
N U M E R I C A L S I M U L AT I O N A N D O P T I M I S AT I O N O F I O R

A N D E O R P R O C E S S E S I N H I G H - R E S O L U T I O N M O D E L S

F O R F R A C T U R E D C A R B O N AT E R E S E RV O I R S

simeon agada

Submitted for the degree of Doctor of Philosophy

School of Energy Geoscience Infrastructure and Society

Institute of Petroleum Engineering

Heriot-Watt University

July 2015

The copyright in this thesis is owned by the author. Any quotation from the thesis or use of

any of the information contained in it must acknowledge this thesis as the source of the

quotation or information.

[ July 29, 2015 at 16:33 – classicthesis by Simeon Agada ]



To my mother

[ July 29, 2015 at 16:33 – classicthesis by Simeon Agada ]



A B S T R A C T

Carbonate reservoirs contain more than half of the world’s conventional hydro-

carbon resources. Hydrocarbon recovery in carbonates, however, is typically low,

due to multi-scale geological heterogeneities that are a result of complex diage-

netic, reactive, depositional and deformational processes. Improved Oil Recov-

ery (IOR) and Enhanced Oil Recovery (EOR) methods are increasingly considered

to maximise oil recovery and minimise field development costs. This is partic-

ularly important for carbonate reservoirs containing fractures networks, which

can act as high permeability fluid flow pathways or impermeable barriers dur-

ing interaction with the complex host rock matrix.

In this thesis, three important contributions relating to EOR simulation and

optimisation in fractured carbonate reservoirs are made using a high-resolution

analogue reservoir model for the Arab D formation. First, a systematic approach

is employed to investigate, analyse and increase understanding of the fundamen-

tal controls on fluid flow in heterogeneous carbonate systems using numerical

well testing, secondary and tertiary recovery simulations. Secondly, the interplay

between wettability, hysteresis and fracture-matrix exchange during combined

CO2 EOR and sequestration is examined. Finally, data-driven surrogates, which

construct an approximation of time-consuming numerical simulations, are used

for rapid simulation and optimisation of EOR processes in fractured carbonate

reservoirs while considering multiple geological uncertainty scenarios.
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1
I N T R O D U C T I O N

A significant proportion of the world’s conventional and unconventional hydro-

carbon resources are located in carbonate reservoirs, commonly estimated at

around 60% of global reserves (Beydoun, 1998; Burchette, 2012; Machel et al.,

2012). Carbonate reservoirs, however, suffer from poor recovery, estimated to be

below 35% on average (Montaron, 2008). Hence, a small increase in recovery

(1 to 2%) would have a significant impact on hydrocarbon reserves (Agar and

Geiger, 2015). Optimising the development of existing fields and new discover-

ies in carbonate reservoirs requires a reliable prediction of hydrocarbon recovery.

Performance prediction in turn needs a sound understanding of how geological

heterogeneities impact the flow behaviour of oil, gas and brine.

Carbonate reservoirs are highly heterogeneous across all length scales (from

pore- to field-scale), rendering it difficult to predict flow behaviour in the subsur-

face (Fig. 1.1). The multi-scale heterogeneities result from complex depositional,

reactive and diagenetic processes (e.g., Kenter, 1990; Kerans et al., 1994; Mutti

et al., 1996; Cantrell and Hagerty, 1999; Corbett and Jenson, 2000; Jennings et al.,

2000; Pomar et al., 2002; Lucia et al., 2003; Hollis et al., 2010; Koehrer et al., 2011;

Amour et al., 2012; van der Land et al., 2013; Chandra et al., 2015). In addition,

most carbonate reservoirs are naturally fractured, with fractures forming over a

wide range of scales, commonly generating complex connected networks, which

provide the essential flow paths and/or link different reservoir horizons (e.g.,

Ericsson et al., 1998; Guerreiro et al., 2000; Azeemuddin et al., 2002; Gale et al.,

2004; Toublanc et al., 2005; Belayneh et al., 2006; Agar et al., 2010; Belayneh and

Cosgrove, 2010; Bush, 2010; Hollis et al., 2011; Geiger and Matthai, 2012).

1
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An accurate characterisation of reservoir architecture, diagenetic evolution

and deformation is, therefore, critical for the successful modelling of carbon-

ate reservoirs, predicting flow behaviour and estimating hydrocarbon recoveries.

Carbonate reservoir characterisation, however, is associated with a high degree

of uncertainty. Typical characterisation workflows integrate data from multiple

sources such as seismic surveys, wireline logs, borehole imaging, petrophysics,

well-tests, and core analysis (Garland et al., 2012). These data are usually com-

plemented by outcrop analogue information to bridge the near wellbore and

reservoir scale data. Although, there are limitations as to how outcrop analogues

reflect the behaviour of subsurface reservoirs and how quantitative outcrop data

can be scaled to the subsurface (Bryant et al., 2000; Kuchuk and Biryukov, 2012),

it is now common to use observed outcrop geometries as a subsurface modelling

template to improve the descriptions of the inter-well space (e.g., Kerans et al.,

1994; Aurell et al., 1998; Vennin et al., 2003; Vaughan et al., 2004; Castel et al.,

Figure 1.1: Pore-size distribution controlled by depositional and diagenetic fabrics
(micro- and macro porosity) in the Arab formation. Pore space is filled with
blue resin (a). Pore casts of increasingly higher magnification (b, c, d) indi-
cate carbonate heterogeneity at multiple scales. After Cantrell and Hagerty
(1999).

[ July 29, 2015 at 16:33 – classicthesis by Simeon Agada ]



introduction 3

Figure 1.2: Interpretation of fracture traces of a Jurassic Carbonate Ramp outcrop from
the High Atlas Mountains, Morroco. Horizontal lines represent bed bound-
aries. Fractures are represented by vertical lines while thick red lines indicate
locations of fracture corridors. After Agar et al. (2010).

2007; Reijnders et al., 2008; Palermo et al., 2010; Koehrer et al., 2011; Lapponi

et al., 2011; Garcia-Fresca et al., 2012).

In addition to using outcrop analogues as a means to improve the static

modelling of carbonate reservoirs, high-quality digital outcrop models are in-

creasingly employed to investigate the interaction of flow processes with small-

scale geological heterogeneities that have been observed in the outcrop. Outcrop-

based flow simulation models tend to represent small-scale geological hetero-

geneities at great detail (Fig. 1.2). This is in stark contrast to typical reservoir

simulation models that are used to predict reservoir performance and to guide

reservoir development. Such reservoir simulation models require significant up-

scaling, which lead to the reduction of geological features and heterogeneities

that are contained in the original geological model of the reservoir (e.g., Christie,

2001; Gerritsen and Durlofsky, 2005; King et al., 2006).

Hence, high-resolution outcrop-based flow simulations enable us to study sys-

tematically how certain geological structures, which are typically not preserved

explicitly in reservoir-scale flow simulations, impact fluid flow and hydrocarbon

recovery. Ideally, this understanding can then be used to rank the relative im-

portance of geological structures with respect to their impact on fluid flow and

hydrocarbon recovery. The ranking then enables geologists to focus on improv-

ing the description of these structures and engineers to include them accurately
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in field-scale reservoir simulation models. The use of outcrop analogues for de-

tailed geological and fluid flow studies is now well established and increasingly

used in the oil and gas industry, both for clastic reservoirs (e.g., Ringrose et al.,

1999; White and Barton, 1999; Stephen and Dalrymple, 2002; Pringle et al., 2004;

Kirstetter et al., 2006; Enge et al., 2007; Jackson et al., 2009; Rotevatn et al., 2009;

Sech et al., 2009; Choi et al., 2011; Deveugle et al., 2011) and carbonate reservoirs

(e.g., Vaughan et al., 2004; Belayneh et al., 2006; Agar et al., 2010; Fitch et al.,

2014; Shekhar et al., 2014).

Due to the generally low hydrocarbon recovery from carbonate reservoirs

(Montaron, 2008), enhanced oil recovery (EOR) techniques can be essential to

reduce the residual oil saturation and increase the economic value of carbonate

reservoirs. EOR methods encompass gas (miscible/immiscible), chemical and

thermal methods that produce previously unrecoverable oil by various mecha-

nisms including oil swelling, viscosity reduction, interfacial tension reduction

and mobility control (Lake, 1989; Christensen et al., 2001; Dake, 2001; Manrique

et al., 2007; Awan et al., 2008; Bourdarot and Ghedan, 2011; Talebian et al., 2014).

Although, EOR methods have been successfully applied across a wide range

of clastic and carbonate reservoirs (Fig. 1.3 and Table 1.1), the interactions be-

Figure 1.3: EOR project history in the United States. The number of EOR projects peaked
in 1986 and then declined (due to the oil price crash) for nearly 20 years.
Since 2004 the number of projects has been increasing again. Modified after
Manrique et al. (2007, 2010).
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Field Location Lithology EOR technique
Stepanovskoye Russia Limestone Gas
San Andres USA Dolomite Gas
Ekofisk Norway Limestone Gas
Bibi Hakimeh Iran Limestone Gas
Harweel Oman Dolomite Gas
Bati Raman Turkey Limestone Gas
Yates USA Dolomite Thermal
Garland USA Limestone Thermal
Qarn Alam Oman Limestone Thermal
Clearfork USA Dolomite Chemical
Cottonwood Creek USA Limestone Chemical

Table 1.1: Examples of EOR field application in carbonate reservoirs (Christensen et al.,
2001; Manrique et al., 2007; Awan et al., 2008)

.

tween complex EOR flow processes and geological heterogeneity, especially in

carbonate formations is not yet fully understood. Detailed simulation studies us-

ing high-resolution outcrop-based models are an excellent tool to evaluate EOR

processes for specific reservoirs and analyse the impact of geological and engi-

neering uncertainties on reservoir performance. Detailed simulation studies can

then help to guide decision making and increase the number of carbonate reser-

voir EOR projects that are sanctioned to progress from evaluation to execution

in the light of technical and economic constraints.

Uncertainty in geological parameters occurs because carbonate reservoirs are

highly heterogeneous, making it difficult to predict flow behaviour in the subsur-

face and the accompanying geological flow parameters. Such uncertainties are

typically beyond the control of the modeller but must be considered to ensure

that model predictions are holistic and cover the range of possible outcomes. Ge-

ological parameter uncertainties include but are not limited to the nature and

flow significance of the matrix, faults and subseismic fractures and the role of

wettability and hysteresis when controlling imbibition and drainage mechanisms

(Fig. 1.4). Conversely, engineering uncertainties can be operationally controlled

and modified to achieve optimal outcomes. Engineering parameter uncertainties

include but are not limited to injection strategy, well locations, injection rates,

production rates and reservoir depletion strategy. Robust optimisation which
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has now become a common workflow in the industry couples the exploration of

both geological and engineering uncertainty to obtain an optimal solution (e.g.,

Petvipusit et al., 2014).

Figure 1.4: Comparison of geological uncertainties (beyond our control but inferable
from data) and engineering uncertainties (based on operational choices and
under our control.

1.1 objectives and structure of the thesis

This thesis integrates reservoir characterisation with reservoir simulation to ex-

plore fundamental aspects of EOR simulation and optimisation for fractured car-

bonate reservoirs using a high-resolution fractured carbonate reservoir model.

This thesis, therefore, aims to improve the simulation of fractured carbonate

reservoirs by analysing the controls on fluid flow in heterogeneous carbonate

systems and investigating how different EOR processes can be used to obtain

optimum recovery in the presence of multiple uncertainties arising from intrin-

sic carbonate reservoir heterogeneity. Specifically, the objectives of this thesis are:

• To improve understanding of carbonate reservoir simulation by using a

high-resolution analogue reservoir model for the Arab D formation to per-

form numerical well test analysis and simulations of improved and en-

hanced oil recovery.
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• To identify flow signatures for variations in production behaviour, when

different injection fluids and well patterns are employed, and to identify

reservoir engineering measures that can be used to improve recovery in

the presence of geological heterogeneities.

• To improve understanding of carbonate reservoir simulation by analysing

how small-scale heterogeneties typical for this carbonate reservoir setting

impact fluid-flow behaviour and hydrocarbon production.

• To investigate and demonstrate how the interplay between hysteresis, wet-

tability and fracture-matrix exchange impacts simultaneous oil recovery

and CO2 storage in relation to the multiscale heterogeneities that are per-

vasive for fractured carbonate reservoirs.

• To generate, analyse and compare data-driven surrogate models for rapid

simulation and optimisation of EOR processes in fractured carbonate reser-

voirs.

In general, this thesis provides three important contributions to EOR simula-

tion and optimisation in fractured carbonate reservoirs using a high-resolution

analogue reservoir model for the Arab D formation; (1) The fundamental con-

trols on fluid flow in heterogeneous carbonate systems are investigated using a

systematic approach (often called a ’geoengineering workflow’) that evaluates

simulations of numerical well testing, secondary recovery and tertiary recovery

(e.g., Corbett, 2009; Corbett et al., 2012; Chandra et al., 2013), (2) the interplay

between wettability, hysteresis and fracture-matrix exchange during concurrent

CO2 EOR and sequestration is examined and (3) simulation and optimisation

of EOR processes (including application of Monte Carlo analysis and stochas-

tic algorithms) are achieved using reasonably reliable surrogate (proxy) models

generated from time-consuming numerical simulations.

This thesis contains 7 chapters in total.

• Chapter 1 is the current chapter. It gives a brief overview of carbonate

reservoirs and the applicability of outcrop analogue models for reservoir

simulation studies. Chapter 1 also highlights suitable enhanced oil recovery

techniques for carbonate reservoirs and states the objectives of the thesis.
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• Chapter 2 introduces the main principles governing multiphase fluid flow

simulation of naturally fractured reservoirs. This includes the description

of fractured reservoir simulation models and the governing equations. Chap-

ter 2 also highlights the main principles governing black oil and composi-

tional reservoir fluid models, relative permeabilities and hysteresis in sat-

uration functions before describing measures for managing the computa-

tional cost of the simulations.

• Chapter 3 introduces the high-resolution geological and flow simulation

analogue reservoir model used for the IOR and EOR studies in this the-

sis. Numerical well-test and secondary (black oil) recovery simulations are

then used to investigate the main geological and engineering controls on

fluid-flow in carbonate reservoirs. This chapter is based on Agada et al.

(2014).

• Chapter 4 presents the compositional simulation of miscible and immis-

cible gas injection in carbonate reservoirs using the model introduced in

Chapter 3. The use of foam EOR to control gas mobility and improve reser-

voir conformance is demonstrated. This chapter is based on Agada and

Geiger (2013) and Agada et al. (2015b).

• Chapter 5 extends the work from Chapter 3 by investigating the interplay

between wettability, hysteresis and fracture-matrix transfer during CO2

EOR and storage. End-member wettability scenarios and multiple wettabil-

ity distribution approaches are tested, while effective fracture permeabili-

ties are computed based on geological modelling rules linked to the evo-

lution of the fracture systems. This chapter is based on Agada and Geiger

(2014).

• Chapter 6 presents the development of data-driven surrogates for the rapid

simulation and optimisation of EOR processes in fractured carbonate reser-

voirs. Different surrogate modelling techniques coupled with experimental

design are used to develop proxy models to represent simulation models

inside and outside of the design space. The surrogates are then used for

rapid uncertainty quantification using Monte Carlo analysis and rapid op-
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timisation using stochastic algorithms. This chapter is based on Agada et al.

(2015a).

• Chapter 7 gives a summary of the key outcomes of the thesis and provides

the concluding remarks followed by recommendations for future work.
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2
M U LT I S C A L E S I M U L AT I O N O F F L U I D F L O W I N

N AT U R A L LY F R A C T U R E D R E S E RV O I R S

2.1 introduction

Fractures, which are ubiquitous in subsurface reservoirs throughout the world,

are often the principal pathways through otherwise impermeable or low perme-

ability rocks (rock matrix) and are key to quantifying flow processes in hydro-

geological, geothermal, CO2 storage and enhanced/improved oil recovery ap-

plications (Berkowitz, 2002). Naturally fractured hydrocarbon reservoirs display

complex production behaviour since hydrocarbon recovery is influenced, to a

greater or lesser extent, by fractures (Nelson, 2001; Makel, 2007). Understanding,

managing and predicting production behaviour for fractured reservoirs requires

a good understanding of how fluid flow can be impacted by geological hetero-

geneity, particularly fracture networks but also complex matrix properties.

For example, the influence of natural fractures on subsurface fluid flow can

be observed during the migration of the water front in a fractured Middle East-

ern carbonate reservoir (Fig. 2.1). The presence of connected fractures in the

eastern flank of the field leads to rapid and irregular migration of the water

front compared to the western flank, where the fractures are less connected

and hence more uniform migration of the water front and better sweep is ob-

served. Such displacement patterns evoke important questions that ought to be

answered during fractured reservoir characterisation and modelling: Are frac-

tures present in the subsurface rock? If fractures are present, are they connected?

How can fractures be accurately represented in subsurface reservoir models? To

10
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2.2 fractured reservoir simulation models 11

what extent do the fractures affect Improved Oil Recovery (IOR) and Enhanced

Oil Recovery (EOR) processes in fractured carbonate reservoirs? What mitigating

measures can be employed to accommodate fracture impact on IOR and EOR? The

aforementioned questions are non-trivial and require extensive reservoir charac-

terisation, modelling, simulation, sensitivity analysis and uncertainty quantifi-

cation before they can be answered. The accuracy and applicability of IOR and

EOR reservoir simulation, therefore, requires appropriate and robust conceptual

models which are discussed in this chapter.

Figure 2.1: Irregular water front progression in a giant Middle Eastern carbonate field
crossed by sub-seismic faults and fractures. The original position of the water-
oil contact is shown as grey bands and the present position as blue lines.
Wet wells are shown as blue circles and dry wells as green squares. After
Cosentino et al. (2001).

2.2 fractured reservoir simulation models

Several conceptual models exist to represent multiphase fluid flow and multi-

component transport processes in fractured porous media and account for het-

erogeneities arising from the rock matrix, fracture networks and matrix-fracture

exchange. In general, these conceptual models assume that fractures exhibit high

permeability and low storage capacity, while the rock matrix exhibits low per-

meability and high storage capacity.

When fractures exist on a sub-grid scale, it is typically sufficient to use a single

porosity model to capture the matrix and fracture effects (Fig. 2.2). The fracture-
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matrix complexity increases significantly when the fractures are larger than the

grid blocks and are often connected. In such cases (models with connected frac-

tures larger than the grid size), dual continuum and discrete fracture models are

often used (Bourbiaux et al., 2002; Bourbiaux, 2010).

Figure 2.2: Guidelines for selecting flow modelling approach for fractured reservoir sim-
ulation. After Bourbiaux et al. (2002).

2.2.1 Dual Continuum Models

The dual continuum models account for the different time scale of flow in Nat-

urally Fractured Reservoirs (NFR) by treating the fractures and matrix as two

separate continua, which are coupled via a transfer function. Fracture-matrix

transfer occurs by capillary forces (depending on the wettability of the medium),

gravity forces (due to density differences), fluid expansion and diffusion (due to

pressure gradient exerting a driving force across the matrix medium) (Fig. 2.3).

Generally, during water flooding oil recovery from a water-wet matrix is dom-

inated by spontaneous imbibition, while recovery from an oil-wet matrix during

gas flooding is dominated by gravity drainage. Carbonate rocks are typically
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mixed- to oil-wet, hence, oil recovery is influenced to a greater or lesser extent by

both spontaneous imbibition and gravity drainage. The transfer function needs

to conserve momentum and define the rate of fracture-matrix fluid exchange by

taking the aforementioned recovery mechanisms into account (Lu et al., 2008).

Figure 2.3: Oil recovery from a matrix that is surrounded by fractures. Oil is recovered
by fluid expansion (a), diffusion (b), gravity drainage (c), and spontaneous
imbibition (d). Modified after Lu et al. (2008).

Traditionally, transfer functions follow the classic Warren and Root (1963) as-

sumption that the flow towards the well bore takes place in the fracture network,

while the matrix feeds the system with stored hydrocarbons. The Gilman and

Kazemi (1983) transfer function (eqns. 2.1 and 2.2) was employed throughout

this thesis to model the fluid exchange between fracture and matrix. The formula-

tion by Quandalle and Sabathier (1989), which is known to capture gravitational

effects more accurately (Abushaikha and Gosselin, 2008), was also tested but the

results were found to be identical. Testing the similarity of transfer functions was

accomplished by comparing water injection, gas injection and water-alternating-

gas injection production profiles using the reservoir model and well configura-
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tions described in Chapter 3.

To = σ
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µo

(
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o − p f
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S f
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) gh
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)
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wD − Sm
wD

) gh
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where To represents the transfer of oil from the matrix to the fractures and Tw

represents the transfer of water from the fractures to the matrix in the case of

capillary imbibition. σ is the shape factor which describes the area of the fracture-

matrix interface in each grid block. kro and krw are the oil and water relative

permeabilities, respectively. g is the gravity term while h is the height of the ma-

trix blocks. ρo, ρw represent the oil/water density and SwD is the dimensionless

water saturation. m and f refer to the matrix and fracture respectively, while, p

represents the pressure.

The dual continuum model distinguishes between two different approaches,

the Dual-Porosity (DP) and the Dual-Porosity-Dual-Permeability (DPDP) model

(Fig. 2.4). The DP model accounts for fluid exchange between the fracture and

matrix but does not consider matrix-matrix flow. Conversely, the DPDP model

represents both the fracture-matrix flow and the interaction between two matrix

blocks, which is essential to capture capillary continuity and reimbibition. The

DPDP model is typically preferred in situations where the matrix permeability is

relatively high and there is matrix hydraulic continuity such as are encountered

in this thesis. The equations for a single-phase DPDP model are presented below.

Equation 2.3 represents the flow in the fractures with an additional term for the

matrix flow contribution while equation 2.4 represents flow in the matrix.

∇.
(k f

µ
∇p f

)
− σkm

µ

(
p f − pm

)
+ q f = φ f ct f

∂p f

∂t
(2.3)

∇.
(

km

µ
∇pm

)
− σkm

µ

(
p f − pm

)
+ qm = φmctm

∂pm

∂t
(2.4)
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where k f , p f , q f , φ f , ct f and km, pm, qm, φm, ctm represent the fracture and matrix

permeability, pressure, source/sink, porosity and total compressibility respec-

tively. µ is the fluid viscosity and σ is the shape factor.

Figure 2.4: Conceptual representation of a dual-porosity (DP) model, left, and a dual-
porosity dual-permeability (DPDP) model, right. Dashed lines indicate flow
between matrix blocks while solid lines indicate no flow. Fracture-matrix
fluid transfer is computed via a transfer function, T. Matrix-matrix fluid ex-
change is computed on a virtual grid via a transfer function Tm. After Maier
et al. (2013).

2.2.2 Discrete Fracture Network Models

The Discrete Fracture Network (DFN) approach is commonly used to estimate

fracture permeabilities. DFNs are stochastic representations of the fracture net-

work constrained by a wide range of reservoir data. The DFN approach is an

efficient, and geologically consistent way, to model multiscale fractures as it can

capture the connectivity and scale dependent heterogeneity of the fracture sys-

tem (Dershowitz et al., 2000; Wei, 2000; Makel, 2007; Spence et al., 2014). In a

DFN model, fractures are represented by planar elements.

To build a DFN constrained by deterministic observations of fractures, five

geometrical fracture characteristics that control the interconnectedness of the

subsurface fracture network are required. These characteristics include the frac-

ture intensity/density, orientation, aperture, length and aspect ratio. Multiple

equiprobable realisations of the fracture system can then be generated stochas-
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tically with a given set of input parameters to account for uncertainties in the

fracture network characterisation.

For example, the fracture intensity in a given reservoir may be generated as a

result of faulting and hence cluster around faults (fault related intensity), may be

part of a more stratigraphically confined fracture system giving rise to layered

high fracture permeability (bedding related intensity) or part of a pervasive back-

ground fracture system (regional intensity) (Fig. 2.5). Analysing the influence

of fracture intensity scenarios on hydrocarbon production in a given reservoir

will enable us to link flow patterns to the fracture network characterisation es-

pecially for EOR simulation. Hence, a systematic and integrated analysis of the

fracture network geometry, can provide a pathway to better understand the frac-

ture system, fracture contribution to subsurface fluid displacement, the best way

to accurately model the fracture flow impact and to develop the reservoir accord-

ingly.

Figure 2.5: Hydrostructural domains of the Galiano Island, Canada showing fault-
related, bed-related and regional fracture systems respectively. After Ches-
naux et al. (2009).
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2.2.3 Connectivity of Fracture Networks

Fracture network connectivity describes the interaction between fracture sets

and reservoir sequences (Makel, 2007). In other words, the fracture connectiv-

ity indicates the continuity of flow across a network of fractures bound by a

reservoir sequence. In a network with low fracture density, the fractures are few

and isolated thereby leading to poor interconnectivity (Fig. 2.6). As the fracture

density increases, a percolation threshold is reached where the fracture network

is connected across the reservoir sequence leading to a rapid rise in fracture in-

terconnectivity (Stauffer and Aharony, 1994; King et al., 2001). The percolation

threshold depends on the aperture, height, length and orientation of individual

fractures and the density and clustering of fractures within a fracture network

(Bour and Davy, 1998; Odling et al., 1999; Bech et al., 2001; Manzocchi, 2002).

Figure 2.6: The percolation threshold of a fracture network, on the scale of the sampling
region, is reached where the fractures interact in such a way that flow from
one boundary to another becomes possible. ’A’ indicates a macroscopically
disconnected sampling region, while, ’B’ represents a macroscopically con-
nected sampling region. ’KF’ denotes increasing fracture permeability. After
Makel (2007).

As indicated in the previous subsection an important aspect of connectivity is

the interaction of fractures with lithostratigraphy where bedding planes and/or

intervening shale layers may inhibit fracture propagation (Makel, 2007). In gen-

eral, the fracture connectivity is greater for thin beds where higher interaction

between fracture sets and reservoir sequences is encountered (Chesnaux et al.,
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2009). This may be, in parts, due to higher fracture densities encountered in thin

beds where increased brittle deformation occurs compared to relatively thicker

beds. See figure 2.5 for example.

2.2.4 Discrete Fracture Network Upscaling

In standard reservoir simulation applications that use conventional finite differ-

ence formulation, the DFN fracture representation is employed in dual contin-

uum models. The effective properties for the fracture medium are obtained via

analytical or flow based fracture upscaling methods (Dershowitz et al., 2000).

Analytical upscaling methods such as the Oda (1985) method are usually pre-

ferred for field-scale applications due to the significant computational efficiency

compared to flow-based upscaling, but can be inaccurate for poorly connected

fracture networks (Ahmed-Elfeel and Geiger, 2012). Generally, the upscaling of

the DFN must be done with utmost care to ensure that geological uncertainties

captured in the DFN are not masked by uncertainties in the upscaling step. The

effective fracture porosity, φ f , is calculated as:

φ f = P32× a f (2.5)

where, P32 represents the volumetric fracture intensity (total fracture area per

unit volume) and a f denotes the fracture aperture.

2.2.5 Oda Fracture Permeability Upscaling

To compute the effective fracture permeability for a specific simulation grid cell

from a DFN model, a permeability tensor, Fij, which denotes flow along the

fractures’ unit normal, n, needs to be estimated. The tensor is calculated by

summing over the individual fractures, f , in the grid cell provided the fracture

area, A f , and transmissibility, Tf , are known.

Fij =
1
V

N

∑
f =1

A f Tf ni f nj f , (2.6)
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where the number of fractures is denoted by N, the fracture unit normal repre-

senting its direction and orientation is represented by n, and the total fracture

pore volume is represented by V. If Fij is rotated into the planes of the perme-

ability tensor by multiplication with δij, the fracture permeability can be approx-

imated as (Dershowitz et al., 2000):

kij =
1

12
(

Ff f δij − Fij
)

, (2.7)

where Ff f defines the principal directions of the permeability. The application of

Oda’s method is based on equation 2.7. A limitation of equation 2.7, however,

is the assumption that fractures of any length will contribute to the upscaled per-

meability even if fractures do not form a percolating network in the grid block.

Therefore a modified version of Oda’s method was introduced for situations

where fractures are not connected in a grid block (Golder-Associates, 2010):

kij = M
(

Ff f δij − Fij
)
−MC

(
Ff f δij − Fij

)
, C ≥ Co, (2.8)

where M is a multiplier for scenarios where fractures are not connected and Co

determines the threshold fracture connectivity.

2.2.6 Flow-based Fracture Permeability Upscaling

Flow-based upscaling is considered to be a more accurate, but more time con-

suming, fracture upscaling technique that can be used to evaluate DFN models

and generate reference solutions (Ahmed-Elfeel and Geiger, 2012; Ahmed-Elfeel

et al., 2013). During flow-based upscaling, fixed pressure or no flow boundary

conditions are assigned to grid cells in the DFN model. The pressure field, ∇p,

and the total throughput, qt, through the fractures in the reference grid cell is

then obtained by single-phase flow simulation directly on the DFN. The pres-

sures are computed at fracture intersections represented by nodes. Under in-

compressible flow, the mass balance at a given node implies that:

I

∑
i=1

qij = 0, (2.9)
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where qij represents flow from node i to node j. I denotes the total number

of nodes connected to j. Flow through the fractures is related to the pressure

differential by:

qij =
a2

fij

12µLij

(
pi − pj

)
, (2.10)

where a2
fij

represents the effective aperture of the link between i and j, while, Lij

and p represent the corresponding length and nodal pressure, respectively. Sub-

sequently, the upscaled effective permeability for porous media can be obtained

by using Darcy’s law and solving for the permeability:

Ke f f =
qtµL
∆p

, (2.11)

where ∆p and L denote the pressure difference and length, respectively, between

the sides of the grid cells in the DFN model.

Various challenges affect flow-based upscaling and limit its application to

field-scale reservoir studies. The challenges include sensitivity to the type of

boundary conditions and significantly high computation cost during numerical

simulation (Dershowitz et al., 2000; Ahmed-Elfeel and Geiger, 2012).

2.2.7 Calibration of Discrete Fracture Network Models

Stochastic representations of the fracture system using the DFN workflow often

require calibration to static and dynamic field data. Static calibration to image

log observations and well-fracture intersections is well established (Bourbiaux

et al., 2002; Bush, 2010; Chandra et al., 2013; Ahmed-Elfeel et al., 2014). Static

calibration can, therefore, indicate the validity of the static fracture model de-

pending on the agreement between fracture observations in the field and frac-

ture representation in the DFN model (Fig. 2.7).

Similarly, dynamic calibration requires a comparison of dynamic data (e.g.,

pressure transient or production data) in the field to dynamic data generated

using the simulation model to ascertain and update the validity of the simula-
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Figure 2.7: Static calibration of DFN models using image log observations and well-
fracture intersections. Fracture intensity uncertainty is represented with mul-
tiple volumetric intensity, P32, scenarios. Low, medium and high DFN scenar-
ios for each P32 are compared to observed well-fracture intersections. After
Ahmed-Elfeel et al. (2014).

Figure 2.8: Initial fracture model (a) and fracture model after calibration with fracture
attributes, geostatistical data and production data (b). Water cut profile in-
dicates that the fracture calibration to static and dynamic data improves the
predictability of the fracture model. Modified after Jenni et al. (2007).
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tion model. Jenni et al. (2007) demonstrated the updating of a fracture model

for a North African field initially developed stochastically from fracture/fault-

related seismic attributes, fault-related strain field, structural information (e.g.,

curvature, fault proximity) and geostatistical data (e.g., fracture density, fracture

orientation). By constraining the fracture network to production data, a more re-

liable description of the fracture network was obtained as indicated by improved

water cut profiles (Fig. 2.8).

2.2.8 Discrete Fracture Network Limitations

DFNs are based on stochastic methods and lack dependence on geomechani-

cal constraints, hence, they are limited in the extent to which they can represent

fractures in the subsurface. As an alternative, Discrete Fracture and Matrix (DFM)

models have received increasing attention as a means of accurately representing

fracture networks (e.g., Matthäi et al., 2007; Geiger et al., 2009; Maier et al., 2013).

DFM models generate deterministic representation of fractures and account for

flow in both, the interconnected fractures and the rock matrix, using a combi-

nation of Finite Element (FE) and Finite Volume (FV) numerical approaches (e.g.,

Matthäi et al., 2007; Geiger et al., 2009; Geiger and Matthai, 2012). Fluid flow is

computed directly and simultaneously in fractures, faults and rock matrix when

using the DFM approach. The development and application of DFMs, however,

still encounters several challenges, including extensive high computational cost

and the need for complex time-consuming field application workflows.

2.2.9 Wettability Considerations

Flow in fractures and transport between the fracture and matrix is to a large de-

gree influenced by the wettability. Knowledge of the wetting preference in a frac-

tured carbonate reservoir is fundamental to understanding the flow behaviour

during EOR. This is because the main recovery mechanisms in fractured forma-

tions (i.e. spontaneous imbibition and gravity drainage) are heavily influenced
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Figure 2.9: Discrete fracture network (DFN) model (a) and discrete fracture and matrix
(DFM) model (b) for a simple 2D model. Note that DFM accounts for both
fracture and matrix flow, while DFN only accounts for fracture flow. Cour-
tesy, M. Ahmed.

by the wettability. A more water-wet rock will support efficient imbibition of wa-

ter from the fractures to displace oil from the matrix through a counter-current

or co-current mechanism. Hence, the oil recovery efficiency during water injec-

tion is highest for strongly water wet formations and decreases as the wettabil-

ity changes to oil wet. Conversely, gas injection efficiency is limited by strongly

water-wet conditions and enhanced by more oil-wet conditions. This is because

strong water-wetness indicates high capillary entry pressures that oppose entry

of gas into the matrix.

In addition to the aforementioned recovery mechanisms, several authors (e.g.,

Thomas et al., 1987; Hermansen et al., 1997; Agarwal et al., 2000; Aspenes et al.,

2008) have suggested that a significant amount of capillary continuity between

matrix blocks would allow viscous displacement of oil to provide an alternate

path for oil recovery through the matrix pore network. Hence, fractured sys-

tems exhibiting high levels of capillary continuity that allows significant matrix-

matrix viscous displacement may be treated as non-fractured systems during

reservoir modelling and simulation. Capillary continuity preserves the hydraulic

continuum in the water phase over the fractures and transfers the injection pres-

sure needed for viscous oil recovery. Such viscous displacement due to capillary

continuity has the best potential in more water-wet formations (Hermansen et al.,

2000; Aspenes et al., 2008).
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2.3 fluid models for nfr simulation

2.3.1 Black Oil Fluid Model

The black oil model is a conventional thermodynamic model for compressible

three-phase flow in a gas/oil/water system where the phase properties of the

gaseous and oleic phases are known functions of pressure (Dake, 1998). The

black oil mass conservation equation for each component (oil/water/gas) is

defined such that the total mass of each component is conserved (Chen et al.,

2006b). Lowercase and uppercase subscripts are used to denote phases and com-

ponents, respectively. The water phase consists only of the water component,

while the oil phase consists of both the oil and gas components.

The mass conservation equations for the phases can be described as:

∂ (φρwSw)

∂t
= −∇. (ρwvw) + qw (2.12)

∂ (φρoo So)

∂t
= −∇. (ρoo vo) + qo (2.13)

∂

∂t
(
φ
(
ρGo So + ρgSg

))
= −∇.

(
ρGo vo + ρgvg

)
+ qg (2.14)

for the water, oil and gas components, where, ρGo and ρOo denote the partial

densities of the gas and oil components in the oil phase, respectively. φ, ρ, S, v,

and q represent the porosity, density, saturation, velocity and source/sink term

respectively. Equation 2.14 indicates that the gas component exists in both the

oil and gas phases.

Therefore, Darcy’s law for each phase can be written as:

vα = −krα

µα
K (∇Pα − ραγ∇z) , α = w, o, g, (2.15)

where, K, γ and ∇z denote the total permeability, gravity term and depth re-

spectively. Similarly, kr, µ and ∇P denote the phase relative permeability, phase

[ July 29, 2015 at 16:33 – classicthesis by Simeon Agada ]



2.3 fluid models for nfr simulation 25

viscosity and phase pressure change respectively. The phase pressures are re-

lated by capillary pressures, Pc, where,

Pcow = Po − Pw, Pcgo = Pg − Po (2.16)

The contribution of each phase is given by equation:

Sw + So + Sg = 1 (2.17)

2.3.2 Compositional Fluid Model

Compositional simulations can capture complex interactions of flow with phase

behaviour but are also computationally expensive for large fractured reservoirs

because equation of state calculations, multi-component interactions and fracture-

matrix exchange must be represented. A finite number of hydrocarbon compo-

nents, Nc, are used to represent reservoir fluid composition during composi-

tional modelling (Chen et al., 2006b). If ξio and ξig are the molar densities of

component i in the liquid and gaseous phases and Wi is the molar mass of com-

ponent i, then ξi and Wi for all phases can be related:

ξiα =
ρiα

Wi
, i = 1, 2, 3, ..., Nc, (2.18)

where ρiα is the mass density of each phase. Hence, the molar density of phase

α is:

ξα =
Nc

∑
i=1

ξiα, α = o, g. (2.19)

The mole fraction of component i in phase α can then be written as:

xiα =
ξiα

ξα
, i = 1, 2, 3, ..., Nc, α = o, g. (2.20)
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Due to the mass interchange between phases, mass is not conserved within each

phase, rather the total mass is conserved for each component (Chen et al., 2006b)

and written as:

∂ (φξwSw)

∂t
+∇. (ξwvw) = qw, (2.21)

∂
(
φ
[
xioξoSo + xigξgSg

])
∂t

+∇.
(
xioξovo + xigξgvg

)
+∇.

(
dio + dig

)
= qi, (2.22)

Nc

∑
i=1

xio = 1,
Nc

∑
i=1

xig = 1. (2.23)

where qw and qi are the molar flow rates of water and the ith component, respec-

tively, while diα defines the diffusive flux of the ith component in the α-phase,

where α = o, g. In addition to the partial differential equations 2.21 and 2.22,

equations 2.23, 2.16 and 2.17 indicate algebraic constraints that must be ad-

hered to for the mole fraction, phase pressures and saturation balance respec-

tively (Chen et al., 2006b).

2.3.3 Miscibility Considerations

Miscible displacement processes have been shown to improve microscopic sweep

efficiency in subsurface reservoirs (Healy et al., 1994; Taber et al., 1997; Bon et al.,

2005; Bourdarot and Ghedan, 2011). In a miscible displacement process, two flu-

ids form a single homogeneous phase when mixed in all proportions (Holm,

1986; Bourdarot and Ghedan, 2011). Miscible processes occur when the reservoir

pressure is above the minimum miscibility pressure (MMP) for a given injection

gas and in-situ oil composition (Taber et al., 1997). When the fluids are fully mis-

cible, the interfacial tension between them reduces to zero, capillary forces are

eliminated and under idealized conditions, the residual oil saturation is reduced

to zero in the swept region, leading to significantly higher oil recoveries.
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Miscible displacement in oil reservoirs results in complex interactions of flow

with phase behaviour that are best modelled with compositional simulation

(Zick, 1986; Johns et al., 2002; Christensen et al., 2001; Egwuenu et al., 2008).

Pseudo-miscible models have also been developed that capture miscibility dur-

ing black oil simulation, but such models are lacking in their capacity to repre-

sent laboratory experiments of miscibility (CMG, 2014). Further detail on mis-

cibility and its impact on reservoir simulation and prediction is presented in

Chapter 4.

2.4 description of rock wettability

2.4.1 Corey Formulation

The oil-water and gas-oil two-phase relative permeability and capillary pressure

curves for the matrix can be generated using Corey (1954) relationships. The

parameters of the Corey formulation can be adjusted to match field data or ex-

tended to evaluate the effects of end-member wettability scenarios. The Corey

formulation for oil-water and gas-oil relative permeability and capillary pres-

sures are described as:

krw = krw,max

(
Sw − Swi

1− Swi − Sorw

)m
, (2.24)

kro =
(

1− Sw − Sorw

1− Swi − Sorw

)n
, (2.25)

Pc = Pe (Swn)
− 1

λ , (2.26)

where, m and n are the Corey exponents for oil-water relative permeability (eqn.

2.24) and gas-oil relative permeability (eqn. 2.25) respectively. Pc and Pe denote

the capillary pressure and the threshold capillary entry pressure, respectively. λ
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represents the pore size distribution index, while Swn denotes the normalized

water saturation described by:

Swn =
(

Sw − Swir

1− Swir

)
, (2.27)

where, Sw is the water saturation and Swir is the irreducible water saturation.

The choice of the Corey formulation followed the work of Clerke (2009) who

used the Corey equations to match a large body of relative permeability data

for carbonate rocks in the Middle East analogous to the confidential subsurface

data that formed the basis of the models in this thesis. It was also found that

the Corey formulation matched the relative permeability data employed in this

thesis.

Straight line (i.e. linear) two-phase relative permeabilities first introduced by

Romm (1966) are traditionally used for multiphase flow in the fractures. More

recently, several authors (e.g., Murphy and Thomson, 1993; Speyer et al., 2007;

Chima and Geiger, 2012; Li et al., 2014) have suggested from experimental and

numerical observations that two-phase fracture relative permeabilities may be

non-linear. Both representations of fracture relative permeability were tested in

this thesis, but the results were identical. Hence, straight line two-phase fracture

relative permeability curves were used throughout this thesis.

2.4.2 Three Phase Relative Permeability

To compute three-phase relative permeabilities that account for multiphase flow

interactions in the three-phase flow regions generated during enhanced oil re-

covery, traditional interpolation models (e.g., Stone, 1970, 1973; Baker, 1988) are

frequently used. The Stone II interpolation model (Stone, 1973), which computes

three-phase relative permeabilities while offering a relatively more predictive de-
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scription of residual oil saturation, was used throughout this thesis. In normal-

ized form, the Stone II model is given by:

kro = kro(cw)

((
ki

ro(w)

kro(cw)
+ kd

rw(o)

)(
kd

ro(g)

kro(cw)
+ kd

rg(o)

))
, (2.28)

where the superscripts i and d refer to imbibition and drainage respectively. Sim-

ilarly, the subscripts o, w, g and cw refer to oil, water, gas and connate-water

respectively. kr represents the relative permeability.

2.4.2.1 Pore Network Models

More recently, pore-network models have been used to provide a physically con-

sistent description of three phase relative permeabilities (Blunt, 2000; Piri and

Blunt, 2005; Al-Dhahli et al., 2013, 2014). Such pore network models encapsulate

microscopic displacement processes that have been observed in laboratory exper-

iments of three phase flow. They also use realistic 3D pore structures (Fig. 2.10)

to account for the complexity of real reservoir rocks. Pore-network models have

been benchmarked successfully against three-phase flow experiments, showing

good agreement between numerical and experimental data.

Recent simulations of EOR at the intermediate grid-block scale (Ahmed-Elfeel

et al., 2013), sector scale (Jiang et al., 2013), and reservoir scale (Al-Dhahli, 2013)

show that the traditional interpolation models over-predict oil recovery when

compared to the 3D pore network models. This is because the interpolation mod-

els do not adequately capture the intrinsic pore scale physics during three-phase

flow and tend to over-predict oil relative permeabilities at low oil saturation.

However, generating workflows to adequately integrate pore network models

with conventional simulation approaches especially for fractured carbonates, re-

mains an active area of research (Blunt, 2001; Holm et al., 2010; Al-Dhahli et al.,

2013; Blunt et al., 2013; Ryazanov et al., 2014). Specifically, limitations exist in

the network extraction step because current workflows fail to capture network

heterogeneity at the appropriate scale for carbonates and may be inadequate

to represent micro-scale heterogeneities. Furthermore, traditional interpolation
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Figure 2.10: Three-phase pore network modelling workflow to obtain relative perme-
ability and capillary pressures as an alternative to traditional interpolation
models. After Al-Dhahli (2013).

models, such as the Stone II model, are more practical for the time-consuming

continuum-scale models encountered in this thesis.

2.4.3 Relative Permeability Hysteresis

During cyclic EOR processes such as water-alternating-gas injection (WAG), rel-

ative permeabilities typically show dependence on the saturation path. This de-

pendence (or hysteresis) occurs due to residual trapping of gas during repeat

drainage and imbibition cycles (Fig. 2.11) and needs to be captured in reservoir

simulation models. Hysteresis is discussed extensively in Chapter 5. Here, the

Killough (1976) hysteresis model which is used throughout this thesis is pre-

sented. The Killough hysteresis formulation given by:

ki
rg
(
Sg
)

= ki
rg

(
S∗g
) kd

rg
(
Sgi
)

kd
rg
(
Sgi,max

) , (2.29)
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where,

S∗g = Sgt,max +

(
Sg − Sgt

) (
Sgi,max − Sgt,max

)
Sgi − Sgt

, (2.30)

where the superscripts i and d refer to imbibition and drainage respectively.

Similarly, subscripts i and t refer to the initial and total gas saturation (Sg) re-

spectively. krg represents the gas relative permeability.

Figure 2.11: Gas relative permeability curves indicating hysteresis during drainage and
imbibition cycles. Sgi represents the initial gas saturation while Sgt denotes
the trapped gas saturation. After Juanes et al. (2006).

2.5 managing computational time

Fractured reservoir simulation is typically time-consuming because of the vari-

ous complexities (e.g. geological heterogeneity, fluid models, fracture-matrix ex-

change) that must be taken into account. Table 2.1 shows the computational

time for various levels of complexity that are considered in fractured reservoir

simulation and indicates that up to 40 days simulation time can be encountered

to incorporate high levels of computational complexity in a single simulation

evaluation. Hence, it was necessary at various points during this thesis to re-

duce the total level of complexity in order to understand critical subsurface flow

mechanisms and guiding principles. Some of the measures employed include
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the use of matrix upscaling, sector models, simplified fluid models, surrogate

(proxy) models and parallel computing using high performance clusters.

Simulation model Model type Fluid description Run time (days)
Matrix Sector Black Oil 0.04

Matrix Sector Compositional 0.13

Matrix Full-field Black Oil 0.10

Matrix Full-field Compositional 0.40

Matrix w/Fractures Sector Black Oil 0.90

Matrix w/Fractures Sector Compositional 13.30

Matrix w/Fractures Full-field Black Oil 2.80

Matrix w/Fractures Full-field Compositional 39.80

Table 2.1: Computational time for EOR simulations. Sector model consists of 42,840 grid
cells while full-field model consists of 199,800 grid cells. When fractures are
considered, the number of grid cells for each scenario is doubled. Computer
Modelling Group’s IMEX and GEM are used for black oil and compositional
simulations respectively. Each simulation is run in parallel with four proces-
sors.

2.5.1 Matrix Upscaling

To subject a static geological model to dynamic modelling of relevant fluid flow

processes, a coarser grid is typically required to reduce computational costs. The

process of coarsening the grid, while simultaneously averaging the grid flow

properties (i.e. porosity and directional permeability), is referred to as matrix

upscaling. The averaging may be uniform across the grid cells or non-uniform

to account for local heterogeneities (e.g. due to layering).

2.5.1.1 Matrix upscaling validation with streamline simulation

Upscaling techniques (i.e. analytical and numerical) have been applied and tested

successfully in heterogeneous (carbonate) reservoirs (e.g., Li and Beckner, 2000;

Christie and Blunt, 2001; King et al., 2006; Zhang et al., 2008). The accuracy of

the upscaled models must then be confirmed with validation techniques such

as streamline simulation (e.g., Samier et al., 2002; Ates et al., 2005; Datta-Gupta

and King, 2007; Thiele et al., 2011).
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Figure 2.12 illustrates the use of streamline simulation to validate the accu-

racy of upscaled representations of a fine grid geological model. Using a quarter

5-spot well pattern, water is injected from the bottom left of the model which

then displaces oil to the producer at the top right. Streamline simulation using

FRONTSIMTM indicates that the displacement streamline flow pattern is pre-

served in both the fine grid model and the upscaled models thereby validating

the upscaling accuracy.

As the fine grid model is upscaled by a factor of 20 and 30 respectively (Fig.

2.12c, d), some degree of numerical dispersion can be observed in the bottom

right of the streamline profiles. Numerical dispersion is due to discontinuities

in the saturation front due to changes in the numerical discretization (Li and

Beckner, 2000; King et al., 2006; Thiele et al., 2011). Dynamic (adaptive) grid re-

finement has been identified as a means of refining the flow simulation grid at

the saturation front to reduce the effect of numerical dispersion, while reducing

the computational time. The application of advanced algorithms for dynamic

grid refinement during EOR is, however, not within the scope of this thesis.

Figure 2.12: Streamline validation to ensure that upscaled model captures the flow pat-
tern in the fine model. Oil saturation streamlines indicate that the displace-
ment flow pattern is preserved after upscaling.
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2.5.1.2 Matrix upscaling validation with finite difference simulation

The validity of matrix upscaling can also be evaluated by comparing finite dif-

ferent simulations using the fine and upscaled models. Subsequently, the oil

recovery and oil production rate of the fine and upscaled models can be com-

pared for a given recovery mechanism (e.g., secondary water injection) to give

an indication of the upscaling accuracy for the matrix (Fig. 2.13).

Figure 2.13: Validation with finite difference simulation to ensure that upscaled model
represents fine scale model when oil recovery (a) and oil rate (b) profiles are
compared. Simulation results indicate that the flow response is preserved
after upscaling.

The geological model employed in this thesis was upscaled vertically by a fac-

tor of 10 for numerical well-testing and secondary recovery simulations (chapter

3), and by a factor of 30 (chapters 4, 5 and 6) to simulate more complicated EOR

processes such as miscible gas injection, water-alternating-gas (WAG) injection

and foam displacement. In all cases the flow response of the models was pre-

served after upscaling (Fig. 2.12 and 2.13).

2.5.2 Sector Models

Another means of managing the computational time to ensure that investigators

evaluate key recovery mechanisms is to use a sector delineated from the dynamic

simulation model. Multiple simulations can then be carried out on the sector
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model to test important enhanced oil recovery processes. Sector models were

employed in chapters 4 and 6 of this thesis.

2.5.3 Simplified Fluid Models

Compositional fluid models require the flow equations to be evaluated for a

given number of components. Hence, reducing the number of components in

the reservoir fluid model (i.e. component lumping) decreases the computational

cost. Furthermore, black oil models that represent the reservoir fluid with dead

oil and solution gas reduce the computational cost significantly and may be

sufficient for many applications. Component lumping was employed to set-up

the compositional simulations in chapter 4, while, black oil fluid models were

used in chapters 3, 5 and 6.

2.5.4 Surrogate (Proxy) Models

Finally, surrogate (proxy) models (Fig. 2.14) that generate an approximation of

the full-physics simulation model by using a limited number of experimentally

designed simulations can be used for rapid simulation, evaluation and optimi-

sation under uncertainty and significantly reduce the overall computational cost

of fractured reservoir simulation. Surrogate modelling and optimisation is dis-

cussed in chapter 6.

Figure 2.14: Surrogate model response surface approximation of full-physics simula-
tions to evaluate the oil recovery and gas utilisation (GUF) based on un-
certain parameters X1 and X2.
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3
D E C I P H E R I N G T H E F U N D A M E N TA L C O N T R O L S O F F L O W

I N C A R B O N AT E S U S I N G N U M E R I C A L W E L L T E S T I N G A N D

P R O D U C T I O N O P T I M I S AT I O N

3.1 introduction

Digital outcrop models have been used for numerical well test analysis, an ap-

proach that is also commonly referred to as geological well testing (Massonat

and Bandizol, 1991). During numerical well test analysis, the propagation of a

pressure front due to changes in flow rate at a producing or injecting well in a

reservoir or outcrop model is simulated. Simulation results yield a numerically

generated pressure response at the well, commonly referred to as a ’pressure

transient’. Pressure transients can be evaluated by standard well-test analysis

procedure in reservoir engineering. The analysis enables us to extract key reser-

voir performance indicators such as the drainage area of the well, permeability

and skin factor (Bourdet, 2002). During numerical well-testing, systematic re-

sponses in the pressure transients are generated for different geological realisa-

tions. Performing pressure transient analysis numerically, using digital outcrop

models, enables us to link known geological structures directly to the transient

pressure response and therefore investigate how different geological structures

that have been observed in the outcrop may impact reservoir performance (Cor-

bett et al., 2012).

Numerical well-testing has three key benefits that are closely related: First,

by systematically including or excluding certain geological features observed in

the outcrop, it is possible to generate ’type curves’ for the pressure response

36
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and to analyse how readily the geological structures can be distinguished using

well-test analysis in real fields and how they could affect reservoir performance.

Secondly, the theoretical pressure responses (e.g. linear flow and recharge in

a high-permeability fracture), which are derived for idealised geological struc-

tures, can be validated by comparing them to the pressure responses obtained

for realistic geological structures. Third, knowledge obtained from numerical

well-test analysis can be employed to improve the calibration of static and dy-

namic reservoir models with production data (Rawnsley and Wei, 2001; Corbett,

2009; Chandra et al., 2013).

Figure 3.1: Geoengineering workflow utilised in this chapter, linking field data from 3D
outcrop models to well test analysis and flow simulation. Simulation results
can be interpreted in the context of the sedimentological, diagenetic, and
structural features that have been observed in the outcrop.

In the context of outcrop-based flow modelling, the contribution of this chap-

ter is two-fold. Firstly, an outcrop-based 3D high-resolution analogue model

of unprecedented quality for a Jurassic carbonate ramp (Shekhar et al., 2010;

Christ et al., 2012; Amour et al., 2013) is used to perform numerical well test

analysis and black oil simulations of secondary hydrocarbon recovery. As dis-

cussed above, by using numerical well testing for this outcrop analogue the aim

is to link the observed geological structures directly to the transient pressure
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response and investigate how these structures could impact the reservoir perfor-

mance. Secondly, the chapter focuses on analysing how recovery changes when

different injection fluids and well patterns are used to simulate secondary recov-

ery. The aim is to highlight how certain reservoir engineering measures can be

used to increase recovery in the presence of geological heterogeneities that com-

monly occur in a carbonate reservoir. This geoengineering workflow (Corbett

et al., 2012; Chandra et al., 2013) is employed to study how small-scale hetero-

geneities typical for this carbonate reservoir setting impact fluid flow behaviour

and hydrocarbon production (Fig. 3.1).

3.2 overview of the outcrop geology

The Amellago Canyon outcrop (Fig. 3.2a) of a Middle Jurassic carbonate ramp

in the High Atlas Mountains of Morocco, is used as an analogue reservoir for

the flow simulations in this thesis. The outcrops can be considered as a reservoir

analogue for tidal- and wave-dominated, peloidal oolitic shoal bodies deposited

in a low-angle carbonate ramp setting, similar to the deposits of the Jurassic

Arab Formation in Qatar (Al-Saad and Ibrahim, 2005). Such carbonate reservoirs

display a layer-cake stratigraphic architecture with sheet-like grainstone geobod-

ies few meters thick and from few to tens of kilometres long.

Carbonate strata in the Amellago canyon are exposed continuously over many

kilometres. Stratigraphic features characteristic of the depositional environment

are evident at sub-metre to kilometre scales. Most of the outcrops are weakly

deformed. Deformation intensifies close to low-offset, oblique reverse and nor-

mal faults, both within fault damage zones (most are less than 1 meter wide)

and localized, fault-related flexures (Agar et al., 2010; Pierre et al., 2010; Amour

et al., 2013). The outcrop that forms the basis of these models is referred to here

as the Island outcrop. This is an elliptical outcrop isolated by fluvial erosion in

the Amellago Canyon. The Island exposes the Middle to Upper Bajocian Assoul

Formation (Fig. 3.2b), a shallow-water carbonate ramp, which provides the ana-

logue for stratigraphy and diagenesis in this study.

[ July 29, 2015 at 16:33 – classicthesis by Simeon Agada ]



3.2 overview of the outcrop geology 39

Figure 3.2: (a) Location of study area (red star). (b) Simplified stratigraphic setting. The
outcrops of the Amellago Canyon are part of the Middle Jurassic Assoul
Formation (red box), a stratigraphic interval dominated by shallow-water
carbonate deposits such as ooid and peloidal grainstone. (c) Aerial view of
the Island window of the Amellago Canyon outcrop. Note the power-lines in
the lower left for scale. Modified after Christ et al. (2012).

The Assoul Formation reaches a stratigraphic thickness of 300m and repre-

sents a grainy carbonate ramp system that prograded north-east ward into the

subsiding basin (Poisson et al., 1998; Pierre et al., 2010; Christ et al., 2012; Amour

et al., 2013). The dominant facies include ooidal and peloidal grainstones, bio-

clastic wackstones and packstones, and bioclastic floatstones and rudstones. The

depositional profile of the ramp consists of oolitic and peloidal shoals in the in-

ner ramp, which grade basinward to mud-dominated facies with debris of gas-

tropods, bivalves, and corals in the middle ramp and to alternating mudstone

and marl in the outer ramp (Christ et al., 2012; Amour et al., 2012). Tidally influ-
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enced shoal, wave influenced shoal and coarse-grained shoal comprise the main

facies types in the inner ramp deposits. They exhibit decimetre-sized asymmetri-

cal, symmetrical and bi-directional ripples as well as metre-scale cross bedding.

The carbonate ramp is characterised by lithological heterogeneity exemplified

by coral patch reefs, mud mounds (Tomás et al., 2013), regionally significant dis-

continuity surfaces in the form of early marine hardgrounds, bedding-related

layering, penetrative fracture networks and vertical variations in grain size and

texture (Fig. 3.2c).

In addition to the sedimentological heterogeneity, the Island outcrop also ex-

poses two main structural systems: a network of faults that has been mapped

using high-resolution photopanels and LiDAR data and fractures (bed-bound

and inter-bedded) whose characteristics (orientations, spacings, apertures and

fill) have been analysed with detailed photomapping and scanlines in a series of

seven outcrop windows. These windows (approx. 5 m high by 30 m long) were

selected to represent fracture populations in distinct facies. Several low-offset

(on the order of 1 m or less) oblique-normal and oblique-reverse faults dissect

the Island.

One of the most pronounced faults is located at the south end of the Island. On

the Island, this fault has an apparent normal displacement of approximately 10

metres with the downthrown side to the south. In the subsurface, such faults can

impact fluid flow by the extent to which the fault zone materials affect cross-fault

flow (e.g., the properties of fault gouge, cementation within the fault and/or

fault damage zones). There may be minimal impact or the fault-zone properties

may act as seals or baffles that compartmentalize the reservoir on production

timescales. If the fault has little or no gouge or cement, then it may act as a

large open fracture, providing a preferential flow pathway during production.

This study examines variations in fault transmissibility, but does not attempt to

simulate the case of the fault acting as a large open fracture (e.g., Agar et al.,

2010).

Over 1200 fractures were measured on the outcrop, some of which are ce-

mented by calcite and/or dolomite (Shekhar et al., 2010). Although, the highest
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measured fracture intensities occur close to low-offset faults, there is no clear

gradient or logarithmic variation of intensity away from the fault. Instead, in

the few instances where increases in deformation do occur, there is an abrupt

transition from a thin (less than 1m) zone of higher intensity fracturing to the

’background’ fracture intensity that is representative of most of the Island out-

crop. The fractures formed over multiple scales ranging from fine scale fractures

restricted to individual beds (approx. 0.5m - 2m) to fracture corridors that ex-

tend across the entire vertical extent of the outcrop (approx. 100m). In addition

to fractures, stylolites have also been observed in the outcrops. In a few instances

on the Island outcrop, fractures were seen to terminate against moderately dip-

ping stylolites. This relationship has also been observed in other outcrops in

the Amellago Canyon and suggests that at least some of the fractures pre-date

stylolites that probably formed during contraction of the Atlas Mountains.

3.3 geological model

3.3.1 Matrix Modelling

This study uses a 3D high-resolution geological model developed for the Assoul

Formation ramp by Shekhar et al. (2010) and Amour et al. (2013). The outcrop

topography was determined from GPS and Laser Range Finder data. Major bed-

ding surfaces were identified in the field and mapped using GPS. The model

contains twelve lithofacies based on the Dunham (1962) classification. Each litho-

facies can be grouped into three depositional environments: inner ramp, proxi-

mal middle ramp, and distal middle to outer ramp.

The lithofacies distribution was simulated in PETRELTM using a scale-dependent

modelling approach developed by Amour et al. (2013). Porosity was assigned

stochastically to the lithofacies. Permeability-porosity transforms, based on the

Dunham (1962) classification and statistical analysis of subsurface reservoirs,

were used to model the permeability field. This porosity-permeability modelling

approach was needed because the outcrop rocks have undergone significant post-

depositional diagenetic alteration, which occludes most of the original poros-
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ity. Therefore, porosities and permeabilities measured for the outcrop rocks are

likely not representative of a subsurface reservoir.

Subsurface data were selected based on information from the Arab D forma-

tion in Qatar. The chosen data were relevant because, as discussed above, the sed-

imentological and diagenetic features closely matched the Amellago platform. A

standardized method for estimating porosity and permeability properties was

required to produce geomodels for flow simulation for several very different

settings, and produce flow simulation results to test differences in facies archi-

tecture, fracturing, and early diagenetic overprinting. Therefore, a proprietary

Standard Property Calculator (SPC) was used to assign standardised values to

similar rocks from separate locations. The SPC ensured that reservoir quality

was held constant so that architectural elements of the study areas could be in-

vestigated.

The SPC is a spreadsheet application calibrated to Mesozoic rocks from the

Middle East. The calibration process involved multivariate linear regression us-

ing as independent variables various indices of abundance for sedimentary fab-

ric elements like grain size, sorting, cementation, and vuggy porosity. To es-

timate the reservoir properties of an analogue rock type, the observed abun-

dances of these fabric elements are needed. The application produces five sum-

mary statistics for them that provide the input for geostatistical algorithms that

enable us to populate the model with porosity and permeability. These sum-

mary statistics are (1) average porosity, (2) standard deviation of porosity, (3)

log-log porosity-permeability transform slope, (4) log-log porosity-permeability

transform intercept, and (5) the standard deviation of the log permeability with

respect to the transform. After generating a facies model, each facies was trans-

formed into petrophysical properties according to its specific permeability and

porosity values, which were applied to the grid blocks of the geo-cellular model

(Amour et al., 2013). Scatter was added to the porosity and permeability values,

which is considered typical of such data in subsurface reservoirs, when each fa-

cies was transformed into petrophysical properties.
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The hardground surfaces are 10 to 30 cm thick and laterally continuous across

the entire study area, such that they were deterministically included as a layer

or layers of cells in the model. Christ et al. (2012) described three types of con-

densed surfaces, which differ in their degree of synsedimentary lithification of

the seafloor. The increase of the degree of lithification leads to a decrease of

the porosity and permeability values caused by cementation processes at the

seafloor during periods of sediment starvation. Hence, different porosity and

permeability values were assigned to layers of cells along each type of surface

(Amour et al., 2013).

This workflow resulted in a geo-cellular geological model with dimensions of

1.15 km x 1.17 km x 0.11 km, containing 74 x 75 x 1099 grid cells (6,099,450 cells

in total) (Fig. 3.3). Individual cells have dimensions of 15m x 15m x 0.1m. Eight

stratigraphic zones were delineated in the model. Each consists of grid cells with

a similar range of properties. Several high-angle normal faults, which offset low-

and high-permeability layers, were also represented in the model. A coefficient

of variation (Cv) of 2.048 for the model permeability illustrates the high degree

of heterogeneity in the model (Jensen et al., 1997).

Figure 3.3: High-resolution 3D geo-cellular model of the Assoul Formation ramp ex-
posed in the Amellago canyon outcrops (Fig. 2), showing the simulated
porosity distribution. The model dimensions are 1.15 x 1.17 x 0.11 km. In-
dividual cells have dimensions of 15 x 15 x 0.1 m. After Amour et al. (2013).
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The geological model was upscaled vertically for flow simulations by a factor

10 using non-uniform upgridding and flow-based upscaling, resulting in a flow

simulation model containing 74 x 75 x 110 grid cells (610,500 grid cells in total).

The upscaled flow simulation model was validated against the fine-scale geolog-

ical model using streamline simulations for the full model and finite difference

simulations for representative model sub-regions. The validation ensured that

the same flow response was obtained for the flow simulation and geological

model, therefore, no significant loss in heterogeneity occurred, while computa-

tional costs for the flow simulations became tractable (Toigulova, 2012).

Realisation Base Diagenesis Mud Mound Oyster Bioherms

1 Amellago Model N N N
2 Amellago Model Y N N
3 Amellago Model N Y N
4 Amellago Model Y Y N
5 Amellago Model N N Y
6 Amellago Model Y N Y
7 Amellago Model N Y Y
8 Amellago Model Y Y Y

Table 3.1: Summary of geological realisations. Diagenesis refers to layer boundary dis-
continuity surfaces. Mud mounds are build-ups with depositional relief com-
posed dominantly of carbonate mud, peloidal mud, and micrite. Oyster bio-
herms are high permeability features incorporated in molluscan banks.

Eight different realisations of the geological model were available (Table 3.1),

which were used to systematically test the impact of geological features on flow.

The base case included the key sedimentological and diagenetic features con-

strained by field data. The other realisations successively included additional

diagenetic, sedimentary, and structural features that were also observed in the

outcrop, such as subaqueously lithified marine hardgrounds, mud mounds and

oyster bioherms (Fig. 3.4). Fractures were included separately as discuessed in

the next section. Mud mounds, oyster bioherms, and hardgrounds comprised

small volume fractions of 0.0004%, 0.34%, and 0.02% of the model, respectively.

Different geological realisations were only considered in the well-test simula-

tions because of the high computational run time and additional sensitivities

considered for the secondary recovery simulations.
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Figure 3.4: Summary of features captured in the geological model. Oyster bioherms are
indicated as red domes with oyster symbols. Discontinuity surfaces due to
diagenesis marks multiple layers and are indicated with DS. In addition, di-
verse lithofacies are indicated throughout the model. The entire west-east
cross section shows the facies distribution and sequence stratigraphy of the
Amellago outcrop study area. DS = discontinuity surface or hardground; M
= mudstone; W = wackestone; P = packstone; G = grainstone; F = floatstone;
R = rudstones; B = boundstone. After Amour et al. (2013).

Dunham class assignments were used to stochastically populate heteroge-

neous porosity and permeability in the grid cells of the geological model, while,

diagenesis was captured with layer bound discontinuity surfaces (Fig. 3.5). Oys-

ter bioherms were introduced as high permeability features that vary in aerial

extent from 15 x 15 m to 300 x 130 m. Permeability of oyster bioherms varies be-

tween 1000 and 10,000 mD higher than the permeability of the remaining model.

Figure 3.5: Amellago outcrop characterisation and modelling. After Shekhar et al. (2010).
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3.3.2 Fracture Modelling

Fracture data acquired from the Island outcrops were included in the geologi-

cal model using a discrete fracture network (DFN) approach (Dershowitz et al.,

2000). The DFN method generates fracture networks stochastically based on the

available fracture data (e.g., fracture orientation, length distribution, and den-

sity). The fracture modelling presented in this study follows and extends the

work of Shekhar et al. (2010), who focused on generating DFNs for a smaller ge-

ological model of the same outcrop. Shekhar et al. (2010) generated DFN models

that honoured static observations of the background fracture orientation. The un-

certainty in fracture connectivity was addressed by varying the fracture intensity.

For this study, DFNs were generated in FRACMANTM with varying fracture

volumetric intensity (P32) (Fig. 3.6). An average fracture length of 20 m and an

aspect ratio (height to length) of 1:5 was employed based on field data for the

Island outcrop (Table 3.2). All fractures were assumed to be open, therefore, par-

tially or fully closed fractures acting as barriers were not investigated. Fracture

corridors and small background fractures, partly because data of appropriate de-

tail were not available for the entire modelled area. In addition, representation

of all the fine-scale background fractures was not viable from a computational

standpoint, and so localized increases in fracture intensity close to the fault were

represented by the aggregate fault zone properties.

Figure 3.6: Stochastically generated discrete fracture networks (DFNs) for the Amell-
ogo outcrop, which honour the observed fracture orientation, mean fracture
length, and aspect ratio. (a) DFN for low fracture intensity of P32 = 0.05 (b)
DFN for medium fracture intensity of P32 = 0.1 (c) DFN for high fracture
intensity of P32 = 0.2
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Distribution
Dip direction Dip Fracture length Fracture aperture

average average average average

Set 1 Fisher 275 74 20 m 0.5 mm
Set 2 Fisher 315 75 20 m 0.5 mm
Set 3 Fisher 345 76 20 m 0.5 mm

Table 3.2: Fracture sets used for stochastic fracture generation in all DFN models.

The DFN models were upscaled to obtain the equivalent permeability ten-

sor, porosity and shape factor for the fractures at the same resolution as the

flow simulation model discussed above. A modified Oda method was used for

the permeability upscaling (Golder-Associates, 2010). In contrast to the classical

Oda method (Oda, 1985) it ensures that the local fracture connectivity is cap-

tured. The modified Oda method is significantly more computationally efficient

than flow-based upscaling of DFNs, whose results also depend strongly on the

chosen boundary conditions (Ahmed-Elfeel and Geiger, 2012).

A dual-porosity dual-permeability (DPDP) model was employed to couple

fluid flow in the fractures with fluid flow in the matrix, considering the high

permeability and heterogeneity of the matrix. The average fracture permeability

is 867 mD, in contrast to an average matrix permeability of 84 mD. The Gilman

and Kazemi (1983) transfer function was used to define the rate of fracture and

matrix exchange. Simulations were also run for the transfer function of Quan-

dalle and Sabathier (1989), which is known to capture gravitational flow more

adequately (Abushaikha and Gosselin, 2008), but results were virtually identical.

Flow simulations considering the presence of fractures were only carried out for

the numerical well test analysis and not for the secondary recovery simulations

in this chapter. Detailed secondary and tertiary recovery simulations considering

fractures are presented in chapters 4, 5 and 6.

3.4 flow-simulation model

The final flow simulation model, containing 74 x 75 x 110 cells, was assumed to

have a large oil column (100 m). The reservoir was also assumed to have an ini-

tial pressure of 20.6 x 10
3 kPa and a bubble point of 15.2 x 10

3 kPa. A two-phase
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oil-water model was used, which does not allow for the formation of solution

gas and requires the reservoir pressure to be above the bubble point pressure at

all times. Oil viscosities were either 0.52 x 10
-3 Pa sec or 4 x 10

-3 Pa sec, leading

to a favourable and unfavourable oil-water mobility ratio (i.e. ratio of the displac-

ing fluid mobility to displaced fluid mobility), respectively, if water is injected

during secondary recovery.

Since most real carbonate reservoirs are mixed-wet, relative permeability and

capillary pressure curves were chosen to represent an intermediate oil-wet rock.

The relative permeability curves were generated using Corey (1954) relations

and were intended to mimic the average behaviour of intermediate oil-wet car-

bonates such as those discussed in Clerke (2009) but also extended to oil-wet and

water-wet end-member scenarios (Fig. 3.7 and Table 3.3). The curves were then

re-calibrated based on a large body of real but confidential data on carbonate

reservoirs of similar permeability. Drainage and imbibition capillary pressures

vary for carbonate reservoirs, hence Killough (1976) formulation was used to

model capillary pressure hysteresis. Relative permeability hysteresis is investi-

gated in Chapter 5.

Parameters Symbol Water-wet Mixed-wet Oil-wet

Max. Water Relative Permeability Krw,max 0.20 0.65 0.90

Initial Water Saturation Swi 0.22 0.10 0.05

Residual Oil Saturation Sorw 0.26 0.15 0.08

Oil Corey Exponent m 2.50 3.50 4.50

Water Corey Exponent n 4.50 3.50 2.50

Maximum Capillary Pressure (kPa) Pmax 483 379 276

Table 3.3: Main parameters used to generate wettability functions with Corey (1954)
equations.

The distribution of relative permeability and capillary pressure curves in the

model was approached in two stages. In the first stage, a single pair of relative

permeability and single drainage and imbibition capillary pressure curves was

used across the entire model. The relative permeability and capillary pressure

curves for this case correspond to the mixed-wet curve (Fig. 3.7). In the second

stage, three different relative permeability and capillary pressure curves were

applied using a facies based approach that tied relative permeability to horizon-
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Figure 3.7: Relative permeability curves (a) and drainage capillary pressure curves (b)
used in the flow simulations. For numerical well testing and the base-case
secondary recovery simulations, the single relative permeability and capil-
lary pressure curve is used, corresponding to the mixed-wet case. When per-
meability cut-offs linked to facies types are considered, permeability cut-offs
of less than 10 md (’water-wet’), between 10 md and 100 mD (’mixed-wet’)
and above 100 mD (’oil-wet’) were used to distribute the relative permeability
and capillary pressure curves in the model.
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tal permeabilities in grid cells. The assumption was that permeability thresholds

could be used as a proxy to represent three groups of facies. Hence, permeability

thresholds of ’less than 10mD’, ’10mD to 100 mD’ and ’above 100 mD’ were used

to assign three different wettability functions to the facies in the reservoir (Fig.

3.7). Because the relative permeability and capillary pressure curves are only

intended to mimic the average two-phase flow behaviour of an intermediate oil-

wet carbonate reservoir based on real but confidential relative permeability data,

assigning the relative permeability based on model permeability seemed to be

the most feasible option at this stage, although this may be too simplistic for real

carbonate reservoirs (e.g., Hollis et al., 2010; Gomes et al., 2008). Numerical well

testing only used a model with a single relative permeability curve because fluid

flow during well testing is dominated by the movement of the oil phase.

For the secondary recovery simulations, the well controls were set to honour

the constraint that the reservoir pressure must remain above the bubble point

pressure at all times. Hence, the minimum producer bottom-hole pressure (BHP)

was set at 15.2x10
3 kPa. The injector well control was set at a maximum injection

pressure of 32.0x10
3 kPa. This maintains a prescribed reservoir pressure gradi-

ent between injection and production wells of 10 to 45 kPa m-1 and leads to

viscous dominated flow. The base case for secondary recovery simulation was

water injection at a favourable mobility ratio, i.e. oil viscosity of 0.52x10
-3 Pa

sec. Water injection was also considered at an unfavourable mobility ratio, i.e.

at an oil viscosity of 4x10
-3 Pa sec. In addition, simulations where gas was in-

jected to displace oil at a low viscosity of 0.52x10
-3 Pa sec and where polymers

were injected to displace oil at both, high and low oil viscosity were investigated.

Gas injection has been successfully applied to carbonate reservoirs, especially

when the oil is light (e.g., Sajjadian et al., 2005; Kalam et al., 2011; Kallehbasti

et al., 2012). It is well known that polymer injection reduces the oil-water mo-

bility ratio, causing a more effective sweep of the reservoir (Sorbie, 1991). This

could be beneficial for a highly heterogeneous reservoir corresponding to the

Island model, where water is expected to channel preferentially through the

high-permeability layers, leaving much of the oil behind in the low-permeability

layers, especially if the oil-water mobility ratio is high. Although, polymer in-
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jection has mainly been applied to sandstone reservoirs (Hirasaki et al., 2011),

recent studies show that Alkali-Surfactant-Polymer (ASP) flooding has the poten-

tial to increase ultimate recovery in carbonate reservoirs as well (e.g., Bortolotti

et al., 2009; SayedAkram and Mamora, 2011; Levitt et al., 2012).

The secondary recovery simulation used a variety of well patterns including

5-spot patterns, direct line drive well patterns and staggered line drive well pat-

terns where the main flow direction was sub-parallel to and across the faults

present in the geological model (Fig. 3.2). All these patterns employed vertical

wells. A 5-spot pattern was also tested where the central production well was

horizontal. Vertical wells were completed over the entire reservoir, while hor-

izontal wells were completed over a 300 metre lateral interval. All secondary

recovery simulations were run for 20 years.

Figure 3.8: Reservoir simulation model showing the porosity distribution and the eight
different well locations for the numerical well test simulation. Note the local
grid refinement around the well, which was included to minimise numerical
artefacts.

Numerical well tests were simulated for an individual well operating at a fixed

oil production rate of 500 m3 day-1. The well was also vertical and completed

over the entire reservoir height. Wellbore storage effects were assumed to be

negligible in the early time region of the well tests and the skin factor was set to

zero. The well was placed at eight different locations in the model such that it is

[ July 29, 2015 at 16:33 – classicthesis by Simeon Agada ]



3.5 numerical well test analysis 52

Parameter Value Unit
Reservoir Pressure 20.7× 103 kPa
Bubble point pressure 15.2× 103 kPa
Rock compressibility 7.25× 10−7 kPa−1

Oil compressibility 1.0× 10−6 kPa−1

Water compressibility 5.0× 10−7 kPa−1

Favourable oil viscosity 0.52× 10−3 Pas−1

Unfavourable oil viscosity 4.0× 10−3 Pas−1

Water viscosity 0.36× 10−3 Pas−1

Reservoir pressure gradient 10− 45 kPam−1

Oil density 850.0 kgm−3

Water density 950.0 kgm−3

Reservoir Temperature 121 0C

Table 3.4: Rock and fluid properties used in the numerical simulations

at different distances to one or more faults and model boundaries. The grid was

locally refined around the well to minimise numerical errors. Sensitivity studies

were run to determine the local grid refinement at which the resulting pressure

transient no longer changed (Fig. 3.8). Well test simulations were run for 120

hours, allowing the pressure transients to encounter the boundaries. Time steps

were kept small at 0.24 hours to ensure that data points properly represent flow

periods, especially in the late time region of the pressure transient. Sensitivity

studies were carried out to ensure that the pressure transients did not change

as the time step was reduced. In all cases, the middle-time region (MTR) of the

pressure transient response was used to estimate permeability.

The fluid properties and well controls for the different simulations are sum-

marised in Table 3.4. In all cases, Computer Modelling Group IMEXTM simulator

was used (CMG, 2014). The resulting pressure transients for the numerical well

testing were further analysed using SAPHIRTM.

3.5 numerical well test analysis

Numerical well-test simulations were approached in a systematic way, starting

with the base case where the well position was changed (Fig. 3.8). Next the influ-
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ence of fault transmissibility was studied for selected wells. The fault transmis-

sibility was varied between two end-members. In the first one, a transmissibility

of zero was applied to model an impermeable fault rock that causes all faults to

become barriers. In the other end-member, a transmissibility multiplier of 5 was

applied to model a permeable fault rock.

It should be noted that, regardless of the chosen transmissibility multiplier,

flow across the faults can be reduced due to the juxtaposition of high- and

low-permeability layers. More detailed fault models were beyond the scope of

this study. We then used different geological models where the level of diage-

netic and sedimentological complexity was increased by including marine hard-

grounds and coral patch reefs, followed by the inclusion of mud mounds and

oyster bioherms. Finally, fractures were added to the base case model.

A comprehensive list of simulation results is provided in Table 3.5. Note that

the skin factor is always zero and hence not listed in Table 3.5. In general, the

average formation permeability that was recorded from well-test analysis is clos-

est to the geometric mean of the horizontal permeability of the entire geological

model, which indicates that the permeability distribution of the geological model

is random. The radius of investigation, which represents the area over which the

fluid pressure changes around a well before reaching the nearest boundary or

low-transmissibility fault, varies from less than 300 m to more than 500 m as

wells are located at different distances from the faults and/or reservoir bound-

aries.

The permeability variation near a fault or reservoir boundary is also reflected

in the permeability-thickness product, which indicates the ease with which the

reservoir can deliver fluids to the well. The closer the well is placed to a fault

or boundary, the lower the permeability-thickness product becomes. This is be-

cause the well is placed at a different location within the permeability distribu-

tion. Furthermore, the derivative slope and the radius of investigation change

with varying proximity to the fault, which indicates a decrease in the ability of

the well to produce hydrocarbons. These behaviours yield a good indication of

those wells that may be most profitable, particularly during primary recovery
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Geological realisation Variable Kavg(mD) Kh(mDm) Pi(kPa) Rinv(m)

Base case WT1 24.6 2709.7 20156.0 497

WT2 10.5 1152.1 20154.2 323

WT3 13.6 1502.7 20119.5 369

WT4 15.1 1658.1 20034.4 393

WT5 28.3 3109.0 20314.1 533

WT6 12.6 1383.8 20037.3 354

WT7 8.0 877.80 19812.4 286

WT8 33.0 3627.1 19906.3 573

Base case+diagenesis WT1 24.4 2688.3 20153.7 494

WT2 10.4 1140.0 20152.4 326

WT3 13.5 1481.3 20116.4 366

WT4 14.9 1642.9 20030.6 390

WT5 38.5 4236.7 20310.2 628

WT6 12.5 1371.6 20034.9 354

WT7 28.5 3139.4 19809.5 533

WT8 32.6 3596.6 19901.6 579

Base case+mud mounds WT1 24.6 2709.7 20156.0 503

WT2 10.5 1152.1 20154.2 154

WT3 13.6 1502.7 20119.5 375

WT4 12.5 1658.1 20034.4 393

WT5 38.9 4267.2 20314.1 631

WT6 12.6 1383.8 30037.3 360

WT7 28.7 3169.9 19812.4 543

WT8 33.0 3627.1 19906.3 582

Base case+oyster bioherms WT1 12.3 1359.4 20149.3 357

WT2 10.5 1158.2 20156.8 329

WT3 13.6 1502.7 20121.0 375

WT4 11.6 1271.0 20028.6 344

WT5 38.9 4267.2 20317.9 631

WT6 12.6 1386.8 20038.1 360

WT7 28.7 3169.9 19813.1 543

WT8 7.4 816.9 19907.9 276

Base case+diagenesis+mud
mounds+oyster bioherms

WT1 11.7 1289.3 20143.2 347

WT2 10.4 1149.1 20154.8 326

WT3 13.5 1481.3 20117.8 372

WT4 10.5 1158.2 20022.9 329

WT5 38.5 4236.7 20313.1 628

WT6 12.5 1374.6 20035.5 357

WT7 28.5 3139.4 19810.3 533

WT8 32.6 3596.6 19903.1 570

Base case+fractures WT1 63.8 7010.4 20440.7 997

WT2 41.6 4572.0 20489.3 805

WT3 45.6 5029.2 20514.0 323

WT4 45.2 4968.2 20437.0 323

WT5 65.1 7162.8 20646.1 323

WT6 45.4 4998.7 20438.5 323

WT7 72.5 7985.5 20419.7 323

Base Case (WT6): Vary fault
transmissibility

0.00 Trans 5.6 618.7 19797.2 240

0.25 Trans 10.5 1152.1 20011.7 326

0.50 Trans 11.6 1280.2 20027.5 344

1.00 Trans 12.6 1383.8 20037.3 354

5.00 Trans 14.0 1542.3 20049.1 378

Table 3.5: Summary of all well-test simulations. WT1 to WT8 stand for well-test 1 to 8,
corresponding to the well location shown in Figure 3.8. Trans refers to the
transmissibility multiplier which either enhanced or lowered the transmissi-
bility of all faults uniformly in the model. Diagenesis incorporates the effect
of marine hardgrounds and coral patch reefs.
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when no fluids are injected into the reservoir to enhance oil production and ex-

tend field life.

The pressure transients that are recorded at the well, i.e. the pressure drop and

rate of pressure change (pressure derivative) against time can be modelled by

solving the partial differential equation describing the spatio-temporal evolution

of the fluid pressure p during single-phase flow for the entire reservoir model

ct
∂p
∂t

= ∇k(x)
µ
∇p, (3.1)

where ct is the total fluid and rock compressibility, µ is the fluid viscosity (un-

der single-phase flow conditions), and k(x) is the spatially varying permeability

tensor.

3.5.1 Influence of Faults

By subjecting these curves to standard techniques for advanced well-test anal-

ysis, geological features can be identified from subtle variations in the pres-

sure derivative (Bourdet, 2002). It should be noted that only selected results

are shown because several geological models yield pressure transients that are

very similar, as will be discussed below. Figures 3.9 and 3.10 reinforce that the

pressure transients are dominated by faults at wells 1, 2, 5, 6 and 7. The fault

impact is indicated by the positive slope of all pressure derivatives at late time,

which shows that the pressure front has reached a flow boundary.

Since the faults juxtapose low- and high-permeability layers in the geological

model, flow across the faults is reduced, thereby altering the propagation of

the pressure front and hence the shape of the drainage area around each well.

These effects combine to result in measurable change in the rate at which the

pressure in the well decreases. While an increase in the pressure derivative with

a constant slope may be due to mobility reduction or permeability variation away

from the well, changes in the pressure derivative also give an indication of the

configuration of the faults and other boundaries in the reservoir (Bourdet, 2002).

However, as discussed above, the fluid pressure changes are simulated under
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single-phase flow conditions, hence the mobility does not change as a function

of saturation and cannot impact the pressure derivative.

Figure 3.9: Selected pressure transients from Table 3.5 showing the impact of well loca-
tion near a single fault. See figure 3.8 for well locations. Curves at the top
represent numerical pressure data at the wells. Curves at the bottom indi-
cate the pressure derivative, i.e. the rate at which the pressure changes in the
wells.

The constant slope of the pressure derivative of well 1, which implies that

the pressure changes at a constant rate at the well (Fig. 3.9), indicates that the

drainage area of well 1 is influenced by a single boundary. Figure 3.8 shows that

this well is located close to the central fault in the geological model. The steep

upward pressure derivative trend of well 5 (Fig. 3.9) is consistent with a well

that is located in a region where the flow boundaries are U-shaped (Stewart,

2005). Pressure derivatives for wells 2 and 6 (Fig. 3.10) indicate an asymmetrical

drainage area between two faults, identified by multiple slopes of the derivative

curve in the middle time that stabilise to an upward slope in late time (Bourdet,

2002).

Additional simulations for well 6 showed that if the fault transmissibility de-

creases, for example because of a low permeability or impermeable fault gouge,

the radius of investigation and permeability-thickness product decrease. Hence

the positive slope of the pressure derivative increases because the pressure in
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Figure 3.10: Selected pressure transients from Table 3.5 showing the impact of U-shaped
boundaries. See figure 3.8 for well locations. Curves at the top of each rep-
resent numerical pressure data at the wells. Curves at the bottom indicate
the pressure derivatives.

the well changes more rapidly. This indicates that the ability of the well to de-

liver hydrocarbons is reduced. On the other hand, if the fault transmissibility is

increased, for example because of a fractured fault core, the drainage area and

permeability-thickness value increase and the slope of the pressure derivative

decreases at late time because the pressure in the well changes less rapidly (Ta-

ble 3.5 and Figure 3.11).

It is not surprising that the faults are a first order control on reservoir connec-

tivity and hence impact large-scale fluid flow as well as reservoir performance

during primary and secondary recovery. Since the offset of sedimentary layers at

the faults is small, most faults would probably be below seismic resolution if this

was a real reservoir. Yet, this offset juxtaposes high- and low-permeability layers

and hence flow across the faults is reduced. Numerical well-testing on outcrop

reservoir analogues is therefore an efficient tool to detect first-order fluid flow

controls and guide reservoir engineering solutions that may aid well placement

in a real reservoir. Generating a transient pressure response numerically is rel-

atively fast computationally, therefore, a large number of well-test simulations

can be run quickly to test the performance for different geological scenarios in
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Figure 3.11: Selected pressure transients from Table 3.5 showing the impact of fault trans-
missibility at well WT6. See figure 3.8 for well locations. Curves at the top
represent numerical pressure data at the wells. Curves at the bottom indi-
cate the pressure derivative.

selected sub-regions of a real reservoir model. However, it is important that ge-

ological structures are captured at detail in these model sub-regions to obtain

reliable well-testing results. This requires information from an outcrop analogue

model. Especially in the vicinity of the well it is important to resolve the geology

at great detail in order to model the inflow into the well accurately. Workflows

for this particular purpose are available that resolve geological structures even

beyond what is achieved in this chapter (Chandra et al., 2013).

3.5.2 Influence of Sedimentological and Diageneitic Heterogeneities

Since faults have such a first-order effect on the pressure transients, an important

question is whether other geological features will change the pressure transients

and could be identified in a well test. In other words, could other geological

features affect the recovery behaviour or do the faults dominate? Surprisingly,

none of the diagenetic (e.g. marine hardgrounds) or depositional features (e.g.

mud mounds) display a visible impact on the pressure transients (Table 3.5),

probably because their volume fractions are negligibly small. The hypothesis is
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that the high degree of heterogeneity that is already present in the reservoir ho-

mogenises the flow behaviour and hence renders the pressure derivatives indis-

tinguishable. Only the geological model with oyster bioherms included shows

a definite variation in pressure transients for those wells that penetrate oyster

bioherms, because these features act as high permeability thief zones.

Figure 3.12: Selected pressure transients from Table 3.5 showing the impact of highly
permeable oyster bioherms at well WT1. Curves at the top represent numer-
ical pressure data at the wells. Curves at the bottom indicate the pressure
derivative.

The oyster bioherms vary in aerial extent from 15 x 15 m to 300 x 130 m,

but still only comprise 0.34% of the total reservoir volume. Their permeability

is between 1000 and 10,000 mD higher than the permeability of the remaining

model. Figures 3.12 and 3.13 show that the permeability contrast between oyster

bioherms and other reservoir facies causes an upward movement in the pres-

sure transient compared to the base case. This movement is due to the fact that

the pressure front propagates from the high permeability oyster bioherms to the

lower permeability matrix. The upward movement in the pressure transient sta-

bilises just before the pressure front is influenced by boundaries.
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Figure 3.13: Selected pressure transients from Table 3.5 showing the impact of highly
permeable oyster bioherms at well WT4. See figure 3.8 for well locations.
Curves at the top represent numerical pressure data at the wells. Curves at
the bottom indicate the pressure derivative.

3.5.3 Influence of Fracture Networks

Considering how critical fractures are in many cases for controlling recovery

in carbonate reservoirs, an important question is whether the fractures that are

observed in the Island outcrop can be detected in a numerically generated well-

test profile once they have been included in the geological model. The classical

pressure transient analysis for fractured reservoirs is based on the dual porosity

model (Warren and Root, 1963), which causes a distinct V-shape in the middle

time region of the pressure derivative (Cinco-Ley, 1996; Bourdet, 2002; Kuchuk

and Biryukov, 2012). This is due to a flow process commonly known as recharge.

Recharge occurs because the fluids in the fractures are produced at a faster rate

than they are replaced from the matrix, causing significant changes in the rate

at which the pressure in the well declines. Classical theory predicts that this

recharge effect increases with increasing fracture-matrix porosity contrast (dual-

porosity model) and/or permeability contrast (dual-permeability model) and

that the width and depth of the V in the pressure transient allows us to back-

calculate the fracture-matrix permeability contrast and the difference in flow

rates of fluids stored in the fractures and the matrix (Cinco-Ley, 1996; Bourdet,
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2002). However, this behaviour is not observed in the pressure transient in the

current modelling effort, regardless of the chosen fracture intensity (Fig. 3.14).

Figure 3.14: Selected pressure transients from Table 3.5 showing the impact of fractures
at well WT3. See figure 3.8 for well locations. Curves at the top represent
numerical pressure data at the wells. Curves at the bottom indicate the
pressure derivative.

It is concluded that the absence of a V-shape in the pressure transient might

be due to the high matrix permeability, which can flatten the pressure derivative

and reduce the influence of fractures on the pressure decline in a well (Wei, 2000).

In the model the average fracture permeability is less than 10 times higher than

the average matrix permeability (84 mD vs. 867 mD). It has been observed previ-

ously that pressure transient data for fractured reservoirs does not always reflect

theoretical models (Wei et al., 1998; Corbett et al., 2012) and the model results

confirm that fractures may not be distinguishable in classical well-test analysis

if the matrix is highly heterogeneous. However, Kuchuk and Biryukov (2012)

discuss that dual-continuum models are sometimes too simplistic and cannot

produce the theoretical pressure transients for fractured reservoirs, a fact that

is generally known but not always accounted for in fractured reservoir simula-

tion (Bourbiaux et al., 2002; Ahmed-Elfeel and Geiger, 2012; Geiger and Matthai,

2012).
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In other words, the numerical simulation approach that has been followed

here, in which fracture permeability is estimated from a DFN and fractures are

coupled to the rock matrix using a dual-porosity dual-permeability model, may

be too simplistic for reproducing the actual flow behaviour in a real fractured

reservoir with the same fracture and matrix properties. However, the observation

that the fractures present in the numerical model appear not to influence the sim-

ulated well-test response is still an important outcome of this study. This result

reinforces that classical reservoir simulation approaches for fractured carbonate

reservoirs, which are based on dual continuum models, may lead to inadequate

predictions, especially if the rock matrix is highly heterogeneous. Since numeri-

cal well-testing using outcrop-based reservoir analogues is computationally effi-

cient, this approach could be used to gain confidence in the chosen simulation

approach: if there is good (qualitative) agreement between a real well-test that

indicates presence of fractures and the numerical results that are based on a

dual continuum approach, then the simulation model is more likely to capture

the essential flow behaviours in future reservoir simulation approaches.

A detailed representation of the rock matrix, informed from outcrop analogue

studies, however, is important such that fluid flow and pressure changes in the

rock matrix are not oversimplified in the numerical simulation. If there is poor

agreement between the observed and simulated well-test behaviour, other sim-

ulation approaches should be used to complement the dual-porosity and/or

dual-permeability method, most notably Discrete Fracture and Matrix (DFM)

modelling where the fractures and the matrix are represented explicitly (e.g.,

Karimi-Fard et al., 2004; Matthäi et al., 2007; Haegland et al., 2009; Geiger et al.,

2009; Geiger and Matthai, 2012).

3.6 insights from secondary recovery simulations

The well-test simulations discussed above provide key indications as to how a

reservoir may perform during primary recovery. Since recovery factors are low

for this type of production, most reservoirs are subjected to water and/or gas
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injection, which drives fluids from the injection wells to the production wells,

thereby displacing additional oil while maintaining the reservoir pressure. The

sweep efficiency of hydrocarbons from a reservoir depends on the degree of geo-

logical heterogeneity, the fluids present in and injected into the reservoir, and the

placement and configuration of the wells. The sweep efficiency is investigated

next and it should be reiterated that the impact of fractures on oil recovery sim-

ulations are not considered here but in chapters 4, 5 and 6.

3.6.1 Influence of Fluid Properties

Figure 3.15 shows the impact of the injection fluid on sweep efficiency after 20

years production. Gas, water and polymers were injected at favourable oil-water

mobility ratio (an oil viscosity of 0.52x10
-3 Pa sec). Water was also injected at

an unfavourable oil-water mobility ratio where the oil viscosity is 4x10
-3 Pa sec.

A regular 5-spot pattern with a central production well and four injection wells

located in the model corners was used. An unfavourable mobility ratio between

the injection fluid and oil, i.e. for gas injection at oil viscosity of 0.52x10
-3 Pa sec

(Fig. 3.15a, b) or water injection at oil viscosity of 4x10
-3 Pa sec (Fig. 3.15c, d),

caused the injected fluid to channel through the high permeability layers, leav-

ing much of the oil in the low-permeability layers behind. Only at favourable

mobility ratio, i.e. when water (Fig. 3.15e, f) or polymers (Fig. 8g, h) were in-

jected at an oil viscosity of 0.52x10
-3 Pa sec, was channelling reduced and sweep

efficiency increased. A favourable mobility resulted in significantly higher oil re-

coveries for water injection (43% recovery) and polymer injection (49% recovery)

compared to gas injection (22% recovery) or water injection (27% recovery) at

unfavourable mobility ratio (Fig. 3.16). Polymer flooding also reduced the water

cut greatly, from 87% and 93% for water injection to 75% (Fig. 3.17).
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Figure 3.15: Cross sectional and aerial view of oil saturation after 20 years production for
a regular 5-spot well pattern where the injected fluid is gas at an oil viscosity
of 0.52x10

-3 Pa sec (a, b), water at an unfavourable oil-water mobility ratio
with an oil viscosity of 4x10

-3 Pa sec (c, d), water at a favourable oil-water
mobility ratio with an oil viscosity of 0.52x10

-3 Pa sec (e, f), and polymers
at an oil viscosity of 0.52x10

-3 Pa sec (g, h).
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Figure 3.16: Oil recovery for the injection of gas, polymers and water at favourable (fv)
and unfavourable (ufv) oil-water mobility ratios. See Figure 3.15 for corre-
sponding saturation distributions after 20 years production. Note that there
is no water produced during gas flooding and hence the water cut is not
shown.

Figure 3.17: Water cut for the injection of gas, polymers and water at favourable (fv) and
unfavourable (ufv) oil-water mobility ratios. See Figure 3.15 for correspond-
ing saturation distributions after 20 years production. Note that there is no
water produced during gas flooding and hence the water cut is not shown.
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3.6.2 Influence of Influence of Well Placement

It is interesting and important to note that the recovery for this particular well

pattern is not final. It can be further improved by finding the optimum place-

ment for the central production well such that the recovery factor is maximised

without changing any other well controls. Well pattern optimisation is now a

standard technique in reservoir simulation (e.g., Bangerth et al., 2006; Onwu-

nalu and Durlofsky, 2011). CMOSTTM, an optimisation and history matching

engine, was used to drive IMEXTM and search for the worst and optimum well

position for the central producer in an area of 300 x 300 m around the base case

position of the production well.

Waterflooding was only considered for a favourable oil-water mobility ratio.

The difference between the best (45% recovery) and worst position (38% recov-

ery) of the central production well is 7% for this particular geological model

if no other well properties are changed. However, optimisation simulations are

costly to run because a large parameter space needs to be explored, particu-

larly if there are many uncertain parameters such as different geological model

realisations. One possible application of optimisation in outcrop based flow sim-

ulations is to find the geological heterogeneities that dominate flow behaviour:

if geological heterogeneities are simplified, for example during upscaling, the

optimisation algorithm still must find the same worst and best location for the

production wells as in a high-resolution model that captures more geological

heterogeneities.

When well patterns are varied, the 5-spot pattern yields the best recovery

compared to all other investigated well-patterns (Fig. 3.18). Only a direct line

drive where the main flow directions are along the East-West trending faults

of the geological model yields a comparable recovery. If the main flow direc-

tion is across the faults in the direct or staggered line drives, sweep efficiency is

reduced because, as indicated by the well-testing results, faults form less perme-

able boundaries to flow. Staggered line drives perform generally poorer for this

heterogeneous reservoir, yielding recoveries of 43% compared to 45% recovery
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for a direct line drive across the fault. This result again emphasises the need

for carefully testing well placements in optimisation runs once the general well

pattern has been decided.

Figure 3.18: Comparison of oil recovery for different well patterns using vertical wells.
All simulation cases assume waterflooding for the favourable oil-water mo-
bility ratio with an oil viscosity of 0.52x10

-3 Pa sec.

3.6.3 Influence of Well Design

All of the studies above considered vertical wells. Today, deviated and horizontal

wells are frequently used in carbonate reservoir development because they can

drain a larger reservoir volume. However, it has been observed that horizontal

wells are less efficient if carbonate reservoirs exhibit strong vertical heterogeneity,

as is the case for the Island model (e.g., AlHanai et al., 1995; Farran et al., 2005;

Leung et al., 2010). The model simulations confirm this: placing a central hori-

zontal producer of 300 m length parallel to the main fault in the reservoir yields

significantly lower recoveries (10% to 20% recovery), irrespective of the depth

of the producer (Fig. 3.19). This is because structurally lower and higher reser-

voir units are more difficult to drain by a horizontal producer if heterogeneities

decrease flow in the vertical direction. Upscaling a static geological model to a
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reservoir simulation model involves, first and foremost, loss of vertical hetero-

geneity. Hence outcrop-based flow simulations could be an important tool to

investigate the performance of horizontal wells more accurately if a reservoir

appears to have strong vertical heterogeneity.

Figure 3.19: Comparison of oil recovery for a regular 5-spot well pattern with a central
horizontal producer located at different depths from the top of the reservoir.
Simulations assume waterflooding for the favourable oil-water mobility ra-
tio with an oil viscosity of 0.52x10

-3 Pa sec.

3.6.4 Influence of Capillary Pressure Hysteresis

Accounting for capillary pressure hysteresis in the simulations for waterflood-

ing at favourable oil-water mobility had a negligible impact on recovery and

water-cut. It is well known rock typing which accounts for capillary and rela-

tive permeability hysteresis in carbonate reservoirs, is notoriously challenging

(e.g., Hollis et al., 2010; Gomes et al., 2008) and generating saturation functions

from special core analysis is time consuming and expensive. Nevertheless, it is

possible to estimate saturation functions quickly and reliably from pore-scale

modelling, even for three-phase flow (Blunt, 2001; Al-Dhahli et al., 2013; Blunt

et al., 2013). These can be included straightforwardly in outcrop-based analogue

flow simulations to investigate how production behaviour changes if the number

[ July 29, 2015 at 16:33 – classicthesis by Simeon Agada ]



3.7 discussion 69

of saturation functions is increased or decreased. Relative permeability hystere-

sis is discussed in chapter 5.

3.7 discussion

3.7.1 Numerical Well-test Simulation

Numerical well-test simulation and analysis are known to be powerful and com-

putationally efficient tools that help to calibrate reservoir models and simulation

approaches (Rawnsley and Wei, 2001; Corbett, 2009; Corbett et al., 2012; Chandra

et al., 2013). They allow us to test, quickly and systematically, how different ge-

ological realisations can affect the ability of new wells to deliver hydrocarbons.

In addition, if well-test data are available, they enable a qualitative and fast

comparison between numerically generated type curves for the different geolog-

ical models and observed well-test data. Therefore it becomes possible to rank

different geological scenarios and improve engineering judgement as to which

geological structures can be expected to impact flow the most and which are of

lesser importance.

The use of a high-resolution flow simulation model that incorporates small-

scale structures from outcrop analogues is crucial because certain geological fea-

tures will always be excluded a priori if upscaled reservoir simulation models

are used instead. Hence flow behaviour, especially in the near-wellbore region,

can be misrepresented and results from such simulations may be biased (Chan-

dra et al., 2013). As discussed above, numerical well-test simulations may also

help to build confidence in configuring reservoir simulation models for fractured

reservoirs: if there is good qualitative agreement between observed well-test data

showing a clear fracture signal and the outcrop-based simulation result, then this

indicates that the chosen model (e.g. dual-porosity dual-permeability model) is

likely to capture the flow behaviour in the real reservoir sufficiently, at least for

primary production.
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During the pressure transient analysis in this chapter, the transmissibility of

all the faults has been varied simultaneously. This was in order to investigate and

analyse the end member transmissibility impacts of faults that are fully sealing,

partially sealing and fully open. It was observed that an increasing the sealing

capacity of the faults led to an increase the slope of the pressure transients irre-

spective of the nature or symmetry of the drainage area. It has been established

that if the well is placed asymmetrically between two faults that are fully sealing,

a derivative hump is observed. If one of the faults is non sealing, the derivative

hump can still be expected if the pressure transient reaches the sealing fault first.

Subsequently, the transient would flatten out as it reaches the second fault that

is partially sealing or fully open. Hence, the end-member fault transmissibility

scenarios considered here provide a framework for understanding the pressure

response if the fault configuration or sealing capacity were to be different from

the scenarios considered in this thesis.

3.7.2 Secondary Recovery Simulation

The secondary recovery simulations in this chapter show that channelling of

fluid flow into the high-permeability layers is the primary control on oil recov-

ery because it generates a positive feedback loop where the channelling effect

increases as more fluid is channelled into the high-permeability layers. Chan-

nelling may not be predicted accurately if the reservoir is overly upscaled using

conventional methods that group too many of the small-scale layers together

(Pavlas, 2001). The secondary recovery simulations also demonstrate that the oil

recovery is strongly affected by well type (horizontal vs. vertical well and well

pattern), gas injection and mobility ratio. The first two are engineering measures

which can be mitigated through appropriate reservoir development. Likewise,

optimising the placement of injection and production wells once the basic well

pattern has been selected is now possible by combining reservoir simulation

and experimental design techniques (e.g., Bangerth et al., 2006; Onwunalu and

Durlofsky, 2011).
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Even an unfavourable mobility ratio, which decreases oil recovery significantly

(Fig. 3.16), can be mitigated at least in part by the appropriate choice of injection

fluid. Indeed, adding polymers to the injection fluid has a significant impact on

both oil recovery and water cut, and polymer injection appears to emerge as

viable recovery mechanism for carbonate reservoirs (e.g., Bortolotti et al., 2009;

Hirasaki et al., 2011; SayedAkram and Mamora, 2011; Levitt et al., 2012). Further-

more, Alkali-Surfactant-Polymer (ASP) flooding can use Alkali and Surfactant to

improve microscopic sweep efficiency so that in combination with polymer the

ASP treatment can achieve improved microscopic and macroscopic sweep effi-

ciency. Alkali can reduce the in-situ interfacial tension while surfactant can po-

tentially alter the wettability favourably towards water-wetness which improves

hydrocarbon recovery.

3.7.3 Small-scale Heterogeneities

For all the sensitivities described in this chapter, it was essential to consider

the impact of small-scale heterogeneities. Traditional reservoir simulation work-

flows, which do not typically account for small-scale geological features, should

therefore be complemented with simulations performed on digital outcrop mod-

els, as discussed here. The choice of well pattern and well placement may be

affected if small-scale heterogeneities are neglected in upscaled simulation mod-

els, particularly when considering vertical wells or attempting to optimise the

well spacing for a given well pattern. In turn, reservoir simulation models us-

ing outcrop analogues can help to ensure that the geological features that are

primary controls on recovery are included properly in the reservoir simulation

model. They enable us to test systematically how recovery behaviour changes if

known geological features that have been observed in the outcrop are added to

the model or removed from it. In particular, use of costly injection strategies such

as polymer flooding requires a sound understanding of how polymers will inter-

act with heterogeneities that are representative of the real reservoir, in addition

to simplified representations in an upscaled flow simulation model.
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3.7.4 Relative Permeability and Capillary Pressure Curves

Measuring additional relative permeability and capillary pressure curves in the

laboratory is time consuming and costly. It is hence critical to have good a-priori

knowledge when the addition of further saturation functions will no longer af-

fect the predicted reservoir performance. Since saturation functions can be es-

timated reliably and efficiently from pore-network modelling (Blunt, 2001; Al-

Dhahli et al., 2013; Blunt et al., 2013), outcrop-based flow simulations are an ex-

cellent experimental tool to test how recovery may change if different geological

structures and saturation functions are included. It is of particular importance

if enhanced oil recovery techniques are considered, such as injecting wettability

altering fluids or tertiary gas injection (e.g., Christensen et al., 2001; Gupta and

Mohanty, 2011; Kalam et al., 2011; Al-Dhahli et al., 2013).

3.7.5 Fracture Network Concepts

The fracture network flow concepts were generated and developed to honour

fracture data from the outcrop. In a real scenario, this would be equivalent to

honouring the data that has been obtained from core analysis, borehole imaging,

surface and subsurface analogues. For example, three fracture sets were identifi-

able from the outcrop, while, fault-related, bedding-related and regional fracture

geometries can also be identified from the outcrop data. However, due to uncer-

tainties in the data, fracture concepts could vary from our initial hypothesis. In

a situation where a single fracture set is encountered, it is expected that the con-

nectivity of the fracture system could be much less, which would decrease the

predicted impact of rapid water and gas breakthrough. This is because multiple

fracture sets with varying orientations would have an increased possibility of

fracture sets crossing each other and reaching the percolation threshold much

faster. In general, the impact of the nature or number of fracture sets would

depend on how these concepts affect the fracture network properties. Higher

connectivity across the fracture network would lead to rapid breakthrough of in-

jected fluids and poor hydrocarbon recovery. Similarly, poor connectivity across
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the fracture network would increase the residence time of injected fluids and

support more efficient displacement of oil and storage of gas in the matrix.

3.8 summary

In this chapter, a series of numerical well-testing and secondary oil recovery sim-

ulations have been performed on a high-resolution analogue model for the Arab

D formation. The geological model was derived from a series of well-exposed

outcrops in the Island area of Amellago Canyon in Morocco and is a representa-

tive analogue for reservoir case studies situated in Jurassic carbonate ramp set-

tings. Systematic numerical simulations of well-testing and subsequent well-test

analysis on synthetically generated pressure transients revealed that faults domi-

nate the large-scale flow behaviour in the model. Hardly any other diagenetic or

sedimentary features can be distinguished from pressure transients when they

are included into the geological model. Even including fractures by upscaling

them from a DFN model does not change the pressure transients significantly.

The hypothesis is that this is because the heterogeneity of the high-permeability

rock matrix is resolved at the appropriate scale in the numerical simulation,

which suppresses the signal from the fractures.

Similar observations were made in earlier studies of numerical well-testing in

fractured reservoirs although the current simulation study employs a realistic

matrix model for the first time. It could also be possible that the dual-porosity

dual-permeability model, which was used to couple flow in the fractures and

matrix, may not be able to resolve the flow physics in a real fractured reservoir

appropriately. This remains to be investigated using more advanced numerical

techniques such as Discrete Fracture and Matrix methods, which incorporate

fractures explicitly in the reservoir simulation model.

Secondary recovery simulations demonstrate that channelling of flow into

high-permeability layers is a primary control on oil recovery. This channelling

effect increases with increasing viscosity contrast between injection fluid and oil.

The conductivity between low- and high-permeability layers increases once the
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high-permeability layers are saturated with a low-viscosity fluid while the low-

permeability layers still contain high-viscosity oil, resulting in even more, flow

channelling into the high-permeability layers. Selecting the appropriate injection

fluid and well configuration is hence crucial as it can mitigate this effect by re-

ducing the viscosity contrast and increasing sweep efficiency. High-resolution

geological models that capture small-scale permeability variations are needed to

study these effects accurately.

Generating the 3D model for the Island outcrop was a time consuming process,

and this time investment may be perceived as a major obstacle in performing

outcrop-based reservoir simulations that complement traditional reservoir mod-

elling and simulation workflows on a regular basis. There is already a wealth of

excellent outcrop analogue data available to perform similar simulations more

routinely. Results from these simulations allow for systematic and consistent

testing of how different depositional environments and different structural over-

prints can affect certain recovery mechanisms and hence the overall reservoir

performance. Outcrop-analogue based high-resolution simulations can provide

important guidelines as to which geological heterogeneities need to be captured

in the real reservoir model (and which only have secondary effects on recovery)

such that the model can be history-matched more reliably and the optimal field

development plan can be selected. This would not only add further value to the

outcrop analogue datasets, but in time would also yield a valuable library of

models that allow for quick comparison and ranking of the performance of cer-

tain recovery mechanisms for a specific carbonate reservoir type, hence guiding

reservoir modelling and simulation workflows.
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4
C O M P O S I T I O N A L S I M U L AT I O N , O P T I M I S AT I O N A N D

M O B I L I T Y C O N T R O L O F G A S I N J E C T I O N P R O C E S S E S

4.1 introduction

Gas injection has been widely applied in the oil and gas industry for subsurface

hydrocarbon displacement and pressure maintenance. The displacement of oil

by gas injection can be classified as miscible or immiscible based on the reser-

voir fluid properties at reservoir conditions. Miscible processes occur when the

reservoir pressure is above the Minimum Miscibility Pressure (MMP) for a given

injection gas and in-situ oil composition (Taber et al., 1997). In a miscible dis-

placement process, two fluids form a single homogeneous phase when mixed in

all proportions (Holm, 1986; Bourdarot and Ghedan, 2011).

When the fluids are fully miscible, the Interfacial Tension (IFT) between them

reduces to zero, capillary forces are eliminated and under idealized conditions,

the Residual Oil Saturation (ROS) is reduced to zero in the swept region, lead-

ing to significantly higher oil recoveries. In miscible flooding, the gas is gener-

ally injected at super-critical conditions and mixes with the oil mainly by sol-

ubility, diffusion and dispersion. The key oil recovery mechanisms include oil

swelling, viscosity reduction, low IFT displacement and subsequent reduction of

ROS (Holm, 1986; Stern, 1991; Healy et al., 1994; Taber et al., 1997; Lange, 1998;

Bon et al., 2005; Bourdarot and Ghedan, 2011).

Miscible displacements can occur at the first contact of the injected gas with

the reservoir oil in which case any amount of solvent injected will exist as

75
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a single phase with the oil. More frequently, gases are not directly miscible

with the reservoir oils, but under appropriate conditions of pressure and fluid

composition achieve miscibility in-situ by mass transfer of mostly intermediate-

molecular-weight oil and solvent components through repeated contact, in a

process known as multiple-contact or ’dynamic’ miscibility. Conversely, immisci-

ble displacements occur at pressures below the MMP for a given solvent and oil

composition. Due to the existence of a substantial IFT between the phases, capil-

lary forces prevent the complete displacement of one phase by the other, leading

to a high ROS post displacement. The presence of oil- to mixed-wettability in

carbonates also leads to sub-optimal displacement by immiscible floods due to

the development of preferred gas travel pathways through small oil-wet pores

as a result of capillarity-induced bypassing (Stern, 1991; Christensen et al., 2001;

Vatanparast et al., 2011; Mohan et al., 2011; Martavaltzi et al., 2012). Miscible

flooding displacements are therefore preferable if reservoir conditions (hetero-

geneity, pressure, temperature and fluid composition) and economic factors,

favour their deployment.

Gas injection into oil reservoirs results in complex interactions of flow with

phase behaviour that are best modelled by compositional simulation. Composi-

tional simulation in turn requires a good understanding of the phase behaviour

of in-situ oil and injected gas under reservoir conditions and how their compo-

nents interact (Zick, 1986; Stalkup, 1987; Johns et al., 2002; Christensen et al.,

2001; Egwuenu et al., 2008). This is achieved by accurate characterization of the

reservoir fluids based on equation of state (EOS) models that are calibrated to

pressure-volume-temperature (PVT) laboratory experiments.

Most EOR projects are capital intensive with high risk of undesirable conse-

quences in case of failure, and therefore have to go through a screening study

to evaluate available options (Taber et al., 1997; Alvarado et al., 2002; Manrique

et al., 2007; Teletzke et al., 2010; Bourdarot and Ghedan, 2011). In the context

of gas injection, screening usually involves the choice of injected gas, miscibility

conditions and slug sizes. The reservoir type (heterogeneous or homogeneous),

field location as it relates to gas availability (offshore or onshore), and optimum

hydrocarbon recovery will usually guide this choice. A detailed understanding
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of the reservoir type is discernible from high resolution outcrop analogue studies

as such studies attempt to correlate reservoir flow patterns to geological features

that have been observed in the outcrop. Miscibility is achieved at a lower MMP

with CO2 than with hydrocarbon gas, nitrogen or flue gas, and therefore CO2 is

miscible with reservoir oil at conditions (pressure and composition) where other

gases remain immiscible. Hence, CO2 injection is employed in this chapter.

4.2 gas mobility control strategies

A major problem with gas flooding is the unfavourable mobility ratio caused

by low viscosity of the injection gas compared to the oil. An unstable mobility

front is formed between gas and oil that enables viscous fingers to develop and

propagate through the displaced fluid, leaving much of the reservoir oil un-

contacted (Fig. 4.1). Gas flood efficiency is also adversely affected by injectant

channelling through high permeability layers (in a stratified reservoir), and/or

gravity override (in a vertically communicating reservoir) due to lower density

of displacing gas relative to the displaced oil (Healy et al., 1994).

Figure 4.1: Oil saturation distribution in a high permeability top layer of the Amellago
sector model during water injection (a) and miscible gas injection (b). Mis-
cible gas injection reduces the residual oil saturation but is limited by an
unfavourable mobility ratio and poor frontal stability. Figure shows simula-
tion results after 0.2 PVI.

[ July 29, 2015 at 16:33 – classicthesis by Simeon Agada ]



4.2 gas mobility control strategies 78

In the case of fractured carbonate reservoirs, injected gas may flow through

connected fracture networks and bypass oil in the rock matrix, leading to early

breakthrough of injected fluids and consequently, lower hydrocarbon recoveries.

Mobility control is therefore essential to increase sweep efficiency and hydrocar-

bon recovery.

4.2.1 Improve Frontal Stability with WAG Injection

To minimize displacement problems, Water-Alternating-Gas (WAG) injection mech-

anisms have been applied that employ a planned alternate injection of water and

gas in ratios varying from 0.5 to 4. The fundamental benefit of the WAG process

is to ensure better mobility control and frontal stability, thereby enhancing the

contact of un-swept zones (e.g. attic and cellar oil) and improving overall recov-

ery (Fig. 4.2).

Figure 4.2: Oil saturation distribution in a high-permeability top layer of the Amellago
sector model during immiscible WAG injection (a) and miscible WAG in-
jection (b). Miscible WAG injection stabilises the displacement front while
reducing the residual oil saturation and improving overall hydrocarbon re-
covery. Figure shows simulation results after 0.2 PVI.

WAG flooding is also cheaper than continuous gas flooding as it involves the

replacement of some of the ’expensive’ gas with relatively ’inexpensive’ water

(Lake et al., 1992; Christensen et al., 2001). Hence, WAG injection is now con-

sidered for many carbonate reservoirs in the Middle East as well as the pre-salt
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carbonate reservoirs offshore Brazil (Kalam et al., 2011; Pizarro and Branco, 2012;

Rawahi et al., 2012). When combined with miscible flooding, miscible WAG can

lead to an enhanced microscopic oil displacement and macroscopic sweep effi-

ciency that improves hydrocarbon recovery from the reservoir.

4.2.2 Improve Mobility Control with Foam EOR

Foam mobility control techniques can also be employed to mitigate gas displace-

ment problems by capturing gas in foam bubbles, which reduces the gas mobil-

ity and improves the overall microscopic and macroscopic sweep efficiency in

the reservoir (e.g., Patzek, 1996; Ma et al., 2014). The improvement in mobility

control and reservoir conformance is achieved by increasing the flow resistance

and viscous pressure drop during foam EOR, which diverts injected fluids from

high permeability zones and fractures to the lower permeability regions of the

reservoir.

Figure 4.3: Bulk foam that is experienced in everyday life (a) and foam in porous media
(b). Lamellae are thin liquid films with a thickness of the order of 10-100 nm.
Foam lamellae reduces the gas mobility by trapping a large fraction of gas
in place and increasing the effective gas viscosity. After Namdar Zanganeh
(2011)

Foam in porous media is defined as a dispersion of gas in a liquid (Fig. 4.3)

such that the liquid phase is continuous, and at least some part of the gas is ren-

dered discontinuous by thin liquid films called lamellae (Hirasaki, 1989; Kovscek

and Radke, 1994; Namdar Zanganeh, 2011). Foams for mobility control in oil

reservoirs are formed when gas contacts surfactant in the presence of mechani-
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cal agitation. Pre-generated foam injection, coinjection of gas and surfactant so-

lution, and Surfactant-Alternating-Gas (SAG) injection processes have been com-

monly used as injection strategies to achieve the generation and transport of

foam in porous media (Skauge et al., 2002; Shan and Rossen, 2004; Haugen et al.,

2012). The choice of injection method is typically based on the ability of a given

strategy to propagate foams deeply into a porous media for mobility control.

During the numerical simulation of foam migration, local-steady-state (e.g.

semi-empirical) models (Surguchev et al., 1995; Skauge et al., 2002; Namdar Zan-

ganeh and Rossen, 2013) or fully mechanistic (e.g. dynamic population balance)

models (Falls et al., 1988; Kovscek et al., 1995) are used to describe foam genera-

tion and transport in porous media. Local steady state models implicitly account

for the role of foam texture on gas mobility using an algebraic relation between

gas mobility and the factors that determine foam texture. Fully mechanistic mod-

els take the rate of change of foam texture into account, introduce additional

complexity to foam modelling, and are thought to include the essential flow

physics during foam displacement. However, the results from fully mechanistic

models in several studies converge to the results of semi-empirical foam mod-

els (i.e. standard models) at distances comparable to pattern or reservoir scale

(Renkema and Rossen, 2007; Chen et al., 2010). Standard models are employed

in this thesis to limit the overall level of complexity when capturing foam flow

physics, fracture-matrix interaction and wettability effects.

Foam EOR has been employed in several field pilots which report significant

improvement in sweep efficiency (e.g., Enick et al., 2012; Talebian et al., 2014),

delayed gas breakthrough (e.g., Blaker et al., 1999) and consequently incremen-

tal oil recovery. Despite various field trials, foam behaviour in porous media

in general and fractured reservoirs in particular is not well understood (e.g.,

Yan et al., 2006; Haugen et al., 2012; Pancharoen et al., 2012). Extensive field

application of foam EOR that is technically and economically successful would,

therefore, require detailed reservoir evaluation and process optimization which

can be achieved using a predictive numerical model such as the high-resolution

analogue reservoir model used in this study.
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4.3 compositional fluid and reservoir model

The simulation model and wettability data are similar to those used in chapter

3. Compositional phase behaviour was modelled with the Peng and Robinson

(1976) equation of state. The fluid properties are similar to those used by Eg-

wuenu et al. (2008), consisting of a six component fluid model that was lumped

and tuned to match constant volume depletion, differential liberation and con-

stant composition expansion PVT experiments (Table 4.1). The bubble-point

pressure of the fluid is 1,650 psi. The multi-contact minimum miscibility pres-

sure (MMP) is 2325 psi for CO2 injection estimated at the given reservoir condi-

tions using numerical slim tube simulations.

Initial Compositions
CO2 C1 C2 C3 C4−6 C7+

0.001 0.3467 0.0313 0.0396 0.1307 0.4507

Table 4.1: Properties for compositional fluid model

The flow simulations were constrained to a sector scale model containing 34

x 35 x 36 cells (Fig. 4.1 and Fig. 4.2). The sector scale simulation model was

used in order to reduce the large computational costs required to account for

fracture-matrix interaction with dual-porosity dual-permeability compositional

models. The reservoir is simulated using a quarter 5-spot well pattern. As in

chapter 3, fractures are included stochastically in the geological model using

the discrete fracture network (DFN) approach (Dershowitz et al., 2000). Subse-

quently, equivalent permeability tensor, porosity and shape factors are obtained

by DFN upscaling using the modified Oda method. A summary of some impor-

tant reservoir properties is given in Table 4.2.

To model foam EOR, the semi-empirical foam model available in STARSTM

was employed (Surguchev et al., 1995; CMG, 2014). In this formulation, the ef-

fects of foam on gas mobility and flow pathways are modelled by modifying

gas relative permeability curves (Fig. 4.4). The relative gas mobility in the ab-

sence of foam is rescaled to the relative gas mobility in the presence of foam

by multiplying it with a dimensionless reduction factor (Renkema and Rossen,
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Parameter Value
Grid dimension 34 x 35 x 36

Grid block size (m) 15 x 15 x 3

Initial reservoir pressure (kPa) 20,684

Maximum BHP (kPa) 41,300

Minimum BHP (kPa) 16,500

Average matrix permeability (mD) 84

Average fracture permeability (mD) 867

Table 4.2: Reservoir Properties

2007; Namdar Zanganeh and Rossen, 2013). Subsequently, the gas mobility used

in each computation is obtained by interpolating between relative permeability

curves that account for the presence or absence of foam, depending on the coex-

istence (or lack thereof) of surfactant and gas in the reservoir.

The semi-emperical foam model is defined by:

λ
f
rg =

λ
n f
rg

MRF
, where MRF = 1 + f mmob× Fw × Fo × Fs (4.1)

where the gas relative mobility in the absence of foam (λn f
rg ) is rescaled to the

gas relative mobility in the presence of foam (λn f
rg ) by dividing λ

n f
rg by the gas

Mobility-Reduction-Factor (MRF). f mmob represents the maximum resistance to

flow. Fw, Fo, and Fs are functions that describe the stability of foam in the pres-

ence of water, oil, and surfactant, respectively (Surguchev et al., 1995; Nam-

dar Zanganeh and Rossen, 2013; Namdar Zanganeh et al., 2014). In general,

foam is weakened at low water saturations (Sw ≤ S∗w), foam is killed at high oil

saturations (So ≥ S∗o ) and foam is active above the critical surfactant concentra-

tion, (Cs ≥ C∗s ) (Fig. 4.5).

Coinjection and SAG foam injection strategies which have been used in several

field applications (e.g., Skauge et al., 2002; Talebian et al., 2014) were tested. The

injected surfactant concentration was 0.3 wt% which is consistent with experi-

mental surfactant concentrations required for the generation, coalescence and

transport of foam in porous media (e.g., Apaydin and Kovscek, 2001). A sum-

mary of some important foam parameters is presented in Table 4.3.
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Figure 4.4: Relative permeability interpolation implemented in foam reservoir simula-
tion models. Value of gas mobility during simulation is obtained by inter-
polating between the gas relative permeability curves in the presence and
absence of foam. Modified after CMG (2014).

Figure 4.5: Foam model indicating foam sensitivity to water saturation (a), oil saturation
(b) and surfactant concentration (c). From Namdar Zanganeh et al. (2014).

Foam Parameter Symbol Value
Reference Mobility Reduction Factor fmmob 100

Reference Capillary Number fmcap 2.0−4

Critical Oil Saturation fmoil (S∗o ) 1.0
Critical Surfactant Concentration fmsurf (C∗s ) 5.0−5

Injected Surfactant Concentration fmsurf (Cs) 3.0−3

Exponent for Surfactant Contribution epsurf 1.0
Exponent for Oil Saturation Contribution epoil 0.0

Table 4.3: Semi-empirical foam model parameters.
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4.4 gas injection strategies

4.4.1 Continuous Gas Injection and WAG

When continuous injection strategies were compared (Fig. 4.6a), water injec-

tion, immiscible continuous gas injection, miscible immiscible continuous gas

injection, immiscible WAG and miscible WAG achieved recovery estimates of

66%, 48%, 55%, 61% and 73% respectively. It is evident from the above results

that unfavourable mobility due to channelling (see Fig. 3.2 and 3.3) and gravity

override negatively impact the efficiency of gas injection and that the application

of WAG injection combined with miscible displacement significantly improves

hydrocarbon recovery.

4.4.2 Hybrid Gas Injection and WAG

When a three year water injection period preceded continuous gas injection or

WAG (Fig. 4.6b), recoveries were consistently higher compared to the cases

where gas injection or WAG was implemented from the outset (Table 4.4).

Hence, WAG could have significant potential for incremental recovery in car-

bonate reservoirs, which have been experiencing waterflooding previously (e.g.,

Figure 4.6: Oil recovery profiles for regular (a) and hybrid (b) gas injection. The combi-
nation of WAG injection and miscible displacement to improve overall sweep
efficiency yields relatively higher oil recovery. Slightly better results are ob-
tained for all scenarios when water injection precedes CGI or WAG. CGI
refers to continuous gas injection. WAG refers to water alternating gas injec-
tion.
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Rawahi et al., 2012). Conversely, initiating WAG from day one, such as currently

considered for the Brazilian pre-salt reservoirs (e.g., Pizarro and Branco, 2012),

may be detrimental to oil recovery. The improved results can be attributed to the

tendency of the initially injected water to minimise gas channelling, reduce the

rate of encroachment of the gas front and decrease viscous fingering effects.

Simulation Model Recovery (%) Inc. Rec. (%)
Water Injection 66.31 −
CGI (Immiscible) 48.25 −18.06
CGI (Miscible) 55.20 −11.11
WAG (Immiscible) 60.91 −5.40
WAG (Miscible) 73.17 6.86
Hybrid WI/CGI (Immiscible) 57.51 −8.80
Hybrid WI/CGI (Miscible) 64.23 −2.08
Hybrid WI/WAG (Immiscible) 63.34 −2.97
Hybrid WI/WAG (Miscible) 73.61 7.30
Foam (SAG) 76.23 9.92

Table 4.4: Summary of gas injection simulation results. CGI refers to continuous gas
injection. WAG refers to water alternating gas injection. WI refers to water
injection.

4.5 foam mobility control

Foam generated in the reservoir captures gas in foam bubbles, creates a viscous

pressure drop and diverts injected fluids from the high permeability fractures

to the low permeability matrix. Foam EOR, therefore, reduces the gas mobility

and improves the overall sweep efficiency (Table 4.4). Foam also delays gas

breakthrough.

4.5.1 Foam Injection Strategy

When different injection strategies are compared, it can be observed that surfactant-

alternating-gas (SAG) consistently outperforms coinjection for all the wettability

scenarios in terms of oil recovered (Fig. 4.7a). The semi-empirical foam model

used in this study assumes that foam is generated in-situ wherever surfactant
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and gas coexist. As a result, the coinjection strategy generates foam in the near

wellbore region, limits fluid injectivity and consequently reduces the oil recov-

ered. Limited injectivity also makes it difficult to perform coinjection below the

formation fracturing pressure (Awan et al., 2008).

Figure 4.7: Impact of injection strategy on oil recovery during numerical simulation with
multiple wettability (a) and switching time (b) scenarios. The switching time
ratio (ts/tg) is the ratio of the time of surfactant injection (ts) to the time of
gas injection (tg) within SAG cycles.

On the other hand, SAG injection allows surfactants to be displaced some

distance into the reservoir prior to gas injection and subsequent foam gener-

ation, thereby, leading to relatively better injectivity. However, it is important

to identify the optimum period of surfactant injection (switching time) during

SAG cycles to maximize oil recovery. The simulation results show that due to

the high permeability fluid transport through the connected fracture networks,

shorter switching times improve oil recovery by limiting surfactant breakthrough

and generating adequate pressure drop for improved recovery from the matrix

(Fig. 4.7b). The higher oil recovery in the water-wet scenario (Fig. 4.7a) can

be attributed to the foam strength which is typically higher in water-wet rocks

and can divert more of the injected fluids to the unswept regions of the reser-

voir. Furthermore, the potential for oil recovery by spontaneous imbibition into

the matrix increases with increasing water-wetness of the matrix (Morrow, 1990;

Tavassoli et al., 2005; Schmid and Geiger, 2013).

It can be observed that the gas-oil-ratio (GOR) is generally low when foam

is injected, irrespective of the wettability scenario due to the trapping of gas in
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Figure 4.8: Gas-Oil-Ratio (GOR) for numerical simulations with and without foam EOR
(a) and simulations varying matrix wettability (b). Foam captures gas in foam
bubbles and reduces the gas mobility.

foam bubbles (Fig. 4.8). Again, the water-wet scenario shows a slight increase

in GOR compared to the mixed-wet and oil-wet scenarios. This is because water-

wet rocks have high capillary entry pressures that relatively limit gas entry to

the matrix. More detailed analysis of wettability effects on subsurface flow mod-

elling for fractured carbonate reservoirs is presented in chapter 5.

4.5.2 Viscous Pressure Drop

In the presence of foam, relatively large pressure drops are generated in the reser-

voir especially in the near wellbore region (Fig. 4.9a). Such large viscous pres-

sure drop due to foam generation is typically responsible for diverting surfactant

solution and injected gas from high permeability to lower permeability regions

in the reservoir, thereby improving the sweep efficiency. Figure 4.9b shows that

compared to the case without fractures, the viscous pressure drop when fracture

networks are present is low. This is to be expected since connected fractures act

as paths for rapid transport of injected fluids thereby causing lower near well-

bore pressures. Similarly, when wettability scenarios are varied (Fig. 4.9c), higher

viscous pressure drop is encountered in the water-wet scenario compared to the

mixed-wet and oil-wet scenarios. As discussed previously, stronger foam is gen-

erated in more water-wet formations while the presence of oil weakens foam.
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One way of modifying the influence of the viscous pressure drop during SAG

foam injection is by varying the switching time ratio (i.e. ratio of the time of sur-

factant injection (ts) to the time of gas injection (tg) within SAG cycles). When

the switching time ratio is varied from 0.1 to 2, the pressure drop decreases

from 23,000 kPa to 20,000 kPa (Fig. 4.9d), which indicates that shorter switching

times are required to optimise the viscous pressure drop and improve sweep effi-

ciency in fractured carbonate reservoirs. Longer switching times perform poorly

because of the tendency for early surfactant breakthrough due to the high per-

meability fracture network.

Figure 4.9: Effect of foam (a), fractures (b), wettability (c) and and switching time (d) on
the injector bottom-hole-pressure (BHP) and overall viscous pressure drop
during foam EOR. The switching time ratio (ts/tg) is the ratio of the time of
surfactant injection (ts) to the time of gas injection (tg) within SAG cycles.
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4.6 summary

This chapter shows that reservoir specific (i.e. tailored) EOR methods are es-

sential for recovery optimisation in carbonates and the use of high-resolution

outcrop models to account for geological heterogeneities in detail can improve

the selection of the best displacement technology for a given reservoir. Suitable

outcrop exist for a wide range of carbonate reservoirs and value can be added by

subjecting such analogues more frequently to flow simulations to study specific

IOR and EOR techniques rather than only using them to constrain the geology

of the inter-well space.

Compositional simulations of gas injection using a sector of the Amellago

model demonstrate the impact of heterogeneity on fluid flow. The results are di-

rectly correlated to the heterogenous nature of the analogue reservoir, highlight-

ing the importance of adequate reservoir characterisation for accurate prediction

of subsurface behaviour. For the investigated gas injection processes, channelling

and structurally induced bypassing lead to generally lower hydrocarbon recov-

eries. The results show that WAG can improve the stability of the displacement

front. Miscibility also improves the microscopic sweep efficiency and improves

the overall recovery. When waterflooding precedes gas injection or WAG (i.e. hy-

brid scenario), improved recovery estimates are obtained. Prior waterflooding

is desirable for operational efficiency as it enables more extensive data gather-

ing before EOR implementation. Such extensive data gathering can reduce un-

certainties during EOR deployment. In general, combining static and dynamic

reservoir modelling with the knowledge of observed geological structures in the

outcrop enables the calibration of reservoir simulation models for accurate full-

field predictions. The calibrated simulation models can then be used to identify

an optimised displacement strategy for a given reservoir.

Finally, this chapter shows that foam EOR can further mitigate the adverse

unfavourable mobility of gas and improve sweep efficiency in carbonate forma-

tions. Viscous pressure drop due to foam generation in the fractures comple-

ments drainage and imbibition oil recovery mechanisms by diverting surfactant
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and gas from the high permeability fractures to the low permeability matrix. Gas

breakthrough is delayed when foam EOR is employed, resulting in improved re-

coveries of up to 9%. Also, SAG injection outperforms coinjection when in-situ

foam generation strategies are compared for this reservoir because SAG injection

encounters less flow restriction in the near wellbore zone.
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5
W E T TA B I L I T Y, H Y S T E R E S I S A N D F R A C T U R E - M AT R I X

I N T E R A C T I O N D U R I N G C O 2 E O R A N D S T O R A G E

5.1 introduction

Carbon Capture and Storage (CCS) in subsurface reservoirs can potentially con-

tribute to reducing CO2 emissions and mitigating global climate change (e.g.,

Qi et al., 2009; Liu et al., 2012; Szulczewski et al., 2012; Petvipusit et al., 2014;

Wriedt et al., 2014). CCS can be implemented simultaneously with CO2 enhanced

oil recovery (EOR) to achieve mutual benefits of subsurface CO2 storage and

increased oil production in mature hydrocarbon fields. Oil reservoirs are partic-

ularly attractive for CO2 storage because the geology is relatively well known

thereby reducing geological uncertainties associated with CO2 migration and ge-

ological storage (Kovscek, 2002; Kovscek and Cakici, 2005; Iding and Ringrose,

2010; Leach et al., 2011; Liu et al., 2012; Ettehadtavakkol et al., 2014).

Carbonate reservoirs which are estimated to contain about 6 0 % of global con-

ventional and unconventional hydrocarbon resources (Beydoun, 1998; Burchette,

2012; Agar and Geiger, 2015) form suitable candidates for CO2 EOR and stor-

age because of the potentially large amounts of CO2 that can be sequestered in

carbonate formations while improving hydrocarbon recovery (Liu et al., 2012).

Carbonate reservoirs, however, are often difficult to exploit due to multiscale

heterogeneities that arise from complex diagenetic, reactive, depositional and

deformational processes, resulting in complicated subsurface flow behaviours.

Carbonate reservoirs may also contain multiscale natural fracture networks that

comprise complex high permeability flow paths in the reservoir (e.g., Guerreiro

91
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et al., 2000; Gale et al., 2004; Toublanc et al., 2005; Spence et al., 2014). The vari-

ability in matrix structure and fracture network connectivity is the main reason

why fractured carbonate reservoirs show a large variety of flow behaviours, lead-

ing to significant uncertainties in predicting CO2 plume distributions and hydro-

carbon recovery (Cosentino et al., 2001; Bourbiaux et al., 2002; Makel, 2007).

The reliability of underground CO2 storage during EOR in fractured carbonate

reservoirs depends on a number of interrelated trapping mechanisms. Structural

trapping defines the geometry within which more permanent storage can occur.

Solubility trapping occurs when CO2 dissolves into the formation brine. Mineral

trapping which entails geochemical binding of CO2 to the rock due to mineral

precipitation, guarantees permanent CO2 immobilisation but on a scale of hun-

dreds to thousands of years, too long to have a bearing on storage security over

an operational period. Residual trapping is due to snap-off (or disconnection) of

the CO2 phase such that it becomes an immobile (trapped) phase when droplets

of CO2 become isolated from the CO2 plume by encroaching brine (Juanes et al.,

2006). Residual trapping occurs due to differences in the advancing and receding

contact angles during repeat imbibition and drainage cycles. It is this sequestra-

tion mechanism, residual trapping, which occurs over years to decades (short-

term storage), that is investigated in this study. Understanding the underlying

physicochemical processes responsible for residual trapping can therefore pro-

vide a conservative estimate of CO2 storage security over timescales in line with

EOR projects (Bachu et al., 1994; Pruess et al., 2003; Juanes et al., 2006; Qi et al.,

2008, 2009; Wilkinson et al., 2009; Burnside and Naylor, 2014).

This chapter considers the relationship between residual trapping of CO2 and

WAG injection which has been found to be a successful EOR mechanism for

carbonate reservoirs (Christensen et al., 2001; Manrique et al., 2007; Awan et al.,

2008; Kalam et al., 2011; Pizarro and Branco, 2012; Rawahi et al., 2012). CO2

WAG injection combines the benefits of gas injection to reduce the residual oil

saturation and water injection to improve mobility control and frontal stability

(Fig. 5.1). Due to the cyclic nature of CO2 WAG injection, hysteresis is common

and leads to the residual trapping of CO2. Hysteresis occurs as a result of the

dependence of relative permeability and capillary pressure curves on the satu-
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ration path (Fig. 5.2). Only hysteresis models are able to capture the overall

benefit of residual trapping, which lies in the fact that it can safely trap CO2 in

the subsurface while reducing the overall CO2 phase mobility and improving

oil recovery (Spiteri and Juanes, 2006; Spiteri et al., 2008; Burnside and Naylor,

2014).

Figure 5.1: Conceptual model of immiscible CO2 WAG injection. Water and CO2 are
injected through same well, generating two- and three-phase regions. CO2
WAG injection combines the benefits of gas injection to reduce the residual
oil saturation and water injection to improve mobility control and frontal
stability.

Several models have been developed to account for hysteresis during mul-

tiphase flow in subsurface reservoirs. They are based on the use of scanning

curves in which the direction of saturation change is reversed at a number of

intermediate saturations. Killough (1976) two-phase hysteresis model accounts

for hysteresis as a function of the Land trapping parameter (Land, 1968). This

model allows for reversibility of drainage and imbibition cycles along the same

scanning curve. The Carlson (1981) model accounts for hysteresis by predicting

the trapped non-wetting phase saturation via shifting of the bounding imbibi-

tion curve. The Carlson (1981) model, which also employs reversible scanning

curves, is only adequate if the intermediate scanning curves are almost parallel

and the imbibition curve has minimal curvature. Three-phase hysteresis mod-

els have been developed that represent non reversibility (or cycle dependence)

of scanning curves during hysteresis (e.g., Lenhard and Parker, 1987; Lenhard

and Oostroom, 1998; Larsen and Skauge, 1998; Egermann et al., 2000) and are
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thought to include the essential flow physics during cyclic flooding. Further-

more, detailed numerical models which represent hysteresis mechanisms at the

pore scale (e.g., Blunt et al., 2002; Jackson et al., 2003; Joekar-Niasar et al., 2008,

2013) can increase investigators understanding of the pore scale physics of hys-

teresis and residual trapping during cyclic displacement processes.

Figure 5.2: Relative permeability curves (a, b) illustrating hysteresis and residual CO2
trapping during WAG injection. Hysteresis effect is more significant for the
non-wetting CO2 phase (a). Scanning curves illustrate the maximum trapped
fraction (S∗t , St) corresponding to the maximum CO2 saturation (S∗max, Smax)
at flow reversal (b). Superscripts d and i refer to drainage and imbibition
respectively.

Hysteresis is also influenced by wettability. Knowledge of the wetting prefer-

ence and its variation in a carbonate reservoir rock is fundamental to understand-

ing flow behaviour during CO2 EOR and storage but is difficult to quantify due

to the intrinsic heterogeneity of carbonates (Okasha et al., 2007; Ferno et al., 2011;

Dernaika et al., 2013). Several authors (e.g., Kovscek et al., 1993; Jadhunandan

and Morrow, 1995; Blunt, 1997; Hui and Blunt, 2000; Van Dijke et al., 2001; Al-

Futaisi and Patzek, 2003; Valvatne and Blunt, 2004; Ryazanov et al., 2009, 2014)

have demonstrated how wettability changes alter relative permeability functions,

using a number of drainage and imbibition simulations and experiments where

the range of advancing and receding contact angles was modified. They found

that during imbibition, the transport properties of permeable porous media are

sensitive to the hysteresis between receding and advancing contact angles. This

difference ultimately controls the amount of trapped fluids due to hysteresis and

needs to be captured in reservoir simulation models.
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This chapter investigates the effect of residual trapping on CO2 EOR and stor-

age in relation to the multi-scale heterogeneities that are pervasive in fractured

carbonate reservoirs. Residual trapping is demonstrated using hysteresis mod-

els with reversible scanning curves during WAG imbibition and drainage cycles.

The fracture system is represented with discrete fracture network (DFN) mod-

els generated using detailed geological observations. The DFN is then upscaled

to obtain effective permeability tensors for the fracture grid that is coupled to

the matrix using a dual-porosity dual-permeability model. Because the specific

geometry of the DFN is difficult to constrain, three distinct hypotheses for the

evolution of the fracture system were investigated; (1) Regional fracture geom-

etry which represents a pervasive background fracture system (2) Fault related

fracture geometry where fractures cluster around faults and decrease in intensity

as the distance to faults increase (3) Bedding related fracture geometry where the

fractures are stratigraphically confined to the bedding and give rise to high frac-

ture permeability layers. Such fracture systems have been previously observed

in other fractured carbonate formations (e.g., Chesnaux et al., 2009; Agar et al.,

2010; Shekhar et al., 2014).

Since the structural, multiphase flow and transport properties encountered in

the reservoir exhibit such significant uncertainties, multiple numerical simula-

tions were used to analyse the following questions: How can the understanding

and prediction of subsurface flow behaviour during CO2 EOR and storage under

geological uncertainty be improved? By investigating the range of uncertainties

in wettability, residual trapping and the fracture network, can their impact on

the efficiency of CO2 EOR and storage in fractured carbonate formations be

ranked? What engineering measures can be used to mitigate the effect of geolog-

ical uncertainties? Can this workflow be used to screen different CO2 EOR and

storage projects, determine the best solutions for specific reservoirs and identify

optimum CO2 EOR and sequestration strategies? Is there a competition between

maximising CO2 EOR and maximising CO2 storage?
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5.2 setup of numerical simulation models

5.2.1 Matrix Simulation Model

A flow simulation model (Fig. 5.3) upscaled from the detailed geological model

described in chapter 3 is discretized into 74 x 75 x 36 grid cells (199,800 cells

in total). The simulation model captures key structural and sedimentological

heterogeneities observed in the Amellago Island outcrop as indicated by the

distribution of porosity and permeability in the model (Fig. 5.4). CO2 EOR and

storage was simulated using WAG injection with 20 alternating cycles in which

0.075 PV of water or gas was injected per cycle. The WAG ratio was set to 1:1 and

the cycle length to 1 year to ensure proper gravity segregation of injected fluids.

A regular five-spot well pattern was used with a vertical producer at the centre

of the model and four vertical injectors situated at the corners of the model. The

reference densities of water, oil and CO2 were set to 1000 kg/m3, 800 kg/m3 and

1.35 kg/m3) respectively.

Figure 5.3: Matrix simulation model of the Amellago Island Outcrop, showing the per-
meability distribution. Individual grid blocks have dimensions of 15x15x3m.

Compositional simulations can capture complex interactions of flow with phase

behaviour (e.g. solubility and geochemical effects) especially during long-term

CO2 EOR and storage. Compositional simulations for large fractured reservoirs,

however, are computationally very expensive because equation of state calcula-
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Figure 5.4: Porosity-Permeability distribution (a) and permeability histogram (b) for the
matrix used in the reservoir simulation model.

tions, multi-component interactions and fracture-matrix exchange must be taken

into account. Hence, this chapter employs full physics black oil simulation of im-

miscible CO2 WAG injection which can be run much faster than compositional

simulations for large fractured carbonate reservoirs to study CO2 EOR and stor-

age. Black oil simulation models can capture the flow physics of the short term

CO2 EOR and storage aspects that have been considered in this chapter. This

approach is consistent with previous studies which have used black oil mod-

els to investigate CO2 EOR and/or CO2 storage in geological reservoirs (e.g.,

Egermann et al., 2000; Jessen et al., 2005; Juanes et al., 2006; Spiteri and Juanes,

2006; Benisch and Bauer, 2013; Petvipusit et al., 2014).

5.2.2 Distribution of Wettability Functions

Since wettability functions typically vary both laterally and vertically in subsur-

face reservoirs, a depth based distribution approach and a facies based distribu-

tion approach were compared to the more common approach of using single wet-

tability functions for the whole reservoir. Distributing the wettability functions

on the basis of variation with depth (Fig. 5.5a) is consistent with the method em-

ployed in previous field studies for clastic and carbonate reservoirs (e.g., Jerauld,

1997; Jackson et al., 2005; Okasha et al., 2007). An alternative method involves

distributing the wettability functions by using a facies based approach that cor-

relates wettability to the horizontal permeability of individual grid blocks (Fig.
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5.5b) based on the facies types (Clerke, 2009; Agada et al., 2014). Multiple wetta-

bility distribution approaches were considered because the wettability functions

are only meant to mimic the behaviour of real carbonate reservoirs and the ap-

proaches considered seemed to be the most feasible, although, they may be too

simplistic for real carbonate reservoirs (e.g., Gomes et al., 2008; Hollis et al., 2010;

Chandra et al., 2015).

Figure 5.5: Distribution of wettability functions in the simulation model (a) using a
depth based approach ’DBA’ and (b) using a facies based approach ’FBA’.
DBA distributes wettability functions based on variation with depth while
FBA correlates wettability functions to the horizontal permeability of indi-
vidual grid blocks based on the facies type.

5.2.3 Fracture-Matrix Interaction

The special nature of fractured reservoirs lies in the interaction between the

low permeability matrix which provides the main storage in the reservoir and

the high permeability fracture system which has low storage. This combination

of low-permeability matrix and high-permeability fractures leads to variety of

flow behaviours in fractured carbonate reservoirs, including permeability en-

hancement, flow anisotropy, structurally induced bypassing of oil and rapid

water/CO2 breakthrough. These behaviours must be understood to adequately

predict long-term reservoir behaviour. Therefore, special care is required to cap-

ture the geological complexity of fracture systems in a form that can be rep-

resented in reservoir models. Discrete fracture network (DFN) models are com-

monly used to generate static fracture models (Dershowitz et al., 2000). The mod-

els are then calibrated to dynamic data from well tests or production logging

[ July 29, 2015 at 16:33 – classicthesis by Simeon Agada ]



5.2 setup of numerical simulation models 99

tests (e.g., Wei et al., 1998; Hoffman and Narr, 2012) before they are upscaled

to provide permeability distributions for the fracture network. In commercial

reservoir simulators, the fracture system, modelled and upscaled using the DFN

approach, is coupled to the matrix system using dual continuum models (e.g.,

Bourbiaux et al., 2002; Casabianca et al., 2007; Al-Kobaisi et al., 2009).

The interaction between fracture and matrix depends on the matrix proper-

ties (e.g. porosity, permeability and wettability) and fracture network geome-

try. The interaction also depends on the displacement mechanisms and phys-

ical processes. Fracture-matrix fluid transfer during water injection in a natu-

rally fractured reservoir is controlled by viscous forces and spontaneous imbibi-

tion (Schmid and Geiger, 2012, 2013). During spontaneous imbibition, water in

the fracture displaces oil from the matrix due to counter-current or co-current

flow. The rate of displacement can be modelled using a transfer function that

depends on the matrix wettability, matrix permeability and fracture intensity

(e.g., Abushaikha and Gosselin, 2008; Ramirez et al., 2009). During CO2 injection,

gravity drainage controls the transfer of CO2 into the matrix and concurrently

the transfer of oil from the matrix into the fracture due to fluid density differ-

ences. This transfer mechanism is particularly important for mixed- to oil-wet

reservoirs such as carbonates because the gravitational head can overcome the

capillary entry pressure for the displacing gas phase (Di Donato et al., 2007; Lu

et al., 2008).

5.2.4 Fracture Network Modelling and Upscaling

The fracture system was modelled using the DFN approach (Dershowitz et al.,

2000) and honours fracture observations in the outcrop. Shekhar et al. (2010)

identified three major fracture sets (Fig. 5.6). The mean fracture length was 20

m, while the aspect ratio (length to height) was 4:1. Variation of the fracture

length with respect to the mean was defined using an exponential distribution.

Fracture apertures with a mean of 0.5 mm were used to estimate fracture perme-

abilities with the cubic law. Although, the models honour static observations of
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the fracture orientation, it is difficult to adequately capture the connectivity of

the fracture network.

Hence, the uncertainty in fracture connectivity is investigated by varying the

fracture network volumetric intensity (P32). As previously noted, three distinct

fracture geometry scenarios are investigated. First, we investigate a pervasive re-

gional fracture scenario where the stochastic fracture intensity is constant across

the whole model and defined by intensity values which vary from a poorly-

connected system to a well-connected system (Fig. 5.7). A bedding related frac-

ture scenario defined in relation to bed-bound (stratigraphically confined) and

interbedded fractures (Fig. 5.8) is also investigated. Finally, a fracture scenario

where the fracture intensity is related to the fault zone is investigated. In this

case high fracture intensity close to the faults decreases away from the faults

(Fig. 5.9). The fracture models focus on open fractures and do not consider

closed fractures that might have formed as a result of secondary mineralization.

Vertical wells intersect fractures in all cases.

Figure 5.6: Schmidt diagram showing the orientation distribution of three fracture-sets
(red, green, blue) with equal projection of the poles in the upper hemisphere
(a) and contoured density of fracture poles (b) based on fractures generated
for the 3D reservoir model.
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Figure 5.7: Discrete fracture network for regional fracture scenario with fracture inten-
sity of 0.05 m2/m3 (a), 0.1 m2/m3 (b) and 0.2 m2/m3 (c).

Figure 5.8: Discrete fracture network for bedding related fracture scenario. 70% of the
fractures terminate within a single bed, while 30% of the fractures pene-
trate multiple beds. The average fracture intensity for the entire model is
0.1 m2/m3.

Figure 5.9: Fracture intensity property (a) and discrete fracture network (b) for fault-
related fracture scenario. The average fracture intensity for the entire model
is 0.1 m2/m3.
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Fracture network flow parameters for each DFN were obtained by upscaling

the fracture networks to the grid cells of the simulation model (Fig. 5.10 and

5.11). The modified Oda (1985) DFN upscaling method that is more computa-

tionally efficient than flow-based DFN upscaling and accurate for fracture sys-

tems with good connectivity was employed. DFN upscaling, results in diagonal

fracture permeability tensors that are anisotropic and heterogeneous and honour

outcrop observations reasonably well.

Figure 5.10: Fracture permeability histogram for (a) regional, (b) fault related and (c)
bedding related fracture scenarios. Note that fracture permeability is on
average about ten times higher than matrix permeability (see figure 5.4).

Figure 5.11: Upscaled fracture permeability distribution for (a) regional, (b) fault related
and (c) bedding related fracture scenarios. Average fracture intensity is 0.1
m2/m3 for all cases. Note high fracture permeability around faults in (b)
and high fracture permeability layers due to stratigraphically confined frac-
tures in (c).

Due to the, relatively high permeability in the matrix, a dual-porosity dual-

permeability model was used to couple fluid flow in the matrix with fluid flow in

the fractures and simulate multiphase flow for the range of plausible geological

scenarios. It is well known that the dual-permeability formulation is preferable

in situations where there is hydraulic continuity in the matrix and high variabil-

ity in the connectivity of the fracture network (Kazemi et al., 1992; Bourbiaux

et al., 2002). The resulting reservoir models, containing fractures and matrix,

[ July 29, 2015 at 16:33 – classicthesis by Simeon Agada ]



5.3 wettability, hysteresis and fracture-matrix interaction 103

are populated with the same fault network, mapped using high-resolution pho-

topanels and LiDAR (Light Detection And Ranging). The faults are represented

as discrete non-volumetric features in the geological model. In general, the faults

are considered to be fully conductive, with flow reduction across faults occur-

ring only due to the juxtaposition of high and low permeability layers. Fault

transmissibility multipliers are used to investigate the impact of fault sealing on

multiphase flow in the reservoir. Here, fault transmissibility multipliers of zero

correspond to fully sealing faults, while fault transmissibility multipliers of 1

and above correspond to fully conductive faults. More detailed fault models are

not within the scope of this study.

5.3 wettability, hysteresis and fracture-matrix interaction

5.3.1 Effect of fracture network intensity

Figure 5.12 shows upscaled fracture permeabilities and the corresponding ma-

trix saturation distributions for the DFN models assuming P32 of 0.05 m2/m3,

0.1 m2/m3, 0.2 m2/m3 and 0.4 m2/m3 (a, b, c and d). The oil saturation distribu-

tions (e, f, g and h) and CO2 saturation distributions (i, j, k and l), show a clear

link between the fracture intensity and the predicted oil and CO2 distributions.

As the fracture intensity increases, there is more rapid transport of injected water

and CO2 leading to significant bypassing of oil in the matrix. Similarly, as the

fracture intensity increases, rapid transport of CO2 leads to high CO2 concentra-

tion at the top of the reservoir. Such rapid gas transport will lead to less efficient

CO2 sequestration in the matrix. As noted previously, capillary imbibition and

gravity drainage are important oil recovery and CO2 storage mechanisms for

fractured reservoirs. These mechanisms depend on exchange of fluids between

the fracture and the matrix. However, if the flow in the fractures is rapid due

to a well-connected fracture network, the residence time of injected fluids in the

fracture becomes insufficient to adequately recover oil or store CO2 in the matrix

via spontaneous imbibition and gravity drainage, thereby leading to poor hydro-

carbon recovery and CO2 sequestration.
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Figure 5.12: Upscaled fracture permeability distribution with increasing regional frac-
ture intensity of 0.05 (a) 0.1 (b) 0.2 (c) 0.4 (d) and corresponding matrix oil
saturation (e, f, g, h) and CO2 saturation (i, j, k, l) distributions after immis-
cible WAG injection. Notice the bypassed oil and high CO2 concentration at
the top of the model due to rapid flow of reservoir fluids.

The influence of the fracture network can also be observed in the oil recov-

ery, water cut and CO2 storage profiles (Fig. 5.13). Notice that the presence

of open and connected fractures in the reservoir results in lower oil recoveries

(Fig. 5.13). Similarly the presence of open and connected fractures results in

early water breakthrough (Fig. 5.14a), and lower fractions of CO2 stored (Fig.

5.14b). The bypassing effect that leads to lower oil recovery increases as fracture

intensity increases but becomes less significant at higher fracture intensities (P32

greater than 0.4). This behaviour may suggest that in systems where the fracture

network is very dense, above a certain threshold, variations in model output due

to changes to the fracture network could be negligible thereby potentially reduc-

ing the impact of the fracture uncertainty on the model outcomes.
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Figure 5.13: Oil recovery during immiscible WAG injection. Fractures are incorporated
with dual-porosity dual-permeability models of increasing fracture intensity
(P32). Fracture networks cause bypassing and act as fluid flow high ways
leading to rapid transport of injected fluids and lower oil recovery.

Figure 5.14: Water cut (a) and CO2 stored (b) during immiscible WAG injection. Frac-
tures are incorporated with dual-porosity dual-permeability models of in-
creasing fracture intensity (P32).
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5.3.2 Effect of fracture network geometry

At low fracture network intensity, subtle changes impact the fracture geome-

try more significantly. Three fracture scenarios were considered; (1) Regional

fracture geometry (2) Fault related fracture geometry and (3) Bedding related

fracture geometry. For an average fracture intensity of 0.1, the oil recovery varies

between 47%, 43% and 40%, assuming regional, fault related or bedding related

fracture geometry respectively (Fig. 5.15a, b, c and Fig. 5.16a).

Figure 5.15: Oil saturation (a, b, c) and CO2 saturation (d, e, f) distribution during im-
miscible WAG injection in the fractured carbonate reservoir with regional
(a, d), fault related (b, e), and bedding related (c, f) fracture geometries. The
average fracture intensity is 0.1 2/m3 in all cases.

Similarly, the water cut varies between 97%, 94% and 91% (Fig. 5.16b), while

the CO2 stored varies between 11%, 14% and 16% of the pore volume assum-

ing bedding related, fault related or regional fracture geometry respectively (Fig.

5.15d, e, f and Fig. 5.16c). The bedding related fracture system contains layer-

oriented fracture permeabilities that may lead to the prevalence of high per-

meability layers and exacerbate flow channelling, thereby yielding the lowest

estimated oil recovery and CO2 stored. At high fracture intensity, the influence

of the specific fracture geometry is less distinguishable because the fracture den-
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sity is so high that fractures are highly connected and form long-range high-

permeability flow paths irrespective of the specific geometry (Fig. 5.16d, e, f).

Figure 5.16: Oil recovery (a, d), water cut (b, e) and CO2 stored (c, f) when regional (RG),
fault-related (FR) and bedding-related (BR) fracture geometry scenarios are
considered. P32 refers to the ’average fracture intensity’. It is assumed that
P32 = 0.1 m2/m3 indicates low fracture intensity while P32 = 0.5 m2/m3

indicates high fracture intensity. Oil recovery and CO2 storage profiles are
less distinguishable at high fracture intensities.
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5.3.3 Effect of matrix wettability

To ensure a tractable number of simulations while investigating important fluid

flow effects, the regional fracture scenario with average fracture intensity of 0.1

was used for all subsequent simulations. Unless otherwise stated, the base case

for wettability in all simulations is the single mixed-wet wettability function. In

general, higher oil recovery factors are encountered in all wettability scenarios

when hysteresis is employed due to reduced mobility of the CO2 phase and

better oil displacement (Fig. 5.17a). When matrix wettability is varied in the

flow simulations, it is observed that WAG injection in a more water-wet forma-

tion gives higher oil recovery, which decreases under mixed-wet conditions and

further decreases in oil-wet conditions (Fig. 5.17a). This is due to the high im-

bibition potential of water-wet formations (Morrow, 1990; Morrow and Mason,

2001; Tavassoli et al., 2005; Schmid and Geiger, 2012, 2013).

As previously noted, spontaneous imbibition is a major recovery mechanism

in fractured reservoirs and a more water-wet rock will support efficient imbi-

bition of water from the fractures to displace oil from the matrix through a

counter-current or co-current mechanism. The imbibition efficiency can also be

compared using the water cut profiles (Fig. 5.17b). It is observed that the water

cut increases more rapidly in the mixed-wet and oil-wet cases compared to the

water-wet case due to the more efficient imbibition in the water-wet scenario.

Conversely, the fraction of CO2 stored is significantly lower in the water-wet

case compared to the mixed-wet and oil-wet cases (Fig. 5.17c). The low CO2

storage fraction in the water-wet case is due to high capillary entry pressure of

water-wet rocks that makes it difficult for CO2 to be displaced into the matrix.

Furthermore, impact of multiple approaches for distributing wettability func-

tions in the model was tested (see fig. 5.5). Three scenarios were included; (1)

Single mixed-wet wettability function for the whole reservoir, (2) Multiple wetta-

bility functions distributed using a depth based approach where the wettability

varies from oil-wet at the top to water-wet at the bottom of the reservoir and (3)

Multiple wettability functions distributed using a facies based approach where
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the wettability is assigned based on correlation to the horizontal permeabilities

of the grid cells (Fig. 5.17 d, e, f).

Figure 5.17: Oil recovery (a, d), water cut (b, e) and CO2 storage (c, f) profiles during
immiscible WAG injection. Water-wetness improves imbibition, gives high-
est recovery fractions and results in slower water transport, however, lower
volumes of CO2 are stored under water-wet conditions due to high capillary
entry pressure.
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When multiple wettability functions are employed, lower oil recovery but

higher CO2 storage fractions are observed. Since wettability functions control

imbibition and drainage mechanisms which in turn control oil recovery and CO2

storage, such lower oil recoveries and higher CO2 storage fractions are not sur-

prising. In other words, the combined effect of the multiple wettability functions

depend on how the end-members (oil-wet to water-wet) have been allocated

to the grid cells based on the distribution approach. In this case the combined

effect of the multiple wettability functions indicates that the oil recovery effi-

ciency is less than for the scenario with a mixed-wet single wettability function.

The results demonstrate the uncertainties inherent to the wettability distribution

method chosen and the importance of rigorous approaches for defining and dis-

tributing the wettability functions in simulation models for evaluating CO2 EOR

and storage (e.g., Gomes et al., 2008; Hollis et al., 2010).

5.3.4 Effect of Relative Permeability Hysteresis

To gain insight into the dynamic behaviour of the reservoir in cases with and

without hysteresis, three observation points were identified in the simulation

model and monitored to observe the evolution of CO2 saturation over 20 years

(Fig. 19). Observation point 1 (grid cell 64, 67, 1) and observation point 2 (grid

cell 57, 16, 1) are close to injection wells in the simulation model, while obser-

vation point 3 (grid cell 71, 30, 1) is located between two faults. Choosing the

observation points in this way allowed for not only the observation of CO2 satu-

ration path evolution, but also to show the influence of geological features such

as faults on trapping. It can be observed that the CO2 saturation distribution at

the top of the reservoir when hysteresis is not considered (Fig. 5.18a) is higher

than the CO2 saturation at the top of the reservoir when hysteresis is considered

(Fig. 5.18b), indicating that the CO2 plume migration to the top of the reservoir

is much slower when hysteresis is considered and residual trapping is accounted

for.
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Figure 5.18: Matrix gas saturation distribution during WAG injection without hysteresis
(a) and with hysteresis (b). Three observation points (1, 2, 3) are shown on
the simulation model where CO2 saturation is monitored over 20 years.

When hysteresis is considered, the model predicts a trail of residual, immo-

bile CO2 during the migration of the plume that reduces the overall mobility of

CO2 and leads to a more conservative estimate of the CO2 distribution at the

top of the reservoir (e.g., Juanes et al., 2006; Spiteri and Juanes, 2006; Qi et al.,

2008, 2009; MacMinn et al., 2011). Lower CO2 distribution at the reservoir top is

favourable for CO2 sequestration because it reduces the potential of the gas to

damage the cap rock and generate fissures in the cap rock which may then be

conduits for CO2 leakage to upper formations and ultimately to the atmosphere.

Figure 5.19 shows CO2 saturation evolution at the three observation points

during WAG injection under water-wet, mixed-wet and oil-wet conditions. All

the observation points indicate that the difference in CO2 saturation profiles be-

tween the models with and without hysteresis begins in the third injection cycle.

In the third injection cycle (W-G-W-G), water is injected into the reservoir after

a flow reversal. If hysteresis is considered, water injection after flow reversal in-

stigates residual CO2 immobilisation and trapping, hence, the decrease in gas

saturation follows a different evolution path compared to the model where hys-

teresis is not considered. Hence, residual trapping due to hysteresis reduces the

overall gas mobility and increases the stored gasas illustrated in figure 5.18.

On average, the CO2 saturation in the matrix of the water-wet models (Fig.

5.19a, d, g) is approximately 39% less than the CO2 saturation in the matrix of
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Figure 5.19: Gas saturation profiles at observation points 1, 2, 3 (Fig. 5.18) under water-
wet (a, d, g), mixed-wet (b, e, h) and oil-wet (c, f, i) conditions respectively.
Water and CO2 are injected during alternate cycles at equivalent rates of
1589 m3/day.

the mixed-wet models (Fig. 5.19b, e, h) and 56% less than the CO2 saturation in

the matrix of the oil-wet models (Fig. 5.19c, f, i). The difference in matrix CO2 sat-

uration can be attributed to the high capillary entry pressure in water-wet rocks

which supports spontaneous imbibition but opposes gas-oil gravity drainage.

Hence, water-wet rocks exhibit high oil recovery during imbibition but low oil

recovery and CO2 storage during gas-oil gravity drainage. Conversely, oil-wet

rocks exhibit low oil recovery during spontaneous imbibition but higher oil re-

covery and CO2 storage during gas-oil gravity drainage.

At observation point 3, the behaviour of the gas saturation profiles differs from

the other two observation points for all the wettability scenarios (Fig. 5.19g, h, i).

This is due its location between two faults. The faults are considered to be fully
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conductive, with flow reduction across faults occurring only due to the juxtaposi-

tion of high and low permeability layers. Hence, only a small fraction of injected

fluids reach observation point 3 due to viscous displacement. Consequently, hys-

teresis and residual CO2 trapping due to repeat imbibition and drainage cycles

is limited and only observed in the water-wet scenario (due to the relatively

stronger imbibition). The mixed-wet and oil-wet cases do not show hysteresis

effects. The evolution of CO2 saturation at the observation points therefore high-

lights the interaction and competition between recovery/sequestration mecha-

nisms (e.g. gravity, capillary, viscous forces) and geological heterogeneity during

CO2 EOR and storage which needs to be captured in simulation models as has

been done in this study.

5.3.5 Effect of WAG ratio and maximum trapped CO2 saturation

Furthermore, the effect of the WAG ratio and maximum trapped CO2 saturation

on the performance of CO2 EOR and storage is investigated. The motivation is

to consider what other factors influence the optimization of CO2 sequestration

during EOR. Specifically, to determine what factors can mitigate the influence

of geological uncertainties and enable us to obtain the optimum displacement

strategy for a specific reservoir (e.g., Wildenschild et al., 2011; Doster et al., 2013).

It is observed that when the WAG ratio varies between 1:2, 1:1, 2:1 and 4:1, the

total CO2 stored (as a percentage of the reservoir pore volume) varies between

15%, 14%, 12% and 11% respectively (Fig. 5.20a). This is to be expected because

as the WAG ratio increases a smaller fraction of CO2 is injected into and subse-

quently stored in the reservoir.

More importantly, figure 5.20a indicates that the WAG ratio can be varied to

maximize CO2 sequestration while producing oil within economic limits. The

challenge, however, is that maximizing CO2 sequestration simultaneously com-

petes with maximizing the oil production (Fig. 5.20c). Obtaining an optimal eco-

nomic solution for CO2 EOR and storage is therefore nontrivial and may require

the use of advanced optimization workflows to obtain the best solution while

[ July 29, 2015 at 16:33 – classicthesis by Simeon Agada ]



5.3 wettability, hysteresis and fracture-matrix interaction 114

varying the model input parameters (e.g., Queipo et al., 2005; Oladyshkin et al.,

2011; Koziel and Yang, 2011; Petvipusit et al., 2014). Similarly, it can be observed

that when the maximum trapped CO2 saturation varies between 0, 0.2 and 0.4,

the total CO2 pore volume stored varies between 13%, 15% and 16% respectively

(Fig. 5.20b) indicating a direct link between the maximum trapped saturation

Figure 5.20: Total CO2 stored in the reservoir when WAG ratio (a, c) and maximum
trapped gas saturation (b, d) are varied. As expected, larger volume of CO2
is stored with low WAG ratios or high trapped saturations. The net CO2
utilisation is higher at low WAG ratios (e) and increasing maximum trapped
CO2 saturation (f).
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and the amount of CO2 stored in the reservoir. Figure 5.20d demonstrates that

improving the maximum trapped CO2 saturation can increase the total amount

of CO2 stored in the reservoir with the total oil production remaining relatively

constant.

The effect of the WAG ratio and maximum trapped CO2 saturation on the

net gas utilization factor (GUF) is evaluated. The GUF (estimated in Mscf/stb)

indicates the amount of CO2 that is stored in the reservoir for every barrel of

oil produced (eqn. 5.1). The GUF is an important sequestration and economic

parameter that quantifies the amount of CO2 that can be safely stored in the

reservoir during EOR.

GUF =
CO2 Injected− CO2 Produced

Oil Produced
(5.1)

In general, a higher volume of CO2 is stored initially per barrel of oil produced

(Fig. 5.20e, f). As the reservoir becomes gas saturated, the GUF reduces and

becomes nearly constant. Figure 5.20e indicates that as the WAG ratio increases

the GUF decreases. This is because higher WAG ratios produce larger quanti-

ties of oil at the expense of lower CO2 storage (Fig. 5.20c). Finally, figure 5.20f

illustrates the impact of residual trapping on the net GUF. It can be seen that

as the trapped gas fraction increases, the net GUF increases indicating that a

higher fraction of CO2 is stored in the reservoir. This direct correlation between

the trapped gas fraction and the net GUF, further reaffirms the fact that a better

understanding of the mechanism of trapping can be used to optimize CO2 se-

questration (during EOR) within economic limits.

5.4 discussion

5.4.1 Reservoir Simulation Results

Reservoir simulation is an important tool for investigating the fundamental con-

trols on fluid flow in fractured carbonate reservoirs during CO2 EOR and stor-

age. Results from reservoir simulation can be used to evaluate the reservoir’s
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suitability for CO2 EOR and storage based on the influence of uncertain physi-

cal and geological parameters. The simulation study in this chapter shows that

the fracture properties are a first order control on oil recovery and CO2 storage

efficiency in fractured carbonate reservoirs. Significant variations in subsurface

flow behaviour was observed when low intensity fractures were encountered

compared to high intensity fractures, thereby, emphasising geological tipping

points that influence simulation predictions and decision making. Hence, accu-

rate characterization and calibration of the hydrodynamic properties of the frac-

ture network is essential. Calibrating simulation results based on static data with

dynamic information from pressure transient, tracer and field tests can increase

our understanding of a dynamically coupled fracture-matrix system. However, it

should be noted that the complex interaction of fracture-matrix flow in fractured

carbonate reservoirs can render the calibration of fractured carbonate reservoir

models with pressure transient data difficult (e.g., Wei et al., 1998; Corbett et al.,

2012; Agada et al., 2014).

5.4.2 Wettability Functions

This chapter has demonstrated that the choice and number of wettability func-

tions can influence oil recovery and CO2 storage predictions in fractured carbon-

ates. It has been shown previously that an accurate distribution of wettability

functions for carbonates is a crucial aspect of carbonate reservoir characteriza-

tion (e.g., Lichaa et al., 1993; Jerauld, 1997; Jackson et al., 2005; Hollis et al.,

2010). In particular, using single wettability functions based on the assumption

of uniform reservoir wettability is insufficient and the distribution of multiple

functions to reflect heterogeneous wettability may offer more robust results. Rel-

ative permeability hysteresis also has a significant impact on subsurface CO2

EOR and storage, as has been demonstrated. Modelling hysteresis in detail will

account for the residually trapped (immobilised) CO2 fraction and lead to reduc-

tion of the overall CO2 phase mobility. Hence, understanding the mechanism of

residual trapping means that trapping may be optimized to obtain significant

economic and environmental benefit (e.g., Wildenschild et al., 2011; Doster et al.,

2013).
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5.4.3 Fracture-matrix Interaction

The fracture network was coupled with the rock matrix using traditional DFN

modelling approaches and dual continuum formulations. Employing discrete

fracture and matrix models (DFM) where the fractures are explicitly represented

may provide additional insights into fracture-matrix transfer processes, espe-

cially in reservoirs where flow in the matrix is significant (e.g., Matthäi et al.,

2007; Haegland et al., 2009; Geiger et al., 2009). Another source of uncertainty

in the dual continuum simulations is the shape factor (embedded in the trans-

fer function) which for classical models (Warren and Root, 1963; Gilman and

Kazemi, 1983) determines the speed of recovery from the matrix, but does not

adequately capture the changes in recovery speed over time. This variability in

recovery speed is due to sub-grid heterogeneities that are typical for fractured

carbonate reservoirs and have been shown to significantly influence multiphase

flow predictions. Hence, current research efforts are tailored towards generating

novel multi-rate transfer functions that account for variable recovery speeds as

a result of sub-grid heterogeneities (Di Donato et al., 2007; Geiger et al., 2013;

Maier et al., 2013).

5.4.4 Well Pattern Optimisation

A regular five-spot well pattern was chosen as the standard well placement op-

tion for all the simulations in this chapter. It is important to note that the chosen

well placement was not final and the oil recovery and CO2 sequestration esti-

mates may be improved by exploring different well placement approaches. More

common well placement options that may have an impact on the simulation re-

sults include inverted five-spot, direct line drive and staggered line drive well

patterns. Alternatively, robust well-pattern optimization which is now a stan-

dard technique in reservoir simulation may be employed to maximize CO2 EOR

and storage for a given well placement option while accounting for geological

uncertainty with multiple model realisations (Bangerth et al., 2006; Onwunalu

and Durlofsky, 2011; Petvipusit et al., 2014).
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5.4.5 Benefit of Experimental Design

For all the sensitivities described above, a traditional sensitivity analysis carried

out by varying ’one parameter at a time’ was used to show that the fracture

intensity, matrix wettability, fracture geometry and residual trapping are key un-

certainties for CO2 EOR and storage prediction. This kind of sensitivity analysis,

though very useful, could be biased because it may not fully explore the parame-

ter space. Traditional sensitivity analysis assumes that the varied parameters are

independent of one another, although in reality the parameters are often corre-

lated. For example, matrix wettability and fracture intensity may have an inter-

related rather than independent impact when controlling imbibition, drainage

and residual trapping mechanisms.

Recently, design of experiments (DoE) has been increasingly used as a means

to set up multiple numerical simulations that maximize the amount of informa-

tion acquired from a limited number of simulation runs. DoE provides a struc-

tured way to change multiple settings in order to understand the impact of the

most influential and interrelated factors on CO2 EOR and storage. Furthermore,

DoE can be coupled with advanced optimization workflows to optimise and

improve the economics of oil recovery and CO2 sequestration in fractured car-

bonate reservoirs (Friedmann et al., 2003; Koziel and Yang, 2011; Li and Zhang,

2014).

5.4.6 Limitation of Black Oil Simulation

Since this study focused on short term CO2 EOR and storage (only 20 years), it

was assumed that black oil simulation was sufficient to capture the short term ef-

fects of hysteresis, wettability and fracture-matrix interaction. Longer term CO2

EOR and storage studies (up to 1000 years) that need to capture complex flow

physics including CO2 solubility and geochemical CO2-rock interactions would

benefit greatly from applying compositional simulations. The challenge remains

that field-scale simulation of fractured carbonate reservoirs is very time consum-

ing. Hence, it is worthwhile to investigate non-reactive CO2 behaviour using
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black oil simulations prior to investigating reactive and multicomponent CO2

behaviour using compositional simulation (e.g., Jessen et al., 2005).

Another drawback of black oil simulation is that it does not adequately cap-

ture miscibility between CO2 and the hydrocarbon phase. Miscible displacement

during CO2 EOR and storage occurs when CO2 and the hydrocarbon compo-

nents form a single homogeneous phase when mixed in all proportions typ-

ically above the minimum miscibility pressure. Miscible displacement would,

therefore, increase the microscopic sweep efficiency and the overall fraction of

oil recovered. Furthermore, it has been observed that miscibility increases CO2

injectivity and the amount of CO2 that can be hydrodynamically trapped in

the reservoir structure (Agada and Geiger, 2014). The impact of miscibility on

residual trapping, however, is less distinguishable since supercritical CO2 is also

trapped in the pore network as imbibition follows drainage in a cyclic water-

alternating-gas displacement process (Agada and Geiger, 2014).

5.5 summary

The main objective of this chapter was to investigate how the interplay between

hysteresis, wettability and fracture-matrix exchange impacts oil recovery and

CO2 sequestration in relation to the multi-scale heterogeneities that are pervasive

for fractured carbonate reservoirs. It has been shown that the specific fracture

network geometry has a direct effect on oil recovery and CO2 storage, especially

when the fracture intensity is low. When the fracture intensity is high, the impact

of varying fracture network geometry on oil recovery and CO2 storage becomes

less distinguishable. This is because the fracture density is so high that fractures

are highly connected and form long-range high-permeability flow paths irrespec-

tive of the specific geometry. Thus, the fracture network properties, specifically

the fracture intensity, exhibit ’tipping point’ behaviour that significantly influ-

ence the simulation output depending on whether the fracture intensity is low or

high. This chapter demonstrates that for a given fracture geometry, the presence

of connected fractures leads to increased bypassing of the oil in the matrix by

the injected fluids as the fracture intensity increases. The presence of connected
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fractures also leads to rapid CO2 transport, relatively poor CO2 sequestration

and early water breakthrough.

It was found that although the fracture network properties have the greatest

impact on the simulations, yet the effect of wettability on CO2 EOR and storage

cannot be neglected. Water-wet reservoir conditions lead to reduced gas satu-

ration in the matrix due to high capillary entry pressures that oppose gas oil

gravity drainage. Increased imbibition in the water-wet medium also leads to

higher oil recovery during water injection cycles. Conversely, the imbibition po-

tential is very poor in the oil-wet medium leading to much lower recovery from

water injection cycles. Residual trapping of the CO2 is more significant in water-

wet rocks because snap-off occurs and gas becomes increasingly disconnected

in the pore throats from the continuous CO2 phase. Because residual trapping

entails a reduction of the CO2 mobility, it ultimately leads to higher oil recov-

ery. Reducing the CO2 mobility further delays CO2 breakthrough, increases the

stability of gas-water mobility front and improves contact of CO2 with residual

oil, thereby ensuring better macroscopic and microscopic sweep of the reservoir

while increasing the residually trapped fraction.

Simulation of fractured carbonate reservoirs can provide valuable insights on

the suitability of a given reservoir for CO2 EOR and storage. Simulation stud-

ies can also highlight the principal physical and structural uncertainties that

control oil recovery and CO2 sequestration with a view to mitigating these un-

certainties. Bypassing of oil in the matrix, rapid CO2 migration and early water

breakthrough, for example, which are due to high fracture matrix connectivity

can be reduced by increasing the viscosity of the injected fluid using polymer

injection and foam flooding applications. The wetting preference of the reservoir

rock may also be altered by the injection of chemicals (e.g. surfactants) to achieve

maximum CO2 EOR and storage. Hysteresis in cyclic floods must be accounted

for to ensure that simulations provide robust results that can guide decision mak-

ing and subsurface reservoir management. The trade-off between the volumes

of CO2 trapped and the amount of oil recovered must also be optimised in the

light of economic constraints including the source and cost of CO2 delivered to

the operational site.
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D ATA - D R I V E N S U R R O G AT E S F O R R A P I D S I M U L AT I O N

A N D O P T I M I S AT I O N O F E O R P R O C E S S E S

6.1 introduction

Hydrocarbon recovery in carbonates is typically low due to multi-scale hetero-

geneities and oil- to mixed-wet rock properties (Manrique et al., 2007; Montaron,

2008; Mohan et al., 2011). Low recovery factors are further influenced by com-

plex connected high permeability fracture networks which establish preferential

flow paths in the reservoir (e.g., Bourbiaux et al., 2002; Gale et al., 2004; Makel,

2007; Spence et al., 2014). The variability in matrix architecture and fracture net-

work connectivity is the main reason why fractured carbonate reservoirs show a

large variety of flow behaviours, leading to significant uncertainties in their eval-

uation, performance prediction and management (e.g., Cosentino et al., 2001;

Makel, 2007; Agada et al., 2014).

To account for multiple geological and engineering uncertainties, a large num-

ber of numerical simulations are typically required to adequately explore the

parameter space, investigate parameter relationships and optimise hydrocarbon

recovery. Sensitivity analysis, uncertainty quantification and recovery optimisa-

tion for fractured carbonate reservoirs, however, are computationally expensive

because of the multiscale heterogeneities and fracture-matrix transfer mecha-

nisms that must be taken into account using numerical transfer functions and

a large number of simulation grid cells. This is particularly important for CO2

WAG injection, a successful EOR method for carbonate reservoirs which com-

bines the benefits of gas injection to reduce the residual oil saturation and water

121
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injection to improve mobility control and frontal stability (Lake et al., 1992; Chris-

tensen et al., 2001; Manrique et al., 2007; Taber et al., 1997; Teletzke et al., 2010;

Kalam et al., 2011; Pizarro and Branco, 2012; Azzolina et al., 2015).

One efficient way of reducing the computational cost is by using data-driven

surrogate modelling techniques that construct an approximation (or proxy) of

the simulation response based on a limited number of simulation runs (Queipo

et al., 2005; Forrester and Keane, 2009; Gogu et al., 2009; Simpson et al., 2008;

Oladyshkin et al., 2011; Gogu and Passieux, 2013; Petvipusit et al., 2014). The

modelling process typically involves generating an initial surrogate model with

a set of full-physics training simulations. Subsequently, an approximate solu-

tion to the objective function is obtained by evaluating the data-driven surro-

gate. For validation purposes, approximate solutions from the data-driven sur-

rogate are compared to model predictions using high-fidelity simulation (e.g.

black oil or compositional simulation). If the comparison shows a mismatch, the

data-driven surrogate is iteratively updated with more training runs and test-

ing points added until the mismatch is eliminated (Koziel and Yang, 2011). The

data-driven surrogate can then be used to routinely identify flow signatures for

variations in production behaviour when reservoir engineering measures are ap-

plied in the presence of geological heterogeneities. In this way the surrogates

will be representative of flow signatures, rather than a fit to a given number of

input data points.

6.1.1 Design of Experiments

To ensure that the data-driven surrogate fully explores the parameter space and

provides a robust representation of the numerical simulation model, Design of

Experiments (DOE) is commonly employed. DOE aims to maximize the amount of

information acquired from a minimum number of simulation runs by optimally

allocating samples in the design space (Chen et al., 2006a; Montgomery, 2008;

Simpson et al., 2008; Myers et al., 2009; Koziel and Yang, 2011). DOE employs

different sampling methods to identify a subset of experiments from a larger set,

according to the number of experimental parameters under investigation. De-
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terministic experimental designs such as Box-Behnken, fractional factorial and

central composite designs are perfectly orthogonal, explore a large region of

the search space and are able to capture model non-linearities (Box et al., 1978;

Chen et al., 2006a). To select input parameters from random distributions, ran-

dom samplers such as Latin Hypercube or nearly orthogonal array are frequently

used. Random samplers are also called space filling designs because they are not

restricted to sample sizes that are specific multiples of design parameters (Stein,

1987; Giunta et al., 2003; Helton and Davis, 2003).

6.1.2 Polynomial Chaos Expansion

Experimental design techniques coupled with data-driven surrogates has been

widely used in hydrocarbon recovery (Friedmann et al., 2003; Panjalizadeh et al.,

2014) and CO2 storage (Ashraf et al., 2013; Li and Zhang, 2014; Wriedt et al.,

2014) applications for uncertainty quantification, risk assessment, optimisation

and history matching. One group of data-driven surrogate modelling techniques

that has received increasing attention is Polynomial Chaos Expansion (PCE) (El-

dred and Burkardt, 2009; Oladyshkin et al., 2011; Buzzard, 2012; Ashraf et al.,

2013; Elsheikh et al., 2014). PCE methods build a polynomial approximation

of the model response by expanding it in an orthogonal polynomial basis. PCE

techniques, therefore, provide an efficient high-order accurate way of including

non-linear effects in stochastic analysis (Oladyshkin et al., 2012).

PCE techniques are mainly classified into intrusive and non-intrusive approaches.

Intrusive approaches such as the stochastic Galerkin methods (Villadsen and

Michelson, 1978; Ghanem and Spanos, 1993; Xiu and Karniadakis, 2003; Matthies

and Keese, 2005) require manipulation of the governing equations or underlying

partial differential equations that are solved within a reservoir simulator. Non-

intrusive approaches do not require manipulation of the governing equations

and use the reservoir simulator as a black box. They are hence more straight-

forward to apply and involve the evaluation of the coefficients in the chaos

expansion using a given number of model simulations (Isukapalli et al., 1998;

Li and Zhang, 2007; Blatman and Sudret, 2010; Oladyshkin et al., 2011, 2012;
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Zhang and Sahinidis, 2012; Petvipusit et al., 2014). This chapter focuses on non-

intrusive Polynomial Regression (PR), Sparse Polynomial Chaos Expansion (sPCE)

and Arbitrary Polynomial Chaos Expansion (aPCE). PR estimates the coefficients

for a second-order polynomial by least squares fitting of the data-driven sur-

rogate model to the training data (Myers et al., 2009). sPCE is an extension of

the generalised polynomial chaos which is based on the Askey Scheme (Askey

and Wilson, 1985) of orthogonal polynomials (Xiu and Karniadakis, 2002, 2003;

Blatman and Sudret, 2010; Elsheikh et al., 2014). aPCE techniques have been

shown to minimise the subjectivity of input data distributions by directly using

the available information in a data-driven formulation of PCE and employing a

global polynomial basis for arbitrary distributions of data (Witteveen et al., 2007;

Oladyshkin et al., 2011, 2012; Ashraf et al., 2013).

Other surrogate modelling approaches which have been applied to hydrocar-

bon recovery and CO2 storage applications include Kernel methods (Sarma et

al., 2009), Kriging techniques (Yang et al., 2011) and artificial neural networks

(Costa et al., 2014) which use complex mathematical relationships between sim-

ulator input and output to emulate physical systems and reproduce the output

patterns rapidly.

6.1.3 Uncertainties Encountered during CO2 WAG Injection

In the context of EOR in fractured carbonate reservoirs, data-driven surrogates

may be able to provide relevant approximations of time consuming numerical

simulations. The surrogate models can then help to understand the respective

dependencies and correlations of uncertain input parameters and contribute to

rapid simulation, optimisation and decision making under uncertainty. Geolog-

ical parameter uncertainties that affect immiscible CO2 WAG injection include

the nature and flow significance of faults and subseismic fractures (Bourbiaux

et al., 2002; Casabianca et al., 2007; Ramirez et al., 2009) and the role of wettabil-

ity and hysteresis when controlling imbibition and drainage in the rock matrix

(Blunt, 1997; Larsen and Skauge, 1998; Hui and Blunt, 2000; Spiteri and Juanes,

2006; Spiteri et al., 2008; Ryazanov et al., 2009; Ferno et al., 2011; Dernaika et al.,
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2013; Schmid and Geiger, 2013). Conversely, the engineering parameter uncer-

tainties include WAG design parameters such as the flow rate and location of

wells, WAG slug sizes and WAG injectant ratios.

6.1.4 Optimisation

In the presence of multiple uncertainties, finding the most favourable combina-

tion of uncertain input parameters to obtain an optimum value of the objective

function (e.g. oil recovery, gas utilisation factor) is very challenging and com-

monly requires the application of stochastic optimisation algorithms. Stochas-

tic algorithms including simulated annealing (Dowsland and Thompson, 2012),

particle-swarm optimization (Mohamed et al., 2010), neighbourhood algorithm

(Subbey et al., 2003), differential evolution (Hajizadeh et al., 2011) and genetic

algorithm (Sen et al., 1995; McCall, 2005) have been applied to many reservoir en-

gineering problems. Stochastic algorithms incorporate a random component that

allows the search during optimisation to move toward worse solutions occasion-

ally, thereby gaining the ability to seek out the global optimum objective function

while escaping from local minima efficiently (Abdollahzadeh et al., 2013).

This study uses the genetic algorithm, a heuristic search and optimisation tech-

nique based on natural evolution through selection (Bäck and Schwefel, 1993;

Gen and Cheng, 2000; Eiben and Smith, 2003; McCall, 2005). The algorithm uses

selection, crossover, mutation and recombination of individual reservoir models

to obtain a new generation of potentially superior individuals based on rank-

ing with a fitness function (i.e. objective function). The procedure is repeated to

obtain multiple generations until an optimum value of the objective function is

reached. The genetic algorithm is robust, flexible and easy to adapt to different

engineering problems because it uses the objective function value to determine

new search steps and does not require gradient information from the optimisa-

tion problem. Hence, the genetic algorithm can be applied to optimisation prob-

lems for which traditional algorithms fail because of significant non-linearities

or discontinuities in the search space. The main limitation of GA compared to
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more modern stochastic optimisation methods is the long computer bit strings

required to represent the chromosomes of individuals during GA. The long bit

strings make GA rigid and less robust when compared to modern algorithms

such as neighbourhood algorithm (Subbey et al., 2003) and particle swarm opti-

mization (Mohamed et al., 2010). Several studies provide further details on GA

(e.g., Michalewicz, 1996; Mitchell, 1999; Gen and Cheng, 2000) and its applica-

tion (e.g., Bäck et al., 2000; McCall, 2005; Costa et al., 2014).

6.1.5 Workflow

In this chapter, Box-Behnken experimental design is used to set up a wide range

of full-physics simulations of a high-resolution carbonate reservoir model in or-

der to generate, analyse and compare non-intrusive data-driven surrogate mod-

els for rapid simulation and optimisation of CO2 WAG injection. The full-physics

simulations are then used to build data-driven surrogates. For validation, addi-

tional full-physics simulations with random design parameters are set up using

the Latin Hypercube experimental design and compared to the response of the

data-driven surrogates for the same input parameters. The most accurate sur-

rogate model after validation is then coupled with Monte Carlo methods to

generate cumulative distribution functions of oil recovery and gas utilisation fac-

tor. Subsequently, the selected surrogate model is employed for optimisation of

the objective function using genetic algorithm. A summary of the workflow em-

ployed to construct data-driven surrogates for fractured carbonate reservoirs is

shown in figure 6.1.

[ July 29, 2015 at 16:33 – classicthesis by Simeon Agada ]



6.2 sector model description 127

Figure 6.1: Workflow for constructing data-driven surrogates for fractured carbonate
reservoirs using multiple experimentally designed full-physics simulations.

6.2 sector model description

6.2.1 Fracture-Matrix Characterisation and Fluid properties

The simulation model, fluid properties and wettability data are the same as in

Chapter 3. Due to the large number of simulations required to generate differ-

ent surrogates, a sector of the Amellago outcrop model consisting of 34 x 35 x 36

grid cells (42,480 grid cells in total) was employed. Each grid cell has dimensions

of 15m x 15m x 3m. An inverted 5-spot well pattern was used with a vertical in-

jection well at the centre of the model and four vertical production wells at the

corners. CO2 WAG injection was simulated using a WAG ratio of 1:1 and eight

alternate six-month cycles.

This chapter employs full-physics simulation of immiscible CO2 WAG injec-

tion which can be run significantly faster in black oil mode compared to compo-

sitional simulations that require significantly longer run times for fractured car-

bonate reservoirs. Data-driven surrogates are generated for two objective func-

tions: the oil recovery factor and the net Gas Utilisation Factor (GUF). The oil

recovery factor indicates the fraction of oil that is recovered from the reservoir

while the GUF indicates the net amount of gas that is lost in the reservoir for
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every barrel of oil produced. In general, it is economically desirable to maximise

oil recovery and minimise GUF.

Figure 6.2: Discrete fracture network models for regional fracture system with average
fracture intensity of 0.05 (a), 0.1 (b) and 0.2 (c).

Fracture data such as in Chapter 5 were used to construct DFN models for the

sector model. The fractures are considered to be part of a regional fracture sys-

tem with volumetric fracture intensities (P32) that vary from 0.05 to 0.2 m2/m3

(Fig. 6.2). Fracture network flow parameters including equivalent permeability

tensors and shape factors were obtained by upscaling the fracture networks to

the grid cells of the simulation model using the modified Oda (1985) DFN up-

scaling method. The dual-porosity dual-permeability (DPDP) formulation was

used to couple matrix and fracture fluid flow (Fig. 6.3).

Figure 6.3: Matrix permeability (a) and fracture permeability (b) for the heterogeneous
carbonate reservoir. DPDP formulation was used to couple matrix and frac-
ture fluid flow.
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6.3 setup of data-driven surrogate models

6.3.1 Parameter Screening

A sensitivity analysis carried out by varying one parameter at a time was used to

identify, rank and screen input variables with significant impact on the objective

function(s). The screening results indicate that the most important uncertainties

affecting CO2 WAG injection in this reservoir include the fracture permeability

(which is a function of the DFN model, KDFN, and the fracture permeability

multipliers, K fmult), WAG injection rate (InjRate), matrix wettability (KR), fault

transmissibility (FT) and the maximum trapped gas saturation (Sgt) (Fig. 6.4).

The screening study shows that as uncertain parameters vary between their min-

imum and maximum values, increasing the fracture permeability typically re-

sults in up to a 16% decrease in the oil recovered and the GUF. Conversely, an

increase in trapped gas saturation, wettability or fault transmissibility results in

increased oil recovery and GUF of up to 15%. The WAG injection rate can influ-

ence the output by 18% while the WAG injection location (ILx, ILy) only has up

to 3% influence on the results for this model. Subsequently, only uncertainties

that show significant impact on the simulation model response as indicated in

figure 6.4 are considered in the subsequent analysis and surrogate model set-up.

Figure 6.4: Summary of parameter sensitivities affecting oil recovery and gas utilisation
factor (GUF) during CO2 WAG. Tornado chart shows the difference in the
model response when individual parameters are varied between their mini-
mum and maximum values indicated in Table 6.1.
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6.3.2 Experimental Design

A Box-Behnken design (Box et al., 1978) was used to vary the uncertain pa-

rameters. Identical well configurations, flow rates and pressure constraints were

maintained to ensure that the variability in simulation outcomes was due to the

main uncertain parameters, except in the cases where the WAG injector location

or flow rate were varied. A normal prior probability distribution was used to

allocate uncertain parameter samples in the design space. Three regional frac-

ture permeability models were included in the design ranging from DFN mod-

els with fracture intensity of 0.05 to 0.2. Fracture permeability multipliers were

varied between 0.1 and 10 to account for end-member fracture permeability sce-

narios (Table 6.1). The fault transmissibility was varied between low transmis-

sibility scenarios where the faults were completely sealing (FT = 0) and high

transmissibility scenarios where the faults were fully conductive (FT = 1). Rela-

tive permeability and capillary pressure curves varied from oil-wet to water-wet

corresponding to the low and high end-members respectively. The trapped gas

saturation varied from zero (no hysteresis) to a maximum trapped gas saturation

of 0.4.

Parameter Symbol Low Intermediate High

Fracture (DFN) Permeability Model K fDFN -1.0 0.0 1.0
Fracture Permeability Multiplier X K f xmult 0.1 5.0 10.0
Fracture Permeability Multiplier Y K f ymult 0.1 5.0 10.0
Fracture Permeability Multiplier Z K f zmult 0.1 5.0 10.0
Fault Transmissibility FT 0.0 0.5 1.0
Matrix Wettability KR -1.0 0.0 1.0
Maximum Trapped Gas Saturation Sgt 0.0 0.2 0.4
WAG Injector Location X ILx 13 17 21

WAG Injector Location Y ILy 13 17 21

WAG Injection Rate Injrate 7,500 10,000 12,500

Table 6.1: Parameters, symbols and ranges of the uncertain parameters varied in the
experimental design. Fracture (DFN) permeability models are varied with dis-
crete variables. ’-1’, ’0’ and ’1’ correspond to DFNs with fracture intensity of
0.05, 0.1 and 0.2 respectively. Matrix relative permeability and capillary pres-
sure curves that indicate the wettability (KR) are also represented with dis-
crete variables. ’-1’ corresponds to oil-wet, ’0’ corresponds to mixed-wet and
’1’ corresponds to water-wet.
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6.3.3 Simulation, Validation and Optimisation

Full-physics reservoir simulations were carried out employing the Box-Behnken

experimental design using a training data set of 312 samples. The simulation

input variables and the corresponding outputs were used to train polynomial

regression, sparse polynomial chaos and arbitrary polynomial chaos algorithms

to generate approximations of the simulator output. To test the prediction accu-

racy of the surrogate models, validation simulations using 105 Latin Hypercube

samples were evaluated. The response of the data-driven surrogates at both the

training and testing data points was then compared to the full-physics numeri-

cal simulation output.

The coefficient of determination (R2) and Root Mean Square Error (RMSE) were

used as goodness of fit measures. Finally, Monte Carlo simulations using the sur-

rogate models were employed to generate cumulative distribution functions of

the oil recovery and GUF. The equations used to generate data-driven surrogates

from polynomial regression and polynomial chaos expansions are shown below.

6.3.3.1 Mathematical Formulation of Surrogate Models

The general equation for a second-order polynomial regression can be described

as:

f (x) = co +
N

∑
i1=1

ci1 xi1 +
N

∑
i1=1

ci1i1 x2
i1 +

N

∑
i1=1

N

∑
i2=2

ci1i2 xi1 xi2 , (6.1)

where f (x) is the objective function, xi are the uncertain parameters, c0 is the

intercept, ci1are the coefficients of the linear terms, ci1i1 are the coefficients of the

quadratic terms and ci1i2 are the coefficients of interaction terms.

The polynomial chaos expansion for a model output Ω is given by:

Ω (x) =
M

∑
i1=1

ciΨi (ω) , (6.2)
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where the coefficients ci represent the dependence of the model output Ω on

the input parameters ω. The function Ψi is a simplified form of the multivariate

orthogonal polynomial basis for Ω. The number of M terms in the expansion

depends on the total of input parameters N and the order d of the expansion,

according to equation 6.3 (Oladyshkin et al., 2011; Hosder, 2012):

M =
(N + d)!

N! d!
, (6.3)

Subsequently, the unknown coefficients in the expansion (eqn. 6.2) are evaluated

using a non-intrusive least-square collocation method (Moritz, 1978; Chen et al.,

2009). For arbitrary polynomial chaos expansion, the data-driven polynomial

basis for one random variable (ωj) of degree k is defined as:

P(k)
j
(
ωj
)

=
k

∑
i=0

p(k)i,j ωi
j, k = 0, d, j = 0, N, (6.4)

Here p(k)
i,j are the coefficients in P(k)

j (ωj). The coefficients p(k)
i,j are constructed in

such a way that the polynomials in equation 6.4 form a basis that is orthogo-

nal in arbitrarily given distributions of data (Oladyshkin et al., 2011). A detailed

description of the polynomial basis functions used in sparse polynomial chaos

expansion is presented in Elsheikh et al. (2014).

6.3.3.2 Genetic Algorithm for Optimisation

Subsequently, the surrogate models were coupled with the genetic algorithm to

obtain an optimum value of the oil recovery and GUF based on the combination

of input parameters. The genetic algorithm optimises an objective function by

a process of selection, mutation and recombination as indicated by Algorithm

1 (Koziel and Yang, 2011). A population size of 50, a crossover probability of

0.8, and a mutation probability of 0.02, was used to ensure that the algorithm

captures a large search space and to avoid being trapped in local minima. Larger

population sizes had no effect on the optimisation results. The algorithm was

evaluated for 50 generations (i.e. iterations) to obtain optimum results based

on a function tolerance of 10−6. The function tolerance defines the minimum

difference between new and existing optimal values, hence, the optimisation
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iteration is terminated when a predefined function tolerance is reached.

Algorithm 1: Genetic algorithm for optimisation

1 Start
2 Intialise solutions xi of population Ψ
3 Evaluate objective function for the solutions of xi in Ψ
4 Repeat
5 For i = 0 to β

6 Select ρ parents from Ψ
7 Create new xi by recombination
8 Mutate xi

9 Evaluate objective function for xi

10 Add xi to Ψ
′

11 Next
12 Select µ parents from Ψ

′
and form new Ψ

13 Until termination condition
14 End

6.4 proxy analysis

6.4.1 Surrogate Training with Full-Physics Simulations

Black oil flow simulations were used as a basis for generating data-driven sur-

rogates. The full-physics flow simulations indicate channelling during hydrocar-

bon displacement in the reservoir which makes CO2 WAG injection a desirable

recovery option because WAG injection can ensure better mobility control and

frontal stability to improve contact of injected fluids with unswept zones (Fig.

6.5a). CO2 migration to the top of the reservoir due to gas-oil density difference

is also apparent (Fig. 6.5b). Furthermore, the full-physics simulations provide

the relevant training and testing data sets for generating the proxy models. On

average, the computational cost for each black oil simulation run was 8.2 hrs.

The oil recovery and GUF profiles for the training simulations (Fig. 6.6) show

a range of simulation responses based on various combinations of uncertain in-

put parameters. As expected, the oil recovery increases as alternate cycles of

water and gas are injected into the reservoir. The GUF, however, increases ini-
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Figure 6.5: Matrix oil saturation (a) and gas saturation (b) distribution after 8 cycles of
immiscible CO2 WAG injection using an inverted 5-spot well pattern. Geolog-
ical layer channelling influences recovery efficiency in (a) while gas migrates
to top of the reservoir in (b).

tially but begins to decrease as the reservoir becomes gas saturated.

Figure 6.6: Oil recovery (a) and gas utilisation factor (GUF) (b) profiles for the experi-
mentally designed full-physics simulations used to train and test the surro-
gate models. Only 50 simulation results are shown to avoid overlaps.

6.4.2 Oil Recovery Surrogate Prediction

The response surfaces that can be generated from training simulations using the

three data-driven surrogate models (PR, sPCE and aPCE) are very similar and

the relative error between response surfaces is approximately 0.002. For analysis,

this section focuses on the aPCE response surfaces (Fig. 6.7). It can be observed

from the four response surfaces that the horizontal fracture permeability always

has the highest impact on the simulated oil recovery. This clear link between

an increase in the fracture connectivity and a decrease in the oil recovery is ex-
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pected because increased connectivity across the fracture network results in a

reduction in the residence time of injected fluids and subsequently a reduction

in the effectiveness of oil recovery from the matrix due to gravity drainage and

capillary imbibition.

Figure 6.7: Oil recovery factor aPCE response from Box-Behnken design experiments
when fault transmissibility (a), maximum trapped gas saturation (b), wetta-
bility (c), and vertical fracture permeability multiplier (d) are varied along
with the horizontal fracture permeability multiplier.

Consequently, the highest overall oil recovery is observed when the fracture

permeability is low and the matrix is water-wet and hence imbibition most effec-

tive (Fig. 6.7c). The lowest overall recovery is observed when both the vertical

and horizontal fracture permeabilities are at their highest values (Fig. 6.7d)

indicating that when the fractures are well connected, fracture networks form

fluid flow highways that lead to rapid transport of injected fluids thereby re-

sulting in low oil recovery. Increased fault transmissibility (Fig. 6.7a) allows the

injected fluids to access all parts of the reservoir more readily which improves

recovery. Similarly, an increase in the maximum trapped gas saturation reduces

the overall gas mobility and leads to improved recovery predictions (Fig. 6.7b).

This is because a reduction in the gas mobility increases the stability of the gas-

water mobility front, delays gas breakthrough and improves the contact of gas

with residual oil, thereby ensuring better microscopic and macroscopic sweep

[ July 29, 2015 at 16:33 – classicthesis by Simeon Agada ]



6.4 proxy analysis 136

of the reservoir. On average, the computational cost for each surrogate model

evaluation was 13.2 seconds indicating significant reduction in CPU time when

compared to the 8.2 hrs CPU time required for a single full-physics simulation

run.

6.4.3 Gas Utilisation Factor Surrogate Prediction

The net gas utilisation factor generally increases with increasing horizontal frac-

ture permeability (Fig. 6.8). This increase is caused by high-permeability fracture

networks that allow more gas flow per barrel of oil recovered from the matrix

due to the rapid fluid transport in the fractures. The results show that the fault

transmissibility has a limited effect on the GUF (Fig. 6.8a). This is because the

fault transmissibility impacts oil and gas migration in the reservoir in the same

way: when the fault transmissibility is low, flow of gas and oil across the faults

is limited; when the fault transmissibility is high, flow of gas and oil across the

faults is enhanced.

Figure 6.8: Net gas utilisation factor (GUF) aPCE response from Box-Behnken design ex-
periments when fault transmissibility (a), maximum trapped gas saturation
(b), wettability (c), and vertical fracture permeability multiplier (d) are varied
along with the horizontal fracture permeability multiplier.
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The GUF increases with higher values of residual gas trapping due to rela-

tive permeability hysteresis (Fig. 6.8b). It is well known that relative perme-

abilities depend on the saturation path during hydrocarbon displacement cycles

(Larsen and Skauge, 1998; Juanes et al., 2006). The cycle dependence influences

the amount of gas trapped in the subsurface, thereby resulting in higher values

of the GUF as the trapped gas fraction increases. Conversely, the GUF decreases

with increasing water-wetness (Fig. 6.8c). Although, the amount of trapped non-

wetting gas is higher in a water-wet scenario (Piri and Blunt, 2005; Al-Dhahli

et al., 2013), the oil recovery is also very high (Fig. 6.7c). Hence, the GUF which

is a ratio of net gas utilised to oil produced decreases with increasing water-

wetness. The GUF is highest (Fig. 6.8d) when the vertical and horizontal fracture

permeabilities are high, which indicates rapid gas transport and accumulation

at the top of the reservoir when the fracture permeability is very high.

The indicated response surfaces are smooth and have a single minimum be-

cause this thesis hypothesised that 2
nd degree polynomials are sufficient to cap-

ture the nonlinear interaction of the uncertain parameters considered. Tests with

higher degree polynomials (e.g., 4
th and 5

th order) show multiple minima but

are not focus of this study. The response surfaces have been shown to be convex

or concave depending on whether the objective function is oil recovery or GUF

respectively and the relationship of given input parameters with the fracture net-

work properties which show the greatest impact on the simulation results.

6.4.4 Goodness of Fit Measures

To validate the surrogate models that were obtained from the training and test-

ing simulation, the predictions of the surrogates were compared with results

from full-physics simulations and relevant cross-plots were generated to esti-

mate goodness of fit measures. The coefficient of determination (R2) for oil re-

covery obtained for the PR, sPCE and aPCE surrogates was 0.9635, 0.9768 and

0.9770, respectively (Table 6.2 and Fig. 6.9).
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The R2 value indicates that all the data-driven surrogates are valid and that

the PCE models yield a slightly better approximation of the actual simulation

model. The goodness of fit measures for the GUF also show that the PCE mod-

els give consistently better predictions of the actual simulation results (Table 6.2

and Fig. 6.9).

Figure 6.9: Model comparison of oil recovery and gas utilisation factor (GUF) between
full-physics simulations and surrogate models from polynomial regression
(a, b), sparse polynomial chaos expansion (c, d) and arbitrary polynomial
chaos expansion (e, f). Result comparison is for final recovery and GUF.
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Goodness of Fit
Measure

Polynomial Regression Sparse Polynomial Chaos Arbitrary Polynomial Chaos

Recovery GUF Recovery GUF Recovery GUF

R2
0.9635 0.9823 0.9768 0.9903 0.9770 0.9903

R2 Adjusted 0.9361 0.9690 0.9594 0.9830 0.9597 0.9830

RMSE 0.0052 0.0098 0.0042 0.0073 0.0042 0.0073

Table 6.2: Goodness of fit measures for combined training and testing data. R2 is the coef-
ficient of determination which indicates how well the data-driven surrogates
predict actual simulation results. ’R2 Adjusted’ accounts for the number of
terms in the polynomial model approximation. RMSE is the root mean square
error of the data-driven surrogate compared to the actual simulation.

A comparison of the PCE models for both oil recovery and GUF indicates

that the aPCE models give slightly better results compared to the sPCE models.

However, it is expected that further tuning of the sPCE model may allow us to

eradicate the difference between the aPCE and sPCE model. Subsequent relative

error analysis, Monte Carlo simulations and model optimisation focus on proxy

models from aPCE.

Furthermore, a comparison of oil recovery flow profiles generated using the

aPCE surrogate model and full-physics simulation indicates that the aPCE surro-

gates slightly under predicts the results especially at late time (Fig. 6.10). Hence,

it can be deduced that although it considerably faster to evaluate a data driven

Figure 6.10: Comparison of oil recovery flow profiles for simulations using full-physics
and aPCE surrogate model. Solid lines represent flow profiles computed
with full-physics simulation, while, dots represent flow profiles computed
with aPCE surrogate model. Surrogate model slightly under-predict results
from full-physics simulation.
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surrogate than to run a full simulation case, it is evident that such a simple

model must be constructed and used with care. Increasing the number of test-

ing and training simulations may improve the predictability of the surrogate but

care must be taken to ensure that the surrogate prediction is not ’over’ specific

to the dataset but applicable to data that is outside the design space.

6.4.5 Relative Error

Relative error response surfaces (Fig. 6.11 and Fig. 6.12) show the discrepancy

between the response surfaces from PR and aPCE. In comparison to aPCE, PR

always over predicts the oil recovery (Fig. 6.11) and under predicts the GUF

(Fig. 6.12). Analysis of the relative error between the aPCE and PR response

surfaces shows that although the overall error is minimal, the difference in the

prediction is most evident in the middle of the design space. This is because the

deterministic Box-Behnken experimental design employed to set up the training

simulations in this study generates samples that more adequately capture the

actual model behaviour at the boundaries of the design space but have greater

uncertainty at the middle of the design space.

To further investigate the deterministic sampling bias, test simulations were

generated using the more random Latin Hypercube experimental design (Fig.

6.13). It was observed that when random samples are added to the design, the

mismatch between PR and aPCE prediction has a wider spread in the design

space. However, the absolute error from such a random design is greater than

the error from the deterministic design. The final choice of what design method

to employ should be a function of how well the surrogate predicts the behaviour

of the actual simulation in any given scenario. Furthermore, combining different

experimental design techniques, as shown in this chapter, could also be a reli-

able way to account for uncertainties that may propagate from the experimental

design techniques used to generate the data-driven surrogates.
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Figure 6.11: Oil recovery relative error response surface when PR is compared to aPCE.
PR always under predicts recovery. Overall error is minimal but notice for
all surfaces that the error is lowest at the corners and highest in the centre
of the design space because of the experimental design method employed.

Figure 6.12: Gas utilisation factor relative error response surface when PR is compared
to aPCE. PR always over predicts GUF. Overall error is minimal but notice
for all surfaces that the error is lowest at the corners and highest in the
centre of the design space because of the deterministic experimental design
method employed.
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Figure 6.13: The relative difference in the response surface when PR is compared to
aPCE for oil recovery (a) and gas utilisation factor (b). Further validation
sample points have been added using Latin Hypercube sampling to reduce
the deterministic sampling bias. Blue dots refer to actual simulation runs
for training (dots at the corners) and validation (random dots within the
design).

6.4.6 Surrogate Based Uncertainty Quantification and Probabilistic Assessment

Monte Carlo simulations carried out using the aPCE model and evaluated 65000

times were used to determine the cumulative distribution functions (cdfs) for oil

recovery and GUF over the range of uncertainty for the input parameters (Fig.

6.14).

Figure 6.14: Cumulative probability distributions of oil recovery (a) and net gas utiliza-
tion factor (GUF) (b) generated from 65000 Monte Carlo simulations using
the aPC model. Oil recovery P10, P50 and P90 is 0.31, 0.34 and 0.37 respec-
tively. GUF P10, P50 and P90 is 0.45, 0.53 and 0.60 Mscf/stb respectively.

The 10
th, 50

th and 90
th (P10, P50 and P90) percentile probabilistic estimate for

oil recovery is 0.31, 0.34 and 0.37 respectively for simulation of immiscible CO2
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WAG injection over a period of 1400 days. Also, the P10, P50 and P90 probabilis-

tic estimate is 0.45 Mscf/stb, 0.53 Mscf/stb and 0.60 Mscf/stb for GUF.

A normal distribution most closely matches the output data and leads to a

symmetric distribution. This is confirmed by the similarity of the illustrated cdfs

using aPCE to the cdfs generated in CMOST simulator using polynomial re-

gression surrogates. Such a unimodal symmetric distribution cannot always be

expected as the nature of the cdf depends on the distribution of input parameters

and the distributions that are used to match the surrogate model outputs.

6.4.7 Surrogate Based Optimisation

The aPCE surrogate model coupled with the Genetic Algorithm (GA) was ap-

plied to optimise the objective functions (i.e. oil recovery and GUF). Optimisa-

tion using GA progresses as a minimisation of the fitness value (i.e. -1 x objective

function) with the mean fitness value improving during each generation (Fig.

6.15) until the optimum is reached after 50 generations. The optimum oil recov-

ery estimate obtained using the aPCE model for the reservoir is 0.50 while the

optimum GUF obtained is 0.36 Mscf/stb. The corresponding values of the mod-

elling parameters are presented in Table 6.3. Figure 6.16 illustrates convergence

of the oil recovery to the optimum after over 2000 progressive evaluations of the

surrogate model based on the genetic algorithm.

When the proxy optimisation results were compared to evaluations of the full-

physics model using the optimum input parameters, an absolute error of 0.0048

and 0.0043 was obtained for the oil recovery and GUF respectively. A few sub-

optimal solutions are observed as the algorithm evolves and converges to the

optimum due to the random component in the genetic algorithm that allows the

search during optimisation to move toward sub-optimal solutions occasionally

in order to seek out the global optimum objective function (Fig. 6.16). These ran-

dom solutions increase confidence that the algorithm adequately explores the

parameters space and obtains a global optimum.
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In this chapter, it was sufficient to optimise a single objective function (i.e. oil

recovery) at a time. Since the oil recovered (or produced) is inversely propor-

tional to the GUF, maximising the oil recovery concurrently minimises the GUF

which could both be desirable outcomes from an economic perspective. To study

the possibility of optimising two competing objectives, multi-objective optimisa-

tion is required. Multi-objective optimisation finds a set of optimal solutions in

the range between two optimums. The set of optimal solutions, known as the

pareto front, should ideally have a good spread (Mitchell, 1999; Hajizadeh et al.,

2011).

Figure 6.15: Genetic algorithm (GA) optimisation process for the fractured carbonate
reservoir model. Note the occasional sub-optimal solutions during optimi-
sation to ensure that the GA obtains the optimal global solution. The algo-
rithm is set to maximise the oil recovery, thereby concurrently minimising
the GUF.
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Gen K fDFN K fmult FT KR Sgt ILx ILy InjRate RF GUF
1 0 1.4057 0.3059 -1 0.1844 18 17 10918 0.3661 0.4292

2 1 5.5560 0.4917 0 0.1373 16 18 11455 0.3867 0.3899

3 1 1.8103 0.6586 1 0.1986 17 18 11924 0.4444 0.3593

4 1 1.6540 0.5768 1 0.3155 18 20 11414 0.4464 0.3838

5 1 3.7237 0.6547 1 0.2877 17 18 11970 0.4467 0.3654

6 1 1.1319 0.6648 1 0.1995 17 19 12292 0.4575 0.3537

7 1 1.0484 0.7328 1 0.2018 17 18 12310 0.4602 0.3530

8 1 1.2237 0.6542 1 0.3243 17 21 12285 0.4723 0.3648

9 1 1.9328 0.6916 1 0.3688 15 21 12272 0.4732 0.3620

10 1 1.2223 0.8040 1 0.3243 13 21 12302 0.4808 0.3557

11 1 0.6790 0.8777 1 0.3348 13 18 12351 0.4797 0.3605

12 1 0.8006 0.8771 1 0.3566 14 21 12193 0.4829 0.3603

13 1 0.6183 0.8671 1 0.3882 16 21 12440 0.4881 0.3641

14 1 0.9967 0.8762 1 0.3892 13 21 12429 0.4899 0.3566

15 1 0.2848 0.9702 1 0.4117 14 21 12467 0.4961 0.3599

16 1 0.2863 0.9758 1 0.4122 13 21 12471 0.4971 0.3579

17 1 0.2474 0.9694 1 0.4125 14 21 12469 0.4969 0.3589

18 1 0.1059 0.9992 1 0.4184 13 21 12497 0.4993 0.3581

19 1 0.1132 0.9916 1 0.4182 13 21 12493 0.4991 0.3580

20 1 0.1975 0.9504 1 0.4117 13 21 12474 0.4978 0.3578

21 1 0.1047 0.9979 1 0.4185 13 21 12498 0.4993 0.3581

22 1 0.1547 0.9985 1 0.3659 13 21 12499 0.4975 0.3932

23 1 0.1062 0.9854 1 0.4112 13 21 12498 0.4993 0.3580

24 1 0.1021 0.9991 1 0.4156 13 21 12499 0.4994 0.3581

25 1 0.1036 0.9973 1 0.4128 13 21 12499 0.4994 0.3581

26 1 0.1044 0.9979 1 0.4097 13 21 12500 0.4994 0.3582

27 1 0.1034 0.9978 1 0.4122 13 21 12500 0.4994 0.3581

28 1 0.1040 0.9877 1 0.4062 13 21 12499 0.4994 0.3581

29 1 0.1018 0.9976 1 0.4079 13 21 12500 0.4994 0.3582

30 1 0.1014 0.9968 1 0.4056 13 21 12500 0.4994 0.3582

35 1 0.1004 0.9937 1 0.4103 13 21 12500 0.4994 0.3581

40 1 0.1003 0.9938 1 0.4098 13 21 12500 0.4994 0.3581

45 1 0.1002 0.9898 1 0.4013 13 21 12500 0.4995 0.3581

50 1 0.1000 0.9887 1 0.4014 13 21 12500 0.4995 0.3581

Table 6.3: Mean value of uncertain input parameters and objective functions (oil recov-
ery factor, RF and gas utilisation factor, GUF) for each generation during
optimisation with genetic algorithm. Optimum solution is obtained after 50

generations.
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Figure 6.16: Multiple simulation iterations using aPCE surrogate model coupled with
genetic algorithm for the optimisation of oil recovery (a) and net gas utilisa-
tion factor (b).

6.5 summary

Reservoir simulation and optimisation of CO2 WAG injection in fractured car-

bonate reservoirs is a complex and time-consuming process. By applying surro-

gate models to approximate full-physics numerical simulations using a limited

number of training and testing simulations that cover the parameter space and

account for key uncertainties, significant reduction in the overall modelling time

can be achieved. The surrogates can then help to understand the respective de-

pendencies and correlations of uncertain input parameters and contribute to

rapid simulation, optimisation and decision making under uncertainty. Surro-
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gate models are not expected to replace full-physics black oil or compositional

models but can save significant amounts of time during reservoir evaluation by

eliminating unnecessary model runs that use up often limited computing re-

sources. Once the most influential, sensitive or optimum simulations have been

identified using the proxy model, the full physics simulation is evaluated at the

corresponding sample points to confirm the results. If the proxy models have

been extensively trained and tested using appropriate experimental design and

goodness of fit measures, it is expected that the results should be identical.

In this chapter, data-driven surrogates have been used for the rapid simulation

and optimisation of CO2 WAG injection in a fractured carbonate reservoir model.

The results show that data-driven surrogate modelling techniques from PCE (ar-

bitrary polynomial chaos expansion, aPCE, and sparse polynomial chaos expan-

sion, sPCE show a higher degree of accuracy in predicting oil recovery and GUF,

when compared to data-driven surrogates from polynomial regression. PCE tech-

niques capture the synergistic effects between low- and high-order polynomial

terms and thereby provide higher accuracy. In particular, aPCE most closely ap-

proximates the actual simulations when trained and tested. aPCE techniques

minimise the subjectivity of input data distributions by directly using the avail-

able information in a data-driven formulation of PCE and employing a global

polynomial basis for arbitrary distributions of data. Furthermore, the objective

function(s) was successfully optimised when the aPCE model was coupled with

the genetic algorithm to carry out over 2000 rapid evaluations of the surrogate

model.

A source of uncertainty in the surrogate modelling workflow which may prop-

agate to the surrogate model prediction is the chosen experimental design. De-

terministic designs may be biased towards the boundaries of the design while

random designs may need more training and testing to constrain. This work

combined deterministic (training) and random (testing) experimental design to

account for the uncertainty from sampling bias and improve the reliability of

proxy predictions. Another source of uncertainty in the workflow relates to the

fracture permeability multipliers that were used to account for the variability

of the fracture network connectivity. It is expected that comparing more geo-
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logically constrained fracture network scenarios may offer more robust results.

Although it is considerably faster to evaluate a data-driven surrogate than to run

a full simulation case, it is self-evident that such a simple model must be con-

structed and used with care. The accuracy of the model should be thoroughly

validated in order to estimate its prediction capability and the application of

appropriate goodness of fit measures is essential to ensure that the surrogate re-

liably replaces the full simulation model inside and outside of the design space.
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7.1 summary and conclusions

High-resolution outcrop analogue studies for complex subsurface reservoirs have

become increasingly common, because they enable us to integrate reservoir char-

acterisation with reservoir simulation. Distinct geological features that are ob-

served in the outcrop can then be compared to complex flow phenomena present

in real reservoirs. Hence, outcrop analogue studies contribute to the construction

of static models that are better calibrated because they allow us to analyse the

key geological structures that control the flow behaviour in the reservoir. Such

static models can then be translated more reliably into dynamic models. Subse-

quently, the dynamic models enable us to compare, contrast and rank the per-

formance of recovery mechanisms for specific carbonate reservoir types, thereby

guiding reservoir modelling and simulation workflows.

The key outcomes of this thesis are as follows:

• In chapter 3, systematic numerical simulations of well testing and subse-

quent well-test analysis on synthetically generated pressure transients re-

veal that faults dominate the large-scale flow behaviour in the model de-

spite the presence of significant small-scale heterogeneity. High-permeability

oyster bioherms are also distinguishable in the pressure transients. Con-

versely, diagenetic hard grounds and mud mounds were not observed

in the pressure transients. Secondary recovery simulations demonstrate

that channelling of flow into high-permeability layers is a primary control

on oil recovery in the heterogeneous carbonate reservoir. Hence, outcrop-

149

[ July 29, 2015 at 16:33 – classicthesis by Simeon Agada ]



7.1 summary and conclusions 150

analogue based high-resolution simulations can provide important guide-

lines as to which geological heterogeneities need to be captured in real

reservoir models such as faults, oyster bioherms and high permeability

channels.

• Chapter 4 shows that by implementing miscible gas injection and WAG,

a higher fraction of oil is recovered from the reservoir, due to reduction

in the interfacial tension and improved microscopic sweep efficiency, com-

pared to immiscible gas injection and WAG. In addition, chapter 4 shows

how foam EOR improves mobility control and reservoir conformance by

generating viscous pressure drop that diverts injected fluid from high per-

meability fractures and channels to the low permeability matrix. Conse-

quently, a higher oil recovery was observed when foam EOR was employed

compared to WAG injection.

• Chapter 5 reveals that the fracture network properties have the greatest im-

pact on the simulation results, especially when the fracture intensity is low.

The presence of connected fractures leads to rapid CO2/water transport,

increased bypassing of oil and poor CO2 storage. Chapter 5 also shows

that the effect of the wetting preference is non-trivial as increased water-

wetness reduces the gas saturation in the matrix due to high capillary en-

try pressures. Increased imbibition in the water-wet medium also leads to

higher oil recovery during water injection cycles. Conversely, the imbibi-

tion potential is very poor in the oil-wet medium leading to much lower

recovery from water injection cycles.

• Chapter 6 shows that by applying data-driven surrogate models to approxi-

mate full-physics numerical simulations using a limited number of training

and testing simulations that cover the parameter space and account for key

uncertainties, we can significantly reduce the overall modelling time. On

average, the computational cost for each surrogate model evaluation is 13.2

seconds compared to 8.2 hrs CPU time for a single full-physics simulation.

In chapter 6, the benefit of coupling surrogate models with stochastic opti-

misation algorithms for rapid optimisation under uncertainty was demon-
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strated using over 2000 progressive model evaluations to obtain an optimal

oil recovery of 50 percent after 1500 days.

7.2 future work

This thesis integrates reservoir characterisation with reservoir simulation to ex-

plore fundamental aspects of EOR simulation and optimisation for fractured car-

bonate reservoirs using a high-resolution fractured carbonate reservoir model.

There are other reservoir simulation aspects, however, that can be considered

to improve upon the research presented here. Some recommendations are as

follows:

• The ideas presented in this thesis would greatly benefit from application to

a real subsurface reservoir model such that the findings can be calibrated

to static and dynamic field data. In such a study, static subsurface data

from well logs, and dynamic data from well testing, tracer testing and pro-

duction logging can be used to robustly calibrate the matrix and fracture

models.

• In this thesis, the fracture network was represented using DFN modelling

approaches which generate a stochastic fracture network that is then up-

scaled to the geocellular grid. However, employing discrete fracture and

matrix (DFM) models where fractures are explicitly represented may pro-

vide additional insights into recovery processes, especially in reservoirs

where flow in the matrix is not negligible. Similarly, classical single rate

transfer functions in the dual-medium models that account for fracture-

matrix exchange were used in this work, but multi-rate transfer functions

that account for variability in the rate of fracture-matrix exchange due to

sub-grid heterogeneities are gaining increasing attention and should be

tested going forward.

• In chapter 4, a semi-empirical foam model was used to account for foam

mobility control due to the interaction of gas and surfactant. It is recom-

mended that a fully mechanistic model which introduces additional com-
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plexity to foam modelling and accounts for the rate of change of foam

texture be tested.

• During the modelling of fracture-matrix interaction such as in chapter 5, it

is recommended that geomechanical impacts on fracture evolution be con-

sidered. Specifically, the impact of geomechanics on fracture apertures due

to overburden. It must be noted, however, that accounting for geomechani-

cal impacts in fractured reservoir simulation is very challenging.

• In chapter 6, data-driven surrogates from polynomial regression and poly-

nomial chaos expansion were used to generate good approximations of

time-consuming numerical simulations. It would be interesting to see how

other data-driven surrogate modelling techniques compare to the meth-

ods tested in this thesis. In particular, surrogates generated using artificial

neural networks and kriging techniques could be very valuable for rapid

simulation and optimisation of EOR processes.
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