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Abstract 

 

 

Textile and semiconductor processes were combined to produce a flexible solar panel 

by depositing silicon thin film onto woven polyester. Semiconductor processes such as 

evaporation, Plasma Enhanced Chemical Vapour Deposition (PECVD) and RF-

sputtering were done under vacuum conditions. Microwave PECVD proved difficult for 

textile substrates as the weave was damaged using parameter settings commonly 

used for conventional substrates such as silicon wafers and glass. PECVD parameters 

such as temperature, gas flow-rate, mixture, pressure and power were adjusted to 

allow the textile to be processed and a good quality silicon thin film to be deposited. An 

extra conductive layer was introduced between the textile and metal back-contact to 

support the cell. The silicon film structure changed from amorphous to mixed crystal 

growth in an amorphous matrix, as revealed by Raman spectroscopy and light 

transmission. The silicon Raman spectrum often had three peaks with the middle one, 

a fingerprint for nanocrystal growth with a hexagonal wurtzite structure in between the 

amorphous and crystalline peaks. Process conditions for pure amorphous and 

microcrystalline structures were also established, requiring two peaks to fit the Raman 

spectrum. Different structures have different band-gap energies and these were 

determined by measuring the variation in light transmission. An amorphous structure 

has a band-gap energy of 1.8eV while a crystalline silicon structure has a band-gap of 

1eV and a mixed nanocrystalline content has an intermediate value which depends on 

the crystal size. A microcrystalline structure has a band-gap of 1.6eV. 
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Abbreviation 

 

 

a-  Amorphous 

a-Si-  Amorphous silicon 

a-Si:H-  Hydrogenated amorphous silicon 

Ar-  Argon 

B2H6- Diborane 

BOS-  Balance of system 

c-  Crystal 

CdTe-  Cadmium Telluride 

CIS-  Copper indium Diselenide 

CIGS-  Copper indium Diselenide with gallium 

DEFRA-  Department of Environment, Food and rural Affairs 

DSC-  Differential Scanning Calorimetry 

Dtex- Decitex (g/10km) 

Eg-  Band-gap energy 

EPBT-  Energy payback time 

 EPIA-  European photovoltaic Industry associations 

EYR-  Energy yield ratio 

EPE-  Electricity production efficiency 

GA-  Gallium 

GHG-  Greenhouse gases 

GWP-  Global warming potential 

H2-  Hydrogen 

i-layer- Intrinsic, undoped silicon between doped silicon. 

ITO- Indium Tin Oxide 

ISO-  International Organisations of Standardisation 

LCA-  Life-cycle assessment 

LCI-  Life-cycle impact 

LCI-  Life-cycle inventory 

LA- Longitudinal acoustics 

LO-  Longitudinal optical  

MW-  Microwave 

n-layer-  Negative layer (dopent) with increased number of negative electrons 

ηc-  Nanocrystal  



NREAP-  National renewable energy action plans 

p-layer  Positive layer (dopant) with increased number of holes (positive charged) 

PECVD- Plasma enhanced chemical vapor deposition 

PET-  Polyethylene Terephthale (polyester) 

PH3- Phosphine 

PID-  Proportional- integral- derivative controller 

PV-  Photovoltaic 

QCE-  Quantum confinement effect 

R2R- Roll-to-Roll 

RF-  Radio frequency  

sccm-  Standard cubic centimeter per minute 

Si-  Silicon 

SiH4-  Silane 

SO- Surface optical 

Tg-  Glass transition 

Tm-  Melting point 

TPB-  Three phase line 

TPL-  Triple phase line 

TA-  Transverse acoustic 

TCO-  Transparent conducting oxide 

TO-  Transverse optical 

μc-  Microcrystal 
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1.  Introduction 

 

 

The intention of this study was to clarify and improve earlier efforts to construct 

flexible solar cells on a fabric base, by using a microwave plasma process to 

form thin-film silicon and then to determine the dependence of the silicon 

structure on process conditions. 

 

This research work has focused on depositing silicon thin film directly onto woven 

polyester, a product design which combines traditional textile processing with known 

semiconductor processes. The semiconductor processes for the cell structure were 

done in vacuum, which was not a common way of processing textile material. Woven 

polyester being more textured than conventional substrates for solar cells, made it 

necessary to establish process settings, which provided a good quality silicon thin film 

without changing the textile performance. 

 

Objective: prepare the textile weave to a condition necessary to withstand the thin film 

process based on vacuum and reactive gases. 

 

Objective: establish process settings for the semiconductor processes and especially 

the plasma enhanced chemical vapor deposition, PECVD for n-i-p- layers to get the 

thin film properties such as electrical, optical, physical and mechanical required 

necessary for a solar cell on flexible substrate. 

 

Objective: identify methods to measure and analyse the thin film properties on textile 

substrates, which are more textured than conventional substrates such as glass or 

silicon wafers. 

 

Objective: design a process route, which combines conventional process techniques 

from both the textile and semiconductor industries, but also to have a low impact on the 

environment such as the carbon footprint.  

 

Different solar cell structures have been developed through the years and the work can 

be divided into three generations: the 1st regards crystal silicon panels (based on 

silicon wafer) followed by thin film (2nd) with flexible and cheaper substrate. Regarding 

2nd generation solar cells, these still require higher cell efficiency and a 3rd generation 
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solar cell design has been developed with focus on enhanced cell efficiency of thin 

films by using mixed content such as amorphous and crystal, organic and inorganic 

materials, and combined semiconductor layers in a tandem- or triple- junction. Even 

though crystal silicon has a good efficiency and is difficult to replace, the flexible thin 

film panels will find a new niche market for applications and designs such as buildings, 

construction, outdoor equipment and clothing. Thin films available today are often 

deposited directly onto a polymer sheet, which is either laminated or stitched onto a 

flexible support such as a textile. The work reported in this thesis has deposited silicon 

thin film directly onto a woven textile with the aim of the flexible solar panel gaining the 

textile’s physical properties.  

 

The process methods used were both from the textile and the semiconductor 

industries. Preparation of the substrate was based on textile process, whereas the 

vacuum based depositions of the cell structure were common semiconductor 

processes. A plasma process based on microwave powered plasma deposition at 

vacuum pressure with reactive gases such as silane, hydrogen, diborane and 

phosphine was unusual for textile substrates and therewith very little information 

published.  

 

However, depositing silicon thin film directly onto woven polyester proved difficult after 

the textile substrate was found to become damaged. With no information regarding thin 

film cells deposited directly onto the textile and it being an unknown material for 

vacuum based processing with microwave powered plasma, much time was spent on 

understanding and establishing process methods, parameters and their settings. (This 

is discussed in chapter 5 Processes and parameters influencing the textile substrate 

and chapter 6 Results and discussion).  

 

Plain weave structure with filament yarn in both warp and weft was chosen to avoid the 

substrate influence on the outcome of the process and deposition. Plasma penetration 

through the fabric structure was to be avoided and process pressure was carefully 

adjusted. Textured and denser fabric could influence the outcome by encouraging 

increased reaction rate on the fabric surface, which could give temperature rise and 

damage the substrate. The textile was heated on the substrate plate and proved very 

sensitive to heat in a vacuum process, which led to a process temperature of maximum 

200°C.  

 

During the work with process parameters and conditions, additional substrates such as 
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aluminium sheet and microscope-slide glass were treated together with the textile to 

understand how each substrate behaved during the process. Comparison of the three 

substrates helped to conclude, that performance during the process and the quality of 

deposition depended on substrate quality and surface. Both aluminium sheet and 

microscope-slide glass gave similar structure content and growth rate compared with 

the textile substrate. 

 

The first cell structure was built directly onto the textile substrate by starting with a back 

contact of evaporated aluminium followed by the semiconductor layers (n-i-p) 

deposited by Plasma Enhanced Chemical Vapor Deposition from silane, PECVD in the 

order of n-type (phosphine doped), intrinsic and p-type (diborane doped). A protective 

layer and top contact of Indium Tin Oxide, ITO was RF-sputtered. Encapsulation of the 

complete cell was considered too by using lamination or coating to apply a protective 

film and avoid the cell being damaged. It is important to deposit a uniform film onto the 

textile surface to gain required film quality, which can withstand flexing without 

deteriorating electrical or optical properties. With the back contact of aluminium being 

poor due to an uneven distribution, additional conductive support such as conductive 

substrates based on carbon fibre, or a conductive coating such as polyaniline, were 

considered. Polyaniline was coated directly on the textile and had the advantage of 

being water-based and already successfully applied on textile substrates. (See chapter 

5 Processes and parameters influencing the textile substrate and chapter 6 Results 

and discussion) 

 

The process conditions for plasma enhanced CVD were based on low pressure and 

reactive gases with a microwave powered plasma source. The project prior to this had 

suggested process parameters for a working solar cell based on amorphous silicon 

(based on a gas mixture of silane and hydrogen). The textile substrate proved sensitive 

to plasma process powered by microwave energy and with an increased quantity of 

hydrogen became damaged. This led to hydrogen being limited to the silane dilution 

and instead argon was tried with silane. A gas mixture of silane and argon resulted in 

an amorphous rich structure with no crystal growth. In an attempt to introduce the 

needed hydrogen into the intrinsic recipe, an orthogonal statistical design “Taguchi 

model” (see chapter 5 Processes and parameters influencing the textile substrate) was 

used. Hydrogen was added into the process through a ratio of argon/ hydrogen 

combined with altered microwave power and silane rate. After possible combinations 

with hydrogen were found (see chapter 6 Results and discussion), further work (see 

chapter 5 Processes and parameters influencing the textile substrate) was carried out 
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to improve crystal growth in the amorphous structure. The different process settings 

and experimental approaches were analysed, evaluated and discussed (see chapter 6 

Results and discussion).  

 

Raman spectroscopy was the main technique used to analyse structure content and 

film quality and how the structure changed by altering process parameters (see chapter 

3 Nanocrystal structure and properties). Knowledge was gained how process 

parameters influenced the film structure and which parameter settings to use for 

different crystal growth in the amorphous matrix, which led to further examination of the 

parameters required for nano- and micro- crystal silicon. The crystal growth within the 

size of nanocrystals was later identified as having the hexagonal wurtzite structure. 

Wurtzite structure had an additional Raman peak (“intermediate peak”), a specific 

fingerprint appearing at 500/ 505cm-1 between the amorphous peak at 480cm-1 and the 

crystal peak at 520cm-1. Raman spectra of wurtzite structure films did not only contain 

the three peaks of amorphous, intermediate and crystal silicon, but also several smaller 

peaks due to additional phonon vibrations. The structure of the known hexagonal Si-IV 

phase and its features are discussed in chapter 3 Nanocrystal structure and properties, 

and the typical Raman peak shape and location related to the hexagonal structure and 

the phonon vibrations typical for wurtzite. It was also found that using Raman 

spectroscopy on nanocrystal silicon thin film required careful settings of the power for 

the laser-beam, when increased power changed peak location and shape.  

 

An expected advantage with crystal growth in the amorphous matrix is improved 

physical properties, because amorphous silicon has high light-degradation known as 

the “Staebler-Wronski” effect. The measurement of optical transmission and band-gap 

energy gave different values according to the content of amorphous and crystalline 

components and crystallite size. The Tauc plot of optical absorption coefficient based 

on traditional square root dependence was not always applicable in a structure with 

nanocrystal content and instead cube root dependence was used to get a more linear 

fit for the crystal phase. The square root value proved a good fit with the amorphous 

band-gap energy value at ~1.8eV, while cube root was more applicable for crystal 

growth with band-gaps of ~1.1eV and ~1.6eV depending on crystal size. (see chapter 5 

Processes and parameters influencing the textile substrate) 

 

After experiencing that the polyester weave could melt far below 200°C and its melting 

point at ~256°C, thermal analysis was tried to check the content of polyester. 

Differential Scanning Calorimetry, DSC helped to identify a slight modification of the 
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polymer chain, shown by glass transition, Tg and melting point, Tm changing slightly in 

temperature after the calendaring and conductive coating, whilst a greater change took 

place after the PECVD process. Settings of the process parameters became very 

important too, to gain a stable process condition and to avoid fluctuation of process and 

substrate temperature. (See chapter 5 Processes and parameters influencing the 

textile substrate) 

 

In work with renewable energy, it is important to consider a product’s carbon footprint, 

which is based on the emission of carbon dioxide, CO2 coming off the quantity of 

consumed energy used in manufacturing the product. The awareness of carbon 

footprint has led to many European countries agreeing to reduce the emission of CO2 

by 2020. More common in larger companies is to map the energy emission related with 

the product and its manufacturing. Energy emission refers to the total energy use 

related to a product such as silicon thin film on woven polyester. To get a value of 

carbon footprint, both Life-cycle assessment, (LCA) and Life-cycle impact, (LCI) were 

used to calculate the total energy use from manufacturing to recycling of the device. 

Studies from both the semiconductor and the textile industry have been used, which 

helped to estimate the energy use for the silicon thin film on woven polyester. (See 

chapter 4 Environmental assessment& impact of silicon thin film on woven polyester)  

 

Finally chapter 7 Summary and conclusion emphasizes that knowledge gained from 

published material and the results from this experimental work have helped to conclude 

a possible way of depositing silicon thin films with nanocrystal growth in an amorphous 

matrix on a textile substrate. Silicon thin film on a polyester weave is an unusual 

product and a cross-discipline between semiconductor and textile industries: their 

process technologies require research in areas such as thin film markets, processes 

and structures related to silicon thin films, and textile materials. These different topics 

are found in the review that follows this present chapter, chapter 2 Brief history of 

silicon thin film and its process on textile substrate, together with underlying science 

and technology.  
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2. Brief history of silicon thin film and its process on textile  

 substrate  

 

 

2.1. Introduction 

 

This chapter gives a brief review of the topics related to this work “silicon thin film on 

textile substrate, woven polyester”, which refers to the photovoltaic, semiconductor and 

the textile industries. The subjects considered are the photovoltaic market with focus on 

development of silicon thin film, process methods and structure content regarding 

silicon thin film and the performance and properties by using a textile substrate such as 

woven polyester. The photovoltaic market contains a brief overview of the development 

from conventional crystal silicon to thin film (silicon) and the new niche markets 

developing with the introduction of flexible solar cell design. The necessity of 

developing alternatives to conventional crystal silicon cells comes with an increased 

shortage of silicon and the higher manufacturing cost related with silicon wafer. Thin 

film became an option by using limited resources and even though thin film cells have 

less efficiency than crystal silicon, the flexible solar cell offers design options, the rigid 

crystal cell can’t compete with. With development of silicon thin film, different process 

and structure options are being discussed to optimize manufacturing and the cell 

capacity.  

 

 

 

2.2. Photovoltaic, PV and the market 

 

An increasing awareness, how the use of fossil fuel damages the environment, has led 

to the development of renewable energy sources such as hydro, wind and solar. 

Photovoltaic technology is one of the renewable energy sources developed as an 

alternative to fossil fuel. This alternative source was highly considered after the oil crisis 

in 1974 and at the beginning of 1980 photovoltaics was discussed as a possible energy 

source. The advantage of using photovoltaics was no limitation of the source, solar 

energy. Countries such as Germany and Japan introduced programs to support growth 

of solar sourced energy for residential use. The policy driven programs have proven a 

success after these countries have become the leading nations in use of photovoltaics 

as an energy source. [1,2,3,4,5]  
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The European Governments have established programs and given financial support to 

develop renewable energy and especially photovoltaics as a future energy source. The 

positive development of photovoltaics in Germany and the support from the European 

Union, EU has led to other European countries such as Belgium, Spain, Italy and 

France introducing similar programs. [1,2,6,7,8,9] Other nations such as China, India 

and South Korea are supporting a fast progress through photovoltaic research, to 

establish PV production. [1,6,9,10] The USA has used a policy driven program to 

increase solar power supply and is forecast to get a similar or greater growth than 

Germany, however this depends on choice of policy. [6] The leading countries with 

installed photovoltaics are all policy driven by programs from the government and it is 

found that policy driven programs are five times more effective than having no policy. 

[6,8,9]  

 

The European countries are ahead with installation of photovoltaics compared with 

other nations around the globe such as Japan, USA, China and India. The global 

investment in PV installation rose from 23GW in 2009 to 40GW in 2010 and 69GW in 

2011. [8,9,10] A prediction (figure 2.1.) for possible installation of photovoltaics by 2020 

was carried out by European photovoltaic Industry Association, EPIA. [10] This study 

considered three scenarios such as baseline, advanced and paradigm shift with 

forecast for 2020 together with earlier studies from 2009 by EPIA, which discussed 

development to 2016 by using scenarios such as moderate and policy-driven. This 

prediction by EPIA was combined with the target values given by National Renewable 

Energy Action Plans, NREAP. The three scenarios from 2009 related to different rates 

of installment of photovoltaic for electricity supply by 2020. Baseline related to 4% of 

the total electricity supply being photovoltaic, which resulted in 130GW by 2020. 

Advanced had an increase of 6% giving a total of 200GW at 2020. Both scenarios 

involved no or very little change to the infrastructure of electricity supply. While the 

paradigm shift scenario related to change in infrastructure and an increase by 12% and 

a total of 390GW by 2020. The moderate and policy-driven forecast for 2016 could be 

linked to the prediction for 2020, when moderate with 4% growth is a shorter version of 

the baseline, while policy-driven with 8% is halfway between advanced and paradigm 

shift. [10]   
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Figure 2.1. forecast for 2020 by different references such as EPIA’s three different scenarios 

(baseline, advanced and paradigm shift), NREAP, National Renewable Energy Action Plans 

value with earlier EPIA prediction for 2016 with a moderate and policy-driven scenarios. [10] 

 

 

However countries with an established PV market such as Germany are facing new 

challenges, how to maintain strong manufacturing and service at a low cost after 

experiencing reduced demand. The prices today for a PV-system are set according to a 

high manufacturing rate. One option has been to start taking a market share outside 

Germany, which allows them to keep a high manufacturing rate and to be able to 

provide a good service at low cost. [4,6] Discussion between European countries, the 

member states and European Photovoltaic Industry Association, (EPIA) has led to a 

strategy to increase the growth of photovoltaics. The main target is to improve 

manufacturing processes by new technologies, reduced costs in relation to 

manufacturing and increased generated energy, as well as developing building 

integrated PV-devices. For a strong increase in PV investment and installation in the 

future, government policy is required such as feed-in-tariff systems and financial 

support to R&D, plus manufacturing investment to allow continuous growth of the 

overall PV-market during a time with strong financial uncertainty. [2,5,9,11,12]  
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A new PV market is to be developed within the countries in the sunbelt region (75% of 

the global population) after starting to appreciate the advantage with photovoltaics and 

potential as an energy source both domestic and for export. [8] With the highest solar 

irradiation in this area, the investment in photovoltaics is soon paid back due to the 

high energy generated and this has resulted in a high interest for investment. It has 

been forecast that PV will be the main electricity supply by 2030. [13] Export of 

photovoltaics today refers mainly to the energy generated by solar concentrators on a 

large scale in countries such as Spain and USA, who are the leaders. However this 

kind of technique is facing challenges by having high installation costs, which reflects 

on the energy cost. Other issues for this kind of system are the location of the plant, 

which is often outside the infrastructure of grid-connection. Due to the large scale of the 

PV-plant with solar collectors a discussion has arisen as to how it affects the 

environment around the plant.  

 

For photovoltaics to become one of the main energy sources three key areas need to 

be addressed such as “Government incentives”, “energy and solar cells costs” and 

“portable and flexible electronics”. Government support through policy driven programs 

is important to gain a growing market, together with the cost and efficiency of a cell, 

and the applications, when part of the future market will be portable and flexible solar 

devices. For the future and the growth of thin film PV this technique and devices need 

to be grid-connected, which depends on the government. [5]  

 

A forecast (table 2.1.) for photovoltaics to 2025 was carried out [2], which addressed 

the concerns of carbon dioxide in relation to manufacturing and the device and the 

amount of jobs predicted with an increase in manufacturing of PV-devices.  

 
 
Table 2.1. an estimate of installed photovoltaics and the power it generates. [2]  

 

 



10 

 

First generation crystal silicon PV (figure 2.2.) has a strong advantage with good 

efficiency, which makes it difficult for newcomers. However crystal silicon cells have 

had the disadvantage of using a large quantity of high purity silicon for the substrate 

wafers. An increased demand for crystal silicon from both the photovoltaics and 

semiconductor industries in 2009 led to a shortage of high purity silicon, predominantly 

in Europe. The shortage of silicon raised manufacturing cost and increased the lead-

time, which made it clear, that a cell structure with less purity and quantity of silicon 

was necessary such as thin film. [14,15,16] The need of a cheaper cell design 

supported development of second and third generation solar cells (figure 2.2.) with 

focus on developing a cell with reduced silicon use, but with the same good efficiency 

as crystalline silicon solar cell. The third generation solar cell (figure 2.2.) focuses on 

cell efficiency by changing the cell design and its content such as integrating crystal 

growth into an amorphous structure, combining several junctions such as tandem and 

triple junctions or using organic and inorganic material in the same cell. [1,14,16] The 

most important and strongest option predicted within the third generation of solar cells 

is different band-gap materials, either by stacked cells or integrated quantum effects/ 

confinements with silicon nanocrystals (2-5nm). [17] 
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Figure 2.2. shows the different generations of cell design and the content. [4]  

 

 

Thin film cells had the advantage of much lower manufacturing and installation costs, 

larger manufacturing capacity, less material use and reduced number of process 

stages than manufacturing of high purity silicon wafer. The increased choice of low-cost 

substrate such as foil, polymer film, paper etc., is the main factor to lessen the 

manufacturing cost of thin film. The choice of substrate for thin film has allowed the 

solar panels being lightweight, flexible and portable, which increased the number of 

applications due to being easier to integrate into different designs. [4,18]  
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This has made flexible solar panels competitive in certain niche markets, when the 

conventional solar panel of crystal silicon is too stiff and heavy framed, which often 

limited the use to roof-fitted panels. [1]  

 

Silicon is the most common material used in photovoltaic devices. [9] Amorphous 

silicon (a-Si) thin film cell has the advantage of a relatively low production cost 

compared to other thin film technologies. [16,19,20] A-Si thin film is actually a 

hydrogenated amorphous silicon alloy (also known as a-Si:H): it has good mechanical 

and physical properties, which makes it durable and possible to deposit on flexible 

substrate. This film quality can be processed at a low temperature and still have high 

heat-resistance in air and withstand direct sunlight. [21] A disadvantage of amorphous 

silicon thin film PV is the low efficiency (5-7%) compared to crystal silicon PV with a 

typical cell efficiency of 20%. [16,19,20] For thin film to compete against conventional 

crystal silicon (which offers >25 years life-time) an efficiency of more than 10% is 

needed, with a life time above 20 years. [18] By targeting a higher cell efficiency with 

reduced costs, other cell options (figure 2.2.) have been developed such as Cadmium 

Telluride, CdTe and Copper Indium Diselenide, CIS, which has been modified by 

adding gallium, Ga known as Copper Indium Diselenide with Gallium, CIGS. [2,3,16,19]  

 

The capacity from installed thin film cell increased by 50% to 2GW between 2009 and 

2010 and CdTe stood for 90%, while a-Si and CIGS shared the remaining 10%. [5] 

However CIGS cell has shown a better cell efficiency and performance than first 

expected, after introducing large scale manufacturing and with continuous 

improvement in efficiency, the CIGS cell is forecast a strong future. [4,22] It is predicted 

that thin film will represent 25% of the total PV market in 2013. [17] However, a higher 

efficiency is still required before the thin films option can replace crystal silicon (C-Si) 

solar cell.  

 

Light-trapping techniques have lately been applied by working with a textured backing 

to a conventional crystal silicon or thin film. This has led to crystal silicon wafer 

becoming thinner and textured, which helped to reduce material use and cost, 

manufacturing and installation cost, with an increased cell efficiency per square meter. 

[15,16,17,19,22,23] Textured back surface increased the light scattering back through 

the cell, which gave an optical thickness 50 times of its actual thickness and an 

enhanced cell efficiency of 25% without modifying the cell structure. [17,24]  
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Thin film deposited directly onto a flexible substrate can operate either as a solar 

module (panel) by itself or attached to a flexible material such as textile either by 

lamination or stitching etc. The flexible solar panels commercially available are based 

on a polymer film either operating on its own or being laminated to a flexible material 

such as a textile material (figure 2.3.). The laminated panels are often used for outdoor 

garments and accessories. [25,26] An example is from O’Neill [27] with powered 

jackets and rucksack. The flexible panels attached to the garments and accessories 

are often fitted in such a way, that they can be easily detached during washing. 

Portable solar panels can often supply enough energy to power electronic items such 

as mobiles, iPods etc. [25,26,27,28,29] Flexible solar cells have also been tried in 

interior design such as curtains, wall paper etc. [30] Thin film onto textile material 

requires a product solution, which allows the use of existing process methods to avoid 

new investment, when this is a niche market with presently low return. [4]  

 

 

 
 

Figure 2.3. an example of flexible panels integrated into a garment. [25,29]  

 

 

 

2.3. Solar cell operation  

 

“Photovoltaics” comes from “photo” as light and “voltaic” as voltage, which means light 

converts into electricity. [31] A working solar cell needs semiconducting materials with 

opposite built-in charge in a diode structure to control the separation of electrons and 

holes. The most basic diode contains two oppositely charged materials, known as n-
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layer and p-layer. The n-layer has an increased number of negative electrons and the 

p-layer has a higher number of positive holes, from the intentional addition of small 

amounts of impurities (donors and acceptors, respectively). The two layers produce an 

electric field between them and cell activity depends on the light striking the cell, when 

increased light generates pairs of electrons and holes. The electrical properties of a 

device depend on the creation and motion of electrons and holes. [31] In a 

conventional photovoltaic cell having a simple pn diode structure, there is a built-in 

electric field at the pn junction which separates the oppositely charged electrons and 

holes, driving them to opposite sides of the junction. This field region is relatively 

narrow and cannot separate electrons and holes created in the rest of the device. 

Amorphous silicon thin film solar cells have taken this a step further by introducing an 

undoped layer between the two charged layers (doped) known as the intrinsic, i-layer 

(figure 2.4.). The intrinsic layer improves the separation of electrons and holes by 

providing a wider electric field, which helps to increase the volume of captured photons. 

[32,33,34,35]  

 

 
 

Figure 2.4. (a) [34] illustrates how the light enters a p-i-n solar cell, while (b) [33] explains a 

separation of charges due to the photon energy. How electrons and holes separate into each 

area is often explained by an energy band diagram (c) [34], which explains (d) [35] how the 

valence band becomes positive charged (holes) by increased number of electrons becoming 

excited and moving to the conduction band. [33,34,35]  
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As the light strikes the cell, the photon energy is transferred to a bonded electron. The 

extra photon energy makes the electron excited in the valence band and if enough 

energy is gained the electron will jump out of its bonded position into the conduction 

band and drift freely in the semiconductor. When the electron leaves the valence band, 

it creates a hole, which is positively charged and can attract a negatively charged 

electron. The electron-hole pair can only be generated when the photon has higher 

energy than the band-gap energy, Eg which separates conduction and valence bands. 

[32,34,35] The light source discussed does not need to be direct sunlight, as the 

photovoltaic cells are still efficient in normal diffuse daylight. [22,34]  

 

The order of thin film silicon cell of n-i-p or p-i-n layers depends on the type of substrate 

in use such as transparent glass or opaque metal (figure 2.5.). In the “substrate” 

configuration the light comes through a transparent contact into the p-layer continuing 

through i-layer into the n-layer, which is connected to the back contact of the cell. The 

fabrication of a cell-design needs attention to the structure and film thickness for each 

layer to obtain a high efficiency with optimum light-scatter through the cell. The right 

thickness and band-gap are important and especially for the p-layer, when a too thick 

layer and narrow band-gap would trap the light in the p-layer and prevent it reaching 

through to the i-layer. The top layer (p-layer) needs high optical transmission and 

should avoid light being reflected. [18,22]  

 
 

 
 

Figure 2.5. the order of the silicon layers such as n-i-p or p-i-n depends on the substrate, when 

glass will start with p-layer (left) compared to textile with n-layer (right). [36,37]  
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A silicon thin-film cell (n-i-p-layer) with mixed phase of crystal growth in an amorphous 

structure needs less cell thickness than a completely micro-crystal structure, which 

required increased thickness (1µm) to gain the right optical and electrical properties. 

[38,39] The increased thickness of a crystalline film was to compensate for a low 

optical absorption coefficient. [38]  

 

In a combination crystal phase in amorphous matrix, a balance of deposition time was 

necessary to allow enough crystal growth without the structure becoming 100% 

amorphous. The ratio of crystal against amorphous phase, and crystal size, reflected 

on cell performance, when increased amorphous phase gave a higher risk of light-

degradation. Larger crystals produced voids in the deposition and small crystals 

increased the optical and electrical performance of a thin film. [38,40,41,42] The 

advantage with nanocrystals (1-10nm) and quantum confinement effect is absorption of 

light at long wavelength, which increases the overall absorption of a mixed cell 

structure. Another advantage with small size crystals is the increased scattered light 

and emitted light through the cell layers due to the spherical particles. [43,44] The 

optical absorption becomes enhanced with mixed structure by having a broader 

waveband response (figure 2.6.). [31,38] The effective threshold wavelength for crystal 

silicon is 1100nm compared with 700nm for hydrogenated amorphous silicon. However 

with a thin amorphous layer, the maximum absorption has been found at 550nm. [44]  

 

 

 
 

Figure 2.6. comparing spectral response of an amorphous and microcrystal silicon cell, both 

designed with p-i-n.  [36]  
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The advantage with a mixed structure of small crystals (micro) embedded into the 

amorphous matrix was increased spectral absorption by having two band-gap values, 

Eg, where nanocrystal responds to long and amorphous to short wavelength. 

Absorption curve of nano- and micro- crystal silicon follows crystal silicon to a great 

extent, which is discussed more in chapter 3, section 3.6.. [32,33,34,35,36,38,45]  

 

 

 

2.4. Process to manufacture thin film flexible solar cells  

 

Plasma comes from an electrical discharge produced by a combination of power and 

gas, and a plasma process can be divided into three distinct areas: plasma bulk, 

plasma sheath and substrate. Plasma sheath is important in relation to surface 

activation and deposition, especially at low process pressure, when the process 

parameters will control the plasma sheath’s thickness. [46] 

 

Plasma polymerization [47] and its parameters influencing plasma reaction was 

applicable also to vacuum based plasma enhanced chemical vapor deposition, PECVD 

system for silicon thin film. Reaction rates were strongly dependent on power, process 

pressure and gas-flow, which influence plasma distribution. The chamber geometry 

such as location of the electrodes (electric field), the substrate plate combined with flow 

rate would determine the size of a plasma’s sheath distribution and the deposition rate 

and quality. A plasma distribution can either become asymmetric or symmetric. A non-

uniform plasma can be due to too much gas-flow compared with energy input, which 

would allow gas to pass the plasma without being activated. A uniform plasma 

distribution was necessary, to gain a deposition with even rate and distribution. [47] A 

plasma process can either be heterogeneous or homogenous depending on plasma 

configuration, when a heterogeneous reaction is between the gas phase and a surface 

compared with a homogeneous, which reaction is mainly in the gas phase. 

Homogenous deposition often has a poor bond to the substrate and can appear as a 

white powder, while heterogeneous reaction contains a strong bond between deposit 

species and the surface.  [33,37]  

 

Reactions between radicals can take place in the plasma, but also at the substrate 

surface between radicals and bonded species. [48] Radicals (formed in the plasma 

zone) travelling towards the substrate can react and transform several times before 

reaching the surface and bonding with deposit species on the substrate. In plasma with 
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silane mixtures, most formations of radicals come from silane to form amorphous 

growth. Additional gases will also take part depending on their response to a given 

plasma condition. [49,50] Plasma also contains electrons, ions and non-reacted 

species (figure 2.7.).  [49]   

 

 

 
 

Figure 2.7. a plasma chamber and the main factors related to a plasma process. Depending on 

gas mixture and process settings there will be different kinds of radicals, electrons, ions etc. [49]  

 

 

The electrons become excited in the plasma and start colliding with gas molecules and 

form species such as ions, radicals and more electrons. [51] The species formed 

depend much on pressure, power level and frequency of power source. Process 

pressure affects the collision rate and will alter the mean-free path either by shortening 

or increasing the travel distance of excited species. With low pressure the travel 

distance increases (figure 2.23.), while high pressure gives the reverse effect. Travel 

distance will affect reaction rate and distribution of the plasma in relation with substrate.  

 

The difference between microwave- and radio-frequency- (RF) plasma is the energy 

and quantity of ions in the deposition, as the ions are too slow to respond to higher 

frequency. With RF plasma, ions can take part in the deposition and an ion rich 

deposition makes it more difficult for smaller radicals to bond, when often an ion has 

only one electron missing before reaching steady state. [47,52] Plasma from 

microwave energy gave less risk to ion bombardment of surfaces due to the higher 

frequency producing little ion energy. [36,53] Electron energy is also affected by plasma 
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energy, when increased power excites the electrons more. The level of gas excitation 

depends also on gas- mix and rate together with process pressure and temperature.  

  

Common process method for thin film production with flexible substrate is roll-to-roll 

(R2R) [54], which allows thin film deposition being applied continuously without 

interruption. Continuous and closed process avoids breaks due to batch or machine 

change, which helps to prevent exposure of oxygen and sudden temperature drops 

during the film process and avoids damaging the film quality. Other advantages with 

continuous production are increased throughput, reduced handling cost and a more 

environmentally friendly process by less loss of heat, gas etc. [55] The roll-to-roll 

system (figure 2.8.) contains several chambers with individual settings such as vacuum 

pressure, plasma-power and gas mixture and rate. [56,57] One of the more known 

machine manufacturers of roll-to-roll systems is Roth & Rau AG and they together with 

the research institute, ECN Solar Energy have designed and studied the process 

capacity of roll-to-roll process. Jointly they have published [57,58,59,60,61]  regarding 

the machine layout, process parameters for different silicon cell designs (p-i-n or n-i-p), 

film qualities and structure content such as amorphous, nano- and micro- crystalline 

silicon.  

 
 

 
 
Figure 2.8. production line for the 5 chambers from Roth& Rau, which illustrate input of material 

and the different processes used to the finished panel.  [58,61]  

 

 

One roll-to-roll system (Flexicoat 300, Roth& Rau AG) contained five chambers (figure 

2.8.) divided into substrate load and unload and three process chambers, two for 

doped layers and one intrinsic. [55] Pressure and gas supply were individually 

controlled in each chamber and between the chambers. Argon was often used as a 

cleaning and transport gas in areas of load and unload and between the deposition 

chambers. Argon has the advantage of being a stable gas compared with hydrogen, 

which easily can be explosive in air and therefore restricted to limited quantity and use. 

[62,63] The deposition chambers are equipped to control parameters such as power, 



20 

 

pressure, gas rate and mixture for each chamber and between each chamber are 

pumps to avoid contamination carry-over from the substrate and the chambers. A set 

vacuum through the machine and chambers allows a more stable process condition 

and avoids variation in pressure and temperature and repeated degassing of the 

substrate. [59,62,63]  

 

Deposition chambers (doped and intrinsic) were equipped with linear power sources 

(figure 2.9.), which allowed a continuous deposition through the chamber and a more 

uniform plasma distribution. [64] The plasma enhanced chemical vapor deposition, 

PECVD was powered both by microwave and radio-frequency (RF), when it helped to 

tune the different thicknesses required for each layer. Doped layers required being 

thinner and RF-powered plasma was used compared with intrinsic layer that used a 

microwave powered plasma. [55,56,58,61] The microwave based linear source (figure 

2.9.) had restrictions in width and length by a maximum of 20cm wide and a length 

between 50 and 150cm. The substrate transport speed was between 5 and 25cm/ 

minute depending on process parameters (gas mixture and rate, power and pressure, 

from 0.001 to 0.1mbar), when high deposition rate gave less uniform film and poorer 

reproducibility of the film quality. [56,57,59]  

  
 

 
 

Figure 2.9. the diagram shows the two different power sources used in the roll-to-roll system, 

see figure 2.8. The plasma unit to left is a microwave source, while the image to right is a cross-

section image of a linear radio-frequency based plasma source. [55]  
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2.5. Thin film silicon growth, amorphous and crystal content  

 

Microcrystal silicon was first discussed and developed back in 1960 by Veprek [36,65], 

but not seriously considered as a structure in silicon based photovoltaics until 1980. 

[66] The interest for microcrystal structure came as an option to avoid light-

degradation, when integrating crystal growth into the amorphous structure reduced the 

effect. [65,67] Amorphous silicon (a-Si:H) thin film was developed as a possible 

“replacement” for conventional crystalline silicon. [22] The drawback with hydrogenated 

amorphous silicon, a-Si:H was the low cell efficiency after exposure to light, known as 

the Staebler-Wronski effect. The light-degradation (Staebler-Wronski effect) comes 

from hydrogen bonds breaking over a period of time. [31,33,68]  

 

The silicon atoms in an amorphous structure have the same basic position as in a 

crystal structure with covalent bonds between four silicon atoms with Si-Si bonds 

repeated through the lattice but without long-range order (figure 2.10.). [69] 

 

 

 
 

Figure 2.10. the difference between a crystal (left) and amorphous (right) structured silicon 

lattice, amorphous having a random bonding pattern compared with crystal. [69]  

 

 

Amorphous structure is made up of an interrupted/ non-repeated chain (figure 2.10.) 

and with silicon not always bonded to another silicon, loose bonds are produced, which 

makes it possible for hydrogen to bond (figure 2.11.) known as hydrogenated 

amorphous silicon (a-Si:H). The bond between hydrogen and a silicon atom is weak 

and easy to break, which leaves a dangling bond (figure 2.11.). Dangling bond is 

known as a defect with reduced electronic properties due to the charge carriers being 

trapped. [45,59]  
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Figure 2.11. a silicon structure with dangling bonds (left) [18], while the right image is more 

detailed with silicon bond to silicon and hydrogen. [70] 

 

 

Additional hydrogen, diluting the silane, SiH4 influenced the growth mechanism by 

increasing the crystal content in the amorphous silicon structure. The concentration of 

hydrogen against silane reflected on the crystal growth, grain size and the quality and 

properties of deposit film/ structure. [31,45,46,66,71,72] The number of hydrogen 

bonded into a structure depended on the plasma and process conditions. When added 

hydrogen did not support crystal growth, the amorphous phase was enhanced followed 

by a higher number of hydrogen induced loose bonds, which gave problem with light-

degradation. [73,74,75,76,77] The crystal growth and formation in a mixed structure 

and the quality of deposition depend much on process conditions such as high power, 

which encouraged a columnar growth with large crystals. [78,79]  

 

Crystal nucleation as clusters appears in islands randomly through the amorphous 

matrix. [36,80,81] The clusters can change into spheres and columnar shape 

depending on crystal size and process condition (figure 2.12.). [46,66,82,83]  
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Figure 2.12. shows development of crystal size in relation to ratio of silane and hydrogen. The 

development of crystals starts by nucleation and continues into a mixture of crystal grains and 

larger crystals, where some continue growth into columnar shape. [36,80]  

 

 

Crystal formation in an amorphous matrix is often described as a linear effect, which 

refers to the straight crystal formation in the random amorphous network. [84] By 

integrating crystal growth, the level of stress may be enhanced in the structure. The 

amount of stress depends on crystal size, when deposits with smaller crystals contain 

more stress. [82,85]   

 

Mixed structure (figure 2.13.) starts with amorphous growth followed by crystal 

nucleation within the amorphous matrix, the crystal size increasing over time. Larger 

crystal size in the amorphous growth led to higher content of voids, cracks and defects 

etc., which gave reduced mechanical properties and increased number of cracks 

during flex and movement. (figure 2.13.), [46,66,86,87] Growth of smaller crystal grains 

created fewer columnar defects and voids, which were typical for microcrystal 

structure. [86]  
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Figure 2.13. mixed growth structure with small crystals nucleating and developing in the 

amorphous matrix, some of the crystals stay small when others become larger by deposition 

time. [66]  

 

 

Increased growth of small crystals resulted in large grain boundary areas between the 

crystal and the amorphous structures and the best cell efficiency was gained at the 

threshold between the crystal and amorphous phases with crystals of 1-2nm. 

[33,36,46] The small grains helped to support a stable structure and provided a good 

boundary between the phases, which reduced light-degradation and improved 

electrical and optical properties. [43,77,80,88,89] The nanocrystal phase showed no 

light-degradation, while the amorphous phase and the boundary between the phases 

did degrade. [38,74]  
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Nanocrystal structure can be produced in two ways, either by small particles (1-2nm) 

being produced by a reaction in the plasma and embedded into the structure or nano-

particles (1-2nm) formed through a reaction with deposited radicals in the amorphous 

structure. Crystal growth (figure 2.14.) in an amorphous matrix can be described 

[50,80] in three phases:   

1/ Nucleation by forming 2-10nm crystals embedded into the amorphous matrix.  

2/ Cluster formation/ coagulation, larger crystals (20-40nm) are formed by coagulation. 

3/ Powder, larger crystals merging, which depends on process temperature and time.  

 
 

 

 
 

Figure 2.14. above different growth stages are given from initial nucleation through structural 

formation to cluster and merger into larger crystal and powder formation. The image to left 

refers to cluster formation, while the right picture is powder formation. [50] 

 

 

When crystals merge into larger units they are conical shaped perpendicular to the 

substrate surface. [46] During the coagulation stage the temperature dropped, which 

partly caused powder formation, through embedded crystals of a few nm. [80] The 

crystals of cluster, sphere or columnar shape had the same atomic arrangement in the 

crystallites. [90]  

 

Formation of crystals of different size depends on types of radicals available in the 

plasma chemistry. [78] The radicals generated from silane, SiH4 were SiH3, SiH2, SiH, 

Si with additional species of higher silane such as Si2H6, Si3H8….Si4H10 as well as H2 

and H. [70,78] The reaction route for SiH4 decomposition depends on the electron 

energy (e),  

 e+ SiH4nH+ SiH3-n (n=1, 2, 3),  (1) 



26 

 

and forming SiH3 requires less energy than SiH2 and SiH. [73] Available electron 

energy will determine the size of radicals, when larger radicals require less energy than 

small radicals (figure 2.15.). [78] However SiH2, SiH and Si have a shorter reaction time 

than SiH3 due to the fact that they are easier to bond. [70] The reaction route depends 

much on the energy available, when higher energy results in longer chain reactions. 

[71] The higher electron energy makes SiH2 more active and easier to form larger 

molecules such as Si2H6 followed by Si3H8….Si4H10 and formation of crystals larger 

than 10nm is often linked to SiH2.  [78]  

 

 
 
Figure 2.15. The electron energy (eV) for the different silane, SiH4 radicals such as SiH3, SiH2, 

SiH and Si vary in value.  [78] 

 

 

With larger radicals bonding to the substrate surface, a sufficient etch effect is 

necessary to optimize bonding options and encourage small radicals to bond into a 

more linear formation in the random amorphous structure. Larger radicals encourage a 

random bonding pattern such as amorphous and with an enhanced number of loose 

bonds encourage an increased number of hydrogen bonds in the amorphous silicon 

structure. However larger radicals such as SiH3 often related to microcrystal growth. 

Process conditions which encourage larger radicals to form, often give fewer small 

crystals, which results in low etch and reaction rates. A plasma deposition with larger 

radicals such as SiH3 has three possible growth scenarios (figure 2.16.); 

(A) Surface diffusion, 

(B) Etching,  

(C) Chemical annealing. 
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Surface diffusion (A), a high quantity of hydrogen is bonded to the substrate surface 

and through reaction within the hydrogen, local heating area is formed. The additional 

heat encourages larger radicals to bond to the surface.  

Etching (B), the hydrogen reaching the substrate surface is breaking the weak bonds of 

Si-Si and allows radicals such as SiH3 to bond. 

Chemical annealing (C), the hydrogen reaction and bombardment against the 

amorphous structured substrate surface form an etch effect. The excited hydrogen 

penetrates through to the sub-layers and supports crystal formation. [70] 

 

 
 

 
 

 
 

Figure 2.16. (A) growth procedure with SiH3, then (B) illustrates etch effect and difference in 

structural order between amorphous and crystal growth, while (C) shows how larger crystals 

form through chemical-annealing. [70]  
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Plasma process with low process temperature has often higher concentration of SiH3, 

which makes it important to have a good etch effect and supporting development and 

growth of both the crystals and amorphous phase. [70,76,91] However a careful 

balance was required between etch and deposition rates, when hydrogen affects both 

etch and deposition rates. [40,92] Balance between etch and deposition rates can be 

expressed by  

  

SiHn(plasma) 




1

2

R

R
 Si(solid)+ nH(plasma),  (2) 

 

where R1 is deposition and R2 is etching. [93]  

 

A balance between good deposition rate and etch was necessary to clean off and 

reduce the number of poor and loosely bonded material, to get a good adhesion. 

[63,93] Low or no etch gives high deposition rate with powdery coat and poor bonding 

properties, while too high excitation gives high etch and cleaning with reduced growth 

rate. [92]   

 

Historically argon has been regarded as a gas which enhances amorphous growth and 

not a gas usually used in thin film depositions. Later it was found that argon together 

with hydrogen diluted silane [63,72,81] supported microcrystal growth when using 

microwave powered plasma. [45,94] The ratio argon/ hydrogen was found important in 

relation to crystal growth, crystal size and film thickness, when high argon rate gave a 

thicker film by supporting growth rate with reduced etch effect, which led to amorphous 

dominance compared with low argon rate supporting crystal growth (figure 2.17.). 

[33,79,95]  
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Figure 2.17. ratio of argon dilution against silane and how the Transverse optical, TO peak- 

width was reduced and shifted with increased crystal growth, when the argon quantity was 

reduced. [79]    

 

 

The ratio of argon/ hydrogen against hydrogen diluted silane varied the crystal growth, 

when certain ratio of argon/ hydrogen gave microcrystal growth [96] and some 

nanocrystal growth [49] in the amorphous matrix. [79,94,96] Further reports [62,63,97] 

found how argon could influence etch effect and crystal growth. Argon showed more 

influence with microwave plasma at low pressure (below 0.1mbar) by influence on the 

electron energy [81] and the plasma configuration [94] and by stabilising the plasma 

condition. [59,62] Argon/ hydrogen mixture gave a more stable plasma process with 

less fluctuation compared to hydrogen alone. [59,62,63] The SiHn radicals were 

changed by argon addition through the reduction in electron temperature. [62]  

 

Process temperature proved important with argon/ hydrogen ratio, when deposition 

quality and crystal size and its density changed by substrate temperature. [98] It was 

reported, that crystal growth was experienced even with low process temperature at 

200°C, but even as low as 150°C. [96,99] For a process with low substrate 

temperature, the gas mixture and flow-rate became more important to gain correct 

deposition quality and rate. [100] The advantage with low process temperature was 

increased growth of small crystals, which resulted in large grain boundary areas 

between the crystal and the amorphous structures. [33,36,46] Process temperature at 

200ºC supported nanocrystal growth of wurtzite structure, hexagonal structure (Si-IV 

phase). [82,83]  
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2.6. Textile material 

 

Textured backing for solar cells have become in focus, after experiencing improved cell 

efficiency by enhancing the optical reflection. Textile has proven interesting due to its 

texture and flexible properties and especially for the thin film solar cells. The advantage 

of using textile substrate is the variation of surface characteristics and a flexible 

substrate, which has a good mechanical performance with its high strength in relation 

to weight, structure and density. [101] Substrate surface has a great influence on thin 

film deposition, when increased surfaces roughness (texture) encouraged nucleation of 

crystal growth, rate and size. [33]  

 

Textile can contain different yarn, filament/ fibre qualities, which reflect on the 

properties of a cloth. The yarn quality can be divided into groups of synthetic or natural 

materials and their performance and properties are very different. Natural fibres 

originate from nature from plants and animals such as cotton, linen, wool, silk etc., 

while man-made and synthetic fibres are manufactured by a cellulose or polymer 

based solution. Development of synthetic fibres has been carried out through the latter 

half of the twentieth century by focusing on qualities with easy care, lighter weight, 

increased strength in relation to its weight, to get a natural look, feel and performance. 

[102] 

 

Polymer yarn and fibre have more options than natural fibres by being able to change 

chemical composition, morphology and fibre/ filament size and shape. [102,103] The 

performance of a polymer yarn can be modified after requirements by changing 

chemical structure and appearance of the filament by altering extrusion process and 

polymer content. The extruded filament comes from chips or powder, which transform 

by heat or solvent into a viscous solution, which is pushed through a spinneret. The 

spinneret contains a number of holes, which can vary in formation and the shape of a 

hole will reflect on a filament’s properties. The cross sectional design reflects on a 

filament's properties, surface appearance and morphology of the filament/ staple fibre. 

The extrusion process can be divided into three main methods: melt, dry and wet 

spinning, and the method used depends on the polymer type, when melting point will 

be determining how it transfers into a viscous state. Melt spinning refers to melting a 

polymer by heat, when dry spinning dissolves a polymer by mixing it into a solvent and 

after the spinneret drying the filament by heat. Wet process uses a solution to dissolve 

the polymer and the filament is produced and coagulated in a bath of liquid. After the 

spinneret the filament is drawn, which can alter the filament properties by influencing 
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the orientation of the polymer chain and the ratio of crystallinity and amorphous 

structure. [102]  

 

Mono-filament refers to one single filament making the yarn, when multi-filament refers 

to several continuous filaments grouped either by being combined together or twisted 

into a yarn (figure 2.18.).  Appearance of the filament can be altered by either texturing 

or twisting the filament during heat, which gives a permanent texture and a more 

natural look. [102]  

 
 

 
 

Figure 2.18. differences between a multifilament yarn (left) and a monofilament yarn (right). 

[104]  

 

 

Another yarn type is based on cut filament known as “staple fibre” and the length of the 

filament often matches that of natural fibres. The staple fibres are spun together. The 

yarn quality of staple fibre gets a higher yarn density and appearance like a natural 

fibre yarn compared with filament. The polymer filament and fibre content and 

appearance can be matched to the required performance for a specific end-use. 

[102,103] Textured material refers to its yarn quality such as a filament's diameter, level 

of texture and type of weave/ knit structure. Filaments are classified by their dtex (g/ 

10km), which is a unit based on a yarn's weight per 10km. [102,105] Thicker yarn 

diameter and textured yarn results in a higher fabric density and a more textured 

material. [106] The surface area of a fabric depends on thickness of a fibre/ filament, 

yarn and the weave/ knit structure. [99] Polymer based filaments provide more options 

regarding appearance and properties compared with natural fibre and yarn. The 

polymer based fabric can be manufactured to meet the need of a specific end-use 

more precisely than a natural fibre. The polymer based fabric can vary by weave/ knit 

structure, the yarn quality by choosing number of filaments such as mono- and multi- 
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filament or spun-yarn, and the yarn appearance such as being textured, heat-treated 

etc. and its polymer content, which all reflects on a material’s properties. [101]  

 

Polyester is the most manufactured fibre in the textile industry, which has a great 

knowledge of how to manufacture this polymer. Polyester has a high resistance to heat, 

chemicals, UV light and micro-organisms etc., which support a use of polyester in 

application of solar panels. [102] Polymers can not only vary in chemical content, but 

also in chain length, orientation and structure content of crystal and amorphous phase. 

Ratio of amorphous to crystalline regions depends on the extrusion and the drawing 

processes, although the most common ratio for polyester is 35% crystallinity and 65% 

amorphous. [102,103] The ratio reflects on a filament, a fibre’s physical and chemical 

properties such as thermal stability, when the glass transition, Tg (~70˚C) and melting 

temperature, Tm (~260˚C) change depending on polymer content. Glass transition (Tg) 

is when the polymer becomes soft, which is followed by a rubber-like behaviour before 

transfer into a viscous phase and later into a liquid form at the melting point (Tm). The 

change in a polymer from solid to liquid comes with a steady increase in temperature. 

[103]  

 

Polyester (generic name) belongs to the synthetic group, but can be named after its 

tradename such as Dacron and Terylene. The different brand names can have a slight 

change to the basic polyester chain so as to get a more suitable match for the specific 

end-use. The chemical name for polyester is Polyethylene Terephthalate, PET, whose 

chain contains carbon bonded to hydrogen and oxygen. Along the chain are different 

“chemical” groups formed such as ester group RCOOR (double bond to 1st oxygen), 

methylene CH2, carbonyl CO and benzene ring C6H6, shown in figure 2.19.. [102,103]  

 
 

 
 

Figure 2.19. chemical structure of Polyethylene Terephthalate, PET known as polyester. [102]   

 

 

Today, plasma treatment of textile is used to modify a fibre/ yarn’s dye properties by 

becoming more hydrophobic or hydrophilic and having improved adhesion by cleaning 

a substrate surface. [107,108,109] These treatments were often done by RF-powered 
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plasma at atmospheric pressure with less reactive gases. Plasma treatment of textile is 

still limited to technical products, when more knowledge requires fully understanding 

and controlling the textile behaviour during the plasma process. [52] Plasma process to 

deposit a coat was not widely used on textile and a careful adjustment of process 

parameters was required to get a balance between good textile condition and 

deposition quality and rate. Plasma process in vacuum is generally sensitive to 

impurities, when this will change the process conditions. Clean vacuum process 

becomes a challenge for textile substrate, which contains species acting as 

contamination during the process. Textile is difficult to clean to the level required to 

avoid change of processing conditions during the plasma process. [108]  

 

Textile substrate influenced the outcome in a process with vacuum and plasma 

enhanced chemical vapor deposition. This helped to address the importance of using 

the right textile to get as little influence as possible from the textile substrate. [48,108, 

109] Plain weave (figure 2.18.) is the most simple structure with repeated position of 

the yarn, which is the same from both warp and weft directions. The image below 

(figure 2.20.) illustrates a woven substrate of a plain weave with the warp yarn cut in 

cross section and the weft yarn floating across the warp. The warp yarn comes along 

the machine (loom), when the weft crosses the warp yarn by travelling in the machine 

width (from side to side). Weft yarn crosses the warp in a repeated pattern known as a 

weave structure and the easiest structure is plain weave 1 x 1, which means every 

second weft yarn goes above and below the warp yarn. On the return of the weft yarn, 

the warp changes position to the opposite and the ones that have the weft above get it 

crossing below and vice versa. After each weft insert, the yarn gets packed close to the 

previous weft insert.  

 

A structure of plain weave is shown below (figure 2.20) to help understand how the weft 

and warp threads cross. The space (figure 2.20.) in a woven structure and between the 

filament yarn can allow the plasma to travel through. [101,105]  
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Figure 2.20. is a weave structure with continuous filaments in the yarn. Image to right [108] 

shows a plain weave 1x1, when left [109] gives more detailed picture of the space within the 

yarn and the bundle of filament.   

 

 

Plasma distribution through the textile depended on the textile structure and its open 

space (distance) between fibre/ filament, yarn together with process parameters. 

Increased substrate density, textured surface and yarn could influence the plasma 

reaction and deposition quality. [21,48,109] A textile weave of 2D structure needs to be 

considered [108] as a 3D structure in a plasma process. This is due to the high density 

and large surface area the textile substrate has compared with conventional flat 

substrates of solar cells such as glass, silicon wafer etc. [101]  
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Density and surface area of a textile depends much on the type of structure, number of 

yarn and filaments/ fibres in each yarn (figure 2.21.). The total surface area of a woven 

material is given by number of yarns/ cm in both warp and weft and the diameter (µm) 

of the yarn (dy) and the number of fibre/ filament (df) in the yarn. (figure 2.21.). [101]  

 
 
 

 

 

 

 

 

 

 
 

Figure 2.21. woven fabric contains a higher surface area than conventional solar cell 

substrates; considering the area of a filament, yarn within a specific square area helps to 

estimate the total area being exposed to a plasma. [101]  

 

 

Plasma can theoretically deposit and etch a yarn, fibre, filaments in and around 

depending on process parameters. The area of a textile exposed to plasma can be 

calculated (figure 2.22.) by number of filaments (n) parallel along the width (WP) of a 

surface exposed to plasma. The filament has a half-circumference of π df/ 2 or 1.57 df, 

which means the treated surface area is at least 1.57 times larger than area exposed to 

a plasma. [108]  

 

 
 

Figure 2.22. possible plasma penetration in a tight weave can be calculated by considering 

thickness, dF and width Wp of filaments packed together and the diameter of a filament, df. [108]  
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Plasma distribution depended on the mean-free path of the gas species (radicals, 

electrons), which depended on settings of process parameters such as gas type, power 

and pressure. Consider a textile structure containing pores: the value of mean-free 

path exceeding the pore size helps to avoid plasma penetration and instead give a 

more uniform surface activation. A mean-free path below pore size will allow plasma to 

travel into a depth of the textile structure and filament, therefore a balance between 

mean-free path and open space in the structure is necessary to restrict the travel of 

gas species. [108] The plasma would unlikely penetrate through a space less than 

10nm. [107] Another important factor regarding plasma penetration is molecular size of 

the gas species, when this affects the travel speed and distance too. [47]  

 

Plasma penetration and mean-free path was considered by placing several layers of 

textile in a pile and thereafter determining the depth of plasma treatment on the textile. 

[48,101,107,108,109] Some of the aspects considered in these studies were process 

pressure [109], weight loss and fibre orientation [48] and sample size. [109,110] Depth 

of a plasma penetration depends on mean-free path (figure 2.23.), which relates to the 

uninterrupted distance gas species travel through the plasma. The mean-free path (λ) 

in a textile substrate with yarn, filament/ fibre can be calculated by assuming plasma 

penetration is equal to the mean-free path, (λ, µm) for radicals at a certain pressure (P, 

Pa). [107,109]  

 

λ= gas data/ P  (3) [109]  

 
 

 
 

Figure 2.23. how a mean-free path changes by pressure. [107]  
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The process parameters and their settings and combination would determine plasma 

condition, number of active species (ions, electrons and radicals), deposition and etch 

rate. [48,107,108] Process pressure proved to be a key parameter to determine plasma 

treatment, when low pressure gave higher velocity and longer travel distance for 

radicals and electrons in textile material. [108] A certain pressure range supported a 

more homogenous plasma treatment than others. [109] Pressure less than ~1mbar has 

a mean-free path greater than a textile structure, which resulted in a low number of 

radicals and a very sufficient modification. Higher pressure than 1mbar gave less 

surface treatment. [108] Another source [107] suggested that at a pressure of 

~0.1mbar, the deposit became uniform and flexible. 

 

Textile with larger surface area showed higher weight loss, which was explained by the 

larger surface being more exposed to plasma with higher etch effect. [48] Structure of a 

material played a part too, when a tighter weave or smooth surface experienced less 

weight loss compared to a denser and more textured surface with more etch effect. 

Yarn direction proved important, when parallel yarn got more etched due to the plasma 

having an easier access to travel between yarn, filament, fibre and therewith the 

plasma density increased with a higher etch effect. The high etch effect was explained 

by gas being trapped in limited space, which resulted in the velocity of electron and 

radicals and the number of collisions being increased. [48,107] Even if the plasma 

penetration and etch effect was increased, the bulk properties of a fibre/ filament were 

not affected, due to plasma not travelling into spaces less than 10nm. [107] With 

increased plasma penetration, the plasma activation and energy becomes reduced, 

which gave an uneven plasma activation in both depth and location on the textured 

textile. Therefore depth of plasma penetration is very important to understand and how 

it will affect and react with the textile substrate. [107,108]  

 

The drawback of using a textured and dense material is trapped moisture and air, 

which can increase actual substrate temperature during a plasma reaction. [101,110] 

All fibre contains some water even though synthetic has much less than natural fibre. 

The water content is given in percentage in relation to weight of dry fibre and typical 

values for natural fibres are between 7 and 17%, when synthetic fibres are from 0 to 

5.5%. Polyester has 0.3%, but this figure can vary depending on the surface and the 

cross shape of the filament. The water content in a fibre will depend on the 

environment, when increased Relative Humidity, RH% gives a higher percentage due 

to the fibre absorption and swell. [105,108]  
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Textile substrate exposure in low process pressure proved difficult due to the water 

content, when some of it became trapped in the textile, which faced the substrate plate, 

when the rest was pumped out. Later, the remaining moisture during the process 

increased the substrate temperature, which led to damaged textile substrate. [108,110] 

The moisture in a plasma process will act as an impurity in a plasma process and 

extend the pumping down of a vacuum process and cause a weight loss to the fibre. 

Therefore, it was important to control and avoid unnecessary water/ moisture in the 

fibre and the textile substrate (figure 2.24.). The moisture/ water content in a fibre will 

reflect on time to pump down and release moisture from chamber and substrate (figure 

2.24.). [108] Surface contamination in a textile is another problem, when the textile is 

difficult to clean to the level required to avoid change of process condition during the 

plasma process. [101]  

 

 

 
 

Figure 2.24. fibres with different water content will affect the time to pump down to process 

vacum required. [108]  
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3. Nanocrystal structure and properties 

 

 

3.1. Introduction 

 

Initially, amorphous silicon thin film was produced as a replacement to the conventional 

solar cells of silicon crystal as an option to reduce the large quantity of silicon used per 

cell. The drawback with amorphous silicon was the high light-degradation known as 

Staebler-Wronski effect (chapter 2 section 2.5), which led to a permanent degradation 

of the cell performance. [1] Integration of crystal growth into the amorphous matrix was 

understood to stop this light-degradation. A mixed structure of crystal growth in an 

amorphous matrix gave a more stable cell structure in respect to light-degradation by 

reducing the hydrogen content and the number of dangling bonds. [1,2] Hydrogen 

bonds easily break by energetic photons, resulting in trapped charge carriers and 

reduced cell performance. [3] 

 

Even though a mixed structure mainly contains amorphous material, the small crystals 

support a stable structure and a good boundary between the phases, which improve 

electrical and optical properties. [4,5,6,7,8,9] However, a careful balance of film 

thickness, ratio between crystal and amorphous phase and crystal size was required to 

gain enhanced electrical and optical properties. [5,10] Textured material encourages 

nanocrystal growth due to its unevenness, when local energy fields with higher energy 

were formed in the pits. [11,12] The local energy fields with higher energy favoured 

crystal growth of Wurtzite structure. [13] 

 

The most known method to decide crystal growth in an amorphous structure is by 

Raman spectroscopy, even though the result is based on an average crystal size. [14] 

The crystal size will reflect on the peak location, width and shape, when increased 

crystal size produced a more narrow and sharp peak compared to smaller crystals. [15] 

The numbers of peaks and location required to fit a Raman spectra are known 

regarding conventional amorphous, crystal and pure microcrystal silicon, while 

nanocrystals are less understood. The ratio of amorphous and crystal structures and 

crystal size reflected on peak location and peak shape. Crystal growth could either 

contain one kind of crystal size or a mixture of small and large crystals. Raman 

spectrum made it possible to distinguish between nano- or micro-crystal growths in the 

amorphous structure. [12,16,17,18] Raman spectroscopy has the advantage of no 
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sample preparation or change to sample properties during measurement. Using 

Raman spectroscopy to analyse fabric or fibre surface is less common, when most 

published material regarding textile and Raman spectroscopy discusses analysis of 

bulk properties of a fibre/ filament.  

 

 

 

3.2. Silicon crystal (crystal growth) 

 

There are twelve silicon phases [19,20,21], although an additional phase, Si-XIII was 

recently reported. [22] All silicon phases originate from silicon Si-I which is of a cubic 

structure. Some of the silicon phases only transform by pressure, when others need a 

combination of pressure and temperature. A number of phases are metastable, which 

means they can easily reverse their phase transformation. [17] Each phase is unique 

with its specific structure and mass, which reflect on optical and electrical properties. 

[23]  

 

Indentation (nano-) [22,24,25] and laser annealing [7,26,27,28] has helped to 

understand the possible transformation of silicon from the familiar cubic silicon crystal, 

Si-I by pressure and heat into different phases. Indentation experiments [22,24,25] 

started often with silicon crystal, Si-I and by applied pressure changed this to Si-II and 

Si-III etc. A quick pressure release gave increased amorphous content. [29] Laser 

annealing experiments [28,29] started either from Si-I or from amorphous silicon with 

phase transformation produced by heat. The annealing studies [7,26] with amorphous 

material on a silicon wafer reported how crystal growth was identified as a linear effect 

in the random network of amorphous silicon after heat had been applied.  

 

Silicon phases such as Si-I, Si-III, Si-IV and Si-XII were of interest in relation to silicon 

thin film on woven textile [30] due to requiring less pressure for transformation. Si-IV 

phase could transform directly from Si-I without passing through other phases, [25,31] 

and the low pressure and peak locations/ wavenumber given [17] were applicable to 

the plasma process for silicon thin film. [22,32]  

 

Si-IV was known as a nanocrystal structure of small crystallites, although development 

of larger crystals such as microcrystals had been experienced too. [33] The Si-IV 

phase was of a hexagonal structure known as wurtzite (WZ) structure and first 

addressed by Kobiliska. [34] Wurtzite structure was known for its typical vibrational 
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modes in three crystal directions, two in the hexagonal plane and one perpendicular to 

the plane. [18,34] It was discussed how the wurtzite structure in silicon, Si(2H-4) 

related to the more common cubic structure, (FC-2). [34] Wurtzite contains of 4 atoms/ 

unit cell and two types of monolayer, ABAB…., stacked in the direction of the c-axis 

[0001]. Wurtzite silicon, Si-IV can appear in two types of structure, A and B. [35] The 

slight difference between the options is that B had longer lattice distance (a=4.04, 

b=4.04 and c=6.60) than A (a=3.80, b=3.80 and c=6.60). Type of structure Si-IVA or Si-

IVB, depended on crystal size. Larger crystals (above 10nm) contained a mixture of the 

two (Si-IVA and Si-IVB), although Si-IVB dominated. This kind of mixture of A and B was 

typical for nanowire growth and wires of smaller radii showed a more frequent change, 

when the surface energy was very low. [35] Crystal growth was a mixture of cubic and 

wurtzite structures (Si-IVA) and with increased size, the cubic phase increased. [35] 

 

Wurtzite is similar to the zinc blende cubic structure, as both have the same atomic 

number per unit cell. [22,36,37,38] However, the cubic structure requires three mono-

layers per unit cell, while wurtzite contains two (figure 3.1.). The two structures were 

found to have similar lattice distances and angles (figure 3.1.). [39] A mixture of the two 

phases was explained to be due to change in surface-energy, crystal size and unstable 

process conditions. [39]   

 

 
 
 

 

 

 

 

 

 

 

 

 

Figure 3.1. shows the difference between (a) the wurtzite hexagonal structure and (b) the zinc 

blende cubic structure. [40] 

 

 

(a) (b) 

(b) (a) (b) (a) 
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With the cubic zinc blende (ZB) and hexagonal wurtzite (WZ) structures have very 

similar stacking orders of AB,AB….for WZ and ABC,ABC… for ZB and with the two 

structures having similar cohesive energies they are easily mixed during growth. 

[36,38,41] Stacking faults can either occur as single or repeated entities and it may be 

common for wurtzite to interrupt the growth of zinc blende in this manner. The defect 

often occurs at edges, borders or in much textured areas (figure 3.2.). [38,41,42,43] 

Stacking disorder will reflect on phonon vibrations and a material’s optical, electrical 

and thermal properties. [7,44] During nanocrystal growth twin formation AaBb is the 

most common defect due to a mixture of zinc blende and wurtzite phases, see figure 

3.2. and figure 3.3.. [36,41,45] Transformation between WZ and ZB has two options 

named as Type I (BCBC) and Type II (ABAB) although Type II is less common. [36,45] 

The defect can be described by the total number of hexagonal layers, Nh related to the 

number of cubic layers, Nc in the structure. H= Nh/ Ntotal= Nh/ Nh+Nc.  [43] 

 
 

 
  

Figure 3.2. examples of different stacking orders (a) shows the order of a unit cell with 

hexagonal (h) and cubic (c) formation, (b) shows zinc blende and (c) shows wurtzite structures 

and in (d) the two are mixed in a twin defect. [38] 

 
 

 
 

Figure 3.3. compares deposition without twin defect (a) and with twin defect (b). [41]  
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Crystal nucleation of wurtzite was found to favour growth at edges, borders or textured 

surfaces, due to a higher surface energy in these specific areas. The uneven (textured) 

surfaces produced local energy fields and with reduced overall energy for 

crystallization resulted in small-sized crystal growth. [12,29,45,46] The increased 

energy by local energy fields was produced either by being trapped into a textured 

surface or by a three phase boundary, TPB, sometimes known as triple phase line, 

TPL, which usually refers to solid-liquid-vapor meeting at one point. [29,36,45] Glas et 

al [36] studied the cause of phase mixture at borders and edges and concluded that the 

change of structure growth was due to altered energy level. The increased density led 

to higher energy, which gave a condition of “supersaturation”. Nucleation of wurtzite 

related to higher vapor density at the TPL/ TPB, which initiated nucleation and spread 

of small crystals (wurtzite) at the interface of these three materials. Increased energy at 

the interface of the materials supported nucleus formation in form of islands. In 

circumstances with low energy it was found how some of the islands had not enough 

energy to activate a growth of wurtzite and instead encouraged the islands to grow in 

the cubic phase. After a monolayer of hexagonal growth, the energy dropped below 

saturation and a monolayer of cubic phase was allowed to form. With less energy 

during zinc blende formation, the energy level increased above saturation and made a 

monolayer of wurtzite possible to form followed by a zinc blende layer. The continuous 

change of energy supported a repeated growth pattern between wurtzite and cubic 

phases. [36] 

 

The cohesive energy (h∆c) between the two monolayers for a certain structure helps to 

stabilize the regular growth and prevent a defect forming in the stacking order. This is 

calculated by considering the cohesive energy per unit volume, ∆c and distance, h 

between two monolayers, when the distances are too small to be measured. The 

energy required for a crystal structure to nucleate depends on number of atoms per 

unit cell. [38]  

 

 

 

3.3. Raman spectroscopy of silicon 

 

Raman spectroscopy uses electromagnetic radiation, which makes the material atoms/ 

molecules to vibrate (and rotate if not a solid sample) as the incident light strikes the 

substrate surface. The emitted Raman light can identify a material’s optical, electrical 

and mechanical properties. Mechanical properties relate to the atomic mass and 
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bonding strength of a material, which shows in peak location. Quantity of defect and 

stress in a structure is shown through altered peak location and width. Raman 

spectroscopy influences phonon vibration by its incident beam as it collides with the 

material surface and depending on the surface, the incident light will reflect, absorb and 

scatter.  

 

When using Raman spectroscopy on polyester fabric and fibre, caution must be taken, 

as laser power annealing can occur in the polymer based substrate. [47] The possibility 

of annealing, related to the polymer’s bulk properties and structural amorphous and 

crystal content. The structural content in a polymer varies depending on the extrusion 

and production of the polymer, discussed in the chapter 2 in section 2.6..  

 

Raman spectroscopy requires different parts such as laser source, filters and optical 

lenses, detector, microscope and computer, which produced images and spectra as 

shown below (figure 3.4.). [48] The microscope has magnification option often of 100x, 

50x and 20x, which influences the beam spot. The Raman measurement can either be 

static or dynamic, when static has fixed parameters and the scattered light is constant. 

On the other hand, dynamic means that parameters such as percentage of laser 

power, exposure time (seconds per measured time) and accumulation are altered for a 

number of repeats, which makes the scattered light change with time. [48] 

 

 

 
 

Figure 3.4. a typical Raman layout containing laser source, filtering equipment, detector, and 

sample stage and computer. [48] 

 

 

There are many different laser options with common wavelengths of 333, 514, 633 and 

785nm from UV to NiR depending on type of substrate to measure. Choice of 

wavelength will reflect on depth of penetration of the measurement. Longer wavelength 
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laser gives deeper penetration than shorter wavelengths. [48] Laser power is important 

in measurement of semiconductors, when powerful lasers can damage soft thin films 

by annealing and altering the structure content. Therefore, shorter wavelength is often 

applied to restrict deeper measurement and instead focus on surface properties of the 

substrate. Examples of depth penetration in relation with different wavelengths are 

found in table 3.1. [49], while figure 3.5. shows how the light travels through a material. 

[48] 

 

 

Table 3.1. How beam penetration through a crystalline silicon material varies with different 

wavelengths of a laser-beam. [49]     

   

Laser Wavelength 
(nm) 

Penetration depth 
in Si (nm) 

633 3000 

514 762 

488 569 

457 313 

325 ~10 

244 ~6 

 

 

 
 

Figure 3.5. illustrates how the incident light penetrates through to a define focal depth in a 

sample by using confocal optics (pinholes).  [48]   
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Depth of penetration in relation with Raman spectra and the transverse optical (TO) 

mode’s peak location has been studied [50] by using the same type of substrate with 

different wavelengths. Surface measurement (top penetration) of nanocrystalline and 

crystal silicon gave a peak location at lower wavenumber (figure 3.6.) than deeper 

penetration, which gave a more significant transverse optical (TO) mode with increased 

phonon vibration. The beam changed in beam-width throughout the depth by the focal 

volume being of an oval shape in cross-section. [50]   

 

 

 
 

Figure 3.6. a comparison between laser sources of 840 and 1680nm and the penetration depth 

of the two light sources. [50]    

 

 

The incident beam collides with the material surface and its photon energy, hv0 makes 

the phonon change from ground state to become excited and then return as the photon 

energy, hv’ is emitted. The returning light can either have the same or different angle to 

the incident light. Normal incident light reflected at 90° is elastic scattering (Rayleigh), 

and light reflected at different angle is inelastic scattering (Raman). [51] Scattered light 

returning from excited state to ground state transitions is the elastic component 

(Rayleigh), while scattered light returning from virtual excited states to new states will 

have a change in energy and is inelastic scattering (Raman). [52] Brillouin scattering is 
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similar to Raman scattering but involves longer wavelength phonons, and a transition 

from a ground state to an excited state and back again due to larger scale elastic 

behaviour, rather than scattering from individual atoms or molecules.  

 

The altered energy of the returned light (inelastic) depends on a material’s structural 

property such as molecular bonding and type of structure. The inelastically scattered 

light gives spectral bands shifted from the excitation energy and is often named 

differently depending on the scattered photon energy, with emitted photons having lost 

energy referred to as Stokes shifted and those having gained energy named as anti-

Stokes shifted. [51,53] Vibrational energy produces a specific peak profile depending 

on stress, strain, defects and contamination in a material. [48,52] The peak-width can 

help to establish the amount of disorder or stress involved in a structure, when 

increased phonon vibrations result in a broader peak-width. [13,21,51,53] 

 

Vibration can either be parallel or perpendicular to a plane, although more commonly 

vibrations are along both directions. The modes are longitudinal or transverse 

depending on how the atoms move in relation to the incident wave propagation (k), 

which is given by k= 2π/ λ and illustrated below (figure 3.7.). [48,52] The single crystal 

silicon (Si-I) mode of 520cm-1 has a k-value of zero, whereas smaller crystallites 

deviate from the k-value of zero. The deviation of Si-I modes resulted in change of 

peak width and downshift from 520cm-1. The 520cm-1 peak has often a full width of half 

maximum, FWHM of ~3cm-1. [15,54] Smaller crystallites have larger differences in 

phonon vibration than large crystals. Wave propagation increases as the crystal gets 

smaller. [48]  

 
 

 
 
 

Figure 3.7. shows how atoms move during vibrations of either optical or acoustic modes. [48]  
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Vibrational modes for crystal and amorphous structures can be divided into two main 

types: acoustic (low energy in which adjacent atoms move approximately in phase) and 

optical (high energy in which adjacent atoms move out of phase). Within the acoustic 

and optical are transverse and longitudinal modes and with a second transverse mode, 

result in the acoustic having two transverse (TA and TA2) and one longitudinal (LA) 

components and the optical having two transverse (TO and TO2) and one longitudinal 

(LO). The modes are located in the spectra by TA being at the lowest wavenumber 

followed by LA, LO and TO (figure 3.8.). [17,25] The phonon vibrations and their 

strength change accordingly to crystal structure and size, producing particular spectral 

line positions and widths for the TO, LO, LA, and TA modes. [15,55,56] The peaks of 

TO, TA and LA became broader when the deposit contained small crystals, while larger 

crystals raised the structural stability and the peak width becomes reduced. 

[25,26,27,29,53,54,57,58,59,60,61] The different vibrational modes (TO, LO, TA and 

LA) and especially TO mode shifted location towards higher wavenumber with a 

narrower and more symmetric peak shape as the crystal size increased, while smaller 

crystals gave a broader peak at lower wavenumber. 

 
 

 
 

Figure 3.8. shows a typical graph for the four modes in crystalline Si. [29]    

 

 

 

3.4. Raman spectrum for amorphous and crystal silicon 

 

Peak locations were much dependent on structural content such as ratio of amorphous 

and crystal phases and the crystal size. Crystal growth in an amorphous matrix 

increased structural order, but introduced stress into the amorphous film. [34,62] 
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Crystal content influenced peak shape, when reduced crystal phase in an amorphous 

phase gave a broader peak shape due to less stress in the structure compared with 

increased crystal content, which led to lattice expansion. [62] Altered peak location and 

shape related to crystal size, when smaller crystals gave increased phonon vibration, 

which resulted in a more asymmetric peak shape with a broader peak at low 

wavenumber. [7,15,55,63] Larger crystals raised structural stability, which gave 

reduced peak width. The difference in peak shape and location in relation with crystal 

size is given in the Raman spectrum below (figure 3.9.). Silicon crystal (b) has a 

narrower and symmetric peak shape compared to spectrum (a) with nanocrystal 

growth, which peak is broad and asymmetric combined with several small peaks from 

the different phonon modes. [63]  

 

 

 
 

Figure 3.9. spectrum (a) refers to small crystals of Si and therewith an increased number of 

phonon vibrations, while spectrum (b) is from crystal silicon. [63]   

 
 

The asymmetric peak shape related to an increase in phonon vibration in the 

nanocrystal structure. [26,52] However a change in phonon vibration can appear in 

crystals up to 12nm, but with a reduction in vibration towards a value of k=0. [15] 

Determining crystal size from peak location became more accurate with larger crystals 

than small crystals due to a higher number of vibrations. [27,29,57] Frequency shift 

(figure 3.10.) was explained by softening in the phonon spectrum as the crystals 
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become smaller. Computer simulations of different crystal sizes helped to describe how 

reduced crystal size shifted the peak down from 520cm-1 by change in phonon density 

and vibrational mode, which was increased by smaller silicon crystals or clusters. [15] 

 
 
 

 
 

Figure 3.10. Increased crystal size changed the peak shape from being asymmetric to a more 

symmetric shape, while the peak location changed towards crystal silicon at 520cm
-1
.  [15]  

 

 

3.4.1 Phonon modes for wurtzite silicon 

 

The wurtzite structure has twelve possible phonon modes (Г1
+ + Г2

- + Г3
+ + Г4

- + Г5
+ + 

Г5
- + Г6

+ + Г6
-) according to theory and within this group, three (Г1

+ + Г5
+ and Г6

+) are 

Raman active. Two (Г1
+ + Г6

+) correspond to 520cm-1, while the third (Г5
+) relates to a 

peak at 500cm-1. The three active Raman modes have been variously labelled at 

495cm-1, 506.9cm-1 and 517.2cm-1 by using both theoretical and experimental results. 

[27,34,44] The mode of Г5 is distinctive for hexagonal structure and can appear from 

496 to 512cm-1. [18,39,44] 
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There are other phonon vibrations specific for semiconductors of hexagonal structure, 

which vibrate perpendicular to the plane direction and some of them are surface optical 

(SO) phonons, Fano and Boson effects. Surface optical (SO) phonon mode comes 

from phonon vibration between different materials such as in a multi-layered film, while 

Fano mode comes by structural disorder with crystal growth and Boson relates to the 

disorder of crystal growth in the amorphous structure. One of the more common 

defects related with the Fano effect is a twin defect, which appears from a mixture of 

wurtzite and zinc blende (cubic) phases. Fano effect is often related to quantum 

confinement, when some areas have higher energy than the bulk material. [64,65] 

Boson mode is the consequence of additional low-frequency vibrations caused by the 

disorder in the amorphous structure and was first discovered in glass, but later also in 

silicon film. [27,29,52,55,66] The crystals have to be of a few nm, whereas crystals 

larger than 4nm produce less phonon scatter. [67] 

 

It has been suggested that doping (n- and p- type silicon) influences phonon vibrations 

after finding a relationship between concentration of doped material and strength of the 

Fano effect. [65,68] N-type doping of silicon proved a relation with Fano effect, when 

low quantity of n-dopant showed a small or no effect compared to larger quantity, which 

proved correlation. P-dopant did not influence phonon vibration. [69] 

 

Choice of Raman power proved important to avoid altering the peak location and shape 

in a Raman spectrum due to changes in phonon vibration. [15,56] With applied beam-

power small crystals respond with an increased lattice expansion due to increased 

phonon vibration, which is reversed with reduced power. Generally, the effect reversing 

to its original position meant that bulk-properties (microscopic) in a material were not 

irreversibly affected. In cases where the peak was not being 100% reversed, a small 

change in the macroscopic structure of the material took place. [70] 

 

Altered peak location and shape with reverse effect was a typical feature of wurtzite 

and its Fano effect. High power excitation was observed to give a shift to low 

wavenumber with an asymmetric peak shape, while lower power gave an opposite 

effect with a symmetric and narrow peak at higher wavenumber. [27,29,55,56] Peak 

intensity changed too, when low power gave low peak intensity and vice versa. [15,71] 

This effect related to crystals less than 3nm in size due to these being 

thermodynamically unstable. [15] 
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3.4.2. How crystal size influences Raman spectra   

 

The crystal size was estimated by comparing the TO Raman peak width with the 

Raman line of single crystal Si-I, which is constant at ~3cm-1. [55,56,63] Development 

of crystals proved not to be exponential in their growth, when a crystal growth up to 

4nm showed a clear change in peak location and shape, while crystals larger than 4nm 

had a reduced change in peak location and shape. [14,15,56,71,72] The peak shape 

became more symmetric and narrower as the crystallites got larger (figure 3.10.). 

[55,63] Both experimental and theoretical work have been carried out to try to match 

crystal size and formation with Raman peak locations and shapes [29,39,55,61] in 

comparison with cubic single crystal, Si-I at 520/ 521cm-1.  

 

Peak shift from 520cm-1 to lower wavenumber was due to crystal sizes less than 10nm. 

[15] The diagram below (figure 3.11.) illustrates how crystal size influenced peak 

location, width and shape, when increased crystal size produced a narrower and sharp 

peak compared to smaller crystals. [15] Crystal size less than 15nm contained both a 

crystal and amorphous content, while crystals larger than 15nm contained mainly 

crystal content and only a fraction of amorphous was left. [62] Larger surface of a 

crystal led to increased boundary area, which increased the disorder in the structure 

caused by crystal growth in the amorphous matrix. [73] Surface roughness of deposited 

films increased with the larger crystal sizes, when films with crystals between 4 and 

12nm contained voids as the columnar shapes were formed. Crystals less than 4nm 

provided a smoother surface without voids. [9] Formation of crystals depended on 

crystal size, when 3nm appeared in a sphere compared with ~5nm, which occurred in a 

columnar shape. [29] 
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Figure 3.11. how the Raman peak changes in width and location by shifting from the crystal 

silicon peak at 520cm
-1. [55]  

 
 
Different studies may be summed up as follows: a peak at 494-496cm-1 refers to ~1nm 

crystals [17,29,34,52] and a peak between 495 and 500cm-1 related to 1 to 2nm 

[31,72], whilst a peak at 504cm-1 had a crystal size calculated to be 2+0.5nm. 

[18,29,31,50] This was confirmed by a study calculating crystal sizes to be 1 to 2nm for 

peaks between 504 to 507cm-1 and 2 to 4nm for peaks between 508 to 512cm-1, when 

a peak at 513.5cm-1 had a size of 4.7nm. [14,56] Structures containing crystals with a 

diameter less than 7nm can be considered as quantum dots with quantum confinement 

effect, which have an increased phonon wave vector compared with bulk silicon and a 

broader band-gap. [42,63] 

 

Both Richter [74] and Campbell [75] have discussed a model to correlate peak shift, 

peak width and the crystal size. The focus is to understand how Raman spectra 

respond to different sizes of crystals in relation to single crystal silicon. The model 

considered phonon momentum, q and applicability to structures with crystal growth, 

when this effect becomes lost in an amorphous structure. The confinement value 

becomes lower as the crystal size becomes larger due to reduced phonon vibration 

compared with silicon crystal. [7,29,55,56,65,74,75] Quantum confinement was 

expressed by the frequency shift, ∆ω (cm-1) based on difference between given peak 

location ω(L) (cm-1) for certain crystal size, L (Å) and the reference peak of crystal 

silicon at 520/ 521cm-1, ω0. Change in crystal size alters the lattice parameters such as 

lattice length (α) and cluster diameter/ crystal size, L (Å) [46,63] reflected in the 

quantum confinement parameter, ү. The quantum confinement, γ value depended on 
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crystal formation (L-ү) such as crystal spheres (L-1.44), crystallites (L-1.39) and crystal 

columns (L-1.08). [46,63]  Quantum confinement effect can be expressed as:  

 

∆ω=ω(L)- ω0= -A(a/L)ү  (1) [46,63] 

 
 

Richter [74] compared his work (figure 3.13.) with suggested [75] correlation between a 

crystal size (L), peak width (Г) and the peak shift (∆ω) from crystal silicon, at 520cm-1. 

 
 
 

 
 

Figure 3.12. correlations between crystal size (L), peak shift (∆ω) and peak width (Г) in relation 

with peak shift from 520cm
-1

. [74] 

 

 

3.4.3. Raman peaks regarding nanocrystalline structure 

 

Mixed structure of crystal and amorphous components including wurtzite structure, Si-

IV phase, was recommended to give a peak fit with three Gaussian peaks at 480cm-1 

(amorphous), 500/ 505cm-1 (nanocrystal) and 518/ 520cm-1 (crystal silicon) as in figure 

3.13.. [24,60,76,77] 
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Figure 3.13. illustrates the typical peaks, location and shape of amorphous at 480cm

-1
, 

nanocrystal at 500/ 505cm
-1
 and crystal at 520cm

-1
. [61]   

 
 

 Peak location varied depending on crystal sizes in the structure, when two of the 

peaks at the higher wavenumbers were linked to the crystal content and the third peak 

referred to the amorphous matrix. Locations for the phonon modes such as TA 

(transverse optical), LA (longitudinal acoustic), LO (longitudinal optical) and TO 

(transverse optical) and the additional phonon vibrations such as twin defect (Fano) 

and surface optical (SO, common in doped material) and Boson (disorder) were 

changed by crystal size and content. [5,27,41,52,54,78,79] The Raman spectra in 

figure 3.14. show the complexity and the different ways to extract the peaks from a 

spectrum based on material with crystal growth in an amorphous matrix. [76] 

 
 

 
 

Figure 3.14. Peak locations depended on the number of peaks and type of peak fit used in a 

structure of mixed crystal growth in amorphous silicon. The example above shows how peak 

location and shape changed in microcrystal silicon by using (a) three Gaussian peaks (461, 501 
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and 517.5cm
-1

) compared with (b) five Gaussian peaks (402, 475, 490, 510, 518cm
-1

) and with 

(c)  two Lorentzian peaks (501, 519.5cm
-1

). [76]    

 

 

The Si-IV phase was recognised by Raman peaks at a range from 499-512cm-1 

[24,25,27,33,34,54,80], and 516& 518cm-1 [22,34,50] together with an amorphous peak 

at 480cm-1  or below. Other peaks typical for Si-IV was a peak at 290cm-1 known as the 

second TA peak, TA2 and [21,22,32,34,80] the additional phonon vibrations such as 

surface optical (SO) phonons, Fano and Boson effects. Fano vibration causes an 

asymmetric peak shape and was found at ~495cm-1 between TO and LO modes, while 

the surface optical phonon peak was close to the Fano peak. The Boson peak often 

appears close to TA-mode, which appears in the range of 160cm-1 for pure amorphous 

to 210cm-1 with crystal content. These peaks’ locations and intensities depend on 

structural disorder, where lower wavenumber arises from higher disorder and vice 

versa. The Boson interaction is produced by phonon scattering from acoustic phonons, 

which appear when small changes in the amorphous material occur such as crystal 

growth. Peak locations shift depending on quantity of disorder in the structure, when a 

low peak location comes from a high amorphous content [57], which shifts higher by 

increased crystal growth within the amorphous structure. [29,52,55,57,66,67] Additional 

infrared vibrational modes of phonons such as wagging at 630-650cm-1, bending 830-

880cm-1 and stretching at 2000-2200cm-1 are found too. [58,59,69,81]  

 

With the onset of crystal nucleation, an initial peak from amorphous material at 480cm-1  

showed an immediate effect by shifting upwards towards 485cm-1 and depending on 

crystal size could shift typically to ~512cm-1. [2,8,31,34,52,58,80] However, initial peak 

location for crystal nucleation has been discussed when locations between 483 to 

496cm-1 have been suggested. [8,26,71,80] The crystal peak located at 500/ 505cm-1 

known as the “intermediate peak” moves upwards towards the boundary of nanocrystal 

and microcrystal peaks according to crystal size. Its location lies anywhere from the 

early intermediate region at 494cm-1 for smaller crystals, to 500/ 505cm-1 for larger 

crystals. [31,82]  

 

As the crystals develop in size the two peaks move towards higher wavenumber and 

their locations depend on type of crystal structure, when nanocrystal gained two peaks 

in the intermediate region (between 494 and 512cm-1), while a structure containing both 

nanocrystal and larger crystals (microcrystal) had a peak each in the intermediate and 

the microcrystal regions. The different crystal regions reflected on change in structure 
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in the amorphous content by having a hexagonal phase from small crystals, through a 

mixture of hexagonal and cubic phase, to a microcrystal with dominance of cubic 

phase. [18,24,28,39,44,55] The mixture of the two phases appears over a longer 

stretch of wavenumbers, when cubic phase starts forming during the nanocrystal 

growth and becomes more dominant as the crystal size increase. The hexagonal 

structure will still continue close to the boundary where an equilibrium between the 

phases is reached before cubic growth starts to dominate and its peak starts to appear 

in the microcrystal region. [25,34,50,61] A peak between 504cm-1 and 512cm-1 is 

suggested to be a combination of  a mixture of hexagonal and cubic phase, while a 

peak located at 514- 517cm-1 is dominated by cubic phase. [18,39] The exact ratios of 

the two phases in relation with wavenumber are not completely known. [52,58] The 

boundary of nano- and micro- crystals is not agreed and suggestions such as ~510 to 

514cm-1 [32] or 516cm-1 to 518cm-1 [34,50] where microcrystal dominates are still 

unclear. [18,29,52,54,58] 

 

With crystal nucleation, the peak at 480cm-1 [5] is shifting up towards higher 

wavenumber and at same time an additional peak appears as “new” amorphous peak, 

which moved down in a typical range of 470-439cm-1, although a peak at 420cm-1 was 

suggested by Kobiliska. [7,18,26,31,34] Locations of the amorphous peak related to the 

crystal size and typical peak combinations were suggested for both nanocrystal at 

504cm-1 (446, 464, 477, 486cm-1) and microcrystal at 515cm-1 (439, 462, 478, 486cm-1). 

[31] 

 

 

 

3.5. Properties of nanocrystal structure 

 

The structure content has a great influence on optical and electrical properties of a 

material. An increased amorphous content in thin-film Si, the hydrogenated silicon, 

gave a higher light-degradation [1] with reduced electrical properties through the 

Staebler-Wronski effect [7,83], while integration of crystal phase would reduce the light-

degradation [1] caused by the dangling bonds.  

 

The electrical properties became improved by a mixed Si structure of crystals and 

amorphous, when the carrier transport took place preferentially through the crystal 

path. [2,4] An advantage was found with nanocrystal Si, that small crystals in the 

amorphous matrix increased the current flow by producing a bridging effect. [5] 
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Nanocrystals below 10nm, encouraged a quantum confinement effect (QCE) and 

provided a path for carrier transport through the crystallites. [5,6,84] 

 

Film thickness was important too, when a thicker film was reported to reduce carrier 

mobility. [10] Correlation between thickness and electrical properties has been studied 

[5,18,83,85] by using film thickness between 10 and 200nm. It was experienced that 

the mobility increased with film thickness, but reached a maximum at 50nm as a thicker 

film had reduced current flow, which illustrates in figure 3.15.. Film thickness less than 

30nm resulted in reduced electrical properties due to surface roughness of the 

substrate. [10] The same study [10] concluded how a film thickness of ~50nm was a 

good compromise between electrical and optical properties. 

 

 

 
 

Figure 3.15. how increased silicon film thickness reduces the carrier mobility and increases loss 

in current flow. [10] 

 

 

However, a material with some crystal content reduced the optical absorption 

compared with a pure amorphous material of same thickness. Therefore film thickness 

became important with mixed structure in relation to optical properties. The advantage 

with a mixed structure was the increased number of band-gap values, which improved 

optical absorption. The two band-gaps at 1.8 eV and below 1.6eV were associated with 

one for indirect transitions (nanocrystal) and one for direct transitions (amorphous), 

while indirect band-gap values changed depending on crystal size. [2,27] Indirect band-

gap had higher absorption at long wavelength, when the amorphous structure with 
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direct band-gap absorbed at shorter wavelength. The band-gap energy was derived 

from a Tauc plot produced by using optical absorption data in form of (ahv)1/2 against 

photon energy, hv, which is discussed in chapter 5 section 5.3.5.. [4] 

 

 

 

3.6. Conclusion 

 

Thin-film silicon was shown to have a complicated structure with more than one phase, 

including an unexpected hexagonal crystal phase, which could be identified by Raman 

spectroscopy. Crystal growth in the amorphous structure was reported to improve cell 

performance by avoiding light-degradation, which is a strong defect with the 

amorphous structure. [1] Crystal phase in the amorphous matrix improved both the 

electrical and optical properties. The small crystals produced a path for the current to 

flow, which gave better electrical properties. [2,4] Mixed structure contained two band-

gap values, which improved the optical absorption. The crystal band-gap value 

decreased as the crystal content increased. [4] The higher band-gap of around 1.8eV 

referred to a direct band-gap of amorphous material, while the lower (less than 1.6eV) 

was indirect band-gap absorption from crystalline material. [2] 

 

Fitting a Raman spectrum to thin film silicon was recommended with two or three 

Gaussian peaks at 480cm-1 (amorphous), 500/ 505cm-1 (intermediate) and 520cm-1 

(crystal silicon) depending on the crystal size and content. [24,60,61,76,77] The third 

peak at 500/ 505cm-1 was applied in relation to nanocrystal structure, which was 

identified as hexagonal, wurtzite Si-IV. Location of the two crystal-related peaks varied 

due to crystal growth and size, when a content of small crystals would have both peaks 

at the intermediate region. This may be compared with larger crystal size, which gave 

peaks in the intermediate and microcrystal regions. The amorphous peak was 

developed with the initial nucleation of crystallites, when the original amorphous peak 

started to shift from 480cm-1 upwards to 485cm-1 together with the two crystal peaks. At 

the same time, a “new” amorphous peak occurred and shifted downwards, peak 

location depending on crystal growth and size. [2,31] 
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4. Environmental assessment & impact of silicon thin film on 

woven polyester  

 

 

4.1. Introduction 

 

In an attempt to avoid too big a change in the global environment, an agreement has 

been signed globally to cut energy use of non-renewable sources and emissions, 

especially of carbon dioxide, CO2. The European community has, through set targets 

pushed for a drastic change in source of energy supply, where fossil fuel has to be 

replaced with renewable energy such as wind, hydro and photovoltaic. Non-renewable 

sourced energy comes from burned fossil fuel such as coal and oil, which has a very 

high contribution to carbon emission, CO2 and greenhouse gases, GHG. Other 

environmental issues considered are energy payback time (EPBT), toxic emission, 

resources of raw material, health and safety risk. [1] Today, the renewable energy 

industry is relatively small-scale in most European countries, when the majority of 

energy source is still based on non-renewable sources such as fossil and nuclear 

power.  

 

Manufacturers of renewable energy devices are facing a dilemma with most energy 

supplies being non-renewable sources, and this will increase the energy payback time 

(EPBT). A photovoltaic system manufactured by non-renewable energy faces 

difficulties to compete with PV-system manufactured by renewable energy, which gains 

low EPBT. Reduced use of non-renewable energy in supply of products and services 

has given less carbon emission and very low or no toxicity. [2] The energy supply has 

become in a country’s interest, when this industry often targets an international market 

and therefore needs a low EPBT to get a strong position in the market of photovoltaic 

devices. With PV being one of the main options of renewable energy, a strong 

development has taken place to cut energy use in relation to this product and its 

manufacturing. Different studies have been carried out since 1990 to clarify the 

complexity with production and how the energy payback time, EPBT reflects on the PV-

device. [3] The EPBT indicates performance by considering energy generated against 

energy used (primary energy) during a product’s life-time. [4,5,6] The energy use 

regarding the total energy input (manufacture, installation and maintenance) divided by 

generated energy through a product’s life-cycle gives EPBT= Einput/ Egenerated. [2,5,7,8,9] 

Energy use regarding manufacturing relates to areas such as mining, treatment and 
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delivery of raw material; energy consumed during fabrication of a PV device and 

energy required to assemble the PV module. The energy payback time, EPBT is also 

expressed in numbers of years required to generate same amount of energy as used to 

manufacture a device. This is done by energy used divided by the sum of energy 

generated per year minus energy used for maintenance during a year, EPBT= E input 

(material+ fabrication+ installation+ recycling)/ Egenerated/ year– E(operation+ maintenance)/ year. The EPBT is often 

used as a method to measure performance of a photovoltaic device. [6]  

 

Whether or not the energy payback time, EPBT is correct to use has been discussed 

[5,6] when options such as energy yield ratio, EYR [5] and electricity production 

efficiency, EPE [6] have been suggested as a more applicable way of expressing 

performance of a PV-system. Both energy yield ratio, EYR and electricity production 

efficiency, EPE are similar by including the maximum operational capacity of a PV-

system, while EPBT has the disadvantage by using a set lifetime between 10 to 30 

years [5], which becomes more like a guarantee for operational time than a PV-

system’s real capacity. The set lifetime is often much lower than a device can operate, 

whereas energy yield ratio, EYR and electricity production efficiency, EPE consider a 

device’s total operational time by including enhanced time by additional maintenance 

and replaced parts. [5,6] EPBT does not include the energy generated after set time 

ends, which both EYR and EPE do. Energy return calculated with energy yield ratio, 

EYR= EgenLpv/ Einput is given by energy generated, Egen multiplied by the PV module’s 

lifetime, Lpv divided by total energy used for the device, Einput. [5] Electricity production 

efficiency, EPE is based on same principles as EYR by using formulation EPE= 

Egen(lifetime)/ Emat+ Efab+ Eion+ Eelm, where energy generated during a life time is divided 

by energy used (material, fabrication, installation and end-life management) during a 

product’s entire life. [5] Presently, energy payback ratio, EYR is used only by some [5], 

when most studies related to this work use energy payback time, EPBT. Therefore 

EPBT will be the method used in the discussion to follow.   

 

Conventional silicon crystal solar cell with framed panel has a high EPBT due to high 

material and energy use, where the main reasons are framed module and large 

quantity of silicon. The processing of silicon wafers takes a large quantity of raw 

material to gain the high purity of silicon required, which increase the production time 

and higher energy use as a result. Thin film has proven a strong option with much 

lower material and energy use than crystalline silicon. [10,11] Introduction of silicon thin 

film has cut energy use and emission, which resulted in a lower EPBT. It was found 

[12] that silicon thin film with nanocrystal content had higher energy and gas use than a 
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cell design of triple-junction amorphous silicon, which related to the extended 

deposition time for the nanocrystal deposition. This proved the importance of having as 

high deposition rate as possible for nanocrystal thin film without damage the thin film 

quality. A life-cycle assessment for a photovoltaic device of amorphous silicon thin film 

requires the energy use from raw material, manufacturing and recycling and the 

transport during the process. The different areas such as material, manufacturing, and 

recycling contain several sub-groups such as raw material refining and production of 

the pure material, with manufacturing referring to fabrication and assembly of a device, 

and recycling referring to separately made devices and return of the material to its own 

industry and thence to a new one. [6] Development of these analytical tools has raised 

a question, how to consider the human factor and social life in relation to a product’s 

life-cycle. This has been discussed in relation to people´s need of transport and the use 

of facilities during manufacturing and maintenance of a product. This is still in debate 

and no guidelines or standards have been introduced. [2] 

 

The energy often considered in the assessments and calculation of energy input is 

primary energy, which relates to the energy used in direct relation with manufacture. 

Primary energy use is often given in megajoule (MJ), which relates to a device output 

power in kW over a period. [6,13] Relation between energy input in kWh 

(kiloWatthours) and MJ is 1kWh= 3.6MJ. [11] The quantity known as kWp is the 

maximum or “peak” power generated by a device operating at its highest efficiency. 

Payback time in years is given by dividing the total energy used with generated energy 

per device and years of operation. When calculating the total energy input, the BOS, 

balance of system can be included. BOS relates to components such as electrical 

connections, frame, mounting and installation of a PV-system. [6] The energy use for 

an amorphous thin film device refers to different areas such as fabrication of the 

module, BOS, frame and inverter which is illustrated in figure 4.1.. [2,11,14]  
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Figure 4.1. shows the total primary energy (MJ) input for amorphous silicon thin film per module 

kWp and the proportions the different areas have. The largest contribution is to process the thin 

film cell followed by energy for BOS, frame and inverter. This present work uses neither frame 

nor inverter, but can help to give an understanding of energy required for a process. [14] 

 

 

Different photovoltaic designs and systems have been developed as a replacement of 

the traditional silicon crystal device due to its high silicon use and production cost. This 

work focuses on depositing a silicon thin film with amorphous structure and some 

crystal growth directly on a textile substrate of woven polyester. The energy emission 

related with this product has information collected both from the textile and 

semiconductor industries. The semiconductor industry has more information regarding 

the environmental management than the textile industry, although this information is 

not always applicable, when it is difficult to apply given information directly in 

connection with the product discussed in this work.  

 

International Organisation for Standardisation, ISO has given guidelines through Life-

cycle assessment, LCA [5,15,16] and its impact, LCI, which are tools to assess and 

evaluate material and energy use in a manufacturing process. Combination of Life-

cycle assessment, LCA, and Life-cycle impact, LCI gives a systematic way of 

monitoring the input and output of energy and material use and quantifying the 

environmental impact during a product’s life-cycle. [2,5,15] LCA helps in choice of 

process method, strategy and marketing of a product [2,15,16,17] and can be divided 

into four stages such as definition, analysis, impact and conclusion of the overall 

outcome. [2]  
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LCI is an environmental management tool with focus on the environmental impact and 

total energy use, which can quantify emission, toxicity and global warming. [2] Together 

with these two standards a third is applied, Life-cycle inventory that considers the 

financial aspect of used energy. [16,17] Mostly LCA and LCI (impact) are combined, 

which provide a good picture of the environmental burden for a product, but also a 

financial aspect. [10,18] A problem with LCA is not the assessment itself, but to collect 

the information required for the study, when the energy source is often difficult to 

define. The energy and material use regarding a LCA study is collected from different 

stages such as raw material, processes, transportation, manufacturing, use and waste 

management (figure 4.2.). [19] The assessments regarding the environmental 

management take time and mainly large companies have possibility to do them. [15] 

 

LCA within the textile industry has proven more difficult, when same kind of industry 

can provide very different values regarding energy use related to a product and 

manufacturing. The difficulties can be due to many machines and processes within the 

textile industry being based on old methods, but also the quality of textile can vary from 

time to time in performance during manufacturing. [15,19,20,21] The textile industry 

has continuous pressure to reduce the energy use and emission, when this industry 

has a high production rate and a high quantity of chemicals, which results in high 

emission from solvents. Chemicals are found in most process stages such as wash, 

dye, coating and lamination etc. An increased awareness from the consumer wearing 

the garments close to the skin has pushed for use of fewer chemicals, which has led to 

a study [22] defining customer’s requirements and how this refers to LCA and LCI 

(impact) and possible changes to process such as coating of woven polyester. The aim 

of the study was to address a coating method, which reduced the emission. [22]  
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Figure 4.2. is a suggestion of a life-cycle model, which considers the material and energy input 

with waste and emission through the main production line. [19]   

 

 

The semiconductor industry has applied LCA with the target of reducing EPBT and 

emission for photovoltaic devices. Recent development of silicon thin film has resulted 

in less EPBT and GHG (greenhouse gases) compared with conventional silicon crystal 

panel, even though thin film has lower efficiency than silicon crystal. The main reason 

for the low EPBT for thin film is the large reduction through the manufacturing of thin 

film such as raw material and process time. [23] A comparison with amorphous silicon 

thin film with 100% amorphous content and amorphous silicon thin film with nanocrystal 

growth, shows that the film with nanocrystal content had higher efficiency and allowed 

smaller module area than 100% amorphous content. [24]   

 

Material for photovoltaic production is explained in stages from start to finish by 

material extraction, transport, manufacture supply service, and products for the main 

production line, assembly, installation, disassembly, deconstruction and/or 

decomposition. [2] From 1990 there has been concern about developing a recycling-

route to most types of industries, when a good recycling route reduces the EPBT. [25] 

This route can either be partly or completely recycled back into its original industry. [19]  
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4.2. Standards and regulations 

 

The International Organization for Standardization, ISO introduced in 1993 the first 

standard for environmental management (ISO/ TC 207), which later developed into ISO 

9000. ISO/ TC 207 comes as a result from the meeting in Rio de Janeiro, 1992 where 

the world agreed to environmental changes and development of sustainability. [18] ISO 

9000 regards Quality management and quality assurance, when ISO 14000 is known 

as environmental management. Both ISO 9000 and 14000 helped to evaluate a 

process and a product in relation to energy emission, efficiency and recovery time. 

With the two standards being analytical a third standard ISO 19000 was introduced, 

auditing environmental and/ or quality management. This standard helps recognize an 

evolution of a problem. [18] The three standards have together supported a more 

sustainable process and production within and surrounding environment. [18] These 

kinds of assessments are often applied in larger companies due to being very time 

consuming, when it covers from raw material to the exit of main production line. 

[5,16,19]  

 

ISO 14000’s LCA (assessment) and LCI (environmental impact) are often known as 

PLAN-DO-CHECK-ACT, PDCA. PDCA stands for Plan “how to implement it”, Do “how 

to do the study and assessment”, Check “the outcome of the assessment” and Act 

“documentation and declaration of the outcome”. [18] The ISO 14000 is divided into 

sub-standards from ISO 14040 to 14044, where 14040 and 14041 refers to LCA with 

focus on material and energy use and emission, when 14042 and 14043 is LCI. 

[2,3,5,16] The standard 14040 helps to monitor and reduce the environmental impact 

from a product’s process and service. [16,18] Recycling routes have been added into 

LCA in the later edition of ISO 14044. The European project TASK 12 has aimed “to 

quantify the environmental profile of electricity produced with PV system”. [16] 

 

LCI refers to the environmental impact of a product during its life-cycle, which includes 

process and maintenance. The main concern is to quantify the damage by expressing 

it in number of treatments required from a natural source such as water and air to 

return without damage or potential impact of climate change. [5,16] The impact is given 

in time to clear the damage either by a period of 100 years or infinite time. [2,16] With 

the photovoltaic process still using energy from non-renewable sources, the potential 

risk for Global warming, photochemical oxidation and acidification needs to be 

considered. [14]  
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Öko-/ oeko-Tex® Standard is a common certification within the textile industry and was 

developed by a request from the consumer. The first eco-labels on garments were the 

brand’s own labels, which stated “ecologically produced”. With increased number of 

eco-labels rose a need for a uniform system such as Öko-/ Oeko-Tex, which was 

introduced in 1990.  

 

Oeko-Tex® Standard 100 was soon internationally recognized to address the risk of 

health for the public. This standard focused on identifying potential harmful substances 

in chemicals, production, process content and waste in relation to people’s health. This 

standard was divided into four groups for textile application; 

1st- children/ babies up to 3 years old,  

2nd- textile, direct contact with skin,  

3rd- textile, which is not intended to have direct contact with skin,  

4th- textile for furnishing, floor and wall. [26]  

 

Additional standards were later published, first Oeko-Tex® Standard plus100 and later 

Oeko-Tex® Standard 1000 with focus on the environment. Oeko-Tex® Standard 

plus100 aimed to show how the human and the environment responded to an increase 

of production capacity. Standard plus100 was divided into four parts:  

1st- how production affected environment,  

2nd- how textile and chemicals in a product or process affected human health, 

3rd- how garments and textiles in use affected the environment. 

4th- an ecological aspect regard recycling and recovery of disposed textile. [26] 

 

Oeko-Tex® Standard 1000, the latest addition focuses on the environment around all 

process stages in a fabric and garment manufacture. This standard contains reduction 

of energy use, treatment and recycling of waste and air-pollution, safety at the 

workplace and no child-labour. Certification of Oeko-Tex® Standard 1000 is only given 

to companies, who have environmental management in use and are already certified to 

Oeko-Tex® Standard 100. [26] 
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4.3. Energy emission 

 

4.3.1. Energy returns related to design of device and location  

 

Energy payback time, EPBT reflects on design of a device, cell efficiency, location of 

manufacture and operational location. [23] The country where the PV-device is 

manufactured has a great influence on the EPBT, when some countries in Europe use 

renewable energy supply such as wind, hydro and photovoltaic, which gain lower EPBT 

compared with countries using conventional energy sources of fossil fuel. [3,17,27] 

Countries aiming to develop and manufacture renewable energy need to consider a 

grid supply of renewable energy to produce new renewable products, which are strong 

and competitive with a low EPBT. [17] Location of manufacture of PV-device is 

important in aspect of transport between manufacturer and sub-contractor, when this 

reflects on EPBT too. 

 

Energy payback time, EPBT is based on energy use against generated electricity, G, 

G/m2. Generated electricity is given by multiplying solar insolation (I), conversion 

efficiency (E) and performance ratio (PR), G=I x E x PR. Performance Ratio, PR is 

given by divide actual performance with the theoretical one. The performance ratio can 

change by temperature due to altered sunlight or shading or eventual defects in the 

device. Defaults/ performance value is suggested for different designs and locations. 

[17] Multiplying the generated electricity (G) by the expected life time (L) of a product 

will give the total electricity produced during a product’s life time. [3] A product’s life 

time is often based on either 20 [14] or 30 [3,11,16] years, but can be quoted as low as 

10 years. [5] The life-time depends on the quality and efficiency of the cell. [15] 

Efficiency is defined as the ratio of light converted to electricity over the incident light. 

[23]  

 

The EPBT is also influenced by location of operation, when solar irradiation and 

operational direction are considered. Three thin film solar cell structures (CIGS, a-Si 

and CdTe) in three different PV-designs were compared in aspect of operational 

location and both quality and design played a part, when roof fitted panels of 

amorphous silicon thin film gave the lowest EPBT. The same PV-design was evaluated 

at three locations such as solar belt, south and mid of Europe (see table 4.1.). Solar 

belt had the lowest EPBT, followed by the south of Europe with a slight increase and 

then mid Europe with highest EPBT. [14] 
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Table 4.1. explains how location and different PV-system reflects on the EPBT in years and the 

average EPBT in years for the different locations. [14]  

 

 
 

 

Both PV-design and location influence the EPBT, however the PV-design of thin film 

amorphous panels showed the greatest influence. The electricity provided (kWh) per 

design of the PV-system (1m2) in relation to the location is given in table 4.2., while 

table 4.3. compares the panel system and their performance of generated electricity of 

1m2 panel for 20 years. [14] Tables 4.2. and 4.3. show how location and PV-design 

influence the performance and the energy generated during a life-cycle. [14] 

 

 

Table 4.2. electricity output in relation with device design and location per year. [14] 

 

 
 

 

Table 4.3. energy generated during a period of 20 years. [14] 

 

 
 

 

Other studies [10,13,14,16,27] looked at operational location and solar radiation and 

the effect of irradiation (kWh/m2/yr) and irradiance (W/m2), which reflected on cell 
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efficiency and indirect EPBT. An average value of solar irradiation for north, mid and 

south Europe and solar belt was suggested. The values given were 900kWh/m2/yr for 

Scandinavia, 1200kWh/m2/yr for Frankfurt, 1700kWh/m2/yr for Rome and 

2200kWh/m2/yr for solar belt. [8,13,15] A value of 1000kWh/m2/yr was suggested for 

mid Europe, which was lower than often quoted. [1] The EPBT was calculated for 

location of mid Europe being between 2.8 and 4.6 years and for south Europe from 1.7 

to 2.7 years. [1,10,13,27]  

 

 

4.3.2. Design of solar device and its manufacturing process 

 

Product development of renewable energy needs a strict policy for material, energy use 

in relation with process, maintenance and recycling to meet stated requirements in the 

environmental management of ISO and Oeko-Tex. Developments of 2nd and 3rd 

generation PV are mainly thin film design with different cell content (figure 4.3.). The 

new PV-systems are often compared with conventional silicon crystal in relation to 

performance and environmental impact such as EPBT. Silicon thin film with amorphous 

structure has already proven to use less energy and has a low material cost compared 

with conventional silicon crystal cells. [11] This film has also reduced number of 

process stages and quantity of raw material compared with conventional solar cells. 

[10,17]  

 

 

Figure 4.3. the different solar designs available today. [10] 
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The disadvantage with silicon crystal and wafer design is the large use and loss of 

material, which has encouraged developing of high purity silicon with reduced material 

and energy use. The manufacturing of silicon wafer starts with mining and refining to 

reduce the silica content and increase the purity of silicon. This is followed by the 

growth of crystalline ingots of silicon into high grade wafers which are polished and 

etched. Thereafter n-type dopant is incorporated for emitter formation. On the wafer 

there is a screen-printed back contact of aluminium and a metal grid front contact. The 

wafer is processed with plasma enhanced chemical vapor deposition, PECVD to 

modify its surface by a dielectric deposit for passivation and antireflection. Last is the 

assembly of the module such as encapsulation of the cell and the different process 

stages involved: energy and material use are shown below (figures 4.4. and 4.5.). [28] 

The handling of raw material such as preparation and process routes from mining to 

assembling of a PV-system is often the same for different designs of silicon solar cell. It 

was quoted that thin film needed only 10% of the silicon that is usually required for a 

silicon wafer. [11] 

 

 

 
 
 
 
Figure 4.4. a process chart of silicon process of conventional solar cell and its material use. [28] 
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Figure 4.5. a process chart of silicon process of conventional solar cell and its energy use. [28] 

 

 

4.3.3. Thin film process 

 

Thin film semiconductor is much thinner than silicon crystal and has the advantage of 

being both light and flexible and can easily be integrated into different designs, while 

conventional crystal silicon is heavy, stiff and needs a frame. [23] A disadvantage with 

the amorphous silicon structure is increased light-degradation, which can be up to 30% 

during 1000 hours of use. [13,16] An attempt to reduce light-degradation has been by 

integrating crystal growth such as micro- or nano- crystals into the amorphous 

structure, although the optimum mixture is not known. The mixed structure has proven 

reduced light-degradation, by a more stable structure, which resulted in increased light 

absorption and higher efficiency. [12,24] Films with crystal growth in amorphous matrix 

are mainly under development, which means the EPBT, energy use and emission are 

mainly based on pilot runs. The drawback with nanocrystal growth is the high energy 

use required for the increased flow of hydrogen and extended process time required for 

the crystal formation. [12] Amorphous and nanocrystalline thin films were compared 

(table 4.4.), which showed how nanocrystalline thin films required a smaller module 
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area by having higher efficiency than amorphous silicon thin films, even though 

nanocrystalline structure has higher energy input. [24]  

 
 

Table 4.4. gives an estimated value for growth rate for present and future designs of amorphous 

and nanocrystal thin film. High efficiency through high growth rate without increasing the energy 

use was possible by combining the right gas mixture. [12] 

 

 

 
 

Plasma enhanced chemical vapor deposition, PECVD is the most common process for 

silicon thin film. This process means environmental challenge, when increased 

energies are required for the process, but also the gases used for deposition and 

cleaning. [12,13] Most thin film processes of large scale are done by roll-to-roll method, 

which means constant power (kW), gas mixture and flow-rate and substrate 

temperature to provide a steady condition in- and out- side the chamber. A study [12] 

compared the energy use between two chambers powered by radio-frequency PECVD 

(table 4.5) and the sample size used was 5600mm x 400mm. [12] The averages of 

these values are given too, which can be compared against a single chamber used in 

this work.  

 

 

Table 4.5. gives different values of energy use required for the two chambers, but also an 

average, which gives an approximation for plasma process in one chamber. [12] 
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Life cycle analysis, LCA related to the semiconductor industry is not always consistent 

in the way of assessing different areas and stages in a product’s life-cycle. The supply 

chain of a product has proven a great influence in a product’s energy use and carbon 

emission. Calculating the impact is not always easy or straightforward, when the 

supplied energy source is often unknown, whether non- or renewable energy. 

Manufacturing semiconductors involves a large number of chemicals and most gases 

in the semiconductor industry use high purity. The work and process required to 

produce high purity gases will increase the energy and carbon emission. Silane gas of 

high purity increased carbon emission by ~25% compared with standard grade silane 

and the extra processes for high purity increased the total impact 10 times. Similar 

scenario was found for other common high purity gases such as argon. [29] 

 

Production of amorphous silicon thin film has resulted in a global warming potential, 

GWP with high carbon emission, CO2. The global warming potential is quantified by a 

gas in kg equivalent to a known gas such as carbon dioxide, CO2. Green-house-gas 

(GHG) emission can be expressed in kg of CO2 equivalent per kWh, but note that most 

CO2 is given in gram.  

 

Studies [30] have tried to link energy use from Energy payback time, EPBT to carbon 

emission, CO2 and an EPBT of 3-6 years was equal to an emission of 39-110g CO2 

equiv/ kWh [3,5], when an EPBT of 1.7-2.7 years related to 30-45g CO2 equiv/ kWh. 

[3,5,16] A study concludes, the lowest carbon emission of photovoltaic device per 

product life-time is the actual use, although an exact value of carbon emission during a 

product’s life-cycle is very difficult to give. [29] A study [1] estimated that, the average 

PV device had a carbon emission, CO2 of 25-32g/kWh. However the devices in the 

future will be reduced to 15g/kWh and classified as low-carbon devices. [1,13]  

 

Instead of expressing the global warming potential, gwp in carbon emission, it can be 

converted to a photochemical oxidation potential, POCP (Ethylene), Acidification 

Potential, AP (Sulphur dioxide, SO2) or Eutrophication Potential, EP (Phosphate), 

which all are given in kg. [14] 

 

Gases for deposition of silicon thin film are silane, SiH4, hydrogen, H2 and dopants 

(phosphine and diborane). A study [31] was carried out to analyse exhaust gases and 

found how much of the silane did not react during deposition, which left non-reacted 

species coming through the exhaust system. With silane being toxic and flammable in 
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the air, it was important to dilute non-reacted species. Hydrogen dilution with silane is a 

common combination to provide a good deposition and crystal growth. To make gases 

such as silane and hydrogen less damaging, a recommendation was to bring the gases 

through a combustion system with cooling of either air or water before the emission 

was filtered from heavy metals. [11,31] Common cleaning gases for large plasma 

systems are SF6 and NF3, which have a high impact on climate change. NF3 was 

17200 times and SF6 was 22800 times stronger than carbon emission based on a 100 

years period. However, NF3 had potentially higher effect on the greenhouse emission 

due to reduced cleaning effect of certain depositions such as amorphous structures. 

Due to SF6 being related to fluoro-gases, restrictions are in place of use and instead 

NF3 has been applied. The increase in use of NF3 has reflected on the green-house 

effect by becoming seven times higher volume use from 1995 to 2008 due to high 

quantity of gas needed. [22,24,30,31]  

 

 

 

4.4. Energy use and waste in textile and semiconductor process 

 

4.4.1. Waste related to process of silicon thin film on to woven polyester 

 

By having difficulties in finding sufficient information regarding carbon emission and 

energy use from a manufacturer producing the combination of silicon thin film 

deposited on textile, it was necessary to combine sources of data and guidelines from 

different textile and semiconductor industries to provide an estimation of energy use for 

silicon thin film on textile substrate. The different process stages, energy and material 

use are related to a textile wet-coating process such as polyaniline coated textile 

(figure 4.6.). [32] 
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Figure 4.6. explains the process stages involved for wet-coat of textile. [32] 

 
 

Information for waste and emission to air, land and water regarding textile coating with 

solvent based mix is described in an older edition from DEFRA [33], which also 

discusses waste management related to this process. Noise and odour has been 

ignored after being constant in this kind of process and industry. The tables below 

contain data for emission and waste related to the semiconductor and textile industry. 

The textile industry and its processes are defined by waste and emission more than the 



89 

 

semiconductor industry. Transport and handling of raw materials is considered as 

having the same environmental impact for the two manufactures. Table 4.6 gives a 

summary of process stages and the waste and emission considered for each stage and 

industry, while table 4.7 defines type of waste and emission considered in the process 

of silicon thin film on woven polyester. [32]   

  

 
Table 4.6. summary of process stages and the waste and emission. [32] 

 

Delivery Incoming goods. X

Cleaning

Clean substrate with solvent or similar 

to incresae surface adhesion.

Emission& 

Waste X

Mixing/ 

Preprartion Water based coat (polyaniline). Waste X

Coating method Direct coating, knife-on-roller. X

Drying/ Curing Heat. Emission X

finishing/ 

Inspection
Inspection of coated material before 

semiconductor process. X

Evaporation Aluminium, back contact. Waste X

PECVD Silicon layers, n-i-p.

Emission& 

Waste X

RF-Sputter Indium Tin Oxide, ITO, top contact.

Emission& 

Waste X

Ink/ Print

Connect top and bottom contact and 

the cells. Waste X

Coat/ Laminate

Encapsulation, Laminate a film or 

spray-coat. Laminate uses less 

energy.

Emission& 

Waste X X

Finishing/ 

Packaging Inspection before despatch. Waste X X

RESULT 

INACTIONSTAGE TEXTILE

SEMI-

CONDUCTOR

 

 

Table 4.7. waste and emission within process of silicon thin film on woven polyester. [32] 

ACTION ENERGY AIR WATER WASTE LAND

DELIVERY NS VOC RoC GRM PR

CLEANING NS VOC

RoC, 

Metals GRM PR

MIXING/ PREPARATION Large

COATING APPLICATION Large VOC PR GRM NS

DRYING/ CURING Large VOC NS NS NS

FINISHING/ INSPECTION

25% of 

total NS NS GRM GRM

INK PRINTING NS NS NS GRM NS

FINISH, INSPECTION & PACKAGE NS VOC NS GRM NS  
 
NS- No Significance/ RoC- Release of Contamination/ VOC- Volatile organic compound/ GRM- Generated Rejected 

Material/ PR- Possible Release. 
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4.4.2. Recycling of photovoltaic device 

 

Recycling is important, when a correct recycling route reduces energy use and 

emission and the EPBT (figure 4.7.). No recycling or a wrong design of a recycling 

system will increase EPBT. Wrongly designed processes will often reflect on increased 

number of process stages, which add transport and energy use. [14] A way of reducing 

a product’s EPBT is by using recycled material, which will reduce the EPBT. [6] There 

are two types of recycling, closed loop where the recycled product returns as raw 

material into its original production and open loop, when the recycled product ends up 

in a new process and product. [19,25]  

 
 

 

Figure 4.7. water during recycling process for material and energy use needs be considered. 

[25] 

 

 

Different projects such as SENSE [14] and RESOLVED (www.resolved.bam.de) have 

looked at ways of developing the recycling of PV-systems, when recycling needs to be 

adjusted for different cell materials. Thin film of amorphous silicon needs fewer stages 

than crystal silicon with framed module. Recycling of PV-system can be divided into 

three main areas; separation of the PV-module, removing protective film/ sheet and 

semiconductor layer, and recovering metals from the frame. [14,25] The big challenge 

is to separate the different layers, when the frame has proven easier by being detached 

and recycled as solid waste. [6] Recycling of thin film is illustrated as two options 

(Figure 4.8), one (RS1) used for PV design which can be stripped down, while the 

other option (RS2) is partly separated, but needs to be crushed part of the recycling. 

Observe, the recycling route below is considered for CIS and CdTe, but for a-Si thin 

http://www.resolved.bam.de/
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film RS1 is applicable. The recycling shown on the other picture (Figure 4.9) is 

designed in agreement with an LCA study. [25] 

 

 

 
 

 
Figure 4.8. recycling of a complete PV- system and partly recycled, which requires parts being 

crushed. [25] 
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4.4.3. Energy use related to photovoltaic device  

 

Energy consumption, the total energy use refers to all process stages in the main and 

sub-production. The energy use related to main production line is divided into sections 

such as material, Emtl+ manufacturing, Emfg+ installation/ maintenance, Euse+ recycling, 

end-of-life management, Eelm. All values of energy use are added, which gives the total 

energy input, Ein of a product’s life-cycle (Ein= Emtl+ Emfg+ Euse+ Eelm). Each of the main 

process stages such as manufacture, operation (installation), end-of-life managements 

(recycling) can be divided into sub-groups. Electrical energy is often converted into 

primary thermal energy. [34] 

 
 

 

 
 
Figure 4.9. LCA diagram for a PV-system refers to energy use of a product’s life-cycle with 

stages such as Emtl- process of material, Emfg- manufacturing, Esol- insulation, Euse- required 

energy use, Eelm- end of life “recycling”, Edstr- distribution/ transport and Egen- generated energy. 

[6,34]   

 

 

Total energy output, Eout can be calculated either with or without Balance Of System, 

EBOS loss, which refers to energy loss through transfer from a device to the grid. Energy 

output, Eout is energy gained from a PV-system, which is given by subtracting the 

Balance Of System, EBOS loss from generated energy, Egen. Conversion efficiency, η of a 

PV-system is given by dividing total energy output, Eout with total energy input Ein. The 

ratio refers to the electricity gained from a cell. [34]  

 

 

4.4.4. Manufacturing steps regarding silicon thin film on polyester weave 

 

Most thin film studies are based on projects at development stage and not from an 

industrial scale and experience. This means much of the calculated data for a thin film 
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product’s life-cycle contains error. [1] Therefore LCA data based on development work 

have been encouraged to introduce a default value of best and worst for the energy 

use. [23] Example of LCA for thin film process is given below (figure 4.10.). Thin film of 

amorphous silicon has low material use by being up to 100 times thinner than 

conventional silicon. [35] 

   

 

 
 

Figure 4.10. LCA with energy use for silicon thin film through its life-cycle. [12]  

 

 

Standards Öko-/ Oeko- Tex® and ISO 14000 helped the textile industry to change 

process methods and reduce chemicals, waste water and energy use. Waste 

management helped address ways of cleaning and recycling the waste. Below is an 

example of process stages related to filament process (figure 4.11.) followed by 

process of and around weaving (figure 4.12.). [20] Polyester process has the option of 

having two monomers added either by using PAT, Purified Terephthalic Acid or DPT/ 

DMT, Dimethyl Terephthalate. The difference between the two monomers is the 

process route, when PAT is produced through a chemical process with Ethylene 

Glycol, EG added as a precursor. DPT/ DMT is instead produced in a condition with 

vacuum and heat, which refers to a higher energy consuming process and today less 

common than PAT.  [36] 
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Figure 4.11. the different stages involved in extrusion of polyester filament, fibre. [20] 

 

 

  
 
 

Figure 4.12. explains the stages involved in a weaving process. [20] 
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4.5. Energy use related to manufacturing silicon thin film onto woven 

polyester  

 

The energy use related to this present work with silicon thin film on woven polyester 

includes processes from both textile and semiconductor industry (figure 4.13.). The 

processes related with the textile industry are from producing grains, to extruding 

polyester, through weaving to wet-coated textile. Thereafter an evaporated back 

contact is deposited onto the textile followed by required layers for a silicon thin film 

solar cell. The back contact does not necessarily have to be evaporated, instead a non-

vacuum process such as wet-coat or printing can be used to apply a metallic back 

contact. Energy used in relation with semiconductor industry was easier to collect, 

although much of this data was based on studies regarding work on a pilot plant.  

 

  

 

 

 

Figure 4.13. explains the different process stages, maintenance and recycling required for a life-

cycle assessment for a photovoltaic device with silicon thin film deposited onto woven polyester.  
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With difficulties to get information regarding energy use for such specific production line 

as described in this work the given data from one source has not always been 

correlated with another one. Therefore estimation has been done to each process 

stage required, to give an approximate figure of the energy use applied. With the textile 

production having no complete LCA study published, information has been collected 

from different studies with certain focus on only parts of the process. The values given 

for the energy use related to textile process were often expressed as MJ/kg or 

MJ/Tonne and the information gained was based on non-renewable energy. [15] 

 

 

4.5.1. Energy use required for woven polyester 

 

The energy required to produce woven polyester is given below.  

- Producing polyethylene terephthalate, PET grains needs 2MJ/kg (polyester). 

[15]  

- Spinning of a fibre/ filament uses 94.7MJ/kg energy [15], when another study 

[21] gave energy use of 135MJ/kg to spin polyester.    

- Weaving the polyester used 115.5MJ/kg. [15] 

 

The textiles are often washed and dried after being woven to take off spin-finish, which 

often is applied onto a filament to make the spinning and weaving process easier. 

Drying of a textile after wash or finishing was quoted for hemp production, but helped to 

indicate the energy required to dry any fabric. Removing water mechanically from a 

hemp fibre was 2.3kg water/kg dried fibre. The drying of 1kg fibre (hemp) required an 

energy use of 3.6MJ/Tonne, which resulted in a use of 0.0036MJ/kg hemp. [21] Natural 

fibre has much higher capacity than a polymer based fibre such as polyester, although 

polyester today has been modified both in cross sectional design and its polymer chain 

to gain a higher moisture/ water uptake. A natural fibre such as hemp increases in 

diameter by ~45% compared to a polymer such as polyester with less than 5%. [37] 

These values helped to estimate the energy use required to dry polyester by knowing 

the energy (0.0036MJ) needed to dry one kilo hemp. To estimate polyester’s swelling 

capacity a ratio with polyester against hemp (5/ 45) was multiplied with the energy use 

required to dry hemp (5/ 45x 0.0036MJ/kg), which gave the energy use required to dry 

polyester (0.0004MJ/kg).  
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4.5.2. Coating and deposition on textile substrate 

 

Polyester weave 

Polyester weave coated with water-based coat requires an energy use of 10.3MJ/m2. 

The coated fabric increased by 20gram per m2 due to shrinkage in the textile during 

cure and the extra coat weight gained by the two layers. Total energy use (10.3MJ/m2) 

for coated textile (figure 4.6.) was divided into subsections such as textile material: 

4.6MJ/m2, electricity: 1.8MJ/m2, fuel: 1.3MJ/m2, chemicals: 1.9MJ/m2 and transport/ 

packaging 0.7MJ/m2. [38] 

 

Plasma process 

Plasma enhanced chemical vapor deposition, PECVD may be applied in roll-to-roll 

method to manufacture thin films commercially. [12] Earlier, table 4.5. gave energy use 

for plasma process and an average of the two chambers was calculated to be 

applicable to one process chamber, which is currently used for this work. This helped 

to estimate the total energy consumption of 7.15kW (kilowatt) and a percentage (%) of 

the different parts in the process using energy such as heater 11%, vacuum pump 

54.5%, plasma deposition 13.5%, plasma clean 4%, water cooling/ pump 7.5% and 

miscellaneous 9.5%. However the frame is not included, as the thin film does not 

require this. [12] Frameless module was calculated for standard production of Emtl+ 

Emfg+ Edstr, which gave a total energy use of 101.8kWh (366.6MJ). [34] 

  

Energy use for the different depositions in a cell structure was estimated: [34] 

Aluminium deposition,   30.3MJ/ module 

Amorphous silicon deposition, 37.9MJ/ module 

Transparent conducting oxide, 32.7MJ/ module 

Encapsulation,   56.2MJ/ module 

 

Estimation was based on module size of 119.4 x 34.3 x 3.8cm, which was converted 

into energy use per m2:  

Aluminium   73.93MJ/m2  (30.3MJ/ [(1.194m x 0.343m) x 2.44])  

Amorphous silicon  92.48MJ/m2  (37.9MJ/ [(1.194m x 0.343m) x 2.44])  

TCO   79.79MJ/m2  (32.7MJ/ [(1.194m x 0.343m) x 2.44]) 

Encapsulation  137.1MJ/m2  (56.2MJ/ [(1.194m x 0.343m) x 2.44])  
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The given values were used to calculate energy used for the device produced in this 

work: 

- Aluminium, evaporated aluminium for back contact. 

- Amorphous silicon, the n-i-p layers using phosphine, silane and diborane. 

- TCO, transparent conductive oxide, sputtered indium tin oxide, ITO. 

- Encapsulation (EVA), a polymer based encapsulation. [34] 

 

By collecting and converting different information into correct units for energy use, it is 

possible to sum up a possible energy use for silicon thin film onto woven polyester. 

Energy used for different processes regarding this work is specified below. 

 

Produce polyester filament, 94.4MJ/kg 

Weaving the polyester fabric, 115.5MJ/kg 

Drying the textile after wash,  0.0004MJ/kg  

Wet-coat the textile,  10.3MJ/m2 

Evaporate Aluminium,   73.93MJ/m2 

PECVD of n-i-p layer  92.48MJ/m2 

RF-sputtered ITO  79.79MJ/m2 

Encapsulation, polymer  137.1MJ/m2 

 

The energy use regarding material construction is ~210MJ/kg, while the thin film cell 

needs 256.5MJ/ m2 with encapsulation excluded. 

 

Manufacturing of the woven polyester was converted into m2 by multiplying the cloth 

(loomstate) weight of 0.250kg/m2.  

Polyester filament,  94.4MJ/kg x 0.250kg/m2  =>23.6MJ/m2 

Polyester weave,  115.5MJ/kg x 0.250kg/m2  =>28.9MJ/m2 

Total          52.5MJ/m2  

 

By converting the material to energy use/ m2 gives as total of 309MJ/m2, where 

52.5MJ/m2 relates to the material and 256.5MJ/m2 to depositing the cell structures.   

 

Estimated energy use of 309MJ/m2 for amorphous silicon thin film on woven polyester 

can be considered in relation with Alsema [9], who evaluated amorphous silicon thin 

film by PECVD process with different substrates. Choice of substrate proved a great 

influence, when a combination of glass substrate and glass cover had higher energy 

use than a combination of glass and polymer film. The two samples with same cell 
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structure showed (table 4.8) how a combination of glass and polymer film gained a 

much lower EPBT. [9] Substrate choice of woven polyester (52.5MJ/m2) is therefore 

shown to cut energy use in relation to conventional option such as glass substrate, 

which consumes energy of 150 to 200MJ/m2. However the polymer based substrate 

has been estimated to an energy range of 20 to 50MJ/m2, which means the maximum 

level of energy use is much the same as the polyester weave.  

 
 
Table 4.8. the values show how energy input became less with a polymer layer replacing a 

glass sheet. [9] 

 

  
Used Energy in the table is based on primary energy and the MJ per m

2
.   

 
 

A LCA study regarding organic photovoltaics was considered too as a comparison to 

the more conventional silicon solar cells. The organic paper discussed how inorganic 

thin film and organic photovoltaics are similar by sharing much of the material and 

fabrication process. The thin film process has the advantage of using much less 

deposition. The energy use given for organic solar cell of 2800.79 MJ/m2 was much 

higher than often given for inorganic device. Part of this energy use related to material 

726.26 MJ/m2. The value was based on a study at laboratory scale and at a scale up 

this value would be reduced. The carbon emission, CO2 suggested was 21–37g/kWh, 

which is similar to suggested value for an inorganic device. [39]  
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4.6. Discussion and conclusion 

 

Energy payback time, EPBT refers to energy used during manufacturing and 

installation of the device against the generated energy in a product’s life cycle, which is 

often set between 10 and 30 years. [5] Cell efficiency, operational location, PV-design 

and film structure play a part in the energy payback time, EPBT. How to monitor energy 

use and its emission in relation to a product or service is described in an environmental 

management system ISO 14000 from The International Organization for 

Standardization, ISO.  

 

The conventional crystal silicon requires high energy use to produce the high purity 

silicon required for the cell. However, crystal silicon is still attractive for the market with 

its high efficiency. Even though thin film based devices have less efficiency, their 

advantage of using less raw material and being processed in one line with reduced 

energy and gas emission, makes this option interesting. [12] Woven polyester was 

used as an option for a light and flexible substrate. Polymer materials regarded as an 

option for sustainable products needs to be considered, when the raw material of a 

polymer is based on oil and the polymer process involves high energy use. If polymer 

is compared with common substrates such as Silicon Wafer and glass, it has a 

relatively low energy use. 

 

Poor correlation between the data of material and energy use from different studies 

within semiconductor and textile industries has led to an estimation of energy use 

related to this work. Calculating the energy use for silicon thin film on polyester weave 

has proven more difficult than first anticipated due to the poor correlation between the 

studies. This has led to uncertainty in relation to the calculation provided for silicon thin 

film on woven polyester. The estimated energy use for silicon thin film on woven 

polyester can be related to the calculations given in table 4.8.. [9] The estimation of 

silicon thin film on woven polyester resulted in an energy use of approximately 

52.5MJ/m2 to prepare the woven polyester and 256.5MJ/m2 to deposit a working cell of 

silicon thin film. The total energy use for the photovoltaic device in this work ends 

approximately at 309MJ/m2, while the estimated PV-device with glass substrate and 

polymer film was calculated to be between 770-1290MJ/m2. This comparison suggests 

that silicon thin film on woven polyester can be a possible way forward in the aim of 

cutting energy use. The calculation for the polyester weave is applicable for Polyamide 

6.6. too, when manufacturing of Nylon material involves similar energy use as 

polyester.   
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5. Processes and parameters influencing the textile substrate  

 

 

5.1. Introduction 

 

Woven polyester was selected as the substrate of choice in this work to establish 

process methods to deposit silicon thin film on textile substrate. The thin film processes 

used to manufacture the solar cell design on more conventional substrates such as 

Silicon wafer or glass were addressed in an earlier PhD study. [1] Together with the 

conventional substrates a nonwoven substrate was also tried. [1]  

 

The vacuum processes such as evaporation, plasma, and sputtering were processed 

separately in this work, whereas in large scale production these processes would be in 

a continuous production such as a roll-to-roll system. The process parameters used in 

previous work gave an amorphous silicon solar cell with good optical and electrical 

properties. The problems experienced using textile substrates made it necessary to 

change proven process parameters [1] to allow the textile to withstand the harsh 

plasma process. Therefore much of the research has been spent understanding how 

growth parameters influenced by textile substrate and the consequent effect on the film 

properties. The preparation of the substrate was done in the same manner as used in 

the textile industry to prepare fabric for coating or lamination, despite the combination 

of vacuum processes for thin films and textile substrates being less well understood.  

 

 

5.1.1. Cell design 

 

The structural design of the solar cell on the textile fabric contained several layers, 

shown in figure 5.1.. The first was a back contact of aluminium (marked as a 

conductive layer in figure 5.1.), which was evaporated directly onto the textile 

substrate. Thereafter the silicon thin film microstructure (n-i-p), was produced by a 

microwave plasma enhanced chemical vapour deposition, (MW-PECVD) followed by a 

transparent top-contact of RF-sputtered indium tin oxide (ITO). In later samples, an 

additional coat layer (conductive coat) was applied onto the textile substrate to even 

the textured surface and support the aluminium back-contact. Encapsulation of the cell 

and complete panel was suggested either by using lamination or coating/ deposition.   
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Figure 5.1. The cell structure on woven polyester containing deposition layers such as 

polyaniline (conducting coat), aluminium (back contact), phosphine doped silicon (n-layer), 

undoped silicon (i-layer), diborane doped silicon (p-layer) and Indium Tin Oxide (protective and 

top contact layer). [1] 

 

 

5.1.2. Substrate 

 

Polyester weave was chosen on the basis of being most common and commercialised 

filament and textile in the textile industry. Another advantage with polyester used in 

solar applications was its good environmental properties such as high moisture, 

bacterial and ultra-violet resistance. [2] The textile substrate of woven polyester was 

supplied by the Scottish weaver J&D Wilkie Ltd (Kirriemuir, Scotland, UK).  Different 

weave structures such as plain and twill together with a thermal bonded nonwoven 

polyester web [1] and a polyester film (supplied by J&D Wilkie) were evaluated. The 

different substrates helped to address the importance of using the right textile to avoid 

unnecessary plasma penetration due to its mean-free-path, chapter 2 section 2.6.. [3,4] 

A plain weave had a more open and flat structure than twill and the plain structure was 

favoured for avoiding interaction with the plasma process and its deposition (chapter 2 

in section 2.4., 2.5. and 2.6.). Deposited thin films aimed to have the plasma on the 

substrate surface and avoid penetration through the structure, which led to the process 

parameters and values being carefully chosen. Throughout the work, both textile and 

aluminium substrates were used, which later (after the Taguchi model trials were 

completed) had microscope-slide glass added to observe eventual influence of the 

structure content and surface. Glass was chosen after being previously used as a 

common substrate for photovoltaic thin films and was used as a reference for other 

processes and results reported. The three substrates (textile, aluminium and 

microscope-slide glass) were similarly prepared. 



106 

 

5.1.3. Process methodology 

 

The different polyester substrates, except the polyester film which was washed only, 

were prepared by washing, calendering and drying. Calendering of the textile 

substrate, helped flatten and smooth the substrate surface and increase the bonding 

properties. By previously observing the reduced conductivity of the aluminium layer 

when deposited on a textured substrate, a support layer was added in the form of a 

conductive wet-coat, which was applied by direct-coating (paste) onto the textile 

substrate. Different vacuum processes were used to encapsulate the cell, which 

remains a matter still to be fully addressed. The chart below (figure 5.2.) illustrates the 

order of the process techniques involved. Throughout this work it was found that the 

textile substrate needed to be dry to avoid unnecessary moisture interact with 

deposition of the contact coating and the silicon thin film.  

 

 

 
 

 

Figure 5.2. the chart explains the different stages in developing a solar device by silicon thin film 

onto woven polyester.  
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5.2. Experimental methodology for thin film on textile substrate  

 

5.2.1. Preparation of textile substrate 

 

The substrate was first washed to avoid impurities attaching to its surface, since these 

impurities would affect the bonding properties of the coated/ deposited layers. Since 

the textile had a textured appearance, a calender process was needed to flatten the 

fabric surface to avoid loose fibres and unevenness, which could result in delamination 

of the coating. A good preparation was important for the plasma process too, when 

impurities would influence both deposition and plasma conditions [5] through their 

lower surface energy and reduced adhesion, with inconsistencies in the coating/ 

deposition. [5] Cleaned samples were stored in a closed container between the 

different process stages to avoid samples being contaminated. 

  

The deposition of silicon thin film solar cells onto a textile substrate involves several 

different types of deposition such as dry and wet coating. Dry refers to vacuum based 

depositions, whilst wet is based on a paste. Coating thickness was more accurate with 

vacuum based deposition (PECVD, evaporation and sputtering) as the thickness was 

measured in microns or nanometres compared with the wet-coat, which was quantified 

by weight, usually in grams per square-metre. [5] 

 

 

Washing 

 

The textile substrate was placed in a solution of 0,2ml detergent (Decon 90) and 200ml 

deionised water for 20 minutes in an ultrasonic bath. The sample was rinsed in 

deionised water before being dried by hot-air. Dried samples were then covered lightly 

with foil and stored on a laminar flow clean-bench overnight to avoid impurities being 

attached on the clean substrate surface and to allow the substrate to regain its natural 

moisture level before being calendering. If the polyester weave contained more 

moisture than its natural level of 0.4% [2], the substrate experienced a “steam effect” 

during the heat-treatment, which resulted in unwanted shrinkage, stiffer handle and 

damaged fabric.  
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Calendering (heat-treatment)  

 

The purpose of the thermal-bonding process was to connect warp and weft yarn at 

their crossover points and flatten the substrate surface, which helped to increase the 

adhesion of coating and avoid breaks in the conducting layer. This method requires a 

careful balance between temperature, time and pressure and each fabric quality and 

structure requires its own particular settings to avoid damage to the substrate. 

Therefore each parameter required careful adjustment, in order to achieve a light bond 

without damaged handle or flex of the fabric. 

 

 

Instrument and method 

 

The fibre, filament and fabric surface become flattened by letting the fabric pass 

between two rollers, which can be either cold or hot depending on quality of substrate 

and the level of calender required for the specific textile and end-use. The two rollers 

can be adjusted for pressure applied onto the cloth, time related with speed and 

temperature and the principles of this technique are illustrated below in figure 5.3.. [6]  

 
 

 
 
Figure 5.3. demonstrates the principle of calender process with the different parameters such as 

time, pressure and temperature, which will influence on the level of flatten the surface. [5] 

 

 

The instrument used contained two heated plates, which the textile was placed 

between. The top lid had a weight of 4kg, which governed the pressure. The 

temperature for each plate was set individually, but for the work carried out had the 

same setting to provide a uniform calendering. To obtain a good bond the temperature 
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needed to be high enough to soften the polyester filament yarn without changing its 

bulk properties. Aluminium foil was placed on each side of the polyester substrate to 

avoid impurities being attached permanently onto the substrate surface during the 

softening process. The foil needs being placed flat against the substrate surface to 

avoid permanent marks on the textile. 

 

 

Experimental 

 

Combinations of time and temperature were tried to gain the correct bond without 

damaging or stiffening the fabric, table 5.1.. Consideration was given to the polyester’s 

melting point, (Tm= 256°C) and glass transition temperature, (Tg ~70°C). An initial run 

was done at 150°C for 5 minutes, which led to a further test at higher temperature with 

reduced time (table 5.1.). Increased temperatures from 200°C to 230°C for 2 minutes 

were evaluated before foil was added (run 5) between the sample and the top and 

bottom plates to avoid impurity. With added foil, time was increased to 5 minutes. It 

was necessary to reduce the time with high temperature in an attempt to gain a quick 

flattening of the weave surface, but keep bulk properties of the substrate. All samples 

were evaluated by how the textile “handle” was affected.  

 

 

Table 5.1. Process settings used to calender the textile substrate. 

 

Trial run Temp., 
°C 

Time, 
min. 

1 150 5 

2 200 2 

3 220 2 

4 230 2 

5   (foil) 220 5 

6   (foil) 240 5 

7   (foil) 260 5 

8   (foil) 240 2 

9   (foil) 230 1 

10 (foil) 260 1 

11 (foil) 240 1 
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5.2.2. Conductive backcontact and substrate 

 

A support layer between the textile substrate and the evaporated aluminium was 

necessary after the observation that the thin layer of aluminium was not enough to fully 

cover the textured substrate, resulting in zero conductivity. The support layer was 

considered in two forms: by using a conductive substrate with evaporated aluminium 

(1) or the standard polyester weave with an extra coat layer (2) to provide a more 

uniform substrate before evaporation of the aluminium.  

 

(1) Conductive substrate with evaporated aluminium; 

The selection of conductive substrates included some woven, nonwoven, and strands 

(yarn), and a screen mesh of polyester with nickel areas (table 5.2.). The substrates 

were prepared in the same way as given for the woven polyester, except the woven 

copper material was not calendered due to being too thick. Most samples were tested 

both with and without calendering before the plasma process. The conductive samples 

considered and the settings such as time and temperature used were based on the 

experience from the woven polyester, see below: 

 

1/ Amber Strand, Columbus, Ohio, USA, metal coated filament, a yarn of strand 

formation.  

- AmberStrand®-Z-33-Ni, contains of Nickel clad polymer (Zylon® PBO) fibre with 33 
filaments, untwisted. 

- AmberStrand®-Z-166-Ag, contains of Silver clad polymer (Zylon ® PBO) Fibre, 166 
filaments, untwisted.  

 

2/ Kuraray trading Co. Ltd, Japan. Woven polyester 167dtex (plain weave) with 

antistatic fibre “Clarcarbo”. 

-  The antistatic fibres are polymer based with carbon distributed in four sections around 
the core  

diameter of polyester, the weight of the weave was 280gsm. 

 

3/ Technical Fibre products, Kendal, Cumbria, UK. Nonwoven web/ felt with Carbon.  

- Carbon Veil 30gsm, product code 20303A. 
- Carbon veil 80gsm, product code 20301A. 

 

4/ Ugitech, Fibre department, France. Light and open (plain) weave named Sprintiss. 

- Sprintiss of 300gsm is made by 100% AISI 316L. 

 

5/ Neltec Ltd, UK. Polyester weave (plain weave), type screen mesh. 

- Nickel etched areas onto the polyester mesh, 440gsm. 
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 6/ Federal Mogul, system protective group, USA (+ France).  

- Weave with polyester and twisted conductive yarn in the warp (DEW06090805) or both 
warp and weft (DEW 06090804), each 1320gsm. The conductive yarn contains of a thin 
twisted copper wire on the polyester yarn.  

 

 

Table 5.2. Conductive material was tried as a replacement to the woven polyester. 

 

Test run  Textile Supplier and quality Calendering parameters 

Time, min. Temp., °C 

1 AmberStrand®-Z-33-Ni  1 240 

2 AmberStrand®-Z-166-Ag 1 240 

3 Kuraray, Clarcarbo 1 240 and 220 

4 Technical Fibre Products, Carbon veil 
30gsm 

-- -- 

5 1 220 

6 Technical Fibre Products, Carbon veil 
80gsm 

-- -- 

7 1 220 

8 Ugitech, Sprintiss 1 220 

9 Neltec, nickel etched screen mesh  N/A N/A 

10 Federal Mogul, woven polyester with 
conductive yarn, DEW06090804.   

-- -- 

11 Federal Mogul, woven polyester with 
conductive yarn, DEW06090805.   

-- -- 

 

 

(2) Conductive coat on the standard polyester weave; 

The extra coat layer between the non-conductive fabric and the evaporated aluminium 

was in the form of a paste/ coat of either Quick Drying Silver Paint (G3691, Aldrich) or 

polyaniline (Panipol OY) applied directly onto the textile substrate.  

 

The silver paste was painted onto the textile substrate and cured in open air. Since 

silver paint proved not being a promising option for the plasma process, polyaniline 

coat was used instead. 
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Polyaniline mix, Panipol 

 

The choice of Polyaniline (by Panipol OY) was based on its advantages of being water-

based and already successfully tried on a textile substrate. [7] The conductive-coat was 

contained by the conductive solution Panstat W1-00-039.RD (product data sheet, 

Appendix I) and thickening agent Cognis DSX 3256 (product data sheet, Appendix II). 

The laboratory batch was often based on 5g with 10% of thickening agent in relation to 

total weight used of conductive solutions. The initial work was to establish a suitable 

viscosity of the wet-coat without reducing the conductivity, after the supplier advised to 

avoid adding too much water or thickening agent, which would reduce the conductivity. 

 

The mixing procedure started by pouring Polyaniline, Panstat W into a beaker and 

stirring (using a magnetic stir) for 1.5 hours. The quantity used for the lab-coating was 

5g. Thereafter was thickening agent, Cognis DSX 3256 of 0.5g added and the mix was 

stirred for further 1.5 hours before being left to rest for 2 hours. The lowest quantity of 

thickening agent was targeted by adding 10% of the Panstat W’s weight. Before 

applying the coating, the mixture was stirred lightly by hand to avoid separation in the 

paste. Information regarding preparation of coating and the coating procedure is found 

in Appendix III. 

 

 

Coating procedure for polyaniline  

 

The Polyaniline coat was applied directly onto the textile substrate by a steel-blade, 

which was placed ~90° against the fabric surface. The blade was moved by hand in all 

four directions of the substrate. The coat paste was placed on same side of the blade 

as the travel direction and by applying pressure onto the paste, allowed certain amount 

of coat material to be evenly distributed on and into the textile surface. Spreading a thin 

and even coat onto the textile substrate helped improve the bonding between coat and 

substrate and resulted in a more durable product. Too little pressure would introduce 

pinholes and air-bubbles, while too much pressure stiffens the coated textile and 

affected the handle of coated substrate. No force or stress was applied onto the textile 

substrate during the coating, which resulted in a very small change in the textile during 

the cure. The coating procedure in the laboratory was slightly different to the principles 

of an industrial design of direct-coating (figure 5.4.), which is shown below. [6] Direct-

coating is the most known coating method in the textile industry.  
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Figure 5.4. an image of direct coating used in an industrial scale and how the knife-blade and 

coat-paste is placed against the substrate. [6] 

  

 

An industrial coating-machine contains of a coating-head (coat applied) followed by an 

oven, which blows hot-air from different directions in order to control a uniform cure. An 

even drying is important, when it affects the adhesion of the next layer. This may be 

compared with the hot-oven used here, which made it slightly more difficult to provide a 

uniform cure. A thermometer was placed through the oven top to monitor the 

temperature on the top-shelf. The oven was heated up for 3 hours prior to use, which 

allowed a more uniform and stable temperature and to avoid a sudden drop as the 

oven door was opened and samples were loaded. In case of temperature fluctuations, 

the curing time was altered to compensate for the deviation of temperature. Number of 

coats and thickness depended on performance required for the coated fabric, but often 

several coats were required. Most industrial machines have several coating-units 

(coating head and oven) placed in line.  

 

 

Experimental 

 

The aim was to build up a coat thickness by several layers to avoid poor adhesion and 

pinholes, which would reduce a coat’s durability. Two coats with a total weight of 

~15gsm were sufficient to cover and provide a smooth surface of the plain weave 

(247gsm). 

 

The 1st coat layer was cured at 130+5°C for 10 minutes before the 2nd layer was 

repeated. The coated sample was covered lightly by foil and left overnight on the clean 

laminar flow bench to continue curing before being stored in a closed container,  

 Appendix III.  
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The coated sample was measured by ohmmeter after being left for 24 hours to ensure 

the coat layer was cured and had sufficient thickness. Conductive measurements on 

the polyaniline were carried out for the different processes such as wet-coat, 

evaporation, PECVD and RF-sputter for possible change. The measurement was done 

at different distances across a sample of dimensions 5cm by 5cm and the locations of 

the probes were categorised by the distance between such as short <2cm and long 

>2cm. The measurement was carried out with a West meters model 169 multimeter on 

a scale of 200 ohm. 

 

 

Metal contacts, aluminium  

 

Evaporation contains of two main aspects, evaporation and deposition/ bonding of 

aluminium.  

 

The evaporation was carried out by using an Edwards 360A, Edwards Vacuum Coater. 

[8] The chamber was constructed of glass in a cylindrical shape with vacuum seal on 

both sides, one towards the stainless steel lid and the other against the chamber floor. 

Pumping down the chamber was through the chamber floor. The evacuation of air was 

carried out by pumping first with a rotary pump, (roughing) and then with the diffusion 

pump to achieve high vacuum. The floor had in central position the evaporation source 

fitted with the sample holder placed ~20cm above. The distance between sample and 

source was adjustable, although in this work the sample was placed at the highest level 

possible.  

 

The tungsten filament was fitted between two clamps, one to the AC supply and the 

other grounded. The aluminium source was three folded 1.5cm long 1mm diameter 

threads and lightly twisted several times to provide a more compact source, resulting in 

a more uniform glow and melt and an easier transfer onto the coil and evaporates. The 

substrate was placed above the aluminium source with the coat-side facing down 

towards the source. A shutter was placed between source and substrate and was 

closed during heating up of the coil to avoid early collection of impurity coming off the 

source and attaching to substrate surface. The shutter was not removed until 

aluminium was evenly distributed onto the coil.  

 

The current required to melt and evaporate aluminium depended on resistance, which 

varied due to non-evaporated aluminium left on the filament. Current was first set at 
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20A to warm up and glow the coil and aluminium source before a further increase to 

40A, which allowed evaporation of aluminium. Occasionally, a larger current of 60A 

was required, depending on the resistance build up in the filament and the source. It 

was important to increase the current flow slowly in order to get a uniform melt, transfer 

and distribution of aluminium onto the coil. A rapid increase gives a sudden melt and 

the aluminium falls off the coil. Evaporation of the back contact was recommended to 

take 5 minutes.  

 

The coating thickness was estimated by the coating deposited onto the chamber wall 

window. When the desired thickness was reached without all the aluminium having 

been evaporated, the shutter was closed to allow the remaining aluminium to 

evaporate without irradiation or damage to the substrate. After the process was 

completed, the current was reduced slowly to zero and the coil was left to cool for ~10 

minutes, since a rapid cooling down was found to make the coil brittle. Air was admitted 

and left for ~30 minutes to avoid force to break the vacuum seal of the chamber.   

 

After releasing the sample, the chamber was wiped off to avoid aluminium deposition 

being built up and acting as an impurity in future depositions. The chamber was always 

kept in vacuum with or without new samples loaded. Due to the polyaniline coated 

textile containing high moisture content, it was necessary to pump the chamber 

overnight to reach a starting vacuum below ~5x 10-7mbar, which increased to ~5x 10-

5mbar during the process. A poor vacuum pressure affects evaporation quality. 

Evaporation procedure is given in the Appendix IV.  

 

A sputtered aluminium back contact was also evaluated in comparison to evaporated 

aluminium. The sputtering was produced by an RF-power of 70W for 10 minutes with a 

process pressure at 1x 10-3mbar and the flow-rate of argon was set after a certain 

chamber pressure. Sputtering process is explained in chapter 5 in section 5.2.4. and 

Appendix VI.  

 

A drying procedure of the substrate between evaporation and plasma process was 

later introduced to avoid trapped moisture in the textile substrate during vacuum 

processes. [5]  
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5.2.3. Plasma deposition 

 

Plasma deposition with microwave and radio frequency powered source  

 

In this work mainly microwave, MW powered plasma has been applied, although radio-

frequency, RF based has been used for comparison. Microwave based plasma has the 

advantage of having a much faster deposition rate with a more excited plasma, which 

avoids ions impacting into the substrate. The different power source MW (2.45GHz) 

and RF (13.56MHz) does involve a change of electrode type and its location, which will 

influence where the plasma was located in relation to the substrate. Gas supplies for 

the process varied between the two types, RF-plasma is restricted to one inlet at the 

bottom of the chamber compared with microwave, which allows both top and bottom 

inlets. The machine procedures before and after the plasma run were the same for the 

two plasma systems. The operation procedure for plasma enhanced CVD is described 

below and additional information is given in the thesis from previous work [1,9] and 

Appendix V. 

 

 

Preparation of process  

 

In order to open the chamber and load samples, it was necessary to fill the chamber 

with argon to reach an atmospheric pressure, before breaking the seal between 

chamber and its lid. After the sample was in place, the chamber was pumped down 

initially by using a rotary pump, roughing to a pressure of 0.04Torr before use of high 

vacuum diffusion pump. A cleaning/ purging procedure of the chamber was always 

performed to load samples, heating up the chamber and after a process to avoid 

impurities in the chamber. The purges were carried out four times per cleaning 

procedure by filling the chamber with argon pressure of 1- 2Torr and then pumping the 

chamber out each time.   

 

The chamber and substrate were heated up and cooled down before and after a 

process, and all gas-lines and regulators cleaned by purging them with argon six times. 

It was important to make sure the regulator and line was empty before the next purge 

of argon. Cleaning the regulators and lines was to avoid silane gas remaining in the 

pipes or reactants building up in the pipes and blocking a valve or pipe.  
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The substrate heater operated in a similar manner for the two plasma systems (Radio 

frequency and microwave), with the ceramic heater, fitted with a thermocouple, placed 

below the substrate plate. The temperature was controlled by a thermostat, which 

controlled the deviation from a set value and the response of feedback control was 

controlled by the PID settings. The voltage for the heater was supplied by mains 

voltage through a variable transformer which was set to a scale from zero to 100%. 

The heater was set to 40% during the heating, which allowed a substrate plate and 

textile temperature of ~200°C. During the microwave process, the power was reduced 

to 35% to avoid arcing, although the RF-plasma was at 40% without problem. With the 

microwave plasma it was necessary to increase to 40% during the changes of gas flow 

etc., when the temperature changes as the gases were altered.   

 

When heating up, there are two options, either having a constant gas flow and 

pressure or having a vacuum in the chamber. Disadvantage with vacuum is when the 

substrate and its plate have reached process temperature the chamber compartment 

and walls are still cold. The advantage with constant argon flow and set pressure was 

that it gave a much more stable process temperature, with less fluctuation as the 

reactive gases were introduced and the plasma started. Fixed argon flow and chamber 

pressure was chosen as the project runs were prepared.  

 

The chamber pressure was changed depending on power source, when RF-process 

had a higher (1.4Torr) pressure than microwave with 0.5Torr.   

 

The rotary pump was always in operation throughout the process, and the diffusion 

pump was only used to achieve a base pressure, when the chamber went below a 

vacuum level of 0.04Torr. After the process was complete, the chamber was cooled 

down to 60°C or below to avoid a sudden cooling effect as argon, Ar was admitted 

(open the chamber), which could damage the deposited film.  

 

 

Process parameters influencing a plasma process   

 

Argon was used both as a cleaning and carrier gas during the run of reactive gases, eg 

silane (SiH4); hydrogen (H2); diborane (B2H6) and phosphine (PH3), which all were 

required to process an n-i-p- layer. The doped n-layer was deposited with argon, silane 

and phosphine/ hydrogen, whilst the intrinsic (i-layer) used argon, silane and hydrogen, 

and the doped p-layer used argon, silane and diborane/ hydrogen. Argon was applied 
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in form of simple purges or with plasma to clean the substrate surface and chamber. 

The microwave power was altered depending on whether a doped or undoped layer 

was grown, when gas content and power showed an important relation.  

 

Reactive gases such as silane, hydrogen and doped gases were introduced at the top 

of the chamber, whereas the carrier gas of argon was mostly introduced at the bottom 

inlet. Argon was used either as a cleaning or carrier-gas when the n-i-p- layers were 

deposited. Argon as top feed did cause strong temperature fluctuation, which was 

difficult to control and therefore the approach of top feed was discarded. The gases 

involved (silane, SiH4; hydrogen, H2; diborane, B2H6; phosphine, PH3 and argon, Ar) 

each had their own cylinder, regulator, gas-line and flow-meter, which was specifically 

calibrated for the specific gas. In case a foreign gas needs access to a line, the flow-

meter output rate needs to be calculated (actual gas flow-rate= output reading x factor 

of new gas/ factor calibrated gas). The conversion factor for the gas concerned is given 

by gas or flow-meter supplier. An example of a calculation, argon (factor 1.4) requires 

an actual flow of 18sccm, which needs access through the hydrogen, H2 (factor 1.01) 

line, which instead gives an output of ~13sccm (18sccm=? x 1.4/ 1.01=> 18/ 1.4= 

12.86sccm).  

 

 

Plasma enhanced CVD with Radio Frequency- RF  

 

The radio-frequency, RF plasma had a different design compared with that used with 

the microwave run plasma. The main aspect was the power supply, which was 

connected through an impedance matching box to an electrode. The electrode was 

fitted through the chamber top (lid) and connected to the top plate of a parallel plate 

system, which was based on the same principles as below (figure 5.5.). The lower 

parallel plate was the earthed substrate holder and heater. Plasma strikes between the 

parallel plates and the matching box helped to tune the source to the chamber and 

avoid too much forward power being reflected.  
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Figure 5.5. this layout shows the principles of a typical RF plasma process with parallel plate 

system. [10]   

 

 

Another important aspect of plasma process is the distance between the parallel 

plates, which affects the plasma distribution and, indirectly, the quality of the deposited 

films. Initially a plate separation of 25mm was used, which was later reduced to 19mm 

in an attempt to increase the plasma intensity.  

 

 

Plasma enhanced CVD with Microwave- MW  

 

The microwave plasma machine was designed by Dilab Limited [11], and is a more 

complex system than the RF-parallel plate system. The microwave system had an 

additional chamber in the form of a quartz cylinder, which was attached to the chamber 

lid. The gas-inlet at the top of the chamber was via the stainless tube attached to the 

top of the quartz cylinder, which is illustrated in figure 5.6..  

 

DC power entered the magnetron and was transformed into microwaves and then 

travelled through the waveguide and an impedance matching wedge. The wedge had a 

close fit to the stainless steel tube antenna (gas inside), which allowed the waves to 

travel along the tube towards the quartz cylinder. The quartz cylinder had antennae 

fingers fitted around the outside. The wedge needed a very close fit to the tube, since 

the smallest gap could lead to arcing and disturbance of the wave. Generally, all 

waveguide fittings for a microwave process have to be fitted tightly to avoid microwave 

leakage. 
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As power reached the end of the antennae fingers and the quartz cylinder was filled 

with reactive gases, the plasma was ignited by the electric field produced between the 

fingers. [1,11] The parameters of gas rate and mix, chamber pressure and microwave 

power had a direct influence on the concentration and location of the plasma. 

Microwave power was limited to a minimum of 200W depending on process 

parameters. The max was at 1000W, which was used for the doped layer in the work 

prior [1], but power was later reduced to 800W and below to avoid damage to the 

textile substrate. 

 

A round substrate plate combined with a heater was located in a central position of the 

chamber and quartz. The height of the substrate plate could be altered from mid 

chamber height to half way up through the quartz. With the textile being more heat 

sensitive, the substrate plate was placed where the chamber and quartz meets. This 

location avoided too intense plasma conditions, but not too far off to receive active 

species from the plasma.  

 

It was important that the substrate plate was placed in a central location, when a small 

move towards one side would attract the plasma with the narrow space. With the 

substrate plate being more close to the chamber wall, the narrow space between the 

wall and sample plate encouraged increased plasma activation and, occasionally, even 

a second plasma. Both plasma-effects resulted in an uneven deposit on the substrate. 

The picture below (figure 5.6.) explains the layout of the microwave unit and where and 

how the plasma was produced.  
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Figure 5.6.. explains the layout of the quartz cylinder where the plasma takes place in relation 

with the substrate plate. [1,11] 

 

 

5.2.4. RF- sputter, ITO- Indium Tin Oxide 

 

Transparent Conducting Oxide (TCO) was applied as a protective layer and top contact 

for the silicon thin film solar cell. For this solar cell design Indium Tin Oxide (ITO) was 

deposited by a radio frequency, RF powered sputter process. ITO is one of the more 

common top contacts used due to a broad absorption spectrum and good conductive 

properties. [12] 

 

 

Magnetron sputter technology 

 

The RF-sputter process was carried out with an Edwards AUTO 306 Vacuum Coater 

with Turbomolecular Pumping System [8], which was designed for both evaporation 

and sputtering. Operation of the machine was mainly automatic with the turbo-pump 

and very little to operate by hand, except adjusting gas flow and chamber pressure 

before, during and after the process. The sputter-process was controlled by RF-power 

and time.  
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The sputter-target of Indium Tin Oxide (ITO) was placed on a magnetic-plate and 

screwed in place. The sample was placed 10cm above the sputter target with the 

coated side facing the target below. Distance between sample and target was set 

depending on sample size and uniformity of coat required. A shutter between the 

sample and target controlled the coating thickness.  

 

After samples were loaded and the chamber closed, the chamber was pumped down to 

a pressure below 1.3x 10-6mbar. No supervision was required, when the turbo pump 

switched automatically from the rotary pump roughing to the high vacuum diffusion 

pump. In preparation of the process, argon was introduced and the flow-rate was 

adjusted by a needle valve fitted on the chamber lid. The gas-flow affected the 

chamber pressure and this was set to ~6x 10-3mbar.  

 

The process power was set and the shutter (fitted between sample and sputter-target) 

opened as the RF-plasma was switched on. The shutter was then closed immediately 

after the plasma ignited, which allowed the sputter surface to be cleaned without 

impurities being deposited onto the substrate surface. In the meantime, the chamber 

pressure was reduced to 1x 10-3mbar. The quality and film thickness of deposited ITO 

film was determined by process time, which was controlled by the opening and closing 

of the shutter. 

 

The plasma ignited by RF-power in the argon-flow provided electrons that were held 

close to the sputter target by the magnetic field. Electrons collide with the argon atoms 

which become ions and these bombard the sputter target and eject the desired species 

that travel toward the substrate surface above the target.  

 

After the process, the argon-flow was stopped and the chamber pumped down for at 

least an hour. Nitrogen is used to open the chamber, but it also acts as a cleaning gas 

for the chamber and the exhaust system. The operation procedure of the RF-sputter 

process is given in Appendix VI. 

 

 

Experimental 

 

With no in-house work previously reported on Radio Frequency, RF-sputtered Indium 

Tin Oxide, ITO as the top contact/ protective layer of the cell, it was important to 

understand how the process parameters related to film thickness and its properties. 
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Some knowledge was gained from the industry, which used ITO coated glass before 

depositing the silicon thin film. However this present work applied the ITO last, which 

made the structure different due to uneven substrate and a silicon thin f ilm coated on 

top. An ITO film thickness between 0.1 and 0.5μm was targeted as being sufficient to 

protect and result in good optical and electrical properties required for the silicon thin 

film.  

 

RF-power and time were the two key parameters for the sputter process. Establishing 

the film thickness was done on ITO deposited on a microscope-slide glass with screen 

printed lines of photo-resistance material. The ITO coated print-lines were washed off 

in acetone, which left a sharp edge between the ITO coat and the exposed glass 

surface and the difference represented film thickness, which was measured by Dektak.  

 

First trial run used RF-power of 70 Watt for 15 minutes, which later increased to 85W 

for 30 minutes.  

 

 

5.2.5. Experimental design for N-I-P-layer 

 

The plasma process was controlled by several parameters such as radio-frequency/ 

microwave power, gas mix and rate, process temperature, chamber pressure and 

process time, which influenced the thickness and quality of the deposited film. In the 

transfer from microwave settings to radio-frequency required process parameters being 

changed. In discussion to follow, the flow-rates given for silane, diborane and 

phosphine are the actual values, when these gases are heavily diluted with hydrogen. 

Discussion regarding thickness of deposition refers to the level of powder effect in a 

sample. This was estimated visual by the colour of the deposition, which occurred in a 

shade of white-beige-yellow. 

 

 

Intrinsic silicon films with Microwave powered plasma 

 

Using the previous project’s recipe [1] (hydrogen, H2 20sccm, silane, SiH4 1.02sccm, 

chamber pressure 0.3Torr, 800W, 20 minutes) with a reduced sample temperature of 

200°C, resulted in the textile substrate being damaged. The previous project had used 

this successfully on substrate such as glass, silicon-wafer and nonwoven.  
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After experiencing the textile being damaged, the focus was to establish a process 

condition suitable for textile substrates, which led to different combinations being tried. 

- temperature (from 150°C to 200°C),  

- process time (10, 15 and 20 minutes),  

- hydrogen, H2 (2 and 20sccm),  

- silane, SiH4 (0.29, 0.49, 0.71, 0.82 and 1.14sccm),  

- power of 800W  

- process pressure at 0.3Torr 

 

The chamber pressure (0.3, 0.5 and 0.75Torr) was also evaluated, after difficulties 

were experienced in controlling the plasma process at 0.3Torr and pressure for 

continuous work became 0.5Torr.  

 

Later it was found, that textile could withstand an argon-plasma (Ar 18.2sccm, 800W, 

0.5Torr at 200°C and up to 30 minutes), which became used as a reference plasma 

against the parameters below, which were added one by one.   

- silane, SiH4 from 0.29, 0.49, 0.71, 0.82 to 1.14sccm,  

- hydrogen, H2 from 2 to 20sccm,  

- process temperature from 150°C to 200°C,  

- process time of 10, 15 and 20 minutes,  

- microwave power of 400, 500 and 800W,  

- chamber pressure at 0.5Torr. 

 

An argon and silane mix (Ar 18.2sccm, SiH4 0.82sccm) with a temperature of 200°C, 

power of 800W for 20 minutes was possible. 

 

 Different polyester substrates (supplier: J&D Wilkie Ltd, Scotland) such as plain and 

twill weave (both light and heavy weight), film and nonwoven were evaluated with this 

setting (Ar 18.2sccm, SiH4 0.82sccm, 200°C, 800W for 20 minutes at 0.5Torr) to 

understand how the structure of the substrate influenced the performance during the 

plasma process. Fabric weight (247gm2, 168gm2, 86gm2 and 68gm2) together with yarn 

type (continuous filament, monofilament and spun staple fibre) were tried in different 

plain weave options. The fabric weight relates to yarn thickness, dtex and number of 

warp and weft threads/cm2 (chapter 2 in section 2.6.).  
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To improve the deposition quality, time, temperature and power were altered against 

fixed argon- silane mixture (Ar 18.2sccm, SiH4 0.82sccm) and pressure of 0.5Torr.  

- time of 10, 20 and 30 minutes, 

- temperature of 200 and 210°C, 

- power of 600W, 700W and 800W.  

 

As occasional damage to the substrate was still experienced, other possible causes 

were considered such as temperature, impurity of substrate and chamber and how 

substrate structures influenced the plasma and its deposition. Alternative approaches 

were tried such as argon-plasma, melting-test and thermal temperature stickers.  

 

- Argon plasma was used to clean the substrate before the plasma process of thin 

film (n-i-p- layers), to avoid the risk of having foreign particles on the substrate 

surface and in the chamber, which would react with the plasma condition and 

deposition. Argon, Ar (18.2sccm) plasma of 5 and 20 minutes was compared.  

 

- Analysing thermal deformation of the textile substrate during the plasma process 

was done by using a hot-air-gun to reconstruct the heat-flow towards the textile 

substrate. The thermal test was done by reconstructing a similar arrangement the 

substrate experienced during the plasma process. The substrate was placed on a 

metal mesh instead of the substrate heater-plate in the plasma-chamber. The 

mesh allowed hot-air being applied from below (as in the case of heat coming 

from the substrate plate) and above (as in the case of heat coming off the plasma 

reaction) to learn about melt formation. The thermal test was done on various 

woven polyester samples, which vary in weight. 

 

- Thermal temperature stickers were attached on the face side of the substrate to 

measure the maximum local surface temperature. The substrate controller 

displayed a temperature much lower than polyester’s melting point at 256°C even 

when the substrate melted on numerous occasions. The temperature stickers 

used covered a range from 160°C to 190°C and from 204°C to 260°C.  

 

The earlier trials were an attempt to avoid melting of the textile weave, but instead a 

powdery deposition and poor quality of deposited thin film was experienced. The 

necessity of additional hydrogen to the mix of hydrogen diluted silane and argon, led to 

use of an Orthogonal Statistical Design, Taguchi model [13,14], as an attempt to 
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introduce hydrogen, H2 with varied values for argon, Ar, silane, SiH4 and microwave 

power.  

 
 

Taguchi model 

  

This statistical design contained different silane rates (from 0.10 to 2.04sccm), together 

with hydrogen introduced as a ratio against argon (hydrogen/ argon ratio 20/0, 17/3, 

14/6 and 10/10sccm) and the variable microwave power (200 to 500W) with fixed 

chamber pressure (0.5Torr), time (20 minutes) and temperature (200°C). The different 

parameters were changed in a repeated pattern as shown in table 5.3.. Both aluminium 

sheet and woven textile were used in each run to identify the eventual influence from 

the substrate surface and content.  

 
 

Table 5.3. the different runs and their settings used in the Taguchi model.  

 

No. of 
Runs 

Flow rate, sccm Power, 
Watt 

SiH4 H2/ Ar 

1 0.10 20/0 200 

2 0.10 17/3 300 

3 0.10 14/6 400 

4 0.10 10/10 500 

5 0.51 20/0 500 

6 0.51 17/3 400 

7 0.51 14/6 300 

8 0.51 10/10 200 

9 1.02 20/0 200 

10 1.02 17/3 300 

11 1.02 14/6 400 

12 1.02 10/10 500 

13 2.04 20/0 200 

14 2.04 17/3 300 

15 2.04 14/6 400 

16 2.04 10/10 500 

 

 

After the Taguchi trial, the fixed parameters such as time and temperature were 

considered with increased power. Run 16 (silane, SiH4 of 2.04sccm, hydrogen/ argon 
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H2/ Ar ratio of 10/10sccm, power of 500W) was used to evaluate process times of 5 and 

30 minutes against the 20 minutes from the Taguchi run. The 30 minutes run was 

repeated by increasing the power to 600W and 700W. In addition, run 16 was replaced 

by the hydrogen/ argon, H2/ Ar ratio of 17/3sccm (no. 10) and 14/6sccm (no. 11) from 

the Taguchi model.  

- Run 10 (silane, SiH4 of 1.02sccm, H2/ Ar ratio of 17/3sccm, power of 300W)  

- Run 11 (silane, SiH4 of 1.02sccm, H2/ Ar ratio of 14/6sccm, power of 400W). 

 

Even though the two runs contained a higher rate of hydrogen, it was necessary to 

increase the power to target increasing the crystal content. The first attempt was by 

altering silane rate with increased power and altered process time of 20 and 30 

minutes (table 5.4.).  

 

 

Table 5.4. Silane rate, process time and increased power against H2/ AR ratio of run 10 and 11 
were applied. 

 

SiH4, 
(sccm) 

H2/Ar, 
(sccm) 

Pressure, 
(Torr) 

Power, 
(Watt) 

Temp., 
(°C) 

Time, 
(min.) 

0.62 17/3 & 14/6 0.5 700 200 20 & 30 

0.82 17/3 & 14/6 0.5 700 200 20 & 30 

1.02 17/3 & 14/6 0.5 700 200 20 & 30 

 

 

Silane rate of 0.82sccm resulted in a sufficient deposition rate, but it was necessary to 

reduce the process power to 600W with longer process time. This led to further 

combinations with power of 600W against time and temperature (table 5.5.). The trial 

had fixed parameters of silane, SiH4 rate 0.82sccm, H2/ Ar ratio 17/3sccm and process 

pressure at 0.5Torr.  

 

 

Table 5.5. Explains the different combinations of temperature and time together with the fixed 

parameters of SiH4 rate 0.82sccm, H2/ Ar ratio 17/3sccm and 0.5Torr. 

 

Power, W Temp., °C Time, min. Temp., °C Time, min. 

 
 

600 
 

 
 

200 

20 
 
 

205 

20 

30 30 

40 40 

60 60 
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Interface between n- and i-layer  

 

With most focus being placed on the intrinsic layer at this point, it was found 

[15,16,17,18] that a clear break between the doped layer (prior to the intrinsic layer) 

and the intrinsic layer itself was very important to avoid dopant migration. Doped 

species in the intrinsic would act as impurities which would act as non-radiative 

recombination centres and reduce the overall cell efficiency. To produce the best clear 

break between the doped n-layer and the intrinsic layer, a standard n-layer recipe 

(phosphine, PH3 0.1sccm, argon, Ar 9.1sccm, silane, SiH4 0.82sccm, 200°C and 800w 

for 5 minutes) was combined with three intrinsic recipes. The actual flow value for the 

dopant was 1% of given rate, when the rest related to hydrogen. The intrinsic recipes 

used in this test were “normal”, which was applied before the Taguchi model, and the 

two recipes (Taguchi run 10 and 11) with some of the parameters altered. 

 

 Recipe 1: Normal (argon, Ar 18.2sccm, silane, SiH4 0.82sccm, 200°C and 

800W for 20minutes), 

 Recipe 2: Run 10 (silane, SiH4 0.82sccm, hydrogen, H2/ argon, Ar ratio of 17/ 

3sccm, 200°C and 600W for 20 minutes), 

 Recipe 3: Run 11 (silane, SiH4 0.82sccm, hydrogen, H2/ argon, Ar ratio of 

14/6sccm, 200°C and 600W for 20 minutes). 

 

Six types of “cleaning” procedures were suggested for a clear break, which were 

combined with the intrinsic recipes (given above). The different cleaning procedures 

suggested between n- and i- layer. 

 

Procedure A/ Standard procedure without a specific cleaning between n- and i-layer. 

Procedure B/ Ar-plasma for 3 minutes before introducing the gases for i-layer. 

Procedure C/ Ar-plasma for 3 minutes, followed by 2 minutes Ar+SiH4 plasma followed 

by 18 minutes deposition plasma of Ar+SiH4+H2. The gases were added one by one 

without a break. 

Procedure D/ The hydrogen, H2 content in the plasma was reduced with ~5sccm/ 5 

minute, which gave a flow-rate of 17-12-6-0sccm with recipe of run 10, while run 11 

resulted in a flow-rate of 14-10-5-0sccm. 

Procedure E/ Argon purges three times were applied between n- and i-layers.  

Procedure F/ Argon purges six times were applied between n- and i-layers. 
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Due to the cleaning procedures C and D not applying to the Normal recipe (recipe 1), a 

total of 16 runs were carried out. In changing from processing n-layer to intrinsic layer, 

the plasma was switched off and the gases and flow-rates were altered and the plasma 

for intrinsic layer was not switched on until the chamber pressure was stable enough 

after changing gas mix and rates. The break could vary in time depending on type of 

cleaning procedure and the gases involved for intrinsic. 

 

 

Table 5.6. the combinations used in the trial “clean break” between doped prior to the intrinsic 

layer. 

 

Cleaning  
procedure 

Trial no. Intrinsic 
recipe 

 

A 

1 1 

2 2 

3 3 

 

B 

4 1 

5 2 

6 3 

C 7 2 

8 3 

D 9 2 

10 3 

 

E 

11 1 

12 2 

13 3 

 

F 

14 1 

15 2 

16 3 
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Doped layers 

 

The first doped runs were based on previous work’s recipes [1] for n-layer (phosphine 

doped, PH3 0.1sccm, argon, Ar 18.2sccm and silane, SiH4 1.02sccm, 5 minutes and 

200°C) and p-layer (diborane, B2H6 of 0.1sccm, argon, Ar 18.2sccm and silane, SiH4 

0.82sccm, 5 minutes and 205°C). The power for the doped layers started at 700W after 

knowing the temperature restriction coming with a high quantity of hydrogen use, but 

soon, power was increased to 800W. The process temperature for diborane was 

reduced to 200°C as the power increased. The initial argon rate (18.2sccm) was soon 

reduced to 9.1sccm for the doped layers. The silane rate of 0.82sccm for the intrinsic 

became standard rate for n- and p- layer too. The two dopants used in this work, 

diborane, B2H6 and phosphine PH3 are both heavily diluted with hydrogen, which 

means the actual flow value for the dopant was 1% of given rate, when the rest related 

to hydrogen.   

 

Previous research showed [17,19,20], that n-layers did have a more crystalline nature 

while p-layer had an amorphous nature. [21,22] N-layer contained nanocrystal structure 

with a crystal size of 2-4nm, while diborane in case of crystal growth formed larger 

crystals (5nm) with a high amorphous content. [20] Due to many cell structures starting 

with a p-layer has focus been to introduce and increase the crystal content in the p-

layer. Different process parameters such as temperature, time and dilution of boron 

with hydrogen and silane have been important and discussed. [23,24,25,26] A 

temperature study between 90°C to 270°C concluded, that 150°C or below resulted in 

the best crystal content and properties. [23,24] Dilution of diborane was considered too, 

when reduced diborane rate increased crystal content, while increased diborane 

supported an amorphous growth. [25,26]  

 

N-layers with standard recipe (phosphine, PH3 0.1sccm, argon, Ar 9.1sccm and silane, 

SiH4 0.82sccm, 200°C, 800W and 5 minutes) showed, that extended proved deposition 

time to 10 minutes was sufficient.  

 

P-layers (diborane, B2H6 of 0.1sccm, argon, Ar 9.1sccm, silane, SiH4 0.82sccm, 200°C, 

800W and 5 minutes) did require more work than just altering time and power, when 

the film still became powdery. However, reduced process temperature and diborane 

rate were suggested to increase crystal content. [21,24,27] When a drop in 

temperature from 200°C to 190°C showed a change in the structure content, further 
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reduction in temperature (table 5.7.) together with reduced diborane-rate, increased 

argon-rate and introduction of hydrogen were tried.  

 

Run A/ Original setting: B2H6 had a flow-rate of 0.05sccm*.  

Run B/ Reduced B2H6 flow-rate by half 0.025sccm. 

Run C/ Increased by double the B2H6 rate of 0.1sccm.   

Run D/  Double the argon rate (18.2sccm). 

Run E/ Hydrogen, H2 introduce as a ratio with argon, Ar/ H2, 10/10sccm. 

Run F/ Hydrogen, H2 introduce as a ratio with argon, Ar/ H2, 5/15sccm. 

Run H/ Reduced process temperature at 180°C with best performing trial 

between run A to F.  

* Original flow-rate of diborane had been reduced from 0.1 to 0.05sccm due to flow restriction in  
the diborane line. 

 

 

Table 5.7. the table shows the different flow-rates used to optimise the p-layer deposition. 

 

Trial run Gas type and actual flow-rate sccm Temp, 
°C 

Time, 
min. 

Power, 
W 

B2H6 SiH4 Ar H2 

A 0.05 0.82 9.1 0 190 5 800 

B 0.025 0.82 9.1 0 190 5 800 

C 0.1 0.41 4.55 0 190 5 800 

D 0.05 0.82 18.2 0 190 5 800 

E 0.05 0.82 10 10 190 5 800 

F 0.05 0.82 5 15 190 5 800 

H ? 0.82 ? ? 180 5 800 

 

All runs were evaluated by Raman spectroscopy and optical transmission to determine 

crystalline content, and the run with the highest crystalline content was repeated at 

180°C. 

 

The trial above helped to address potential recipes to use for each the n- and the p- 

layer.  

N- Layer: Phosphine, PH3 0.1sccm, argon, Ar 9.1sccm, silane, SiH4 0.82sccm, 10 

minutes, 200°C and 800W. 

P- Layer: Diborane, B2H6 0.025sccm, argon, Ar 9.1sccm, silane, SiH4 0.82sccm, 5 

minutes, 190°C and 800W. 
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N-I-P- layers, combinations 

 

As the previous part mainly regards only single layers or stages in a complete cell, the 

following discussion refers to the deposition of the three layers (n-i-p-layer). Even if the 

individual process did not damage the textile substrate, occasionally a combination of 

the three layers damaged it. After this discovery, three layers were always processed, 

to check for damaged textile substrate, even after smallest modification to a single 

layer was made. This section highlights the single layers trials, which were used in 

combined version.  

 

The process settings for initial trial (section A in table 5.8.) of three layers (n-i-p) had 

the power increased to 800W (section B in table 5.8.) for all three layers in an attempt 

to find the optimal process condition for non-powdery deposition with crystal growth. 

With introduction of an additional conductive layer such as conductive substrate or a 

conductive coat onto the textile substrate was necessary to reduce power for the 

intrinsic to 600W, while doped stayed on 800W (section C in table 5.8.). The intrinsic 

layer changed further with the knowledge from the Taguchi model by adding hydrogen 

through H2/Ar ratio together with altered silane rate (section D in table 5.8.). Argon-

purges of three and six were applied (section D in table 5.8.) to clean the interface and 

avoid doped species into the intrinsic layer. The doped layers were modified by time, 

temperature and flow-rate, while intrinsic was altered by time and temperature (section 

E in table 5.8.), when table 5.9 illustrate the different combinations in more detail. After 

further attempt to improve crystal growth in the p-layer was new settings suggested 

(section F in table 5.8.) at 180°C with added hydrogen (1) and with reduced diborane 

rate (2) combined  with n- and i- layer.  

 

 

 

 

 

 

 

 

 

 

 

 



133 

 

Table 5.8. The settings for the n-i-p- layers. 

 

N-I-P- 
Layer 

Gas type and actual flow-rate, sccm Temp, 
°C 

Time, 
min. 

Power, 
W 

Sect. 
No. 

SiH4 Ar H2 B2H6 PH3 

N 0.82 9.1 0 0 0.1 200 5 700  

A I 0.82 18.2 0 0 0 200 20 700 

P 0.82 9.1 0 0.1 0 205 5 700 

N 0.82 9.1 0 0 0.1 200 5 800  

B I 0.82 18.2 0 0 0 200 20 800 

P 0.82 9.1 0 0.1 0 200 5 800 

N 0.82 9.1 0 0 0.1 200 5 800  

C I 0.82 18.2 0 0 0 200 20 600 

P 0.82 9.1 0 0.1 0 200 5 800 

N 0.82 9.1 0 0 0.1 200 5 800  

 

D 

Argon- purges three or six times in the interface of n- and i-layer 

I 
0.82 

(0.62/ 
1.02) 

17 

(14) 

3 

(6) 

0 0 200 20 600 

P 0.82 9.1 0 0.1 0 200 5 800 

N 0.82 9.1 0 0 0.1 200/ 
205 

10 800  

 

E I 
0.82 17 3 0 0 200/ 

205 
30/ 

40/ 60 
600 

P 
0.82 9.1 0 0.05 0 180/ 

190 
5 800 

N 0.82 9.1 0 0 0.1 200  10 800  

 

F 

I 0.82 3 17 0 0 200 20 600 

P:1 0.82 10 10 0.05 0 180 5 800 

P:2 0.82 9.1 10 0.025 0 180 5 800 
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Table 5.9. the different combinations with altered time and temperature of n-i-p- layers were 

done in the order given below.    

 

Process time, minutes Process temperature, °C 

n- layer i- layer p- layer n- layer i- layer p- layer 

10 60 5 200 200 190 

10 60 5 200 200 190 

10 40 5 200 200 185 

10 30 5 200 200 180 

10 60 5 205 205 180 

10 30 5 200 200 180 

10 40 5 205 205 190 

10 40 5 200 200 190 

10 30 5 200 200 190 

 

 

5.2.6. RF- powered plasma run 

 

A small number of Radio Frequency, RF based plasma enhanced chemical vapour 

depositions, RF-PECVD were carried out to compare with the microwave PECVD 

processed samples. The RF-plasma processed an n-i-p- structure on textiles, 

aluminium sheets and microscope-slide glass. The recipes used (section A in table 

5.10.) were parameters already established in previous projects [1,9], which focused on 

RF-based silicon thin films. Additional to the old recipe was a set of three argon-purges 

between n- and i- layers to avoid doping into the intrinsic.  

 

The three layers (section A in table 5.10.) had several values in common such as RF-

power, silane rate and temperature, when the deposition time was different for each 

layer. The actual gas rates used for n-layer, phosphine, PH3 and p-layer, diborane, 

B2H6 were the same values applied in the microwave process.   

 

After the initial runs the process parameters were altered as an aim to increase the 

crystal content. Same types of changes were made as observed with the microwave 

PECVD such as increased power, reduced silane rate for all three layers, altered 

process time for phosphine and reduced diborane rate in the last combination with 

reduced temperature (section B in table 5.10.).  
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Table 5.10. RF-powered trials 

 

N-I-P- 
Layer 

Gas and actual rate,  
 sccm 

Temp, 
°C 

Time, 
min. 

Power, 
W 

Section 
no.  

SiH4 B2H6 PH3 

N 2.04 0 0.1 200 10 20 (30)  

A Argon purges three times 

I 2.04 0 0 200 30 20 (30) 

P 2.04 0.1 0 200 5& 10 20 (30) 

N 1.43 0 0.1 200 5&10 40  

 

B 

Argon purges three times 

I 1.43 0 0 200 30 40 

P 1.43 
0.1 

0 
190 

10 40 

0.05 180 

 

 

 

5.3. Introduction to analytical instruments 

 

The analysis of silicon thin films on textile substrate proved more difficult than first 

anticipated, since the polymer-based textile substrate incorporating the silicon thin films 

either charged up or was too textured and opaque to be measured routinely. The 

charging up was not always related to the textile substrate, since the same effect 

happened to the aluminium and microscope-slide glass. Therefore many of the known 

methods such as Scanning Electron Microscope, SEM, Atomic Force Microscope, AFM 

and Fourier Transform Infrared Spectroscopy, FTIR were not used. The textured 

surface of the textile proved difficult to measure the electrical and optical properties, 

when it gave too high a resistance and very scattered light. Instead Raman 

spectroscopy and optical transmission with microscope-slide glass became the main 

methods.   

 

Raman Spectroscopy helped establish structure content, and optical transmission was 

measured on deposited thin film to calculate the band-gap energy. Raman 

spectroscopy technique is discussed in a separate chapter 3 in section 3.3.. Thermal 

analysis by Differential Scanning Calorimetry (DSC) was carried out too, which helped  
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establish changes in the polymer chains of the substrate during the different vacuum 

depositions required for the silicon thin film cell.  

 

 

5.3.1. Scanning Electron Microscopy, SEM 
 

Initially, scanning electron microscopy (SEM) had as its purpose to evaluate changes 

to the deposited textile, yarn and filament such as damage to the substrate by heating 

and melting. However, with problem of the textile substrate charging up during 

measurement this method was discarded. The charging up was experienced even after 

aluminium was deposited onto the textile. Sample preparation was required for SEM, to 

avoid the coated textile charging up. Even after a thin layer of gold was applied onto 

the textile substrate, the sample was still charging up, probably because the metal 

coatings were not continuous.  

 

 

The instrument and method 

 

The SEM image process was carried out in vacuum at 10-5 Torr and the sample was 

placed on a table which could be moved and tilted at different directions and angles to 

capture the best images of the filament surface. The details found on the sample were 

taken at different magnifications starting at 50x followed by 100x, 200x, 800x and 

2000x to analyse the features of the surface. SEM gives detailed images with the 

characteristics of the surface which help to understand if the marks belong to an etch 

effect, coating or other causes affected by the process. At lower magnification of 50x, 

100x and 200x information about the fabric appearance can be observed and whether 

specific effects are repeated or not. [28]  

 

  

5.3.2. Raman spectroscopy 

 

The instrument used was an inVia Raman Microscope from Renishaw, which helped 

identify how the crystalline structure altered with changing process parameters and 

plasma conditions. The parameters and procedure used to identify the structural 

content of deposited substrate are discussed below, whereas more analytical aspects 

of the Raman technique and its spectra are discussed in chapter 3 in section 3.3..  
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Raman parameter’s influence on thin film 

 

With textiles not being a common substrate for Raman spectroscopy, the different 

parameters involved such as exposure, data accumulation, laser power and 

magnification were examined for potential thermal annealing effects. Heating can affect 

both the thin film and the polymer by increasing the crystal content due to 

crystallisation. All substrates were measured after the plasma process and depending 

on substrate and batch, each sample was measured at least twice. In case of large 

thickness variation in the film, the sample was measured between two and five times 

by analysing areas where a great contrast was observed between them. This helped to 

establish the film thickness and its variation. Sometimes, the sample had the 

measurement repeated in case the result did stand out from the other substrates 

(textile, aluminium and microscopic-slide glass).  

   

Previously, a study [29] was made of Raman measurements on polymer fibre and the 

potential for changing the polymer content due to the heat generated by radiation from 

a laser beam. The different parameters used for Raman were altered to identify 

potential annealing effects in the substrate or the film. This change of crystal content 

would then be detected in the Raman spectra, by moving the peak towards higher 

wavenumber. The parameters such as number of scans, exposure time, magnification 

and laser power, with different values, were combined and the combinations given 

below. 

Accumulation scans from 1- 20, 

Exposure time, 1- 20seconds,  

Magnification, 20x and 50x, 

Laser power, 0.1- 100%. 

 

The Raman settings used before and after the test were 50x magnification, 50% laser 

power, 10 seconds and 5 times exposure.  

 

The Raman spectra were normalized to provide a good comparison between the runs 

and helped identify each parameter’s influence on structural content. Normalisation of 

Raman results was carried out by converting peak intensity to a scale between 0 and 1, 

which made it easier to make a more accurate comparison of the batches and their 

peak intensities. Growth rate or thickness was related to peak intensity, where low 

intensity was from a thin film. However, each sample of aluminium and textile was 

analysed by Raman at least twice at different locations. The Raman spectra required 
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mainly a fit of three Gaussian peaks, unless clearly microcrystalline or amorphous 

structure, which needed only two peaks. 

 

 

5.3.3. Thermal analysis, Differential Scanning Calorimetry, DSC  

 

Potential change of the bulk properties was investigated by thermal analysis with the 

most known technique, Differential Scanning Calorimetry, DSC. This helped compare 

yarn and fabric, and coated and uncoated material. [30,31] The change in the bulk 

properties of a polymer reflects on the thermal properties such as glass transition Tg 

and melting temperature Tm. The heat capacity of a polymer will depend on its 

structural content such as percentage of amorphous and crystalline phase.   

 

 

The instrument and method 

 

The Differential Scanning Calorimetry system was supplied by Mettler Toledo, TA 

instrument DCS12E [30], which helped identify material properties during heating and 

cooling. Looking at the thermal transfer properties of a material during heating and 

cooling allowed the determination of the glass transition temperature, Tg, and the 

melting point, Tm, of a polymer.  

 

DSC techniques can study a polymer change in relation to heating and cooling in two 

ways, either by a constant temperature known as isothermal or by a steady increase of 

a set heat-rate (°C/ minutes) known as dynamic isothermal. [30,31] The isothermal 

method has a limit to only one direction either by increasing or reducing the heat. 

Dynamic isothermal allows instead studying both heating and cooling in one measure. 

The heating and cooling curve depends on how a material absorbs and releases the 

heat energy. The measurement can be done in a temperature-range from -40°C to 

400°C with a heat-rate set from 0.1 to 20°C/ minute between 0 and 999 minutes. [30] 

 

The polymer properties on heating and cooling will reflect on the ratio of amorphous 

and crystal content. The heating properties of a polymer substrate can be established 

by a material’s capability of absorbed heat, ΔH during a melting process. The enthalpy, 

H of a polymer refers to the heat capacity, Cp between a range of temperature, T. 

Thermal changes will depend on the structure stability and eventual impurity in the 

sample. The heat capacity will be very specific for a polymer, when the changes are 



139 

 

much related to its properties. [30,31] A polymer such as polyester (Polyethylene 

Terephthalate) has a glass transition, Tg at ~70C° and melting temperature Tm at 

260+5C°. [32] Both Tg and Tm can vary depending on the crystal content. Polyester is 

commonly known as being semicrystalline, which has a content containing both 

amorphous and crystal structures. 

 

A typical “energy” curve for a polymer with crystal content starts with a slow increase, 

which suddenly accelerates into an upwards peak known as endothermic before 

returning and dropping further. Steady rise is due to the heat being absorbed into a 

material and the first small peak, endothermic relates to glass transition, Tg. Reduced 

curve height is due to higher viscosity, which releases the heat absorbed. Continuous 

increase of heat will result in re-crystallisation taking place, which does give out heat 

(exothermic). Added heat is required to keep the substrate at same temperature, which 

leads to the melting point, Tm of a polymer. Sometimes a polymer shows steps with the 

peaks, which refer to a material having different content, structures and properties. 

[30,31]   

 

The sample was placed in a pan, which was sealed by a lid and dented on the top to 

reduce the dead space in the pan. Most common material used for the pan (figure 

5.7.a) is aluminium, although gold can be used for certain cases. It is important to avoid 

impurities in both sample and pan, as this will have a significant effect on the 

measurement. An empty reference pan was combined with the sample pan and the two 

pans (figure 5.7.b) each placed on a sensor plate (figure 5.7.c). The two pans were 

heated up by a furnace (figure 5.7.d), which provided a uniform heat-flow below the 

sample and reference pan. [30,31]  
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Figure 5.7. sample and reference to analyse in a DSC are prepared in each pan (a) and placed 

at the sample plate (b). The sample plate is accessed by lifting the furnace lid (d) at the top of 

the instrument (c) where the samples are placed and heated up (d). [30]  

 

 

By comparing sample and reference pan, it was possible to calculate difference in heat, 

ΔQ and temperature, ΔT to get the heat capacity, Cp (Cp= ΔQ/ ΔT) of the sample. The 

heat ΔH absorbed during the melting process and the heat released during 

crystallisation is proportional to the area between the curve and the baseline of the 

DSC. The peak area refers to the energy exchange (Enthalpy change, ΔH), which is 

measured by Joule per gram, J/g and the quantity of energy required to melt a sample 

will respond to the peak area. The enthalpy energy can be found by taking peak area 

divided by calorimetric sensitivity (E= Elnx Erel) and sample weight (mg). [33,34] 

 

The heat of fusion, ΔHf was represented by the endothermic peak during melting and 

the heat loss during crystallisation, ΔHc was given by the exothermic peak. The 

difference in ΔHf- ΔHc refers to the heat associated with the melting, which gives the 

percentage of crystal content by (ΔHf-ΔHc)/ ΔH100%x 100%. The ΔH100% value for 

polyester, PET is 166.5Jg-1. [35] The power (energy) required depends on the amount 

energy the material can absorb before melting.  
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Experimental 

 

The samples measured were taken from each process stage such as uncoated with 

loomstate and calendered, conductive coat, evaporated aluminium, the plasma process 

of n-i-p-layers and sputtered ITO to compare and identify eventual change of the 

thermal properties. Both filaments and fabric were tested, the filaments were placed 

parallel in the pan. It is important that the samples have the same weight, as this 

affects the heating of the sample and the first targeted was ~8mg per sample. The 

second time of measurement the sample weight was reduced to 5±0.5mg, as less 

sample weight would provide a more detailed curve. Less sample weight was difficult 

when testing coated samples, which had higher weight than loomstate. Another crucial 

aspect was to place the sample at an identical position in the pan in order to not affect 

the melting procedure. The heating up was set to a step of 10°C/ minute with a 

temperature range from 50°C to 300°C. 

 

 

5.3.4. Electrical properties  

 

Current-voltage properties were measured by using I-V and four-point-probes. At the 

start of the project, these tests were the main ways of characterising the silicon thin 

films. The problem with the textured surface was the difficulty in placing the probe onto 

the surface without going through or sliding off a filament or yarn which was needed to 

make contact. Due to issues with the textured substrate and the measurement, this 

was soon stopped.  

 

 

The instrument and method 

 

The DC voltage source manufactured by Agilent Technologies (HP4140B) was used to 

carry out the I-V measurement. The four-point-probe was performed using a Keithley 

224 current source and a 160B digital multimeter.   

 

Measurement of I-V was carried out by two probes, one touching the back contact and 

the other the top contact. Top contact of the samples was often evaporated aluminium 

dots, but sputtered ITO is the top contact material used in the final cell device. The 

back contact was evaporated aluminium. Sometimes the measurement was instead 
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made between two top contacts to measure resistance related to the top part of the 

cell. The measurement of current flow was an indicator for resistance in the film. 

Altering the current flow direction between top and back contacts (changing between 

forward and reverse bias) helped determine the sample structure and resistance, R 

(R=V/ I). The probes for the current voltage measure could either produce a flow 

between the bottom and top contact (sandwich configuration) or between two top 

contacts (gap configuration). 

 

As the deposited films were very soft, it was important to make sure the probes were 

placed on the surface and not penetrating through the film or substrate, which would 

then short circuit. Initially a sharp probe-needle was used, but soon exchanged to a 

flatter one, which helped to give a reliable measurement. Different designs of tips and 

larger probe diameters with springs were evaluated and a flat probe was chosen for 

future trials. The bigger and flatter probe tip helped avoid a breakage of the tip, 

scratching of the film or penetration through the film or substrate.  

 

A more applicable test for surface resistance (sheet resistance) is a four-point-probe. 

Four-point-probe measurements consist of four probes in line with a small fixed 

distance between them (figure 5.8.). The disadvantage with four-point-probes was the 

necessity of being placed on the same horizontal surface for the probes to make 

contact between them, which was more difficult with a textured surface. [36,37] 

Therefore measuring textiles with textured surface has proven more difficult, which will 

generally increase the level of error in the measurement. Measurement on textile 

requires the probes being placed on same filament, yarn to avoid disruption or break in 

the connection. The conductive polymer coating on the textile gave a smoother and 

more uniform substrate surface, but still often too uneven to carry out an accurate four-

point-probe measure.  

 

 

 
 
 
Figure 5.8. the configuration with four-point-probe. [37] 
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Experimental 

 

The I-V measurement was carried out by altering the voltage direction and location of 

the two probes. Locations of the probes were done by back contact being at fixed 

location, while the top-contact was moved to different locations. Top-contact was often 

moved and measured at three different locations before the back contact changed 

location and the top-contact again measured at three locations. Measurement was 

carried out several times on each substrate. Aluminium and microscope-slide glass 

were measured along with the textile substrate. I-V was carried out by computer setting 

the voltage in a series of step increases and decreases and measuring the current at 

each step. Initial voltage range was from 0 to 1V with an increment of 0.1V, but soon 

the voltage range was increased from 0 to 10V with increments of 0.1 to 1V. 

 

Some of the I-V measurement was done by heating up the sample between 35°C and 

105°C, which helped characterise potential trapped charges and provide the thermal 

activation energy for conduction.  

 

 

5.3.5. Optical properties 

 

Optical spectroscopy measured light transmission and absorptance of a cell and the 

values were influenced by the structure content of the thin film. The transmission of the 

deposited thin film was measured on microscope-slide glass to satisfy the requirement 

of a transparent substrate. The disadvantage of using a non-textile substrate was the 

slight difference in the structure growth.   

 

From the transmission data, the absorption coefficient was derived, which helped 

produce a Tauc plot and the band-gap energy. The optical band-gap was given by the 

intercept on the photon energy axis of the square root function of absorption times 

photon energy (“Tauc plot”). Cube root function was applied too, after Cardona [38] 

suggested this being a better fit for nanocrystal content. 
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The instrument and method 

 

A Shimadzu UV 3100 dual-beam Spectrophotometer was used to measure the light 

transmission spectrum of deposited films on glass substrates. The light source 

contained both Deuterium and Halogen lamps, and a series of gratings which provided 

a spectral range from 190nm (UV) to 3200nm (NiR). The instrument also had a 

reflection attachment for the measurement of reflection spectra.  

 

The sample compartment contained a sample and a reference position, which gave a 

choice of whether to exclude or include the influence of the glass-substrate. Before 

measurement, the instrument was calibrated against the wavelength range used and a 

sample at the reference holder was optional. Light transmission is performed by 

directing an incident light-beam towards a sample, which will result in the light being 

reflected, transmitted, diffused and absorbed (figure 5.9.). The total incident light is the 

same as the sum of transmitted, absorbed and reflected light. By examining the 

transmission spectrum, absorption can be expressed as weak, medium and strong 

(figure 5.10.). [39]  

 

    
 

Figure 5.9. explains the change of incident light by it being split into different directions such as 

reflection and scattered light. [40] 

 

 

Transmission comes by measuring the intensity of the incident light before (I0) and after 

(I1) passing through the substrate. The ratio (I1/I0) of the two values is known as 

transmittance and is given in percentage as Transmission, T= %/100. Optical 
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absorption can be calculated from the transmission, [log(1/T)]. The absorption 

coefficient, α is the absorption per unit thickness of material.  

 

To determine absorption coefficient α(λ) of thin film, a transmission spectrum was 

measured in the visible and infrared region. Transmission was measured often from 

350 to 900nm in wavelength, which contained at least one interference fringe with a 

second fringe starting to appear. The diagram below illustrates a typical example of the 

transmission spectrum of an amorphous silicon deposition. [39,41] 

 

 

 
 

Figure 5.10. transmission spectrum and development of the interference fringes for an 

amorphous silicon film of 1μm. [39] 

 

 

Several factors affect the transmission [T= function of (α, λ, n, ns, n0, d)] of thin films on 

glass substrate such as absorption (α), wavelength (λ), film thickness (d) and refractive 

index (n), refractive index of substrate (ns) and the environment (usually air) (n0). Film 

thickness, d is calculated [d= λ1 λ2/ 2(λ1n2- λ2n1)] by taking refractive index and the 

wavelength at the lowest and highest transmission point on the shortest interference 

fringes. [39,41]  
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A Tauc plot helped to get the band-gap energy value from the absorption coefficient. By 

using a Tauc plot [(αhv)1/2= β(E-Eg)], which contains photon energy (E=hv) and a 

constant (β), the band-gap energy value can be obtained. Calculation of the absorption 

coefficient is often based on this square root dependence for amorphous silicon. 

[42,43] A combination of square root (αhv)1/2 and cube root (αhv)1/3 was necessary to 

get a linear fit and correct band-gap value for a mixed structure content such as crystal 

phase in amorphous matrix in a silicon thin film. [40,41]  Cube root dependency for light 

transmission has been explained as caused by stress in the thin film structure. [38] 

Higher root number than cube root for nanocrystal content has been considered. 

Empirical attempts to gain a straight line with nanocrystal content used root values 

such as √1/4 and √1/5, which both gave a straighter line. [44] Root value of √1/5 gave a 

band-gap value same as crystal silicon at 1.1eV, while a value of √1/4 gave a higher 

value of 1.4eV. 

 

Why the square root works for amorphous was explained by the optical transition 

between valence band and conduction band depending on the variation with energy of 

the “density of states” in each band, g(E)~(Ev-E)1/2 for valence band and g(E)~(Ev-Ec)
1/2 

for conduction band. The transition between valence and conduction bands in 

nanocrystal material was different due to the indirect band-gap of the small crystallites. 

Depending on the ratio of crystal to amorphous content, a higher percentage of 

crystallinity required rather (αhv)1/5 than (αhv)1/4. [44] It was experienced, that structures 

with two band-gap values (square and cube root) could receive a single band-gap 

energy value between 2 and 3eV. [42] The value above 2eV was explained as caused 

by very small and fine nanocrystals embedded in the amorphous structure like 

quantum dots. [44,45,46]  

 

Two different band-gap values improve optical properties and the band-gap energy 

value reflects on the crystals size, when larger crystals such as microcrystalline has a 

band-gap value closer to amorphous (1.8eV), while smaller crystals such as 

nanocrystals have values toward 1.1eV (crystal silicon) (figure 5.11.). [42,47] The two 

values relate to quasi-direct band-gap at 1.8eV (amorphous) and indirect band-gap at 

1.1eV (crystal) [48] with absorption below 1.1eV (0.6 to 0.8eV) related to the bandtail 

from thermal disorder and urbach bandtail from structural disorder. The thermal-

disorder related absorption comes from the phonon states in the crystals in the 

amorphous structure. [49] These disorders/ defects are common in crystal growth with 

mixed structure and occur in the boundary area between crystal and amorphous area. 

[50,51,52,53] Absorption at low energy was much depending on the dangling bonds, 
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when absorption at high energy related to the amorphous phase. [54] The carrier 

transport was suggested [44,47] to go through the crystalline path at the boundary, 

which often contained small crystallites. Reduced band-gap energy value refers to 

increased crystal phase in the amorphous structure and the ratio of amorphous and 

crystal phases and crystal size determine the band-gap energy. [54,55]  

 

 

 
 
Figure 5.11. optical absorption and band-gap energy for the three silicon materials, amorphous, 

micro-crystal and crystal. A mixed structure crystal phase follows much of the crystal curve. [52]  

 

 

The different plots of absorption coefficient against energy can be divided into three 

areas (figure 5.12.) such as extended states-to-extended states, tail states-to-extended 

states, and defect states-to-extended states. The extended-to-extended part refers to 

absorption at the highest energy, from excited electrons moving from valence band to 

conduction band. [43, 44,47] The band-gap value for thin film silicon will depend on 

structure content, when nanocrystal growth in the amorphous matrix will relate to a 

value between crystal silicon at 1.1eV and 1.8eV, when amorphous occur from 1.9 to 

2.2eV. [56] A mixed structure containing different crystal size had often band-gap 

values such as 1.1eV (nano-sized) and 1.6eV (micro-sized) together with amorphous 

value at 1.8eV. The band-gap values for the crystal became closer towards the 

amorphous value as the crystal became larger. [51,55] 
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Figure 5.12. illustrates how optical absorption can be divided into three areas due to different 

states in the material. [43]  

 

 

Experimental 

 

Optical transmission was measured with a Shimadzu spectrometer at wavelengths 

between 900 and 300nm. The standard optical transmission spectrum measurements 

of the microscope-slide glass were done with the incident light normal to the plane of 

the substrate and with the sample orientated in one given direction. Some comparisons 

at other orientations were attempted and some changes in optical properties were 

observed.  

 

 

 

5.4. Summary  

 

A process route for silicon thin film on woven polyester was established by combining 

process methods from both the textile and the semiconductor industry. The preparation 

of the textile substrate was based on conventional methods in today’s textile industry, 

while the thin film’s deposition was based on methods from the semiconductor industry 

such as evaporation, plasma enhanced chemical vapor deposition and RF-sputtering. 

The vacuum based semiconductor processes were unknown for the textile substrate, 

which resulted in much time spent on establishing the process methods allowing textile 

substrate to be used.  
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In the work of depositing silicon thin films, with different modifications to the film 

structure, the process recipe has been determined to make it possible to use a textured 

substrate such as woven polyester. Changes took place in the intrinsic silicon, 

encouraging crystal growth in the amorphous structure. An Orthogonal Statistical 

Design “Taguchi model” was one of the methods to decide which parameters 

encourage crystal growth. The Taguchi model had as its aim to introduce hydrogen as 

an attempt to increase crystal content in a process with a temperature restricted at 

~200°C. Other changes were introduced, such as a clean-break between the 

phosphorus-doped layer and the intrinsic layer, with altered process parameters of the 

three layers to encourage crystal growth in the intrinsic layer’s amorphous matrix. 

Doped layers had their parameters altered too, to increase the crystal content in each 

of the layers.  

 

Analytical methods have been addressed for analysing silicon thin film deposition and 

its surface, structure, electrical and optical properties together with thermal analysis of 

the textile substrate.  
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6. Results and discussion 

 

 

6.1. Introduction 

  

After experience, that woven polyester was damaged by using the process settings 

from a previous project, [1] much of the work became focussed on establishing process 

parameters, which allowed a textile substrate to be used and gain good properties for 

the silicon thin film. The aim was to produce a thin film with crystal content to gain a 

more durable structure, compared with the previous recipe which was amorphous 

content with potentially high light-degradation.  

 

Several modifications to the original process settings were done, but also an additional 

conductive layer was applied as support to the back contact. Conductive substrates 

were considered combined with different weave structure of polyester.  

 

Measurement of thin film properties on textile substrate proved more difficult than first 

anticipated due to the textured surface and the deposited coat charging up in scanning 

electron microscopy with usual beam power. Most standard analytical methods were 

discarded due to imaging or contacting difficulties. Electrical properties had first been 

pointed to be the main analytical tool, but soon discarded due to the much textured 

substrate. The textile was too uneven to provide a contact between the probes for I-V 

or four-point-probe measurement. The methods possible to use were Raman 

spectroscopy and light transmission, which became the standard techniques used to 

analyse the deposited silicon thin film.    

 

 

 

6.2. Textile for plasma process 

 

6.2.1. Introduction 

 

The work prior [1] to this project worked with substrates such as glass, silicon wafer 

and nonwoven web (60gsm thermal bond random fibre direction), which gave no 

problem to the plasma process. Later the nonwoven sample was tried again combined 

with the woven polyester and a slight change by relaxation and curled edges on the 
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web were experienced. This helped to conclude how an open and light web becomes 

less influenced than a heavier and denser weave. This helped also to address the 

problem with heat being trapped in the substrate. Different substrates were evaluated 

to identify the cause why sometimes the substrate melted at a process temperature of 

100°C below the polyester’s melting point (~256°C). [2] 

 

 

6.2.2. Different textile substrate 

 

Different polyester substrates such as plain and twill weave, nonwoven and film were 

coated with an intrinsic silicon film (silane, SiH4 rate 0.82sccm, argon, Ar 18.2sccm at 

200°C with a chamber pressure at 0.5Torr and Microwave power of 800Watts for 20 

minutes) to evaluate how different material structures, quality and yarn type affected 

the quality and structure of the deposited film. As many of the flexible thin films 

available on the market are based on polymer film [3,4,5], a polyester film (J&D Wilkie 

Ltd) was tried too.  

 

Twill weave was found to melt easier than plain weave due to its denser structure, 

which easily trapped heat through an increased area for etch and deposition on the 

fibre, filament and structure. [6,7,8] Twill was discontinued and instead the focus was 

on plain weave, which reduced the plasma penetration through the structure and the 

yarn. [6,9,10] Depth of gas species travelling through the textile structure depended on 

the gas species mean-free path and the space between yarn and filament, discussed in 

chapter 2, section 2.6. Too deep plasma penetration changed the bulk properties of a 

polymer, which this work did not target. The aim was to deposit on the filament, yarn 

surface without changing the polymer’s original bulk properties. 

It was experienced that polyester film was more heat sensitive than the plain weave by 

being deformed and melting. The nonwoven substrate used in previous work [1] was 

compared too, which was less affected than woven polyester, but did still show some 

change at the edges where the fibres bonded or melted. However, the open nonwoven 

web was not suitable as a substrate for silicon thin film solar cell, where the fibre 

orientation was too random and open to produce a working solar cell. 

 

Most of the different plain weaves (247gsm, 164gsm, 86gsm and 68gsm, supplied by 

J&D Wilkie Ltd) proved to be heat-sensitive by easily changing shape during the 

plasma process, while the original weave of 247gsm with 210 filaments in each warp 

and weft yarn proved to be the best option in relation to withstand the plasma process 
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without structural change. By comparing the different plain weaves (247gsm, 164gsm, 

86gsm and 68gsm) knowledge was gained on how a fabric’s weight and density 

influenced the fabric performance during the plasma treatment and the quality of the 

thin film deposition. Density was considered indirectly by the number of warp and weft 

yarns per centimetre; yarn thickness and structure, such as open or close weave, were 

considered. Fabric weight and yarn density proved not to have a major impact on the 

fabric performance during the plasma process or the properties of deposited film.  

 

The weave of 247gsm containing 210 filaments in both warp and weft yarn was 

evaluated against same weave structure with different yarn quality such as 

monofilament and spun yarn (staple fibre). The spun yarn being more textured required 

calendering (heat-treatment) at higher temperature to gain a smooth yarn surface, 

which led to a stiffer handle. The monofilament instead was heat-sensitive and melted 

as a result during the plasma process. The first option of weave structure 247gsm with 

210 filaments was still the best option, being the most stable.  

 

A possible change of structure towards melting can often occur as a domino effect, 

when one yarn starts to relax due to higher heat and the yarn beside changes due to 

the extra heat from the first change, which continues. The extra energy encourages the 

effect to develop and the area becomes larger with increased speed as it develops.    

 

 

6.2.3. Calendering of textile substrate 

 

The calender process was controlled by temperature and time, whilst pressure was 

constant (the weight of the lid of 4kg). A flat fabric surface was necessary, to gain a 

good coat and lamination performance. A good calender is defined by providing a 

fabric with a good bond and flat surface of warp and weft yarn and still be able to flex 

the substrate without breaking the bonds. Too much heat and time would instead give 

a too flat and stiff fabric handle, which would restrict the flexibility and produce a brittle 

substrate. The handle of a treated fabric was evaluated by flexing to observe eventual 

stiffness or break of a fibre. Temperature and time were set carefully to receive a good 

handle and coating adhesion. Different temperatures against time were evaluated to 

find best combination, which provided a flat surface with good adhesion, allowing 

flexing without damage to the coated substrate (table 6.1.). After run four, foil 

(aluminium) was added between the sample and the top and bottom plates, to avoid 

impurity. Adding the foil required some extra runs to verify the settings, when the heat 
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in the sample increased and permanent crease-marks from the foil were experienced in 

the polyester weave. The foil had to be placed carefully on the plate and substrate to 

avoid crease marks in the substrate. With increased temperature of the foil it stuck to 

the fabric, which made it necessary to set temperature as high as possible with a short 

process time to avoid melt of sample or foil.  

 

 

Table 6.1. Process settings used to calender the textile substrate. 

 

Trial run Temp., 
°C 

Time, 
min. 

Comments regarding outcome 

1 150 5 Some fibres melted partly, but overall the sample became 
too stiff.  

2 200 2 Neither smoothed the surface nor bonded at the cross of 
warp and weft yarn.  

3 220 2 Neither smoothed the surface nor bonded at the cross of 
warp and weft yarn.  

4 230 2 A slight stiffness due to a bond of warp and weft yarn, but 
still too soft.  

5     (foil)    200 5 Too soft after not receiving enough bonding. 

6     (foil) 220 5 Received a too stiff handle due to a good bond between 
warp and weft and partly melted. Foil stuck to the fabric. 

7     (foil) 240 5 Melted completely. Foil stuck to the fabric. 

8     (foil) 240 2 Stiff handle due to too well bonded between warp and 
weft and the foil stuck to fabric.  

9     (foil) 230 1 The bond between warp and weft was not enough, which 
left a too soft and flexible fabric. 

10   (foil) 260 1 Did melt the sample partly, but also too stiff handle.   

11   (foil) 240 1 Bonding enough for providing a smooth surface and 
enough stability in the fabric to withstand the plasma. 

 

 

Initial test at 150°C resulted in partly melting the textile, which led to reduced time with 

increased temperature to allow the calendering effect being on the fabric surface and 

not through the textile bulk. Process condition of 1 minute and 240°C gave a good 

bond (filament, yarn and fabric) allowing plasma process without damage to the 

substrate and a good handle to provide a flexible product. Calendering the standard 

polyester weave of 247gsm (210 filaments in each warp and weft) was established as 1 

minute at 240°C.  
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6.2.4. Heat evaluation of textile substrate 

 

With occasional damage of the substrate occurring during the plasma process, tests 

were carried out to understand the cause of a textile sometimes being partly or 

complete melted. These tests were devised, such as argon-clean before plasma 

process of n-i-p-layer deposition, heat-gun, temperature-sticker and drying procedure 

of sample before plasma process.   

 

- Argon-plasma was used to clean the chamber and substrate. Plasma clean 

with hydrogen is common in the semiconductor industry, but due to problem with 

excessive hydrogen, argon plasma was used here. Argon-plasmas (Ar rate at 

18.2sccm) of 5 and 20 minutes were compared and after no difference in quality was 

observed, 5 minutes was chosen. Subsequently, this was later discarded after no 

difference was noticed and a concern was raised, that traces of argon left in the 

substrate or in the chamber supported a growth of amorphous structure.   

 

- Thermal test was an attempt to understand the cause to damaged textile 

during plasma process. Hot-air was applied onto the face and back of the woven 

polyester to reconstruct possible heat-flow in relation with the textile substrate during 

plasma process. This test made it possible to identify the direction of the heat-source in 

relation to the deformation and melt caused by the excessive substrate temperature. 

Heat from above pushed the sample down and produced craters and waves, when 

heat from behind raised the fabric as shown below (figure 6.1.). The deformation in a 

textile could be in certain areas or to the complete substrate (textile). A difference 

between light and heavy weave was experienced, when lighter weave was less stable 

and easier to change.  
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Figure 6.1. the left picture is hot-air applied from below, while right refers to heat applied above.  

 

 

This helped to confirm the formation experienced during the plasma process (figure 

6.2.). The excessive heat source from above was explained as being caused by a 

surface reaction, when the damage caused by heat from the back was more difficult to 

address.  

 

 

 
 

Figure 6.2. the two fabrics to left were damaged during a plasma process and had a typical 

combination with partly melted and untouched areas, while the right image is plasma treated 

textile without melt effect. 

 

 

- Temperature-stickers were used to measure the temperature on the substrate 

surface, which helped establish the actual surface temperature. The temperature-

sticker was placed on the substrate surface, which faced the plasma. Each sample had 

stickers in a temperature range from 150°C to 280°C to cover a large possible range of 

temperature. This test helped to establish that the front surface temperature was much 

higher than the displayed temperature from the thermocouple in the substrate-holder. It 

was found that a specific run with set and displayed temperature of 180°C had an 

actual surface temperature reaching ~240°C.  
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Several tests were carried out with the same conclusion, that the peak surface 

temperature was much higher than the displayed one. With the thermo-couple not 

registering this change, this indicated that the temperature change was locally on the 

surface and not in the substrate. The excessive heat experienced on the substrate 

surface was later explained as trapped moisture (surface facing substrate plate/ heater) 

and exposure to active hydrogen species (surface facing plasma).  [11] Trapped 

moisture is a common problem [11] with textiles in vacuum processes. During 

evacuation of air from the chamber, the textile side facing the chamber has all moisture 

evaporated, whereas moisture at the back of a material was trapped between it and the 

substrate plate. The remaining moisture helped to increase the temperature, which 

caused the substrate to melt. The main issue with this work was caused by the natural 

moisture content of the textile, but also a contribution from the water-based conductive 

coat (polyaniline). 

 

An attempt to avoid moisture in a sample was to implement a drying procedure 

between the metal evaporation and plasma processes. The sample was dried at 

~100°C for 3 hours and thereafter stored in desiccators, which helped to minimise the 

risk of trapped moisture in the textile substrate and damage of the substrate during the 

plasma process.  

 

 

 

6.3. Conductive option to support the back contact 

 

6.3.1. Introduction 

 

The evaporated aluminium proved too thin to provide a uniform cover on the rough 

surface of the textile substrate, which led to poor conductive properties. A thicker 

aluminium layer was not an option, as this would stiffen the substrate and introduce 

cracks during flexing of the substrate. To solve the problem different options were 

considered such as conductive substrates or additional coating layers.  

 
 

6.3.2. Conductive substrate, material 

 

The conductive substrates were prepared in the same way as plain polyester weave. 

The nickel etched mesh was an exception since it had already been treated prior to the 
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etch. The woven copper band (Federal Mogul) was too thick to calender. It was found 

that conductive substrates and especially woven ones were more heat-sensitive than 

polyester weave (240°C for 1 minute), which led to reduced temperature of 220°C for 1 

minute (table 6.2.). The AmberStrand qualities withstood 240°C for 1 minute without 

being damaged, which can be due to the loose filament not being connected into a 

structure with trapped heat, which close weave experienced. Each quality was plasma 

treated twice, one sample with and without calender effect. All samples were plasma 

processed with same condition (silane, SiH4 rate 0.82sccm, argon, Ar 18.2sccm, 

200°C, 700W, 20 minutes at 0.5Torr). No difference between with or without calender 

were found, the sample performance were the same during the plasma process (table 

6.3.).   

 

 

Table 6.2. Calender parameters and performance for the conductive substrates which were 

evaluated.  

 

Test run  Textile Supplier, quality Fabric performance 

1 AmberStrand®-Z-33-Ni  No visible change, slightly stiffer strand. 

2 AmberStrand®-Z-166-Ag No visible change, slightly stiffer strand. 

3 Kuraray, Clarcarbo (280gsm) 240°C- too high, the sample got too stiff and 

(partly) melted.  

220°C- the sample shrunk and got stiffer due 

to the uneven surface.  

4 Technical Fibre Products, Carbon 
veil (30gsm) 

With calender- slightly stiffer 

5 Without calender- N/A 

6 Technical Fibre Products, Carbon 
veil (80gsm) 

With calender- slightly stiffer 

7 Without calender- N/A 

8 Ugitech, Sprintiss (300gsm) Sample shrunk a lot due to a very open 

weave structure 

9 Neltec, nickel etched screen 
mesh (440gsm) 

N/A 

10 Federal Mogul, woven polyester 
(1320gsm) with conductive yarn, 
DEW06090804.   

N/A 

11 Federal Mogul, woven polyester 
(1320gsm) with conductive yarn, 
DEW06090805.   

N/A 
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Table 6.3. The conductive substrates during the plasma process.   

 

Test run  Outcome from the Plasma process 

1 & 2 

AmberStrand 

Possible to treat, but difficult to get a uniform tension of the strand attached to 

a microscopic-slide glass. The poor tension* of the strand on the slide resulted 

in poor deposition. The microwave power source had a high reflectivity of 38% 

during the process. This applied to the two qualities.   

3 

Kuraray 

The weave shrunk even further during the plasma process, which led to a very 

uneven substrate. This quality was very sensitive towards heat, when it either 

changed shape, or melted partly or completely during the plasma process.  

4- 7 

Technical 
Fibre 

Products 

No difference between with or without calender, except sample with had a 

slightly thinner deposition. No difference between the two weights was found or 

problem during the plasma process was experienced. A disadvantage, the 

surface contained loose fibres even after calender, which caused breaks in the 

deposit. 

8 

Ugitech 

The weave structure was too open, which resulted in an unstable process and 

poor deposition quality.  The open weave withstood the plasma process, but 

with too open weave structure to deposit a working solar cell. The microwave 

power source had a high reflectivity of 40% during the process.   

9 

Neltec 

The screen-mesh with etched nickel (Neltec) melted completely during the 

plasma process, even when the process temperature was far below polyester’s 

melting point. 

10& 11 

Federal 
mogul 

The copper weave was possible to deposit. The problem was instead, with no 

calendered surface and very textured and open weave, this substrate was 

difficult to use.   

  

 

None of the conductive materials were considered for future work. 

 

 

6.3.3. Conductive substrate, coating 

 

The other option was a conductive support layer to the non-conductive textile, which 

would smooth the textile surface and give conductive properties to the textile and 

enhance the thin aluminium layer. Many of the conductive products and coating 

methods used in the electronic/ semiconductor industry were not suitable for textile 

substrates. 
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The two options were considered: 

- Quick Drying Silver Paint (G3691, Aldrich) by painting directly onto the textile;  

- Polyaniline (Panipol OY) by “direct-coat” on the textile. 

 

Silver paint was brushed onto the substrate and with a larger area to paint than the 

width of the brush resulted in a very non-uniform coat. Another disadvantage with the 

paint was recommendation of being air-cured, which led to moisture in the coat and 

melting during the plasma process. The moisture raised the substrate temperature and 

damaged the substrate. Silver paste was also considered to replace evaporated 

aluminium, but was discarded after experiencing trapped moisture and other problems 

occurring during the plasma process.  

 

Even though polyaniline coat had high resistance ~200k Ohm, the conductivity in the 

coat was enough to support the evaporated aluminium. Polyaniline coated polyester 

weave (plain weave of 247gsm) with evaporated aluminium as a second coat was 

chosen for future runs. [12]  

 

The recommendation was to minimise the use of water and thickening agent in the 

polyaniline mix, when these two ingredients reduce the conductive properties. The 

curing temperature and time were not to be above 124°C for more than ~20 minutes, 

when this would reduce the conductivity. However, no recommended combinations of 

temperature and time were given.  

 

It was experienced in lab-scale that a batch of 5 or 10 grams was easier to mix with the 

recommended amount of thickening agent, 10% of a batch weight. Batch sizes larger 

than 10g became more difficult to mix, when the percentage of thickening agent 

required to be changed. Most batches mixed were based on 5g, which gave a good 

viscosity, coating performance and easy cure with a good conductivity.  

 

The sample weight was checked from loomstate to coated substrate by using a sample 

by 5cm x 5cm: loomstate of 250gsm, washed and calendered at 356gsm and coated 

became 371.2gsm. The increase in weight during wash refers to the mechanical 

movement of the fabric and yarn, which make the fibres relax and shrink from earlier 

fixed position. 

 

Coat by hand made it difficult to control the pressure applied onto the substrate and 

coat, which reflected on coat thickness and overall handle such as flex of coated 
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substrate. Too thick a coat resulted in a problem during the evaporation, when the 

samples become easily “burned”. Polyaniline (Panipol OY) in vacuum proved being 

more heat sensitive than the polyester weave. Changes in process parameters were 

required to avoid the polyaniline coated surface being damaged during exposure to 

thermal heat source during the plasma process or radiative source during the 

evaporation. 

 

The resistance in coated samples (5 x 5cm) was measured by ohmmeter after the 

coated sample was left for 24 hours. Measurement was across the sample and 

categorised by the distances such as short <2cm and long >2cm and a common 

resistance was 60±10Ω for short distance and 110±10Ω for longer. 

 

 

Evaporation 
 

It was found that the polyaniline coated substrate was occasionally burned (figure 6.3.) 

during evaporation, which led to recommendation of reduced evaporation time from 5 

to 3 minutes or less depending on coat thickness. With no instrument to measure the 

thickness of evaporated aluminium, thickness was estimated by observing the 

aluminium deposit on the chamber window. The “burned” areas on the coated 

aluminium appeared either as grey, black or soot patches which depended on the 

grade of damage. This was named as “carbonised” areas, which exhibited very high 

resistance with very little or no current flow. 

 
 
 

 
 

Figure 6.3. the left sample shows an example of burned area, which occasionally occurred with 

extended process time. This compared (right) with a non-damaged aluminium evaporation.  
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Plasma Process 
 

Polyaniline coated textile showed problems with the plasma process by melting at a 

temperature and process parameters used previously for uncoated textiles. The 

process time and temperature required to deposit n-i-p-layers were much longer and 

higher than recommended for polyaniline. Conductivity was measured before and after 

the plasma process and it was found that polyaniline coated areas exposed to plasma 

activation became non-conductive. However, adjacent areas covered by evaporated 

aluminium were still conductive. Restriction of conductivity was turned to an advantage 

as it would increase the performance of adjacent cells by confining the current flow to 

the intended cell area.  

 

 

 

6.4. Plasma process on textile substrate 

 

6.4.1. Plasma process, chamber pressure 

 

At the beginning of this project large fluctuations of temperature during the plasma 

process were experienced. These fluctuations were not removed by altering the 

different gas flows, so the chamber pressure was then considered. The initial chamber 

pressure was 0.3Torr, which was compared with 0.5Torr and 0.75Torr in an attempt to 

reduce reaction rate and control the temperature. At 0.3Torr, the reaction rate 

increased, and at 0.75Torr the numbers of excited species were reduced and resulted 

in too slow plasma environment. A chamber pressure of 0.5Torr gave a combination of 

excited plasma and sufficient control of substrate temperature. During the evaluation of 

chamber pressure it was found that 0.3Torr produced much stiffer substrate handle 

than 0.75Torr, which was softer. Hence, a pressure at 0.5Torr was used for the future 

runs.  

 

 

6.4.2. Initial plasma process of intrinsic layer  

 

After the initial plasma treatment with known settings (hydrogen 20sccm, silane 

1.02sccm, chamber pressure 0.3Torr, power 800W, 20 minutes, 200°C) [1] resulted in 

damaged textile, the focus was to find settings to allow the polyester weave to be 
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plasma treated. The temperature of 200°C was set with consideration of the textile 

substrate. The different parameters were tried in different combination. 

- process temperature (from 150°C to 200°C),  

- process time (10, 15 and 20 minutes),  

- hydrogen, (2 and 20sccm),  

- silane, (0.29, 0.49, 0.71, 0.82 and 1.14sccm),  

- power of 800W,  

- process pressure at 0.3Torr. 

 

Damaged substrate was still experienced with the different combinations. The 

breakthrough came after discovering the textile substrate withstood argon-plasma (Ar 

18.2sccm, 800W, 0.5Torr for 5, 10, 20 and 30 minutes at 200°C) without being 

damaged. The argon-plasma became used as reference plasma where each 

parameter of silane, hydrogen, power, chamber pressure and time was added 

separately to address the problem.   

- silane from 0.29, 0.49, 0.71, 0.82 to 1.14sccm,  

- hydrogen from 2 to 20sccm,  

- process temperature from 150°C to 200°C,  

- process time of 10, 15 and 20 minutes,  

- microwave power of 400, 500 and 800W,  

- chamber pressure at 0.5Torr. 

 

This helped to conclude, that: 

- a combination with argon and silane rate up to 0.82sccm, temperature up to 

200°C for a maximum time of 20 minutes with a power up to 800W did not 

damage the substrate. 

- with increased silane rate of 1.14sccm, power was limited to 400 and 500W to 

avoid damage.  

- additional hydrogen did cause damage to the substrate.   

 

This meant that larger quantity of hydrogen damaged the textile. This resulted in argon 

replacing hydrogen in an attempt to reduce the hydrogen content to only that from 

decomposed silane and that from hydrogen diluted diborane (B2H6) and phosphine 

(PH3) mixtures used for doped layers. Continuous work was run by a silane and argon 

mixture (Ar 18.2sccm, SiH4 0.82sccm) with altered temperature (200°C and 210°C), 

time (10, 20 and 30 minutes) and power (600, 700 and 800W) to try to improve 
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deposition quality. The different settings with the silane and argon mixture helped 

conclude the following.   

- extended process time to 30 minutes required a power at 600W or less to avoid 

the substrate being damaged.  

- process temperature at 210°C was possible with a power of 700W or less without 

damaging the substrate.  

 

A silane rate of 0.82sccm made it possible to process at 210°C for 30 minutes with 

600W without damaging the substrate.  

 

The earlier test was summed up in respect of not damaging the substrate. 

- A “power barrier” between 700W and 800W was experienced, when 800W was 

restricted to use of very low silane flow and temperature whereas 700W permitted 

running with higher silane flow and temperature without damaging the substrate. 

- Although 700W meant a restriction to 20 minutes in process time, 600W allowed 

extended time. 

   

To avoid the substrate being damaged a combination of either: 

- Low silane (<0.82sccm) with high power (>700W),  

- High silane (>0.82sccm) with less power (<700W).  

 

Reduced power allowed increased silane rate, extended process time and higher 

process temperature.  

 

In respect to quality of deposition:  

Low process temperatures (below 200°C) gave a high amorphous content with a 

powdery appearance, while increased process temperature (above 200°C) still 

contained amorphous silicon, but the powder was reduced. A silane rate of 0.82sccm 

combined with high temperature (above 200°C) and power (700W) gave less 

amorphous content, but increased the risk of damaged textile. The advantage of power 

at 700W or above was reduced powder deposition, but also a very thin film, whereas 

less power (700W) increased the risk of forming a powdery film.  

 

A careful balance of silane rate according to the hydrogen quantity, power and 

temperature were required to allow the textile to be treated and to avoid a powdery 

deposition. The three parameters such as hydrogen content, temperature and power 

responded directly to a higher substrate temperature. Higher power and temperature 
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increased the number of active hydrogen species, which resulted in a higher surface 

activation such as dangling bonds and etching of the surface. Increased activity 

resulted in higher energy on the substrate surface followed by a higher substrate 

temperature.  

 

An etch-effect is often related with hydrogen but was also experienced with argon. 

When the argon and silane mix was used, the presence of argon produced an etch-

effect.  

 

 

6.4.3. Plasma process, intrinsic layer, Taguchi model  

 

Even after all modifications, a high amorphous content with a very powdery film was 

experienced. These runs proved how hydrogen was necessary to get crystal growth. 

The attempt to introduce hydrogen was through an Orthogonal Statistical Design, 

Taguchi model.    

 

 

Taguchi model, process  
 

Knowledge how power, temperature and hydrogen content influenced substrate and 

deposition helped to decide the values to use. With earlier experience of how 

temperature, time and power needed balancing, the power was kept low with a 

maximum of 500W. The Taguchi model was designed by introducing hydrogen as a 

ratio against argon, (hydrogen/ argon of 20/0, 17/3, 14/6 and 10/10sccm) against silane 

rate (0.10, 0.51, 1.02 and 2.04sccm) and power (200, 300, 400 and 500W). These 

values were combined with fixed parameters such as substrate temperature at 200°C, 

deposition time of 20 minutes and chamber pressure at 0.5Torr/ 0.66mbar, which gave 

a total of 16 runs (table 6.4.).  
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Table 6.4. The Taguchi model and its parameters and settings combined with fixed temperature, 

time and pressure.  

 

No. of 
Runs 

Flow rate, sccm Power, 
Watt 

SiH4 H2/ Ar 

1 0.10 20/0 200 

2 0.10 17/3 300 

3 0.10 14/6 400 

4 0.10 10/10 500 

5 0.51 20/0 500 

6 0.51 17/3 400 

7 0.51 14/6 300 

8 0.51 10/10 200 

9 1.02 20/0 200 

10 1.02 17/3 300 

11 1.02 14/6 400 

12 1.02 10/10 500 

13 2.04 20/0 200 

14 2.04 17/3 300 

15 2.04 14/6 400 

16 2.04 10/10 500 

 

 

During the growth programme, it was observed that a plasma power of 200W was too 

low to ignite the plasma. Run 8 (SiH4 0.51sccm, H2/ Ar ratio 10/10sccm with 200W and 

fixed parameters) was the only one to ignite, when run 1 (0.10, 20/0) needed 250W 

and run 9 (1.02, 20/0) and run 13 (2.04, 20/0) required 300W. This statistical design 

proved the possibility of processing with hydrogen and nucleating crystal growth into 

the amorphous matrix.  

 

Substrate temperature was considered as an influence, but most Taguchi runs were 

processed at 200+2°C and further experimental runs were needed. Only a few runs 

experienced temperature fluctuation and unstable process condition and the 

parameters involved were SiH4 rate of 1.02 and 2.04sccm, H2/ Ar ratio of 20/0, 17/3 

and 14/6sccm and power of 300 and 400W.  
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Analysis of the Taguchi thin film 
 

Different methods were used to analyse the deposited film. Initially, all depositions 

were compared visually for thickness and uniformity by grouping them by appearance 

and process parameters. Raman spectroscopy was later used to identify the structure 

content on deposited substrates such as aluminium and textile. Generally, the textile 

had higher amorphous content than aluminium, which had higher crystallinity.  

 

Different ways of analysis the Raman peaks were tried such as consider the recipes 

and the structure content in the two substrates.  

 

 

Visual  

 

The visual evaluation was by judging a sample by its appearance, such as powdery or 

etched, against parameters such as silane flow, H2/ Ar ratio and power in an attempt to 

identify how the parameters influenced film properties such as the etch effect, 

thickness and powder.  

 

Silane rate: Rate of 0.10sccm was too slow, giving very thin films, whereas 0.51sccm 

improved the film by being slightly thicker. Silane rates of 1.02sccm or more gave films 

that were too powdery. The different silane rates are compared in figure 6.4.. 

H2/ Ar ratio: Ratios of 20/0 and 10/10sccm gave too high etch rate, whereas 17/3 and 

14/6sccm showed dominance towards neither etch nor powder. 

Power: Power showed an indirect influence for the bonding properties, which were 

improved by higher power. 

 

 

  

Figure 6.4. Deposition visually changed in thickness with increased silane rate (0.10, 0.51, 1.02 

and 2.04sccm), when image to the left (0.10sccm) has very thin deposition compared with the 

films to follow, which have higher silane rate (0.51, 1.02 and 2.04sccm moving to the right). All 

samples had H2/ Ar ratio of 17/3sccm.  
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Raman spectroscopy  

 

Deliberately no baseline was fitted, which allowed any background such as amorphous 

and vibrational modes related with nanocrystal structure to be considered. Both 

substrates of aluminium and fabric were analysed against silane rate (0.10, 0.51, 1.02 

and 2.04sccm), hydrogen/ argon ratio (20/0, 17/3, 14/6 and 10/10sccm) and microwave 

power (200, 300, 400 and 500W) with aim of identifying parameters’ influence on 

growth. Each of the samples (textile and aluminium) and runs were measured twice as 

a standard procedure, but in case of the measurement not showing a correlation further 

measurements were done. 

 

Different analytical approaches were applied to try to understand the relation between 

1st, 2nd and 3rd Raman peak and peak location, height and width in relation to process 

parameters used. On way was to use the data from the spectra for the 1st, 2nd and 3rd 

peak and plot both in 2D and 3D graphs to identify the parameters related to certain 

structural development such as amorphous or a strong growth of crystals. The 2D and 

3D graphs did not provide a clear picture of structural content and process parameters. 

Instead, the ratios of crystallinity against amorphous were considered for the three 

main Gaussian peaks in the Raman spectra (table 6.5.). Both fabric and aluminium 

(table 6.5.) samples were considered and the amorphous and crystal fractions were 

based on an average of two readings per sample run and quality. The amorphous and 

crystal fractions against different parameters were plotted in the figures below (figure 

6.5.; figure 6.6.; figure 6.7.; figure 6.8.; figure 6.9. and figure 6.10.).  

 

The area of each peak against the total peak area was compared by using the 

formulation:  

1st peak, amorphous= a/ (a+ C1+ C2)*100 

2nd peak, intermediate= C1/ (a+ C1+ C2)*100 

3rd peak, crystal= C2/ (a+ C1+ C2)*100  
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Table 6.5. Amorphous and crystal content for aluminium and textile substrates.  

 

Sample 
run 

 

Amorphous and crystal fraction, % 

Aluminium Textile 

1st 2nd 3rd 1st 2nd 3rd 

1 45 25 30 43 27 30 

2 69 16 15 7 58 35 

3 52 34 14 38 52 10 

4 50 32 18 44 30 26 

5 34 35 31 48 28 24 

6 40 38 22 62 16 22 

7 39 50 11 50 30 20 

8 35 38 27 48 33 19 

9 40 32 28 30 53 17 

10 27 21 52 30 42 28 

11 38 46 16 43 32 25 

12 30 56 14 53 30 17 

13 13 15 72 38 37 25 

14 32 24 44 36 32 32 

15 27 23 50 42 27 31 

16 34 60 6 36 30 34 
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Figure 6.5. Amorphous fraction of deposited film on aluminium substrate. 

 
 
 

 
 
 
Figure 6.6. Crystal fraction regarding the intermediate peak (C1) of deposited film on aluminium 

substrate. 
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Figure 6.7. Crystal fraction regarding the crystal peak (C2) of deposited film on aluminium 

substrate. 

 
 
 

 

 
 
Figure 6.8. Amorphous fraction of deposited film on textile substrate. 
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Figure 6.9. Crystal fraction regarding the intermediate peak (C1) of deposited film on textile 

substrate. 

 
 
 

 
 

Figure 6.10. Crystal fraction regarding the crystal peak (C2) of deposited film on textile 

substrate. 
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A correlation between amorphous and crystal fractions against process settings (silane, 

hydrogen and argon rates, and power) was found in the aluminium sample, while textile 

substrates had limited correlations. 

 

The intermediate peak (2nd peak, C1) of aluminium substrate had increased crystal 

growth with increased argon rate and power and reduced hydrogen. The 3rd peak 

(crystal peak, C2) of the aluminium substrate did have an opposite relation to the 

parameters, when reduced argon and power with increased hydrogen and silane gave 

a higher crystal fraction. In the aluminium samples, the amorphous content became 

reduced with increased flow-rate of silane.  

 

Textile did show a small indication of reduced amorphous content by increasing the 

silane rate. The intermediate peak (2nd/ C1) showed that increased power did reduce 

the crystal content. However textile samples did contain less crystal fraction than the 

aluminium samples. 

 

With focus on textile in this work and the aluminium performing differently from the 

textile, still little knowledge was gained regarding the parameters and their influence on 

crystal growth on the textile substrate. However, by putting all the Raman spectra 

against different process parameters to understand possible “trends” some conclusions 

were possible.   

 

 

Raman peaks related with different process parameters 

 

Links between silane flow-rate and peak location were found, when increased silane 

rate gave lower wavenumber peaks. This correlation was possible to establish by 

considering peak width, after previous trials with peak location, peak area (or intensity) 

gave no clear link to the parameters. However, a link between peak widths and their 

locations and silane rate was found too, when linked with other parameters such as 

hydrogen/ argon ratio and power were less clear. 

 

Silane rate, less silane rate (0.10sccm) gave sharpest and most uniform crystalline 

peak whereas 0.51, 1.02 and 2.04sccm gave a broader peak with more amorphous 

content as the silane rate increased. (figure 6.11.) 
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Figure 6.11. structure content and peak location for the different silane rates.   

 

 

Silane rate was found to influence crystal structure and crystal size. A rate below 

1.02sccm increased crystal content, when silane rate above 1.02sccm encouraged a 

larger crystal size. While a rate as low as 0.10sccm contained mainly nanocrystal 

structure. Low silane rate (0.10sccm) gave high etch effect and low growth rate with 

high power (400/ 500W).  

 

Hydrogen/ argon ratio, ratio of 20/0 and 10/10sccm received a similar high 

amorphous content for both substrates (aluminium sheet and fabric) (figure 6.12.), 

while ratios of 14/6 and 17/3sccm showed a substrate dependence. The 14/6sccm ratio 

gave a higher peak location with aluminium than fabric, when 17/3sccm gave opposite 

effect (figure 6.12.).  
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Figure 6.12. The runs which became most amorphous and most crystalline in relation to H2/ Ar 

ratio. The parameters for each run are found in table 6.4. 
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Power, the influence of power was more difficult to define (figure 6.13.). However, a 

review of power helped to conclude, that powers of 200 and 300W gave a low peak 

intensity compared with 400 and 500W, likely to be a sample thickness effect. The 

vague trend of power could be due to the low maximum of 500W, when later trials with 

increased power (>500W) gave a stronger influence. Especially low power of 200W 

resulted in higher amorphous content with a textile substrate, while the diagram of 

crystal fraction (figure 6.9. and 6.10.) indicated that reduced power usually increased 

the crystal fraction. It was experienced how a high content of hydrogen compensated 

low power (200W) by still producing a crystalline structure.    
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Figure 6.13. The effect of power in run 5 with 500W, run 6 with 400W, run 7 with 300W and run 

8 with 200W. Highest power has not necessarily the highest peak location, which is due to 

influence of other parameters.     

 

 

It was established, that aluminium and textile performed differently. Aluminium had 

most of the time, a higher silicon growth rate than textile, on which peak intensity was 

halved. Another distinction was how aluminium produced larger crystal growth with a 

higher rate of argon, when silicon on fabric instead becomes amorphous. However, run 

5 (SiH4 0.51sccm, H2/Ar ratio 20/0sccm and 500W) resulted in very similar structure for 

both aluminium and fabric in figure 1, Appendix XIII.  
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Structure development  

 

An attempt was made to compare and summarise the structural content for each 

sample and run. The samples (aluminium and textile) were grouped, by structural 

content such as amorphous (a), nanocrystal (ηc) and microcrystal (μc) against the 

process setting with silane rate (SiH4), hydrogen flow (H2) and power. This helped 

identify the parameters required for certain structural content. 

 

The first summary (table 6.6.) was related to the samples (aluminium and textile) with 

same structural content. This helped to identify process parameters which had a more 

stable process condition, more uniform deposition and greater chance of repeatability. 

The recipes with higher crystal content were selected for further trials.  

 

 

Table 6.6. Process parameters, which led to same structure content for the two substrates.  

 

a a a a a+ηc a+ηc ηc+µc ηc+µc

SiH4, sccm 1.02 1.02 2.04 2.04 0.51 0.51 0.102 0.102

H2, sccm 20 20 10 20 20 14 17  20 

Power, W 400 300 500 300 500 300 250 250

Structure Development for both Aluminium and TextileProcess 

Parameter:

 

 

 

The second summary (table 6.7.), the samples containing two different structures were 

considered, which helped to understand possible ways of structural growth. These 

values were based on two measurements from each kind of sample (aluminium and 

textile). By adding the two structures, it was possible to understand the development 

route and different growth options.  
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Table 6.7. Process parameters from the Taguchi model resulting in different structural content.  

 

Structure Development 

Fabric, plain polyester weave Aluminium, plain sheet 

Structure 
SiH4, 

sccm 

H2, 

sccm 

Power, 

W 
Structure Structure 

SiH4, 

sccm 

H2, 

sccm 

Power, 

W 
Structure 

a 1.02 17 300 a+µc a 1.02 17 300 a+ηc 

a 1.02 14 400 a+ηc a 2.04 14 400 a+ηc 

a 2.04 17 300 a+ηc a+ηc 0.51 14 300 ηc 

a 2.04 10 500 a+ηc a+ηc 1.02 14 400 ηc 

a+ηc 0.10 20 250 ηc+ µc ηc 0.51 10 300 a+ηc+µc 

a+ηc 0.51 14 300 ηc+ µc ηc 1.02 10 500 a+µc 

a+ηc 1.02 10 500 ηc+ µc ηc+ µc 0.10 17 300 a+ηc+µc 

ηc+ µc 0.10 10 500 a+µc µc 0.10 14 400 a+µc 

 

 

The two earlier conclusions (table 6.6. and 6.7.) helped to predict a development of a 

structure and the parameters required for certain structures such as amorphous, 

nanocrystal and microcrystal structure. The summary helped to establish and explain 

how a growth started with amorphous and developed into nano/ ηc- or micro/ μc- 

crystal, shown  

in table 6.8.. Microcrystal growth was suggested to develop either through a strong 

nanocrystal structure by annealing effect into larger crystals or forming larger crystals 

directly in the amorphous structure. All films started with an amorphous structure, 

which became less in its content as crystal growth started. Some process parameters 

led to the structure stopping at nanocrystalline. 

 

 

Table 6.8. possible development routes for crystal growth in an amorphous matrix.  

 

a → a+µc 

    a → a+ηc → ηc+ µc ↔ a+µc 

     
↔ a+ηc+µc 

  

a+ηc → ηc ↔ a+µc 

     
↔ a+ηc+µc 

 

 

 



 

181 
 

Raman peak width 

 

A narrow peak width would point towards a crystal structure with less stress and the 

most narrow peak width for aluminium was produced by 0.10sccm silane flow, whereas 

fabric had two similar peak-width values, with 0.51sccm as most narrow followed by 

1.02sccm. This proved that textile had highest crystal growth between 0.51 and 

1.02sccm silane flow-rates and confirmed what had been believed and practised 

earlier. The diagrams below (figures 6.14. and 6.15.) are based on average peak width 

and location for each silane rate (0.10, 0.51, 1.02, 2.04sccm).  

 

Peak location and peak width are related in the manner of lower wavenumber tending 

to have broader peaks and vice versa. Changes in peak width are related to the 

amount of amorphous versus crystal content, when increased width is related to higher 

amorphous content and increased stress. For aluminium, stress did not reduce until the 

peak position reached 515cm-1, which indicated larger crystals. Textile did not provide 

a simple trend, which indicated more parameters influenced the structural content and 

level of stress on this type of substrate.  

 

 

 

 
Figure 6.14. peak location and width related with silane rate for aluminium.  
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Figure 6.15. peak location and width related with silane rate for textile.  

 

 

6.4.4. Plasma process, intrinsic silicon, after the Taguchi model 

 

After establishing how the parameters of gas-rate and mixtures related with power and 

how they influenced film growth, the next step was to look at the fixed Taguchi 

parameters such as deposition time and substrate temperature.  

 

 

Deposition time 

 

Experiments done before the Taguchi set of silane/ hydrogen/ argon were based on an 

argon and silane mixture. Plasma process (silane/ argon) of 10 and 20 minutes had 

showed how peak location changed to higher wavenumber by enhanced deposition 

time. While plasma process based on silane/ hydrogen/ argon experienced an opposite 

effect by the peaks moving towards lower wavenumber with increased process time.  

 

Deposition times of 5 and 30 minutes with run 16 conditions (SiH4 2.04sccm, H2/ Ar 

ratio 10/10sccm, 500W, 200°C, 0.5Torr) were processed and compared with the 

Taguchi run of 20 minutes to understand how time influenced structure growth. Raman 

spectroscopy helped to decide, that 5 minutes gained highest crystal content, while the 

other two runs behaved very similarly by getting a higher amorphous content in figure 

2, Appendix XIII. Later further trials were carried out with a process time up to 60 

minutes and depending on time and temperature the amorphous content was altered in 

figure 3, Appendix XIII. Due to the parameters of run 16 leaving a lot of powder 

deposition in the chamber after each run, this recipe was discarded for future runs. 

Instead the Taguchi ratios of 17/3sccm (run 10) and 14/6sccm (run 11) were used.  
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These two hydrogen/ argon ratios 17/3sccm (run 10) or 14/6sccm (run 11) were 

combined with different silane rates (0.61, 0.82 and 1.02sccm), process temperature at 

200°C and a power of 700W for either 20 or 30 minutes as an attempt to optimise the 

crystal content on textile substrate (table 6.9.).  

 

 
Table 6.9. silane rate and time were altered as a suggestion of increased crystal content. The 

outcome relates to fabric performance, if it withstood the plasma process without being 

damaged or not. 

 

SiH4, 
(sccm) 

H2/Ar, 
(sccm) 

Pressure, 
(Torr) 

Power, 
(Watt) 

Temp., 
(°C) 

Time, 
(min.) 

Outcome 

0.61 17/3 & 14/6 0.5 700 200 20 & 30 20min- OK 
30min- Not OK 

0.82 17/3 & 14/6 0.5 700 200 20 & 30 20min- OK 
30min- Not OK 

1.02 17/3 & 14/6 0.5 700 200 20 & 30 20min- OK 
30min- Not OK 

 

 

The outcome of the two hydrogen/ argon ratios was much the same as the one using 

argon, before the Taguchi trial. The silane rate of 0.82sccm was found to be the best 

after getting neither too slow growth nor powdery film. The rate of 0.62sccm resulted in 

too low deposition rate, while 1.02sccm encouraged amorphous growth. This helped 

recognise, that power of 700W was not possible to run for more than 20 minutes, the 

textile became damaged by 30 minutes. A difference between the two H2/ Ar ratios was 

found, with 17/3sccm (run 10) giving smaller crystals growth than 14/6sccm, which 

gave larger crystals. Smaller crystals were of more interest in the textured substrate, 

which led to more focus on settings of run 10.  

 

Silane rate of 0.82sccm became the standard rate combined with Taguchi run 10 

(silane, SiH4 of 0.82sccm, hydrogen/ argon H2/ Ar ratio of 17/3sccm, 200°C) and 11 

(silane, SiH4 of 0.82sccm, hydrogen/ argon H2/ Ar ratio of 14/6sccm, 200°C) with a 

power of either 600W with a process time extended beyond 20 minutes or 700W with 

process time limited at 20 minutes.  

 

With introduction of polyaniline coated textile it was necessary to reduce the power to 

600W, when the conductive coated textile proved not to withstand a power above 

600W due to the polyaniline being heat-sensitive and melting. With introduction of 
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polyaniline, the process settings were necessarily altered (table 6.10.) and the 

continuous trials were based on:  

Run 10: (silane, SiH4 of 0.82sccm, hydrogen/ argon H2/ Ar ratio of 17/3sccm, for 20 

minutes, 200°C and 600W)  

Run 11: (silane, SiH4 of 0.82sccm, hydrogen/ argon H2/ Ar ratio of 14/6sccm, for 20 

minutes, 200°C and 600W) 

 

With power limited to 600W it was necessary to alter time and temperature in an 

attempt to improve the quality of deposition by avoiding a powdery film and encourage 

crystal growth (table 6.10.).   

 

 

Table 6.10. time and temperature were altered in an attempt to compensate for the low power. 

The outcome relates to fabric performance, if it withstood the plasma process without being 

damaged or not. 

 

SiH4, 
(sccm) 

H2/Ar, 
(sccm) 

Pressure, 
(Torr) 

Power, 
(Watt) 

Temp., 
(°C) 

Time, 
(min.) 

Outcome 

0.82 

 

17/3  

 

0.5 600 200 20 &30 

 

20min- OK/ 30min- OK 

205 20min- OK/ 30min- OK 

200 40 & 60 
 

40min- OK/ 60min- OK 

205 40min- OK/ 60min- OK  

 

 

Reduced power (600W) allowed increased substrate temperature (205°C) and 

deposition time (60 minutes) without damage to the polyaniline coated substrate. The 

previous test was partly repeated to understand how a slight change in process 

condition would reflect on the result. Power of 500, 600 and 700W were tested against 

previous parameters (silane, SiH4 of 0.82sccm, hydrogen/ argon H2/ Ar ratio of 

17/3sccm, for 20, 30, 40 and 60 minutes, 200°C and 205°C at 0.5Torr). (Table 6.11.). 
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Table 6.11. influence of power was evaluated against parameters from previous trial (table 

6.10.).  

 

Trial 
No. 

Power, 
(Watt) 

Temp., 
(°C) 

Time,  
(min.) 

Temp., 
(°C) 

Time,  
(min.) 

1 500   200 20, OK 
30, OK 

205 20, OK 
30, OK 

2 600 200 20, OK 
30, OK 

205 20, OK 
30, OK 

3 700 200 20, OK 
30, Not OK 

205 20, OK 
30, Not OK 

4 500 200 40, OK 
60, OK 

205 40, OK 
60, OK 

5 600 200 40, OK 
60, OK 

205 40, OK 
60, OK 

6 700 200 40, Not OK 
60, Not OK 

205 40, Not OK 
60, Not OK 

* Result related to the fabric performance, if the substrate melted or not, OK means the textile substrate 

withstood the plasma process without being damaged. 

 

 

Power at or above 700W could be processed with a maximum time of 20 minutes to 

avoid damaged textile, as experienced during earlier trials with silane and argon 

mixture, while power at 600W could be run for 60 minutes without the weave being 

damaged. A great difference was found between using a power of 500W and 600W, 

when the peak intensity of Raman spectra doubled with a power of 600W, indicating a 

thicker film. Similar effect was found by using 205°C instead of 200°C, the small 

change gave a significant increase in crystal content with reduced amorphous content. 

There was no difference between running at 200°C or 205°C in relation to unstable 

process. However temperature and time together proved important, when right 

combination was necessary to avoid increased growth of amorphous content. The 

option of 60 minutes at 205°C and 40 minutes at 200°C encouraged amorphous 

growth, while shorter times had less amorphous content. Process time of 20 or 40 

minutes at 200°C resulted in a higher nanocrystal content than 60 minutes at 200°C. 

(table 6.12.) 
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Table 6.12. how the structural content changed by being more amorphous by enhanced time 

and reduced temperature.  

 

 SiH4,  
(sccm) 

H2/Ar, 
(sccm) 

Pressure, 
(Torr) 

Power, 
(Watt) 

Temp., 
(°C) 

Time,  
(min.) 

Result, the film content.  
High Low Amorphous 

0.82 17/3 0.5 600 205 60. High Amorphous content 

0.82 17/3 0.5 600 200 40 Slightly reduced Amorphous  

0.82 17/3 0.5 600 205 40 More reduced Amorphous 

0.82 17/3 0.5 600 200 20 Low Amorphous content 

 
 

This confirmed what earlier had been experienced with run 16, that amorphous content 

increased by longer deposition time. After the experiment of how time and temperature 

influenced the structural content was possible to narrow intrinsic recipe to be: 

Silane rate, SiH4: 0.82sccm 

Hydrogen/ Argon ratio, H2/Ar: 17/3 or 14/6sccm 

Temperature: 200 or 205°C 

Time: 20 minutes 

Power: 600W 

Pressure: 0.5Torr 

 

 

6.4.5. Plasma process, interface between doped and undoped layers  

 

Studies [13,14,15] have addressed the importance of a clear interface between n- and 

i- layer to avoid doped species affecting structural growth of the intrinsic layer and its 

performance. Different methods of cleaning procedure between n- and i- layers were 

suggested for the thin film structure in this work. Three intrinsic recipes (normal and 

two Taguchi runs) were used together with a standard n-layer (phosphine, PH3 

0.1sccm, argon, Ar 9.1sccm, silane, SiH4 0.82sccm, 200°C and 800W for 5 minutes) to 

identify possible changes in the intrinsic structure content, Raman spectroscopy was 

used. Intrinsic recipes used: 

 Recipe 1: Normal (argon, Ar 18.2sccm, silane, SiH4 0.82sccm, 200°C and 

800W for 20minutes), 

 Recipe 2: Run 10 (silane, SiH4 0.82sccm, hydrogen, H2 / argon, Ar ratio of 

17/3sccm, 200°C and 600W for 20 minutes), 

 Recipe 3: Run 11 (silane, SiH4 0.82sccm, hydrogen, H2 / argon, Ar ratio of 

14/6sccm, 200°C and 600W for 20 minutes). 
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The three intrinsic recipes were run against different procedures (table 6.13.): 

A/ standard 

B/ three minutes Ar- plasma 

C/ B+ introduce intrinsic gases in stages  

D/ hydrogen reduction, 5sccm/ 5minutes 

E/ Ar- purges three times 

F/ Ar- purges six times 

 

 

Table 6.13. The combinations used in the trial “clean break” between doped and intrinsic layers. 

 

Trial no. Recipe Procedure Result 

1 1 A 

 

N/A 

2 2 

3 3 

4 1 B 

 

Nothing changed compared with procedure A. 

5 2 

6 3 

7 2 C 

 

Nothing changed compared with procedure A.  

8 3 

9 2 D 

 

Nothing changed compared with procedure A. 
 

10 3 

11 1 E 

 

Resulted in nanocrystal growth (aluminium 
substrate) by an intermediate peak at 503cm

-1
 

12 2 Resulted in nanocrystal content on fabric 
substrate. (peaks at 511, 500 and 462cm

-1
) 

13 3 Resulted in microcrystal content on fabric 
substrate. (peaks at 514, 506 and 478cm

-1
) 

14 1 F 

 

Poor peak fit on fabric. Aluminium substrate had 
amorphous content with nucleation of crystal 
growth. (peaks at 482 and 490cm

-1
)  

15 2 Resulted in nanocrystal content on fabric 
substrate. (peaks at 506, 490 and 447cm

-1
) 

16 3 Resulted in microcrystal content on fabric 
substrate. (peaks at 515, 509 and 484cm

-1
) 

 

 

Most of the suggested methods did not show a great difference from the original run. 

However argon-purges (three and six times) did stand out with influence on the 
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structure content of intrinsic silicon by altering the crystal content. The crystal growth 

became stronger with the two options (Run 10 and 11), although three and six times 

purges had a distinct difference between them. Raman spectra helped identify how the 

two argon-purges performed in relation to Run 10 and Run 11. With a clear difference 

in quality of deposition with either three or six argon purges against run 10 and 11 led 

to these runs being processed again with much the same outcome as the previous run. 

   

This helped to conclude, that three purges with run 10 was ideal to use for a 

nanocrystal structure and six purges with run 11 for a microcrystal structure. The 

number of argon purges (three or six) was used in relation to the H2/ Ar ratio, when 

three purges with 17/3sccm gave strongest nanocrystal growth and six purges with 

14/6sccm supported a microcrystal structure (figure 6.16.). 

 
 
 

 
 

 
 

 
 

 

 

 

 

 
 
Figure 6.16. Explains how argon purges in relation with H2/ Ar ratios of 17/3 and 14/6 influence 

the structure outcome.   

 

 

That three purges produced smaller crystals than six purges was explained by the 

amount of argon left at the sample surface and in the chamber as the intrinsic 

deposition process started, when three argon purges left no argon to influence 

deposition and instead allowed the intrinsic gases to determine structure growth. 

 

 

6.4.6. Plasma process, doped layers 

 

With much work spent on addressing process parameters and a clear interface before 

the intrinsic layer, it was also important to consider crystal growth of doped layers to 
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enhance the overall cell efficiency. N-layers were known to be more crystalline than p-

layers, which were known to have a strong amorphous growth. [16,17,18]  

 

After the initial run of doped layers, the argon-rate was reduced by half from 18.2sccm 

to 9.1sccm. The previous p-layer recipe used an initial power of 1000W, but after 

experiencing how high power damaged the textile substrate during the work with 

intrinsic silicon, power was reduced to 700W. This gave a stable process without heat-

fluctuation considering the larger quantity of hydrogen the dopant contained. The same 

happened to process temperature, which was reduced from 210°C to 205°C. N-layer’s 

process parameters of power at 700W, temperature of 200°C required no change, 

except the process time, which was extended from 5 minutes. 

 

Process time for doped layers was evaluated by using 5, 10 and 20 minutes, which 

resulted in changes with n-layer being extended to 10 minutes and p-layer reduced to 5 

minutes. Advantage with reduced time for the p-layer was to avoid a too thick top layer, 

which would reduce the cell performance by trapped charges and undesirable optical 

absorption. Later, the power was increased for the two doped recipes from 700W to 

800W to enhance crystal growth.  

 

Process parameters for n-layer (Ar 9.1sccm, SiH4 0.82sccm and PH3 0.1sccm at 200°C 

with 800W for 10 minutes) were established, when reduced process time for p-layer (Ar 

9.1sccm, SiH4 0.82sccm, B2H6 0.1sccm, 200°C, 800W for 5 minutes) was not enough 

and further changes were required. The diborane rate was later reduced to 0.05sccm 

due to the flow-meter failing to deliver higher rates. The actual flow value for the dopant 

was 1% of given rate, when the rest related to hydrogen.  

 

After establishing the conductive coated textile conditions, it was found that these 

selected conditions for doped layers damaged the textile substrate. P-layer could not 

be deposited directly onto the textile. Instead microscope-slide glass and aluminium 

sheet were used, when p-layer trials were carried out.  

 

 

Plasma process, p-layer 

 

Different process parameters such as temperature, time and dilution of boron with 

hydrogen and silane have been important. [19,20,21,22] Further changes to the p-layer 

were based on suggestions [19,20] of reduced process temperature from 200°C to 
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190°C to enhance crystal growth (as the Raman peak shifted towards higher 

wavenumbers). However, reduced temperatures were not enough to support a stronger 

crystal growth and additional changes such as altered gas rate and mix were done. 

[21,22] Argon, diborane and silane had their flow-rates and ratios altered together with 

hydrogen as an additional gas and the changes carried out are found in table 6.14.. All 

runs were processed for 5 minutes, at 800W with a temperature of 190°C, except run H 

and G processed at 180°C.  The different runs in table 6.14. are values from measuring 

microscope-slide glass samples.  

 

 

Table 6.14. Explains the flow-rates for each run and the Raman peak location for amorphous 

and crystal fractions together with the maximum intensity of the convoluted peak on 

microscopic-slide glass substrate.  

 

Trial 
run 

Gas type and actual rate, 
sccm 

 Raman peak, cm-1 

(glass substrate) 
Peak  

intensity  

B2H6 SiH4 Ar  H2 1st 2nd 3rd a C1 C2 

A 0.05 0.82 9.1 0 439 496 516 43 31 26 43780 

B 0.025 0.82 9.1 0 460 503 513 32 28 40 110381 

C 0.1 0.41 4.55 0 (419) 484 517 --- 47 9 7468 

D 0.05 0.82 18.2 0 435 490 513 39 46 16 25502 

E 0.05 0.82 10 10 439 495 516 39 40 22 3899 

F 0.05 0.82 5 15 455 499 516 40 35 27 6121 

 G 0.025 0.82 9.1 0 447 496 514 45 32 23 29406 

H  0.05 0.82 10 10 473 500 510 34 49 19 163657 

Conclusion of each run 

A High amorphous content, with nanocrystal nucleation and growth of large sized crystals.  

B Well-developed crystal structure based on nano-sized crystals and the lowest content of 
amorphous phase.   

C Strongest amorphous growth with a small amount of large crystals. (With low peak 
intensity and high background in the Raman spectra indicated high amorphous content.)   

D High amorphous content with high content of crystals in nucleation stage and some 
larger crystals.  

E High amorphous content with high content of crystals in nucleation stage and larger 
crystals, slightly more than D. 

F High amorphous content with high content of crystals in nucleation, although less than 
run E, while the larger sized crystals had a higher content.   

G Good growth rate, strong crystal growth of nano-sized crystals.  

H Highest growth rate, dominated by nanocrystal growth with some larger crystals. 
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The runs with “old” recipe (C) and added hydrogen content (E and F) gave the lowest 

growth rates, probably due to high etch effect. While the present recipe (A) and the one 

with added argon (D) did have a slight increase in growth rate, run (B) with reduced 

diborane rate gave higher growth rate with process temperature at 190°C. Reduced 

diborane rate (G) with lower temperature (180°C) gave reduced deposition rate, while 

adding hydrogen (ratio 10/10) resulted in reduced amorphous content (E) and 

increased nanocrystal phase with highest growth rate (H). A comparison of the Raman 

spectra of the two options, run B and E, both at 180°C and 190°C for aluminium and 

microscopic-slide glass substrates is shown in figure 4, Appendix XIII. The diborane 

rate of 0.025sccm was a quarter of original flow rate of 0.1sccm. Added hydrogen 

through an argon ratio, H2/ Ar showed reduced Raman peak intensity, which could 

either due to high etch rate or slow deposition rate. Overall performance, the runs with 

hydrogen content had reduced peak intensity, which could be 10 times less than 

without hydrogen. This helped to conclude the process settings for the p-layer, which 

should either be by reduced diborane rate (B2H6 0.025sccm, SiH4 0.82sccm, argon, Ar 

9.1sccm) processed at 190°C or added hydrogen, H2/Ar ratio of 10/10 (B2H6 0.05sccm, 

SiH4 0.82sccm, argon, Ar 4.55sccm, hydrogen H2 9.8sccm) processed at 180°C (figure 

6.17.).  

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 6.17. How the different temperatures influence the two options of reduced diborane rate 

and hydrogen/ argon ratio (10/10).  

 

 

The two recipes adding hydrogen (H2/ Ar 10:10) and reducing diborane rate (B2H6 

0.025sccm) limited the amorphous growth but encouraged crystal growth so reduced 

diborane rate was chosen for all future runs. The choice was based on knowing how 

hydrogen caused temperature fluctuations and an unstable process condition. Another 
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aspect was to use 180°C, increasing the time of p-layer deposition, when intrinsic was 

run at 200/205°C. Future p-layer process was based on B2H6 0.025sccm, SiH4 

0.82sccm, Ar 9.1sccm for 5 minutes at 190°C with 800W. 

 

 

6.4.7. N-I-P- layers, introduction 

 

Earlier discussions regarded modification of single layers or inter-layer stages, whereas 

this section will discuss deposition of the three layers (n-i-p-layer) in a complete cell. 

Even if the individual processes did not damage the textile substrate, occasionally a 

combination of the three layers did. After this discovery, three layers were always 

processed, to check for damaged textile substrate, even after smallest modification to a 

single layer was made.  

 

The initial three layers (section A, table 6.15.) used a power of 700W, which became 

increased to 800W (section B, table 6.15.) to reduce the high amorphous content and 

the powder effect. With introduction of the additional conductive layer Polyaniline 

coated directly onto the textile substrate, power was reduced to 600W for intrinsic 

silicon, while doped silicon stayed on 800W (section C, table 6.15.). The combination of 

reduced power and the silane and argon mixture gave increased amorphous content, 

which proved the necessity to use hydrogen. A Taguchi model was used to introduce 

the hydrogen, which resulted in work using a hydrogen/ argon ratios of 17/3sccm and 

14/6sccm, which were evaluated against different silane rates (section D, table 6.15.). 

A silane rate of 0.82sccm was to be used and a cleaning procedure (section D) with 

argon purges was added. Further work such as altered process time (intrinsic) and 

temperature (n-i-p-layer) (section E, table 6.15.) was done without experiencing 

damaged substrate. However the overall structural content of the cell was not improved 

with extended time and instead 20 minutes was kept, with the temperature of 200°C (n-

layer), 200°C (intrinsic) and 190°C (p-layer). Further attempt was to increase crystal 

growth in the p-layer (section F, table 6.15.) by running the new settings with added 

hydrogen (1) and with reduced diborane rate (2) at 180°C.  
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Table 6.15. This explains the different trials carried out in combinations of n-i-p-layers. 

 

Layer Gas type and actual flow-rate, sccm Temp, 
(°C) 

Time, 
(min.) 

Power, 
(W) 

Section 
No. 

SiH4 Ar H2 B2H6 PH3 

N 0.82 9.1 0 0 0.1 200 5 700 
 
 

A I 0.82 18.2 0 0 0 200 20 700 

P 0.82 9.1 0 0.1 0 205 5 700 

N 0.82 9.1 0 0 0.1 200 5 800 
 
 

B I 0.82 18.2 0 0 0 200 20 800 

P 0.82 9.1 0 0.1 0 200 5 800 

N 0.82 9.1 0 0 0.1 200 5 800 
 
 

C I 0.82 18.2 0 0 0 200 20 600 

P 0.82 9.1 0 0.1 0 200 5 800 

N 0.82 9.1 0 0 0.1 200 5 800 
 
 
 
 

D 

Argon- purges three or six times in the interface of n- and i-layer 

I 

0.82 
(0.62/ 
1.02) 

17 

(14) 

3 

(6) 

0 0 200 20 600 

P 0.82 9.1 0 0.1 0 200 5 800 

N 0.82 9.1 0 0 0.1 200/ 
205 

10 800 
 
 

E 

I 
0.82 17 3 0 0 200/ 

205 
30/ 40/ 

60 
600 

P 
0.82 9.1 0 0.05 0 180/  

190 
5 800 

N 0.82 9.1 0 0 0.1 200  10 800 
 
 

F I 0.82 3 17 0 0 200 20 600 

P:1 0.82 10 10 0.05 0 180 5 800 

P:2 0.82 9.1 10 0.025 0 180 5 800 
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The recipe to use for the three layers (n-i-p): 

- N-layer (phosphine doped): argon, Ar 9.1sccm, silane, SiH4 0.82sccm, phosphine, 

PH3 0.1sccm, 200°C, 800W for 10 minutes. 

- I-layer (intrinsic, undoped): silane, SiH4 0.82sccm, H2/Ar ratio of 17/3 or 

14/6sccm, 200 or 205°C, 600W for 20 minutes. 

- P-layer (diborane doped): argon, Ar 9.1sccm, silane, SiH4 0.82sccm, diborane, 

B2H6 0.025sccm, 190°C, 800W for 5 minutes.  

 

 

6.4.8. Radio frequency powered plasma 

 

Radio Frequency plasma was compared with the microwave based process, which was 

mainly used in this work. The RF-processes were based on earlier project’s [1,23] 

plasma settings for n-i-p- layer, which were altered in the same way as the microwave 

trials were done, which is explained above. Parameters such as silane and diborane 

rate were reduced, when power was increased and the temperature of the p-layer was 

reduced.  

 

The process time of n-i-p- layers was similar with 5 minutes for p-layer and 10 minutes 

for n-layer and 30 minutes for intrinsic. Gas mix and rates and chamber pressure were 

taken from previous RF-projects [1,23], although the diborane rate was reduced, three 

argon purges for the interface were used and reduced silane rate with the temperature 

established during the microwave work (chapter 5, section 5.3., table 5.10., section A.)   

Continuous RF- trials (chapter 5, section 5.3., table 5.10., section B.) were carried out 

as an aim of encouraging crystal content. Changes such as increased power of 40W 

and reduced silane (SiH4 1.43sccm) for all three layers took place. For doped layers 

changes such as reduced diborane rate (B2H6 0.05sccm) with lower process 

temperature (180°C) and process time of 5 and 10 minutes for n-layer were evaluated.  

 

There was no big difference between the RF-runs, when all depositions became 

amorphous with no or very small amount of crystal content (figure 5, Appendix XIII). 

 

The conclusion was that more work was required to produce increased crystal content 

with the RF-plasma. The textile substrate was easier to process with RF-plasma than 

with microwave plasma, as this did not excite the hydrogen species to the same extent 

as microwave-plasma and therefore there was no risk of damaged substrates.  
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6.5. Results from the analytical instruments 

 

6.5.1. Raman spectroscopy 

 

Raman spectroscopy helped address how changes of deposition parameters and 

process condition affected the structure content of silicon thin films. This helped to 

recognise the parameters required to reduce the amorphous content and encourage 

crystal growth.  

 

 

Raman spectra from wurtzite silicon structure 

 

The Raman spectra were fitted by using three Gaussian peaks, unless a clear 

microcrystal or amorphous structure, which required only two peaks. Often, the Raman 

spectra had a baseline fitted with the focus on the spectral region between 400cm-1 and 

600cm-1. Peak locations in spectra containing crystalline growth in an amorphous 

matrix are discussed [24,25,26] often as lying at 480cm-1 (amorphous), 505cm-1 

(intermediate) and 518cm-1 (crystal) (figure 6.18.). 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 

 

Figure 6.18. the three different structures such as amorphous, micro- and nano- crystal refer to 

different Taguchi run such as run 3- amorphous, run 4- microcrystal and run 8- nanocrystal.   

 

 

Together with the three peaks of TO-mode (amorphous, intermediate, crystal), 

additional vibration modes such as Fano, Surface Optical (SO) and Boson peak were 

found in the Raman spectra, which are typical for wurtzite structure. To identify these 
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vibration modes no baseline was fitted and the wavenumber range was extended to be 

between 0 and 2000cm-1. The Raman signals for the vibrational modes were stronger 

for the textile substrate than aluminium (or microscope-slide glass), which due to the 

textile surface got a higher nanocrystal content and in particular the wurtzite structure. 

The enhanced growth of wurtzite on textile was explained [27] to be due to its textured 

and uneven surface, which resulted in an increased energy field (chapter 3, section 

3.2.). Other typical vibration modes for wurtzite structure are wagging at 630-650cm-1, 

bending at 830-880cm-1 and stretching at 2000-2200cm-1. [28,29,30,31]   

 

An example of spectra with the different modes and peaks for nanocrystal silicon on 

fabric is given in figure 6.19., while aluminium is found in figure 6, Appendix XIII.  

 

 
 
Figure 6.19. an example of different vibration modes possible in a Raman spectra of wurtzite 

structure on fabric.  

 

 

Raman spectroscopy and its laser power 

 

The different parameters such as accumulation scans, exposure time and 

magnification used for Raman spectroscopy were altered and combined to identify 

potential annealing effects in the substrate or the film. Neither accumulation, nor 

exposure time or magnification caused structural changes. Laser power was first 

considered after a report [32] discussed possible changes to surface properties of 

polymer substrate. A test was carried by evaluating the laser power from 0.1 to 100%. 
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The power was narrowed down to a comparison of 10% and 50%, when power below 

10% and above 50% behaved the same as each of these. Due to the Raman 

instrument and its settings of power, there were no options between 10% and 50% 

laser power. Laser powers of 10% and 50% were measured at the same spot with 

different sequences to identify a potential annealing effect or not. 

 

- 10% and 50%, 50% and 10%,  

- 10%-50%-10% and 50%-10%-50%  

 

No permanent changes were found, although power did influence peak location and its 

intensity, when 10% after exposure of 50% showed a slight change in peak shape by 

becoming sharper and narrower. By using 10% laser power, the peak location 

increased in wavenumber towards the microcrystalline region at 516-518cm-1, while 

50% produced a peak location in the nanocrystal region at 500-512cm-1. The spectral 

measurements with cycles of 10%-50%-10% (figure 6.20.) laser power settings 

returned to the same wavenumber location as shown below, whereas cycles of 50%-

10%-50% (figure 6.21.) did not quite return the spectra to the original values.  
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Figure 6.20. Raman spectra with laser power cycle of 10%-50%-10%. 
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Figure 6.21. Raman spectra with laser power cycle of 50%-10%-50%. 

 

 

The laser power proved to cause annealing, but in reverse of what had been published. 

[24,33,34] It was often stated that higher laser power tended to give a peak towards the 

~520cm-1, when opposite was experienced in this work by 50% power resulting in a 

peak in the nanocrystalline region. Change towards lower wavenumber due to 50% 

power was by heating up the sample. The increased temperature resulted in higher 

vibrations, which gave a more asymmetric peak shape and caused the down shift. This 

behaviour was common for nanocrystal content with a hexagonal structure. [24]  

 

 

 

6.6. Optical properties  

 

Optical transmission measurements helped to establish the band-gap energy which 

was a parameter that changed with structure type. These band-gap energy values 

were supported by data from the Raman spectroscopy, when both measurements gave 

information regarding the structure content of the deposited film. The extraction of the 

band-gap energy from optical absorption is often based on a square root function 

against photon energy, but in case of nanocrystal growth in an amorphous structure 

this can give a poor linear fit and instead a cube function is to be considered. [35,36]  
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6.6.1. Transmission measurement 

 

In these measurements, a transmission range from 300nm to 900nm in wavelength 

was selected. Most samples reached zero transmission at ~350nm and a maximum 

transmission of ~70% at ~800nm. The transmission data was deconvoluted into 

absorption and square- or cube- root functions against the photon energy known as 

Tauc plots. A poor linear fit with square root suggested two band-gap values, one for 

nanocrystal and the other for amorphous structures. The most accurate method to use 

has never been clear, but it has been observed that the cube root produces lower 

values for the band-gap energy compared to the square root. A mixed structure in most 

samples made it difficult to tell whether square- or cube- root was to be applied. A 

common practice is that both graphs are produced to decide the most appropriate fit. 

These two alternative fits are derived from the theory for the type of transition between 

valence and conduction bands (e.g. allowed or forbidden, direct or indirect band-gap).  

 

It was observed that the line became straighter as the film increased in thickness and 

with higher nanocrystal content. The figure below (figure 6.22.) shows how increased 

film thickness resulted in a straighter line such as sample C with increased time (60 

minutes) and temperature (205°) and the thickest deposition, compared with thinner 

sample A with less deposition. A cube root function was more applicable as the 

nanocrystal structure became increased in the amorphous matrix.  

 

 

 
 

Figure 6.22. How absorption was influenced by process time and temperature by comparing 

three different settings of 200°C for 40min (a), 205°C for 40min (b) and 205° for 60min (c). 
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The band-gap value for thin film silicon will depend on structure content, when crystal 

growth in the amorphous matrix will relate to a value between crystal silicon at 1.1eV 

and amorphous silicon at 1.8eV. [37] Band-gap values above 1.9eV to 2.5eV were 

experienced and were explained to refer to very small and fine nanocrystals embedded 

in the amorphous structure like quantum dots. [37,38] The best combination with mixed 

structure was to use the square root to fit the band-gap value for amorphous combined 

with cube root for crystal to get a linear fit and correct band-gap value for the crystal 

phase. [36] By using a combination (square and cube root) often band-gap values in 

the region of 1.1eV regarding nano-sized crystal, 1.5eV for micro-sized crystal and a 

value at 1.8eV for the amorphous phase were obtained. 

 

The introduction of argon-purges in combination with the H2/ Ar ratios gave a clear 

picture of how band-gap values were changed by structure (table 6.16.). Three argon-

purges with H2/ Ar ratio of 17/3 (run 10) gave two band-gap values, one at the crystal 

region and one at the amorphous. Six argon purges with H2/ Ar ratio of 14/6 (run 11), 

obtained a value of 1.8eV for amorphous material.  

 

 

Table 6.16. explains how argon purges in relation with H2/Ar ratio of 17/3 and 14/6 influences 

the structure outcome.   

  

Trial 
No. 

Process parameters 

Actual rate, sccm Power 

W 

Temp. 

°C 

Time, 

Min. 

Ar- 
purges 

SiH4 H2 Ar 

A 0.82 

 

17 

 

3 

 

600 200 20 3 

B 6 

C 14 

 

6 

 

3 

D 6 

 

Trial 
No. 

Band- gap energy values The values from square 
and power fitted phases 
such as: SQUARE  POWER 

1st  2nd  1st  2nd  ηc μc a 

A 1.3 1.8 1 1.25 1 1.3 1.8 

B 1.4 1.8 1 1.5 1 1.4/1.5 1.8 

C 1.1 1.8 1.4 1.9 1.1 1.4 1.8/1.9 

D 1.5 2 1 1.5 1 1.5 2 
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The band-gap energy values showed how nano-sized crystals were developed in the 

amorphous phase in the chosen process runs E and F from the interface trial (table 

6.13.). The chosen procedures resulted in a structure content of both nano- and micro- 

sized crystals in the amorphous matrix. Optical absorption of run 10 and 11 with three 

argon purges shows how run 10 has a straighter line towards the value of 1.1eV 

(crystal silicon). The two runs are compared (figure 6.23.) both by using a square and a 

cube root, which shows how the line became straighter with cube root due to the 

content of nano-sized crystals responding to cube root calculation.  

 
 

 
 

Figure 6.23. comparison between run 10 and 11 and the difference by using square root (upper 

plots) and cube root (lower plots) calculations.  

 

 

The p-layer work involved altered process parameters and added hydrogen (table 

6.17.) against fixed temperature, time and pressure. The structural changes regarding 
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Raman spectrum (table 6.14) were related in most of the runs to optical transmission 

data (table 6.18.).  

 

 

Table 6.17. the process parameters used in the p-layer trial. 

 

Trial 
run 

Gas type and actual rate, 
sccm 

Trial 
run 

Gas type and actual rate, 
sccm 

B2H6 SiH4 Ar H2 B2H6 SiH4 Ar H2 

A 0.05 0.82 9.1 0 E 0.05 0.82 10 10 

B 0.025 0.82 9.1 0 F 0.05 0.82 5 15 

C 0.1 0.41 4.55 0 G 0.025 0.82 9.1 0 

D 0.05 0.82 18.2 0 H 0.05 0.82 10 10 

 

 

Table 6.18. p-layer changes and their band-gap values in relation to a structural phase.   

 

Trial 
run 

Band- gap energy values The values from square and 
power fitted phases such as: 

SQUARE ROOT POWER 

1st  2nd  1st  2nd  ηc μc a 

A 1.5 1.9 1.1 1.5 1.1 1.5 1.9 

B 1.55 2.1 1 1.5 1 1.6 2.1 

C 1.45 2 1 1.5 1 1.5 2 

D 1.45 2 1 1.45 1 1.4 2 

E 1.2 1.9 1 1.4 1 /1.2 1.4 1.9 

F 1.2 1.9 0.8 1.45 0.8/ 1.2 1.4 1.9 

G 1.9 2.15 1 1.8 1  1.8/ 2.2 

H 1.9 2.25 1.25 1.6 1.2 1.6 1.9/ 2.2 

 

Initially, a visual analysis of the interference fringes of the deposited film was 

suggested to estimate the film thickness.  
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6.7. Electrical properties  

 

Initially, measurement of electrical properties was intended as one of the main 

approaches to characterise the development of silicon thin films on textile substrates. 

However, this was soon found to be impossible due to the thin films on textile 

substrates being too uneven to measure the electrical properties reproducibly by the 

usual methods.  

 

Electrical properties were not determined for films on textile substrates because of the 

rough surfaces.   

 

 

6.7.1. I-V & four-point probe 

 

The unevenness in the textile substrate comes from both warp and weft yarns (210 

filaments in each yarn) making the surface on a microscopic scale very textured. With 

the textile being too textured, calendaring was applied to smooth the filament and yarn 

surface and bond them together to support the current flow. Still the textile was too 

textured for the thin aluminium film to cover the substrate surface sufficiently. A 

conductive support layer in form of a wet-coat of polyaniline was applied directly onto 

the woven polyester, which made it possible to measure current flow by I-V 

measurement. However, the thin film on textile contained still too much resistance, 

which resulted in too low flow of current for the I-V measurement to be applicable as a 

future test. The conductive coat made it possible to use four-point probe, which made it 

possible to measure the resistance accurately, even though the measured resistance 

was very high and the measurement was difficult to repeat due to probe positions 

changing with regard to particular filaments. Four-point-probe measurements on 

polyaniline coated substrates have been carried out in two individual projects related to 

this thesis (D. Walton, E. Baker, both physics undergraduates at HWU).  

 

Both aluminium sheet and coated microscope-slide glass were measured, which 

resulted in a very low or no current flow. The high resistance was a result of poor film 

quality, which helped to highlight the importance of improving the deposited film quality. 

One solution was to introduce crystal content into the amorphous matrix, which would 

support improvements in the electrical and optical properties.  
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6.8. RF- sputtering of ITO and analysis 

 

Radio Frequency, RF-sputtering was used to deposit top contacts and a protective 

layer on the cell structure of n-i-p-layer. The material sputtered was Indium Tin Oxide 

(ITO) the properties of which could be controlled by RF-power and process time. Since 

the textile substrate contained moisture, it was necessary to have the coating system to 

pump out overnight to obtain the required vacuum pressure. Microscope-slide glass 

was used to determine the film thickness. Thickness was measured by screen-printing 

lines of photoresist paste onto a microscope-slide glass after depositing ITO, and 

cleaning the slide with acetone which removed the printed tracks. This left ITO coated 

areas with a sharp edge, from which the ITO film thickness could be measured using 

the Dektak apparatus. 

 

Initial runs were set at an RF-power of 70Watts for 15 minutes, on the basis of previous 

experience with different substrates. However, using these growth parameters, the film 

had a growth rate of ~13nm/ minute, which was too thin to protect and operate as a 

functional top contact on a solar cell. Consequently, the RF-power was increased to 

85Watts for 30 minutes. Although this thickness was not measured by a Dektak, a 

visual judgement was made, that the film was probably thick enough to protect the cell.  

 

RF-sputtered aluminium was considered as an alternative to evaporated aluminium 

(due to the problem of occasionally causing overheating of exposed polyester), but the 

quality proved to be unsuitable using the present sputter unit. Sputtered aluminium was 

produced by a RF-power of 70Watts for 10 minutes, which resulted in a growth rate of 

10nm/ minute. 

 

An optical microscope was used to evaluate the difference between sputtered and 

evaporated aluminium by comparing the distribution of the aluminium material. After 

microscope analysis, sputtered aluminium appeared to exhibit the same problems as 

evaporated aluminium by producing an uneven coating distribution on the textile 

surface, which led to the conductive properties being interrupted, resulting in a non-

working back contact. Another disadvantage with sputtered aluminium was the larger 

aluminium particles that were randomly attached to the filament and yarn. Hence a 

decision was taken to continue to use evaporated aluminium in combination with a 

conductive organic material such as the polyaniline coated direct onto the textile 

substrate.  
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6.9. Thermal properties and analysis 

 

6.9.1. Differential Scanning Calorimetry, DSC  

 

When measuring a substrate’s thermal properties, it is important to consider a low 

sample weight, consistent for all samples, to gain an accurate comparison between the 

samples. The sample weight influences the quantity of absorbed energy required to 

melt the sample and as low sample weight as possible is preferred. Another important 

factor is the set heat-rate (°C/ minute), when it influences the melting of a material and 

its energy curve. Good measurement was obtained by using sample weight less than 

10mg and a temperature change of 10°C/ minute. [39,40] 

 

Samples from each process-stage such as loomstate, calendered and after each 

process (evaporated aluminium, polyaniline, polyaniline coated with aluminium and 

silicon) as a single layer and combined cell structure were tested, to establish possible 

changes in the bulk properties of the polyester. Both fabric and f ilament were tested in 

case heat and melting curves became different, but no great difference was 

experienced in relation to glass transition and the melting point(s). The sample weight 

varied between 2.36 and 7.46mg, but did not show a great influence in the energy 

absorbed in the samples. 

 

Tested samples were compared by considering the largest peak area and its 

temperature in relation to known melting point of polyester at 256°C. [2,41] Some of the 

samples had one melting point, although most samples contained two peaks, which 

pointed towards the substrate containing two types of polymers. The cause of the 

multiple melting points; melting, recrystallisation and remelting is still unsolved, but a 

possible cause is that the polymer used contained different crystal formations. Peaks 

occurring below 200°C were suggested to come off melting- recrystallisation and 

remelting, while peaks above were due to melt of the crystal formation in the specific 

polymer. [40] By comparing all process stages it was possible to address a change in 

the bulk properties of the polyester, which was determined by the peak location 

changed to higher melting temperature and the biggest change was after silicon 

deposition. An increased melting point could either due to a higher percentage of 

crystallinity or the bulk material of the polymer being modified. A study discussed [42] 

possible change of bulk properties in a polymer during argon plasma at 0.025mbar with 

RF-powered plasma and the most likely cause was a break in the backbone of the 

polymer known as chain-scission. By comparing the peaks and their shape it was 
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possible to identify a more uniform, straight and narrow peak on samples with silicon, 

which meant plasma treatment resulted in crystal formation in the polymer. Crystal 

content has a more uniform melt than an amorphous content. 

 

The peak area did reflect on the energy required to reach the melting point of the 

polymer substrate. A difference in the energy absorption was found between the 

different process stages: 

 

- Loomstate had a melting point at 256°C, while calendering loomstate got an 

even melt divided into two peaks at 250°C (1st peak) and 257+1°C (2nd peak).  

 

- Polyaniline coated textile (calendered loomstate) received several peaks (figure 

6.24.), but the last two main peaks were 1°C (1st peak) and 1- 2°C (2nd peak) 

above those peaks from previous process-stage.  

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 6.24. polyaniline coated textile produced different peaks as discussed in reference [43] in 

relation with DSC analysis and the diagram below shows the different peak values in more 

detail.  

 

 

The increased number of peaks with polyaniline was reported (figure 6.25.) by another 

study [43], which reported how polyaniline gave several peaks due to moisture loss, re-

crystallisation, loss of bonded water, loss of dopant, melting of the crystalline phase. 

The increased melting point after the plasma process did support a modification of the 

polymer chain, while calendaring, polyaniline and aluminium did not change the bulk  
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properties in the polyester. 

 

 
 
Figure 6.25. increased number of peaks with polyaniline coated due to loss of moisture and 

recrystallisation number of times.  

 

 

- Polyaniline coated textile with evaporated aluminium (figure 6.26.) got peaks at 

254°C (1st peak) and 259°C (2nd peak). 

  

 
 
 

 

 

 

 

 

 

 

 

 

 

Figure 6.26. the increased numbers of peaks for polyaniline coated substrate become reduced 

after evaporating aluminium onto the substrate, when one peak contained two peaks at 254°C 

and 259°C. 
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- The great difference was found after the plasma process of silicon thin film on 

textile (figure 6.27.), when the peaks moved down to 243+2°C (1st peak) and up 

to 265-6°C (2nd peak).  

 
 

 

 

 

 

  
  
 

 

 

 

 

 

 

Figure 6.27. the melting point after plasma deposition of silicon increases by 10°C compared 

with polyester’s melting point at 256°C.   

 

 

 

6.10. Summary  

 

After woven polyester was damaged by the initial process settings [1] for plasma 

enhanced chemical vapour deposition, much time was spent on finding settings which 

allow good quality silicon thin films to be deposited onto a textile substrate. With help of 

an argon-plasma, it was established that larger quantities of hydrogen, including from 

high silane flow rates, caused damage to the textile. After different changes were made 

to the argon (replacement of hydrogen) and silane (lower rate) mixture against 

parameters such as process time, temperature (limit to max 200°C due to textile melt), 

pressure and power, the deposited silicon still gained a high amorphous content and a 

powdery form. This proved that some hydrogen was necessary to avoid these effects.  

 

Introduction of hydrogen was through a Taguchi model (table 6.4.), which helped to 

define two useful hydrogen/ argon ratios of 17/3 and 14/6sccm. These ratios were 

combined with different settings of silane-rate, temperature, time and microwave-

power, which resulted in crystal growth of two kinds namely nano- and micro-
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crystalline. As the textile responded better to the 17/3 ratio by increased crystalline 

growth rate, this ratio was focussed upon. The crystal structure experienced is 

commonly known as the hexagonal wurtzite structure.  

 

Although there was much focus on intrinsic silicon, other aspects were investigated 

such as a clear break after the doped layer prior to the intrinsic layer and a change of 

doped recipes to increase the crystal content. A cleaning procedure with either three or 

six argon-purges proved to have a great influence on structure content of the intrinsic 

layer, when three purges together with a silane/hydrogen flow ratio of 17/3sccm 

encouraged nanocrystal growth while a ratio of 14/6sccm gave a microcrystal growth. 

Increased crystal content in the n-layer was gained by increasing process time, while p-

layer still required more work such as reduced boron rate, process temperature and 

time.  

 

An additional conductive layer was added as a support layer for the evaporated 

aluminium, which proved too thin for the textured surface of textiles. The conductive 

coat (Polyaniline) was applied directly onto the textile by wet-coating. By polyaniline 

being heat sensitive, it became necessary to reduce aluminium evaporation time from 

5minutes to 3 minutes.      

 

The process route to apply a complete cell structure directly onto a textile substrate 

was thus defined as: 

Preparation- cleaning off impurity and drying the woven polyester before calendering 

(240°C for 1 minute) stabilised and flattened the yarn and structure without damaging 

properties such as flex and bend.  

Back contact- evaporated aluminium needed a support layer of polyaniline, which was 

applied by direct coating onto the textile before evaporate aluminium for 3 minutes. 

Semiconductor layers (n-i-p) were processed by the following settings: 

N-layer, (Ar 9.1sccm, SiH4 0.82sccm, PH3 0.1sccm, 200°C, 800W and 10 minutes), 

I-layer, (H2/Ar 17/3 or 14/6sccm, SiH4 0.82sccm, 200 or 205°C, 600W and 20 minutes). 

Longer process time of 30, 40 and 60 minutes is still to be considered.    

P-layer, (Ar 9.1sccm, SiH4 0.82sccm, B2H6 0.025sccm, 190°C, 800W and 5 minutes) 

(N.B. PH3 and B2H6 are presently supplied as 1% mixtures in hydrogen.) 

Front contact- conducting, protective layer of RF sputtered indium tin oxide (ITO) 

required RF-power of 85W for 30 minutes to give enough thickness.  
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Electrical properties were initially targeted as the main analytical approach, but soon 

discarded due to poor electrical contact between the probes and the textured textile. 

Therefore during the establishment of process parameters and methods, analytical 

techniques of Raman spectroscopy and optical transmission were applied, which did 

complement each other in the evaluation of structural content. In analysis of the 

nanocrystal structure three Gaussian Raman peaks (amorphous at 480cm-1, 

intermediate 500/ 505cm-1 and crystal silicon at 518/ 520cm-1) were required. The third 

intermediate peak was a fingerprint for growth of an unexpected hexagonal wurtzite 

structure in the usual amorphous phase.  

 

Optical absorption gave two band-gap values, one value (1.8eV) coming from a square 

root calculation and related to amorphous phase. The other band-gap value was 

calculated by cube root fit and was close to crystal silicon (1.1eV), which confirmed 

small crystals in the amorphous structure. The crystal size determined the value, when 

the band-gap for larger microcrystals was found closer to amorphous silicon at ~1.5eV, 

while smaller crystals moved it towards 1.1eV.  
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7. Summary and conclusion 

 

 

7.1. Amorphous structure, silicon thin film  

 

The most common thin film silicon content is amorphous, but soon after producing the 

first amorphous silicon solar cell structure, experience was how this design did not 

reach expected performance due to its disadvantage of light-degradation known as 

“Staebler-Wronski” effect. [1] Mixed structure with a crystal growth in the amorphous 

phase helped to reduce light-degradation, but also improved the overall cell 

performance such as optical properties with increased absorption. A thin film cell 

contains between top and bottom contacts, three semiconductor layers (n-i-p). The 

semiconductor layers are often processed by plasma enhanced chemical vapor 

deposition, PECVD either in atmospheric or vacuum condition powered by radio-

frequency or microwave source, although microwave is less common. The back contact 

of aluminium was usually evaporated, while the top contact of indium tin oxide was RF-

sputtered.  

 

 

 

7.2. Silicon thin film on woven polyester 

 

This work has reported a procedure of how to overcome the difficulties of depositing a 

silicon thin film directly onto woven polyester. The plasma process of producing 

semiconductor layers contained a combination of reactive gases and vacuum 

condition, which is not common for textile material. The process conditions required for 

a thin film cell proved to be a challenge due to damaged weave. Different polyester 

substrates such as film, nonwoven and weave were compared, while different weave 

qualities such as structure (plain and twill), cloth weight and filament type (spun-, 

mono- and multi-) were evaluated. The original plain polyester weave of 247gsm with 

210 filaments (warp and weft) was chosen after being the most stable quality during the 

plasma process.  
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7.2.1. Textile substrate and preparation  

 

Woven polyester was more textured than conventional substrates such as silicon wafer 

or glass commonly used in the semiconductor industry. A flatter textile surface helped 

to improve adhesion properties of the film and coating. Calendering (heat-treatment) 

was applied to flatten the fibre and fabric surface, a process commonly used in the 

textile industry. Different combinations of temperature and time were tried, before a 

setting at 240°C for 1 minute was approved.  

 

The less textured sample after being calendered was still too uneven for the 

evaporated back contact of aluminium, which resulted in a non-uniform distribution with 

poor or no conductivity. A support layer in the form of a conductive coat (Polyaniline) 

was addressed. Polyaniline had the advantage of being applied directly onto the 

substrate by wet-coat and already successfully used on textiles. The disadvantage with 

polyaniline, it was heat-sensitivity and required altered process parameters to avoid 

exposure from thermal sources and irradiation. The evaporation time of aluminium film 

had to be reduced from 5 minutes to 3 minutes to avoid the textile being damaged, but 

still to gain a good film thickness. The power for the plasma process had to be reduced 

too, from 800W to 600W, to avoid melting the coated substrate. Occasional damage 

was still experienced, later the cause was understood to be moisture left in the 

substrate. A drying procedure was introduced for the coated substrate prior to the 

plasma process to remove trapped moisture in the substrate and coating. 

 

 

7.2.2. Process settings for silicon thin film on woven polyester 

 

Much of the experimental time has been used to focus on process parameters for the 

plasma enhanced chemical vapour deposition by altering settings such as chamber 

pressure, microwave power, gas mix and flow-rate, temperature and time. This helped 

to address a way of processing textile substrates in vacuum without damage to the 

substrate and to be able to deposit silicon thin film with mixed structure of either nano- 

or micro- crystal growth in the amorphous structure. 

 

To understand the cause of damaged textile, different approaches were used such as a 

reference plasma of argon. The different parameters and their values for the reference 

intrinsic silicon recipe were added one by one to the argon plasma, which helped to 
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address that larger quantity of hydrogen damaged the textile. After this knowledge 

hydrogen was restricted to a low rate in the diluted silane in the intrinsic recipe. Argon 

replaced hydrogen and together with low silane rate (0.82sccm) the recipe was used to 

deposit intrinsic silicon. Even with altered process power, temperature and time the 

deposited film was too powdery with a high amorphous content, which proved the 

importance of adding some hydrogen into the intrinsic recipe. An Orthogonal Statistical 

Design “Taguchi model” (chapter 5, table 5.3) was used, which helped to find a 

possible way of using hydrogen combined with a larger quantity of silane without 

damaging the textile substrate. Initially the run 16 (SiH4 2.04sccm, H2/ Ar ratio 

10/10sccm with 500W at 0.5Torr, 200°C, 20 minutes) was first favoured by its high 

deposition rate. Run 16 was later discarded due to a high amount of deposition (silicon) 

left in the chamber after each run. Instead the Taguchi runs 10 (SiH4 1.02sccm, H2/ Ar 

ratio 17/3sccm with 300W at 0.5Torr, 200°C, 20 minutes) and 11 (SiH4 1.02sccm, H2/ Ar 

ratio 14/6sccm with 400W at 0.5Torr, 200°C, 20 minutes) were considered, after 

indicating crystal growth in the amorphous matrix on textile substrate. More work on the 

two Taguchi recipes was necessary by altering process power, time and temperature to 

encourage crystal growth without damaging the substrate. Silane rate was considered 

too by evaluating different values such as 0.62, 0.82 and 1.02sccm.  

 

The two H2/ Ar ratios indicated different crystal growth, when ratio of 17/3sccm 

produced smaller crystals, while 14/6sccm gave larger ones. The two ratios supported 

crystal growth differently depending on type of substrate, when 17/3 supported crystal 

growth on textile, while 14/6 helped aluminium. The difference became more obvious 

with the new settings for intrinsic silicon (H2/ Ar 17/3 or 14/6sccm, SiH4 0.82sccm, 20 

minutes, 200°C or 205°C and 600W) and argon-purges (six or three times), when 

numbers of purges did influence the crystal growth combined with the specific 

hydrogen/ argon ratio. Three argon-purges with ratio of 17/3sccm gave nano-sized 

crystals compared with six argon-purges and 14/6sccm, which resulted in micro-sized 

crystals. Argon purges were introduced to avoid doped species moving into the intrinsic 

layer from the underlying n-type layer. 

 

Increased power (from 500W to 600W) made a difference in film thickness, which was 

revealed by the Raman peak intensity becoming doubled.  

 

After gaining an increased crystal content in the intrinsic layer, doped layers came in 

focus for increased crystal content. N-layers had a natural crystal growth compared 

with p-layers, which had an amorphous structure. Increased process time (from 5 to 10 
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minutes) was the only change required for n-layers (Ar 9.1sccm, SiH4 0.82sccm, PH3 

0.1sccm, 200°C, 10 minutes, 800W). P-layers required changes such as altered gas 

rate and mix, process temperature and time, which led to reduced diborane rate, 

temperature and time (Ar 9.1sccm, SiH4 0.82sccm, B2H6 0.025sccm, 190°C, 5 minutes, 

800W).  

 

 

 

7.3. Evaluation of deposited silicon thin film on woven polyester 

 

Analytical methods to use on silicon thin film on woven polyester were limited due to 

the problem experienced with a textured surface and the charging up during the 

electron microscopy analysis. Raman spectroscopy and optical transmission were 

used, which helped identify structural content of deposited thin film and how the 

content changed by altering the process parameters. 

 

The Raman spectra were often fitted with three Gaussian peaks, indicating three types 

of silicon structures such as 480cm-1 for amorphous silicon, 500/ 505cm-1 regarding 

“intermediate” nanocrystal structure and crystal silicon at 518/ 520cm-1. In some cases 

two Raman peaks were fitted in films with strong amorphous or microcrystal growth 

without nano-sized crystal. The intermediate peak was identified with a typical 

fingerprint for wurtzite structure (Si-IV) with nanocrystal growth in a hexagonal 

formation. The process settings for intrinsic silicon on the uneven textile surface (H2/ Ar 

17/3sccm, SiH4 0.82sccm, 20 minutes, 200°C or 205°C and 600W) favoured this 

hexagonal nanocrystal structure. A correlation between Raman peak width and peak 

location was found, which confirmed how the peak width became reduced with 

increased wavenumber. Reduction in width was due to less stress in the structure as 

the crystal content increased. Nanocrystal growth of wurtzite type gave a peak which 

became broader on the side towards the amorphous peak position, due to a vibrational 

mode named twin effect, typical for wurtzite. Silane flow-rate was linked to peak 

location, when higher amorphous content correlated with increased silane rate.  

 

Optical transmission shown as a Tauc plot often revealed at least two band-gap values 

as a result of crystal growth in the amorphous matrix. Mixed structure had both square- 

and cube- root dependencies on the absorption, when square-root was applied for the 

amorphous content, while cube-root was used to fit crystal phase. The band-gap 

values referred to amorphous phase at 1.8eV and the crystal phase with a value 
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towards crystal silicon at 1.1eV. Band-gap energy value of crystal phase depended on 

crystal size, as the smallest crystals (nano-sized) got closer to crystal silicon at 1.1eV, 

while larger crystal (micro-sized) got value towards 1.6eV. With increasing film 

thickness and structural development, the curved shape of the Tauc plot became much 

straighter.  

 

Differential Scanning Calorimetry, DSC was used after experiencing the substrate 

melting during the plasma process at a much lower temperature than polyester’s 

melting point at 256°C. The woven polyester was tested after each process stage with 

focus on eventual changes in the bulk properties. Small changes in the temperature 

curve were found after heat-treatment, wet-coating and evaporation, but no change in 

bulk properties was experienced. However plasma treated samples did prove to 

change, when the melting point increased to ~265°C, which confirmed a change in the 

bulk properties. 

 

Combination with different process parameters and values (such as gas rate and 

mixture, process power, temperature and deposition time) and continuous analysis with 

Raman spectroscopy and optical transmission have helped to establish process 

parameters possible to deposit silicon thin film onto textile substrate. The settings for 

the semiconductor layers (n-i-p) have resulted in a silicon thin film with crystal growth in 

an amorphous matrix deposited onto woven polyester without the substrate being 

damaged. The actual flow value for each dopant was 1% of the given rate, when the 

rest of the mixture contained hydrogen. The recipe to use for each layer is suggested 

as follows:  

Phosphine doped, n- layer: (Ar 9.1sccm, SiH4 0.82sccm, PH3 0.1sccm, 200°C, 10 

minutes, 800W).  

Undoped intrinsic, i- layer: (H2/ Ar 17/3 or 14/6sccm, SiH4 0.82sccm, 200°C or 205°C, 

20 minutes, 600W). 

Diborane doped, p- layer: (Ar 9.1sccm, SiH4 0.82sccm, B2H6 0.025sccm, 190°C, 5 

minutes, 800W) 
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7.4. Environmental assessment regarding energy use 

 

Manufacturers of photovoltaic systems often calculate the energy payback time, EPBT 

to understand the time it takes for a device/ system to generate the same amount of 

energy used during manufacturing and installation of the device. The payback time of a 

device will depend on its efficiency, location of operation etc.  

 

Environmental management (ISO 14000) contains guidelines in how to assess energy 

use regarding a product and a service. An attempt to make such an assessment was 

done for silicon thin film on woven polyester by calculating the total energy use, which 

ends at 309MJ/ m2 (52.5MJ/ m2 for substrate and 256.5MJ/ m2 for the cell). This design 

level stood well against silicon thin film on conventional substrate such as silicon wafer 

or a combination of glass and polymer film, which was quoted between 770MJ/m2 and 

1290MJ/m2 (glass substrate and polymer film). 

 

 

 

7.5. Future thoughts  

  
Most of the work in this project has been to address process parameters for crystal 

growth of either nano- or micro- sized crystal in the amorphous matrix. The process 

settings established are guidelines, which still require adjustment to optimise the crystal 

content and the structural growth against photovoltaic properties such as electrical and 

optical performance. Light transmission has proven that optical properties have been 

improved with crystal growth in the amorphous structure by increasing the absorption 

spectrum, smaller crystals giving a wider absorption range due to their band-gap value 

being close to crystal silicon of 1.1eV together with the amorphous value at 1.8eV. 

Electrical performance of the silicon thin film was discounted at an early stage of this 

project due to problems in measuring films on textile due to being too textured. By 

introducing a smoother substrate surface and a conductive support layer the next step 

can be to introduce electrical measurements.  

 

The disadvantage with the process of the silicon thin film cell on textile was the 

exposure to air between some of the process stages, which can allow moisture and air 

being trapped in the film and substrate. Moisture trapped in substrate or coat can 

cause an unnecessary increase in substrate temperature during plasma processing, 

which can damage the textile during the process, while oxygen trapped into the 
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substrate and deposit can damage the cell performance. The risk of thin film having its 

properties altered by exposure to air was discussed [2] as a higher risk with film 

deposited by microwave plasma enhanced CVD at low temperature (175-300°C). It 

was reported, that no changes in either structural or optical properties were 

experienced, but electrical properties did change.  

 

Work still to be done to optimise the cell performance can address areas such as 

encapsulation, higher dtex and flatter yarn structure than plain weave, and altered wet-

coat options: 

 

 

- Encapsulation  

 

Different coatings and lamination methods are available, but an important aspect in the 

choice is to protect the cell without damaging it or the flexibility of the panel. This 

device requires encapsulation on both sides, when the woven polyester allows 

moisture, impurity etc. coming through the structure if a protective layer was only 

applied on the face side of the panel. A fine spray coat such as polypyrrole (PPy) has 

been considered, but a problem can be to provide a full coverage protective layer due 

to the deposited thin film and textile being much textured. Vacuum lamination can be 

an option with a film applied on both sides of the textile, although a very light film will be 

required as a lamination will stiffen the overall flexibility of the product.  

 

 

- Flatter yarn 

 

After using a multifilament yarn with 210 filaments, a monofilament was considered in 

an attempt to gain a flatter surface. However the monofilament yarn in a plain weave 

did result in an increased substrate temperature during plasma deposition and as a 

result damage of the textile. A suggestion is to use a straw-like yarn in a plain weave 

structure, as for example used in the construction of tarpaulin fabrics, which allows a 

more uniform deposition of thin film by being less textured surface, increased bonding 

area and gaining a smoother transfer between the warp and weft yarn. Still the quality 

should either be of polyester or of polyamide, when these have a higher melting point 

than most polymer fabrics used in textile manufacturing.  

 

 



221 
 

- Wet-coat 

 

A support layer for evaporated metal back-contact was necessary to improve the 

conductive properties in the layer. The support layer contained a conductive-coat of 

polyaniline applied by wet coating. Instead of a conductive-coat, a non-conductive coat 

was suggested to smoothen the textile surface, which should be enough support for 

evaporated aluminium to gain the conductivity properties required for a functional cell. 

A non-conductive coat has the advantage of being easier to apply, cheaper and having 

properties and performance more similar to the polymer based substrate. In 

comparison, the conductive-coat proved more sensitive to heat from processes such as 

evaporation, plasma enhanced CVD and RF-sputtering.   

 

 

 

7.6. Final conclusion 

 

Preparation, process methods and settings were established for woven polyester, to 

allow depositing silicon thin film onto the textile surface. Analytical methods such as 

Raman spectroscopy and light transmission helped confirm process recipes, which 

resulted in a dominance of either nano- or micro- crystal growth in the amorphous 

phase. Electrical properties were discarded due to a too textured surface, when neither 

I-V nor four-point probe gave readings. An assessment regarding the environmental 

impact of the product was done in connection with the production-route for thin film 

solar cells on woven polyester. It was concluded that a thin-film silicon solar cell on 

textile had a lower impact than conventional solar cells and flexible cells based on 

polymer-film. 

 

 

 

7.7. References 

                                                   
1  D.L. Staebler and C.R. Wronski, Reversible conductivity changes in discharge-produced  

Amorphous Si, Appl. Phys. Lett. 31 (4), p.292-4 (1977)  
 
2  D. Gracin et al., The structural ordering of thin silicon films at the amorphous to nano-  

crystalline phase transition by GISAXS and Raman spectroscopy, Renew. Energ. 33, 
p.326-30 (2008) 

 


