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Abstract

Seasonal forcing represents a pervasive source of environmental variability and it

has been shown to be important in generating the cycles observed in many ecologi-

cal and epidemiological systems. We use a combination of bifurcation analysis and

simulation to understand the impact of seasonality on population dynamics, with a

focus on predator-prey and host-macroparasite systems. Multi-year cycles with a wide

range of periods, quasi-periodicity and chaos are found.

We consider the importance of the unforced dynamics in a predator-prey system

by contrasting the effect of seasonality when the underlying behaviour is oscillatory

decay to the equilibrium or limit cycles. The limit cycles case shows a wider range

of dynamics and multiple solutions. The effect of variations in the seasonal forcing

term are analysed in a predator-prey model by changing the breeding season length,

using the vole system in Fennoscandia as a case study. It is found that the period

of the multi-year cycles increases as the breeding season length decreases. By study-

ing a general host-macroparasite system, in which the effect of seasonality has not

previously been explored in detail, we find a larger potential for multiple solution

behaviour compared to predator-prey systems.

Overall, we show the critical role that seasonality can play in ecological systems.
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Chapter 1

Introduction

This thesis studies the effect of seasonal forcing on different ecological systems, with

a focus on predator-prey and host-macroparasite interactions. It considers in depth

the possible dynamics that can result from seasonal forcing applied to parameters

within these models, the bifurcations leading to these dynamics and the potential

for multiple solution behaviour. The aim of this thesis is to understand in full the

resultant population dynamics when seasonal forcing is applied to model parameters.

In particular, we detail how seasonal forcing can drive changes in the population

dynamics leading to population cycles with a wide range of periods, quasi-periodicity

and chaos.

Population cycles are a frequent occurrence across many different species, with

a significant impact on human and natural systems (Kendall et al., 1998; Turchin,

2003). Cyclic populations can cause management or economic concern, with prime

examples being cyclic outbreaks of pest species destroying crops (e.g. larch budmoth

(Baltensweiler et al., 2008)), reductions in fish stocks (e.g. salmon (Krkošek et al.,

2011)), or outbreaks of diseases (e.g. measles (Earn et al., 2000)). Population cycles

are also an interesting ecological puzzle due to the many different causes of cyclicity,

the potential for extinction during low phases of the cycles, the need to anticipate

future peaks or troughs, or trying to understand the loss of cycles within systems.

There are many reasons for populations to cycle, with these different factors of-

ten interacting within each system (Krebs et al., 2001). Intrinsic cyclic behaviour of

the system is a commonly attributed cause, with the most well-known example being

predator-prey cycles as described first by Lotka and Volterra (Lotka, 1920; Volterra,

1928). Predator-exclusion experiments have indicated that population cycles can be

directly caused by predation, such as in the Fennoscandian vole system in which preda-

tor removal led to loss of the vole cycles (Korpimaki and Norrdahl, 1998; Korpimaki

et al., 2002). Oscillations can be sustained by stochastic noise (Nisbet and Gurney,

1982; Kuske et al., 2007), or stochasticity can lead to alternating steady states (Dakos

et al., 2013). This thesis concentrates on one of the most ubiquitous drivers of cyclic
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Chapter 1: Introduction

dynamics – seasonal forcing. Seasonal forcing can lead to cycles on its own, such

as in influenza epidemics (Dushoff et al., 2004) or it can be present alongside one of

more of these other factors inducing cycles (Gammaitoni et al., 1998; Mabille et al.,

2010). The desire to understand the causes and consequences of population cycles

is one motivation for studying in detail the effect of seasonal forcing on population

dynamics.

1.1 Seasonal Forcing

The study of seasonal forcing, or seasonality, considers largely predictable yearly or

seasonal fluctuations which affect populations externally through their life-history

parameters (Altizer et al., 2006). These fluctuations could be caused by changing re-

source levels throughout the year (Scheffer et al., 1997), changing transmission rates,

for example because of a rainy season (Watts et al., 1987), changing predation rates

(Korpimaki and Krebs, 1996) or many other factors (Sultan et al., 2005; Altizer et al.,

2006; Cornell et al., 2008; Oraby et al., 2014). We choose to study perhaps the most

pervasive form of seasonality, the yearly fluctuations in the birth rate in which popu-

lations restrict their breeding to a portion of the year, usually spring or summertime.

This restricted breeding season is common to a large percentage of different animal

species located in temperate regions, including insects, fish, mammals, birds, amphib-

ians and reptiles; even humans show seasonal peaks in their birth rate (He and Earn,

2007). It is thus natural to wish to understand fully how these fluctuations can impact

on the population dynamics.

It is widely accepted that seasonal forcing can be a driver of population cycles in

a range of different systems (Kendall et al., 1999; Altizer et al., 2006; Keeling and

Rohani, 2008; Sherratt and Smith, 2008; Smith et al., 2008). In both interacting

populations and microparasite systems, seasonality has been well-established as a

factor in generating the observed cycles found in data. For example, seasonal forcing

has been shown to induce 2−3 year cycles in measles incidence due to yearly variation

in the rate of transmission caused by school terms (Earn et al., 2000; Finkenstadt and

Grenfell, 2000). Another example is that of the lake plankton cycle in which clear

water phases can be absent or occur up to 4 times in a year. Scheffer et al. (1997)

showed that that these clear water phases could be replicated using a seasonally forced

predator-prey model of Daphnia (predator) and algae (prey).

Furthermore, seasonal forcing is important when considering the effect of climate

change as this can lead to changes in the yearly fluctuations (Intergovernmental Panel

On Climate Change, 2001). Knowing how population dynamics alter when the breed-

ing season length varies or when the size of the fluctuations in the birth rate increases

is a key part of studying seasonal forcing and can help in the understanding of how

2



Chapter 1: Introduction

a changing climate could impact on the ecosystem. Climate change has been impli-

cated already in the loss of cycles for different species (Ims et al., 2008) which can have

damaging and widespread effects on many other species within the ecosystem. Thus,

studying seasonal forcing is also motivated by this desire to understand populations

within a changing climate.

1.2 The Study of Seasonal Forcing

In the seminal work of Dietz (1976), seasonal forcing was studied in an epidemio-

logical model by introducing a sinusoidal term in one of the parameters to represent

the fluctuations throughout the year. This work showed that seasonal forcing could

produce multi-year cycles (specifically, 2 year cycles of measles incidence) through

the occurrence of subharmonic resonance. Following on from Dietz, seasonal forcing

is commonly incorporated in models through a periodic term in one or more of the

parameters. Step functions, in place of sinusoidal functions, have been used as they

can be a more realistic interpretation of the actual system, but it is unclear whether

the resulting dynamics are significantly altered by this change (Altizer et al., 2006)

and sinusoidal terms often lead to more tractable models.

However, different methods of investigating the subharmonic resonance and other

resulting dynamics have been used, such as a bifurcation approach, a resonance-based

approach and others. We outline these methods and their various advantages and

disadvantages here and explain why we have studied seasonal forcing in the manner

we utilise in Chapters 2 - 4.

1.2.1 A Bifurcation Approach

The bifurcation approach to understanding seasonally forced systems has been ad-

vanced primarily by Rinaldi and co-workers (Kuznetsov et al., 1992; Rinaldi et al.,

1993; Rinaldi and Muratori, 1993; Kuznetsov and Piccardi, 1994; Gragnani and Ri-

naldi, 1995). This approach focusses on producing a two-dimensional bifurcation

diagram of the system to show when different dynamics exist and are stable, outlined

by the various bifurcation curves. Each diagram is thus split into different dynamical

regions by the bifurcation curves. Numerical bifurcation software is used to produce

these bifurcation diagrams; there are two main software programs, namely auto

(Doedel, 1981) and locbif (Khibnik et al., 1992) as well as adaptations for Windows

and Matlab – content (Kutznetsov and Levitin, 1997), MatCont (Dhooge et al.,

2003) and xppaut (Ermentrout, 2012). For periodically forced systems the software

is capable of detecting and tracing period-doubling, fold and Neimark-Sacker bifurca-

tion curves, which can give rise to multi-year cycles, quasi-periodicity and chaos (for a

3



Chapter 1: Introduction

description of these bifurcations, please see §2.3). However, many of the software pro-

grams are also able to detect codimension-2 points and higher, which indicate when

different bifurcation curves intersect or branch off from each other (Kuznetsov, 1995).

Thus, it is possible to work out whether all bifurcation curves have been found using

these codimension points.

Often the bifurcation diagrams will have the amplitude of the forcing on one

axis with the mean value of the forced parameter on the other. This allows for a

comprehensive exploration of the impact of the forced parameter on the dynamics.

On the axis with forcing amplitude equal to zero, the system effectively reduces to the

unforced model and thus as the forcing amplitude increases, it is possible to directly

compare how forcing interacts with the unforced dynamics.

Numerical bifurcation continuation is a powerful mathematical method, and will

only increase in power with advances in software. Using this method, one is able to

categorically state whether the yearly and multi-year solutions exist and are stable

and through what bifurcations these processes happen. Thus, a full mathematical

understanding is possible for that parameter regime. It indicates whether regions

with multiple solutions exist as well as whether shifts in the seasonal forcing can

lead to “catastrophes” when the dynamics change dramatically. However, issues with

this bifurcation approach include the lack of information on the relative frequency of

multi-year cycles when there are multiple solutions, and its inability (at present) to

indicate when chaos arises due to the quasi-periodicity disappearing through torus

destruction.

This bifurcation approach is the most comprehensive way of analysing the system’s

dynamical structure under the influence of seasonal forcing. However, the method is

quite technical and perhaps has not been well enough explained to a more biological

audience.

1.2.2 A Resonance Approach

The resonance approach has been pioneered by Greenman and collaborators (Green-

man et al., 2004; Ireland et al., 2004; Greenman and Norman, 2007; Greenman and

Pasour, 2011) on the basis that explaining the dynamics in terms of the natural period

and resonance would be more intuitive than using bifurcation diagrams. Through a

rescaling of both the model parameters and time by a new parameter p, the system is

converted into one in which the external forcing period can vary. Therefore, for each

value of p the system can be considered in two different ways – either as the origi-

nal parameter values with non-annual periodic forcing or as a different parameter set

under annual forcing. A resonance diagram is then produced by simulation to show

the change in solution amplitude and period as this parameter p is varied. Numerous

simulations are required for each value of p due to the possibility of multiple solution
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Chapter 1: Introduction

behaviour. Peaks in solution amplitude occur when the parameter p is equal to the

natural oscillation of the system (i.e. when the forcing and the natural oscillation of

the system resonate) or integer factors of this value (i.e. subharmonic resonance), and

these solutions have period determined by this integer factor. These peaks also start

to “bend over” creating a wave shape and leading to multiple solution behaviour.

This method provides a clear illustration of the link between the multi-year cycles

and the underlying oscillation of the system, and while doing so, shows the change

in solution amplitude for the different multi-year cycles, and the yearly cycle at reso-

nance. (This link between the cycles and the underlying oscillation is included in the

bifurcation diagram approach but is not so obvious at first glance, although a plot

showing the period of the unforced system makes it clear.) Also, the fact that it is

possible to trace a curve in parameter space to explore the dynamics under yearly

forcing for different parameters is convenient, but all the parameters are changing by

the same proportion which limits its usefulness.

In general, there are numerous drawbacks with this approach. Firstly, it is based on

simulation and so there is always the possibility of missing one or more solutions due to

small basins of attraction, even though understanding of the underlying oscillations

will indicate where multi-year solutions should be located. It becomes simulation

intensive, especially because each resonance diagram is for only one value of the forcing

amplitude and thus multiple diagrams have to be produced. This leads to difficulties

in understanding the effect of increasing the forcing amplitude on the dynamics as it

is not obvious how one resonance diagram morphs into another for different values of

forcing amplitude (a more likely change to a real-world system than a change in the

forcing period). Solutions which exist but are not stable are not found nor are the

bifurcations which lead to the appearance and disappearance of each of the multi-year

cycles. Therefore, a full understanding of the system under seasonal forcing is not

possible with this approach.

1.2.3 Other Approaches

King and Schaffer (1999, 2001); Schaffer et al. (2001) also used bifurcation theory to

explain seasonally forced dynamics but from a different perspective than the approach

described in §1.2.1. Their aim was to present an overarching framework for seasonal

forcing, with the idea that previous studies were in effect particular cases within this

framework. To do this, they represented predator-prey models as perturbations of

a Hamiltonian limit. Again using numerical bifurcation software, they explore the

Hamiltonian limit through two-dimensional bifurcation diagrams and sections of the

Poincaré map, as well as constructing a “rainbow bridge” from the Hamiltonian limit

back to the original system. Much of the structure within the Hamiltonian limit is

still present in the original system under seasonal forcing.
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From a completely different perspective, Stone et al. (2007); Olinky et al. (2008)

did not focus on the overall dynamical structure but instead on predicting whether

there will be a peak in the current year and how many non-peak years to expect after.

They were considering recurrent epidemics (caused by seasonal forcing) but it would

be of interest if their methods are applicable to a wider range of models. Predictability

of an epidemic is particularly useful when the system has chaotic dynamics or when

noise is present leading to switches between multiple solutions. While all the above

methods are much more useful at exploring the effects of seasonal forcing generally,

this method is suitable for learning how to predict and control the cyclic dynamics.

1.2.4 Our Approach

The bifurcation approach is definitely the most comprehensive and effective at analysing

the impact of seasonal forcing in population systems, thus it will be the key aspect

of the methodology in this thesis. However, to overcome some of the shortcomings of

this approach, namely the lack of information on the relative frequency of the multiple

solutions and the rather technical nature of the bifurcation approach, we will supple-

ment the bifurcation analysis with extensive simulations that directly correspond to

the bifurcation diagrams. The relative sizes of the basins of attraction when there is

multiple solution behaviour are therefore calculated, as well as information on the so-

lution amplitude for the different multi-year cycles. We then present these simulations

in an innovative way, using a grid of pie charts. The fact that the simulations directly

relate back to the bifurcation diagram helps in the understanding of the effect of each

bifurcation curve as it is clear from simulations whether solutions have become stable

(or unstable) from their appearance (or disappearance) in the simulation diagrams.

We use auto bifurcation software (Doedel, 1981) to perform this bifurcation anal-

ysis. We present here a detailed outline of the procedure we implement in auto to

find the bifurcation curves. Suppose that we have a system of ODE’s of the form:

u̇ = f(u, p) (1.1)

where p is a parameter that we wish to force. In order to use auto for forced systems

we need to augment each of our models with a pair of decoupled ODEs to produce the

term required for the forcing, following the procedure in Doedel and Oldeman (2009,

§14.5). This limits our forcing term to be continuous rather than a step function.
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More precisely, we input into auto the following system of ODE’s:

u̇ = f(u, p(x)) (1.2a)

ẋ = x+ 2πy − x(x2 + y2) (1.2b)

ẏ = −2πx+ y − y(x2 + y2) (1.2c)

The last two equations produce the solution x = sin(2πt) and thus the usual sinusoidal

forcing term is produced with

p(x) = p0(1 + εx) = p0(1 + ε sin(2πt)) (1.3)

where p0 is the mean value of the forced parameter, ε is the amplitude of the forcing

and the period of the forcing is 1 year. For more detail on how these equations are

inputted into auto please see Appendix A for actual code from each of our models

in Chapters 2 - 4. Using Matlab simulation or by directly analysing the differential

equations, the equilibrium values are found for our chosen starting parameter values.

These are inputted into the auto code as initial conditions.

We assume for this outline of our procedure that p0 and ε are the axes for our

two-dimensional bifurcation diagrams, which is the presentational format that we use

in Chapter 2. Information on the specific bifurcations is given in §2.3.

1. We begin first by considering purely the unforced system, thus we use the “sta-

tionary solutions of ODEs” setting (specifically this means that the constant

IPS = 1 in the auto constants file; a sample constants file is in Appendix A).

Tracing the equlibrium solution by varying p0 leads to hitting the Hopf bifurca-

tion, whose presence should be known through direct analysis of the differential

equations. Changing IPS = 2 and adding parameter 11 to the list of free pa-

rameters allows auto to switch at the Hopf bifurcation onto the limit cycles

solution branch and parameter 11 informs us of the period of these limit cycles.

The amplitude can also be found. This indicates which multi-year cycles to

expect and the specific values of p0 at which they occur.

2. We now consider the forced system. For this IPS must equal 2 and parameter

11 must be a free parameter. We trace the equilibrium solution by increasing

ε from 0. This may find the Neimark-Sacker bifurcation directly; otherwise we

switch to tracing in p0 to find it. The Neimark-Sacker bifurcation hits the axis

where the unforced system has a Hopf bifurcation which gives a good indication

of where to find the Neimark-Sacker bifurcation curve. We trace this Neimark-

Sacker bifurcation curve by changing ISW = 2 to indicate that we are tracing a

locus of a bifurcation, and have three free parameters (p0, ε and the period).
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3. When tracing the Neimark-Sacker bifurcation curve, auto will flag whenever

there is a codimension-2 point, indicating that another bifurcation curve is hit-

ting the Neimark-Sacker curve. Auto tells us which type of curve has hit the

Neimark-Sacker bifurcation curve.

4. If the period of the unforced system started below 2, this is a good indica-

tion that there will be a period-doubling curve present which can be found by

knowledge of whether it hits the Neimark-Sacker bifurcation curve, or purely by

tracing along the yearly solution for p0 and ε.

5. Once a period-doubling curve has been found it can be traced in the same way

as the Neimark-Sacker bifurcation curve. Again, codimension-2 points should

indicate the presence of a 2 year fold curve. However, auto cannot switch

onto another type of bifurcation curve at a codimension-2 point thus we have to

change back onto the solution curve, find the other bifurcation curve, and then

trace it.

6. Directed simulation in Matlab can find multi-year solutions, based on the values

of p0 where the specific period is present in the stable limit cycles. To start

on this multi-year cycle, we run auto without the initial conditions for the

equilibrium solution and instead input a whole period of numerical data for

each of the variables, in the manner of Doedel and Oldeman (2009, §14.4). This

numerical data can come straight from Matlab.

7. Once we are on the multi-year solution, the fold bifurcation and any period-

doubling or Neimark-Sacker bifurcations which may occur to the solution can

then be traced in a similar manner to that described above.

In Chapters 2 and 3 the bifurcation diagrams are supported by extensive numerical

simulations which are all performed in Matlab using ode15s. The solutions are tested

to determine whether there is a periodic solution with a period up to our maximum

test period. This maximum test period is different for the three models in Chapters 2

- 4, based on the periods expressed in the unforced dynamics. The choice is arbitrary;

there could in principle be solutions with any finite integer period but an upper limit

is required for numerical study. If a periodic solution with period less than or equal

to the maximum test period is not found, then the solution is declared to be quasi-

periodic. Hence, simulations showing quasi-periodicity could actually be periodic

with a period higher than this maximum test period, or they could be chaotic. To

test whether a solution had a period of, for example, four years, the value of the

solution is recorded for 20 time points at intervals of 4 years, after an initial time

period of sufficient length that transients have decayed. If the difference between the

maximum and minimum of these numbers is less than 2.5% of their mean value, then
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it is declared a four year solution. Tests of some difficult cases near bifurcation curves

or within multiple solution regions led to the choice of the run time length, the 20

test points used and the threshold level of 2.5% variation as they enabled periodic

and quasi-periodic solutions to be distinguished. We also investigated the use of the

fast Fourier transform to find power spectra as a means of calculating the period but

it was found to be less effective. However, it still gives a good indication of how

often the solution peaks, thus we used it to help determine the “dominant period.”

Solutions are replicated 50 times using different (random) initial conditions between 0

and 1, independently chosen for all variables. We determine the basins of attraction by

examining the frequency of particular solutions from these 50 simulations. However,

points in parameter space which show multiple attractors are recomputed with 500

simulations to gain increased accuracy of the relative sizes of the basins of attractions.

1.3 Our Aims

A major aim of this thesis is to discern the importance of the unforced dynamics

when seasonality is applied to ecological and epidemiological models. Resonance

between the underlying period of the system and the forcing period indicates that the

underlying period is crucial to the forced dynamics. The bifurcation theory of how this

resonance occurs is well developed (see §2.3 for details on Arnol’d tongues) but there

are still many issues that are not clearly understood. This includes how seasonality

affects systems that are experiencing oscillatory decay to the equilibrium compared

to systems with limit cycles. Both of these are oscillatory with a period that can

resonate with the forcing period, but it is not apparent whether the overall dynamics

are different for the two regimes. Another aspect that is still ambiguous is the effect

on the dynamics of varying the period of the unforced limit cycles through changes

in the parameter values. Does this lead to multi-year cycles of different period only

or do the bifurcation diagrams change in other ways too? Related to this is the issue

of how the structure of the unforced dynamics impacts on the forced system, such as

the potential for multiple solution behaviour and the range of stable multi-year cycle

periods. Within this thesis, we consider these aspects of the interaction between the

unforced system and the seasonality in detail and provide insight into this important

topic within seasonal forcing.

This thesis focusses on seasonal forcing in predator-prey and host-macroparasite

systems. By studying different systems, we are able to assess whether seasonal forcing

acts in a similar manner for many types of models or whether there are significant

differences depending on the unforced model dynamics. These two models are com-

parable since cycles are possible without any forcing for both. However, does this

indicate that when forcing is added to these models they will respond with simi-
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lar dynamics? Gragnani and Rinaldi (1995) found that the bifurcation diagrams for

the seasonally forced Rosenzweig-McArthur predator-prey model were topologically

equivalent to a chemostat model (an extension of the Rosenzweig-McArthur model).

Further, this was true for all the forced parameters which they considered (Rinaldi

et al., 1993). Thus, the suggestion is that models with similar unforced dynamics

will also have similar forced dynamics, and that the models respond in the same way

regardless of which parameter is being forced. In this thesis we provide some insight

into both of these ideas.

Another aim of this thesis is to broaden the scope of seasonal forcing study. Pri-

marily the focus has been on exploring the effect of increasing the amplitude of the

forcing. But the level of seasonality in a system is likely to change for numerous

reasons and these may do more than purely increase the amplitude of the forcing.

For example, the length of a breeding season or a rainy season could vary, and these

variations should be included so that the seasonal forcing is as biologically realis-

tic as possible. We consider how these changes could impact on the possible forced

dynamics.

A final aim is to study the effects of seasonal forcing in a system in which it has not

been previously considered in depth, namely in host-macroparasite systems. The focus

of seasonal forcing literature has predominantly been for interacting populations and

host-microparasite systems. We wish to widen the scope of the literature by showing

that seasonal forcing can have a significant impact on host-macroparasite systems as

well.

In Chapter 2, we consider a general predator-prey model with seasonally forced

prey growth rate. While this model subject to seasonal forcing has been studied

previously, the case of seasonally forced prey growth rate was omitted. The prey

growth rate is a unique parameter in this model as it is the only one not involved in

the condition for a Hopf bifurcation to occur. Thus, we can tailor our parameter choice

in order to analyse separately the effect of a seasonally forced growth rate when the

system has monotonic decay to the equilibrium, oscillatory decay or limit cycles in the

unforced system. We outline the necessary bifurcation theory for periodically forced

systems which will be required for the whole thesis, and present both bifurcation and

simulation diagrams for the different unforced dynamical regimes. Additionally, we

explore how the bifurcation diagrams transform into each other as the parameters are

changed from one regime to another.

Chapter 3 also considers a predator-prey model with forcing on the prey growth

rate, although this model includes both generalist and specialist predation. In this

chapter we address the idea, mentioned above, that deviations in the seasonal forcing

can occur in more ways than purely through the amplitude of the forcing and we
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ask whether this can result in different dynamics. These variations in the seasonal

forcing could be caused by latitude, altitude, proximity to the coastline or other

factors. Fennoscandian voles are used as a case study as they are spread over a large

geographical location and show significant differences in their cyclic dynamics along

this latitudinal gradient. We explore whether this geographical gradient in population

cycles can be explained by changes in the breeding season, alongside variation in the

level of generalist predation. To do this, the seasonal forcing term is adapted to

represent changes in the length of the breeding season. Again we use bifurcation and

simulation diagrams to show the range of dynamics possible as both breeding season

length and level of generalist predation vary.

In Chapter 4 we focus on a host-macroparasite system with seasonal forcing in

the host birth rate. The model includes the free-living larval stage explicitly, leading

to limit cycles in the unforced system. We first study the system with parameters

adapted for red grouse in England and Scotland, and using bifurcation analysis we

show how changing the forcing amplitude and the impact of the macroparasite on

host fecundity affects the population cycles. We then extend the parameter range in

order to understand more generally the effect of the period of the limit cycles in the

unforced system on the resulting dynamics when forcing is applied. To do this, we

analyse the bifurcation diagrams for different values of the host birth rate, as varying

this parameter leads to changes in the period of the limit cycles of the unforced system.

Finally, in Chapter 5 we discuss overall implications and conclusions of this re-

search as well as areas in which further work would be useful so that the application

of seasonal forcing within ecological systems can be more completely understood.
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Chapter 2

Seasonal Forcing and Multi-Year

Cycles in Interacting Populations:

Lessons from a Predator-Prey

Model

The majority of this chapter forms the following publication:

Rachel A. Taylor, Jonathan A. Sherratt, Andrew White. Seasonal Forcing and Multi-

Year Cycles in Interacting Populations: Lessons from a Predator-Prey Model. Journal

of Mathematical Biology, 67(6-7):1741-1764, 2013.

2.1 Introduction

Many natural systems are subject to significant seasonal fluctuations in their life

history parameters. This has been studied in the context of epidemiology, and sea-

sonal forcing has been proposed as the cause of multi-year cycles for a number of

diseases in human and wildlife populations (Dietz, 1976; Finkenstadt and Grenfell,

2000; Dushoff et al., 2004; Altizer et al., 2006; Keeling and Rohani, 2008; Smith et al.,

2008). Literature on interacting populations which include seasonal forcing is also

plentiful. Interacting population systems can often cycle without forcing, implying a

richer range of potential effects of seasonality, and conclusions from previous studies

indicate that seasonal forcing can have critical effects on the population behaviour

(Scheffer et al., 1997; Holt and Colvin, 1997; Stenseth et al., 1998; Mabille et al.,

2010).

The main mathematical approach to investigating the effects of seasonal forcing

in epidemiological and ecological models is the bifurcation approach of Rinaldi and

co-workers (Kuznetsov et al., 1992; Rinaldi et al., 1993; Rinaldi and Muratori, 1993;

Kuznetsov and Piccardi, 1994; Kuznetsov, 1995) and continued by others (Mancusi
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et al., 2004; Bolzoni et al., 2008). This uses numerical bifurcation software to con-

struct bifurcation diagrams of solution behaviour as the forcing parameters are varied.

It provides a systematic method for investigating solution structure and revealing all

possible solutions. However, when there are multiple stable solutions, it gives no in-

formation on the relative frequency with which these arise. Alternative approaches

include the resonance approach pioneered by Greenman (Greenman et al., 2004; Ire-

land et al., 2004; Greenman and Norman, 2007; Greenman and Pasour, 2011) and

bifurcation analysis in the manner of King and Schaffer (1999, 2001); Schaffer et al.

(2001). The resonance approach constructs resonance diagrams to demonstrate in-

creases in solution amplitude when the forcing period and the underlying period of

the unforced system are integer multiples of one another. The approach used by King

and Schaffer examines the bifurcation structure by formulating the model as a per-

turbation of a Hamiltonian limit, and then presents the work through a combination

of two-dimensional bifurcation diagrams and sections of the Poincaré map.

In this chapter, we will focus on the bifurcation approach to understand solution

behaviour and augment it by a systematic program of numerical simulations in order

to give more information on basins of attraction. We consider the specific case of

the Rosenzweig-MacArthur predator-prey model with sinusoidal forcing of the prey

growth rate. In reality, biological systems are very complex with the likelihood that

all parameters are in some way affected by the seasons but with different forcing

strengths and phases. We assume that the growth rate varies while the carrying

capacity remains constant. This reflects the situation where the host has a defined

breeding season but resources remain constant (and therefore breeding and resources

are driven by different environmental factors). This differs to the work of Rinaldi

et al. (1993) who applied temporal forcing to the growth rate and additionally forced

the carrying capacity (with the same temporal forcing term). The prey growth rate

is distinguished as the only model parameter that does not affect the stability of the

predator-prey coexistence equilibrium (details in §2.2) thus allowing us to study the

effects of the forcing from a different perspective, namely studying the three cases of

monotonic decay to the coexistence equilibrium, oscillatory decay and cycles in the

unforced system separately. This provides a novel outlook on the impact of seasonal

forcing, illustrating how the resulting cyclic behaviour is dependent on the unforced

dynamics.

In §2.2 we describe the predator-prey model, its properties in the unforced case,

and the different forcing scenarios we will consider. In §2.3 we summarise the nec-

essary bifurcation theory, and the results of this bifurcation approach follow in §2.4.

Simulation work is shown in §2.5 while in §2.6 we consider the importance of our

choices for a controlling parameter. In §2.7, we discuss how the methods support and

verify each other as well as possible extensions and applications.
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2.2 Model

We consider the widely used Rosenzweig-MacArthur predator-prey model (Rosen-

zweig and MacArthur, 1963):

dx

dt
= r

(
1− x

K

)
x− axy

b+ x
(2.1a)

dy

dt
=
caxy

b+ x
− dy (2.1b)

where x(t) and y(t) are the prey and predator density at time t. All parameters

are positive; r and K represent the growth rate and carrying capacity of the prey

population respectively; d is the natural death rate for the predator population; and

c relates birth of new predators to prey intake. The Holling Type II predation term is

a saturating function in which a is the maximum predation rate and b is the density

of prey at which the predation rate is half its maximum (Holling, 1959a,b).

The model (2.1) has a coexistence steady state which is stable when:

K1 ≡
bd

ca− d
< K <

b(ca+ d)

ca− d
≡ K2. (2.2)

There is a transcritical bifurcation at K = K1 denoting a change to the prey-only

equilibrium ; at K = K2 there is a supercritical Hopf bifurcation, and a stable limit

cycle arises. For K1 < K < K2 there is either monotonic decay or oscillatory decay

to equilibrium, with oscillatory decay occurring for larger K, say K > K∗ ∈ (K1, K2)

(see Figure 2.1). K∗ is defined as when the characteristic equation of the Jacobian of

(2.1) has zero discriminant, indicating the change from real to complex eigenvalues.

Notice that the growth rate r is significant as the only parameter not involved in the

formula for K1 and K2; however, r does affect K∗ and the values of x and y at the

steady state.

We introduce yearly forcing through the growth rate of the prey and following

many previous studies (Dietz, 1976; Rinaldi et al., 1993; Greenman et al., 2004; Choisy

et al., 2006; He and Earn, 2007) we use a sinusoidal form:

r(t) = r0(1 + ε sin(2πt)). (2.3)

When ε = 0 then the seasonally forced model collapses to the unforced case with

r0 = r. Throughout, we will use r to denote the growth rate in the unforced system,

with r(t) being the growth rate in the forced system and r0 being the mean value

of the growth rate in the forced system. This is to emphasise when we are referring

to the unforced case. The parameter ε is the forcing amplitude. We will vary the

two parameters in the forcing term, r0 and ε, for fixed values of the other parameter
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Figure 2.1: The change in stability of the coexistence steady state as r and K vary.
The other parameters are fixed at a = 4π, b = 0.3, d = 2π, c = 1. The switch between
monotonic decay and oscillatory decay (K = K∗) increases with r. As r → ∞,
K∗ → K2 = 0.9.

values; following Rinaldi et al. (1993) we choose a = 4π, b = 0.3, d = 2π, c = 1. For

these values K1 = 0.3 and K2 = 0.9.

We will focus on three different values of K: K = 1, giving a stable limit cycle in

the unforced system; K = 0.8, giving oscillatory decay to the coexistence equilibrium;

and K = 0.35, giving monotonic decay unless r0 is small. We can consider these

three cases separately because the threshold value K2 is independent of the forcing

parameter. Therefore we can analyse how the strength of oscillations in the unforced

system affects the complexity of behaviour when seasonality is introduced.

2.3 Bifurcation Theory of Periodically Forced ODEs

For the benefit of readers unfamiliar with the bifurcation theory of periodically forced

ODEs, we now give a brief summary. Kuznetsov (1995) provides full details of all bi-

furcation theory necessary while Guckenheimer and Holmes (1983); Seydel (1994) are

perhaps more accessible for those unfamiliar with the theory. Useful background on

Arnol’d Tongues is given in King and Schaffer (1999); Greenman and Benton (2004).

The standard procedure for locating bifurcations uses the Poincaré (or stroboscopic)

map P that transforms the continuous system into a discrete one by sampling the so-

lution once in each forcing period; one year in our case. Note that the stable/unstable

annual cycles become stable/unstable fixed points of P . Discrete bifurcation theory
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reveals that this fixed point is unstable if one of the eigenvalues of its linearisation has

modulus larger than 1. Changes in stability are of three possible types. If the eigen-

value is equal to −1, it is a period-doubling (flip) bifurcation; if the eigenvalue is equal

to +1 it is a fold (saddle-node, tangent) bifurcation; and if there is a pair of complex

conjugate eigenvalues with modulus 1, it is a Neimark-Sacker (torus) bifurcation.

Period-Doubling Bifurcation At a period-doubling bifurcation, the fixed point

of P loses stability but no new fixed points appear. However, the same fixed point

of the second iterate of P (P2) undergoes a pitchfork bifurcation leading to two fixed

points of P2. Thus the solution alternates between two different points on the Poincaré

section. For the continuous system this produces a two year cycle, which will typically

become more distinctively biennial as one moves away from the bifurcation. A period-

doubling bifurcation can then happen to the new two year cycles leading to a four year

cycle, etc.; this can yield an infinite cascade of period-doublings, ultimately ending

in chaos. On our bifurcation diagrams, we will denote by PDk a period-doubling

bifurcation curve across which a stable cycle of period k loses stability and a stable

cycle of period 2k arises.

Fold Bifurcation When the eigenvalue is +1 the system undergoes a fold bifurca-

tion. On one side of the bifurcation point there is no solution but on the other side

there are both stable and unstable solution branches, which curve around (“fold”) at

the bifurcation point. By stability, we mean locally stable as a solution to the ODEs.

Thus, when crossing a fold curve on the bifurcation diagram, a new solution appears

to arise from nowhere. In fact, it is arising when the forcing period (p = 1 year) and

the underlying period of the model (denoted by p0) have the ratio p
p0

= 1
n

(n ∈ N).

These bifurcations are the boundaries of Arnol’d Tongues, with each tongue denoting

a region in which a specific periodic solution occurs. Thus, when crossing a fold bi-

furcation curve on the bifurcation diagram, denoted by FDk, a stable cycle of period

k arises.

Neimark-Sacker Bifurcation A Neimark-Sacker bifurcation is a discrete version

of a Hopf bifurcation. For a standard supercritical Neimark-Sacker bifurcation, when

the eigenvalues are complex with modulus 1 the fixed point on the Poincaré section

becomes unstable and a stable closed invariant curve arises around the point on the

Poincaré section (provided that certain non-degeneracy conditions hold including that

strong resonances should be excluded). If this is a space-filling curve, that is, if there

is no number l such that l iterations of the Poincaré map P will bring the solution

back to the same point on the curve, then it produces a quasi-periodic solution. More

precisely, this means that the points of the solution on the Poincaré section are dense
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within this closed invariant curve. When considered in the continuous setting, a quasi-

periodic solution may superficially appear periodic but in fact it has no finite period.

The Neimark-Sacker bifurcation is also known as a torus bifurcation, due to the shape

produced as it goes around the Poincaré section. Far away from the bifurcation point,

the torus can undergo torus destruction leading to an area of chaotic behaviour, caused

by a global bifurcation.

The condition for the closed invariant curve in the Poincaré map to be a space-

filling curve is that the ratio of the two frequencies describing motion along the axis

and along the cross-section of the torus is irrational. This ratio is the same as that

between the forcing period and the underlying period of the unforced model, which

we discussed earlier. Due to the larger cardinality of irrational numbers over rational

numbers, quasi-periodicity is the typical behaviour beyond a Neimark-Sacker bifur-

cation curve in the bifurcation diagram. This bifurcation curve is denoted by NSk

where it is a cycle of period k which loses stability.

If the two frequencies have a rational ratio m
n

then there is phase-locking or

frequency-locking. The solution becomes entrained on a periodic cycle within the

curve on the Poincaré section and the period of the solution will be given by n. For

example, if the forcing period and the underlying period have a ratio of 1
3
, then the

system will respond with a solution of period 3. The fold bifurcation discussed ear-

lier also gives phase-locking, with m = 1. As in the m = 1 case, solutions with a

given m 6= 1 (and n > 1) occur within an Arnol’d Tongue, whose boundaries are fold

bifurcations of the solution within the tongue. The fact that m can now take any

positive integer value leads to different “families” of tongues which are numerated by

m. However, the family with m = 1 usually has the largest tongue on the bifurcation

diagram. Thus, period ratios of 2
3

and 1
3

will both produce 3 year solutions within

their respective Arnol’d Tongue, but the latter will usually be more prominent in the

bifurcation diagram (see later, Figure 2.3(b), where several FDk curves representing

different Arnol’d Tongues are plotted). Typically, most tongues are so thin that they

are difficult to find via simulation.

Finally in this section, we comment that throughout this thesis we will use the

term “subharmonics” to refer to any solution which has a period that is an integer

multiple of the external forcing period (Seydel, 1994). As the external period in ques-

tion is one year, subharmonics will be multi-year cycles of period 2, 3, 4 years etc.

Therefore, both the period-doubling and fold bifurcations produce subharmonics. We

state this explicitly because confusion can arise from the fact that period-doubling bi-

furcations are sometimes called subharmonic bifurcations. Further, subharmonics are

often described as being associated with the ratio of the different periods interacting,

although this is only really true for the fold bifurcation and not the period-doubling

bifurcation.
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2.4 The Bifurcation Approach

We used the software package auto (Doedel, 1981; Doedel et al., 1991, 2006; Doedel

and Oldeman, 2009) to calculate bifurcation diagrams for (2.1) augmented with (2.3).

We describe separately the results for K = 0.8 (oscillatory decay), K = 1 (limit

cycles) and K = 0.35 (monotonic decay). We restrict attention almost entirely to

ε < 1, which guarantees that the prey growth rate is always positive.

2.4.1 Two-Dimensional Bifurcation Diagram for K = 0.8

Figure 2.2 shows a bifurcation diagram in the ε− r0 plane; recall that ε is the forcing

amplitude and r0 is the mean value of the forced growth rate.
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FD2

Figure 2.2: A two-dimensional bifurcation diagram for K = 0.8 when the unforced
system has oscillatory decay to the coexistence steady state. The two parameters
varied in the diagram are those involved in the forcing term (equation (2.3)), that
is the mean value of the forcing, r0, and the amplitude of the forcing, ε. The other
parameters are a = 4π, b = 0.3, d = 2π, c = 1, K = 0.8. Dot-dash lines represent
period-doubling bifurcation curves while solid lines are for fold bifurcation curves.
In region 0 the system responds to the forcing with yearly cycles but after crossing
the period-doubling curve PD1, indicating that a cycle of period 1 loses stability, the
solution behaviour is two year cycles (region 1). The fold bifurcation curve shows
an area where two year cycles can occur outside of the period-doubling region, thus
between the two curves both the one year and the two year solutions are stable.
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For low levels of forcing (i.e. small ε), there are yearly solutions in region 0, which

emulate the forcing oscillation. As ε is increased a period-doubling curve is crossed

and thus the stable solution in region 1 is a two year cycle; the yearly solution also

exists but is unstable. There is a fold bifurcation curve which implies a (small)

region of parameter space outside the period-doubling region 1, containing two year

solutions. The yearly solutions are also stable in this region: they do not lose stability

until the period-doubling bifurcation curve is crossed. Thus between the two curves

there are two different stable solutions. This is the full range of behaviour possible

when K = 0.8 as there are no more fold bifurcation curves for higher period cycles.

However, in §2.5, we produce detailed simulation diagrams to investigate the basins

of attraction for Figure 2.2.

2.4.2 Two-Dimensional Bifurcation Diagram for K = 1

The two-dimensional bifurcation diagram for the case K = 1 (stable limit cycles) is

shown in Figure 2.3 with and without the Arnol’d Tongues related to solutions of

period greater than 2. Note that when r0 is varied with no forcing (ε = 0), the period

of the limit cycles increases with decreasing r0.

Figure 2.3(a) shows that a larger range of complex population behaviour is possible

compared to when there is oscillatory decay in the unforced system (Figure 2.2). A

Neimark-Sacker bifurcation curve, labelled as NS1 occurs for this set-up. As we

increase ε from 0 in a system with a limit cycle, the system typically responds with

quasi-periodic solutions due to the appearance of the Neimark-Sacker bifurcation, and

this is the generic behaviour in regions 1 and 1*. These quasi-periodic solutions will

be very similar, for very low levels of forcing, to the limit cycles on the ε = 0 axis, but

increasing forcing pushes the solutions away from this period. Crossing the NS1 curve

from region 1 to region 0 leads to the torus disappearing and the yearly cycle becomes

stable. Therefore the stable behaviour in region 0 is one year cycles. This implies

that increasing the level of forcing is actually able to produce more regular behaviour

– stable yearly cycles rather than quasi-periodicity. Although counter-intuitive, this

does make sense as we are imposing yearly forcing on to an inherent cyclic solution

(limit cycle) and with enough forcing, i.e. once ε is large enough, this cycle becomes

entrained onto the yearly cycle. Note that if r had been part of condition (2.2) for a

Hopf bifurcation, then the Neimark-Sacker bifurcation curve would have hit the ε = 0

axis at the value of r where the Hopf bifurcation occurs.

As for K = 0.8, crossing from region 0 to region 2 across the period-doubling

bifurcation curve PD1 leads to stable two year cycles in region 2 and the loss of

stability of the yearly cycles. This new two year cycle itself undergoes period-doubling

as indicated by the curve PD2. Thus the stable solution behaviour in region 6 is four

year cycles. There is another period-doubling curve PD4, and a subsequent cascade of
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Figure 2.3: A two-dimensional bifurcation diagram for K = 1 when the unforced sys-
tem has stable limit cycles. Other parameters and details of the bifurcation diagram
are as in Figure 2.2. Dot-dash lines represent period-doubling bifurcation curves, solid
lines are for fold bifurcation curves and dashed lines represent Neimark-Sacker bifur-
cation curves. (a) Stable behaviour by region: region 0 - one year solution; region
1/1* - quasi-periodic cycles; region 2 - two year solution; region 3 - two different two
year solutions; region 4 - one year and two year solutions; region 5 - quasi-periodic
solution and two year solution; region 6 - four year solution. Grey dashed lines refer
to one-dimensional bifurcation diagrams in the relevant figures. Points (a) - (d) refer
to the simulations shown in Figure 2.4. (b) This includes the fold bifurcation curves
relating to all multi-year simulations found. There are two FD3 curves indicating
the appearance of three year cycles in different regions, one FD4 curve, two FD5,
one FD7, FD8 and FD9 curves. We believe that the fold curves FD8 and FD9 do in
reality extend to the ε = 0 axis, with the earlier end a numerical artefact.
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period-doubling to chaos, in the region ε > 1. There is also a second Neimark-Sacker

bifurcation curve, NS2, in region 2. As r0 decreases past this curve, it indicates the

loss of stability of the two year cycles in region 2 and the onset of stable quasi-periodic

solutions. However, this region is very thin and further decrease in r0 causes a loss of

stability due to crossing the period-doubling curve PD1.

Thus in Figure 2.3(a) there are four main types of behaviour shown on this two-

dimensional bifurcation diagram, namely one year, two year, four year and quasi-

periodic cycles. There is also the possibility that there may be chaotic dynamics in

some parts of the “quasi-periodic regions”; we have not investigated this. Examples

of these behaviours are shown in Figure 2.4; the corresponding parameters sets are

labelled (a) - (d) in Figure 2.3(a).
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Figure 2.4: Simulation examples of different solutions found through the bi-
furcation diagram approach. Parameter values are (ε, r0) = (a) (0.05, 8.8),
(b) (0.35, 8.8), (c) (0.65, 8.8), (d) (0.88, 8.8) and correspond to the four points la-
belled on Figure 2.3(a) with other parameters as in Figure 2.3 (K = 1). The prey
and predator solutions are plotted against time (years), with the simulations run for
2000 years so that they have settled to equilibrium. The Matlab ode solver (ode15s)
was run with tolerances: reltol = 10−8 and abstol = 10−6. Grey dashed lines high-
light a full period of the solution. The initial conditions were (x0, y0) = (0.3, 0.3) in
all cases.
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We now consider Figure 2.3(b) which includes the higher period Arnol’d Tongues.

We used simulation in order to obtain initial conditions as starting solutions for nu-

merical continuation. Specifically we input into auto one whole period of the solution

from a Matlab simulation and trace the solution branch to see what bifurcations occur

along it, in particular the fold bifurcation curve enclosing the periodic solutions.

We see that the three year fold curve which has a root on the ε = 0 axis at

approximately r0 = 3 is the largest of these additional tongues. However, there are

many different period solutions, as well as multiple regions of the same period solution.

In Figure 2.5 we explore the two separate regions of three year stability by showing a

representative solution from each of these regions, plotted as a function of time. Recall

that a tongue is characterised by the rotation number m
n

within the torus. Here n

is the period and m is the number of peaks in the solution per period. Thus the

three year simulations found in Figure 2.5(a) have m = 1, n = 3 while Figure 2.5(b)

corresponds to m = 2, n = 3. However, this rotation number also relates to the

forcing period (1 year) and the underlying period of the unforced system. The larger

3 year fold curve hits the axis where the unforced system has a period of 3 years, thus

leading to this rotation number of 1
3
. Furthermore, the smaller three year fold curve

hits the axis at r0 = 9.5 when the unforced system has a period of 1.5 years. Thus

the rotation number is 1
1.5

= 2
3

as expected.
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Figure 2.5: Two different simulations of three year solutions. The simulations are
taken from two different regions on the bifurcation diagram in Figure 2.3(b). The
prey and predator solutions are plotted against time (years), with the simulations run
for 2000 years so that it will have settled to equilibrium. The ode solver (ode15s) was
run with tolerances: reltol = 10−8 and abstol = 10−6. Initial conditions were taken
as (x0, y0) = (0.5479, 0.7230) and (0.1440, 0.6490). Grey dashed lines highlight a full
period of the solution. The number of peaks over each three year period indicates
which Arnol’d tongue the solutions belong to.
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This rotation number relationship is the same for all the Arnol’d tongues in Fig-

ure 2.3(b) and we show this in Figure 2.6. For example, the four year tongue in

Figure 2.3(b) touches the ε = 0 axis where the limit cycles have period 1.25 so that

the solution has m
n

= 1
1.25

= 3
4
. Thus we state m

n
= peak

period
for each of the plots in

Figure 2.6(a)-(f) respectively, as 3
4
, 1

5
, 3

5
, 3

7
, 3

8
, 4

9
. These cycles may of course change

in qualitative behaviour (although still being of the same period) as the ε and r0 val-

ues move closer to the edge of the Arnol’d Tongue. In particular, the quasi-periodic

behaviour near the tongue often looks similar to the periodic solution at the edge of

the tongue.
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Figure 2.6: Examples of solutions found in the bifurcation diagram for the case K = 1
(Figure 2.3(b)). Parameter values are (ε, r0) = (a) (0.1, 12), (b) (0.5, 1), (c) (0.3, 8),
(d) (0.7, 3.8), (e) (0.95, 3), (f) (0.65, 4) and the cycle period for each case is indicated
in each subplot. The prey and predator solutions are plotted against time (years).
Further details are in Figure 2.5. Grey dashed lines highlight a full period of the
solution. Two different five year solutions are shown as two different regions of five
year solution behaviour were found. Note that the time scale differs between cases
as does the predator density plotting range. Initial conditions were taken as (x0, y0)
= (0.3, 0.3) except for the seven year cycles (0.8147, 0.9058) and eight year cycles
(0.3448, 0.2718).

Figure 2.3(b) shows a large number of tongues close to the ε = 0 axis, and in

fact general theory implies that there are an infinite number (see §2.3 and Kuznetsov

(1995)). However, in practice for small ε most of the tongues are very thin and
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the corresponding cycles will actually be very similar to the nearby quasi-periodic

cycles. As ε increases, the tongues usually get thicker and the cycles begin to be more

distinctively multi-year. Note also that in principle period-doubling can occur within

the tongues. However, we have only found this within the three year fold near r0 = 3,

leading to six year cycles, and this occurs for ε > 1. Also there are more Neimark-

Sacker bifurcation curves which we did not calculate to avoid even more complexity

on the diagram.

General theory also implies that close to the ε = 0 axis the Arnol’d tongues

are non-overlapping since they are each governed by a different ratio of underlying

period to forcing period at the root of the tongue (Kuznetsov, 1995). However, for

larger ε overlap can occur because the ratio determines only the root and period

of the tongue; this is seen easily in Figure 2.3(b) where the seven, eight and nine

year tongues overlap the three year tongue. The points where different bifurcation

curves intersect, for example where the fold curve FD2 hits the period-doubling curve

PD1, are called codimension-2 bifurcation points. These are flagged when tracing

the curves in auto, indicating the presence of other bifurcation curves and providing

a useful tool for finding all curves on the bifurcation diagram. The theory behind

codimension-2 bifurcation curves is well developed (see Kuznetsov (1995)).

2.4.3 One-Dimensional Bifurcation Diagrams for K = 1

We wish to analyse more closely the area enclosed by the fold bifurcation curve FD2

in Figure 2.3(a), where there are stable two year cycles. To do this, we switch to

one-dimensional bifurcation diagrams, plotting the size (L2-Norm over 1 period) of

the prey population against ε, for fixed r0. We compare the solution behaviour when

crossing the period-doubling curve PD1 for different values of r0, in order to clarify

how the fold bifurcation interacts with the period-doubling bifurcation.

When r0 = 14 the fold curve is not present, and results show a supercritical period-

doubling bifurcation, with the additional region of instability of the yearly cycle due

to the Neimark-Sacker bifurcation (for ε < 0.12) (Figure 2.7(a)). Once the yearly

solution becomes stable, ε > 0.12, it remains stable until it hits the period-doubling

bifurcation curve (ε = 0.35). At this point the yearly solution becomes unstable and

a stable two year cycle arises.

When r0 = 8.8 (Figure 2.7(b)), we see a similar profile for the yearly cycle, going

from unstable to stable to unstable as it first crosses the Neimark-Sacker bifurcation

curve and then the period-doubling bifurcation curve. However, there is a marked

change in the behaviour of the two year cycle. Again it bifurcates from the yearly

cycle at the period-doubling bifurcation curve (ε = 0.49), but now the bifurcation is

subcritical. Thus it is initially unstable and only exists for ε < 0.49, until it folds

(at ε = 0.36), at which point it becomes stable. Thus for values of ε between the
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Figure 2.7: A one-dimensional bifurcation diagram for fixed r0 and varying ε with the
other parameters as in Figure 2.3(a) (K = 1). Along the vertical axis is the L2-Norm
of the prey solution. Thick black curves: 1 year equilibria, thick grey curves: 2 year
equilibria, thin black curves: 4 year equilibria. Solid curves are stable while dotted
curves are unstable. In (a) a supercritical period-doubling bifurcation occurs while
in (b) the period-doubling bifurcation is subcritical and the solution then undergoes
a fold. The thin grey dashed lines indicate when curves on the two-dimensional
bifurcation diagram are crossed, labelled appropriately.

fold bifurcation curve and the period-doubling bifurcation curve (0.36 < ε < 0.49)

there are two stable solutions – a one year solution and a two year solution. Lastly,

Figure 2.7(b) shows that for larger ε the two year cycle loses stability (at ε = 0.8) and

a stable four year cycle appears. This arises from crossing the period-doubling curve

PD2.

Further understanding of the fold curve in Figure 2.3(a) can be gained by examin-

ing a one-dimensional bifurcation diagram for r0 = 11.2 (Figure 2.8(a)). In particular,

variation in ε will mean that region 3 in Figure 2.3(a) will be explored. For ε < 0.4 the

one year solution has a similar behaviour to that shown in Figure 2.7 (unstable, sta-

ble and then unstable due to the Neimark-Sacker bifurcation and the period-doubling

bifurcation). In Figure 2.8(a) one can see that the two year solution arises and is

stable from the period-doubling bifurcation at ε = 0.42. It then undergoes two folds

giving it an “S shape” before continuing for increasing ε as a stable solution. More

precisely, it hits the fold bifurcation curve FD2 twice, at ε = 0.435 and ε = 0.452. In

Figure 2.3(a), this is reflected by the fact that region 3 is bounded on both sides by

the fold curve FD2. Thus for 0.42 < ε < 0.435 and ε > 0.452 there is one stable two

year solution, whereas for 0.435 < ε < 0.452 there are two stable two year solutions.

Examples of the two different two year solutions are shown in Figure 2.8(b), (c) for

the prey population; these solutions are for the same parameter values but different

initial conditions.

From all of these one-dimensional bifurcation diagrams, one can see that increasing
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Figure 2.8: Exploring region 3 in Figure 2.3(a). In (a) there is a one-dimensional
bifurcation diagram for r0 = 11.2, focussed in on 0.4 < ε < 0.5; behaviour outside
this range is similar to Figure 2.7(a). A stable two year cycle appears when the yearly
solution hits the PD1 curve. This undergoes two “folds”, with instability in between,
before continuing as a stable solution. Two stable two year solutions are shown in
(b) and (c) with the same parameter values (ε, r0) = (0.44, 11.2) but different initial
conditions; namely (b) (x0, y0) = (0.8245, 0.5211) and (c) (x0, y0) = (0.9189, 0.7191).
Here, the prey population is plotted against time over an interval of 20 years, once
the solution has settled to equilibrium. For details on the numerical method see
Figure 2.4.

ε leads to an increase in the L2-Norm of the solution and in that sense the two year

cycle is larger than the one year cycle. This is also seen in Figure 2.4 and complements

the work of Greenman et al. (2004) and others (e.g. Bolzoni et al. (2008); Childs and

Boots (2010)). It ties in with the resonance peaks seen on Greenman’s resonance

diagram: subharmonics are a type of “resonant solution,” with a higher amplitude

than that of the applied forcing (Choisy et al., 2006). However, it should also be noted

that the four year cycle is smaller in L2-Norm than the two year cycle. This can be

understood by looking at Figure 2.4(c) and 2.4(d) where the two solutions have similar

amplitude except that the four year solution only reaches this value every other peak.

2.4.4 Two-Dimensional Bifurcation Diagram for K = 0.35

We now consider the final case of monotonic decay to the coexistence steady state.

We have mentioned previously the importance of the interaction between the oscilla-

tions in the unforced model and the forcing term as a driver of complex behaviour.

Thus, it is expected that the lack of any oscillations in the unforced model will cause

the system to respond simply by emulating the forcing term. Both bifurcation and

simulation analysis for K = 0.35 indicate that yearly cycles are the only possible pop-

ulation behaviour. A plot of the period-doubling curve (PD1) for different values of K

(Figure 2.9) indicates that the period-doubling region reduces in size as K decreases
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and entirely disappears at a value of K slightly greater than 0.6. As discussed in §2.2,

the value K∗ at which there is a switch from monotonic to oscillatory decay in the

unforced model is an increasing function of r, with K∗ < 0.6 throughout the range of

values of r(t) = r0(1 + ε sin(2πt)) that we are considering. Thus, the period-doubling

curve has disappeared while the system is still oscillatory and so one does not expect

multi-year cycles in the monotonic decay regime.

0 0.5 1 1.5
0

10

20

30

40

50

60

70

80

90

100

ε

r 0

K=1

K=0.75

K=0.65

K=0.63

K=0.61

K=0.605

K=0.604

Figure 2.9: Investigating whether complex behaviour can occur when the unforced
system has monotonic decay to the coexistence steady state. The period-doubling
curve indicating the appearance of stable two year solutions is drawn in the two-
dimensional bifurcation diagram for decreasing values of K. As K decreases towards
0.6, the curve shrinks.

This result suggests that a reasonable level of oscillatory decay is necessary in

order for forcing to induce population behaviour that is more complex than annual

cycles. When the period-doubling curve does not exist, our results indicate that the

two year fold curve (FD2) also cannot exist. Further, we have not found Arnol’d

tongues for these values of K (e.g. Figure 2.13, below). This suggests that yearly

cycles are the only possible behaviour when annual forcing is introduced into the

system with monotonic decay to steady state.
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2.4.5 AUTO Details

The bifurcation diagrams discussed in this section were created in auto (Doedel,

1981; Doedel et al., 1991, 2006; Doedel and Oldeman, 2009) using essentially stan-

dard numerical continuation techniques. However, a few complications are worth

mentioning. (i) We impose periodic forcing by augmenting (2.1) with a decoupled

pair of ODEs which have an oscillatory solution of the form required for the forcing

(Doedel and Oldeman, 2009, §14.5). (ii) We found that versions of auto earlier than

07p-0.8 (2011) were not capable of continuing the Neimark-Sacker bifurcation curve.

(iii) Although it can be useful to overspecify parameters so that it is always possible to

see clearly the r0 and ε values and to extract data easily, it has to be remembered that

this is not possible when tracing the Neimark-Sacker bifurcation curve since auto

will assume that a fourth specified parameter relates to the rotation angle around

the torus. (iv) When trying to trace the period-doubling, fold and Neimark-Sacker

bifurcation curves it is important to use a small step size so that the restart point for

tracing the curve is determined accurately. Otherwise auto tends to have problems

tracing the bifurcation curve from the restart point. (v). The labels for our curves

were chosen to be Period-Doubling - PD, Fold - FD and Neimark-Sacker - NS. In

auto the corresponding labels are PD, LP and TR respectively.

2.5 Simulation

This section will produce simulations of the model equations in order to elucidate the

results presented in the bifurcation diagrams. In the previous section the bifurcation

diagrams showed that there exist regions which have more than one type of possible

solution behaviour. Simulation results can be used to estimate the likelihood of each

of the solutions i.e. the relative sizes of their basins of attraction. Thus, simulation

can expand our knowledge of subharmonic solutions. A comparison of the simulation

results and bifurcation diagrams can therefore provide a clearer understanding of how

forcing drives the population dynamics.

2.5.1 Simulation Details

The predator-prey model equations (2.1), (2.3) were solved using Matlab (ode15s) for

2,000 years and the solutions were tested to determine whether there was a periodic

solution with period 1 − 9 years; if not, the solution was taken to be quasi-periodic.

The choice of 9 years as a maximum test period is arbitrary; there could in principle

be solutions with any finite integer period, but an upper limit is required for numerical

study. To test whether a solution had a period of, for example, four years, the value of

the prey solution was recorded for 20 time points at intervals of 4 years, after an initial
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time period of sufficient length that transients had decayed. If the difference between

the maximum and minimum of these numbers was less than 2.5% of their mean value,

then it was declared a four year solution. Tests of some difficult cases near bifurcation

curves or within multiple solution regions led to the choice of 2,000 years run time, 20

test points and 2.5% variation as they enabled periodic and quasi-periodic solutions

to be distinguished. We also investigated the use of the fast Fourier transform to

find power spectra as a means of calculating the period but it was found to be less

effective. We considered the parameter region 1 < r0 < 20, 0 < ε < 1. For each set of

parameter values, solutions were replicated 50 times using different (random) initial

conditions between 0 and 1, independently chosen for both prey and predator. We

determine the basins of attraction by examining the frequency of particular solutions

from these 50 simulations. However, points in parameter space which showed multiple

attractors were recomputed with 500 simulations to gain increased accuracy of the

relative sizes of the basins of attractions. This straightforward method for estimating

basins of attraction is effective (particularly as numerical investigations indicate that

the basins of attraction have a complicated profile, see Figure 2.12). Other, more

sophisticated methods such as using Lyapunov functions (Giesl, 2007) could also be

used.

2.5.2 Simulation Results for K = 0.8

Again we first explore the simpler case of when there is oscillatory decay to the coexis-

tence steady state. In this case the two-dimensional bifurcation diagram (Figure 2.2)

showed only two types of behaviour — one year cycles and two year cycles.

Figure 2.10(a) shows the results from the K = 0.8 simulation program. Again,

the only behaviours to occur are one year cycles (light blue) and two year cycles

(pink). At (ε, r0) = (0.4, 7) in Figure 2.10(a), there is a pie chart indicating that

multiple solution behaviour is predicted. This is close to the fold bifurcation curve

in Figure 2.2 and so we examine this region in more detail in Figure 2.10(b). We

expect both one and two year solutions to be possible in the region between the fold

bifurcation curve and the period-doubling curve in Figure 2.2. In Figure 2.10(b) we

see that this behaviour is found through simulation at more than one grid location

and the relative proportion of the two colours indicates that the two year solutions

are more likely at these parameter sets. Even in the zoomed-in simulation diagram

(Figure 2.10(b)), only eleven of the pie charts show multiple solutions since the region

is so small.
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Figure 2.10: In (a) there is a simulation diagram for K = 0.8 when the unforced
system has oscillatory decay to the coexistence steady state. At each point tested
on the (ε, r0) grid, a pie chart shows what proportion of the 50 (or 500) simulations
had a particular period. Points which showed multiple solution behaviour were run
with 500 simulations for increased accuracy of the basins of attraction. The other
parameters are kept constant at a = 4π, b = 0.3, d = 2π, c = 1. Each simulation was
run with random initial conditions (between 0 and 1 for both prey and predator) and
the period was tested after 2,000 years. The Matlab ode solver (ode15s) was run with
tolerances: reltol = 10−8 and abstol = 10−6. The period is illustrated by the colour
with light blue being one year cycles and pink being two year cycles. In (b) a close-up
of the diagram to focus on the area where more than one solution appeared at the
same point. This shows eleven points tested had multiple solution behaviour.
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2.5.3 Simulation Results for K = 1

We now turn to the case when there is a limit cycle present in the unforced model

(Figure 2.11).

In Figure 2.11 one immediately notices the prominence of the two year cycles

(pink). There are also large regions of one year, four year and quasi-periodic cycles.

In fact, for the most part, the behaviour is well represented by Figure 2.3(a), indicating

that the multi-year cycles arising from the Arnol’d tongues are the minority behaviour.
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Figure 2.11: A simulation diagram for K = 1 so that the unforced system has stable
limit cycles. At each point tested on the (ε, r0) grid, a pie chart shows what proportion
of the 50 (or 500) simulations had a particular period indicated by the legend. Each
simulation was run with random initial conditions (between 0 and 1 for both prey and
predator) . The Matlab ode solver (ode15s) was run with tolerances: reltol = 10−8

and abstol = 10−6.
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All of the tongues shown in Figure 2.3(b) are represented by some simulation

results. We note that on most occasions the multi-year solution has a larger basin

of attraction than the quasi-periodicity which is usually also stable at that location.

In fact, often the multi-year solution attained all 50 of the simulations. The only

real exception is the 7 year cycles. Furthermore, most of the multi-year cycles occur

further away from the ε = 0 axis where the tongues are thicker (again, the 7 year

cycles are an exception). This is obviously due to the fact that the larger tongue

means that one is more likely to capture the solution through simulation results. We

reiterate here the fact that the “quasi-periodic” solutions could actually be chaotic as

we do not distinguish between these cases.

There are a large number of five year cycles near r0 = 1 which indicate that the

five year tongue might be quite large. However, we know from Figure 2.3(b) that the

tongue is quite thin, but just happens to lie directly over the line r0 = 1, which forms

part of the parameter grid for our simulation. This emphasises the important point

that simulation results depend significantly on the parameter grid used.

To further our understanding of the relative sizes of the basins of attraction of

different multi-year cycles and the effectiveness of using random initial conditions, we

present a detailed basin of attraction plot in one case of multiple solution behaviour

(Figure 2.12). This shows the complicated nature of each basin of attraction and

indicates that using 500 simulations with random initial conditions is an appropriate

method for calculating the relative proportions of each solution.

2.6 Different Values of K

It is natural to ask how the bifurcation diagrams match up as K varies and to see if

the values of K picked for each type of unforced dynamics is a good representation

of the forced dynamics for all K values with those unforced dynamics. We have

already investigated how the period doubling curve PD2 changes for different values

of K in Figure 2.9. Of special interest is whether Arnol’d tongues are possible in the

oscillatory decay regime. For K = 1, the largest of these fold bifurcation curves is the

three year fold curve around r0 = 3. We investigated how this curve changes as K is

decreased below 1 (Figure 2.13). The curve continues to exist below K = K2 = 0.9:

for K = 0.85 it lies entirely in the ε > 1 region, and it continues to shrink as K

is decreased further, disappearing entirely by K = 0.83, well above the switch to

monotonic decay (Figure 2.1). Therefore, there are Arnol’d tongues in some part of

the oscillatory decay parameter regime; however, our results suggest that such folds

do not occur in the monotonic decay regime.

Further, we consider how the Neimark-Sacker bifurcation curve, NS1, changes as

we vary K (Figure 2.14). This shows that as K decreases towards 0.9, the curve moves
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Figure 2.12: A basin of attraction plot for the point (ε, r0) = (0.95, 3) when K = 1.
A grid between 0 and 1 is used as initial conditions for both prey and predator; the
period was then tested after 2,000 years. Orange crosses indicate 3 year solutions,
dark green for 8 year solutions. All other details are as in Figure 2.11.

closer to the ε = 0 axis. From Figure 2.1 it is clear that when K = 0.9 there is a Hopf

bifurcation for all values of r. Thus the Neimark-Sacker bifurcation is approaching the

Hopf bifurcation curve as we decrease K. Figures 2.13, 2.14 show that above K = 0.9

changes in K do not lead to drastic changes in the bifurcation diagrams but rather

the curves vary smoothly with K. Thus we believe that our bifurcation diagram at

K = 1 is a good representation of the bifurcation structure for all values of K > 0.9.

From Figures 2.9, 2.13 and 2.14 we see that the 2 year period-doubling curve, the

3 year fold curve and the Neimark-Sacker bifurcation curve have all disappeared for

K < 0.6. This confirms the bifurcation work for K = 0.35 where only annual cycles

were found. It would also indicate this is a good representation of the behaviour for

all values of K up to K = 0.6.

2.7 Discussion

In this chapter we have investigated the dynamics of the predator-prey model (2.1)

with forcing in the prey growth rate through the combined method of bifurcation dia-
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Figure 2.13: The three year fold curve, as seen in Figure 2.3(b), is drawn in ε − r0
space for different values of K. This shows the decay in the size of the tongue as K
decreases past the Hopf bifurcation value (K = 0.9). Note that by K = 0.85 the fold
curve only exists for ε > 1.
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Figure 2.14: The Neimark-Sacker bifurcation curve, as seen in Figure 2.3(a), is drawn
in ε−r0 space for different values of K. As K approaches K2 = 0.9 the curve smoothly
approaches the ε = 0 axis.
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grams and simulation. This has helped to explain why cycles are occurring in different

parameter regions, providing a good representation of key population behaviour and

the relative frequency with which different cycles occur. Through our use of simula-

tion that directly corresponds to the bifurcation diagrams we have provided a further

tool for understanding these diagrams.

Our choice of prey growth rate as the forced parameter has enabled us to separate

the cases of oscillatory decay and limit cycles, in contrast with forcing parameters

involved in the condition for a Hopf bifurcation in the unforced system (Rinaldi et al.,

1993). This has led to a clear understanding of the dependence of cycles on the

underlying oscillatory nature of the unforced model, highlighting the fact that the

level of oscillation in the unforced system has a large effect on the range of possible

behaviour. Specifically we have shown that when the unforced dynamics of the model

exhibits monotonic decay or oscillatory decay, with low amplitude oscillations, to the

coexistence steady state, the forced system will exhibit annual cycles which follow

the forcing oscillation only. When the unforced system exhibits limit cycles or a

sufficient level of oscillatory decay, multi-year cycles are induced due to seasonal

forcing. However, the limit cycles case showed a much richer range of behaviour.

This includes coexisting multi-year cycles, quasi-periodicity and chaos, particularly

when the forcing strength is high. This is in keeping with the work of Rinaldi and

co-workers (Rinaldi et al., 1993; Rinaldi and Muratori, 1993; Gragnani and Rinaldi,

1995). This does not rule out Arnol’d tongues occurring for the cases where multi-year

cycles are induced in the oscillatory decay system: these do occur (Figure 2.13), and

they are often seen in epidemiological models, which do not have limit cycles in the

absence of forcing (Kuznetsov and Piccardi, 1994; Greenman et al., 2004; Childs and

Boots, 2010). However, our results highlight the particular importance of studying

systems under the influence of seasonal forcing which are intrinsically cyclic, as they

may be able to exhibit a wider range of population behaviour.

For both the limit cycle and oscillatory decay case, the range of behaviour that

we have found includes (for some parameters) coexisting multi-year cycles of different

periods. However, the limit cycle case showed this more frequently than the oscillatory

decay case, as well as having parameter regions where coexisting multi-year cycles of

the same period occurred. In general, the limit cycle case exhibited more variety and

a larger area of parameter space resulted in non-annual behaviour. We also found (in

the limit cycle case) the unintuitive phenomenon of increasing forcing leading to more

regular behaviour (Figure 2.3). This occurred when a higher forcing amplitude led to

stability of the yearly cycle instead of the quasi-periodic cycle.

The onset of cycles, in terms of the forcing parameters r0 and ε, was dependent on

the unforced dynamics of the system. In the oscillatory decay case, a significant level

of forcing was required in order to produce subharmonics. In the limit cycle case,
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non-annual cycles occurred for low levels of forcing, such as the parameter region

giving quasi-periodic solutions and the Arnol’d tongues which touch the ε = 0 axis

(Figure 2.3(b)). However, in reality most of the tongues are so thin near the axis

that the solutions are hard to distinguish from quasi-periodic behaviour unless the

amplitude of forcing is increased. Also of note is that in the oscillatory decay regime,

multi-year cycles appear for higher values of r0 compared to the limit cycle case. The

robustness of this result to changes in other model parameters is a natural area for

future work.

There are many examples where multi-year cycles occur in natural populations, es-

pecially in insect, plankton and small mammal systems (Kendall et al., 1999; Turchin,

2003). Daphnia pulex and its algal prey Chlamydonomas reinhardii is one system

where the behaviour is cyclic (McCauley and Murdoch, 1987; McCauley et al., 1999;

Nisbet et al., 1991) and where seasonal forcing has been implicated as an important

driver of the dynamical behaviour (Scheffer et al., 1997). Moreover, this predator-

prey interaction has been studied and parameterised in detail (Nisbet et al., 1991).

Therefore it makes a natural test system for further study with the growth rate of

the algae forced by changing light conditions in a similar manner to the fish-plankton

model of Doveri et al. (1993). Many small mammal systems also show multi-year

cycles (Turchin, 2003). A number of different mechanisms have been proposed as

the cause of this cyclic behaviour, but for the well-studied case of Fennoscandian

voles, predator-exclusion experiments have shown that the multi-year cycles in the

northern areas depend fundamentally on predation (Korpimaki and Norrdahl, 1998;

Hanski et al., 2001; Korpimaki et al., 2002). At these northern latitudes, which have

a higher degree of seasonality in the environment, vole abundance fluctuates with

period 3− 5 years (Hanski et al., 2001; Turchin, 2003). As one moves further south,

there is a switch to annual fluctuations (Hanski et al., 2001) attributed to a change

in predation from specialist predators (weasels) to generalist predators (e.g. birds,

foxes) (Hanski et al., 1993; Turchin and Hanski, 1997). The methods described in

this chapter are extended in Chapter 3 to consider the relative effects of specialist

and generalist predation in conjunction with the impact of seasonality to determine

the influence of changes in the degree of seasonality on vole population behaviour.

Many extensions of this work could be undertaken to enhance biological realism

and to further our understanding of the effects of seasonal forcing, including forcing

more than one parameter, in particular with different phases and forcing strengths

(Rinaldi and Muratori, 1993; Greenman and Pasour, 2011). Moreover, adaptations

could be made to the forcing term in order to add more realism into the model.

Instead of a sinusoidal term, step functions have been used to represent a defined

breeding season although this tends to yield similar results (Ireland et al., 2004).

Other possibilities could be to alter the sinusoidal term to consider different breeding
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season lengths or to consider chaotic forcing (Greenman and Norman, 2007; Colombo

et al., 2008). Furthermore, this approach could be applied to a wide range of biological

systems including tritrophic food chains (Kuznetsov et al., 2001), disease systems

(Kuznetsov and Piccardi, 1994; Earn et al., 2000; Greenman et al., 2004) and invading

populations (Webb and Sherratt, 2004; Greenman and Norman, 2007).

These, and other population systems, highlight the importance of studying sea-

sonal forcing in systems with cyclic dynamics. Cyclic predator-prey systems in the

real world require careful analysis to determine the origin of those cycles, and this

analysis must recognise that these cycles could be highly dependent on the seasonality

inherent in their environment.
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Chapter 3

How Do Variations in Seasonality

Affect Population Cycles?

This chapter forms the following publication:

Rachel A. Taylor, Andrew White, Jonathan A. Sherratt. How Do Variations in Sea-

sonality Affect Population Cycles? Proceedings of the Royal Society B: Biological

Sciences, 280 (1754):20122714, 2013.

3.1 Introduction

Seasonal forcing represents a pervasive source of environmental variability in natural

systems, with many species exhibiting seasonal changes in their life history parameters

(Turchin, 2003). This can affect both epidemiological and interacting population

dynamics and has been proposed as a cause of multi-year cycles in these systems

(Altizer et al., 2006; Keeling and Rohani, 2008). Considerable focus has been placed

on the impact of seasonality in predator-prey systems, and theory has been developed

both for general model frameworks (Kuznetsov et al., 1992; Rinaldi et al., 1993) and

for specific wildlife populations (Hanski et al., 1993; Turchin and Hanski, 1997; Holt

and Colvin, 1997). This has shown that seasonal forcing, alongside the nonlinear

dynamics, can lead to complicated population dynamics including multi-year cycles,

quasi-periodic solutions and chaos.

Many populations span large geographical areas over which the characteristic

features of the seasonal fluctuations can vary considerably (Bjørnstad et al., 1995;

Stenseth et al., 1996; Erb et al., 2000; Murray, 2000). This variation is, for instance,

dependent on latitude, altitude, proximity to the coastline and prevailing weather

patterns. There is also evidence that climate change has led to changes in seasonal

patterns such as the earlier onset of breeding and increased variability in climatic con-

ditions (Intergovernmental Panel On Climate Change, 2001). It is therefore important

to extend the analysis of the effects of seasonality to assess the impact of changes in
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the amplitude and functional form of seasonal forcing on the underlying population

dynamics. In particular, to what extent do modifications in seasonal patterns lead to

shifts in population dynamics?

While numerous examples of widespread populations exist in which seasonal forc-

ing and predator-prey dynamics combine to produce cyclic population dynamics, in

order to examine the impact of changes in seasonality we will focus on a well-known

case study – namely the Fennoscandian vole system (Hansson and Henttonen, 1985,

1988; Hansen et al., 1999; Hanski et al., 2001; Inchausti and Ginzburg, 2009). This

system spans a large geographical area and undergoes high amplitude seasonal forc-

ing which varies with location (typically, the length of the breeding season decreases

with latitude). The important features of this vole system are the large amplitude,

multi-annual cycles north of 60◦N, synchronous over large spatial scales with a period

of 3 − 5 years, with the 5 year cycles occurring furthest north. In comparison, the

southern Fennoscandian region has low amplitude “non-cyclic” seasonal fluctuations,

effectively an annual cycle. Therefore, period and amplitude decrease as one moves

along a north – south gradient in Fennoscandia (Hansson and Henttonen, 1985, 1988;

Bjørnstad et al., 1995; Korpimaki and Krebs, 1996).

It has been suggested that changes in generalist predation with latitude explain

this gradient within Fennoscandia (Hanski et al., 1991, 2001; Norrdahl, 1995) and this

is supported by theory (Hanski et al., 1993; Turchin and Hanski, 1997). However, the

seasonal forcing term remains fixed in these models. This contrasts with the pro-

nounced differences in the pattern of seasonality between the southern and northern

parts of Fennoscandia and the effect of this on the predation hypothesis has received

almost no attention (a notable exception being Dalkvist et al. (2011) who consider

three different breeding season lengths). In southern Fennoscandia, the breeding sea-

son can be over 7 months long, whereas in northern areas it is usually 3− 4 months

(Nelson et al., 1991; Hansen et al., 1999; Dalkvist et al., 2011). Furthermore there is

evidence to suggest that the vole cycles have been reducing in period length because

of climate change (Hornfeldt et al., 2005; Ims et al., 2008). The vole system can be

used to see if geographical variations in seasonal forcing can help explain the gradient

in cyclicity which is currently found in Fennoscandia, as well as how changes in the

pattern of seasonality will alter the population dynamics. To capture the changing

seasonality we will vary breeding season length. By using the vole system as a case

study, we will highlight the wide range of complex population dynamics which can

arise due to seasonal forcing and indicate how variation in seasonality can generate

shifts in population dynamics.
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3.2 Model

A wide range of intrinsic and extrinsic factors have been proposed to explain the

geographical gradient in cyclicity found in Fennoscandian voles but the most widely

supported is the predation hypothesis, first formulated by Hanski et al. (1991) and

further discussed in Korpimaki and Krebs (1996); Turchin and Hanski (1997); Hanski

et al. (2001). This states that the northern cycles are caused by specialist preda-

tion, usually by the least weasel. As the weasels have little alternative prey, they

have delayed reactions in their reproduction in response to changes in vole numbers,

generating the cycles (although food limitation may play a role in determining the

size of the prey peak (Hansson, 2002)). Both the protective layer of snow cover,

which hinders predators unable to tunnel under the snow, and the low diversity of

prey in these northerly locations mean that there are few generalist predators. In the

south there are numerous generalist predators, such as birds, badgers and foxes. In

fact, 80% of rodent mortality by predation in the south is by generalists (Hansson

and Henttonen, 1988). Since generalist predators exhibit rapid prey switching when

vole numbers drop, this type of predation has a stabilising effect on the vole popu-

lation. The predation hypothesis effectively states that specialist predators induce

cycles while the generalist predators in the south act to dampen these fluctuations.

This is backed up by predator exclusion experiments (Korpimaki and Norrdahl, 1998;

Korpimaki et al., 2002) as well as through analysis of many of the proposed reasons

for the cycles (such as the predation hypothesis, landscape fragmentation, maternal

effects) using statistical methods to assess the extent of their agreement with the vole

data collected (Bjørnstad et al., 1995; Norrdahl, 1995; Turchin and Hanski, 2001).

3.2.1 Model Details

Our work is based on the model of Turchin and Hanski (1997) which incorporates both

specialist and generalist predation. Importantly, we introduce seasonal forcing to the

growth rates and implicitly also the carrying capacities of both prey and predator

through a seasonal term S(t), which includes breeding season length (see below for

details). When suitably non-dimensionalised (see Appendix B) the model is

dx

dt
= rS(t)x− rx2 − gx2

x2 + h2
− axy

x+ d
(3.1a)

dy

dt
= sS(t)y − sy

2

x
. (3.1b)

Here, x(t) and y(t) are the densities of prey and specialist predator at time t respec-

tively. The prey undergo logistic growth. They are affected by two predation terms,

the first due to generalist, the second specialist predation. Generalist predation is a
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Holling Type III functional form because generalists will switch to other prey items

when vole numbers are low. The specialist predation is the Holling Type II functional

form which incorporates handling time of prey (Holling, 1959a,b). The predators have

a logistic growth with growth rate s and a carrying capacity which is determined by

the density of prey. We use the parameter values of Turchin and Hanski (1997) namely

r = 6, s = 1.25, d = 0.04, a = 15, and h = 0.1. These values were chosen based on a

combination of field data, previous literature and time series analysis. The parame-

ter g represents the level of generalist predation, which changes along a north-south

gradient. We vary g between 0 and 1 because Turchin and Hanski (1997) estimate

the value of g to be in the range 0.933 to 0.066 at four vole localities, ranging from

Revinge, Sweden at 56◦N to Kilpisjärvi, Finland at 69◦N. Note that small g indicates

less generalist predation, corresponding to a more northerly location.

The main aim of this chapter is to consider how geographical changes in seasonal

forcing affect the population dynamics and we do this by varying the breeding season

length. We introduce a parameter l as part of the seasonal term S(t) which is given

by the following equation (see Appendix B):

S(t) = 2(1
2
(1 + ε sin(2πt)))l. (3.2)

The parameter l determines the length of the breeding season, defined as when the

forced growth term is above its unforced value: for the prey this is when rS(t) > 6.

Figure 3.1 shows how our forcing term changes depending on the value of l. As l

increases then the breeding season length decreases. Although we vary l from 0− 5,

the most biologically relevant part of the range is 0.5 − 3.9, which gives a breeding

season between 3 and 8 months long; the data discussed above shows that this is the

appropriate variation across Fennoscandia.

In addition, Figure 3.1 shows that as l increases, the mean value of the growth

rate decreases. This reflects the fact that voles produce more litters if the breeding

season is longer, and that female young from the first 1 or 2 litters are also able to

breed if the breeding season is long enough for them to have matured (Dyczkowski

and Yalden, 1998). Turchin and Ostfeld (1997) suggest 14 as a maximum value for

the growth rate and our values are below this limit. However, this does mean our

results are based on both breeding season length and mean value of the growth rate

varying as we vary l, and we do not determine how each component affects the results

separately.

3.2.2 Model Analysis

We studied the model using two different methods - a bifurcation and a simulation

approach, following the procedure in Chapter 2. The bifurcation results were calcu-
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Figure 3.1: The forcing function for different values of l, producing different lengths
of breeding season. The values of l are (a) 0.52 (b) 1 (c) 3.87 and ε = 0.95. The
breeding season is designated as when the growth rate (black curve) is above the
unforced growth rate (dotted line). This leads to breeding season lengths of 2/3, 1/2,
1/3 year respectively.

lated using essentially standard numerical continuation techniques implemented via

the software auto (Doedel, 1981). This method determines parameter ranges in

which different multi-year cycles exist, and when they are stable. The simulation re-

sults were produced by solving the model equations (3.1) using Matlab (ode15s) for

2000 years and the solutions were tested to determine whether there existed a periodic

solution of 1 − 9 years; if not, the solution was labelled as quasi-periodic, meaning

that the solution was approximately periodic but does not have a finite period. We

also used fast Fourier transforms to determine the period most closely reflected in the

solution (“dominant period”); this was especially helpful when the cycle was quasi-

periodic. We performed our simulations over a grid of points in parameter space, with

50 simulations at each point to illustrate the relative sizes of the basins of attraction

of the different solutions. See Appendix B for further details.

3.3 Results

Hanski et al. (1993) and Turchin and Hanski (1997) focussed on the case where breed-

ing season is exactly 6 months long (l = 1) and considered the effects of varying the

extent of generalist predation (g). This revealed a change from annual to multi-annual

cycles (period 3−4 years) as the level of generalist predation is reduced. We illustrate

this in Figure 3.2 which shows simulations for l = 1 and various values of g, for two
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Figure 3.2: Solution plots when the breeding season is 6 months long (l = 1), for differ-
ent levels of generalist predation g: (a) g = 0.25, (b) g = 0.4, (c) g = 0.5, (d) g = 0.6.
The two columns show results for two different initial conditions namely (x(0), y(0)) =
(0.642, 0.720) and (0.686, 0.708). For each value of g we plot both the prey and preda-
tor solution for the two sets of initial conditions. For (a), (b) and (d) the two sets
of initial conditions produce the same results, quasi-periodicity and then annual cy-
cles. Although the quasi-periodic solutions plotted in (a) are different, fast Fourier
transforms give 3.75 as the dominant period in both cases. However, in (c) one set of
initial conditions produced an annual cycle whereas the other set of initial conditions
produced a 3 year cycle. The solutions are solved for 2000 years and the results are
shown after the initial transient dynamics have dissipated. Other parameter values
are r = 6, s = 1.25, d = 0.04, a = 15, h = 0.1, ε = 0.95.

sets of initial conditions. Note that for g = 0.5, 3 year cycles occur for one set of

initial conditions and annual cycles for the other. These results highlight the existence
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of multiple solutions, with strong sensitivity to initial conditions. Clearly bifurcation

analysis and/or extensive simulation are necessary to reveal the full range of model

predictions.

We used the bifurcation method to investigate potential dynamics as both season

length l and generalist predation level g are varied (Figure 3.3(a)). This divides the

l− g parameter plane into different regions denoting the different possible dynamics.

This shows that for moderate or high l and g values only annual cycles are possible,

with multi-year and quasi-periodic solutions for lower l and g. Figure 3.3(a) therefore

shows that when the breeding season is longer there is a larger range of generalist

predation levels giving multi-year cycles. However, this figure does not show the

period of the cycles as a function of parameters.

To examine the solutions in more detail we show parameter regions giving both

existence and stability for 2, 3, 4 and 5 year cycles (Figure 3.4). For cycles with

higher period (6 − 9 years) the results are similar to Figure 3.4(d), although the re-

gions tend to get smaller with increasing period. The cycles exist inside the boundary

curves, with stability/instability shown by the thick black/thin grey lines respectively.

The coloured curves represent different types of bifurcation: period-doubling bifurca-

tion (blue), fold (a.k.a. saddle-node or tangent; red) and Neimark-Sacker (green); a

Neimark-Sacker bifurcation is a discrete version of a Hopf bifurcation. (More details

and a full bifurcation diagram are provided in Appendix C.)

Each of the regions in Figure 3.4 has a complicated form; in particular for the 3

and 4 year cycles there are two separate regions of stability. From these diagrams we

can see that cycles of longer period occur only for lower values of g. There are many

areas where the cycles are unstable and here we expect either quasi-periodic or annual

solutions to be stable. The cyclic regions also intersect (see Figure C.2) and so there

are parameter regions that give rise to coexisting stable multi-year cycles. Therefore

it is important to consider which cycles actually occur for different values of l and g.

Simulation results displaying the population dynamical outcome in parameter

space (Figure 3.3(b)) provide a clearer view of how the multi-year solutions overlap and

indicate the relative sizes of the basins of attraction when multiple solutions coexist.

The results compare favourably with the bifurcation picture in Figure 3.3(a), with a

relatively clear split between the yearly and quasi-periodic solutions interspersed with

multi-year solutions. Due to the large regions of instability within the multi-year cy-

cle regions shown in Figure 3.4, there were not many regions in Figure 3.3(b) where

two multi-year cycles coexisted and were both stable. Thus there were hardly any pie

charts which showed multiple multi-year stable solutions, although in one case both 4

and 9 year cycles occur (where l = 1.5, g = 0.2). However, for a number of parameter

pairs multi-year solutions coexist with annual or quasi-periodic solutions.

Figure 3.3(a) shows that when the breeding season is longer there is a larger range
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Figure 3.3: Legend on next page.

45



Chapter 3: How Do Variations in Seasonality Affect Population Cycles?

Figure 3.3: Potential dynamics when season length parameter (l) and extent of gen-
eralist predation (g) are varied. (a) The bifurcation diagram split into 4 regions: A
- annual cycles, B - annual and multi-year cycles, C - annual, multi-year and quasi-
periodic cycles, D - multi-year and quasi-periodic cycles. (b) A simulation diagram
with a grid of pie charts showing what proportion of the 50 simulations had a par-
ticular period, indicated by the legend. Each simulation was run with random initial
conditions (between 0 and 1 for prey and predator) and the period was tested after
2000 years. (c) The same simulations tested using fast Fourier transforms to deter-
mine the dominant period of the solutions. The remaining purple solutions indicate
the dominant period was larger than 9. Other parameter values are r = 6, s = 1.25,
d = 0.04, a = 15, h = 0.1, ε = 0.95.
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Figure 3.4: The regions for existence and stability of (a) 2 year, (b) 3 year, (c) 4 year
and (d) 5 year cycles in l − g parameter space. The coloured curves denote different
bifurcation curves representing period-doubling - blue, fold - red, Neimark-Sacker
bifurcation - green. Stability/instability is shown by the thick black/thin grey lines
respectively. Other parameter values are r = 6, s = 1.25, d = 0.04, a = 15, h = 0.1,
ε = 0.95.

of generalist predation levels giving multi-year cycles. But the multi-year cyclic dy-

namics in Fennoscandia occur in the areas where the breeding season is shorter. To

produce further detail on the nature of the population dynamics in regions where
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quasi-periodicity is predicted we use fast Fourier transforms to analyse each simula-

tion, revealing the dominant cycle period (Figure 3.3(c)). As l is increased for low g,

i.e. as the breeding season length is reduced, the periodicity of the solutions increases.

This concurs with the gradient of periodicity that has been found in Fennoscandia

where in mid Fennoscandia there are 3 year cycles and further north (with shorter

season lengths) there are 5 year cycles (Hansson and Henttonen, 1988; Ims et al.,

2008).

3.4 Discussion

The basic conclusion from previous modelling of the predation hypothesis for Fenno-

scandian vole cycles is that cycle period increases as the generalist predation level

decreases. Our work shows that this is an over-simplification. Even with fixed breed-

ing season length, the existence of multiple stable solutions implies that switches

between, say, annual and three year cycles are possible. When variations in both

season length and generalist predation level are considered, there is a rich variety of

potential dynamics, with coexisting multi-year solutions and numerous possible cycle

periods. This includes parameter values showing both 4 and 9 year cycles, an inter-

esting phenomenon considering that short-term and long-term cycles are often seen as

either-or dynamics, rather than both being possible for the same system (Korpimaki

and Krebs, 1996).

Empirical support for the dependence of vole cycle period on breeding season

length is provided by the work by Strann et al. (2002) on voles in Kirkesdalen, Norway.

Here the population undergoes cycles with a period of three years, which contrasts

with the five year cycles at other sites with a similar latitude. Strann et al. (2002)

attributed this difference to climatic differences, due to Kirkesdalen’s proximity to

the coast. A key implication of this climatic difference might be a longer breeding

season; our model predicts that this would indeed cause lower period cycles.

The variation in vole breeding season length in Fennoscandia is considerable: from

as little as 3 months in the most northern locations to 8 months in the south (Nelson

et al., 1991; Hansen et al., 1999). This wide range is important for our conclusions.

In particular, if one restricts attention to breeding season lengths of 6−8 months, the

results in Figure 3.3 predict little variation in the dynamics. This is consistent with

the results of Dalkvist et al. (2011). They study data on Fennoscandian voles with

breeding season lengths of 6, 7 and 8 months, and found that the difference between

these season lengths was not a statistically significant factor in differences in cyclicity.

To illustrate our results, we have plotted parameter planes in which the generalist

predation level varies on one axis, with the breeding season length on the other. The

north-south gradient in Fennoscandia corresponds to a curve in this parameter plane.
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There is currently insufficient data to enable a detailed formulation of this curve, but

it is likely to be nonlinear, especially when factors such as landscape fragmentation

(Huitu et al., 2003; Strohm and Tyson, 2009; Dalkvist et al., 2011) are taken into

account. Our results suggest that more information on the form of this nonlinear

curve would be a key step in understanding the complexities in vole dynamics, such as

the sudden change from annual to multi-year cycles that occurs in mid-Fennoscandia

(Turchin and Hanski, 1997).

In the model we forced both the prey and predator growth rates with the same

forcing term. Although weasels are able to breed throughout the whole year, this

only happens in peak years of vole populations (King, 1989). Therefore, including a

weasel breeding season is valid but it is unclear whether this should follow the same

pattern as the vole breeding season, on which the forcing term was based. In order to

understand the effects of different forcing in the predator growth rate, we considered

the scenario of no forcing for the weasels (see Appendix D). This yielded similar

results, showing the complexity of moving on a north-south gradient, the change to

annual cycles as generalist levels increase, and the possibility of switching between

different multi-year cycles. However, the pattern of decreasing breeding season length

leading to increased period was less clearly defined.

Significant changes in vole population dynamics have been observed in recent years

in Fennoscandia, with the boundary between annual and multi-year cycles moving

further north, and very few locations still showing five year cycles (Hornfeldt et al.,

2005). These changes are widely attributed to climate change. This is affecting the

Fennoscandia system in many different ways and the implications for vole dynamics

are consequently complex. However, two effects of climate change are increases in

both breeding season length and generalist predation level (Hersteinsson and Mac-

Donald, 1992; Ims and Fuglei, 2005). Our results (Figure 3.3) predict that these two

effects could together cause decreases in cycle length and a northerly movement of

the location of the switch between annual and multi-year cycles. Since annual cycles

typically have a much lower amplitude than multi-year solutions (Figure 3.2), and

since voles are a keystone species in Fennoscandia (Ims and Fuglei, 2005), a switch to

annual cycles is highly significant for the whole ecosystem.

Fennoscandia is not the only region in which there are established geographical

variations in vole cyclicity. For example, vole cycles occur over large regions in central

Europe (Tkadlec and Stenseth, 2001) and in Hokkaido, Japan (Stenseth et al., 1996).

Notably, Stenseth et al. (1996) showed the importance of season length in driving the

gradient of cyclicity in Hokkaido. In central Europe both the period and amplitude

of vole cycles increase from north to south (Tkadlec and Stenseth, 2001); this is in

the opposite direction to the trend in Fennoscandia. Data on breeding season length

and level of generalist predation is currently very limited for this region, and our work
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argues for the importance of such data in understanding this trend.

Large-scale geographical variations in population dynamics also occur in other

populations: Canadian muskrats are another classic example (Erb et al., 2000). Our

results argue for a detailed appraisal of the role of breeding season variability on the

population dynamics in such cases. Although we expect similar trends to those found

in the present study, they may be quenched by the effects of seasonality in parameters

other than simply the birth rate; specific case studies are essential.

Seasonality varies geographically due to a multitude of factors including latitude,

altitude, proximity to a coastline and general weather patterns. Our work argues that

this cannot be ignored as variations in seasonality can be an important driver of the

observed population dynamics.
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Chapter 4

Seasonal Forcing in a

Host-Macroparasite System

The majority of this chapter has been submitted for publication in Journal of Theo-

retical Biology as: Rachel A. Taylor, Andrew White, Jonathan A. Sherratt. Seasonal

Forcing in a Host-Macroparasite System.

4.1 Introduction

Seasonal forcing is a ubiquitous force in nature affecting species through their life-

history parameters, with an annual pulse of births in spring and summer seen as

perhaps its most pervasive manifestation (Turchin, 2003). Seasonal forcing has been

shown to be important in generating the cycles observed in many ecological and

epidemiological systems. For example, by including seasonal forcing to represent

changes in transmission during the school year, modelling results have been shown

to be consistent with observations of measles case reports (Finkenstadt and Grenfell,

2000; Earn et al., 2000; Altizer et al., 2006). Numerous other examples exist in which

seasonal forcing has been shown to be a driver of fluctuations: including outbreaks of

influenza (Dushoff et al., 2004), plankton-fish dynamics (Doveri et al., 1993) and vole

population cycles (Smith et al., 2008; Taylor et al., 2013b). Thus, within the field of

interacting populations and host-microparasite systems, the importance of seasonal

forcing is both well-established and well-studied (Altizer et al., 2006; Sherratt and

Smith, 2008).

Seasonal forcing within host-macroparasite systems is less well identified and stud-

ied. In part, this may be because seasonality is associated with its ability to produce

cyclic dynamics and these are less frequently reported in macroparasite compared to

microparasite systems (Gulland, 1995; White et al., 1996). However, there are signif-

icant examples where macroparasites are thought to be influential in driving popu-

lation cycles. Red grouse fluctuate irregularly across England and Scotland (Haydon
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et al., 2002; Cattadori et al., 2005b) and the role of nematode parasites, alongside

territorial dynamics, in driving these cycles has been strongly argued (Dobson and

Hudson, 1992; Hudson et al., 1998; Redpath et al., 2006). Soay sheep have popula-

tion crashes every 3 to 4 years, which have been attributed to nematode parasites in

combination with harsh winters and malnutrition (Gulland and Fox, 1992; Gulland,

1992; Coulson et al., 2001). There is considerable evidence to indicate that seasonal

forcing alters many aspects of both these systems, such as the host birth rate, the

maturation of parasite larvae in the environment, and arrested development of larvae

within the host (Anderson, 2000), which could impact on the dynamics. However,

no detailed analysis has been attempted to elucidate the effect of seasonal forcing

alongside parasitism for these systems.

Theoretical studies of seasonal forcing in general host-macroparasite systems have

been of two types. Roberts and Grenfell (1991, 1992) explored system-specific model

frameworks to understand the effect of a periodic pulse on the level of acquired host

immunity and how environmental forcing on maturation of the nematode larvae af-

fects the epidemiological dynamics of farmed ruminants. This work has been extended

to consider wildlife systems, focussing on how host immunity and the relationship be-

tween host age and parasite intensity changes over one season within the host (Cat-

tadori et al., 2005a; Cornell et al., 2008). These studies found that the host immune

response was affected by both seasonal changes in larvae transmission and the month

of host birth; therefore different host age – parasite intensity curves exist for different

birth cohorts. General host-macroparasite models have examined the role of season-

ality on population dynamics by representing annual reproduction as a step-function

(White et al., 1996) and a pulse of births (White and Grenfell, 1997). When free-living

stages are considered explicitly, seasonality can increase the period and amplitude of

population cycles and there is evidence of multiple population attractors (White et al.,

1996), although there has not been a detailed investigation of these findings. There-

fore a detailed examination of the role of seasonality on host-macroparasite dynamics

is lacking and could utilize the recent developments in computational bifurcation the-

ory and resonance-based analysis (Greenman et al., 2004; Choisy et al., 2006; Bolzoni

et al., 2008; Taylor et al., 2013a) that have been applied to understand population

cycles in microparasite and interacting systems.

Experimental and theoretical studies highlight the need to explore seasonal effects

in host-macroparasite systems. In this chapter we propose to undertake a compre-

hensive analysis of the role of seasonality on host-macroparasite population dynamics

that utilizes the new developments in the study of forced coupled systems (Taylor

et al., 2013a). We will undertake this analysis in a system that explicitly represents

free-living stages of the parasite, since White et al. (1996) indicated that seasonality

could have a marked effect in such systems. This allows us to understand the wide
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range of outcomes occurring from seasonal forcing in general host-macroparasite sys-

tems. In particular, we will show the importance of the unforced dynamics on the

seasonally forced system and the possibility of multiple solution behaviour, multi-year

cycles and period-doubling to chaos. Furthermore, such model formulations without

seasonal forcing have been parameterised to represent the red grouse - Trichostrongy-

lus tenuis system (Dobson and Hudson, 1992) and therefore our results will provide

important insight into the influence of seasonality on the population dynamics in a

specific ecological system.

4.2 Methods

Macroparasites (helminths) differ from microparasites (viruses, bacteria, protozoa)

in that they reproduce by releasing free-living infective stages, which mature in the

environment or a secondary host before being transmitted to the definitive host. They

usually have a relatively long life span and are persistent in the host with multiple

re-infections being typical (Anderson and May, 1992). This added complexity in the

life cycle of the macroparasite leads to the necessity of modelling the parasite burden

within each host explicitly. A pattern seen across a wide range of different host

and parasite species is that a minority of hosts within the population harbour the

majority of parasites (Anderson and May, 1978; Wilson et al., 2002); regularly more

than 80% of parasites are contained within 20% of the hosts (Anderson and May,

1992). Macroparasites can cause a reduction in breeding capabilities of the host, by

modifying host behaviour or lowering the average brood size. Reduced survival is also

possible indirectly, by making the host more susceptible to predation, and when hosts

contain large numbers of parasites, this can become a direct cause of death (Anderson

and May, 1978, 1992; Hudson et al., 1992; Gulland, 1995).

Numerous models have been used to represent host-macroparasite systems, with

different frameworks for including aggregation, the effect of immunity, arrested de-

velopment and larval dynamics (Anderson and May, 1978; May and Anderson, 1978;

Diekmann and Kretzschmar, 1991; White et al., 1996; White and Grenfell, 1997; Rosà

and Pugliese, 2002). In this study we use a general model formulation which includes

the larval stage explicitly, and the aggregation of parasite spread throughout hosts

is represented by the commonly used negative binomial distribution (Anderson and

May, 1978; Diekmann and Kretzschmar, 1991; Rosà and Pugliese, 2002). We rescale

the model to reduce the number of parameters (for further details on the model, see
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Appendix E) leading to the following system of equations:

dh

dt
= (a− 1)h− (1 + δ)p (4.1a)

dp

dt
= βlh− (µ+ 1)p− p2

h

(
k + 1

k

)
(4.1b)

dl

dt
= p− γl − lh, (4.1c)

where h(t) and l(t) are the host and larvae species respectively at time t and p(t)

is the adult parasite population spread among the hosts at time t. The host species

undergoes exponential birth (a) and death, as well as parasite-induced death and

reduced fecundity caused by the parasite (δ). We restrict δ to small values to prevent

the host birth rate becoming negative (see Figure 4.4 for clarification). The term βlh

denotes the transmission of larvae to hosts leading to adult parasites. Parasites are

lost due to natural mortality, natural death of the host and parasite induced death of

the host. However, the loss of parasites due to host death requires knowledge of the

expected number of parasites within each host, and we assume a negative binomial

distribution for the parasites with aggregation parameter k (which leads to the form

of (4.1b)). Finally, the larvae are produced by adult parasites laying eggs and lost

due to natural death (γ).

Our work is not specifically focussed on red grouse; rather we use this example to

elucidate our results for the effects of introducing a seasonally forced birth rate into

host-macroparasite systems. Red grouse (Lagopus lagopus scoticus) are a common

case study for macroparasites due to the relative simplicity of the parasite dynamics,

the interesting cyclic dynamics seen across England and Scotland and the availability

of data from hunting records. The adult nematode Trichostrongylus tenuis lives in

the caeca of the grouse, passing eggs out of the host through the caecal faeces. The

larvae mature in the environment (if conditions are suitable) and then migrate to the

tips of heather. The grouse ingest these larvae by eating the heather, their main food

plant (Hudson et al., 1992; Anderson, 2000). Experimental studies have shown that

the nematode Trichostrongylus tenuis reduces reproduction in red grouse populations

through lower clutch sizes, egg mortality and chick loss (Hudson et al., 1992), thus

Dobson and Hudson (1992) emphasised the reduced fecundity term, δ. The above

model (4.1) has previously been parameterised for the red grouse system (Dobson and

Hudson, 1992). For consistency we use these parameter values, which after rescaling

become: a = 1.7, β = 10/1.05, µ = 1.0003/1.05, k = 1 and γ = 10/1.05. Dobson and

Hudson (1992) let δ = 1.667, which combined with the other parameter values leads

to diverging cycles driving the hosts and parasites to extinction. Dobson and Hudson
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(1992) chose to counteract this by adding host regulation through logistic growth.

We instead keep the model formulation as in (4.1) but will vary the value of δ and

analyse the effect of this on the dynamics.

We introduce seasonal forcing into the birth rate of the host, using a sinusoidal

form, a common method for representing seasonal changes (Dietz, 1976; Rinaldi et al.,

1993; Choisy et al., 2006). The birth rate becomes

a(t) = a(1 + ε sin(2πt)) (4.2)

where a is the mean value of the forced birth rate (the same value as in the unforced

case, a = 1.7) and ε is the amplitude of the forcing.

4.2.1 Unforced Dynamics

In order to understand the effect of seasonal forcing, we first need to consider the

unforced dynamics. The system (4.1) undergoes a Hopf bifurcation when δ is varied,

with a stable equilibrium for δ < 0.78 and stable limit cycles for δ above this value.

Explicit inclusion of the larval stage is somewhat akin to the addition of a time delay

and this is fundamental in causing the cycles. In Figure 4.1 the period and amplitude

of these limit cycles are plotted as a function of δ.

0.8 0.9 1
0

20

40

60

80

100

(a)

δ

P
er

io
d

0.8 0.9 1
0

20

40

60

80

100

(b)

δ

H
o
st

 A
m

p
li

tu
d
e

Figure 4.1: In (a) the period of the limit cycles is plotted as δ is varied. In (b) the
amplitudes of the steady state and the limit cycles are plotted as δ is varied. Stability
and instability are indicated by the solid and dashed lines respectively. All other
parameter values are kept constant with the following values: a = 1.7, β = γ =
10/1.05, µ = 1.0003/1.05 and k = 1.
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As shown in Figure 4.1, the period of the limit cycles starts at 5.9 years and

increases rapidly as δ increases. Previous studies (Rinaldi et al., 1993; Greenman

et al., 2004; Taylor et al., 2013a) have shown how yearly forcing can resonate with the

unforced period at integer values to produce multi-year cycles of that integer period

or multiples thereof. Thus, we do not expect to be able to find multi-year solutions

which have period less than 6 (since that is the smallest integer period that can be

exhibited in the model for our parameter choice). The amplitude plot in Figure 4.1(b)

shows the amplitude of the limit cycles also increasing rapidly as δ increases (and

explains why divergent cycles leading to extinction occur for δ = 1.667 in Dobson and

Hudson (1992)).

4.2.2 Bifurcation Method

We will investigate the effects of seasonal forcing in this example by varying both δ

and ε and show the multi-year dynamics and multiple solution behaviour that occur

using a two-dimensional bifurcation diagram. We will then move on to a more gen-

eral framework to understand seasonal forcing within host-macroparasite systems in

greater detail. We begin with a brief overview of the necessary bifurcation theory; for

more information please see §2.3. There are three main bifurcation curves namely,

period-doubling bifurcation curves, fold bifurcation curves and Neimark-Sacker bifur-

cation curves. The standard procedure for locating bifurcations uses the Poincaré

(or stroboscopic) map that transforms the continuous system into a discrete one by

sampling the solution once in each forcing period; once per year in our case. Note that

the stable/unstable annual cycles become stable/unstable fixed points of the Poincaré

map. Discrete bifurcation theory reveals that this fixed point is unstable if one of the

eigenvalues of its linearisation has modulus larger than 1. Changes in stability are of

three possible types. If the eigenvalue is equal to −1, it is a period-doubling (flip)

bifurcation; if the eigenvalue is equal to +1 it is a fold (saddle-node, tangent) bifur-

cation; and if there is a pair of complex conjugate eigenvalues with modulus 1, it is a

Neimark-Sacker (torus) bifurcation.

At a period-doubling bifurcation curve, which we denote by PDk, a stable cycle

of period k loses stability and a stable cycle of period 2k arises. On one side of a fold

bifurcation curve denoted by FDk there is no solution but on the other side there are

both stable and unstable solution branches of a cycle of period k, which meet at a

fold at the bifurcation point. A Neimark-Sacker bifurcation is often described as a

discrete version of a Hopf bifurcation because for a standard supercritical bifurcation,

the fixed point on the Poincaré section becomes unstable and a stable closed invariant

curve arises around the point. Typically, each iteration of the Poincaré map brings

the solution back to a different point on the closed invariant curve. Therefore, in

the continuous setting when crossing a Neimark-Sacker bifurcation curve, denoted by
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NSk, a cycle of period k loses stability and a quasi-periodic solution arises. That

is, the solution may superficially appear periodic but in fact it has no finite period.

Thus, there are different Neimark-Sacker bifurcation curves and separate regions of

quasi-periodicity related to each of the different periodic solutions.

We use auto bifurcation software (Doedel, 1981) to produce the bifurcation dia-

grams and Matlab (ode15s) to produce numerical simulations. The simulations were

run for 7000 years, with initial conditions randomly chosen; arbitrarily we use a uni-

form distribution between 0 and 1. We then tested whether they had an exact period

of between 1 and 16 years. If the simulations did not have an exact period within this

range, they were labelled as quasi-periodic. Note that we also log-transformed the

equations to speed up computational time as the solutions spend a large proportion

of each cycle very close to zero and it takes a long time for the transient dynamics

to die out (see Appendix E). Log-transforming the equations significantly improves

both computational time in Matlab and accuracy in auto. However, we reverse this

log-transformation before presenting results.

4.3 Results

We consider first the host-macroparasite system with the red grouse parameters. This

highlights key properties of seasonal forcing in host-macroparasites systems, such as

a wide range of multi-year cycles of different periods, multiple solution behaviour and

the possibility for increases in the amplitude of seasonal forcing alone to significantly

change the dynamics. We then vary the model parameters, which has the effect of

changing the unforced dynamics of the system and allows us to explore the effect of

seasonal forcing on host-macroparasite dynamics more generally.

4.3.1 The Red Grouse Dynamics

In Figure 4.2, a two-dimensional bifurcation diagram is plotted for parameters repre-

senting the red grouse system showing the fold bifurcation curves and the Neimark-

Sacker bifurcation curve. The Neimark-Sacker bifurcation curve (NS1) hits the ε = 0

axis where the unforced system has a Hopf bifurcation. Below this curve there are

stable yearly cycles – the effect of annual forcing on a stable equilibrium. Above

the Neimark-Sacker bifurcation quasi-periodicity exists, caused by the annual forcing

on the stable limit cycles. There are also regions of periodicity due to the resonance

between the annual forcing and limit cycles with integer period, leading to the fold bi-

furcation curves. These curves originate from the ε = 0 axis and diverge as ε increases

with periodic behaviour possible within the fold boundaries. Note, however, that the

curves indicate the existence of multi-year cycles but not their stability, which we will
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Figure 4.2: A two-dimensional bifurcation diagram in δ and ε. The Neimark-Sacker
bifurcation curve is green, the fold curves are red. The FD6 curve lies almost on
top of the NS1 curve. More fold curves exist with period higher than 11 but these
are omitted to avoid over-complication. There is no period-doubling bifurcation of
the annual cycles. Only existence and not stability of the multi-year solutions is
shown, outlined by the fold curves. The points labelled (a), (b) and (c) refer to the
corresponding simulations in Figure 4.3. All other parameters values are kept constant
with the following values: a = 1.7, β = γ = 10/1.05, µ = 1.0003/1.05 and k = 1.

discuss later. The fold curves start at period 6 (FD6) which is the first integer greater

than the lowest possible period in the unforced system (which is 5.9). The fold regions

get larger as the period increases from period 6 to period 11 (FD6 is very narrow and

FD11 is significantly wider). The fold regions decrease in size for periods greater than

period 11 (not shown in Figure 4.2 but see Figure 4.6). No period-doubling of the

yearly cycle occurs thus we do not find solutions with periods between 2 − 5 years

inclusive.

The fold curves hit the axis at the value of δ at which the unforced limit cycles

have the corresponding period, and the regions widen as ε increases from 0. The rapid

increase of the unforced period with δ, as seen in Figure 4.1, leads to an overlap of

the fold curves and indicates that there is potential for multiple solution behaviour.

Moreover, some of the fold curves extend below the Neimark-Sacker bifurcation curve

for larger values of ε. Thus, increasing the amplitude of seasonal forcing from 0 to 1
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can change the system from a stable equilibrium to a yearly cycle to multi-year cycles,

with no change in any other parameter (Figure 4.3). The multi-year cycles also have

a significant increase in amplitude in comparison to the yearly cycle. Therefore, the

inclusion of seasonal forcing can have a dramatic effect on the dynamics of the host

and parasite for parameters corresponding to the red grouse system.
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Figure 4.3: Simulations showing the effect of increasing the amplitude of forcing while
all other parameters are kept constant. (a) ε = 0; a stable equilibrium. (b) ε = 0.4;
a stable yearly cycle. (c) ε = 0.8; a stable 8 year cycle (corresponding to the points
labelled in Figure 4.2). The initial conditions are the same for all three simulations.
δ = 0.76 and all other details are as in Figure 4.2.

4.3.2 General Host-Macroparasite Dynamics

We wish to investigate further the effect of the unforced dynamics on the resulting

multi-year cycles when forcing is introduced into the system. When the red grouse

parameters are used, the model does not exhibit any multi-year cycles with period

less than 6 (and the 6 year cycles occur only for a very narrow range of δ-values).

In comparison, interacting population and epidemiological systems frequently exhibit

cycles with periods of 3 − 4 years (Korpimaki and Krebs, 1996; Earn et al., 2000).

Are these higher period cycles observed purely because of the parameter values that

are relevant for red grouse dynamics, or are they representative of our general host-

macroparasite system?
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To answer this question we consider the unforced dynamics in more detail and

investigate the period at the Hopf bifurcation. As mentioned previously, the forcing

only resonates with integer periods expressed in the unforced limit cycles. Thus, we

investigated whether it is possible to reduce the initial period arising at the Hopf

bifurcation so that the system will be able to resonate with lower period limit cycles.

We varied the parameters in pairs, in order to stay on the Hopf bifurcation, and

calculated the initial period at the Hopf bifurcation. We found that the host birth

rate parameter a was the key driver of the period in the unforced system (regardless

of the other parameter that was varied concurrently). See Appendix F for plots of all

the parameter pair combinations.

In Figure 4.4, we show how changing a affects the period at the Hopf bifurcation,

and the corresponding changes in δ that are required in order to stay on the Hopf

bifurcation. For a < 1 only the trivial steady state exists (where the host and parasite

are absent). As a increases from 1 the period at the Hopf bifurcation decreases with a

minimum period of 2.3 years for a = 5.9. As a increases further the period increases

and there is a rapid increase in period for a > 8 as δ approaches 1. For δ > 1,

there are diverging cycles that drive the host and parasite to extinction (Dobson and

Hudson, 1992). For larger a the parasites are unable to regulate the host population
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Figure 4.4: The Hopf bifurcation in the unforced system in more detail. In (a) the
period at the Hopf bifurcation of the unforced system is plotted as a (and implicitly
also δ) is varied. (b) The bifurcation diagram of the unforced system in a and δ.
The thick black line is the Hopf bifurcation while the thick grey line indicates where
the equilibrium is replaced by exponential growth. Dynamics by region: 1 - trivial
equilibrium; 2 - stable equilibrium; 3 - stable limit cycles; 4 - diverging cycles driving
host and parasite to extinction; 5 - exponential growth. All other details are as in
Figure 4.1.
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and since there is no host self-regulation in (4.1), the steady state increases in value.

The host and parasite populations experience exponential growth for parameter values

in region 5 in Figure 4.4. The limit cycles are bounded by a homoclinic curve, the

Hopf bifurcation curve and a fold bifurcation curve (due to subcriticality of the Hopf

bifurcation). In Figure 4.5 we plot as much of these boundary curves as possible but

experienced problems in auto hence the curves are incomplete. We intuitively believe

the homoclinic curve stretches to connect the two ends of the Hopf bifurcation.
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Figure 4.5: The bifurcation diagram of the unforced system in a and δ exploring the
limit cycles in more detail. The thick black line is the Hopf bifurcation while the
thick grey line indicates where the equilibrium is replaced by exponential growth.
The homoclinic curve is purple; the red curve indicates a fold in the limit cycles. All
other details are as in Figure 4.4.

Importantly, Figure 4.4 shows that there is potential for lower period cycles in

this model system. To understand how seasonal forcing interacts with the underlying

period of the unforced system, we produce bifurcation diagrams in δ and ε for different

values of a (Figure 4.6).

In Figure 4.6 the fold regions (red lines) for the different periods are plotted

separately for each value of a. For lower values of a there are empty plots in the

upper region of Figure 4.6 since here the cycle period is less than the initial period

of the unforced dynamics (Figure 4.4). The fold regions are small if the period is

close to the initial period. For example, suppose that the initial period at the Hopf

bifurcation is either 5.2 or 5.9. The lowest possible period for multi-year cycles will
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Figure 4.6: Bifurcation diagrams in δ and ε for different values of a. Each fold curve,
outlining the different periodic regions, is plotted on a separate graph. The shaded
regions indicate where each of the multi-year cycles are stable. Fold curves are red,
period-doubling curves are blue and Neimark-Sacker bifurcation curves are green.
Only those curves relevant to each particular multi-year cycle are plotted within each
figure. For each value of a there is also a Neimark-Sacker bifurcation curve (NS1)
indicating loss of stability of the yearly cycles but these aren’t included. The 15 and
16 year fold curves for a = 5 stop before ε = 1 due to continuation problems in auto
(although not shown due to overlap of the period-doubling curves). All other details
as in Figure 4.2.
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be 6 year in both cases, but the 6 year fold region will be much smaller for the latter

case. The fold regions start to decrease in size once the period is much larger than

the initial period expressed in the unforced system. In general, there is a pattern of

the largest fold regions occurring across a diagonal from top-right to bottom-left in

Figure 4.6.

There is a significant difference between existence and stability of multi-year cycles

in terms of the resulting dynamics of the system, and thus it is important to consider

the region of stability of the multi-year cycles within each of the fold curves (i.e. the

shaded regions in Figure 4.6). The presence of Neimark-Sacker bifurcation curves and

period-doubling curves inside the fold curves leads to loss of stability of the multi-

year cycles. For example, if we focus on the 3 year fold region for a = 5 (i.e. the

top right plot in Figure 4.6), the 3 year cycles are stable in the shaded region, but

crossing the Neimark-Sacker bifurcation curve for larger δ results in quasi-periodicity

while crossing the period-doubling curve through increasing ε produces stable 6 year

cycles. The size of the regions of stability follows a similar pattern to the fold regions:

it decreases as the period increases for each value of a, mostly due to the period-

doubling region inside the fold curves increasing in size. Notably, many of the fold

curves contain only very small regions of stability, especially for the higher period

cycles.

To investigate the potential for multiple solutions we superimpose the stable re-

gions of the different multi-year solutions in Figure 4.6 for each value of a (Figure 4.7).

The yearly Neimark-Sacker bifurcation curve (NS1) is shown but the fold, period-

doubling and Neimark-Sacker curves for each of the multi-year cycles are omitted for

clarity. There is considerable overlap of different stable multi-year regions implying

that multiple solutions are possible for a fixed set of parameters. Figure 4.7 highlights

the large effect that varying a has on the stability of multi-year cycles. This is further

emphasised by noting that the stability regions shown in Figure 4.7(a) predominantly

correspond to 10− 14 year cycles whereas those in (f) have periods of 3− 5 years, as

seen in Figure 4.6.

To examine the likelihood of multiple solutions we ran simulations of our model

system for four different parameter sets (indicated by the crosses in Figure 4.7) for 200

sets of initial conditions selected at random. Figure 4.8 indicates that multiple solution

behaviour was observed. Both of the points which lie above the Neimark-Sacker

bifurcation curves in Figure 4.7 (Figure 4.8(a),(c)) exhibit quasi-periodic dynamics

while the two points below the curves (Figure 4.8(b),(d)) show yearly cycles as well

as the multi-year cycles. Figure 4.8 also shows typical host population solutions for

the four parameter sets, indicating that a range of annual, multi-year and quasi-

periodic behaviour can be exhibited. A wide range of amplitude is seen across the 12

simulations. This varies with cycle period, and with the values of ε, δ and a. For the
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Figure 4.7: Two-dimensional bifurcation diagrams in δ and ε for each value of a
showing only the stability regions (shaded) of the multi-year solutions. The Neimark-
Sacker bifurcation curves (green) indicate the change in stability of the yearly cycle,
with yearly cycles stable below the line. The four crosses in (b) and (f) indicate the
points that we used for testing multiple solution behaviour, as shown in Figure 4.8.
All other details are the same as in Figure 4.2.

case a = 5, it would be expected that there would mainly be low period cycles due to

their larger regions of stability but there are some 16 year cycles. These 16 year cycles

have peaks every 4 years, which suggests that they have arisen due to period-doubling

(we examine this below). In comparison, a 16 year cycle that has arisen through the

16 year fold curve would usually have only one peak in the 16 year period.

In this more general framework of the host-macroparasite model we have shown

that changing a has an important impact on the periodic solutions possible, with

a greater likelihood of lower period multi-year cycles for higher values of a. The

overlap of stable regions for these multi-year cycles has been highlighted, and we have

confirmed that multiple solution behaviour is possible, involving a wide range of cycle

periods and amplitudes. We now move on to some of the more complicated aspects

of these bifurcation diagrams for different values of a, such as the period-doubling

bifurcations in Figure 4.6 and the overall effect of increasing the forcing amplitude ε.
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Figure 4.8: Investigating the potential for multiple solution behaviour. In (a) − (d)
histograms show the results of 200 simulations for 4 different points (indicated on
Figure 4.7). (a) a = 1.7, ε = 0.2 and δ = 0.83; (b) a = 1.7, ε = 0.9 and δ = 0.76; (c)
a = 5, ε = 0.2 and δ = 0.9; and (d) a = 5, ε = 0.9 and δ = 0.8. Quasi-periodicity
is represented by period 0 years. Three simulations of host populations are plotted
for each histogram (in the same column), showing that different multi-year cycles are
possible for that point. The period of the multi-year cycles are as indicated. In (c)(i)
the solution was calculated to be quasi-periodic but is actually an 18 year cycle (since
we only test the simulations for periodicity of 16 years or lower). The simulations are
not to scale; specifically (c)(i) ×105, (c)(ii) ×103, (c)(iii) ×104, (d)(ii) ×102, (d)(iii)
×104 and the rest of the simulations are all ×10. All other details are the same as in
Figure 4.2.

4.3.3 Period-Doubling and Chaos

One aspect of Figure 4.6 which requires further attention is period-doubling inside the

fold loci. Nearly all of the fold regions in Figure 4.6 contain period-doubling curves

which indicate not only the loss of stability of the cycles generated at the folds but

also the generation of stable higher period cycles. Trying to show all this information

on one plot, such as Figure 4.6, is rather complicated and thus we highlight one case

(the 4 year cycles for a = 4) to show the full range of dynamics that can occur due

to period-doubling (Figure 4.9).

In Figure 4.9 there are three fold regions plotted, the largest being the 4 year fold

region (FD4) in which the 4 year cycles lose stability as ε increases through a period-
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type and period of each curve is represented by the different colours. Stability of the
different periodic solutions is shown by the shaded regions as indicated. The cross at
ε = 0.72, δ = 0.86 corresponds to the simulation in Figure 4.11. All other details are
as in Figure 4.2.

doubling bifurcation (PD4) leading to stable 8 year cycles. These 8 year cycles also

undergo period-doubling (PD8) leading to stable 16 year cycles. Also shown is the

8 year fold region (FD8), in which the 8 year cycles lose stability through a period-

doubling bifurcation (PD8) leading to stable 16 year cycles. And lastly, there is the 16

year fold region (FD16) which also indicates a region of stable 16 year cycles. All 3 of

these stable 16 year regions lose stability through more period-doubling bifurcations

(PD16). Moreover, period-halving occurs for large ε in the 4 year fold region, leading

to more regions of stable 8 and 16 year cycles (although the additional 16 year stable

region is very small and not visible at this scale). This highlights that there are several

routes that can lead to 16 year population cycles. It is interesting to note that the

region of stability for the 16 year cycles resulting from two successive period-doublings

of the 4 year cycles is larger than that for the 16 year fold curve, so that these period-

doubling bifurcations are of key importance in providing information on the stable

dynamics of the system. Also, the form of the period 16 cycles resulting from period-

doubling and from the 16 year fold curve are very different, with only one peak every

16 years for the fold curve compared to a peak every 4 years for the period-doubled

solution (Figure 4.10). There is also a significant difference in amplitude, which is
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Figure 4.10: Simulations of two different 16 year solutions. (a) A 16 year cycle stable
from two successive period-doublings of the 4 year cycle. Parameter values are a = 4,
δ = 0.85 and ε = 0.67. (b) A 16 year cycle stable within the 16 year fold. Parameter
values are a = 4, δ = 0.9404 and ε = 0.15. All other details as in Figure 4.2.

much larger for the fold curve solution.

Figure 4.9 raises the possibility of chaos in this system through a period-doubling

cascade. Within the 4 year fold curve there is a region after the 16 year cycles

have lost stability before the period-halving begins, in which there is the suggestion

of period-doubling to chaos. Simulation results have shown solutions which appear

chaotic (Figure 4.11), although we have not tested this in detail.

Figure 4.9 is useful for exhibiting the complexities of the host-macroparasite model

with seasonal forcing, especially when it is remembered that there are many other

multi-year fold curves omitted from this figure, all with period-doubling regions which

might lead to chaos. One common factor of all the multi-year cycles, as seen in Fig-

ures 4.6, 4.7 and 4.9 is that they lose stability as ε increases. Thus, an increase

in seasonal forcing, with no changes in any other parameters, can change the dy-

namics dramatically from multi-year limit cycles, to multi-year cycles of potentially

different period due to the multiple solution behaviour and period-doubling, to quasi-

periodicity and chaos. This again highlights the substantial impact of increasing the

strength of the seasonal forcing on the dynamics. Overall, the host-macroparasite

model when subject to seasonal forcing is a complicated system with a wide range
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Figure 4.11: A simulation of an apparently chaotic solution. The fast Fourier trans-
form method indicates a period of 70 years. Parameter values are a = 4, δ = 0.86
and ε = 0.72, indicated by a cross in Figure 4.9. All other details as in Figure 4.2.

of possible dynamics depending on parameter values, the amplitude of the seasonal

forcing and the initial conditions.

4.3.4 Results Summary

We have considered a general host-macroparasite model with reduced fecundity and

explicit inclusion of a larval stage and explored the effects of introducing seasonal

forcing through the host birth rate. When seasonal forcing is introduced into this

host-macroparasite model it leads to stability of multi-year cycles, multiple stable

solutions, period-doubling to higher period cycles, quasi-periodicity and apparently

chaotic behaviour. We studied this for different values of the host birth rate, param-

eter a in (4.1), as this leads to changes in the initial period of the unforced system at

the Hopf bifurcation. For all values of a the unforced period increases rapidly from

the initial period at the Hopf bifurcation, and this results in the different period fold

curves on the ε = 0 axis lying very close together (as seen in Figure 4.6). This leads to

an overlap of fold curves of many different periods and to multiple solution behaviour

possible, as shown for two values of a in Figure 4.8. Furthermore, in all cases the

effect of increasing ε (the strength of the seasonal forcing) is substantial when the
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parameter choice gives rise to both a stable equilibrium and stable limit cycles in the

unforced system.

Whilst there are many similarities in the bifurcation diagrams for the different

values of a, variation in the initial period of the unforced system has important conse-

quences for the different dynamics possible in the forced system, specifically the range

of stable periodic solutions. Lower period cycles are only possible when a is larger.

Apart from this difference in period, the bifurcation diagrams change more generally,

as seen in Figure 4.7, where the Neimark-Sacker bifurcation curve for the yearly cy-

cles (NS1) moves up in δ as a increases. In the a = 5 case, the Neimark-Sacker curve

also becomes less straight so that it is possible to move from a stable equilibrium to

quasi-periodicity and chaos by increasing ε and keeping all other parameters constant.

The fold regions are also much wider for a = 5 indicating that seasonal forcing has

an effect for a wider range of δ values in this case. From Figures 4.6 and 4.7, it is

clear that there is a considerable difference in the dynamics between low values of a,

say a = 1.5 or 1.7 which are in the range given for the red grouse system, compared

to a = 5, with the inference that seasonal forcing has more of an impact for higher

values of a.

The largest fold and stability regions for a = 4 and a = 5 are much larger than

those for lower values of a (as seen in Figure 4.6). This raises an interesting question:

is this occurring because lower period cycles resonate more, creating more stability

for the multi-year cycles of lower period, in comparison to those of higher period?

This could be because the 3 and 4 year cycles are closer in period to the forcing (1

year). Or are the regions larger because the initial amplitude of the limit cycles in the

unforced system is higher, causing more resonance when forcing is introduced? Or is

it the fact that a is now much larger: since a is the parameter being annually forced

this could lead to greater resonance and hence larger fold regions? One approach to

gain some insight into this would be to produce a similar figure to Figure 4.6 with the

same range of a values, but with a different parameter being seasonally forced. This

is a natural area for future study.

4.4 Discussion

Seasonal forcing has been well studied in both interacting population and micropar-

asite systems (Rinaldi et al., 1993; Kuznetsov and Piccardi, 1994; Greenman et al.,

2004; Choisy et al., 2006). As in this host-macroparasite study, these have all shown

that seasonal forcing can lead to multi-year cycles, quasi-periodicity, chaos and mul-

tiple solution behaviour. Other similarities include the increased amplitude in popu-

lation abundance of the multi-year cycle solutions compared to the yearly cycle and

the significant impact on the dynamics observed through increasing the amplitude of
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forcing. The similarities are particularly true for systems in which there is a Hopf

bifurcation present in the unforced dynamics, since this is the determining factor

for the existence of quasi-periodicity and is influential in the production of the fold

curves (although these can occur when non-cyclic systems are forced (Kuznetsov and

Piccardi, 1994; Taylor et al., 2013a)).

However, seasonal forcing within this host-macroparasite system shows some im-

portant differences to ecological and microparasite systems. One of the most no-

ticeable aspects of this host-macroparasite system is the existence of a wide range

of different period solutions, with sizable regions of stability for 3 to 16 year cycles

as well as an 18 year cycle found by simulation and the numerous period-doubling

bifurcations to higher period cycles. This indicates that host-macroparasite interac-

tions, including the red grouse system, are able to experience many different periodic

solutions. In contrast, data for predator-prey systems often show a smaller range of

cycles such as 3− 5 years for Fennoscandian voles (Bjørnstad et al., 1995) or 8 − 11

years for the snowshoe hare and lynx cycles (Murray, 2000). Also, in the measles

literature, cycles of 1 − 3 years are most common, although there is the possibility

of cycles with periods of up to 8 years (Earn et al., 2000). In the host-macroparasite

system the wide range of cyclic dynamics occurs due to the rapid increase of the limit

cycle period from the Hopf bifurcation in the unforced system.1 Thus the bifurcation

diagram shows that the fold curves overlap to a much greater extent than is typical

for interacting population and microparasite systems (Rinaldi et al., 1993; Kuznetsov

and Piccardi, 1994). Not only does this rapid increase in the unforced period lead

to the wide range of different period cycles but most importantly, it leads to an in-

creased chance of multiple solution behaviour. While multiple solutions do occur in

interacting population and microparasite systems, it is often for a small number of

parameter sets and is usually restricted to 2 or 3 different solution possibilities (Earn

et al., 2000; Taylor et al., 2013b). In contrast, Figure 4.7 shows that multiple solution

behaviour is possible for a wide range of δ and ε values for all values of a tested, and in

Figure 4.8 the points tested have at least 5 different solutions possible. Furthermore,

the wide range of periodic dynamics and the multiple solution behaviour combine so

that both higher and lower period cycles can be found in the resulting dynamics for

the same parameter values. For example, in Figure 4.8(c) both 4 and 18 year cycles

occur in simulations for the same parameter values but different initial conditions.

There are other aspects of the bifurcation diagrams shown here for host-macropar-

asite systems which differ from seasonal models of interacting population and mi-

croparasite systems. Our results indicate several regions of (apparently) chaotic

behaviour, due to the many period-doubling bifurcation curves which can give rise

1Comparison of rapidity of the increase is based upon observing the relative width of the fold
curves in comparison to the distance between the cusp of each fold curve on the axis.
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to period-doubling cascades (Aron and Schwartz, 1984). This multitude of period-

doubling cascades is not readily observed in other seasonal systems (Rinaldi et al.,

1993; O’Regan et al., 2013). Our study also shows that period-halving can occur,

which has not been reported in previous studies of seasonally forced models. This

highlights the importance of the period-doubling bifurcations on the resultant popu-

lation dynamics.

The overlap of stable multi-year regions and the abundance of multiple solution

behaviour indicate that the system may be sensitive to small perturbations in param-

eters or to noise. Small perturbations in the strength of the seasonal forcing or other

parameters can lead to significantly different dynamics through a change of period

and amplitude, or to quasi-periodic or chaotic solutions. This is in contrast to the

unforced model, where a small change in parameter values would lead to a relatively

small change in the period of the limit cycles (unless the parameters are very close to

the Hopf bifurcation, in which case switches between a stable equilibrium and limit

cycles could occur). In Figure 4.12, a simulation shows the effect of a perturbation

in the host population abundance (but no change of any parameters), which leads to

a change in cycle period and amplitude. A similar perturbation in the corresponding

unforced case would always settle back to the stable equilibrium as there are no multi-

ple solutions. This sensitivity to perturbations leads to difficulties in determining the

factors that are the key drivers of population cycles and in explaining the causes of

shifts in population behaviour. Furthermore, since multiple solutions can exist for a

single parameter set it is not possible at the outset to predict the resulting population

dynamics.

The literature on red grouse documents a very wide range of periods of population

cycles in England and Scotland, with reported periods varying between 4 − 8 years

(Hudson et al., 1998), 3 − 13 years (Cattadori et al., 2005b) or 2 − 15 years (Hay-

don et al., 2002). The driver of red grouse cycles is subject to debate, with infection

from the nematode macroparasites and territorial behaviour seen as the most likely

causative factors (Dobson and Hudson, 1992; Hudson et al., 1998; Redpath et al.,

2006). It has also been shown that there is no strong latitudinal variation in period-

icity but rather a plethora of intermixing periods across the whole of England and

Scotland (Haydon et al., 2002). Both these aspects are consistent with our results.

With parameter values corresponding to red grouse populations across England and

Scotland, the host-macroparasite model showed a wide range of periodic cycles and

multiple solution behaviour was found (Figures 4.6, 4.8). In the model it is possible

for two geographically close populations of red grouse to have very similar life-history

parameters and yet show exceedingly different dynamics such as low period and high

period cycles with different amplitudes. Furthermore, the sensitivity to perturbations

may explain the difficulty in determining cyclicity and the presence of only weakly
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Figure 4.12: A simulation showing the effect of perturbations. A 10 year cycle is
perturbed at 7000 years by changing the host population by 10%. It switches to a 9
year cycle. The transition in shown in (a) and the 10 and 9 year cycles are shown in
more detail in (b) and (c) respectively for the host population. Parameter values are
a = 1.7, δ = 0.77, ε = 0.8 and all other details are as in Figure 4.2.

cyclic time-series data (Haydon et al., 2002). This suggests that seasonal forcing may

be an important factor in producing the wide range of cyclic periods observed in red

grouse population dynamics and can have a significant impact on the dynamics of

host-macroparasite system in general.
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Discussion

This thesis has studied the influence of seasonal forcing on the population dynam-

ics of different ecological systems, with a specific focus on predator-prey and host-

macroparasite interactions. In this discussion we highlight the overarching conclu-

sions which can be drawn from all three sections of work. We remind the reader that

more detailed discussions about each individual topic are included within Chapters 2

- 4.

5.1 Conclusions

A major aim of this thesis has been to understand in detail the influence of the

unforced dynamics when forcing is applied to the system. To do this, we considered

the effect of seasonal forcing when there was oscillatory decay to the coexistence

steady state, monotonic decay and limit cycles in the unforced system in Chapter 2.

This allowed comparisons to be made between each regime. The resultant dynamics

are heavily dependent on the unforced dynamics, with no multi-year cycles present

for the monotonic decay case; some multi-year cycles but no quasi-periodic dynamics

for the oscillatory decay case; and a broad range of possible dynamics for the limit

cycle case, with quasi-periodicity, multi-year cycles with a wide range of periods and

chaos. The strength of the oscillations in the unforced system determines the amount

of resonance that occurs between these oscillations and the forcing period, and leads

to significant differences in the dynamics that are exhibited. A key focus of previous

studies of seasonal forcing has been the impact of seasonality in microparasite models.

These models do not exhibit limit cycles in the unforced dynamics but our work

highlights the importance of studying the effect of seasonal forcing in systems which

are inherently cyclic.

In Chapter 4, we considered the effect of changing the unforced dynamics by

decreasing the period of limit cycles and asked whether this significantly alters the

forced dynamics. Only multi-year cycles exist which have periods expressed in the
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unforced limit cycles. Thus, as the initial period of the limit cycles is decreased, lower

multi-year cycle periods can be induced by seasonal forcing. However, other changes

in the bifurcation diagrams can be observed as the period of the limit cycles is reduced.

In Figure 4.7, the width of the Arnol’d tongues changes such that the largest tongues

occur when the period of the limit cycles is lowest. Also, it was only possible to

move from a stable equilibrium to quasi-periodicity as forcing was increased when the

initial period of the limit cycles was lower. However, it is unclear whether these are

caused by the lower period or the change in parameter values required to decrease the

period of the limit cycles. It would be interesting to investigate this in more detail.

However, in general, the effect of the seasonal forcing was more pronounced when the

limit cycle period was lower.

An additional aspect of the unforced dynamics which impacts on the system when

seasonal forcing is applied is the rapidity of the increase in period of the limit cycles.

This discovery is facilitated by contrasting the bifurcation diagrams of the predator-

prey systems (in Chapter 2 and Appendix C) and the host-macroparasite system (in

Chapter 4). Due to the rapid increase in period in the host-macroparasite system

compared to the predator-prey system, there is a wider range of periods of multi-

year cycles and more overlap of the Arnol’d tongues. This leads to more multiple

solution behaviour and an increased likelihood for these multiple solutions to have very

different periods. In Gragnani and Rinaldi (1995), the chemostat and the Rosenzweig-

MacArthur models produce topologically equivalent bifurcation diagrams. But this

is clearly not the case for the predator-prey and host-macroparasite models, even

though they have similar unforced dynamics, and when forced the range of dynamics

for both includes multi-year cycles, quasi-periodicity and chaos as well as the potential

for multiple solution behaviour. The configuration of the unforced dynamics has an

important role in determining the bifurcation structure of the forced system.

Therefore, we have shown three ways in which the unforced dynamics can impact

on the seasonally forced dynamics – through the presence/absence of limit cycles, the

initial period of these limit cycles and the rapidity of the increase in period of these

limit cycles.

A further idea which we wished to explore is that of a “universal” bifurcation

diagram, in which all the bifurcation diagrams of a model are topologically equiva-

lent regardless of which parameter is forced. In Rinaldi et al. (1993), six different

combinations of parameters (either a single parameter or a pair) were forced in the

Rosenzweig-MacArthur predator-prey model and the bifurcation diagrams produced

for each of these combinations were topologically equivalent. However, they did not

force the prey growth rate on its own, as we do in Chapter 2, but instead forced it

alongside the prey carrying capacity. The bifurcation diagram produced in our sce-

nario is not topologically equivalent to those produced by Rinaldi et al. (1993) since
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the Neimark-Sacker bifurcation curve does not touch the ε = 0 axis (see Figure 2.3).

Hence, there are stipulations on this equivalence. In this case, the lack of equivalence

arises because the prey growth rate is not involved in the condition for a Hopf bifur-

cation in the unforced system. However, there could be other factors which would

prevent topological equivalence in different models.

In Chapter 3, the seasonal forcing term was adapted to represent changes in breed-

ing season length. We found the trend that decreasing the length of the breeding

season led to longer period cycles, when the level of generalist predation was low.

This method of representing changes in season length (whether it is a breeding season

or otherwise) is vital to the understanding of the effect of seasonal forcing. This is

especially true when the aim is to understand the potential effects of climate change,

as it can lead to such seasonal adaptations. Furthermore, we broadened the scope of

the bifurcation diagrams in this chapter by using the level of generalist predation and

the season length as the parameters that were varied rather than the mean value and

the amplitude of the forced parameter. The main consideration was no longer how

the forced parameter impacted on the system but how a forced system will respond

when other aspects of the system are varied. This affected the Arnol’d tongues, with

no cusp on the ε = 0 axis and a bent-over shape (see Figure C.2). It was also harder

to distinguish the influence of the unforced dynamics on the forced system.

5.2 Further Work

In this thesis, we have analysed predator-prey and host-macroparasite systems with

seasonality. In general, seasonally forced interacting populations and microparasite

systems have been well studied (Altizer et al., 2006; Sherratt and Smith, 2008). We

draw attention to the need to consider free-living host-pathogen systems subject to

seasonal forcing. In these models, the pathogen kills the host releasing free-living

infective stages into the environment (Anderson and May, 1981). These systems have

been used to explain the high period population cycles seen in forest insect systems.

Therefore, in some respects, these are very similar to host-macroparasite systems

and often exhibit high period cycles in which population density can reach low levels

following a disease outbreak. By studying the unforced system, specifically the period

of the limit cycles, it could be possible to predict whether the forced system will be

more similar to the predator-prey or the host-macroparasite systems studied here,

based on our comparisons above. The high period cycles would indicate that perhaps

the free-living host-pathogen system would be more akin to the host-macroparasite

system.

An interesting area involving further study concerns the relative sizes of the basins

of attraction. In Greenman et al. (2004), it is suggested that the lowest existing multi-
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year cycle (i.e. lowest period higher than annual cycles) will have the largest basin

of attraction when there are multiple solutions. However, in Figure 3.3(b), a basin

of attraction exists which contains more 9 year cycles than 4 year cycles. Clearly,

more work is needed in order to understand which solutions are more likely when

multiple solutions exist. A more thorough method for calculating the relative sizes

of the basins of attraction is perhaps necessary. As seen in Figure 2.12 and in Earn

et al. (2000); Choisy et al. (2006), the basins of attractions can be well intermixed

making predictions harder about the likelihood of each solution and the potential for

jumping between attractors.

More work is still desirable to understand which parameters to force and which

type of forcing function to use. As mentioned above, forcing different parameters of

the model can lead to very dissimilar results or to topologically equivalent bifurcation

diagrams. Investigation into why this is the case could help in determining which are

the important parameters to focus on to gain a full understanding of the system when

any parameter is forced. Similarly, the effects of forcing more than one parameter

in or out of phase have shown that multi-year cycles and chaos can be dependent

on the phase difference (Rinaldi and Muratori, 1993; Greenman and Pasour, 2011).

Thus, if it is feasible to alter the timing of one of the forcing terms (for example, if

one of the forcing terms is pulse vaccination) then it could be possible to control the

amplitude or periodicity of the solutions. However, the effect of this phase difference

is still not completely understood. Finally, the use of sinusoidal or step functions to

represent the seasonal forcing is debated, with some saying a step function is necessary

to produce results consistent with data while others stating that the differences are

not significant (Earn et al., 2000; Ireland et al., 2004; Altizer et al., 2006; Keeling and

Rohani, 2008). More detailed comparisons are necessary.

In summary we have shown how seasonality can play a critical role in determin-

ing the population dynamics. The influence of seasonal forcing is likely to become

of increased importance as climate and environmental change is expected to alter

the pattern of seasonality, with the potential to dramatically affect the population

dynamics of natural systems.
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B. Sultan, K. Labadi, J. Guégan, and S. Janicot. Climate Drives the Meningitis

Epidemics Onset in West Africa. PLoS Medicine, 2(1):e6, 2005. doi: 10.1371/

journal.pmed.0020006.

R. A. Taylor, J. A. Sherratt, and A. White. Seasonal Forcing and Multi-Year Cy-

cles in Interacting Populations: Lessons from a Predator-Prey Model. Journal of

Mathematical Biology, 67(6-7):1741–1764, 2013a. doi: 10.1007/s00285-012-0612-z.

R. A. Taylor, A. White, and J. A. Sherratt. How do Variations in Seasonality Affect

Population Cycles? Proceedings of the Royal Society B: Biological Sciences, 280

(1754):20122714, 2013b. doi: 10.1098/rspb.2012.2714.

E. Tkadlec and N. C. Stenseth. A New Geographical Gradient in Vole Population

Dynamics. Proceedings of the Royal Society B: Biological Sciences, 268:1547–1552,

2001. doi: 10.1098/rspb.2001.1694.

P. Turchin. Complex Population Dynamics. Princeton University Press, Princeton,

NJ, 2003.

P. Turchin and I. Hanski. An Empirically Based Model for Latitudinal Gradient

in Vole Population Dynamics. The American Naturalist, 149:842–874, 1997. doi:

10.1086/286027.

86



BIBLIOGRAPHY

P. Turchin and I. Hanski. Contrasting Alternative Hypotheses About Rodent Cycles

by Translating Them into Parameterized Models. Ecology Letters, 4:267–276, 2001.

doi: 10.1046/j.1461-0248.2001.00204.x.

P. Turchin and R. S. Ostfeld. Effects of Density and Season on the Population Rate

of Change in the Meadow Vole. Oikos, 78:355–361, 1997. doi: 10.2307/3546303.

V. Volterra. Variations and Fluctuations of the Number of Individuals in Animal

Species Living Together. ICES Journal of Marine Science, 3(1):3–51, 1928. doi:

10.1093/icesjms/3.1.3.

D. M. Watts, D. A. Burke, B. A. Harrison, R. E. Whitmire, and A. Nisalak. Effect

of Temperature on the Vector Efficiency of Aedes aegypti for Dengue 2 Virus. The

American Journal of Tropical Medicine and Hygiene (USA), 1987.

S. D. Webb and J. A. Sherratt. Oscillatory Reaction-Diffusion Equations with Tempo-

rally Varying Parameters. Mathematical and Computer Modelling, 39:45–60, 2004.

doi: 10.1016/S0895-7177(04)90505-5.

K. A. J. White and B. T. Grenfell. Regulation of Complex Host Dynamics by a

Macroparasite. Journal of Theoretical Biology, 186(1):81–91, 1997. doi: 10.1006/

jtbi.1996.0344.

K. A. J. White, B. T. Grenfell, R. J. Hendry, O. Lejeune, and J. D. Murray. Effect

of Seasonal Host Reproduction on Host-Macroparasite Dynamics. Mathematical

Biosciences, 137(2):79–99, 1996. doi: 10.1016/S0025-5564(96)00061-2.

K. Wilson, O. N. Bjørnstad, A. P. Dobson, S. Merler, G. Poglayen, S. E. Randolph,

A. F. Read, and A. Skorping. Heterogeneities in Macroparasite Infections : Patterns

and Processes. In P. J. Hudson, A. Rizzoli, B. T. Grenfell, H. Heesterbeek, and A. P.

Dobson, editors, The Ecology of Wildlife Diseases, pages 6–44. Oxford University

Press, Oxford, UK, 2002.

87



Appendix A

Auto Code

In this Appendix, we include code from each of the models in Chapters 2 - 4 which

was used to compute the bifurcation diagrams in auto, and examples of the necessary

constants files.

A.1 The Equations Files

We show code for the forced system in Chapters 2 and 3. The code for the unforced

and forced models in Chapter 4 are included as it highlights the differences required

to input forcing into the system.

A.1.1 The Forced Predator-Prey Model

C-------------------------------------------------------

C-------------------------------------------------------

C ppb : A periodically forced predator prey system

C-------------------------------------------------------

C-------------------------------------------------------

C

SUBROUTINE FUNC(NDIM,U,ICP,PAR,IJAC,F,DFDU,DFDP)

C ---------- ----

C

IMPLICIT REAL*8 (A-H,O-Z)

DIMENSION U(NDIM),PAR(*),F(NDIM)

C

C Definition of parameters

A = PAR(1)

B = PAR(2)

C = PAR(3)
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D = PAR(4)

R = PAR(5)

EPS = PAR(6)

C

U1=U(1)

U2=U(2)

X=U(3)

Y=U(4)

C

C Defining some shorthand functions and 2pi

SS = X**2 + Y**2

H = R*(1 + EPS*X)

G = A/(B+U1)

TPI=8*DATAN(1.0D0)

C

C The differential equations including the forced oscillator equations

C in X and Y

F(1)= U1*H*(1-(U1/C)) - U1*U2*G

F(2)= U2*(G*U1 - D)

F(3) = X + TPI*Y - X*SS

F(4) = -TPI*X + Y - Y*SS

C

RETURN

END

C

SUBROUTINE STPNT(NDIM,U,PAR,T)

C ---------- -----

C

IMPLICIT REAL*8(A-H,O-Z)

DIMENSION U(NDIM),PAR(*)

C

C Parameter initial values including the initial period

TPI=8*DATAN(1.0D0)

PAR(1)=2*TPI

PAR(2)=0.3

PAR(3)=1

PAR(4)=TPI

PAR(5)=TPI
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PAR(6)=0

PAR(11)=1

C

C Initial conditions

U(1)=0.3

U(2)=0.21

U(3)=DSIN(TPI*T)

U(4)=DCOS(TPI*T)

C

RETURN

END

C

SUBROUTINE BCND

RETURN

END

C

SUBROUTINE ICND

RETURN

END

C

SUBROUTINE FOPT

RETURN

END

C

SUBROUTINE PVLS

RETURN

END

A.1.2 The Forced Vole Model

C--------------------------------------------------------

C--------------------------------------------------------

C vole : A periodically forced vole system

C--------------------------------------------------------

C--------------------------------------------------------

C

SUBROUTINE FUNC(NDIM,U,ICP,PAR,IJAC,F,DFDU,DFDP)

C ---------- ----

C

IMPLICIT REAL*8 (A-H,O-Z)
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DIMENSION U(NDIM),PAR(*),F(NDIM)

C

C Definition of parameters

A = PAR(1)

D = PAR(2)

H = PAR(3)

S = PAR(4)

R = PAR(5)

EPS = PAR(6)

P = PAR(7)

G = PAR(8)

C

U1=U(1)

U2=U(2)

X=U(3)

Y=U(4)

C

C Defining some functions including the new forced function Q

SS = X**2 + Y**2

Q = (0.5*(1 + EPS*X))**P

B = A/(D+U1)

TPI=8*DATAN(1.0D0)

C

C The differential equations including the forced oscillator equations

C in X and Y

F(1)= 2*R*Q*U1 - R*(U1**2) - U1*U2*B - G*(U1**2)/(U1**2 + H**2)

F(2)= 2*S*Q*U2 - (S*(U2**2))/U1

F(3) = X + TPI*Y - X*SS

F(4) = -TPI*X + Y - Y*SS

C

RETURN

END

C

SUBROUTINE STPNT(NDIM,U,PAR,T)

C ---------- -----

C

IMPLICIT REAL*8(A-H,O-Z)

DIMENSION U(NDIM),PAR(*)
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C

C Parameter initial values including the initial period

TPI=8*DATAN(1.0D0)

PAR(1)=15

PAR(2)=0.04

PAR(3)=0.1

PAR(4)=1.25

PAR(5)=6

PAR(6)=0.95

PAR(7)=0.0D0

PAR(8)=0.8

PAR(11)=1

C

C Initial conditions

U(1)=0.0208

U(2)=0.0417

U(3)=DSIN(TPI*T)

U(4)=DCOS(TPI*T)

C

RETURN

END

C

SUBROUTINE BCND

RETURN

END

C

SUBROUTINE ICND

RETURN

END

C

SUBROUTINE FOPT

RETURN

END

C

SUBROUTINE PVLS

RETURN

END
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A.1.3 The Unforced Macroparasite Model

This equations file also shows the use of the subroutine PVLS to enable auto to

output the minimum of two of the variables.

C----------------------------------------------------------

C----------------------------------------------------------

C AM : Anderson & May macroparasite model

C with reduced fecundity

C----------------------------------------------------------

C----------------------------------------------------------

C

SUBROUTINE FUNC(NDIM,U,ICP,PAR,IJAC,F,DFDU,DFDP)

C ---------- ----

C

IMPLICIT REAL*8 (A-H,O-Z)

DIMENSION U(NDIM),PAR(*),F(NDIM)

C

C

A = PAR(1)

RMU = PAR(2)

BETA = PAR(3)

RK = PAR(4)

GAM = PAR(5)

DEL = PAR(6)

C

U1=U(1)

U2=U(2)

U3=U(3)

RKSTAR = (RK+1)/RK

C

C The log-transformed differential equations with no forced oscillator

F(1)= (A-1) - (1+DEL)*EXP(U2-U1)

F(2)= BETA*EXP(U1+U3-U2) - (1 + RMU) - RKSTAR*EXP(U2-U1)

F(3)= EXP(U2-U3) - GAM - EXP(U1)

C

RETURN

END

C

SUBROUTINE STPNT(NDIM,U,PAR,T)
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C ---------- -----

C

IMPLICIT REAL*8(A-H,O-Z)

DIMENSION U(NDIM),PAR(*)

C

C Initial parameter values

TPI=8*DATAN(1.0D0)

PAR(1)=1.7

PAR(2)=1.0003/1.05

PAR(3)=10/1.05

PAR(4)=1.00

PAR(5)=10/1.05

PAR(6)=0.5

C

C Initial conditions

U(1)=1.420884374

U(2)=0.658744133

U(3)=-1.956063715

C

RETURN

END

C

SUBROUTINE BCND

RETURN

END

C

SUBROUTINE ICND

RETURN

END

C

SUBROUTINE FOPT

RETURN

END

C

SUBROUTINE PVLS(NDIM,U,PAR)

IMPLICIT NONE

INTEGER, INTENT(IN) :: NDIM

DOUBLE PRECISION, INTENT(IN) :: U(NDIM)
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DOUBLE PRECISION, INTENT(INOUT) :: PAR(*)

DOUBLE PRECISION, EXTERNAL :: GETP,GETU2

INTEGER NDX,NCOL,NTST

C The minimum of H, the hosts, and L, the larvae, are calculated

PAR(7)=GETP(’MIN’,1,U)

PAR(8)=GETP(’MIN’,3,U)

RETURN

END

A.1.4 The Forced Macroparasite Model

This code shows the situation of starting on a higher period cycle obtained from

simulation. The initial conditions are omitted from the code but parameter 11 must

have the same period as the simulation data. Numerical data of a whole period of

the simulation is inputted into a separate data file (with name “.dat”) and converted

into auto format following the procedure in Doedel and Oldeman (2009, §14.4)

C--------------------------------------------------------------

C--------------------------------------------------------------

C SPAR : Anderson & May macroparasite model with reduced

C fecundity and seaonal forcing

C--------------------------------------------------------------

C--------------------------------------------------------------

C

SUBROUTINE FUNC(NDIM,U,ICP,PAR,IJAC,F,DFDU,DFDP)

C ---------- ----

C

IMPLICIT REAL*8 (A-H,O-Z)

DIMENSION U(NDIM),PAR(*),F(NDIM)

C

A = PAR(1)

RMU = PAR(2)

BETA = PAR(3)

RK = PAR(4)

GAM = PAR(5)

DEL = PAR(6)

EPS = PAR(7)
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C

U1=U(1)

U2=U(2)

U3=U(3)

X=U(4)

Y=U(5)

SS = X**2 + Y**2

FORCE = A*(1+EPS*X)

RKSTAR = (RK+1)/RK

TPI=8*DATAN(1.0D0)

C

C The log-transformed differential equations with forced oscillator

F(1)= (FORCE-1) - (1+DEL)*EXP(U2-U1)

F(2)= BETA*EXP(U1+U3-U2) - (1 + RMU) - RKSTAR*EXP(U2-U1)

F(3)= EXP(U2-U3) - GAM - EXP(U1)

F(4) = X + TPI*Y - X*SS

F(5) = -TPI*X + Y - Y*SS

C

RETURN

END

C

SUBROUTINE STPNT(NDIM,U,PAR,T)

C ---------- -----

C

IMPLICIT REAL*8(A-H,O-Z)

DIMENSION U(NDIM),PAR(*)

C

C The initial parameter values. Par 11 indicates a 4 year cycle

TPI=8*DATAN(1.0D0)

PAR(1)=5

PAR(2)=1.0003/1.05

PAR(3)=10/1.05

PAR(4)=1.00

PAR(5)=10/1.05

PAR(6)=0.89351

PAR(7)=0.05

PAR(11)=4

C

C No initial conditions are given for the variables
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C

RETURN

END

C

SUBROUTINE BCND

RETURN

END

C

SUBROUTINE ICND

RETURN

END

C

SUBROUTINE FOPT

RETURN

END

C

SUBROUTINE PVLS

RETURN

END

A.2 Constants Files

We provide some sample constants files from the macroparasite work in Chapter 4

to show how some of the constants change for different scenarios. The constants file

has different formats due to the different versions of auto; we show here the older

format, which also works in the newest version of auto. The main constants of

note are IPS, IRS, ICP, NMX, ISW and DS. Respectively, these are the constants

indicating periodic solutions, the starting label (if 0 then auto will use the initial

conditions in the equations file), the free parameters, the number of points, branch

switching to other solutions or types of curves and the initial step size (if negative

then it traces in the opposite direction). More details and information on the other

parameters can be found in Doedel and Oldeman (2009).

Starting from an equilibrium in the unforced system

3 1 0 1 NDIM,IPS,IRS,ILP

1 6 NICP,(ICP(I),I=1,NICP)

100 4 3 2 1 7 0 0 NTST,NCOL,IAD,ISP,ISW,IPLT,NBC,NINT

1000 0.00 10.00 0.0 1.e6 NMX,RL0,RL1,A0,A1

100 5 2 8 7 3 0 NPR,MXBF,IID,ITMX,ITNW,NWTN,JAC
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1.e-7 1.e-7 1.e-4 EPSL,EPSU,EPSS

0.001 1.e-10 0.005 1 DS,DSMIN,DSMAX,IADS

0 NTHL,(/,I,THL(I)),I=1,NTHL)

0 NTHU,(/,I,THU(I)),I=1,NTHU)

0 NUZR,(/,I,PAR(I)),I=1,NUZR)

IPS = 1 indicating that auto is on a stationary solution. NDIM = 3 showing

that the system has 3 variables.

Starting from an equilibrium in the forced system

5 2 0 1 NDIM,IPS,IRS,ILP

2 7 11 NICP,(ICP(I),I=1,NICP)

100 4 3 2 1 11 0 0 NTST,NCOL,IAD,ISP,ISW,IPLT,NBC,NINT

300 0.00 10.00 0.0 1.e6 NMX,RL0,RL1,A0,A1

50 5 2 8 7 3 0 NPR,MXBF,IID,ITMX,ITNW,NWTN,JAC

1.e-7 1.e-7 1.e-4 EPSL,EPSU,EPSS

0.01 1.e-8 0.5 1 DS,DSMIN,DSMAX,IADS

0 NTHL,(/,I,THL(I)),I=1,NTHL)

0 NTHU,(/,I,THU(I)),I=1,NTHU)

0 NUZR,(/,I,PAR(I)),I=1,NUZR)

NDIM = 5 due to the additional 2 forced oscillator equations. IPS = 2 for tracing

periodic solutions and 11 (the period) is now a free parameter.

Tracing a bifurcation curve

5 2 9 1 NDIM,IPS,IRS,ILP

3 7 6 11 NICP,(ICP(I),I=1,NICP)

300 4 3 2 2 11 0 0 NTST,NCOL,IAD,ISP,ISW,IPLT,NBC,NINT

5000 0.00 10.00 0.0 1.e6 NMX,RL0,RL1,A0,A1

1000 5 2 8 7 3 0 NPR,MXBF,IID,ITMX,ITNW,NWTN,JAC

1.e-7 1.e-7 1.e-4 EPSL,EPSU,EPSS

0.0001 1.e-8 0.05 1 DS,DSMIN,DSMAX,IADS

1 NTHL,(/,I,THL(I)),I=1,NTHL)

11 0.0

0 NTHU,(/,I,THU(I)),I=1,NTHU)

0 NUZR,(/,I,PAR(I)),I=1,NUZR)

Again this is the periodic setting since IPS = 2. ISW = 2 indicates that we are

tracing a locus of bifurcation points, which start from label IRS = 9. To do this, we

require 3 free parameters.
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Vole Model: Further Details

B.1 Model Details

We use the model of Turchin and Hanski (1997):

dN

dτ
= r

(
1− N

K

)
N − GN2

N2 +H2
− CNP

N +D
(B.1a)

dP

dτ
= s

(
1−QP

N

)
P, (B.1b)

where N(τ) and P (τ) are the densities of prey and specialist predator at time τ re-

spectively. The prey undergo logistic growth with growth rate r and carrying capacity

K. They are affected by two predation terms, representing generalist and specialist

predation. Generalist predation is a Holling Type III functional form because gen-

eralists will switch to other prey items when prey numbers are low. The specialist

predation is the Holling Type II functional form which incorporates handling time of

prey. The predators have logistic growth with growth rate s and a carrying capacity

determined by the number of prey.

We non-dimensionalise the model using the following scalings: x = N
K

, y = PQ
K

,

t = τ and new parameters: g = G
K

, h = H
K

, d = D
K

and a = C
Q

. The model is shown in

dimensionless form in (B.2), which includes seasonal forcing in the growth rates and

implicitly also in the carrying capacities through the term S(t):

dx

dt
= rS(t)x− rx2 − gx2

x2 + h2
− axy

x+ d
(B.2a)

dy

dt
= sS(t)y − sy

2

x
. (B.2b)

There is a long history of using a sinusoidal function for the seasonal term as
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follows:

S(t) = 1 + ε sin(2πt) (B.3)

(Dietz, 1976; Rinaldi et al., 1993; Turchin and Hanski, 1997). However, as we wish to

consider how changes in breeding season length affect population dynamics, we adapt

the forcing term as follows:

S(t) = 2(1
2
(1 + ε sin(2πt)))l. (B.4)

The new parameter l determines the length of the breeding season, which we define as

when the forced growth term is above the unforced value of the parameter, i.e. when

S(t) > 1. When l = 1, the breeding season length is half a year and the forcing term

(B.4) reduces to (B.3). As l is increased the breeding season length decreases and vice

versa. We wish the amplitude of the seasonal term to be large to represent strong

seasonal forcing; nevertheless we require ε ≤ 1 so that the forcing term is not negative.

We choose ε = 0.95 to avoid the numerical problems that occur for ε = 1 when l is

small. Although we vary l from 0 − 5, the range 0.5 < l < 3.9 is most relevant for

Fennoscandian voles, since this leads to a breeding season between 3 months and 8

months long, which corresponds to the variation observed in field data (Nelson et al.,

1991; Hansen et al., 1999; Dalkvist et al., 2011).

B.2 Method Details

In order to study the predator-prey system (B.2) we employed both bifurcation and

simulation methods, following the procedure in Chapter 2. The bifurcation diagrams

were created using essentially standard numerical continuation techniques via the soft-

ware auto (Doedel, 1981). The simulation results were produced in Matlab (ode15s),

solving equations (B.2) for 2000 years. Once the solutions had settled to their dy-

namic attractor, a test to determine whether there existed a periodic solution of 1−9

years was performed; if not, the solution was labelled as quasi-periodic. The choice

of 9 years as a maximum test period is arbitrary; there could in principle be solutions

with any finite integer period, but an upper limit is required for numerical study.

To test whether a solution had a period of, for example, four years, we recorded the

prey density for 20 time points at intervals of 4 years, after an initial time interval of

sufficient length that transients had decayed. If the difference between the maximum

and minimum of these numbers was less than 2.5% of their mean value, then it was

classified as a four year solution. Tests of some difficult cases near bifurcation curves

or within multiple solution regions led to the choices of 2000 years run time, 20 test

points and 2.5% variation; these enabled periodic and quasi-periodic solutions to be

distinguished. We considered the parameter region 0 < l < 5, 0 < g < 1. For each
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set of parameter values, solutions were replicated 50 times using different (random)

initial conditions between 0 and 1, independently chosen for both prey and predator.

However, for parameter pairs lying in region B of Figure 3.3 we used 500 simulations

to gain increased accuracy of the relative sizes of the basins of attractions because of

the possibility of multiple solution behaviour in this region. Furthermore, fast Fourier

transforms were used to determine the period most closely reflected in the solution

(“dominant period”). In order to plot these results in a similar manner to the exact

cycle method, all the dominant periods were rounded to the nearest integer. If a dom-

inant period was higher than 9.5 then the solution was classified as quasi-periodic.

The fast Fourier transform method is not as accurate for calculating stability of the

solutions, for example, see Figure 3.3(b) and (c) at (l, g) = (0.5, 0.6) where (b) shows

that 2 year cycles are stable while the dominant period in (c) is given as 1 year.

However, it is very useful for calculating approximate periods of the quasi-periodic

solutions.
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Vole Model: Further Results

C.1 Bifurcation Definitions

Definitions of period-doubling, fold and Neimark-Sacker bifurcation curves are in-

cluded here to aid understanding of the bifurcation diagrams shown in Figures 3.4,

C.1, C.2, D.1 and D.3. More detailed bifurcation theory can be found in §2.3.

The standard procedure for locating bifurcations of periodically forced systems

uses the Poincaré (or stroboscopic) map that transforms the continuous system into a

discrete one by sampling the solution once in each forcing period; one year in our case.

Note that the stable/unstable annual cycles become stable/unstable fixed points of

the Poincaré map. Discrete bifurcation theory reveals that this fixed point is unstable

if one of the eigenvalues of its linearisation has modulus larger than 1. Changes in

stability are of three possible types. If the eigenvalue is equal to −1, it is a period-

doubling (flip) bifurcation; if the eigenvalue is equal to +1 it is a fold (saddle-node,

tangent) bifurcation; and if there is a pair of complex conjugate eigenvalues with

modulus 1, it is a Neimark-Sacker (torus) bifurcation.

At a period-doubling bifurcation curve (shown in blue), which we denote by PDk,

a stable cycle of period k loses stability and a stable cycle of period 2k arises.

On one side of a fold bifurcation curve denoted by FDk there is no solution but

on the other side there are both stable and unstable solution branches of a cycle of

period k, which have a fold at the bifurcation point. These are shown in red.

A Neimark-Sacker bifurcation is often described as a discrete version of a Hopf

bifurcation because for a standard supercritical bifurcation, the fixed point on the

Poincaré section becomes unstable and a stable closed invariant curve arises around

the point. Each iteration of the Poincaré map brings the solution back to a different

point on the closed invariant curve. Therefore, in the continuous setting when crossing

a Neimark-Sacker bifurcation curve, denoted by NSk, a cycle of period k loses stability

and a quasi-periodic solution arises. That is, the solution may superficially appear

periodic but in fact it has no finite period. Neimark-Sacker bifurcation curves are
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shown in green.

C.2 Bifurcation Results

Figure 3.3(a) is based on a bifurcation diagram produced in auto which shows the

full range of potential behaviour. In Figure C.1 we show this bifurcation diagram for

annual, quasi-periodic and 2 year cycles, as well as dynamics resulting from period-

doubling of the 2 year cycle. The whole bifurcation diagram (Figure C.2) is quite

complicated, with a number of different curves overlapping, so it is helpful to consider

first the partial bifurcation diagram in Figure C.1. In region 0 there are stable annual

cycles but then as g is decreased one crosses the Neimark-Sacker bifurcation curve,

NS1, leading to loss of stability of the annual cycles and a gain of stability of quasi-

periodic cycles in region 1. The rest of the region is bounded within the fold curve

FD2 and the period-doubling curve PD1. As one crosses the period-doubling curve

0 0.5 1 1.5 2 2.5 3
0

0.1

0.2

0.3

0.4

0.5

NS1

0.7

0.8

0.9

1

l

g

PD1

PD2

FD2

NS1

NS2

PD1

PD2

FD2

NS1

NS2

0

1

Figure C.1: Partial bifurcation diagram in season length parameter (l) and extent of
generalist predation (g). Only the bifurcations resulting from the annual cycle are
shown. The different bifurcation curves shown by colour: blue: period-doubling, red:
fold, green: Neimark-Sacker bifurcation. In region 0 (bounded below by the NS1 and
PD1 curves) there are annual cycles; in region 1 (bounded above by the NS1, NS2
and FD2 curves) there are quasi-periodic cycles.
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one loses stability of the yearly cycles and gains two year cycles, which also exist

outside the period-doubling region due to the fold curve. In fact, we can see the

existence and stability of these two year cycles in greater detail in Figure 3.4(a). The

Neimark-Sacker bifurcation curve, NS2, within this region leads to instability of all

the 2 year cycles below the green line. There is also a period-doubling curve within

the 2 year cycles region denoting the existence of four year cycles, as can be seen in

Figure 3.4(c).

We also note that the point where the continuation of the first Neimark-Sacker

bifurcation (NS1), hits the l = 0 axis is where the unforced system undergoes a Hopf

bifurcation. This bifurcation is subcritical, and this subcriticality extends to the

Neimark-Sacker bifurcation so that quasi-periodic solutions exist alongside the yearly

solutions above the curve. Combined with the quasi-periodic solution generated by

curve NS2, this produces the shape of the two regions C and D in Figure 3.3(a).

In Figure C.2 we include all the bifurcation curves for each of the different period

cycles that were found. For 2 − 5 year cycles, these were studied individually in

Figure 3.4 but we show them all together in Figure C.2 in order to see the full picture

and the overlapping behaviour. This new bifurcation diagram includes all the fold

bifurcation curves for all the cycles that were found between 3 and 9 years. There

are further bifurcation curves within these bounded regions, as seen in Figure 3.4,

denoting changes in stability to these solutions but we omit these in Figure C.2 in

order to gain a clearer representation of existence of the cycles. Furthermore, there are

undoubtedly more fold bifurcation curves indicating additional regions of multi-year

cycles for any integer period, but we either didn’t find these or they are too small to

be traced.
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Figure C.2: Full bifurcation diagram in season length parameter (l) and extent of
generalist predation (g). The curves which are labelled are those which are not in
Figure C.1. All other details as in Figure C.1. For the 3 year and higher cycles, only
the bifurcation curves indicating existence are shown and not any that only indicate
changes in stability; these can be found in Figure 3.4.
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Vole Model: Prey-only Forcing

In the model (B.2) we forced both the prey and predator growth rates with the same

forcing term. Although weasels are able to breed throughout the whole year, this

only happens in peak years of vole populations (King, 1989). Therefore, including a

weasel breeding season is valid but it is unclear whether this should follow the same

pattern as the vole breeding season, on which the forcing term was based. In order

to understand the effects of different forcing in the predator growth rate, we consider

the scenario where the prey growth rate is forced (B.2a) but there is no forcing in

the predator equation (B.2b). We analyse the model using the same methods as

in Chapter 3, namely through bifurcation and simulation analysis. The bifurcation

diagram, Figure D.1, shows the Neimark-Sacker bifurcation curve, NS1, the period-

doubling curve PD1 and the two fold curves, FD3 and FD4, for the model without

predator forcing (which can be compared to Figure C.2 when both predator and

prey are forced). We did not determine the higher period fold curves for this scenario.

Whereas in Figure C.1 the period-doubling curve PD1 intersected the Neimark-Sacker

bifurcation curve, NS1, for the case with no predator forcing this period-doubling

curve does not exist and the Neimark-Sacker bifurcation curve is now continuous.

Both the three year and four year cyclic regions have changed in shape, with the three

year region shrinking and the four year region increasing in size. This indicates the

potential for a large area of stable four year cycles. The Neimark-Sacker bifurcation

has also moved up in the l − g plane so that it now hits the l = 0 axis at g = 1. The

upward shift in the Neimark-Sacker curve and the expansion of the period four fold

curve indicates that when l is small, multi-year cycles are possible for more values

of generalist predators, i.e. for a wider range of g values, compared to the predator

forcing case in Chapter 3.

We also produced simulation results for this prey-only forcing case, showing both

the cycle period and the dominant period (Figure D.2). The influence of the large

four year fold curve as seen in Figure D.1 is clear, dominating the region containing

multi-year cycles. However, 3, 7 and 8 year cycles are also found. This is interesting
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Figure D.1: Bifurcation diagram in season length parameter (l) and extent of gen-
eralist predation (g) when the predators are not forced. Only the four curves NS1,
PD1, FD3 and FD4 were found, although the period-doubling curve, PD1, has in fact
disappeared for this scenario. The different bifurcation curves shown by colour: red:
fold, green: Neimark-Sacker bifurcation.

considering that the 7 and 8 year cycles were rare in the predator forcing case (see

Figure 3.3(b)).

From these figures, it is clear that a number of results stated in Chapter 3 for

the model with prey and predator forcing hold true when the forcing on the predator

is removed. As before there is a diagonal split from top left to bottom right delin-

eating multi-year cycles and annual cycles. As the extent of the generalist predation

increases, such as when one moves south in Fennoscandia, there is a switch to annual

cycles as expected. However, it is not a clear split and there is still the potential for

3 year cycles in a similar manner to the results in Figure 3.2. Also holding true is

the fact that multi-year cycles exist for a wide range of values of l when g is small.

The main difference between the results in Chapter 3 and these results for prey-only

forcing is the fact that only annual cycles are indicated for the higher values of l,

i.e. for breeding seasons around 31
2

months, although confirmation by simulation is

needed to see if this continues for l > 3. This also ties in with the fact that the pat-

tern of increasing period length for small g as l increases is less clearly defined. The
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Figure D.2: Simulation results when the predators are not forced. The diagrams show
season length parameter (l) against extent of generalist predation (g). The breeding
season length is indicated on the top axis. In (a) a simulation diagram with a grid
of pie charts showing what proportion of the 50 simulations had a particular period,
indicated by the legend. Each simulation was run with random initial conditions
(between 0 and 1 for both prey and predator) and the period was tested after 2000
years. In (b) these same simulations were tested using fast Fourier transforms to
determine the dominant period of the solutions. Other parameter values are r = 6,
s = 1.25, d = 0.04, a = 15, h = 0.1, ε = 0.95.
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dominance of the 4 year cycles makes it hard to determine this behaviour; identifying

the bifurcation curves for the higher period cycles could clarify whether this pattern

still holds.

Reducing forcing in the predator growth rate The case of no predator forcing

above shows that the period-doubling curve has disappeared. It is possible that the

curve does exist but we were unable to find it while doing the bifurcation analysis.

However, confirmation of how the period-doubling curve, and the other curves, change

can be found by analysing the system as it moves from the original scenario of both

prey and predator being forced towards the case with prey-only forcing. We do this

by tracing along a gradient of reduced forcing for the predator determined by a new

parameter ξ, using the adapted forcing term S∗(t) for the predator:

S∗(t) = 1− ξ + ξS(t). (D.1)

Therefore, ξ = 1 is the case in Chapter 3 while ξ = 0 is the case of no forcing for

the predator. By reducing ξ from 1 to 0 we can determine how the four curves (NS1,

PD1, FD3 and FD4) change as we move towards prey-only forcing. We consider the

bifurcation diagram for different values of ξ, as shown in Figure D.3.

Through consideration of the full range of ξ values (Figures C.2, D.1 and D.3)

it is clear how the different curves change shape. The Neimark-Sacker bifurcation

curve is increasing in g as ξ is reduced. The break between the two sections of the

Neimark-Sacker bifurcation reduces in size as ξ decreases until ξ = 0 where it is now

continuous (Figure D.1). This is due to the reduction in size of the period-doubling

region as seen in Figure D.3. In fact, as ξ is reduced from 1 to 0, the period-doubling

curve, PD1, gets smaller until it disappears just below ξ = 0.155. The three year fold

curve, FD3, reduces in size and is no longer connected to the g = 0 axis. Figure D.3

also indicates that the Hopf bifurcation on the l = 0 axis is still subcritical (as in

Figure C.2) because the three year fold curve hits the axis above the Neimark-Sacker

bifurcation curve. The four year fold curve, FD4, lowers in g as ξ is reduced at first,

although by ξ = 0 the fold curve has increased again so that for ξ = 0, it exists up to

g = 1.5 for low values of l. It also exists for more values of l as ξ decreases.
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Figure D.3: Four bifurcation diagrams in season length parameter (l) and extent of
generalist predation (g) as the level of forcing in the predator equation is reduced.
Four different values of ξ are shown, namely (a) ξ = 0.8, (b) ξ = 0.6, (c) ξ = 0.4, (d)
ξ = 0.2. For ξ = 0 see Figure D.1. The different bifurcation curves shown by colour:
blue: period-doubling, red: fold, green: Neimark-Sacker bifurcation.
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Appendix E

Macroparasite Model: Further

Details

E.1 Non-Dimensionalising the Model

In this study we use a general model formulation which includes the larval stage ex-

plicitly, and the aggregation of parasite spread throughout hosts is represented by the

commonly used negative binomial distribution (Anderson and May, 1978; Diekmann

and Kretzschmar, 1991; Rosà and Pugliese, 2002). We present it here before rescaling:

dH

dτ
= (a∗ − b)H − (α + δ∗)P (E.1a)

dP

dτ
= β∗LH − (µ∗ + b+ α)P − αP

2

H

(
k + 1

k

)
(E.1b)

dL

dτ
= λP − γ∗L− β∗LH. (E.1c)

H(τ) is the number of host species at time τ , P (τ) is the total number of adult

parasites contained within all of the hosts at time τ and L(τ) is the number of free-

living larval stage parasites. The host species undergoes exponential birth and death,

with rates a∗ and b respectively, as well as death, αP , and reduced fecundity, δ∗P ,

caused by the parasite. The term β∗LH denotes the rate of transmission of larvae to

hosts leading to adult parasites. Parasites are lost due to natural mortality with rate

µ∗, natural death of the host (rate b) and parasite induced death of the host. However,

the loss of parasites due to host death requires knowledge of expected number of

parasites within each host, and we assume a negative binomial distribution for the

parasites with aggregation parameter k (which leads to the form of (E.1b)). Finally,

the larvae are produced by adult parasites laying eggs at rate λ and die at rate γ∗.
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We use the same parameter values as Dobson and Hudson (1992), which are:

a∗ = 1.8, b = 1.05, α = 3× 10−4, β∗ = 0.1, µ∗ = 1, k = 1, λ = 10, γ∗ = 11. However,

we deviate with parameter δ∗. Dobson and Hudson (1992) let δ∗ = 5 × 10−4, which

combined with the other parameter values leads to diverging cycles driving the hosts

and parasites to extinction. Dobson and Hudson (1992) chose to counteract this by

adding in host regulation through logistic growth. We instead keep this model but

lower the value of δ∗ to values which do not lead to extinction.

We non-dimensionalise this model, with the scalings, h = β∗H
b

, p = αβ∗P
b2

, l = αβ∗L
λb

and t = bτ . The new parameters are a = a∗

b
, δ = δ∗

α
, β = λ

b
, µ = µ∗+α

b
and γ = γ∗

b
. Of

particular note is that a = 1.7 and δ will vary about 0.8. This produces the following

model, as seen in (4.1).

dh

dt
= (a− 1)h− (1 + δ)p (E.2a)

dp

dt
= βlh− (µ+ 1)p− p2

h

(
k + 1

k

)
(E.2b)

dl

dt
= p− γl − lh, (E.2c)

E.2 Log-Transforming the Model

We log-transformed the equations to speed up computational time as the solutions

spend a large proportion of each cycle very close to zero and it takes a long time

for the transient dynamics to die out. Log-transforming the equations significantly

improves both computational time in Matlab and accuracy in auto.

By letting ĥ = lnh, p̂ = ln p and l̂ = ln l, this transforms (E.2) into the following

model:

dĥ

dt
= (a− 1)− (1 + δ)ep̂−ĥ (E.3a)

dp̂

dt
= βel̂+ĥ−p̂ − (µ+ 1)−

(
k + 1

k

)
ep̂−ĥ (E.3b)

dl̂

dt
= ep̂−l̂ − γ − eĥ, (E.3c)

We reverse this log-transformation before presenting results.
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Appendix F

Macroparasite Model: The

Unforced Dynamics

F.1 Investigating the Period at the Hopf Bifurca-

tion

In Figure 4.4 we showed how the initial period at the Hopf bifurcation changes as

both a and δ are varied. We stated that only by varying a (concurrently with any

other parameter) was it possible to reduce the period to low period limit cycles at

the Hopf bifurcation. Here we present the results for every parameter pair showing

both the change in the initial period and the resulting change in the Hopf bifurcation

curve in two-dimensional parameter space.

F.1.1 Parameter a

We show first of all the changes in the period when a is varied with each of the other

parameters in turn.
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Figure F.1: Varying a and δ in the unforced system. In (a) the initial period at the
Hopf bifurcation is shown. In (b), the Hopf bifurcation curve. All other parameters
are kept constant at β = γ = 10/1.05, µ = 1.0003/1.05 and k = 1.
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Figure F.2: Varying a and β in the unforced system. In (a) the initial period at the
Hopf bifurcation is shown. In (b), the Hopf bifurcation curve. All other parameters
are kept constant at δ = 0.789798, γ = 10/1.05, µ = 1.0003/1.05 and k = 1.
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Figure F.3: Varying a and γ in the unforced system. In (a) the initial period at the
Hopf bifurcation is shown. In (b), the Hopf bifurcation curve. All other parameters
are kept constant at δ = 0.789798, β = 10/1.05, µ = 1.0003/1.05 and k = 1.
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Figure F.4: Varying a and k in the unforced system. In (a) the initial period at the
Hopf bifurcation is shown. In (b), the Hopf bifurcation curve. All other parameters
are kept constant at δ = 0.789798, β = γ = 10/1.05, and µ = 1.0003/1.05.
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Figure F.5: Varying a and µ in the unforced system. In (a) the initial period at the
Hopf bifurcation is shown. In (b), the Hopf bifurcation curve. All other parameters
are kept constant at δ = 0.789798, β = γ = 10/1.05 and k = 1.
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F.1.2 Parameter β

We show the change in the Hopf bifurcation and the resulting change in the initial

period when β is varied with each of the parameters in turn, apart from with a (that

case is shown in Figure F.2).
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Figure F.6: Varying β and δ in the unforced system. In (a) the initial period at the
Hopf bifurcation is shown. In (b), the Hopf bifurcation curve. All other parameters
are kept constant at a = 1.4/1.05, γ = 10/1.05, µ = 1.0003/1.05 and k = 1.
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Figure F.7: Varying β and γ in the unforced system. In (a) the initial period at the
Hopf bifurcation is shown. In (b), the Hopf bifurcation curve. All other parameters
are kept constant at a = 1.4/1.05, δ = 0.789798, µ = 1.0003/1.05 and k = 1.
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Figure F.8: Varying β and k in the unforced system. In (a) the initial period at the
Hopf bifurcation is shown. In (b), the Hopf bifurcation curve. All other parameters
are kept constant at a = 1.4/1.05, δ = 0.789798 γ = 10/1.05, and µ = 1.0003/1.05.
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Figure F.9: Varying β and µ in the unforced system. In (a) the initial period at the
Hopf bifurcation is shown. In (b), the Hopf bifurcation curve. All other parameters
are kept constant at a = 1.4/1.05, δ = 0.789798, γ = 10/1.05 and k = 1.
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F.1.3 Parameter γ

We show the change in the Hopf bifurcation and the resulting change in the initial

period when γ is varied with each of the parameters in turn, apart from with a and

β, as these are shown in Figures F.3 and F.7 respectively.
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Figure F.10: Varying γ and δ in the unforced system. In (a) the initial period at the
Hopf bifurcation is shown. In (b), the Hopf bifurcation curve. All other parameters
are kept constant at a = 1.4/1.05, β = 10/1.05, µ = 1.0003/1.05 and k = 1.
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Figure F.11: Varying γ and k in the unforced system. In (a) the initial period at the
Hopf bifurcation is shown. In (b), the Hopf bifurcation curve. All other parameters
are kept constant at a = 1.4/1.05, δ = 0.789798 β = 10/1.05, and µ = 1.0003/1.05.
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Figure F.12: Varying γ and µ in the unforced system. In (a) the initial period at the
Hopf bifurcation is shown. In (b), the Hopf bifurcation curve. All other parameters
are kept constant at a = 1.4/1.05, δ = 0.789798, β = 10/1.05 and k = 1.

F.1.4 Parameter δ

We show the change in the Hopf bifurcation and the resulting change in the ini-

tial period when δ is varied with k and µ; δ varied with a, β and γ are shown in

Figures F.1, F.6 and F.10 respectively.
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Figure F.13: Varying δ and k in the unforced system. In (a) the initial period at the
Hopf bifurcation is shown. In (b), the Hopf bifurcation curve. All other parameters
are kept constant at a = 1.4/1.05, β = γ = 10/1.05, and µ = 1.0003/1.05.
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Figure F.14: Varying δ and µ in the unforced system. In (a) the initial period at the
Hopf bifurcation is shown. In (b), the Hopf bifurcation curve. All other parameters
are kept constant at a = 1.4/1.05, β = γ = 10/1.05 and k = 1.

F.1.5 Parameter k

We show the change in the Hopf bifurcation and the resulting change in the initial

period when k is varied with µ in Figure F.15. Parameter k varied with a, β, γ and

δ are plotted in Figures F.4, F.8, F.11 and F.13 respectively.
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Figure F.15: Varying k and µ in the unforced system. In (a) the initial period at the
Hopf bifurcation is shown. In (b), the Hopf bifurcation curve. All other parameters
are kept constant at a = 1.4/1.05, β = γ = 10/1.05 and δ = 0.789798.

F.1.6 Parameter µ

The change in the Hopf bifurcation and the resulting change in the initial period as µ

is varied with each of the parameters in turn is shown in Figures F.5, F.9, F.12, F.14

and F.15.

F.1.7 Results

Figures F.1 - F.5 show that whenever parameter a is varied, concurrently with any

other parameter, the initial period at the Hopf bifurcation decreases below 5 years.

However, when any other parameter pair is considered, the initial period does not fall

below 5 years at the Hopf bifurcation. As we are interested in the effect of seasonal

forcing on lower period cycles, we chose to focus on varying a and let the location of

the Hopf bifurcation also change with δ.
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