
Alshammary, Abdullah and Weiss, Stephan and Almorqi, Sultan (2017) 

Grating lobe suppression in rotationally tiled arrays. In: 11th European 

Conference on Antennas and Propagation (EUCAP). IEEE, Piscataway. , 

This version is available at http://strathprints.strath.ac.uk/59126/

Strathprints is  designed  to  allow  users  to  access  the  research  output  of  the  University  of 

Strathclyde. Unless otherwise explicitly stated on the manuscript, Copyright © and Moral Rights 

for the papers on this site are retained by the individual authors and/or other copyright owners. 

Please check the manuscript for details of any other licences that may have been applied. You 

may  not  engage  in  further  distribution  of  the  material  for  any  profitmaking  activities  or  any 

commercial gain. You may freely distribute both the url (http://strathprints.strath.ac.uk/) and the 

content of this paper for research or private study, educational, or not-for-profit purposes without 

prior permission or charge. 

Any correspondence concerning this service should be sent to the Strathprints administrator: 

strathprints@strath.ac.uk

The Strathprints institutional repository (http://strathprints.strath.ac.uk) is a digital archive of University of Strathclyde research 

outputs. It has been developed to disseminate open access research outputs, expose data about those outputs, and enable the 

management and persistent access to Strathclyde's intellectual output.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Strathclyde Institutional Repository

https://core.ac.uk/display/77035878?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://strathprints.strath.ac.uk/
mailto:strathprints@strath.ac.uk
http://strathprints.strath.ac.uk/


Grating Lobe Suppression in Rotationally Tiled

Arrays

Abdullah Alshammary1,2, Stephan Weiss1, and Sultan Almorqi2

1Department of Electronic & Electrical Engineering, University of Strathclyde, Glasgow, Scotland
2 KACST, Riyadh, Saudi Arabia

{Abdullah.Alshammary, Stephan.Weiss}@strath.ac.uk; salmorqi@kacst.edu.sa

Abstract—Uniform placement of array elements limits its
maximum frequency due to the formation of grating lobes. While
non-uniform element or subarray spacing have significantly lower
grating lobes, it reduces aperture efficiency and leads to arrays
that are difficult to design and manufacture. We propose a
modular asymmetric convex-shaped subarray to construct the
array by rotation and translation, filling the aperture without
overlaps or gaps. This new approach can achieve lower grating
lobes compared to uniform array geometries. It can also lower
design, manufacturing and operation costs by offering interop-
erable subarrays and provide array size flexibility.

Index Terms—subarray , grating lobes , plane tiling , tessella-
tion

I. INTRODUCTION

When constructing sensor arrays for beamforming, a max-

imum spacing between sensor elements of less than half

the wavelength of the observed signal is usually required to

avoid spatial aliasing. If the minimum elements spacings of

uniform arrays is wider, spatial aliasing occurs, manifested

by the grating lobes that appear in the array response. For

wideband arrays however, increasing the upper frequency limit

will require smaller elements spacing leading to increased risk

of mutual coupling. Also, in this case a higher number sensor

elements is required to satisfy a fixed aperture size.

Many solutions have been suggested towards grating lobe

reduction. Thinned array [1], where random array elements

are removed, can maintain the original beamwidth but the

gain decreases and sidelobe level increases because of the

reduced total number of elements per unit area combined with

inefficient aperture illumination.

In this paper, we consider the constructing larger array

apertures from smaller subarrays is a popular design technique

particularly in the context of radar [2]. This is for example

utilised in architectures of narrowband subarrays followed

by a time delay. This is referred to as a subarray structure,

and has been addressed e.g. in [4], [5], [6], [2], [3]. The

general problem that has been researched is the tiling of the

subarrays in order to minimize quantization sidelobes [4], [5],

[6]. Sometimes also the narrowband beamforming weights are

optimized in order to suppress sidelobes in the beamformer’s

broadband response [4], [7].

Grating lobe suppression has also been applied to subarrays.

At subarray level, the grating lobes are reduced but not

eliminated since each subarray output still suffers from grating

lobes that equal the level of the main beam. However, the

subarray position or shape ensures that grating lobes do not

necessarily coincide. One common subarray approach is to

construct subarrays with random shapes [8]. Another solution

is to slightly twist the subarray by different angles [9], [10]

or displace their location in one dimension [11] or two

dimensions [9]. These techniques likely create a challenge in

the array design and manufacturing, because random subarray

outlines and sizes require unique components and program-

ming for each subarray. The distribution network and subarray

processing will also need tailoring to suit each individual

subarray.

Therefore, in this paper we propose to utilise a single

subarray shape, which can be used to construct the entire

array by translation and rotation. This isohedral design can

be based on known pentagonal or hexagonal tiles that can

densely fill a plane without gaps or overlapping. To motivate

and demonstrate this design, in the following we will first

analyse grating lobes in Sec. II. Introduce plane tiling and the

limitations to array and subarray design in Sec. III. In Sec. IV

an example of a pentagonal subarray and aperiodic design is

compared to a uniform circular array with an equal number

of array elements. Finally, conclusions are drawn in Sec. V.

II. ANALYSIS OF GRATING LOBES

A. Grating Lobes in Uniform Arrays

Consider a rectangular array with uniform spacing d lying

on the x-y plane. An incident signal with frequency ω from

azimuth angle ϕ and elevation angle ϑ is characterized by the

wave number vector [12] as

k =
ω

c

[

sinϑ cosϕ
sinϑ sinϕ

]

, (1)

and the array gain in response to the wavenumber vector k is

P (ω, ϑ, ϕ) =

Nx−1
∑

nx=0

Ny−1
∑

ny=0

w[nx, ny]e
−jxH(nx,ny)k , (2)

where x
H(nx, ny) are the coordinates and w[nx, ny] the

weights of a sensor element indexed by nx and ny , nx, ny ∈
N.

For a uniformly spaced, square and symmetric array, with

nearest element spacing d, we have

x(nx, ny) = d

[

nx − Nx−1
2

ny −
Ny−1

2

]

. (3)



The array weights w[nx, ny] can scale the array response or

shift its phase, but have no effect on the grating lobe separation

w.r.t. the main lobe. Assuming that the weights attached to

each element perform phase shifts, the array is then steered

towards the direction k0(ω0, ϑ0, ϕ0). With this, and the array

configuration in (3), the array gain in (2) of the array steered

towards the direction k0(ω0, ϑ0, ϕ0) simplifies to

P (ω, ϑ, ϕ) =
1

√

Nx Ny

sin( 12x
H
max∆k)

sin( 12x
H
min∆k)

, (4)

where ∆k = k − k0 and xmin = [d d]H and xmax =
d[Nx Ny]

H. The array response is periodic w.r.t. wave number

vector ∆k with period 2π
d

. As a result, the grating lobes are

located at zeros of the denominator in the equation above,

i.e. ∆k = p 2π
d

∀ p ∈ Z in both x- and y-axes.

B. Grating Lobes in Rotationally Tiled Arrays

Array with suppressed grating lobes can be constructed with

isohedral subarrays. Isohedral tiling is a plane tiling based on a

single shape of tile, where the overall array can be constructed

by placing rotated and translated subarrays. While translation

does not affect the subarray response w.r.t. its phase center,

rotation changes the azimuth angle of arrival by an amount

equal to the rotation angle ψ. For a rotationally tiled array

with M subarrays and an order of rotation, L, — to be further

elaborated in Sec. III — the M subarrays will be rotated at L

different angles.

If the array is steered towards k0(ω0, ϑ0, ϕ0), the gain of

a rotationally tiled array w.r.t. a signal characterised by the

wave number k(ω, ϑ, ϕ) is

P (ω, ϑ, ϕ) =
1

√

NxNy

L−1
∑

l=0

∑

m∈Ml

sin( 12x
H
max∆k cosψl)

sin( 12x
H
min∆k cosψl)

,

(5)

where again ∆k = k−k0, and Ml is the number of subarrays

that share the same rotation angle ψl.

Each subarray group m ∈ Ml has a periodic response

with period Λ = 2π(d cosψl)
−1 and grating lobes forming

at ∆kl = pΛ ∀ p = ±1,±2, · · · in both x and y axis

directions. The sum of periodic responses is also periodic

with a period equal to the least common multiple. Hence as

the order of rotation L increases, full grating lobes, where

the grating lobes of all subarrays coincide, will have a lower

frequency of occurence.

III. PLANE TILING IN ARRAY DESIGN

A. Tiling

In geometry, tiling or tessellation is the problem of finding a

countable family of shapes that can tile a plane without overlap

or gaps [13]. The closed set of tiles that can fill the plane in

such a fashion is defined as

T = {T1 · · · , Tm, · · · TM} .

Specifically, isohedral tiling allows only congruent tiles

T1 · · · , Tm, · · · TM to populate the array aperture. Tile shapes
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Fig. 1. Type 1 equilateral pentagon with δ+ ǫ = 180◦. Corners A, B and C
can be moved along the circles while maintaining parallel sides AE and CD.
ABC is an equilateral triangle and ACDE is a rhombus.

are limited to convex polygons as will be explained in the next

sub-section. The subarray outline is defined by the tile shape.

Antenna elements are represented by the array lattice enclosed

by the subarray outline and subject to the direct isometries,

i.e. translation and rotation operations only, applied to the tile.

B. Subarray Limitations

All triangles and quadrilaterals can tile a plane [14]. But

there are only 15 convex pentagon and three hexagons that

can tile a plane without gap or overlap [15], and there are

no known convex polygons beyond hexagons that can tile a

plane.

When placing tiles of subarrays, the only permitted trans-

formation to fit them in place are rotation and translation.

Reflective operations are are known in the tiling literature but

are not applicable to subarray tiles due to aperture orientation.

Hence, only a limited number of patterns in the literature

characterised by their notation pn11 for n = 2, 3, . . . 6 are

applicable to subarrays indicating non-reflective configuration.

The parameter n is called the order of rotation (referred to as

L in Sec. II above) and it is the number of angles by which

the base tile T1 has to be rotated in a design.

Non-rotational design, where n = 1 in p111, have regular or

equilateral polygons with uniform subarray spacing and will

suffer from high grating lobes due to high rotational symmetry.

IV. EXAMPLE: EQUILATERAL PENTAGON VS. UNIFORM

CIRCULAR ARRAY

The tiling concept for subarrays is now demonstrated using

an aperiodic pattern suggested by [14] based on a type 1

equilateral pentagon as described in [16]. Shown in Fig. 1,

this equilateral pentagon has interior angles of α = 140◦,

β = 60◦, γ = 160◦, δ = 80◦ and ǫ = 100◦ respectively.

In Fig. 2, 18 pentagons of the type shown in Fig. 1 construct

an approximately circular array. Each subarray contains 42

array elements arranged on a square lattice, whereby the

element spacing d is half the wavelength at the operating

frequency fc. Therefore, across the 18 subarrays the total

number of array elements of 756. The tiled array requires a

small separation between subarrays as seen in Fig. 2 to account

for subarray boundaries. Also the tiled array circumference is



Fig. 2. Tiled array constructed by rotation and translation of 18 pentagon
subarray tiles each containing 42 sensors elements each contained within an
outer circle of radius 15.6 d where d is the elements spacing.

Fig. 3. Uniform circular array containing 756 elements — the same number of
elements as the tiled array. Solid and dashed circles circumscribe the uniform
circular array and the tiled array, respectively.

a series of straight edges, and does not constitute a perfect

circle. It can, however, be inscribed into a circle of radius

15.6d.

We compare the tiled array above with a uniform circular

array where sensor elements are placed on a square grid filling

a circle as shown in Fig. 3, containing the same number of

elements as the tiled configuration of Fig. 2. Because of the

lack of internal boundaries, the circular array has a smaller

diameter than the tiled array. In this example, the uniform

circular array of Fig. 3 has a radius of 15.4d compared to

15.6d for the tiled array, if both arrays are circumscribed by

circle.

Fig. 4 demonstrates the gain response of the uniform

circular array when required to operate beyond the maximum

frequency, such that the element spacing is now more than

half the signal’s wavelength. This can occur either due to the

desired to space elements further apart in order to avoid mutual
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Fig. 4. Gain response of uniform circular array showing grating lobes.
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Fig. 5. Gain response of tiled array showing reduced grating lobes.

coupling, or to operate with a larger aperture but utilised a

lower number of elements. With the main lobe centred in the

diagram, for the uniform circular array in this case spatial

aliasing occurs. As calculated for the uniformally spaced array

with square element lattice in (4), this leads to the grating lobes

seen in Fig. 4, which appear at integer multiples of 2π
d

in both

u and v directions.

The gain response of the tiled array in Fig. 5 shows the

sum of contribution of the individual subarrays, where grating

lobes do not add constructively. The distance between minor

grating lobes and the main lobe is unchanged at 2π
d

because

the elements spacing is the same across subarrays, but the

subarrays rotation by angles ψl as in equation (5) causes

grating lobes to rotate by the same angles around the mainlobe.

To compare the two gain responses directly, a cross-section

for the first component of ∆k for both the uniform cicular and

proposed tiled array are shown in Fig. 6. The graphs show the

grating lobes of the uniform circular array with a periodicity

of 2π
d

and having the same 0dB level as the main lobe at

the origin. In contrast, the gain response of the proposed tiled
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Fig. 6. Gain response along the u domain of both the circular planar array
and the tiled array.

TABLE I
COMPARISON SUMMARY BETWEEN THE TILED ARRAY AND THE UNIFORM

CIRCULAR ARRAY WITH SAME NUMBER OF ELEMENTS.

property tiled array circular planar array

number of elements 756 756

diameter 10.85 λ 8.25 λ

grating lobe level 0 dB -20 dB

beamwidth 7◦ 7◦

directivity 30.6 dBi 30.7 dBi

array demonstrates a reduced grating lobe level at -20dB, while

the width of the main lobe is approximately the same for the

benchmark design. The summary of characteristics for both

arrays is compiled in Tab. I.

As the analysis in Sec. II indicated, the grating lobes of

the tiled array reduce as the number of design rotation angles

increases. However, high rotational symmetry of the subarray

or the element lattice may cause grating lobes from subarrays

to coincide. In the Fig. 6, the tiled array response is suppressed

by -20 dB or to one tenth of the mainlobe level. This can

be explained by the rotational symmetry of the square lattice

w.r.t. integer multiples of 90◦, which includes the design angle

of 3β = 180◦. This means that grating lobes of two differently

rotated subarrays can coincide at the same angle. Hence,

the cardinality of different orientations of the sensor element

grid in Fig. 2 is 9, and therefore grating lobe suppression is

expected to be at around 1
9 .

Table I summarizes the comparison between the uniform

circular array in Fig. 3 and the proposed tiled array in

Fig. 2. The grating lobes have reduced significantly while

the directivity and beamwidth are unchanged. This expected

because both directivity and beamwidth depends only on the

number of sensors and their separation only.

V. CONCLUSION

Utilising rotational tiling in array design can introduce

variance in both subarray phase center positions and sensors

locations. This variance results from rotationally asymmetric

subarrays being rotated and stacked in a pattern that leaves no

gaps or overlaps. Rotationally tiled subarrays can significantly

reduce grating lobes by breaking the alignment of individual

subarray grating lobes. It however increases the array size

due to the potentially irregular outer edges of the array and

the clearance required for subarray boundaries, although a

proposed pentagonal design leads to an approximatly circular

configuration.

Compared to a large array with the same number of sensor

elements arranged on a regular grid, the beamwidth and

directivity of the tiled design are nearly unaffected, because

aperture and number of elements are comparable. The tiling

approach is shown to suppress grating lobes for spatially

under-sampled arrays because grating lobes of subarrays do

not necessarily add up constructively. Therefore, it is possible

to design arrays with element spacing wider than half the

wavelength — be it to reduce mutual coupling between sensor

elements, or to operate an existing array at wider bandwidth

without incurring spatial ambiguity.
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