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Abstract

This thesis is concerned with the analysis of side-looking sonar images, and specif-

ically with the identi˛cation of the types of seabed that are present in such images,

and with the detection of man-made objects in such images. Side-looking sonar

images are, broadly speaking, the result of the physical interaction between acous-

tic waves and the bottom of the sea. Because of this interaction, the types of

seabed appear as textured areas in side-looking sonar images. The texture descrip-

tors commonly used in the ˛eld of sonar imagery fail at accurately identifying the

types of seabed because the types of seabed, hence the textures, are extremely

variable. In this thesis, we did not use the traditional texture descriptors to identify

the types of seabed. We rather used scattering operators which recently appeared

in the ˛eld of signal and image processing. We assessed how well the types of

seabed are identi˛ed through two inference algorithms, one based on a‹ne spaces,

and the other based on the concept of similarity by composition. This thesis is

also concerned with the detection of man-made objects in side-looking sonar im-

ages. An object detector may be described as a method which, when applied to

a certain number of sonar images, produces a set of detections. Some of these

are true positives, and correspond to real objects. Others are false positives, and

do not correspond to real objects. The present object detectors su¸er from a

high false positive rate in complex environments, that is to say, complex types

of seabed. The hypothesis we will follow is that it is possible to reduce the

number of false positives through a characterisation of the similarity between the

detections and the seabed, the false positives being by nature part of the seabed.

We will use scattering operators to represent the detections and the same two

inference algorithms to quantify how similar the detections are to the seabed.
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Chapter 1

Statement of the problems

\‘Begin at the beginning’ the King

said gravely, ‘and go on till you

come to the end: then stop."’

Lewis Carroll, Alice in Wonderland

1.1 Introduction and context

1.1.1 Sonar imagery

Many physical phenomena are propagation phenomena that can be used for a wide

variety of purposes. Electromagnetic waves, for example, propagate through the

atmosphere, and proved to be a powerful means of exchanging information, or

messages, between remote locations. A transmitter transforms a set of messages

into electromagnetic waves which propagate through the atmosphere towards a

receiver, as illustrated in Figure 1.1-(a). The waves are transformed back into

another set of messages at the receiver. The physical coupling of the transmitter

and receiver to the propagation medium, that is, the atmosphere, is achieved by

the transmitting and receiving apertures [4, 5]. An aperture corresponds to a

physical piece of equipment called the antenna. The transmitted and received

messages may be somewhat di¸erent because of the transmission, propagation,

and reception processes, and because of sources of noise along the propagation

paths. Acoustic waves are another example of physical propagation phenomena.

Acoustic waves propagate through air, water and solid materials, and what prop-

agates is a structured displacement of the propagation medium. Acoustic waves

proved to be a powerful means of exploring the surface of the bottom of the

sea because they propagate well through fresh and sea water over a wide range

frequencies. A sonar imaging system is, generally speaking, a system which makes

use of acoustic waves to create images of the bottom of the sea. A transmitter

transforms a signal, that is, a pulse of limited duration, into an acoustic wave

which propagates through water towards the sea bottom. The wave is reverber-

ated by the bottom of the sea, propagates through water towards a receiver, and

1
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R’s aperture
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Sea bottom

(b)
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(c)

T-R’s aperture

Ac. wave

Figure 1.1. Geometry of transmitter (T) and receiver (R) for remote

communication systems with electromagnetic (EM) waves and remote
imaging systems with acoustic waves (Ac. waves). Left and Middle.
Bi-static case. Right. Mono-static case.

Sea bottom

T-R’s aperture

Illuminated stripes

Ac. waveTime t1

Time t2 > t1

(a) (b)

T-R’s aperture

Sea bottom
Shadowed portion

of the seabed

Incident wavefront

Reverberated wavefront

Figure 1.2. Left. Geometry of transmitter (T) and receiver (R) for a
side-looking sonar. A narrow stripe of the seabed is illuminated every
time a pulse is transmitted. Right. Reverberation of an acoustic wave

by an object.

is transformed back into another signal at the receiver, as illustrated in Figures

1.1-(b) and 1.1-(c). The physical coupling of the transmitter and receiver to the

propagation medium is, once again, achieved by the transmitting and receiving

apertures. The apertures e¸ectively transform time functions, that is, the trans-

mitted and received signals, into space-time phenomena (the acoustic waves), and

vice versa [4, 5]. Many sonar imaging systems make use of apertures whose beams

exhibit a high directivity in one spatial direction, and are orientated towards the

sea bottom. Only a small portion of the bottom of the sea is, consequently, illu-

minated by the transmitter, a portion of which is viewed by the receiver. An image

of the sea bottom may be created when the transmitter and receiver are placed

at di¸erent locations, so that di¸erent portions of surface of the sea bottom are

viewed by the imaging system. The imaging setup is mono-static when the trans-

mitter and receiver are at the same place, and bi-static if not, as illustrated in

Figures 1.1-(b) and 1.1-(c). Mono-static imaging setups are more common.

A side-looking sonar is a special kind of sonar imaging system. Side-looking

sonars often are mounted on underwater vehicles, and can rapidly provide images

of wide portions of the sea bottom. Side-looking sonars are mono-static | the



CHAPTER 1. STATEMENT OF THE PROBLEMS 3

transmitter and receiver are at the same place and correspond to the same phys-

ical piece of equipment which is called, as mentioned before, the antenna. The

antenna is designed in such a way that only a narrow stripe of the seabed is illumi-

nated every time a pulse (a signal) is transmitted, as illustrated in Figure 1.2-(a).

The stripes are perpendicular to the direction of travel of the underwater vehicle.

Signals are transmitted at regular time intervals as the vehicle travels through

water in a straight path. The received signals are recorded, sampled in time at

regular time intervals, and gathered in order to create a digital (discrete) image

of the bottom of the sea. A line in the side-looking sonar image of Figure 1.3 cor-

responds to the recording of one of the received signals. This image was actually

obtained with an underwater vehicle equipped with two antennas, one on each

side of the vehicle, in order to create an image of what the seabed looks like on

both sides of the vehicle. The word \image" is used in a broad sense here because

what a side-looking sonar really provides is a two-dimensional representation of

the seabed where the two dimensions have the physical dimension of a time. One

dimension corresponds to the time between two successive transmissions. The

other dimension corresponds to the two-way time of travel of the acoustic waves

through water before and after reverberation by the bottom of the sea. A sonar

image represents, broadly speaking, the energy of the acoustic waves reverberated

by the seabed, and is displayed in grey levels | the higher the grey level, the

greater the energy. A representative example of a side-looking sonar image with

several types of seabed is presented in Figure 1.3. The types of seabed present

in this image are ‚at areas made of the same type of sediments, areas with sand

ripples, and areas with seaweed. A feature common to all side-looking sonar im-

ages is the largely black region in the centre of the images. It is called the water

column, and corresponds to the two-way time of travel of the acoustic waves

through water before and after reverberation by the sea bottom. The vertical

white lines, away from the water column, correspond to reverberations by the sea

surface, and indicate that this particular image was obtained in a rather shallow

water environment. A synthetic aperture sonar is another kind of sonar imaging

system. Synthetic aperture sonars provide images of the bottom of the sea with an

increased along track resolution with respect to the along track resolution of an

image created by a side-looking sonar. The track is the direction of travel of the

underwater vehicle. We will not detail the principles of synthetic aperture sonar

imagery, and refer to [6] for a review of the current status of synthetic aperture

sonar imagery.

Images of the bottom of the sea are of interest for biologists and marine sci-

entists who are interested in being able to identify, in an automatic fashion, the

types of seabed that are present in coastal areas. Images of the sea bottom are

also of interest for those who wish to detect and identify man-made objects that

lay on the bottom of the sea. Man-made objects are distinguished here from

natural objects such as rocks and corals. The two problems which will be dealt

with in this thesis are the detection (not the identi˛cation) of man-made objects

(targets) in side-looking sonar images and the identi˛cation of the types of seabed

in side-looking sonar images. We will further de˛ne and discuss those problems
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Figure 1.3. Side-looking sonar image with several types of textures arising
from signi˛cant changes in the topography of the bottom of the sea.

in Section 1.3.1.

1.1.2 Targets and seabed in sonar images

The physical properties of the waves reverberated by the sea bottom depend on

the physical properties of the transmitted waves, and on the nature of the sea

bottom. Those physical properties (those of the reverberated waves) are passed

on to the sonar images. If the transmitted wave is reverberated by a portion of ‚at

seabed, the amount of energy carried by the reverberated wave will mainly depend

on the type of sediments the seabed is made of, and on the angle of incidence [7].

Experimental models [8] have been developed over the past years to quantify the

amount of energy reverberated by various types of sediments. If the transmitted

wave is reverberated by an object (natural or man-made), the reverberated wave

will be the result of the interaction, in time and space, between the object and

the transmitted wave. The man-made objects (the targets) we consider here are

metallic cylinders, truncated cones and wedges, as depicted in Figure 1.4. Being

metallic, they all are highly re‚ective objects. The main visual signature of a

man-made object in a sonar image is a highlight region next to a shadow region.

The highlight region corresponds to the re‚ection of the transmitted waves (more

than one) on the object. The shadow region corresponds to a lack of acoustic

reverberation from the portion of the seabed which is behind the object with

respect to the transmitter, as illustrated in Figure 1.2-(b). The shape of the

shadow strongly depends on the type of man-made object, and on the angle of

view, as illustrated in Figure 1.4. In all cases, the shape of the shadow cast by a

man-made object is regular, at least, more regular than the shape of the shadow

cast by a natural object, as illustrated in Figure 1.5. A portion of the seabed

which is made of a spatial distribution of small rocks, as in Figure 1.5, is called a

cluttered area. We will see in Sections 1.2.1 and 1.2.2 that target detection and

identi˛cation is performed, most of the time, looking for pairs of highlight and

shadow regions, and analysing the shape of the shadow.

If the transmitted wave is reverberated by a portion of the sea bottom which is
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Figure 1.4. Examples of types of targets from a synthetic aperture sonar
image. The carrier frequency is 300 kHz, the transducer’s beam is 7
degrees wide horizontally and 13 degrees wide vertically. The resolution

of the synthetic aperture sonar image is 1.5 centimetres along track
(vertically) an 2.5 centimetres across track (horizontally). From left
to right, a cylinder, a wedge and a truncated cone. The shape of the

shadow di¸er from target to target.

Figure 1.5. Examples of types of sea bottom with rocks from a side-
looking sonar image. Left. A cluttered area with small rocks. Right.
Big rocks.

signi˛cantly not ‚at, the interaction, in time and space, between the transmitted

wave and the changing topography of the bottom around the wave’s point of

incidence will be critical. For example, should the sea bottom be made of sand

ripples, and should the angle of incidence be very low, a noticeable amount of

energy will be reverberated by the crests of the ripples whereas no noticeable

amount of energy will be reverberated by the troughs of the ripples. Generally

speaking, it is this interaction between the waves and the topography of the seabed

which makes the seabed appear as textured areas in sonar images. We will see in

Section 1.3.2 that texture descriptors which stemmed out of the ˛eld of computer

vision provide representations well adapted to the seabed. Because one of the

problems which will be dealt with in this thesis is the detection of targets in sonar

images (not the identi˛cation), we will present, in the following section, the useful

terminology related to target detection.

1.1.3 Target detection terminology

Target detection aims at deciding whether an area of interest in a sonar image is

the result of the re‚ection of an acoustic wave on a target. A target detector can

be generally described as a processing chain, designed to process the sonar image

the area of interest comes from in the most advantageous manner, followed by

a rule (or set of rules) used to decide whether the area of interest is the result

of the re‚ection of an acoustic wave on a target. The rule can be for example a

threshold to be applied to a given value. Four cases can happen:

1. the area of interest is a target and is detected as so,
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2. the area of interest is not a target is detected as so,

3. the area of interest is a target and is not detected as a target,

4. the area of interest is not a target and is detected as a target.

A target detector typically processes a collection of sonar images and produces

a set of detections, as illustrated in Figure 1.6. The detections can be either

true or false positives. The true positives are associated with case (1) while the

false positives are associated with case (4). The true positives are therefore the

targets (the man-made objects) that were supposed to be detected whereas the

false positives are essentially part of the seabed. The performance of a target

detector is expressed in terms of the true positive rate and the false positive

rate which vary both between 0 and 1. The performance of a target detector is

graphically represented by a receiver operating characteristic (ROC) curve which

depicts the joint variation of the true positive rate and the false positive rate with

the set of rules, as illustrated in Figure 1.7. A conservative set of rules leads to

a high positive rate and to a high false positive rate whereas a strict set of rules

leads to a comparatively lower false positive rate and to a comparatively lower

true positive rate. The objective when designing a target detector is to make the

ROC curve as close to the vertical axis as possible in order to obtain, for a given

true positive rate, a false positive rate as low as possible. In most cases, the

ROC curve does not depict the false positive rate but rather the number of false

positives per unit of area (for example, per square kilometre). Target detection

and identi˛cation is usually performed in two stages. All possible target-like

objects are detected ˛rst, leading to a high true positive rate at the expense of a

high false-positive rate. The detections (the target-like objects) are subsequently

identi˛ed in the form of a post-processing process, as illustrated in Figure 1.6.

The purpose of the identi˛cation stage is to make a decision upon the type of the

target-like objects, that is to say, to decide whether the detections are cylinders,

spheres, wedges, or part of the seabed. In the latter case, the detections are

false positives whereas, in the former cases, the detections are true positives. To

some extent, the identi˛cation stage helps reduce the false positive rate without

altering the true positive rate. In the following two sections, we will review the

current approaches to target detection and identi˛cation with sonar images.

1.2 Current approaches target detection and iden-

ti˛cation

1.2.1 Target detection

The performance of a target detector strongly depends on the nature of the sea

bottom, which can, if need be, be analysed by looking at the types of seabed the

false positives belong to. The di‹culty in detecting a target (a man-made objet)

in a sonar image comes from each type of seabed having a di¸erent response to

an acoustic wave and a di¸erent way of interacting with a target. The purpose
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of this section is to present the current approaches to target detection with sonar

images. Most of these approaches intend to ˛nd pairs of highlight and shadow

regions because that is the main signature of a highly re‚ective object present on

top of the sea bottom | the shadow region is next to the highlight region and

further away from the water column. A matched ˛lter is used in [9{11] to identify

areas which closely match the signature of a target. Adaptive thresholding based

on local grey level histograms [12{14] and a thresholding with clustering [15, 16]

are used to identify areas corresponding to a strong return (the highlight). Those

two approaches assume therefore that a target is a lot more re‚ective than the

background and than any natural object. The target detectors we just mentioned

are simple and detect all target-like objects. As a result, the number of false

positives tends to be high, speci˛cally in complex environments. By complex

environments, we mean cluttered areas, and areas with rocks, and textured areas

with sand ripples or seaweed. The false positives are removed with further analysis

of each detected target-like object using a set of binary classi˛ers. The classi˛ers

are typically a K-nearest neighbour classi˛er, a minimum distance classi˛er, a

thresholded classi˛er or an optimal discrimination ˛lter classi˛er. High order

spectral features in [11] or geometrical features in [9, 10] are used in combination

with several binary classi˛ers, eventually fused to decide whether the target-like

object at issue is a target or is not a target. Several simple detection and binary

classi˛cation schemes are fused in [17, 18] in order to improve the detection

performance. Several binary classi˛ers are fused after a matched ˛lter in [19] to

improve the target detection performance as well. The features used in [18] are

the object variance and mean, the shadow length and the shadow pixel count.

Adaptive thresholding is used in [20, 21] in the mean/standard deviation plane in

order to \suppress" the background echoes in a synthetic aperture sonar image.

The background of the synthetic aperture sonar images is statistically described by

a Weibull distribution. It was shown that the K distribution ˛t the observations as

well as the Weibull distribution does, via a one-sample Kolmogorov-Smirnov test

and a ffl2 test. However, the K distribution was not used because of its analytical

complexity. More complex detectors use fractals [22], spatial point processes

[23] and dual hypothesis theory [24] to detect objects as a local disruption in

the texture ˛eld. They provide good detection results but heavily depend on

large training data sets (they are supervised detectors in this sense), allowing

the texture ˛eld to be adequately described. Other supervised detectors are

based on symbolic pattern analysis [25], principal component analysis [26], and

cascades of boosted classi˛ers [27]. An approach based on active learning in [28]

does not require any training set but only the labels (target or clutter) of a few

\signatures" in the sonar image of interest (the labels are provided by a diver or an

unmanned underwater vehicle). A kernel based algorithm is trained on the labels

and eventually used to classify the remaining signatures as a target or not a target.

Other detectors are based on mathematical morphology [29], group ˛lters [30],

adaptive clutter ˛ltering [18] and canonical correlation analysis [31, 32]. The

adaptive clutter ˛ltering is based on an adaptive linear ˛lter exploiting di¸erences

between target and clutter correlation, and is, to some extent, related to the
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canonical correlation analysis approach. A Bayesian approach is used in [33] in

order to incorporate more a priori information about the signature of a target

than it is done in all the previously mentioned target detectors. The sonar image

is segmented via a Markov random ˛eld (MRF) where the variables of interest

per pixel are the texture class and a binary variable indicating the presence or

absence of an object. Only the binary variable is really of interest but the texture

labels enable accounting for the background while detecting objects. In [34],

target like objects are also detected from the Bayesian segmentation of the sonar

images into regions of highlight, shadow and sea bottom reverberation. Markov

random ˛elds are e‹cient when used to incorporate geometrical information about

the response of a target and information about the various textured areas. The

Bayesian segmentation of images is extremely well coupled with Markov random

˛elds thanks to the Hammersley Cli¸ord theorem, which casts the segmentation

problem into an energy minimisation problem [35]. In addition, e‹cient energy

minimisation techniques via graph cuts are presently available [36]. The use of

Markov random ˛elds for target detection has signi˛cantly reduced the number

of false positives but some remain in complex environments [34, 37]. Other

approaches to target detection are based on sector scan sonars [38, 39] and high

frequency multi beam sonars [40].

1.2.2 Target identi˛cation

Target counter measure operations also require the identi˛cation of the detected

targets, which is mainly done using a set of classi˛ers. While classi˛cation was

previously de˛ned as simply deciding whether an target-like object is a target or

not a target, geometrical analysis can be used to extract the shape of the object.

Since targets are usually regular shaped objects, such as cylinders, truncated

cones, spheres or wedges, an target-like object classi˛ed as one of these objects is

very likely to be a target. A non positive classi˛cation as one of these objects leads

to the target-like object being identi˛ed as not a target. The shape of the shadow

is used in [37, 41, 42] for the classi˛cation step after extracting the contour of

the shadow with a statistical snake. The highlight region is used in [14, 43] but

is usually too variable and dependent on the speci˛c sonar conditions to be used

as a reliable classi˛cation feature. Other approaches use geometrical features

[44], correlation analysis [45], an Markov random ˛eld [46], a correntropy based

matched ˛ltering [47], a voting based scheme [48], wavelet packets and neural

networks [49] and canonical correlation analysis [50].

1.2.3 Discussion and perspectives

The purpose of this section is to highlight the limitations of the current approaches

to target detection and identi˛cation. It appears that target detection and iden-

ti˛cation are two problems almost entirely solved in simple environments. By

simple environments, we mean ‚at areas, areas with a low clutter density, and

areas with small sand ripples | small in the sense that the shadow cast by any
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man-made object is readily distinguishable. The way man-made objects appear

in sonar images strongly depends on the angle of view, that is to say, on the an-

gle of incidence of the transmitted acoustic pulses which are reverberated by the

objects. The dependence is a lot stronger for non-symmetrical objects, such as

cylinders and wedges, than for symmetrical objects, such as truncated cones. As a

result, the detected objects are, even in simple environments, not always correctly

identi˛ed with sonar images which only account for one view of the objects. The

identi˛cation can be improved by fusing multiple views of the same object as in

[51] with synthetic aperture sonar images. It is interesting to note that the very

same idea can be used to accurately identify the types of seabed. A Bayesian

framework is used in [52] to fuse multiple views of the same portion of the sea

bottom with synthetic aperture sonar images.

Going back to the limitations of the current approaches to target detection,

it appears that those approaches are still challenged by complex environments

in the sense that, within a set of detections provided by a target detector, most

of the false positives are located in complex environments. By complex environ-

ments, we mean areas with vegetation, areas with large sand ripples, and areas

with a high clutter density. Most of the false positives are located in complex

environments because those environments contain either natural objects which

look like man-made objects, or types of seabed which, in places, also look like

man-made objects. At this point, it is interesting to realise that most of the

current approaches to target detection are strictly speaking image-based, which is

why we say that natural objects look like man-made objects, or that, in places,

the seabed look like man-made objects. The acoustic wave reverberated by a

natural object or a portion of the seabed would, on the contrary, be di¸erent

from the one reverberated by a man-made object. There is evidence, in the liter-

ature on target detection, that the false positives are mainly located in complex

environments. First, let us consider the the detection-orientated Markov random

˛eld of [34]. It is said in [34] that "the false [positives] detected all have sizes

and signatures comparable to a [target]-like object and are a result of the image

containing a lot of object-like clutter." It is also said in [34] that the "false [pos-

itives occurred] only in one image where either the seabed or clutter presented a

[target]-like signature." The Markov random ˛eld of [34] is used in [37] where it

is said that "[complex] backgrounds can provide situations in which the [Markov-

random-˛eld]-based detection model falsely identify a [target-like object]." Let us

consider now the target detector of [27] which is based on a supervised cascade of

boosted classi˛ers and Haar-like features. This detector has false positives mainly

located in areas with sand ripples and dense cluttered areas [53].

To some extent, the identi˛cation step helps reduce, in the form of a post-

processing process, the number of false positives within a set of detections provided

by a target detector. What we would like to point out, regarding the identi˛ca-

tion stage, is that it analyses the detections alone, with respect to models, or

templates, and never accounts for the similarity, or lack of similarity, between the

detections and the sea bottom. Because a false positive is by nature part of the

seabed (the background), one may expect that a false positive is more similar to
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the background than a true positive. In this respect, a true positive (the target to

be detected) is an anomaly with respect to the sea bottom. There is evidence, in

the literature on the classi˛cation and fusion of side-looking sonar images, that

targets can be looked at as local anomalies with respect to the seabed. By local

anomaly, we mean that a target is not similar to the portion of the seabed imme-

diately around it. The results of the work of [54] and [55] are presented in [56]

where it is indeed said that "[there] are still miss-classi˛ed regions, which have

been identi˛ed as complex. Many of these regions correspond to objects on the sea

‚oor." It is also said in [56] that there were regions where "the texture ˛eld [had]

been corrupted by small objects lying on the sea ‚oor." There have also been

attempts to detect targets as anomalies with respect to the seabed with the help

of fractals or spatial point processes in [22{24]. In those cases, the approach is to

model or represent the seabed, using either fractals or spatial point processes, and

look for the regions in the sonar images under study that are, with respect to the

chosen representation, most di¸erent from the background. To some extent, the

adaptive clutter ˛ltering of [18] and the canonical correlation analysis of [31] also

are attempts to ˛nd targets as areas di¸erent from the background. At this point,

what we would like to point out is that to try and detect targets as anomalies

with respect to the seabed does not make any use of the performance already

achieved by the currently available target detectors. To be more speci˛c, within a

set of detections provided by a target detector, the number of false positives per

unit of area (for example, per square kilometre) is extremely low when compared

to the area covered by a set of sonar images. It would be more advantageous,

at least from a computational perspective, to analyse the similarity between the

seabed and the detections provided by a target detection algorithm.

1.3 Aims of the thesis

1.3.1 Statement of the problems

We are now ready to de˛ne one of the problems which will be dealt with in this

thesis. The problem is that of reducing, in the form of a post-processing process,

the number of false positives within a set of detections provided by a target de-

tection algorithm, that being achieved, as illustrated in Figure 1.8, by an analysis

of the similarity between the detections and the seabed. This a clutter rejection

problem. Clearly, the challenge is to reduce the number of false positives with-

out a¸ecting the number of true positives, which would, if it happened, alter the

performance of the target detector alone. The performance of the target detector

alone is evaluated with the help of a receiver operating characteristic curve, as

explained in Section 1.1.3. The performance of the combined target detector and

similarity-based post-processing process will also be evaluated with the help of

a receiver operating characteristic curve, as illustrated in Figure 1.8. The detec-

tions provided by a target detection algorithm, at least, the ones provided by the

algorithm we used in this thesis, correspond to rectangular signals (rectangular
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regions) in the sonar images under study, as in Figure 1.9. Being able to analyse

the similarity between the detections and the seabed requires therefore being able

to analyse the similarity between any two signals extracted from the sonar images

under study, or, more generally, being able to analyse the similarity between a

signal (the detection) and a collection of signals where the collection of signals

represents one or more types of seabed. In this respect, the collection of signals

is a reference and the signal (the detection) is a query signal1. We have not yet

speci˛ed where the collection of signals comes from. The collection of signals

may come from a training set, leading to a supervised answer to the clutter re-

jection problem, or from the the sonar image the query signal itself comes from,

leading, this time, to an unsupervised answer to the clutter rejection problem.

Possible query signal and reference con˛gurations are given in Figure 1.10. We

will not specify where the collection of signals comes from at this point. We

have thus far introduced the reference, which represents, through a collection of

signals, one or more types of seabed, and a query signal, which is one of the

detections provided by the target detection algorithm. Being able to analyse the

similarity between the query signal and the reference requires having at our dis-

posal a set of descriptors to represent the signals (the query signal or those in

the reference), and an inference algorithm, built upon this representation, which

produces a measure of the similarity between the query signal and the reference.

The inference algorithm is to be looked at as an anomaly detector because the

measured amount of similarity will be used (for example, thresholded) to make

a decision of the form "the query signal is or is not similar to the reference."

The inference algorithm may not produce a measure of similarity but directly a

decision upon whether the query signal is similar to the reference. In the following

two sections (Sections 1.3.2 and 1.3.3), we will discuss what can be the set of

descriptors (the signal representation) and what can be the inference algorithm.

Experimental pieces of work will be introduced in places. They correspond to

what was done during the early stages of the thesis and should not be considered

as complete pieces of work. We have thus far de˛ned one of the problems which

will be dealt with in this thesis, and outlined several intuitive requirements that

could be drawn from the problem’s de˛nition. We will see in Section 1.3.3 that an

inference algorithm used in conjunction with an anomaly detection problem can

often be used in conjunction with a classi˛cation problem. As a result, should the

query signals be regions of interest in a collection of sonar images rather than just

the detections provided by a target detector, we may as well consider the problem

of identifying, in a supervised fashion, the types of seabed that usually are present

in sonar images. We consider the identi˛cation as supervised because the query

signals are still compared to a reference. To consider this additional problem is

all the more indicated should the signal representation (the set of descriptors) be

adapted, in one way or another, to the seabed. To summarise, two problems will

be dealt with in this thesis, the reduction, in the form of a post-processing process,

1We use the terminology of [57] and [58], making use, here, of the words "reference" and "query
signal." Actually, the inference algorithm of [57] will be adapted in Chapter 4 to the analysis of
side-looking sonar images.
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Figure 1.8. Automatic target detection and post-processing chain.

of the number of false positives within a set of detections provided by a target

detection algorithm, and the supervised identi˛cation of the types of seabed that

usually are present in sonar images.

1.3.2 Signal representations

In this section, we will present the possible signal representations. We look at

signal representations which are, in one way or another, adapted to the seabed,

owing to the fact that a false positive is by nature part of the seabed. Let

us start our presentation with simple signal representations. The representation

of a signal can be the signal itself, that is to say, the collection of the grey

levels of all the pixels in the signal. The representation of a signal can also

be the mean and standard deviation of the grey levels of the the pixels which

compose the signal. At the end of this section, we will brie‚y introduce an

inference algorithm to illustrate that such simple representations are not well
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Figure 1.9. Detections provided by the target detector we used in this

thesis. The detections are the white rectangular regions. The cross
inside a region is the estimated position of the highlight of the detected
target-like object.

Sonar image = R Sonar image Sonar image

Q Q Q

S1

S2

S3
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Reference R = (R1; R2)

R1

R2

S1 S2

S3

S1 S2 S3
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Figure 1.10. Possible query signal and reference con˛gurations. The
query signal Q comes from a sonar image and is compared to signals Si
in the reference R. The reference is either (a) the sonar image the query

signal comes from, (b) the portion of the sonar image around the query,
or (c) an external collection R = (R1; R2) of sonar images.

adapted to the seabed2. Let us continue our presentation with more advanced

signal representations. From an image processing perspective, most types of

seabed appear as textured areas in side-looking sonar images. There mainly are

two distinct types of textures, the textures which arise from variations in the

amount of energy reverberated by ‚at portions of sediments, and the textures

which arise from signi˛cant changes in the topography of the bottom of the sea,

as illustrated in Figure 1.11. Both types of textures actually arise from the

interaction between the transmitting aperture and the topography of the seabed,

but this interaction plays a lot greater a role in the generation of the latter type

of textures than it does in the generation of the former. This being said, let us

review the existing texture representations. Texture representations naturally fall

into three paradigms which are the statistical, the structural and the scale-space

representations of textures. Sum and di¸erence histograms [59] and co-occurrence

2What really is important is the combination of a signal representation and an inference algorithm
rather than a signal representation alone, which is why we need an inference algorithm to assess how
well any signal representation is adapted to the seabed.
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distributions [60, 61] belong to the statistical representations of textures. Textures

are considered as random processes in two dimensions and are characterised by the

spatial distribution of the grey levels. Seabed identi˛cation and segmentation was

performed with co-occurrence distributions in [55, 62, 63]. Spatial point processes

also lead to statistical representations of textures. The spatial distribution of

the pixels corresponding to a certain grey level is modelled by a spatial point

process, that is, a stochastic process whose realisations are sets of isolated points

in space. A spatial point process was used in [64] to describe the seabed in

side-looking sonar images. The structural representations of textures describe

complex textures in terms of primitives called texels or textons [65, 66]. The

representation of a speci˛c texture requires a vocabulary of textons along with their

relationships. Such representations have been mainly used to describe the human

perception of textures rather than for automatic texture analysis and identi˛cation

purposes. Local binary patterns [67] unify the statistical and structural approaches

to texture representations. Textures are represented by local spatial patterns and

a grey level contrast measure. Extensions to the original local binary pattern

operator of [67] now include uniform and rotation invariant binary patterns [68].

Local binary patterns have become of common use in computer vision but were

apparently never applied to the analysis of textures in side-looking sonar images.

Wavelet transforms of images [69, 70] provide scale-space texture representations

that are built upon atoms well localised in space and frequency. Scale-space

representations of textures are of interest for the analysis of the types of seabed

because the nature of the types of seabed does change with the scale at which

they are analysed. Areas with sand ripples, for instance, appear similar to ‚at

areas at ˛ne scales provided that they are made of the same types of sediments.

Without entering into details, seabed identi˛cation was performed with several

types of discrete wavelet transforms in [52, 71, 72]. A fractal is a self-similar

mathematical object in the sense that the object as a whole is similar to any

part of itself. Fractals are closely related to the wavelet transform [69, 70]

for the properties of fractals can be revealed and quanti˛ed with the help of a

wavelet transform. A parameter of interest is the fractal dimension which can be

quanti˛ed by means of a continuous wavelet transform. Fractals lead to scale-

space representation of textures and were used to describe the seabed in [73].

Traditional texture analysis techniques, such as the wavelet transform and co-

occurrence distributions, have di‹culty dealing with the signi˛cant amount of

variability in the appearance of the types of seabed. Scattering operators [74]

recently appeared in the ˛eld of (one-dimensional) signal and image processing3.

They provide signal and image representations that are locally translation invari-

ant, stable with respect to deformations, and hence particularly well suited to the

identi˛cation of textures. Scattering operators iterate over a Littlewood Paley

wavelet transform [70] and a complex modulus operator, and have a convolution

network type of architecture [75]. Scattering operators were used in [76, 77] to

3By one-dimensional signal, we mean the recording in time of a physical quantity such as the
voltage drop across a capacitor or a resistor. One-dimensional signals are therefore di¸erent from the
query signals introduced earlier, the query signals being by nature two-dimensional.
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Figure 1.11. Side-looking sonar image with several types of textures
arising from signi˛cant changes in the topography of the bottom of the
sea.

identify textures from the CureT data set, and to identify hand-written digits from

the MNIST data set. Scattering operators were also used, in [78] to recognise au-

dio signals and for musical genre classi˛cation purposes, and in [79] to represent

modulated sounds. It appears therefore that scattering operators are suited not

only to the identi˛cation of textures but also to the analysis and identi˛cation

of other kinds of signals and images, which makes scattering operators a very

attractive signal representation. Scattering operators were never applied to the

identi˛cation of the types of seabed in sonar images. We therefore applied scat-

tering operators to identi˛cation the types of seabed in a few synthetic aperture

sonar images. The identi˛cation was strictly speaking distance based | we did

not use any inference algorithm such as a neural network or a support vector

machine. The results of this piece of work were published in [1] and are depicted

through Figures 1.12 to 1.14. We observe that the two types of seabed the sonar

images are made of are successfully identi˛ed.

The last signal representation we would like to talk about is the one presented

in [80]. This signal representation is based on a family of atoms well localised

in space and frequency the same way the wavelet transform is based on a family

of atoms also well localised in space and frequency. Now, instead of representing

a signal with all the atoms in the family, which is what the wavelet transform

does, the objective is to represent the signal with a small number of atoms,

selected out of the family in an adaptive fashion, in order to obtain a low-level

potentially sparse representation of the signal. The matching pursuit algorithm

was created in [80] for this purpose. The family of atoms is over-complete, to

provide enough freedom and ‚exibility in the selection of the atoms, and what

happens is that the energy of the signal is concentrated in the atoms that are

eventually selected by the matching pursuit algorithm4. The signal representation

induced by the matching pursuit algorithm di¸ers from the signal representations

introduced before because it is an adaptive representation. The selected atoms

4A proper de˛nition of what is an over-complete family of atoms is given in [70].
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Figure 1.12. Seabed identi˛cation in synthetic aperture sonar images.

Left. Sonar image. Middle-left. Identi˛cation result. Middle-right and
right. Distance to each type of seabed.

Figure 1.13. Seabed identi˛cation in synthetic aperture sonar images.
Left. Sonar image. Middle-left. Identi˛cation result. Middle-right and

right. Distance to each type of seabed.
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Figure 1.14. Seabed identi˛cation in synthetic aperture sonar images.
Left. Sonar image. Middle-left. Identi˛cation result. Middle-right and

right. Distance to each type of seabed.

would therefore di¸er from query signal to query signal. The signal representation

induced by the matching pursuit algorithm is in some ways similar to the sparse

representations of [81] and [82].

Let us now introduce an inference algorithm based on the concept of ensemble

of patches, as it appears in [83], in order to illustrate that not all signal representa-

tions are suited to the analysis of the seabed. The inference algorithm of [83] was

used in conjunction with SIFT descriptors [84] to shorten video sequences in time,

and to reduce camera images in size. We consider here two signal representations,

the one induced by scattering operators, and the one whereby the representation

of a signal is the signal itself. The representation induced by scattering operators

will be presented in details in Chapter 2. We consider a query signal Q which is,

practically, a rectangular region taken around one pixel of the sonar image under

study. The query signal is broken into many overlapping patches of small size, as

illustrated in Figure 1.15. We denote by NQ the total number of patches in Q.

We do not keep knowledge of the relative arrangement of the patches within the

query signal. We consider a reference R = (R1; R2; R3; : : :) which is a collection

of examples of types of seabed. For instance, R1 can be the example of an area

with seaweed and R2 can be the example of an area with sand ripples, as in Figure

1.16. The Ri’s are also broken into many small overlapping patches. As in [83],

we say that the query signal Q is similar to the reference R if as many patches

of Q are contained in R, which is a simple and yet powerful way of evaluating

the similarity between Q and R. The dissimilarity measure between Q and R is
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Figure 1.15. Left. Sonar image with two query signals Q1 and Q2
both broken into small overlapping patches. Right. Reference R =
(R1; R2; R3; R4) which is a collection of four examples of types of seabed.
The examples need not be of the same size. The Ri’s are also broken
into small overlapping patches.

accordingly de˛ned by

D(Q;R) = 1

NQ

X

q2Q
min
r2R

kDq `Dr k : (1.1)

For each patch q in Q, we look for the patch r in R which as similar to q as

possible. The similarity between q and r is evaluated in one of the aforementioned

two signal representations via Dq and Dr | Dq and Dr represent the set of

descriptors associated with q and r5. What is to be expected is that the less

similar the query signal Q is to the reference R, the greater the dissimilarity

D(Q;R). Let us now apply the inference algorithm to a few side-looking sonar
images. The results of this piece of work were published in [2]. The reference is

the collection of examples of types of seabed of Figure 1.16. Query signals Q are

extracted from two sonar images, leading to two maps of D(Q;R) for all possible
query signals Q. The maps obtained with the signal representation induced by

scattering operators are depicted in Figure 1.17. The maps obtained with the

signal representation whereby the representation of a signal is the signal itself are

depicted in Figure 1.18. We observe that the objects which lay on the bottom

of the sea appear as salient regions with respect to the seabed in Figure 1.17

but not in Figure 1.18. We may also acknowledge the potential of describing

query signals in terms of ensemble of patches because, provided that the signal

representation is well chosen, such a description allows a ˛ne local analysis of

the query signals. In this respect, scattering operators appear to be well chosen

representation.

We have thus far presented possible signal representations, and emphasised on

texture representations because they are particularly well suited to the analysis

of the seabed. We also showed, with the help of two experiments, that scattering

operators appear to be a texture representation well suited to the analysis of the

seabed. In the following section, we will present possible inference algorithms.

5We ought to speak of a patch representation instead of a signal representation but, because
patches and signals are rectangular regions in sonar images, a signal representation can be used as a
patch representation and vice versa.
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Figure 1.16. Reference R = (R1; R2; : : : ; R6) which is a collection of
examples Ri of types of seabed. The types of seabed are areas with sand
ripples, areas with seabed and ‚at areas. The Ri’s correspond to the

white rectangular regions.

Figure 1.17. Two sonar images on the left hand side and the correspond-
ing saliency maps on the right hand side. The objects present in the two

sonar images appear as salient regions.
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Figure 1.18. Two sonar images on the left hand side and the correspond-
ing saliency maps on the right hand side. The objects present in the two
sonar images do not appear as salient regions.
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1.3.3 Inference algorithms

In this section, we will present possible inference algorithms which may be used

in conjunction with an anomaly detection problem. Most of the time, but not

always, will it be possible to use those inference algorithms in conjunction with a

classi˛cation problem. We look for inference algorithms to analyse the similarity

between a query signal and a reference where, as in Section 1.3.1 and as in

Figures 1.10 and 1.15, the query signal is either a detection or a region of interest,

and where the reference corresponds to a collection of signals which belong to

one or more types of seabed. We will assume throughout this section that a

signal representation has been de˛ned so that, when needed, we can speak of the

space generated by the representation of the signals. Because we will ultimately

work with discrete sonar images, as opposed to their continuous counterparts,

we assume that this space’s dimension is ˛nite. This is not too restrictive an

assumption and, besides, this assumption holds for all the signal representations

presented in Section 1.3.2.

This being said, let us start our presentation with the inference algorithms

derived from the estimation of probability density functions as in [85] and [86]. We

consider the signals in the reference and we look at the set of descriptors of those

signals as realisations of a multi-dimensional random variable. The probability

density function of this random variable is estimated from examples of signals in

the reference, hence in a supervised fashion. The density function is then used to

decide whether the query signal is similar to the reference. We have thus far looked

at the set of descriptors of the signals in the reference as realisations of a random

variable. Should we look at the set of descriptors of those signals as points in

an a‹ne space, we obtain the inference algorithms derived from the estimation of

boundaries around a given set of points. Boundaries may be estimated with the K-

centres method [87], the nearest neighbour method [88], the support vector data

description method [89] or a one-class support vector machine [90]. The distance

between the query signal and the boundaries is used to ultimately decide whether

the query signal is similar to the reference. Let us continue our presentation with

the inference algorithms derived from the ˛eld of data modelling where what is

modelled is the distribution, in the space generated by the signal representation,

of the set of descriptors of the signals in the reference. A decision upon the

similarity between the query signal and the reference is made from an analysis of

the distance between the query signal and the model, where the word "distance"

is used in a broad sense. Models may arise from the Karhunen-Lo„eve transform

[70], also known as the principal component analysis, a K-means clustering and

auto-encoders [91]. Auto-encoders are also known as diabolo networks, and are

related to neural networks. The inference algorithms we presented up to this

point are to be used in conjunction with an anomaly detection problem. All of

them can be used, with a few modi˛cations, in conjunction with a classi˛cation

problem apart from the support vector data description and the one-class support

vector machine.

Let us ˛nish our presentation with the inference algorithms derived from the
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concept of similarity by composition as in [57]. Those inference algorithms intend

to evaluate to what extent the query signal can be composed from pieces taken

from the reference, where the pieces are patches of small size with respect to the

size of the query signal, as in Figure 1.15. The composition process is similar

in mind to that of a puzzle. The complexity of the composition process leads

to a measure of the similarity between the query signal and individual signals in

the reference. Among those signals, a signal of particular interest is, without

entering into details, the one obtained from a maximum a posteriori estimation.

In [57], the amount of similarity between the query signal and the reference is

de˛ned as the amount of similarity between the query signal and the signal in

the reference obtained from a maximum a posteriori estimation. That proved

to be well suited to the detections of irregularities in camera images and video

sequences when used in conjunction with SIFT descriptors. The work of [57]

is extended in [58] where a more advanced measure of the similarity between

the query signal and the reference is derived. The work of [58] was used not

only to reveal saliency regions in camera images and video sequences but also

to classify and cluster camera images, in conjunction with SIFT descriptors, and

for speech recognition purposes, in conjunction with the mel-frequency cepstrum

descriptors. The inference algorithms of [57] and [58] take both the form of a

statistical composition process, which is why we spoke earlier on of a maximum a

posteriori estimation. The inference algorithms of [57] and [58] resemble the one

presented in Section 1.3.2 because all three consider the query signals as ensemble

of patches. In this respect, the size of a patch corresponds to the resolution, above

that of a pixel, at which the inference algorithms work. The inference algorithms

of [57] and [58] are, however, more advanced than the one of Section 1.3.2 because

they account for the spatial arrangement of the patches. From the perspective

of detecting targets as anomalies with respect to the seabed, this is an important

concept. It is indeed the spatial arrangement of a given number of pixels, or group

of pixels, into a highlight and a shadow region which makes a target appear as a

target in an image. The pixels | to be more precise, their grey levels | which

form the highlight and the shadow regions can be found elsewhere in the image.

1.3.4 Discussion and layout of the thesis

We have thus far presented possible signal representations and inference algo-

rithms to be used in conjunction with either an anomaly detection problem or a

classi˛cation problem. In this section, we intend to choose one or more signal

representations and one or more inference algorithms to answer the two problems

de˛ned in Section 1.3.1. As a reminder, those problems are the reduction, in the

form of a post-processing process, of the number of false positives in a set of

detections provided by a target detector, and the supervised identi˛cation of the

types of seabed. In the discussion to come, we intend to bear in mind that a signal

representation and an inference algorithm should not be considered independently.

Among the inference algorithms presented in the preceding section (Section

1.3.3), the ones based on the concept of similarity by composition naturally stand
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out because only those algorithms consider the query signals as geometrical en-

sembles of patches. Those inference algorithms were used with SIFT descriptors

in [57] and [58] to identify salient regions in video sequences and camera images.

SIFT descriptors are based on corners and edges appearing in camera images and

video frames at di¸erent scales. Such descriptors cannot be used with sonar images

because edges and corners do not exist in such images. One of the experiments of

Section 1.3.2 showed, however, that objects (not necessarily man-made objects)

present on the bottom of the sea can be revealed as anomalies with respect to the

seabed with the help of the signal representation induced by scattering operators,

and an inference algorithm based on the concept of ensemble of patches. This

experiment suggests therefore that SIFT descriptors can be replaced by scattering

operators in the inference algorithm of [57]. We intend to follow this idea and

use the inference algorithm of [57] with scattering operators to try and reduce the

number of false positives in a set of detections provided by a target detector (˛rst

problem). Because of the ‚exibility in the de˛nition of the query signals and the

reference, we will be able to use the same inference algorithm to identify the types

of seabed (second problem). We have not yet spoken of the inference algorithms

which are not based on the concept of similarity by composition. The algorithm

we are interested in is the one based on the Karhunen-Lo„eve decomposition which

can be used to answer an anomaly detection problem or a classi˛cation problem.

The Karhunen-Lo„eve transform leads to models based on a‹ne spaces. The rea-

son why we are interested in this algorithm is that it was used with scattering

operators, in [76, 77] to identify textures and hand-written digits, and in [78] to

recognise audio signals. We intend to continue down this line as well and use

a‹ne spaces and scattering operators to answer the two problems this thesis is

concerned with.

We are now ready to detail the structure of the chapters to come. Chapter

2 will present the signal representation induced by scattering operators, Chapter

3 with present how to analyse side-looking sonar images with a‹ne spaces, and

Chapter 4 with present how to analyse side-looking sonar images with a statistical

composition process. An answer to the two problems will be given in Chapters 3

and 4 with respectively a‹ne spaces and the statistical composition process.



Chapter 2

Scattering operators for

image analysis

\Nothing exists except atoms and

empty space. Everything else is

opinion."

Democritus

2.1 Introduction

In this chapter, we will present the image representation induced by scattering

operators. From the scattering representation of an image, we will be able to

obtain the scattering representation of any rectangular region extracted from this

image. These regions were called query signals in the preceding chapter. How to

obtain the scattering representation of the query signals will be talked through

in the following chapter. In this chapter, we will only be interested in the scat-

tering representation of an image. Several problems encountered in the ˛eld of

image processing require being able to measure or quantify the similarity between

images. The underlying notion of similarity depends of course on the problem

at stake, and what is then needed, is an image representation which captures the

correct notion of similarity. The wavelet transform of images is one possible im-

age representation. This representation is well suited to the image encoding and

compression problems but not so much to the recognition of textures or patterns.

A texture may indeed be locally deformed and still remain the same texture. A

pattern, such as a hand-written digit or a hand-written character, may similarly

be locally deformed and still remain the same pattern. Textures and patterns

may also undergo rigid transformations such as translations and rotations. The

wavelet transform of images leads to an image representation which is not in-

variant with respect to translations and rotations but rather to a representation

which commutes with translations and rotations. The wavelet transform of im-

ages leads to an image representation which is not stable with respect to local

25
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deformations because high spatial frequencies are not stable with respect to local

deformations. Low spatial frequencies are not, on the contrary, a¸ected as much

by local deformations as are high spatial frequencies. What makes two textures

or two patterns di¸erent is however their respective high frequency content. To

be able to recognise textures and patterns, the image representation induced by

a wavelet transform traditionally undergoes a smoothing operation. This opera-

tion may be achieved with the help of a spatial low-pass ˛lter, the calculation

of the histogram of the representation’s coe‹cients, or the estimation of ˛rst

and second order probability distributions. Such a smoothing operation implies a

loss of information which is never recovered from. Scattering operators recently

appeared in the ˛eld of image processing. Scattering operators iterate over a

Littlewood Paley wavelet transform and a modulus operator in order to create

an image representation which is stable with respect to local deformations, and

locally translation invariant. The Littlewood Paley wavelet transform captures

the frequency content of an image in various frequency bands. The e¸ect of the

modulus operators is to push the high frequency content of the image towards low

frequencies, making eventually the scattering representation stable with respect

to local deformations. Because scattering operators iterate over a Littlewood

Paley wavelet transform and a modulus operator, we may consider the scattering

representation’s coe‹cients obtained after one iteration, those obtained after two

iterations, and more generally, those obtained after any number of iterations. The

scattering representation’s coe‹cients obtained after one iteration are essentially

the result of a smoothing the wavelet transform’s coe‹cients by a low-pass ˛lter.

The low-pass ˛lter is the scaling function which appears in the Littlewood Paley

wavelet transform. This smoothing operation induces a loss of information which

is recovered from by the subsequent iterations. The lost information is indeed

contained in the scattering representation’s coe‹cients obtained after more than

one iteration. The number of iterations that are needed can be determined by

looking at how the image’s energy is spread among the scattering representa-

tion’s coe‹cients. This is similar to the frame type of condition which ensures

that the image representation provided by the Littlewood Paley wavelet transform

is complete. The scattering representation has a convolution network type of

architecture, a convolution network being a special kind of neural network. Con-

volution networks iterate over linear and non-linear image transformations, and

have been used, in the past, for texture and pattern recognition. The number

of iterations that are needed in a convolution network is learnt during a training

stage. The number of iterations that are needed in the scattering transform are,

on the contrary, speci˛ed by the images to be analysed.

This chapter will be organised in the following fashion. We will ˛rst present the

Littlewood Paley wavelet transform of images. We will emphasise the algorithmic

and numerical aspects of the wavelet transform because these aspects have to be

considered with great care when working with discrete images, as opposed to their

continuous counterparts. We will speci˛cally show how to choose the parameters

of the wavelet transform when working with discrete images. We will subsequently

present the image representation induced by scattering operators which is based
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upon the Littlewood Paley wavelet transform. We will emphasise some of the

algorithmic and numerical aspects of the scattering transform because theses

aspects also have to be considered with great care when working with discrete

images. We will speci˛cally show how to implement the scattering transform of

an image with a computer program written in C.

2.2 Wavelets and space-frequency atoms

2.2.1 Introduction

The wavelet transform of images represents images in terms of atoms that are

obtained by dilations and rotations of a unique function  (x) which is called a

wavelet and which is well localised in space and frequency [69]. The atoms are

the functions

 k;‚ (x) = 2
`2k  

`
2`k r`1‚ (x)

´
(2.1)

also well localised in space and frequency. The atoms are obtained from the

wavelet by dilations proportional to 2 which is a value commonly chosen for the

wavelet transform of images. The dilation progression is said to be dyadic. It is

interesting to bear in mind that the analysis of one-dimensional signals, such as

the recording of a voltage drop across a capacitor in an electrical circuit, usually

require a ˛ne frequency resolution and hence dilations proportional to a with

afi 2. In (2.1) r‚ is the rotation of angle ‚ 2 G, namely

r‚ =

"
cos ‚ ` sin ‚
sin ‚ cos ‚

#
; (2.2)

and k is a positive or negative integer. Here G  [ 0; 2ı ) is the ˛nite set of angles
de˛ned as follows.

G = G+ [ G` with

8
<
:
G+ =

˘
mı=M

¯
0»m<M

G` =
˘
ı +mı=M

¯
0»m<M

(2.3)

where M is a strictly positive natural number. There are 2M angles in G, M

angles in G+ and M angles in G`. G+ correspond to positive rotations of angles

in [ 0; ı ) while G` corresponds to negative rotations of angles in [ı; 2ı ). We

will see in section 2.3.1 that only positive rotations are needed when analysing

real-valued images while both positive and negative rotations are needed when

analysing complex-valued images.

2.2.2 Qualitative space frequency localisation

Should the support of the wavelet  (x) be centred around x in space, the support

of the atom  k;‚ (x) is centred around r‚(2kx ) in space. In addition, the extent

of the support of  k;‚ (x) is proportional to 2k. For positive k’s, the support of

 k;‚ (x) is 2k times larger than that of  (x). For negative k’s, the support of
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Figure 2.1. Real part of the atoms  k;‚ (x) obtained from the wavelet
of Morlet. Left. ‚ = 0. k = 0 and k = 1. Right. ‚ = ı=6. k = 0 and
k = 1. The atoms are depicted for x 2 [`5; 5 ]ˆ [`5; 5 ].

 k;‚ (x) is 2k times smaller than that of  (x). The real and imaginary parts of

the atoms  k;‚(x) obtained from the wavelet of Morlet are depicted in Figures

2.1 and 2.2 for k = 0 and k = 1 and for ‚ = 0 and ‚ = ı=6. The atoms

are depicted over squares of size 10 centred around the origin x = 0. The units

associated with the squares are those associated the spatial variable x. Should

the image under study be a side-looking sonar image, the units associated with x

are seconds. We just discussed the localisation in space of the atoms. We now

discuss their localisation in frequency. The Fourier transform  ̂(!) of  (x) is

de˛ned by [69]

 ̂(!) =

Z

R2

 (x) e`i!xdx (2.4)

with the reconstruction formula

 (x) =
1

(2ı)2

Z

R2

 ̂(!) ei!xd! : (2.5)

In (2.4) and (2.5) ! is strictly speaking a spatial wave number related to the

frequency � according to ! = 2ı�. However, we will equivalently refer to ! as

a wave number or a frequency in this thesis. Upon combining (2.1) and (2.4) we

˛nd the expression of the Fourier transform of the atoms, namely

 ̂k;‚(!) =  ̂( 2k r
`1
‚ (!) ) : (2.6)

Should the support of  ̂(!) be centred around a frequency ! in frequency, the

support of  ̂k;‚(!) is centred around r‚(! =2k). In addition, the extent of the

support of  ̂k;‚(!) is proportional to 2`k. For positive k’s, the support of  ̂k;‚ (!)

is 2k times smaller than that of  ̂(!). For negative k’s, the support of  ̂k;‚ (!) is

2k times larger than that of  ̂(!). The Fourier transforms of the atoms obtained

from the wavelet of Morlet are depicted in Figures 2.3 and 2.4 for k = 0 and

k = 1 and for ‚ 2 G+. The Fourier transforms of the atoms are depicted in

Figures 2.3 and 2.4 for ! 2 [`ı; ı ]ˆ [`ı; ı ].

2.2.3 Scaling function

We know from the preceding section that the localisation in frequency of the atoms

changes with the scale parameter k and the angle ‚. The atoms are therefore
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Figure 2.2. Imaginary part of the atoms  k;‚ (x) obtained from the
wavelet of Morlet. Left. ‚ = 0. k = 0 and k = 1. Right. ‚ = ı=6.
k = 0 and k = 1. The atoms are depicted for x 2 [`5; 5 ]ˆ [`5; 5 ].

Figure 2.3. Fourier transform of the atoms obtained from the wavelet
of Morlet with k = 0 and ‚ 2 G+. From left to right. ‚ = 0 to
‚ = 5ı=6 by steps of ı=6. The Fourier transforms are depicted for
! 2 [`ı; ı ]ˆ [`ı; ı ].

Figure 2.4. Fourier transform of the atoms obtained from the wavelet
of Morlet with k = 1 and ‚ 2 G+. From left to right. ‚ = 0 to
‚ = 5ı=6 by steps of ı=6. The Fourier transforms are depicted for
! 2 [`ı; ı ]ˆ [`ı; ı ].
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sensitive to various frequency bands. The atoms are speci˛cally sensitive to lower

and lower frequencies as the scale parameter k increases. Let K be the maximum

value of the scale parameter where K is, for the moment, a positive or negative

integer. We will make K a natural number when working with discrete images as

opposed to their continuous counterparts. Low frequencies below those captured

at the coarsest scale K are captured by a low-pass ˛lter

ffiK(x) = 2
`2K ffi

`
2`Kx

´
(2.7)

whose Fourier transform is

ffîK(!) = ffî( 2K! ) : (2.8)

The Fourier transform ffî(!) of the low-pass ˛lter has to be centred around the

origin ! = 0 of the frequency plane. The Fourier transform ffîK(!) is also centred

around the origin for ffîK(!) is obtained from ffî(!) by a dilation of 2K. The low-

pass ˛lter is also known as the scaling function. The introduction of a scaling

function is frequent in the derivation of the wavelet transform of one-dimensional

signals and images. The scaling function appears indeed in the derivation of the

continuous wavelet transform [70] and in the derivation of the Littlewood Paley

decompositions, leading, in the latter case, to pseudo quadrature mirror ˛lters

[92]. The scaling function also appears in the derivation of translation-invariant

wavelet frames [69, 70]. The scaling function is ˛nally at the core of the multi-

resolution approximations, leading, for example, to wavelet bases and wavelet

packets [70]. The introduction of a scaling function in the derivation of the

wavelet transform of signals and images has its bene˛ts from a computational

perspective. It sets a lower bound to the scale k of the atoms. We will see,

in section 2.3.5, that, when working with discrete images, the spatial sampling

period associated with the discrete images sets an upper bound to the scale k of

the atoms. As a result, only a ˛nite number of atoms need be considered. We

can assume, without loss of generality, that the upper bound is k = 0 (included).

As a result, K has to be a natural number instead of an integer. The number

of atoms to be considered is therefore equal to 2M(K + 1) if both positive and

negative rotations are considered, and equal to M(K+1) if only positive rotations

are considered.

2.2.4 Real-valued and complex-valued wavelets

We implicitly assumed in the preceding sections that the wavelet  (x) is direc-

tional, namely that the support of its Fourier transform  ̂(!) is localised in one

and only one region of the frequency plane centred around ! . A directional

wavelet has to be complex-valued. If the wavelet is real-valued, we ˛nd indeed

that  ̂(`!) =  ̂(!)˜ where the superscript ˜ represents the complex conjugate.
The support of the Fourier transform of a real-valued wavelet lies therefore on at

least two quarters of the frequency plane. Examples of directional wavelets are

the wavelet of Morlet and Cauchy wavelets. The wavelet of Morlet is a complex
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exponential modulated by a Gaussian function up to a constant correction term,

namely

 (x) =  (x1; x2) = » exp
ˆ`¸2 x21 ` ¸2 x22

˜ˆ ˆ exp [ i ‰0 x1 ]` ”
˜
: (2.9)

We will properly introduce this wavelet and its parameters in section 2.3.5. The

support of the Fourier transform of Cauchy wavelets [93] strictly lies in a cone

whose apex is at the origin of the frequency plane. Inside the cone, the Fourier

transform of the wavelet is a decreasing exponential modulated by a polynomial,

namely

 ̂(!) =

(
P (!) exp [`! ´ & ] if ! 2 cone
0 otherwise

(2.10)

where P (!) is a polynomial in ! and where & is a parameter which controls the

decay of the exponential. We refer to [93] for a detailed presentation of Cauchy

wavelets and their parameters. We used the wavelet of Morlet in all numerical

experiments, following [76] and [77]. For the wavelet of Morlet and Cauchy

wavelets,  (x) is complex-valued but  ̂(!) is real-valued. We will see in section

2.3.1 that, because  ̂(!) is real-valued, only positive rotations of angles ‚ 2 G+
need be considered when analysing real-valued images.

2.2.5 Quantitative space frequency localisation

We have thus far been using the centre and the extent of the support of either

 (x) or  ̂(!) without properly de˛ning them. They can be de˛ned by means of

the energy distributions of the wavelet in space and frequency as in [94] and [95].

The energy of  (x) and  ̂(!) are de˛ned by

k k2 =
Z

R2

j (x) j2 dx and k  ̂ k2 =
Z

R2

j  ̂(!) j2 d! (2.11)

with, according to Plancherel formula [69], k  ̂ k2 = (2ı)2k k2. As a result,

j (x) j2 dx = k k2 and j  ̂(!) j2 d! = k  ̂ k2 (2.12)

can be interpreted as two-dimensional probability measures which respectively de-

scribe the energy distributions of the wavelet in space and frequency. The average

values of x and ! along each dimension de˛ne the centres x = (x ;1; x ;2) and

! = (! ;1; ! ;2) of the supports of  (x) and  ̂(!). Similarly, the standard devi-

ations of x and ! along each dimension de˛ne the extents ´x = (´x ;1;´x ;2)

and ´! = (´! ;1;´! ;2) of the supports of  (x) and  ̂(!). Along the ˛rst

dimension, we ˛nd

8
>>>><
>>>>:

x ;1 =

Z

R2

x1j (x) j2dx = k k2

! ;1 =

Z

R2

!1j  ̂(!) j2 d! = k  ̂ k2
(2.13)
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b

b

b

b

x = 0 ! = 0

x ! 

2´x ;2 2´! ;2

2´x ;1 2´! ;1

Figure 2.5. Supports of  (x) and  ̂(!).

and 8
>>>><
>>>>:

(´x ;1) =
h Z

R2

(x1 ` x ;1)2 j (x) j2 dx = k k2
i1=2

(´! ;1) =
h Z

R2

(!1 ` ! ;1)2 j  ̂(!) j2 d! = k  ̂ k2
i1=2

:

(2.14)

Along the second dimension, we ˛nd

8
>>>><
>>>>:

x ;2 =

Z

R2

x2j (x) j2dx = k k2

! ;2 =

Z

R2

!2j  ̂(!) j2 d! = k  ̂ k2
(2.15)

and 8
>>>><
>>>>:

(´x ;1) =
h Z

R2

(x2 ` x ;2)2 j (x) j2 dx = k k2
i1=2

(´! ;1) =
h Z

R2

(!2 ` ! ;2)2 j  ̂(!) j2 d! = k  ̂ k2
i1=2

:

(2.16)

The supports of  (x) an  ̂(!) are consequently localised in the rectangles de-

picted in Figure 2.5. At this point, it is interesting to realise that we have to

quantify the localisation of  (x) and  ̂(!) in terms of momenta because  (x)

and  ̂(!) cannot be both compactly supported. For the wavelet of Morlet and

Cauchy wavelets, neither  (x) or  ̂(!) is compactly supported. We can similarly

de˛ne the centre and the extent of the support of either ffi(x) or ffî(!). We can

also deduce the centres and the extents of the supports of the atoms in space and

frequency should we combine (2.1) and (2.6) with (2.13) through to (2.16).

2.3 The Littlewood Paley wavelet transform of

images

2.3.1 Introduction and de˛nitions

We will present in this section the Littlewood Paley wavelet transform of images

which is the wavelet transform scattering operators are based upon. It is important

to bear in mind that this wavelet transform is one among many other types of
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wavelet transforms [69, 70, 94]. The Littlewood Paley wavelet transform of an

image f(x) is the result of the convolution of the image with every atom and

with the low-pass ˛lter. This wavelet transform leads to a redundant image

representation as opposed to the image representation induced, for example, by a

wavelet basis. The convolutions of the image with the atoms and with the low-

pass ˛lter are indeed calculated at every position x and no spatial sub-sampling is

performed after the convolutions. Should the image f(x) be real-valued, which is

the case for side-looking sonar images, only positive rotations of angles ‚ 2 G+ are
considered [74]. The wavelet transform of a real-valued image f(x) corresponds

therefore to the following set of wavelet images

WKf =
n
f ˜  k;‚ (x) ; f ˜ ffiK (x)

o
k»K ; ‚2G+

(2.17)

where ˜ represents the convolution operator. We have

f ˜  k;‚ (x) =
Z

R2

f(y) k;‚(x` y) dy (2.18)

and

f ˜ ffiK (x) =
Z

R2

f(y)ffiK(x` y) dy (2.19)

or, in terms of the inverse Fourier transform,

f ˜  k;‚(x) = 1

(2ı)2

Z

R2

f̂(!)  ̂k;‚(!) e
i!x d! (2.20)

and

f ˜ ffiK(x) = 1

(2ı)2

Z

R2

f̂(!) ffîK(!) e
i!x d! : (2.21)

When the Fourier transform  ̂(!) and the analysed image f(x) are real-valued,

we ˛nd that f˜ k;‚(x) = [ f ˜  k;‚+ı (x) ]˜ where the superscript ˜ represents the
complex conjugate. As a result, the information contained in the convolutions

of the image with the atoms  k;‚ (x) with ‚ 2 G` is already contained in the

convolutions of the image with the atoms  k;‚ (x) with ‚ 2 G+. This is why only
positive rotations of angles ‚ 2 G+ are needed when analysing real-valued images.
When the analysed image is complex-valued, f ˜ k;‚(x) 6= [ f ˜  k;‚+ı (x) ]˜ and
both positive and negative rotations are needed.

2.3.2 Space-frequency image representations

We can assume, without loss of generality, that the wavelet and the low-pass

˛lter are centred around the origin, namely that x = 0 and xffi = 0. As a

result, the coe‹cient f ˜  k;‚ (x) at a speci˛c position x contains information
about the image around this position x, and information about the frequency

content of the image around r‚(! =2k ). Similarly, the coe‹cient f ˜ ffiK (x) at
a speci˛c position x contains information about the image around this position

x, and information about the frequency content of the image below the one
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Figure 2.6. Left. Side-looking sonar image A. Right. Modulus of the

complex wavelet images f ˜ k;‚ (x) obtained with the wavelet of Morlet.
From left to right. Orientation ‚ = 0, ‚ = 2ı=6 and ‚ = 5ı=6 in
radians. Top. Scale k = 2. Bottom. Scale k = 3.

captured at the coarsest scale K. In this respect, the wavelet transform leads to

space-frequency representations of images. The wavelet transform transforms

a two-dimensional space to a four-dimensional space called the phase space.

Two dimensions of the phase space correspond to the scale k and the angle

‚. The other two dimensions correspond to the position x which appears in the

convolutions.

For example, the modulus of the complex wavelet images f ˜ k;‚ (x) obtained
with the wavelet of Morlet out of three side-looking sonar images are depicted in

Figures 2.6, 2.7 and 2.8. The wavelet images obtained with ‚ = 0 are sensitive

to horizontal features, which can be observed around the shadows of the objects

in Figure 2.6. The wavelet images obtained with ‚ = 2ı=6 are sensitive to sand

ripples. The wavelet images obtained with ‚ = 2ı=6 are all the more sensitive to

sand ripples when the scale k is adapted to the the spatial period of the ripples,

which appears to be the case when k = 2 for the small sand ripples of Figure 2.6,

and when k = 3 for the large sand ripples of Figure 2.7 and 2.8. The size of the

three side-looking images is 1000ˆ1024 pixels (vertically and horizontally). The
wavelet images f˜ k;‚ (x) were calculated with the help of the FFTW library [96]
from (2.20) according to an algorithm which can be found in either [69] or [94].

According to [69], the wavelet images f ˜ k;‚ (x) which appear in the Littlewood
Paley wavelet transform can only be calculated with an algorithm based on the

discrete Fourier transform when the wavelet  (x) is directional, which is the case

for the wavelet of Morlet. The wavelet images f ˜ ffiK(x) which are the result of
the convolution of the side-looking sonar images with the scaling function ffiK(x)

are depicted in Figure 2.9 for K = 3. Those wavelet images correspond to the

average versions of the original images at the scale K of the scaling function.

The wavelet images f ˜ ffiK (x) were also calculated with the help of the FFTW
library [96] from, this time, (2.21).
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Figure 2.7. Left. Side-looking sonar image B. Right. Modulus of the
complex wavelet images f ˜ k;‚ (x) obtained with the wavelet of Morlet.
From left to right. Orientation ‚ = 0, ‚ = 2ı=6 and ‚ = 5ı=6 in
radians. Top. Scale k = 2. Bottom. Scale k = 3.

Figure 2.8. Left. Side-looking sonar image C. Right. Modulus of the
complex wavelet images f ˜ k;‚ (x) obtained with the wavelet of Morlet.
From left to right. Orientation ‚ = 0, ‚ = 2ı=6 and ‚ = 5ı=6 in
radians. Top. Scale k = 2. Bottom. Scale k = 3.
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Figure 2.9. Wavelet images resulting of the convolution of the images A,
B and C with the scaling function ffiK(x) for K = 3. Top. Side-looking
sonar images. Bottom. Wavelet images.

2.3.3 A few properties of the wavelet transform

The Littlewood Paley wavelet transform is a linear operator because the convo-

lution operator is linear. As a result, WK(¸f + ˛g ) = ¸WKf + ˛WKg for any

scalars ¸ and ˛ and any images f and g. The wavelet transform also commutes

with translations because no spatial sub-sampling is performed on the convolutions

of the image with the atoms and with the low-pass ˛lter. If Lfif(x) = f(x` fi) is
the translation of f(x) in the constant direction fi , then WKLfif = LfiWKf. The

wavelet transform is therefore not translation invariant, namely WKLfif 6=WKf.

2.3.4 Invertibility and non-expansivity of the wavelet trans-

form

Scattering operators require the Littlewood Paley wavelet transform to be invert-

ible and non-expansive. In order to clarify those two concepts, we need to de˛ne

the energy of the wavelet transform. The energy of the wavelet transform WKf

is de˛ned as the sum of the energy of the images in the set WKf, namely

kWKf k2 = k f ˜ ffiK k2 +
KX

k=`1

X

‚2G+

n
k f ˜  k;‚ k2

o
(2.22)

with

k f ˜  k;‚ k2 =
Z

R2

j f ˜  k;‚ (x) j2 dx (2.23)
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and

k f ˜ ffiK k2 =
Z

R2

j f ˜ ffiK (x) j2 dx (2.24)

in (2.22). The Littlewood Paley wavelet transform is invertible and non-expansive

if there exists a real number › with 0 » › < 1 such that

(1` ›) kfk2 » kWK f k2 » kfk2 (2.25)

or equivalently [70] such that

1` › » j ffî(!) j2 + 1
2

0X

k=`1

X

‚2G

n
j  ̂k;‚ (!) j2

o
» 1 : (2.26)

(2.25) indicates that the energy of the wavelet transform is equivalent but not

necessarily equal to the energy of the image. Equality arises when › = 0 in which

case the wavelet transform is unitary and kWK f k = k f k. (2.25) also indicates
that the wavelet transform is non-expansive, namely

kWKf `Wkg k » k f ` g k (2.27)

for any images f and g. (2.25) ˛nally indicates that the wavelet transform is

invertible, in other words, that it possible to reconstruct the image f(x) from the

images in the set WKf. It is indeed possible to show [70] that there exists a set

of reconstruction atoms ~ k;‚ (x) and a reconstruction low-pass ˛lter ~ffi(x) such

that

f(x) = f ˜ ffiK ˜ ~ffiK (x) +
KX

k=`1

X

‚2G+

n
f ˜  k;‚ ˜ ~ k;‚ (x)

o
(2.28)

with

~ffiK(x) = 2
`2K ~ffi

`
2`Kx

´
(2.29)

If we de˛ne

S(!) = j ffî(!) j2 + 1
2

0X

k=`1

X

‚2G

n
j  ̂k;‚ (!) j2

o
; (2.30)

one possible choice for the reconstruction atoms and the reconstruction low-pass

˛lter is

~̂ k;‚ (!) =  ̂k;‚ (!)
˜ = S(!) and ~̂ffi(!) = ffî(!)˜ = S(!) : (2.31)

The reconstruction atoms and the reconstruction low-pass ˛lter are all well de-

˛ned because, according to (2.26), S(!) is bounded above and below by 1 and

1 ` ›, respectively. If the wavelet transform is not unitary, optimisation algo-

rithms have to be used to obtain the reconstruction atoms and the reconstruction

low-pass ˛lter [70]. If the wavelet transform is unitary (namely, if S(!) = 1)

the reconstruction atoms and the reconstruction low-pass ˛lter are readily obtain
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from the atoms and the low-pass ˛lter according to

~̂ k;‚ (!) =  ̂k;‚ (!)
˜ and ~̂ffi(!) = ffî(!)˜ : (2.32)

Constraints on the wavelet  (x) and the low-pass ˛lter ffi(x) can be drawn from

(2.26). (2.26) states that S(!) has to be bounded at all frequencies !. Upon

combining (2.6) and (2.30) we ˛nd that S(0) = +1 unless  ̂(0) = 0. As a

result, the Fourier transform  ̂(!) of the wavelet has to vanish at the origin of

the frequency plane. The wavelet and the atoms strictly act therefore as band-

pass ˛lters. We also ˛nd from (2.30) that the Fourier transform ffî(!) of the

low-pass ˛lter has to satisfy

1` › » j ffî(0) j2 » 1 : (2.33)

In the derivation of scattering operators, the low-pass ˛lter is chosen such that

ffî(0) =

Z

R2

ffi(x) dx = 1 (2.34)

in which case (2.33) is satis˛ed. Finally, it is important to notice that the sum in

(2.25) runs over angles ‚ 2 G+ while the sum in (2.26) runs over angles ‚ 2 G.
We now show why this is the case, proving the implication (2.26) ) (2.25). We

start from from (2.30) from which we have

S(2K!) = j ffî(2K!) j2 + 1
2

0X

k=`1

X

‚2G

n
j  ̂k;‚ (2K!) j2

o

= j ffî(2K!) j2 + 1
2

KX

k=`1

X

‚2G

n
j  ̂k;‚ (!) j2

o
: (2.35)

Plancherel formula applied to (2.35) multiplied by j f(!) j2 leads to
Z

R2

S(2K!) jf̂(!) j2 d!

= (2ı)2 k f ˜ ffiK k2 +
(2ı)2

2

KX

k=`1

X

‚2G

n
k f ˜  k;‚ k2

o
(2.36)

where the summation runs over angles in ‚ 2 G. We assumed earlier on that the
image f(x) real-valued, which implies that f̂(`!) = f̂(!)˜. This leads in turn to

k f ˜  k;‚ k = k f ˜  k;‚+ı k for any scale k and any angle ‚. We then ˛nd, from
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the de˛nition (2.3) of G, that

Z

R2

S(2K!) jf̂(!) j2 d!

= (2ı)2 k f ˜ ffiK k2 + (2ı)2
KX

k=`1

X

‚2G+

n
k f ˜  k;‚ k2

o
: (2.37)

where the summation now runs over angles ‚ 2 G+. If (2.26) is satis˛ed, we have

(1` ›)
Z

R2

jf̂(!) j2 d! »
Z

R2

S(2K!) jf̂(!) j2 d! »
Z

R2

jf̂(!) j2 d! (2.38)

and then

(1` ›) kfk2 » kWK f k2 » kfk2 : (2.39)

The implication (2.26) ) (2.25) is then satis˛ed. We refer to [74] for a proof of

the implication (2.26) ( (2.25).

2.3.5 The wavelet of Morlet for image analysis

We will present, in this section, the wavelet of Morlet which is a complex expo-

nential modulated by a Gaussian function, up to a constant correction term. We

will explain how to set the parameters of the wavelet of Morlet when working

with discrete sonar images. We will also explain that, together with a Gaussian

low-pass ˛lter, or scaling function, the wavelet of Morlet leads to a Littlewood

Paley wavelet transform which is invertible and non-expansive. The wavelet of

Morlet is de˛ned by

 (x) =  (x1; x2) = » exp
ˆ`¸2 x21 ` ¸2 x22

˜ˆ ˆ exp [ i ‰0 x1 ]` ”
˜

(2.40)

where » is a normalisation constant, where ‰0 represents a spatial wave number,

and where ” is a constant correction term. The Fourier transform of the wavelet

is

 ̂(!) =  ̂(!1; !2)

=
»ı

¸2
ˆ

exp

»
`
(!1 ` ‰0)2 + !22

4¸2

–
` ” exp

»
`
!21 + !

2
2

4¸2

– ff
(2.41)

from which we ˛nd

 ̂(0) =
»ı

¸2
ˆ
n
exp
ˆ`‰20=(4¸2)

˜` ”
o
: (2.42)

The constant correction term ” = exp
ˆ`‰20 = (4¸2)

˜
ensures therefore that

 ̂(0) = 0 which is a requirement drawn from condition (2.26) in section 2.3.4. If

we assume [69, 70, 77] that ” fi 1, we ˛nd that

 (x) =  (x1; x2) ’ » exp
ˆ`¸2 x21 ` ¸2 x22

˜ˆ exp [ i ‰0 x1 ] (2.43)
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and

 ̂(!) =  ̂(!1; !2) ’ »ı

¸2
ˆ exp

»
`
(!1 ` ‰0)2 + !22

4¸2

–
: (2.44)

From (2.43) we ˛nd that x ’ (0; 0) and ´x ’ (1=¸; 1=¸) and k k =
(»=¸)

p
ı=2. From (2.44) we ˛nd that ! ’ (‰0; 0) and ´! ’ (¸;¸) and

k ̂k ’ »ı
p
2ı =¸. If ” is in the order of 1 (” ‰ 1) the expressions we just found

for the centres and the extents of the supports of  (x) and  ̂(!) have to be ever

so slightly corrected.

Wavelet’s parameters We choose the parameters ‰0 and ¸ of the wavelet of

Morlet in order to create a dyadic partition of the portion of the frequency plane

which is available when working with discrete sonar images. We can assume,

without loss of generality, that the spatial sampling period associated with the

discrete sonar images equals one in both directions. According to Shannon’s

sampling theorem, the available portion of the frequency plane is the square

[`ı; ı] ˆ [`ı; ı] where ı is Nyquist’s limit. We then set ‰0 = 3ı=4 and ¸ =
ı`‰0 = ı=4 so that the support of the Fourier transform  ̂(!) lies in the annulus

de˛ned by the radii ı=2 and ı, which is illustrated in Figure 2.10. The atoms

are obtained from the wavelet by dilations proportional to 2. As a result, the

support of the Fourier transform  ̂k;‚ (!) lies in the annulus de˛ned by the radii

ı=2k+1 and ı=2k. The supports of the Fourier transforms of the atoms create

therefore a dyadic partition of upper part of the square [`ı; ı] ˆ [`ı; ı] when
k varies from 0 to K and when ‚ 2 G+. Returning to what was said in section
2.2.3, the spatial sampling period associated with the discrete sonar images sets

an upper bound to the scale parameter k of the atoms. The upper bound is 0 and

the corresponding scale, the ˛nest, can be interpreted as the scale of a pixel. We

can verify a posteriori that ” = 0:11 fi 1 when ‰0 = 3ı=4 and ¸ = ı=4. The

normalisation constant » = ¸=(ı
p
2ı) is chosen so that k ̂k = 1.

One observation If the atoms were obtained from the wavelet by dilations

proportional to a with a not necessarily equal to 2, an a-adic partition of the

square [`ı; ı]ˆ [`ı; ı] would be obtained in a similar fashion. The support of
the Fourier transform  ̂k;‚ (!) now lies in the annulus de˛ned by the radii ı=ak+1

and ı=ak. As a result, the parameters ‰0 and ¸ have to satisfy

‰0 + ¸ = ı and ‰0=a+ ¸=a = ‰0 ` ¸ (2.45)

which leads to

‰0 = ı (a+ 1)=(2a) and ¸ = ı (a` 1)=(2a) : (2.46)

If a = 2 we ˛nd ‰0 = 3ı=4 and ¸ = ı=4 as before.

Scaling function’s parameters The circle of radius ı=2K+1 centred around the

origin w = 0 is not covered by any of the supports of the Fourier transforms of
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the atoms but rather by the support of ffîK (!). ffîK (!) is obtained from ffî(!) by

a dilation of 2`K. What is then required is that the support of ffî(!) covers the

circle of radius ı=2 centred around the origin, which is illustrated in Figure 2.11.

We use the Gaussian low-pass ˛lter ffi(x) de˛ned by

ffi(x) = ffi(x1; x2) = »0 exp
ˆ `˛2 x21 ` ˛2 x22

˜
(2.47)

where »0 is another normalisation constant. The Fourier transform of the low-pass

˛lter is

ffî(!) =
»0ı
˛2
ˆ exp

»
`
!21 + !

2
2

4 ˛2

–
(2.48)

from which we obtain

!ffi = (0; 0) and ´!ffi = ( ˛; ˛ ) : (2.49)

The support of ffî(!) covers therefore the circle of radius ı=2 centred around the

origin when ˛ = ı=2. The normalisation constant »0 = ˛2=ı is chosen so that

ffî(0) = 1, which relates to condition (2.34) in section 2.3.4.

Littlewood Paley wavelet transform The wavelet of Morlet and the Gaussian

scaling function lead together to a Littlewood Paley wavelet transform which is

invertible and non-expansive if

1` › » S(!) » 1 with S(!) = j ffî(!) j2+ 1
2

0X

k=`1

X

‚2G

n
j  ̂k;‚ (!) j2

o
(2.50)

We consequently have to ˛nd a lower bound and an upper bound for S(!). In order

to account for the fact that the images we analyse are discrete, we estimated the

bounds over the circle of radius ‰0 [97]. Indeed, the atoms corresponding to k < 0

no longer take part in the wavelet transform. We numerically ˛nd that (2.50) is

satis˛ed for › = 0:47. At this point, we know how to calculate the Littlewood

Paley wavelet transform of an image. We know how to set the parameters of the

wavelet and the scaling function. We also know that the chosen parameters lead

to a wavelet transform which is invertible and non-expansive. We are now ready

to introduce the scattering transform of images.

2.4 Scattering operators

2.4.1 Introduction to scattering operators

We will introduce in this section the scattering transform of images [74]. We start

with the introduction of a slight change of notations. We denote by – = ( k; ‚ )

any pair of scale and orientation and we denote by ˜ = f (k; ‚ ) : k » K and ‚ 2
G+ g the set of all possible pairs of scales and orientations. Only real-valued
images are analysed so that ‚ 2 G+ in ˜ (instead of ‚ 2 G = G+ [ G`). A path
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b b! = 0
! ‰0

ı

3ı=4

ı=2

Nyquist’s limit

2¸

2¸

Figure 2.10. Supports of  ̂(!) for the wavelet of Morlet.

b b! = 0
! ‰0

ffî(!)

 ̂(!)

ı

3ı=4

ı=2

˛ = ‰0 ` ¸

Figure 2.11. Supports of  ̂(!) and ffî(!) for the wavelet of Morlet and
the Gaussian scaling function.
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p = (–1; : : : ; –n ) 2 ˜n of length n – 0 is de˛ned as an ordered set of pairs of
scales and orientations. The path of length zero is denoted by the symbol ; of
the empty set. The scattering image calculated along the path p of length n is

de˛ned by

Spf(x) = j ´ ´ ´ j| {z }
n times

f ˜  –1 j ˜  –2 j ´ ´ ´ ˜  –n j ˜ ffiK(x) (2.51)

and is the result of n iterations over (1) the convolutions with the atoms and

(2) the complex modulus operator followed eventually by a convolution with the

scaling function ffiK(x). The scattering image calculated over the path of length

zero is de˛ned by

S;f(x) = f ˜ ffiK(x) : (2.52)

Scattering images S;f(x) = f ˜ffiK(x) calculated with K = 3 over the path of
length zero are depicted in Figure 2.12. We can see that the scattering images

calculated over the path of length zero correspond the average versions of the

original images at the coarsest scale K of the wavelet transform. The spatial

resolution associated with the images S;f(x) is therefore that of the scaling

function ffiK(x) (see Section 2.2.5 for a quantitative evaluation of the spatial

resolution of the scaling function). The scattering images S–f(x) = j f ˜  – j ˜
ffiK(x) calculated with K = 3 over paths – = (k; ‚) of length one are depicted in

Figures 2.13, 2.14 and 2.15 for the side-looking sonar images A, B and C. Those

scattering images correspond to the averaged versions of the amplitude of the

wavelet images f ˜  –(x) at the coarsest scale K of the wavelet transform. The
spatial resolution associated with the images S–f(x) is consequently also that

of the scaling function ffiK(x). Averaging the amplitude of the wavelet images

induces a loss of information. The larger K, the stronger the averaging, and the

greater the loss of information. The lost information can be recovered should

we observe that j f ˜  – j ˜ ffiK(x) is the low-frequency component of the wavelet
transform of j f ˜  –(x) j. We have indeed

WK j f ˜  – j =
n
j f ˜  – j ˜  –0 (x) ; j f ˜  – j ˜ ffiK (x)

o
–02˜

: (2.53)

Because the Littlewood Paley wavelet transform is invertible, the lost information

is contained in the wavelet images j f ˜  – j ˜  –0 (x) with –0 2 ˜. Those wavelet
images lead in turn to a new set of scattering images calculated this time over

paths of length two, namely

S–;–0f(x) = jj f ˜  – j ˜  –0 j ˜ ffiK(x) : (2.54)

The spatial resolution associated with the scattering images (2.54) is once again

that of the scaling function ffiK(x). At this point, it is important to observe

that the –’s are frequency-related parameters which indicate the localisation in

frequency of the atoms, whereas K is a spatially-related parameter which indicates

the intrinsic spatial resolution of the scattering images. The scattering images

calculated over paths of length two provide co-occurrence information about pairs

(–; –0) of scale and orientation for those scattering images involve the convolutions
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Figure 2.12. Scattering images S;f(x) corresponding to the path of
length zero with K = 3. Top. Side-looking sonar images A, B and C.
Bottom. Scattering images.

with the atoms  –(x) and  –0(x). Averaging the amplitude of the wavelet images

j f ˜  – j ˜  –0 (x) by ffiK(x) induces another loss of information which can be
recovered from by another wavelet transform, leading to a new set of scattering

images calculated this time over paths of length three. When we repeat this

mechanism, we obtain the scattering images (2.51) calculated over paths of length

n – 0. At this point, it is important to realise that all scattering images have the
same spatial resolution, which is the resolution, above that of a pixel, at which

the scattering transform operates. We will make use of this fact in Chapter 4.

2.4.2 Scattering transform

We have thus far de˛ned what is the scattering image calculated over a path p of

any length, and highlighted some of the properties of the scattering images. We

now de˛ne what is the scattering transform of an image. The scattering transform

of an image f(x) corresponds to the set of all scattering images calculated along

all possible paths of any length. The scattering transform of the image f(x)

corresponds therefore to the set

Sf(x) =
˘
Spf(x) : p 2 P

¯
(2.55)

where P = [n–0 ˜n = ; [ ˜ [ ˜2 [ ´ ´ ´ [ ˜n [ ´ ´ ´ is the set of all possible
paths of any length. The set (2.55) contains an in˛nite but countable number

of elements. We will see in Section 2.4.5 that, when working with discrete sonar

images, as opposed to their continuous counterparts, we can de˛ne a discrete
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Figure 2.13. Scattering images Spf(x) with K = 3 corresponding to
paths p = (k; ‚) of length one. Left. Side-looking sonar image A. Right.
Scattering images. From left to right. Orientation ‚ = 0, ‚ = 2ı=6 and
‚ = 5ı=6 in radians. Top. Scale k = 2. Bottom. Scale k = 3.

Figure 2.14. Scattering images Spf(x) with K = 3 corresponding to
paths p = (k; ‚) of length one. Left. Side-looking sonar image B. Right.
Scattering images. From left to right. Orientation ‚ = 0, ‚ = 2ı=6 and
‚ = 5ı=6 in radians. Top. Scale k = 2. Bottom. Scale k = 3.

Figure 2.15. Scattering images Spf(x) with K = 3 corresponding to
paths p = (k; ‚) of length one. Left. Side-looking sonar image C. Right.
Scattering images. From left to right. Orientation ‚ = 0, ‚ = 2ı=6 and
‚ = 5ı=6 in radians. Top. Scale k = 2. Bottom. Scale k = 3.
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scattering transform whereby only a ˛nite number of scattering images need be

considered. The energy of the scattering transform is de˛ned as the sum of the

energy of the scattering images the same way the energy of the Littlewood Paley

wavelet transform is de˛ned as the sum of the energy of the wavelet images. We

have

kSf k2 =
X

p2P
kSpf k2 (2.56)

where

kSpf k2 =
Z

R2

jSpf(x) j2 dx (2.57)

is the energy of the scattering images. The energy of the scattering transform is

de˛ned by a summation over an in˛nite number of paths. However, the energy of

the scattering images decreases exponentially as the length of the paths increases

[74]. As a result, the summation can run over the set of paths of length below

or equal to a natural number N, namely

kSf k2 ı
X

p2;[˜[˜2[´´´[˜N
kSpf k2 ; (2.58)

leading to a \fair" approximation of the energy of the scattering transform. Only

the scattering images de˛ned over paths of length below or equal to N need be

calculated, which reduces greatly the computational requirements of the scatter-

ing transform. In all numerical experiments, we used N = 1 or N = 2, because of

what was just mentioned, and also because of memory requirements. The energy

of the scattering transform de˛nes a metric which can be used to compare two

images f and g. The metric is

kSf ` Sgk =
h X

p2P
kSpf ` Spg k2

i1=2
(2.59)

where

kSpf ` Spg k2 =
Z

R2

jSpf(x) ` Spg(x) j2 dx : (2.60)

We refer to [74] for a comprehensive presentation of the properties of this metric.

We just mention that, because the wavelet transform and the complex modulus

operator are contractive, the metric is also contractive, that is kSf ` Sgk »
kf`gk. Because of the exponential decay of the energy of the scattering images,
the metric is approximated in all numerical experiments by

kSf ` Sgk ı
h X

p2;[˜[˜2[´´´[˜N
kSpf ` Spg k2

i1=2
: (2.61)

2.4.3 Scattering operators and convolution networks

The architecture of the scattering transform of the image f(x) is similar to the

architecture of a convolution network [75], which is illustrated in Figure 2.16. The

root of the network corresponds to the original image f(x). The ˛rst layer of
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n = 0

n = 1

n = 2

S;f

S–1f S–2f

S–1;–2f S–2;–1f

f

j f ?  –1 j j f ?  –2 j

jj f ?  –1 j ?  –2 j jj f ?  –2 j ?  –1 j

Figure 2.16. Architecture of a scattering operator. The root of the
network corresponds to the original image. The nodes of the ˛rst layer
of the network correspond to the images j f ˜  – j for all – 2 ˜. The
nodes of the second layer correspond to the images jj f ˜  – j ˜  –0 j for
all –; –0 2 ˜. Each node output a scattering image from the action of
the low-pass ˛lter. The root of the network corresponds to interferences

of order n = 0, the ˛rst layer to interferences of order n = 1, and the
second layer to interferences of order n = 2.

the network is obtained from the root by one iteration over the wavelet transform

and the complex modulus operator. The nodes of the ˛rst layer correspond

therefore to the images j f ˜  – j for all – 2 ˜. The second layer of the network
is obtained from the ˛rst layer by another iteration over the wavelet transform

and the complex modulus operator. The nodes of the second layer correspond

therefore to the images jj f ˜  – j ˜  –0 j for all –; –0 2 ˜. Such a process is
repeated until the maximum length N of the paths is reached. Each node of the

network outputs a scattering image from the action of the low-pass ˛lter ffiK(x).

The root node outputs S;f, the nodes of the ˛rst layer output S–f for all – 2 ˜,
and the nodes of the second layer output S–;–0f for all –; –0 2 ˜. The nodes of a
layer n with 0 » n » N output Spf for all paths p 2 ˜n.

2.4.4 Energy decay of the scattering images

We mentioned in Section 2.4.2 that according to [74] the energy of the scattering

images decays exponentially as the length of the paths increases. We will now

con˛rm that this is the case for the side-looking sonar images A, B and C. We

denote the length of a path p by l(p). Experimentally, we observe that we should

have for all paths p

log kSpf k2 = k f k2 = ¸` 2 l(p) (2.62)

where ¸ is a ˛nite constant, and where the constant 2 seems to relate to the

dyadic scale progression of the atoms. The quantity log kSpfk2 = kfk2 is depicted
in Figure 2.17 as a function of l(p) for the scattering images Spf(x) obtained out
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Figure 2.17. Energy decay of the scattering images Spf(x) ob-
tained out of three sonar images. The circles represent the quantity
log kSpfk2 = kfk2 as a function of the length l(p) of the paths. Each
circle corresponds to a scattering image. The dotted lines correspond to

a linear ˛tting.

of the side-looking sonar images A, B and C. A linear ˛tting leads to

8
>><
>>:

log kSpfk2 = kfk2 = `0:15` 2:2 l(p) (image A)

log kSpfk2 = kfk2 = `0:16` 2:2 l(p) (image B)

log kSpfk2 = kfk2 = `0:14` 2:2 l(p) (image C) ;

(2.63)

suggesting that the energy of the scattering images does decay exponentially as

the length of the paths increases.

2.4.5 Fast scattering operators

We introduced in section 2.4.2 the energy kSf k2 of the scattering transform of
an image f(x) as the sum of the energy of all possible scattering images. We ex-

plained that, because the energy of the scattering images decreases exponentially

as the length of the paths increases, the energy of the scattering transform can

be approximated by

kSf k2 ı
X

p2;[˜[˜2[´´´[˜N
kSpf k2 (2.64)

where N, a natural number, is the maximum length of the paths. Only the

scattering images calculated over paths of length below or equal to N need be

considered. In this section, we will explain that the approximation (2.64) can be
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re˛ned by considering the scattering images calculated over frequency-decreasing

paths of length below or equal to N. We ˛rst consider two pairs of scale and

orientation – = (k; ‚) and –0 = ( k0; ‚ 0 ) and the scattering image

S–;–0 f(x) = j j f ˜  – j ˜  –0 j ˜ ffiK (x) : (2.65)

The frequency content of the image f ˜  – (x) lies in the annulus de˛ned by the
radii ı=2k+1 and ı=2k because the atom  –(x) strictly acts as a band-pass ˛lter.

The width of the annulus is equal ı=2k+1. As a result, the frequency content

of j f ˜  – (x) j lies in the circle of radius ı=2k+1 centred around the origin of
the frequency plane. If we write f– (x) = f ˜  – (x), the Fourier transform of
j f ˜  – (x) j = j f–(x) j is indeed

dj f– j(!) =
Z

R2

bf– (!0 ) bf– (!0 ` ! )˜ d!0 (2.66)

and behaves like an auto-correlation function. This function of ! is therefore

maximum around the origin of the frequency plane. The extent of this function,

around the origin, corresponds to the extent of the support of bf– (!) which is
equal to ı=2k+1. The frequency content of j f ˜  – (x) j does therefore lie in the
circle of radius ı=2k+1 centred around the origin of the frequency plane. The

e¸ect of the modulus operator is to \push" the energy of the wavelet coe‹cients

f ˜ – (x) towards low-frequencies. As a result, the coe‹cients j f ˜ – j ˜ –0 (x)
only are non-negligible if the support of  ̂–0 (!) lies in the circle of radius ı=2k+1,

that is to say, if k0 > k. In such a case, (–; –0) is a frequency-decreasing path.

Such a reasoning can be applied the scattering images calculated along paths of

arbitrary length, from which we conclude that the scattering images need only

be calculated over frequency-decreasing paths. We de˛ne ˜n# = f (–1; : : : ; –n) 2
˜n : k1 < k2 < : : : < kn g the set of frequency decreasing paths of length n. We
have ˜0# = ; and ˜1# = ˜. As a result, the approximation (2.64) can be re˛ned
according to

kSf k2 ı
X

p2;[˜[˜2#[´´´[˜N#

kSpf k2 : (2.67)

We know that when working with discrete sonar images, the spatial sampling

period associated with the discrete images sets an upper bound to the scale k of

the atoms. The upper bound is k = 0 (included) as explained in Section 2.3.5.

Among all frequency-decreasing paths p = (–1; : : : ; –n) 2 ˜n# of length n, the
paths that can be and are considered when working with discrete sonar images are

the ones for which ki – 0 for all indexes i between 1 and n. We therefore de˛ne
the following subset of frequency-decreasing paths of length n.

—̃n# = f (–1; : : : ; –n) 2 ˜n# : k1 – 0 ; k2 – 0 ; : : : ; kn – 0 g : (2.68)

We have for example —̃0# = ; and —̃1# = f (k; ‚ ) : 0 » k » K and ‚ 2 G+ g and
—̃2# = f (–; –0 ) : 0 » k; k0 » K and ‚; ‚ 0 2 G+ and k0 > k g. We can now de˛ne
the discrete scattering transform —S of an image as the set of all scattering images
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than can possibly be calculated when working with discrete images. The discrete

scattering transform of an image f(x) is therefore de˛ned by

—Sf(x) =
˘
Spf(x) : p 2 ; [ ´ ´ ´ [ —̃n# [ ´ ´ ´ [ —̃N#

¯
: (2.69)

If N is the maximum length of the paths, M the number of angles in G+, and K

the depth of the wavelet transform, the number of scattering images involved the

set (2.69) is

NX

n=0

Mn
`K+1

n

´
= 1 +M(K + 1) +M2(K + 1)K=2 + ´ ´ ´+MN

`K+1
N

´
: (2.70)

where
`K+1

n

´
is the binomial coe‹cient between K + 1 and n.

2.4.6 A C implementation of fast scattering operators

We will present in this section a way to calculate the discrete scattering transform

of an image in C. The emphasis will be on the data structure we used to calculate

scattering images along frequency-decreasing paths, and to store those images in

memory. The data structure we used is a linked list [98] which corresponds to a

root and an ordered collection of nodes, as illustrated in Figure 2.18. A node is

essentially composed of a link (or reference) to an image, ultimately, a scattering

image, and of a link (or reference) to the following node. The links are pointer

variables containing the address in memory of either a node or an image. The last

node is linked to a NULL node, which is a standard way to terminate a linked list.

The root is essentially composed of a link to the ˛rst node, and of a link to the

last node. It is therefore possible to add a node either at the beginning or at the

end of the list. It is also possible to traverse through the list from the ˛rst node

to the last one, and hence gain access to the images associated with each node.

The linked list is constructed sequentially in several steps, the objective being to

calculate the scattering images

Spf(x) = j ´ ´ ´ j f ˜  –1 j ˜  –2 j ´ ´ ´ ˜  –n j ˜ ffiK(x)

along paths p = (–1; : : : ; –n) 2 —̃n# of length n with 0 » n » N. The steps

are the following. First, the root of the linked list is created. A node is created,

added to the list and linked to the original image f(x). Then, the original image

f(x) is used to calculate the images

j ´ ´ ´ j f ˜  –1 j ˜  –2 j ´ ´ ´ ˜  –n (x) j

for all (–1; : : : ; –n) 2 —̃n# and 1 » n » N. Nodes are created added to the list,

and linked to every one of those images. This is done by traversing through the

list from the ˛rst node to the last one. Finally, the list is traversed through from

the ˛rst node to the last one one more time. In this process, the convolutions

between the images the nodes are linked to and the scaling function ffiK(x) are
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Root

1st node 2nd node Last node

image image image

Reference to the last node

Reference to the ˛rst node

Reference to the ˛rst image

Reference to the second image

Reference to the following node

NULL

b

b

b

b

b

Figure 2.18. Linked list.

calculated, leading eventually to the scattering images Spf(x) for p 2 —̃n# and
0 » n » N.
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2.5 Conclusions and perspectives

This chapter was mainly concerned with the scattering representation of images.

The beginning of the chapter dealt with the Littlewood Paley wavelet transform

of images which is one among many other kinds of two-dimensional wavelet trans-

forms. The Littlewood Paley wavelet transform of images was considered from a

mathematical perspective and from an algorithmic perspective. Both perspectives

are indeed needed to fully understand and use any sort of wavelet transform. The

end of the chapter dealt with the scattering representation of images. This repre-

sentation, derived from the Littlewood Paley wavelet transform, possesses many

advanced mathematical properties. One property which is important for the rest

of the thesis is that the scattering representation possesses a constant intrinsic

spatial resolution. This resolution is related to the depth of the Littlewood Paley

wavelet transform, and makes the scattering representation stable with respect

to local image deformations. We shall see in Chapter 3 that such a stability

makes the scattering representation very well adapted to the textures commonly

encountered in side-looking sonar images. We shall also make use of the intrinsic

spatial resolution of the scattering representation in Chapter 4 where an inference

algorithm based on the concept of similarity by composition will be presented.

The achievements of the present chapter are the following. We successfully

implemented the Littlewood Paley wavelet transform of images in C with the help

of an algorithm based on the discrete Fourier transform. This algorithm made use

of the FFTW library which is a collection of fast C routines for computing the

discrete Fourier transform. We provided this chapter with the Littlewood Paley

wavelet transforms of a few side-looking sonar images with several types of seabed,

and showed that speci˛c aspects of the types of seabed of these images were

\captured" by the wavelet transform. At this point, it is important to mention

that the algorithm based on the discrete Fourier transform is the only one we

could use to implement the Littlewood Paley wavelet transform of images. Had

we been considering the Littlewood Paley wavelet transform of one-dimensional

signals, such as the recording of the voltage drop across a capacitor, we could have

used other algorithms that are faster than the one based on the discrete Fourier

transform. Some of these algorithms are exact and others are approximate. This

distinction depends on the wavelet.

In this chapter, we decided to use the wavelet of Morlet, and we explained how

to chose the parameters of this wavelet, which is, as far as we know, something

that is never explained in the literature. We explained that the parameters of

the wavelet are obtained in order to create a partition of the frequency plane

that is adapted to the scale progression of the atoms. To be more precise, the

scale progression of the atoms was chosen dyadic and, according to Shannon’s

regular sampling theorem, only a portion of the frequency plane (below Nyquist’s

frequency) is available when working with discrete images. This portion of the

frequency plane is hence partioned in a dyadic fashion. We ˛nally showed that

when the parameters of the wavelet of Morlet are chosen in such a way, this

wavelet leads to a Littlewood Paley wavelet transform which is non-expansive



CHAPTER 2. SCATTERING OPERATORS FOR IMAGE ANALYSIS 53

and invertible.

In this chapter, we also successfully implemented the scattering transform of

images in C, making use of a speci˛c C data structure called a linked list. We

provided this chapter with the scattering transforms of a few side-looking sonar

images, and explained how di¸erent they were from the Littlewood Paley wavelet

transforms of the same images. At this point, we ought to be discussing the al-

gorithmic complexity of the scattering transform of images. It is undeniable from

what was written in this chapter that the scattering representation of images is al-

gorithmically very complex. The representation of a single image is indeed made

of between one hundred and two hundred scattering images (the exact number of

scattering images depends on the values given to the parameters of the scatter-

ing transform). Besides, the scattering images cannot be obtained independently

from one another, which is why we had to use a linked list in our C implemen-

tation of the scattering transform, that is, a rather advanced data structure. We

˛nd, however, that the algorithmic complexity of the scattering representation

is balanced by the fact that it only depends on three parameters. The image

representations presented in Chapter 1 depend on a comparatively larger number

of parameters. Sum and di¸erence histograms and co-occurrence distributions (of

common use in the ˛eld of sonar imagery) and local binary patterns notably do so.

When an image representation is used for illustrative purposes, which sometimes

happens, the number of parameters upon which the representation depends are

not of much importance. When an image representation is used in conjunction

with an inference algorithm, which shall be the case in the following chapters,

the number of parameters upon which the representation depends are of a much

greater importance. The parameters have indeed to be set carefully according to

the purpose of the inference algorithm, and the more parameters are to be set, the

harder a task that is. In this respect, there is a clear advantage in using scattering

operators to represent side-looking sonar images.

At this point of the thesis, we are ready to provide an answer to the two

problems de˛ned in Chapter 1. These are the supervised identi˛cation of the

types of seabed that are present in side-looking sonar images, and the reduction,

in the form of a post-processing process, of the number of false positives in a set

of detections provided by a target detector. This will be done in Chapters 3 and

4 with the help of two inference algorithms, one based on a‹ne spaces, and the

other based on the concept of similarity by composition. Both inference algorithms

make use of the scattering representation of images though in a di¸erent way.



Chapter 3

Image analysis with a‹ne

spaces

"In the space between chaos and

shape there was another chance."

Jeanette Winterson, The World

and Other Places.

3.1 Inference algorithms with a‹ne spaces

3.1.1 Introduction

In the previous chapter, we presented the scattering transform of images. We

showed that the scattering transform of an image corresponds to a set of scattering

images obtained out of a Littlewood Paley wavelet transform. We emphasised

the algorithmic and numerical aspects of the scattering transform because these

aspects have to be considered with great care when working with discrete images.

In this chapter, we will address the two problems de˛ned in Chapter 1 with the help

of the signal representation induced by the scattering transform. These problems

are the supervised identi˛cation of the types of seabed present in side-looking

sonar images, and the reduction, in the form of a post-processing process, of the

number of false positives in a set of detections provided by a target detector. Let

us consider ˛rst the supervised identi˛cation of the types of seabed. To solve this

problem, we consider a query signal in one of a sonar images under study, that

is to say, a rectangular region in one of the sonar images under study. We also

consider a set of classes corresponding to several types of seabed. The members

of the classes also are rectangular signals. The query signal and the member of

the classes are all described by the scattering transform. A model based on an

a‹ne space is associated with each class. A decision is made upon the type of

seabed of the query signal by looking at the distance between the query signal

and each a‹ne space. The distance is calculated in the space generated by the

scattering transform. The a‹ne spaces are created out of a training set, which is

54
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why we say that the identi˛cation of the types of seabed is supervised. We created

the training set by extracting signals out of a few sonar images. We also created

a testing set by extracting signals out of another set of sonar images in order

to quantitatively evaluate the performance of the identi˛cation of the types of

seabed. Our approach is based on the signal representation induced by scattering

operators but could have well been based on another signal representation, such

as the one induced by local binary patterns, co-occurrence distributions, or even

Gabor atoms. A study of the seabed identi˛cation performance obtained with

several signal representations is always valuable. We therefore compared the

seabed identi˛cation performance obtained with the signal representation induced

by scattering operators with the seabed identi˛cation performance obtained with

the signal representation induced by local binary patterns. We chose local binary

patterns because they are one of the best texture representations available at the

moment, unifying the statistical and structural representations of textures, namely

co-occurrence distributions and Gabor atoms.

Let us consider now the problem of reducing the number of false positives

in a set of detections provided by a target detector. This is a clutter rejection

problem. The objective here is to look at the similarity between the detections

and the seabed, and remove, from the initial set of detections, the detections

which are similar to the seabed. These detections are meant to be false positives

because a false positive is by nature part of the seabed. We used, in this chapter,

a target detector based on a cascade of boosted classi˛ers and Haar-like features

because this detector is one of the best target detectors available at the moment.

This detector speci˛cally has a low number of false positives per square kilometre.

As a result, the detections to be removed from the initial set of detections are not

obvious false positives, as would be portions of ‚at seabed, but are rather similar

to the true positives. The similarity between the true and the false positives makes

the clutter rejection problem challenging, the objective being indeed to ultimately

remove as many false positives as possible without a¸ecting the number of true

positives. A detection provided by the cascade of boosted classi˛ers corresponds

to a rectangular region in a sonar image. We then look at a detection as a query

signal. We also consider a set of classes corresponding to several types of seabed,

the members of the classes being rectangular signals as well. A model based on

an a‹ne space is associated with each class. We say that a query signal (a

detection) is not similar to the seabed if it is far away from all the a‹ne spaces,

that is to say, from all the considered types of seabed. To be more precise, we

de˛ne a boundary around each a‹ne space. We then say that the query signal

(the detection) is not similar to the seabed if, for every a‹ne space, the distance

between the query signal and the a‹ne space falls beyond the a‹ne space’s

boundary. If this is the case, the detection remains in the initial set of detections.

If this is not the case, the detection is similar to at least one type of seabed and

is hence removed from the initial set of detections.

This chapter will be organised in the following fashion. We will ˛rst present

the construction of the a‹ne spaces and the derivation of the boundaries. We will

then address the supervised identi˛cation of the types of seabed and the clutter
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f(x)

C1
C2

c1(x)

c2(x)

Figure 3.1. Signals c1(x) and c2(x) extracted from an image f(x) with
two classes C1 and C2. Three signals are extracted from each class and
are depicted by coloured squares.

rejection problem. The work on the identi˛cation of the types of seabed was

published in [3] and this paper is currently being reviewed.

3.1.2 Scattering transforms of signals

Let us consider an inference problem with Q classes Cq with 1 » q » Q and

Q – 1. Each class will ultimately correspond to a type of seabed. Each class is
represented by a real-valued random variable Cq(x) whose realisations are rectan-

gular signals cq(x) extracted from the sonar images under study, as illustrated in

Figure 3.1. We know from chapter 2 that the scattering transform Sf(x) of an

image f(x) corresponds to the set of all scattering images calculated along all

possible paths of any length, that is to say

Sf(x) =
˘
Spf(x) : p 2 P

¯
(3.1)

where P = [n–0 ˜n = ; [ ˜ [ ˜2 [ ´ ´ ´ [ ˜n [ ´ ´ ´ is the set of all possible paths
of any length. Should a signal cq(x) correspond to a region R in the image f(x),
the scattering transform Sq(x) of cq(x) is obtained by extracting the same region

from the scattering transform of f(x), that is to say

Scq(x) =
˘
Spf(x) : p 2 P and x 2 R

¯
: (3.2)

Scq(x) corresponds to a set of signals with an in˛nite but countable number of

elements the same way Sf(x) corresponds to a set of scattering images with an

in˛nite but countable number of elements. We know from chapter 2 that when

working with discrete sonar images, as opposed to their continuous counterparts,

only a ˛nite number of scattering images need be considered. Those images are

the ones calculated along frequency-decreasing paths —̃n# with 0 » n » N where

N is the maximum length of the paths. The discrete scattering transform —Sf(x)

of the image f(x) is

—Sf(x) =
˘
Spf(x) : p 2 ; [ ´ ´ ´ [ —̃n# [ ´ ´ ´ [ —̃N#

¯
(3.3)
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from which we obtain the discrete scattering transform —Scq(x) of cq(x),

—Scq(x) =
˘
Spf(x) : p 2 ; [ ´ ´ ´ [ —̃n# [ ´ ´ ´ [ —̃N# and x 2 R

¯
: (3.4)

—Scq(x) corresponds to a ˛nite set of signals. We know from chapter 2 that this set

contains
PN

n=0 M
n
`K+1

n

´
elements where M and K are respectively the number

of orientations in G+ and the depth of the Littlewood Paley wavelet transform.

Should the region R be made of L1L2 pixels, the discrete representation —Scq(x)

of cq(x) is made of

L = L1L2 ˆ
NX

n=0

Mn
`K+1

n

´
(3.5)

coe‹cients. The number L of coe‹cients may be reduced should we perform a

sub-sampling operation by 2K+1 on the signals in the set (3.4). In such a case, L1

and L2 in (3.5) have to be replaced by L1=2K+1 and L2=2K+1. The sub-sampling

operation does not induce a loss of information because the frequency content

of the scattering signals (or images) lies in the circle of radius ı=2K+1. Figures

3.2, 3.3 and 3.4 depict the discrete scattering transform of three signals, a signal

extracted from a region with sand ripples, a signal extracted from a region with

seaweed, and a signal extracted from a ‚at portion of the seabed. The size of

the signals is L1ˆL2 = 32ˆ 32. We used K = 2, N = 2 and M = 6 to calculate
the discrete scattering transform of the signals. We then ˛nd that

NX

n=0

Mn
`K+1

n

´
= 1 +M ˆ (K + 1) +M2 ˆ (K + 1)K

2
= 127 : (3.6)

The representation of each signal is therefore made of L = 127ˆ 4ˆ 4 = 2 032
coe‹cients after a sub-sampling operation by 2K+1 = 8. Had the sub-sampling

operation not been performed, the representation of each signal would have been

made of L = 127ˆ32ˆ32 = 130 048 coe‹cients. From a computational perspec-
tive, there is therefore a clear advantage in performing a sub-sampling operation.

The representation of each signal was normalised so that its energy (that of the

representation and not the signal) is equal to 1. The discrete scattering transform

—S transforms the space of the signals which has L1L2 dimensions into the space

of the scattering transforms of the signals which has L dimensions. We are con-

sidering an inference problem with Q classes Cq represented by random variables
Cq(x) whose realisations are rectangular signals cq(x). A solution to this inference

problem (not fully stated yet) is found in the space of the scattering transform

of the signals. Each class Cq is described by an a‹ne space of low dimension
(with respect to L) constructed out of the Karhunen-Lo„eve decomposition of the

discrete scattering transform —SCq(x) of the random variable Cq(x).

3.1.3 Karhunen-Lo„eve decomposition

The discrete scattering transform —SCq(x) of the real-valued random variable Cq(x)

is a also real-valued random variable. The dimension of —SCq(x) is L whereas the
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Figure 3.2. Discrete scattering transform of a signal extracted from a
portion of ‚at seabed. The size of the signal is L1 ˆ L2 = 32 ˆ 32.
We used K = 2, N = 2 and G = 6 to calculate the discrete scattering
transform.

Figure 3.3. Discrete scattering transform of a signal extracted from a
region with sand ripples. The size of the signal is L1 ˆ L2 = 32 ˆ 32.
We used K = 2, N = 2 and G = 6 to calculate the discrete scattering
transform.
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Figure 3.4. Discrete scattering transform of a signal extracted from a

region with seaweed. The size of the signal is L1 ˆ L2 = 32 ˆ 32. We
used K = 2, N = 2 and G = 6 to calculate the discrete scattering
transform.

dimension of Cq(x) is L1L2. The mean Mq and covariance matrix ˚q of —SCq(x)

are

(
Mq = E[ —SCq(x) ]

˚q = E[ ( —SCq(x)`Mq) ( —SCq(x)`Mq)
T ]

(3.7)

where E represents the statistical expectation operator, and where the superscript

T represents the matrix transposition operator. We look at —SCq(x) `Mq, which

appears in the expression of the covariance matrix ˚q, as a random variable whose

realisations belong to the R-linear space R
L equipped with the scalar product

h´; ´i de˛ned by hv; wi = PL
l=1 vlwl for any elements v = [ v1 ´ ´ ´ vL ]T and w =

[w1 ´ ´ ´wL ]T of R
L. In matrix form, hv;wi = vTw = wTv. Two elements v

and w of R
L are orthogonal if hv; wi = 0. The norm kvk of an element v

of R
L is de˛ned by kvk = hv; vi1=2. The L complex roots q;1; : : : ; q;L of the

characteristic polynomial of ˚q are the eigenvalues of ˚q [99]. An element v of

R
L is an eigenvector of ˚q associated to the eigenvalue q;l if

˚q v = q;l v : (3.8)

The eigenvectors of ˚q are not unique. The eigenvalues of ˚q are not unique

either. ˚q is symmetric and real from which we know [99] that the eigenvalues of

˚q are all real. We also know [99] that there exists a set Bq = (‰q;1; : : : ; ‰q;L) of
eigenvectors of ˚q which forms an orthonormal basis of RL. The eigenvector ‰q;l

is associated with the eigenvalue q;l for all indexes l. We have therefore

˚q ‰q;l = q;l ‰q;l (3.9)
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and

h ‰q;l; ‰q;l0 i =
(
1 if l = l0

0 if l 6= l0
: (3.10)

An element v of RL can be decomposed onto Bq as follows.

v =

LX

l=1

h v; ‰q;l i ‰q;l (3.11)

where h v; ‰q;l i are the coordinates of v in Bq. The decomposition of the random
variable —SCq(x)`Mq onto Bq is

—SCq(x) `Mq =

LX

l=1

h —SCq(x)`Mq; ‰q;l i| {z }
“q;l

‰q;l (3.12)

which leads to the Karhunen-Lo„eve decomposition of —SCq(x), namely

—SCq(x) = Mq +

LX

l=1

h —SCq(x)`Mq; ‰q;l i| {z }
“q;l

‰q;l : (3.13)

The coordinates “q;l of —SCq(x)`Mq in Bq are one-dimensional real-valued random
variables. It can be shown in [70] that the coordinates are decorrelated, namely

E[ “q;l“q;l0 ] = 0 if l 6= l0. It can also be shown in [70] that E[ “q;l ] = 0 and

E[ “2
q;l
] = q;l. The Karhunen-Lo„eve decomposition of —SCq(x) has a geometrical

interpretation. The realisations of the random variable —SCq(x) generate a cloud of

points in an L-dimensional a‹ne space1. The cloud of points is centred centred

around the point Mq. The shape of the cloud of points (relatively to Mq) is

characterised by the statistical distribution of —SCq(x)`Mq. The elements ‰q;l of

Bq give the directions of the principal axes of the cloud. Large eigenvalues q;l
correspond to the directions along which the cloud is highly elongated.

3.1.4 Approximation with a‹ne spaces

The exact decomposition of —SCq(x)`Mq onto Bq is given by (3.12). An approx-
imation of —SCq(x)`Mq can be obtained when considering, in the decomposition,

some of the elements of Bq, instead of all of them. To be more precise, let Vq;l
be the linear space spanned by the ˛rst l elements of Bq (1 » l < L) where the

elements of Bq are listed in eigenvalue-decreasing order. The approximation of
—SCq(x) `Mq by Vq;l is de˛ned as the orthogonal projection PVq;l( —SCq(x) `Mq )

1An a‹ne space is loosely speaking a linear space \attached" to a point. Elements of an a‹ne
space are called points whereas elements of a linear space are called vectors. The di¸erence between
two points in a‹ne space creates a vector which belongs to the linear space the a‹ne space is built
upon.
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of —SCq(x) `Mq onto Vq;l. We have

—SCq(x)`Mq ’ PVq;l( —SCq(x)`Mq ) =

lX

l0=1

“q;l0 ‰q;l0 : (3.14)

The corresponding expected quadratic error is

E
ˆ k —SCq(x)`Mq ` PVq;l( —SCq(x)`Mq ) k2

˜

= E

2
4 k

LX

l0=l+1

“q;l0 ‰q;l0 k2
3
5 = E

2
4

LX

l0=l+1

“2
q;l0

3
5

=

LX

l0=l+1

E

h
“2
q;l0

i
=

LX

l0=l+1

q;l0 : (3.15)

It can be shown in [70] that for any dimension l such that 1 » l < L, Vq;l is the

linear space of dimension l which leads to the smallest expected quadratic error.

To be more precise, if B is another orthonormal basis of RL, Ul the linear space
spanned by the ˛rst l elements of B, and PUl the orthogonal projection onto Ul,

E
ˆ k —SCq(x)`Mq ` PUl( —SCq(x) `Mq ) k2

˜ –
E
ˆ k —SCq(x)`Mq ` PVq;l( —SCq(x)`Mq ) k2

˜
: (3.16)

The approximation obtained out of the Karhunen-Lo„eve decomposition is therefore

optimal in the expected quadratic error sense. Approximating —SCq(x)`Mq by the

linear space Vq;l is equivalent to approximating —SCq(x) by the a‹ne space

Aq;l = Mq + Vq;l : (3.17)

The approximation of —SCq(x) by Aq;l is de˛ned as the orthogonal projection of

PAq;l( —SCq(x) ) of —SCq(x) onto Aq;l. We have

—SCq(x) ’ PAq;l( —SCq(x) ) = Mq + PVq;l( —SCq(x) `Mq ) (3.18)

= Mq +

lX

l0=1

“q;l0 ‰q;l0 (3.19)

as illustrated in Figure 3.5. A measure of how coarse the approximation of —SCq(x)

by Aq;l is can be obtained through an analysis of the distance dAq;l( —SCq(x) )

between —SCq(x) and the a‹ne space Aq;l. We have

dAq;l( —SCq(x) ) = k —SCq(x)` PAq;l( —SCq(x) ) k
= k —SCq(x)`Mq ` PVq;l( —SCq(x)`Mq ) k

= k
LX

l0=l+1

“q;l0 ‰q;l0 k =
2
4

LX

l0=l+1

“2
q;l0

3
5
1=2

: (3.20)
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b

‰q;2
‰q;1

PAq;1( —SCq(x))

—SCq(x)

Mq

—SCq(x)`Mq

Aq;1

PAq;1( —SCq(x)) `Mq = PVq;1( —SCq(x)`Mq)

Figure 3.5. Linear approximation of the random variable —SCq(x) by the
a‹ne space Aq;1 = Mq + Vq;1 of dimension 1 where Vq;1 is the linear
space spanned by the ˛rst eigenvector ‰q;1 of ˚q. In the ˛gure, L = 2
and the two eigenvectors ‰q;1 and ‰q;2 of ˚q form an orthonormal basis
of RL = R

2.

This distance is a one-dimensional real-valued positive random variable for the co-

ordinates “q;l are themselves one-dimensional real-valued random variables. Upon

combining E[ “2
q;l
] = q;l and Markov inequality [100] applied to (3.20), we ˛nd

that

P( dAa;l( —SCq;l(x) ) – a ) » 1

a2
ˆ E[ dAa;l( —SCq;l(x) )

2 ]

=
1

a2
ˆ

LX

l0=l+1

q;l0 (3.21)

for any positive non-zero real number a. In (3.21) P( dAq;l( —SCq;l(x) ) – a ) is the

probability that dAa;l( —SCq;l(x) ) is greater than a. Markov inequality (3.21) states

therefore that for at most " % of the realisations cq(x) of Cq(x) (for example 5 %

if " = 0:05) the distance dAq;l( —Scq(x) ) between —Scq(x) and the a‹ne space Aq;l

is greater than

fiq;l (") =

2
4 1
"
ˆ

LX

l0=l+1

q;l0

3
5
1=2

: (3.22)

In other words, for at least (1`") % of the realisations cq(x) of Cq(x) (for example
95 % if " = 0:05) the distance dAq;l( —Scq(x) ) between —Scq(x) and the a‹ne space

Aq;l is smaller than fiq;l ("), as illustrated in Figure 3.6. At this point, we can

outline the behaviour of fiq;l (") with respect to l. We know from Section 3.1.3

that E[ “2
q;l
] = q;l from which we can conclude that the eigenvalues q;l are all

positive. The eigenvalues are also listed in order of decreasing amplitude. As a

result, l 7! fiq;l (") is a decreasing function. This has a geometrical interpretation.

An a‹ne space Aq;l of low dimension l coarsely approximates —SCq(x) and, loosely

speaking, many realisations of —SCq(x) are far away from Aq;l. An a‹ne space

Aq;l0 of dimension l0 > l approximates more accurately —SCq(x) than Aq;l does.



CHAPTER 3. IMAGE ANALYSIS WITH AFFINE SPACES 63

b
M1

A1;l

fi1;l (")
b
M2

A2;l

fi2;l (")

At least

(1` ") % of —Sc1(x)
At least

(1` ") % of —Sc2(x)

b

—Su(x)

Figure 3.6. Statistical analysis of the distance to the a‹ne spaces.

Comparatively fewer realisations of —SCq(x) lie far away from Aq;l0, leading to

fiq;l0 (") < fiq;l (") with " remaining constant. Bearing in mind that each class Cq
corresponds to a type of seabed, and should " be close to 0, fiq;l (") can be used

to decide whether a test signal u(x) (which is not necessarily a realisation cq(x)

of a class Cq) belongs to any of the types of seabed. For example, if " = 0:05,
we know that 95 % of the realisations of —SCq(x) lie at most fiq;l (0:05) away from

Aq;l. If the distance between —Su(x) and Aq;l is greater than fiq;l (0:05) for all class

indexes q, we can conclude that the test signal does not belong to any of the

types of seabed.

3.1.5 Analysis of signals

We have thus far considered an inference problem with Q – 1 classes Cq where
each class corresponds to a type of seabed, and presented how to describe the

classes Cq with a‹ne spaces Aq;l of low dimension l. We have yet to fully state
what is the inference problem at stake. Let u(x) be a rectangular signal extracted

from one of the sonar images under study as in Figure 3.1. The distance between

the discrete scattering transform —Su(x) of the signal u(x) and the a‹ne space

Aq;l is

dAq;l( —Su(x) ) = k —Su(x)` PAq;l( —Su(x) ) k (3.23)

=
h LX

l0=l+1

h —Su(x)`Mq; ‰q;l0 i2
i1=2

: (3.24)

We consider two inference problems.

1. In the ˛rst inference problem, the objective is to make a decision upon the

type of seabed the signal belongs to, that is to say, to make a decision upon

the class Cq the signal belongs to. This is a classi˛cation problem and we
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K Depth of the wavelet transform

M number of orientations in G+

N Maximum length of the paths

l Dimension of the a‹ne spaces Aq;l

L1L2 Size of the signal u(x)

Table 3.1. Parameters the classi˛cation algorithm depends upon.

K Depth of the wavelet transform

M number of orientations in G+

N Maximum length of the paths

l Dimension of the a‹ne spaces Aq;l

L1L2 Size of the signal u(x)

1` " Percentage of the data described

Table 3.2. Parameters the anomaly detection algorithm depends upon.

have to have Q > 1. The estimated class index of the signal u(x) is the

index of the a‹ne space which minimises dAq;l( —Su(x) ), namely

estimated class index of u(x) = argmin
q
dAq;l( —Su(x) ) : (3.25)

2. In the second inference problem, the objective is to decide whether the signal

is part of the seabed, that is to say, to decide whether the signal belongs

to any of the classes Cq. This is an anomaly detection problem and Q – 1
(as opposed to Q > 1). The signal is declared normal if it is part of the

seabed, and abnormal otherwise. To be more precise, the signal u(x) is

declared abnormal if for all class indexes q the distance between the discrete

scattering transform —Su(x) of the signal u(x) and the a‹ne space Aq;l is

greater than fiq;l ("), namely

decision upon u(x)

=

(
abnormal if dAq;l( —Su(x) ) > fiq;l (") for all q

normal otherwise :
(3.26)

The parameters the classi˛cation algorithm depends upon are listed in table 3.1.

The parameters the anomaly detection algorithm depends upon are listed in ta-

ble 3.2. In Figure 3.6, the signal belongs to C1 (inference problem 1) but is

anomaly with respect to the two classes C1 and C2 (inference problem 2).
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3.2 Supervised seabed identi˛cation

3.2.1 Seabed identi˛cation related work

Most of the work carried on either the supervised or unsupervised identi˛cation of

the types of seabed commonly present in side-looking sonar images is based on

texture descriptors. We opted for a rather chronological presentation of the work

that was carried on this subject in the past. The types of seabed are described

by their fractal dimension in [73] and identi˛ed with Fisher’s linear and quadratic

discriminants. Fractal analysis and spatial point processes are used in [101]. A

spatial point process model is also used in [64] to describe the types of seabed.

The types of seabed are described by a set of features derived from grey level co-

occurrence distributions in [102] and identi˛ed with a hybrid neural network which

consists of a supervised network driven by an unsupervised one. Spectral features

and grey level run-length features are used in [103] along with a back-propagation

neural network to identify the types of seabed. Kohonen self-organising maps and

a set of features derived from grey level co-occurrence distributions are intro-

duced in [104] as two means of describing the types of seabed. An unsupervised

identi˛cation scheme that relies on another Kohonen map is further employed.

A more recent approach is the following. The types of seabed are identi˛ed in

[62] with a statistical analysis of the similarity between grey level co-occurrence

distributions. Such an approach di¸ers from some of the aforementioned ones

because it does not rely on a set of features derived from co-occurrence distribu-

tions, but rather on the co-occurrences distributions themselves. The similarity

between the distributions is measured by the Kullback-Leibler divergence. The

work presented in [62] is generalised in [105] in order to combine several texture

descriptors by way of a weighted sum of Kullback-Leibler divergences. The con-

sidered texture descriptors are the sonar image grey levels, and descriptors which

come from Gabor and wavelet image expansions.

We also ought to mention seabed segmentation methods with side-looking

sonar images as well as seabed identi˛cation methods. Active contours are used

for seabed segmentation in [55] together with a set of features derived from grey

level co-occurrence distributions [60]. A fast implementation of the set of features

which uses sum and di¸erence histograms is used [59]. This approach can only

handle two types of seabed. Two seabed segmentation approaches are studied

in [63]. The ˛rst approach is a Bayesian approach that relies on the maximum

marginal probability criterion, as opposed to the more traditional maximum a

posteriori criterion. The second approach is based on active contours, and can

handle more than two types of seabed. The two seabed segmentation approaches

rely of the weighted sum of Kullback-Liebler divergences presented in [105] as

well as on the same set of texture descriptors.
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Figure 3.7. Training regions used for the supervised identi˛cation of the
types of seabeds. The training regions are the white rectangular areas.

3.2.2 Presentation of the data set

The data set under study is composed of two hundred and sixty side-looking sonar

images with three types of seabed. The dataset was obtained from a survey of

the sea bottom o¸ the coast of Italy by an autonomous underwater vehicle. The

types seabed present in the data set are ‚at sandy areas made of a given type of

sediments, areas with sand ripples of various widths and shapes, and areas with

seaweed. Each type of seabed corresponds to a class Cq. The identi˛cation of the
types of seabed was performed with the help of the ˛rst inference algorithm (see

Section 3.1.5). Each class Cq is described by a‹ne space Aq;l of low dimension l
constructed out of a set of training signals cq(x). The Karhunen-Lo„eve decompo-

sition was performed in C with the help of the LAPACK library [106]. The training

regions, from which the training signals are extracted, are the white rectangular

areas depicted on Figure 3.7. It is important to notice that the training set is very

small compared to the entire data set. It is possible to use such a small training

set because of the stability of scattering operators with respect to deformations.

3.2.3 Quantitative and qualitative results

The performance of the classi˛cation algorithm was analysed in details over vari-

ous sets of parameters (see Table 3.1). We set M = 6 which is a value commonly

chosen for the wavelet transform of images [70]. M is the number of orientations

of the wavelet transform. K varies from 2 to 5, N from 1 to 2, and l from 5 to 25.

K and N are respectively the depth of the wavelet transform and the maximum

length of the paths of the scattering transform. The size L1 ˆ L2 of the signals
are 4 ˆ 4, 8 ˆ 8, 16 ˆ 16 and 32 ˆ 32. In order to quantitatively evaluate the
performance of the algorithm, six out of the two hundred and sixty images were

carefully manually ground truthed. Those six images constitute the testing set.

The error rates we obtained for each set of parameters are given through Figures

3.8 to 3.11. The error rates are also given in Tables 3.3 to 3.6. The following
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patterns of behaviours are observed.

1. For a given dimension l of the a‹ne spaces, the error rate decreases with an

increase of the depth K of the wavelet transform and the maximum order

of interferences N. Such a pattern is to be expected. When K increases,

the spatial variability of the scattering images is reduced because of the

smoothing e¸ect of the low-pass ˛lter. The seabed representation becomes

more stable, which results in a decrease of the error rate. When K increases,

the spatial variability of the scattering images is reduced, which implies that

some information is lost. Such a loss is compensated for when the maximum

length N of the paths is increased.

2. For a given depth K of the wavelet transform and a given order N of inter-

ferences, the error rate either increases or decreases with an increase of the

dimension l of the a‹ne spaces. A‹ne spaces of low dimension provide a

coarse representation of the types of seabed. The representation improves as

the dimension increases, which results in a decrease of the error rate. When

the dimension increases further more, the a‹ne spaces begin to merge, which

results in an increase of the error rate. We can therefore assume that there

exist a critical dimension below which the error rate decreases as the dimen-

sion increases, and beyond which the error rate increases as the dimension

increases. The classi˛cation results can all be interpreted in terms of this

critical dimension. For example, for signals of size 4ˆ4 and (K; N) = (3; 1),
the error rate increases when the dimension l increases. We can therefore

conclude that the critical dimension is below 5. For signals of size 32ˆ 32
and (K; N) = (2; 2), the error rate decreases when the dimension l increases.

We can therefore conclude that the critical dimension is above 25. The criti-

cal dimension provides an estimate of the compactness of the representations

of the types of seabed with respect to each other.

We have thus far looked at the behaviour of the seabed identi˛cation algorithm

with respect to the depth of the Littlewood Paley wavelet transform, the maximum

length of the paths of the scattering transform, and the dimension of the a‹ne

spaces. Let us now look at performance of the seabed identi˛cation algorithm. A

minimal error rate of 3.59 % was reached when K = 3, N = 2, l = 15 and with

signals of size 32ˆ 32, which corresponds to an overall excellent characterisation
of the types of seabed. The seabed characterisation is all the more excellent

should we account for the extreme small size of the training set. The training set is

indeed made of portions of only two side-looking sonar images, which demonstrates

the generalisation capabilities of the signal representation induced by scattering

operators. The confusion matrix which corresponds to the minimal error rate of

3.59 % is given in Table 3.7. The columns of the confusion matrix correspond to

the estimated types of seabed, the lines, to the true types of seabed. As a result,

the lines of the confusion matrix sum up to one, up to minor round-o¸ errors.

Here are two examples of how to read the confusion matrix. The probability that

the estimated type of a signal is ripples whereas its true type is seaweed equals

0.0255. The probability that the estimated type of a signal is ‚at whereas its true
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Figure 3.8. Global error rate obtained with signals of size 4 ˆ 4. The
various pairs (K;N) are indicated at the bottom. The various dimensions
l are indicated at the top.

type is seaweed equals 0.0498. The six sonar images that compose the testing

set are depicted in Figures 3.12 and 3.13 along with the classi˛cation maps which

correspond to the minimal error rate of 3.59 %. On Figures 3.12 and 3.13 we

observe that some of the wrongly classi˛ed regions correspond to objects on the

sea bottom, which could be because the objects induce a local perturbation of

the texture ˛eld. This is one fact in favour of the hypothesis stated in Chapter

1 according to which objects can be revealed as local anomalies with respect to

the sea bottom.

To obtain an excellent seabed characterisation with one set of parameters

is one thing. It is even better is the seabed characterisation remains as good

across a wide range of parameters. From Figures 3.8 to 3.11 we observe that

characterisation of the seabed remains excellent across a wide range of parameters.

The seabed characterisation only deteriorates when the chosen parameters are

unreasonable. By an unreasonable choice of parameters, we mean a very low

a‹ne space dimension, a Littlewood Paley wavelet transform of limited depth,

and signals of very small sizes. The fact that the characterisation of the seabed

remains excellent across a wide range of parameters is, to our opinion, something

in favour of the seabed identi˛cation algorithm we presented in this chapter.

From our experience, it is not often the case that an inference algorithm is not

very sensitive to variations in the parameters it is based upon.
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Figure 3.9. Global error rate obtained with signals of size 8 ˆ 8. The
various pairs (K;N) are indicated at the bottom. The various dimensions
l are indicated at the top.

Figure 3.10. Global error rate obtained with signals of size 16ˆ16. The
various pairs (K;N) are indicated at the bottom. The various dimensions
l are indicated at the top.
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Figure 3.11. Global error rate obtained with signals of size 32ˆ32. The
various pairs (K;N) are indicated at the bottom. The various dimensions
l are indicated at the top.

Figure 3.12. Top. Three out of the six sonar images that compose

the testing set. The images are of size 1000 ˆ 1024 pixels. Bottom.
Classi˛cation maps which correspond to the minimal error rate of 3.59
%. The colour coding is the following. Black corresponds to ‚at areas,

grey to areas with sand ripples, and white to areas with seaweed.
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Figure 3.13. Top. Three out of the six sonar images that compose
the testing set. The images are of size 1000 ˆ 1024 pixels. Bottom.
Classi˛cation maps which correspond to the minimal error rate of 3.59
%. The colour coding is the following. Black corresponds to ‚at areas,
grey to areas with sand ripples, and white to areas with seaweed.
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K 2 2 3 3 4 4 5 5

N 1 2 1 2 1 2 1 2

l 5 5 5 5 5 5 5 5

Error rate 0.204 0.166 0.095 0.097 0.053 0.063 0.044 0.044

K 2 2 3 3 4 4 5 5

N 1 2 1 2 1 2 1 2

l 10 10 10 10 10 10 10 10

Error rate 0.231 0.169 0.125 0.099 0.076 0.072 0.055 0.054

K 2 2 3 3 4 4 5 5

N 1 2 1 2 1 2 1 2

l 15 15 15 15 15 15 15 15

Error rate 0.344 0.162 0.135 0.099 0.075 0.059 0.052 0.047

K 2 2 3 3 4 4 5 5

N 1 2 1 2 1 2 1 2

l 20 20 20 20 20 20 20 20

Error rate 0.498 0.157 0.202 0.093 0.103 0.068 0.054 0.045

K 2 2 3 3 4 4 5 5

N 1 2 1 2 1 2 1 2

l 25 25 25 25 25 25 25 25

Error rate 0.498 0.157 0.201 0.083 0.096 0.063 0.071 0.044

Table 3.3. Seabed classi˛cation performance { signal size 4ˆ 4
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K 2 2 3 3 4 4 5 5

N 1 2 1 2 1 2 1 2

l 5 5 5 5 5 5 5 5

Error rate 0.202 0.161 0.094 0.097 0.052 0.062 0.043 0.043

K 2 2 3 3 4 4 5 5

N 1 2 1 2 1 2 1 2

l 10 10 10 10 10 10 10 10

Error rate 0.227 0.166 0.123 0.096 0.075 0.070 0.052 0.054

K 2 2 3 3 4 4 5 5

N 1 2 1 2 1 2 1 2

l 15 15 15 15 15 15 15 15

Error rate 0.332 0.164 0.131 0.096 0.075 0.055 0.051 0.046

K 2 2 3 3 4 4 5 5

N 1 2 1 2 1 2 1 2

l 20 20 20 20 20 20 20 20

Error rate 0.479 0.150 0.194 0.091 0.103 0.062 0.054 0.044

K 2 2 3 3 4 4 5 5

N 1 2 1 2 1 2 1 2

l 25 25 25 25 25 25 25 25

Error rate 0.479 0.149 0.159 0.083 0.096 0.057 0.070 0.044

Table 3.4. Seabed classi˛cation performance { signal size 8ˆ 8
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K 2 2 3 3 4 4 5 5

N 1 2 1 2 1 2 1 2

l 5 5 5 5 5 5 5 5

Error rate 0.097 0.098 0.095 0.097 0.052 0.063 0.043 0.043

K 2 2 3 3 4 4 5 5

N 1 2 1 2 1 2 1 2

l 10 10 10 10 10 10 10 10

Error rate 0.093 0.090 0.120 0.103 0.076 0.070 0.048 0.052

K 2 2 3 3 4 4 5 5

N 1 2 1 2 1 2 1 2

l 15 15 15 15 15 15 15 15

Error rate 0.101 0.092 0.126 0.093 0.073 0.061 0.049 0.045

K 2 2 3 3 4 4 5 5

N 1 2 1 2 1 2 1 2

l 20 20 20 20 20 20 20 20

Error rate 0.089 0.071 0.187 0.087 0.104 0.063 0.055 0.043

K 2 2 3 3 4 4 5 5

N 1 2 1 2 1 2 1 2

l 25 25 25 25 25 25 25 25

Error rate 0.101 0.074 0.168 0.082 0.103 0.052 0.068 0.045

Table 3.5. Seabed classi˛cation performance { signal size 16ˆ 16
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K 2 2 3 3 4 4 5 5

N 1 2 1 2 1 2 1 2

l 5 5 5 5 5 5 5 5

Error rate 0.137 0.129 0.076 0.071 0.070 0.067 0.046 0.045

K 2 2 3 3 4 4 5 5

N 1 2 1 2 1 2 1 2

l 10 10 10 10 10 10 10 10

Error rate 0.133 0.122 0.064 0.053 0.078 0.075 0.046 0.053

K 2 2 3 3 4 4 5 5

N 1 2 1 2 1 2 1 2

l 15 15 15 15 15 15 15 15

Error rate 0.115 0.098 0.046 0.036 0.070 0.067 0.049 0.047

K 2 2 3 3 4 4 5 5

N 1 2 1 2 1 2 1 2

l 20 20 20 20 20 20 20 20

Error rate 0.069 0.058 0.054 0.045 0.103 0.063 0.059 0.049

K 2 2 3 3 4 4 5 5

N 1 2 1 2 1 2 1 2

l 25 25 25 25 25 25 25 25

Error rate 0.056 0.047 0.047 0.047 0.104 0.060 0.070 0.053

Table 3.6. Seabed classi˛cation performance { signal size 32ˆ 32
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3.2.4 Local binary patterns

The results of our classi˛cation algorithm were compared with another classi˛ca-

tion algorithm based on the signal representation induced by local binary patterns

[68]. We will now explain brie‚y what is the signal representation induced by

local binary patterns. Let us consider a pixel P with grey level G(P ) in one of

the sonar images under study. Let us also consider a circle of radius r drawn

around the pixel P , and n points P0; : : : ; Pn`1 uniformly distributed on the circle,

as illustrated in Figure 3.14. The grey level of the point Pi is G(Pi). If one of

the n points does not correspond to a pixel in the sonar image, the grey level of

this point is obtained by interpolation. The LBP code of the pixel P is de˛ned by

LBPr;n(P ) =

n`1X

i=0

2i ˆ H [G(Pi)` G(P ) ] (3.27)

where H is the unit step function

H(x) =

(
1 if x – 0
0 otherwise :

(3.28)

Consequently, the LBP code of the pixel P is obtained by thresholding the neigh-

bourhood of P , the result of which is considered as a binary number. LBP codes

may be de˛ned for various radii r and number of points n. Let us consider now a

query signal, that is to say, a rectangular region in one of the sonar images under

study. The query signal is made of a certain number of pixels for which LBP

codes can be calculated. The representation of the query signal is de˛ned as the

histogram of the LBP codes of the pixels in the query signal. For the identi˛cation

of the types of seabed, we used a combination of three LBP codes obtained with

8 points on a circle of radius 1, 16 points on a circle of radius 3, and 24 points on

a circle of radius 5. We also used the same training and testing sets. We ˛nally

used Fisher’s quadratic discriminant classi˛er. Other classi˛ers such as support

vector machine were tested with very small di¸erences in the results. Again other

parameters combinations were used and we chose the optimal ones in terms of

error rate. Signals of size 32ˆ 32 were chosen for optimal performance. An error
rate of 13.07 % was obtained which is almost two and a half times larger than

the minimal error rate obtained with the a‹ne spaces. The confusion matrix for

Flat Ripples Seaweed

Flat 0.9696 0.0066 0.0238

Ripples 0.0054 0.9831 0.0115

Seaweed 0.0498 0.0255 0.9247

Table 3.7. Confusion matrix that corresponds to the minimal error rate

of 3:59% obtained with K = 3, N = 2, l = 15 and signals of size 32ˆ32.
The columns correspond to the estimated class and the lines to the true
class. For example, the probability that the estimated class of a signal

is seaweed whereas its true class is ‚at equals 0.0238.
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Figure 3.14. Local binary pattern of a pixel P with grey level G(P ).

Flat Ripples Seaweed

Flat 0.7712 0.1626 0.0663

Ripples 0.0009 0.9787 0.0204

Seaweed 0.0192 0.1578 0.8230

Table 3.8. Confusion matrix obtained with local binary patterns. The
columns correspond to the estimated class and the lines to the true

class. For example, the probability that the estimated class of a signal
is ripples whereas its true class is seaweed equals 0.1578.

the local binary pattern algorithm is given in Table 3.8.

3.3 Clutter rejection

3.3.1 Presentation of the problem

We consider, as a starting point, a set of detections provided by a target detector,

as illustrated in Figure 3.15. The detections can be true or false positives. An

analysis of this set of detections leads to a receiver operating characteristic (ROC)

curve which represents the performance of the target detector alone. In order to

reduce the number of false positives, within the initial set of detections, and

hence improve the performance of the target detector, the similarity between

the detections and the seabed is analysed with the help of the second inference

algorithm (see Section 3.1.5). This is a post-processing process based on an

anomaly detection algorithm, as illustrated in Figure 3.15. The detections are

declared abnormal if they are not part of the seabed, and normal otherwise. It

is implicitly assumed here that the true positives (the targets) are not as similar

to the seabed as are the false positives, the false positives being by nature part

of the seabed. The detections that are declared normal are discarded from the

initial set of detections, leading to a second set of detections. An analysis of the

second set of detections leads to a collection of receiver operating characteristic

curves (one curve or more) which represents the performance of the combined

target detector and post-processing process. It is also possible to analyse, from

the second set of detections, the performance of the post-processing process alone
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should we analyse the number of true positives that are declared normal, and the

number of false positives that are declared abnormal. The issue here is to reduce

the number of false positives without reducing the number of true positives. We

will see in Section 3.3.3 that it is possible to reduce the number of false positives

within the initial set of detections without reducing the number of true positives.

Be that as it may, we will see in the same section that this does not improve

the performance of the target detector, which suggests that the false positives

that are discarded by the post-processing process are the ones already discarded

by the target detector. The details of the post-processing process are given in

Figure 3.16. A detection corresponds to a rectangular signal in one of the sonar

images under study. Signals of the same size as the detection are extracted from

the portion of the sonar image around the detection, providing information about

the local background. We assume that the background is made of more than one

type of seabed each type being referred to as a class Cq. The types of seabed are
obtained by a K-means clustering algorithm in the space of the discrete scattering

transform of the signals. The a‹ne spaces Aq;l and the limits fiq;l (") are obtained

for each class Cq so as to decide whether the detection is part of the seabed, as
illustrated in Figure 3.16. All computations were performed in C with the help

of the LAPACK library [106].

3.3.2 Presentation of the data set

We used a set of 155 Marine Sonics side-looking sonar images with three types of

seabed, ‚at sandy areas made of a given type of sediments, areas with sand ripples

of various widths and shapes, and areas with seaweed. We used a set of 155 sim-

ulated targets. One target was inserted in each image according to [56]. In brief,

the side-looking sonar images are used to obtain an estimate of the topography

and re‚ectivity of the sea bottom, as well as an estimate of the antenna’s beam

pattern. This is an inversion process. The topography and re‚ectivity are locally

changed where the targets are to be added. The locally changed topography and

re‚ectivity of the sea bottom, combined with the estimated beam pattern, are

used to create sonar images with simulated targets. The resolution of a pixel

is equal to 12.0 cm ˆ 5.8 cm (vertical resolution ˆ horizontal resolution). We
then ˛nd that the total area covered by the images is equal to 1.1 km2. The au-

tomatic target detector we used is based on a cascade of boosted classi˛ers and

Haar-like features [27]. We chose such a detector because it is one of the best

target detectors available at the moment. The structure of the target detector is

given in Figure 3.17. A set of Haar-like features are calculated for a query signal,

that is to say, a region in one of the sonar images under study. Let us assume that

the cascade is made of n classi˛ers C1; : : : ; Cn organised sequentially. A classi˛er

Ck uses one Haar-like feature fk. This feature is thresholded in order to accept

of reject the query signal. If the query signal is accepted by the classi˛er Ck,

the query signal is passed on to the following classi˛er Ck+1. This classi˛er uses

another Haar-like feature fk+1 which is thresholded in order to accept or reject

the query signal. A detection is a query signal which has been accepted by all
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Figure 3.15. Automatic target detection and post-processing chain.
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Figure 3.16. Details of the post-processing process.
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Number of simulated targets 155

Number of detections 282

Number of true positives 128

Number of false positives 154

Number of false negatives 27

Table 3.9. Performance of the target detector alone

classi˛ers. The features f1; : : : ; fn used by the classi˛ers and the corresponding

thresholds are learnt during a training stage. A score between 0 and 1 is associ-

ated with each detection at the end of the cascade of classi˛ers. A detection with

a score close to 1 is likely to be a target whereas a detection with a score close

to 0 is likely to be a portion of the seabed. When thresholded at various points

between 0 and 1, the score leads to the receiver operating characteristic curve of

the target detector alone, which is given in Figure 3.18. The curve depicts the

combined variation of the true positive rate and the number of false positives per

square kilometre. The total number of detections provided by the target detec-

tor is 282 among which 128 detections are true positives and 154 detections are

false positives | 27 targets are de˛nitely lost, and will not be recovered by the

post-processing process. We can conclude that the maximum true positive rate

is equal to 128=155 ’ 0:83, which is the value of the true positive rate obtained
when the score is thresholded at 0. We can similarly conclude that the maximum

number of false positives per square kilometre is equal to 154=1:1 = 140, which

is the value of the number of false positives per square kilometre obtained when

the score is thresholded at 0. Details about the set of detections produced by

the target detector are given in Table 3.9. Examples of true positives are given in

Figure 3.19. The true positives are either cylinders or truncated cones. Examples

of false positives are given in Figure 3.20. We observe that some of the false

positives are target-like objects whose signature is a highlight region next to a

shadow region. We also observe that some of the false positives correspond to

regions with sand ripples, regions with seaweed, or regions with sand ripples and

seaweed. The false positives produced by the target detector are therefore the

regions in the sonar images under study that are the hardest to reject.

3.3.3 Quantitative results

The performance of the post-processing process was analysed in details over var-

ious sets of parameters (see Table 3.2). We set " = 0:05 and M = 6 and N = 1.

K varies from 2 to 6 and l from 1 to 50. The size L1L2 of the signals is given by

the target detector. The size of the signals is approximately 40ˆ25 (horizontally
and vertically). First, we present the performance of the post-processing process

alone by considering, within the initial set of detections, the number of true posi-

tives that are declared normal, and the number of false positives that are declared

abnormal. From those numbers, we obtain the true positive error rate and the

false positive error rate (which have however nothing to do with the true posi-
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Figure 3.17. Target detector based on a cascade of boosted classi˛ers.
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Figure 3.18. Receiver operating characteristic (ROC) curve of the au-
tomatic target recognition (ATR) algorithm alone. The true positive
rate is depicted as a function of the number of false positives per square

kilometre.

Figure 3.19. Examples of true positives. Top row. True positives alone.

Bottom row. True positives in context.
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Figure 3.20. Examples of false positives. From top to bottom. Row 1
and 3. False positives alone. Rows 2 and 4. False positives of rows 1

and 3 in context.

tive rate and the false positive rate depicted by a receiver operating characteristic

curve). The error rates are depicted through Figures 3.21 to 3.25. We observe

one pattern of behaviour. When the dimension l of the a‹ne spaces Aq;l is small,

the a‹ne spaces provide a coarse representation of the types of seabed, leading to

high limits fiq;l ("). As a result, many true positives, which are truly far away from

the a‹ne spaces, are declared normal, resulting in a high true positive error rate.

When the dimension l increases, the representation of the types of seabed im-

proves, resulting in comparatively smaller values of fiq;l ("). Comparatively fewer

true positives are declared normal, which results in a decrease of the true positive

error rate. The false positive error rate starts increasing at this point. When the

dimension l increases further more, the true positive error rate keeps decreasing

until it becomes equal to zero. The false positive error rate keeps increasing

until it be comes equal to one2. We observe that the dimension corresponding

to the intersection point of the two curves decreases as K increases. This shows

that the seabed representation induced by scattering operators does become more

stable as the depth of the wavelet transform increases. We also observe that

there exists a dimension for which the true positive error rate is equal to zero, and

for which the false positive error rate is strictly below one, and maximum. This

dimension is for example equal to 19 in Figure 3.22, to 10 in Figure 3.23, and to 8

in Figure 3.24. In this case, it is possible to reduce the number of false positives,

within the initial set of detections, without a¸ecting the number of true positives.

This suggests that the performance of the target detector can be improved by the

post-processing process. The receiving operating characteristic curves obtained

for the combined target detection algorithm and post-processing process are de-

picted through Figures 3.26 to 3.29. We observe that, on the whole, the target

detector is not improved, which can be interpreted in the following fashion. The

2The false positive error rate is actually not equal to zero in Figure 3.25 when l – 43. The
values of the false positive error rate were not available when l – 43 because the running of the
post-processing process did not fully come to an end.We can safely assume that the false positive
error rate would have been equal to one when l – 43.
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Figure 3.21. True positive (TP) error rate and false positive (FP) error

rate as a function of the a‹ne space dimension l for K = 2 and N = 1.

false positives that are discarded by the post-processing process are the ones al-

ready discarded by score of the target detection algorithm. Those false positives

are the obvious false positives, and not the \hard" ones we would have liked to

discard in the ˛rst place. We observe a little improvement in Figure 3.27 when

the true positive rate is between 70 % and 80 %. This corresponds to K = 4

and N = 1. We therefore run the post-processing process for K = 4, N = 2 and

N = 3 to see whether the little improvement could be made greater. We observe

in Figures 3.30 to 3.33 that this is not the case.
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Figure 3.22. True positive (TP) error rate and false positive (FP) error
rate as a function of the a‹ne space dimension l for K = 3 and N = 1.

Figure 3.23. True positive (TP) error rate and false positive (FP) error
rate as a function of the a‹ne space dimension l for K = 4 and N = 1.
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Figure 3.24. True positive (TP) error rate and false positive (FP) error

rate as a function of the a‹ne space dimension l for K = 5 and N = 1.

Figure 3.25. True positive (TP) error rate and false positive (FP) error
rate as a function of the a‹ne space dimension l for K = 6 and N = 1.
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Figure 3.26. Receiver operating characteristic (ROC) curves of the au-
tomatic target recognition (ATR) algorithm alone and of the combined

target detector and post-processing process for K = 3 and N = 1.

Figure 3.27. Receiver operating characteristic (ROC) curves of the au-
tomatic target recognition (ATR) algorithm alone and of the combined

target detector and post-processing process for K = 4 and N = 1.
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Figure 3.28. Receiver operating characteristic (ROC) curves of the au-
tomatic target recognition (ATR) algorithm alone and of the combined

target detector and post-processing process for K = 5 and N = 1.

Figure 3.29. Receiver operating characteristic (ROC) curves of the au-
tomatic target recognition (ATR) algorithm alone and of the combined

target detector and post-processing process for K = 6 and N = 1.
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Figure 3.30. True positive (TP) error rate and false positive (FP) error
rate as a function of the a‹ne space dimension l for K = 4 and N = 2.

Figure 3.31. Receiver operating characteristic (ROC) curves of the au-
tomatic target recognition (ATR) algorithm alone and of the combined
target detector and post-processing process for K = 4 and N = 2.



CHAPTER 3. IMAGE ANALYSIS WITH AFFINE SPACES 91

Figure 3.32. True positive (TP) error rate and false positive (FP) error
rate as a function of the a‹ne space dimension l for K = 4 and N = 3.

Figure 3.33. Receiver operating characteristic (ROC) curves of the au-
tomatic target recognition (ATR) algorithm alone and of the combined
target detector and post-processing process for K = 4 and N = 3.
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3.4 Conclusions and perspectives

This chapter was concerned with the analysis of side-looking sonar images with

a‹ne spaces. Signals (namely, rectangular regions in the images under study) are

described by means of the discrete scattering transform, introduced in Chapter 2,

and compared to a collection of classes. Each class represents a type of seabed,

and is modelled by an a‹ne space of low dimension with respect to that of

the representation of the signals. To be more precise, the dimension of the signal

representation is more than a hundred times greater than that of the a‹ne spaces.

The kind of comparison that is made between the signals and the classes depends

on the inference problem at stake. In a classi˛cation problem, the objective is to

make a decision upon the type of seabed (the class) of the signals. In an anomaly

detection problem, the objective is to decide whether the signals belong to any

of the classes, that is to say, whether the signals are at all part of the seabed.

These two inference problems are the mathematical formulation of the the two

problems that are dealt with in this thesis.

The achievements of this chapter are the following. We showed that the

combined use of the scattering transform and an inference algorithm based on

a‹ne spaces led to an excellent characterisation of the seabed in side-looking

sonar images. The types of seabed we considered are ‚at areas and areas made of

sand ripples or vegetation. We quantitatively showed that the characterisation of

the seabed remains excellent across a wide range of parameters (˛ve parameters

are to be set in total). The characterisation only deteriorates when the chosen

parameters are unreasonable. By an unreasonable choice of parameters, we mean

a very low a‹ne space dimension, a Littlewood Paley wavelet transform of limited

depth, and signals of very small sizes. The fact that the characterisation of the

seabed remains excellent across a wide range of parameters is, to our opinion,

something in favour of the seabed identi˛cation algorithm we presented in this

chapter. From our experience, it is not often the case that an inference algorithm

is not very sensitive to variations in the parameters it is based upon. In this

chapter, we also showed that the characterisation of the seabed is not a¸ected

by the presence of artefacts in the side-looking sonar images. For instance, the

types of seabed are not mistaken from one another around the vertical white

lines which correspond to the acoustic returns from the surface of the water.

We ˛nally showed that only a small training set was needed to obtain such an

excellent characterisation of the seabed. By small training set, we mean that

portions of only two images were used as a training set to classify more than two

hundred images. This demonstrates the generalisation capabilities of the signal

representation induced by scattering operators. It could be that another inference

algorithm based on, for instance, a neural network or a support vector machine,

performs better than the one based on a‹ne spaces. This was not assessed in this

thesis, mainly because the inference algorithm based on a‹ne spaces was found

computationally inexpensive, which balanced the computational complexity of the

scattering transform alone.

In this chapter, we quantitatively compared the sea bottom characterisation



CHAPTER 3. IMAGE ANALYSIS WITH AFFINE SPACES 93

performance obtained with two signal representations, the one induced by the

scattering transform and the one induced by local binary patterns. Local binary

patterns are of common use in the ˛eld of computer vision but, as far as we know,

have never been used in the ˛eld of sonar imagery. We chose this alternative

signal representation over the ones derived from co-occurrence matrices or sum

and di¸erence histograms because it was shown in the literature that these repre-

sentations are encompassed by local binary patterns. We showed that scattering

operators outperform local binary patterns by about 10 %. Speci˛cally, sand

ripples are not mistaken for seaweed as much, which is a recurrent issue when

one intends to identify the types of seabed. For such a purpose, we therefore

recommend the use of the scattering representation over the representation that

have been used in the past.

This chapter was also concerned with the reduction, in the form of a post-

processing process of the number of false positives in a set of detections provided

by a target detector. Such a task is commonly performed through the extraction

of the highlight and the shadow of the detections, and the analysis of these two

with respect to templates. Our original hypothesis, as stated in Chapter 1, is that

it is possible to reduce the number of false positives without a¸ecting the number

of true positives should we quantify the similarity between the detections and the

seabed, the false positives being by nature part of the seabed. This was cast

in this chapter as an anomaly detection problem. We showed that our original

hypothesis was wrong when the detections are represented by scattering operators,

and when the inference algorithm is based on a‹ne spaces. However, one would

have to combine other signal representations and other inference algorithms to

assess whether our original hypothesis can ever be true. We will do so in the

following chapter. We will indeed combine the same signal representation with

another inference algorithm based on the concept of ensemble of patches.



Chapter 4

Image analysis by

composition

"Nothing goes by luck in

composition. It allows no tricks.

The best you can write is the best

you are."

Henry David Thoreau

4.1 Composition process

4.1.1 Introduction

Several problems encountered in the ˛eld of sonar imagery require a good measure

of the similarity between regions of the sonar images under study. We will present,

in this chapter, an inference algorithm which is based on the concept of visual

composition [57]. This inference algorithm originally appeared in the ˛eld of

computer vision, and is adapted, in this chapter, to the analysis of side-looking

sonar images. We will show that the inference algorithm is potentially applicable

to the two inference problems stated in the previous chapter. We consider a

query signal Q, that is to say, a rectangular region in one of the sonar images

under study. The query signal is compared to a reference R which can be, for

example, the rest of the sonar image the query signal comes from, an external

collection of other sonar images, or an external collection of portions of sonar

images, as illustrated in Figure 4.1. In this ˛gure, the reference is the collection

R = (R1; R2; R3; R4) of portion of sonar images representing each a type of

seabed. The inference algorithm intends to evaluate to what extent the query

signal can be composed from pieces taken from the reference. The composition

process is similar in mind to that of a puzzle. The complexity of the composition

process leads to a measure of the similarity between the query signal and signals

S in the reference. The signals S are rectangular regions in the reference of the

same size as that of the query signal. A signal of particular interest is the signal

94
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Q1

Q2

Sonar image Reference R

R1 (‚at)

R2
(ripples)

R3 (ripples)

R4 (seaweed)

similarity?

similarity?

Figure 4.1. Query signal Q and reference R.

S? which is most similar to the query signal. We will explain in Section 4.1.2

in what sense S? is most similar to Q. Knowledge of what the signal S? is with

respect to the reference leads to a variety of interpretations, depending on the

problem at issue. We will explain in Section 4.1.2 what interpretation is to be

followed when answering the two inference problems. The pieces involved in the

composition process are rectangular patches of small size with respect to the size

of the query signal, as illustrated in Figure 4.2. The size of the patches can be

interpreted as the spatial resolution, above that of a pixel, at which the inference

algorithm works. The patches in the query signal are compared to the patches

in the reference, and then combined in order to compose the query signal. This

is where the visual composition process comes into place. A set of descriptors is

associated to every patch to make the inference algorithm sensitive subtle local

changes in side-looking sonar images. The composition process takes therefore

into account the geometric arrangement of the patches as well as their descriptors.

The set of descriptors comes from the image representation induced by scattering

operators, as presented in Chapters 2 and 3. If a patch correspond to a region

R (R is not R) in a sonar image, the descriptors of the patch are obtained by

extracting the same region from the discrete scattering transform of the image. We

mentioned in Chapter 2 that image representation induced by scattering operators

possesses an intrinsic constant spatial resolution. This constant spatial resolution

is of high interest because we can make it match the resolution at which the

inference algorithm work. Doing so, we combine the inference algorithm and the

image representation in an attractive way. We will see in Sections 4.1.2 and 4.1.3

that the inference algorithm takes the form of a maximum a posteriori estimation

over a Bayesian network. The network statistically models the dependencies

between the relative positions of the patches, and their descriptors. In this respect,

the visual composition process is also a statistical composition process. The

maximum a posteriori estimation is practically and e‹ciently performed with a

belief propagation algorithm [107].

4.1.2 Statistical inference over a Bayesian network

We present, in this section, the inference algorithm based on the concept of visual

composition [57]. We consider a query signal Q in the sonar image under study,
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Q1

Q2

Sonar image Reference R

R1

R2 R3

R4

Figure 4.2. The query signals and the reference are broken into patches
of small size which are compared to each other.
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b
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Figure 4.3. Ensembles of patches S and Q. The centres of the ensembles

are CS and CQ. The positions of the patches in the ensembles are LS;k
and LQ;k. The descriptors of the patches in the ensembles are DS;k and
DQ;k.

and a signal S in the reference R, as we did in the introduction. The two signals

are represented each by an ensemble of patches. A patch is represented by a

position and a descriptor. Patches in S are denoted by PS;k and patches in Q

by PQ;k as illustrated on Figure 4.3. In both cases, k is a natural number that

corresponds to the index of the patch in either S or Q. We denote by LS;k and

LQ;k the positions of the patches PS;k and PQ;k. We denote by DS;k and DQ;k the

descriptors of the patches PS;k and PQ;k. We then write

PS;k = (LS;k; DS;k)

PQ;k = (LQ;k; DQ;k)
(4.1)

The positions of the patches in S are de˛ned with respect to a reference point CS,

and the positions of the patches in Q are de˛ned with respect to a reference point

CQ. The reference points are the global positions of the ensembles of patches.

As a result, CS is the global position of S in the reference, and CQ, the global

position of Q in the sonar image under study. The signals S and Q are ultimately

represented by the collection of random variables

S = (CS; PS;1; : : : ; PS;k; : : :)

Q = (CQ; PQ;1; : : : ; PQ;k; : : :)
(4.2)

The similarity between S and Q is measured by the joint probability distribution
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P(S;Q) which quanti˛es how likely it is to ˛nd two ensembles of patches at CS

and CQ for which the relative arrangement of the patches as well as the descriptors

of the patches are similar. The signal S? in the reference which is most similar

to Q is obtained with a maximum a posteriori estimation, namely

S? = argmax
S

P(S jQ)

= argmax
S

P(Q jS) P(S)
(4.3)

The conditional probability distribution P(Q jS) describes how to generate a query
Q from a signal S. The generation process allows for changes in the positions

and the descriptors of the patches. The following assumption is made. Given an

ensemble of patches S and the global position CQ of the ensemble of patches Q,

the patches PQ;k in Q are independent of each other, and only depend on their

corresponding patches PS;k in S. Such an assumption is similar to the memoryless

channel assumption in hidden Markov models [108]. The conditional probability

distribution P(Q jS) can therefore be written

P(Q jS) = P(CQ; PQ;1; : : : ; PQ;k; : : : jCS; PS;1; : : : ; PS;k; : : :)
= P(CQ jCS; PS;1; : : : ; PS;k; : : :)

ˆ P(PQ;1; : : : ; PQ;k; : : : jCS; CQ; PS;1; : : : ; PS;k; : : :)
= P(CQ)ˆ P(PQ;1; : : : ; PQ;k; : : : jCS; CQ; PS;1; : : : ; PS;k; : : :)

P(Q jS) = P(CQ)ˆ
Y

k

n
P(PQ;k jCS; CQ; PS;k)

o
(4.4)

We can further express this conditional probability distribution in terms of the

positions and the descriptors of the patches.

P(Q jS) = P(CQ)ˆ
Y

k

n
P(PQ;k jCS; CQ; PS;k)

o

= P(CQ)ˆ
Y

k

n
P(LQ;k; DQ;k jCS; CQ; LS;k; DS;k)

o

= P(CQ)ˆ
Y

k

n
P(LQ;k jCS; CQ; LS;k; DS;k)

ˆ P(DQ;k jCS; CQ; LS;k; DS;k)
o

(4.5)

P(Q jS) = P(CQ)ˆ
Y

k

n
P(LQ;k jCS; CQ; LS;k)ˆ P(DQ;k jDS;k)

o
(4.6)

The prior probability distribution P(S) describes all knowledge available about

the signals S in the reference. The following assumption is made. The global

position CS of the ensemble of patches S, and the patches PS;k of that ensemble

are independent of each other. As a result,

P(S) = P(CS)ˆ
Y

k

n
P(PS;k)

o
(4.7)
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Figure 4.4. Bayesian network representing the statistical dependencies

between the random variables introduced in the inference algorithm.

which is further reduced to

P(S) = P(CS)ˆ
Y

k

n
P(LS;k) P(DS;k jLS;k)

o
(4.8)

We have de˛ned thus far statistical dependencies within the ensemble of patches

S by means of the prior probability distribution P(S). We also have de˛ned sta-

tistical dependencies across the ensembles of patches S and Q by means of the

conditional probability distribution P(Q jS). A Bayesian network provides a con-
venient graphical representation of those statistical dependencies as illustrated

on Figure 4.4. Each node in the Bayesian network represents one of the afore-

mentioned random variables. An arrow between two nodes de˛nes a statistical

dependency between the corresponding two random variables. A conditional prob-

ability distribution is then associated with each arrow. The conditional probability

distributions which appear in (4.6) and (4.8) are the ones needed in the Bayesian

network associated with S and Q. A prior probability distribution is associated

with the nodes in the Bayesian network with no arrow directed towards them. The

prior probability distributions which appear appear in (4.6) and (4.8) are the ones

needed in the Bayesian network associated with S and Q.

4.1.3 Belief propagation algorithm

Upon combining (4.3) with (4.6) and (4.8) we ˛nd the equation of the maximum

a posteriori estimation.

S? = argmax
S

n
P(CS)ˆ

Y

k

n
P(LS;k) P(DS;k jLS;k)

ˆ P(DQ;k jDS;k) P(LQ;k jCS; CQ; LS;k)
oo

(4.9)
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What is to be performed in (4.9) is the maximisation of a product of probability

distributions over all possible values of S. The maximisation is e‹ciently per-

formed with the help of a belief propagation algorithm. This algorithm is based

on messages being exchanged and combined between the nodes of the Bayesian

network. The messages carry information about what should be the state of the

nodes. A belief propagation algorithm is essentially sequential. Messages are

exchanged and combined between the nodes at the edge of the Bayesian net-

work before other messages are exchanged and combined between the nodes at

the core of the Bayesian network. We will now highlight the main steps of the

belief propagation algorithm. Let us consider the branch of the Bayesian net-

work which corresponds to the patches PS;k and PQ;k. A message ”DS;k!LS;k(LS;k)

is ˛rst passed from node DS;k to node LS;k about what should be the value of

LS;k as illustrated on Figure 4.5. This message is readily obtained from (4.9) by

considering the maximisation over DS;k only.

”DS;k!LS;k(LS;k) = max
DS;k

n
P(DQ;k jDS;k) P(DS;k jLS;k)

o
(4.10)

A message ”LS;k!CS(CS) is then passed from node LS;k to node CS about what

should be the value of CS. This message is readily obtained from (4.9) and (4.10)

by considering the maximisation over LS;k in (4.9) and bearing in mind that the

maximisation over DS;k is included in the previous message.

”LS;k!CS(CS)

= max
LS;k

n
P(LS;k) ”DS;k!LS;k(LS;k)ˆ P(LQ;k jCS; CQ; LS;k)

o
(4.11)

The messages passed to CS by the branches of the Bayesian network are eventually

combined in order to ˛nd the maximum a posteriori estimate of CS. The estimate

is readily obtained from (4.9) and (4.11) by considering the maximisation over

CS in (4.9) and bearing in mind that the maximisations over DS;k and LS;k are

included in the previous messages.

C?
S
= argmax

CS

n
P(CS)ˆ

Y

k

n
”LS;k!CS(CS)

oo
(4.12)

In addition

S?Q = maxCS

n
P(CS)ˆ

Y

k

n
”LS;k!CS(CS)

oo
(4.13)

provides a measure of the similarity between S? and Q. The belief propagation

algorithm provides therefore the position of S? in the reference and a measure of

the similarity between S? and Q. It is also possible to obtain the positions and

the descriptors of the patches in S? by following the sequence of maximisations

backwards, as illustrated in Figure 4.6. We are however only interested in C?S and

S?Q in this chapter. In Figure 4.6, the vertical arrows represent the range of the
possible values of the random variables CS, LS;k and DS;k. Those values can be

either discrete or continuous, which will be talked through in Section 4.1.4. The
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CQ CS

LQ;2

LS;2

DS;2

DQ;2

LQ;1

LS;1

DS;1

DQ;1

”DS;1!LS;1”DS;2!LS;2

”LS;1!CS

”LS;2!CS

Figure 4.5. Messages being exchanged and combined between the nodes

of the Bayesian network associated with S and Q.

x’s, y’s and z’s represent speci˛c values of the random variables. For example,

xDS;1 and yDS;1 are two possible values of DS;1 while xCS , yCS and zCS are three

possible values of CS. The plain arrows directed towards the centre of the ˛gure

represent the messages being exchanged and combined between the nodes during

the belief propagation algorithm. The dashed arrows directed towards the edges

of the ˛gure represent the sequence of maximisations being followed backwards

from one possible value xCS of CS, which is the position C
?
S
of S? found from

(4.12).

4.1.4 Statistical models

We have yet to specify what are the prior and conditional probability distributions

which appear in (4.9) and hence what are the possible values of the random

variables which appear in the Bayesian network. The reference points CS and CQ

of the ensembles of patches S and Q are discrete random variables because sonar

images come in discrete form. The possible values of CS are the positions of the

pixels of the sonar images the reference is composed of while the possible values

of CQ are the positions of the pixels of the sonar image under study. We assume

a uniform prior probability distribution for CS, which leads to

P(CS) = constant (4.14)

The positions LS;k and LQ;k of the patches in the ensembles of patches S and

Q are likewise discrete random variables. The possible values of LS;k are the

positions of the pixels of the sonar images the reference is composed of while the

possible values of LQ;k are the positions of the pixels of the sonar image under

study. We assume a uniform prior probability distribution for LS;k, which leads to

P(LS;k) = constant (4.15)
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”DS;1!LS;1 (xL;1)

”DS;1!LS;1 (yL;1)
”DS;2!LS;2 (xL;2)

”DS;2!LS;2 (yL;2)

”LS;2!CS (xC )

”LS;2!CS (yC )

”LS;1!CS (xC )

”LS;1!CS (zC )

Forward (message propagation)

Backward

xDS;1
= argmaxDS;1

”DS;1!LS;1 (xLS;1 )
yDS;1

= argmaxDS;1
”DS;1!LS;1 (yLS;1 )

yLS;1
= argmaxLS;1

”LS;1!CS (xCS )
xLS;2

= argmaxLS;2
”LS;2!CS (xCS )

Figure 4.6. Following of the sequence of maximisations backwards from
xC (dashed lines).

We also assume that

P(LQ;k jCS; CQ; LS;k) =
(
constant if LQ;k 2 R
0 if LQ;k =2 R

(4.16)

whereR is a rectangular region drawn about CQ+LS;k`CS. Here, LS;k`CS is the
di¸erence of two points and hence the vector drawn from CS to LS;k. As a result,

CQ + LS;k ` CS is the point obtained by drawing the same vector LS;k ` CS from
CQ as illustrated on Figure 4.7. This conditional probability distribution is locally

uniform, and models the allowed geometrical deformations when a signal Q is

generated from a signal S. The extent of the allowed geometrical deformations

is controlled by the extent of R. The descriptors DS;k and DQ;k of the patches in
S and Q are multivariate real-valued random variables obtained from the discrete

scattering transform (see Section 4.1.1 and (3.5) in Section 3.1.2). We assume

that

P(DQ;k jDS;k) / exp
ˆ`1
2
(DS;k `DQ;k)T ˆ ˚`1 ˆ (DS;k `DQ;k)

˜
(4.17)

where ˚ is the a pre-de˛ned covariance matrix (the size of the covariance matrix

is given by (3.5) in Section 3.1.2 in which L1L2 becomes the size of the patches).

This conditional probability distribution models the allowed distortions in the

values of the descriptors when a signal Q is generated from a signal S. We ˛nally

assume that

P(DS;k jLS;k) =
(
1 if (LS;k; DS;k) 2 R
0 if (LS;k; DS;k) =2 R

(4.18)

Note that we use a rectangular region R in (4.16) and the reference R in (4.18).
This conditional probability distribution models the statistical relation between

the descriptor of a patch and its position within the reference R. This probabil-
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Figure 4.7. Geometrical setting associated with one of the conditional
probability distribution of the Bayesian network.

ity distribution does not depend on any parameter and is nonetheless perfectly

adapted to the reference R. The inference algorithm bene˛ts from this non-

parametric probability distribution because no parameters need be estimated for

speci˛c references.

4.1.5 Behaviour of the belief propagation algorithm

We will illustrate, in this section, the behaviour of the belief propagation al-

gorithm. We will speci˛cally illustrate what are the messages exchanged and

combined between the nodes of the Bayesian network. We consider three side-

looking sonar images and three query signals Q (one per image). We de˛ne the

reference R as the rest of the sonar images the query signals comes from. The

reference is therefore di¸erent for each query signal. The sonar images and the

query signals are depicted in Figures 4.8, 4.10 and 4.12. We consider one patch

PQ;k› in the query Q. The selected patches are depicted in Figures 4.8, 4.10 and

4.12. Messages are exchanged and combined within the branch k› of the Bayesian

network. The message

”DS;k›!LS;k› (LS;k›)

is depicted in Figures 4.9, 4.11 and 4.13 for every possible value of LS;k› . This

message indicates the most likely positions of the patch PS;k›. We can see that

the type of seabed the patch is made of is selected by this message. The message

”LS;k›!CS(CS)

is depicted in Figures 4.9, 4.11 and 4.13 for every possible value of CS. This

message indicates the most likely positions of the ensemble of patches S as inferred

from the patch PS;k› only. The spatial e¸ect of the extent of the rectangular region

R in (4.16) can be observed at this point, especially in Figure 4.11. The messages
passed to CS by the branches of the Bayesian network, namely by the branch k›
that was just considered and all the others, are combined in order to ˛nd the

maximum a posteriori estimate of CS as in (4.12).

log10

n
P(CS)ˆ

Y

k

n
”LS;k!CS(CS)

oo
(4.19)
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is depicted in Figures 4.9, 4.11 and 4.13 for every possible value of CS. The

maximum value of (4.19) is log10(S?Q) and leads to the position of S? in the
reference. We can see that S? belongs to the same type of seabed as the query.

Here are the parameters we used to create the ˛gures. The size of a query signal

is 32 ˆ 32, the size of a patch is 4 ˆ 4, and the size of the region R in (4.16)

is 4 ˆ 4. The patches do not overlap each other in the query. The covariance
matrix ˚ in (4.17) was chosen diagonal, the diagonal elements being all equal to

0.1. We chose this value for the diagonal elements because it is within the range

of values of the descriptors of the patches. We also used K = 4, M = 6 and

N = 1 to compute the discrete scattering transform. We chose N = 1 so that the

computational complexity of the composition process is not prohibitive. From the

˛gures referenced to in this section, we can make three observations.

1. We can see that the statistical composition process can be used to answer

the ˛rst inference problem de˛ned in Section 3.1.5 of Chapter 3, that is

to say, to identify the types of seabed present in side-looking sonar images.

There is indeed a di¸erence of approximately 25 dB between the correct type

of seabed (that of the query signal) and the other ones in Figures 4.9 and

4.111. We observe that the composition process distinguishes the small and

the large sand ripples of Figure 4.10.

2. The query signal in Figure 4.12 is the highlight of an object. We observe

in Figure 4.13 that, compared to the background, that is to say, to the sea

bottom, the other objects in the image are most similar to the query signal by

approximately 35 dB. This suggests the that the similarity log10(S
?
Q) between

the query signal and the reference can be used to answer the second inference

problem de˛ned in Section 3.1.5 of Chapter 3, that is to say, to reduce the

number of false positives in a set of detections provided by an automatic

target recognition algorithm.

3. The query signal in Figure 4.12 is the highlight of an object. We observe in

Figure 4.13 that, should the selected patch be part of the highlight, the patch

is found most similar to the highlight of the other objects in the image. We

observe in Figure 4.14 that, should the selected patch be part of the ‚at area

around the highlight, the patch is found most similar to the ‚at areas in the

image, and not to the highlight of the objects. It is therefore the geometrical

arrangement of the patches that made the query signal of Figure 4.12 most

similar to the objects in the image, and not to the sea bottom.

4.2 Seabed identi˛cation

In this section, we will qualitatively illustrate how the composition process can be

used to identify the types of seabed. We consider a set of nine side-looking sonar

1We use dB as the unit here because what is displayed is log10 f P(CS) ˆ
Q
kf ”LS;k!CS (CS) g g

instead of P(CS)ˆ
Q
kf ”LS;k!CS (CS) g. We have therefore 1 dB = log10(10).
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Figure 4.8. Left. Side-looking sonar image and query signal Q. Right.

Selected PQ;k› patch inside the query signal Q.

Figure 4.9. Left. Message ”DS;k›!LS;k› (LS;k›) passed from node DS;k› to

LS;k› for all possible values of LS;k› . Middle. Message ”LS;k›!CS (CS)
passed from node LS;k› to CS for all possible values of CS . Right. Value
of (4.19) for all possible values of CS.

Figure 4.10. Left. Side-looking sonar image and query signal Q. Right.

Selected PQ;k› patch inside the query signal Q.

Figure 4.11. Left. Message ”DS;k›!LS;k› (LS;k›) passed from node DS;k›
to LS;k› for all possible values of LS;k› . Middle. Message ”LS;k›!CS (CS)
passed from node LS;k› to CS for all possible values of CS . Right. Value
of (4.19) for all possible values of CS.
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Figure 4.12. Left. Side-looking sonar image and query signal Q. Right.
Selected PQ;k› patch inside the query signal Q.

Figure 4.13. Left. Message ”DS;k›!LS;k› (LS;k›) passed from node DS;k›
to LS;k› for all possible values of LS;k› . Middle. Message ”LS;k›!CS (CS)
passed from node LS;k› to CS for all possible values of CS . Right. Value
of (4.19) for all possible values of CS.

Figure 4.14. Left. Selected PQ;k› patch inside the query signal Q. Mid-
dle. Message ”DS;k›!LS;k› (LS;k›) passed from node DS;k› to LS;k› for all

possible values of LS;k› . Right. Message ”LS;k›!CS(CS) passed from node
LS;k› to CS for all possible values of CS.
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Figure 4.15. Left. Query signal. Right. Value of (4.19) for all possible
values of CS.

images and as many query signals Q (one per image). The reference R is de˛ned

as the rest of the sonar images the query signals come from. The reference is

therefore di¸erent for each query signal. The query signals are depicted through

Figures 4.15 to 4.23. The value of (4.19) for all possible values of CS is also

depicted through Figures 4.15 to 4.23. We used the same parameters as those

listed in Section 4.1.5. The size of a query signal is 32ˆ32, the size of a patch is
4ˆ4, and the size of the region R in (4.16) is 4ˆ4. The patches do not overlap
each other in the query. The covariance matrix ˚ in (4.17) was chosen diagonal,

the diagonal elements being all equal to 0.1. We also used K = 4, M = 6

and N = 1 to compute the discrete scattering transform. We observe that ‚at

areas and areas with sand ripples are well identi˛ed by the composition process

with a separation of approximately 20 to 25 dB. We speci˛cally observe in Figure

4.17 that the composition process distinguishes between small and large sand

ripples, the large sand ripples being located on the bottom-left part and on the

top-right part of the sonar image. We did not quantitatively evaluate the seabed

identi˛cation performance obtained with the composition process the same way

we evaluated, in Chapter 3, the seabed identi˛cation performance obtained with

the classi˛cation algorithm based on a‹ne spaces. The composition process is

computationally very expensive and cannot be run in a reasonable amount of time

with single-threaded computer programs. It takes indeed more than a few days to

analyse a side-looking sonar image made of 1000ˆ 1024 pixels. At this point, it
is important to realise that the composition process can be run on multi-threaded

computer programs because of its algorithmic structure. We successfully wrote a

computer program based on the GPU (the computer’s graphics processing unit)

which implements the composition process. The GPU-based computer program

is multi-threaded, and uses the CUDA computing architecture.

4.3 Clutter rejection

In this section, we consider the problem of reducing, in the form of a post-

processing process, the number of false positives within a set of detections provided

by a target detection algorithm, that being achieved by analysing the amount of



CHAPTER 4. IMAGE ANALYSIS BY COMPOSITION 107

Figure 4.16. Left. Query signal. Right. Value of (4.19) for all possible
values of CS.

Figure 4.17. Left. Query signal. Right. Value of (4.19) for all possible
values of CS.

Figure 4.18. Left. Query signal. Right. Value of (4.19) for all possible
values of CS.

Figure 4.19. Left. Query signal. Right. Value of (4.19) for all possible
values of CS.
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Figure 4.20. Left. Query signal. Right. Value of (4.19) for all possible
values of CS.

Figure 4.21. Left. Query signal. Right. Value of (4.19) for all possible
values of CS.

Figure 4.22. Left. Query signal. Right. Value of (4.19) for all possible
values of CS.

Figure 4.23. Left. Query signal. Right. Value of (4.19) for all possible
values of CS.
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Figure 4.24. Automatic target detection and post-processing chain.

similarity between the detections and the seabed. The amount of similarity is

measured with the help of the composition process, as illustrated in Figure 3.15.

We used the same data set of 155 side-looking sonar images which was presented

in Section 3.3.2 of Chapter 3. The reference associated to a detection is the rest

of the sonar image the detection comes from. The amount of similarity between

the detection and the reference is de˛ned as the maximum value of (4.19) which

is thresholded in order to decide whether the detection is similar to the seabed or

not. We used the same parameters as those listed in Section 4.1.5. The detec-

tions that are declared similar to the seabed are discarded from the initial set of

detections. The receiver operating characteristic curves of the combined target

detector and post-processing process are depicted in Figure 4.25. We observe

that the target recognition algorithm is not improved by the post-processing pro-

cess. The reason why this is the case is because there is no separation between

the similarity of the true positives and the false positives, as illustrated in Figure

4.26.
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Figure 4.25. Receiver operating characteristic curves of the combined

target detector and post-processing process.

Figure 4.26. Similarity for the true and the false positives.
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4.4 Conclusions and perspectives

This chapter was concerned with the analysis of side-looking sonar images with

an inference algorithm based on the concept of visual composition. Query signals

are represented by a geometrical arrangement of patches. The query signals, in

other words, the arrangements of patches themselves, are compared to a reference.

The nature of the reference and the sort of comparison that is made between the

query signals and the reference depend on the inference problem at stake. In a

classi˛cation problem, the objective is to make a decision upon the type of seabed

of the query signals. In such a case, the reference can be an external collection

of know types of seabed. In this chapter, we rather chose to analyse the query

signals with respect to the sonar images they come from, so as to demonstrate the

how ‚exible the inference algorithm can be. In an anomaly detection problem,

the objective is to decide whether the query signals are at all part of the seabed.

Our original hypothesis is that the objects can be revealed as local anomalies

with respect to the seabed. We hence de˛ned the reference as the portion of the

sonar images immediately around the query signals.

The achievements of this chapter are the following. We re-wrote the theory

behind the statistical composition process to make it look like the theory behind

hidden Markov models for the mathematical formalism of the two are very much

alike. We did so because we found that the leading papers on the composition

process were written in a rather informal fashion. In this chapter, we also suc-

cessfully implemented the composition process in C in two separate ways. One

way and the ˛rst makes use of a single-threaded computer program which runs

on the CPU (the computer’s central processing unit). The other way makes use

of a multi-threaded computer program which runs on the GPU (the computer’s

graphics processing unit). We ˛nd it important to mention that to write the

multi-threaded computer program from the single-threaded computer program

was straightforward. We used the C CUDA architecture for this purpose. We

had to write a multi-threaded computer program because of the computational

complexity of the composition process.

In this chapter, we applied the inference algorithm to the characterisation of

the seabed. We only did so in a qualitative way rather than in a quantitative way

because of time constraints. We draw three conclusions for this piece of work.

First, we acknowledge once more the potential of scattering operators for the de-

scription of the types of seabed. The comparison of the descriptors of the patches

during the ˛rst step of the composition process lead to neat segmentations of the

side-looking sonar images when they are made of ‚at areas and areas with sand

ripples. Second, we observe that the inference algorithm presented in this chapter

is good at describing ‚at types of seabed and sand ripples. In the latter case,

small sand ripples are not mistaken from large sand ripples because their repre-

sentation di¸er. Should we go back to what was written in Chapter 2 about the

Littlewood Paley wavelet transform, we may remember that small and large sand

ripples respond to atoms at two di¸erent scales. This is why small and large sand

ripples are identi˛ed as di¸erent by the composition process. We ought to mention
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that such a result di¸ers from the one of Chapter 3 where small and large sand

ripples were considered as part of the same class and identi˛ed as such. Third,

we cannot say for certain that the composition process is good at characterising

areas with vegetation. It seems to be the case but only a quantitative analysis

such as the one conducted in Chapter 3 would be able to tell for certain. In spite

of the good seabed characterisation obtained with the composition process, we

would still recommend the inference algorithm based on a‹ne spaces for such a

purpose. The latter approach is indeed a lot less computationally expensive, and

very stable with respect to changes in the parameters it depends upon.

Moving beyond the identi˛cation of the types of seabed, we believe that the

introduction of query signals, references, and ensemble of patches opens the door

to new ways of analysing side-looking sonar images in an unsupervised fashion.

Very often one has to assess whether two portions of the same sonar image are

similar without relying on a training set. Very often as well one has to adjust any

sort of processing to the types of seabed that are present in the sonar images. This

can be easily handled once the query signals, the references, and the ensemble

of patches are properly de˛ned. Besides, if in this chapter the query signals are

represented by a geometrical arrangement of patches, the query signals can be

represented by other sorts of ensemble of patches, most of which are detailed

in the leading papers on the composition process. For instance, the algorithm

presented in Chapter 1 does not account for the relative arrangement between the

patches, and still provides satisfactory results.

This chapter was also concerned with the reduction, in the form of a post-

processing process of the number of false positives in a set of detections provided

by a target detector. Such a task is commonly performed through the extraction

of the highlight and the shadow of the detections, and the analysis of these two

with respect to templates. Our original hypothesis, as stated in Chapter 1, is that

it is possible to reduce the number of false positives without a¸ecting the number

of true positives should we quantify the similarity between the detections and the

seabed, the false positives being by nature part of the seabed. This was cast in this

chapter as an anomaly detection problem. We showed that our original hypothesis

was wrong when the detections are represented by a geometrical ensemble of

patches.



Chapter 5

Conclusions

"‘Begin at the beginning’ the King

said gravely, ‘and go on till you

come to the end: then stop.’"

Lewis Carroll, Alice in Wonderland

We have now reached the last chapter of the thesis. It is hence time to return

to the problems we looked at as they were stated in the very ˛rst chapter of the

thesis. The two problems which were dealt with in the thesis are the supervised

identi˛cation of the types of seabed that are present in side-looking sonar images,

and the detection of man-made objects in side-looking sonar images. These images

are, broadly speaking, the result of the physical interaction between acoustic waves

and the bottom of the sea. Because of this interaction, the types of seabed appear

as textured areas in side-looking sonar images. The texture descriptors commonly

used in the ˛eld of sonar imagery fail at accurately identifying the types of seabed

because the types of seabed, hence the textures, are extremely variable. In this

thesis, we used scattering operators over more traditional texture descriptors to

represent the types of seabed. We assessed how well the types of seabed are

identi˛ed with the help of two inference algorithms, one based on a‹ne spaces,

and the other based on the concept of similarity by composition. What really is

important is indeed the combination of a seabed representation and an inference

algorithm rather than a seabed representation alone, which is why we needed at

least one inference algorithm to assess how well scattering operators represent the

types of seabed. The thesis was also concerned with the detection of man-made

objects in side-looking sonar images. An object detector may be described as a

method or a succession of processes which, when applied to a certain number of

sonar images, produces a set of detections. Some of these are true positives, and

correspond to real objects while others are false positives, and do not correspond

to real objects. The false positives are therefore part of the seabed by nature.

The present object detectors su¸er from a high false positive rate in complex

environments, that is to say, complex types of seabed. The hypothesis we followed

in the thesis is that it is possible to reduce the number of false positives through

a characterisation of the similarity between the detections and the seabed, the
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false positives being by nature part of the seabed. We used scattering operators

to represent the detections and the same two aforementioned inference algorithms

to quantify how similar the detections are to the seabed.

In the thesis, we showed that scattering operators represent extremely well the

types of seabed which usually are present in side-looking sonar images. The types

of seabed that were considered were ‚at areas and areas made of sand ripples

or vegetation. With the inference algorithm based on a‹ne spaces, which only

depends on a few parameters, we showed that the characterisation of the seabed

is excellent and that it remains as good across a wide range of parameters. Such

a behaviour is of much interest for our experience tells us that most of the time,

inference algorithms are very sensitive to the values assigned to the parameters

they depend upon. We also showed that the characterisation of the seabed is not

a¸ected by the presence of artefacts in the side-looking sonar images. The types

of seabed are for instance not mistaken one from another around the vertical

white lines which correspond to the acoustic returns from the surface of the

water. We ˛nally showed that only a small training set was needed to obtain

such an excellent characterisation of the seabed. By small training set, we mean

that portions of only two images were used as a training set to classify more

than two hundred images. This demonstrated the generalisation capabilities of

the signal representation induced by scattering operators. Scattering operators

were compared to local binary pattern of which the texture descriptors commonly

used in the ˛eld of sonar imagery are a special case. We showed that scattering

operators outperform local binary patterns by about 10 %. Speci˛cally, sand

ripples are not mistaken for seaweed as much, which is a recurrent issue when

one intends to identify the types of seabed. With the inference algorithm based

on the concept of similarity by composition, the characterisation of the seabed

proved to be good, mostly over ‚at types of seabed and sand ripples, although

that was only addressed in a qualitative fashion. The inference algorithm based

on the concept of similarity by composition is a lot more algorithmically complex

than the one based on a‹ne spaces. So should we were to continue the work

on the characterisation of the seabed with the former algorithm, we would keep

the concept of ensemble of patches, maybe the geometrical arrangement of the

patches, but make the ensemble computationally lighter by considering adaptive

representations. What we have in mind is something along the lines of the sparse

representations or the basis pursuit algorithm. What we are saying is that we

would completely think the concept of ensemble of patches over.

In the thesis, we also showed that our original hypothesis, according to which

it is possible to reveal objects as anomalies with respect to the seabed, did not

work with the inference algorithm based on a‹ne spaces and with the one based

on the concept of similarity by composition. The target detector we used is one

of the best available at the moment so that what we are saying is that we could

not, following our hypothesis, do better than one of the best target detectors

available at the moment. We may at this point wonder whether our hypothesis

can ever work and improve the best target detectors. We believe that this is the

case but that to ˛nd the right signal representation and inference algorithm for
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this purpose is an extremely hard task. So should we were to ˛nd these two, we

would consider adaptive compact representations in order to ˛nd the key features

of either the detections or the seabed. We once again think of something along

the lines of the sparse representations or the basis pursuit algorithm.
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