with the aqueous phase to make up the injected carbonated water.  

Key issues arising in the simulation of the process also include the diffusion and dispersion 

of CO2 from the carbonated water into the in-situ oil and water, the PVT properties of 

mixtures of carbonated water (CO2) with oil and natural gas, single and multi-phase flow, 

and the coupled hydro-chemical and hydro-mechanical effects due to interactions between 
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carbonated water, reservoir fluids, and minerals of the rock. 

De Nevers (1964) was the first to present a calculation method for a secondary CWI based 

on Buckley-Leveret type linear flow for predicting the oil recovery.  Instantaneous 

equilibrium was assumed and no capillary pressure or gravity effects were considered.  

Molecular and convective diffusion of CO2 in the flow direction were also assumed to be 

zero.  The rate of advance was assumed to be dependent on the CO2 concentration in water.  

The effect of a change in injection fluid composition is propagated only as fast as changed 

saturations and compositions move from the injection well.  In this model, the injected 

carbonated water gave up all its CO2 to the oil it contacted and then, as plain water, moved 

faster than the CO2.   

Ramesh et al. (1972) later reported an improved three-phase black-oil model capable of 

handling heterogeneous reservoir properties, compressible fluids, gravity and capillary forces 

but not free hydrocarbon gas in the reservoir.  Simultaneous saturation of CO2 in the oil and 

water phases was assumed, where CO2 solubility was proportional to the relative capabilities 

of these phases to dissolve CO2 at the prevailing block pressure.   

Most of the early published compositional models (e.g. Kazemi, 1978; Fussel, 1979; Coats, 

1980 and Young, 1983) were unable to model CO2 dissolution into the aqueous phase.  

However, as Klins (1984) pointed out, the solubility of CO2 in water is relatively higher than 

that of hydrocarbon components, especially in the process where CO2 is injected with water, 

that it cannot be neglected in simulation.  Mansoori (1982) was among the earliest to report 

the use of Henry’s Law to account for CO2 solubility in water in a compositional model.   

Enick and Klara (1992) reviewed several models for CO2 solubility in water and concluded 

that Krichevsky-Ilinskaya equations, which require accurate calculation of the partial molar 

volume of CO2 in brine and the fugacity of CO2 from the EOS, are the most reliable.  Chang 

et al. (1998) developed correlations for estimating CO2 solubility in water and NaCl brine as 

a function of pressure and temperature, which were later incorporated in E300 compositional 

simulator.  The current commercial reservoir simulators basically apply the same concept of 

two phase behaviour models combined through the constraints of thermodynamic 

equilibrium by equilibration of component fugacities in different phases in each gridblock.   
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To the best of the author knowledge, there has been no simulation study reported in the 

literature specifically on CWI process using the commercially available compositional 

reservoir simulators.  In order to establish the credibility of numerical simulator as a practical 

engineering tool, it is necessary to demonstrate that it can model accurately and reliably the 

important physical processes that are taking place in the system of interest. 

 

2.4.1. Modelling the non-equilibrium effects 

The basic governing equations in conventional reservoir simulator are conservation 

equations, Darcy’s equations, capillary pressure equations, and phase equilibrium.  The 

relevant formulations of the numerical model are given in Appendix A2. 

These formulations are generally based on the assumption that the fluid mixture contained in 

each grid block is in a state of equilibrium and complete mixing takes place everywhere; an 

assumption that may not be true for different fluid phases coexisting in a grid block, for 

various reasons, not having sufficient contact time with each other.  For the CWI process, 

this unstable displacement may occur as a result of the adverse mobility ratio between the 

displaced oil and displacing carbonated water as well as the diffusion and dispersion of CO2 

from the injected carbonated water into the oil.  With the displacement rate higher than the 

diffusion rate, there would be insufficient time for the system to reach equilibrium and thus a 

state of complete mixing will not be a valid assumption. 

Several attempts to model these unstable, incomplete mixing or non-equilibrium phenomena 

have been published in the literature.  Koval (1963) predicted the viscous fingering using 

heterogeneity factor that alters the fractional flow of the solvent.  He based his approach on 

the assumptions that the fractional flow of the displacing fluid in an immiscible displacement 

is a function of the saturation of the displacing fluid, the heterogeneity factor of the system 

and the difference between the viscosity of the displaced and displacing fluids.  Dougherty 

(1963) later extended Koval’s approach to also include a three-parameter rate equation to 

account for the dispersive-type mixing.  Later, Todd and Longstaff (1972) developed a 

mixing parameter, which work conceptually similar to the heterogeneity factor, to represent 

the degree of mixing due to viscous fingering for a first contact miscible system in a black oil 
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simulator.  Barker and Fayers (1994) have proposed the use of transport coefficients that 

modify the component flow terms, and a density coefficient that modifies the accumulation 

terms to account for the incomplete mixing effect.  These approaches rely on the empirical 

parameter, which in turn varies with the characteristics of the reservoir and fluid system. 

More recently, Nghiem et al. (1997) develop an EOS compositional simulator where the oil 

and gas approach thermodynamic equilibrium through a rate process.  They assumed that 

there are two distinct zones of fluids in each grid block and thermodynamic equilibrium 

prevails only at the interface between the oil and gas phases and mixing mechanisms such as 

diffusion, transverse dispersion, viscous crossflow and density driven crossflow, drives the 

two phases towards equilibrium.  The key to the proposed techniques is the transfer term 

between these two zones.  They reported that the non-equilibrium results lie in between the 

equilibrium and the no-mixing results.  Details of the flow equations used in this approach 

are presented in Appendix A2. 

From the literature review thus far, the author is in the opinion that the model by Nghiem et 

al. (1997), if also extended to include the water phase, is possibly the best representation of 

the non-equilibrium system.  However, this feature is not available in the three compositional 

reservoir simulators evaluated in this study.  Consequently, the use of the transport 

coefficient and mixing parameter, which are available in the simulator and work by 

modifying the component flow terms, and a density coefficient to account for the incomplete 

mixing effect, was further examined.  Further results and discussion are given in Chapter 4. 

 

2.5. Summary 

Carbon capture and geological storage of CO2 is undoubtedly one of the viable options to 

reduce man-made CO2 emission into the atmosphere.  Near-depleted and depleted oil 

reservoirs, particularly those apt for CO2 EOR, provide a near term geological storage of 

CO2 that is highly likely to be economic due to the revenue from the additional oil 

production.   

Despite the extensive experience of CO2 EOR in the industry, there are still many challenges 
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and issues to be looked at before more commercial-scale coupled CO2 EOR and 

sequestration projects can be put into operation.  A successful CO2 EOR and storage project 

requires collaboration by industry, governments, the private sectors and research 

organizations to address the technology gap and risk sharing mechanisms.   

This thesis investigates further two technical challenges in CO2 injection for EOR and 

storage.  The first challenge relates to the fact that the high mobility of CO2 as compared to 

oil and water, if without proper control, could result in early breakthrough of the gas and thus 

poor sweep efficiency and lower oil recovery.  Increased gas recycling will increase the 

operating costs and lower the net amount of CO2 stored.  The adverse effect of the high 

mobility ratio may be less in a water-based CO2 EOR method, where CO2 is dissolved in 

water prior to injection.  The CO2-enriched water injection was investigated further as it has 

the potential of increasing the oil recovery and at the same time offers secure storage of CO2 

yet has not been studied much since its introduction back in the 1960s.  Three commercial 

compositional reservoir simulators, with and without the transport coefficient, were also 

evaluated for their suitability and adequacy to model CWI process at the core scale.  

Alternative modelling approaches not using the compositional simulator were also presented. 

Another challenge investigated is the co-optimization of the oil recovery and CO2 storage.  

Routine CO2 EOR projects only focus on maximizing the oil recovery at the minimum 

amount of CO2 used.  In the integrated CO2 EOR and storage project, both oil recovery and 

CO2 stored need to be maximized, which requires optimization.  
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Carbonated Water Injection (CWI): Experimental Studies 

 

 

3.1. Introduction 

Carbonated water is plain water into which CO2 gas under pressure has been dissolved.  In 

CWI, carbonated water is injected at a predefined pressure and rate into the reservoir.  Under 

typical reservoir conditions at salinity of 3%, the CO2 solubility is between 47 and 51 kg/m3, 

corresponding to a volume of free CO2 of 6.7 to 7.3% of the pore volume (Linderberg et al., 

2002), which is much higher than that of hydrocarbon gases. 

CO2 solubility in crude oils is typically five to six times higher than in water and hence, during 

CWI, as the injected carbonated water comes in contact with the oil, its CO2 content partitions 

between the oil and water.  At 2000 psig and 100.4 oF for example, the liquid-liquid (LL) K-

value of CO2 i.e., the ratio of mole fraction of the CO2 in the aqueous phase to the oil phase 

mole fraction of CO2, calculated using the PVT package Winprop, is around 0.0472.  The 

transfer of CO2 from carbonated water to oil reduces the oil viscosity causing the oil to be 

swept more easily by the flood water. 

In CWI, CO2 is dissolved in the injected water/brine prior to injection and then transported 

through the reservoir by the flood water i.e., carbonated water acts as both the CO2 source and 

the means of transporting CO2 throughout the oil-bearing formation.  As a single phase flow, 

the mobility contrast of carbonated water with oil is more favourable than in the CO2 gas-oil 

system.  For example, at 2000 psig and 100.4 oF, the endpoint mobility ratio of decane and 

CO2 gas is about 10 whereas that of decane and carbonated water is favourably  



Chapter 3: CWI Experimental Studies 

 

43 

 

lower at 1.2.  The problems of mobility contrast, fingering, gravity segregation due to density 

difference and reduced relative permeability are minimized if not eliminated.  CO2 injection 

through CWI into an oil reservoir also requires lower compression, as the hydrostatic pressure 

of water makes injection of carbonated water much easier, and hence cheaper, than the 

conventional CO2 gas injection.  Burton and Bryant (2007) reported a lower wellhead injection 

pressure by about 400 psi to inject the carbonated water than to inject the CO2 gas.   

In comparison with the normal waterflood, secondary carbonated water flooding yields higher 

oil recoveries, and improved water injectivity as a result of oil viscosity reduction and oil 

swelling through chromatographic transfer of CO2 from the flood water to the oil (de Nevers, 

1964).  The residual oil saturations of �2.86 cP viscosity oil after waterflooding were reported 

to have been reduced from 8% to almost 50% by carbonated waterflood (McFarlane et al., 

1952; Hickok et al., 1960; Holm, 1963).   

The high cost associated with the capture of CO2 from the power or industrial plants, its 

pressurization and transport (Bachu, 2008) and a location that is normally far from the oil 

fields is unlikely to make CO2 EOR using anthropogenic CO2 economical in oil reservoirs 

which would otherwise be suitable candidates for EOR and CO2 storage.  This is particularly 

the case for the North Sea Continental Shelf (NSCS) reservoirs where despite having 

significant potential in increasing the oil recovery, CO2 EOR could not be implemented, for 

the lack of low cost CO2 and the non-conducive oil-price regime (Hadlow, 1992).   

CWI, which requires less CO2 as compared to conventional CO2 injection, yet results in 

significant oil recovery, as will be shown later, offers an alternative injection strategy for CO2 

EOR to those candidate reservoirs.  There are smaller and cheaper sources of CO2 such as 

those separated from natural or associated gas from nearby oil and gas fields that may be 

located closer to the candidate fields that may be exploited for CWI.   

CWI could also be beneficial to watered-out oil reservoirs in which high water saturations 

adversely affects the conventional CO2 injections.  The presence of mobile water has been 

reported to cause reduced displacement efficiency in pore- and core-scale tertiary flooding due 

to oil trapping where the oil is blocked from the injected solvent gas by a water layer (Stalkup, 

1970; Shelton and Schneider, 1978; Tiffin and Yellig, 1983).  Carbonated water, on the other 

hand, can spread and mix much easily with the in-situ water thus distributes the CO2 more 
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uniformly to the trapped oil. 

CWI was first introduced as an improved secondary oil recovery process by the Oil Recovery 

Corporation, known as ORCO flood (Martin, 1959).  The first commercial field 

implementation of CWI was to augment the waterflooding in the K&S project in Oklahoma.  

After a few successful applications in the Texas and Oklahoma oil fields, the process 

unfortunately fell out of favour as the then high CO2 cost from the liquefaction plant rendered 

it uneconomic.  At residual oil saturation, large volumes of carbonated water, and thus CO2, 

were required to bring about sufficient reduction in oil viscosity for favourable flow.  The 

extra oil produced was not commensurate with the high cost of CO2 gas obtained from the 

liquefaction plant (Holm, 1987).  No field application of tertiary CWI has been reported.  

However, with the increasing availability of anthropogenic CO2 and the drives to reduce its 

concentration in the atmosphere, the cost of CO2 may no longer be the limiting factor.   

With the relatively high solubility of CO2 in water, CWI could also serve as an injection 

scheme for storing CO2 in depleting oil reservoirs.  The risk of buoyancy-driven leakage, as in 

the case of CO2 bulk phase injection (Burton and Bryant, 2007) would be minimized in CWI, 

since CO2 is in solution rather than a free phase.  The weak carbonic acid formed in the 

aqueous phase increases the aqueous phase density that could bring about a gravitational and 

convective effect to the fluid flow: the heavier carbonated water will slump towards the 

bottom of the reservoir (Hebach, 2004), further securing storage.  Monitoring would be less 

than what is required with the bulk phase injection, thus reducing the cost of monitoring the 

stored CO2.   

CWI has also been reported to have improved water injectivity and consequently accelerated 

the oil production (Ramsay and Small, 1964).  Despite the concerns that carbonic acid may 

cause localized corrosion of steel (Browning, 1984), no evidence of further corrosion, apart 

from the normal waterflood corrosion, was reported in the K&S carbonated waterflood project 

(Hickok et al.,1962).  In this particular case, the CO2 injection lines were even re-used several 

times during the staging of the CO2 injection.  It was hypothesized that the limited proportion 

of CO2 formed sufficient amounts of alkali and alkali earth carbonates and bicarbonates that 

act as buffers which prevent the corrosion of the steel (Martin, 1951).  Corrosion has 

nevertheless been reported to be a common problem in many CO2 EOR projects, particularly 

in the wet CO2 portion of the injection system such as in meter runs, wellheads and tubing.  
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With the extensive experience in CO2 EOR worldwide, materials for combating corrosion, 

such as the corrosion-inhibitor, corrosion-resistant alloys, stainless steel and anticorrosive 

equipment (Jarrel et al., 2002) have already been established with reasonable cost and thus this 

should not be a major issue. 

Despite its potential for CO2 EOR and storage, this injection mode has not been very much 

studied.  In this thesis, the oil recovery and CO2 storage benefits of secondary and tertiary 

CWI, as compared to plain (conventional) waterflood, were investigated experimentally 

through a series of high pressure, high temperature coreflood experiments.  Water-wet and 

mixed-wet Clashach sandstone cores and a core from a North Sea oil reservoir were used in 

the experiments.  The tests were carried out using light oil (n-decane), refined mineral oil of 81 

cP and a 145 cP North Sea stock tank crude oil at test pressures and temperature typical of real 

reservoir conditions.  The behaviour of the dissolved CO2 that affects the effectiveness of CWI 

as an oil recovery method was also examined by observing the CO2 front propagation 

throughout the tests.   

The purposes of the experiments were to extend our understanding of the CWI mechanisms, 

quantify the additional oil recovery and the amount of the CO2 stored from the process and to 

investigate the effects of oil viscosity, rock wettability and brine salinity on the oil recovery by 

CWI.  Coreflood investigation of the CWI process on medium viscous oils in this study is 

relatively novel in the industry, as the available information in the literature thus far is only on 

light oil.  The potential of this injection scheme for CO2 storage which, to the best of the 

author’s knowledge, has never been experimentally investigated before was also looked into.  

The experimental results presented here are essential to validate the simulation model, details 

of which are given in Chapter 4.   

 

3.2. Experimental facilities and procedures 

3.2.1.  Coreflood rigs 

A high-pressure high-temperature coreflooding rig was used in the displacement tests.  Two 

setups of the equipment were employed; the difference being the conditions at which the 

effluent was collected and the size of the core holder.  In both setups, the core holder was 
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mounted horizontally. 

In both setups, the pressure transducers used were Quartzdyne DSB301-10-C85, rated to 

10000 psi and 85 oC (http://www.quartzdyne.com/).  The transducers were initially calibrated 

by the manufacturer and they were regularly checked in the lab prior to the tests by connecting 

them to a dead weight tester and applying a variety of pressures to see if they were reading the 

pressure correctly.  The dead weight tester was in turn serviced and calibrated yearly by an 

instrumentation calibration service provider.  The pressure readings from the transducers were 

logged to Labview 8.6 software.  

Flow controls were provided by the Quizix C 5000-5K pumps; rated to 5000 psi and 

maximum flow rate of 2000 cc/hr (http://www.chandlerengineering.com).  The injection 

volumes were calibrated by comparing the injected volume on the Quizix pump and the 

volume recovered, by both weight and test tube method. 

The first equipment setup is schematically shown in Figure 3.1.  The dual-cylinder pump 

system was connected to a Proserve transfer vessel, which was used to deliver the fluids into 

the core.  The core effluent was carried through a backpressure regulator where the pressure 

drops to atmospheric pressure and hence any dissolved gas would be liberated.  The separated 

liquid would then be collected in a graduated cylinder while the gas in a Chandler 2331D 

gasometer (http://www.chandlerengineering.com).  The standard conditions at which the 

effluent volumes were measured in these tests were 60 oF and ambient pressure.   

In another setup, schematically shown in Figure 3.2, four pumps were each connected to a 

transfer vessel.  Two pumps were for injecting brine and oil at the desired flow rate and 

pressure to the entry side of the core holder.  The other two pumps; also one for the brine and 

the other for the oil, were for retrieving the fluid through a sight glass with a calibrated 

viewing lens.  The retrieving pump rate was held constant and similar to the injection rate, to 

ensure constant average pressure throughout the test.   

The fluid withdrawn (either oil or brine) depends on the main fluid being produced, so as to 

ensure the fluid interface is within the preferable viewing range of the sight glass.  The 

interface level of the fluids in the sight glass was monitored and recorded throughout the test, 

which was later used to calculate the amount of each fluid produced at the test conditions.  
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Figure 3.1: Schematic of the coreflood rig with effluents volume measured at the standard 
conditions. 

 

 

Figure 3.2: Schematic of the coreflood rig with effluents volume measured at the test 
conditions. 
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Both coreflood rigs are capable of operating at pressures up to 6000 psi and temperatures as 

high as 300 oF.  The coreflood tests reported in this thesis were carried out at 2000 - 2500 psig 

and 100.4 oF.  Pressure and temperature at the inlet and outlet end of the core holder are 

displayed continuously on the computer, which has a built-in data acquisition system. 

Temperature is maintained by keeping the apparatus inside a temperature-controlled enclosure.  

All the valves, fittings and pipework were made of a mixture of Hastelloy C276 to enable 

handling wet CO2.   

 

3.2.2.  Core samples 

Three types of cores were used in the coreflood tests i.e., a reservoir core and two Clashach 

sandstone cores, one with its natural water-wettability (water-wet) whereas the other was made 

mixed-wet by ageing it in a crude oil.  The ageing procedures followed has long been 

developed and established in our lab, which resulted in the initially preferentially water wet 

core became mixed wet.  Since the same ageing procedures were followed for the core used in 

this study, it was hence assumed that the aged core became mixed wet following the ageing 

process. 

The Clashach core is a pale yellow buff, non-calcareous, medium grained sandstone from the 

Permean age.  The environmental scanning electron microscope (ESEM) analysis shows that it 

is composed mainly of quartz (about 75 weight %), calcium carbonate, feldspar and traces of 

clay mineral (illite).  The reservoir core was sampled from a North Sea sandstone oil reservoir.  

It is relatively friable with the sand particles on the surface of the core disintegrating rather 

easily upon friction, but by appropriate preparation, as will be described later, the core was 

able to withstand the test flow and pressure without collapse.  No measurement of the core 

compressive strength was, however, made. 

The porosity of the cores was determined by a helium porosity test while the pore volume of 

each core was determined as the total volume of fluid used to saturate the system minus the 

dead volumes of tubing connecting the core to the rest of the system.   

The permeability of the core was first measured using methane, at the test pressure and 

temperature followed by measurement using the brine or oil sample at the same conditions.  
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Measurements were repeated at least three times, to ensure reliability.  For the Clashach core, 

permeability measured using methane was found to be very rate-dependent, while those 

measurements using the oil sample (decane) were very stable and repeatable.  Therefore, the 

effective permeability to oil was used to represent the Clashach core permeability.  For the 

reservoir core, the average measured base permeability to brine was 4580 mD while that to 

methane was 16% lower.  Instability of differential pressure readings at high flow rates when 

using methane introduced some uncertainties in the calculated permeability values.  The base 

permeability to brine was therefore taken to represent the permeability of the reservoir core.  

During these repeated permeability measurements using brine, no fines were observed in the 

effluent.  The dimensions and properties of the cores used are given in Table 3.1. 

 

Table 3.1: Dimensions and properties of the cores used in the flow tests. 

Core Name Length, 
cm 

Diameter, 
cm 

Porosity, 
fraction 

Absolute 
k, mD Wettability 

Clashach 1 33.20 4.99 0.185 1300 Water-wet 
Clashach 2 61.30 4.99 0.165 850 Mixed-wet 
Reservoir core 8.14 3.72 0.350 4580 Water-wet 

 

3.2.3.  Fluid samples 

For the tests reported here, three oil samples and two brines were used.  The oil samples were 

high purity n-decane (C10H22), a refined mineral oil and a stock-tank (dead crude) oil sample 

from a North Sea reservoir.  Decane is miscible with CO2 at the test temperature and pressure 

of 100.4 oF and 2000 psig, respectively.  The relatively heavier refined oil and crude oil 

contain mainly C20+ components, as shown in Table 3.2 and 3.3 respectively, and are 

immiscible with CO2 at the test conditions.  The viscosities and densities of the oil samples are 

shown in Table 3.4. 
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Table 3.2: The extended compositions of the refined mineral oil. 

Component Mole% Component Mole% Component Mole% Component Mole% 
C20s 0.17 C28s 5.20 C36s 4.86 C44s 2.05 
C21s 0.28 C29s 5.96 C37s 4.17 C45s 1.11 
C22s 0.73 C30s 6.13 C38s 4.30 C46s 1.29 
C23s 1.62 C31s 5.72 C39s 3.61 C47s 0.78 
C24s 2.99 C32s 5.28 C40s 3.57 C48s 0.71 
C25s 4.11 C33s 5.22 C41s 3.22 C49s 0.58 
C26s 5.55 C34s 5.57 C42s 2.14 C50+ 1.62 
C27s 5.13 C35s 4.46 C43s 1.87 TOTAL 100.00 

 

Table 3.3: The extended compositions of the stock tank oil. 

Component Mole% Component Mole% Component Mole% Component Mole% 
C3 0.06 C8s 2.96 C15s 5.06 C22s 2.77 
iC4 0.06 C9s 2.29 C16s 4.78 C23s 2.31 
nC4 0.07 C10s 2.95 C17s 3.94 C24s 2.35 
iC5 0.18 C11s 3.01 C18s 4.09 C25+ 37.31 
nC5 0.09 C12s 3.86 C19s 3.71 TOTAL 100.00 
C6s 0.53 C13s 4.52 C20s 3.27 
C7s 1.90 C14s 4.92 C21s 3.01 

 

Table 3.4: Properties of the oils used at 100.4 oF. 

Sample Properties Value Source 

Decane Viscosity at 2000 psig, cP 0.832 Lemmon et al. (2008) 
Density at 2000 psig, lb/ft3 45.44 Lemmon et al. (2008) 

Refined 
mineral oil 

Viscosity at 2000 psig, cP 81 Measured 
Density at 2000 psig, lb/ft3 57.12 Calculated (PREOS) 

Dead crude 
oil 

Viscosity at 2000 psig, cP 145 Measured 
Viscosity at 2500 psig, cP 158 Measured 
Density at 2000 psig, lb/ft3 58.07 Calculated (PREOS) 

 

The first brine used was synthetic brine made of degassed distilled water with 10,000 ppm 

salinity containing 0.8 wt% sodium chloride (NaCl) and 0.2 wt% calcium chloride 

hexahydrate (CaCl2.6H2O).  The second brine used was of higher salinity representing typical 

injection brine (seawater) in the real field waterflood.  It contains 2.6 wt% of sodium chloride 

(NaCl) and 0.6 wt% of calcium chloride hexahydrate (CaCl2.6H2O) with a total dissolved solid 

of 35,380 ppm.  The ionic contents of the second brine are given in Table 3.5.  Hereafter, the 
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low and high salinity brines are referred to as Brine 1 and Brine 2, with the corresponding 

carbonated brine as Carbonated Brine 1 and Carbonated Brine 2, respectively.  Throughout 

this chapter, the terms carbonated water and carbonated brine are used interchangeably to refer 

to carbonated brine.  The same brine was used for the connate water as well as the injected 

water in the tests.  

To make up the carbonated brine, 99.9% purity CO2 was mixed with brine in a pressure cell 

until saturation.  The brine was first degassed by vacuum pump to remove air.  It was then 

mixed with CO2 in a rocking cell at the required carbonation pressure and 100.4 oF.  The 

mixture was agitated to facilitate mixing until the pressure was stabilised, indicating that the 

fluids inside the cell were at equilibrium.  The equilibrium fluid was then transferred into the 

storage vessels and stored at the test pressure and temperature.  Properties of the brine samples 

are given in Table 3.6.  All the viscosities of the brine and carbonated brines were measured.  

The density of Brine 1 was assumed as that of fresh water density, taken from National 

Institute of Standard (NIST) database (Lemmon et al., 2008), whereas the densities of the 

carbonated brines were extrapolated from data measured by Garcia (2001), Figure 3.3.   

Table 3.5: Ionic content of the synthetic seawater (Brine 2). 

Ion ppm Ion ppm 
Na 11700 Li 2.2 
Ca 1170 Cl 18200 
Mg 326 SO4 3180 
K 123 Br 34 
Sr 31 HCO3 0 

 

Table 3.6: Properties of the brine used at 100.4 oF. 

Sample Pressure, 
psi 

Viscosity, µ, 
cp 

Density, ρ, 
g/cc 

CO2 solubility, sm3/m3 
Calculated Ave. Measured 

Brine 1 
2000 

0.68 1.000  -  - 
Carbonated Brine 1 0.69 1.011 31.1 29.9 
Brine 2 

2500 
0.65 1.000  -  - 

Carbonated Brine 2 0.85 1.030 29.3 28.2 
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Figure 3.3: Density of NaCl solutions for salt mass fraction (XNaCl) from 0 to 0.25 (Garcia, 
2001). 

 

The CO2 solubility in water (Rsw) was calculated by the Chang et al. correlation (1998), which 

is used in E300 simulator (ECLIPSE 2007.1).  Details of the correlations are given in 

Appendix A3.1.  The solubility was then corrected for the effect of brine salinity using 

Equation 3.1:  
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R
R
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sb

                                                                                        (3.1) 

where Rsb is the CO2 solubility in brine of salinity S in scf/stb, Rsw in scf/stb, S is the salinity in 

weight% of solid and T is temperature in °F. 

At 2000 psig and 100.4 oF, Rsw was estimated at 31.1 sm3/m3 whilst at 2500 psig and 100.4 oF, 

Rsw was calculated to be 45.1 sm3/m3 (184.3 scf/stb), which was then reduced to 29.3 sm3/m3 

(165 scf/stb) after correction, due to brine salinity.  A good agreement was observed between 

the calculated and measured CO2 solubility, as shown in Table 3.6.  
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3.2.4.  Test preparation and procedures 

The core was first cleaned by at least two cycles of methanol and acetone, and subsequently 

put in the oven at 149 oF (65 oC) to dry.  The core was then wrapped in aluminium foil before 

being put into a sleeve and mounted horizontally in a high-pressure core holder.  For the 

reservoir core which is relatively friable, a heat shrink was applied after wrapping the core 

with the foil to ensure the core did not disintegrate under the test flow and pressure.  Brine was 

placed in the annular space between the core and the core holder and pressurized to provide a 

confining pressure.  As the reservoir core was not preserved, there is a possibility that it might 

be oxidised.  The effect of the possible oxidation on the results reported here was however not 

quantified.  

Different displacement rates were used for different core sizes; 20 cc/hr (0.25 m/day) for the 

Clashach cores and 1 cc/hr (0.44 m/day) for the much shorter reservoir core.  The rates were 

chosen such as to ensure that the displacement rate was within typical displacement rates at the 

reservoir scale of 0.1 to 1 m/day.  The calculated viscous/gravity ratio, Rv⁄g, for the 

experiments using Equation 2.5 (in Chapter 2) are shown in Table 3.7.  Except for the 

coreflood involving the viscous mineral oil in the Clashach core, Rv⁄g values of the experiments 

are relatively low, indicating the flow is dominated by gravity.  In order to minimize the 

impact of gravity segregation of the fluids inside the core, the core holder was rotated during 

the experiments. 

 

Table 3.7: The calculated viscous/gravity ratio for the coreflood experiments. 

Core Length, 
cm 

Diameter, 
cm k, mD  

Injection 
rate, cc/hr Oil sample Rv/g 

Clashach 1 33.20 4.99 1300 20 
Decane 5 

Mineral oil 1412 
Clashach 2 61.30 4.99 850 20 Decane 13 
Reservoir core 8.14 3.72 4580 1 Stock tank oil 34 

 

Two sets of coreflood tests were carried out: 
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1. Secondary carbonated waterflood (without preceding water injection) at 100.4 oF and 

2000 psig, using Clashach cores with no initial water saturation, Swi.   

2. Secondary and tertiary (post-waterflood) CWI performed using the reservoir core with 

crude oil at Swi. 

 

The first set of the coreflood tests were performed in the core rig shown in Figure 3.2 with 

effluent volumes measured at the test conditions, involving decane, refined viscous oil, Brine 1 

and Carbonated Brine 1.  Excluding any pre-existing water in the core for this set of tests 

enables us to accurately monitor the flow of the injected carbonated water and the manner in 

which the dissolved CO2 is transported within the porous medium.   

In the secondary process, the displacing fluid (water or carbonated water) was injected to 

displace the oil in the core without a preceding water injection.  After saturating the core with 

the oil, plain water was injected until no oil was produced to quantify the oil recovery from the 

core by water injection (WI).  The displacement was stopped when no change in the volume of 

the collected oil in the measuring cylinders was observed as the injection continued.  At this 

stage, the oil production volume reduced from 1 PV per pore volume injected (PVI) to a very 

low value of 0.02 PV oil/PVI.  In other words, the production rate was dropping from being 

equal to the injection rate at the beginning to 2% of that when the injection stopped.  Prior to 

the subsequent secondary CWI, the core was cleansed with many pore volumes of acetone and 

methanol in order to remove any residual water or oil from the preceding waterflood test.  The 

core was then again saturated with the oil under the same conditions, followed by the 

carbonated water displacement. 

The second set of coreflood tests were performed using the reservoir core with crude oil 

sample in the core rig shown in Figure 3.1.  All the coreflood tests in the reservoir core were 

performed at Swi in order to closely mimic the presence of irreducible water in the reservoir.  

The coreflood displacements with Carbonated Brine 1 and Carbonated Brine 2 were carried 

out at 2000 and 2500 psig, respectively.  The steps involved in the test with the Swi are 

flowcharted in Figure 3.4.   
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Figure 3.4: General work flow of the coreflood tests in the reservoir core at initial water 
saturation, Swi. 

 

The initial oil and water saturations were first established in the core.  This was done by 

injecting oil through the brine-saturated core until the brine production came to a plateau.  In 

the secondary CWI, the CO2 content of the injected carbonated water was then measured to 

confirm no leakage of CO2 from the carbonated water during transfer, followed by the 

carbonated waterflood.  For the tertiary CWI, after establishing the initial fluid saturations in 

the core, plain water was injected until no measureable amount of oil was produced.  Then the 

CO2 content in the injected carbonated water was measured, followed by the carbonated 

waterflood.   

The volume of the oil, gas and water produced, the differential pressure (∆P) across the core, 

as well as the ratio of CO2 gas produced to carbonated water injected, designated as Rs(CO2), 
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were monitored and recorded throughout the tests.  This ratio was compared with the initial 

CO2 content in the carbonated water.  This is to check whether the fluid inside the core was 

still taking up the CO2 from the injected carbonated water.  If it was, then the ratio showed an 

increasing trend.  On the other hand, if the ratio started to level off, it indicated the fluid inside 

the core was almost saturated with CO2.  Although it is desirable to stop the test when the 

residual oil in the core is almost saturated with CO2, practically, this would take many more 

pore volumes of carbonated water injections, and thus an impractically long experimental 

time.  In this study, the tests were stopped when the Rs(CO2) has at least started to stabilize.  

When the coreflood test had stopped, plain water was flushed through the core and the CO2 

produced was measured to quantify the amount of the CO2 stored in the core at the end of the 

coreflood test. 

 

3.3. Experimental results and discussion 

The displacement tests carried out in this study are shown in Figure 3.5.  The test numbers 

mentioned in the subsequent text in this chapter refer to the test numbers shown in this plot.  

The effect of oil viscosity, core wettability, brine salinity and the recovery mode on CWI 

performance was investigated.  In certain tests, the amount of the injected CO2 being stored 

was also quantified.  The behaviour of the dissolved CO2 was examined by observing the CO2 

front propagation, as this affects the effectiveness of CWI as an oil recovery method.   

As can be seen later, for the coreflood tests in the reservoir core, the Swi established at the 

beginning of the tests vary slightly from one test to the other.  In order to avoid these different 

initial conditions from influencing the analysis of the results, comparison was also made with 

the oil recovery expressed as a fraction of initial oil saturation, Soi, instead of pore volume 

(PV). 
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Figure 3.5: List of coreflood experiments reported. 

 

3.3.1.  Secondary versus tertiary CWI 

In the secondary recovery mode, carbonated water was injected to displace the oil in the core 

(with or without Swi) whereas in the tertiary recovery mode, CWI into the core started 

consecutively after plain water has been injected until close to waterflood residual oil 

saturation has been achieved.  The comparison here is made between the coreflood test results 

in the reservoir core using crude oil and Carbonated Brine 2 (Tests 2 and 3).  The CWI 

performance was compared with that of WI coreflood test carried out chronologically closest 

to it, to ensure that comparison is made at reasonably similar core properties.  CWI has been 

reported to have caused permeability alterations in sandstone cores due to dissolution of rock 

minerals by the carbonic acid (Ross et al., 1983; Sayegh et al., 1990; Tang et al., 1999). 

The crude oil was first injected into the brine-saturated core, whereby Swi of 10.6 %PV was 
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established.  Plain Brine 2 was then injected (Test 1) at 1 rcc/hr and stopped at 0.8 PVI where 

the rate of the oil production dropped to about 0.013 PV or 0.4 cc of oil produced per PVI.  

With this very low amount of oil produced, it was taken that continuing the brine injection 

would not produce any measurable amount of oil.  41.6 %PV (46.5 %Soi) oil recovery was 

recorded from this WI.  The rather high residual oil saturation may have been contributed to by 

the relatively high viscosity of the oil used. 

The core was next thoroughly cleaned by two cycles of toluene and methanol to prepare for 

the secondary CWI (Test 2).  The initial oil and water saturation in the core were again 

established and this time Swi of 7.2 %PV was obtained.  Before injecting the carbonated water 

into the core, 4 PV of the carbonated water was first allowed to flow through the bypass line 

and the CO2 produced was measured.  The CO2 in the brine was recorded at 27.7 sm3/m3, 

which was in reasonable agreement with the theoretical value of 29.3 sm3/m3.  Having verified 

the CO2 content, the carbonated water was then injected through the core at 1 rcc/hr.   

At a certain stage during the injection, the water and oil effluent appeared emulsified with 

sediment-like materials produced (Figure 3.6), which was not observed during the preceding 

brine injection.  In order to confirm the effluent volume, the cylinders containing core effluent 

were settled in an oven at 122 oF (50 oC) to allow separation of phases.  60.6 %PV (65.2 %Soi) 

of oil was recovered at the end of this secondary carbonated waterflood.  No analysis was done 

to identify the sediment.  However, the analysis of the water effluent using an Inductively 

Coupled Plasma (ICP) spectrometer showed the presence of Fe, Al and Si which were not 

present in the fresh carbonated brine.  Due to the relatively friable nature of the core used, the 

sediment could possibly be fines which had migrated out of the core due to the flooding.  

Dissolution of the carbonate cementing material of the core could also possibly have occurred.  

Measurement of the core permeability after the test revealed that the permeability had 

increased by 17% to 5360 mD.   

Figure 3.7 shows the ratio of CO2 produced to the volume of carbonated water injected 

recorded during the secondary CWI (Test 2).  Initially, all the CO2 in the injected carbonated 

water was dissolved in the oil and in-situ water.  The Rs(CO2) ratio increased gradually until it 

slowly levelled off at about 77 % of the initial value.  At this point, the fluid in the core was 

minimally taking up the CO2 in the injected carbonated water.  The amount of CO2 injected, 

produced and left in the core at any particular time during the displacement is plotted in Figure 
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3.8. 

 

Figure 3.6: Example of sediment formed at the bottom of the measuring cylinder in the 
collected effluents. 
 

 

Figure 3.7: The ratio of the cumulative CO2 produced to the volume of carbonated water 
injected during secondary CWI, crude oil in reservoir core at 100.4 oF, 2500 psig (Test 2). 
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Figure 3.8: The cumulative CO2 injected, produced and left in the core during secondary CWI, 
crude oil in reservoir core at 100.4 oF, 2500 psig (Test 2). 

 

The tertiary CWI (Test 3) was carried out to quantify the level of increase in the oil recovery 

by CWI after a plain WI.  Swi was first established in the core, which was 12.7 %PV, following 

the same procedure described for Test 1.  In order to simulate conventional water flooding, 

plain brine was then injected until up to 2.86 PV, by which time no further oil recovery was 

observed. 58.4 %PV (66.9 %Soi) of oil was recovered by the waterflood, leaving 28.9 %PV of 

residual oil.  This much higher oil recovery from WI as compared to that from Test 1 is 

consistent with the increase in permeability of the core after Test 2.  The carbonated water, 

which contained 28.7 sm3 of CO2 per m3 of brine for this test, was then injected into the core 

at 1 rcc/hr.  The CO2 produced was monitored throughout the test and after 5.26 PVI, the 

Rs(CO2) reached 23.5 sm3/m3, as shown in Figure 3.9.  At this point, no measurable amount of 

oil was produced and the CWI was stopped with 67.6 %PV (77.4 %Soi) of total oil recovered.  

Figure 3.10 shows the cumulative CO2 injected, produced and left in the core. 
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Figure 3.9: The ratio of the CO2 produced to the carbonated water injected during tertiary 
CWI, crude oil in reservoir core at 100.4 oF, 2500 psig (Test 3). 

 

 

Figure 3.10: The cumulative volume of CO2 injected, produced and left in the core during 
tertiary CWI, crude oil in reservoir core at 100.4 oF, 2500 psig (Test 3). 
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clearly show that CWI has a promising potential as an EOR injection strategy in both 

secondary and tertiary recovery modes with higher recovery in the former than the latter.  The 

results also serve as evidence that tertiary CWI can re-mobilize part of the oil that had been 

trapped in the preceding water injection period. 

 

Table 3.8: The incremental oil recovery from the secondary and tertiary CWI. 

Process Swi, % 
PV 

Oil recovery Incremental oil 
recovery 

% PV % Soi % PV % Soi 
WI 10.6 41.6 46.5     

Secondary CWI 7.2 60.6 65.2 19.0 18.7 
WI 

12.7 
58.4 66.9     

Tertiary CWI 67.6 77.4 9.2 10.5 

 

For an ideal comparison, both secondary and tertiary experiments had to be conducted on the 

same piece of rock having the same properties.  However, as mentioned above, the secondary 

CWI has resulted in the change of the core permeability giving higher oil recovery from the 

subsequent WI prior to the tertiary CWI.  This inevitably raises a question as to what the actual 

incremental oil recovery for the tertiary CWI is for the unmodified core.   

The author hypothesizes that without the change in the core permeability the tertiary CWI will 

still increase the oil recovery above that of WI and the incremental oil recovery maybe even 

higher than 9.2 %PV but not exceeding the 19% recorded by the secondary CWI.  The fluid 

mobility in the core maybe slightly reduced but the remaining oil to be recovered by the CWI 

would be much more as compared with that with the higher permeability core. 
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Figure 3.11: The cumulative oil recovery from secondary CWI using Carbonated Brine 2 in 
the reservoir core, at 100.4 oF, 2500 psig (Test 2). 

 

 

Figure 3.12: The cumulative oil recovery from the tertiary CWI using Carbonated Brine 2 in 
the reservoir core, at 100.4 oF, 2500 psig (Test 3). 
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3.3.2.  Effect of oil viscosity 

In order to investigate the effect of oil viscosity on the CWI performance, the secondary CWI 

in the water-wet Clashach core using decane (Test 4 and 5) and refined viscous oil (Test 6 and 

7) were compared.  For both tests the water and carbonated water was injected at 20 rcc/hr.  At 

the test temperature and pressure, the refined oil viscosity of 81 cP is about two orders of 

magnitude higher than that of decane (0.82 cP).   

The cumulative oil recovery and differential pressure across the core for decane and the 

refined viscous oil are shown in Figure 3.13 and Figure 3.14, respectively.  Prior to water 

breakthrough, the rate of oil recovery equalled the rate of the carbonated water injection.  Both 

WI and CWI broke through at about the same time, after which the oil production rate slowed 

down significantly.  CWI gives higher additional oil recovery with decane than with viscous 

oil.  With a favourable viscosity ratio of 1.2, closer to piston-like displacement with sharper 

breakthrough was observed for decane.  Oil production took place mainly before the water 

breakthrough during which 64 %PV of oil was produced.  At the end of the injections, a total 

of 71 %PV of decane was recovered by WI, while CWI produced 7.6 % more.  

 

 

Figure 3.13: Comparison between the measured (a) differential pressure across the core and 
(b) cumulative oil recovery for WI and CWI, decane, water-wet core at 100.4 oF, 2000 psig 
(Tests 4 and 5). 

 

0.0

0.2

0.4

0.6

0 1 2 3 4

∆P
 p

si
g

CW injected, PV

WI

CWI

0.0

0.2

0.4

0.6

0.8

0 1 2 3 4

O
il 

re
co

ve
ry

, P
V

CW injected, PV

WI

CWI

(a) (b)



Chapter 3: CWI Experimental Studies 

 

65 

 

 

Figure 3.14: Comparison of measured (a) differential pressure across the core and (b) 
cumulative oil recovery between WI and CWI, refined viscous oil, water-wet core at 100.4 oF, 
2000 psig (Tests 6 and 7). 
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differential pressure across the core was just a fraction of 1 psi, which increased gradually to a 

peak value at breakthrough, before gradually stabilizing as more carbonated water was 

injected.  However, the more viscous oil requires much higher differential pressure to displace 

the oil as shown by a sharp declining ∆P trend in Figure 3.14.  The slightly lower differential 

pressure than those of WI after the breakthrough demonstrate a more efficient displacement by 

the carbonated water despite the fact that more oil was produced. 

 

3.3.3.  Effect of wettability 

The reservoir wetting state or wettability has been widely reported to affect the pore 

displacement mechanism and theh fluid distribution.  Among the factors that affect wettability 

are oil and water composition, te mineralogy of the rock, the initial water saturation, and the 

temperature (Bobek et al., 1958; Buckley et al., 1989; Buckley and Liu, 1998).  

The impact of core wettability on CWI performance was assessed by comparing the oil 

recovery and differential pressure of the WI and CWI for decane in the water-wet core as 

shown in Figure 3.13 and mixed-wet core.  For the mixed-wet core, as can be seen in Figure 

3.15, the additional oil recovery from CWI took place at breakthrough i.e., much sooner than 

in the water-wet core, in which the additional oil recovery took place gradually, after the 

breakthrough.  Again, a much more efficient displacement in CWI is evident from much lower 

pressure drops across the core yet higher oil production than in WI.  The difference in the 

differential pressure of WI and CWI is also much larger in the mixed-wet core. 

For more or less the same pore volume injected, oil recovery from WI is lower in the mixed-

wet core (58.5 %PV) than in the water-wet core (71.0 %PV).  This is due to the fact that in the 

water-wet core, water occupies the small pores and forms a thin film over the rock surfaces 

while oil occupies the centres of the larger pores (Donaldson et al., 1971).  During 

waterflooding, water will tend to imbibe into small-sized pores and displaces the oil into the 

centre of the large pores, which results in efficient oil recovery. 
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Figure 3.15: Comparison of measured cumulative oil recovery (left) differential pressure 
(right) across the core and between WI and CWI, decane, mixed-wet core at 100.4 oF, 2000 
psig (Tests 8 and 9). 
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those using low salinity carbonated brine (Carbonated Brine 1) were compared.  It should 

however be noted that the latter was performed at 2000 psig, 100.4 oF with estimated CO2 

solubility of 31 sm3/m3.  The CO2 solubility in Carbonated Brine 2 at 2500 psig, 100.4 oF was 

around 29.3 sm3/m3.  Only relative comparison in the oil recovery trend could be made, due to 

this difference in the test pressure.  

As can be seen in Figure 3.16, at the same PV injected after breakthrough, the oil recovery 

from the secondary low salinity CWI is slightly higher than that of high salinity (Carbonated 

Brine 2).  A similar trend was observed with the plain WI where the Brine 1 flooding (Test 10) 

yields higher oil recovery (48 %PV) than that obtained from Brine 2 injection (41.6 %PV) 

(Test 1).  On the other hand, the incremental oil recovery for the tertiary CWI was higher in 

the high salinity Carbonated Brine 2 (Figure 3.17).  The incremental oil recoveries from these 

coreflood tests are summarized in Table 3.9. 

 

Table 3.9: The measured incremental oil recovery from the secondary and tertiary CWI 
using Carbonated Brine 1 and Carbonated Brine 2. 

Process Brine Swi, % PV 
Incremental Oil 

recovery 
% PV % Soi 

Secondary CWI Carbonated Brine 1 14.5 18.8 22.0 
Secondary CWI Carbonated Brine 2 7.2 19.0 20.5 

Tertiary CWI Carbonated Brine 1 15.4 6.6 7.8 
Tertiary CWI Carbonated Brine 2 12.7 9.2 10.5 

 

3.3.5.  Displacement front propagation 

CWI as an EOR method relies on CO2 contact with the resident oil.  CO2 solubility in the oil, 

through diffusion and dispersion mechanisms results in the oil viscosity reduction, 

vaporization of lighter hydrocarbon in crude oil and oil swelling that expels the oil from the 

rock matrix.  This swelling effect results in much less residual oil left in the reservoir after 

flooding and the reduction in oil viscosity increases the fluid mobility thus increasing the local 

displacement efficiency.  The immiscible CO2 EOR process also benefits from these 

mechanisms.   
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Figure 3.16: The cumulative oil recovery for secondary CWI using Carbonated Brine 1 and 
Carbonated Brine 2, crude oil in reservoir core (Tests 2 and 11). 

 

 

Figure 3.17: Comparison of oil recovery from tertiary CWI using (left) Carbonated Brine 1 
(Test 10) and (right) Carbonated Brine 2 (Test 1), crude oil in reservoir core. 
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would approach that of plain WI.  To improve the oil recovery, CWI should be able to deliver 

the dissolved CO2 to the oil, to result in the required changes of the oil physical and flow 

properties, such as the oil swelling and oil viscosity reduction.  Larger improvement in oil 

mobility would be achieved if the carbonated water front is not deprived of its CO2 early and 

travels a longer distance in the reservoir.  Longer residence time of CO2 in the reservoir is 

favourable for CO2 storage, too.   

The brine and CO2 breakthrough times were thus closely observed and compared during the 

coreflood experiments.  Figure 3.18a shows the early time production of brine and CO2 in the 

secondary CWI experiment with decane in the mixed-wet core with recovery measured at the 

standard condition.  CO2 broke through after 0.64 PVI whereas brine broke through at 0.7 PVI.  

The same behaviour was also observed during the secondary Carbonated Brine 2 injection of 

the crude oil in the reservoir core (Test 2), with an even larger gap between CO2 and brine 

breakthrough time.  The CO2 from the injected carbonated water had departed from the 

carbonated water, dissolved into the oil and was produced together with the oil ahead of the 

water, as shown in Figure 3.18b.  

This small yet noticeable difference shows that the carbonated water front had not been 

depleted of its CO2 content instead the CO2 has moved ahead of the carbonated water front.  

This serves as evidence of the diffusion and dispersion of CO2 from the carbonated water into 

the oil i.e. as a result of the CO2 transfer from the carbonated water into the oil.  This is an 

important finding because it proves good delivery of CO2 by the carbonated water front to the 

oil as opposed to the behaviour of the carbonated water flood front predicted by the Buckley-

Leveret method (de Nevers, 1964), in which the carbonated water loses its CO2 completely 

into the oil to become plain water and moves faster than the CO2. 

A closer look at the gas production trend in Figure 3.19 also reveals that there were two 

distinct phases of gas production.  During the first phase, the rate of gas production was more 

gradual indicating that the CO2 gas slowly being produced; consistent with the CO2 diffusion 

into and produced together with the oil.  The gas production would have increased drastically 

after breakthrough if it was merely gas coming out of solution.  The pressure data across the 

core given in Appendix A3.4 also shows that the inlet and outlet pressures were consistently 

close to the reported test pressure i.e. there was no unexpected pressure drop that could trigger 

gas evolving out of the solution prior to the gas breakthrough.  
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Figure 3.18: Early production of CO2 and brine during secondary CWI of (a) decane in mixed-
wet core and (b) crude oil in the reservoir core. 

 

 

Figure 3.19: Early production of CO2 and brine during secondary CWI of (a) decane in mixed-
wet core and (b) crude oil in the reservoir core, showing two distinct gas production phases 
(shown by two dotted lines). 
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time as it moves forward into the reservoir.  This important observation helps us to understand 

the behaviour of the dissolved CO2 and its interactions with the oil and water inside the 

reservoir as the CWI progresses, which impacts the effectiveness of CWI as an oil recovery 

method. 

 

3.3.6.  CO2 storage through CWI 

In CWI, part of the CO2-diluted oil will be recovered.  However, a large part of the transferred 

CO2 will remain dissolved in the remaining oil, which is important for CO2 storage.  Taking 

the coreflood results of the stock tank oil in the reservoir core (Tests 2 and 3) as examples, 

about 45 and 51% of the injected CO2 was stored in the secondary and tertiary CWI 

respectively, after about 4.5 PV of carbonated water injections (Table 3.10).   

 

Table 3.10: The measured amount of CO2 stored in the secondary and tertiary CWI using 
the stock tank oil in the reservoir core and Carbonated Brine 2 at 2500 psig, 100.4 oF. 

Process CO2 
injected, scc 

CO2 stored Oil produced, 
cc 

Retention factor, 
scc/cc scc % CO2 

injected 
Secondary 3857 1743 45 18.78 93 
Tertiary 4000 2048 51 2.76 742 

 

Retention factor is defined as the standard volume of CO2 left in the reservoir per stock tank 

volume of oil produced.  In order to get an idea how these retention factors compare with those 

of the conventional immiscible CO2 flooding, the author refers to the study by Klins and 

Farouq (1981) on conventional immiscible CO2 flooding as an EOR method.  They reported 

that for 100 cP oil at 100 oF, the retention factor varies from 181.6 scf of CO2 per barrel of 

produced oil (32 scc/cc) for a reservoir with 70% Soi to 1147.3 scf of CO2 per barrel of 

produced oil (204 scc/cc) for a reservoir with 40% Soi.  Extrapolating this retention factor-Soi 

relationship (Figure 3.20), the retention factor of the immiscible continuous CO2 injection was 

estimated at 25 scc/cc and 382 scc/cc for 92.8% and 28.9% Soi, which was the Soi for the 
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secondary and tertiary CWI in this study, respectively.  As shown in Table 3.9, much higher 

retention factor of 93 scc/cc and 742 scc/cc was obtained in the secondary and tertiary CWI 

processes, respectively.  This could be contributed by the uniform distribution of CO2 in the 

reservoir in CWI as compared to that in the immiscible continuous CO2 injection.   

 

Figure 3.20: CO2 retention factor for 100 cP oil in immiscible CO2 injection as a function of 
Soi (from Klins and Farouq, 1981).   

 

3.4. Overall discussion 

The results of a series of carbonated water coreflood experiments have been presented and 
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of determining experimentally the oil recovery and CO2 storage by CWI and to further 

understand the mechanisms of the CWI process.  Even though only one set of experiment for 

each process and sample was reported, the displacement tests were repeated at least twice and 

some trends were also checked for other samples used as well.   

As a water-based oil recovery method, CWI performance has been compared with 

conventional waterflood, instead of direct CO2 injection.  At typical reservoir conditions, 

carbonated water dissolves 5 to 7 percent CO2, thus direct comparison between CWI and 

(100%) CO2 injection is difficult.   
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The experimental results clearly show that both secondary and tertiary CWI can improve the 

oil recovery above that of plain waterflooding.  Secondary CWI gives higher and earlier 

incremental oil recovery than the tertiary CWI process as would usually be obtained for other 

oil recovery methods as well.  In tertiary recovery, the remaining oil is more likely to be 

disconnected and exists in the form of isolated or by-passed patches, which are more difficult 

to remobilise.  In the coreflood using the stock tank oil in the reservoir core reported here, 

secondary CWI reduces the waterflood oil saturation (Sorw) by 35%.  It is interesting to note 

that this value falls within the 33-48% reduction of Sorw reported by McFarlane et al. (1952) 

from their carbonated water coreflood experiments, using much lighter Bradford crude (� 2.86 

cP) at 750 psig, 75 oF.  The 40% improvement in oil recovery above the original estimates of 

conventional waterflood potential is also in good agreement with the 43% increase of oil 

recovery in the K&S secondary CWI project in Oklahoma reported by Hickok et al. (1962).   

The tertiary CWI process in this study reduced the waterflood residual oil saturation by 31%.  

McFarlane et al. (1952) reported 8-47% reduction of the waterflood residual oil saturation by 

the tertiary carbonated coreflood of Bradford crude.  It seems as if the oil viscosity does not 

strongly influence the reduction in the Sorw by CWI even though large difference in 

incremental oil recovery was observed between lighter and more viscous oil in terms of %PV. 

The same trend was also observed in the case of decane (Tests 4 and 5) and viscous mineral oil 

(Tests 6 and 7) in the secondary CWI using the Clashach core, in which the additional oil 

recovery due to CWI of the more viscous oil, above that of WI, is more or less the same as that 

of decane, despite the former having the disadvantage of viscous fingering and much lower 

CO2 solubility (lesser oil swelling) than decane.  This infers that other mechanisms other than 

oil swelling due to CO2 diffusion from carbonated water into the oil are also playing their 

roles.   

It is believed that the more viscous oil benefits more from the oil viscosity reduction due to 

CO2 diffusion into the oil than the lighter oil.  For example, while, for decane, oil swelling and 

miscibility are the key recovery mechanisms, for the viscous refined oil, the viscosity 

reduction plays a greater role than the oil expansion.  De Nevers (1964) in his simulation 

studies reported that “carbonated water flooding will not be economical for crudes which 

swell strongly on carbonation but which do not have a significant viscosity reduction”.  As 

reported by Miller and Jones (1981), when contacted by CO2, a larger percentage reduction 
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occurs in the viscosity of more viscous crudes.  Macfarlane et al. (1952) demonstrated that 

CWI could result in more oil recovery than that theoretically possible by an oil volume 

expansion (oil swelling) alone.  They reported reductions in oil viscosity of up to 50%.  They 

also observed a similar trend of negligible difference in oil recovery when the viscosity of the 

Bradford oil used in their CWI coreflood tests was reduced from 2.86 cP to 1.42 cP by mixing 

it with heptane, at 750 psig and 75 oF.  These comparisons highlight one of the important 

advantages of CWI: it brings comparable incremental oil recovery for light oil as well as for 

intermediate viscous oil.  However, before this can be made a general conclusion, more 

coreflood experiments on a wider range of oil viscosities, densities and reservoir temperature 

and pressure are recommended to be carried out.  

In addition to oil viscosity reduction, several mechanisms could have also contributed to the 

additional oil recovery by CWI.  Sohrabi et al. (2009) and Riazi et al. (2009, 2010) studied the 

dominant pore scale mechanisms in secondary and tertiary CWI using decane and refined 

viscous oil through a series of two phase fluid flow experiments in a high pressure two 

dimensional glass micromodel.  They concluded that swelling and remobilisation of isolated 

oil ganglia as a result of diffusion of CO2 from carbonated water to oil as one of the most 

important mechanisms of oil recovery in CWI.  They monitored the oil saturation in the 

micromodel versus time during CWI.  Prior to the water breakthrough, oil recovery was 

mainly by displacement, as shown by the sharp drop in Figure 3.21.  As more carbonated 

water was injected, CO2 from the injected carbonated water diffused into the trapped oil left 

behind in the main displacement and swelled the oil.  Over time, the isolated, swollen oil 

ganglia coalesced with each other and eventually produced.  A similar observation was 

reported in the tertiary carbonated displacement in the micromodel (Riazi et al., 2009) but the 

level of swelling is less due to the presence of mobile water from the preceding waterflooding. 

Another important mechanism is fluid redistribution or flow diversion.  Oil swelling could 

cause fluid flow in some of the pores to become partially or completely restricted.  In 

micromodel experiments using decane at 100 oF and 2000 psig, Riazi et al. (2009) observed 

that before CO2 dissolution in the oil droplets, the carbonated water can flow through the sides 

of the pores (Figure 3.22a) but as the oil blobs swell (Figure 3.22b), some of the paths become 

partially or totally blocked.  The carbonated water flow will be diverted and it contacts oil 

droplets in other areas that otherwise could have been bypassed, thus improving oil recovery.   
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Figure 3.21: Oil saturation versus time, during CWI as a secondary recovery method in a 
micromodel (Sohrabi et al., 2008). 

 

 

Figure 3.22: (a) Free oil droplets (white) surrounded by carbonated water (blue) (b) Swelled 
oil droplets as a result of dissolved CO2 that block some of the fluid paths (Riazi et al., 2009). 

 

Figure 3.18 earlier clearly shows that diffusion and dispersion of CO2 is occurring during the 

core displacement in which much earlier CO2 breakthrough time than that of the brine was 

recorded.  The coreflood results also show that the native state of wettability of the rock is 

influential to the performance of CWI.  This is further supported by the results from the CWI 

micromodel test on 16.5 cP mineral oil at 2000 psig and 100 oF (Figure 3.23), in which the 

oil/water interfaces show a more rounded shape after CWI (Figure 3.23b) than after WI 

(Kechut et al., 2010).   

(a (b
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Change in oil-carbonated water interfacial tension could have also affected the recovery from 

CWI process.  Johnson et al. (1952) reported a lowering of approximately 37% in interfacial 

tension between Bradford crude oil of 2.86 cP and carbonated water, at 750 psig, 75 oF.  The 

carbonation level of the injected water, temperature, pressure, and reactivity of the crude oil 

have also been reported to affect CWI performance (Martin et al., 1951).   

 

 

Figure 3.23: A magnified image of a section of the micromodel demonstrating different 
micromodel wettability: (a) more oil wet after WI (b) less oil wet after 15.8 hrs of CWI 
(Kechut et al., 2010). 

 

This study emphasizes CWI as a CO2-augmented waterflooding process to increase the oil 

recovery.  But there is a potential to use this injection strategy for safe storage of CO2 too.  

Many oil reservoirs in the world are approaching maturity and being waterflooded for pressure 

support and improving the sweep of the oil to the producer wells.  Injecting CWI instead of 

injecting plain water could increase oil recovery and at the same time safely store part of the 

injected CO2.  Since waterflooding is normally carried out over a number of years, 

cumulatively CWI will provide quite a reasonable sized sink for CO2 storage, and hence make 

a useful contribution to lowering the CO2 emissions. 
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3.5. Potential of CWI application in UK North Sea oil reservoirs 

The oil production from the North Sea as a whole is generally declining, even with infill 

drilling, as shown in Figure 3.24 (Energy Bulletin, 2010).  The implementation of EOR seems 

to be one of the plausible ways to arrest further decline.  Miscible hydrocarbon WAG injection 

has been successfully applied in some of the oil reservoirs in the North Sea, for example, 

WAG injection in the Ekofisk and Statfjord Fields.   

 

 

Figure 3.24: Oil production from the North Sea, based on EIA data (Energy Bulletin, 2010). 

 

Many oil reservoirs in the North Sea are technically suitable for miscible CO2 EOR, despite 

the engineering challenges posed by an offshore environment to the integration, logistics, 

operations, and maintenance of the complete CO2-supply chain (Hustad et al., 2004).  

Mathiassen (2003) predicted that CO2 injection could increase the oil recovery of 128 mature 

oilfields in the Norwegian Continental Shelf (NCS) from 240 to 320 million sm3. 

For the UK Continental Shelf (UKCS), 21 oilfields were screened to be suitable for CO2 EOR; 

14 of those with an estimated CO2 storage capacity of >50 Mt (million tonne) are shown in 

Figure 3.25 (SCCS, 2009).  However, limited CO2 source and the lack of incentive for CO2 
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EOR activities become the major economic deterrents for the process in the North Sea (Hustad 

et al., 2004).  With exclusion of the cost for CO2 purchase, the incremental capital and 

operating cost required to implement a CO2-flood in the North Sea averages about 10 - 15% 

and 20% more than a similar water-flood project in the U.S. Permian Basin (Coleman et al., 

2004).   

 

Figure 3.25: Oil fields suitable for CO2-EOR. Blue ovals show the extent of the EOR study 
(SCCS, 2009). 

 

In the North Sea area, waterflooding is the standard method of oil recovery with almost every 

reservoir is under waterflooding.  The normally relatively long duration of wateflooding 

provides a huge potential to store this CO2 through CWI and gain some additional oil at the 

same time.  CWI can create an EOR opportunity in the UKCS offshore oilfields with small 

anthropogenic CO2 sources, such as the CO2 produced through the existing North Sea oil/gas 

production.  As of 2010, the total amount of CO2 from UKCS fields during production 

activities was estimated around 16.4 Mt (DECC, 2011).    
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Here, the author gives an estimate of the amount of CO2 that can be stored in the 14 oil fields 

screened to be suited for CO2 EOR in the UKCS through CWI.  Table 3.11 shows the daily 

water injection rate of the fields based on the recent UK production Data Release (DECC, 

2010).  The average pressure and temperature of all these fields were assumed at 4598 psig 

and 213.8 oF, respectively, based on an average value for 55 waterflooded oil reservoirs in the 

North Sea reported by Akervoll and Bergmo (2010).   

 

Table 3.11: The estimated amount of CO2 injected and stored per year through CWI in 
UKCS oil fields at 4598 psig and 213.8 oF. 

No Field name Water injection 
rate, kbpd 

CO2 injected, 
Mt per year 

CO2 stored, 
Mt per year 

1 Beryl A 33.40 0.13 0.07 
2 Brent* 61.70 0.25 0.12 
3 Buzzard 196.00 0.79 0.39 
4 Claymore 102.00 0.41 0.21 
5 Cormorant 146.00 0.59 0.29 
6 Dunlin 38.90 0.16 0.08 
7 Forties 127.00 0.51 0.26 
8 Miller* 4.73 0.02 0.01 
9 Murchison (UK)* 4.47 0.02 0.01 

10 Ninian 133.00 0.54 0.27 
11 Piper 10.40 0.04 0.02 
12 Scott 171.00 0.69 0.35 
13 Statjord (UK)* 9.00 0.04 0.02 
14 Thistle 125.00 0.50 0.25 

 Total 1160.00 4.68 2.34 
*Mt = million tonne                   kbpd = thousand barrel per day 

 

CO2 solubility in water at 4598 psig and 213.8 oF, calculated using the Chang et al. correlation, 

as given in Appendix A3.1, was 204.4 scf/stb or 6.94 lb CO2 /100 lb water.  For the oil fields 

not currently under waterflooding (labelled with * after the field name), the injection rate was 

assumed as 1% STOOIP per year.  It was assumed that the reservoir pressure does not exceed 

the fracture pressure of the reservoir throughout the flooding.  It was estimated that about 4.68 
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Mt of CO2 could be dissolved in the injected water per year.  Assuming that the same 50% of 

the injected CO2 as measured in the experiment could be stored, even though it was expected 

this to be slightly higher at the higher operating pressure assumed here, 2.34 Mt could have 

been stored per year through the tertiary CWI.   

For a wider perspective, lets us look at all the waterflooded offshore oilfields in the UKCS.  

According to the data published by DECC (UK Department of Energy and Climate Change), 

in 2010 around 1124 million cubic feet of water was injected in the North Sea offshore 

reservoirs.  Assuming CO2 solubility of 6.94 lb CO2/100 lb water, 12.4 Mt of CO2 could have 

been injected, of which 6.2 Mt could have been stored in 2010 alone in the UKCS offshore 

reservoirs, had carbonated water been injected instead of plain water.  This is a relatively small 

amount as compared to the current CO2 emissions from large sources in the UK of some 250 

Mt/yr but it would still contribute to the reduction of smaller anthropogenic CO2 emissions in 

the North Sea region.  Therefore, although we put forward CWI as an alternative CO2 injection 

strategy for improving oil recovery from reservoirs too far from natural sources of CO2, we 

believe that CWI projects can also collectively contribute to storing significant quantities of 

anthropogenic CO2 separated from activities around the oilfields.   

 

3.6.  Conclusions 

The following conclusions are drawn from the results of the CWI experiments presented in 

this chapter:  

• For all the rock and fluid samples used in this study, the ultimate oil recovery by CWI 

was consistently higher than that of water injection in both secondary and tertiary 

recovery modes.  This demonstrates the potential of CWI for increasing oil recovery 

from both virgin and waterflooded reservoirs.   

• Secondary CWI resulted in higher and earlier incremental oil recovery than the 

tertiary CWI process, as would usually be obtained for other oil recovery methods as 

well.  In tertiary recovery, the remaining oil is more likely to be disconnected and 

exists in the form of isolated or by-passed patches, which are more difficult to 

remobilise. 
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• For miscible systems, CWI presents a great advantage in terms of efficient 

displacement in which very large oil swelling (infinite) could be achieved, as in the 

direct CO2 injection despite the fact that only a fraction of the injected fluid is CO2.   

• The core wettability considerably affects the oil recovery by CWI.  Significant 

difference in the oil production profile was observed particularly in the timing of the 

additional oil recovery between CWI in the water-wet core with that in the mixed-wet 

core using the same oil sample at the same tests conditions.  While incremental oil 

recovery in the water-wet core occurred mainly after breakthrough (behind the 

displacement front), the additional oil recovery in the mixed-wet core occurred at 

breakthrough itself i.e., at the displacement front.  

• The oil viscosity affects the amount of oil recovery by CWI.  In terms of %PV, higher 

oil recovery was obtained by secondary CWI in light oil than in viscous oil, as the 

more piston-like displacement pattern in the light oil is more favourable for oil 

recovery.  Nevertheless, the oil improvement above that of waterflooding due to 

secondary CWI was more or less the same in both oils, suggesting other recovery 

mechanisms, such as oil viscosity reduction, are more dominant than the adverse 

effect of viscous fingering in the CWI of the viscous oil.  

• The carbonated water front was not depleted of its CO2 content and the CO2 was 

moving ahead of the carbonated water front.  This proves good delivery of CO2 by the 

carbonated water front and the role of diffusion and dispersion of CO2 in the recovery 

mechanism. 

• CWI has potential as an injection strategy for combining oil recovery and CO2 

storage.  A relatively high percentage of the total volume of CO2 injected in the CWI 

(ca. 40-50%) was stored at the end of the secondary and tertiary CWI experiments.   

• At the immiscible conditions under tertiary recovery mode, CWI is more favourable 

than continuous CO2 injection in retaining CO2 in the reservoir, for a given amount of 

oil produced. 

• CWI has potential as a CO2 EOR and storage injection strategy in the depleting 

oilfields in the North Sea where the CO2 source is limited and most of the fields are 

waterflooded. 
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Chapter 4  

Numerical Simulation of CWI 

 

4.1. Introduction 

For any oil recovery method, an accurate reservoir model with the ability to reliably predict 

the consequences of implementing the process is vital for successful management of the 

reservoir.  Appropriate modelling of the CWI process is crucial for assessing its feasibility, 

design and predicting its performance at various scales or conditions.   

Injection of CO2 into oil reservoirs involves several complex physical and chemical 

processes such as dissolution of CO2 into reservoir fluids that results in swelling of the oil, 

change in the oil viscosity, change in interfacial tension, miscibility with the oil and chemical 

interactions between the fluids and the rocks.  The ability to account for most of these 

physical phenomena makes compositional simulators more commonly used to model 

processes involving CO2 injection.   

This chapter describes the modelling of the carbonated waterflood process.  Despite the 

existence of voluminous literature on modelling studies of CO2 EOR, only limited attempts 

to specifically model CWI have been reported.   

The main objective of this simulation study was first to evaluate whether the commercially 

available reservoir simulators were able to adequately model the physics of carbonated water 

core flood at the laboratory scale.  ‘Adequate’ here means there was a reasonable match 

between the calculated and experimental values with the main mechanisms of the process 

accounted for.  The capability to model the process at the laboratory experimental scale 

where the hard data were available will give the user confidence to use the selected simulator 

to predict the performance of the process under different conditions and scales.  There has 

been no simulation study, reported in the literature, specifically on CWI using the currently 
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and commercially available compositional reservoir simulators that the author could evaluate 

in this study.  The results of this study, therefore, would provide valuable insight into the 

suitability of the commonly used reservoir simulators to model CWI as well as to identify the 

appropriate method to model the process at the experimental scale. 

 

4.2. Evaluation of reservoir simulators 

Three commercial compositional reservoir simulators commonly used in the oil to model 

CO2 injection process namely ECLIPSE 300 (E300) of version 2007.1 of Geoquest, and 

GEM and STARS, both of 2008 versions, of Computer Modelling Group (CMG), were first 

evaluated for their suitability to model the CWI process.   

In this evaluation, the main objective was to look into the features relevant to the CWI 

process such as the CO2 solubility in the aqueous phase, defining carbonated water in the 

injection well and the cross-phase CO2 diffusion in each of the simulators.  A 1D core model 

was used.  The predicted results using the simulators were compared with each other to 

evaluate their similarities, differences, strengths and limitations in modelling CWI process so 

that the most suitable simulator for the subsequent simulation tasks can be selected. 

 

4.2.1. 1D model description 

The 1D core model is of 33.5 cm long and 5 cm diameter (equivalent to a square with side of 

4.42 cm).  The grid size sensitivity results (Table 4.1) on simultaneous CO2 and water 

injection using E300 reveal that varying the grid size in the X and Y direction from 0.1675 

cm to 0.67 cm resulted only in up to 1.3 % difference in the predicted oil production.  The 

model grid of 100 x 1 x 1 grid cells was later chosen.   

The core was water-wet Clashach sandstone with homogeneous porosity and permeability of 

18.5 % and 1300 mD, respectively.  Measured oil/water relative permeability curves shown 

in Figure 4.1 were used.  Unlike CO2 gas injection into water, where some of the gas is 

trapped in the water due to the imbibition process, in CWI, the imbibition effect is assumed 
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negligible as all the CO2 is dissolved in solution.  Thus, no hysteresis was considered.  The 

effect of capillary pressure and the effect of the CO2 on relative permeability were also 

ignored in this simulation study.   

 

Table 4.1: 1D model grid sensitivity results (200 gridblock model as reference case). 

DX=DY, 
cm NX=NY Cumulative oil 

produced, cc 

% Diff. in 
cumulative oil 

produced 

0.1675 200 104.105 0.00 
0.3350 100 103.550 0.53 
0.6700 50 102.747 1.30 

 

 

Figure 4.1: Measured oil/water relative permeability curves used in the model.   

 

The production and injection wells were located at each end of the core.  The injection rate 

of water and CO2 gas was set at 18.5 and 554.8 cc/hr, respectively equivalent to a total 

injection of 20 cc/hr and are corresponding to the CO2 solubility in water at the test 

temperature and pressure. 
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4.2.2. Fluid PVT data 

The reservoir model was initialized at 2000 psig and 100.4 oF with decane (C10H22) used as 

the oil sample.  PVTi and WinProp, the auxiliary EOS-based program for use in the E300 

and GEM/STARS simulators, respectively, were used to characterize the fluid samples and 

generate the needed PVT data for the simulation.  Unless otherwise stated, the three 

parameter Peng Robinson EOS (PREOS) was used to calculate the fugacity and density of 

components throughout the simulation study.  Fluid viscosities were calculated using 

Lohrenz-Bray-Clark (LBC) method (1964) in PVTi and Jossi-Stiel-Thodos (JST) correlation 

(1961) in WinProp, both are basically according to the following functions: 

 

( )[ ] 4
4

3
3

2
210

25.04* 10 rrrr aaaaa ρρρρξµµ ++++=+−                                      (4.1) 

 

where µ is the oil or gas viscosity in cP or MPas, µ* is the low-pressure viscosity in cP or 

MPas, ξ = Tc
1/6 M-1/2 Pc

-2/3, is the viscosity-reducing parameter where critical temperature 

(Tc) is in K and critical pressure (Pc) is in atm, M is the molecular weight, ρr is the reduced 

molar density, ρ/ρc = vc/v, a0 = 0.1023000, a1 = 0.0233640, a2 = 0.0585330, a3 = –0.0407580, 

and a4 = 0.0093324. 

The properties of decane and CO2 measured by NIST (Lemmon et al., 2005) were used for 

comparison with the EOS-calculated values.  In this exercise, only pure CO2 was considered.  

In WinProp, the specific gravity, boiling point and molecular weight of decane were taken 

from Whitson (1982), while the critical properties were calculated using Kessler-Lee 

correlations (Winprop User Manual).  In PVTi, the Pc, Tc and acentric factor are after Katz 

and Firoozabadi (1982).  The difference in the corresponding values between the two sources 

of data was negligibly small.  Figure 4.2 shows the phase plot of decane and CO2 calculated 

by the PREOS.  At 2000 psig and 100.4 oF, CO2 is miscible with decane.  
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Figure 4.2: Phase plots of CO2 and decane showing their critical points. 

 

4.2.3. ECLIPSE 300 (E300) 

E300 is a fully compositional reservoir simulator with cubic EOS, developed by Geoquest.  

PREOS was available to calculate the Z-factors, fluid densities and phase fugacities for 

defining the inter-phase equilibrium.  E300 version 2007.1, the latest version available when 

the study started, was used throughout the study. 

 

CO2 dissolution into aqueous solution 

In E300, there are several options to model the solubility of CO2 in the water, depending on 

the site and operational conditions.  CO2SOL feature, which allows hydrocarbons and CO2 

to exist in the oil and gas phases, while only CO2 and water exist in the aqueous phase, was 

selected as the most suitable option and thus used in the study.  Equilibrium between oil, gas, 

and water was assumed instantaneous and that water and hydrocarbon components are 

mutually insoluble.  At equilibrium, the fugacity of CO2 in the aqueous phase, which was 

constructed to match solubility data, equals that in the hydrocarbon phases.   

The amount of CO2 dissolved in water and the properties of the formed aqueous phase were 

defaulted to Chang, Coats and Nolen (1998) correlations, details of which are described in 

Appendix A3.1.  Figure 4.3 shows the CO2 solubility in water at 100.4 oF calculated using 

the correlations.  At 2000 psig, 168.8 scf of CO2 was dissolved per barrel of water.   
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Figure 4.3: CO2 solubility in fresh water, Rsw, as a function of pressure at 100.4 oF estimated 

by the Chang et al. correlation (1998). 

 

Experimental studies, for instance, by Pollack et al. (1988), showed that the presence of 

water reduced the amount of CO2 available for mixing with the hydrocarbons.  E300 applies 

a sequential approach in modelling this effect.  In a grid cell with CO2, water and other 

hydrocarbon components, the moles of CO2 dissolved in the aqueous phase were first 

determined through solving the CO2/water fugacity constraint equation: 

 ωCO2 * φCO2,w = yCO2 * φCO2,v                              (4.2) 

 

where subscripts w and v denote the aqueous phase and CO2-rich phase, respectively.  yCO2 

is the mole fraction of CO2 in the CO2-rich phase,� φCO2 is the fugacity coefficient of pure 

CO2 and ωCO2 is the mole fraction of CO2 in the aqueous phase.  ωCO2 at the prevalent 

temperature and pressure was computed from the input CO2 solubility in water for a 

saturated binary CO2/water system as described earlier.  Assuming the water vapour pressure 

is small relative to the total pressure and CO2 vapour pressure at typical CO2 flood 

conditions, (i.e., yCO2 ~ 1), the fugacity coefficient of CO2 in the aqueous phase can be 

approximated as: 
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φCO2,w � 
2

,2

CO

EOS
VCO

ω
φ

                                                                                               (4.3) 

 

where EOS
vCO ,2φ  is the fugacity coefficient of pure CO2 in the vapour phase computed by the 

EOS.  Nevertheless, the φCO2,w computation is applicable for a binary CO2/water system only 

since it is a function of pressure and temperature but not composition.  EOS
vCO ,2φ  is for pure CO2 

and ωCO2 is for the binary CO2/water system.  The error introduced by the assumption should 

nevertheless be insignificant since the amount of CO2 dissolved in the aqueous phase within 

the typical range of CO2 EOR pressures is normally small (Chang et al., 1998). 

Having solved for the CO2/water fugacity constraint equation, a phase-stability test was 

sequentially run to establish the number of phases in the hydrocarbon phase and accordingly 

determine the compositions of each phase.  At equilibrium, the oil and gas phase fugacities 

for each hydrocarbon component, and CO2 fugacities in the hydrocarbon phase(s) and the 

aqueous phase are equal.  

 

E300 simulation results 

E300 does not have an explicit keyword to assign the composition of a single phase 

carbonated water in the injection stream at the surface.   

Co-injecting CO2 gas and water at the same location in proportions corresponding to CO2 

solubility in water at the test pressure and temperature, was probably the best way to define 

CWI in the model.  This can be done either through the use of a multiphase injector or two 

normal injectors at the same location.  This method does not create a single phase of 

carbonated water in the wellbore, but with the inherent instantaneous equilibrium and 

complete mixing assumptions, once the fluid enters a grid block the equilibrium flash 

calculations will determine thermodynamically stable mixture.  From a simulation point of 

view, it makes no difference whether CO2 and water have arrived from separate sources or 

arrived already mixed in the grid block, as long as their proportion is the same, pressure and 
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temperature is maintained and CO2 is fully dissolved.  In this case, it was found that using a 

dummy cell in the model to allow mixing before it gets into the actual core grid blocks gave 

exactly the same results as those without the dummy cell. 

With the injection rates of CO2 gas and water corresponding to the solubility of CO2 in the 

aqueous phase at 2000 psig, 100.4 oF, E300 predicted an incremental oil recovery of 15.9 

%STOOIP from the secondary CWI process.   

 

4.2.4. GEM 

GEM is an advanced general EOS compositional simulator by CMG; developed to simulate 

three phase, multi-components compositional effects of reservoir fluid during primary and 

EOR processes.   

 

CO2 solubility in water in GEM 

GEM models the CO2 solubility in the aqueous phase with Henry’s Law (Li and Nghiem, 

1986).  For a component sparingly soluble in the aqueous phase, Henry’s Law states that: 

��
 � ��
��         i � water                                                                                                    (4.4) 

���� � ��� � �� �! � !����"#                                                                                            (4.5) 

where fiw is the fugacity of component i in the aqueous phase, yiw is the mole fraction of 

component i in the aqueous phase, H is the Henry’s constant with ‘o’ referring to the 

reference conditions, p is pressure, ∞
iν is the partial molar volume of component i in the 

aqueous phase at infinite dilution, computed from the correlation by Lyckman et al. 

(Equation 4.6):  

$%&�'�()*&� + � ,-,,./� 0-1/$*%&�2*&�+                                                                                         (4.6) 
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where Tci and pci are critical temperature and critical pressure of component i, respectively, C 

is the cohesive energy density of water, R is the gas constant and T is temperature (GEM 

User Guide, 2008).  To account for the effect of temperature and water salinity on Henry’s 

constant of CO2 Harvey’s correlation (1996) was used.  At 2000 psi, Henry’s constant was 

calculated to be 2344.42.  As shown in Figure 4.4, CO2 solubility in pure water, calculated 

by Henry’s Law (GEM), was slightly higher than that by the Chang et al. correlation (E300).  

At 2000 psig, Henry’s Law and the Chang et al. correlation give CO2 solubility in water of 

0.19 and 0.17 Mscf/stb, respectively. (Note: throughout this thesis, Mscf refers to thousand 

standard cubic feet) 

 

Figure 4.4: CO2 solubility in fresh water calculated using Henry’s Law and the Chang et al. 
correlation at 100.4 oF. 

 

GEM simulation results 

Similar to E300, there is no specific keyword to assign carbonated water in the injection 

well, thus simultaneous water and CO2 injection as used in E300 case, was also employed 

here.  No free gas was formed throughout the simulation run.  Comparison of the predicted 

WI and CWI recovery is shown in Figure 4.5, where an incremental oil recovery of 9.7 

%STOOIP was predicted.  

 

50

100

150

200

250

0 2000 4000

R
sw

, s
cf

/st
b

Pressure, psig

Henry's Law
Chang et al



Chapter 4: Numerical Simulation of CWI 

 

98 

 

4.2.5. STARS 

Unlike E300 and GEM, STARS is a K-value compositional simulator.  It is claimed to 

be ideally suited for advanced modelling of recovery processes involving the injection 

of steam, solvents, air and chemicals (STARS User Guide, 2008).   

 

 

Figure 4.5: Predicted oil recovery from waterflooding and CWI by GEM.  

 

The K-value or equilibrium ratio is the ratio of the concentration of a component in phases 

which are in thermodynamic equilibrium with each other.  This can be a Liquid-Liquid or 

Gas-Liquid system.  The water Gas-Liquid (GL) K-value is defined as the ratio of the gas 

phase mole fraction of water to the aqueous phase mole fraction of the component (Equation 

4.7) while the Liquid-Liquid (LL) K-value is defined as the aqueous phase mole fraction of 

the component divided by the oil phase mole fraction of the component (Equation 4.8).     

Kiv = xiv/xil                                                                                                                    (4.7) 

Kiw = xiw/xil                                                                                                                   (4.8) 

where xi is the mole fraction of component i.  The subscripts v, l and w denote the gas, oleic 

and aqueous phases, respectively (WinProp User Guide 2008). 
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STARS fluid properties 

In addition to the basic PVT properties such as the molar density, viscosity and molecular 

weight, STARS requires K-values of the components in the oil and aqueous phases to be 

inputted in the tabulated format.  As a K-value compositional simulator, STARS did not use 

an exact EOS flash at all possible pressure and temperature, and compositions.  Mixing rules 

and the K-value tables were instead used in order to allow stability and reasonable simulation 

time.  The fluid physical properties from the EOS and STARS were reconciled at a reference 

pressure, temperature and feed composition and extrapolated to other values by the mixing 

rules.  Pure component viscosities were calculated using the two-parameter corresponding 

states model of Teja and Rice (WinProp User Guide 2008).   

In calculating the GL and LL K-values, the hydrocarbon and light gas components were all 

assumed to be oleic.  Water was characterized as an aqueous component with Kw assumed to 

be unity.  The GL and LL K-value tables were generated simultaneously using the Oil-Gas-

Water flash process, which modelled the aqueous phase with Henry’s Law and the vapour 

and liquid phases with the EOS, as described earlier.  K-values are defined and calculated 

directly if a stable oil-gas-water system existed at the specified pressure and temperature 

(WinProp User Guide 2008).  As depicted in Figure 4.6, the LL K-values for CO2 are 

relatively small and increase slightly with pressure.  In the model, decane was insoluble in 

water and water was not allowed to vaporize or be in the oil phase, thus there was zero LL 

K-value for both. 

 

Figure 4.6: WinProp-generated CO2 GL (left) and CO2 LL (right) K-values for 0.5 mole 
fraction of decane and 0.5 mole fraction of CO2 at 100.4 oF.  
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STARS simulation results 

The CO2 gas was co-injected with water through two injectors at the same locations, with the 

CO2 injection rate similar to those used in GEM case, while the water injection rate was 

changed accordingly by the simulator to maintain the pressure.  No free gas saturation was 

detected throughout the simulation confirming the CO2 remained in the liquid phase.  Figure 

4.7 shows the oil recovery profile of WI and secondary CWI calculated by STARS, where 

an additional oil recovery of 7.3% STOOIP above that of water flooding was predicted.   

 

 

Figure 4.7: The cumulative oil recovery of WI and CWI predicted by STARS.  

 

4.2.6. Comparison of simulation results   

All three compositional simulators evaluated, as a default, assumed instantaneous 

equilibrium and complete mixing between phases and components.  The flash calculations 

were used to determine the equilibrium phase compositions and amounts at a given pressure, 

temperature and an overall composition.  At thermodynamic equilibrium, the fugacities in 

the liquid, aqueous and vapour phases, calculated directly from the EOS, are equal for each 

component.   
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Figure 4.8 compares the predicted incremental oil recovery from the secondary CWI by the 

three simulators.  The slightly lower CO2 solubility in water given by the Chang et al. 

correlation in E300 compared with that by Henry’s Law in GEM and STARS may 

contribute to the difference in the predicted recovery.  In spite of more or less the same total 

amount of CO2 per barrel of water injected, E300 predicted a 62% and 21% higher 

incremental oil recovery than that predicted by STARS and GEM, respectively. 

 

 

Figure 4.8: Comparison of the predicted oil recovery from WI and CWI by the three 
simulators.  

 

The difference in the calculated oil viscosity could have also contributed to the difference in 

the incremental oil recovery.  Figure 4.9 shows the calculated oil viscosity in a gridblock as a 

function of the mole fraction of CO2 in oil.  The higher the amount of CO2 in the oil, the 

lower is the oil viscosity.  We can see that the extent of the oil viscosity reduction of the three 

cases is consistent with the incremental oil recovery predicted.  The oil viscosity reduction in 

STARS, which was calculated using the two-parameter corresponding states model of Teja 

and Rice, has a very different trend and is much less than that in E300 and GEM, which 

explains the smaller incremental oil recovery by the simulator. 

Figure 4.10 shows the calculated amount of CO2 in the oil and water phases in grid block 

(50,1,1) of the model.  Giving the highest oil recovery, E300 has the highest CO2 

concentration in the oil phase whilst STARS, with the lowest oil recovery, has the highest 
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CO2 concentration in the water phase.  The difference in the incremental oil recovery is 

therefore mostly due to the solubility of CO2 in both oil and water phases, which in turn are 

due to the different ways the K-values were generated.   

 

Figure 4.9: Variation of the calculated oil viscosity and CO2 mole fraction in oil with time in 
grid block (50,1,1). 

 

 

Figure 4.10: The calculated CO2 content in oil (left) and in water (right) versus time in grid 
block (50,1,1). 
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Unlike E300 and GEM, which use EOS to determine the K-values at each temperature, 

pressure and overall composition, K-values in STARS were interpolated from the table 

inputted, which, in turn, was generated using the EOS at a certain reference of CO2 mole 

fraction.  The ultimate amount of CO2 that dissolved in the oil and water phase, regardless of 

the amount of carbonated water injected, was limited by these K-values.  Since the basic K-

values are functions of pressure and temperature only, a certain amount of error might be 

introduced when the system is moving away from the reference point, such as where there is 

a strong compositional effect during the process. 

It is anticipated that if the CO2 content in each phase in all those three simulators as well as 

the viscosity correlation is made the same, more or less the same predicted oil recovery 

would be obtained, except for small differences due to numerical dispersion and different 

solution methods.  It is thus concluded that none of the three simulators is more suitable to 

model the CWI process than the others.  Being more widely used in the industry, the E300 

simulator was used for the subsequent assessment. 

 

4.3. Compositional modelling of the coreflood experiments 

A more detailed modelling of the CWI coreflood experiments was next carried out using the 

E300 simulator with the oil/water relative permeability curves derived from the experimental 

WI data.  Four sets of experimental data, consisting of WI and the corresponding CWI core 

displacements, were used to validate the model.  They were WI and secondary CWI of 

decane in the water-wet and mixed-wet Clashach cores, and WI, secondary and tertiary CWI 

of the stock tank crude oil in the reservoir core.   

 

4.3.1. 1D model 

The numerical core model used was one-dimensional (1D) in Cartesian coordinates.  A 

linear model eliminates sweep effects, enabling the displacement efficiency to be studied 

more closely.  The model had homogeneous porosity and permeability.  The number of grid 

blocks necessary to eliminate numerical dispersion was determined from grid size sensitivity 
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simulations performed on the water injection and CO2 injection processes.  Taking grid 

sensitivity results on the reservoir core as an example, the oil recovery started to converge at 

1/Nx of 0.01 or Nx=100, as depicted in Figure 4.11.  The grid block dimensions for each of 

the core models are given in Table 4.2.   

 

Table 4.2: Properties and dimensions of the core models and the injection rates used. 

Core Length, 
cm 

Absolute 
k, mD 

Porosity, 
fraction 

No. of 
gridcells, 

Nx 

DX=DY, 
cm 

Qinjw, 
scc/hr 

Qinjg, 
scc/hr 

Clashach 
WW 33.20 1300 0.185 200 0.166 18.45 554.80 

Clashach 
MW 61.30 850 0.165 200 0.332 18.45 554.80 

Reservoir 
core 8.14 4580 0.350 100 0.081 0.94 27.49 

 

In the simulation, the CO2SOL feature was invoked to account for CO2 solubility in water.  

Carbonated water was obtained by co-injecting water and CO2 in proportions corresponds to 

the CO2 solubility measured for the experiments at the test temperature and pressure.  The 

relatively small pressure drops during the coreflood tests allowed CWI to be modelled 

without free gas being created.   

The production and injection wells were located at each end of the core.  The injection rate 

of water and carbonated water in the laboratory varied according to the core size as per Table 

3.7.  In the simulation model, the injection rate of the carbonated water was represented by 

co-injection of the CO2 gas and water corresponding to the measured solubility of CO2 in 

water at the test temperature and pressure, as given in Table 4.3.  The production well was 

set to operate at constant BHP, which was the test pressure. 
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Figure 4.11: Grid sensitivity performed on (a) WI and (b) secondary CO2 injection in the 
reservoir core on stock tank crude oil at 2000 psig, 100.4 oF. 

 

4.3.2. Fluid PVT data 

The PREOS model was used to characterize the oil samples used, which were decane and 

the stock tank crude oil and generate the PVT input data for the simulation.  For decane and 

CO2, the PVT data were as described earlier.  The stock-tank crude oil properties are as 

given in Tables 3.3 and 3.4 of Chapter 3.  It contains mainly C20+ components and is 

immiscible with CO2 at the test pressure and temperature.   

There were no measured PVT data available for the stock tank oil other than its compositions 

and viscosity.  The constant composition expansion (CCE) and CO2 swelling tests data of the 

original reservoir fluid (RF), from which the stock tank oil was sampled, were however, 

available.  Also, neither SARA (Saturates, Aromatic, Resins and Asphaltene) nor TAN 

(Total Acid Number) information of the crude was available.  As the original reservoir fluid 

did not exhibit any presence of asphaltene even when in contact with a high percentage of 

CO2, the same was assumed for the dead crude oil.   

The required PVT data for simulation for the stock tank oil were prepared, following the 

approach shown in Figure 4.12.  The EOS model for the original reservoir fluid was first set 

up.  It was then tuned to the available PVT data, details of which were given in Appendix 

A4.1, where a reasonable match was obtained between the experimental and simulated 

values, as shown in Figure 4.13.  The tuning involved adjustment of the physical properties 
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of C8, C9 and C10+ fraction, which include the critical pressure and temperature, Pc, Tc, 

Omega A, Omega B, accentric factor, ZCrit and ZCrit(vis); the changes are all within 1-6% 

from the corresponding library values of the component except 10% change for Omega B 

parameter.  The reservoir fluid was then numerically flashed from reservoir to standard 

condition of 60 oF and 14.7 psig.  As shown in Table 4.3, the calculated oil compositions and 

viscosities reasonably agree with the measured values.  The physical properties of the stock 

tank oil calculated by the EOS model for simulation are also given in Appendix A4.1. 

 

 

Figure 4.12: The approach to prepare the EOS model for the dead crude oil. 
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Table 4.3: Calculated versus measured stock tank oil composition and properties at 
100.4 oF. 

Component Mole% 
Measured Calculated 

C2-C4 0.19 1.37 
C5-C7 2.71 2.68 
C8-C9 5.25 3.94 
C10+ 91.85 92.01 
Total 100.00 100.00 

Mol. Weight of the stock tank oil 325 323 
Oil surface density, lb/ft3 58.8 52.7 

Oil viscosity at 2000 psig, cP 145 145.6 
Oil viscosity at 2500 psig, cP 158 163.6 

 

 

 

Figure 4.13: Comparison of experimental and calculated (left) oil relative volume (middle) 
swelling factor and (right) CO2 saturation pressure of the original reservoir fluid, from which 
the stock tank oil used in this study was obtained. 
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Table 4.2 and a black oil core simulator, SENDRA©, the waterflood process was simulated 

and the oil-water relative permeability curves were obtained by history matching the 

experimental recovery and pressure drop data with relative permeability curves following a 

Corey-type correlation (Equation 4.9 and 4.10).  The oil and water exponents (now, nw) and 

the vertical endpoints (krw(Sor) and kro(Swi)) were varied until a reasonable match of fluid 

recoveries and the ∆P across the core was obtained.  

3	
 � 3	
�4�	���
5 �6
                                                                                                         (4.9) 

3	� � 3	��4
����
5 �6�
                                                                                                      (4.10) 

�
5 � 47847�
984:�847�                                                                                                                    (4.11) 

where Sw* is the normalized water saturation, krw and kro are relative permeability of water 

and oil, respectively; krw(Sor) is the relative permeability of water at residual oil saturation, Sor 

and kro(Swi) is the relative permeability of oil at irreducible water saturation, Swi.   

The matches between the calculated and experimental oil and water recoveries, as well as the 

∆P for each of the oil and core samples are given in Appendix A4.2 with the summary of the 

endpoints values and exponents (no and nw) given in Table A4.2.  The resulting oil/water 

relative permeability curves are shown in Figures 4.14-4.16.  The relative permeability 

curves shown start at Sw = 0 on the left end since the core was fully saturated with oil to start 

with (i.e. no Swi established in the core prior to water displacement).  The assumption that So 

is almost 1.0 in this experiment is not unreasonable considering the core preparation 

procedure that was followed, where the core was flushed with at least two cycles of 

methanol and acetone, and subsequently put in the oven at 65 oC to dry, as described in 

Chapter 3.  The procedure will leave an inconsequential amount of immobile water volume, 

if at all. 

These relative permeability curves were subsequently used in simulating both the waterflood 

and the corresponding CWI.  The test numbers mentioned in this section correspond to the 

tests described in Chapter 3. 
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Figure 4.14: The estimated oil/water relative permeability curves from WI of decane in 
Clashach water-wet core (from Test 4 as in Chapter 3). 
 

 

Figure 4.15: The estimated oil/water relative permeability curves from WI of decane in 
Clashach mixed-wet core (from Test 8 as in Chapter 3). 
 

 

Figure 4.16: The estimated oil/water relative permeability curves from WI of stock tank 
crude oil and Brine 2 in reservoir core (from Test 1 as in Chapter 3). 
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The krw@Sw=1-Sor in Figure 4.16 is relatively low.  The curves were nevertheless selected 

because they gave the best match between the experimental and calculated ∆P and oil 

recovery.  If we look at the oil recovery plot in Figure A4.3, the final saturation may have not 

been reached (the plateau is not totally flat) thus it is highly likely that the obtained 

krw@Sw=1-Sor did not represent the actual endpoint. 

 

Capillary pressure 

The oil/water capillary pressure, Pc, was not measured for both the reservoir and Clashach 

cores used in the displacement tests.  However, for the reservoir core, analogy was made on 

Pc data measured on a core from the same reservoir, shown in Figure 4.17.   

 

 

Figure 4.17: Measured Pc of a core taken from the same reservoir with that used in the 
experiments. 

 

As we can see, the Pc is very small as compared to the ∆P recorded during the coreflood for 

a wide range of water saturation, as what would be expected for a high permeability core.  

The Pc effects may induce insignificant errors, and hence it was ignored in the simulation.   
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4.3.4. Simulation results 

Secondary CWI: Decane in water-wet core (Tests 4 and 5) 

The WI simulation results are given in Appendix A4.2.  Using the oil/water relative 

permeability curves shown in Figure 4.14, the model predicted 12.4 %PV of additional oil 

recovery from the secondary CWI, as opposed to 5.4%PV obtained experimentally, as 

compared in Figure 4.18 and Table 4.4.  The predicted oil recovery from CWI was corrected 

to the test pressure and temperature by assuming the calculated amount of CO2 in the 

produced oil at any given time to be the same as the CO2 content in the gridblock containing 

the producer.  This estimation possibly introduced small errors in the predicted recovery. 

 

Figure 4.18: Comparison between measured and calculated ∆P across the core (left) and 
cumulative oil recovery (right) for WI and CWI, decane, water-wet Clashach core at 100.4 
oF, 2000 psig. 

 

Table 4.4: The experimental and predicted oil recoveries, WI and secondary CWI, water 
wet core, decane, 2000 psig, 100.4 oF.  

Test No. Process Oil Recovery, % PV Incremental Recovery, % PV 
Experiment Simulation Experiment Simulation 

4 WI 71.0 70.7 - - 
5 CWI 76.4 83.1 5.4 12.4 
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Secondary CWI: Decane in mixed-wet core (Tests 8 and 9) 

Oil/relative permeability curves in Figure 4.15 were used in the simulation of this test.  The 

simulated oil recovery at the test conditions was calculated in the same manner as that 

described earlier for the water-wet core case.  The match for the CWI was generally very 

poor.  The predicted incremental oil recovery, Table 4.5, was almost twice as high as the 

experimental value.  As shown in Figure 4.19, the ∆P trend as well as the CWI recovery 

profile at breakthrough time could not be modelled at all.   

 

Figure 4.19: Comparison between measured and calculated (left) ∆P across the core and 
(right) cumulative oil recovery for WI and CWI, decane, mixed-wet Clashach core at 100.4 
oF, 2000 psig. 

 

Table 4.5: The experimental and predicted oil recoveries for WI and secondary CWI, 
mixed wet core, decane, 2000 psig, 100.4 oF.  

Test No. Process Oil Recovery, % PV Incremental Recovery, % PV 
Experiment Simulation Experiment Simulation 

8 WI 58.5 58.2 - - 
9 CWI 65.4 71.6 6.9 13.4 

 

Secondary CWI: Stock tank crude oil in reservoir core (Tests 1 and 2) 

These are the simulation results for the secondary CWI with Brine 2 using oil/water relative 

permeability curves shown in Figure 4.16.  The incremental oil recovery from CWI was over 
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0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

0 1 2 3 4

∆
P

, p
si

PV injected

Exp. WI Sim. WI
Exp. CWI Sim. CWI

0.0

0.2

0.4

0.6

0.8

0 1 2 3 4

O
il

 r
ec

ov
er

y,
 P

V

PV injected

Exp. WI Sim. WI
Exp. CWI Sim. CWI



Chapter 4: Numerical Simulation of CWI 

 

113 

 

match in the cumulative oil produced, the oil recovery match between the breakthrough time 

and the end of the experiment was quite poor.  The brine recovery was modelled adequately 

but for the CO2 gas, a much later breakthrough time and higher recovery was predicted, as 

shown in Figure 4.21. 

 

 

Figure 4.20: The oil recovery (right) and ∆P across the core (left) from secondary CWI in the 
reservoir core at 100.4 oF, 2500 psig (Test 2) and the simulator match of the coreflood. 
 

 

Figure 4.21: Brine (blue) and CO2 gas (magenta) recovery from secondary CWI in the 
reservoir core at 100.4 oF, 2500 psig (Test 2) and the simulator match of the coreflood. 
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Table 4.6: The experimental and predicted oil recoveries from WI and secondary CWI 
of stock tank crude oil in reservoir core, 2500 psig, 100.4 oF.  

Test No. Process 
Oil Recovery, % PV Incremental Recovery, % PV 

Experiment Simulation Experiment Simulation 
1 WI 41.6 40.6  -  - 
2 CWI 60.6 62.7 19.0 22.1 

 

Tertiary CWI: Stock tank crude oil in reservoir core (Test 3) 

Table 4.7 shows that experimentally, 58.4 % PV was produced by WI and an additional of 

9.2 % PV by the subsequent CWI, for this stock tank oil.  The model, however, predicted 

3.2% PV or 35% higher additional oil recovery than actual, Figure 4.22.   

The plain brine was injected until up to 2.86 PV then followed by the carbonated brine up 

until 8.2 PV was injected in total.  The water breakthrough during the WI period occurred 

after about 0.9 PV of plain brine had been injected (evident time lag in the water production 

curve in Figure 4.23).  After breakthrough, the water production gradually increased as the 

flooding continued as shown by the straight line portion of the curve.  When carbonated 

brine was injected, the mobile water behind the waterflood front continued to be swept 

towards the producer.  The CO2 then broke through after about 0.06 PV of carbonated brine 

(or a total of 2.92 PV since the flooding started) was injected.  As we can see in Figure 4.22, 

during the plain brine displacement, the ∆P trend was declining rather smoothly.  When the 

carbonated water was injected, initially there was an increase in ∆P most probably due to 

more resistance to flow due to the carbonated water viscosity being slightly higher than the 

plain water viscosity.  The ∆P then gradually decreased as the total mobility decreases.  The 

∆P during CWI was much lower than that of during plain waterflood indicating the 

displacement is more efficient by carbonated water than by plain water.  These however 

cannot be matched adequately.  We can nevertheless see in Figure 4.23 that the brine and 

CO2 gas production were adequately modelled.   
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Table 4.7: The experimental and predicted oil recoveries from WI and tertiary CWI of 
stock tank crude oil in reservoir core, 2500 psig, 100.4 oF.  

Test No. Process Oil Recovery, % PV Incremental Recovery, % PV 
Experiment Simulation Experiment Simulation 

3 WI 58.4 58.1 - - 
CWI 67.6 70.5 9.2 12.4 

 

 

Figure 4.22: The oil recovery (left) and ∆P across the core (right) from WI and tertiary CWI 
in the reservoir core at 100.4 oF, 2500 psig (Test 3) and the simulator match of the coreflood. 

 

Figure 4.23: Brine (blue) and CO2 gas (magenta) recovery from tertiary CWI in the reservoir 
core at 100.4 oF, 2500 psig (Test 3) and the simulator match of the coreflood. 
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In summary, taking experimental errors into consideration, it was generally observed that the 

cumulative oil recovered in the corefloods was much less than that in the calculations.  The 

disagreement between the experimental and predicted incremental oil recovery from the 

CWI of the same oil sample was more pronounced for the tertiary than the secondary 

process, as demonstrated by the displacement test results of the dead crude oil. 

The simulator calculations assumed instantaneous equilibrium and complete mixing between 

oil, gas and water within each grid block.  The CO2 is transferred from the carbonated water 

to oil and reaches equilibrium instantaneously with no dispersion or bypassing in the grid 

blocks.  These assumptions are strongly believed to be one of the main reasons for the 

mismatch between the experimental and calculated results and will be looked into in more 

detail in the next section.  

 

4.3.5.  The effect of dispersive mixing at core scale 

Non-equilibrium phenomena, such as bypassing, both at macroscopic and microscopic level, 

are probable reasons why the experimental oil recoveries were lower than calculated values.   

Viscous fingering is a form of macroscopic bypassing which normally occurs due to high 

mobility contrast between the displaced and displacing fluid, reservoir heterogeneity, large 

transverse extent and high displacement rates (Gardner and Ypma, 1984).  At the pore level, 

dispersive mixing and/or capillarity-induced bypassing could occur.  Dispersive mixing, 

which includes molecular diffusion and mechanical dispersion, determines the extent to 

which a solvent will mix with the oil to promote mass transfer or miscibility under 

favourable conditions, thus affecting the oil recovery (Perkins and Johnston, 1963).  

Bypassing prevents complete mixing of components. 

Molecular diffusion takes place solely due to the concentration gradient, with or without 

motion.  Earlier researchers have reported the importance of molecular diffusion in 

determining the displacement efficiency in secondary and tertiary CO2 floods (e.g. Grogan, 

et al., 1987, 1988; Campell, et al., 1985, Bijeljic, et al., 2002).  Grogan and Pinczewski 

(1987) found that the transport of CO2 through the water phase is the rate-controlling step of 

swelling a residual oil droplet separated by a water film.  The presence of a water layer 
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separating the oil and CO2 phases has been shown to reduce the CO2 flood displacement 

efficiency at the core scale (Shelton et al., 1978; Tiffin et al., 1983).  This effect of water 

blocking is significant, especially in water-wet conditions in which molecular diffusion 

through water films is the dominant mechanism for the solvent gas to reach, swell and 

reconnect isolated droplets.   

Mechanical dispersion occurs due to the distribution of pore sizes, hence creating a 

distribution of path lengths and velocities where contact time is limited at the pore junction 

but longer in the pores.  These distributions lead to incomplete mixing at the pore junction.  

Bypassing from mechanical dispersion is influenced by flow rate but not by core length 

(Stern, 1991).   

Capillarity-induced bypassing only occurs in the tertiary displacement where solvent must 

displace water to mobilize the oil (Campbell and Orr, 1985) and is greatly influenced by the 

wettability of the rock.  In a water-wet rock, for example, the solvent displaces water in the 

larger pores first and creates preferred high conductivity paths, bypassing small pores.  This 

bypassing effect is reduced by reducing the capillary pressure forces, such as by increasing 

the flow rates and solvent viscosity (Stern, 1991). 

Bypassing is, however, unlikely to play significant role in the displacement if the critical 

wavelength of instability, λc (Equation 4.14) is larger than the diameter of the core, since the 

fingers are eliminated by transverse dispersion.   

;< � 0= >? @ �:A�B�:8�B
CD
EF                                                                                                            (4.14) 

where µ is viscosity with subscript o and s denotes oil and solvent, respectively, DT is the 

transverse dispersion, which can be calculated by Equation 4.15 and GH � I�JK is the 

average velocity (Chandrasekhar, 1961 as quoted in Gardner and Ypma, 1984).   

L* � C:
MN � ,-,�/O�HP%Q                                                                                                   (4.15) 

Do is the diffusion coefficient of CO2 in oil, F is the formation resistivity factor and σ is the 

inhomogeneity factor of the rock.   
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In order to gauge whether the displacement was stable for the coreflood in this study, λc was 

estimated.  Do was calculated using McManamey and Woolen’s correlation (1973) while F 

was calculated using Archie’s equation (F = a/(φ)m) with m and a assumed to equal 1.0.  As 

no measured data was available, the rock inhomogeneity factor for all the cores was assumed 

to be 0.03; a value used by Gardner and Ypma (1984) for a system more or less similar to 

decane in the water-wet core of this study.    

As we can see from Table 4.8, λc is smaller than the core diameter for all the tests, indicating 

viscous fingering might have affected the displacement process to certain extent.  For the 

more friable reservoir core, there was nonetheless high uncertainty in the assumed 

inhomogeneity factor, hence the estimated λc.   

Table 4.8: The estimated critical wavelength of instability of the coreflood tests.  

Core Diameter, 
cm 

Porosity, 
fraction 

Ave velocity, v, 
cm/s DT, cm2/s λc, cm 

Clashach 1 4.99 0.185 1.536E-03 1.092E-05 1.00 
Clashach 2 4.99 0.165 1.722E-03 1.057E-05 0.86 
Reservoir core 3.72 0.350 7.302E-05 1.303E-06 0.32 

 

Clear evidence of diffusion and dispersion of CO2 during the core displacement was 

nevertheless observed from the much earlier CO2 breakthrough time than that of the brine.  

As the author has already discussed and shown in Figure 3.18 in Chapter 3, for decane, the 

CO2 broke through after about 0.64 PVI, while water broke through 0.06 PVI later.  For the 

stock tank crude oil, the CO2 and water broke through after 0.11 and 0.22 PVI, respectively.  

The model, on the other hand, predicted a much delayed gas breakthrough than that of brine, 

demonstrating the inappropriate distribution of CO2 in the model calculated by the simulator.   

Figure 4.24 shows the simulated profile of water saturation (SWAT) and mole fraction of 

CO2 in the water phase (AMF1) and oil (decane) phase (XMF1) along the core at about 

breakthrough time.  From this model output we can see how fast the CO2 is moving in 

relation to the water front.  The simulation results show that the water front was totally 

deprived of CO2 i.e., the CO2 concentration in the water phase reduces to zero, after 

travelling a certain distance through the core.  The CO2 concentration in the water phase 

dropped very rapidly as the carbonated water came in contact with the oil.  As can be seen in 
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Figure 4.25, at breakthrough, the model predicted that the CO2 in the carbonated water was 

partitioning into the oil at 0.007 gmole per cm of the core travelled and getting lesser as the 

flooding continues.  The fresh supply of CO2 from the injected carbonated water contacted 

more oil behind the front.   

 

Figure 4.24: Simulated profiles of water saturation (SWAT) and CO2 mole fraction in water 
(AMF1) and oil (decane) phase (XMF1) along the core at water breakthrough time. 

 

 

Figure 4.25: Simulated profiles of CO2 mole fraction in the water phase along the MW core 
at different times for decane CWI.  
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Similar trend in the simulated profiles of water saturation, mole fraction of CO2 in the water 

and oil phase was observed for the secondary CWI of the stock tank crude oil, Figure 4.26.  

The carbonated water displacement front totally deprived of CO2, moved ahead of oil and 

broke through faster than CO2 gas.   

 

Figure 4.26: Simulated profiles of water saturation (SWAT) and CO2 mole fraction in water 
(AMF1) and oil phase (XMF1) along the core at water breakthrough time (Test 2). 

 

Figure 4.27 shows the corresponding plots of water saturation, oil saturation, CO2 solubility 

in water and CO2 mole fraction in oil phase along the core close to water breakthrough time 

while the composition of some components as they were produced in the producer and their 

variation along the core at a particular time are plotted in Figures A4.6-A4.8 (Appendix 

A4.3).  The predicted CO2 in both water and oil propagated equally with a larger portion of 

CO2 transferred into the oil than into the water reflecting CO2 solubility in both phases.   

The predicted CO2 amount in each phase is however not quite realistic especially at the scale 

involved.  This is because, in reality, some diffusion and dispersion of CO2 from the 

carbonated water into the oil phase take place thus at any given time it is hypothesized that 

the amount of the CO2 should be smaller than what is calculated based on the instantaneous 

equilibrium assumptions.  Whilst the simulation predicts that the carbonated water front was 

totally deprived of CO2 and moving ahead as plain water, the experiment showed earlier 

breakthrough of CO2 than water (Figure 3.31) confirming that the displacement font was not 

totally deprived of its CO2.   
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Figure 4.27: From top left clockwise:Simulated saturation plots of water, oil saturation, CO2 
solubility in water and CO2 mole fraction in oil phase along the core close to water 
breakthrough time. 

 

Experimentally for decane, the CO2 broke through after about 0.64 PV of carbonated water 

was injected while water broke through 0.06 PV later.  For the stock tank crude oil, CO2 and 

water broke through after 0.11 PV and 0.22 PV of carbonated water had been injected, 

respectively.  These observations serve as evidence of the inappropriate distribution of CO2 

by the simulator and that the equilibrium assumption is less reliable for modelling this 

process at the core scale. 

Further evidence of the diffusion process in CWI was reported by Riazi et al. (2009).  They 

reported the swelling of a 0.25 cm oil (decane) ganglion with time during carbonated water 

flooding in a water-wet micro model at 2000 psig and 100 oF, shown in Figure 4.28.  CO2 

from the carbonated water diffused into the oil, resulting in the swelling of the oil and it took 

a definite amount of time for the system to reach equilibrium, where the oil volume came to 

a plateau.  The diffusion equilibrium time, which is defined as the time for the oil to swell to 

95% of its equilibrium volume, in this case was about 167 hrs. 



Chapter 4: Numerical Simulation of CWI 

 

122 

 

 

Figure 4.28: Swelling of the 0.25 cm decane ganglion during CWI in the micromodel 
experiment at 100 oF, 2000 psig (Riazi et al., 2009). 

 

A wide range of diffusion path lengths, between 100 µm to the core diameter size, could, 

however, exist in the real porous media (Chatzis et al., 1983).  The diffusion time, t, is 

correlated with the oil length, Lo, by Equation 4.16 (Grogan and Pinczewski, 1987): 

RS �T:�U
C�V:4�V:                                                                                                                             (4.16) 

where Lo is the oil thickness in m, Di,o is the diffusion coefficient of CO2 in oil in m2/s and 

Si,o is the solubility of CO2 in oil in mole/mole.   

For the same oil-CO2 system where the degree of oil swelling is assumed to be the same for 

all the oil sizes, the diffusion time for two different oil ganglion sizes can be calculated as:   

WX
WU � �TX�

U
�TU�U                                                                                                                            (4.17) 

 

Based on the known equilibrium time for the 0.25 cm oil ganglion size, the diffusion 

equilibrium time (in seconds) of various oil thicknesses were calculated and shown in Figure 

4.29.  In the simulation model, an oil ganglion size can be assumed to be equivalent to half of 

the grid block size, which was 0.083 cm in the decane case.  From Figure 4.29, a contact 
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time in the order of 6.6E04 seconds (ca. 18 hours), where the diffusion was taking place at 

1.26E-06 cm/s (� 0.083 cm/6.6E04 s), was required for the oil ganglion of this size to swell 

100%.  With the displacement of carbonated water at 2.845E-04 cm/s (20 cc/hr), there was 

not enough time for the displaced oil ahead of or behind the front to fully swell or reach 

equilibrium volume.  Nonetheless, some swelling of the oil took place especially for the oil 

behind the front that was continuously receiving a fresh CO2 supply from the injected 

carbonated water, so that some of the swollen oil blobs behind the front were large enough to 

coalesce and eventually be produced.     

If the average oil size in the core was assumed to be the same as in the micromodel, based on 

Figure 4.28, at breakthrough time (4.55 hrs), the oil was estimated to have swelled by about 

15% and by 35% at the end of the coreflood experiment (i.e., at 22.5 hrs).  However, as 

shown in Figure 4.30b, the model predicted an oil swelling of 55% with average CO2 content 

in the oil of up to 72 mole% (Figure 4.30a).  This led to much larger oil viscosity reduction, 

hence more optimistic prediction of oil recovery. 

This comparison between the calculated and experimental results shows that the local 

equilibrium was not achieved during the carbonated water displacement in the core, hence, 

the instantaneous equilibrium and complete mixing assumptions are less reliable for 

modelling the process.  By the instantaneous equilibrium assumption, once the carbonated 

water contacted the oil in the grid cell, the CO2 instantaneously partitioned itself between the 

oil and water, according to the solubility and fugacity equilibration. 
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Figure 4.29: Diffusion equilibrium time (in seconds) by directly contacting decane with 
carbonated water for varying oil sizes, calculated using Equation 4.17. 

 

 

Figure 4.30: The calculated average CO2 mole fraction in the oil phase in the core (left) and 
the EOS-calculated swelling factor versus CO2 mole fraction in the oil (right), for CWI of 
decane at 100.4 oF, 2000 psig in the water wet core. 
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the oil and the gas phases in the model did not significantly alter the simulation results.  The 

author believes that it is the cross-phase molecular diffusion and dispersion that is more 

influential to the oil recovery of CWI at the core scale.  At the time this study was 

undertaken, none of the compositional simulators evaluated has yet the capability to account 

for the cross phase diffusion of CO2 from the water phase to the oil phase.  In this study, the 

author has evaluated the use of transport coefficients to account for the dispersion effects in 

the model and this is discussed next. 

 

4.3.6. Modelling CWI with transport coefficients 

The recovery efficiency in a miscible gas displacement in a porous medium is affected by the 

viscous fingering, due to the adverse viscosity ratio when a more mobile (less viscous) gas 

displaces less mobile (more viscous) oil resulting in some oil by-passed at breakthrough.  

The component mixing at the pore scale, due to molecular diffusion and fluid velocity 

variations, can dampen down the growth of viscous and gravity fingers.  The requirement for 

a direct solution of the convection-diffusion equation of a very fine grid model to simulate 

the fine scale structure of the fingers combined with the numerical dispersion inherent in 

finite difference models prohibit the accurate larger scale study of such displacement 

process.   

In this study, the author evaluated the transport coefficients, termed as ‘α- factors’ to 

compensate for the dispersion and diffusion of CO2 effects in the model.  The α-factor can 

be incorporated into the E300 model to mimic the effect of non-equilibrium mechanisms 

such as diffusion and dispersion.  The coefficients were originally introduced by Barker and 

Fayers (1994) for modelling sub-grid block phenomena, such as rapid variations in phase 

saturations and compositions as a result of viscous fingering, reservoir heterogeneity and the 

development of narrow fronts, to improve the accuracy of compositional simulations 

performed with coarse homogeneous grid blocks.   

The α-factor modifies the mobility of component c in phase pY��%<�, according to: 

�%< � Z%<[%<3	% \]̂�]                                                                                                                 (4.18) 
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where [%< Yis the mole fraction of component c in phase p, krp the relative permeability of 

phase p, µp the viscosity of phase p, _%̀ Ythe molar density of phase p and Z%< Yis the transport 

coefficient of the component in phase p.  The factor was inputted as a function of CO2 mole 

fraction i.e., it modifies the mobility of the CO2 component as the concentration changes.   

The pre-requisite of this approach is a fine grid model of suitable Representative Elements of 

Volume for the reservoir that is able to model the sub-grid block phenomena of interest.  The 

α-factors are calculated from the results of fine grid simulations and introduced in the flow 

terms to relate the compositions of the fluids flowing out of a large gridblock to the average 

compositions of those fluids within the block.  However, since there was no fine grid CWI 

model available to be used as the basis in calculating the α-factor in this study, the 

experimental data were used as a reference and the α-factor was tuned as a history matching 

parameter.   

 

Simulation results 

Table 4.9 shows the predicted oil recovery with and without the α-factor.  A huge 

improvement in the oil recovery match for the secondary CWI of decane was obtained with 

α-factor of 30 (Figure 4.31).  Significant improvement in the oil recovery match particularly 

after the breakthrough time until the end of the test was also observed for the stock tank oil, 

with α-factor of 20 (Figure 4.32).  These relatively large α-factors could be due to the sharp 

fronts in the solution of the homogeneous 1D model.  Barker and Fayers (1994) have 

reported similar magnitude of α-factor in 1D simulation of a lean gas injection.  

Heterogeneities and three dimensional effects are expected to smear the fronts, hence giving 

a much lower α-factor value.   

The water recovery for the latter, shown in Figure 4.33, was satisfactorily matched and the 

breakthrough time of CO2 was also significantly improved.  More CO2 retention in test than 

in the model was however observed.  This could possibly be due to the tuning parameter that 

resulted in the match of the EOS model versus the actual PVT data.  As can be seen in 

Figure 4.13, the EOS used in the model for this sample predicted about 5% lower CO2 

saturation pressure.  Since lower saturation pressure means lower amount of CO2 dissolved 



Chapter 4: Numerical Simulation of CWI 

 

127 

 

in the oil, this indicates that at any given pressure, the model predicted more CO2 gas been 

released rather than being dissolved in the oil i.e., more CO2 retention in test than in the 

model. 

 

Table 4.9: The α-factor for matching the carbonated coreflood.  

Oil Process α factor 
Recovery, % PV Incremental recovery 

Expt. Sim. Expt., 
%PV 

Sim., 
%PV 

Difference, 
% 

Decane 
WI - 71.0 70.7 - - - 

Secondary 
CWI 

- 76.4 83.1 
5.4 

12.4 129.6 
30 76.4 77.2 6.5 20.4 

Stock tank 
oil 

WI - 41.6 40.6 - - - 
Secondary 

CWI 
- 60.6 62.7 

19.0 
22.1 16.3 

20 60.6 60.4 19.8 4.2 
WI  - 58.4 58.1  - - - 

Tertiary 
CWI 

- 67.6 70.5 
9.2 

12.4 34.8 
20 67.6 70.2 12.1 31.5 

 

 

Figure 4.31: Comparison between measured and calculated ∆P across the core(left) and 
cumulative oil recovery (right) for secondary CWI, decane, water-wet Clashach core at 
100.4 oF, 2000 psig, α-factor = 30. 

 

0.0

0.2

0.4

0.6

0 1 2 3 4

∆
P

, 
p

si

PV injected

Exp CWI

Sim CWI

0.0

0.2

0.4

0.6

0.8

0 1 2 3 4

O
il

 r
ec

o
v
er

y
, 
P

V

PV injected

Exp CWI

Sim CWI



Chapter 4: Numerical Simulation of CWI 

 

128 

 

 

Figure 4.32: Comparison between measured and calculated cumulative oil recovery (left) 
and ∆P across the core (right) for the secondary CWI, stock tank oil, reservoir core at 100.4 
oF, 2500 psig, α-factor = 20. 

 

 

Figure 4.33: Comparison between measured and calculated cumulative brine recovery (left) 
and cumulative CO2 produced (right) for the secondary CWI, stock tank oil, reservoir core at 
100.4 oF, 2500 psig, α-factor = 20. 
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secondary CWI, the predicted tertiary CWI recovery was not that sensitive to the  α-factor.  

Incorporating a α-factor of up to 20 changed the predicted oil recovery by only 0.3 %PV.  

An unrealistically high α-factor could be required in order to get the same level of 

improvement as in the secondary CWI case, if obtained at all.  The inadequacy of the α-

factor for the tertiary CWI process is most probably because both oil and water phases were 

mobile in this mode of recovery, unlike in the secondary process, where oil was the only 

mobile phase in the core.  Barker and Fayers (1994) reported the use of pseudo-relative 

permeabilities to correct the oil and gas fluxes (the two mobile fluids in their system) 

together with the use of the α-factors.  The modification in the oil fluxes due to the α-factor 

and the presence of mobile water requires changes in the fluids’ relative permeabilities.  The 

correction in the relative permeabilities was however not examined in this thesis.  Further 

investigation is recommended.   

 

 

Figure 4.34: Comparison between measured and calculated ∆P across the core (left) and 
cumulative oil recovery (right) for the tertiary CWI, stock tank oil, reservoir core at 100.4 oF, 
2500 psig, α-factor = 20. 

 



Chapter 4: Numerical Simulation of CWI 

 

130 

 

 

Figure 4.35: Comparison between measured and calculated cumulative brine recovery (left) 
and cumulative CO2 produced (right) for the tertiary CWI, stock tank oil, reservoir core at 
100.4 oF, 2500 psig, α-factor = 20. 
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decane in the water-wet core in Figure 4.18 and 4.31, respectively; we can see that the α-

factor significantly changes the match after the breakthrough time only.  As such, this factor 

does not work satisfactorily for modelling the CWI in the mixed-wet core reported here since 

the mismatch in the oil recovery was also observed at the breakthrough point, Figure 4.19.   
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4.4.1. Relative permeability approach using black oil simulator 

In addition to displacement and molecular diffusion, interfacial tension (IFT) reduction and 

wettability alteration, which influence the relative permeability (kr), could also play a role in 

the oil recovery from CWI.  This could probably explain the very different CWI recovery 

profile in the mixed-wet core than in the water-wet one.  The recovery mechanisms by CWI 

process in the mixed wet core are vaguely understood.  The approach of using the same 

oil/water relative permeability curves for modelling WI and CWI may not be appropriate for 

the mixed-wet core case leading to the significant mismatch.   

The lower the IFT, the higher the capillary number, Nc, which in turn is the ratio of capillary 

to viscous forces (Equation 4.19) and has a significant effect on Sor, such that as Nc increases, 

Sor is reduced (Shen et al., 2006). 

a< � bcdcecf YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY(4.19)Y
 

where µw is the viscosity of the displacing phase, Vw is the flow rate of the displacing phase, 

φ is the effective porosity and σow is the IFT for the oil/water system.  In CWI, there will be a 

discernible reduction in the IFT, thus Sor.  This study has shown through the coreflood tests 

that secondary CWI can bring about 31% reductions in Sorw for a crude oil.  To the author’s 

knowledge, as far as the E300 simulator is concerned, incorporating the IFT changes is only 

possible through the use of a fully coupled ODD3P model, which incorporates hysteresis and 

miscibility effects for both relative permeability and capillary pressure for a three phase 

system.  As there was no gas involved, there was no three-phase relative permeability data 

from the CWI tests.  Since the three-phase data are the required input data to turn on the 

ODD3P feature, this method is therefore not applicable. 

In this simulation approach, CWI was modelled as plain waterflood in an E100 black oil 

simulator and using the oil/carbonated water relative permeability curves.  The 1D 

compositional models described earlier were converted to the E100 black oil model by 

changing the PVT input data to the required tabulated black oil format.  The relative 

permeability acts as ‘a factor’ to account for all the important physics of the CWI process.  A 

similar approach to that used in obtaining the WI relative permeability curves mentioned in 
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Section 4.3.3 was used to obtain the relative permeability from the experimental CWI tests.  

However, since several parameters (the exponents and end points) of the Corey’s correlation 

were sensitized simultaneously to match the experimental data, non-unique solutions, in 

which a few different sets of relative permeability curves result in an acceptable match, were 

frequently obtained.  In order to further constrain the solutions, the approach shown in Figure 

4.36 was followed.  

The oil/water relative permeability curves from the WI data were first estimated.  Since the 

changes in the relative permeability to water, krw, between the WI and CWI processes were 

expected to be small, krw for CWI, (krw)CWI , was initially assumed to be the same as that of 

corresponding WI, (krw)WI.  The endpoints and the exponent of the relative permeability to 

oil for CWI (krow)CWI curve were then adjusted until a reasonable match in the experimental 

data was obtained.  For discussion purpose, only results for decane are shown here. 

 

Figure 4.36: The approach in history matching the displacement tests data in obtaining the 
carbonated water/oil relative permeability curves. 
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Results and discussion 

For decane in water-wet Clashach core (Tests 4 and 5), good agreement was obtained 

between the experimental and the calculated oil recovery and ∆P, as shown in Figure 4.37 

and summarised in Table 4.10.  The resulting relative permeability curves from WI and CWI 

are displayed in Figure 4.38.  The (krow)CWI is slightly higher than (krow)WI, which explains 

the additional oil recovery.  The water relative permeability curve for CWI has slightly lower 

Sor and krw(Sor) than WI.  Since the WI recovery was already high, only a small reduction of 

Sor and a small increase in krow as compared to WI were required to bring about the 5.4 %PV 

incremental oil recovery from the secondary CWI in this core. 

 

Table 4.10: Relative permeability approach - Comparison of the simulated and 
experimental coreflood recovery of decane in water-wet Clashach core. 

Test Process Recovery, % PV Incremental Recovery, % PV 
Experiment Simulation Experiment Simulation 

4 WI 71.0 71.3  -  - 
5 CWI 76.4 75.6 5.4 4.3 

 

For CWI of decane in the mixed-wet Clashach core (Tests 8 and 9), slightly higher krw(Sor) 

and lower Sor in CWI were required as compared to WI to get the match shown in Figure 

4.39.  The significant differences in the ∆P and oil recovery trends in this mixed-wet core as 

compared to those in the water-wet core are also reflected in the differences in the relative 

permeability curves obtained where the difference between (kro)CWI and (kro)WI for the former 

is much larger.  Table 4.11 compares the experimental and predicted oil recovery.  The 

resulting relative permeability curves are shown in Figure 4.40.   

 

Table 4.11: Relative permeability approach - Comparison between the simulated and 
experimental coreflood recovery of decane in the mixed-wet Clashach core. 

Test Process Recovery, % PV Incremental Recovery, % PV 
Experiment Simulation Experiment Simulation 

8 WI 58.5 58.5  -  - 
9 CWI 65.4 66.5 6.9 8.0 
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Figure 4.37: Comparison between measured and calculated ∆P across the core (left) and 
cumulative oil recovery (right) for the secondary CWI, decane, water-wet Clashach core at 
100.4 oF, 2000 psig. 

 

 

Figure 4.38: The estimated oil/water relative permeability curves for WI and CWI of decane 
in water-wet Clashach core. 
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Figure 4.39: Comparison between measured and calculated ∆P across the core (left) and  
cumulative oil recovery (right) for the secondary CWI, decane, mixed-wet Clashach core at 
100.4 oF, 2000 psig. 

 

 

Figure 4.40: The estimated relative permeability curves for WI and CWI of decane in mixed-
wet Clashach core. 
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rather than using the oil/water relative permeability curves in the compositional simulator.  

Relative permeability curves were estimated from the experimental data by history matching 

the ∆P and recovery from the plain water and carbonated water displacement tests.   

This approach is an easy-to-use method in predicting the performance of the CWI.  

However, the method is rather limited in application for several reasons.  Firstly, it is 

applicable to model the process within the fluid saturation range involved in the experiments 

only, in view of the fact that the relative permeability used in the simulation was obtained by 

matching the experimental data within that saturation range.  Nevertheless, the total injection 

in the core experiments is normally many more PV than the total fluid injection in the field; 

thus, the range of average saturation in the field can easily be within the saturation range 

involved in the experiments.   

Since relative permeability was used as the history matching parameter, there is nonetheless 

a question as to which macroscopic flow effect is included in the relative permeability data.  

The approach might be inappropriate for modelling CWI at a larger scale without a proper 

up-scaling, be it at the same or different reservoir and flow conditions.  This can only be 

verified if we have the performance data of CWI at the larger scale of interest.  The up-

scaling of the obtained relative permeability for the use at larger scale is beyond the scope of 

this thesis.   

This approach is also only good to predict the fluid recovery until the breakthrough time, 

beyond which the oil recovery can be calculated but not the CO2 gas production, since CWI 

was modelled as ‘plain’ waterflood to start with.  Although, theoretically, the amount of CO2 

recovery and storage can be roughly estimated based on CO2 solubility and concentration in 

both produced and remaining oil and water, no such information was available from a black 

oil simulation output.  For prudent reservoir management especially for an integrated CO2 

EOR and storage project, reliable prediction of CO2 gas production and retention is essential, 

therefore making this simulation approach unbefitting. 

 

4.4.2. Todd-Longstaff model 

The Todd and Longstaff (TL) model is one of the best known empirical models to represent 
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the effects of viscous fingering in a miscible displacement using a black oil simulator (Todd-

Longstaff, 1972).  In the TL model, viscous fingering is represented by the modification of 

the viscosity and density calculations, without having to reproduce the fine structure of 

unstable frontal advance or going to the expense and complexity of using a compositional 

model.  The author evaluated this empirical model to simulate the CWI process at the core 

scale with the mixing parameter, ω, as the ‘tuning’ parameter representing what is in reality 

the effect of CO2 diffusion and dispersion during the process.  Coreflood tests of decane in 

the water-wet core and the stock tank oil in the reservoir core were used as case studies. 

The TL model was originally developed for first-contact miscible gas floods, in which the 

solvent gas and reservoir oil components are miscible in all proportions thus only one 

hydrocarbon (non-wetting) phase exists in the reservoir.  An empirical mixing parameter, �, 

between 0 and 1, is used to represent the size of the dispersed zone or degree of fluid mixing 

within each grid cell.  When the hydrocarbon components in each cell are fully mixed, � 

equals 1 whereas � equals 0 when the mixed zone is negligible with respect to the size of the 

grid cell.  In practical applications the ω was normally chosen such that the resulting fluid 

density and viscosity reflect the effective fluid property averaged over the entire grid block.  

Details for the empirical model are given in Appendix A4.3.  All the method does is 

basically calculating the effective oil and gas viscosity and density, based on the mixing 

parameter, ω, and does not attempt to describe the thermodynamic and transport phenomena 

that determine the details of the local fluid composition and flow characteristics.   

 

The model 

The 3-parameters TL model of E100 was used.  The same black oil model as used in the 

relative permeability simulation approach described earlier was again employed, with 

relevant keywords and data added.  Since there was no associated gas in the oil or free gas in 

the system, the PVT data for the gas was taken to be that of CO2 but without allowing the 

CO2 to be treated as dissolved gas at any pressure.  The oil/water relative permeability curves 

from the corresponding WI coreflood as mentioned before were used while the gas/oil 

relative permeability curves for the decane case were taken from Chukwudeme and 

Hamouda (2009).   
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The carbonated water flood was modelled as simultaneous water and CO2 gas injection at 

rates corresponding to the experimental amount of CO2 that was dissolved to make up the 

carbonated water at the test pressure and temperature.  A total injection rate of 20 cc/hr was 

used for decane and 1 cc/hr for the stock tank oil.  The mixing parameter was initially 

assumed at 0.67; a value recommended by Todd and Longstaff (1972) for miscible flood 

performance in a laboratory sand pack, and later sensitized to get a better match of the 

experimental coreflood results.   

 

Simulation results and discussion 

As shown in Figure 4.41, the predicted oil recovery for decane matched the experimental 

results satisfactorily at ω of 0.4.  The mixing parameter only modifies the effective density 

and viscosity of the oil-gas mixture, thus it has negligible impact on water recovery.  As the 

effluents during this test were collected at the test pressure and temperature, no measured 

CO2 gas production data was available for comparison with the simulated values. 

 

Figure 4.41: The experimental ∆P across the core (left) and oil recovery (right) for secondary 
CWI, decane, water-wet core and the simulation match by TL model. 
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test reduced by 30% of the actual value, Figure 4.42.  The oil recovery was underestimated 

by 15% around the breakthrough time.  While the calculated gas recovery was higher than 

the measured values by up to 30%, the water recovery was predicted adequately, Figure 

4.43.   

The experimental results and the best simulation match for the tertiary CWI of the same oil 

were obtained with ω = 0.67, Figures 4.44 and 4.45.  The match in the brine recovery was 

very good and quite reasonable for the cumulative oil produced.  However, the match of ∆P 

especially at the start of CWI and the CO2 recovery was very poor.  The inability of the 

model to account for the compositional effect of the process could have contributed to the 

mismatch.  Even though there is a solvent option of the TL method in which 4 components 

(water, oil, solvent and lean gas) can be defined within the reservoir, it is not applicable since 

the solvent needs to be a second gas phase.  Defining the carbonated water as ‘solvent gas’ 

will result in no water production, instead huge amount of gas will be produced.  This does 

not realistically represent CWI process. 

 

Figure 4.42: The experimental oil recovery (left) and ∆P (right) for secondary CWI in the 
reservoir core with stock tank crude oil and the simulation match by TL model at ω = 0.69. 
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Figure 4.43: The experimental water (left) and CO2 (right) recovery for secondary CWI in 
the reservoir core with stock tank crude oil and the simulation match by TL model at ω = 
0.69.  

 

 

Figure 4.44: The experimental oil recovery (left) and ∆P (right) for tertiary CWI in the 
reservoir core with stock tank crude oil and the simulation match by TL model at ω = 0.67. 

 

0

500

1000

1500

2000

2500

0 2 4 6

C
um

 C
O

2 
ga

s 
pr

od
uc

ed
, s

cc

PV injected

Exp.
w = 0.69

0

1

2

3

4

5

0 2 4 6

C
um

 w
at

er
 p

ro
d

uc
ed

, P
V

PV injected

Exp.
w = 0.69

0.00

0.05

0.10

0.15

0.20

0.25

0 2 4 6 8 10

∆P
, p

si

PV injected

Exp. w = 0.67

0.0

0.2

0.4

0.6

0.8

0 2 4 6 8 10

C
um

 o
il 

pr
od

uc
ed

, P
V

PV injected

Exp. w = 0.67



Chapter 4: Numerical Simulation of CWI 

 

141 

 

 

Figure 4.45: The experimental oil (left) and CO2 (right) recovery for tertiary CWI in the 
reservoir core with stock tank crude oil and the simulation match by TL model at ω = 0.67.  
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transfer effect), yet the carbonated waterflood of the crude oil was not first contact miscible, 

the resultant mixing parameter in this case would not only account for the viscous fingering 

but also the immiscibility of the process.  The much higher predicted CO2 gas production is 

not surprising since CO2 was injected as free gas, without its solubility into the water 

accounted for, which means CO2 gas and water were not bound in their movement through 
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the reservoir and flowed independently.  Despite the limitation, this simulation approach 

could be useful as first-order approximation of CWI performance when the use of 

compositional model is not possible. 

The difficulty in defining the carbonated water as a‘gas solvent’ and the inability to model 

water production properly renders the extended 4-parameter Todd-Longstaff method or the 

solvent option inappropriate to be used for simulating the CWI process.   

Comparison between the alternative models for secondary CWI and tertiary CWI of decane 

and the stock tank oil at the core scale is shown in Figures A4.10-A4.14.   

 

4.5. Overall discussion 

Simulation studies were performed to investigate whether the available compositional 

simulators can properly model the CWI process.  The features of three commonly used 

compositional simulators namely E300 (ver. 2007.1), GEM (ver. 2008.1) and STARS (ver. 

2008.1) were first compared for their suitability to model the process.  It was found that none 

of the simulators has an explicit keyword to assign carbonated water composition as a single 

phase in the injection stream.  CWI was consequently simulated as co-injection of CO2 and 

water at the same location, in proportion corresponding to the experimental CO2 solubility in 

the aqueous phase at the test pressure and temperature.  This co-injection approach, while it 

works adequately in a 1D core model, is suspected not amenable for modelling saturated 

carbonated water injection in a 2D and not also likely in a 3D model, as free CO2 gas would 

be evolved out of the solution when there was a slight drop in the local pressure.  If this 

happened, the displacement results would be masked by the effects of direct CO2 injection.  

This problem however will not arise if the operating pressure is much higher than the 

carbonation pressure. 

All the three simulators assume instantaneous equilibrium and complete mixing of 

components and phases in the grid blocks.  However, the predicted incremental oil recovery 

per volume of carbonated water injected was different among the simulators and this was 

due to the difference in the CO2 solubility in water, the equilibrium constant (K-values) and 



Chapter 4: Numerical Simulation of CWI 

 

143 

 

correlations to calculate the fluid viscosities.  Better agreement between the simulators’ 

results could have been achieved if these differences were minimized.  This comparison 

reveals that none of the three simulators are better than the other to model the CWI process.  

Being more widely used in the industry, E300 was subsequently used for the more detailed 

simulation of CWI at the core scale.   

One main finding from the core scale CWI simulation using E300 is that the local 

equilibrium assumption was not appropriate to model the process as equilibrium was not 

actually achieved in the core during the displacement.  The compositional model over-

predicted the incremental oil recovery from CWI for all the tests carried out in this study.  

The supposition that the commercially available simulator can model CWI at the 

experimental scale has therefore proven not to be true. 

The inaccuracy of the fluid characterization is very unlikely to be the main reason for the 

mismatch, since over-prediction was also exhibited in the case of decane, which is a single 

carbon number with established properties.  Compelling evidence of CO2 diffusion and 

dispersion in the oil recovery by CWI was observed through the experimental front 

propagation where CO2 broke through faster than the water.  This can only happen if the 

CO2 in the injected carbonated water diffused and dispersed into the oil ahead of the front 

and produced earlier than the CO2-deprived carbonated water.  The lower estimated oil 

swelling during the displacement based on the equilibrium time, thus lower CO2 content in 

the oil, as opposed to the simulator prediction, further corroborates the role of dispersive 

mixing in the CWI process.  The instantaneous equilibrium and complete mixing between 

oil, gas, and water within each grid block of the simulator, on the other hand, resulted in a 

faster and higher amount of CO2 from the carbonated water to be partitioned into the oil.  A 

large viscosity reduction was consequently predicted, that resulted in optimistically higher 

incremental oil recovery. 

The simulation results, however, may at first appear to be counter-intuitive.  One may argue 

that if the carbonated water front was totally deprived of its CO2 and moved forward as plain 

water, how then could the predicted oil recovery be higher than the experimental values?  

One possible reason is that the model predicted the CO2 from the carbonated water affected 

the oil behind the front more than that ahead of it.  From the predicted oil recovery profiles, 

for example, in Figure 4.18 and 4.20, we can clearly see that the over-prediction of the 
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incremental oil recovery from the CWI was after the breakthrough time.  In the model, the 

carbonated water front ‘lost’ its CO2 immediately to the oil upon contact and moves forward 

as plain water.  The oil recovery up to breakthrough was thus purely due to displacement.  

Meanwhile, the oil behind the front dissolved more and more CO2 from the injected 

carbonated water as the flooding continued.  The amount of CO2 dissolved in the oil at any 

given time was much higher than actual, due to the instantaneous equilibrium and complete 

mixing assumption of the model, resulting in higher production of the oil behind the front. 

The three simulators evaluated can model molecular diffusion of CO2 within the oil and gas 

phase but none can account for the CO2 diffusion from the carbonated water to the oil phase 

(cross-phase diffusion), which the author believes is more influential to the recovery process 

along with the dispersive mixing.   

The author has shown that the use of an adjustable transient coefficient or the α-factor in the 

compositional model, an approach developed by Barker and Fayers (1994) to model sub-grid 

block phenomena in coarse, homogeneous grid block compositional simulations, can be used 

to predict the experimental CWI results with reasonable accuracy especially for the 

secondary process.  The simulation results show that the coreflood displacements can 

adequately be matched by adjusting this coefficient.  This simulation approach incorporates 

the compositional effects, CO2 solubility in the aqueous phase and lends itself to simulating 

the CWI process at a larger scale.  It was nevertheless found to be less effective for 

simulating the tertiary process in this study and more investigations are recommended.  If the 

use of compositional model is not possible, an alternative simulation method using the Todd 

and Longstaff model in black oil simulator could estimate the oil recovery from CWI by 

adjusting the mixing parameter, even though calculated gas production might be unreliable.   

Despite its significance in CO2 injection at the core scale, there are however, debates on the 

effect of the molecular diffusion and dispersion at the field scale.  Any fluid injections at the 

field scales are subject to large scale oil by-passing resulting from channelling, gravity 

segregation and reservoir heterogeneity.  Molecular diffusion perpendicular to the direction 

of flow could sharpen the flood front i.e. reduce the by-passing.  But it is difficult to ascertain 

that diffusion is a significant mechanism over the by-passing effects, as it is difficult to know 

the actual length scales of the by-passing at the field scale.  Grogan and Pinczewski (1987) 

estimated that the contact times required for CO2 in the tertiary floods to contact and swell 
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the oil over metres of diffusion-path lengths was of the order of 8-80 years.  For the typical 

field life of 20-50 years, diffusion of this scale may have significant impact, yet there is 

considerable uncertainty about typical lengths over which diffusion must operate in the field 

scale displacements.  In their studies, Warner (1977) and Todd et al. (1982) deduced that it is 

quite unlikely that molecular diffusion will be significant in reducing the adverse effects of 

large-scale bypassing in the field.  Muller and Lake (1991), in their numerical modelling of 

the water blocking effect in miscible flooding also concluded that water blocking (which is 

related to diffusion of CO2 through the water barrier) apparently has no significant impact on 

recovery at the field scale.   

There might be other factors contributing to the mismatch between the measured and 

calculated CWI performance, other than the dispersive mixing, such as the use of 

inappropriate relative permeability curves and the change in rock wettability or interfacial 

tension, all of which if present, were not accounted for in the model used.  For example, in 

the case of decane in the mixed-wet core, in Figure 4.19, the additional oil recovery took 

place at breakthrough, whilst in the water-wet core the additional oil recovery took place 

gradually, after the breakthrough.  The difference in the differential pressure of WI and CWI 

was also much larger in the mixed-wet core.  The predicted incremental oil recovery values 

from CWI by the simulators for the water-wet and mixed-wet core were, however, very 

close to each other, despite each model using the respective oil/water relative permeability 

curves.  This suggests that the simulator mainly accounts for the compositional effects only, 

which was the same in both cases, but not that of the rock wettability.  Having different ∆P 

and breakthrough time, the use of the same oil/water relative permeability curves for both 

WI and CWI for the mixed-wet core proved to be inappropriate.  The relative permeability 

approach seems to be adequate to model the oil recovery but unable to predict the gas 

production.  Further research is required to obtain more experimental data of CWI in mixed-

wet cores and subsequently find the appropriate approach to model the process in these 

cores.  

 

4.6. Summary and conclusions 

From the simulation studies presented in this chapter, it can be concluded that: 
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4.6.1. Evaluation of compositional simulators 

• None of the evaluated simulators has an explicit keyword to assign a single phase 

carbonated water composition in the injection stream at the surface.  Thus CWI was 

simulated by co-injecting CO2 and water at the same location in proportion 

corresponding to the CO2 solubility in water at the test conditions.   

• For the 2D model used, a slightly under-saturated carbonated water was necessary to 

sustain single phase CWI. 

• All the three compositional simulators assume instantaneous equilibrium and 

complete mixing between phases, such that the fugacities of CO2 in the oil and 

aqueous phase are bounded by its individual solubility in these two phases.   

• For a given ratio of cumulative CO2 injected to total water injected (FGIT/FWIT), 

E300 predicted the highest incremental oil recovery of 14.5 %STOOIP while 

STARS predicted the lowest incremental recovery of 9.2% STOOIP.  

• CO2 solubility in water by the Chang et al. correlation in E300 is lower than that by 

Henry’s Law in CMG and STARS.  At 2000 psig, 100.4oF, the former estimated 

12% lower CO2 solubility than the latter. 

• The difference in the incremental oil recovery is mostly due to the difference in 

viscosity calculation and the solubility of CO2 in both oil and water phases, which in 

turn is due to the difference in assigning the K-values in those simulators.  It is 

believed that if all these factors are made the same, the incremental oil recovery 

would be more or less the same too. 

• A high amount of CO2 was dissolved from the carbonated water into the oil as CWI 

continues.  A large viscosity reduction and consequently high incremental oil 

recovery was predicted by the simulators.   

• None of the three simulators is better suited to model CWI than the others. 

 

4.6.2. Coreflood simulations 

• The local equilibrium was not achieved during the CWI in the core, thus rendering 

the simulators with the instantaneous equilibrium assumption inappropriate for 

modelling CWI process at the scale studied.  The supposition that the commercially 
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available simulator can model CWI at the experimental scale has therefore proven 

not to be true.  

• At the core scale investigated, the compositional simulator over-predicted the oil 

recovery for both secondary and tertiary CWI.   

• The simulator does not simulate the partition of CO2 between water and oil 

realistically.  The model predicted that the CO2 in the carbonated water front 

partitioned very quickly into the oil behind the front and that the displacement front 

was totally deprived of CO2 after travelling a certain distance through the core.  

Conversely, in the experiment, CO2 was produced earlier than water signifying the 

dispersive mixing (diffusion and dispersion) of CO2 into the oil at the displacement 

front.   

• The dispersive mixing effect was adequately modelled by the transport coefficient 

(α-factor) in the compositional model for the secondary CWI process but less 

effective for the tertiary CWI process.   

• The Todd-Longstaff model with mixing parameter as tuning parameter can give 

first-order approximation of CWI performance at the core scale without the use of a 

compositional model. 

• For the mixed-wet core, the oil/water relative permeability curves from the WI 

coreflood were demonstrated to be inappropriate for the CWI due to the different oil 

recovery and ∆P trends of both processes.    

• Further study is recommended on the effects of wettability and the IFT changes 

during CWI and the appropriate way to model CWI particularly in mixed-wet cores. 

 

4.7. References 

[4.1] Barker, J.W. and Fayers, F.J.: Transport Coefficients for Compositional 

Simulation with Coarse Grids in Heterogeneous Media, SPE 22591, SPE 

Advanced Technology Series, Vol.2, No. 2, 103-112, 1994. 

[4.2] Bijeljic, B.R., Muggeridge, A.H., and Blunt, M.J.: Effect of Composition on 

Waterblocking for Multicomponent Gas Floods, SPE 77697, SPE Annual 

Technical Conference and Exhibition, San Antonio, Texas, 29 Sep.-2 Oct. 2002. 



Chapter 4: Numerical Simulation of CWI 

 

148 

 

[4.3] Campbell B.T. and Orr, Jr F.M.: Flow Visualization for CO2/Crude-Oil 

Displacements, SPE 11958, SPE Journal, Vol. 25, No. 5, 665-678, October 1985. 

[4.4] Chang, Y. B., Coats, B.K. and Nolen, J.S.: A Compositional Model for CO2 

Floods Including CO2 Solubility in Water, SPE 33164, SPE Reservoir 

Evaluation & Engineering, Vol. 1, No. 2, 133-160, 1998. 

[4.5] Chatzis, I., Morrow, N.R. and Lim, H.T.: Magnitude and Detailed Structure of 

Residual Oil Saturation, SPE 10681, SPE Journal, 23 (2), 311-326, April 1983. 

[4.6] Chukwudeme, E.A. and Hamouda, A.A.: Enhanced Oil Recovery (EOR) by 

Miscible CO2 and Water Flooding of Asphaltenic and Non-Asphaltenic Oils, 

Energies, 2, 714-737, 2009. 

[4.7] CMG GEM User Manual, 2008. 

[4.8] CMG STARS User Guide, 2008. 

[4.9] CMG WinProp User Guide 2008. 

[4.10] Cullick, A.S. and Mathis, M. L.: Densities and Viscosities of Mixtures of Carbon 

Dioxide and n-decane from 310 to 403 K and 7 to 30 MPa, J. Chem. Eng. Data, 

29(4), 393-396, 1984. 

[4.11] ECLIPSE 2007.1 Simulation Software Manual, Schlumberger. 

[4.12] Fussell, L.T. and Fussell, D.D.: An Iterative Technique for Compositional 

Reservoir Models, SPE 6891, SPE Journal, Vol. 19, No. 4, 211-220, 1979. 

[4.13] Gardner, J.W. and Ypma, J.G.J.: An Investigation of Phase Behaviour-

Macroscopic Bypassing Interaction in CO2 Flooding, SPE Journal, Vol. 24, No. 

5, 508-520, 1984. 

[4.14] Grogan A.T. and Pinczewski W.V.: The Role of Molecular Diffusion Processes in 

Tertiary CO2 Flooding, SPE 12706, Journal of Petroleum Technology, Vol. 39, No. 

5, 591-602, May 1987.  

[4.15] Harvey, A.H.: Semi-empirical Correlation for Henry’s Constants over Large 

Temperature Ranges, AIChE J, Vol. 42, No. 5, 1491-1494, May 1996. 



Chapter 4: Numerical Simulation of CWI 

 

149 

 

[4.16] Katz, D.L. and Firoozabadi, A.: Predicting Phase Behaviour of Condensate/ 

Crude Oil Systems Using Methane Interaction Coefficients, Journal of Petroleum 

Technology, 1649-55, November 1978. 

[4.17] Kechut N.I., Riazi, M., Sohrabi, M. and Jamiolahmady, M.: Tertiary Oil 

Recovery and CO2 Sequestration by Carbonated Water Injection (CWI), SPE 

139667, SPE International Conference on CO2 Capture, Storage, and Utilization, 

New Orleans, Louisiana, USA, 10–12 November 2010. 

[4.18] Lemmon E.W., McLinden M.O. and Friend D.G.: Thermophysical Properties of 

Fluid Systems in NIST Chemistry Webbook, NIST Standard Reference Database 

No. 69, Eds. P.J. Linstrom and W.G Mallard, June 2005, National Institute of 

Standards and Technology (http://webbook.nist.gov). 

[4.19] Li, Y.K. and Nghiem, L.X.: Phase Equilibria of Oil, Gas and Water/Brine 

Mixtures for a Cubic Equation of State and Henry’s Law, Can. J. Chem. Eng., 

Vol. 64, 486-496, 1986. 

[4.20] Lohrenz, J., Bray, B.G. and Clark, C.R.: Calculating Viscosity of Reservoir 

Fluids from their Composition, Journal of Petroleum Technology, 1171, 1964. 

[4.21] McManamey, W.J. and Woolen, J.M.: The Diffusivity of Carbon Dioxide in 

Organic Liquids at 25 oC and 50 oC, AIChE J. 19, 3, 667-69, May 1973. 

[4.22] Muller T. and Lake L.W.: Theoretical Study of Water Blocking in Miscible 

Flooding, SPE 20206, SPE Reservoir Engineering, Vol. 6, No. 4, 445-451, 1991. 

[4.23] Nghiem L.X., Sammon, P., Grabenstetter, J. and Ohkuma, H.: Modelling CO2 

Storage in Aquifers with a Fully-Coupled Geochemical EOS Compositional 

Simulator, SPE/DOE Symposium on Improved Oil Recovery, Tulsa, Oklahoma, 17-

21 April 2004. 

[4.24] Perkins, T.K. and Johnston, O.C.: A Review of Diffusion and Dispersion in Porous 

Media, SPEJ, 70-80, March 1963. 

[4.25] Pollack, N.R., Enick R.M., Mangone D.J. and Morsi B.I.: Effect of an Aqueous 

Phase on CO2/Tetradecane and CO2/Maljamar-Crude-Oil Systems, SPE 15400, 



Chapter 4: Numerical Simulation of CWI 

 

150 

 

SPE Reservoir Engineering, Vol. 3, No. 2, 533-541, 1988. 

[4.26] Riazi, M., Sohrabi, M., Jamiolahmady, M.: Experimental Study of Pore-Scale 

Mechanisms of Carbonated Water Injection (CWI), Journal of Transport in 

Porous Media, DOI 10.100.47/s11242-010-9606-8. 

[4.27] Riazi, M., Sohrabi, M., Jamiolahmady, M., Ireland, S. and Brown, C.: Oil 

Recovery Improvement Using CO2-Enriched Water Injection, SPE 121170, 

Proceedings of the 2009 SPE EUROPEC/EAGE Annual Conference and 

Exhibition, Amsterdam, The Netherlands, 8-11 June 2009. 

[4.28] Sendra 2007 User Guide, Petec Software & Services. 

[4.29] Shelton, J.L. and Schneider, F.N.: The Effects of Water Injection on Miscible 

Methods Using Hydrocarbons and Carbon Flooding Dioxide, SPE 4580, SPE 

Journal, Vol. 15, No. 3, 217-226, 1978. 

[4.30] Shen, P., Zhu, B., Li, X.B. and Wu, Y.S.: The Influence of Interfacial Tension on 

Water/Oil Two-Phase Relative Permeability, SPE 95405, SPE/DOE Symposium 

on Improved Oil Recovery, Tulsa, Oklahoma, USA, 22-26 April 2006. 

[4.31] Standing, M.B.: Notes on Relative Permeability Relationships, Division of 

Petroleum Engineering and Applied Geophysics, The Norweigan Institute of 

Technology, The University of Trondheim, August 1974. 

[4.32] Stern, D.: Mechanisms of Miscible Oil Recovery: Effects of Pore-Level Fluid 

Distribution, SPE 22652, SPE Annual Technical Conference and Exhibition, 

Dallas, Texas, 1991. 

[4.33] Tiffin, D.L. and Yellig, W.F.: Effects of Mobile Water on Multiple-Contact 

Miscible Gas Displacements, SPE 10687, SPE Journal, Vol. 23, No. 3, 447-55, 

1983. 

[4.34] Timmerman, E.H.: Practical Reservoir Engineering, Vol. 2, PennWell Books, 

1982. 

[4.35] Todd, M.R. and Longstaff, W.J.: The Development, Testing and Application of a 

Numerical Simulator for Predicting Miscible Flood Performance, SPE 3484, Journal 



Chapter 4: Numerical Simulation of CWI 

 

151 

 

of Petroleum Technology, July 1972.  

[4.36] Todd, M.R., Cobb, W.M. and McCarter, E.D.: CO2 Flood Performance Evaluation 

for the Cornell Unit, Wasson San Andres Field, SPE 10292, Journal of Petroleum 

Technology, Vol. 34, No. 10, 2271-2282, October 1982. 

[4.37] Warner H.R Jr.: An Evaluation of Miscible CO2 Flooding in Waterflooded Sandstone 

Reservoirs, SPE 6117, Journal of Petroleum Technology, Vol. 29, No. 10, 1339-

1347, October 1977. 

[4.38] Whitson, C.H.: Characterizing Hydrocarbon Plus Fraction, SPE Journal, 683-694, 

1982. 

 



Chapter 5: Numerical Simulation of Various CO2 Injection Strategies 

 

    152 

 

 

 

Chapter 5  

 

Numerical Simulation of Various CO2 Injection Strategies for 
Coupled EOR and Storage 

 

 

5.1. Introduction 

Generally, the CO2 EOR process aims to sweep the oil to the producing wells by channelling 

CO2 gas into previously by-passed areas.  In conventional CO2 EOR projects, the purchase 

of CO2 gas is one of the highest operating costs (Jarrell et al., 2002) therefore, the project 

design always aims for this cost to be reduced by maximising the oil recovery with the 

minimum possible injection of CO2.  On the contrary, in the CO2 storage projects, the 

objective is to safely store as much CO2 as possible in the reservoir.  In coupled EOR and 

storage process, both oil recovery and CO2 storage are to be maximized economically.  The 

significantly different objectives for storing CO2 with EOR inevitably call for different 

engineering design from CO2 EOR or CO2 storage process alone.   

In the previous two chapters, the potential of the water-based CO2 EOR method in enhancing 

oil recovery and storing CO2 has been discussed.  This chapter deals with the storage of CO2 

in depleting oil reservoirs through gas-based CO2 injection techniques, which include the 

conventional WAG, SSWAG, TAPWAG and HWAG injections, descriptions of which are 

given next.  The continuous CO2 flooding (CO2I) and plain water injection (WI) serve as the 

limiting case of zero and infinite WAG ratio, respectively.  The author also looked at a 

possibility of applying a new injection strategy for the said purpose.  The technical 

evaluation of several CO2 injection strategies through numerical simulations is presented.  

The motivation for this work is to find a CO2 injection scheme that can simultaneously 
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increase oil recovery and the amount of CO2 stored in the reservoir.   

 

5.1.1. CO2 injection schemes 

Continuous CO2 gas injection (CO2I) 

In this injection scheme, CO2 gas is compressed to the required pressure before it is 

continuously injected into the reservoir, until about 20-40% HCPV (hydrocarbon pore 

volume) has been injected, followed by chase water or lean gas to drive the solvent bank 

through the reservoir.  CO2 gas has better local displacement efficiency than water, 

especially in miscible flooding and it benefits from early production response, better 

injectivity and minimum water blocking.  Successful CO2 flooding could increase the 

ultimate oil recovery by 8 to 14% OOIP (Hadlow, 1992).   

However, high mobility of CO2 as compared to the displaced oil (i.e., high mobility ratio) 

gives rise to severe gravity-tonguing and viscous fingering (Perkins et al., 1965; Juanes and 

Blunt, 2007).  The injected CO2 bypasses much of the oil in the reservoir leading to poor 

sweeps efficiency that is further exacerbated by reservoir heterogeneity and density 

differences between gas, oil and water.   

Several CO2 injection strategies have been proposed and applied in the field to improve the 

sweep efficiency, such as CO2 slug followed by water, water alternating CO2 gas injection 

(WAG), simultaneous WAG (SWAG) injection, carbonated water injection (CWI) and soak-

alternating-water injection.  Water is used to reduce the overall mobility of the displacing 

fluid thus increase sweep efficiency. 

 

Water-Alternating-Gas injection (WAG) 

Water-alternating-gas (WAG) injection was initially designed to overcome the problem of 

high CO2 mobility that greatly reduces the effectiveness of CO2 flooding (Christensen et al., 

2001).  In WAG injection, gas and water are injected sequentially through the same well at 

pre-determined size of gas and water slugs.  Typical slug size is from about 1 to 30 or 40% 
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HCPV (Chen et al., 1984; Sanchez, 1999) with a WAG ratio typically range from 1:4 to 5:1.   

The CO2 gas trapped by the alternating water reduces the CO2 mobility and helps to stabilize 

the displacement front, thus yielding greater volumetric conformance and improved sweep 

efficiency (Champion and Shelden, 1989).  The combination of the high microscopic 

displacement efficiency of the oil during the gas cycle and the better volumetric sweep 

efficiency of water during the water cycle increase the oil production over a plain waterflood 

or gasflood alone.  As compared with CO2I, WAG requires a smaller volume of CO2.  

Successful WAG applications have been reported to produce an additional 5 to 10% OOIP 

oil recovery (Christensen et al., 2001).   

In addition to the factors affecting the continuous CO2 flooding, WAG injection was also 

reported to be influenced by hysteresis, three-phase relative permeability effects, that lead to 

reduced gas injectivity (Rogers and Grigg, 2000; Awan, 2008), half-cycle-slug size i.e., the 

amount of non-condensable gas injected prior to switching to water, total solvent slug size, 

WAG ratio (Attanucci et al., 1993; Surguchev et al., 1992; Christensen et al., 2001) and 

factors affecting gravity segregation such as fluid density and viscosities.  Away from the 

injection wells, gravity segregation could lead to a large bypassed zone attributed to gas 

over-ride and water under-ride (Blackwell, 1960).  As compared with CO2I, WAG takes 

longer time to inject the required volume of CO2 and has a tendency to suffer from the water-

shielding effect by high water saturations.  The presence of mobile water has been reported 

to cause reduced displacement efficiency in pore and core-scale tertiary flooding due to oil 

trapping, where the oil is blocked from the injected solvent gas by the water layer (Shelton 

and Schneider, 1978; Stalkup, 1983; Tiffin and Yellig, 1983) 

In order to further improve the WAG performance technically and economically, several 

variants of WAG injection have been applied, such as simultaneous WAG (SWAG), 

Hybrid-WAG (HYWAG), tapered WAG (TAPWAG), and cyclic WAG.  

 

Simultaneous WAG (SWAG) injection 

In simultaneous WAG (SWAG) injection, water and gas slugs are injected simultaneously.  

Using the same mechanisms as WAG, SWAG offers the additional advantage of reducing 
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the capillary entrapment of oil, thus providing better mobility control of the gas (van Lingen, 

1996).  Laboratory models showed that the sweep efficiency of SWAG injection could be as 

high as 90% compared with 60% for gas alone (Caudle and Dyes, 1958).  The injection 

fluids can be injected at the same perforation intervals or at selective perforations such that 

the water slug is injected up-dip while the gas is injected down-dip.  Laboratory and 

simulation studies (Ma et al., 1995; van Lingen et al., 1996), reported that SWAG with 

selective injection intervals (referred to as SSWAG hereafter) performs much better than 

SWAG with gas and water injected at the same perforation layers.  Due to gravity, water will 

flow downwards, impeding the vertical upward flow of the gas.  The CO2 conformance is 

improved and results in more steady gas production.  For these reasons, only SSWAG 

injection was evaluated in this study.   

SWAG injection has been implemented in the Siri Field in the North Sea (Quale, 2000) and 

the Joffre Viking field (Stephenson et al., 1993).  Water and gas are simultaneously injected 

in waterflood lines.  This reduces the capital and operating costs since there is no need for 

separate water and gas injection and lines to the injection sites and gas distribution systems 

(Ma et al., 1995).   

 

Hybrid WAG (HWAG) injection 

Hybrid WAG injection combines the best features of WAG and CO2I injection in which a 

large slug of gas is injected followed by small slugs of water and gas.  It benefits from the 

faster oil response associated with continuous gas injection and the higher ultimate oil 

recovery and more efficient CO2 utilization characteristic of the WAG process (Hadlow, 

1992).  This process was patented by UNOCAL where a 9% pore volume (PV) of CO2 was 

injected followed by the remaining 21% at 1:1 WAG ratio (Huang and Holm, 1986). 

 

Tapered WAG (TAPWAG) injection 

In the tapered WAG process, the WAG ratio is increased step-wise at predetermined solvent 

bank sizes (Hadlow, 1992), so that more water and less CO2 are injected during any 
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complete WAG cycle.  The objective is mainly to reduce the gas injection and gas 

production and therefore improve the overall economics of the process.  This process was 

implemented, for example, in the Rangely Unit where the WAG ratio was increased from 

1:1, until 30% HCPV of CO2 had been injected, then increased to 2:1 until 40% of HCPV of 

CO2 was injected (Attannuci, 1993). 

The comparison of the benefits between these injection methods from the EOR perspective, 

based on experimental studies and field applications, is shown in Table 5.1. 

 

Table 5.1: Comparison of benefits of different CO2 injection schemes. 

Injection scheme Description Advantages 
Continuous CO2 

(CO2I) 
CO2 is injected continuously as 
gas or supercritical phase. 

Early production response, better 
injectivity and minimum water 
blocking. 

Water Alternating 
Gas (WAG) 

CO2 gas and water are injected 
sequentially through the same 
well at pre-determined size of 
gas and water slugs. 

Controlled CO2 gas mobility thus 
improved sweep efficiency, more 
efficient CO2 utilization. 

Simultaneous WAG 
(SWAG) 

Water and CO2 gas slugs are 
injected simultaneously at the 
same perforation intervals.  

More efficient CO2 utilization, 
reducing the capillary entrapment 
of oil, thus providing better 
mobility control of the gas.  

Selective SWAG 
(SSWAG) 

Water slug is injected at the 
bottom perforation intervals 
while the gas is injected at the 
top perforation intervals. 

As for SWAG plus improved CO2 
conformance and more steady gas 
production. 

Tapered WAG 
(TAPWAG) 

WAG ratio is increased step-
wise at predetermined solvent 
bank sizes. 

Reduced costs since less gas 
injection and production.  

Hybrid WAG 
(HWAG) 

Large slug of gas is injected 
followed by small slugs of 
water and gas. 

Early production response, higher 
ultimate oil recovery and more 
efficient CO2 utilization. 
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5.1.2. Previous related studies 

The field experience in storing CO2 through EOR is still very limited.  However, the scores 

of mature CO2 EOR projects worldwide can provide information in terms of trapped CO2 

and benchmarks for incremental oil recovery versus pore volume of CO2 injected from using 

this method.     

A few simulation studies have reported the use of several CO2 injection schemes for coupled 

CO2 EOR and storage in the oil fields.  Kovscek and Cakici (2005) carried out sensitivity 

studies on several CO2 injection scenarios and used equal-weighted objective functions of oil 

recovery and reservoir utilization factor as co-optimization parameters.  For maximizing the 

oil recovery and CO2 stored, they recommended miscible solvent gas (CO2 with C2 to C4) 

injection, which at an appropriate later time switched to CO2 injection and combined with 

control of produced GOR to prevent excessive gas re-cycling.  They also suggested WAG 

with a small slug size for a period of time, before ending the process with a large CO2 slug 

for increased CO2 storage without affecting the oil recovery.  

Other relevant studies are mainly focused on optimizing the design parameters of certain 

CO2 injection schemes.  Using reservoir simulation, Malik and Islam (2000) evaluated the 

use of horizontal wells to increase oil recovery and CO2 storage in the reservoir through 

straight CO2 gas injection in the Weyburn field.  Ravagnani et al. (2007) assessed the 

technical and economic feasibility of continuous CO2 gas injection under the Brazilian fiscal 

regime for EOR and sequestration using dynamic system or life-cycle approach.  They took 

into account the project cash flow, the emissions and energy used in the process.  Murray et 

al. (2001) studied the soak-alternating-gas (SAG) injection method whilst Qi et al. (2008) 

reported the sensitivity of WAG ratio to maximize CO2 storage through the SWAG process.  

Simulation studies by Ghomian et al. (2008) and Forooghi et al. (2009) focus on optimizing 

the WAG design parameters for the integrated processes, using response surface and 

experimental design methodology.   

In this thesis, the evaluation was extended to not only the conventional WAG process but 

also on other four commonly used CO2 injection schemes as described earlier.  Unlike the 

study by Kovscek and Cakici (2005) who considered only the oil recovery and the amount of 

CO2 stored, this study took into account some main economic factors as well. 
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5.2. Overall approach 

CO2 injection into an oil reservoir is a complex process that depends on geologic, reservoir 

and operational factors.  Therefore, designing, analyzing and mitigating the risk of the 

integrated CO2 EOR and storage processes requires a thorough understanding of the 

importance of these factors to the performance of the processes, which calls for a systematic 

investigation.   

The scope of the evaluation would be prohibitively wide if all CO2 injection schemes, 

reservoir parameters and operational factors are to be studied simultaneously.  Thus, in this 

study a practical approach shown in Figure 5.1 was developed and followed.  In the first part, 

the oil recovery and CO2 storage from several injection strategies suited for CO2-flood EOR 

were evaluated and ranked to find the best strategy; results of which are presented in this 

chapter.  

Then in the second part, parametric simulation was carried out to identify the influential 

factors on the oil recovery and CO2 stored under the best injection strategy for coupled EOR 

and storage identified in the first part.  These influential flood design parameters were then 

optimized to give maximum profit of the oil recovery and CO2 storage.  Design of 

Experiment (DOE) and the associated technique of Response Surface Model (RSM) were 

employed as the tools to make effective use of reservoir simulation for the sensitivity and 

optimization studies.  Details of the parametric simulation and flood design optimization are 

given in Chapter 6.  

The evaluation discussed in this chapter involved predicting the performances of several CO2 

injection strategies using a compositional reservoir simulator based on a set of assumed 

reservoir and operating parameters.  The use of a compositional reservoir simulator is 

essential as it can better model two important aspects of oil recovery and storage, namely the 

compositional effects of CO2-oil displacement and CO2 solubility in the water phase.  The 

geochemical effects on the rock minerals when CO2 dissolves in water were, however not 

accounted for.   
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Figure 5.1: The overall approach in investigating the CO2 injection strategies, parametric 
simulation study and co-optimization of the coupled CO2 EOR and storage process.  

 

In addition to CO2I, WI, WAG, SSWAG, TAPWAG and HWAG injection, a new injection 

scheme, named intermittent WAG or INTWAG, was also assessed.  Conceptually, 

INTWAG injection involves alternating a CO2 slug and water injection similar to that used 

in the WAG injection.  However, apart from alternating the injected phases, the injection 

also alternates between locations.  This injection method was examined to gauge the benefit 

of CO2 diffusion to the oil recovery and CO2 storage by shutting in some wells for certain 

period of time before switching to the other phase and also the benefit of the drainage-

imbibition processes that occur as a result.   
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Due to the uncertainty in appropriately modelling the CWI process at the reservoir scale, as 

discussed in Chapter 4, CWI was not incorporated in this evaluation.  Furthermore, as a 

water-based CO2 EOR technique, the performance of CWI would be more appropriately 

compared to that of WI than that of the gas-based techniques. 

It is more likely that the CO2 injection for EOR and storage will be implemented as tertiary 

rather than a secondary recovery method, especially in the current economic situation with 

oil values higher than the CO2 sequestration credits.  75% of the total CO2 miscible projects 

in the US are in the tertiary flooding mode (Oil & Gas Journal, 2010).  Nevertheless, 

according to the same reference, 18% of CO2 miscible projects worldwide are in the 

secondary recovery phase.  In this study, CO2 injections were examined as both secondary 

and tertiary recovery methods and each for immiscible and miscible displacements (Figure 

5.2).   

 

Figure 5.2: Recovery methods and production well controls evaluated. 

 

The miscible and immiscible conditions were attained by the way the injection and 

production was controlled, which will be described later.  CO2 injection for pressure 

maintenance, which would typically be applied to oil reservoir gas caps (Holtz, 2009) is not 

considered in this study since it is assumed that in the interest of CO2 storage one would 

want to inject as much CO2 as possible, up to the maximum safe BHP.   

The oil recovery and CO2 stored from each of the injection strategies were then compared 

and ranked.  Two approaches in ranking the processes were used; one was solely based on 
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technical criteria while the other incorporated the economic criteria as well.  Previous 

researchers have used oil recovery (Kovscek and Cakici, 2005; Trivedi and Babadagli, 2005) 

and incremental oil recovery (Kulkarni et al., 2004; Forooghi et al., 2010) in ranking the 

performance of the injection schemes for EOR.  For ranking the CO2 storage, the amount of 

CO2 stored in fraction of reservoir pore volume (Kovscek and Cakici, 2005) as well as CO2 

saturation in the model (Ghomian et al., 2008; Forooghi et al., 2010) have been applied. 

In this study, for ranking based on technical criteria only, the approach by Kovscek and 

Cakici (2005) using weighted oil recovery factor, R, and a CO2 storage factor, S, shown in 

Equation 5.1, was used. 
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w1 (0�w1�1) and w2 (=1-w1) are weights, STOOIP is the original stock tank oil in place, 

VCO2
R is the volume of CO2 stored in the reservoir, and PV is the pore volume of the 

reservoir.  R is the incremental oil recovery factor due to the CO2 injection i.e. the amount of 

oil recovered during the CO2 injection phase only but.  Np*, which is described in Equation 

5.4, is the net production of oil during the CO2 injection phase only, discounted by the 

amount of energy, E, needed to compress the produced gas to injection pressure for 

reinjection, Equation 5.5.   
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where γ is the pump compression factor for CO2, which equals 0.23, P is pressure (lbf/ft2), Q 

is flow rate (ft3/min) and the subscripts in and out refer to the low and high pressure sides of 

the compressor (Douglas, 1988).  E has the unit of barrels of oil and t is time in days.  For the 

tertiary CO2 injection process R represents the oil recovery after the waterflooding duration, 

that is, Np = Npt-Npw where Npt is the total cumulative oil produced and Npw is the cumulative 

oil produced during waterflooding period.  It was assumed in this simulation study that 95% 

of produced CO2 was recycled.  The gas enters the compressor at 250 psi and leaves the 

compressor at the average reservoir pressure at the time of injection.  A sensitivity study on 

the inlet pressure between 100 to 400 psi indicates that the inlet pressure does not affect the 

ranking of the injection schemes.  

The main economic incentive for any CO2 EOR project is always the profit per barrel of oil 

(Hustad et al., 2004).  When economic factors were considered, the net present value (NPV) 

per barrel of oil produced and CO2 stored were therefore used as the objective functions in 

ranking the CO2 injection schemes evaluated.  This study also assumes equal importance of 

oil recovery and CO2 storage in ranking the performance of injection strategies thus, equal 

w1 and w2 (i.e. w1 = w2 = 0.5) was applied.  In reality, this might not be the case and the 

weight may need to be changed accordingly, depending on the main objective of the 

injection.  Assigning w1 = 1 means the objective is maximizing the oil recovery only, while 

w2 = 1 when CO2 storage is the only priority.  Practically, weights will be chosen based on 

the revenue produced by both oil recovery and CO2 sequestered.  Sensitivity results on the 

weight used are also presented later in this chapter.  

 

5.3. Reservoir simulation model 

5.3.1. Model description 

A hypothetical three dimensional (3D) model shown in Figure 5.3 was used for evaluating 

the CO2 injection strategies.  It represents part of a reservoir with nine oil producers and four 

injectors arranged in four inverted 5-spot well patterns.  The main reason for using this 

multiple well patterns model is to enable the simulation of INTWAG injection that involves 

alternating CO2 and water injection between patterns.   
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The reservoir was assumed as homogeneous water-wet sandstone and the model was run 

with no-flow outer boundary conditions.  The reservoir is 3000 ft x 6000 ft x 270 ft with 

1500 ft to 1700 ft well spacing.  Initially, the model was discretized to 20x40x10 gridblocks 

with all the vertical layers having equal thickness.  The reservoir was under-saturated at the 

initial pressure of 4000 psig and under vertical equilibrium conditions with oil-water contact 

at 7415 ftss.  There is local bottom water that does not provide substantial water movement, 

in the last layer of the model.  The injectors were perforated through all vertical gridblocks 

(layers), unless otherwise stated, while the producers were perforated only in the first eight 

layers.   

 

 

Figure 5.3: Well locations in the model. 

 

ECLIPSE 300 (E300) compositional simulator that uses the EOS model to describe the 

reservoir fluid phase behaviour encountered during the CO2 gas injection process was used 

in the simulation.  The fundamental formulation of this compositional simulator is similar to 

that given in Appendix A2.1.  Grid sensitivity analysis in the X and Y directions was then 

carried out with WI and tertiary WAG process to establish the grid resolution required.  The 

WAG process started with 5% HCPV of CO2 gas injection followed by water at WAG ratio 

of 1:1.  The WAG cycle was repeated until the end of simulation, at 25 years. 

Figure 5.4 shows the oil recovery of WI and WAG process at a varying number of 

gridblocks in the X (NX) and Y (NY) directions.  Waterflooding recovery seems to be 
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insensitive to the NX and NY within the range sensitized.  For the WAG injection, oil 

recovery also appears to be unaffected by NX but refining the grid size in the Y direction 

tends to improve recovery until an optimum size of 60 grid blocks is reached beyond which 

the recovery change becomes negligible.  The grid dimension of 20x60x10 was then taken to 

be adequate to accurately resolve the flow and used in the subsequent simulations.  The 

properties of this homogeneous model are given in Table 5.2.   

 

 

Figure 5.4: Grid size (NX and NY) sensitivity of WI and tertiary WAG injection at WAG 
ratio of 1:1. 

 

Table 5.2: Average grid properties of the homogeneous 3D model. 

Initial reservoir pressure, psig 4000 
Reservoir temperature, oF 150 
Grid size, ft 150x100x27 
Connate water saturation, fraction 0.32 
No of gridblocks 20x60x10 
Porosity, fraction 0.25 
Permeability, mD 800 
kv/kh ratio 0.1 
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5.3.2. Fluid PVT data 

The reservoir fluid data was based on Little Knife reservoir fluid reported by Thakur et al. 

(1984).  Little Knife oil is a relatively light oil of 41 oAPI and 0.2 cP at its actual reservoir 

temperature of 245 oF and 2680 psig saturation pressure, which is quite similar to a typical 

North Sea reservoir oil.  For this study, the reservoir fluid was slightly modified in that the 

small amount of CO2 (1.2 mole%) was set to zero and the composition renormalized.  This 

change was to facilitate the analysis of produced and stored CO2 from the simulation results 

and has negligible impact on the phase behaviour of the oil.  The three-parameter PREOS 

model was first tuned to match the available saturation pressure, differential liberation and 

swelling test data at 245 oF.  Details of the match are given in Appendix A5.1.  The original 

ten components were then lumped by mole fraction to four pseudo-components (PC) as 

shown in Table 5.3.  The lumping has no effect on the already tuned EOS model, yet the 

smaller number of components greatly reduces the simulation time.   

Generally, the higher the temperature, the higher is the CO2 MMP (Klins, 1984).  The 

original Little Knife reservoir temperature of 245 oF is considered to be on the high side of 

the favourable temperature range for CO2 miscible flooding (NPC, 1976).  Therefore, a 

reservoir temperature of 150 oF was instead used for this study.  Using the tuned EOS model, 

the required PVT data for simulation at 150 oF were generated.  The details are given in 

Table A5.1 of Appendix A5.1   

 

Table 5.3: Compositions of the reservoir fluid used. 

Component Mole % Pseudo 
Component Mole % 

N2 0.977 PC1 36.768 C1 35.792 
C2 10.574 PC2 17.724 C3 7.150 
IC4 1.449 

PC3 12.958 
NC4 4.133 
IC5 1.600 
NC5 2.104 
C6 3.672 

C7+ 32.550 PC4 32.550 
Total 100.000   100.000 
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At 150 oF, the reservoir fluid exhibits bubble point pressure of 2405 psig.  The reservoir is 

under-saturated i.e., no free gas cap, at the initial reservoir conditions.  At 150 oF and 4000 

psig, CO2 primarily exists as a gas-like supercritical phase.  The EOS model predicts the CO2 

MMP of 3660 psi at 150 oF, which means the reservoir fluid is miscible with CO2 at the 

initial reservoir pressure of 4000 psig.  The CO2 viscosity (0.07 cP) is, however, about nine 

times lower than the oil viscosity (0.584 cP) and 6 times lower than that of water (0.44 cP).  

While miscibility results in high local displacement efficiency, this unfavourable viscosity 

ratio between CO2 and oil and also water may lead to low sweep efficiency due to unstable 

front displacement.  Improving the sweep efficiency is therefore crucial when designing the 

injection/production strategy. 

In the simulation model, hydrocarbons and CO2 are allowed to exist in the oil and gas phases 

while only CO2 and water exist in the aqueous phase.  The CO2 partitioning between the oil 

and gas phases was calculated using the fugacity equilibration method.  The oil and gas 

phase densities and fugacities were calculated using the EOS while the CO2 in the aqueous 

phase were modelled using algorithms by Chang, Coats and Nolen (1998), as described in 

Appendix A3.1.  At 150 oF and 4000 psig, 176.7 scf of CO2 dissolves in 1 barrel of water 

(Figure 5.5).  For simplicity, the injected and in-situ water in this study were assumed as 

fresh water, thus no correction due to brine salinity on the CO2 solubility was necessary.   

 

Figure 5.5: Calculated CO2 solubility in water, Rsw, at 150 oF using the Chang et al. 
correlation (1998). 
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5.3.3. Saturation functions  

Two-phase relative permeability 

Multiphase flow and cyclic changes in fluid saturations, as in WAG injection, give rise to 

hysteresis phenomenon i.e., relative permeability and capillary pressure depend not only on 

the current saturation, but also on the history of the saturation (Carlson, 1981).  In this 

simulation study, hysteresis was assumed in the relative permeability of the non-wetting 

phase only.   

The oil/water and gas/oil relative permeability curves with the corresponding hysteresis data 

used were those for water-wet sandstone by Oak, as cited by Spiteri (2005), shown in Figure 

5.6(a) and 5.6(b), respectively.  Suffix d in the plots indicates drainage while suffix i 

indicates imbibition.  The capillary pressure hysteresis was assumed negligible since its 

effects are believed to be relatively small during the production and injection phase of an 

EOR/storage project.  The effect of capillary pressure hysteresis is important to account for 

the retardation of the buoyant transport of the CO2 plume, which normally occurs after the 

injection of CO2 has stopped (Altundas et al., 2010). 

 

 

Figure 5.6: (a) Oil/water and (b) Gas/oil relative permeability curves used in the simulation 
of the homogenous sandstone model (Oak, 1990, as cited by Spiteri, 2005).  
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Relative permeability hysteresis was modelled by the Killough (1976) method.  In this 

method, the critical gas saturation endpoints specified for the input gas imbibition function 

determine the trapped saturation and Land's parameter.  The trapped critical saturation, Sncrt, 

for the maximum non-wetting phase saturation reached in the run, Shy, is given by: 

�6<	W � �6<	g � 4hi84�&��
jA2k4hi84�&��l                                                                                            (5.6) 

J � � � mk�6`no � �pql                                                                                                     (5.7) 

where, C is Land's parameter, and Sncrd is the critical saturation of the drainage curve, and A 

(Equation 5.7) is the modification factor to overcome unphysical behaviour at very small Shy 

(ECLIPSE, 2007).  Snmax is the maximum non-wetting phase saturation value while a is 

defaulted to 0.1.  Stone 2 method (Aziz and Settari, 1979, as quoted in the Eclipse User 

Manual, 2009) was used to estimate the three-phase relative permeability since this method 

can better model the mixed wet system, which is relevant to the current simulation study. 

 

Two-phase capillary pressure 

The capillary pressure, Pc, used in the model was calculated using the approach reported by 

Ghomian et al. (2008), where Pc is defined in terms of the Leverett J-function (Equation 

5.8): 

rs� Qstuvw� x                                                                                                                    (5.8) 

where φ is the porosity, k is the permeability, θ is the contact angle and 	 is interfacial 

tension between water-oil.  The J-function was calculated as: 

x � �986 � xy � �Y                                                                                                                  (5.9) 

where S1 is the wetting phase saturation as a fraction, Je is the entry value of the J-function 

and was assumed as 0.4 for the sandstone (Ghomian et al., 2008), and n is the pore size 

distribution index.  n = 2 was assumed for a relatively well-sorted sandstone.  Poorly-sorted 
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rock has lower n value.  Since no measured value of σ was available, a value of 26 was 

assumed based on the data measured by Yang et al. (2005) at 38 oC and 4000 psig.   

The model has a pore volume of 216.4 MMrb and an average initial oil saturation of 0.62 

with 83.6 MMstb and 101 MMscf oil and gas originally in place, respectively. 

 

5.3.4. Well operating conditions 

General well control 

All the processes were assumed to take place at isothermal (constant reservoir temperature) 

conditions.  Model predictions were made for 25 years.  The well economic limits for the 

producers were set at a minimum oil rate of 5 stb/day, maximum water-cut of 99% and a 

maximum gas-oil ratio (GOR) of 20 Mscf/stb.  On reaching any of these economic limits, 

the most offending layer was automatically closed.  However, in the interest of maximizing 

CO2 storage, the CO2 injection continued until the average reservoir pressure reached the 

maximum BHP or until the 25 years of the simulation period, whichever was earlier.  This is 

different from the common practice in conventional EOR, where CO2 was normally injected 

only up to a certain volume followed by a much cheaper chase fluid like water or lean gas.    

The maximum allowable injection BHP was limited to 5860 psia based on an assumed 0.8 

psi/ft fracture gradient at the datum depth of 7285 ftss.  The injector wells were controlled by 

the injection rate.  The total fluid injection rate for all scenarios corresponds to 12.9 

%STOOIP per year with 7000 stb/day/well and 16,285 Mscf/day/well for water and gas, 

respectively (or equivalent to 7047 rb/day/well at 4000 psig, 150 oF).  These rates are 

relatively high if compared with the typically used 3-10 %STOOIP per year in a real field 

operation.  They were nevertheless used here to expedite the production, so that close to the 

ultimate oil recovery (EUR) could be attained by the end of the model prediction.  Since the 

injection rate was fixed, the required reservoir pressure, whether above or below the MMP, 

was obtained by controlling the production wells as follows:   
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Fixed BHP mode 

The default production was under a minimum BHP constraint of 2000 psi.  A big pressure 

draw down occurred at the beginning of the production resulting in a very steep pressure 

decline and in impractically high oil production rates, albeit it might only be for a short 

period of time.  For a more realistic value, the maximum oil production rate was capped at 

8000 bbl/day/well, a typical maximum rate for a vertical well with 9=z inch tubing.  

Throughout most of the flooding duration, the average reservoir pressure was below the 

MMP: thus, this well control mode represents the immiscible flooding conditions (low 

pressure flooding).  Re-pressurisation of the reservoir occurred in some cases, as the 

injection was continued even with the economic limits already reached.   

 

Fixed rate mode  

This well control mode was to simulate the miscible conditions during the CO2 injection.  To 

attain average reservoir pressure above the MMP throughout the simulation period, the total 

fluid withdrawal at reservoir conditions was set at a rate 10% lower than the total injection 

rate of 28,190 rb/day (giving injection/production ratio of 1.1:1).  This well control mode is 

also referred to in this thesis as the high pressure flooding mode.   

 

5.3.5. CO2 injection scenarios 

Each of the evaluated injection strategies, the setting of which are given next, were simulated 

both as secondary and tertiary recovery methods.  In the secondary recovery mode, CO2 

injection started from the first day of production.  In the tertiary recovery mode, CO2 

injection started after seven years of waterflooding, at which the watercut was 54 and 86% 

for fixed rate and fixed BHP control, respectively.   

WAG:  The conventional WAG injection was carried out at WAG ratio of 1:1.  This ratio 

has been reported in several studies to result in an optimum WAG performance (for 

example, Christensen et al, 1998).  The injection started with 5% HCPV of a CO2 slug, 
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followed by the same amount of water and the cycle repeated.   

TAPWAG:  The WAG ratio was initially set at 1:1 until 30% HCPV of CO2 was injected.  

The WAG ratio was then increased to 2:1 until 40% HCPV of total injections and to 3:1 

from 40 % of HCPV injections until the end of simulation.   

HYWAG:  In this injection scheme, the CO2 slug was first injected continuously up to 20 

%PV followed by WAG at 1:1 ratio with 5% HCPV half cycle until the end of simulation. 

Selective SWAG (SSWAG):  CO2 gas and water were simultaneously injected at 1:1 ratio 

similar to that of WAG in two injection wells defined at the same location with the water 

injectors open to flow in the first top five layers (layers 1-5) whereas the gas was injected 

only through the bottom five layers (layers 6-10).  

INTWAG:  Figure 5.7 schematically illustrates the schedule of the injection and production 

wells in this injection scheme.   

 

Figure 5.7: Injection/production wells schedule in INTWAG injection. 
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Generally, when the gas or water is injected in one pattern, the injector (INJ) and producer 

(P) dedicated to the pattern next to it are closed.  In the first half cycle, the injectors in the 

second and third pattern (INJ2, INJ3) and the oil producer attached solely to those patterns 

(P3 and P7), are closed.  At the same time, CO2 gas slug is injected in the first and fourth 

pattern (INJ1 and INJ4) with the other producer wells open to flow.  In the subsequent half 

cycle, INJ1, INJ4 and producers P1 and P9 are shut in while water is injected in wells INJ2 

and INJ3.  This completes the first full INTWAG cycle. 

Having completed the first cycle, INJ2 and INJ3 are opened to CO2 gas injection with the 

other wells remaining in the previous status.  After the CO2 slug is injected, wells INJ2, 

INJ3, P1 and P7 are shut in and water is injected in wells INJ1 and INJ4.  The well schedule 

is then repeated until the end of simulation.  The injection schedule is different from the 

conventional WAG in that in conventional WAG, gas and water are injected alternately in 

the same well and simultaneously in all patterns.  

The injection rates in the active wells were doubled to maintain the same total injection rates 

as in the other injection strategies.  In this particular case, the resulting injection rate per 

injector well might be impractically high (exceeding well capacity).  In reality a more 

realistic injection rate may be chosen and a simulation to examine this effect was also run.  

This new injection schemes were further examined by sensitizing the effect of the WAG 

ratio as well as the slug size on the oil recovery and CO2 stored; more detailed simulation 

results are presented in the next section. 

 

5.4. Simulation results  

Compositional simulations were successfully performed on WI and all the six CO2 injection 

schemes as secondary and tertiary recovery methods under both well control modes.  More 

detailed sensitivity study was carried out on the newly conceptualized INTWAG injection 

scheme in order to gain more understanding of its performance and benefit for CO2 EOR and 

storage. 
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5.4.1. INTWAG injection 

In the base case, WAG ratio of 1:1 was used with 5% HCPV of CO2 slug, followed by the 

same amount of water.  Water and CO2 were injected according to the schedule as described 

in Figure 5.7.  Diffusion of CO2 in both oil and gas phases were turned on in the simulation.  

The molecular diffusion coefficient of CO2 in the oil phase was estimated using correlation 

by McManamey and Woolen (1973): 

L2{>V��|� �-}�[�,89~���|8~-��                                                                                            (5.10) 

where µoil is the viscosity of oil in Pas and DCO2,oil in m2/s.  The viscosity of oil used was 

0.584 mPas at the reference reservoir temperature and pressure, giving a DCO2,oil of 4E-03 

ft2/day.  Unfortunately, with oil present, the version of E300 used can only consider the CO2 

molecular diffusion in the hydrocarbon phase and not in the water phase (ECLIPSE, 2007). 

The simulation results for all the INTWAG runs are summarised in Table 5.4.  CO2 

utilization is defined as Mscf of CO2 required to producing one barrel of incremental oil.  

The oil recoveries shown for the tertiary process are oil recovered during the INTWAG 

injection phase only.   

The results show that INTWAG injection yields higher oil recovery than WI in both 

recovery methods.  More oil was being recovered and more CO2 stored in the secondary than 

in tertiary INTWAG injection.  Figures 5.8a and 5.8b depict the oil recovery and CO2 stored 

during the secondary and tertiary INTWAG injection, respectively.   

Higher oil recovery was obtained from the miscible flooding (fixed rate control) than the 

immiscible one (BHP control) as expected.  CO2 was also used more efficiently to recover 

the additional oil in the miscible INTWAG processes as demonstrated by the lower CO2 

utilization factor.  As Table 5.4 shows, there is a bigger improvement in oil recovery under 

miscible conditions in the tertiary than in the secondary recovery method.  However, more 

CO2 was stored per barrel of produced oil in the immiscible injection particularly in the 

tertiary recovery mode.   
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Table 5.4: The predicted oil recovery, CO2 utilization and storage factor of INTWAG 
injections.   

Recovery 
mode 

Control 
mode 

R, 
%STOOIP S, %PV CO2 utilization,  

Mscf/bbl 
CO2 retention, 

Mscf/bbl 

Secondary BHP 60.5 37.5 47.7 2.5 
Secondary Rate 69.3 21.7 15.9 2.0 
Tertiary BHP 11.6 31.7 28.1 11.6 
Tertiary Rate 23.3 18.1 16.2 5.3 

 

 

Figure 5.8: Predicted (a) oil recovery and (b) CO2 storage from INTWAG injection under 
secondary and tertiary recovery methods.   
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miscible tertiary INTWAG injection, the incremental oil recovery and CO2 storage are 

higher than that of normal WAG. 

The alternating shut-in (or soak) period of some wells during INTWAG injection could have 

given more time for CO2 to dissolve deeper into the oil and through the mobile water barrier 

to contact the by-passed oil.  This shut-in period depends on the slug size and the WAG 

ratio.  The effect of these two parameters on INTWAG performance was further investigated 

using tertiary INTWAG injection and the results are given next.   

 

Table 5.5: Comparison of oil recovery factor, CO2 utilization and CO2 storage between 
INTWAG and WAG injections.   

Process Recovery 
mode 

Control 
mode 

R, % 
STOOIP 

CO2 utilization, 
Mscf/bbl S, % PV 

INTWAG 
Secondary BHP 

60.5 47.7 37.5 
WAG 58.6 62.5 36.2 

INTWAG 
Secondary Rate 

69.3 15.9 21.7 
WAG 69.3 14.9 21.0 

INTWAG 
Tertiary BHP 

11.6 28.1 31.7 
WAG 10.0 30.7 29.4 

INTWAG 
Tertiary Rate 

23.3 16.2 18.1 
WAG 21.2 14.6 14.1 

 

Sensitivity study on CO2 slug size  

The slug size refers to the amount of CO2 injected during the half cycle of the process, 

expressed as percentage of HCPV.  With a WAG ratio of 1:1, the slug size was sensitized 

from 1 to 7 %HCPV.  Figure 5.9 shows that, within the range sensitized, the incremental oil 

recovery for the production under the BHP constraint is not sensitive to the slug size.  Since 

the larger the slug size, the longer the shut in period of the inactive pattern, these results also 

mean the oil recovery is not significantly affected by the diffusion of the CO2 into the oil that 

might occur during the shut in period.  Larger slug size means a larger amount of CO2 

injected per slug interval, thus a higher amount of CO2 being stored, despite the same total 

amount of CO2 was injected over the total injection duration.  For the immiscible INTWAG, 
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increasing the slug size from 1 to 7 %HCPV, increases the CO2 storage by 10% i.e., from 

30% to 33%PV. 

Conversely, the slug size is influential to both incremental oil recovery and CO2 storage in 

the miscible INTWAG injection.  The larger the slug size, the higher the oil recovery and 

CO2 storage.  Increasing the slug size from 1% to 7 %HCPV increases the oil recovery by 

8%.  Even though the amount of CO2 stored at any given slug size is higher in the 

immiscible case, the rate of increase in the amount of CO2 stored with the slug size is higher 

in the miscible cases in which increasing the slug size by 6 %HCPV increases the amount of 

CO2 stored by 50%.   

 

Figure 5.9: Variation of the (a) incremental oil recovery and (b) CO2 storage with CO2 slug 
size for tertiary INTWAG injections under both injection modes. 
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the reverse is true.  For example, at the lowest WAG ratio of 1:4, high gas production was 

predicted, even though the cumulative oil production was the highest for some duration of 

the injection.  The high gas production escalated GOR to its limit, triggering the closure of 

producer wells and thus loss of production.  There is an optimal WAG ratio that gives the 

highest oil recovery for both immiscible and miscible cases, which is 1:1 (1) and 1:3 (0.67), 

respectively.   

Under both flooding conditions, CO2 storage increases with decreasing WAG ratio, as 

illustrated in Figure 5.11.  Higher CO2 storage is, however, predicted under the immiscible 

conditions, with only about half as much in the miscible flooding mode.  The lower average 

reservoir pressure at the beginning of the injection and the re-pressurization that occurred 

toward the end of the flooding period results in high CO2 storage for low WAG ratio cases.  

Generally, lower oil recovery was obtained with higher WAG ratio (higher volume of water 

in each cycle) until an optimal point is reached. 

   

 

Figure 5.10: Variation of the oil recovery with the WAG ratio under (a) immiscible and (b) 
miscible tertiary INTWAG injection. 
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Figure 5.11: Variation of the CO2 storage with the WAG ratio under (a) immiscible and (b) 
miscible tertiary INTWAG injection. 
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5.4.2. CO2 injection for maximizing oil recovery  

Conventionally, increasing oil recovery is the main objective of CO2 injection into the oil 

reservoirs.  In order to screen for the most favourable CO2 injection scheme for EOR only, 

only the oil recovery (R) was compared (or f with w1 = 1 and w2=0).  

Figure 5.12 shows the secondary oil recovery profiles under both production constraints.  It 

is evident that the incremental oil recoveries above that of WI for the immiscible process 

(Figure 5.12a) are relatively small (2.5 to 8.0 %STOOIP).  INTWAG injection yields the 

highest oil recovery, followed very closely by WAG injection.  Immiscible SSWAG, 

TAPWAG and HYWAG injections yielded more or less the same oil recovery while CO2I 

performed poorer than the waterflood.  CO2I suffers from the unfavourable viscosity ratios 

between CO2 and the oil at lower pressures below the MMP, due to reduced CO2 viscosity, 

that leads to early CO2 breakthrough.   

In contrast to this, much higher incremental oil recoveries above that of WI were predicted 

for all the injection schemes under the miscible conditions (Figure 5.12b).  Oil recovery from 

SSWAG injection is the highest, with 29 %STOOIP of additional oil recovery.  Using this 

method, 10.6 Mscf of CO2 was required to produce an additional barrel of oil.  Although 

giving lower recovery than SSWAG, the other injection schemes also outperform WI with 

oil recoveries exceeding 70 %STOOIP, albeit there are some delays in the oil production for 

CO2I and HYWAG process during the intermediate times between 2000 and 8000 days.  

From the CO2 gas consumption efficiency point of view, all WAG injections require only 

half or less of the CO2 volume as does CO2I, which is 13-16 Mscf/bbl for WAG against 34.5 

Mscf/bbl for CO2I.  WAG is thus preferable if there is limited amount of CO2 gas available 

for injection.   

Similar trends to what was predicted for the secondary recovery were also observed for the 

tertiary recovery, Figure 5.13.  The preceding waterflooding yielded 50.6 %STOOIP and 

43.4 %STOOIP for the immiscible and miscible case, respectively.  For the immiscible 

flooding mode, TAPWAG injection gives the highest oil recovery of 62.8 %STOOIP 

whereas for the miscible injection, SSWAG did better than the rest, with 71.5 %STOOIP of 

oil recovery.   
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Figure 5.12: The oil recovery for secondary CO2 injection strategies under (a) immiscible 
flooding and (b) miscible flooding.  

 

 

Figure 5.13: The incremental oil recovery for tertiary CO2 injection strategies under (a) 
immiscible flooding and (b) miscible flooding. 
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whichever is earlier.  When the main priority of the CO2 injection was to maximize the CO2 

storage, comparison was done on S only (or f with w2 = 1 and w1=0).   

Figures 5.14 and 5.15 show the percentage of pore volume occupied by CO2 for the 

secondary and tertiary CO2 injection, respectively.  Unlike the oil recovery trend, the amount 

of CO2 stored in the reservoir is higher in the immiscible flooding than in the miscible 

process for both secondary and tertiary injections.  The summary of the CO2 stored for all the 

injection cases is given in Table 5.6.  It is interesting to note that the ranking of the injection 

schemes is the same in the secondary and tertiary recovery for the immiscible injection but 

not in the case of the miscible flooding.  CO2I stores the highest amount of CO2, in both 

flooding conditions and recovery methods, since only CO2 is filling up the pore space 

created by production.  In the tertiary recovery, some of the pore volumes have already been 

filled up with water from the preceding water injection, resulting in much lower CO2 stored 

than that obtained in the secondary recovery.   

The CO2 retention factor is the highest in the immiscible CO2I despite the fact that no 

additional oil recovery was produced.  In the tertiary process, the CO2 storage is less as the 

injected CO2 needs to displace both oil and water unlike in the secondary process where the 

injected CO2 only needs to displace the oil.  TAPWAG gives the lowest amount of the CO2 

stored as the injected volume of CO2 is also the least.  

In the tertiary CO2 flooding, higher CO2 storage of 43 %PV was achieved through 

immiscible CO2I as opposed to 33 %PV in the corresponding miscible case.  Since CO2 

solubility in crude oils is typically five to six times higher than in water, the higher remaining 

oil saturation in the low pressure flooding case (which have lower oil recovery) than that of 

the miscible flooding, dissolves larger amount of CO2.  However, the main contributing 

factor to the high CO2 storage in the immiscible flooding is the pressurization of the reservoir 

towards the end of the injection process.  The lower starting average reservoir pressure 

greatly increases the capacity of CO2 that can be injected and sequestered before the 

reservoir pressure reaches its maximum limit.   
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Figure 5.14: Percentage of reservoir pore volume filled by CO2 for secondary CO2 injection 
strategies under (a) immiscible flooding and (b) miscible flooding. 

 

 

Figure 5.15: Percentage of reservoir pore volume filled by CO2 for tertiary CO2 injection 
strategies under (a) immiscible flooding and (b) miscible flooding. 
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Table 5.6: Summary of CO2 storage and retention factor for all the injection schemes. 

Process  

CO2 stored, %PV CO2 retention, Mscf of CO2 stored/bbl 
of oil produced 

Secondary 
recovery method 

Tertiary recovery 
method 

Secondary 
recovery method 

Tertiary recovery 
method 

Fixed 
BHP 

Fixed 
Rate 

Fixed 
BHP 

Fixed 
Rate 

Fixed 
BHP 

Fixed 
Rate 

Fixed 
BHP 

Fixed 
Rate 

CO2I 74.58 59.63 43.35 32.78 7.10 5.19 36.30 9.00 
WAG 36.20 21.04 29.41 14.11 2.50 1.94 12.44 4.61 

SSWAG 34.64 25.62 27.08 18.84 2.32 2.09 18.55 4.92 
HWAG 37.92 24.45 33.31 16.41 2.72 2.21 11.93 4.95 

TAPWAG 32.83 20.16 26.88 13.10 2.20 1.83 9.02 4.14 
INTWAG 37.46 21.74 31.68 18.08 2.51 1.99 11.59 5.34 

 

Effect of re-pressurization to CO2 storage 

In order to gauge the contribution of re-pressurization to the CO2 storage, secondary 

injections under the fixed BHP well control mode were simulated without re-pressurisation.  

The average reservoir pressure for all injection strategies was generally low, as can be seen 

in Figure 5.16b.  In these cases, the simulation was stopped once the economic limits were 

reached.  Figure 5.16a shows the CO2 stored from those runs, and if compared with Figure 

5.14a, we can see that without re-pressurization, the CO2 storage for CO2I is very much less, 

i.e., only about 48 %PV instead of 74.6 %PV, albeit still higher than what was stored in the 

other injection schemes, Table 5.7.  

 

Table 5.7: Effect of pressurization after EOR on CO2 storage, secondary CO2I with 
production under BHP constraints. 

Secondary CO2I- BHP mode R, %STOOIP S, %PV 

With pressurization 46.9 74.6 
Without pressurization 43.1 48.2 
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Figure 5.16: (a) Percentage of reservoir pore volume filled by CO2 for secondary CO2 
injection strategies under BHP well control mode (b) Average reservoir pressure for the case 
without pressurization. 
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Figure 5.17: Cross-plots of S and R for the secondary CO2 injections under (a) miscible and 
(b) immiscible flooding. 

 

 

Figure 5.18: Cross-plots of S and R for the tertiary CO2 injections under (a) miscible and (b) 
immiscible flooding. 
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5.4.4. CO2 injection for EOR and CO2 storage 

Equal importance of EOR and CO2 storage (w1=w2=0.5) 

As we are interested in finding the CO2 injection strategy that could optimize both oil 

recovery and CO2 stored, the function f versus time (Equation 5.1) with weight w1 = w2 = 0.5 

was plotted.  The injection scheme with the most potential to co-optimize the oil recovery 

and CO2 storage technically is the scheme with the highest f value, which, as can be seen in 

Figures 5.19 and 5.20, it is miscible CO2I for both secondary and tertiary recovery modes.   

These results are based on the assumption that the compression cost (as a penalty on the oil 

production as defined by Equation 5.4 and 5.5), was only on the amount of recycled gas.  But 

in reality, part of the injected gas could also come from other source other than the recycled 

gas.  Sensitivity run results nevertheless indicate that accounting for the total CO2 injected 

volume in compression, rather than only the 95% produced CO2 gas, reduces the 

Np
*(Equation 5.4) but has insignificant consequences on the ranking of the injection 

schemes. 

 

 

Figure 5.19: Function f with equal weight of oil recovery and storage (w1=w2=0.5) for 
secondary CO2 injection strategies under (a) immiscible and (b) miscible flooding. 
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Figure 5.20: Function f with equal weight of oil recovery and storage (w1=w2=0.5) for 
various tertiary CO2 injection strategies under (a) immiscible and (b) miscible flooding. 
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Figure 5.21: f profiles with higher priority to oil recovery (w1=0.75 and w2=0.25) for 
secondary CO2 injection strategies under (a) immiscible and (b) miscible flooding. 

 

Figure 5.22: f profiles with higher priority to oil recovery (w1=0.75 and w2=0.25) for tertiary 
CO2 injection strategies under (a) immiscible and (b) miscible flooding. 
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Figure 5.23: f versus w1 for secondary CO2 injection strategies under (a) miscible and (b) 
immiscible flooding mode. 
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Figure 5.24: f versus w1 for tertiary CO2 injection strategies under (a) miscible and (b) 
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5.5. Economics associated with CO2 EOR and storage 

The results and discussions presented thus far are only based on the technical viability of the 

various gas-based CO2 injection strategies for storing CO2 through EOR.  Yet CO2 EOR 

projects are usually tied to high investments, which warrant comprehensive evaluation of the 

technical and financial uncertainties.   

The cost of CO2 EOR projects are influenced by many factors; the main ones include 

reservoir characteristics, rate of production, cost of capital, the future market price of crude 

oil, price of CO2 at the field, CO2 compression, recycling cost and inflation rates.  Many of 

these are likely to fluctuate and have uncertainties.  Integrating CO2 storage as one of the 

injection objectives adds more elements to the economic model.  As the cost of the 

anthropogenic CO2 from the static sources is much higher than the CO2 from natural sources, 

the cost of integrated CO2 EOR and storage would inevitably be much higher too.  Incentives 

such as CO2 credits are being introduced to promote the implementation of this integrated 

process.  However, it has not properly internalized yet by the industry and is also likely to 

vary from one country to another.  The regulatory and tax structure for CO2 sequestration are 

also unclear (Kuuskra et al., 2008). 

Due to the complexity of the economic model for CO2 EOR and storage, it is rather 

challenging to have a generic yet robust model for use during the screening stage.  However, 

to get an insight on the effect of the economic factors on the ranking of the various CO2 

injection schemes evaluated, a simplified stand-alone project economics with discounted 

cash flow (DCF) in a spreadsheet format was prepared.   

 

5.5.1. Discounted cash flow 

DCF analysis is a method of valuing a project using the concepts of the time value of money 

where all future cash flows are estimated and discounted to give their present values 

(Equation 5.11).  The net present value (NPV) is the sum of all future cash flows, both 

incoming and outgoing and is taken as the value of the project (Mian, 2002).   
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                                                                                                            (5.11) 

where FV is the future cash flow, i is the interest rate, which reflects the cost of tying up 

capital and may also allow for the risk that the payment may not be received in full.   

Positive NPV shows the project is profitable whereas negative NPV indicates the project is 

making a loss.  In this exercise, cash inflows are generated from the oil production while the 

outflows include the capital expenditure (CAPEX), operating expenditure (OPEX), cost of 

CO2 gas injected and gas recycled.  The assumed economic parameters used in the DCF 

analysis are shown in Table 5.8.   

 

Table 5.8: Economic parameters for NPV calculations. 

Parameter Value Unit Reference 

Oil price 50 $/bbl Average value of the last decade 
http://forecasts.org/data 

CO2 price 2.38 $/Mscf Ferguson et al., 2010 
Escalation of Oil 
and CO2 price 2 % per year Assumed to be the same as the 

inflation rate 
Total Operating 
Expenditure 3.1 $/stb of oil 

produced Ferguson et al., 2010 

Total Capital 
Expenditure 2.1 $/stb of oil 

produced Ferguson et al., 2010 

Recycled cost 0.75 $/Mscf Assumed value 
Escalation of all 
operating cost 2 % per year Assumed to be the same as the 

inflation rate 
Royalty 12.5 % Assumed value 
Discount rate 10 % Mian, 2002 

 

The CAPEX in all cases was assumed to be the same i.e., four injector wells at an estimated 

$10 million per well and a CO2 recycling plant of $5 million for the CO2 injections.  The 

following additional assumptions were also made: 

• The price of CO2 used is inclusive of its transportation and compression. 

• Water for injection is available at no cost. 
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• CAPEX incurred in the year the CO2 injection starts. 

• Cost of emitted CO2 from the use of energy is not accounted for. 

• Revenue from selling of produced gas is not considered. 

• Neither EOR credit nor CO2 credit is considered. 

• Calculated NPV used is before tax. 

Further description on the NPV calculations is given in Appendix A5.2. 

The main economic incentive for any CO2 EOR project is always the profit per barrel of oil 

(Hustad et al., 2004).  For a coupled CO2 EOR and storage project, the incentive would 

naturally be the combination of profit per barrel of oil, R*, and profit per Mscf of CO2 stored, 

S*, which were used in ranking the CO2 injection schemes evaluated: 

pN
NPV

R =*                                                                                                                            (5.12) 

*
2

*

COV
NPV

S =                                                                                                                          (5.13) 

where NPV is the net present value of the project, VCO2
* is Mscf of CO2 stored in the 

reservoir and Np is the total oil produced during CO2 injection period.  For the tertiary 

process, the NPV used in Equation 5.12 and 5.13 was the overall project NPV minus that of 

the WI.  Ghomian et al. (2008) had used more or less similar parameters but differed in some 

of the economic parameters and assumptions used.   

 

5.5.2. Ranking of CO2 injection schemes incorporating the economic factors 

Table 5.9 shows the summary of the profits of oil produced and CO2 stored as well as the 

equal-weighted function, f, for the secondary injection processes.  The results clearly show 

that incorporating economic factors into the evaluation of the injection strategies changes the 

ranking.  TAPWAG injection is now the favoured injection scheme that gives the highest 

profit per volume of CO2 gas stored under miscible conditions.  Immiscible TAPWAG 

brings the highest profit per barrel of oil produced and is most likely to co-optimize the oil 
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recovery and CO2 storage economically. 

For the tertiary injection mode, Table 5.10, oil recovery and CO2 storage is generally more 

economic when carried out under miscible conditions.  Whilst the best dollar value of CO2 

stored can be achieved with the miscible TAPWAG injection, the highest profit per barrel of 

oil is given by the miscible WAG injection and this injection scheme is also economically 

viable to co-optimize oil recovery and CO2 storage.  

 

Table 5.9: Profit of oil produced, CO2 stored and f values, for secondary CO2 injections.   

Process R*=NPV/Npt S*=NPV/VCO2 f = 0.5(R*+S*) 
BHP RATE BHP RATE BHP RATE 

CO2I 13.71 11.97 2.28 2.65 8.00 7.31 
WAG 19.14 17.83 8.26 9.81 13.70 13.82 
SSWAG 18.89 17.00 8.78 8.57 13.83 12.79 
HWAG 15.98 15.25 6.53 7.69 11.25 11.47 
TAPWAG 20.10 17.91 9.57 10.39 14.83 14.15 
INTWAG 18.89 18.02 8.14 9.72 13.51 13.87 

 

Table 5.10: Profit of oil produced, CO2 stored and equally weighted R* and S* values, 
for the tertiary CO2 injections.   

Process R*=NPV/Npt S*=NPV/VCO2 f = 0.5(R*+S*) 
BHP RATE BHP RATE BHP RATE 

CO2I -12.46 9.78 -0.40 1.35 -6.43 5.57 
WAG 3.04 16.29 0.31 4.13 1.68 10.21 
SSWAG 2.38 14.10 0.33 3.28 1.36 8.69 
HWAG 0.78 15.30 0.09 3.67 0.43 9.49 
TAPWAG 3.27 15.92 0.42 4.46 1.84 10.19 
INTWAG 1.64 14.35 0.18 3.21 0.91 8.78 

 

The cross plot of R* and S* for the secondary injections in Figure 5.25 exhibits no clear 

trend especially for the miscible injections (Figure 5.25a) unlike that of the R - S plots in 

Figure 5.17.  A much clearer trend between R* and S* can however be seen when these two 

are plotted against time, as presented in Figure 5.26.  The NPVs were initially negative due 

to the capital expenditure for CO2 injection (the scale of the plots, however, was set to start 
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from zero).  The oil recovery profits, R*, were relatively high during the early years of 

injection since the oil production was the highest then gradually declined and levelled off.  

For CO2I, S* follows more or less the same trend as R*, while for HYWAG injection, S* is 

anti-correlated with R* such that S* increases when R* decreases.  For the other injection 

schemes, S* was relatively low at the beginning, then gradually increased before declining as 

more and more oil was recovered and CO2 stored without equivalent increase in NPV.  

Fluctuation in S* was observed for the injection schemes that involved periodic CO2 

injections.   

The plots of f (= w1R* + (1-w1)S*) versus w1 for the secondary injection schemes in Figure 

5.27 confirms that TAPWAG injection tops the ranking regardless of the weight used.  This 

shows that the R* and S* are quite robust as the ranking parameters.   

 

 

Figure 5.25: Cross-plots of S* and R* for the secondary CO2 injections under (a) miscible 
and (b) immiscible flooding. 
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Figure 5.26: Plots of S* and R* aganst time for the miscible secondary CO2 injections. 

 

 

Figure 5.27: f (incorporating the economic factors) versus w1 for secondary CO2 injection 
strategies incorporating the economic factors under (a) miscible and (b) immiscible flooding. 
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Again, no clear trend between R* and S* was observed for the tertiary injections, Figure 

5.28.  At any given w1, the miscible injections give higher f than the immiscible injection 

methods.  The weight is immaterial in ranking the most profitable process.  As shown in 

Figure 5.29, miscible WAG injection has the highest f values regardless of the w1 used, 

closely followed by SSWAG injection. 

 

 

Figure 5.28: Cross-plots of S* and R* for the tertiary CO2 injections under (a) miscible and 
(b) immiscible flooding. 

 

 

Figure 5.29: f incorporating the economic factors versus w1 for tertiary CO2 injection 
strategies under (a) miscible and (b) immiscible flooding. 
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5.5.3. Sensitivity study on different economic scenarios 

The results presented thus far were based on the assumed constant economic parameters as 

given in Table 5.8.  However, not only the economic parameters, such as the oil price, CO2 

price, inflation rate and OPEX, are susceptible to fluctuation and uncertainty, there are also 

different economic scenarios that may have huge influence on the viability of the coupled 

CO2 EOR and storage projects.   

One important economic scenario is the provision of carbon credits as a tax incentive for 

storing CO2 to reduce the greenhouse gas emission in 

to the atmosphere.  Most of the active CO2 EOR projects in the USA, for instance, are 

relying on the much cheaper natural CO2 source.  Without any tax incentives that can offset 

the incurred costs, it will be difficult to attract the oil producers to use the much more 

expensive anthropogenic CO2 source for EOR or storage.  Another scenario that affects the 

economics of the coupled process is the offshore versus onshore application.  CO2 injection 

into offshore reservoirs is expected to be significantly more expensive than into onshore 

reservoirs mainly due to higher drilling costs and the requirement of platform installation in 

the former. 

A sensitivity study on selected economic parameters was carried out taking also into 

consideration the two economic scenarios described above.  The main objectives were to 

quantify how much credit would make CO2 sequestration through EOR process economical 

and also to examine the effect of uncertain economic parameters on the CO2 credit.  It is well 

understood that positive NPV means the project is profitable.  From Table 5.10, only the 

immiscible CO2 injection gives negative NPV without any incentives.  As such, only this 

injection scheme was evaluated in the CO2 credit sensitivity study. 

 

Economic sensitivity study approach 

The performance of the immiscible tertiary CO2I in the heterogeneous reservoir model was 

used as the case study to demonstrate the need for the CO2 credit incentive.  The effect of 

other uncertain economic parameters on the required credit was also studied.  The 
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parameters and their range of uncertainty are shown in Table 5.11 with CO2 credit required 

as the only response factor.  The CO2 credit required was estimated as the value that leads to 

project breakeven point or zero NPV.  One can easily figure out that getting a CO2 credit 

higher than the required value will bring profit (positive NPV) to the project. 

 

Table 5.11: Economic factors sensitized for the assessment of CO2 credit requirement. 

Factor Name Units Type Subtype Minimum 
(-1) 

Maximum 
(+1) 

A Oilprice $/bbl Numeric Continuous 20 80 
B CO2price $/Mscf Numeric Continuous 1.59 3.17 
C Inflation % Numeric Continuous 2 4 
D Operation   Categoric Nominal Onshore Offshore 

 

For the offshore application, the costs of drilling of the injection well and recycling plant, the 

fixed OPEX (this is basically the maintenance cost of the equipment and hardware), variable 

OPEX and the recycling costs were assumed to be two times higher than the base case 

values (assumed for onshore application) given in Table 5.8.  The uncertainty of the inflation 

rate, which was reflected in the escalation factor of the oil and CO2 gas price and the OPEX, 

was also considered.    

The conventional sensitivity study where one parameter is varied at a time (OFAT), keeping 

all other parameters at the base case value, not only suffers from being extremely inefficient 

as the number of runs could become prohibitively large, but more importantly, it cannot 

detect interactions of factors.  In general, N parameters varying at p levels would results in 

pN simulation runs.  As in this study, full factorial for 11 parameters at 2 levels requires 211 or 

2048 simulations, which are too expensive to run.  

In order to maximize the amount of unbiased information regarding the factors affecting the 

coupled CO2 EOR and storage process by the CO2I injection but from minimum number of 

simulations, the design of experiment (DOE) approach was employed.  DOE has been used 

in many areas of reservoir engineering, for example, by Damsleth et al. (1992), Egeland et al. 

(1992) and White et al. (2003) to study the effects of uncertain reservoir parameters on 
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production, by Oliveira et al. (2009) to evaluate heavy oil recovery and by Sifuentes et al. 

(2009) to study the influence of different physical properties on the effectiveness of CO2 

storage in aquifers.  With this experimentation strategy, the same information as obtained 

with the OFAT method can be developed with a minimal number of simulation runs, without 

losing information (Damsleth et al., 1992).  Moreover, as DOE examines all of the variables 

simultaneously, the interactions between factors can also be examined, which would 

otherwise not be possible when using the OFAT approach. 

A specialized DOE software package, Design-Expert® version 8.0.6 (State-Ease Inc’s 

software), was employed to determine the experimental design pattern and calculate the 

statistical results.  Since the analysis involved both numeric and categoric parameters, the D-

optimal experimental design was selected.  The D-optimal criteria were developed to select 

design points in a way that minimizes the variance associated with the estimates of the 

specified model coefficients.  More description on the D-optimal design is given in 

Appendix A5.3.  A polynomial model with quadratic order of terms was found to give a high 

fraction (> 90%) of design space.  101 runs were identified, details of which are given in 

Table A5.3 of Appendix A5.3.   

 

Sensitivity study results 

Using the economic parameters in Table 5.8, the sensitivity study found that a CO2 credit of 

$4.2 and $5.13 per Mscf of CO2 stored is required to make the tertiary immiscible CO2I 

project to breakeven for the onshore and offshore project, respectively.  The calculated CO2 

credits required for the range of economic parameters sensitized are summarized as a 

histogram in Figure 5.30 with details in Table A5.4 in Appendix A5.3.  The absolute values 

of the CO2 credit may not mean much as the reservoir model used is a hypothetical one, 

nevertheless, the results give a valuable insight on the effect of uncertain economic 

parameters on the CO2 credit requirement in both onshore and offshore application of 

immiscible CO2I.  As expected, the required CO2 credit for the onshore project is generally 

lower than that required for the offshore project mainly due to the higher CAPEX and OPEX 

for the offshore operation. 
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Figure 5.30: Range of CO2 credits required for immiscible tertiary CO2I. 

 

To build confidence with the statistical analysis of the data, the response models on the CO2 

credit was evaluated using analysis of variance (ANOVA).  ANOVA is a statistical test 

using the F-distribution (probability distribution) function and information about the 

variances within each population and between grouping of populations to help decide if 

variability between and within each populations are significantly different.  More description 

of the ANOVA is given in the Appendix A5.4. 

Shown in Table 5.12 is the statistics for the model.  As indicated by the R-squared value (a 

measure of the amount of variation around the mean explained by the model), 100% of the 

variation in the model has been described by the model.  The predicted versus actual plot, 

i.e., the graph of the predicted response values versus the actual response values in Figure 

5.31 also shows a 45o straight line indicating that all the response values are predicted by the 

model.  This means, the resulting equation of the CO2 credit, with coefficients of the actual 

factors as given in Table 5.13, can be used as a proxy model to calculate the CO2 credit 

required for a given oil price, CO2 price, inflation rate and onshore or offshore operation. 

Table 5.12: Summary of the statistics for the model. 

Std. Dev. 9.00E-03 R-Squared 1.0 
Mean 5.3 Adj. R-Squared 1.0 
C.V. % 0.17 Pred. R-Squared 1.0 
PRESS 9.39E-03 Adeq. Precision 3248 
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Figure 5.31: A graph of the actual versus predicted values of the CO2 credit required for the 
tertiary immiscible CO2I process. 

 

Table 5.13: Coefficients of the final equation of CO2 credit required in terms of actual 
factors. 

 

 

Figure 5.32 shows the perturbation plot of the CO2 credit.  The perturbation plot of a 

response shows how it changes as each factor moves from the chosen reference point, with 

all other factors held constant at the reference value, and thus gives a perspective on the 

model.  A steep slope or curvature in a factor shows that the response is sensitive to that 

factor.  It is evident that the CO2 credit is very strongly influenced by the oil and CO2 price 

and not so much by the escalation factor.  The perturbation plot for the onshore operation 

was found to be very similar. 
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Figure 5.32: Perturbation plot for CO2 credit for the tertiary immiscible CO2I injection 
offshore.   

 

The oil and CO2 price were subsequently selected as the axes in plotting the contour plot.  

The contour plot is a two-dimensional representation of the response across the select 

factors.  In the case where there are more than two factors the 2D surface can be thought of a 

slice through the factor space.  The contour lines represent the value of the CO2 credit.  The 

surface becomes red at higher response level, yellow in the middle, and green at lower level.  

As can be seen in Figure 5.33, relatively low CO2 credit is required when the oil price is high 

and CO2 price is low.  Understandably, providing the same incentive to the other injection 

schemes, which originally show positive NPV even without any incentives, will make those 

processes more profitable. 

 

5.6. Discussion 

The evaluation of various CO2 injection strategies in this study is helpful in increasing the 

understanding of CO2 injection performance both as secondary and tertiary oil recovery 

methods, either solely for EOR or CO2 storage or for coupled oil recovery and CO2 storage, 

from the technical and economics point of view.  The evaluation also gives some important 

insights on the potential of a newly conceptualised injection strategy, INTWAG injection, 

for EOR and CO2 storage purpose. 
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Figure 5.33: Contour plot of oil price (A) and CO2 price (B) for CO2 credit of the offshore 
tertiary CO2I process with the inflation set at 3%. 

 

5.6.1. INTWAG injection 

Shutting in the production wells after a period of CO2 injection, during which CO2 was 

dissolved in oil, has been reported to be beneficial to the oil recovery.  In this study, 

INTWAG injection, which also involves shut-in period, was evaluated through numerical 

simulation, on its potential as CO2 EOR and storage injection strategy.   

INTWAG injection was proposed to benefit from two main CO2 recovery mechanisms; the 

controlled mobility of gas by the alternate water injection as in the conventional WAG 

process and improved mass transfer between the oil and CO2 during the soak period.  When 

CO2 gas is injected, it displaces the oil and water near the injection well (drainage process).  

When the well is shut in, natural imbibition would occur as the gas, water and oil phase 

redistributes itself within the well drainage area.  The hysteresis process would result in some 

gas being trapped.  This phenomenon is beneficial to CO2 storage and induces low gas 

relative permeability, which increases the oil recovery through increase in the oil relative 

permeability.  Figure 5.34 shows the saturation profiles of CO2 gas (left column) and the 

CO2 amount in the aqueous phase (right column) at various times in the YZ cross-section of 

the model passing through INJ1 and INJ3 injection wells (refer to Figure 5.3 for well 

locations).  In the given plot, INJ1 is the well on the left while INJ3 is on the right. 
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By 237 days (topmost plot in Figure 5.34), 2.5% HCPV of CO2 has been injected in INJ1.  

We can see that CO2 has penetrated into the reservoir away from the injection well as 

indicated by a much larger area of CO2 solubility in water (right column plot) than that of the 

gas saturation (left column plot).  After a shut in period (shown in plots at time 474 and 711 

days), the gas saturation diminishes and the CO2 diffuses further away into the in-situ oil and 

water.  The subsequent water injection (shown in plot at time 948 days) pushed the CO2 even 

further away from the wellbore.  

 

 

Figure 5.34: Saturation profiles for CO2 gas (left column) and CO2 solubility in the aqueous 
phase (right column) at various time, for miscible secondary INTWAG injection. 

 



Chapter 5: Numerical Simulation of Various CO2 Injection Strategies 

 

205 

 

In continuous CO2 injection, due to the adverse viscosity ratio between the oil and CO2, 

bypassing of oil would occur behind the flood front, thus, more CO2 is needed to contact 

more oil.  In INTWAG injection, the shut in period is meant to give longer time for CO2 to 

diffuse into the by-passed oil, particularly for the tertiary process, where mobile water is 

present.  The diffusion dampens the transverse dispersion and consequently increases the 

mass transfer between the injected CO2, without having to inject more CO2.  Oil swelling 

would increase, which favourably increases the oil relative permeability and oil viscosity 

reduction, which in turn improves the mobility of the oil to the producer wells.  Miscible 

INTWAG performs better in terms of oil recovery.  However, the reverse is true for the CO2 

storage where much higher CO2 retention per barrel of oil produced was predicted under the 

tertiary recovery mode.  

Parametric simulation results show that in INTWAG injection, larger slug size is favourable 

for CO2 storage.  The ‘soak time’ equivalent to 7% HCPV slug size increases oil recovery 

from miscible INTWAG injection by 8% but has little impact on the immiscible process.  On 

one hand, a larger slug size injected means a longer soak time is required to reach 

equilibrium between the CO2 and the fluids in place, but on the other hand, it also means a 

longer time is available for CO2 diffusion in the pattern with the closed injector and 

producer.  There is only a limited amount of CO2 that can dissolve into the oil under 

immiscible condition, thus extending the soak time does not really bring in significant 

additional oil.  There must be an optimum soak time beyond which incremental recovery is 

negligible.  Conversely, in the miscible process, the CO2 solubility in oil and the resulting oil 

swelling are much larger, thus a longer time available for diffusion leading to more oil 

recovery.   

The sensitivity of the WAG ratio in INTWAG injection shows similar behaviour as that 

reported for the conventional WAG injection in that at very low WAG ratio (that is, too 

much gas is injected), oil recovery performance deteriorates.  Gravity segregation causes the 

gas to tongue at the top of the reservoir and consequently reduces the gas sweep efficiency.  

Too much water, as at high WAG ratio, will lead to water underride which also reduces 

displacement efficiency. 

In tertiary INTWAG injection, the higher water saturation reduces the amount of CO2 that 

dissolves in oil.  With a longer shut in period, apart from dissolving more CO2 into the oil, 
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more CO2 could be dissolved into the water too and increases the density of the water 

(Hebach, 2004).  Part of the CO2-diluted oil will be recovered, which contributes to the 

additional oil recovery.  However, a large part of the injected CO2 will remain dissolved in 

the remaining oil, which is important from the CO2 storage perspective.  It is believed that if 

the CO2 diffusion into the water can be appropriately modelled (which the simulator used in 

this exercise could not do when the oil phase is present), more distinct results could have 

been observed when the soak time changes even in the immiscible INTWAG injection. 

The evaluation concludes that INTWAG injection results in higher incremental recovery 

compared to waterflood and has potential as CO2 EOR and storage injection strategy.  It 

performs better than WAG injection under the immiscible conditions, in that it requires 

much less CO2 per volume of incremental oil recovered and higher amount of CO2 stored.    

 

5.6.2. CO2 injection for EOR and storage 

Simulation results in this study clearly show that to maximize oil recovery requires a 

different injection strategy than that to maximize the CO2 storage and both could also be 

different from the injection scheme that co-optimizes oil recovery and the amount of CO2 

stored.  The control mode of the production, which affects the reservoir pressure and thus the 

miscibility between CO2 and the oil, also strongly influences the performance of the 

integrated process.   

Table 5.14 summarises the oil recovery, CO2 stored and f factors with equal weight of oil 

recovery and CO2 storage for all the simulated cases without the economic factors.  Under 

the miscible conditions, secondary CO2 injections resulted in higher and earlier incremental 

oil recovery than the tertiary process, as expected.  In the secondary processes, CO2 can 

easily contact the oil whereas the presence of the mobile water phase from the preceding 

waterflood in the tertiary recovery method hampers CO2 from contacting the residual oil 

(Shelton et al., 1978; Tiffin et al., 1983).  Several studies (for example by Grogan, et al., 

1987, 1988; Campell, et al., 1985; Bijeljic, et al., 2002) have also shown that the presence of 

a water layer separating the oil and CO2 phases adversely affects the CO2 diffusion into the 

oil.   
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Table 5.14: Comparison of oil recovery factor, CO2 storage and f function; secondary 
and tertiary CO2 injection strategies.   

Injection 
scheme 

Fixed BHP production constraint (immiscible flooding) 
R = Np*/STOOIP, % S = VCO2/PV, % f = 0.5R+0.5S 

Secondary Tertiary Secondary Tertiary Secondary Tertiary Total Post WI 
WI 52.97  - 26.61 
CO2I 44.56 55.97 5.39 74.58 43.35 59.57 24.37 
WAG 58.60 60.57 9.99 36.20 29.41 47.40 19.70 
HYWAG 55.50 61.99 11.41 37.92 33.31 46.71 22.36 
SSWAG 59.89 56.61 6.03 34.64 27.08 47.26 16.56 
TAPWAG 57.94 62.79 12.21 32.83 26.88 45.39 19.54 
INTWAG 60.52 62.18 11.59 37.46 31.68 48.99 21.64 

Injection 
scheme 

Fixed rate production constraint (miscible flooding) 
R = Np*/STOOIP, % S = VCO2/PV, % f = 0.5R+0.5S 

Secondary Tertiary Secondary Tertiary Secondary Tertiary   Total Post WI 
WI 50.70  - 25.35 
CO2I 72.39 67.58 24.17 59.63 32.78 66.01 28.48 
WAG 69.27 64.61 21.21 21.04 14.11 45.15 17.66 
HYWAG 68.00 65.37 21.96 24.45 16.41 46.23 19.18 
SSWAG 79.45 70.02 26.61 25.62 18.84 52.54 22.72 
TAPWAG 70.39 65.27 21.87 20.16 13.10 45.27 17.48 
INTWAG 69.29 66.69 23.28 21.74 18.08 45.51 20.68 
Note: The ‘Post WI’ recovery shown for the tertiary process refers to the oil produced during the CO2 
injection phase only.   

 

It is also evident from the results that a significant loss in oil recovery would occur if the 

average reservoir pressure dropped below the MMP, as was the case for oil productions 

under the BHP constraints.  In the immiscible flooding, CO2 swells the oil and reduces the 

oil viscosity only to certain extent (Klins, 1984), but the residual oil saturation is not affected.  

As can be seen in Table 5.14, the total recoveries of the immiscible tertiary process are 

higher than those from the corresponding secondary injections, except for the SSWAG 

injection.  Water has higher viscosity and better mobility control than gas thus WI gives 

higher recovery, particularly prior to breakthrough, than CO2 gas injection.   

For the reservoir and conditions used in this study, the best injection strategy, technically, for 

maximizing the oil recovery is miscible SSWAG injection while the highest CO2 stored was 

obtained under immiscible CO2I with pressurization of the reservoir after EOR period.  The 

most promising injection scheme to co-optimize oil recovery and CO2 storage was found to 
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be the miscible CO2I. 

The miscible SSWAG injection outperforms the other injection schemes in both secondary 

and tertiary recovery, with the lowest CO2 utilisation.  In the normal WAG and SWAG 

injection where the injectors are open to flow in all layers, water and gas encroachment in the 

bottom and top perforations of the producers, respectively, hastens gas and water 

breakthrough.  The SSWAG injection effectively minimises the gravity segregation effects 

and gives much higher overall sweep efficiency by delaying breakthrough and increasing the 

contact area between the injected CO2 and oil.   

High pressure flooding and miscibility, however, work against CO2 storage.  This is evident 

by the much lower CO2 storage under high pressure flooding mode.  Low reservoir pressure 

at the start of the CO2 injection provides more storage capacity for CO2, and this is further 

enhanced by additional CO2 injection after the production has ceased.  Simulation results in 

this study indicate that re-pressurization accounts for about 35% of total CO2 storage in the 

immiscible CO2I. 

It is however worth mentioning that whilst the depth of the reservoir used in this evaluation 

(7285 ftss) is quite typical in an EOR project, it might be on the high side of the reservoir 

depths commonly encountered in CO2 storage projects.  The density of CO2 beyond its 

critical pressure (approximately at depth of 800 m or 2500 ft) does not change very much 

thus injecting into deeper reservoirs would involve a much higher compression cost without 

much added benefit in terms of volume of CO2 that could be stored.  

Another main finding from this simulation study is that injection schemes that were 

traditionally designed for minimizing CO2 utilization per incremental volume of oil 

produced, such as WAG, SSWAG and TAPWAG, are not, technically, performing so well 

in terms of CO2 storage.  Despite having the advantage of improved sweep efficiency from 

the controlled gas mobility by the alternate slug of water, the injected water in these injection 

schemes competes with the injected CO2 for the pore space.  This leads to only about half the 

CO2 or less as in the CO2I being stored.   

The ranking of the injection schemes however significantly changed when even simple 

economic factors are taken into account.  The injection schemes that are traditionally 



Chapter 5: Numerical Simulation of Various CO2 Injection Strategies 

 

209 

 

designed for minimizing CO2 utilization per incremental volume of oil produced are still the 

most economic for the coupled CO2 EOR and storage purpose.  Immiscible CO2I process 

would have negative NPV (i.e. not economical) if no incentive for storing CO2 with EOR is 

provided.  Sensitivity study shows that the CO2 credit required to making the CO2I injection 

economical for EOR and storage is greatly influenced by the oil and CO2 price and whether 

the project is onshore or offshore.  The ranking parameters, R* and S*, were also found to be 

quite robust such that the ranking was not influenced by the weight used.  

 

5.7. Summary and conclusions 

Storing CO2 through EOR in an oilfield not only aims to increase the oil recovery but also to 

maximize the amount of CO2 left behind at the end of the recovery.  These objectives are 

significantly different from maximizing the oil recovery alone and require optimization.  A 

practical work flow was developed for ranking and optimizing the injection strategies suited 

for CO2-flood EOR and storage for a given reservoir.   

The main features of the method include the evaluation of various CO2 injection schemes 

through compositional reservoir simulation.  Simulations calculate the incremental oil 

recovery and the amount of CO2 sequestered in the reservoir.  Two sets of ranking 

parameters were used in selecting the CO2 injection method with the highest potential; an 

objective function f of equally weighted oil recovery and CO2 storage and the equally 

weighted profit per barrel of oil produced and profit per Mscf of CO2 stored.  Ranking of the 

injection schemes by the f values incorporating the economic factors identifies the CO2 

injection strategy with the highest potential to co-optimize EOR and CO2 storage 

economically.  Different weights could be assigned to oil recovery and CO2 stored, 

depending on the primary objective of the CO2 injection. 

A newly conceptualized INTWAG injection scheme, that involves alternating CO2 and 

water injection between phases and well patterns, was also evaluated together with CO2I, 

WAG, HYWAG, SSWAG and TAPWAG injections.   

From the simulation study, it was concluded that: 
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5.7.1. INTWAG injection 

• INTWAG injection could increase the oil recovery above that of waterflooding.  

• Under immiscible conditions, INTWAG requires much less CO2 per incremental oil 

recovered and stores higher amount of CO2 than normal WAG injection.  

• Large slug size is beneficial to the CO2 storage and oil recovery under miscible 

condition but has small impact on oil recovery under the immiscible process. 

• There is an optimum WAG ratio corresponds to the highest oil recovery.  Smaller 

WAG ratio is preferred for CO2 storage using this injection scheme.  

 

5.7.2. CO2 injection strategies for oil recovery and storage 

• The injection strategy to maximize the oil recovery is different from that to 

maximize CO2 storage, which in turn is different from the injection scheme that co-

optimizes both oil recovery and CO2 storage.   

• The injection schemes that traditionally designed for minimizing CO2 utilization per 

incremental volume of oil produced are technically not performing well for CO2 

storage.   

• The control mode of the production, which affects the reservoir pressure strongly 

influences the process performance.  For maximum oil recovery and CO2 storage, 

higher reservoir pressure which reaches miscible displacement should be targeted 

and maintained throughout the flooding.   

• Miscible CO2 injections give higher oil recovery than the corresponding immiscible 

process but the reverse is true for CO2 storage.   

• Based on the predicted performance only, the best injection strategy for maximizing 

the oil recovery is the miscible SSWAG injection while the highest CO2 stored was 

obtained under immiscible CO2I with pressurization after EOR.  The most 

promising injection scheme to co-optimize oil recovery and CO2 storage is found to 

be the miscible CO2I.   

• With the economic factors accounted for, immiscible TAPWAG and miscible WAG 

injections are found to be the most promising injection scheme for co-optimizing oil 

recovery and CO2 storage for secondary and tertiary recovery, respectively.   
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• Providing incentive for sequestering CO2 through EOR in the form of CO2 credit 

could make more CO2 injection strategies economical for the purpose.  The CO2 

credit was found to be strongly influenced by the oil and CO2 price. 

The miscible WAG injection under the tertiary recovery mode was selected for the 

subsequent parametric study and co-optimization of the integrated process, which are 

detailed in the next chapter. 
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Chapter 6  

 

Parametric Study and Process Design Optimization of CO2 
Injection for Coupled EOR and Storage 

 

 

6.1. Introduction 

The factors affecting the performance of CO2 WAG injection for EOR have been 

extensively studied and reported in the literature, for example by Chen et al. (1984), 

Champion and Shelden (1989), Sanchez (1999), Rogers and Grigg (2000) and Awan et al. 

(2008).  However, there are very limited studies on factors influential to the performance and 

economic viability of WAG injection for both EOR and CO2 storage purpose.   

This chapter presents the parametric simulation and flood design optimization of the 

miscible WAG injection process.  In the conventional CO2 EOR projects, the main objective 

is maximizing the oil recovery with the lowest use of CO2.  The CO2 produced is normally 

re-injected for an efficient and economic CO2 utilization.  Since the trapped CO2 in the 

reservoir cannot be re-cycled, CO2 sequestration is to be minimized as much as possible in 

EOR.  However, in coupled CO2 EOR and storage projects, in addition to maximizing the oil 

recovery, the other key objectives are also to maximize the amount of CO2 stored in the 

reservoir at the end of the process and ensure that the CO2 remains safely confined.  For the 

integrated project to be technically and economically viable, it is essential that these two 

competing objectives co-optimized.  Co-optimization here refers to getting the highest 

possible profit in terms of both oil recovery and CO2 storage by applying the best 

combination of the influential design factors within a predefined range.   
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6.1.1 Relevant previous studies 

There is a large volume of studies in the literature about the optimization of the CO2 flood 

design for EOR (for example Ramirez et al., 1984; Rivas et al., 1994; Gharbi, 2001; Panda et 

al., 2009; Darvishnezhad, 2010).  However, the number of published studies on the 

optimization of a coupled EOR and CO2 storage process is still very limited. 

Malik and Islam (2000) evaluated, through reservoir simulation, several CO2 injection 

strategies using horizontal injection wells to optimize the oil production and CO2 storage in 

Weyburn Field, Canada.  They recommended injecting the CO2 into the producing formation 

and re-pressurizing the reservoir after the end of the EOR phase to increase the CO2 storage.   

Controlling the produced GOR was also reported to effectively co-optimize CO2 

sequestration and oil recovery (Kovscek and Cakici, 2005; Pamukcu et al., 2008).  A lower 

GOR limit resulted in significantly more CO2 stored in the reservoir with only a slight 

adverse impact on oil recovery.  This is further enhanced by combining this procedure with 

solvent injection that creates miscible displacement.  Using a streamline-based simulation, 

Qi et al. (2008) sensitized the CO2 reservoir volume fractional flow of CO2 SWAG injection 

and concluded that injecting more water than the optimum WAG ratio can impede the 

movement of CO2 to the production wells, thus leading to a higher amount of CO2 storage.   

These parametric studies seeking to understand the issues limiting the performance of the 

EOR process for CO2 storage were based on a one-factor-at-a-time (OFAT) approach, which 

fail to take into account any interactions between the critical factors. 

Much recently, Ghomian et al. (2008) and Forooghi et al. (2009) have reported the use of an 

experimental design and reservoir simulation to co-optimize oil recovery and CO2 storage.  

The use of solvent gas, a horizontal injector and producer, and a high WAG ratio were found 

to be favourable for co-optimized performance.  

In this chapter, the experimental design and the Response Surface Method (RSM) were used 

to effectively select the sensitivity runs for the simulation, find the statistically significant 

factors to the process and identify the window of operability where requirements of 

maximum oil recovery and CO2 storage profit simultaneously meet the critical properties.  

The significant factors were first screened using a fractional factorial design, and then a 
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response surface model was used to fully model the effects, followed by a confirmation 

simulation run to verify the results. 

 

6.2.  Parametric simulation study of coupled CO2 EOR and storage 

6.2.1.  Parametric study approach 

Setting the objectives 

The focus of the parametric study was to screen out the factors that are not critical to the 

profitability of the miscible CO2 WAG injection (i.e. under fixed rate well control mode) in 

both the homogeneous and heterogeneous model.  Only the post-waterflooding or tertiary 

WAG injection was evaluated, as it is a common practice in the industry that CO2 EOR is 

implemented after the oil fields have been exploited by a combination of natural drive and 

secondary water or gas flood.  Tertiary process is more relevant when CO2 storage is also 

one of the objectives of the injection project.  In this case, the depleted oil field would 

eventually be converted into a storage site, and this conversion process is irreversible if the 

storage is permanent (Stevens et al., 2000).  In the tertiary injection, CO2 is stored through 

dissolution in the remaining oil and water in the reservoir as well as occupying the pore 

space when the reservoir is further pressurised by CO2 after the EOR period. 

The WAG injection was first analysed through a sensitivity study of several reservoir and 

operational parameters to examine how these factors affect the amount of CO2 retained in the 

reservoir and the oil recovery.  This parametric simulation served to screen the important 

design variables for the subsequent optimization.  The oil recovery profit (R* as in Equation 

5.12) and CO2 storage profit (S* as in Equation 5.13) were used as the response parameters.   

 

Choosing the factors and levels examined 

The selection of factors was made to reflect the most common reservoir characteristics and 

well operation conditions based on the literature review (for example Jarrel et al., 2002) and 

prior knowledge.  A total of 11 factors, as listed in Table 6.1, were incorporated in the 
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sensitivity analysis.  Geophysical aspects such as seals, faults and fractures and the 

geochemical reactions between CO2, water and the rock minerals might also affect the CO2 

WAG injection process but were not considered in this study.  Throughout this chapter, the 

abbreviations and factor labels will be used heavily, thus the readers are referred to Table 6.1 

for the description.   

 

Table 6.1: Factors evaluated (with abbreviation) and the range involved in parametric 
simulation of CO2 WAG injection in the homogeneous reservoir model. 

Factor 
Label Description Units Low Level 

(-1) 
High Level 

(+1) 
A Reservoir permeability (PERMX) mD 20 2000 

B Reservoir porosity (PORO) fraction 0.1 0.3 

C kv/kh ratio (KV/KH) - 0.05 0.3 

D Relative permeability (RELP) table number 1  
(water-wet) 

2  
(oil-wet) 

E Oil viscosity (OILVIS) cP 4 65 

F Maximum produced gas oil ratio (GOR) Mscf/stb 10 50 

G Preceding waterflood duration (WFLD) year 3 7 

H Injected CO2 gas composition (CO2) mole fraction 0.5 1 

J Gas injection rate per well (QINJ) Mscf/day 8720 17445 

K Slug size (SLUG) %HCPV 0.5 8 

L WAG ratio (WAGR) - 0.25 3 
* Letter ‘I’ was purposely excluded as it symbolizes the identity of the design matrix of the tool used. 

 

The minimum and the maximum values of each parameter were chosen to be reasonably far 

apart, so that the effect was likely to be seen, but not exceeding the typical operating 

boundaries.  For the purpose of the sensitivity analysis, all factors were assumed as not 

correlated, except for the capillary pressure, Pc, which changes with permeability and 

porosity of the system, as described in the next page.  Pc was thus not defined as one of the 

factors: only permeability and porosity were.   

Reservoir permeability (PERMX):  Permeability influences the fluid flow.  Heterogeneity 

in lateral and vertical directions affects the flow path and determines the well perforation 

intervals.  The reservoir permeability was sensitized from 20 to 2000 mD for the 
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homogeneous model.  For the heterogeneous model, more details on the model are given 

later, a global multiplier of 0.5 and 3 times the original permeability value was applied, with 

maximum permeability capped at 20000 mD.  This gives average permeabilites of 180 and 

1500 mD, respectively. 

Reservoir porosity (PORO):  Porosity determines the capacity of the reservoir and thus 

strongly influences CO2 storage.  Apart from reservoir depth and temperature, the fraction of 

the porosity that can be filled with CO2, determines the amount of the CO2 that can be 

sequestered.  For the homogeneous model, the high porosity level was set at 30% whilst the 

low level was set at 10%.  For the heterogeneous model, a global multiplier of 0.5 and 2 

times the base case values, capped at 40% was applied giving 10% and 32% average 

porosity for the low and high level case, respectively.   

Capillary pressure: Since the Pc is a function of the reservoir quality indexY�w��V it was 

recalculated for each combination of permeability and porosity, using Equation 5.8 (of 

Chapter 5).  The pore size distribution index and entry value of the J-function remain the 

same as those used in Chapter 5. 

Vertical to horizontal permeability )( hv kk ratio (KV/KH):  The kv/kh ratio affects the 

vertical conformance of WAG injection, and thus CO2 distribution in the reservoir.  The high 

and low level in the sensitivity analysis were set at 0.05 and 0.3, respectively. 

Relative permeability (RELP):  Relative permeability governs the multiphase flow through 

the porous media and strongly affects the pressure and production response.  It depends, 

among other factors, on the fluid saturation levels and wettability of the formation.  In this 

parametric study, the relative permeability was to represent the wettability of the formation.  

The low level represents the relative permeability for the water-wet system (table 1) while 

the high level represents the relative permeability of an oil-wet system (table 2).   

The relative permeability curves, shown in Figures 6.1 and 6.2, were generated using Corey-

type correlation with assumed endpoints (Table 6.2) following Craig’s rule in distinguishing 

between strongly water-wet and oil-wet systems (Craig, 1971).  For a water-wet system, the 

oil relative permeability is characterised by an Sor of 30 % or higher, no of around 2 - 3 and 



Chapter 6: Parametric Study and Process Design Optimization of CO2 Injection 

 

224 

 

an end-point relative permeability kro,cw of around 0.6 - 0.8.  The corresponding water 

relative permeability is characterised by a Corey exponent nw of around 4 - 6 and an end-

point relative permeability krw,Sor of around 0.1 - 0.4.  For an oil-wet system, water and oil 

exchange places.  Also according to Craig’s rules, for the oil-wet system, the intersection of 

krw and krow curves for an oil-wet system occurs at Sw < 0.45 whilst for the water-wet system, 

it is usually higher than 0.5.  Corey’s correlations were also used to create the oil/gas relative 

permeability curves in Figure 6.2.  The assumed endpoints and exponents are given in Table 

6.3.  

Table 6.2: Assumed oil/water relative permeability endpoints. 

Table Wettability Swc Sorw Krw(Sorw) Kro(Swc) no nw 
1 Water-wet 0.25 0.33 0.35 1.0 2.5 5.0 
2 Oil-wet 0.15 0.58 0.55 0.8 6.0 2.0 

 

Table 6.3: Assumed oil/gas relative permeability endpoints. 

Table Wettability Sgc Sorg Krg(Sorg) Krog(Sgc) no ng 
1 Water-wet 0.03 0.1 1.0 1.0 4.5 3 
2 Oil-wet 0.03 0.2 1.0 1.0 5.5 3 

 

The hysteresis was assumed for the non-wetting phase for each oil/water and oil/gas system 

(krow and krg).  The scanning curve was calculated using the non-wetting phase hysteresis 

model by Land (1968) and Carlson (1981).  

�	6
�`\���� � �	6
g	n�6k�6
�l                                                                                                   (6.1) 

where 

�6
� � �6
< � 9> ���6` � �6
	� � w��6
 � �6
	�> � �2 ��6
 � �6
	��                    (6.2) 

�	6
�`\��6
� and �	6
g	n�6k�6
�lYis the imbibition at the non-wetting phase saturation, Snw, 

and the drainage of the non-wetting phase relative permeability at the corresponding free 
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non-wetting phase saturation, Snwf, respectively.  For the Krow, the Land’s constant C was 

assumed to be 2.0 and the critical oil saturation Soc = 0.  For the Krg, the trapped gas 

saturation, Sgt, was assumed to be 0.25 for both the water-wet and oil-wet systems.  

 

 

Figure 6.1: The calculated oil/water relative permeability curves with hysteresis for (a) 
water-wet and (b) oil-wet rock. 

 

 

Figure 6.2: The calculated gas/oil relative permeability curves with hysteresis for (a) water-
wet and (b) oil-wet rock. 
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Oil viscosity (OILVIS):  Oil viscosity reduction due to CO2 solubility into the oil is one of 

the main recovery mechanisms in CO2 flooding (Miller and Jones, 1981; Klin, 1984).  Oil 

viscosity also governs the mobility of the oil in the reservoir.  Representing the low level 

viscosity oil was Little Knife oil, as used in Chapter 5, with 4 cP viscosity at standard 

conditions.  Representing the high level was Little Knife oil with the same composition but 

with higher specific gravity and higher molecular weight of the C14+ fraction that gives a 

viscosity of 65 cP at the standard condition. 

Injected gas composition (CO2):  The injected gas composition has a significant impact on 

the effectiveness of CO2 EOR, as it is very influential on the MMP (Jessen et al., 2005).  In 

this study, the injected gas composition was sensitized between pure CO2 and a gas mixture 

containing 50 mole% CO2 and 50 mole% of C1 and N2 mixture. 

Gas injection rate (QINJ):  The base case gas injection rate was 11630 Mscf/day, which is 

equivalent to 5000 bbl/day of water injection at 4000 psig, and 150 oF.  This injection rate 

was chosen so as to get a reasonable amount of production within the simulated duration.  

The low and high levels were set at 8720 and 17445 Mscf/day/well, respectively. 

Waterflood duration prior to WAG injection (WFLD):  The timing to start WAG 

injection after waterflooding was also varied between 3 to 7 years, to reflect the different 

mobile water saturation, Swi, at the time the CO2 injection started.   

WAG ratio (WAGR):  The low level WAG ratio was set at 1:4 while the high level was set 

at 3:1. 

 

Selecting the experimental design 

The DOE method and the same tool Design-Expert® version 8.0.6 (State-Ease Inc.’s 

software) was again used to determine the number of runs and combinations of parameters 

for the sensitivity study.  In the initial stage of screening for the factors critical to the process, 

the author chose the simplest but most powerful DOE tool: the standard two-level fractional 

factorial experimental design.  This approach assumes that information on the main effects 

and low-order interactions may be obtained by running only a fraction of the complete 
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factorial experiments and that the higher order interactions are negligible (Montgomery, 

1991).  Mathematically, it is described as 2k-p, where k refers to the number of factors and 

minus p excludes a fraction of the experiments (Box, 1961 as quoted in Anderson and 

Whitcomb, 2007), which equals 5 in this study.  Each input variable is varied at high (+1) 

and low (-1) level as discussed earlier.  211-5 = 64 experiments (or simulation runs) were 

identified.  R* and S* were again used as the response factors and will be described later. 

 

Performing the simulation 

Two similar compositional models, being different only in permeability and porosity, were 

used for the parametric simulations.  The model is a quarter of the compositional model 

described in Chapter 5 with 10x30x10 grid blocks, representing an inverted five-spot pattern 

of an oil field.  In addition to identifying the critical factors to the oil recovery and CO2 

storage profit, the results will also give an insight into whether the influential factors are the 

same for both homogeneous and heterogeneous reservoirs. 

For the homogeneous model, the permeability and porosity are constant at 800 mD and 25%, 

respectively.  The porosity and permeability values for the heterogeneous model were taken 

from a section of the SPE10 Model 2 (http://www.spe.org/web/csp/).  The model consists of 

a prograding Tarbert formation at the top part and the fluvial Upper Ness formation in the 

lower part.  The carved out section for this study however only involved the Tarbet 

formation where permeability variation is relatively large but smooth.  The extracted 

properties of 10x30x10 cells from the fine SPE10 model were directly populated into the 

quarter five-spot model.  Figure 6.3 shows the distribution of the base case porosity and 

permeability.  It is important to note that, in this study, the SPE10 model’s static properties 

were used only to ensure realistic heterogeneous porosity and permeability values typical of 

a North Sea reservoir, and not to evaluate WAG in the Tarbet formation per se. 

The average reservoir pressure was maintained at a maximum of 4000 psig throughout the 

water injection period.  This is to ensure that the pressure was slightly above the MMP of the 

light oil.  To ensure a miscible displacement, the average reservoir pressure was always 

maintained higher than the MMP throughout the WAG injection by injecting 10% more 
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reservoir barrel than the production.  CO2 injection was continued until the maximum BHP, 

even when the well operating limits were already reached, to allow for maximum possible 

CO2 storage within the duration of the simulation of 25 years. 

 

      

Figure 6.3: (a) Permeability (log scale) and (b) porosity of the heterogeneous model used in 
the parametric study. 

 

The full list of the 64 simulation cases, as well as the setting of each factor, is given in Tables 

A6.1 and A6.2 of Appendix A6.1, for the homogeneous and heterogeneous models, 

respectively. 

 

Analysing the data 

A similar approach in analysing the simulation results as described in Section 5.5 was 

employed and the same economic parameters assumed.  The CAPEX involved was the costs 

for one injection well and the CO2 recycled plant only.  In the cases involving the injection of 

CO2, C1 and N2 gas mixture, the produced lean gas was also recycled with the recycling 

costs assumed to be half of that of CO2.  A fresh supply of the gas was injected to make up 

the total amount of gas needed for injection.  The sale of the produced gas as well as the CO2 

credit was not considered in the economic calculations. 

The profit of the oil recovery and CO2 stored during the tertiary WAG injection period, 
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expressed as the NPV per barrel of oil, R*, and NPV per Mscf of CO2 stored, S*, 

respectively, were used as the response factors (Equation 5.12 and 5.13, repeated here for 

easy reference).   

pN
NPV

R =*                                                                                                                     (6.3) 

*
2

*

COV
NPV

S =                                                                                                                     (6.4) 

where NPV is the net present value of the project, VCO2
* is Mscf of CO2 stored in the 

reservoir and Np is the oil produced during the CO2 injection period.  Throughout this 

chapter, R* and S* will be referred to as the ‘oil recovery profit’ and ‘CO2 storage profit’, 

respectively.  The project with both high R* and S* is targeted.    

To facilitate understanding of the discussion in this chapter, it is important to note that these 

response factors, R* and S*, are different from the objective function of oil recovery, R, and 

CO2 storage, S, defined by Equation 5.2 and 5.3, respectively (repeated here for easy 

reference). 

100
*

×=
STOOIP

N
R p                                                                                                         (6.5) 

1002 ×=
PV

V
S

R
CO                                                                                                               (6.6) 

 

R* and S* are the profit in dollar per barrel of oil recovered ($/stb) and per Mscf of the CO2 

stored ($/Mscf), respectively, while R and S are the oil recovery (%STOOIP) and the 

amount of CO2 stored (%PV).  Note that the Np and VCO2 are in the inverse position in the 

respective equations.  According to Equation 6.3 and 6.4 above, high profits are obtained 

when low amount of CO2 stored and additional oil produced give high NPV.  Conversely, 

according to Equation 6.5 and 6.6, higher R and S are obtained with higher additional oil 

produced and amount of CO2 stored.  Therefore, it is anticipated that the factors favourable 
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to high profits of the project, as defined in this study, could be the opposite of those factors 

resulting in high oil recovery and CO2 stored. 

The response models on the R* and S* were evaluated using ANOVA to identify the factors 

that have the greatest impact on the responses.  ANOVA allows the simultaneous 

examination of not only multiple independent variables (factors) but also of the interactions 

between those factors.  Interaction occurs when the difference in the response between levels 

of one factor is not the same at all levels of the other factor (Montgomery, 1991) and is best 

viewed through interaction plot.  When the interaction is large, the corresponding main 

effects have little practical meaning.  Effect is defined as the change in the response as the 

factor changes from the low to the high level (Montgomery, 1991) and is expressed 

mathematically as:   

 

����sR � $���6� + � $���6� +                                                                                                     (6.7) 

where Y+ and Y- represent the response of the high and low levels, respectively, and n is the 

number of data points collected at each level.   

The half-normal probability plot of the effects was then used as a tool to screen for the vital 

few effects that stand out to the right on the x-axis scale of the absolute response.  These few 

significant effects are included in the model while the rest of the effects are tested using 

Shapiro-Wilk hypothesis to determine the probability that the sample came from a normally 

distributed population of observations.  The null hypothesis is that the data (the unselected 

and insignificant terms in the model) come from a normal distribution.   

 

6.2.2. Results and discussion 

The summary of the maximum values of the oil recovery and CO2 storage profits is shown in 

Table 6.4, while Tables 6.5 and 6.6 show the results for all the simulation cases for the 

homogeneous and heterogeneous reservoirs, respectively.  The maximum oil recovery factor 
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and CO2 storage per barrel of oil produced by the end of the CO2 flood for the homogeneous 

reservoir, can reach up to about 66 %STOOIP and 29 Mscf/stb, respectively, as compared 

with only 52 %STOOIP and 8 Mscf/stb for the heterogeneous cases.   

 

Table 6.4: Summary of maximum values for oil recovery and CO2 storage. 

Parameter MAX. HOM MAX. HET 
Run Value Run Value 

Incremental oil recovery, %STOOIP HOM7 65.87 HET2 51.80 
CO2 stored, Mscf/bbl of oil produced HOM29 29.25 HET57 7.76 
R* = Oil recovery profit, $/bbl HOM18 18.86 HET9 16.73 
S* = CO2 storage profit, $/Mscf HOM3 30.18 HET46 20.95 
f = 0.5(R*+S*) HOM18 22.25 HET46 18.80 

  

It is evident from the results that the most profitable case is not necessarily given by the 

project with the highest individual tertiary oil recovery or amount of CO2 stored but both 

should be considered.  As shown in Table 6.4, the highest tertiary oil recovery for the 

homogeneous reservoir was given by HOM7 with 65.87 %STOOIP but the best dollar value 

of the additional oil recovery was attained in HOM18 case, which produced only 28.44 

%STOOIP extra oil.  Similarly, the highest CO2 storage of 29.25 Mscf per barrel of oil 

produced was given by HOM29 but the highest dollar value of CO2 storage was given by 

HOM3 with 30.2 $/Mscf of CO2 stored.  The most favourable combination of reservoir and 

operational factors that lead to the highest value of the f function (i.e., the equally weighted 

R* and S*), is given by HOM18 and HET46 for the homogeneous and heterogeneous 

reservoirs, respectively. 

 

Table 6.5: Simulation results for the homogeneous (HOM) reservoir. 

Run 

Oil recovery 
during WAG 

injection 

CO2 injected per 
barrel of oil 
produced 

CO2 stored per 
barrel of oil 
produced 

S* R* 

%STOOIP Mscf/stb Mscf/stb $/Mscf $/stb 
HOM1 61.75 6.047 3.918 2.228 8.728 
HOM2 37.08 0.881 0.862 14.666 12.646 



Chapter 6: Parametric Study and Process Design Optimization of CO2 Injection 

 

232 

 

Run 

Oil recovery 
during WAG 

injection 

CO2 injected per 
barrel of oil 
produced 

CO2 stored per 
barrel of oil 
produced 

S* R* 

%STOOIP Mscf/stb Mscf/stb $/Mscf $/stb 
HOM3 42.64 1.480 0.462 30.176 13.946 
HOM4 11.58 6.156 1.949 4.380 8.539 
HOM5 44.86 7.299 4.152 1.487 6.173 
HOM6 22.47 5.566 3.865 2.032 7.856 
HOM7 65.87 2.599 2.121 5.896 12.507 
HOM8 12.38 3.795 0.759 16.950 12.864 
HOM9 40.45 8.305 6.276 0.774 4.860 

HOM10 34.30 22.860 6.401 0.544 3.481 
HOM11 31.15 6.132 1.001 15.128 15.145 
HOM12 56.60 8.266 5.511 1.275 7.027 
HOM13 12.27 7.193 2.185 3.056 6.678 
HOM14 14.00 6.290 3.363 2.561 8.612 
HOM15 17.19 8.880 6.680 0.793 5.298 
HOM16 9.33 1.973 0.949 6.820 6.470 
HOM17 33.80 4.572 3.174 2.910 9.236 
HOM18 28.44 0.917 0.736 25.637 18.863 
HOM19 57.49 7.715 5.334 1.237 6.595 
HOM20 50.55 3.510 2.919 1.814 5.295 
HOM21 34.85 3.326 2.210 5.765 12.742 
HOM22 23.03 2.500 2.467 4.479 11.050 
HOM23 10.70 5.864 2.890 0.748 2.163 
HOM24 39.55 13.782 8.079 -0.002 -0.017 
HOM25 18.77 5.762 4.854 0.657 3.191 
HOM26 29.40 3.110 1.437 8.587 12.338 
HOM27 45.81 3.234 2.000 3.202 6.403 
HOM28 46.88 2.086 1.763 9.330 16.452 
HOM29 2.16 29.391 29.245 -0.776 -22.681 
HOM30 55.40 8.029 6.155 1.415 8.710 
HOM31 1.99 14.141 13.838 -1.568 -21.700 
HOM32 14.23 7.437 5.826 0.391 2.279 
HOM33 25.84 9.324 5.634 1.889 10.642 
HOM34 38.46 21.684 6.144 0.438 2.689 
HOM35 28.42 3.070 2.878 2.981 8.580 
HOM36 53.31 5.166 2.051 6.303 12.925 
HOM37 11.34 3.829 1.743 6.503 11.338 
HOM38 19.38 8.925 3.780 2.252 8.513 
HOM39 7.36 11.735 11.539 0.232 2.675 
HOM40 39.98 4.647 3.029 2.677 8.108 
HOM41 20.66 3.980 3.683 4.878 17.966 
HOM42 17.48 7.549 5.671 0.513 2.911 
HOM43 17.94 3.592 2.130 4.143 8.825 
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Run 

Oil recovery 
during WAG 

injection 

CO2 injected per 
barrel of oil 
produced 

CO2 stored per 
barrel of oil 
produced 

S* R* 

%STOOIP Mscf/stb Mscf/stb $/Mscf $/stb 
HOM44 21.11 1.680 1.522 5.086 7.740 
HOM45 57.36 11.711 4.614 2.051 9.464 
HOM46 30.61 12.891 9.180 -0.026 -0.238 
HOM47 13.82 9.979 4.241 1.104 4.683 
HOM48 19.68 2.980 2.187 6.574 14.379 
HOM49 18.69 10.449 8.137 -0.370 -3.008 
HOM50 44.34 4.899 2.345 2.630 6.167 
HOM51 49.80 7.010 4.120 1.680 6.920 
HOM52 3.04 12.424 12.006 -1.249 -14.993 
HOM53 24.30 2.009 1.270 9.199 11.686 
HOM54 34.39 4.330 2.985 4.226 12.615 
HOM55 52.51 4.094 3.480 3.788 13.182 
HOM56 20.59 5.003 3.437 1.602 5.508 
HOM57 24.73 8.641 5.138 0.516 2.649 
HOM58 7.16 3.744 2.616 1.206 3.155 
HOM59 35.11 4.881 3.329 3.555 11.834 
HOM60 35.44 3.388 1.299 12.129 15.760 
HOM61 28.49 6.562 2.960 2.303 6.818 
HOM62 34.37 5.759 4.162 2.592 10.787 
HOM63 10.87 11.282 8.166 0.173 1.415 
HOM64 28.47 6.276 3.926 2.298 9.023 
 

Table 6.6: Simulation results for the heterogeneous (HET) reservoir. 

Run 

Oil recovery 
during WAG 

injection 

CO2 injected per 
barrel of oil 

produced 

CO2 stored per 
barrel of oil 

produced 
S* R* 

%STOOIP Mscf/stb Mscf/stb $/Mscf $/stb 
HET1 22.75 6.177 2.516 2.993 7.528 
HET2 51.80 3.327 1.906 6.659 12.691 
HET3 12.01 3.830 3.077 1.004 3.090 
HET4 19.75 9.566 2.626 1.546 4.061 
HET5 12.37 1.277 1.124 7.489 8.415 
HET6 34.42 4.749 0.939 15.322 14.383 
HET7 20.72 2.792 2.169 4.419 9.583 
HET8 27.61 10.635 3.596 1.673 6.018 
HET9 33.40 2.083 1.439 11.628 16.728 
HET10 22.87 6.315 4.088 1.178 4.817 
HET11 8.09 1.872 1.033 5.248 5.420 
HET12 10.39 1.523 1.067 9.464 10.100 
HET13 14.75 5.004 3.371 2.173 7.325 
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Run 

Oil recovery 
during WAG 

injection 

CO2 injected per 
barrel of oil 

produced 

CO2 stored per 
barrel of oil 

produced 
S* R* 

%STOOIP Mscf/stb Mscf/stb $/Mscf $/stb 
HET14 19.01 4.162 2.860 3.863 11.048 
HET15 17.59 9.228 4.073 1.436 5.850 
HET16 28.13 9.922 5.547 1.769 9.813 
HET17 34.71 8.513 3.902 2.162 8.436 
HET18 23.99 2.134 1.760 6.557 11.538 
HET19 28.87 9.636 4.651 1.522 7.079 
HET20 33.99 3.480 1.675 8.696 14.569 
HET21 10.21 5.440 4.369 0.559 2.444 
HET22 13.29 6.605 3.898 2.035 7.932 
HET23 26.29 12.636 4.718 1.800 8.493 
HET24 19.08 1.473 1.213 7.126 8.644 
HET25 19.70 2.351 1.547 5.843 9.039 
HET26 23.06 6.864 4.128 2.241 9.250 
HET27 20.42 6.989 3.908 1.913 7.476 
HET28 9.11 3.057 2.717 2.819 7.660 
HET29 22.31 1.227 0.759 20.802 15.790 
HET30 31.89 25.886 6.471 0.106 0.687 
HET31 15.67 3.595 3.043 4.068 12.381 
HET32 16.29 2.656 1.691 5.727 9.683 
HET33 21.96 10.564 7.548 0.543 4.097 
HET34 25.65 2.290 1.748 7.305 12.765 
HET35 21.97 2.143 1.163 8.585 9.987 
HET36 18.79 7.872 5.620 0.577 3.241 
HET37 33.22 2.935 2.087 5.182 10.815 
HET38 16.70 10.473 4.511 0.757 3.415 
HET39 31.16 0.909 0.717 19.740 14.156 
HET40 30.48 10.479 4.192 1.803 7.557 
HET41 19.64 21.614 6.736 -0.122 -0.825 
HET42 43.60 23.162 5.167 0.931 4.812 
HET43 35.54 16.746 4.689 1.170 5.484 
HET44 24.77 4.686 3.744 3.643 13.642 
HET45 29.00 9.860 5.450 1.003 5.465 
HET46 41.47 1.405 0.794 20.954 16.644 
HET47 11.80 4.879 3.331 2.928 9.754 
HET48 21.05 11.196 7.693 0.603 4.642 
HET49 15.57 8.354 6.328 0.724 4.579 
HET50 36.86 5.060 3.381 3.717 12.565 
HET51 31.02 5.896 4.009 2.437 9.772 
HET52 18.69 4.883 2.250 3.021 6.798 
HET53 15.92 5.557 2.801 2.585 7.241 
HET54 23.78 4.320 2.931 2.839 8.322 
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Run 

Oil recovery 
during WAG 

injection 

CO2 injected per 
barrel of oil 

produced 

CO2 stored per 
barrel of oil 

produced 
S* R* 

%STOOIP Mscf/stb Mscf/stb $/Mscf $/stb 
HET55 21.95 3.129 2.219 3.928 8.716 
HET56 41.33 1.410 1.019 12.425 12.655 
HET57 6.24 9.474 7.764 0.237 1.836 
HET58 8.31 3.333 2.623 2.506 6.574 
HET59 16.74 4.861 3.615 2.256 8.154 
HET60 10.93 9.022 1.309 6.889 9.016 
HET61 40.88 6.521 1.966 5.270 10.359 
HET62 36.12 5.055 3.248 2.837 9.215 
HET63 37.08 7.923 5.067 2.111 10.696 
HET64 16.58 2.991 1.903 4.068 7.741 

 

The results also show that reservoir heterogeneity negatively affects the oil recovery and 

particularly the CO2 storage, as demonstrated by a few arbitrary examples in Figures 6.4 and 

6.5.  The two simulation cases plotted together are different in their porosity, permeability 

and the corresponding Pc values only.  In most cases, CO2 storage is higher in the 

homogeneous reservoir and when the waterflooding duration is shorter.   

 

 

Figure 6.4: Comparison of the oil recovery from the WAG injection between the 
corresponding homogeneous and heterogeneous reservoirs (differing only in porosity and 
permeability values). 

 

0

10

20

30

40

50

500 2500 4500 6500 8500

T
er

tia
ry

 o
il 

re
co

ve
ry

, 
%

ST
O

O
IP

Days

HOM5
HET8

0

10

20

30

40

50

60

500 2500 4500 6500 8500

T
er

tia
ry

 o
il 

re
co

ve
ry

, 
%

ST
O

O
IP

Days

HOM20

HET54



Chapter 6: Parametric Study and Process Design Optimization of CO2 Injection 

 

236 

 

 

Figure 6.5: Cumulative CO2 stored for the corresponding simulation cases in Figure 6.4. 

 

The ANOVA results for the R* and S* models as shown in Tables A6.3 and Table A6.5-

A6.7 in Appendix A6.4, show that the resultant models were statistically significant with 

more than 95% confidence level.   

 

Factors influencing the oil recovery profit 

As a default, the response data will be analysed in its actual form.  The model is statistically 

significant if the data points on the normal plot of residuals are approximately linear.  A 

residual (or fitting error) of a sample is the difference between the observed and the predicted 

response (Montgomery, 1991).  A non-linear pattern indicates that the equality of variance 

does not hold for the residuals of the given model, in which case the program automatically 

identifies the suitable transformation for the data to correct this non-normality in the error 

term.  

Most data transformations can be described by the power function, σ = fn(µα), where σ is 

the standard deviation, µ is the mean and alpha (α) is the power.  If the standard deviation 

associated with an observation is proportional to the mean raised to the a power, then 

transforming the observation by the 1 - a (or l) power gives a scale satisfying the equal 

variance requirement of the statistical model (Design-Expert®, 2010). 

For the oil recovery profit, R*, of the homogeneous model, a power function provided a 
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more precise and normal fit for which the model’s form is shown in Equation 6.8 below 

(This is the final equation in terms of coded factors with actual coefficients are disguised by 


’s, but signed plus or minus true to actual form) where the alphabetical letters are the factors 

as defined in Table 6.1.  No transformation was needed for R* of the heterogeneous reservoir 

model.  The final equations in terms of coded factors and actual factors of R* and S*, for 

homogeneous and heterogeneous models, are given in Appendix A6.3. 

 

(R* + 29.95) 2.39) = 
0 + 
1A + 
2B - 
3C - 
4D - 
5E - 
6F - 
7G + 
10K + 
11L + 
12AB + 


15AE +
110AK - 
25BE + 
27BG + 
28BH + 
38CH – 
510EK + 
511EL – 
610FK              (6.8) 

 

Figure 6.6 shows the half normal plots of effects for the oil recovery profit, R*, for both 

reservoirs.  These plots are used to evaluate the normality of the distribution of a variable.  

The standardized effect in the x-axis of the plots is the effect expressed in terms of its 

difference from the mean, divided by the standard deviation.  The significant factors are 

those which stand out to the right on the x-axis scale.  The blue colour in the plots indicates a 

negative effect, i.e., increasing the factor from its low to high value decreases the response 

value.  For the positive effect, which is shown in orange, increasing the factor from its low to 

high value increases the response value.   

The top ten influential factors to R*, ranked from the highest to the lowest effects, are listed 

in Table 6.7 (refer to Table 6.1 for the description of the abbreviations and alphabetical 

letters shown).  The duration of the preceding waterflood (G) and the wettability of the 

reservoir represented in the form of relative permeability (E) top the list for both reservoir 

types.  Many factors are also common share between them, albeit of different ranking.   

There are also several interactions of factors influencing the oil recovery profit.  These 

include the combination of permeability with porosity (AB), permeability with relative 

permeability (AE) and relative permeability with the WAG ratio (EK).  Interaction plots can 

show how the change in one factor affects the way other factor it interacts with influences 

the response factor.  In plotting the interaction plots here, only the interacted factors were 

varied while the other parameters were kept constant at values shown in Table 6.8.    
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Figure 6.6: Half-normal plots of effects for oil recovery profit, R*, for the homogeneous (top 
plot) and heterogeneous (bottom plot) reservoirs.   

 

Table 6.7: The top ten effects influencing the oil recovery profit from tertiary WAG 
injection, ranked from the highest to the lowest. 
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Table 6.8: The value of the constant factors used in plotting the interactions. 

Factor Value Factor Value 
Permeability, mD 800 GOR limit 30 
Porosity, fraction 0.2 Waterflooding duration, years 5 
Kv/Kh ratio 0.1 Injected CO2, mole fraction 1 
Relative permeability table no. 1 Slug size, %HCPV 4 
Oil viscosity, cP 4 Gas injection rate, Mscf/day 17445 

 

For the homogeneous reservoir, Figure 6.7a, the effect of WFLD (x-axis) on R* (y-axis) 

depends on the level of porosity (PORO) represented by the black and red lines, which in 

turn correspond to the low (-) and high (+) levels of PORO, respectively.  The two lines 

extend from the lowest water flood limit of 3 years on the left to its highest of 7 years on the 

right.  The "I-beam" on the interaction plot is the result of the least significant difference 

(LSD) calculations (Design-Expert®, 2010).  The differences attributed to the factor’s effects 

are significant if the plotted points fall outside the range (i.e., the I-beams of the black and 

red lines are separated from each other), as can be seen on the 7-years waterflood end and 

not so if the I-beams overlap as on the left end of Figure 6.7a.   

So, from Figure 6.7, we can deduce that a longer preceding waterflood period generally leads 

to less profitable oil recovery.  For the heterogeneous reservoir, extending the waterflood 

duration from 3 to 7 years reduces the value of the oil recovery from 12 to about 8 $/bbl.  For 

the homogeneous reservoir, the level of reduction in R* due to the increasing WFLD 

depends on the PORO level (Figure 6.7a).  The decline in the profit per barrel of oil with 

increasing WFLD is steeper if the reservoir porosity is low.   

Wettability affects oil recovery by controlling the location, flow and distribution of fluids in 

the porous medium (Anderson, 1987).  Figure 6.8 shows the interaction for the effects of 

RELP and WAGR on R*.  Generally, the oil recovery profit is higher for the water-wet 

reservoir (black line E-) than for the oil-wet reservoir (red line E+) although the difference is 

relatively negligible at small WAGR (close or overlapping I-beams).  Increasing WAGR 

results in a higher R* in the water-wet reservoir but the reverse is true for the homogeneous, 

oil-wet reservoir. 
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Figure 6.7: (a) Interaction of WFLD and PORO on R*for the homogeneous reservoir and (b) 
the effect of WFLD on R* for the heterogeneous reservoir.  

 

 

Figure 6.8: Interaction plot for the effect of RELP and WAGR on R* for the (a) 
homogeneous and (b) heterogeneous reservoirs. 

 

PERMX also influences the effects of REP’s and WAGR on R* of the homogeneous 

reservoir as shown in Figure 6.9a.  At high PERMX, RELP has little impact on R* but 

higher WAGR is beneficial to R*.  The profitability of oil recovery in the oil-wet reservoir 

worsens at low PERMX.  Other factors that result in higher oil recovery and lower CO2 

injection costs, such as low viscosity oil that is miscible with the injected CO2 and injection 

of the C1, N2 and CO2 gas mixture rather than pure CO2, also contribute to higher oil 

(a) (b) 
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recovery profit from the WAG injection.   

 

Figure 6.9: Interaction plot for the effect of PERMX versus (a) RELP and (b) WAGR, for 
the homogeneous reservoir on R*. 

 

Factors influencing the CO2 storage profit 

Table 6.9 shows the top ten effects influencing the CO2 storage profit, S*, as identified from 

the half-normal plots of the effects in Figure 6.10.  For both reservoir types, the top three 

important factors are the injected gas composition (CO2), the waterflood duration (WFLD) 

and reservoir wettability (RELP).   

Heterogeneity seems to have lesser roles in determining the influential factors for the S*, as 

there are more common factors between the two types of reservoir even though the ranking 

is slightly different.  The interaction of factors also has lesser influence, compared with the 

case of the R*.  In the homogeneous reservoir, as shown in Figure 6.11, short WFLD is 

generally favourable to obtain higher S*, especially for the high permeability (line A+ in 

Figure 6.11a) and light oil (line D- in Figure 6.11b) reservoir.  PERMX and OILVIS, 

however, cease to have any impact on S* when WFLD is longer.   

(a (b) 
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Table 6.9: The top ten effects influencing the CO2 storage profit from the WAG 
injection, ranked from the highest to the lowest. 

Rank HOMOGENEOUS 
RESERVOIR 

HETEROGENEOUS 
RESERVOIR 

1 (G) WFLD (H) CO2 
2 (H) CO2 (E) RELP 
3 (E) RELP (G) WFLD 
4 (A) PERMX (K) WAGR 
5 (EK) RELP*WAGR (D) OILVIS 
6 (D) OILVIS (A) PERMX 
7 (AB) PERMX*PORO (AH) PERMX*CO2 
8 (ED) RELP*OILVIS (CJ) KV/KH*SLUG 
9 (CJ) KV/KH*SLUG (B) PORO 
10 B (PORO) (EK) RELP*WAGR 

 

 

Figure 6.10: Half-normal plots of effects for CO2 storage profit, S*, for homogeneous (top 
plot) and heterogeneous (bottom plot) reservoirs.   
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Whilst the effect of PORO is insignificant if the PERMX is very low, S* increases markedly 

with PORO if PERMX is high, Figure 6.12.  The combination of high PERMX and smaller 

mole fraction of CO2 in the injected gas (CO2) is also beneficial to S* for both reservoir 

types, as demonstrated in Figure 6.13.  PERMX nevertheless has no influence on the effect 

of the injected gas composition on S* when pure CO2 gas is used.  With pure CO2, the 

amount of CO2 stored is higher, since no other injected components are competing for the 

available pore volume.  But the higher cost of pure CO2 than that of the gas mixture 

predictably lowers the profit.   

 

Figure 6.11: Interaction plot for the effect of PERMX and OILVIS versus WFLD on S* for 
the homogeneous reservoir.  

 

Figure 6.12: The effect of PERMX versus PORO on S* for the homogeneous reservoir.  
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The reservoir wettability (RELP) is important to the CO2 storage economics in the same way 

as it is to the oil recovery profit.  S* is much higher for the water-wet reservoir (RELP = 1) 

than for the oil-wet reservoirs (RELP = 2) but this is highly dependent on the WAGR and 

PORO as depicted in Figures 6.14a-d.  a reservoir with high PORO (B+) and operating at 

high WAGR (K+) would gain higher S*. 

 

Figure 6.13: Interaction plot for the effect of PERMX versus CO2 on S* for (a) the 
homogeneous and (b) heterogeneous reservoirs.  

 

 

Figure 6.14: Interaction plot for the effect of (a) WAGR and RELP and (b) PORO and RELP 
on S* for the homogeneous reservoirs; (c) WAGR and RELP and (b) PORO and RELP on 
S* for the heterogeneous reservoirs.  
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Factors influencing both oil recovery and CO2 storage profit 

The equally weighted oil recovery and CO2 storage profit (or f function) represents the co-

optimized oil recovery and CO2 storage performance.  The higher the f value, the more 

favourable the scheme is to result in profitable oil recovery and CO2 storage.  The Pareto plot 

of effects for the f function, Figure 6.15, identifies waterflood duration prior to WAG 

injection (G) as the most influential factor for both types of reservoir.   

 

Figure 6.15: Pareto chart of effects for the equally weighted oil recovery and CO2 storage 
profit (f function) for homogeneous (top plot) and heterogeneous reservoirs (bottom plot).   

 

As listed in Table 6.10, the injected gas composition (CO2), reservoir wettability (RELP) 

and permeability (PERMX) are also important.  For the homogeneous reservoir, there is a lot 

of interplay between factors, examples of which are shown in Figure 6.16.  When the 

reservoir permeability is high, high porosity (B+) and high WAG ratio (K+) are favourable 

to achieve an optimized process (i.e., higher f) but a large WAG ratio gives lower f values to 

the oil wet reservoir.  
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Table 6.10: The top ten effects influencing the f function ranked from the highest to the 
lowest. 

Rank HOMOGENEOUS 
RESERVOIR 

HETEROGENEOUS 
RESERVOIR 

1 (G) WFLD (G) WFLD 
2 (E) RELP (H) CO2 
3 (A) PERMX (E) RELP 
4 (AB) PERMX*PORO (D) OILVIS 
5 (EK) RELP*WAGR (K) WAGR 
6 (D) OILVIS (CJ) KV/KH*SLUG 
7 (H) CO2 (A) PERMX 
8 (AK) PERMX*WAGR (B) PORO 
9 (AE) PERMX*RELP (AH) PERMX*CO2 
10 (CH) KV/KH*CO2 (EK) RELP*WAGR 

 

 

Figure 6.16: Interaction plot for the effect of (a) PERMX and PORO, (b) PERMX and 
WAGR, (c) RELP and WAGR and (d) PERMX and RELP on the f function for the 
homogeneous reservoir.   
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For the heterogeneous reservoir, higher f was obtained when the reservoir is water-wet with 

high permeability and porosity, and when leaner gas and high WAG ratio was used (Figure 

6.17b and 6.17d).  Small slug size results in a high f factor for the reservoir with small kv/kh 

ratio, Figure 6.17a.   

 

 

Figure 6.17: Interaction plot for the effect of (a) KVKH and SLUG, (b) PERMX with CO2, 
(c) RELP and WAGR (d) PORO and CO2, on the f function for the heterogeneous reservoir.   
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6.3.  Field scale WAG flood design optimization for EOR and CO2 

storage  

The parametric simulation results identify the influential factors to the tertiary miscible 

WAG injection.  The objective of the co-optimization exercise in this study is to search for a 

combination of operational factor levels that simultaneously satisfy the goals of maximizing 

profit for oil recovery as well as that for CO2 storage.   

 

6.3.1.  Co-optimization study approach 

Model description 

The simulations were performed using an E300 compositional simulator on a synthetic 

PUNQ-S3 reservoir model.  The model is a small-scaled but realistic model which was 

developed based on an actual producing North Sea oilfield.  The model was originally 

constructed for production forecasting with an uncertainty quantification study (Floris et al., 

2001) and is electronically available at http://www3.imperial.ac.uk/.   

The field is a dome shaped structure, bounded to the east and south by a fault, Figure 6.18.  It 

is linked to the north and west to a fairly strong aquifer.  The field is very heterogeneous with 

connected high permeability streaks observed in all layers.  The top views of the porosity and 

permeability distribution are shown in Figure 6.19.  Permeability in the X and Y direction 

ranges from 0.5 to 999 mD with an average of 269 mD, while the porosity spans 1 to 29.9% 

averaging at 13.9%.  The formation was discretized into 19x28x5 corner-point geometry grid 

blocks with 1761 active blocks.  The average dimension of the gridblock in the X and Y 

direction is 590 ft.  The thickness of the five layers of fluvial sand and shale ranges from 2.5 

to 30 ft.  The published ‘truth case’ grid size was used as it is, i.e., no grid sensitivity was 

carried out.  The aquifer was defined analytically in the model. 

In the original model, there was a small gas cap in the centre of the dome with six producers 

located around the gas-oil contact (GOC).  However, for this study, the fluid model of the 4 

cP Little Knife oil, as described in Chapter 5, was used instead.  The GOC was adjusted to a 

shallower depth so that there was no gas cap in the model at initialization.  The reservoir 
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temperature and initial pressure were set at 150 oF and 4000 psig, respectively.  Different 

well locations from the original model were also used, where only four producers were 

specified whilst four injectors were added, locations of which are shown in Figure 6.20.  Due 

to the heterogeneity of the reservoir, the wells were perforated selectively in layers with good 

permeability and connectivity only.  The oil/water and oil/gas relative permeability curves 

used in the model were the same as those used for the water-wet heterogeneous 5-spot well 

pattern model described earlier (Figures 6.1 and 6.2).  With a pore volume of 217.3 MMrb, 

the reservoir has 87.2 MMstb STOOIP.  The initial oil saturation distribution is shown in 

Figure 6.20.  

The total production was controlled at 22,500 rb/day; a rate equivalent to about 9 

%STOOIP/year, with 2000 psig minimum BHP at the producer wells.  The well was shut 

when the oil production fell below 5 bbl/day and upon exceeding 99% water cut, the worst 

offending connection and all those below it were also shut.  Water was injected at 6200 

stb/day/well and CO2 at 14325 Mscf/day/well, respectively, to the maximum BHP of 5860 

psig.   

 

Figure 6.18: The PUNQ-S3 top structure map showing the original GOC and well locations 
(http://www3.imperial.ac.uk).   
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Figure 6.19: Top view of the distribution of permeability (left) and porosity (right).   

 

 

Figure 6.20: The initial oil saturation distribution and well locations used in this study.   

 

The reservoir was first waterflooded prior to the WAG injection.  The average reservoir 

pressure was maintained at around 4000 psig within the waterflooding period.  During the 

WAG injection, the wells were set to operate at 10% more injection than production to 

ensure the average reservoir pressure was higher than the MMP.  The simulation was run for 
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35 years.  CO2 injection continued until the maximum BHP was reached or until the end of 

simulation duration, to allow for maximum CO2 storage possible. 

 

Design of the experiment 

The nonlinearity of the partial differential equations governing the fluid flow in the reservoir 

makes numerical simulation very computationally intensive, particularly when there are a 

large number of uncertain parameters to be accounted for at once.  For this optimization 

study, DOE was again used, this time via the Response Surface Method (RSM) to develop 

simulation runs that examine the multiple factor effects simultaneously with relatively fewer 

runs.  RSM creates a multivariate polynomial model that provides an analytical relationship 

between a response and set of factors, which can be precisely mapped by a mathematical 

model (Anderson and Whitcomb, 2005).   

The D-Optimal design of the Design Expert 8.0.6 program was employed for the co-

optimization study.  Only the influential design parameters were sensitized for the 

optimization, while the reservoir properties were fixed.  The ranking of the significant factors 

of the heterogeneous model in the parametric simulation were referred in selecting the 

influential factors.   

Table 6.11 shows the factors and their range incorporated in the co-optimization exercise.  

The range of the mole fraction of CO2 in the injected gas has been increased from 0.3 to 1.0, 

instead of 0.5 to 1 as in the earlier analysis.  The injection rate of water and CO2 gas were 

fixed, but the injection durations were varied to attain the slug size required.  Although the 

well configuration is believed to be among the important operational parameters, this factor 

was not included in the optimization study.  Reason being, the model has a unique 

stratification, thus, if the well configuration is included, the results would then become very 

reservoir-specific.  R* and S* were again used as the response parameters. 

Based on the number of factors in the design and the number of coefficients in the designed 

model, a quadratic model that reveals two-component interactions was selected.  44 

simulation cases, as listed in Table 6.12, were identified to build the mathematical model.   
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Table 6.11: Factors evaluated and the range involved in co-optimization of oil recovery 
and CO2 stored through tertiary WAG injection. 

Factor Name Units Type Subtype Minimum 
(-1) 

Maximum 
(+1) 

A WFLD years Numeric Continuous 3 7 
B WAGR   Numeric Continuous 0.25 3 
C CO2 mole frac Numeric Continuous 0.3 1 
D GOR Mscf/stb Numeric Continuous 10 50 
E SLUG %HCPV Numeric Continuous 0.5 8 

 

Table 6.12: The combination of the design parameters of the WAG injection for all the 
simulation cases. 

Run A:WFLD, 
years B:WAGR 

C:CO2, 
mole 

fraction 

D:GOR, 
Mscf/stb 

E:SLUG, 
%HCPV 

1 7.00 3.00 0.30 50.00 0.50 
2 7.00 0.25 0.30 10.00 0.50 
3 5.60 0.25 0.30 50.00 5.38 
4 7.00 1.21 0.54 50.00 8.00 
5 7.00 3.00 1.00 10.00 0.50 
6 3.00 2.35 0.30 40.40 0.58 
7 3.00 3.00 0.30 10.00 0.50 
8 3.00 0.25 1.00 10.00 0.50 
9 7.00 0.25 0.30 10.00 0.50 

10 4.70 1.83 1.00 50.00 0.50 
11 5.02 3.00 0.65 28.71 8.00 
12 3.00 0.25 0.30 10.00 8.00 
13 3.00 0.25 0.30 50.00 0.50 
14 7.00 3.00 1.00 50.00 8.00 
15 3.00 3.00 1.00 34.04 0.50 
16 3.00 3.00 0.70 50.00 3.65 
17 7.00 3.00 0.30 10.00 8.00 
18 7.00 3.00 0.30 10.00 8.00 
19 4.40 1.76 0.30 23.20 5.00 
20 3.00 0.25 1.00 50.00 8.00 
21 3.40 0.94 0.68 32.12 0.50 
22 3.00 3.00 1.00 10.00 8.00 
23 7.00 0.25 1.00 50.00 0.50 
24 3.00 0.25 0.30 10.00 8.00 
25 7.00 0.25 0.48 19.90 6.88 
26 3.00 1.47 1.00 28.60 4.70 
27 7.00 0.25 1.00 50.00 0.50 
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Run A:WFLD, 
years B:WAGR 

C:CO2, 
mole 

fraction 

D:GOR, 
Mscf/stb 

E:SLUG, 
%HCPV 

28 7.00 3.00 1.00 10.00 0.50 
29 3.96 2.16 0.74 10.00 2.10 
30 3.00 0.25 1.00 50.00 8.00 
31 7.00 3.00 0.30 50.00 0.50 
32 3.00 3.00 0.30 50.00 8.00 
33 7.00 3.00 1.00 50.00 8.00 
34 7.00 0.25 1.00 10.00 8.00 
35 3.00 3.00 1.00 10.00 8.00 
36 3.00 3.00 0.30 10.00 0.50 
37 3.00 3.00 0.30 50.00 8.00 
38 3.00 0.25 1.00 10.00 0.50 
39 7.00 2.90 0.77 36.24 2.90 
40 7.00 2.31 0.38 19.60 0.50 
41 4.00 1.28 0.74 11.00 8.00 
42 7.00 0.68 0.89 19.15 2.38 
43 5.98 2.59 1.00 12.00 5.75 
44 3.00 0.79 0.53 37.30 8.00 

 

6.3.2.  Results and discussion 

The simulation results of the 44 runs are summarized in Table 6.13.  The incremental oil 

recovery from the WAG injection ranges from 17% to 59%STOOIP and as much as 36% to 

88% of the injected CO2 could be stored at the end of the WAG injection.   

Figure 6.21 shows the perturbation plot for the NPV of the tertiary WAG injection, where 

we can see that the NPV is very strongly influenced by the duration of the preceding 

waterflood.  Shorter waterflood duration, which means faster oil recovery from the WAG 

injection, would lead to higher NPV of the project.   

Simulation results also reveal that the highest equally weighted R* and S* i.e., the most 

promising scenario for the co-optimized process, is given by Run 32 (and its duplicate Run 

37) which has the highest level of WAG ratio, GOR limit and slug size, and the lowest level 

of CO2 content in the injection stream. 
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Table 6.13: The simulation results for the co-optimization study. 

Run % injected 
CO2 stored 

Oil recovery during 
WAG, %STOOIP 

NPV for 
WAG, MM$ S*, $/Mscf R*, $/stb 

1 45.00 26 174.04 2.91 7.77 
2 83.44 17 117.79 2.12 7.85 
3 45.13 31 204.93 3.15 7.68 
4 48.05 30 189.84 2.61 7.33 
5 69.75 30 180.46 1.75 6.81 
6 60.69 39 574.29 16.00 16.79 
7 87.62 36 558.57 13.27 17.57 
8 64.60 49 510.30 2.04 12.04 
9 83.44 17 117.79 2.12 7.85 
10 55.17 42 328.44 2.68 8.95 
11 55.15 36 340.54 5.06 10.99 
12 81.11 33 467.14 8.20 16.28 
13 40.98 43 503.02 8.10 13.52 
14 53.14 32 193.19 1.93 6.90 
15 63.86 49 580.46 5.59 13.50 
16 59.69 47 603.40 8.55 14.57 
17 81.53 22 178.86 3.96 9.36 
18 81.53 22 178.86 3.96 9.36 
19 78.83 31 242.94 4.63 8.96 
20 36.43 59 538.78 2.86 10.42 
21 45.90 47 535.03 5.17 13.11 
22 53.92 51 582.05 5.73 13.11 
23 38.83 40 180.46 1.05 5.22 
24 81.11 33 467.14 8.20 16.28 
25 61.04 28 157.46 1.45 6.48 
26 47.03 55 585.37 4.55 12.22 
27 38.83 40 180.46 1.05 5.22 
28 69.75 30 180.46 1.75 6.81 
29 76.71 40 424.38 3.65 12.13 
30 36.43 59 538.78 2.86 10.42 
31 64.42 22 174.22 6.10 9.22 
32 52.80 41 578.67 19.77 16.07 
33 53.14 32 193.19 1.93 6.90 
34 66.04 34 144.17 0.58 4.87 
35 53.64 51 582.08 5.79 13.11 
36 87.62 36 559.40 13.29 17.59 
37 52.80 41 578.67 19.77 16.07 
38 63.55 49 515.05 2.05 11.93 
39 70.00 30 198.61 2.19 7.49 
40 72.50 22 173.52 3.60 8.85 
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Run % injected 
CO2 stored 

Oil recovery during 
WAG, %STOOIP 

NPV for 
WAG, MM$ S*, $/Mscf R*, $/stb 

41 73.27 40 431.79 3.07 12.52 
42 53.25 37 204.57 1.25 6.33 
43 58.55 36 170.09 1.43 5.45 
44 49.26 47 571.15 5.81 13.80 

 

 

Figure 6.21: Perturbation plot for NPV for the tertiary WAG injection.   

 

Table 6.14 gives the summary of the experimental design.  The ANOVA results reveal 

that a linear and quadratic model provides a good prediction within the design space of 

R* and S*, respectively.   

Table 6.14: Summary of the experimental design. 

Name Units Analysis Minimum Maximum Transformation Model 
S* $/Mscf Polynomial 0.58 19.77 Natural Log Linear 
R* $/stb Polynomial 4.87 17.59 None Quadratic 

 

The normal plot of the residuals was used as diagnostic plot to check if the statistical 

assumptions underlying the data analysis i.e., that the residuals follow a normal distribution 

with zero average and a standard deviation equal to that resulting from the analysis of the 
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data, are met.  If so, the normal probability plot will follow a straight line.  The residuals 

versus predicted response values plot will indicate a problem if a pattern exists.  More 

explanation on the residuals and normal plot is given in Appendix A6.2.  The normal plot of 

residuals, for example that of R* in Figure 6.22, has all design points positioned along a line.  

This verifies that residuals have normal distributions, thus validating the fit of the model.  As 

indicated by R-squared (a measure of the amount of variation around the mean explained by 

the model) in the summary of the models’ statistics shown in Table 6.15, 96% or more 

variation in the model has been described.   

 

Table 6.15: Summary of the statistics for the model. 

  S* R*   S* R* 
Std. Dev. 0.17 0.35 R-Squared 0.96 1.00 
Mean 1.31 10.74 Adj. R-Squared 0.96 0.99 
C.V. % 12.93 3.28 Pred. R-Squared 0.95 0.98 
PRESS 1.45 14.30 Adeq. Precision 45.60 49.43 

 

 

Figure 6.22: Normal probability plot of residuals for R*, tertiary WAG in synthetic reservoir 
model.   

 

The perturbation plot in Figure 6.23,  shows that the R* and S* vary primarily as functions of 

the waterflood duration (A), WAG ratio (B) and the CO2 mole fraction in the injected gas 
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(C).  These factors are therefore selected as the axes in plotting the contour and 3D plots. 

 

 

Figure 6.23: Perturbation plot for R* (left) and S* (right).   

 

The 2D response surface contour plots of waterflood duration versus WAG ratio for R* and 

S* are shown in Figures 6.24 while that of waterflood duration and mole fraction of CO2 in 

the injected gas, in Figure 6.25 (other factors set at centre points for this ‘slice’ of the 

experimental space).  It is evident from these contour plots that within the range included in 

the model, higher R* and S* could be obtained with high WAG ratio, shorter preceding 

waterflood duration and a lower amount of CO2 in the injected gas.   

Using numerical optimization, the most desirable factor settings to get maximum R* and S* 

simultaneously, based on their predictive models, was found.  The goal of maximizing R* 

and S* were combined into an overall desirability function (Equation 6.9 below), which in 

turn was maximized.  The overall desirability, D, is computed by multiplying the individual 

desirabilities for each response, all of which are scaled from 0 to 1.  
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where n is the number of responses in the measure.  If any of the responses or factors falls 

outside their desirability range, the overall function becomes zero (Myers and Montgomery, 

1995).  

 

Figure 6.24: Contour plot of waterflood duration (A) and WAG ratio (B) for R*(left) and S* 
(right) with mole fraction of CO2 in the injected gas (C) at -1 level.   

 

 

Figure 6.25: Contour plot of waterflood duration (A) and mole fraction of CO2 in the 
injected gas (C) for R*(left) and S* (right) with WAG ratio (B) at +1 level.   
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Figure 6.26 shows the 3D response surface plot of the highest desirability for each response.  

Figure 6.27 depicts the ramps view of the optimum.  A highlighted point shows both the 

exact value of the factor or response (horizontal movement of the point) and how well that 

goal was satisfied (how high up the ramp).   

For the particular model and injection rates used in this study, to obtain the highest S* 

($17.3/Mscf) and R*($16.2/stb), the WAG injection should start after 3 years of waterflood 

at the WAG ratio of 3:1, using the injected gas mixture of 30 mole % CO2 and 70 mole% 

C1+N2.  The produced GOR should be limited to about 50 Mscf/stb.   

An E300 simulation was run with the same setting of the factors to verify the 

representativeness of the designed model.  The comparison in Table 6.16 confirms that the 

response surface model obtained adequately represents the relationship between the critical 

factors and the response.  The model can be used as a proxy for the simulation, to quickly 

explore many different combinations of factors and to identify the best combination to 

satisfy the study objective.  In this case study, the CO2 EOR and storage project through 

WAG injection is already economical (positive NPV) even without the CO2 credit incentive.   

 

Figure 6.26: Response surface of desirability for maximum R* and S*.   
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Table 6.16: Comparison of the results predicted by the RSM to the outcome of a 
confirmation simulation. 

Model A:WFLD B:WAGR C:CO2 D:GOR E:SLUG S*, $/Mscf R*, $/stb 
E300 

3.0 3.0 0.3 49.9 7.9 19.6 16.1 
RSM 17.3 16.2 

 

 

Figure 6.27: Numerical optimization ramps for each factor and each response to achieve the 
maximum desirability for R* and S*.   

 

Graphical optimization of the response surface is also very useful to find regions where 

requirements of multiple responses simultaneously meet the critical properties, by 
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superimposing critical response contours on a contour plot.  As an example, let say we want 

to find the setting whereby the R* and S* is at least $10/stb and $10/Mscf, respectively.  

Figure 6.28 shows the overlay plot of R* and S* as a function of waterflood duration (A) and 

WAG ratio (B) with mole fraction of CO2 in the injected gas (C) at -1 level and the other 

factors at the centre points.  The region that satisfies the constraints is yellow while the area 

that does not fit the optimization criteria is shaded gray.  Similarly, the axis of the contour 

plot can be changed to find the window of operability of the factor of interest. 

 

 

Figure 6.28: Overlay plot reveals window of operability for the specified constraints. 
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parameter.  The oil recovery profit (NPV per barrel of oil produced) and CO2 storage profit 

(NPV per Mscf of CO2 stored) during the tertiary WAG injection were used as the response 

parameters.  The ranked influential factors serve as the quick screening criteria for ranking 

the candidate reservoirs for CO2 EOR and storage with WAG injection, as well as 

identifying the important design variables for optimization.  The results of the parametric 

simulation show that: 

• Reservoir heterogeneity has moderate effect on which factors are influential to the 

oil recovery and CO2 storage profit.  The homogeneous and heterogeneous 

reservoirs share the three most important factors to the response parameters, albeit 

with different ranking.  There are, nonetheless, differences in the less significant 

factors, especially those involving interaction, which in turn are more prevalent in 

the homogeneous reservoir case.   

• The tertiary oil recovery profit from the WAG injection is influenced greatly by, in 

descending order: the duration of the preceding waterflood, relative permeability 

(wettability) and the injected gas compositions.  Short waterflood duration, water-

wet reservoir and a mixture of CO2 and the lean gas injection stream should be 

preferred for a profitable oil recovery.   

• Whilst increasing the WAG ratio reduces the oil recovery profit for the 

homogeneous, oil-wet reservoir, a higher WAG ratio is favourable for the high 

permeability, water-wet reservoir. 

• While the slug size in the half cycle of the WAG has been reported as one of the 

influential factors for oil recovery from the WAG injection, it is of the least 

influence to the profit of the coupled EOR and CO2 storage process.   

• High porosity and WAG ratio are beneficial for the optimized process and the 

impact is significant when the reservoir permeability is high.   

• An oil wet reservoir is not promising for co-optimized oil recovery and CO2 stored 

when the WAG ratio is large. 

• The provision of CO2 credit incentive can make certain CO2 injection schemes, such 

as immiscible CO2I, economical for EOR and storage purpose. 

• The CO2 credit is strongly influenced by the oil price, CO2 price and project location 

whether onshore or offshore. 
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6.4.2.  Field scale WAG flood design optimization for EOR and CO2 storage 

The response surface method with the D-Optimal design has been successfully used to find 

the combination of factor levels that simultaneously satisfy the goals of maximizing the 

profit of oil recovery (R*) and CO2 storage (S*) from the tertiary WAG injection in a full 

field reservoir.  The DOE saves time by reducing the number of simulations required and 

makes it possible to optimize the design with a higher level of certainty.   

From the co-optimization study, it was concluded that: 

• Economically viable EOR and CO2 storage can be achieved simultaneously through 

tertiary WAG injection.  

• Response surface analysis can provide a tool to identify and estimate possible 

interactions between input parameters, as well as the optimum operating conditions 

for the tertiary WAG for coupled EOR and CO2 sequestration. 

• Profitability of the integrated process is enhanced by proper control of key operating 

parameters.  Higher profit for both oil recovery and CO2 storage through WAG 

injection, in terms of dollar per barrel of incremental oil produced and dollar per 

Mscf of CO2 stored can be obtained, if it is implemented at an early stage of 

waterflooding with the use of a lower amount of CO2 in the injected gas at high 

WAG ratio and a higher produced GOR limit imposed at the producer wells.  

• While a higher produced GOR limit is good for increasing the oil recovery, the 

reverse is however true for the amount of CO2 stored. 

• The resulting empirical multivariate model is able to predict the response quickly 

within an acceptable margin of error.  The predictive capabilities of this tool also 

enable it to be used for screening the economic viability of various oil reservoirs for 

the sequestration of CO2, as well as the optimum production through tertiary WAG 

injection. 
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Chapter 7  

 

Conclusions and Recommendations 

 

 

In this chapter, the main conclusions of this study will be presented.  There are also 

recommendations, particularly with respect to the CWI studies, for researchers who would 

like to contribute towards this line of investigation. 

 

7.1. Summary and conclusions 

Storing CO2 in conjunction with EOR in depleting oilfields is one of the most attractive 

options for sequestering anthropogenic CO2 into geological formations thanks, mainly, to the 

wealth of site-characterization data, the infrastructural advantages and the revenue from the 

incremental oil recovery, which can offset some of the CO2 storage costs.  This study looked 

into the coupled CO2 EOR and storage from both a gas-based and water-based injection 

perspective.  CO2 EOR is more commonly implemented as a gas-based injection process but 

is well known to suffer from an undesirable gravity override, channelling and viscous 

fingering due to the high mobility of the CO2, which lead to a very inefficient sweep and thus 

a serious reduction in oil production, despite the high displacement efficiency achievable in 

the miscible cases.   

 

 

7.1.1. The experimental studies of CWI 
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In this research, CWI was investigated as an alternative CO2 injection mode that could 

minimize the adverse viscosity problem and improve sweep efficiency.  CWI is a water-

based form of CO2 injection in which the CO2 is dissolved in the injected brine prior to 

injection and transported through the reservoir by the flood water.  Despite its potential for 

EOR and CO2 storage, this injection mode has not been very much studied.  Among the 

main objectives of this study were, therefore, to further understand the oil recovery 

mechanisms of CWI and to quantify the increase in oil recovery and the amount of CO2 

stored from the implementation of this process.  Through a series of high temperature and 

high pressure coreflood experiments, this research further adds to the knowledge about the 

effects of oil viscosity, rock wettability and brine salinity on the performance of CWI.   

The coreflood experiments clearly demonstrate that both secondary and tertiary CWI can 

increase the ultimate oil recovery above that of the plain water injection with higher and 

earlier incremental oil recovery obtained in the secondary process.  It was observed during 

the secondary CWI experiments that the CO2 moves ahead of the carbonated water front, 

indicating good delivery of CO2 through dispersion and diffusion mechanisms to the oil at 

the front during the displacement.  Amongst the main mechanisms of oil recovery by CWI 

are oil swelling as a result of CO2 diffusion into the oil and the subsequent oil viscosity 

reduction and coalescence of the isolated oil ganglia.   

The coreflood test results also reveal that the CWI performance is strongly influenced by 

core wettability, oil viscosity and brine salinity.  This study was the first to report an 

important observation of the oil recovery profile from CWI in the mixed-wet core, where the 

additional oil recovery was much higher and faster i.e., occurred at breakthrough (at the 

displacement front) rather than gradually after the breakthrough as observed for the water-

wet system.  An additional recovery of 11.8 %PV was measured from the secondary CWI as 

compared to only 7.6 %PV in the water wet core.  These observations are significant for 

CWI potential, since it is now generally accepted that many oil reservoirs are mixed wet.   

In terms of %PV, light oil gives higher oil recovery than the viscous oil, although the oil 

recovery improvement above that of waterflooding from the secondary CWI is more or less 

the same in both oils.  The oil recovery from the low salinity CWI is also higher than that of 

the high salinity one.  

CWI also has high potential as an injection strategy for combining oil recovery and CO2 
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storage.  As much as 45 and 51% of the total volume of CO2 injected (in the carbonated 

water) was stored at the end of the secondary and tertiary carbonated waterfloods, 

respectively.  If we apply this level of CO2 storage to all the waterflooded offshore oilfields 

in the UKCS, North Sea, based on CO2 solubility of 6.94 lb CO2/100 lb water, 12.4 Mt of 

CO2 could have been injected in those offshore reservoirs in 2010 alone, 6.2 Mt of which 

would have been stored had carbonated water been injected instead of plain water.  

 

7.1.2. The simulation studies of CWI 

This research also assessed three compositional reservoir simulators namely E300, GEM and 

STARS for their suitability in modelling the CWI process, as no similar simulation study of 

the process, to the best of the author’s knowledge, has ever been reported.  Correctly 

defining the carbonated water as the injection fluid and accounting for the important 

mechanisms of the process are among the challenges in modelling this injection scheme.  

Since none of the evaluated simulators has a specific keyword to assign carbonated water 

composition as a single phase in the injection stream at the surface, in this study, CWI was 

modelled as a co-injection of CO2 and water at the same location in proportion 

corresponding to the CO2 solubility in water at the test condition.  All the three 

compositional simulators assume instantaneous equilibrium and complete mixing between 

phases.  The difference in correlations to calculate viscosity and solubility of CO2 in oil and 

water phases lead to discrepancies in the predicted results by the simulators.   

At the core scale investigated, the compositional simulator over-predicted the oil recovery 

for both secondary and tertiary CWI.  One of the main findings in this study is that the local 

equilibrium was not achieved during the CWI in the core, making the instantaneous 

equilibrium assumption inappropriate for modelling the process at the core scale.  The model 

predicted a high amount of CO2 dissolved from the carbonated water into the oil resulting in 

a large viscosity reduction and thus high incremental oil recovery.  Activating CO2 diffusion 

within the oil and gas phases in the model does not improve the prediction.   

Apart from diffusion within the water phase and also from the carbonated water to the oil 

phase, which cannot be accounted for by the simulator, dispersion of CO2 into the oil at the 

displacement front also plays important role in the CWI core experiments in this study.  The 
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author proposes the addition of the transport coefficient (α-factor) in the compositional 

model, to account for the dispersive mixing effects and enable a more accurate prediction of 

the model for the secondary CWI process.  This factor was originally introduced for 

modelling sub-gridblock phenomena to improve the accuracy of compositional simulations 

performed with coarse homogeneous grid blocks. 

This study also found that modelling core-scale CWI without the use of a compositional 

model by using the relative permeability derived from the CWI displacement tests and the 

Todd-Longstaff model, may give a first-order approximation of the oil recovery but 

unreliable predicted gas production. 

 

7.1.3. Numerical simulation of various CO2 injection strategies for coupled EOR 

and storage 

Storing CO2 through EOR in an oilfield not only aims to increase the oil recovery but also to 

maximize the amount of CO2 left behind at the end of the recovery.  These objectives are 

significantly different from maximizing the oil recovery alone and require optimization.  For 

the gas-based CO2 EOR, this study focused on the co-optimization of the oil recovery and 

CO2 storage.   

The most attractive CO2 injection method to co-optimize EOR and CO2 storage 

economically was first identified through compositional reservoir simulations.  CO2I, WAG, 

HYWAG, SSWAG, TAPWAG and a newly conceptualized injection scheme, the 

intermittent WAG (INTWAG) injection were evaluated.  INTWAG injection was examined 

to gauge the benefit of CO2 diffusion to the oil recovery by shutting in some wells for certain 

period of time before switching to the other phase and also the benefit of the drainage-

imbibition processes that occur as a result.  Simulation results show that under the same 

conditions, INTWAG performance in terms of oil recovery and CO2 storage was slightly 

superior to that of the normal WAG injection. 

Two sets of ranking parameters were used in selecting the CO2 injection method with the 

highest potential; one was purely based on a technical basis i.e., with equally weighted 

incremental oil recovery and the pore volume of CO2 stored, while the other incorporated 
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economic factors i.e., with equally weighted profit of oil recovery (R* = NPV per 

incremental barrel of oil produced) and CO2 storage (S* = NPV per Mscf of CO2 stored).   

The simulation results show that the injection strategy to maximize the oil recovery was 

different from that to maximize CO2 storage alone.  The injection schemes traditionally 

designed for minimizing CO2 utilization per incremental volume of oil produced, such as 

WAG, SSWAG and TAPWAG, do not technically perform well for CO2 storage.  These 

results clearly highlight that optimization is essential for achieving a technically and 

economically viable project integrating EOR and CO2 storage. 

Managing the production/injection strategy to control the reservoir pressure, which in turn 

determines the miscibility, is extremely important.  As expected, miscible CO2 injections 

give higher oil recovery than the corresponding immiscible process but the reverse is true for 

CO2 storage.  For maximum oil recovery and storage, higher reservoir pressure, which 

reaches the MMP, should be targeted and maintained throughout the flooding.   

The study also showed that the most technically promising injection strategy is not 

necessarily the most profitable.  For the reservoir used in this study, miscible WAG was 

ranked as the injection scheme with highest potential for coupled EOR and CO2 storage in 

the tertiary recovery mode, with the economic factors taken into account and miscible 

continuous CO2 injection without these factors taken into account.  Different priorities in the 

objectives of the CO2 injection may, nevertheless, yield different results.  As CO2 EOR 

projects are usually tied to high investments, the results with the economic consideration 

were deemed more appropriate.  

 

7.1.4. Parametric study and process design optimization of CO2 injection for 

coupled EOR and storage 

To identify the influential factors on the simultaneous oil recovery and CO2 sequestration 

from the tertiary miscible WAG injection, a detailed parametric study on 11 factors was 

carried out on both homogeneous and heterogeneous hypothetical reservoir models, using an 

experimental design approach and numerical simulation.  The DOE identifies minimum 

number of simulation cases that give maximum information on the effects of each parameter.   
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Results of the simulation show that reservoir heterogeneity has moderate influences on the 

critical factors to the profit of the oil recovery and CO2 storage from the miscible tertiary 

WAG injection process.  The three most important factors to the response parameters are 

common between the homogeneous and heterogeneous reservoirs, namely, the duration of 

the preceding waterflood, reservoir wettability and the injected gas composition.   

For a profitable oil recovery, a short waterflood duration, water-wet reservoir and injection 

of CO2-lean gas mixture should be preferred.  A higher WAG ratio is favourable for the high 

permeability, water-wet reservoir but is detrimental to the homogeneous, oil-wet reservoir.  

High porosity and WAG ratio are beneficial for an optimized process in the water-wet 

reservoir and their impact is significant when the reservoir permeability is high.  This study 

also found that the slug size injected in the half cycle of the WAG is not influential on the 

profit of the coupled EOR and CO2 storage process.   

The response surface method with D-Optimal design has been successfully used to find the 

combination of factor levels that simultaneously satisfy the goals of maximizing the profit of 

oil recovery and CO2 storage from the tertiary WAG injection in a full field reservoir.  The 

DOE saves time by reducing the number of simulations required and makes it possible to 

optimize the design with a higher level of certainty.  This study found that economically 

viable EOR and CO2 storage may be achieved simultaneously through tertiary WAG 

injection.  Higher profit for both oil recovery and CO2 storage can be obtained if the WAG 

injection is implemented at an early stage of waterflooding, with a lower amount of CO2 in 

the injected gas at high WAG ratio, and a higher produced GOR limit is imposed at the 

producer wells.  

 

7.2. Recommendations 

The coreflood experiments reported in this study have covered a number of important 

parameters pertinent to the CWI, for better understanding of the process, but there still 

remain other equally important factors that also merit further investigation.  In particular, the 

effect of dissolved gas in the reservoir oil on the process performance needs to be taken into 

account.  For this purpose, a study using saturated and under-saturated live crude oil instead 

of stock tank crude oil would create a more realistic scenario of CWI in an oilfield.  The 
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lighter live oil may be favourable from the displacement and CO2 miscibility development 

viewpoint but the effects of the presence of dissolved or free gas on the process performance 

is yet unknown. 

Another important aspect of CWI which needs to be researched is its performance in 

carbonate reservoirs.  These reservoirs make up more than half of the remaining oil in the 

world, thus presenting a huge possible resource for CWI application.  Investigation of the 

mechanisms of oil recovery and carbonated water flow in fractured core samples, the effects 

of the change in the rock properties due to contact of carbonate rocks with the carbonic acid 

and the storage potential in fractured porous media are among the significant studies 

required.  

The reported coreflood results suggested that CWI brings comparable incremental oil 

recovery for light oil as well as for intermediate viscous oil.  However, before this can be 

made a general conclusion, more coreflood experiments on a wider range of oil viscosities, 

densities and reservoir temperature and pressure are recommended to be carried out.  

More CWI experiments and an appropriate modelling approach are also needed for the 

mixed-wet cores.  The oil/water relative permeability curves from the plain water coreflood 

were inappropriate for modelling the CWI due to the different oil recovery and ∆P trends of 

both processes.  As highlighted earlier, simulating CWI by incorporating the transport 

coefficient (α-factor) also does not work adequately for the mixed wet cores.  The modelling 

of the tertiary CWI process with the transport coefficient (α-factor) may also be further 

improved by incorporating the pseudo-relative permeabilities to correct the oil and gas 

fluxes.   

The INTWAG injection may offer a promising alternative injection scheme for increasing 

the oil recovery and CO2 sequestration.  Apart from quantification of the performance 

through laboratory experiments, improvement in predicting the process by properly 

incorporating the hysteresis and CO2 diffusion into the water phase should be pursued. 

In studying the impact of reservoir heterogeneity on the performance of various CO2 

injection schemes for EOR and storage, heterogeneity modelling should also take into 

account the variation of kv/kh in addition to different permeability in different grids.  The 

price of emissions permits as well as incentives for EOR and CO2 storage application 
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undoubtedly influence the viability of the coupled CO2 EOR and storage projects.  These 

elements have been only crudely addressed in this study.  Upon availability of a more 

established or regulated system of CO2 EOR and storage permits and incentives, it is 

recommended to undertake detailed co-optimization studies considering these economic 

factors 

 

 


