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Abstract 

Permanent Down-hole Gauge (PDG) is the down-hole measuring device installed 

during the well completion.  It can provide the continuous down-hole transient pressure 

in real-time.  Since 1980s, PDG has been widely applied in oilfields.  The wide field 

applications have demonstrated that the long-term pressure monitoring with PDG is 

useful for production optimization, reservoir description and model calibration.  

Analysing the long-term, noisy and large volume of PDG pressure data and extracting 

useful reservoir information are very challenging.  Although lots of achievement has 

been made in PDG data processing, such as denoising, outlier removal and transient 

identification, analysis of long-term transient pressure from PDG is still difficult due to 

several challenging problems.  The first problem is the dynamic changes in reservoir-

well properties, which can cause the linearity assumption for pressure-transient analysis 

invalid, also the reservoir model needs calibration to match the field performance.  The 

second problem is unknown or incomplete flow rate history.  These problems together 

make it a very challenging task for engineer to interpret long-term transient pressure 

from PDG. 

This study investigates novel methods to analyse the long-term transient pressure from 

PDG with Wavelet Transform (WT).  Firstly, a new diagnostic function named as Unit 

Reservoir System Response  Aurc  has been developed, and it can effectively diagnose 

the nonlinearities from PDG pressure due to the changes in reservoir-well properties.  

The nonlinearity diagnostic and evaluation is an important procedure before pressure 

analysis.  Secondly, a model-independent method of reconstructing unknown rate 

history has been developed.  This method has wide applications, considering the effects 

of skin, wellbore storage, reservoir heterogeneity and multiphase flow.  Thirdly, based 

on the nonlinearity diagnostic result, sliding window technique is proposed to analyse 

long-term pressure with nonlinearities and update reservoir model with time-dependent 

reservoir properties.  

The synthetic cases and field data application have demonstrated that the developed 

methods can reveal more useful reservoir information from PDG pressure and realize 

the potential of PDG as the tool of reservoir management.   



 

 

Acknowledgement 

Firstly, I will give my deepest gratitude to my primary supervisor Prof. Shiyi Zheng for 

providing me this opportunity to carry out this Ph. D study in Institute of Petroleum 

Engineering at Heriot-Watt University.  The work would not have come into fruition 

without his constant guidance, advice, and encouragement, and these will be wealthy of 

my lifetime.  

I want to thank my examiners Dr. Arfan Ali and Prof. Yanghua Wang for reading my 

thesis and giving lots of useful comments and recommendations.  

I would also thanks to BG Group, Wintershall AG, EPS Weatherford and PetroChina 

for their financial support.   

I would like to express great appreciations to the staff, secretaries, and librarian who 

gave me lots of help and support during my study.  Many thank my colleagues in 

PRIME group members and all my friends in Edinburgh.  Their support, help and 

encouragement are gratefully appreciated.  

I am especially thankful to my parents and brothers, for their unconditional support and 

love.   

 
  



iii 

 

ACADEMIC REGISTRY 
Research Thesis Submission 
 
 

 

Name: Fuyong Wang 

School/PGI: Institute of Petroleum Engineering (IPE) 

Version:  (i.e. First, 

Resubmission, Final) 
Final 

Degree Sought 
(Award and 
Subject area) 

Ph. D in Petroleum Engineering 

 

 

Declaration  
 
In accordance with the appropriate regulations I hereby submit my thesis and I declare that: 
 

1) the thesis embodies the results of my own work and has been composed by myself 
2) where appropriate, I have made acknowledgement of the work of others and have made 

reference to work carried out in collaboration with other persons 
3) the thesis is the correct version of the thesis for submission and is the same version as 

any electronic versions submitted*.   
4) my thesis for the award referred to, deposited in the Heriot-Watt University Library, should 

be made available for loan or photocopying and be available via the Institutional 
Repository, subject to such conditions as the Librarian may require 

5) I understand that as a student of the University I am required to abide by the Regulations 
of the University and to conform to its discipline. 

 
* Please note that it is the responsibility of the candidate to ensure that the correct version 

of the thesis is submitted. 
 

Signature of 
Candidate: 

 Date:  

 

 

Submission  
 

Submitted By (name in 
capitals): 

 

 

Signature of Individual 
Submitting: 

 

 

Date Submitted: 

 

 

 

For Completion in the Student Service Centre (SSC) 
 

Received in the SSC by (name in 

capitals): 
 

1.1    Method of Submission  

(Handed in to SSC; posted through 
internal/external mail): 

 

 

1.2   E-thesis Submitted (mandatory 

for final theses) 

 

Signature: 

 

 Date:  



iv 

 

 

Table of contents 

Chapter 1 Introduction .......................................................................................................................... 1 

1.1 Background ........................................................................................................ 1 

1.1.1 Permanent Down-hole Gauge (PDG) ............................................................. 1 

1.1.2 The applications of PDG in reservoir development........................................ 3 

1.2 Problem statement .............................................................................................. 4 

1.2.1 Nonlinear problems for pressure-transient analysis........................................ 5 

1.2.2 Changes in reservoir properties and well conditions ...................................... 7 

1.2.3 Unknown flow rate history ............................................................................. 8 

1.2.4 Reservoir management with PDG .................................................................. 9 

1.3 Research objective .............................................................................................. 9 

1.4 Thesis outline ................................................................................................... 10 

Chapter 2 Wavelet Theory and Literature Review ..................................................................... 11 

2.1 Introduction ...................................................................................................... 11 

2.2 Wavelet theory ................................................................................................. 11 

2.2.1 Wavelet history and application ................................................................... 11 

2.2.2 Wavelet Transform (WT) ............................................................................. 12 

2.2.3 Mother wavelet selection .............................................................................. 19 

2.2.4 Scale parameter 𝑠 selection ........................................................................... 19 

2.3 Literature review of PDG pressure data processing and interpretation ............ 21 

2.3.1 Review of PDG pressure data processing ..................................................... 22 

2.3.2 Review of PDG pressure data interpretation ................................................ 26 

2.4 Literature review of diagnostic of the change in reservoir properties and well 

conditions ..................................................................................................................... 30 

2.5 Literature review of unknown flow rate history reconstruction ....................... 32 

2.6 Chapter summary ............................................................................................. 34 

Chapter 3 Diagnostic of Nonlinearity from Transient Pressure Data.................................... 35 

3.1 Introduction ...................................................................................................... 35 

3.2 Theory description of the novel nonlinearity diagnostic method ..................... 35 

3.3 Base case and sensitivity study ........................................................................ 38 

3.4 Cases study ....................................................................................................... 49 

3.4.1 Permeability and skin factor change case ..................................................... 49 

3.4.2 Real gas flow ................................................................................................ 51 



 

v 

3.4.3 Non-Darcy flow ............................................................................................ 54 

3.4.4 Oil and gas two-phase flow after gas out of solution ................................... 57 

3.4.5 Oil and water two-phase flow after water breakthrough .............................. 61 

3.4.6 The interference between production wells .................................................. 67 

3.5 Discussion ........................................................................................................ 69 

3.5.1 Time interval ................................................................................................. 69 

3.5.2 Radius of investigation ................................................................................. 70 

3.5.3 Flow rate ....................................................................................................... 71 

3.6 New procedures of long-term transient pressure analysis ................................ 71 

3.7 Chapter conclusions ......................................................................................... 72 

Chapter 4 Reconstructing Unknown Flow Rate History from Transient Pressure Data . 74 

4.1 Introduction ...................................................................................................... 74 

4.2 Theory description ............................................................................................ 74 

4.3 Flow rate history reconstruction in single oil phase reservoir .......................... 76 

4.3.1 Base case study ............................................................................................. 76 

4.3.2 Sensitivity study ............................................................................................ 79 

4.4 Flow rate history reconstruction for the case initial flow rate 𝑞1 is unknown . 89 

4.4.1 Algorithm development ................................................................................ 89 

4.4.2 Case study ..................................................................................................... 91 

4.5 Flow rate history reconstruction for multi-wells .............................................. 94 

4.5.1 Reconstruction algorithm for multi-wells ..................................................... 94 

4.5.2 Case study ..................................................................................................... 95 

4.6 Flow rate history reconstruction in oil and water two-phase reservoir ............ 99 

4.6.1 Oil and water two-phase flow with constant water cut case ....................... 100 

4.6.2 Oil and water two-phase reservoir with increasing water cut ..................... 105 

4.7 Flow rate history reconstruction in gas reservoir and gas condensate reservoir

 109 

4.7.1 Real gas reservoir........................................................................................ 109 

4.7.2 Gas condensate reservoir ............................................................................ 113 

4.7.3 Gas out of solution ...................................................................................... 114 

4.8 Chapter conclusions ....................................................................................... 117 

Chapter 5 Sliding Window Technique for Long-term Transient Pressure Analysis and 

Reservoir Model Calibration ........................................................................................................... 118 

5.1 Introduction .................................................................................................... 118 

5.2 Theory description .......................................................................................... 119 



 

vi 

5.2.1 Deconvolution ............................................................................................. 119 

5.2.2 Sliding window technique .......................................................................... 120 

5.2.3 Reservoir model calibration with updating Near Wellbore Model (NWM)

 123 

5.3 Analysis of transient pressure with nonlinearity using sliding window 

technique and deconvolution ..................................................................................... 124 

5.3.1 Time-dependent skin case ........................................................................... 124 

5.3.2 Time-dependent permeability-thickness case ............................................. 128 

5.4 Reservoir model calibration with sliding window technique ......................... 131 

5.4.1 Reservoir model description ....................................................................... 131 

5.4.2 Nonlinearity diagnostic with wavelet transform ......................................... 132 

5.4.3 Sliding time window selection .................................................................... 134 

5.4.4 Pressure-transient analysis for time-dependent parameter interpretation ... 136 

5.4.5 Near Wellbore Model (NWM) selection and update .................................. 138 

5.5 Chapter conclusions ....................................................................................... 140 

Chapter 6 Field Data Application .................................................................................................. 141 

6.1 Introduction .................................................................................................... 141 

6.2 PDG pressure data processing ........................................................................ 142 

6.3 Reconstructing rate history from PDG pressure data ..................................... 144 

6.3.1 Window selection ....................................................................................... 144 

6.3.2 Rate calculation with wavelet transform .................................................... 145 

6.4 Diagnostic of time-dependent reservoir-well properties ................................ 156 

6.4.1 Frequency diagnostic analysis .................................................................... 156 

6.4.2 Transitional well test analysis ..................................................................... 158 

6.5 Chapter conclusions ....................................................................................... 162 

Chapter 7 Conclusions and Recommendations ......................................................................... 163 

7.1 General conclusions ....................................................................................... 163 

7.2 Recommendations for future work ................................................................. 165 

References ........................................................................................................................................... 166 

 

 

 

 

 

 

 

 

 



 

vii 

List of Figures  

Figure 1-1: The technical evolution of electronic PDG (Baker et al, 1995) .................... 2 

Figure 2-1: Different frequency analysis methods.  Wavelet transform is multi-

resolution frequency analysis method (Source: Matlab/wavelet toolbox user’s guide). 14 

Figure 2-2: Different kinds of mother wavelet............................................................... 16 

Figure 2-3: Discrete Wavelet Transform (DWT) (source: Matlab/wavelet toolbox user’s 

guide)............................................................................................................................... 17 

Figure 2-4: Wavelet decomposition tree.  The signal is decomposed into several 

detailed signals D and approximations A........................................................................ 17 

Figure 2-5: The wavelet decomposition tree of the pressure signal at level 3. .............. 18 

Figure 2-6: Signal decomposition and reconstruction with wavelet transform (source: 

Matlab/wavelet toolbox user’s guide) ............................................................................. 18 

Figure 2-7: Transient pressure data is processed with CWT on scale 2 using the Haar, 

db5, coif5, sym8, Morlet and Meyer wavelet. ................................................................ 19 

Figure 2-8: Pressure data is processed by the Haar wavelet using CWT with different 

scale parameter 𝑠. ............................................................................................................ 20 

Figure 2-9: The noisy pressure data is processed by the Haar wavelet using CWT with 

different scale parameters 𝑠. ............................................................................................ 21 

Figure 2-10: Identification of spike outlier and step outlier with wavelet transform .... 23 

Figure 2-11: Noisy pressure data and wavelet transform with the Haar wavelet. ......... 25 

Figure 2-12: Denoised pressure data with the removed noise compared with the original 

pressure data. ................................................................................................................... 25 

Figure 2-13: Well PI diagnostic plot for Field Case 3 in Unnrland et al. (1998) paper. 31 

Figure 2-14:  The “4D” pressure and pressure-derivative diagnostic plot in the paper of 

Haddad et al. (2004). ....................................................................................................... 32 

Figure 3-1: The impulse response of reservoir system 𝑔(𝑡)in the first 1hour and zoom 

in. Its value is largest at first but it declines fast with time. 60s after it declines to 2.83%, 

and 2 minute after, it is 0.8% of the initial value. ........................................................... 37 

Figure 3-2: The transient pressure is processed by WT using the Haar wavelet. .......... 39 

Figure 3-3: Impact of skin change on 𝐴𝑢𝑟𝑐  function ...................................................... 43 

Figure 3-4:  𝐴𝑢𝑟𝑐   declines with increasing permeability 𝑘 ........................................... 43 

Figure 3-5:  𝐴𝑢𝑟𝑐  changes almost linearly with 1/𝑘 ...................................................... 44 

Figure 3-6:  𝐴𝑢𝑟𝑐  changes linearly with the reciprocal of formation thickness  .......... 44 

Figure 3-7:  𝐴𝑢𝑟𝑐  changes logarithmically with porosity ∅ ............................................ 45 

Figure 3-8: 𝐴𝑢𝑟𝑐  increases linearly with the increasing viscosity 𝜇, and viscosity has big 

effect on 𝐴𝑢𝑟𝑐  .................................................................................................................. 45 

Figure 3-9:  𝐴𝑢𝑟𝑐   increases linearly with the increasing oil FVF 𝐵𝑜  ............................. 46 

Figure 3-10:  𝐴𝑢𝑟𝑐  declines with the increasing total compressibility, but the change is 

small. ............................................................................................................................... 46 

file:///C:\Fuyong%20Wang\Thesis%20save\All%20Thesis%20Update\Fuyong%20Wang-Ph.%20D%20Thesis.docx%23_Toc342315373
file:///C:\Fuyong%20Wang\Thesis%20save\All%20Thesis%20Update\Fuyong%20Wang-Ph.%20D%20Thesis.docx%23_Toc342315373


 

viii 

Figure 3-11:  𝐴𝑢𝑟𝑐  declines logarithmically with the increasing wellbore size. ............ 47 

Figure 3-12: Fluid density has no effect on 𝐴𝑢𝑟𝑐  ........................................................... 47 

Figure 3-13:  𝐴𝑢𝑟𝑐  declines with the increasing wellbore storage coefficient 𝐶𝑠 .......... 48 

Figure 3-14: The impact of different parameters change on URSR 𝐴𝑢𝑟𝑐  . .................... 49 

Figure 3-15: The reservoir model with time-varying skin factor and permeability. ...... 50 

Figure 3-16:  Skin factor and permeability change with time during the production 

history. ............................................................................................................................. 51 

Figure 3-17: After pressure data is processed by Haar wavelet, URSR  𝐴𝑢𝑟𝑐  is 

calculated and it is time-varying due to in the changes in skin factor and permeability. 51 

Figure 3-18: Production history in the gas reservoir case .............................................. 53 

Figure 3-19: The calculated 𝐴𝑢𝑟𝑐  is time-varying due to the pressure-dependent gas 

properties. ........................................................................................................................ 53 

Figure 3-20:  URSR 𝐴𝑢𝑟𝑐  increases a lot due to the depletion in the real gas reservoir. 54 

Figure 3-21: URSR  𝐴𝑢𝑟𝑐   for gas reservoir at different non-Darcy flow conditions. The 

larger the non-Darcy flow coefficient is, the lager changes in  𝐴𝑢𝑟𝑐  will be. ................. 55 

Figure 3-22: The  𝐴𝑢𝑟𝑐   function for the uncompressible fluid flow at different non-

Darcy flow conditions. The larger non-Darcy flow coefficient, the lager change in 

 𝐴𝑢𝑟𝑐  will be. ................................................................................................................... 56 

Figure 3-23: Modified isochronal test for gas reservoir ................................................. 57 

Figure 3-24: URSR 𝐴𝑢𝑟𝑐  of modified isochronal test. ................................................... 57 

Figure 3-25: Production history for the oil reservoir with dissolved gas ....................... 59 

Figure 3-26: URSR 𝐴𝑢𝑟𝑐  changes sharply when gas is out solution. ............................. 60 

Figure 3-27:  When wellbore storage is considered, URSR  𝐴𝑢𝑟𝑐  performs differently 

due to the phase segregation effect in the wellbore. ....................................................... 60 

Figure 3-28: The heterogeneous oil and water two-phase reservoir model. .................. 61 

Figure 3-29:  Down-hole pressure and water cut history ............................................... 63 

Figure 3-30: URSR  𝐴𝑢𝑟𝑐 increases in the case of water breakthrough and changes with 

water cut. ......................................................................................................................... 63 

Figure 3-31: Oil and water saturation function and total mobility. ................................ 64 

Figure 3-32: URSR  𝐴𝑢𝑟𝑐   and  1/𝜆𝑡  for the same water cut 𝑓𝑤  . ................................... 65 

Figure 3-33: URSR 𝐴𝑢𝑟𝑐   increases at first but declines later when oil viscosity is 1.2 cp.

 ......................................................................................................................................... 66 

Figure 3-34: URSR  𝐴𝑢𝑟𝑐  and  1/𝜆𝑡  when 𝜇𝑜=1.2 cp. ................................................... 66 

Figure 3-35: URSR  𝐴𝑢𝑟𝑐   and water cut 𝑓𝑤  at the down-hole when 𝜇𝑜=1.5 cp. ........... 67 

Figure 3-36: URSR  𝐴𝑢𝑟𝑐  and    1/𝜆𝑡  when 𝜇𝑜=1.5 cp. ................................................. 67 

Figure 3-37: The reservoir model with two production wells. ....................................... 68 

Figure 3-38: Production history and URSR 𝐴𝑢𝑟𝑐   for two interference wells. .............. 68 

Figure 3-39: The URSR 𝐴𝑢𝑟𝑐  is different for the pressure data with different time steps.

 ......................................................................................................................................... 69 



 

ix 

Figure 3-40: URSR 𝐴𝑢𝑟𝑐  has logarithmic relationship with time step. .......................... 70 

Figure 3-41: New procedures of long-term transient pressure analysis ......................... 72 

Figure 4-1: Pressure history in base case. ...................................................................... 77 

Figure 4-2: Down-hole pressure data in base case is processed with CWT using the 

Haar wavelet.................................................................................................................... 78 

Figure 4-3: The impulse response function 𝑔(𝑡)  with different wellbore storage 

coefficient. ....................................................................................................................... 81 

Figure 4-4: WT detailed signal with different wellbore storage coefficient. ................. 82 

Figure 4-5: Zoom-in of WT detailed signal with different wellbore storage coefficient.

 ......................................................................................................................................... 82 

Figure 4-6: The impulse response function 𝑔(𝑡) with different skin factor. ................. 83 

Figure 4-7: WT detailed signal with different skin factor. ............................................. 83 

Figure 4-8: Zoom in of WT detailed signal with different skin factor. .......................... 84 

Figure 4-9: Flow history with flow events happened closely. ....................................... 85 

Figure 4-10: WT detailed signal and zoom in on closely happening flow events ......... 85 

Figure 4-11: Artificial noise is added to the pressure data. ............................................ 88 

Figure 4-12: Noisy pressure is processed with wavelet transform................................. 88 

Figure 4-13: The trial-and-error algorithm for flow rate history reconstruction with 

unknown initial flow rate 𝑞1. .......................................................................................... 91 

Figure 4-14: A heterogeneous oil reservoir model with a single producer. ................... 92 

Figure 4-15: The noisy pressure data is processed with WT. ........................................ 93 

Figure 4-16: A heterogeneous reservoir model with two producers. Total production for 

two wells is measured. .................................................................................................... 96 

Figure 4-17: Down-hole pressure history for two wells. The total production of two 

wells is measured together. ............................................................................................. 98 

Figure 4-18: The calculated flow rate for two wells is very close to the real flow rate, 

and the error is less 1%. .................................................................................................. 99 

Figure 4-19: Dispersed flow with uniform saturation and segregated flow (from Xu, W. 

2010) ............................................................................................................................. 101 

Figure 4-20: The segregated flow reservoir model. ..................................................... 102 

Figure 4-21: Down-hole flow pressure and water cut history in the segregated flow 

reservoir......................................................................................................................... 102 

Figure 4-22: The pressure of segregated flow is processed with Haar wavelet. .......... 103 

Figure 4-23: The reconstructed total liquid flow rate history. ..................................... 103 

Figure 4-24: The real flow rate and reconstructed flow rate history of oil and water. 104 

Figure 4-25: Nonlinearity diagnostic result in the segregated flow model. ................. 104 

Figure 4-26: Oil and water two-phase reservoir with increasing water cut. ................ 105 

Figure 4-27: The reconstructed oil flow rate history in the first window. ................... 106 

Figure 4-28: Pressure data in the second window is processed by Haar wavelet. ....... 107 

file:///C:\Fuyong%20Wang\Thesis%20save\All%20Thesis%20Update\Fuyong%20Wang-Ph.%20D%20Thesis.docx%23_Toc342315424


 

x 

Figure 4-29: The reconstructed total liquid flow rate history. ..................................... 107 

Figure 4-30: The diagnostic result in the second window. URSR  𝐴𝑢𝑟𝑐  is almost 

constant, and indicates the system can be treated as linear in this time window. ......... 108 

Figure 4-31: The reconstructed oil and water flow rate history in the second window.

 ....................................................................................................................................... 108 

Figure 4-32: Down-hole pressure history from real gas reservoir ............................... 110 

Figure 4-33: Normalized pseudo-pressure and WT ..................................................... 112 

Figure 4-34: The down-hole pressure and GOR history from a gas condensate reservoir.

 ....................................................................................................................................... 113 

Figure 4-35: The calculated oil and gas rate is near to the real rate. ............................ 114 

Figure 4-36: Two time windows are selected to reconstruct flow rate history. ........... 115 

Figure 4-37: The calculated flow rate for gas and oil phase in the first time window. 115 

Figure 4-38: The reconstructed flow rate history in the second time window. ............ 116 

Figure 4-39: The reconstructed flow rate history in the second time window when 

wellbore storage is considered. ..................................................................................... 116 

Figure 5-1: The simulated test data from a heterogeneous closed reservoir model. .... 119 

Figure 5-2: Comparison of pressure derivative from PU1 with the response from 

deconvolution. ............................................................................................................... 120 

Figure 5-3: Sliding window technique.  The pressure data is grouped into different 

windows, and in each window pressure data is interpreted separately. ........................ 121 

Figure 5-4: Calculated model parameters in different time windows (Athichanagorn 

1999). ............................................................................................................................ 122 

Figure 5-5: The workflow of window selection based on URSR 𝐴𝑢𝑟𝑐  function. ........ 123 

Figure 5-6: Model calibration with updating near wellbore model. ............................ 124 

Figure 5-7: The production and skin factor history in a heterogeneous reservoir. ...... 124 

Figure 5-8: Deconvolved response obtained from the whole pressure data in Figure 5-7 

with changing skin factor. ............................................................................................. 125 

Figure 5-9: The convolved pressure doesn’t match the real pressure. ......................... 126 

Figure 5-10: Nonlinearity diagnostic and sliding window selection. .......................... 126 

Figure 5-11:  Comparison of the drawdown response derived from the deconvolution of 

pressure data in two time windows. .............................................................................. 127 

Figure 5-12: Comparison of convolved pressure calculated from deconvolution with the 

real pressure data in two time windows. ....................................................................... 127 

Figure 5-13: Pressure and rate history with changing permeability............................. 128 

Figure 5-14: Deconvolution of the whole pressure data with changing permeability. 129 

Figure 5-15: The convolved pressure data doesn’t match the pressure data due to 

changing permeability. .................................................................................................. 129 

Figure 5-16: Nonlinearity diagnostic result and sliding window selection.  The 

nonlinear system is divided into two linear systems. .................................................... 130 

Figure 5-17: Comparison of unit response  𝑝𝑢   and 𝑝𝑢  derivative in two windows. .... 130 



 

xi 

Figure 5-18: Reservoir model for model calibration case study. ................................. 132 

Figure 5-19: Production history for three wells. .......................................................... 132 

Figure 5-20: WT is applied to process transient pressure data of three wells. ............. 133 

Figure 5-21: URSR 𝐴𝑢𝑟𝑐   for three wells.  It is constant for PROD2 well, but it is time-

dependent for well1 and well3. ..................................................................................... 133 

Figure 5-22: The pressure from simulated model with constant reservoir properties 

cannot match the real pressure performance. ................................................................ 134 

Figure 5-23: The window selection for PROD1 well in URSR 𝐴𝑢𝑟𝑐  function plot ..... 135 

Figure 5-24: The window selection for PROD1 well in pressure history .................... 135 

Figure 5-25: The window selection for PROD3 well in URSR 𝐴𝑢𝑟𝑐  function plot ..... 136 

Figure 5-26: The window selection for PROD3 well in pressure history .................... 136 

Figure 5-27: Pressure BU of PROD1 well in the second time window is analysed. ... 137 

Figure 5-28: Near wellbore model selection for PROD3 ............................................. 139 

Figure 5-29: The pressure performance after NWM update can match the real pressure 

of PROD1 and PROD3 well ......................................................................................... 140 

Figure 6-1: PDG pressure data and measured daily rate history from an oil reservoir.

 ....................................................................................................................................... 141 

Figure 6-2: The noisy PDG pressure data in the first 530 hours and zoom-in plot. .... 143 

Figure 6-3: Processed PDG pressure data in the first 530 hours and zoom in plot. ..... 144 

Figure 6-4: The pressure data between two build-ups are selected in one window. .... 145 

Figure 6-5: The PDG pressure data in window 3 is processed with WT, and rate history 

is calculated. .................................................................................................................. 146 

Figure 6-6: Wavelet transform processing pressure data and calculated rate history in 

window 2. ...................................................................................................................... 147 

Figure 6-7: Calculated rate history in the window 1 from the 0 hour to the 227 hour. 148 

Figure 6-8: Calculated rate history from the 970 hour to the 1070 hour. .................... 148 

Figure 6-9: Calculated rate history from the 1070 hour to the 1336 hour. .................. 149 

Figure 6-10: Calculated rate history from the 1557 hour to the 2375 hour ................. 150 

Figure 6-11: Calculated rate history from the 2500 hour to the 3418 hour. ................ 150 

Figure 6-12: Calculated rate history from the 3418 hour to the 3619 hour. ................ 151 

Figure 6-13: Calculated rate history from the 3925 hour to the 4000 hour. ................ 151 

Figure 6-14: Calculated rate history from the 4090.19 hour to the 4385h. .................. 152 

Figure 6-15: Calculated rate history from the 4395 hour to the 4995 hour. ................ 152 

Figure 6-16: Calculated rate history from the 5015 hour to the 5785 hour. ................ 153 

Figure 6-17: Calculated rate history from the 5820 hour to the 6710 hour. ................ 153 

Figure 6-18: Calculated rate history from the 6781 hour to the 7163 hour. ................ 154 

Figure 6-19: Calculated rate history from the 7180 hour to the 8400 hour. ................ 154 

Figure 6-20: Calculated rate history from the 8500 hour to the 9040 hour. ................ 155 



 

xii 

Figure 6-21: Calculated rate history from the 9066 hour to the 9400 hour. ................ 155 

Figure 6-22: The reconstructed whole rate history from PDG pressure data............... 156 

Figure 6-23: The diagnostic function 𝐴𝑢𝑟𝑐  changes with time and three time windows 

are selected for model calibration. ................................................................................ 157 

Figure 6-24: The reservoir model needs update around 4000 hours, and another 

calibration may need around 9000 hours. ..................................................................... 158 

Figure 6-25: Several build-ups are selected to analyse in log-log plot. ....................... 159 

Figure 6-26: Build-up 1 and 3 are analysed in the log-log plot. .................................. 160 

Figure 6-27: Build-up 4 and 11 are analysed in the log-log plot. ................................ 160 

Figure 6-28: Build-up 11 and 16 are analysed in the log-log plot. .............................. 161 

 
 



xiii 

 

 

List of Tables  

Table 3-1: Reservoir properties of a simulated reservoir model .................................... 37 

Table 3-2:  Reservoir properties in the single oil phase reservoir .................................. 39 

Table 3-3: The 𝐴𝑢𝑟𝑐  function in the single oil phase reservoir is almost same. ............. 40 

Table 3-4: PVT properties in the real gas reservoir ....................................................... 52 

Table 3-5: Some reservoir properties of oil with dissolved gas reservoir ...................... 58 

Table 3-6: Live oil PVT properties (with dissolved gas) ............................................... 59 

Table 3-7: The distribution of permeability and porosity in the oil and water two-phase 

reservoir........................................................................................................................... 62 

Table 3-8: Other reservoir-well parameters in the model .............................................. 62 
 
Table 4-1: The reservoir model parameters.................................................................... 77 

Table 4-2: Identification of flow event time................................................................... 78 

Table 4-3: The reconstructed flow rate history in the base case .................................... 79 

Table 4-4: The impulse response function 𝑔 𝑡 declines with time for different wellbore 

storage coefficient. .......................................................................................................... 81 

Table 4-5: The impulse response function 𝑔(𝑡)declines with time for different skin 

factor. .............................................................................................................................. 83 

Table 4-6: The proportional coefficients 𝑏 for every flow event. .................................. 86 

Table 4-7: The errors of calculated flow rate are small.................................................. 87 

Table 4-8: The calculated rate history from the noisy pressure data. ............................. 89 

Table 4-9: Model parameters in the case study. ............................................................. 92 

Table 4-10: The errors of calculated flow rate are nearly less than 5%. ........................ 94 

Table 4-11: The permeability and porosity for different layer. ...................................... 97 

Table 4-12: The parameters for the two-well reservoir model. ...................................... 97 

Table 4-13: The real gas PVT properties. .................................................................... 111 

Table 4-14: The calculated flow rate with gas pressure data. ...................................... 111 

Table 4-15: The flow rate calculation using pseudo-pressure. ..................................... 112 
 
Table 5-1: The parameters for reservoir model ............................................................ 131 

Table 5-2: Pressure-transient analysis result in each time window for PROD1 .......... 137 

Table 5-3: Pressure-transient analysis result in each time window for PROD3 .......... 138 

Table 5-4: The size of NWM for PROD3 well calculated from the radius of 

investigation equation. .................................................................................................. 139 



xiv 

 

Nomenclature 

𝐴 = Amplitude of WT coefficient 

𝐴𝑢𝑟𝑐 = Unit Reservoir System Response (URSR) 

𝑏= The proportional coefficient of WT amplitude and change in rate 

𝐵 = Formation volume factor, rb/STB 

𝐵𝑜= Oil formation volume factor, rb/STB 

C = Complementary transform operator  

𝐶𝑔= Gas compressibility, 1/psi 

𝐶𝑓= Rock compressibility, 1/psi 

𝐶𝑜= Oil compressibility, 1/psi 

𝐶𝑠= Wellbore storage coefficient, bbl/psi 

𝐶𝑡= Total compressibility, 1/psi 

𝐶𝑤= Water compressibility, 1/psi 

D= Non-Darcy coefficient  

D= Matrix in curvature measure 

∆𝑑= Change in choke size 

𝐸= Objective function  

𝑒𝑖𝑥= Euler's formula 

𝑓(𝑡)= Function processed by WT 

𝑓  𝜔 = Fourier transform of 𝑓(𝑡) 

𝑓𝑤= Water cut 

𝑔(𝑡)= Impulse function of the system, psi/(STB/day) 

𝑔 𝑡 = Window function in Short-Time Fourier Transform (STFT) 

= Reservoir thickness, ft 

𝑖= Imaginary unit  

𝑘= Permeability, mD 

𝒌=Vector of curvature measure  

𝑘𝑟𝑜= Oil relative permeability 

𝑘𝑟𝑤= Water relative permeability 

𝑙= Flow event numbers  

𝑚= Well numbers 

𝑚 𝑝 = Pseudo-pressure, psia
2
/cp 

𝑚𝑛 𝑝 = Normalized pseudo-pressure, psi 



 

xv 

𝑛= Time period of total production measurement  

𝑝0= Initial pressure, psi 

𝑝𝑖= Reference pressure, psi  

𝑝𝑢= Rate-normalized constant-rate pressure response, psi/ (STB/day) 

𝑝𝑤𝑓= Bottom-hole flow pressure, psi 

𝒑𝑚  = Vector of measured down-hole pressure, psi 

∆𝑝𝑤𝑓= Bottom-hole flow pressure change, psi 

𝑞= Flow rate, STB/day 

𝒒𝑚= Vector of measured flow rate, STB/day 

𝑞𝑜= Oil flow rate, STB/day 

𝑞𝑢𝑝 (𝑡)= Normalized constant-pressure rate response, psi/STB 

𝑞𝑤= Water flow rate, STB/day 

∆𝑞= Flow rate change STB/day 

𝑄= Accumulative production, STB 

𝑟𝑖𝑛𝑣= Radius of investigation, ft 

𝑟𝑤= Wellbore radius, ft  

𝑅= Reservoir length, ft  

𝑠 = WT scale factor  

𝑆= Skin factor 

𝑆′= Rate-dependent skin factor 

𝑆𝑤= Water saturation  

𝑡= Time, hours 

∆𝑡= Time period, hours 

𝑢= WT translation factor 

𝑣 = Flow velocity 

𝑉𝑤= Wellbore storage volume, cu ft 

𝑊= Wavelet transform operator 

𝑥= X direction 

𝑦=Y direction 

𝒚= Vector of calculated flow rate, STB/day 

𝑧= Z direction 

𝑧 = Response function defined in deconvolution algorithm  

𝒛= (Vector of) response coefficients  

𝑍= Real gas deviation factor 



 

xvi 

Greek letters 

𝛽= Non-Darcy flow coefficient 

𝜌= Fluid density, lb/ cu ft 

𝜆= Relative error weight for curvature  

𝜆𝑡= Total mobility 

𝜎= Error bounds 

𝜏= Time, integration variable 

𝜇= Viscosity, cp 

𝜇𝑜= Oil viscosity, cp 

𝜇𝑤= Water viscosity, cp 

𝜐= Relative error weight for flow rate 

∅= Porosity 

∅ 𝑡  = Scale function  

𝜓 𝑡 = Wavelet function 

𝜂𝑗  = Hydraulic diffusivity in 𝑗 direction 

𝜍= Natural logarithm of time 

𝜔= Frequency, hertz 

Subscripts 

𝑓= Rock 

𝑔= Gas 

𝑖= Initial, flow event index 

𝑗= Flow event index in multi-well algorithm  

𝑘= Well index  

𝑛= Flow rate index 

𝑜= Oil 

𝑡= Total 

𝑤= Well 

 

 

 



 

xvii 

Name  

BU: pressure Build-up  

CWT: Continuous Wavelet Transform 

DD: pressure Drawdown 

DTS: Distributed Temperature Sensing  

DWT: Discrete Wavelet Transform 

FFM: Full Field Model  

FT: Fourier Transform  

FVF: Formation Volume Factor  

LGR: Local Grid Refinement  

NWM: Near Wellbore Model  

PDG: Permanent Down-hole Gauge  

PI: Production Index  

PTA: Pressure-Transient Analysis 

STFT: Short-Time Fourier Transform 

URSR: Unit Reservoir System Response 

WT: Wavelet Transform  

 



CHAPTER 1 INTRODUCTION    

1 

Chapter 1  Introduction  

1.1 Background  

The demand for oil and gas is increasing with the development of global economy, but 

petroleum resources are limited.  Most conventional reservoirs have been discovered in 

the last century and many of them have become mature reservoirs.  The exploration of 

new reservoir becomes more difficult.  How to produce enough hydrocarbons to satisfy 

the increasing demand in the future is challenging.  Maximizing the ultimate oil and gas 

recovery is one of the most promising solutions, which requires the reservoir is 

developed with the optimal development plan.  The accurate reservoir model is the key 

for reservoir development and management, as many complex decisions are made based 

on the future forecasting from reservoir modelling.   

The creation and calibration of reservoir model need lots of accurate reservoir 

information including geological data, seismic data, well logging and core data, and the 

dynamic production information.  Many measuring tools have been applied in oilfields, 

and one of them is Permanent Down-hole Gauge (PDG).  PDG is the down-hole 

measuring equipment installed during well completion and provides real-time and 

continuous pressure, temperature and sometime flow-rate information throughout the 

lifetime of the well.  The real-time and long-term down-hole monitoring is useful for 

production monitoring and optimization, reservoir description, reservoir model 

calibration and future forecasting of reservoir and well performance.  

1.1.1 Permanent Down-hole Gauge (PDG)  

The installation of PDG was traced back to 1960’s, when the pressure data acquired 

from PDG was used for production monitoring during secondary recovery project 

(Nestlerode, 1963).  During the late time of 1970’s, PDG began to be installed in subsea 

wells.  The first subsea well with PDG was performed in the Cappos Basin in 1977 

(Bezerra et al. 1992), followed by another subsea installations in the Offshore West 

Africa and North Sea in 1978 and 1979 respectively (Lilley 1988, Hansen 2010).  

However, the industry-wide application of PDG began in 1980’s.  The main reason was 

the poor reliability at the early time of PDG application.  Many failures were caused by 

damaging during the installation or gauge-cable connection problems in later time 

(Baker et al. 1995).  With the newly designed structure (Figure 1-1) and improved 
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down-hole cable, the reliability of PDG had been improved a lot (Frota and Destro, 

2006).  van Gisbergen and Vandeweijer (2001) evaluated 952 PDGs installed since 

1987 and found that 5-year survival probability improved from 40% in the period of 

1987-1988 to 75% during the period of 1991-1992.  Meanwhile, the fiber-optic sensing 

has developed a lot recently and provides a reliable alternative to the conventional 

electronic gauge (Flecker et al. 2000, Kragas et al. 2004, Izgec et al. 2007).  Without 

down-hole electronics, fiber-optic sensing system tends to have higher reliability, 

especially in the high temperature environment (Omotosho 2004).  To Chorneyko 

(2006), the total number of PDG installations worldwide was in excess of 10,000 

according.  New technologies have improved the reliability of PDG a lot, and with the 

valuable information it provides, PDG application has become common worldwide.  

 

Figure 1-1: The technical evolution of electronic PDG (Baker et al, 1995) 

The PDG system is built of several standard components which are carefully chosen to 

fit reservoir requirements.  Usually the electronic PDG system includes pressure gauge, 

gauge mandrel, cable, connectors, acquisition systems, software and power supply 

(Baker et al. 1995).  For the fiber-optic PDG system, the basic components consist of 

surface instrumentation, wellhead outlet, in-well cable and connectors, and sensor 
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assembly (Kragas et al. 2001).  Coating technology (Kluth et al. 2000) can protect fiber-

optic sensors in high temperature and high pressure environment, and avoid the problem 

of drifting.  The accuracy of pressure measurement for both two kinds of PDG can reach 

0.001 psi.  By contrast, flow rate measurement is not satisfying compared with the 

pressure measurement.  Although some improvements for down-hole flow rate 

monitoring have been made recently (Jalali et al. 1998, Tibolad et al. 2000, Kragas et al. 

2003, Webster et al. 2006), the real-time flow rate information usually is unavailable 

due to the high expense and low reliability of rate measurements.   

1.1.2 The applications of PDG in reservoir development 

High quality data relating to the reservoir is the key to effective reservoir management.  

Data acquisition is an important procedure in the field development.  Traditional data 

acquisition from short periods of logging and testing usually cause production 

intervention, which leads to production loss and increases risk.  In contract, PDG can 

provide continuous down-hole production information without production intervention, 

and has been widely applied in oilfield.     

Initially, the pressure data from PDG was mainly used for production monitoring, such 

as pump pressure observation, surface and subsurface equipment monitoring, and lifting 

problem identification (Nestlerode, 1963).  With the improved reliability and wide 

applications, PDG has been proven to be cost-effective through providing valuable 

information for reservoir management.  Bezerra et al. (1992) summarized 14 year 

experience concerning PDG installation in the Campos Basin oilfield, and demonstrated 

that PDG can increase production and reduce operation cost.  Shepherd et al. (1991) 

discussed the application of PDG for continuous reservoir monitoring and extended well 

tests in Balmoral Field in UK.  Bigno et al. (1997) presented the role of PDG pressure 

monitoring as the one of main reservoir management tools for Dunbar Field.  In 1990s, 

several case studies discussing the application of PDG in reservoir management from 

North Sea were reported (Unneland and Haugland 1994, Unneland et al. 1998).   

Many applications of PDG have been reported from the industry (Baker et al. 1995, 

Nyhavn et al. 2000, Queipo et al. 2002, Ouyang and Kikani 2002, Haddad et al. 2004, 

Chorneyko, 2006).   These applications can be classified into three categories: reservoir 

description, reservoir modelling and production monitoring.  

The applications of PDG in reservoir description are shown as below:  
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1. Estimate reservoir parameters such as permeability, thickness and distance to 

boundaries/contacts through traditional well test analysis on unscheduled build-

ups. 

2. Reduce ambiguity and uncertainties in pressure interpretation. 

3. Monitor the change in reservoir properties, well conditions and drive mechanism 

with time. 

4. Estimate communications between wells through interference testing. 

For the reservoir modelling purpose, PDG can be used to:  

1. Reconstruct unknown flow rate history.  

2. Provide data for history matching and reservoir model calibration. 

For production monitoring purpose, PDG can be used to:  

1. Identify well problems quickly. 

2. Monitor pump pressure and other equipments. 

3. Evaluate the performance of stimulation or well workover jobs. 

4. Diagnose formation damage and wax deposition. 

5. Determine when production or injection rates in wells can be adjusted. 

6. Distinguish and track well and reservoir performance over time. 

1.2 Problem statement  

Analysing the long-term, noisy and large volume of PDG pressure data and converting 

the data into useful information and economic value is very challenging.  Usually, the 

pressure is measured at several second intervals lasting for several years, and millions of 

data consisting of hundreds of flow events are collected.  Furthermore, PDG pressure 

data is collected under an uncontrolled environment, and therefore noise, outliers and 

other types of errors are always accompanying with pressure data.   

Data processing is necessary before interpreting PDG pressure data, including outlier 

removal, denoising, transient identification, data reduction and etc.  Many effective 

methods and algorithms related to pressure data processing and interpretation have been 

proposed and applied in practice with good performance.  The literature review is 

provided in Chapter 2.  
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Although lots of achievements have been made in PDG pressure data processing and 

interpretation, there are several challenging problems need to be solved.  

1.2.1 Nonlinear problems for pressure-transient analysis 

The main assumption of well-test analysis is the linearity of the problem, which 

underlies the principle of superposition in time and space (Houzé, 2009).  If the 

reservoir with production well is treated as a system, flow-rate and down-hole pressure 

are the system input signal and output signal.  The down-hole pressure 𝑝 𝑡  due to the 

time-varying flow-rate 𝑞 𝑡  can be described with Duhamel’s integral (van Everdingen 

and Hurst 1949): 

𝑝 𝑡 = 𝑝0 −  𝑞 𝜏 𝑔 𝑡 − 𝜏 𝑑𝜏
𝑡

0
                                                                           (1.1) 

where 𝑝0 is the initial reservoir pressure; 𝑔 𝑡  is the impulse response of the system.  It 

depends on the system parameters and  𝑔 𝑡 =
𝑑𝑝𝑢

𝑑𝑡
 , where 𝑝𝑢 is the rate-normalized 

constant-rate pressure response.  When calculating  𝑝𝑢 with the measured down-hole 

pressure 𝑝 𝑡  and flow-rate 𝑞 𝑡 , this is pressure-rate deconvolution.  

Mathematically, Eq. 1.1 is an expression of superposition principle and theoretically it 

is only valid in linear systems, which satisfy both of the following properties: 

1. Additivity: if both 𝑥 and 𝑦 is the solution, 𝑥 + 𝑦 is also a solution; 

2. Homogeneity: if 𝑥 is the solution, 𝑐𝑥 is also the solution and 𝑐 is the constant. 

For the reservoir, if it is a linear system, the pressure diffusivity equation governing 

fluid flow in porous media should be linear.  The diffusivity equation is derived from 

the continuity equation, Darcy flow equation and the equation of state, and it is a second 

order partial differential equation: 

𝜕

𝜕𝑥
 
𝜌𝑘 𝑥

𝜇

𝜕𝑝

𝜕𝑥
 +

𝜕

𝜕𝑦
 
𝜌𝑘 𝑦

𝜇

𝜕𝑝

𝜕𝑦
 +

𝜕

𝜕𝑧
 
𝜌𝑘 𝑧

𝜇

𝜕𝑝

𝜕𝑧
 = 𝜌∅𝐶𝑡

𝜕𝑝

𝜕𝑡
                                             (1.2) 

With the properly defined assumption for the application to the slightly compressible 

single phase flow, the Eq. 1.2 can be linearized: 

 𝜂𝑥
𝜕2𝑝

𝜕𝑥2 + 𝜂𝑦
𝜕2𝑝

𝜕𝑦2 + 𝜂𝑧
𝜕2𝑝

𝜕𝑧2 =
𝜕𝑝

𝜕𝑡
                                                                            (1.3)  
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where 𝜂𝑗  is the hydraulic diffusivity: 

𝜂𝑗 =
𝑘𝑗

∅𝜇𝐶𝑡
,    𝑗 = 𝑥,𝑦, 𝑧                                                                                        (1.4) 

The linear diffusivity equation of Eq. 1.3 ensures superposition principle is valid.  For 

example, a single phase flow of slightly compressible fluid in porous media with 

constant reservoir-well parameters is a linear system.  In addition, some systems can be 

pseudo-linear with appropriate parameter transforms.  For instance, in the case of single 

gas reservoir, pseudo-pressure or pseudo-time is used to linearize the nonlinear 

diffusivity equation (Al-Hussainy et al. 1966, Lee and Holditch 1982, Agarwal 1979, 

Meunier et al. 1987).   

The superposition principle is the fundamental theory of pressure-transient analysis 

(PTA).  Many PTA methods are based on this theory, such as Horner analysis, pressure 

derivative and deconvolution.   

In practice, many reservoir behaviours can make the diffusivity equation nonlinear and 

superposition principle invalid, such as time-dependent skin and permeability, 

multiphase flow, non-Darcy flow, variable wellbore storage coefficient and etc.   

Levitan (2005) demonstrated that deconvolution failed for the changes of wellbore 

storage and skin case, and it also was verified by Houzé et al. (2010).  Ilk et al. (2010) 

discussed several scenarios where deconvolution is invalid, such as gas flow, 

multiphase flow, non-Darcy flow, etc.  These nonlinearities usually are caused by the 

changes in reservoir properties and well conditions.  Kuchuk et al. (2005) pointed out 

that any changes in reservoir model can make deconvolution nonlinear.  Without 

nonlinearity diagnostic, superposition principle and related PTA methods may be 

erroneously applied and wrong or misleading results will be derived.  

However, there are no effective methods for nonlinearity diagnostic (Houzé, 2009).  

Many methods such as pressure-derivative in log-log plot are based on the superposition 

function and derived from the linear equations.  A novel and effective nonlinearity 

diagnostic method needs to be developed.  
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1.2.2 Changes in reservoir properties and well conditions  

For the short time traditional well-testing, reservoir properties and well conditions 

unusually are assumed to be constant, but it is not trustworthy for the long-term PDG 

pressure data.   

In practice, skin and effective permeability may change due to formation compaction, 

subsidence and fine migration, which are especially common for the unconsolidated 

depositions (Saputelli, 2010).  For instance, Holicek et al. (2008) presented a deepwater 

field case in the Gulf of Mexico, where there were reduction in permeability-height and 

increasing skin due to formation damage.  Besides, stimulation treatments sometimes 

are applied to improve the production conditions near the wellbore, such as acidizing 

and fracturing, and reservoir-well parameters change significantly in a short time.  

Furthermore, there are high possibilities that flow conditions around/in the wellbore 

may change, such as the multiphase flow due to water breakthrough and gas out of 

solution.   Multiphase flow is much complex than the single phase flow due to the 

changes in relative permeability of each fluid phase, and relative permeability is 

function of saturation, which also changes with time and space.  For the real gas 

reservoir, although pseudo-pressure and pseudo-time transforms can linearize the 

diffusivity equation, non-Darcy flow near the wellbore and PVT change due to high 

reservoir depletion are challenging as well.    

The changes in reservoir properties and well conditions bring challenges for long-term 

PDG pressure interpretation.  As discussed before, they cause nonlinearities and the 

PTA methods based on the superposition principle are invalid.   

The changes in reservoir parameters and well conditions also cause production 

problems.  For instance, significant Production Index (PI) losses have been observed in 

deep offshore Gulf of Mexico reservoirs due to compaction near the wellbore, 

increasing skin, or relative permeability changes due to water production (Saputelli et al. 

2010).  Early water breakthrough and gas out solution are important events and need 

attention.  Diagnostic of these production events and making remedy responses to them 

is the key to production optimization.  

The changes in reservoir properties and well conditions also bring difficulties for 

reservoir modelling.  Reliable reservoir model can enable reservoir engineers 

understanding the past performance of oilfields, and make future forecasting and 
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provide guidelines for planning new wells.  Field studies illustrated that the analytical 

models traditionally used for conventional well test interpretation may be too simple for 

PDG data analysis (de Oliveira Silva and Kato 2004, Horne 2007), and the variation of 

reservoir properties and well conditions make the constant-property modelling cannot 

match the long-term pressure history.  Therefore, the reservoir model should be 

calibrated continuously with the new reservoir-well parameters to match the real field 

performance.   

1.2.3 Unknown flow rate history  

Production rate information is important for reservoir surveillance and management.  

For instance, production rate is the key for pressure-transient analysis to obtain reservoir 

and well parameters.  Haddad et al. (2004) pointed out that flow rate is critical for the 

recognition of time-dependent as well as rate-dependent parameters, such as time-

dependent skin and rate-dependent skin.  Besides, history-matching rate and volume 

data is essential for the development of reliable reservoir model, based on which lots of 

investment decisions can be made (McCracken and Chorneyko 2006, Ibrahim 2008).  

Furthermore, inaccurate volume information can lead to financial consequences 

between different owners and tax regimes (Cramer et al. 2011).   

However, flow rate metering is not satisfying in practice.  Although many 

measurements have been developed and applied to collect flow rate data, such as 

production-logging tools, surface and down-hole flow meters, and flow rate metering is 

less-satisfying compared with pressure and temperature measurement.  Production logs 

intervenes normal productions, and only provides flow information as a function of 

depth instead of time.  Surface multiphase flow meters may have problems when GOR 

is high, and also are limited by the space and expense.  Although permanent down-hole 

multiphase flow meters have been developed a lot in the recent years, the applications 

are not popular due to the high expense and low reliability.  Also accessibilities for 

maintenance are difficult as it is equipped at the down-hole.  

The common practice is several wells are measured together through manifolds, and 

daily, monthly rates or total cumulative production is measured with surface separation 

equipments.  The flow rate details for each individual well are unavailable.  Rate 

allocation is utilized to assign flow rate for each well from total production, based on 

the separation test on the surface.  The test frequency varies differently for different 



CHAPTER 1 INTRODUCTION    

9 

wells, from weekly to monthly.  For the well with rapidly changing conditions, test with 

weekly intervals is necessary.   However, as many producers sharing one gathering and 

separation equipments, the high test frequency for each well is not possible.  Generally, 

the allocation result is not very satisfying, due to the variable flow conditions and low 

test frequency (Bergren 1997, Udofia et al. 2012).   

1.2.4 Reservoir management with PDG                                                     

The real-time down-hole information recorded by PDG has the substantial potential to 

benefit reservoir management through production monitoring and optimization. 

Unfortunately, lots of valuable information is left in the real-time PDG pressure data 

without discovery in time, such as down-hole equipment failure, early time water 

breakthrough and gas out of solution.  Diagnosing this information and make remedy 

response is the key to real-time reservoir management.  

1.3 Research objective  

It has been noted that the long-term PDG transient pressure data analysis is not 

satisfying to provide enough valuable information for reservoir management.  In 

summary, the research objective of this study is realizing the potential of PDG as the 

tool of reservoir management through developing new algorithms for PDG pressure 

processing and analysis.  To achieve this objective, the following works need performed: 

1. Developing a novel method of diagnosing nonlinearities from pressure data to 

correctly apply PTA methods which are based on the linearity assumption.  

2. Analysing long-term pressure data with nonlinearities; 

3. Diagnosing production problems and events for production monitoring and 

optimization.  

4. Reconstructing unknown rate history from pressure data in the single phase and 

multi-phase reservoir, considering the effect of wellbore storage, skin factor, 

reservoir heterogeneity and well interference. 

5. Diagnosing the changes in reservoir properties and well conditions and updating 

reservoir model continuously using time-dependent reservoir-well parameters 

derived from PDG pressure data. 
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1.4 Thesis Outline 

The thesis is organized as follows: 

Chapter 2 discusses the theory and application of wavelet transform.  The literatures 

related to the study in this thesis are reviewed, including the PDG pressure data 

processing and analysis, diagnostic of the changes in reservoir-well properties and 

methods of reconstructing unknown flow rate history.  

Chapter 3 presents a novel method for nonlinearity diagnostic.  Different kinds of 

nonlinearities due to the changes in reservoir properties and well conditions are 

diagnosed from the transient pressure data with the wavelet transform.   

Chapter 4 proposes the method of reconstructing flow rate history from the transient 

pressure data using wavelet transform.  The effects of skin, wellbore storage, data noise, 

reservoir heterogeneity, well interference, compressible gas flow and multiphase flow 

are researched.   

Chapter 5 illustrates the sliding window technique for long-term transient pressure data 

analysis and reservoir model calibration.  The time-dependent reservoir-well parameters 

are diagnosed and analysed, and used for update near wellbore model. 

Chapter 6 uses the field PDG pressure data to valid the developed algorithms in this 

thesis, including (1) reconstructing flow rate history from the PDG pressure data and 

daily rate; (2) diagnosing time-dependent reservoir-well parameters for model 

calibration with sliding window technique .  

Chapter 7 concludes major results in the thesis and gives suggestions for the future 

work based on the current experience.  
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Chapter 2  Wavelet Theory and Literature Review 

2.1 Introduction 

In this chapter, the theory of wavelet transform is introduced and literatures related to 

the study in this thesis are reviewed.  

Section 2.2 briefly introduces the theory of wavelet transform.  Wavelet transform is a 

multi-resolution frequency analysis method, and has been widely applied in petroleum 

industry.  The study carried out in this thesis is based on wavelet transform.  The 

selection of mother wavelet and scale parameter 𝑠 is researched.  Section 2.3 gives the 

literature review related to PDG pressure data processing and interpretation.  Section 2.4 

presents the review of the methods of diagnosing the changes in reservoir properties and 

well conditions.  The methods of reconstructing unknown flow rate history are reviewed 

in section 2.5. 

2.2 Wavelet theory  

2.2.1 Wavelet history and application  

Although the first literature related to wavelet was as early as 1910 when Haar wavelet 

was proposed, the wide development and application of wavelet started in 1980s from 

seismic signal processing area by Morlet (1982).  Grossman and Morlet invented the 

term wavelet in 1984, and the concept of multi-resolution was proposed in 1988 by 

Mallat and Meyer.  The relationship between quadrature mirror filters and orthogonal 

wavelet bases was discovered and multi-resolution analysis method provided a powerful 

tool in digital signal processing.  In the same year, Daubechies developed a series of 

compact support orthogonal wavelet functions.  Since then, wavelet transform has been 

widely applied in many disciplines of science and engineering (Daubechies 1988, 

Mallat 1989, Mallat 1998).  

Guan et al. (2004) provides a review of wavelet application in petroleum industry, such 

as reservoir model characterization, geological model upscaling, data denoising and 

solving partial differential equations.  

Panda et al. (1996) applied wavelet transform to upscale heterogeneous permeability 

remove white noise and identify local discontinuities.  Jansen and Kelkar (1998) used 
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wavelet analysis to upscale fine geological models, and the accuracy and computational 

efficiency are improved.  Lu and Horne (2000), Sahni and Horne (2005) also 

demonstrated multi-resolution wavelet analysis is effective in reservoir characterization, 

such as estimating reservoir parameters and their distribution. Soliman et al. (2003) 

applied Daubechies wavelet to analyse transient pressure data to determine wellbore 

anomalies, boundary effects and etc.  Moridis et al (1996) used wavelet to solve the 

nonlinear partial differential equation of the oil and water two-phase flow.  

The first application of wavelet analysis in PDG pressure data processing was proposed 

by Kikani and He (1998) and Athichanagorn et al. (1999).  They found that wavelet is 

effective in processing PDG pressure data, outlier removal, deniosing, transient 

identification and etc.  Since then dozens of paper have been published, and the 

performance of wavelet in PDG pressure data processing and analysis has been 

improved a lot (Ouyang et al. 2002, Viberti et al. 2007, Zheng et al. 2007, Ribeiro et al. 

2008).    

2.2.2 Wavelet Transform (WT) 

A large amount of information carried by a signal may be hidden in time-domain, but it 

can be revealed in frequency-domain with a mathematical transform.  The most popular 

frequency analysis method is Fourier Transform (FT).  A signal is considered to be 

constructed by a superposition of sine and cosine waves with different frequencies in FT: 

𝑓 𝑡 =
1

 2𝜋
 𝑓 
∞

−∞
(𝜔)𝑒−𝑖𝜔𝑡𝑑𝜔                                                                          (2.1) 

where 𝑓 (𝜔) is Fourier coefficients, representing the spectral component of 𝑓 𝑡  at the 

certain frequency: 

 𝑓  𝜔 =
1

 2𝜋
 𝑓
∞

−∞
(𝑡)𝑒−𝑖𝜔𝑡𝑑𝑡                                                                          (2.2) 

The disadvantage is that FT loses the time information of certain frequency content, and 

only gives the average information on the signal as the whole.  Therefore, FT has 

disadvantage for analysing non-stationary signal, as the frequency contents change over 

time.   

To overcome this deficiency, Short-Time Fourier Transform (STFT) is proposed (Gabor 

1946): 
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 𝑆𝑇𝐹𝑇 𝑓 𝑡   𝜔, 𝜏 =  𝑓 𝑡 𝑔(𝑡 − 𝜏)𝑒−𝑖𝜔𝑡𝑑𝑡
∞

−∞
                                              (2.3) 

where 𝑔 𝑡  is the window function, which ensures STFT can provide some information 

about both when and at what frequency a signal event happens.  The drawback is the 

window size is fixed and the same window is used for the analysis of the whole signal.  

In fact, flexible window sizes are recommended to analyse non-stationary signal, i.e. the 

large window for low frequency information and small window for high frequency 

information.  

Wavelet transform is a multi-resolution frequency analysis method, and can utilize 

different window size to analyse the signal with variable frequency contents, i.e. long-

time window analysing low-frequency information and short-time window analysing 

high-frequency information.  Figure 2-1 depicts the comparison of FT, STFT and WT 

three different kinds of frequency analysis method.  Wavelet transform is the most 

suitable frequency analysis method for analysing non-stationary signal, such as long-

term transient pressure data from PDG. 

Wavelet 𝜓 𝑡  refers to the oscillatory function like a wave and has an average value of 

zero:  

 𝜓(𝑡)
∞

−∞
= 0                                                                                                     (2.4)  

where 𝜓 𝑡  is the mother wavelet function, and is shifted by translation parameter 𝑢 and 

dilated by scale parameter 𝑠: 

𝜓𝑢 ,𝑠 =
1

 𝑠
 𝜓(

𝑡−𝑢

𝑠
)

∞

−∞
𝑑𝑡, while 𝑠 > 0                                                               (2.5)                  

The wavelet transform of signal  𝑓 𝑡  at scale 𝑠 and position 𝑢  is computed by 

correlating signal 𝑓 𝑡  with wavelet 𝜓𝑢 ,𝑠  : 

𝑊𝑓 𝑢, 𝑠 =  𝑓 𝑡 
1

 𝑠

+∞

−∞
𝜓  

𝑡−𝑢

𝑠
 𝑑𝑡                                                                   (2.6)          
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Figure 2-1: Different frequency analysis methods.  Wavelet transform is multi-

resolution frequency analysis method (Source: Matlab/wavelet toolbox user’s guide). 

When a small scale parameter 𝑠 is selected, high frequency information of signal can be 

analysed, which also gives the detailed information of the signal.  For the large scale 

parameter  𝑠 , low frequency information and coarse approximation of signal can be 

analyzed.  With this multi-resolution character, wavelet transform is more efficient to 

analyse non-stationary signals.  

The WT coefficients 𝑊𝑓 𝑢, 𝑠 contain information on the difference between two 

approximations of signal 𝑓 𝑡  on two successive scales.  The approximation of signal 

𝑓 𝑡  can be calculated from the complementary transform: 

𝐶𝑓 𝑢, 𝑠 =  𝑓 𝑡 
1

 𝑠

+∞

−∞
∅ 

𝑡−𝑢

𝑠
 𝑑𝑡                                                                  (2.7)                             

where ∅(𝑡) is scale function, and it is orthogonal to 𝜓 𝑡 : 

 ∅(𝑡)
∞

−∞
= 1                                                                                                   (2.8)  
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Wavelet function 𝜓 𝑡  defines a high-pass filter and scale function ∅(𝑡) defines a low-

pass filter.  The original signal 𝑓 𝑡  is decomposed into two components: the details 

𝑊𝑓 𝑢, 𝑠  derived from wavelet transform and the approximation 𝐶𝑓 𝑢, 𝑠  calculated 

from complementary transform.   

There are dozens of types of mother wavelet.  Haar wavelet is the simplest and most 

widely applied one.  It is discontinuous and the most compactly supported wavelet of all 

the orthogonal family of wavelets.  The definition of Haar wavelet is: 

𝜓 𝑡 =  

1,         0 ≤ 𝑡 <
1

2
             

−1        
1

2
≤  𝑡 < 1               

  0,          𝑜𝑡𝑒𝑟𝑤𝑖𝑠𝑒             

                                                              (2.9)       

Its scale function is:  

∅ 𝑡 =  
1,        0 ≤ 𝑡 < 1            

         
  0,          𝑜𝑡𝑒𝑟𝑤𝑖𝑠𝑒             

                                                               (2.10) 

Many other groups of wavelets are also widely applied, as shown in Figure 2-2, 

including: 

 Daubechies family of wavelets 

 Meyer wavelet 

 Morlet wavelet 

 Mexican hat wavelet 

 Coiflet family of wavelets 

 Symlet family of wavelets 
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Figure 2-2: Different kinds of mother wavelet.  

There are two kinds of wavelet transform: Continuous Wavelet Transform (CWT) and 

Discrete Wavelet Transform (DWT).   

CWT is continuously changing scale parameter 𝑠 and translation parameter 𝑢 to perform 

WT at very scale and very location of the signal 𝑓 𝑡 .  Lots of information is obtained 

but too much space is occupied.  To overcome this drawback, CWT can perform on 

some suitable scale parameter  𝑠  instead of all the scale parameters.  By selecting 

different scale factors 𝑠, the detailed information on different levels can be obtained.   

DWT performs wavelet transform on partial scale and position. Dyadic wavelet 

transform, which chooses the scale and position based on powers of two, can make the 

amount of work smaller.  The most efficient way to process DWT is Mallat algorithm.  

In fact, it is two-channel sub-band coder in signal processing.  Figure 2-3 shows with 

DWT the signal is decomposed into two parts.  The first part is the detailed signal, 

which includes the high frequency information.  The second part is the approximation 

signal, which contains low frequency information of the signal.  During this procedure, 

the data number reduces to the half due to down-sampling.   
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Figure 2-3: Discrete Wavelet Transform (DWT) (source: Matlab/wavelet toolbox user’s 

guide) 

Iterate the decomposition process by decomposing the approximation signal, and the 

signal is divided into many lower-resolution components.  This is called wavelet 

decomposition tree, as shown in Figure 2-4. Figure 2-5 presents the wavelet 

decomposition tree of the pressure signal at level 3, including the detail signal D1 at 

level 1, detail signal D2 at level 2, detail signal D3 and approximation A3 at level 3.  

The data number is reduced due to down-sampling.  

              

 

    Signal 

D1 A1 

 

D2 A2 

D3 A3 

Figure 2-4: Wavelet decomposition tree.  The signal is decomposed into several detailed 

signals D and approximations A.    
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Figure 2-5: The wavelet decomposition tree of the pressure signal at level 3.  

Figure 2-6 shows the signal decomposition and reconstruction process with wavelet.  

This can be used for signal filtering, such as data denoising.  It includes three 

procedures, signal decomposition with DWT, redefining wavelet coefficients and signal 

reconstruction.  Initially, signal is decomposed to several detailed signals and 

approximations.  Then some wavelet coefficients are modified to denoise.  The value of 

wavelet coefficients 𝑊𝑓 𝑢, 𝑠  is above the threshold is kept and otherwise it is 

redefined.  Finally, the signal is reconstructed from the modified wavelet coefficients.  

 

Figure 2-6: Signal decomposition and reconstruction with wavelet transform (source: 

Matlab/wavelet toolbox user’s guide) 
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2.2.3 Mother wavelet selection  

As discussed before, there are dozens of mother wavelets.  Figure 2-7 shows six 

different kinds of mother wavelet is used to processing transient pressure data, including 

Haar, Daubechies 5, coif5, sym8, Morlet, and Meyer wavelet.  All wavelets are 

sensitive to the flow event in pressure data due to the change in flow rate.  There are 

amplitudes of WT coefficients for the time of flow events in pressure.  For the Haar 

wavelet, only one direction of amplitudes of WT coefficients appears.  That is positive 

amplitudes for pressure DD and negative amplitudes for pressure BU.  Pressure BU and 

DD can be identified and distinguished with Haar wavelet.  But for other kinds of 

wavelets, when there are flow events double directions of WT amplitude will appear.  

Besides, the resolution of flow event identification is lower than Haar wavelet, 

especially when flow events happen closely.  The reason is that Haar wavelet is the 

most compactly supported wavelet and also it is discontinuous, which is good for 

transient identification.   

 

Figure 2-7: Transient pressure data is processed with CWT on scale 2 using the Haar, 

db5, coif5, sym8, Morlet and Meyer wavelet. 

2.2.4 Scale parameter 𝒔 selection  

CWT performing on selected scale parameter 𝑠 is used in this study.  Selecting the most 

suitable scale parameter  𝑠  is a problem.  There are two factors that need to be 

considered: identification resolution and pressure data noise.  

Identification resolution 
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When selecting the small scale parameter 𝑠, high frequency information for the pressure 

data can be analysed.  This is very useful for transient identification, as flow events are 

the high frequency information in pressure data.   When large scale parameters 𝑠 are 

used, the approximate information of pressure data can be analysed. 

Figure 2-8 shows a part of transient pressure data is processed by the Haar wavelet with 

CWT with different scale parameters 𝑠.  There are three flow events from the time 2.5 

day to 2.52 day, which is nearly 30 minutes.  When the scale 2 is selected to process 

CWT, three amplitudes appear in the WT coefficients plot at the same time when flow 

events happen.  Therefore, flow events can be identified from the WT coefficients plot.  

When scale parameter 𝑠 = 8, time resolution becomes lower, but there are still three 

amplitudes representing three flow events.  When scale parameter 𝑠 = 16, only two 

amplitudes are left.  The small flow event in the middle is merged by the two bigger 

flow events beside.   That means the small flow event is missed when using scale 

parameter 𝑠 = 16 to identify flow events.  When 𝑠 = 32, only the biggest flow event 

can be identified and two smaller flow events are missed for identification.  In this 

regard, it is better to choose a smaller scale parameter 𝑠 to identify all flow events.  

 

Figure 2-8: Pressure data is processed by the Haar wavelet using CWT with different 

scale parameter 𝑠. 

Noise influence 

Noise is a group of data scattering around the true signal, and it is very common in PDG 

pressure data.  It can affect flow event identification, because it also is the high 
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frequency information.  Figure 2-9 shows the noisy pressure data is processed with 

CWT with different scale parameter 𝑠.  It is difficult to distinguish flow events from the 

noise on the WT coefficients plot when a small scale parameter 𝑠 is used.  For the larger 

scale parameter 𝑠, the difference between flow events and noise becomes clear and can 

be distinguished.  

 

Figure 2-9: The noisy pressure data is processed by the Haar wavelet using CWT with 

different scale parameters 𝑠. 

From the noise point of view, it is better to select a larger scale factor to avoid the noise 

effect.  However, as discussed before, a large scale factor may miss small flow events.  

To reduce the uncertainties, the pressure data with noise is recommended to be 

processed at first, including denoising, outlier removal and etc.  Then the clean pressure 

data can be processed with CWT with small scale parameters 𝑠 to identify all the flow 

events.  The methods of pressure data processing are reviewed in section 2.3.   

2.3 Literature review of PDG pressure data processing and interpretation 

Several workflows for long-term PDG pressure data processing and interpretation have 

been proposed.  Athichanagorn et al. (1999) presented the seven-step procedure to 

analyse the long-term data, including outlier removal, denoising, transient identification, 

data reduction, flow-history reconstruction, behavioural filtering and moving window 

analysis. Wavelet-based algorithm was applied in the initial four steps for data 

processing with good performance.  Nonlinear regression and moving window method 
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were used for reconstructing unknown flow history and calculating the reservoir 

parameters which change with time.    

Olsen and Nordtvedt (2005a, 2005b, and 2006) proposed two-module procedure 

involving an automated filter and an automated regression well test module.  The first 

module consisted of several elements including outlier removal, denoising, compression, 

transient detection, slug detection and continuous noise estimation.  The well test 

module used regression analysis to calculate reservoir parameters with defined 

confidence interval.  

Li (2009) improved the workflow based on the two workflows illustrated above.  New 

workflow for PDG data processing was proposed, including data pre-processing, outlier 

removal, flow event detection, identification of BU and DD, denoising, data reduction 

and identifying abnormal events.  After data processing, short transients were analysed 

with conventional well test methods and long-term transients were analysed with 

numerical well testing for reservoir model calibration.  Meanwhile, deconvolution was 

applied to extend flow event time but before that the identification of nonlinearity for 

the complex reservoir system was necessary.   

2.3.1 Review of PDG pressure data processing  

Data processing aims to improve the data quality for better pressure data interpretation.  

Generally it consists of data pre-processing, outlier removal, transient identification, 

denoising and data reduction.  Each element is briefly reviewed as follows.  

Data pre-processing    

This procedure was introduced by Li (2009), includes removing the negative values and 

repetitive values, converting time and pressure format, shifting datum and etc.  Data 

interpolation may be needed to ensure the dataset has equal time intervals, which is 

required by wavelet algorithm.  However, outliers may be introduced during the data 

interpolation (Athichanagorn, 1999).  

Outlier removal   

As PDG pressure data is collected in the uncontrolled environment, large disturbances 

at the down-hole and temporary sensor/transmitter failure can cause outliers.  There are 

two types of outliers: spike outlier and step outlier (Khong, 2001).  The spike outlier is 
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one or two data are away from the trend of data, and the step outlier is a group of data 

are away from the true value, such as some zero or large negative or positive numbers 

due to the failure of pressure gauges.  Wavelet-based method (Athichanagorn et al. 1999, 

Ribeiro et al. 2008) can identify spike outliers in detail signal after wavelet 

decomposition.  

As shown in Figure 2-10, the spike outlier in pressure data causes two consecutive 

singularities.   In the detailed wavelet signal, spike outliers can be identified by two 

large WT coefficients with two opposite directions.  However, this method fails to 

remove step outliers and manual removal was suggested by Khong (2001).  Olsen and 

Nordtvedt (2005a) showed that the median filter with accurate noise estimation to 

remove spike outliers is more efficient than a purely wavelet based method.      

 

Figure 2-10: Identification of spike outlier and step outlier with wavelet transform.  

Transient identification  

PDG pressure history consists of hundreds of transient events.  Identification of the 

exact beginning time of transient event is critical for transient pressure interpretation.  

Wavelet modulus maxima method was initially proposed by Kikani and He (1998), and 

it was improved by Athichanagorn et al. (1999).  However, wavelet modulus maxima 

method does not always provides satisfactory result.  Depending on the threshold, some 

break points may be missed and false break points may be detected.  Rai and Horne 

(2007) illustrated that the wavelet algorithm had some limitations in transient 

identification, and they presented two non-wavelet approaches: the Savitzky-Golay (S-



CHAPTER 2 WAVELET THEORY AND LITERATURE REVIEW  

24 

G) polynomial smoothing filter algorithm and a novel pattern recognition approach 

called the Segmentation Method.  Thomas (2002) and Olsen and Nordtvedt (2005a) 

applied pattern recognition for transient detection.  Ouyang and Kiknai (2002) and 

Ribeiro et al. (2008) utilized the pressure slop approach for automatic transient 

detection, but the transient threshold value need to be set and adjusted by users with a 

trail-and-error procedure.  Suzuki and Chorneyko (2009) proposed the filter convolution 

method to automatically detect pressure BU intervals from PDG pressure data.  

Data denoising  

Denoising is reducing the fluctuations and scatterings to extract the main feature of the 

data.  Wavelet thresholding method is the most effective approach.  After wavelet 

decomposition, small fluctuation in detail signal caused by noise is suppressed, and 

denoised data can be reconstructed with smoother sub-signals.  Haar wavelet combined 

with soft-thresholding was recommended by Kikani and He (1998).  Athichanagorn et 

al. (1999) proposed a hybrid threshold method.  For this method, the soft thresholding 

criterion is used in continuous data, and the hard thresholding criterion is applied to the 

vicinity of discontinuities.   

Noise level estimation is crucial for denoising.  Khong (2001) estimated the noise level 

with least square error straight line fit, however the assumption that pressure varies 

linearly with time is not valid for most of the time according to Ouyang and Kiknai 

(2002), so they improved this algorithm using the polytope nonlinear regression 

approach.  Olsen and Nordtvedt (2005a), Ribeiro et al. (2008) and Ortiz et al. (2009) 

used the Median Absolute Deviation (MAD) to estimate the noise level, and the median 

is taken over the details at the first wavelet decomposition.  

A simple denoising case using wavelet decomposition and reconstruction theory is 

presented to illustrate the workflow.  Figure 2-11 presents a part of pressure data with 

noise and the detailed signal of wavelet transform with Haar wavelet.  Noise and flow 

events are the high frequency information of the pressure signal, but the difference 

between noise and flow events is the value of WT coefficients.  The WT coefficients of 

noise are small and are round zero, and WT coefficients of flow events are large.  Noise 

threshold can be set to separate the noise and flow events.  The WT coefficients due to 

noise which are small than the threshold will be redefined to be zero and WT 

coefficients due to flow events which are large than the threshold is kept: 
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  𝑊𝑓 𝑡  > 𝑇𝐻𝑅,      𝑊𝑓 ′ 𝑡 = 𝑊𝑓 𝑡 

 
  𝑊𝑓 𝑡  ≤ 𝑇𝐻𝑅,      𝑊𝑓 ′ 𝑡 = 0

                                                     (2.11)             

 

Figure 2-11: Noisy pressure data and wavelet transform with the Haar wavelet.  

The redefined WT coefficients 𝑊𝑓 ′ 𝑡  instead of original WT coefficients 𝑊𝑓 𝑡  are 

used for signal reconstruction.  In this way, noises are removed from the original signal.  

Figure 2-12 presents the denoised pressure data and the removed noise compared with 

the original pressure data.  The denoised pressure data is smooth and clean, and is better 

for pressure-transient analysis.  

 

Figure 2-12: Denoised pressure data with the removed noise compared with the original 

pressure data.  
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Data reduction  

As PDG collects pressure data with high frequency, enormous data size causes 

inconveniencies for data storage, visualization, processing and interpretation.  Reducing 

data size but keeping the representative data feature is necessary.  One of the methods is 

the pressure thresholding combined with time thresholding method (Athichanagorn et 

al., 1999).  The pressure data will be recorded when the pressure change is higher than 

the pressure threshold and whenever the time span between samples is higher than the 

time threshold.  

2.3.2 Review of PDG pressure data interpretation 

It is well known that the long-term PDG pressure data has the potential to provide more 

reservoir information than the short time tradition well testing (Horne 2007).  PDG 

pressure data is inherent combination of short-term transient and long-term characters.  

The short-term transient character can be utilized for reservoir description with 

conventional well test analysis methods, and the long-term character provides a new 

time dimension for reservoir description and production monitoring. 

Interpreting PDG pressure data to reveal significant amount of reservoir and well 

information is challenging.  The methods of PDG pressure data interpretation is 

reviewed in this section.  

Conventional well test methods  

PDG pressure data consists of hundreds of pressure BUs and DDs.  The common 

interpretation procedure for the industry is separating pressure BUs and DDs through 

transient identification, and flow events are analysed separately.  As flow rate 

information is unknown for majority and flow rate is unstable, only pressure BU data 

has the quality for pressure-transient analysis with traditional well test methods.  

Initially well test techniques come from water hydrology, such as semilog straight line 

and type-curve matching.  Before 1980s, well testing was limited to estimate well 

conditions and provide little reservoir information with early interpretation methods 

(straight line analysis, type-cure and log-log pressure plot).  Considering the nature of 

inverse problem for well testing, the ambiguity and non-uniqueness problem was huge 

at that time.  With the pressure derivative technique introduced by Bourdet et al. (1983) 
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and the development of complex interpretation models, well testing become a powerful 

tool in reservoir characterization (Gringarten, 2007).   

Generally well testing is made up of several flow regimes, from wellbore storage and 

near wellbore conditions to the late time boundary effect.   Log-log pressure derivative 

can effectively identify different flow regimes, and also is an effective diagnosis tool for 

interpretation reservoir model selection.  For each flow regime, straight line analysis 

methods such as Horner plot are applied to obtain corresponding well or reservoir 

parameters.   

Nonlinear regression  

Nonlinear regression is a well-established technique for well test interpretation.   

Initially, it was introduced in 1970s for automatic well test analysis to replace the type-

curve analysis technique (Earlougher and Kersch 1972, Rosa and Horne 1983, Rosa and 

Horne 1996).  Reservoir parameters are estimated by minimizing the sum of the squares 

of the differences between the observed pressure/pressure-derivative and the calculated 

value based on the reservoir model (Horne 1994, Anraku and Horne 1995, Onur and 

Reynolds 2002).  

For PDG pressure data analysis, Athichanagorn et al. (1999) used nonlinear regression 

to estimate unknown flow rate history and reservoir parameters.   Olsen and Nordtvedt 

(2006) applied automated regression well test module to detect changes or calculate 

average reservoir parameters with confidence intervals.  

Deconvolution   

Deconvolution transforms variable-rate pressure data into an equivalent constant-rate 

pressure response, and the deconvolved response can have a substantially larger radius 

of investigation than that from a single flow period.  In a linear system, the well 

pressure during a variable-rate test is given by the convolution integral (van Everdingen 

and Hurst 1949):   

𝑝 𝑡 = 𝑝0 −  𝑞(𝜏)
𝑑𝑝𝑢 (𝑡−𝜏)

𝑑𝑡
𝑑𝜏

𝑡

0
                                                                         (2.12) 

At here, 𝑝0 is the initial reservoir pressure, 𝑞(𝜏) is the flow rate, 𝑝 𝑡 is down-hole 

pressure, and 𝑝𝑢(𝑡) is the rate normalized constant rate pressure response, assuming the 
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reservoir is in equipment with uniform pressure.  Eq. 2.12 is pressure-rate 

deconvolution, which aims to reconstruct unit constant-rate pressure response 𝑝𝑢(𝑡).  

Another kind of deconvolution is rate-pressure deconvolution, which aims to 

reconstruct the pressure normalized constant-pressure rate response 𝑞𝑢𝑝 (𝑡):  

𝑞 𝑡 =  𝑞𝑢𝑝 (𝑡 − 𝜏)
𝑑∆𝑝(𝜏)

𝑑𝜏
𝑑𝜏

𝑡

0
                                                                          (2.13) 

Deconvolution is not a new interpretation method.  Many papers related to 

deconvolution algorithm have been published, and these algorithms can be classified 

into two groups: spectral method and time domain method.  Although lots of 

deconvolution algorithms have been proposed, few of them are robust enough for field 

application.  Deconvolution is an ill-posed inverse problem, which means small errors 

of input can lead to large change in output.  Deconvolution hadn’t been applied widely 

in the industry until the publication of the stable algorithm using nonlinear total least 

squares method (von Schroeter et al. 2001 and 2004).   

In von Schoroeter method, Eq. 2.12 is solved not for the unit constant-rate pressure 

response 𝑝𝑢(𝑡), but for the function 𝑧(𝜍).  𝑧 𝜍  is based on the derivative of  𝑝𝑢(𝑡) with 

respect to the natural logarithm of time: 

𝑧 𝜍 = 𝑙𝑛  
𝑑  𝑝𝑢 (𝑡)

𝑑𝑙𝑛 (𝑡)
 = 𝑙𝑛  

𝑑  𝑝𝑢 (𝜍)

𝑑𝜍
                                                                       (2.14) 

where 𝜍 = 𝑙𝑛(𝑡).  Eq. 2.14 can ensure 
𝑑  𝑝𝑢 (𝑡)

𝑑𝑙𝑛 (𝑡)
 is positive.  The convolution integral of Eq. 

5.1 becomes a nonlinear convention equation: 

𝑝 𝜍 = 𝑝0 −  𝑞(𝜏 − 𝑒𝜍)𝑒𝑧 𝜍 𝑑𝜍
ln 𝑡

−∞
                                                                 (2.15)  

Besides, the curvature of 𝑧 𝜍 is regularized to enforce the smooth of the solution 

of𝑧 𝜍 .  Considering the error of pressure, rate and regularization curvature constraints, 

deconvolution is formulated as the unconstrained nonlinear minimization.  The 

objective function is defined as follow: 

𝐸 𝑝0, 𝒛,𝒚 =  𝑝0𝒆 − 𝒑𝑚 − 𝑪 𝒛 𝒚 2
2 + 𝜐 𝒚 − 𝒒𝑚 2

2 + 𝜆 𝑫𝒛 − 𝒌 2
2            (2.16) 

In Eq. 2.16, 𝒑𝑚and 𝒒𝑚 is measured down-hole pressure and flow rate; 𝒚 is calculated 

flow rate; 𝒌  is curvature measure;  𝒛  is the response coefficient.  The  𝜐and 𝜆  is the 
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relative error weight and regularization parameter, and von Schoroeter et al. recommend 

the default values of these two parameters based on error analysis with Gaussian 

statistics.  

Based on von Schoroeter method, Levitan (2005) and Levitan et al. (2006) made some 

improvements with practical considerations. Firstly, the assumption unit-slope in 

wellbore storage before the first node is removed.  The first node 𝑡1 is very small and 

Eq. 2.12 becomes: 

𝑝 𝜍 = 𝑝0 − 𝑞 𝑡𝑖 𝑝𝑢(𝑡1)−  𝑞(𝜏 − 𝑒𝜍)𝑒𝑧 𝜍 𝑑𝜍
ln𝑡

−∞
                                        (2.17) 

Besides, the objective function is an unconstrained and nonlinear weighted least-squares 

function and including the sum of mismatch terms for pressure, rate and curvature: 

𝐸 𝑝0,𝑝𝑢 𝑡1 ,𝒛,𝒚 =
1

2
 
𝑝0𝒆−𝒑𝑚−𝑝𝑢  𝑡1 𝒚 −𝐶  𝑧 𝒚

𝜎𝑝
 

2

2

+
1

2
 
𝒚−𝒒𝑚

𝜎𝑞
 

2

2

+
1

2
 
𝑫𝒛

𝜎𝑐
 

2

2

       (2.18) 

𝜎𝑝  , 𝜎𝑞  and 𝜎𝑐 is error bounds for the pressure, rate and curvature constrains.  

The unit constant-rate pressure response  𝑝𝑢(𝑡)  can be reconstructed from the 𝑧 𝜍  

function: 

𝑝𝑢 𝑡 = 𝑝𝑢 𝑡1 +  𝑒𝑧(𝜏)𝑑𝜏
𝑙𝑛𝑡

𝜏1
                                                                         (2.19) 

Ilk et al. (2005 and 2006) presented B-Spline deconvolution and applied this algorithm 

on gas well testing.   

With the installation of permanent down-hole pressure and rate measure systems, 

deconvolution becomes more important as it can process pressure and rate data 

simultaneously and obtain the underlying reservoir properties which change with time 

(Onur et al. 2008).  Using the stable algorithm, deconvolution has been applied to 

analyse the long-term PDG pressure data to identify reservoir compartments 

connectivity, diagnose production problems and with practice applications (von 

Schroeter et al. 2002, Gringarten et al. 2003, Gringarten 2005 and 2010).  

Decline curve analysis  
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Decline curve analysis is the most widely used method for the long-term production 

data analysis.  The constant-pressure rate data is analysed for reservoir estimation and 

production forecasting for a reservoir under depletion.  PDG can provide long-term 

pressure and rate data during the pseudo-steady state or depletion, and the rate-pressure 

deconvolution can convert the production data with varying pressure data into constant-

pressure rate data, so the decline curve analysis method has the potential to provide 

valuable reservoir information.  

Unneland et al. (1998) presented three field case studies about analysing PDG pressure 

and rate data using decline curve analysis, and the production data variable down-hole 

flowing pressure was processed by rate convolution.  With the stable rate-pressure 

deconvolution algorithm and decline curves, Kuchuk et al. (2005) proposed a 

methodology for monitoring well production index, forecasting production and 

estimating reservoir.   Meanwhile, decline curve also was utilized as a diagnostic tool 

for production problems (Anderson and Mattar 2004, Ilk et al. 2010).  

2.4 Literature review of diagnostic of the change in reservoir properties and well 

conditions  

As discussion above, the diagnostic of changes in reservoir parameters and well 

conditions is important for long-term pressure analysis, production monitoring and 

reservoir model calibration.  Many diagnostic methods have been proposed.   

PI is a straightforward and simple method of monitoring the well performance, and it is 

defined as: 

PI =
𝑞𝑚 (𝑡)

 𝑝 𝑡 −𝑝𝑚 (𝑡) 
                                                                                                 (2.20)                                       

Here 𝑝  is the average reservoir pressure, 𝑞𝑚  and 𝑝𝑚  is the measured flow rate and 

down-hole pressure.  Unneland et al. (1998) used PI for production monitoring and 

diagnostic.  Figure 2-13 shows the PI reduction after 200 days and PI increased 

substantially as the result of fracturing operation.   Kuchuk et al. (2005) used the PI to 

check the changes in near wellbore reservoir parameters, before applying constant-

pressure rate response (deconvolved rate from rate-pressure deconvolution) for 

production optimization and prediction, and they mentioned that the deconvolution 

can’t be carried out during the entire production history with the changes in near 

wellbore reservoir parameters.  However, PI should be estimated during the steady-state 
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or pseudo-steady state period, and average pressure 𝑝 should be updated continuously 

due to reservoir depletion.   This means PI can’t be a real-time diagnostic tool.  

 

Figure 2-13: Well PI diagnostic plot for Field Case 3 in Unnrland et al. (1998) paper.  

Decline curve analysis with type-curve is another method for diagnosing production 

problems.  Anderson et al. (2004) applied this method to identify liquid loading and 

changing wellbore skin, detect a shift in well productivity and diagnose external 

pressure support and interference.  For this method, changes in overall well productivity 

can be identified for the discontinuities in the data from a type-curve match (Anderson 

et al. 2004, Kuchuk et al. 2005, and Ilk et al. 2010).  However, a suitable reservoir 

model providing adequate reservoir/well descriptions needs to be selected at first, and 

the production should be long enough that the reservoir is in depletion.  Besides, 

production data should be equivalent constant-pressure rate data.   

Deconvolution has received much attention in the last 10 years.  Ilk et al. (2010) and Li 

et al. (2011) used the deconvolution to diagnose the nonlinearity in the reservoir, under 

which conditions superposition principle is invalid.  Gringarten et al. (2003) applied 

deconvolution to diagnose production problems from PDG data, such as the change in 

relative permeability and water invasion.  However, there are theory uncertainties when 

applying deconvolution in complex systems without nonlinearity diagnostic at first, and 

some nonlinearity can be covered up by the optimization algorithm, such as nonlinear 

total least squares.   
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The “4D” pressure and pressure-derivative analysis in log-log plot is the most widely 

used method.  In this method, the rate-normalized pressure and its derivative from all 

pressure build-ups are plot in the same log-log plot, and the changes in reservoir-well 

parameters can be diagnosed in the log-log diagnostic plot (Haddad et al. 2004, 

Gringarten et al. 2003, Houzé et al. 2010).  Figure 2-14 shows log-log plot of pressure 

and pressure derivative on BU periods in the paper of Haddad et al. (2004).  The 

changes in pressure and pressure derivative indicate the increasing skin, decreasing 𝑘 

and gas reservoir depletion.  As the data quality from pressure DD is poor for analysis, 

only data from pressure BU is analysed.  However, few pressure build-ups are available, 

and nonlinearities can’t be diagnosed in real-time.  

 
Figure 2-14:  The “4D” pressure and pressure-derivative diagnostic plot in the paper of 

Haddad et al. (2004).  

2.5 Literature review of unknown flow rate history reconstruction  

Many methods have been proposed to reconstruct unknown flow rate history.  The most 

sample method is using production index (PI), but this method only can be used in 

pseudo-steady state or steady state.  Detailed flow events cannot be reconstructed and 

the changing PI due to changes in parameters also causes problems.  Athichanagorn et 

al. (1999) used nonlinear regression method to solve the unknown flow rate by treating 

it as an unknown parameter to match the simulated model response.  This method is 

based on the developed reservoir model, and this is difficult when the reservoir model is 
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unknown, especially for a new reservoir.  Besides, errors may be introduced due to the 

uncertainties of reservoir model.  Haugen et al. (2001) made down-hole production 

allocation using the passive acoustic listening method.  With the measured acoustic 

noise and established empirical model, flow rates of gas, water and oil can be predicted.  

However, for different reservoir models the empirical model is different, and also the 

empirical model needs calibration continuously when there are changes in environment.  

McCracken and Chorneyko (2005) made rate allocation using pressure data from 

permanent down-hole gauge.  With a created simple reservoir model, flow rate was 

adjusted as the input parameter of the simple model until the pressure response from 

model matching the pressure data from permanent down-hole gauge.  The result may be 

limited by the simple and incorrect reservoir model.   

Temperature information attracts more and more attentions in oilfields in recent years, 

with the popularity of distributed temperature sensing (DTS) and permanent down-hole 

temperature measurement.  The temperature change is closely associated with the flow 

rate behaviour, which provides another opportunity to reconstruct flow rate history 

(Duru et al. 2008).  Sun et al. (2006) predicted and allocated multiphase production in a 

multiple zone intelligent well system using down-hole real time pressure and 

temperature data.   An improved multiphase choke model has been derived based on the 

earlier multiphase choke modelling work.  Izgec et al. (2009) estimated the flow rate 

from wellhead pressure and temperature, and two methods were proposed.  For the 

entire-wellbore approach, thermal properties of fluid, tubular and formation are needed, 

and this approach also relies on modelling.  By contrast, the single-point method 

requires few input parameters and was recommended by authors.  Wellbore fluid and 

thermal effects have not been considered, but for low 𝑘 reservoirs, the error may be 

large.  Muradov et al. (2009) made zone rate allocation based on measured down-hole 

pressure and temperature data in intelligent wells.  This approach appears to be based on 

steady-state modelling.  Lorentzen et al. (2010) made improvement by combining a 

transient well flow model and the ensemble Kalman filter with the high frequency 

measurements of pressure and temperature data.  Only two simple cases were studied 

and more work needs to validate this method. 

Zheng and Li (2009) applied wavelet transform to recover flow rate history using the 

PDG transient pressure data and accumulative production.  The exact timing of rate 

change is identified through wavelet frequency analysis.  With the proportional 

relationship between the rate and the frequency amplitude of transient pressure, flow 
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rate history can be reconstructed with daily rate or total cumulative production data.  

However, many problems still need to be solved for field applications.  Firstly, this 

method is based on the assumption that reservoir system is linear, but how to diagnose 

nonlinearities in the reservoir is a problem.  Then, their theory was based on the 

homogeneous reservoir model.  The effects of data noise, wellbore storage, skin, 

reservoir heterogeneity and multi-well interference have not been considered, and the 

algorithm only can be used in the single phase oil reservoir.  The pressure-dependent 

fluid properties for gas reservoir and the total mobility changes in multiphase flowing 

reservoir raise many problems for rate calculation.  

2.6 Chapter summary  

In this chapter the wavelet theory is introduced and the literature related to this study is 

reviewed.  Several conclusions can be summarized as follows: 

1. Wavelet transform is a multi-resolution frequency analysis method and it is 

more suitable for analysing the non-stationary signal such as PDG pressure data 

compared with Fourier Transform and Short-Time Fourier Transform. 

2. The Haar wavelet can effectively identify the transient events in PDG pressure 

data using continuous wavelet transform.  When selecting scale parameter 𝑠, the 

resolution of transient identification and noise effect must be considered at same 

time.   

3. For PDG pressure data processing and interpretation, effective methods and 

algorithms have been developed, but for diagnosing the changes in reservoir-

well parameters and reconstructing unknown rate history, more research work 

needs to be done.  
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Chapter 3   Diagnostic of Nonlinearity from Transient Pressure Data  

3.1 Introduction  

In this chapter, a novel nonlinearity diagnostic method based on wavelet transform has 

been developed.  The nonlinearities due to the changes in reservoir properties and well 

conditions, such as time-dependent skin factor and permeability, water breakthrough 

and gas out of solution are diagnosed from the transient pressure data.  This novel 

diagnostic method can ensure the PTA methods based on the linearity assumption can 

be correctly applied, and reduce the uncertainties for pressure analysis.  The diagnostic 

result also is useful for production monitoring and reservoir model calibration.     

3.2 Theory description of the novel nonlinearity diagnostic method 

PDG pressure history consists of hundreds of flow events.  The changes in rate cause 

the changes in pressure data.  If the rate change is treated as input signal, the 

corresponding pressure change is output response.  The pressure change caused by the 

unit change in rate can reflect the properties of reservoir-well systems.  

For a simple case, in a linear system the well produces at constant flow rate 𝑞1 for 𝑡1, 

then followed by rate change 𝑞2  for a very small impulse time 𝛥𝑡.  The bottom-hole 

pressure 𝑝𝑤𝑓1 at the time 𝑡1: 

𝑝𝑤𝑓1 = 𝑝0 − 𝑞1  𝑔 𝜏 𝑑𝜏
𝑡1

0
                                                                                (3.1) 

According to superposition principle, bottom-hole pressure 𝑝𝑤𝑓2 at the time 𝑡1 + Δ𝑡 is: 

𝑝𝑤𝑓2 = 𝑝0 − 𝑞1  𝑔 𝜏 𝑑𝜏
𝑡1+Δ𝑡

0
− (𝑞2 − 𝑞1) 𝑔 𝜏 𝑑𝜏

Δ𝑡

0
                                    (3.2) 

Eq. 3.1 minus Eq. 3.2, the down-hole pressure change during the impulse time Δ𝑡 is: 

𝑝𝑤𝑓1 − 𝑝𝑤𝑓2 = (𝑞2 − 𝑞1) 𝑔 𝜏 𝑑𝜏
Δ𝑡

0
+ 𝑞1  𝑔 𝜏 𝑑𝜏

𝑡1+Δ𝑡

𝑡1
                                (3.3)     

In Eq. 3.3, (𝑞2 − 𝑞1) 𝑔 𝜏 𝑑𝜏
Δ𝑡

0
 is flow-rate change effect, and 𝑞1  𝑔 𝜏 𝑑𝜏

𝑡1+Δ𝑡

𝑡1
 is 

production history effect.  
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Similarly, for 𝑛  different flow periods, the pressure change during the last impulse 

time Δ𝑡 is: 

𝑝𝑤𝑓𝑛 − 𝑝𝑤𝑓𝑛+1 =  𝑞𝑛+1 − 𝑞𝑛  𝑔 𝜏 𝑑𝜏
𝛥𝑡

0
+  𝑞𝑖 − 𝑞𝑖−1  𝑔 𝜏 𝑑𝜏

𝑡𝑛−𝑡𝑖−1+𝛥𝑡

𝑡𝑛−𝑡𝑖−1

𝑛
𝑖=1       (3.4)   

As Eq. 3.3 and Eq. 3.4 show, the pressure change during the time Δ𝑡 is not only caused 

by the flow rate change  𝑞𝑛+1 − 𝑞𝑛  𝑔 𝜏 𝑑𝜏 
𝛥𝑡

0
, but also is affected by the production 

history   𝑞𝑖 − 𝑞𝑖−1  𝑔 𝜏 𝑑𝜏 
𝑡𝑛−𝑡𝑖−1+𝛥𝑡

𝑡𝑛−𝑡𝑖−1

𝑛
𝑖=1 .  

With the Haar wavelet processing transient pressure data, pressure changes between two 

successive flow periods can be clearly identified by the amplitude of WT coefficients.  

The WT amplitude is positive for drawdown and negative for build-up, and the height 

of amplitude depends on the pressure change.  Mathematically, WT is a linear operation, 

so the WT amplitude 𝐴 is proportional to the pressure change ∆𝑝𝑤𝑓 : 

𝐴 ∝ ∆𝑝 𝑤𝑓                                                                                                            (3.5) 

Submit Eq. 3.4 into Eq. 3.5: 

𝐴 ∝  𝑞𝑛+1 − 𝑞𝑛  𝑔 𝜏 𝑑𝜏
𝛥𝑡

0
+   𝑞𝑖 − 𝑞𝑖−1  𝑔 𝜏 𝑑𝜏

𝑡𝑛−𝑡𝑖−1+𝛥𝑡

𝑡𝑛−𝑡𝑖−1

𝑛
𝑖=1                 (3.6)   

For the infinite homogenous reservoir, the impulse response of the system function 𝑔 𝑡  

can be calculated, according to the unit constant-rate drawdown solution of the 

diffusivity equation, 𝑔 𝑡  can be expressed:  

𝑔 𝑡 =
𝑑𝑝𝑢

𝑑𝑡
=

𝑑 
70.6𝜇𝐵

𝑘
 −𝐸𝑖 −

∅𝜇𝐶𝑡𝑟𝑤
2

0.00105 𝑘∆𝑡
   

𝑑𝑡
                                                                (3.7)   

To better understand the character of 𝑔 𝑡  function, a simulated reservoir model is taken 

for research.  The reservoir properties are shown as Table 3-1.  The calculated impulse 

response function 𝑔 𝑡  of the system is shown in Figure 3-1.  Its value is the largest at 

the beginning and declines very quickly with time.  The reason is 𝑔 𝑡  equals the time 

derivative of unit-rate pressure drawdown response  𝑝𝑢 , and the down-hole pressure 

decline quickly at the beginning of production.   

For instance, if 𝑞1 =500 STB/day, 𝑞2=1000 STB/day, the production history time 𝑡1 =1 

hour, the impulse time ∆𝑡 = 1 second, and then production history effect  
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𝑞1  𝑔 𝜏 𝑑𝜏
𝑡1+𝛥𝑡

𝑡1
=0.0041 psi, rate change effect  𝑞2 − 𝑞1  𝑔 𝜏 𝑑𝜏

𝛥𝑡

0
=21.7967 psi.  

Rate change effect is much larger than production history effect.  Even 𝑡1 =1 minute, 

impulse time ∆𝑡 =1 second, history production effect is just the 2.58% of rate change 

effect. 

Table 3-1: Reservoir properties of a simulated reservoir model 

Initial pressure, 𝑝0 4000 psia 

Reservoir radius, 𝑅 10000 ft 

Thickness,  30 ft 

Oil Formation Volume Factor, 𝐵𝑜  1.2 rb/STB 

Permeability, 𝑘 𝑘𝑥 = 𝑘𝑦 =100 mD, 𝑘𝑧 =10 mD 

Porosity, 𝜙 0.25 

Viscosity, 𝜇𝑜  1 cp 

Total compressibility, 𝐶𝑡  6e-6 1/psi 

Well radius, 𝑟𝑤  0.2083 ft 

Skin factor, 𝑆 6 

Well bore storage coefficient, 𝐶𝑠 2.9e-4 bbl/psi 

 

Figure 3-1: The impulse response of reservoir system 𝑔(𝑡)in the first 1hour and zoom 

in. Its value is largest at first but it declines fast with time. 60s after it declines to 2.83%, 

and 2 minute after, it is 0.8% of the initial value. 
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When the impulse time ∆𝑡 is very small and the production history time is large, 

 𝑔 𝜏 𝑑𝜏
Δ𝑡

0
 is much larger than  𝑔 𝜏 𝑑𝜏

𝑡𝑛−𝑡𝑖−1+𝛥𝑡

𝑡𝑛−𝑡𝑖−1
, and therefore the production history 

effect in Eq. 3.6 can be neglected.  The WT amplitude is only caused by flow-rate 

change: 

𝐴 ∝  𝑞𝑛+1 − 𝑞𝑛  𝑔 𝜏 𝑑𝜏
𝛥𝑡

0
                                                                           (3.8) 

Then, the amplitude of WT coefficients 𝐴  caused by unit-rate-change 𝐴𝑢𝑟𝑐 =

𝐴/(𝑞𝑛+1 − 𝑞𝑛)  is proportional to 𝑔 𝜏 𝑑𝜏
Δ𝑡

0
, shown as Eq. 3.9.  The subscript 𝑢𝑟𝑐 

stands for unit-rate-change. 

𝐴𝑢𝑟𝑐 ∝  𝑔 𝜏 𝑑𝜏
Δ𝑡

0
                                                                                           (3.9) 

As 𝑔 𝜏  depends on reservoir-well parameters, any changes in well conditions and 

reservoir properties in/around the wellbore can be diagnosed with the 𝐴𝑢𝑟𝑐  function, 

according to Eq. 3.9.  For linear systems, as reservoir-well parameters are constant,  

𝐴𝑢𝑟𝑐  is constant with time.  When there are nonlinearities near the wellbore, 𝐴𝑢𝑟𝑐  is 

time-varying.  The 𝐴𝑢𝑟𝑐  function is used as a nonlinearity diagnostic function in this 

thesis and named as Unit Reservoir System Response (URSR).  

3.3 Base case and sensitivity study  

As discussed above, the single-phase flow of slightly compressible fluid in porous 

media with constant reservoir-well parameters is a linear system.  According to this, a 

single oil phase homogeneous reservoir is researched.  The reservoir properties are 

shown in Table 3-2.  Figure 3-2 shows production history and pressure data is 

processed with Haar wavelet.  Pressure change between successive flow periods (flow 

events) can be identified by the amplitude of WT coefficients.  The amplitude caused by 

unit-rate-change (URSR 𝐴𝑢𝑟𝑐 ) is calculated using 𝐴𝑢𝑟𝑐 = 𝐴/∆𝑞.  As shown in Table 3-

3, URSR 𝐴𝑢𝑟𝑐  is constant with time, verifying that the reservoir properties and well 

conditions are constant with time.   
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Table 3-2:  Reservoir properties in the single oil phase reservoir. 

Initial pressure, 𝑝𝑖  4000 psia 

Reservoir radius, 𝑅 10000 ft 

Thickness,  30 ft 

Oil formation volume factor, 𝐵𝑜  1.2 rb/STB 

Permeability, 𝑘 100 mD 

Porosity, 𝜙 0.25 

Viscosity, 𝜇𝑜  1 cp 

Oil compressibility, 𝐶𝑜  3e-6 1/psi 

rock compressibility, 𝐶𝑓  3e-6 1/psi 

Well radius, 𝑟𝑤  0.208 ft 

Skin factor, 𝑆 6 

Well bore storage coefficient, 𝐶𝑠 2.9e-4 bbl/psi 

 

Figure 3-2: The transient pressure is processed by WT using the Haar wavelet. 
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Table 3-3: The 𝐴𝑢𝑟𝑐  function in the single oil phase reservoir is almost same. 

Time 

(Hour) 

𝑡 

Rate 

(STB/day) 

𝑞 

Rate change 

(STB/day) 

∆𝑞 

WT amplitude 

𝐴 

URSR 

𝐴𝑢𝑟𝑐 = 𝐴
∆𝑞  

0 0    

12 500 500 183.6187 0.3672 

16.8 800 300 110.3014 0.3677 

24 1000 200 73.5773 0.3679 

67.2 0 -1000 -367.678 0.3677 

74.4 600 600 220.3397 0.3672 

76.8 1000 400 147.1281 0.3678 

117.6 300 -700 -257.417 0.3677 

118.8 800 500 183.4948 0.3669 

120 1000 200 73.6184 0.3680 

141.6 800 -200 -73.5602 0.3678 

142.8 1000 200 73.4804 0.3674 

In this case, how  𝐴𝑢𝑟𝑐  performs with the changes of different reservoir-well parameters 

will be researched.  The reservoir properties include skin factor, permeability, reservoir 

thickness, wellbore storage, wellbore size, fluid viscosity, reservoir heterogeneity and 

etc.  

As  𝑔(𝜏)𝑑𝜏
∆𝑡

0
= ∆𝑝𝑢(∆𝑡), for the homogeneous infinite reservoir, the pressure drop 

due to unit constant-rate is: 

 𝑔(𝜏)𝑑𝜏
∆𝑡

0
= ∆𝑝𝑢(∆𝑡) =

70.6𝑢𝐵

𝑘
 −𝐸𝑖  −

∅𝜇𝐶𝑡𝑟𝑤
2

0.00105𝑘∆𝑡
 + 2𝑆                            (3.10)         

Here 𝑆 is the skin factor.   When
∅𝜇𝐶𝑡𝑟𝑤

2

0.00105𝑘∆𝑡
< 0.01, Eq. 3.10 can be simplified: 

 𝑔(𝜏)𝑑𝜏
∆𝑡

0
=

70.6𝑢𝐵

𝑘
 ln∆𝑡 + ln

𝑘

∅𝜇𝐶𝑡𝑟𝑤
2 − 7.43173 + 2𝑆                                (3.11) 

Then Eq. 3.11 becomes: 

𝐴𝑢𝑟𝑐 ∝
70.6𝑢𝐵

𝑘
 ln∆ 𝑡 + ln

𝑘

∅𝜇𝐶𝑡𝑟𝑤
2 − 7.43173 + 2𝑆                                           (3.12)                      



CHAPTER 3 DIAGNOSTIC OF NONLINEARITY FROM TRANSIENT PRESSURE DATA  

41 

Eq. 3.12 shows the relationship between different reservoir-well parameters and URSR 

function  𝐴𝑢𝑟𝑐 .  To verify Eq. 3.12, the base case reservoir model with changing 

parameters is simulated and corresponding  𝐴𝑢𝑟𝑐  is calculated.   

Skin factor: According to Eq. 3.12,  𝐴𝑢𝑟𝑐  changes linearly with skin factor  𝑆.  The 

larger skin factor causes more pressure drop near the wellbore, and makes the larger 

WT amplitude for the same rate change.  The simulated result for different skin factors 

is shown in Figure 3-3.  There is linear relation between skin factor 𝑆 and URSR 𝐴𝑢𝑟𝑐 , 

and verifies the theory analysis using Eq. 3.12.  

Permeability: There are two parts related to permeability  𝑘  in Eq. 3.12,  
70.6𝑢𝐵

𝑘
 

and ln
𝑘

∅𝜇𝐶𝑡𝑟𝑤
2 .   Mathematically, the effect of 

70.6𝑢𝐵

𝑘
 is much larger than that of ln

𝑘

∅𝜇𝐶𝑡𝑟𝑤
2 , 

so  𝐴𝑢𝑟𝑐  declines with increasing permeability  𝑘 , and  𝐴𝑢𝑟𝑐  changes almost linearly 

with 1/𝑘.  The simulation results are shown in Figures 3-4 and 3-5.  

Formation thickness:  In theory, the  𝐴𝑢𝑟𝑐  function changes linearly with the reciprocal 

of formation thickness  according to Eq. 3.12, and it is verified by the simulation result, 

as shown in Figure 3-6.  

Porosity: As Eq. 3.12 shows,  𝐴𝑢𝑟𝑐  changes linearly with  𝑙𝑛
1

∅
.  Therefore the 

relationship between  𝐴𝑢𝑟𝑐  and porosity ∅  is logarithmic, and it is verified by the 

simulation result, as shown in Figure 3-7.  URSR  𝐴𝑢𝑟𝑐  decreases as porosity 

∅ increases, but the change is little compared with the effects of changes in skin factor 

and permeability.   

Viscosity: Similar with permeability 𝑘, there are two parts related to viscosity 𝜇 in Eq. 

3.12, 
70.6𝑢𝐵

𝑘
 and ln

𝑘

∅𝜇𝐶𝑡𝑟𝑤
2 .  As the effect of 

70.6𝑢𝐵

𝑘
 is much larger,  𝐴𝑢𝑟𝑐  increases almost 

linearly with the increasing viscosity 𝜇, and it is verified by the simulation result, as 

shown in Figure 3-8.  

Formation volume factor (FVF): According to Eq. 3.12,   𝐴𝑢𝑟𝑐  has linear relationship 

with formation volume factor 𝐵𝑜 , and it is identical to the simulation result, shown in 

Figure 3-9.  
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Compressibility: As Eq. 3.12 shows, unit reservoir system response 𝐴𝑢𝑟𝑐  decreases as 

the total compressibility 𝑐𝑡  increases.  The total compressibility 𝑐𝑡  is:  

𝑐𝑡 = 𝑐𝑓 + 𝑐𝑤𝑆𝑤 + 𝑐𝑜(1 − 𝑆𝑤)                                                                           (3.13)   

Here 𝑆𝑤  is water saturation, and  𝑐𝑜 , 𝑐𝑤 , 𝑐𝑓  is compressibility of oil, water and rock 

respectively.  In theory, URSR 𝐴𝑢𝑟𝑐  has linear relationship with ln
1

𝐶𝑡
, and logarithmic 

relationship with total compressibility 𝑐𝑡 , which are confirmed by the simulation result 

(Figure 3-10).   

Wellbore size: In theory  𝐴𝑢𝑟𝑐 has linear relationship with  ln
1

𝑟𝑤
2 , and logarithmic 

relationship with wellbore size 𝑟𝑤 .  It is confirmed by the simulation result (Figure 3-

11).  The smaller wellbore size leads to larger  𝐴𝑢𝑟𝑐  compared with the larger wellbore 

size.  

Fluid density: Fluid density has no effect on 𝐴𝑢𝑟𝑐  in theory, and this is confirmed by 

simulation result (Figure 3-12).  

Wellbore storage coefficient: Wellbore storage is caused by the compressibility of fluid 

in the wellbore, and it extends the time of pressure response.  In theory, the larger the 

wellbore storage coefficient is, the smaller URSR 𝐴𝑢𝑟𝑐  it will be, as shown in Figure 3-

13.   

Reservoir heterogeneity:  As Eq. 3.9 shows,  𝐴𝑢𝑟𝑐  is constant for the reservoir with 

constant reservoir-well parameters, and the properties variation in space has no effect 

on 𝐴𝑢𝑟𝑐 .  Besides, this novel diagnostic method is independent of reservoir model and 

only transient pressure data and rate information are used, so this diagnostic method 

works well in heterogeneous reservoirs.    
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Figure 3-3: Impact of skin change on 𝐴𝑢𝑟𝑐  function. 

 

Figure 3-4:  𝐴𝑢𝑟𝑐   declines with increasing permeability𝑘. 
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Figure 3-5:  𝐴𝑢𝑟𝑐  changes almost linearly with 
1

𝑘
. 

 

Figure 3-6:  𝐴𝑢𝑟𝑐  changes linearly with the reciprocal of formation thickness .  
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Figure 3-7:  𝐴𝑢𝑟𝑐  changes logarithmically with porosity ∅. 

 

Figure 3-8:  𝐴𝑢𝑟𝑐  increases linearly with the increasing viscosity 𝜇, and viscosity has 

big effect on 𝐴𝑢𝑟𝑐  .  
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Figure 3-9:  𝐴𝑢𝑟𝑐   increases linearly with the increasing oil FVF 𝐵𝑜 .  

 

Figure 3-10:  𝐴𝑢𝑟𝑐  declines with the increasing total compressibility, but the change is 

small.  
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Figure 3-11:  𝐴𝑢𝑟𝑐  declines logarithmically with the increasing wellbore size.  

 

Figure 3-12: Fluid density has no effect on 𝐴𝑢𝑟𝑐  . 
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Figure 3-13:  𝐴𝑢𝑟𝑐  declines with the increasing wellbore storage coefficient 𝐶𝑠  . 

Figure 3-14 shows the effects of different reservoir-well parameters on URSR 𝐴𝑢𝑟𝑐  

function.  The label in horizontal direction is the change percent of each parameter 

compared with the value in the base case (shown in Table 3-2), and the label in the 

vertical direction is URSR 𝐴𝑢𝑟𝑐 .  As the figure shows, the change in oil density doesn’t 

affect on URSR 𝐴𝑢𝑟𝑐 , and changes in porosity, well ID, wellbore storage coefficient and 

total compressibility have small negative effect on URSR 𝐴𝑢𝑟𝑐 .  However, changes in 

permeability, formation thickness, viscosity and skin factor have significant impact on 

URSR 𝐴𝑢𝑟𝑐 .  For skin factor and viscosity, their relationships with URSR  𝐴𝑢𝑟𝑐  are 

positive and almost linear.  In contract, URSR  𝐴𝑢𝑟𝑐  declines with the increasing 
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Figure 3-14: The impact of different parameter change on URSR 𝐴𝑢𝑟𝑐  . 

In practice, the changes in fluid viscosity in the reservoir are so little that usually they 
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relative permeability under multiphase flow condition) may change during the long-

term production, especially for the area near the wellbore.  These changes can be 

diagnosed from transient pressure with URSR 𝐴𝑢𝑟𝑐 . 
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between two successive flow events are identified with amplitudes of WT coefficients.  

According to the novel diagnostic method, URSR  𝐴𝑢𝑟𝑐  is calculated through 𝐴𝑢𝑟𝑐 =

𝐴
∆𝑞 .  URSR 𝐴𝑢𝑟𝑐  rises sharply from 0.9 to 1.8, compared with the constant value in 

the linear system, and verifies that there are nonlinearities in the reservoir due to 

changes in reservoir properties and well conditions.   

The increasing URSR  𝐴𝑢𝑟𝑐  indicates the declining Production Index (PI) and the 

production condition near the wellbore becoming worse.  Especially, the sharply 

increasing  𝐴𝑢𝑟𝑐  needs more attention for production monitoring, and remedy operations 

may be needed, such as fracturing, acidizing to improve well conditions. 

 

Figure 3-15: The reservoir model with time-varying skin factor and permeability.   
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Figure 3-16:  Skin factor and permeability change with time during the production 

history. 

 

Figure 3-17: After pressure data is processed by Haar wavelet, URSR  𝐴𝑢𝑟𝑐  is 

calculated and it is time-varying due to in the changes in skin factor and permeability.   

3.4.2 Real gas flow  

The pressure-dependent gas properties make the flowing behaviour high complex than 

that in the liquid flow system.  This nonlinearity causes superposition principle and 

related methods invalid, and pseudo-pressure or pseudo-time should be used to linearize 

the diffusivity equation.   
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The production history of gas reservoir is shown in Figure 3-18, and the gas PVT 

properties are shown in Table 3-4.  The gas formation volume factor (FVF) and 

viscosity vary a lot with the pressure especially when the pressure is low.  After the 

pressure data processed with WT, URSR  𝐴𝑢𝑟𝑐  is calculated, as shown in Figure 2-19.  

Different from the constant value in linear systems, in the gas reservoir  𝐴𝑢𝑟𝑐  function 

changes with time, due to pressure-dependent gas properties.  In addition, the larger the 

production rate is, the larger changes in down-hole pressure will be, which leads to 

larger variations in URSR  𝐴𝑢𝑟𝑐 . 

Table 3-4: PVT properties in the real gas reservoir 

Pressure (psia) FVF (rb /Mscf) Viscosity (cp) 

50 65.740507 0.012857 

205.26316 15.854459 0.012965 

360.52632 8.9411518 0.01314 

515.78947 6.1938316 0.013333 

671.05263 4.7210394 0.013637 

826.31579 3.8044907 0.013949 

981.57895 3.1803585 0.014198 

1136.8421 2.7289377 0.014397 

1292.1053 2.3880366 0.014657 

1447.3684 2.1221428 0.014936 

1602.6316 1.9094889 0.015244 

1757.8947 1.7359831 0.015551 

1913.1579 1.592094 0.015859 

2068.4211 1.4711396 0.016169 

2223.6842 1.3682964 0.016568 

2378.9474 1.2799878 0.016967 

2534.2105 1.203506 0.017366 

2689.4737 1.1367658 0.017765 

2844.7368 1.0781317 0.01819 

3000 1.0263033 0.018632 
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Figure 3-18: Production history in the gas reservoir case 

 

Figure 3-19: The calculated 𝐴𝑢𝑟𝑐  is time-varying due to the pressure-dependent gas 

properties.  

For the long-term production, gas reservoir may come into depletion period.  The 

decreasing average formation pressure causes more changes in gas properties.  Figure 

3-20 shows the production history with 800 hours.  The reservoir comes into pseudo-

steady state and average pressure declines nearly 500 psi.  With wavelet transform, 

URSR 𝐴𝑢𝑟𝑐  is calculated.  The increasing URSR 𝐴𝑢𝑟𝑐  indicates the large changes in gas 

PVT properties due to reservoir depletion.   
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When there is significant depletion, pseudo-pressure does not correct the changes in gas 

compressibility.  Material balance should be applied to make correction.  

 
Figure 3-20:  URSR 𝐴𝑢𝑟𝑐  increases a lot due to the depletion in the real gas reservoir.  

3.4.3 Non-Darcy flow 

In the vicinity of the production well, very high velocity of fluid can change the flow 

from laminar to turbulent, which causes additional pressure drop by the inertial effect.  

Therefore, equation of Darcy flow is inapplicable and a new accurate equation is needed.  

To overcome the deficiency, Forchheimer (1901) modified Darcy flow equation by 

adding inertial effect: 

−
𝑑𝑝

𝑑𝑟
=

𝜇

𝑘
𝑣 + 𝛽𝜌𝑣2                                                                                           (3.14) 

Here 𝜌 is fluid density, 𝑣 is flow velocity and 𝛽is non-Darcy flow coefficient.  In Eq. 

3.14, the relationship between pressure drop and flow rate is nonlinear.  The larger the 

non-Darcy flow coefficient 𝛽 is, the high nonlinear the flow equation will be.  Turbulent 

flow effect near the wellbore leads to rate-dependent skin which changes for different 

flow periods.    

Figure 3-21 shows the diagnostic result when non-Darcy flow considered for the dry 

gas reservoir case.  The larger non-Darcy flow coefficients 𝛽, the larger changes in 

 𝐴𝑢𝑟𝑐  will be.  In fact, the non-Darcy flow not only breaks the linear relationship 

between flow rate and pressure drop, but also causes additional pressure drop, which 
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leads to more changes in gas PVT properties.  These two factors make the large change 

in 𝐴𝑢𝑟𝑐 , which means high nonlinearities in the reservoir. 

 

Figure 3-21: URSR  𝐴𝑢𝑟𝑐   for gas reservoir at different non-Darcy flow conditions. The 

larger the non-Darcy flow coefficient is, the lager changes in  𝐴𝑢𝑟𝑐  will be. 

If there were a kind of uncompressible fluid could produce as large flow rate as gas, the 

pure effect of non-Darcy flow can be investigated.  Numerical experiment can realize 

that by setting constant fluid properties and large production rate with turbulent flow 

near the wellbore.  As Figure 3-22 shows,  𝐴𝑢𝑟𝑐  is constant for Darcy flow but it 

changes with time for non-Darcy flow.  The larger the non-Darcy flow coefficient 𝛽 is 

the larger change in 𝐴𝑢𝑟𝑐  will be.  As fluid properties are constant, the reason of  𝐴𝑢𝑟𝑐  

change is non-Darcy flow, which breaks linear relation between pressure change and 

flow rate.  
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Figure 3-22: The  𝐴𝑢𝑟𝑐   function for the uncompressible fluid flow at different non-

Darcy flow conditions. The larger non-Darcy flow coefficient, the lager change in 

 𝐴𝑢𝑟𝑐  will be. 

Modified isochronal test is usually used for deliverability tests in gas reservoir, to 

determine the gas production rate at a certain back pressure.    During this test, the time 

of producing and shut-in is equal with increasing DD and BU sequences.  Figure 3-23 

shows a case of modified isochronal test.   

Modified isochronal test also can provides non-Darcy flow analysis.  Non-Darcy flow 

causes rate-dependent skin near the wellbore, and the total skin in gas reservoir is: 

𝑆′ = 𝑆 + 𝐷𝑞𝑠𝑐                                                                                                    (3.15) 

where 𝐷 is called non-Darcy coefficient.  Total skin factor 𝑆′  has to be evaluated at 

different rate.  

In frequency domain, the non-Darcy flow can be diagnosed.  The pressure history is 

simulated with different non-Darcy flow coefficients.  URSR  𝐴𝑢𝑟𝑐   is calculated and 

plotted with corresponding flow rate, as shown in Figure 3-24.  When there is no non-

Darcy flow, URSR is almost constant.  The larger the non-Darcy flow coefficient is, the 

larger the slop will be.  
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Figure 3-23: Modified isochronal test for gas reservoir  

 
Figure 3-24: URSR 𝐴𝑢𝑟𝑐  of modified isochronal test.  

3.4.4 Oil and gas two-phase flow after gas out of solution  

When the down-hole pressure drops below the bubble point pressure, dissolved gas is 

out of solution and flow changes to gas and oil two-phase flow.  When several phases 

flow in the reservoir at same time, the flow ability of certain phase is affected by other 

phases.  The high gas saturation near the wellbore reduces the relative permeability of 

oil phase, and the flow ability of each fluid is the function of saturation, which changes 
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with time and space.  The dynamic changes in relative permeability of each phase due to 

saturation change and pressure-dependent gas properties make the system highly 

nonlinear. 

Figure 3-25 shows production history of a simulated oil reservoir with dissolved gas. 

Reservoir properties are shown in Table 3-5, and the PVT properties of live oil are 

shown in Table 3-6.  The bubble point is 4000 psi.  At the beginning of production 

history, the production rate is small and down-hole pressure is above the bubble point.   

After that, down-hole pressure drops below the bubble point and dissolved gas is out of 

solution.  With WT processing transient pressure data, URSR 𝐴𝑢𝑟𝑐  is calculated and 

shown as Figure 3-26.  Initially, URSR 𝐴𝑢𝑟𝑐  is constant as only single oil phase is 

flowing in the reservoir, and therefore the reservoir is a linear system.  For the time 

when the dissolved gas is out of solution, URSR 𝐴𝑢𝑟𝑐  is increases immediately.  The 

reason is there are oil and gas two-phase flow near the wellbore and the flow abilities 

are reduced due to the total mobility change.  Then URSR 𝐴𝑢𝑟𝑐  is time-varying and it 

fluctuates with time due to the pressure-dependent gas properties.   

Table 3- 5: Some reservoir properties of oil with dissolved gas reservoir 

Initial pressure, 𝑝0 4000 psia 

Reservoir radius, 𝑅 10000 ft 

Thickness,  50 ft 

Permeability, 𝑘 50 mD 

Porosity, 𝜙 0.25 

Viscosity, 𝜇𝑜  1 cp 

rock compressibility, 𝐶𝑓  3e-6 1/psi 

Well radius, 𝑟𝑤  0.208 ft 

Skin factor, 𝑆 3 

Wellbore storage volume, 𝑉𝑤  0 
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Figure 3-25: Production history for the oil reservoir with dissolved gas  

Table 3-6: Live oil PVT properties (with dissolved gas)  

Rs (Mscf /STB) Pbub (psia) FVF (rb /STB) Visc (cp) 

0.165 400 1.012 1.17 

0.335 800 1.0255 1.14 

0.5 1200 1.038 1.11 

0.665 1600 1.051 1.08 

0.828 2000 1.063 1.06 

0.985 2400 1.075 1.03 

1.13 2800 1.087 1 

1.27 3200 1.0985 0.98 

1.39 3600 1.11 0.95 

1.5 

4000 1.12 0.92 

4400 1.1155 0.92 

4800 1.111 0.92 

5200 1.108 0.92 
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Figure 3-26: URSR 𝐴𝑢𝑟𝑐  changes sharply when gas is out solution.  

When the wellbore storage effect is considered, diagnostic result is a little different, as 

Figure 3-27 shows.  Before gas out of solution, URSR  𝐴𝑢𝑟𝑐  is constant.  However, 

URSR  𝐴𝑢𝑟𝑐  declines sharply when gas is out solution and  𝐴𝑢𝑟𝑐  rises after well shut-in.  

This phenomenon is due to phase segregation effect in the wellbore.  During well shut-

in period, due to difference in density, gas rises into the top of wellbore and oil 

accumulates at the bottom.  The phase segregation phenomenon creates a variable 

wellbore storage as a function of time, which causes the variation of 𝐴𝑢𝑟𝑐  function. 

 

Figure 3-27:  When wellbore storage is considered, URSR 𝐴𝑢𝑟𝑐   performs differently 

due to the phase segregation effect in the wellbore.  
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3.4.5 Oil and water two-phase flow after water breakthrough 

Similar to the gas and oil two-phase flow, the oil and water two-phase flow after water 

breakthrough is also complex and causes high nonlinearity for the reservoir system.  

From the production point of view, water production after water breakthrough may 

cause many problems for productions system, such as hydrate, corrosion and scale.  

Diagnose the time of water breakthrough and make production optimization is an 

important task for reservoir engineers.   

A heterogeneous oil and water two-phase flowing reservoir is taken as an example 

(Figure 3-28).  This reservoir model is very heterogeneous with log normal distribution 

of permeability and normal distribution of porosity, as shown in Table 3-7. Other 

reservoir-well parameters are shown in Table 3-8.  The grids near the wellbore are 

refined to reduce numerical dispersion.   

Down-hole pressure and water cut history are shown in Figure 3-29, and water breaks 

through after 10 days production.  After that, water cut increases continuously with 

production time.  

 

Figure 3-28: The heterogeneous oil and water two-phase reservoir model.   
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Table 3-7: The distribution of permeability and porosity in the oil and water two-phase 

reservoir 

Property Direction Distribution Average Maximum Minimum 

Permeability 

𝑘 

(mD) 

𝑥 Log normal 200 471.94 79.515 

𝑦 Log normal 150 320.5 61.17 

𝑧 Log normal 20 75.83 5 

Porosity ∅  Normal 0.25 0.294 0.2 

Table 3-8: Other reservoir-well parameters in the reservoir model.   

Initial pressure, 𝑝0 5000 psia 

Reservoir length and width, 𝐿 2100 ft 

Thickness,  60 ft 

Oil FVF,𝐵𝑜  1.2 rb/STB 

Oil compressibility, 𝐶𝑜  3E-6/psi 

Oil viscosity, 𝜇𝑜  0.7 cp 

Water FVF, 𝐵𝑤  1 rb/STB 

Water compressibility, 𝐶𝑤  3E-6/psi 

Water viscosity, 𝜇𝑤  0.3 cp 

Rock compressibility, 𝐶𝑓  3.6E-6/psi 

Well radius, 𝑟𝑤  0.167 ft 

Skin factor, 𝑆 5 

Wellbore storage volume, 𝑉𝑤  545.398 cu ft 
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Figure 3-29:  Down-hole pressure and water cut history.  

With the Haar wavelet processing transient pressure data, URSR  𝐴𝑢𝑟𝑐   is calculated and 

shown in Figure 3-30.  Before water breakthrough, URSR  𝐴𝑢𝑟𝑐  is constant as there is 

only oil flowing in the reservoir and the reservoir system is linear.  In case of water 

breakthrough, URSR  𝐴𝑢𝑟𝑐  increases at the same time and then it changes with the 

increasing water cut.   

 

Figure 3-30: URSR 𝐴𝑢𝑟𝑐  increases in the case of water breakthrough and changes with 

water cut.  
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The reason is that after water breakthrough, the relative permeability of each phase 

changes with water saturation and the total mobility of fluids declines, as shown in 

Figure 3-31.   

 

Figure 3-31: Oil and water saturation function and total mobility.    

In theory, Perrine (1956) presented an approach, using an equivalent liquid flow with 

average properties to simplify the problem of multiphase flow.  For the oil and water 

two-phase flow, the total mobility of the equivalent fluid is: 

 𝜆𝑡 =
𝑘𝑟𝑜

𝜇𝑜
+

𝑘𝑟𝑤

𝜇𝑤
                                                                                               (3.16) 

Then, the fluid properties in Eq. 3.12 can be replaced by the total mobility: 

 𝐴𝑢𝑟𝑐 ∝
70.6𝐵

𝜆𝑡𝑘
 ln 𝑡 + ln

𝜆𝑡𝑘

∅𝐶𝑡𝑟𝑤
2 − 7.43173 + 2𝑆                                              (3.17) 

As the impact of 𝑙𝑛
𝜆𝑡

∅𝐶𝑡𝑟𝑤
2  is small compared with 

70.6𝐵

𝜆𝑡
, the relationship between URSR 

𝐴𝑢𝑟𝑐  and 
1

 𝜆𝑡
 nearly is linear.  URSR 𝐴𝑢𝑟𝑐  increases when total mobility decreases.   

Water cut in the down-hole can be calculated with oil and water fraction flow theory: 
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𝑓𝑤 =
𝑞𝑤

𝑞𝑤+𝑞𝑜
=

𝑘𝑟𝑤
𝜇𝑤

𝑘𝑟𝑤
𝜇𝑤

+
𝑘𝑟𝑜
𝜇 𝑜

=

𝑘𝑟𝑤
𝜇𝑤

𝜆𝑡
                                                                         (3.18) 

For the same water cut, the reciprocal of total mobility 
1

𝜆𝑡
 and URSR 𝐴𝑢𝑟𝑐  are plotted in 

the same figure, as shown in Figure 3-32.  As the figure shows, URSR 𝐴𝑢𝑟𝑐  increases 

proportionally with the increasing  
1

𝜆𝑡
.   

 

Figure 3-32: URSR  𝐴𝑢𝑟𝑐   and  
1

𝜆𝑡
 for the same water cut 𝑓𝑤 .  

As well known, the larger the oil viscosity is, the earlier water will break through.  

Figure 3-33 shows when oil viscosity 𝜇𝑜 = 1.2 cp, the time of water breakthrough is 

earlier than that when oil viscosity 𝜇𝑜 = 0.7  cp, and URSR 𝐴𝑢𝑟𝑐  also performs 

differently.  URSR 𝐴𝑢𝑟𝑐  increases sharply due to water breakthrough, however, it 

declines slightly later though the water cut still is increasing.  The reason is total 

mobility declines at first, but increases later with the increasing water cut, as Figure 3-

34 shows.  The reciprocal of total mobility  
1

𝜆𝑡
 increases at first and declines later, and 

leads to the same performance of URSR 𝐴𝑢𝑟𝑐 , verifying that Eq. 3.17 is correct.  When 

oil viscosity 𝜇𝑜  is 1.5 cp, these phenomena become clearer, shown in Figure 3-35.  The 

water breakthrough happens earlier, and URSR  𝐴𝑢𝑟𝑐  increases at the time of water 
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breakthrough but declines later due to the change in total mobility, shown in Figure 3-

36. 

 

Figure 3-33: URSR 𝐴𝑢𝑟𝑐   increases at first but declines later when oil viscosity is 1.2 cp.  

 

Figure 3-34: URSR  𝐴𝑢𝑟𝑐  and  
1

𝜆𝑡
 when 𝜇𝑜=1.2 cp.  
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Figure 3-35: URSR  𝐴𝑢𝑟𝑐   and water cut 𝑓𝑤  at the down-hole when 𝜇𝑜=1.5 cp. 

 

Figure 3-36: URSR  𝐴𝑢𝑟𝑐  and  
1

𝜆𝑡
 when 𝜇𝑜=1.5 cp.  

3.4.6 The interference between production wells 

For the reservoir with more than one production well, production interference is 

common.  Figure 3-37 shows a heterogeneous reservoir model with two interference 

wells.  The production history and URSR  𝐴𝑢𝑟𝑐  of two wells are shown in Figure 3-38. 
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After 75 days production the interference between wells has already formed, but the 

diagnostic function URSR  𝐴𝑢𝑟𝑐  is constant with time for each well even there is 

interference effect.   

 

Figure 3-37: The reservoir model with two production wells.  

 
Figure 3-38: Production history and URSR 𝐴𝑢𝑟𝑐  for two interference wells.  

Although well interference is not nonlinearity, analysing the transient pressure data with 

interference is challenging.  The measured down-hole pressure of one well contains not 

only self production response, but also includes pressure response from another 
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interference wells.  As a result, deconvolution can’t be applied directly and multi-well 

deconvolution algorithm is needed (Levitan 2007, Wang 2010).   

3.5 Discussion  

3.5.1 Time interval  

Before applying this novel diagnostic method, transient pressure data should have the 

equal time interval, which is required by the wavelet algorithm.  For the same reservoir 

system, different values of URSR 𝐴𝑢𝑟𝑐  are obtained if the time intervals of pressure data 

are different.  The small time step tends to have small  𝐴𝑢𝑟𝑐 value but the accuracy is 

higher.   Even there is no nonlinearity in the reservoir, the value of  𝐴𝑢𝑟𝑐  changes if the 

pressure data has un-uniform time steps, as shown in Figure 3-39.  In fact, URSR 𝐴𝑢𝑟𝑐  

has logarithmic relationship with time step, as shown in Figure 3-40. 

 

Figure 3-39: The URSR 𝐴𝑢𝑟𝑐  is different for the pressure data with different time steps.  
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Figure 3-40: URSR 𝐴𝑢𝑟𝑐  has logarithmic relationship with time step.  

3.5.2 Radius of investigation  

As the time of pressure change between two successive flow events is short, the 

diagnostic radius is limited according to the equation of radius of investigation: 

𝑟𝑖𝑛𝑣 = 0.029 
𝑘∆𝑡

∅𝜇𝑐𝑡
                                                                                           (3.19) 

The diagnostic radius is nearly dozens of feet around the wellbore.  However, reservoir 

conditions near the wellbore are curial for productions, as the pressure drop mainly is 

around the wellbore.  

The diagnostic method can benefit production monitoring.  Changes in reservoir 

properties and flow conditions near the wellbore can be diagnosed with URSR 𝐴𝑢𝑟𝑐 .  

Abnormal changes in URSR 𝐴𝑢𝑟𝑐  indicate production problems in/near the wellbore, 

and remedy operations should be taken to optimize the production.  Furthermore, the 

near wellbore model needs update to match the field performance.  
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3.5.3 Flow rate 

URSR  𝐴𝑢𝑟𝑐   is a relative function, and the value doesn’t have meaningful information.  

The change of URSR  𝐴𝑢𝑟𝑐  is very useful instead, as it provides the information related 

to whether or not there is change in reservoir properties and well conditions and how 

much of the change.  

Flow rate information is need when calculating URSR  𝐴𝑢𝑟𝑐 .  Unfortunately, rate 

information is not always available in field practice.  As flow rate is the key for 

pressure-transient analysis, reconstructing unknown flow rate is important.  Flow rate 

history reconstruction is discussed in Chapter 4.   

3.6 New procedures of long-term transient pressure analysis  

As discussed before, nonlinearity diagnostic is a crucial procedure in long-term 

transient pressure data analysis.  Figure 3-41 presents the novel workflow of long-term 

transient pressure data analysis is proposed, and this workflow can be divided into four 

major steps: pressure data processing, nonlinearity diagnostic and evaluation, pressure 

data analysis, reservoir management and mode calibration.   

Pressure data processing   In this procedure, pressure data is collected and processed 

before analysis, including data interpretation, denoising, outlier removal, transient 

identification, data reduction and etc.   

Nonlinearity diagnostic and evaluation Nonlinearities which cause superposition 

principle invalid in the reservoir system are diagnosed with the novel diagnostic method 

using URSR 𝐴𝑢𝑟𝑐 .  These nonlinearities include multiphase flow, non-Darcy flow and 

time-dependent reservoir-well parameters.  If the reservoir system is nonlinear, the 

degree of nonlinearity is evaluated.   

Pressure-transient analysis (PTA) For the pressure without nonlinearity, conventional 

pressure-transient analysis (PTA) methods which are based on the linear assumption are 

valid, such as Horner analysis, pressure derivative analysis and deconvolution, but it is 

more complex to analyse the pressure with nonlinearity.  Some nonlinearity can be 

linearized with suitable transforms, such as pseudo-pressure for real gas.  If the 

nonlinearity is low in a certain time, the reservoir system can be approximated to be 

linear.  With the nonlinearity diagnostic and evaluation result, uncertainties due to 
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nonlinearities can be controlled.  For the pressure data with high nonlinearities, 

numerical methods are the better way.  

Reservoir management and model calibration The derived reservoir information can 

be used for production monitoring, real-time reservoir management, reservoir model 

calibration and future forecasting.    

 

3.7 Chapter conclusions  

With Wavelet Transform (WT), a novel nonlinearity diagnostic method has been 

developed.  This method can effectively diagnose nonlinearities from transient pressure, 

which are due to the changes in reservoir properties and flow conditions near the 

wellbore.  This method is model- independent, and only pressure data and flow-rate 

information is used.  Through the process of theory development and cases studies, the 

following conclusions can be drawn: 

Reservoir-well information 

Model calibration and 

future forecasting 

Real-time reservoir 

management 

Production 

monitoring 

Long-term Transient pressure data 

Data processing 

    Nonlinearity diagnostic and evaluation 

Pressure with linearity Pressure with nonlinearity 

Conventional PTA methods Linearization  Numerical methods 

Figure 3-41: New procedures of long-term transient pressure analysis  
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1. URSR  𝐴𝑢𝑟𝑐  is an effective function to diagnose nonlinearities.  For the linear 

systems, where reservoir-well parameters are constant, URSR  𝐴𝑢𝑟𝑐  is constant 

with time.  When there are nonlinearities near the wellbore, URSR  𝐴𝑢𝑟𝑐  is time-

varying.  

2. The large changes in URSR  𝐴𝑢𝑟𝑐  mean high nonlinearities, due to large changes 

in reservoir properties and flow conditions.  Therefore, the nonlinearities can be 

evaluated quantitatively. 

3. When URSR  𝐴𝑢𝑟𝑐  is time-varying, the reservoir system is nonlinear and 

analysis of transient pressure data using the methods based on superposition 

principle may lead to misleading results. 

4. URSR  𝐴𝑢𝑟𝑐  is more sensitive to the changes in skin factor and (effective) 

permeability than other reservoir-well parameters. 

5. Pressure-dependent PVT properties, reservoir depletion and non-Darcy flow in 

the gas reservoir can be diagnosed with the URSR  𝐴𝑢𝑟𝑐 . 

6. For the oil reservoir with dissolved gas, before gas out of solution, URSR  𝐴𝑢𝑟𝑐  

is constant.  After that, URSR  𝐴𝑢𝑟𝑐  is time varying due to total mobility change, 

phase segregation in the wellbore and pressure-dependent gas properties.  

7. Water breakthrough can be detected with the sudden increasing URSR  𝐴𝑢𝑟𝑐 .  

After water breakthrough, URSR 𝐴𝑢𝑟𝑐  changes with the total mobility change. 

8. URSR  𝐴𝑢𝑟𝑐  can be utilized as a production monitoring tool.  Abnormal 

increasing URSR 𝐴𝑢𝑟𝑐  indicates the reduction in production index (PI) for the 

production wells, and special cautions and remedy responses are needed to 

optimize the production. 

9. New procedures of long-term PDG pressure data analysis have been proposed.  

Nonlinearity diagnostic and evaluation is a crucial procedure before PTA, as it 

can makes sure that suitable PTA methods are selected and reduce  analysis 

uncertainties.  
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Chapter 4  Reconstructing Unknown Flow Rate History from 

Transient Pressure Data 

4.1 Introduction  

Flow rate history is important for pressure-transient analysis, production monitoring, 

history-matching model simulation and etc.  The down-hole flow metering 

measurements haven’t been widely applied in the fields due to the high expense and low 

reliability.  The common practice is dozens of producers are measured together with 

surface separation equipments.  Flow rate history of individual well calculated from 

back allocation is not accurate due to low test frequency, and the detail flow events are 

unavailable.  

Many methods of reconstructing flow rate history illustrated in Chapter 2 are dependent 

on reservoir models.  As building the accurate reservoir model is difficult, lots of 

uncertainties and errors may be introduced.  According to the convolution integral, 

transient pressure is directly related to flow rate.  In theory, flow rate history can be 

reconstructed from pressure data directly.   

In this chapter, unknown flow rate history is reconstructed from transient pressure and 

cumulative production data using wavelet transform.  This method is model-

independent and therefore has wide applications in different kinds of reservoirs. 

4.2 Theory description   

Flow rate history consists of many different flow periods, and down-hole pressure 

performs correspondingly according to the convolution integral:    

𝑝 𝑡 = 𝑝0 −  𝑞 𝜏 𝑔 𝑡 − 𝜏 𝑑𝜏
𝑡

0
                                                                           (4.1) 

As illustrated in Chapter 3, the pressure change during two successive flow events is not 

only caused by the rate change, but also affected by the production history:    

𝑝𝑤𝑓𝑛 − 𝑝𝑤𝑓𝑛+1 =  𝑞𝑛+1 − 𝑞𝑛  𝑔 𝜏 𝑑𝜏
𝛥𝑡

0
+  𝑞𝑖 − 𝑞𝑖−1  𝑔 𝜏 𝑑𝜏

𝑡𝑛−𝑡𝑖−1+𝛥𝑡

𝑡𝑛−𝑡𝑖−1

𝑛
𝑖=1       (4.2)   

With the Haar wavelet processing transient pressure, the time of flow event can be 

identified in the wavelet detailed signal.  When the impulse time ∆𝑡 is very small and 
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production history time 𝑡 is large, the amplitude of WT coefficients is proportional to 

the pressure change due to the flow rate change (Eq. 3. 8 in Chapter 3):  

𝐴 ∝  𝑞𝑛+1 − 𝑞𝑛  𝑔 𝜏 𝑑𝜏
𝛥𝑡

0
                                                                       (4.3) 

For the reservoir with constant reservoir properties and flow conditions (linear systems), 

 𝑔 𝜏 𝑑𝜏
𝛥𝑡

0
 is constant for the same impulse time ∆𝑡.  The impulse time ∆𝑡 is a certain 

constant value when performing WT algorithm and it is decided by the WT scale 

factor s and time step of pressure data.  Therefore the amplitude of WT coefficients 𝐴 is 

proportional to rate change ∆𝑞.  When 𝑏 is defined as the proportional coefficient, Eq. 

4.3 becomes:  

𝐴 = ∆𝑞 × 𝑏                                                                                                  (4.4) 

Here 𝑏 = 𝐴/∆𝑞, and it equals URSR 𝐴𝑢𝑟𝑐 .  According to the research in Chapter 3, 

URSR 𝐴𝑢𝑟𝑐  is constant in the linear system, where reservoir-well parameters are 

constant, and Eq. 4.4 is correct.  The linear relationship between 𝐴 and ∆𝑞 indicates the 

relationship between flow rate change and corresponding transient pressure response.   

With the cumulative production 𝑄  and Eq. 4.4, the algorithm of flow rate history 

reconstruction can be developed.  

Assuming that initial flow rate is 𝑞1, according to Eq. 4.4, the first flow rate change 

𝑞2 − 𝑞1 is proportional to the first amplitude of WT coefficients 𝐴1: 

𝐴1 = (𝑞2 − 𝑞1 ) × 𝑏                                                                                    (4.5) 

Then 𝑞2 can be expressed with 𝑞1 : 

 𝑞2 = 𝑞1 +
𝐴1

𝑏
                                                                                              (4.6) 

According to Eq. 4.4, for the second flow event:  

𝐴2 = (𝑞3 − 𝑞2 ) × 𝑏                                                                                    (4.7) 

With Eq. 4.6 and Eq. 4.7,  𝑞3 can be expressed with 𝑞1 : 

 𝑞3 = 𝑞1 +
(𝐴1+𝐴2)

𝑏
                                                                                      (4.8) 
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Similarly, for the  𝑖 − 1  th flow event,  𝑞𝑖  can be expressed with 𝑞1 : 

 𝑞𝑖 = 𝑞1 +
 𝐴𝑗
𝑖−1
𝑗=1

𝑏
                                                                                        (4.9) 

Assuming the flow time for flow rate 𝑞𝑖  is  𝑡𝑖 , and total cumulative production𝑄 , 

according to material balance:  

𝑄 = 𝑞1𝑡1 + 𝑞2𝑡2 + ⋯𝑞𝑛𝑡𝑛 =  𝑞𝑖𝑡𝑖
𝑛
𝑖=1                                                      (4.10) 

 Submit Eq. 4.9 into Eq. 4. 10:        

𝑄 =  (𝑞1 +
 𝐴𝑗
𝑖−1
𝑗=1

𝑏
)𝑡𝑖

𝑛
𝑖=1                                                                            (4.11) 

The proportional coefficient 𝑏 can be calculated: 

𝑏 =
 𝑡𝑖  𝐴𝑗

𝑖−1
𝑗=1

𝑛
𝑖=1

𝑄−𝑞1  𝑡𝑖
𝑛
𝑖=1

                                                                                          (4.12) 

With the calculated 𝑏, flow rate history can be reconstructed. The reconstructed flow 

rate 𝑞𝑖  at time period 𝑡𝑖 is:  

 𝑞𝑖 = 𝑞1 +
 𝐴𝑗
𝑖−1
𝑗=1

 𝑡𝑖  𝐴𝑗
𝑖−1
𝑗=1

𝑛
𝑖=1

𝑄−𝑞1  𝑡𝑖
𝑛
𝑖=1

                                                                  (4.13)                               

To reconstruct flow rate history, not only the value of flow rate needs calculating, but 

also the time of flow events needs to be identified.   With the Haar wavelet processing 

transient pressure data, the time of flow events 𝑡𝑖  can be identified from WT detailed 

signal, and the amplitude of WT coefficients for each flow events 𝐴𝑗  can be determined.  

Then using Eq. 4.12 and Eq. 4.13, flow rate history can be reconstructed.   

4.3 Flow rate history reconstruction in single oil phase reservoir  

4.3.1 Base case study  

In this case a homogenous and single phase oil reservoir is modelled using Eclipse.  The 

parameters of the model are shown in Table 4-1, and skin factor and wellbore storage 

are considered.  Pressure history in the first 8 days is shown in Figure 4-1, and the 

cumulative production during this time is 6212.167 STB.     
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Table 4-1: The reservoir model parameters 

Initial pressure, 𝑝𝑖  4000 psia 

Reservoir radial, 𝑅 10000 ft 

Thickness,  30 ft 

Permeability,𝑘 𝑘𝑥 = 𝑘𝑦 =100 mD, 𝑘𝑧 =10 mD 

Porosity, 𝜙 0.25 

Oil formation volume factor, 𝐵𝑜  1.2 rb/STB 

Total compressibility, 𝑐𝑡  6E-6/psi 

Oil viscosity, 𝜇𝑜  1 cp 

Well radius, 𝑟𝑤  0.2083 ft 

Skin factor, 𝑆 6 

Wellbore storage coefficient, 𝐶𝑠 𝐶𝑠=2.9128e-4 bbl/psi 

 

 
Figure 4-1: Pressure history in base case. 

In this case, flow rate history will be reconstructed from the down-hole pressure and 

cumulative production data.  Firstly, pressure data is processed with CWT using the 

Haar wavelet.  As Figure 4-2 shows, the time of flow events can be identified with the 

amplitude of WT coefficients in the WT detailed signal.  The time of each flow period 

𝑡𝑖   and amplitude of WT coefficient 𝐴𝑖  are shown in Table 4-2.  
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Figure 4-2: Down-hole pressure data in base case is processed with CWT using the 

Haar wavelet. 

Table 4-2: Identification of flow event time 

Flow event 

beginning time 

(hour) 

Flow event 

ending time 

(hour) 

Flow event 

time period 

(hour) 𝑡𝑖  

Amplitude of 

WT coefficients 

𝐴𝑗  

0 12 12  

12 14.4 2.4 110.4395 

14.4 16.8 2.4 73.7991 

16.8 48 31.2 184.6843 

48 60 12 -369.4933 

60 60.48 0.48 184.0257 

60.48 62.4 1.92 111.1445 

62.4 120 57.6 74.0667 

120 122.4 2.4 -147.9488 

122.4 124.8 2.4 -221.4461 

124.8 180 55.2 368.1030 

180 192 12 -369.5476 

The initial flow rate 𝑞1 = 0, according to Eq. 3.12, the average proportional coefficient 

𝑏 can be calculated, and 𝑏 = 0.3681.  Then flow history can be reconstructed with Eq. 

4.13, as shown in Table 4-3, and error is less than 1%.  
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Table 4-3: The reconstructed flow rate history in the base case 

Beginning 

(hour) 

Ending 

(hour) 

Real rate 

(STB/day) 

Calculated rate 

(STB/day) 

Adjusted rate 

(STB/day) 

Error 

(%) 

0 12 0 0 0 0 

12 14.4 300 300 300 0 

14.4 16.8 500 500.5 500.5 0.1 

16.8 48 1000 1002.2 1002.2 0.22 

48 60 0 -1.5 0 0 

60 60.48 500 498.4 498.4 -0.32 

60.48 62.4 800 800.3 800.3 0.038 

62.4 120 1000 1001.5 1001.5 0.15 

120 122.4 600 599.6 599.6 -0.067 

122.4 124.8 0 -2 0 0 

124.8 180 1000 998 998 -0.2 

180 192 0 -5.9 0 0 

4.3.2 Sensitivity study  

4.3.2.1 Wellbore storage  

The wellbore storage coefficient defines the rate of pressure change in the pure wellbore 

storage regime.  For the single phase oil reservoir, the wellbore storage is represented by 

the oil compressibility term: 

𝐶𝑠 = −
∆𝑉

∆𝑝
= 𝑐𝑜𝑉𝑤                                                                                          (4.14)  

Here 𝑐𝑜  is oil compressibility and 𝑉𝑤  is wellbore volume.   

When wellbore storage is considered, surface flow rate is reconstructed.  The sand face 

flow rate is different from the surface flow rate due to the wellbore storage effect.  

With the recovered surface rate  𝑞𝑠 , bottom-hole pressure  𝑝𝑤𝑓  and wellbore storage 

coefficient 𝐶𝑠 , the sand face flow rate 𝑞𝑠𝑓  could be calculated as well.  For the constant 

wellbore storage model, the material balance is: 

𝑞𝑠𝑓𝐵 − 𝑞𝑠𝐵 = 𝐶𝑠
𝑑𝑝𝑤𝑓

𝑑𝑡
                                                                                  (4.15) 
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Rearranged, the sand face flow rate 𝑞𝑠𝑓  may be recovered as following: 

𝑞𝑠𝑓 = 𝑞𝑠 +
𝐶𝑠

𝐵

𝑑𝑝𝑤𝑓

𝑑𝑡
                                                                                         (4.16) 

The linear system requires that wellbore storage coefficient is constant.  However, the 

wellbore storage coefficient may change in field practice.  For naturally flowing oil 

wells, as pressure decreases when oil rising along the wellbore, pressure may drop 

below the bubble point pressure and then gas is out of solution.  The variable 

compressibility of gas makes the wellbore storage coefficient is not constant.  

Particularly when well is shut-in, the phase segregation and changing liquid level may 

take place in the wellbore, which leads to high nonlinearities in the reservoir system.  

This case is discussed in Section 3.4.4.  To simplify the question, constant wellbore 

storage is considered here.  

Wellbore storage has significant impact on the impulse function of the reservoir 

system 𝑔(𝑡).  Figure 4-3 depicts impulse function 𝑔(𝑡) with different wellbore storage 

coefficients in the base case.  When there is no well bore storage, the pressure changes 

promptly and decreases sharply in short time. The larger the wellbore storage is, the 

small response will be, and the longer time it takes to decrease, shown in Table 4-4.  

According to Eq. 4.2, for large wellbore storage effect, the pressure change due to 

history production   𝑞𝑖 − 𝑞𝑖−1  𝑔 𝜏 𝑑𝜏
𝑡𝑛−𝑡𝑖−1+𝛥𝑡

𝑡𝑛−𝑡𝑖−1

𝑛
𝑖=1  tends to larger than that with 

small wellbore storage effect, and also the identification of flow events become difficult, 

as shown in Figures 4-4 and 4-5.   For the larger wellbore storage coefficient, the 

amplitude of WT coefficient and the resolution of flow event identification become 

lower.  Therefore, the accuracy of reconstructed flow rate history in the reservoir with 

small wellbore storage tends to be higher than that in the reservoir with the large 

wellbore storage effect.  
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Figure 4-3: The impulse response function 𝑔(𝑡)  with different wellbore storage 

coefficient.  

Table 4-4: The impulse response function 𝑔 𝑡  declines with time for different 

wellbore storage coefficient. 

Wellbore 

storage 

coefficient 

(bbl/psi) 

𝑔 𝑡  value at first 

second 

(psi/(STB/day)) 

Percent after 

30 seconds 

Percent after 

1 minute 

Percent after 

2 minutes 

0 0.1376 0.7099% 0.3499% 0.1736% 

2.9143e-004 0.0436 11.4669% 2.5846% 0.7325% 

1.4572e-003 0.0099 58.3072% 36.9721% 16.06% 
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Figure 4-4: WT detailed signal with different wellbore storage coefficient.  

 
Figure 4-5: Zoom-in of WT detailed signal with different wellbore storage coefficient. 

4.3.2.2 Skin factor 

In the case of a damaged well, skin is additional pressure drop near well due to well 

damage.  For a simulated well, pressure decline is reduced near the wellbore, and 𝑆 < 0.   

Figure 4-6 shows the impulse response function 𝑔(𝑡) with different skin factors.  For 

the large skin factor, the impulse response is large, but the declining rate change little 

compared with the wellbore storage effect.  Figures 4-7 and 4-8 shows the amplitude of 

WT coefficients is large for the large skin factor, and the time resolution of flow event 

identification changes little.   
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Figure 4-6: The impulse response function 𝑔 𝑡  with different skin factor. 

Table 4-5: The impulse response function 𝑔(𝑡)declines with time for different skin 

factor. 

Skin 

factor 

𝑔 𝑡  value at first 

second 

(psi/(STB/day)) 

Percent after 30 

seconds 

Percent after 1 

minute 

Percent after 2 

minutes 

0 0.0359 4.0819% 1.6284% 0.7326% 

6 0.0439 11.3703% 2.5594% 0.7425% 

12 0.0456 23.1131% 6.2748% 1.0631% 

 

 
Figure 4-7: WT detailed signal with different skin factor. 
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Figure 4-8: Zoom in of WT detailed signal with different skin factor. 

4.3.2.3 Flow events happening closely 

According to Eq. 4.2, when the time interval of two successive flow events is very small, 

production history is large enough that not to be neglected.  As a result, Eq. 4.3 is not 

valid, and the amplitude of WT coefficients 𝐴 is not proportional to flow rate change ∆𝑞.    

Figure 4-9 shows another simulated flow history from in base case model.  The Haar 

wavelet is selected to process the transient pressure data (Figure 4-10).  The flow 

events happen closely at the third day and fifth day.  On the third day, three flow events 

happen successively at the time period 0.01 day (14.4 minutes).  On the fifth day, four 

flow events happen successively at the time period 0.003 day (4.32 minutes).   
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Figure 4-9: Flow history with flow events happened closely.  

 

Figure 4-10: WT detailed signal and zoom in on closely happening flow events  

The proportional coefficient 𝑏  of the flow rate change  ∆𝑞  and amplitude of WT 

coefficients 𝐴 for each flow event is calculated, as the Table 4-6 shows. The normal 

range of proportional coefficient 𝑏 is 0.368-0.370.  When the time period is just 0.01 

day, 𝑏 is 0.372 and 0.375. When the time period is just 0.003 day, 𝑏 is 0.380 and 0.389.  

It means the production history will lead to the WT amplitude larger than the normal 

value.  This may cause error in flow rate history reconstruction.  
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Table 4-6: The proportional coefficients 𝑏 for every flow event. 

Beginning 

(hour) 

Ending 

(hour) 

Time 

period 

(hour) 

Rate 

(STB/day) 

𝑞 

Rate 

change 

(STB/day) 

∆𝑞 

Amplitude of 

wavelet 

transform 

𝐴 

Proportional 

coefficient 

𝑏 = 𝐴/∆𝑞 

0 12 12 0    

12 16.8 4.8 300 300 110.44 0.368 

16.8 21.6 4.8 500 200 73.775 0.369 

21.6 28.8 7.2 800 300 110.8 0.369 

28.8 48 19.2 1000 200 73.999 0.37 

48 60 12 0 -1000 -369.61 0.37 

60 60.24 0.24 500 500 184.07 0.368 

60.24 60.48 0.24 800 300 111.57 0.372 

60.48 72 11.52 1000 200 75.015 0.375 

72 84 12 0 -1000 -369.55 0.37 

84 96 12 1000 1000 368.23 0.368 

96 98.4 2.4 0 -1000 -369.45 0.369 

98.4 98.472 0.072 300 300 110.28 0.368 

98.472 98.544 0.072 500 200 76.045 0.380 

98.544 98.616 0.072 800 300 113.17 0.377 

98.616 120 21.384 1000 200 77.711 0.389 

 

Fortunately, form Eq. 4.12, the proportional coefficient 𝑏 also has relationship with time 

period 𝑡𝑖 .  The more closely flow events happen, the smaller the time period is 𝑡𝑖 . An 

accurate average proportional coefficient 𝑏  can be calculated from Eq. 4.12.  The 

reconstructed flow rate is shown as the Table 4-7, and the error is still very small even 

close flow events.  The error is in the 1% range.  This algorithm has very good error 

tolerance. 
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Table 4-7: The errors of calculated flow rate are small.  

Beginning 

(day) 

Real rate 

(STB/day) 

Calculated rate 

(STB/day) 

Error 

(%) 

0 0 0 0 

12 300 297.6 -0.024 

16.8 500 496.4 -0.036 

21.6 800 795 -0.05 

28.8 1000 994.4 -0.056 

48 0 0 0 

60 500 494.4 -0.056 

60.24 800 795.1 -0.049 

60.48 1000 997.3 -0.027 

72 0 1.4 0.014 

84 1000 993.7 -0.063 

96 0 0 0 

98.4 300 295.3 -0.047 

98.472 500 500.2 0.002 

98.544 800 805.2 0.052 

98.616 1000 1014.6 0.146 

4.3.2.4 Pressure noise  

Pressure noise is always with the pressure data measured from pressure gauges. 

Although noise is recommended to remove before reconstructing flow rate history and 

pressure transient analysis, the reliable algorithm of rate history reconstruction should 

have good noise tolerance.   

Figure 4-11 shows the pressure data in Figure 4-1 is added with the artificial noise.  

The noise is normal distributed with mean 0 and stand deviation 1.  
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Figure 4-11: Artificial noise is added to the pressure data. 

Wavelet Transform is applied to process the noisy pressure data with Haar wavelet, as 

illustrated in Figure 4-12.  Noise cause small WT amplitude around 0, and the flow 

events cause large WT amplitude. Noise threshold can be set to separate the flow events 

from noise.   Therefore, the time and WT amplitude for each flow events can be 

determined, and flow rate history can be calculated.  

 

Figure 4-12: Noisy pressure is processed with wavelet transform.  
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Table 4-8 presents the calculated flow rate from the noisy pressure data, and the error is 

small and less than 2%, but the error is little high than that in Table 4-2, due to noise 

effect.  

As this case illustrates, even there are noise in the pressure data, the calculated rate 

history is close to the real flow rate.  This algorithm of rate calculation has good 

tolerance of pressure noise.  

Table 4-8: The calculated rate history from the noisy pressure data.  

Beginning 

(day) 

Period 

(hour) 

Real rate 

(STB/day) 

Calculated rate 

(STB/day) 

Error 

(%) 

0 12 0 0 0 

12 14.4 300 294.03 -1.99 

14.4 16.8 500 509.28 1.86 

16.8 48 1000 1014.8 1.48 

48 60 0 7.8227 0 

60 60.48 500 506.86 1.37 

60.48 62.4 800 801.32 0.17 

62.4 120 1000 999.63 -0.04 

120 122.4 600 589.22 -1.79 

122.4 124.8 0 0 0 

124.8 180 1000 993.81 -0.62 

180 192 0 0 0 

4.4 Flow rate history reconstruction for the case initial flow rate 𝒒𝟏 is unknown  

4.4.1 Algorithm development  

As Eq. 4.12 and Eq. 4.13 show, the initial flow rate 𝑞1 is an important parameter in this 

algorithm.  Generally, the initial flow rate 𝑞1  is unknown, as the accumulative 

production may be given on daily, weekly or monthly, or even just a period of 

production time.  Unknown initial flow rate is common but it causes difficulties, as the 

proportional coefficient 𝑏 cannot be calculated. 

A trial-and-error algorithm is developed here to solve this problem.   If there is at least 

one BU during this time period, this information can be utilized to find the unknown 
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initial rate 𝑞1  and reconstruct the flow rate history.  The workflow is shown in Figure 

4-13.   

Step 1: Define initial rate 𝑞1 range.  The range of 𝑞1 can be calculated from Eq. 4.12.  

As the proportional coefficient  𝑏  must be positive, the value of  𝑡𝑖  𝐴𝑗
𝑖−1
𝑗=1

𝑛
𝑖=1 is 

calculated. If   𝑡𝑖  𝐴𝑗
𝑖−1
𝑗=1

𝑛
𝑖=1 > 0, because the proportional coefficient  𝑏  is positive, 

then 𝑄 − 𝑞1  𝑡𝑖
𝑛
𝑖=1 > 0, which requires 𝑞1 <

𝑄

 𝑡𝑖
𝑛
𝑖=1

. The range of 𝑞1 is 0 < 𝑞1 <
𝑄

 𝑡𝑖
𝑛
𝑖=1

. 

If   𝑡𝑖  𝐴𝑗
𝑖−1
𝑗=1

𝑛
𝑖=1 < 0 , then 𝑄 − 𝑞1  𝑡𝑖

𝑛
𝑖=1 > 0 which requires  𝑞1 >

𝑄

 𝑡𝑖
𝑛
𝑖=1

. The 

material balance requires  𝑄 ≥ 𝑞1𝑡1 , which generates  𝑞1 ≤
𝑄

𝑡1
.  So the range of 

𝑞1 is  
𝑄

 𝑡𝑖
𝑛
𝑖=1

< 𝑞1 ≤
𝑄

𝑡1
. 

Step 2: Set initial value of 𝑞1 from the range, and calculate 𝑏 and flow rate  𝑞𝑖  at each 

time period with Eq. 4.12 and Eq. 4.13.  

Step 3: Check whether or not the reconstructed flow rate is reasonable.  In BU time 

period, the flow rate should be zero.  If the calculated flow rate in this time period 

satisfies this requirement, the result is reasonable and the calculation is complete.  

Otherwise, go to step 4. 

Step 4: If the reconstructed flow rate is not reasonable, change the value 𝑞1  and make 

another calculation until the calculated flow rate is reasonable.  
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Figure 4-13: The trial-and-error algorithm for flow rate history reconstruction with 

unknown initial flow rate 𝑞1. 

4.4.2 Case study  

Figure 4-14 depicts a simulated model of a heterogeneous oil reservoir with a single 

production well.  Some model parameters are shown in Table 4-9.  Constant skin factor 

and wellbore storage effect are considered.  The grids near the wellbore are refined to 

reduce the numerical dispersion.  A part of flow history is researched, as Figure 4-15 

shows.  The pressure data is added with noise.  During the production lasting nearly 240 

hours, the cumulative production is 8941 STB.  The initial flow rate is unknown, but 

there are two pressure BUs in the pressure data, and indicates the flow rate is zero 

during these pressure BU time periods.  This information will be used to reconstruct 

flow rate history with the developed algorithm.   
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Figure 4-14: A heterogeneous oil reservoir model with a single producer.  

Table 4-9: Model parameters in the case study. 

Initial field pressure, 𝑝0 4000 psia 

Reservoir length, 𝑅 4100 ft 

Reservoir width, 𝑅 4100 ft 

Thickness,  50 ft 

Oil formation volume factor, 𝐵𝑜  1.2 rb/STB 

Average permeability, 𝑘 50 mD 

Average porosity, 𝜙 0.25 

Viscosity, 𝜇𝑜  1 cp 

Oil compressibility, 𝐶𝑜  3e-6 1/psi 

rock compressibility, 𝐶𝑓  3e-6 1/psi 

Well radius, 𝑟𝑤  0.15 ft 

Skin factor, 𝑆 6 

Well bore storage volume, 𝑉𝑤  1.53e-004 bbl/psi 
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Figure 4-15: The noisy pressure data is processed with WT.   

At first, the noisy pressure data is processed with the Haar wavelet. As Figure 4-15 

presents, in the detail signal of wavelet transform, noisy threshold can be set to 

distinguish flow events from the noise. The time of flow events can be accurately 

identified in the WT detailed signal.  With the WT amplitude 𝐴𝑖  and time period 𝑡𝑖  for 

each flow event, the rate history can be calculated using the trial-and-error algorithm 

developed in Figure 4-13.  The calculation procedures are shown as following. 

Step 1: Define 𝑞1 range.  As   𝑡𝑖  𝐴𝑗
𝑖−1
𝑗=1

𝑛
𝑖=1 = −592.71 < 0, the range of 𝑞1 is  0 <

𝑞1 <
𝑄

 𝑡𝑖
𝑛
𝑖=1

.   That is 792.71 < 𝑞1 < 3193.2.  Select  𝑞1 = 792.8 as the initial value.  

Step 2: Calculate 𝑏  and flow rate  𝑞𝑖 .  When  𝑞1 = 792.8 , the average proportional 

coefficient 𝑏 can be calculated with Eq. 4.12, and the result is 𝑏 = 521.4266.   All flow 

rates for each flow period are nearly 792 STB/day.  

Step 3: Check the result.  The result is not reasonable, because it is contrary to the 

condition that flow rate is zero for pressure BU 𝑞2 =  𝑞11 = 0. 

Step 4: Change the value of  𝑞1 by adding 0.1, then 𝑞1 = 792.9.  Repeat the Step 1, 2 

and 3 until the result is reasonable. 

 The finial reconstructed flow rate is shown in Table 3-10. 
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Table 4-10: The errors of calculated flow rate are nearly less than 5%. 

Beginning 

time (hour) 

Ending 

time (hour) 
WT amplitude 

Calculated rate 

(STB/day) 

Real rate 

(STB/day) 

Error 

(100%) 

136 167.2 
 

1000.9 1000 0.09 

167.2 172 -565.41 0 0 0 

172 172.72 337.96 607.67 600 1.28 

172.72 173.92 -166.93 312.06 300 4.02 

173.92 214.72 394.92 1009 1000 0.9 

214.72 215.68 -339.36 403.42 400 0.86 

215.68 217.6 223.96 809.14 800 1.14 

217.6 239.2 113.22 1014.3 1000 1.43 

239.2 240.4 -113.15 799.82 800 -0.02 

240.4 259.6 112.6 1003 1000 0.3 

259.6 264.4 -565.5 0 0 0 

264.4 265.6 168.84 297.6 300 -0.8 

265.6 268 169.84 607.17 600 1.20 

268 289.6 226.28 1002.2 1000 0.22 

289.6 290.8 -565.49 0 0 0 

290.8 302.8 561.71 993.71 1000 -0.63 

302.8 303.52 -395.92 288.32 300 -3.89 

303.52 321.52 392.37 987.1 1000 -1.29 

321.52 323.92 -565.52 0 0 0 

323.92 326.32 337.45 593.74 600 -1.04 

326.32 347.92 226.29 991.99 1000 -0.80 

347.92 349.12 -395.94 282.47 300 -5.84 

349.12 351.52 280.56 788.2 800 -1.48 

351.52 371.13 113.25 986.49 1000 -1.35 

4.5 Flow rate history reconstruction for multi-wells   

4.5.1 Reconstruction algorithm for multi-wells 

In oilfields, it is not possible to equip flow metering devices for each well.  The 

common practice is several wells are connected through manifolds and measured 
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together with separation equipments.  The reconstruction algorithm for multi-wells 

needs developing to allocate rate for each individual well from total production.  

There are 𝑚 wells measured together, and the proportional coefficient for each well 

is 𝑏𝑘(1 ≤ 𝑘 ≤ 𝑚).  To calculated 𝑚 unknown 𝑏𝑘 , there must be 𝑛 time periods when 

total productions are measured and 𝑛 ≥ 𝑚.  The total production for each measured 

time is 𝑄𝑖(1 ≤ 𝑖 ≤ 𝑛).  To simplify the problem, assume that the initial rate of each 

well at each measured time period is known.  For 𝑖 th measured time period, there are 𝑙 

different flow events and expressed by 𝑗(1 ≤ 𝑗 ≤ 𝑙).  The flow rate of 𝑘 th well at 𝑗 

flow event in 𝑖 th measured time is expressed by 𝑞𝑘𝑖𝑗 . 

𝑞𝑘𝑖𝑗 = 𝑞𝑘𝑖1 +  𝐴𝑘𝑖𝑗 /𝑏𝑘
𝑙−1
𝑗=1                                                                             (4.17)                  

With the material balance, the total production 𝑄𝑖  during the 𝑖 th measured time (1 ≤

𝑖 ≤ 𝑛)  equals the sum of total production of each well during all the flow events 

time 𝑡𝑖𝑗 (1 ≤ 𝑗 ≤ 𝑙): 

 𝑞1𝑖𝑗 𝑡2𝑗 + ⋯ 𝑞𝑘𝑖𝑗 𝑡2𝑗
𝑙
𝑗=1 …+  𝑞𝑚𝑖𝑗 𝑡2𝑗

𝑙
𝑗=1 = 𝑄𝑖

𝑙
𝑗=1                                   (4.18) 

There are 𝑛 measured time periods, so 𝑛 equations can be derived: 

 
  
 

  
 
 𝑞11𝑗 𝑡1𝑗 + ⋯ 𝑞𝑘1𝑗 𝑡1𝑗

𝑙
𝑗=1 …+  𝑞𝑚1𝑗 𝑡1𝑗

𝑙
𝑗=1 = 𝑄1

𝑙
𝑗=1

 𝑞12𝑗 𝑡2𝑗 + ⋯ 𝑞𝑘2𝑗 𝑡2𝑗
𝑙
𝑗=1 …+  𝑞𝑚2𝑗 𝑡2𝑗

𝑙
𝑗=1 = 𝑄2

𝑙
𝑗=1

⋯
 𝑞1𝑖𝑗 𝑡2𝑗 + ⋯ 𝑞𝑘𝑖𝑗 𝑡2𝑗

𝑙
𝑗=1 …+  𝑞𝑚𝑖𝑗 𝑡2𝑗

𝑙
𝑗=1 = 𝑄𝑖

𝑙
𝑗=1

⋯
 𝑞1𝑛𝑗 𝑡𝑛𝑗 + ⋯ 𝑞𝑘𝑛𝑗 𝑡𝑛𝑗

𝑙
𝑗=1 …+  𝑞𝑚𝑛𝑗 𝑡𝑛𝑗

𝑙
𝑗=1 = 𝑄𝑛

𝑙
𝑗=1

                             (4.19)   

By solving Eq. 4.19, the proportional coefficient 𝑏𝑘 1 ≤ 𝑘 ≤ 𝑚 for each well can be 

calculated, and then rate history of each well can be calculated using Eq. 4.17.  

4.5.2 Case study                              

Figure 4-16 shows a heterogeneous reservoir with two producers.  There are three 

layers in the formation and permeability and porosity for each layer are shown in Table 

4-11.  The first and second layer is high-perm, but the permeability for the third layer is 

low.  Other model parameters are shown in Table 4-12.  Different skin factors and 

wellbore storage coefficients are considered for two wells and two wells are partially 
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perforated.  For the first well, the first layer is perforated and the second layer is 

perforated for the second well.      

Down-hole pressure of two wells is presented in Figure 4-17.  The total production of 

two wells is measured together.  In this case, two time periods of total production are 

measured.  In the first 240 hours, the total production is 𝑄1 =12190 STB, and in another 

355.2 hours, the cumulative production of two wells is 𝑄2 =20900 STB.  With the 

developed multi-well algorithm, detailed flow rate history can be reconstructed from the 

pressure data and cumulative production.   

 
Figure 4-16: A heterogeneous reservoir model with two producers. Total production for 

two wells is measured.  
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Table 4-11: The permeability and porosity for different layer. 

property Layer Direction Range Average 

Permeability 

𝑘 (mD) 

1 

X 169.5-234.1 200 

Y 114.2-183.3 150 

Z 12.8-26.5 20 

2 

X 81-118.4 100 

Y 63.6-98.7 80 

Z 6.7-13.2 10 

3 

X 33.0-66.3 50 

Y 42.3-78.2 60 

Z 1.1-8.7 5 

Porosity 

∅ 

1 

 

0.164-0.234 0.2 

2 0.268-0.335 0.3 

3 0.214-0.283 0.25 

Table 4-12: The parameters for the two-well reservoir model. 

Initial pressure, 𝑝0 3000 psia 

Thickness,  150 ft 

Reservoir length and width, 𝑅 4100 ft 

Oil formation volume factor, 𝐵𝑜  1.2 rb/STB 

Viscosity, 𝜇𝑜  1.2 cp 

Total compressibility, 𝑐𝑡  6e-6 1/psi 

Well radius, 𝑟𝑤  𝑟𝑤1 =0.125 ft, 𝑟𝑤2 =0.15 ft 

Skin factor, 𝑆 𝑆1 = 4, 𝑆2 = 1 

Well bore storage, 𝐶𝑠 
𝐶𝑠1 =1.53e-004 bbl/psi 

𝐶𝑠2 =2.9128e-4 bbl/psi 

Perforation 
Well 1-First layer 

Well 2-Second layer 

 



CHAPTER 4 RECONSTRUCTING UNKNOWN FLOW RATE HISTORY FROM TRANISENT PRESSURE 

DATA 

98 

 

Figure 4-17: Down-hole pressure history for two wells. The total production of two 

wells is measured together.  

The proportional coefficients for two wells are assumed 𝑏1  𝑏2, and the initial flow rate 

in two periods of time for two wells is zero, and the Eq. 4.19 can be simplified: 

 
  𝐴11𝑗 𝑡1𝑗

𝑙−1
𝑗=1

𝑙
𝑗=1 𝑏1 +   𝐴21𝑗 𝑡1𝑗

𝑙−1
𝑗=1

𝑙
𝑗=1 𝑏2 = 𝑄1

  𝐴12𝑗 𝑡2𝑗
𝑙−1
𝑗=1

𝑙
𝑗=1 𝑏1 +   𝐴22𝑗 𝑡2𝑗

𝑙−1
𝑗=1

𝑙
𝑗=1 𝑏2 = 𝑄2

                                    (4.20) 

Wavelet is applied to process pressure data to identify flow periods, then 𝐴 and 𝑡 can be 

determined: 

 
1398.9 𝑏1 + 1197.3 𝑏2 = 12190

2493.4 𝑏1 + 1941.3 𝑏2 = 20900
                                                                (4.21)    

The solution of Eq. 4.21 is: 

 
𝑏1 = 0.1984
𝑏2 = 0.2330

                                                                                                   (4.22)   

With Eq. 4.18, flow rate history for each well can be calculated, and the result is shown 

in Figure 4-18.  The calculated flow rate is very close to the real value used for model 

simulation.   
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Figure 4-18: The calculated flow rate for two wells is very close to the real flow rate, 

and the error is less than 1%. 

4.6 Flow rate history reconstruction in oil and water two-phase reservoir  

During water flooding, water is produced after water breakthrough.  Then the flow 

conditions near the wellbore change from the single oil phase flow to oil and water two-

phase flow.  Reconstructing flow rate history in two-phase flow condition is much more 

challenging than that in the single phase flow condition.  Flow rate history for each 

phase needs to be reconstructed.  Besides, due to the dynamic changes in relative 

permeability and phase saturation of each phase, there are high nonlinearities in the 

reservoir when more than single phase flowing in the porous media.  As the developed 

algorithm of flow rate history reconstruction is based on the linearity assumption, the 

direct application of the reconstruction algorithm may have some problems, and further 

discussion and algorithm validation are necessary.  

Generally, the produced oil and water are mixed together and transported in the tubing, 

manifolds and pipeline before they are separated with separation equipments on the 

surface.  The total cumulative production of liquid, oil or water is measured together.  

To reconstruct flow rate history, the total liquid flow rate 𝑞 𝑡 = 𝑞𝑜 + 𝑞𝑤  is calculated at 

first, and then oil and water flow rate 𝑞𝑜  𝑞𝑤  can be calculated with water cut 

information. 

The average proportional coefficient 𝑏: 
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𝑏 =
 𝑡𝑖  𝐴𝑗

𝑖−1
𝑗=1

𝑛
𝑖=1

𝑄−𝑞𝑡1  𝑡𝑖
𝑛
𝑖=1

                                                                                               (4.23)           

where 𝑞𝑡1  is initial total flow rate.  The total flow rate at time period 𝑡𝑖 :  

 𝑞𝑡𝑖 = 𝑞𝑡1 +
 𝐴𝑗
𝑖−1
𝑗=1

 𝑡𝑖  𝐴𝑗
𝑖−1
𝑗=1

𝑛
𝑖=1

𝑄−𝑞𝑡1  𝑡𝑖
𝑛
𝑖=1

                                                                     (4.24) 

Assume the average water cut during this time period is 𝑓𝑤 , which can be calculated 

from cumulative total liquid production 𝑄𝑡  and water production 𝑄𝑤 :  

 𝑓𝑤 =
𝑄𝑤

 𝑄𝑡
                                                                                                            (4.25)      

The oil flow rate 𝑞𝑜𝑖  and water flow rate 𝑞𝑤𝑖  at time period  𝑡𝑖  is: 

𝑞𝑜𝑖 = 𝑞𝑡𝑖 1 − 𝑓𝑤                                                                                              (4.26) 

𝑞𝑤𝑖 = 𝑞𝑡𝑖𝑓𝑤                                                                                                        (4.27) 

Eq. 4.23 is valid in the linear system.  For the oil and water two-phase reservoir, the 

total mobility near the wellbore should be constant or change little.  As a result, the 

water cut is constant or change little.  For the time period when water cut changes a lot, 

Eq. 4.23 has large errors.  

Two different cases are researched, one is constant water cut case, and another is oil and 

water two-phase reservoir with increasing water cut.  

4.6.1 Oil and water two-phase flow with constant water cut case   

This case is oil and water two phase reservoir with constant water cut.  For the dispersed 

flow with uniform saturation or oil-water segregated flow, the water cut may be 

constant during the production.  This two type flow mechanisms are show in Figure 4-

19.  For the dispersed flow with uniform saturation, water and oil are assumed to be 

fully dispersed across the reservoir formation.  It is an ideal case and doesn’t exist in 

practice.  When gravity force is dominate, complete segregation of oil lying water leads 

to segregated flow.  Besides, for the early water breakthrough in high permeability layer, 

segregated flow may happen as well.   
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Figure 4-19: Dispersed flow with uniform saturation and segregated flow (from Xu, W. 

2010) 

A single homogeneous reservoir with segregated flow is modelled with Eclipse, shown 

as Figure 4-20.  The bottom may be an aquifer or high permeability layer with early 

water breakthrough, and the formation is fully perforated.  The down-hole flow pressure 

and water cut history are shown in Figure 4-21.  The water cut is almost constant 

except a little variation in the case of flow events.  During nearly 300 hours production, 

the cumulative liquid production is 10435 STB, and 3124.1982 STB water is produced.  
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Figure 4-20: The segregated flow reservoir model.  

 

Figure 4-21: Down-hole flow pressure and water cut history in the segregated flow 

reservoir.   

As the water cut changes little during the entire production time, reservoir properties 

and flow conditions can be assumed to be constant.  Then the system can be treated to 

be linear and total liquid flow rate can be calculated.  Firstly, the Haar wavelet is used to 

process pressure data and flow events are identified, as Figure 4-22 shows.   Then with 

Eq. 4.23, the average proportional coefficient 𝑏 can be calculated 𝑏 = 0.1761.  After 
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that, the total liquid flow rate can be calculated using Eq. 4.24, and the result is shown 

in Figure 4-23.   

 

Figure 4-22: The pressure of segregated flow is processed with Haar wavelet.  

 
Figure 4-23: The reconstructed total liquid flow rate history.  

The average water cut is  𝑓𝑤 =
𝑄𝑤

 𝑄𝑡
=

3124 .1982 

10435
= 0.2994 .  With the calculated total 

liquid flow rate, oil and water flow rate history can be reconstructed using Eq. 4.26 and 

Eq. 4.27, as shown in Figure 4-24.   
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Figure 4-24: The real flow rate and reconstructed flow rate history of oil and water.  

The reconstructed oil and water flow rate history is satisfying overall, although the 

errors are large for the third flow events.  This is caused by the variation of water cut at 

the beginning, and the linear assumption is not valid seriously.  The diagnostic result is 

shown in Figure 4-25.  URSR 𝐴𝑢𝑟𝑐  is time-varying at the beginning and indicates the 

total mobility near the wellbore changes, which also leads to water cut variation.   

 

Figure 4-25: Nonlinearity diagnostic result in the segregated flow model.   
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4.6.2 Oil and water two-phase reservoir with increasing water cut  

After water breakthrough, water cut at down-hole will increase with time.  As the 

discussion in Section 3.4.5, total mobility of fluids will change correspondingly.  The 

reservoir system is highly nonlinear.  Reconstructing flow rate history from the whole 

pressure data will have large errors.  The best practice is dividing the pressure history 

into different windows, in which the total fluid properties change little and the system 

can be treated to be linear. Then the reconstruction algorithm is applicable.   

The pressure history in Section 3.4.5 is taken as an example.  In the first window, the 

production time period is one week.  Only oil is produced and water cut is almost zero.  

The cumulative liquid production is 4960 STB.  In the second window, 16780 STB 

cumulative liquid is produced in more than two weeks. The water cut increases from 

0.58 to 0.66.  

 
Figure 4-26: Oil and water two-phase reservoir with increasing water cut.  

In the first window, as only oil is flowing in the porous media, the reservoir system is 

linear.  The algorithm of flow rate history reconstruction is applicable.  The calculated 

oil flow rate is shown in Figure 4-27.   The calculated flow rate is almost identical to 

real rate, and the error is less than 1%.  

For the second window, the increasing water cut may cause problems.  Fortunately, as 

the research in the Section 3.4.5, the total mobility changes a lot at the time of water 

breakthrough, and after that, total mobility changes a little during the short time period.  
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In the second window, the reservoir system can be treated to be linear approximately.  

With the Haar wavelet processing pressure data (Figure 4-28), the developed 

reconstruction algorithm is used to calculated flow rate history.  The total liquid flow 

rate history is reconstructed at first, as shown in Figure 4-29.  The errors are very small, 

and indicate that the linear assumption is correct.   

In fact, nonlinearity is very little in the second window, although the water cut is 

increasing.  The nonlinearity diagnostic plot is shown in Figure 4-30, and it shows 

URSR 𝐴𝑢𝑟𝑐  is almost constant.  The total water production is 𝑄𝑤 = 10515.952 STB, 

and the average water cut 𝑓𝑤 =
𝑄𝑤

𝑄𝑡
=

10515 .952

16780
= 0.6267.  With the average water cut, 

then oil and water flow rate can be calculated, shown in Figure 4-31.  The difference 

between calculated rate and real rate is caused by the average water cut.  If real time 

water cut data is used, the result will be more satisfying, as the error of reconstructed 

total liquid rate is very small.   

 

Figure 4-27: The reconstructed oil flow rate history in the first window.  
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Figure 4-28: Pressure data in the second window is processed by Haar wavelet.  

 
Figure 4-29: The reconstructed total liquid flow rate history.  
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Figure 4-30: The diagnostic result in the second window. URSR 𝐴𝑢𝑟𝑐  is almost constant, 

and indicates the system can be treated as linear in this time window.  

 
Figure 4-31: The reconstructed oil and water flow rate history in the second window.   

When reconstructing flow rate history in oil and water two-phase reservoir with 

increasing water cut, two kinds of errors may be introduced.  The first kind of error is 

due to nonlinearities which make the linearity assumption is invalid, and the second 

kind of error is caused by the average water cut data.  Nonlinearity brings errors to total 

liquid flow rate calculation, and the average water cut data will cause errors to the flow 

rate of each phase.     
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Besides, around the time of water breakthrough, total mobility changes a lot.  High 

nonlinearity makes flow rate history reconstruction difficult.  When selecting time 

window, the time period of water breakthrough should be avoided.    

4.7 Flow rate history reconstruction in gas reservoir and gas condensate 

reservoir 

4.7.1 Real gas reservoir 

Flow behaviour of real gas in the porous media is more complex than that of liquid flow 

system.  As the discussion in Section 3.4.2, the nonlinearly due to pressure-dependent 

gas properties has long been recognized as one of the problems in analysing gas well 

test data.   

The compressibility of real gas is the function of pressure: 

𝑐𝑔 =
1

𝑝
−

1

𝑍

𝜕𝑍

𝜕𝑝
                                                                                                    (4.28) 

Here 𝑧 is the real gas deviation factor.  For the ideal gas 𝑍 = 1, and 𝑐𝑔 =
1

𝑝
. 

Besides, the viscosity of real gas 𝜇 is also a function of pressure.  As a result, pressure-

dependent gas properties make the diffusivity equation governing real gas flow in 

porous media highly nonlinear and analytical solution is unavailable.   

Pseudo-pressure is introduced to partially linearize the diffusivity equation (Al-

Hussainy et al. 1966).   After linearization, the diffusivity equation is very similar to 

that of slightly compressible fluids.  The definition of pseudo-pressure is: 

𝑚 𝑝 = 2 
𝑝

𝜇 𝑝 𝑧(𝑝)
𝑑𝑝

𝑝

𝑝𝑖
                                                                                  (4.29)    

Here 𝑝𝑖  is the reference pressure. Viscosity 𝜇 𝑝  and deviation factor 𝑧(𝑝)  must be 

known as a function of pressure.   In field unit, the unit of pseudo-pressure is psia
2
/cp.   

Normalized pseudo-pressure is introduced to retain unit of pressure, and then the 

constants of the working equations for a liquid system can be directly used when the gas 

formation volume is bbl/SCF (Meunier et al. 1987).    The definition of normalized 

pseudo-pressure is: 
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𝑚𝑛 𝑝 = 𝑝𝑖 + (
𝜇𝑧

𝑝
)𝑝𝑖  

𝑝

𝜇 𝑝 𝑧(𝑝)
𝑑𝑝

𝑝

𝑝𝑖
                                                               (4.30) 

Normalized pseudo-pressure will be used here, as the linear relationship between the 

pressure change and rate change can be retained.  A case study is presented as follow.  

Figure 4-32 depicts a part of pressure history from a gas reservoir.  Gas properties are 

pressure-dependent, as shown in Table 4-13.  During more than nearly 700 hours 

production, the cumulative gas production is 1097.5 MMSCF.  As the pressure varies 

from 1500 to 3100 psi, gas compressibility and viscosity change a lot, and the system is 

nonlinear.   

Initially, pressure data is used directly for the flow rate history reconstruction.  The 

average proportional coefficient  𝑏  is calculated  𝑏 = 8.4025 , and the calculated flow 

rate is shown in Table 4-14.  Compared with real value, although most of calculated 

flow rates are satisfying, some error is as high as 7%, which is larger than that in the 

liquid flow system, which are due to the nonlinearity of pressure-dependent properties. 

By contrast, normalized pseudo-pressure is used to linearize the nonlinearity caused by 

pressure-dependent properties, as shown in Figure 4-33.   The average proportional 

coefficient 𝑏 is 𝑏 = 12.3644.  The reconstructed flow rate history is shown in Table 4-

15.   The errors are in 2%, and most is less than 1%.  The accuracy is much high than 

that using pressure directly to calculated flow rate.  

 

Figure 4-32: Down-hole pressure history from real gas reservoir  
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Table 4-13: The real gas PVT properties.  

Pressure (psia) Deviation factor Z Viscosity (cp) 

0 0.937 0.01286 

800 0.882 0.0139 

1200 0.832 0.0153 

1600 0.794 0.0168 

2000 0.77 0.0184 

2400 0.763 0.0201 

2800 0.775 0.0217 

3200 0.797 0.0234 

3600 0.827 0.025 

4000 0.86 0.0266 

4400 0.896 0.02831 

 

 Table 4-14: The calculated flow rate with gas pressure data.  

Beginning 

(Hour) 

Ending 

(Hour) 

Time period 

(Hour) 

Real rate 

(MMSCF/D) 

Calculated rate 

(MMSCF/D) 

Error 

(%) 

0 21.84 21.84 0 0 0 

21.84 33.84 12 20 20.15 -0.77 

33.84 81.84 48 30 30.41 -1.35 

81.84 177.84 96 50 51.59 -3.18 

177.84 189.84 12 40 40.66 -1.64 

189.84 261.84 72 50 51.64 -3.27 

261.84 309.84 48 0 0 0 

309.84 381.84 72 30 28.81 3.96 

381.84 501.84 120 50 51.32 -2.63 

501.84 513.84 12 0 -5.57 0 

513.84 525.84 12 35 32.54 7.02 

525.84 597.84 72 50 50.42 -0.84 

597.84 609.84 12 0 0 0 

609.84 681.6 71.76 50 48.92 2.16 
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Figure 4-33: Normalized pseudo-pressure and WT 

Table 4-15: The flow rate calculation using pseudo-pressure. 

Beginning 

(Hour) 

Ending 

(Hour) 

Time period 

(Hour) 

Real rate 

(MMSCF/D) 

Calculated 

rate 

(MMSCF/D) 

Error (%) 

0 21.84 21.84 0 0 0 

21.84 33.84 12 20 19.95 -0.27 

33.84 81.84 48 30 29.86 -0.45 

81.84 177.84 96 50 49.57 -0.87 

177.84 189.84 12 40 39.96 -0.11 

189.84 261.84 72 50 49.61 -0.78 

261.84 309.84 48 0 0.76 - 

309.84 381.84 72 30 30.36 1.21 

381.84 501.84 120 50 49.71 -0.58 

501.84 513.84 12 0 1.30 - 

513.84 525.84 12 35 35.6 1.71 

525.84 597.84 72 50 49.89 -0.22 

597.84 609.84 12 0 1.94 - 

609.84 681.6 71.76 50 50.33 0.65 

For the gas production with large production rate and low formation permeability, 

down-hole pressure has large variation range, and as a result, the nonlinearity is high 

due to large variation of gas properties.  Using normalized pseudo-pressure instead of 



CHAPTER 4 RECONSTRUCTING UNKNOWN FLOW RATE HISTORY FROM TRANISENT PRESSURE 

DATA 

113 

pressure data can significantly improve the accuracy of reconstructed flow rate history 

in gas reservoir. 

4.7.2 Gas condensate reservoir 

The reservoirs with gas condensate are becoming more common as explorations are 

encountering greater depth, higher pressure and higher temperature.  The multi-phase 

flow conditions near the wellbore and pressure-dependent fluid properties make the 

system highly nonlinear.  Reconstruction flow rate history is challenging. 

A part flow history from condensate reservoir is shown in Figure 4-34.  During more 

than one month production, the gas oil ratio (GOR) is around 21 MSCF/STB and 

increases a little.  The cumulative gas production is 653MMSCF, and cumulative oil 

production is 3167.734 STB.   

 

Figure 4-34: The down-hole pressure and GOR history from a gas condensate reservoir.  

As the range of down-hole pressure change is small (3750-4000 psi) and the GOR 

change little, the reservoir system is treated to linear.  Wavelet is used to process 

pressure data, and flow rate history of oil and gas are reconstructed with the developed 

algorithm.   The result is shown in Figure 4-35.  

The reconstructed flow rate history for oil and gas are stratifying overall.  It is due to the 

low nonlinearity during this short production time.  The pressure variation is small, and 
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flow conditions (such as GOR) can be treated to be constant, therefore the linear 

assumption is valid.   

However, the practice productions are much more complex than this case.  During the 

long-term production, reservoir depletes and down-hole pressure changes a lot.  

Productivity can be reduced due to accumulation of condensate near the wellbore.  As a 

result, the linear assumption may be not valid under this circumstance, large 

uncertainties may be introduced.   

 
Figure 4-35: The calculated oil and gas rate is near to the real rate.   

4.7.3 Gas out of solution  

When down-hole pressure drops below the bubble point, dissolved gas will be out of 

solution.  As the discussion in Section 3.4.4, the flow conditions near the wellbore 

change to oil and gas two-phase flowing.  The pressure history in Section 3.4.4 is taken 

as an example.  To simplify the problems, wellbore storage is not considered.  Two time 

windows are selected to reconstruct flow history, shown in Figure 4-36.   

In the first window, pressure is above the bubble point and only oil is flowing in the 

porous media.  In this one week production, the cumulative gas production is 1650 

MSCF and 1110 STB oil is produced.   With the developed reconstruction algorithm, 

the calculated oil and gas flow rate is shown in Figure 4-37.  The results are close to the 

real values as the system is linear.  
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Figure 4-36: Two time windows are selected to reconstruct flow rate history.  

 
Figure 4-37: The calculated flow rate for gas and oil phase in the first time window.  

The second time window is after gas out of solution.  During more than two weeks 

production, 15020 STB oil and 22315.2 MSCF gas are produced.  As the nonlinearity is 

low, the system is approximated to be linear.  The calculated flow rate for gas and oil 

are shown in the Figure 4-38.   Although the errors are small but they are larger than 

that in the first time window, due to the nonlinearity caused by pressure-dependent gas 

properties.  



CHAPTER 4 RECONSTRUCTING UNKNOWN FLOW RATE HISTORY FROM TRANISENT PRESSURE 

DATA 

116 

 
Figure 4-38: The reconstructed flow rate history in the second time window.  

However, when wellbore storage effect is considered, the nonlinearity caused by phase 

segregation is much higher and cannot be neglected.  If the system is approximated to 

be linear, larger errors are introduced, as Figure 4-39 shows.  The errors are very large 

and the result is unsatisfying.  The high nonlinearities make the reconstruction 

algorithm invalid.  

 

Figure 4-39: The reconstructed flow rate history in the second time window when 

wellbore storage effect is considered.  

Around the time of gas out of solution, the flow conditions change dramatically.  

During this time periods, flow rate history reconstruction should be avoided due to high 

nonlinearities.  
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4.8 Chapter conclusions 

In this chapter, a novel method of reconstructing unknown flow rate history method has 

been proposed.  This method is independent of the reservoir model, only the down-hole 

transient pressure data and cumulative production data are used.  This method requires 

the system is linear, and reservoir properties and flow conditions are constant with time.  

The effects of skin, wellbore storage, reservoir heterogeneity, well interference, 

multiphase flow and compressible gas flow have been considered, and therefore this 

method has the capability for wide applications.    

In the process of theory development and case studies, several conclusions can be 

summarized as following: 

1. In the single oil reservoir, in the case of constant skin factor and wellbore 

storage coefficient, reservoir heterogeneity and production interference, the 

developed reconstruction algorithm works well.  For the flow history with 

closely happening flow events, the errors of calculated flow rate are small. 

2. In the case of unknown initial flow rate, an algorithm based on trial-and-error 

approach has been developed.  The unknown initial rate can be determined and 

unknown flow rate history can be reconstructed.  

3. When the production of several wells are measured together and each well is 

equipped with pressure gauge, the detailed flow rate history for each well can be 

calculated with the multi-well reconstruction algorithm. 

4. For the reservoir with oil and water two-phase flowing, during the time periods 

when water-cut is constant or changes little, the nonlinearity is low and 

unknown flow rate history for each phase can be reconstructed.  Two kinds of 

errors can be introduced.  One is due to the nonlinearity and another is caused by 

the unknown water cut data.  

5. For the real-gas reservoir, calculated rate has larger errors than that in liquid 

systems as gas properties are pressure-dependent.  Normalized pseudo-pressure 

can be applied to overcome the nonlinearity due to pressure-dependent 

properties.  Flow rate history can be reconstructed with high accuracy when the 

normalized pseudo-pressure is used. 

6. When the nonlinearity in the system is very high and cannot be neglected, such 

as phase segregation effect after dissolved gas out of solution, the calculated 

flow rates have large errors.              
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Chapter 5  Sliding Window Technique for Long-term Transient 

Pressure Analysis and Reservoir Model Calibration 

5.1 Introduction  

The purposes of nonlinearity diagnostic and unknown rate history reconstruction 

discussed in the previous chapters are aimed for pressure-transient analysis to obtain 

reservoir parameters.  For the short time traditional well testing, reservoir parameters 

are assumed to be constant.  However, for the long-term PDG pressure data, usually the 

reservoir-well parameters are time-dependent, as reservoir properties and well 

conditions may change during the long-term production in field practice.   

The nonlinearities due to the changes in reservoir properties and well conditions are 

common in the long-term transient pressure data.   As a result, the linearity assumption 

is invalid and pressure-transient analysis (PTA) is challenging, as many PTA methods 

are based on the linearity assumption.  Furthermore, reservoir model needs calibration 

with the new time-dependent reservoir-well parameters. 

Analysing the long-term PDG pressure data by one interpretation is very difficult.  

Sliding window technique is an effective method of analysing the long-term and large 

quantities of dataset by dividing the whole dataset into series of continuous windows.  

The piecewise window makes the time span short and pressure data interpretation is 

possible.  More importantly, the reservoir system with nonlinearities can be divided into 

several linear systems chronologically.  In each window, the time span is short and PTA 

methods based on the linearity assumption are valid.  For instance, deconvolution can 

convert multi-rate pressure into equivalent constant-rate pressure, which can enlarge the 

radius of investigation significantly.  Time-dependent reservoir-well parameters may be 

derived in each window.  New parameters can be used for reservoir model calibration, 

and in this way reservoir model can be calibrated continuously to match the field 

performance.  

In this chapter, combined with the novel nonlinearity diagnostic method, sliding 

window technique is introduced for long-term PDG pressure analysis and reservoir 

model calibration.    
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5.2 Theory description  

5.2.1 Deconvolution  

Deconvolution can provide unit constant-rate drawdown response from the variable-rate 

pressure data.  The time interval of test is longer than that of the conventional well test 

time, and the radius of investigation is extended.      

Figure 5-1 presents the pressure and flow rate history from a simulated heterogeneous 

closed reservoir model.  There are several flow events, and one pressure BU lasting for 

24 hours can be used for traditional pressure-transient analysis. 

 

Figure 5-1: The simulated test data from a heterogeneous closed reservoir model.  

As shown in Figure 5-2, the pressure derivative of pressure BU1 is not long enough to 

detect the boundary conditions.  Deconvolution is used to convert the whole variable-

rate pressure into the equivalent constant-rate pressure drawdown response.  The 

deconvolved pressure response is long enough to develop the unit-slop trend 

characteristic of closed boundaries.  
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Figure 5-2: Comparison of pressure derivative from PU1 with the response from 

deconvolution. 

Deconvolution is an inverse algorithm of superposition principle and it is only valid 

under the assumption of linearity.  It will fail when there is nonlinearity in the reservoir.  

In this chapter, deconvolution is used for the demonstration of the nonlinearity 

diagnostic and window selection for pressure-transient analysis.  

5.2.2 Sliding window technique  

Sliding window technique is widely applied in signal processing, data mining and etc., 

especially for long and time-dependent dataset (Luo and Billings 1995, Babcock et al. 

2002).  The continuous data is divided into a series of time windows, and in each 

window data is processed separately.    

For the long-term pressure data last for thousands of hours, the volume of dataset is too 

large to analyse by one interpretation.  Besides, the reservoir-well properties may 

change.  Therefore, several interpretations with limited pressure length are more 

reasonable.  Figure 5-3 shows the window technique dividing the long-term pressure 

data into several short windows.  
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Figure 5-3: Sliding window technique.  The pressure data is grouped into different 

windows, and in each window pressure data is interpreted separately.  

Athichanagorn (1999) applied the sliding window technique combined with nonlinear 

regression to analyse long-term PDG pressure data.  In each time window, nonlinear 

regression is applied to calculate unknown reservoir parameters as well as flow rate.  In 

detail, his method can be summarized into five steps: 

1. Select window size and time length. 

2. Determine the reservoir model parameters as well as known flow rate by 

regression method in selected window. 

3. Remove the aberrant transients. 

4. Update local parameters such as unknown flow rates before moving to 

subsequent windows. 

5. Analyse pressure data in new window. 

This method has the potential to solve the problems of long-term and large quantity of 

PDG pressure analysis, and cope with the problem of nonlinearities due to time-

dependent reservoir properties.  However, the window selection is unclear and with lots 

of uncertainties.   In Athichanagorn’s method, the window size is fixed and only the 

availability of rate information is considered.  The calculated parameters from 

regression in different windows vary a lot.  Some calculated result is shown in Figure 

5-4.  As the figure shows, the change range of calculated value is huge and some values 

are totally incorrect.  Taking the wellbore storage coefficient as an example, some 

calculated value is even larger than 5 STB/psi, which is unreasonable.  The variations of 
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calculated parameters are not caused by reservoir-well properties change, but mainly 

due to the instability of regression algorithms.  As a result, the calculated parameters are 

confused and not useful for production monitoring, model calibration. 

 

Figure 5-4: Calculated model parameters in different time windows (Athichanagorn 

1999). 

The better method for window selection is based on changes in reservoir-well properties.  

With the novel nonlinearity diagnostic method developed in Chapter 3, this problem can 

be solved.   URSR 𝐴𝑢𝑟𝑐  function can evaluate how many changes in reservoir properties 

and well conditions both qualitatively as well as quantitatively.  The large changes in 

URSR 𝐴𝑢𝑟𝑐  mean high nonlinearities and large changes in reservoir-well properties.  

The continuous pressure data with little nonlinearities will be grouped into one window.  

When there are high nonlinearities, time window slides to the subsequent one.  

Figure 5-5 shows the workflow of window selection based on the URSR 𝐴𝑢𝑟𝑐  function.  

Threshold will be set up, when 𝐴𝑢𝑟𝑐  changes more than this threshold, time window 

will slide to the subsequent one, and reservoir model need calibration with new 

reservoir-well parameters.  
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Figure 5-5: The workflow of window selection based on URSR 𝐴𝑢𝑟𝑐  function. 

5.2.3 Reservoir model calibration with updating Near Wellbore Model (NWM) 

Ideally, the reservoir model should be calibrated continuously with new parameters to 

match the real field performance and make reliable future forecasting.  However, 

calibrating the full field model (FFM) needs lot of work and also is time-consuming.  

As the changes in reservoir-well parameters due to long-term production mainly happen 

near the wellbore, updating the near wellbore model (NWM) is more efficient.  After 

calculation, the size of NWM can be determined and NWM can be extracted from the 

full field model.  

In the near wellbore model, well definitions can be improved and reservoir-well 

parameters can be updated with new parameters.  The grid near the wellbore can be 

refined, and local grid refinements can reduce numerical dispersions.  After that, the 

NWM can be inserted back to the full field model.  The performance of full field model 

can be improved.  The workflow is shown in Figure 5-6.  
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Figure 5-6: Model calibration with updating near wellbore model. 

5.3 Analysis of transient pressure with nonlinearity using sliding window 

technique and deconvolution 

5.3.1 Time-dependent skin case  

Figure 5-7 shows a part of simulated flow history in a heterogeneous reservoir.  After 

360 hours production, the  well is treated with acidizing  and skin factor decreases from 

3 to 1.    

 

Figure 5-7: The production and skin factor history in a heterogeneous reservoir.   

As skin factor is time-dependent, the diffusivity equations governing the fluid flow in 

the reservoir is nonlinear.  As a result, the convolution integral is invalid.   

Deconvolution algorithm will fail or lead to wrong result.  Figure 5-8 shows the 

NWM selection NWM Update FFM with LGR 
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pressure data for the whole test sequence are processed directly.  Although there are no 

noises in simulated rate and pressure data, deconvolution fails at the late time.  The 

wellbore storage effect and radial flow regime can be detected, but there are large 

fluctuations at the late time, and boundary condition is unknown.    

 
Figure 5-8: Deconvolved response obtained from the whole pressure data in Figure 5-7 

with the changing skin factor.  

The convolved pressure response obtained from 𝑝𝑢  and rate history is shown in Figure 

5-9.  Compared with the real pressure, convolved pressure has large errors.  It means 

that the unit constant-rate pressure 𝑝𝑢  cannot match the real pressure response of the 

reservoir system.  The nonlinearity due to time-dependent skin factor makes the 

deconvoluiton algorithm cannot produce valid result.  

To correctly apply deconvolution algorithm, nonlinearities should be diagnosed at first 

to reduce uncertainties.  The Haar wavelet is used for processing pressure data, and the 

URSR function 𝐴𝑢𝑟𝑐  is calculated to diagnose nonlinearities.  In Figure 5-10, 𝐴𝑢𝑟𝑐  

function is constant initially but decreases to another constant value, indicating that 

there is nonlinearity in the reservoir system.  According to the diagnostic result, time 

windows can be selected.  Sliding window technique is applied to divide the pressure 

history into two time windows.  In this way, the reservoir system is considered to be 

two linear systems chronologically, and in each time window deconvolution algorithm 

is valid.  
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Figure 5-9: The convolved pressure doesn’t match the real pressure.  

 

 
Figure 5-10: Nonlinearity diagnostic and sliding window selection. 

Figure 5-11 compares the unit-rate drawdown response derived from the pressure data 

in two windows.  As in each window the reservoir system is linear, deconvolution 

provides valid results.  Deconvolution extends the test time, and the unit slop in 𝑝𝑢  

derivative in late time regime (LTR) verifies closed boundary conditions.  In middle 

time regime (MTR) and late time regime (LTR),  𝑝𝑢  derivative from two windows is 

coincident but 𝑝𝑢  in the second window is lower than 𝑝𝑢  in the first window, which 

means the skin factor decreases during the production time.  
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Figure 5-11:  Comparison of the drawdown response derived from the deconvolution of 

pressure data in two time windows.   

Figure 5-12 compares the real pressure with the convolved pressure calculated from 

deconvolution.  They are nearly coincident and verify that the pressure response derived 

from deconvolution can represent the reservoir response.   

 

Figure 5-12: Comparison of convolved pressure calculated from deconvolution with the 

real pressure data in two time windows.  
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5.3.2 Time-dependent permeability-thickness case  

For the reservoirs with poor consolidated formations, permeability-thickness 𝑘 may 

change with time.  Figure 5-13 presents the simulation case with the changing 

permeability during the production time.  

 

Figure 5-13: Pressure and rate history with changing permeability  

In the first 340 hours, the permeability near the wellbore is 50 mD, and after that it 

declines to 45 mD.  The changing permeability causes the reservoir system nonlinear, 

and deconvolution fails when the whole pressure dataset is processed, as illustrated in 

Figure 5-14.  The 𝑝𝑢  derivative has a large scattering at late time regime (LTR), and 

boundary condition cannot be identified.  Figure 5-15 compares the real pressure with 

the convolved pressure which is calculated from the convolution of derived 𝑝𝑢and rate 

history.   They cannot match with each other due to the changing permeability.  
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Figure 5-14: Deconvolution of the whole pressure data with changing permeability.  

 
Figure 5-15: The convolved pressure data doesn’t match the pressure data due to 

changing permeability.  

Therefore, nonlinearity diagnostic is crucial for deconvolution application.  The Haar 

wavelet is used for processing pressure data, and URSR 𝐴𝑢𝑟𝑐  function is calculated to 

diagnose nonlinearities.  As Figure 5-16 shows, URSR 𝐴𝑢𝑟𝑐  is constant initially but 

increases to another constant value.  Therefore, two windows can be selected according 

to the value of URSR 𝐴𝑢𝑟𝑐 .  In each time window, URSR 𝐴𝑢𝑟𝑐  is almost constant and 

system can be treated to be linear.  Correspondingly, the pressure data can be grouped 

into two time windows.  
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Figure 5-16: Nonlinearity diagnostic result and sliding window selection.  The 

nonlinear system is divided into two linear systems.  

In each time window, deconvolution can be applied to convert the variable-rate pressure 

into unit constant-rate pressure response.  Figure 5-17 compares the unit response 𝑝𝑢  

and 𝑝𝑢  derivative of pressure data in two time windows.  In the second time window, 

unit response 𝑝𝑢  and 𝑝𝑢  derivative are shift up indicating the decreasing permeability of 

the formation.    

 
Figure 5-17: Comparison of unit response 𝑝𝑢  and 𝑝𝑢  derivative in two windows.  
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5.4 Reservoir model calibration with sliding window technique  

In this section, a case of reservoir model calibration with sliding window technique is 

presented.  Initially, nonlinearities are diagnosed from long-term transient pressure data, 

and pressure data with nonlinearity is analysed with sliding window technique.  In each 

time window time-dependent reservoir-well parameters are interpreted and near 

wellbore model (NWM) is selected and updated.  After that, NWM is put back to the 

full field model (FFM), and reservoir model can be calibrated.   

5.4.1 Reservoir model description 

Figure 5-18 shows a heterogeneous oil reservoir model with three production wells, and 

the initial reservoir properties are shown in Table 5-1.  The permeability is related log-

normal distribution with the range from 10-1000mD, and average is 100mD.  The skin 

factor and wellbore storage effect are considered for each well, and the grids near the 

wellbore are refined to reduce numerical dispersion.  Figure 5-19 illustrates the 

production history for three wells which are lasting for nearly four months.  Some 

reservoir-well parameters may change with time during this four months production.  

Table 5-1: The parameters for reservoir model  

Initial pressure, 𝑝0 4000 psia 

Reservoir length, 𝑅 6150 ft 

Reservoir width, 𝑅 6150 ft 

Thickness,  100 ft 

Porosity, 𝜙 0.27 

Average permeability k  

with log normal distribution 
100 mD 

𝑘𝑣 𝑘  0.1 

Oil viscosity, 𝜇𝑜  1.2 cp 

Oil FVF, 𝐵𝑜  1.2 rb/STB 

Oil compressibility, 𝐶𝑜  3E-6/psi 

Total compressibility, 𝐶𝑡  6.6E-6/psi 
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Figure 5-18: Reservoir model for model calibration case study.   

 

Figure 5-19: Production history for three wells. 

5.4.2 Nonlinearity diagnostic with wavelet transform  

Figure 5-20 presents that wavelet transform is applied to process pressure data.  

URSR 𝐴𝑢𝑟𝑐  for three wells is calculated and are shown in Figure 5-21.  It is a constant 

value for PROD2 but it changes with time for other two wells, which means there are 

nonlinearities near PROD1 and PROD3, which are due to the time-dependent reservoir-

well parameters.   
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Figure 5-20: WT is applied to process transient pressure data of three wells. 

 
Figure 5-21: URSR 𝐴𝑢𝑟𝑐  for three wells.  It is constant for PROD2 well, but it is time-

dependent for well1 and well3.  

Without model calibration, the model performance cannot match the real pressure, as 

shown in Figure 5-22.  With time going on the differences between model performance 

and real pressure performance become huge, and this will bring large uncertainties for 

future forecasting.  Therefore, for well PROD1 and PROD3, NWM needs update.  
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Figure 5-22: The pressure from simulated model with constant reservoir properties 

cannot match the real pressure performance.  

5.4.3 Sliding time window selection 

Based on diagnostic result, long-term production history is divided into series of time 

windows.  In the same time window, the nonlinearity is so little than the reservoir-well 

parameters are treated as constant.  Figure 5-23 shows sliding window selection for 

PROD1 according to the diagnostic result.  Correspondingly, shows the production 

history of PROD1 is divided into four time windows, as shown in Figure 5-24.  The 

window size is same with that in Figure 5-23.  In each window, one pressure BU is 

selected for transient pressure analysis to determine new reservoir-well parameters.  

Similarly, sliding windows are selected for PROD3, shown in Figures 5-25 and 5-26.  
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Figure 5-23: The window selection for PROD1 well in URSR 𝐴𝑢𝑟𝑐  function plot 

 
Figure 5-24: The window selection for PROD1 well in pressure history 
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Figure 5-25: The window selection for PROD3 well in URSR 𝐴𝑢𝑟𝑐  function plot 

 

Figure 5-26: The window selection for PROD3 well in pressure history 

5.4.4 Pressure-transient analysis for time-dependent parameter interpretation   

As the nonlinearity in each time window is little, the reservoir-well parameters can be 

treated to be constant in each window.  With conventional PTA methods, reservoir-well 

parameters can be interpreted from the selected pressure BU in each time window.    

Figure 5-27 shows the pressure BU analysis of PROD1 well in the second time window.  

Table 5-2 shows the pressure interpretation results for PROD1 well in four time 

windows, and skin factor increases from 1.76 to 5.61.  Similarly, pressure BU of 

PROD3 well in each time window is analysed.  Table 5-3 shows the pressure 
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interpretation results for PROD3 well and permeability around PROD3 wellbore 

declines from 195.81mD to 98.5 mD, but the skin factor almost is constant.  Time-

dependent skin factor and permeability cause the reservoir model performance cannot 

match the real pressure. 

 

Figure 5-27: Pressure BU of PROD1 well in the second time window is analysed.  

Table 5-2: Pressure-transient analysis result in each time window for PROD1 

Window 

index 

Window Time 

Period (hour) 

BU well test 

time period (hour) 
Skin factor 

Permeability 

(mD) 

1 0-168 24-36 1.76 83.96 

2 168-1116 540-564 2.74 83.83 

3 1116-1872 1776-1800 4.67 83.92 

4 1872-2640 2292-2308.8 5.61 83.67 
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Table 5-3: Pressure-transient analysis result in each time window for PROD3 

Window 

index 

Window Time 

Period (hour) 

BU well test 

time period (hour) 
Skin factor 

Permeability 

(mD) 

1 0-168 24-36 2.82 195.81 

2 168-888 588-612 2.84 157.11 

3 888-1812 1776-1800 2.91 123.7 

4 1812-2640 2560.8-2640 2.87 98.5 

5.4.5 Near Wellbore Model (NWM) selection and update 

PROD1 well can be easily updated with new skin factor, but for PROD3 well, how 

large area needs updating with the new permeability is unknown.  NWM should be 

calculated before selection.  The size of NWM can be calculated with the radius of 

investigation equation: 

𝑟𝑖𝑛𝑣 = 0.029 
𝑘𝑡

∅𝜇𝑐𝑡
                                                                                                (5.1)  

As permeability and skin factor are determined in radial flow regime, time 𝑡 in Eq. 5.1 

should be the end time of radial flow, which can be determined in pressure derivative in 

log-log plot.  Taken PROD3 for an example, the size of NWM is calculated in each time 

window is shown in Table 5-4.  As the model grid size is 150 ft, only the grid near the 

wellbore of PROD3 needs update, shown as Figure 5-28.  

NWM can be updated with time-dependent reservoir-well parameters which changes 

with different time windows.  The interpreted results in Table 5-2 and 5-3 are used for 

PROD1 and PROD3 NWM update.  After updating, NWM is put back into the FFM 

with local grid refinement near the well. 
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Table 5-4: The size of NWM for PROD3 well calculated from the radius of 

investigation equation. 

BU index 
End time of radial flow 

(hour) 

Permeability 

(mD) 

Radius of NWM 

(ft) 

1 1.68 195.81 73.42 

2 2.04 157.11 72.47 

3 2.4 123.7 69.75 

4 3.456 98.5 74.69 

 

Figure 5-28: Near wellbore model selection for PROD3 

The NWM update results for PROD1 and PROD3 are shown as Figure 5-29.  

Compared with constant property modelling, the pressure from updated reservoir model 

with time-dependent reservoir-well properties varying with different time windows is 

much more approaching the real pressure performance.  
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Figure 5-29: The pressure performance after NWM update can match the real pressure 

of PROD1 and PROD3 well  

5.5 Chapter conclusions  

In this chapter, combined with the novel nonlinearity diagnostic method, the sliding 

window technique is proposed for long-term transient pressure analysis and reservoir 

model calibration.  In summary, the following conclusions can be draw: 

1. With the novel diagnostic method, sliding window technique is an effective 

method of analysing the long-term transient pressure data with nonlinearities.   

2. The window selection and window size depends on the changes in URSR 𝐴𝑢𝑟𝑐 , 

which represent the changes of reservoir-well parameters.  In each time window, 

the nonlinearities are little and the system can be treated to be linear. 

3. Deconvolution is not recommended to apply to the whole pressure history due to 

the nonlinearities caused by the changes in reservoir-well properties.  In each 

time window, deconvolution is valid for pressure-transient analysis.   

4. The time-dependent parameters can be interpreted from pressure BU in each 

window, and then can be used for NWM update.   

5. The size of the near well model can be determined from the radius of radial flow 

using the radius of investigation equation.   

6. The updated NWM with new parameters can be put back to the FFM.  In this 

way, the reservoir model can be calibrated continuously.  
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Chapter 6  Field Data Application 

6.1 Introduction  

In this chapter, the methodologies developed in this thesis are demonstrated with field 

PDG pressure data.  Figure 6-1 presents the long-term field PDG pressure data from an 

oil reservoir.  The time span of PDG pressure data is very long and it lasts for 10,000 

hours.  Lots of flow events were recorded, including tens of pressure build-ups.  Daily 

production was measured, but the real-time flow rate history and other reservoir 

information are unknown.   

 

Figure 6-1: PDG pressure data and measured daily rate history from an oil reservoir. 

The daily rate history cannot reflect the real-time conditions of the production well, and 

for pressure-transient analysis the real-time rate history is needed to reduce uncertainties.  

Besides, the reservoir-well properties around the wellbore may change with the long-

term production, which can cause problems for pressure analysis and reservoir 

modelling.  

In this chapter, the field PDG pressure data in Figure 6-1 is utilized to demonstrate and 

verify the methods developed in this thesis.  Two tasks will be achieved: 

1. Reconstruct the real-time rate history from the PDG pressure data. 

2. Diagnose the changes in reservoir-well properties around the wellbore using the 

wavelet frequency diagnostic method to provide guidelines for the reservoir 

model calibration.  
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The first task is to demonstrate the method of reconstructing unknown rate history 

developed in Chapter 4.  As the reservoir information is unknown, which means that the 

reservoir model is unavailable, the model-dependent methods for reconstructing the 

unknown rate history cannot be applied.   The method of rate history calculation 

developed in Chapter 4 is model-independent, and it can overcome this challenge.     

The second task is to demonstrate the method of diagnosing the time-dependent 

reservoir-well properties developed in Chapter 3 and the sliding window technique for 

model calibration proposed in Chapter 5.  The diagnostic result will be verified with the 

traditional well testing.   

6.2 PDG pressure data processing  

As well known that the field PDG pressure data is very noisy, data volume due to high-

frequency and long-term data recording is very large.  As Figure 6-1 shows, the data 

volume of the PDG pressure history in is very large.  In the time period of 11.2 hours to 

the 528 hours, the pressure data was collected every 10 seconds.  In the time period of 

528 hour to the 873 hour, the pressure data was unavailable due to the gauge failure.  

After the 873 hour, the pressure was measured every 1 minute until the 9945 hour.  The 

total data number is as large as 625,980.  

Figure 6-2 shows the field PDG pressure data in the first 530 hours.  The data number 

during this time period is 145,253.  To clearly show the nature of PDG data, the time 

period between the 246 hour and the 252 hour is zoomed in, and it is clearly shown that 

how noisy the high-frequency PDG pressure data it is.   
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Figure 6-2: The noisy PDG pressure data in the first 530 hours and zoom-in plot.  

The noisy and large volume of PDG pressure data is not suitable for rate history 

reconstruction and pressure-transient analysis.  Data pre-processing is an important 

procedure to remove noise and outliers and reduce the data volume.  

Denoising is a good way to avoid noise effect by reducing the fluctuation and 

scatterings to extract the main feature of the data.  Our research has proved wavelet 

thresholding method is one of the most effective approaches.  After wavelet 

decomposition, small fluctuation in detail signal caused by noise is suppressed, and 

denoised data can be reconstructed with smoother sub-signals. There are two kinds of 

thresholding methods: hard thresholding method and soft threshold method.  The hard 

thresholding method is to replace the detailed signal with zero whenever its magnitude 

is smaller than the threshold λ: 

𝑑𝑗 ,𝑘
𝑎𝑟𝑑 =  

𝑑𝑗 ,𝑘                𝑑𝑗 ,𝑘  > 𝜆

0              𝑜𝑡𝑒𝑟𝑤𝑖𝑠𝑒  
                                                                             (6.1) 

But the denoised signal with hard thresholding method usually contains discontinuities.  

For the pressure data obtained from permanent down-hole gauge (PDG), the soft 

thresholding method is recommended by Kikani and He (1998):  

𝑑𝑗 ,𝑘
𝑠𝑜𝑓𝑡

=  

𝑑𝑗 ,𝑘 − 𝜆            𝑑𝑗 ,𝑘 > 𝜆

𝑑𝑗 ,𝑘 + 𝜆          𝑑𝑗 ,𝑘 < −𝜆

0                      𝑑𝑗 ,𝑘  ≤  𝜆

                                                                          (6.2) 
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Athichanagorn et al. (1999) also proposed a hybrid thresholding method.  For this 

method, the soft thresholding method is used in continuous data, and the hard 

thresholding method is applied to the vicinity of data with discontinuities.   

In this thesis, the soft thresholding method is applied. As shown in Figure 6-3, the 

denoised pressure data is more clean and smooth, and the overall trend of the noisy 

pressure data is kept.  Especially the small flow events around the 262 hour, the small 

fluctuation of pressure data are reserved.  To further reduce the data point numbers, the 

denoised pressure data were further interpolated with the 0.05 hour equal time interval, 

and the total data number is reduced to 5158.  After data pre-processing, the PDG 

pressure data is more suitable for analysis.   

 

Figure 6-3: Processed PDG pressure data in the first 530 hours and zoom in plot.  

6.3 Reconstructing rate history from PDG pressure data 

6.3.1 Window selection  

As the PDG pressure data is long-term, reconstructing the whole rate history by one 

process is difficult.  Besides, there is high possibility that the reservoir-well properties 

may change during this long-term production, which will cause the linearity assumption 

invalid.  The better way is dividing the whole PDG pressure history into several time 

windows with short time span, and in each time window flow rate is calculated.  

As shown in Figure 6-1, there are nearly 20 build-ups in the PDG pressure history.  

During pressure build-up time periods, the flow rate is zero.  This important information 

is utilized for window selection.  The time period between two build-ups will be 
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selected as one time window.  Figure 6-4 presents the window selection result in the 

first 530 hours, and during this time period three windows are selected.  

 

Figure 6-4: The pressure data between two build-ups are selected in one window.  

6.3.2 Rate calculation with wavelet transform 

The cumulative production for each time window can be calculated from the daily rate.  

With the cumulative production PDG pressure data in each time window, rate history 

can be reconstructed using the wavelet-based method developed in Chapter 4.   

The pressure data in time window 3 is taken as an example to illustrate the calculation 

process in detail.  Time window 3 covers from the 275 hour to the 518 hour, and the 

cumulative production can be calculated from daily rate, and it is 86,978 STB.  Figure 

6-5 shows the wavelet transform processing the PDG pressure data and the calculated 

rate history.  As the figure shows, flow events can be identified with the amplitude of 

WT coefficients.  For the pressure DD, the WT amplitude is positive and for pressure 

BU, the WT amplitude is negative.   
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Figure 6-5: The PDG pressure data in window 3 is processed with WT, and rate history 

is calculated. 

The proportional coefficient 𝑏 between WT amplitude and the change in flow rate can 

be calculated using the following equation:  

𝑏 =
 𝑡𝑖  𝐴𝑗

𝑖−1
𝑗=1

𝑛
𝑖=1

𝑄−𝑞1  𝑡𝑖
𝑛
𝑖=1

                                                                                             (6.3) 

Here cumulative production 𝑄 = 86978 STB, and initial flow rate is in the build-up 

period 𝑞1 = 0.  The calculated average proportional coefficient is 𝑏 = 0.030.  

With the calculated 𝑏, flow rate 𝑞𝑖  at time period 𝑡𝑖   can be calculated with the equation:  

  𝑞𝑖 = 𝑞1 +
 𝐴𝑗
𝑖−1
𝑗=1

𝑏
                                                                                    (6.4) 

As shown in Figure 6-5,   compared with the measured daily rate history, calculated 

real-time rate can reflect all the small flow events in detail with high accuracy.   

Similarly, the cumulative production during the time window 2 is 13941 STB, and the 

average proportional coefficient is 𝑏 = 0.0292.  The calculated rate history in the time 

window 2 is shown in Figure 6-6.  As the figure shows, from the 228 hour to the 252 

hour, the daily rate is an average constant value and cannot reflect the real-time flow 

events.  In fact, the rate increased with time from zero to the largest value.  The 

calculated rate history can exactly describe how the rate changes in real-time.   
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Figure 6-6: Wavelet transform processing pressure data and calculated rate history in 

window 2. 

In the time window 1, the cumulative production is 26342 STB.  However, it is 

challenging that the initial rate 𝑞1 is unknown.  According to Eq. 6.3, the proportional 

coefficient 𝑏 cannot be calculated.  To solve this problem, a trial-and-error algorithm 

will be used.  At first the initial rate 𝑞1 is estimated with one value and then rate history 

in the time window 1 is calculated and compared with daily rate.  If the calculated rate 

history cannot match the measured daily rate history, the initial rate 𝑞1 will be adjusted 

until the best matching is performed.  In this way the finial initial rate 𝑞1=400 STB/day 

and the average proportional coefficient is 𝑏 = 0.030.   

Figure 6-7 shows the calculated flow rate history in the time window 1.  The result is 

satisfying in the first 200 hours but there are errors after 200 hours.  That is due to high 

frequency changes in pressure, which cause large accumulative errors during this time 

period.   
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Figure 6-7: Calculated rate history in the window 1 from the 12 hour to the 227 hour.  

Figure 6-8 shows the calculated rate history from the 970 hour to the 1070 hour.  

During this time period, the cumulative production is 41499 STB, and calculated 

average proportional coefficient is 𝑏 = 0.0228.  Overall, the calculation result is good 

compared with measured daily rate, though that there are pressure data missing around 

the 1000 hour.  

 

Figure 6-8: Calculated rate history from the 970 hour to the 1070 hour. 

Figure 6-9 shows the calculated rate history from the 1070 hour to the 1336 hour.  The 

cumulative production is 114270 STB, and the calculated average proportional 

coefficient is  𝑏 = 0.0272 .  As the figure shows, several parts of pressure data are 

missing, especially the time period around the 1150 hour.  Inferred from the measured 
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daily rate history, the missing data should be pressure build-up due to the decreasing 

rate.  However, this information is covered up by data interpolation, as data 

interpolation ignores pressure change during this time period.          

 
Figure 6-9: Calculated rate history from the 1070 hour to the 1336 hour. 

Figure 6-10 presents the calculated rate history from the 1557 hour to the 2375 hour.  

The calculated result is not as good as that in the above figures, due to the missing 

pressure data.  During the time period around 1630 hour, a pressure build-up data is 

missing according to the measured daily rate history.  As a result, the calculated rate is 

much larger than the real rate.  As the cumulative production is a constant value, the 

calculated rate during other time period is assigned less production compared with the 

measured daily rate history.  
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Figure 6-10: Calculated rate history from the 1557 hour to the 2375 hour 

Figure 6-11 shows the calculated rate history from the 2500 hour to the 3418 hour. The 

calculated rate overall matches the measured daily rate history.  Around the 3400 hour, 

the calculated rate is a little larger than the measured daily rate, which is caused by the 

missing data in pressure drawdown around the 3390 hour.   

 

Figure 6-11: Calculated rate history from the 2500 hour to the 3418 hour. 

Figure 6-12 presents the calculated rate history from the 3418 hour to the 3619 hour.  

The calculation result during the 3440 hour to the 3540 hour is good compared with the 

measured daily rate.  However, during other time period the calculated rate have larger 

error due to the incomplete pressure history.    
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Figure 6-12: Calculated rate history from the 3418 hour to the 3619 hour. 

Figure 6-13 shows the rate calculation result from the 3925 hours to the 4000 hours.  

All the small flow events are identified and calculated with the high accuracy.  The 

result satisfying compared with the measured daily rate.  

 
Figure 6-13: Calculated rate history from the 3925 hour to the 4000 hour. 

Figure 6-14 shows the calculated rate history from the 4090.19 hour to the 4385 the 

hour. The calculated rate is good and can match the measured daily rate history, 

although there are several parts of pressure data are missing.  
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Figure 6-14: Calculated rate history from the 4090.19 hour to the 4385h. 

Figure 6-15 shows the calculated rate history from the 4395 hour to the 4995 hour.  

There are two parts of missing pressure build-up data and during these two time periods 

the calculated rate is larger than the measured daily rate.  In the time period around the 

4690 hour, the measured daily rate is much larger than the calculated rate.  However, 

from the point of pressure data, there is no large pressure change which means the 

measured daily rate at this time is not reliable.  

 
Figure 6-15: Calculated rate history from the 4395 hour to the 4995 hour. 

Figure 6-16 shows the calculated rate history from the 5015 hour to the 5785 hour.  

Except the two parts of missing pressure data, the calculation result is satisfying 

compared with the measured daily rate history.  
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Figure 6-16: Calculated rate history from the 5015 hour to the 5785 hour. 

Figure 6-17 shows the calculated rate history from the 5820 hour to the 6710 hour.  The 

calculation result is good during this 1000 hours production time.  

 
Figure 6-17: Calculated rate history from the 5820 hour to the 6710 hour. 

Figure 6-18 shows the calculated rate history from the 6781hour to the 7163 hour.  In 

the time period around the 7140 hour, the measured daily rate is almost constant but the 

pressure increased strangely.  As a result, the rate history calculated from the pressure 

has errors.  This abnormal pressure performance may be caused by the changes in 

wellbore conditions.  
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Figure 6-18: Calculated rate history from the 6781 hour to the 7163 hour. 

Figure 6-19 shows the calculated rate history from the 7180 hour to the 8400 hour.  

Many parts of missing pressure data cause errors for rate calculation.  These missing 

data mainly are pressure build-ups, which lead to the calculated value is larger than the 

real rate.   

 

Figure 6-19: Calculated rate history from the 7180 hour to the 8400 hour. 

Figure 6-20 shows the calculated rate history from the 8500 hour to the 9040 hour.  The 

calculation result is good during this time period, as the pressure history is complete.   
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Figure 6-20: Calculated rate history from the 8500 hour to the 9040 hour. 

Figure 6-21 shows the calculated rate history from the 9066 hour to the 9400 hour.  

Around the 9200 hour, pressure data lasting for nearly 80 hours are missing.  The 

calculated rate is much larger than the measured daily rate.  Inferred from the daily rate 

history, the missing pressure data should be increasing with time due to the decreasing 

rate.  In the time period around the 9800 hour, the calculated rate is less than the 

measured daily rate.   

 
Figure 6-21: Calculated rate history from the 9066 hour to the 9400 hour. 

Combining all the calculated rate history in different time windows, the whole rate 

history reconstructed from the field PDG pressure data is shown in Figure 6-22.  
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Compared with the daily rate, the calculated real-time rate history can reflect the 

conditions of production well, and reduce uncertainties for pressure-transient analysis.  

 

Figure 6-22: The reconstructed whole rate history from PDG pressure data. 

6.4 Diagnostic of time-dependent reservoir-well properties   

As Figure 6-1 shows, the production time of the field data is more than one year.  

During this long-term production, the reservoir properties around the wellbore may 

change with time.  As field studies show, the effective permeability and skin factor may 

change, due to formation compaction, subsidence and fine migration.  These are more 

common for the unconsolidated deposition reservoirs.  Due to that, the reservoir 

modelling with constant properties may not match the field performance.  To make 

reliable future forecasting, the reservoir model need calibration.  When and which 

reservoir property needs to be determined.  At first, the time of model calibration will be 

determined using the wavelet frequency diagnostic method developed in Chapter 3.   

Then traditional well test method will be used to verify the diagnostic result and 

determine which property needs to be updated.  

6.4.1 Frequency diagnostic analysis   

In the Chapter 3, a novel diagnostic function URSR 𝐴𝑢𝑟𝑐  has been developed and used 

for diagnosing nonlinearities caused by the changes in reservoir properties, as the 

following equation shows: 
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𝐴𝑢𝑟𝑐 ∝
70.6𝑢𝐵

𝑘
 ln∆ 𝑡 + ln

𝑘

∅𝜇𝐶𝑡𝑟𝑤
2 − 7.43173 + 2𝑆                                             (6.5) 

The sensitivity study shows that URSR 𝐴𝑢𝑟𝑐  function is sensitive to the changes in skin 

factor and permeability, and  𝐴𝑢𝑟𝑐  increases with the time for the increasing skin factor 

and decreasing permeability.  In fact,  𝐴𝑢𝑟𝑐  is proportional to the skin factor and 

inversely proportional to the permeability.   

The URSR 𝐴𝑢𝑟𝑐  function is wavelet amplitude caused by unit rate change.  However, 

for this field data real-time rate is unknown and only daily rate is given.  The calculated 

real-time rate in Figure 6-22 is base on the linearity assumption in each time window.  

To solve this problem, the average URSR 𝐴𝑢𝑟𝑐  in each time window can be calculated, 

using the daily rate history. In fact, the average URSR  𝐴𝑢𝑟𝑐  equals the average 

proportional coefficient 𝑏 between WT amplitude and the change in flow rate, that is: 

𝐴𝑢𝑟𝑐      = 𝑏 =
 𝑡𝑖  𝐴𝑗

𝑖−1
𝑗=1

𝑛
𝑖=1

𝑄−𝑞1  𝑡𝑖
𝑛
𝑖=1

                                                                                      (6.6) 

The average proportional coefficient  𝑏 in each time window is plot with the production 

time, which is the URSR  𝐴𝑢𝑟𝑐  diagnostic plot, as shown in Figure 6-23.  

 

Figure 6-23: The diagnostic function  𝐴𝑢𝑟𝑐  changes with time and three time windows 

are selected for model calibration.  

The general trend of URSR 𝐴𝑢𝑟𝑐  is increasing with the time, which means the reservoir 

properties around the wellbore changed with production.  The conditions of production 
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well were getting worse, and Production Index (PI) declined with the production time.  

As a result, reservoir modelling with constant-property cannot match the field 

performance.  Reservoir model/near wellbore model (NWM) needs calibration.  Three 

time windows are selected to calibrate the reservoir model.  At first, the changes in 

reservoir-well properties are little and reservoir model doesn’t need calibration.  Around 

the 4000 hour, the diagnostic function 𝐴𝑢𝑟𝑐  increases a lot and reservoir model needs 

calibration.  Around 9000 hours, another model calibration may need, but there are 

uncertainties as the pressure history in the time window 3 is not long enough.  Figure 6-

24 presents window selection for the reservoir model calibration.  

 

Figure 6-24: The reservoir model needs update around 4000 hours, and another 

calibration may need around 9000 hours. 

6.4.2 Transitional well test analysis  

To verify the diagnostic result in Figure 6-23, the traditional well testing using pressure 

build-up analysis is carried out.  As the unknown rate history has been reconstructed, 

the uncertainties of build-up analysis have been reduced a lot.  As shown in Figure 6-25, 

several pressure build-ups are selected to analyse.  According to the window selection in 

Figure 6-24, three pressure build-ups are in the window 1 and another two pressure 

build-ups are in the window 2.  If the diagnostic result is correct, the reservoir properties 

derived from different pressure build-ups but in the same time window should be 

constant or change little.  For the pressure build-ups in the different time windows, the 

derived reservoir properties should change a lot.    
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Figure 6-25: Several build-ups are selected to analyse in log-log plot.   

Figure 6-26 shows the build-up 1 and 3 are analysed in the log-log plot.  Although the 

data quality is poor for analysis, some reservoir information still can be derived.  The 

pressure derivative lines for two pressure build-ups nearly coincide, but the pressure 

drop of build-up 3 is less than the pressure drop of build-up 1.  It means skin factor of 

build-up 3 is less than the skin factor of build-up 1.  The decreasing skin factor may be 

caused by the clean up effect at the beginning of the production.  At the time of well 

drilling and perforation, the reservoir formation around the wellbore may be damaged.  

After the well begins to produce, the fluid flow can remedy the damage and reduce the 

skin factor.  As URSR 𝐴𝑢𝑟𝑐  decreases with the decreasing skin factor, it can explain that 

the 𝐴𝑢𝑟𝑐  function in Figure 6-23 decreases a little in the first 1000 hours.  Due to the 

change in skin factor, near wellbore model (NWM) may be updated.  At here, as the 

change in 𝐴𝑢𝑟𝑐  is little and time period of clean up effect is short, reservoir model 

needn’t updated.   

Figure 6-27 presents the build-up 4 and build-up 11 are analysed in the same log-log 

plot.  As shown in Figure 6-24, build-up 4 is in the time window 1 and build-up 11 is in 

the time window 2.  There should be large changes in reservoir properties according to 

the diagnostic result in Figure 6-23.  In Figure 6-27, the pressure drop of build-up 11 is 

much larger than the pressure drop of build-up 4, which shows the skin factor increased 

a lot.  The increasing skin factor may be caused by the formation damage during the 

long-term production.  The increasing skin factor verifies that the diagnostic result is 

correct.  
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Figure 6-26: Build-up 1 and 3 are analysed in the log-log plot.   

 

 
Figure 6-27: Build-up 4 and 11 are analysed in the log-log plot. 

Figure 6-28 the build-up 11 and build-up 16 are analysed in the same log-log plot.  The 

lines of pressure drop and pressure derivative for two pressure build-ups coincide, 

which means the reservoir properties changed little, although the time period between 
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two build-ups is very long, more than 3500 hours.  Therefore, it is reasonable that build-

up 11 and build-up 16 is in the same time window and reservoir model needn’t update.   

 
Figure 6-28: Build-up 11 and 16 are analysed in the log-log plot. 

The traditional well testing has verified that the diagnostic result in Figure 6-23 is 

correct.  Based on the diagnostic result, the window selection can provide useful 

guidelines for model calibration.  The time of model calibration can be determined by 

the change of URSR 𝐴𝑢𝑟𝑐  function.  Model update threshold can be set up, when the 

change of 𝐴𝑢𝑟𝑐  is less than the threshold, reservoir properties change little and reservoir 

model needn’t update.  When the change of 𝐴𝑢𝑟𝑐  is larger than the threshold, the 

reservoir properties change a lot and model calibration is necessary.   

As the discussion in Chapter 3, other reservoir behaviours can cause the change in 𝐴𝑢𝑟𝑐  

function.   For the reservoir with water injection, at the time of water breakthrough the 

effective permeability will decrease a lot and 𝐴𝑢𝑟𝑐  will increase sharply.  Similarly, if 

the down-hole pressure drops below the bubble-point pressure, total mobility also 

declines to multi-phase flow.  Furthermore, the change in wellbore conditions such as 

scaling and paraffin wax in the tubing etc. also can cause increasing  𝐴𝑢𝑟𝑐  and declining 

production index.   
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6.5 Chapter conclusions  

In this chapter, field PDG pressure data is used to demonstrate the algorithms developed 

in this thesis, including reconstructing unknown rate history and diagnosing time-

dependent reservoir properties for reservoir model calibration.  Several conclusions can 

be derived as following:  

1. The wavelet-based rate calculation method developed in Chapter 4 can 

reconstruct unknown rate history from PDG pressure data, and the calculated 

rate history is very close to the measured rate history.  This rate calculation 

method is model-independent and has wide applications.  

2. The field PDG pressure data is very noisy and has very large data volume.  

Wavelet thresholding method can effectively remove data noise.  Besides, 

sliding window technique can overcome the nonlinear problems and reduce the 

data volume.  

3. Abnormal data and missing data in PDG pressure history can cause calculation 

errors, especially when the missing pressure data is in transient-state.  

4. Time-dependent reservoir properties around the wellbore can be diagnosed with 

the URSR 𝐴𝑢𝑟𝑐  function.  The diagnostic result can provide the useful 

information when the reservoir model needs calibration.  

5. The skin factor may decrease firstly due to the clean up effect, and then 

increases with the production time due to formation damage.  Traditional well 

testing can verify the diagnostic result and determine which reservoir properties 

need update.  
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Chapter 7  Conclusions and Recommendations 

This chapter presents the general conclusions drawn from the study work in this thesis 

and gives the recommendations for the future work based on the current experience.  

7.1 General conclusions  

In this study, a new methodology of diagnosing and analysing the long-term transient 

pressure data acquired from permanent down-hole gauge (PDG) has been developed.  

This methodology includes three categories: (1) diagnostic of nonlinearities from long-

term PDG transient pressure data, (2) unknown flow rate history reconstruction, (3) 

sliding window technique for long-term PDG pressure analysis and reservoir model 

calibration.  The applicability of this methodology has been demonstrated with synthetic 

data and field PDG data.   

For the long-term transient pressure analysis, a novel nonlinearity diagnostic method 

has been developed.  The nonlinearities around the wellbore can be diagnosed both 

qualitatively as well as quantitatively.  The method and results can be summarized as 

follows: 

1. In linear systems, the flow rate and down-hole pressure satisfies superposition 

principle.  Compared with the short-time traditional well testing, nonlinearities 

are more common in the long-term transient pressure data and they can cause the 

system nonlinear and superposition principle invalid.  The pressure-transient 

analysis methods based on the linearity assumption such as superposition and 

deconvolution may fail for applications.  Nonlinearity diagnostic and evaluation 

is a key procedure before pressure-transient analysis. 

2. With the Haar wavelet processing transient pressure data, a novel diagnostic 

function 𝐴𝑢𝑟𝑐  has been developed to diagnose nonlinearities.  URSR 𝐴𝑢𝑟𝑐  is the 

ratio between the amplitude of pressure transform and the change in flow rate.  

In linear systems, URSR 𝐴𝑢𝑟𝑐  is constant with time.  When there is nonlinearity 

around the wellbore, URSR 𝐴𝑢𝑟𝑐  is time-varying.  The large changes in URSR 

𝐴𝑢𝑟𝑐  mean high nonlinearities.    

3. URSR  𝐴𝑢𝑟𝑐  is more sensitive to the changes in skin factor and (effective) 

permeability than other reservoir-well parameters.   
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4. For the gas reservoir, URSR  𝐴𝑢𝑟𝑐  is time-varying due to pressure-dependent gas 

properties.  For the oil reservoir with dissolved gas, URSR  𝐴𝑢𝑟𝑐  is constant 

before gas out of solution; after that URSR  𝐴𝑢𝑟𝑐  is time varying due to the total 

mobility change, phase segregation effect and pressure-dependent fluid 

properties.  Similarly, water breakthrough can be detected with the sharply 

increasing URSR 𝐴𝑢𝑟𝑐 . After water breakthrough URSR 𝐴𝑢𝑟𝑐  changes with the 

total mobility.  

5. URSR  𝐴𝑢𝑟𝑐  can be utilized as a production monitoring tool.  Abnormal 

increasing URSR 𝐴𝑢𝑟𝑐  indicates the reduction in production index (PI) in the 

production well, and special cautions and remedy responses are needed to 

optimize the production. 

6. A novel workflow of long-term PDG pressure data analysis has been proposed.  

The nonlinearity diagnostic and evaluation is a crucial procedure before 

pressure-transient analysis, as it can ensure that suitable PTA methods can be 

selected and reduce analysis uncertainties.  

Unknown flow rate history is reconstructed from PDG pressure and cumulative 

production data using the wavelet-based method.  The important remarks on this 

method can be summarized as follows: 

1. This method is independent of the reservoir model, and based on the linearity 

assumption that the reservoir-well properties are constant.  The skin factor, 

wellbore storage, reservoir heterogeneity and multi-well interference have no 

effect on this method.  

2. For the real-gas reservoir, calculated rate tends to have larger errors than that in 

liquid systems as gas properties are pressure-dependent.  Normalized pseudo-

pressure can be applied to reduce the nonlinearity, and flow rate history can be 

reconstructed with high accuracy using the normalized pseudo-pressure.    

3. For the reservoir with oil and water two-phase flowing, during the time periods 

when water-cut is constant or changes little, the nonlinearity can be neglected 

and flow rate history can be reconstructed with small errors.  Around the time of 

water breakthrough, the nonlinearity is high and this method is not 

recommended for application.  The unknown water cut data also brings errors 

when calculating flow rate history for each phase from the total liquid rate 

history.  
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4. For the pressure history with high nonlinearities, such as phase segregation 

effect after gas of solution, the reconstructed flow rate history has large errors.  

Combined with the nonlinearity diagnostic method, sliding window technique has been 

proposed to analyse the long-term transient pressure data from PDG and calibrate the 

reservoir model.  Conclusions can be drawn as follows: 

1. Based on the nonlinearity diagnostic result, the long-term transient pressure 

history can be divided into a series of time windows.  The window selection and 

window size depends on the changes in URSR  𝐴𝑢𝑟𝑐 .  Small changes in 

URSR 𝐴𝑢𝑟𝑐  mean low nonlinearity and the changes in reservoir-well properties 

are small, the pressure can be grouped in the same window.  When the changes 

in URSR 𝐴𝑢𝑟𝑐  are high, time window slides to subsequent one.  

2. In each time window, the system can be treated as linear. Deconvolution and 

other PTA methods based on the linear assumption are valid for application.  

These methods are not recommended to analyse the pressure history with 

nonlinearity, wrong or misleading analysis result may be derived.  

3. When the time window slides to the subsequent one, the reservoir model needs 

calibration. Time-dependent reservoir properties such as skin factor and 

permeability can be interpreted from the pressure build-up in each time window.  

NWM can be selected and updated with new model parameters.  Then the 

updated NWM can be put back to the FFM.   

7.2 Recommendations for future work 

The following points are recommended for future study:  

1. The nonlinearity in the wellbore and the nonlinearity in the reservoir perform 

differently and have different effects.  Diagnosing and distinguishing two kinds 

of nonlinearities are important for production optimization and model calibration.  

Temperature data also is measured with PDG and distributed temperature sensor 

(DTS).  PDG temperature data provides temperature information related to the 

reservoir formation, and DTS temperature data provides the temperature profile 

along the wellbore.  These two kinds of temperature data may be utilized for 

diagnosing and distinguishing nonlinearities in the reservoir and wellbore.  

2. The long-term PDG pressure data may contain interference from other 

production wells.  Although multi-well interference is not nonlinear reservoir 
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behaviour, analysis of the pressure with interference is difficult.  The method for 

interference diagnostic and analysis needs to be developed.  

3. The algorithm of flow rate history reconstruction works well when the 

nonlinearity in the reservoir system is low or nonlinearity can be linearized with 

transforms or window technique.  When the nonlinearity is very high, such as 

the phase segregation effect after gas out of solution, the calculated flow rate has 

large errors.  Besides, the missing and abnormal PDG pressure data cause 

problems for flow rate history reconstruction.  These problems may be solved 

with reservoir modelling.    
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