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ABSTRACT 

 

There is a growing need to curtail the carbon emissions in the globe in order to 
achieve the climate stabilisation goals based on the climate change threat. And as 
such, different initiatives and schemes of Government have targeted a number of 
policies at reducing energy and carbon emissions targets with the housing sector of 
the economy not an exception. In order to explore the feasibility of achieving carbon 
emissions reduction targets within the housing sector of the UK, the research views 
the issue of household energy consumption and carbon emissions as complex socio-
technical problem involving the analysis of both the social and technical variables. 
This thesis therefore describes the development of the system dynamics based model 
to capture and solve the problem relating to the future profiles of household energy 
consumption and carbon emissions by providing a policy advice tool for use by the 
policy makers.  

In order to investigate the problem, the research adopts the pragmatist research 
strategy involving collection of both qualitative and quantitative data to develop the 
model. The developed model has six modules, which are: population/household, 
dwelling internal heat, occupants’ thermal comfort, climatic-economic-energy 
efficiency interaction, household energy consumption, and household CO2 emissions. 
In addition to the ‘baseline’ scenario, the developed model was used to develop four 
illustrative scenarios of household energy consumption and carbon emissions; which 
are: ‘efficiency’ scenario, ‘behavioural change’ scenario, ‘economic’ scenario, and 
‘integrated’ scenario. The ‘efficiency’ scenario generally considers the effects of 
improvements in energy efficiency measures on household energy consumption and 
ultimately on household carbon emissions. Additionally, the ‘behavioural change’ 
scenario tries to model the effects of occupants’ change of energy consumption 
behaviour on household energy consumption and carbon emissions profile. The 
‘economic’ scenario assumes a case of policy change by Government favouring 
energy prices reduction, thereby reducing the energy bills payable by the 
householders and its consequences on household energy consumption and carbon 
emissions. And the ‘integrated’ scenario combines the assumptions in the first three 
scenarios and then analyses its effects on household energy consumption and carbon 
emissions.  

The ‘baseline’ results indicate that about 49% savings in carbon emissions by the 
year 2050 below the base year of 1990 are possible. Additionally, the results of the 
developed model for all the illustrative scenarios indicate that carbon emissions 
savings of 46%, 55%, 58%, and 63% below the base year of 1990 are possible from 
the ‘economic’, ‘efficiency’, ‘behavioural change’, and ‘integrated’ scenarios 
respectively.  

The research concludes that it is unlikely for any of the scenarios by its own to meet 
the required legally binding reductions of 80% cut in carbon emissions by 2050 
unless this is vigorously pursued. The unique contribution of the research is the 
development of a model that incorporates socio-technical issues that can be used for 
decision making over time.   
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Chapter 1 
 

INTRODUCTION  
 

 

1.1 Rationale for the research 

 

Governments at different levels around the globe are urgently seeking solutions to 

the problems emanating from energy consumption and carbon emissions in all 

spheres of economy. This is because of the challenge of climate change and other 

related effects as a result of carbon emissions. For example, the evidence from the 

United Nations Department of Economic and Social Affairs (UNDESA, 2010) 

suggests that the climate change effects due to carbon emission could cause 

increase in global temperature of up to 6oC. This invariably results in extremes 

weather conditions. To this end, different initiatives and schemes of Government 

have targeted a number of policies at reducing energy and carbon emission, and 

housing sector of the economy is not an exception. In the United Kingdom (UK), 

based on the evidence from the Office for National Statistics (ONS) (ONS, 2009), 

energy consumption in buildings alone is about 42.3% of which domestic sector 

accounts for around 27.5% of the total UK’s energy consumption in the year 

2008. Correspondingly, domestic carbon emissions stand at about 26% of the total 

UK carbon emissions (Natarajan et al., 2011). It is against this background that 

the domestic sector of the economy is chosen as a focal point for mitigation and 

adaptation agendas. As such, the UK Government has initiated quite a number of 

strategies aimed at reducing household energy consumption and carbon emissions 

(HECCE). This is mainly due to the importance accorded this sector of the 

economy in realising a target of 80% reduction by 2050 based on 1990 level as 

enshrined in the Climate Change Act of 2008.   

 

From the foregoing, the menace posed by carbon emissions and other climate 

change related effects have created extreme difficulty to accurately predict the 

energy and carbon emissions performance of dwellings once occupied (Stevenson 

and Rijal, 2010; Bordass et al., 2004). Way and Bordass (2005) posit that 
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dwellings are not only becoming more complex, but also tighter energy and other 

environmental regulations are increasing pressure regarding their greater 

predictability. Further to this, outcomes of several studies have indicated that 

design predictions are not just the same as operational outcomes of dwellings 

once occupied. One of the reasons advanced by Building Services Research 

Information Association (BSRIA) (2011) is because of the complex technology 

currently in use in order to allow dwellings hit their targets of energy and carbon 

emissions reductions. Mahdavi and Pröglhöf (2009) submitted that “the presence 

and actions of dwellings occupants have a significant impact on the energy and 

carbon emission performance of dwellings”. Additionally, a number of 

researchers now attach much importance to occupants1 and their behaviour in and 

around dwellings and advocate their inclusion while evaluating the energy and 

carbon emissions performance of dwellings (Hitchcock, 1993; Nicol and Roaf, 

2005; Soldaat, 2006; Dietz et al., 2009; Okhovat et al., 2009; Gill et al., 2010; 

Stevenson and Rijal, 2010; Yun and Steemers, 2011). 

 

Therefore, it has been established that there are still more to do regarding 

household energy when it comes to dwellings-occupants-environment 

interactions. Stevenson and Rijal (2010) argue that one of the areas of uncertainty 

researchers are still struggling with is in finding means to establish a concrete 

methodology that links the technical aspect of dwellings energy consumption with 

that of dwellings occupants. This is with a view to capturing the effects of 

occupants on household energy consumption. Previous studies in this area of 

dwellings-occupants-environment interactions mainly focused on occupants’ 

interactions with the control systems and devices put in place in dwellings (Hunt, 

1979; Fritsch et al., 1990; Newsham, 1994; Humphreys & Nicol, 1998; Bourgeois 

et al., 2005; Herkel et al., 2005; Bourgeois et al., 2006; Mahdavi et al., 2006; 

Soldaat, 2006; Kabir et al., 2007; Borgeson & Brager, 2008; Humphreys et al., 

2008; Haldi & Robinson, 2009; McDermott et al., 2010; Prays et al., 2011; Rijal 

et al., 2011).  The main thrust of majority of these studies is on occupants’ 

                                                 
1 Occupant(s) and householder(s) are interchangeably used throughout this thesis to mean the 
same thing. 
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behaviour towards the control of windows for thermal comfort as well as lighting 

and shades for proper illumination in dwellings. Various models were 

recommended for use to predict these actions of occupants based on quantitative 

data collected and analysed. Generally, dwellings need to be acknowledged as 

being dynamic and interactions of operators, occupants, and designers all 

influence the way they perform in terms energy consumption and carbon 

emissions.  

 

It is noteworthy to state that dwellings as a system on its own is engineered using 

tested components and generally reliable systems, whereas the occupants aspect 

of it can be unreliable, variable, and perhaps even irrational. Borgeson and Brager 

(2008) claim that due to complexity, in terms of energy consumption and carbon 

emissions, dwellings are now behaving in a non-linear and irrational way that 

then calls for an approach that is able to cope with this kind of complexity. 

Hitchcock (1993) and Borgeson and Brager (2008) argue that researchers are 

finding it difficult to predict occupants’ behavioural aspect of energy 

consumption in dwellings. This is mainly because the fundamental approach on 

which energy consumption models are based is quite different from that of 

occupants’ aspect. While energy models that try to capture the behaviour of 

occupants towards the opening of windows (Borgeson and Brager, 2008), for 

example, make use of a linear relationship of temperature difference; the actual 

action consequently posed by the occupants follow a non-linear and unpredictable 

way, which make modelling difficult.  

 

One of the breakthroughs proposed by Borgeson and Brager (2008) is to model 

occupants’ behaviour using stochastic algorithms and map this with climate data. 

These models are deficient in the sense that they still face the challenge of 

integrating the occupants’ behavioural aspect with energy models. Further to this, 

the UK Government’s Standard Assessment Procedure (SAP) for energy rating of 

dwellings [Building Research Establishment (BRE), 2011] that tries to assign 

energy rating to dwellings incorporates a number of variables into their 

calculations. Unfortunately, SAP fails to capture the variables related to the 
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individual characteristics of the household occupying the dwelling i.e. household 

size, occupants behaviour, and so on (BRE, 2011). This then shows that the 

calculation may be deficient because of the lack of inclusion of these occupants’ 

related variables. There is then the need to explore ways of improving greater 

predictability of dwellings energy consumption and carbon emissions by 

demonstrating a novel approach that takes into consideration the challenge of 

occupants’ aspect of energy consumption in dwellings.  

 

Undoubtedly, integration of dwellings occupants’ aspect with that of dwellings 

characteristics/parameters regarding energy consumption in buildings sits 

squarely within the socio-technical systems (STS) approach of systems-based 

methodology of scientific inquiry. As pointed out earlier, dwellings as a system is 

seen to comprise two subsystems: physical subsystem that relates to dwellings 

characteristics/parameters (technical system) and human subsystem regarding 

occupants actions within the dwelling (social system). Dwellings as a system is 

affected should there be any change to both the technical and social systems. 

Invariably, any change to technical system will have effects on physical 

subsystem; likewise any change in social system will have corresponding effects 

on the human subsystem (Figure 1.1). On one hand some changes to technical 

system may have an indirect influence on the human subsystem, while on the 

other hand some changes to the social system may have an indirect influence on 

the physical subsystem as well (Figure 1.1).  

Technical system

Social system

 

Figure 1.1: Interactions between the social and technical systems 
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It should not be forgotten that dwellings as a system relates with the outer 

environment, which have both direct/indirect influence on both the technical and 

social systems. Any change in the outer environment elements will definitely 

influence the behaviour of these technical and social systems. This will 

consequently have effects on household energy consumption and associated 

carbon emissions. This then presents a kind of complex system that calls for an 

approach that is able to cope with this type of situation. It needs to, however, be 

noted that engineering models can only deal with the changes to technical system 

alone and social models can as well cope with the changes to social system alone. 

For example, within the energy sector, modelling energy consumption and carbon 

emissions has been purely based on econometric (FitzGerald et al., 2002), 

statistical (Fung, 2003), or building physics (Shorrock & Dunster, 1997) method. 

One of the main thrusts of this research, therefore, is to present an approach that 

links this phenomenon together, aids in its understanding, and offers ways of 

testing different strategies for reducing household energy consumption and carbon 

emissions. This is in order to contribute to the carbon emissions reduction target 

of the UK Government. Notably, there are quite a number of variables at play 

here. These variables are interrelated and depend on one another. Among them 

are the variables that are related to the interaction of dwellings themselves with 

outer environment as well as the interaction of occupants with the systems put in 

place to operate dwellings in a sustainable way. All these present a kind of 

complex system. 

 

Climatic variables (outer environment element), for example, are unpredictable as 

any change in these (e.g. in terms of external temperature, rainfall, etc.), may have 

effects on heating, ventilation, etc. They are then likely to trigger a response from 

the occupants to appropriately react to this situation in terms of heating, use of hot 

water, etc. The reactions from occupants too still largely depend on a number of 

determinants (e.g. demographic, cultural, and economic variables; behaviour; etc). 

Analysis of this scenario presents a kind of complex system that has multiple 

interdependencies with multi-causal relationships. The variables at play here are 

both “soft” and “hard” and their behaviour changes in a non-linear way over time 
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with multiple feedback loops. These variables are, however, difficult to predict 

and keep under control. The situation described above illustrates an example of 

the STS of household energy consumption and carbon emissions. This research 

then intends to dwell into this issue of STS of household energy consumption and 

carbon emissions with a view to adding to the understanding of complex nature of 

household energy consumption issues. This is by proposing a novel approach to 

policy makers capable of testing different strategies and interventions for 

reducing household energy consumption and carbon emissions.  

 

It is on this basis that the research seeks to answer the following questions: 

1. What are the social and technical variables influencing household energy 

consumption and carbon emissions? 

2. What are the modelling approaches in use to forecast household energy 

consumption and carbon emissions? 

3. What is the most suitable modelling approach to conceptualise the 

complex socio-technical systems of household energy and carbon 

emissions? 

4. How could the influence of these socio-technical systems variables on 

household energy consumption and carbon emissions be modelled and 

predicted using a pragmatic approach? 

5. What are the effects of energy efficiency measures, occupants’ 

behavioural change, and energy prices on household energy consumption 

and carbon emissions? 

 

 

1.2 Research Aim and Objectives 

 

The aim of this research is to develop a dynamic model of the socio-technical 

systems of energy consumption and carbon emissions of the UK housing stock 

with a view to providing a tool to policy makers capable of testing a range of 

possible futures regarding household energy consumption and carbon emissions. 

This will improve the understanding of complex nature of household energy 
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consumption and carbon emissions. In an attempt to develop and evaluate the 

model, a number of scenarios are constructed to illustrate the possible futures of 

energy consumption and carbon emissions for the UK housing stock. These 

scenarios are used to explore the possibility of achieving carbon emission 

reductions of about 80% by 2050 as enshrined in the Climate Change Act of 

2008. 

 

The specific objectives to achieve the aim of this research are to: 

 

1. Identify the social and technical variables influencing household energy 

consumption and carbon emissions. 

2. Review the modelling approaches used in forecasting household energy 

consumption and carbon emissions. 

3. Identify the most suitable modelling approach to conceptualise the 

complex Socio-Technical Systems (STS) of household energy 

consumption and carbon emissions. 

4. Develop the dynamic model of the socio-technical systems of household 

energy consumption and carbon emissions. 

5. Use the developed model to evaluate the effects of energy efficiency, 

occupants’ behavioural change, and energy prices on household energy 

consumption and carbon emissions. 

 

 

1.3 Scope of the Research 

 

The scope of this research is discussed based on the domain of investigation and 

the level of aggregation/disaggregation. 

 

1.3.1 Domain of Investigation 

Generally, dwellings can either be domestic (residential) or non-domestic. 

Regarding energy consumption and associated carbon emissions, much 
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importance has been accorded to the dwellings in general, either domestic or non-

domestic (Steemers, 2003). This may be due to the fact that dwellings generally 

share a chunk of total annual energy consumption and associated carbon 

emissions as ONS (2009) report suggests.  A further probe into the consumption 

and emissions profile of dwellings reveals that the domestic sector retain the lion 

share of these consumption and emissions, especially in the UK (Steemers, 2003; 

ONS, 2009). To buttress the above, Hitchcock (1993) argues that the domestic 

sector is an important component of the energy economy of most countries. 

Additionally, the policy of the UK government to make all new homes zero 

carbon as a way of meeting the carbon reductions target as stipulated in the 

Climate Change Act further reinforces the importance of domestic sector to policy 

formulation. It is equally important to note in-depth of how domestic buildings 

respond to social (occupants aspect), technical (physical aspect), and 

environmental (social or technical) changes when it comes to energy consumption 

and related carbon emissions. Taking into consideration all the above arguments 

regarding the domestic sector and coupled with the fact that it is practically 

impossible for this research to dwell into and study all different arrays of 

buildings, it is against this backdrop that this research aims to limit the scope of 

this study to domestic sector and investigate issues regarding household energy 

consumption and carbon emissions. Also, it is necessary to highlight that 

modelling the occupants’ aspect, especially occupants’ behaviour, requires special 

modelling. As such, occupants’ behaviour is treated as exogenous variable within 

this thesis. 

 

 

1.3.2 Level of Aggregation/Disaggregation 

 

Johnston (2003) argues that the level of disaggregation within any model of 

energy consumption and associated carbon emissions in dwellings is large, 

especially if such a model utilised a bottom-up approach (see Section 2.4.3). This 

is to mean that the degree of this disaggregation could get down to the level of 

energy consumption for individual dwellings’ end-uses in terms of space heating, 
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hot water consumption, cooking energy, etc. or this could include  a considerable 

amount of detail regarding the effects of dwellings thermodynamics to energy 

consumption. Similarly, the level of aggregation within the top-down energy 

models, for example, is large as well. In this regard, economic variables, for 

example, may be used to forecast energy consumption in dwellings.  

 

In order to therefore streamline the scope of this research, it is necessary to 

determine the level of aggregation/disaggregation to be incorporated into the 

model. This would then give the explanatory power2 of the model output. 

Johnston (2003) relates the level of aggregation/disaggregation and the 

explanatory power together as shown in Figure 1.2 with the theoretical optimum 

level. This research will then strike a balance by using variables in both the levels 

of aggregation and disaggregation since the target audience for the research is 

energy policy makers. 

 

 

Figure 1.2: Level aggregation/disaggregation and explanatory power 

(Adapted from Johnston, 2003) 

 

                                                 
2 Within the context of this thesis, explanatory power is defined based on Johnston (2003) to be 
the model’s ability to give the required insights into the issue of energy consumption and 
associated carbon emissions in the UK housing stock. 
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1.4 Methodological Approach Designed for the Research 

 

This research uses a mixed-method research design drawn from the pragmatist 

philosophical view in order to achieve its objectives stated in Section 1.2. The 

reason for adopting the mixed-method research design is motivated based on three 

main reasons that include the nature of the research problem, the data and the 

methods of collecting these data and the purpose of the research (see Section 4.3). 

The research problem involves answering questions relating to ‘what’ and ‘how’, 

which means a single approach cannot be used to answer those questions. This 

then informed the decision to use a method that complements both the qualitative 

and quantitative research strategies. The system dynamics (SD) used as the 

modelling approach, on its own merit, is hinged on a pluralistic approach that 

considers both the qualitative and quantitative approaches to modelling. It is also 

evident that the nature of the research in this thesis entails capturing both the 

qualitative and quantitative data, which by implication means triangulation of data 

collection methods (see Section 4.4).  

 

The research starts with a review of extant literature in the area of energy 

consumption and carbon emissions in housing sector. This involves identification 

of social and technical variables influencing energy consumption and carbon 

emissions in dwellings. Also, a review of extant literature on the methods used in 

forecasting household energy consumption and carbon emissions was conducted 

with a view to assessing their possibility of being used to conceptualise the 

research problem (see Chapter two). The review therefore revealed their 

unsuitability for the research and the need to use the socio-technical systems 

approach to capture the problem. This then leads to a review of extant literature 

regarding the modelling techniques for capturing the socio-technical systems (see 

Chapter three). The review favours the system dynamics as the most suitable 

approach to capture the problem in the research. 
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Developing models using the system dynamics approach involves using both the 

qualitative and quantitative data sources. In this research, the qualitative data 

sources are based on the literature review and interview. Interviews were 

conducted in order to capture the views of the experts and practitioners during the 

model conceptualisation (see Sections 5.6.2, 6.2, and 6.5) and validation (see 

Chapter eight) stages of the research. Also, quantitative data like household 

energy consumption based on end-uses, population, number of households, etc. 

were used for the development of the model in this thesis (see Sections 4.4.2, 

5.6.3, and 6.6).  

 

 

1.5 Structure of the Thesis 

 

In a bid to achieve the objectives of the research, Figure 1.3 shows the logical 

structure of how the research was conducted and reported in this thesis. 

 

Chapter two contains a review of extant literature about energy consumption and 

carbon emissions in housing sector. The chapter analyses issues relating to energy 

consumption in domestic buildings together with energy policy and carbon 

emissions targets in the UK. Additionally, the chapter reviews the theoretical 

frameworks underpinning the household energy consumption and carbon 

emissions. The social and technical variables influencing household energy and 

carbon emissions are identified. The chapter also critically reviews the extant 

literature to reveal the epistemological issues relating to HECCE models in order 

to critique different energy models that are previously or currently in use by 

assessing their strengths and weaknesses. This is with a view to achieving the first 

and second objectives of the research. 

 

The main thrust upon which this thesis is based is in modelling the STS of 

HECCE. Chapter three of the thesis then presents an overview of the systems-

based approach of scientific inquiry from where the STS theory emanates. This 

chapter therefore critically examines the tenets of the systems-based approach of 
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scientific inquiry as overall umbrella under which the STS theory is hanging. 

Further to this, the STS theory is critically reviewed. This was followed by a 

critical appraisal of different techniques to model the STS as identified in extant 

literature. The critiques of these different approaches are undertaken in a bid to 

identifying the most suitable modelling technique to conceptualise the problem 

under study. This chapter therefore fulfils the objective three of the research. 

 

  

Figure 1.3: Thesis structure 
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Chapter four provides the methodological approach to the study. The chapter 

draws together and integrates information presented in chapters two and three to 

provide the research methods for fulfilling the objectives of the study. The chapter 

discusses the philosophical knowledge base underpinning the research in general 

and positions the research method in one of the research paradigms. Further, the 

chapter discusses the method of data collection. Discussion of model development 

and validation concludes the chapter. 

 

Chapter five discusses the system dynamics approach as firmed up for the 

research. The philosophical knowledge base underpinning the research in general 

discussed in Chapter four was linked to the epistemological and ontological issues 

of system dynamics approach as modelling technique to conceptualise the 

HECCE issues addressed in the thesis. Moreover, issues regarding the system 

dynamics research process firmed up for the study and development of the model 

algorithms are all discussed in this chapter.  

 

Chapter six reports the model conceptualisation stage of the system dynamics 

approach as firmed up for the study. The chapter first explains the boundary of the 

model and illustrates this with the use of a model boundary chart. Reference 

modes of key variables in the model are illustrated as well. Furthermore, the 

chapter establishes the causal relationships among the variables hypothesised to 

influence HECCE. This was arranged into six different modules to reflect the 

causal loop diagram (CLD) for population/household module, CLD for dwelling 

internal heat module, CLD for occupants’ thermal comfort module, CLD for 

climatic-economic-energy efficiency interaction module, CLD for household 

energy module, and CLD for household carbon emissions module. Following on, 

the chapter provides the report of transformation of the CLDs produced under the 

model conceptualisation to stock and flow diagrams (SFDs). The chapter shows 

how the variables in the model are related to each other in the form of equations 

in readiness for simulation. The equations developed in this chapter are for 

baseline simulation. The SFDs are arranged based on the six different modules of 

the model as explained in chapter five. 
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Chapter seven gives a discussion of the behaviour of variables in the model based 

on the baseline simulation performed. That is, the chapter reports the behaviour of 

key variables in the population/household module, dwelling internal heat module, 

occupants’ thermal comfort module, climatic-economic-energy efficiency 

interaction module, household energy module, and household carbon dioxide 

emissions module. It is worthy of note that the behaviour exhibited by the main 

outputs of this model in terms of household energy and carbon dioxide emissions 

are explicitly discussed in this chapter based on end-uses of HECCE. 

 

In chapter eight, issues relating to model testing and validation are discussed. The 

model testing and validation process developed for the research are discussed by 

appraising the test and validation types as well as giving some background 

information of experts and professionals that took part in the validation exercise. 

This was then closely followed by describing and showing the results of each test 

performed. 

 

Chapter nine carries out a discussion of energy policy formulations and analysis. 

The chapter presents for different scenarios formulated to include ‘efficiency’, 

‘behavioural change’, ‘economic’, and ‘integrated’ scenarios. The chapter also 

compares the results of some of these scenarios with some past studies. 

 

Chapter ten concludes the thesis by giving the key findings of the research and the 

contributions to the field of study. Also, the limitations of the study were also 

highlighted. Further, the chapter addresses the recommendations for further study 

based on the limitations of the present study in this thesis. 
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Chapter 2 

ENERGY CONSUMPTION AND CARBON DIOXIDE 
EMISSIONS IN THE HOUSING SECTOR 

 

 

 

2.1 Introduction 

 

Within the research community, there is a general consensus that the threat of 

global warming as a result of climate change will increase. As a result, different 

strategies have evolved targeting carbon emissions reductions. The housing sector 

is therefore at the centre of this reduction targets. This chapter discusses issues of 

energy consumption and carbon emissions in housing sector together with how 

energy policy has evolved over the years. Also, the chapter reviews previous 

studies that are serving as the theoretical framework underpinning the HECCE 

models. This serves as the basis for reviewing the social and technical variables 

influencing household energy consumption and carbon emissions.  

 

The chapter also identifies the arrays of energy models that have evolved over the 

years together with their capability of analysing energy consumption and their 

associated carbon emissions trends in housing sector of the economy. This is as a 

result of the growing need to curtail the carbon emissions in the globe in order to 

achieve the climate stabilisation goals based on the climate change threat as 

enunciated above. For example in the UK, the need to realise the target of carbon 

emissions as stipulated in the Climate Change Act of 2008 has rapidly spurred the 

emergence of many energy models, especially in the domestic sector of the 

economy, to analyse different strategies and schemes of the government. These 

kinds of models are therefore required in order to guide in understanding the 

effects of different strategies and schemes of the government before they are 

implemented.  
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2.2 Energy and Carbon Emissions in Housing Stocks  

 

There is a general consensus within the research community regarding the threat 

of global warming as a result of climate change that is due to an increase in 

greenhouse gases emitted into the atmosphere because of profligate use of fossil 

fuels (Harris, 2012;  IPCC, 2007). Majorly, the greenhouse gases include carbon 

dioxide (CO2), methane (CH4), hydrofluorocarbons (HFCs), nitrous oxide (N2O), 

perfluorocarbons (PFCs), and sulphur hexafluoride (SF6). The contribution of 

each of these emissions to climate change in the form of global warming varies 

considerably. For example, carbon dioxide emission is adjudged to be the most 

worrying of these gases as its levels in the atmosphere are rising so very quickly 

(Terry, 2011). Therefore, the concentration of carbon dioxide emissions in the 

atmosphere has profoundly increased from approximately 280 parts per million 

(ppm) in 1750 to about 380 ppm in 2005 with potential of reaching about 540 to 

970 ppm by the end of 21st century (IPCC, 2007). IPCC (2007) lists the effects of 

these increases in carbon dioxide emissions on the global climate to include the 

following: 

 

• An increase in the globally averaged surface temperature of 1.4 to 5.8ºC. 

• An increase in global mean sea level of 9 to 88 centimetres. 

• A decrease in snow cover and sea-ice extent in the Northern Hemisphere. 

• Changes in weather patterns, which are likely to result in an increase in 

globally averaged precipitation and the occurrence of extreme weather 

events. 

• The possibility of famines and population migrations. 

• The extinction of rare species and the loss of habitats. 

 

The contributing factor to these emissions is not different from the assertion of 

Harris (2012) of profligate use of fossil fuels. However, burning forest is also a 

significant contributor according to Terry (2011). Importantly, Terry (2011) posits 

that emissions from both methane and nitrous dioxide are the most potent 

emissions when compared to all other greenhouse gases. However, they are in 
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traces amount in the atmosphere compared to carbon dioxide with high 

concentration, which eventually made them to have less overall impact. This then 

explains the reason why the term carbon emission is used to always mean 

greenhouse gases.  

 

Obviously, if the concentration of carbon emissions is allowed to continue to 

grow unabated, it will undoubtedly have substantial repercussions politically and 

socio-economically (Johnston, 2003). It is therefore a general consensus reached 

within the world’s governments to significantly reduce what the carbon emissions 

will be in this 21st century. This is reflected in the Rio summit of 1992 where the 

United Nations Framework Convention on Climate Change (UNFCCC) was 

signed committing developed nations to significantly reduce their carbon 

emissions profiles (Kashyap et al., 2003). Subsequently, there was series of 

follow ups regarding the UNFCCC agreement of 1992 and ratified in 1993. For 

example, the World Climate Conference of 1997 in Kyoto, Japan and that of 

Copenhagen summit in 2009. At Kyoto conference, a legally binding agreement 

was reached to cut mainly the emissions from the six aforementioned causes of 

climate change. Among the developed countries committed to significantly 

reduce their carbon emissions profile is the UK. And as such, the UK has since 

then followed the path aiming at reducing its carbon footprints. In this regard, the 

housing sector in the UK contributes substantially to the UK’s total carbon 

emissions, which in this case is about 26% of UK’s total emissions (Natarajan et 

al., 2011). Since then reductions in energy consumption within the housing sector 

has been a target. 

 

 

2.2.1 Energy Consumption in Domestic Buildings 

 

Within the housing sector, Harris (2012) argues that approximately 50 per cent of 

energy use, and carbon dioxide emissions into the atmosphere, are as a result of 

energy used for heating, cooling and lighting in buildings. Similarly, Urge-

Vorsatz et al. (2012) and International Energy Agency (IEA) (2012) point out that 



Chapter 2: Energy Consumption and Carbon Dioxide Emissions in Housing Sector 
 

 

18 
 

buildings worldwide account for 122EJ of final energy in 2010, which translates 

to 33% of total final energy and 54% of electricity. Accordingly, this amount of 

final energy corresponds to about 9Gt of carbon dioxide emissions (Jennings, 

Hirst, & Gambhir, 2011; UNEP, 2011).  

 

The figure of energy consumption in buildings, basically for heating, cooling and 

lighting, has been estimated to be around 30 to 60 per cent of primary energy, 

especially in Western Europe with about half of this amount used in housing 

within the UK (Harris, 2011). The end uses (i.e. space and water heating, cooking, 

lighting, and appliances) of delivered energy in the UK housing sector suggest 

that they considerably vary within different dwelling types. Harris (2011) and 

Terry (2011) argue that about 58 per cent of delivered energy is used for space 

heating and when combined with water heating rise to about 82 per cent within 

the UK housing sector. This suggests that space and water heating has the 

potential of shaping household energy consumption and any carbon emissions 

reductions policy are required to target these end uses. 

 

 

2.2.2 Energy Policy and Emissions Targets within the United Kingdom 

 

Over the years, the UK energy sector has witnessed tremendous improvements 

and changes in energy policy. Principally, energy policy has been shaped by two 

major factors. Firstly, as a result of market liberalisation of 1980s, which sees the 

State controlled energy companies privatised and the Department of Energy 

dismantled. Secondly, the rising threats of climate change effects as brought to 

limelight by Rio summit of 1992 (Kashyap et al., 2003) has also significantly 

shaped energy policy within the UK. This singular factor has risen up the agenda 

in the UK, as a signatory to Rio submit of 1992, to commit to reduction of carbon 

emissions (DTI, 2005). As a result of this, the UK Government published its 

white paper on energy in 2003 entitled “Our Energy Future – creating a Low 

Carbon Economy”. In this white paper, the UK Government is committed to a 

60% reduction in carbon emissions by the year 2050 (DTI, 2003). Undoubtedly, 
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the world of energy is changing rapidly and as such a constant review of energy 

policy is inevitable. For example, Energy Review Report of 2006, Energy White 

Paper of 2007, Climate Change Act of 2008, UK Low Carbon Transition Plan of 

2009, and Energy Bill of 2012 – 2013. All these policy frameworks tend to shape 

energy policy mainly to stem the rising tide of carbon emissions and to its drastic 

reductions.  

 

As a result of this, the Climate Change Act provides the legally binding pathway 

towards carbon emissions reductions by reducing 22 per cent of carbon emissions 

between 2008 and 2012 relative to the base year 1990. In addition, the Act 

stipulates that reductions of 28 per cent are to be achieved between 2013 and 

2017, while 34 per cent reductions are required between 2018 and 2022. 

Additionally, the Act puts it that 50 per cent of carbon emissions reductions are 

envisaged for between the year 2023 and 2027, while 80 per cent is to be 

achieved by the 2050 relative to the base year 1990. These savings are to be 

achieved within all sphere of the economy.  

 

Different studies have, however, highlighted the potential of the housing sector to 

contribute significantly to these reductions (Levine et al., 2007; Elforgani & 

Rahmat, 2010; McManus et al., 2010, Baba et al., 2012). And as such, some of 

these studies have shown the areas of possible policy targets. For example, Levine 

et al. (2007) highlights the importance of technological developments, cultural, 

and behavioural choices as possible areas of policy formulation. In the UK, 

however, a number of policy targets are in place within the housing sector. These 

policies are targeting both the new and existing homes. For example, Ko and 

Fenner (2008) argues that there are a range of policy frameworks on energy 

efficiency for new homes in the UK as shown in Table 2.1. The frameworks are 

as a result of different energy policy reviews as previously highlighted above. The 

Table shows the programmes that have been firmed up that has the capability of 

improving energy efficiency profile of new built homes in the UK. The next 

section discusses empirical studies relating to the household energy consumption 

and carbon emissions. 
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Table 2.1: UK Government Policy Framework on Energy Efficiency in New Homes 

Policies Plans Programmes 

   

• Energy Bill, 2012 - 2013 

• UK Low Carbon 

Transition Plan, 2009 

• Climate Change Bill 

2008(draft  13 March 

2007) 

• Energy White Paper 2007 

• Pre-Budget Report 2006 

• Climate Change and 

Sustainable 

• Energy Act 2006 

• EU Energy Performance of 

Buildings Directive 2002 

• Housing Act 2004 

• Electricity Act 1989 

• Gas Act 1986 

• Building A Greener 

Future: Towards Zero 

Carbon 

• Development 

(December 2006 

consultation paper) 

• Climate Change 

Programme (revised in 

2006) 

• Energy Efficiency: The 

Government’s Plan for 

Action 2004 

• Sustainable 

Communities Plan 2003 

• Building Regulations, Part L1A 2006 

• Code for Sustainable Homes 

• Government funding for social housing 

and developers only if they meet CSH 

level 3 or better. New houses by English 

Partnerships to comply with CSH level 3 

or better 

• Energy Efficiency Commitment 2 

(2005–2008), succeeded by Carbon 

Emissions Reduction  

• Target Energy Efficiency Commitment 

(2008–2011) for electricity and gas 

suppliers (usually relates to energy 

efficiency in existing houses) 

• Energy performance certificates and 

housing information packs 

• Improved metering and billing 

information for homeowner. In 2008–

2010, free real-time electricity displays 

for homeowners who request one 

• Energy Saving Trust product 

endorsement (energy labels) and 

building design information Low 

Carbon Buildings Programme (funding 

for energy supply technologies but has 

energy efficiency requirements) 

• Stamp duty land tax exemption for zero-

carbon homes 

• Reduced VAT rate of 5 per cent for 

energy-saving materials like insulation, 

draught stripping, hot water and central 

heating controls 

• Research and dialogue programmes 

including Carbon vision programme 

(buildings) and Foresight (sustainable 

energy management and the built 

environment) 

(Adapted with some extension from Ko & Fenner, 2008) 
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2.3 Previous Empirical Studies on the Socio-technical Systems of 

Household Energy Consumption and Carbon Emissions 

 

The preceding section laid the foundation on issues relating to energy and carbon 

emissions in housing sector generally. This section therefore reviews previous 

empirical studies on the socio-technical systems of household energy 

consumption and carbon emissions. The social and technical variables influencing 

energy and carbon emissions in dwellings will be identified. 

 

 

2.3.1 The Theoretical Framework of Household Energy Consumption and 

Carbon Emissions  

 

In energy studies literature, there has been a superfluity of framework3 serving as 

the theoretical knowledge-base to conceptualise HECCE and these have 

contributed in no small measure to the tools for the analysis and policy 

formulation regarding HECCE. Keirstead (2006) argues that this framework fall 

within two domains – disciplinary and integrated domains. In his submission, he 

argues that for years “disciplinary” framework has been the dominant guiding 

approach for policy makers. For example, the frameworks developed from either 

engineering or economic perspective has been the dominant framework shaping 

energy policies for years. He then submits that this kind of approach may not be 

suitable to capture the kind of complex problems plaguing energy sector now and 

hence the limitation of the disciplinary approach.  

 

In yet another study, Natarajan et al. (2011) also acknowledges the limitation of 

purely disciplinary approaches to analysis of HECCE which reflects in their 

inability to give a proper explanation to the disjunction between actual and 

predicted HECCE. In an attempt to work round these limitations and improve on 

the conceptual framework of HECCE, a small number of literatures have 

                                                 
3 “Framework” here refers to a conceptualisation of household energy consumption and carbon 
emissions and not a model in terms of computer simulation. 
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identified alternative means to capture energy issues by introducing “integrated” 

framework that cuts across many disciplines. The framework uses 

interdisciplinary approach to capture interactions between the complex 

technology, society, economics, culture and a host of others. The following sub-

sections then review literature along the direction of the two afore-mentioned 

approaches together with some empirical studies previously conducted. 

 

 

Disciplinary Framework 

 

Over the years, studies relating to HECCE have been championed principally by 

four major disciplines with each discipline illustrating its own 

approach/framework for solving HECCE problems. These disciplines are 

engineering, economics, psychology, and sociology and anthropology. 

Engineering framework, for example, illustrates mainly the technology of 

HECCE by estimating HECCE based on the physical laws with little or no 

attention to economic, sociology, or even behavioural aspects of HECCE. This 

shows the limitation in this type of framework for their inability to capture a web 

of interactions between different disciplines. For example, the studies of 

Anderson (1985) illustrates framework for energy consumption of heating based 

on heat transfer method; Stokes, Rylatt, and Lomas (2004) give the framework for 

domestic energy demand; Hart and Dear (2004) provide the framework for 

weather sensitivities regarding household appliances use, and the host of other 

studies. The point here is that behavioural responses to technical improvements of 

HECCE (Keirstead, 2006), for example, are quite beyond the ambit of any purely 

engineering framework and this may then portends to mean that such engineering 

framework might be inadequate. 

 

Further, the economic framework as one of the disciplinary framework 

conceptualises HECCE when it comes to understanding HECCE due to the effects 

of income levels, energy prices and taxes, etc (Ruffell, 1977; Baker, 1991; 

Greening et al., 1995; Ironmonger et al., 1995). As a social science based 
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framework, however, it introduces some behavioural aspects. Interestingly, 

Wheelock and Oughton (1994) argue based on the available evidence that the 

concept depicts by economic approach is not complete in aiding the 

understanding of HECCE. To this end, Lutzenhiser and Hackett (1993) submit 

that the combination of the approaches as provided by both the engineering and 

economic theories forms the physical – technical – economic framework of 

HECCE which, undoubtedly, immensely helped in shaping energy policies 

around the globe. This feat achieved was grossly criticised for its inability to 

properly account for the human behavioural aspect of HECCE in the framework.  

 

It is against this background that the studies in the area of psychology took up this 

challenge and contribute to the understanding of household energy consumption 

behaviour. Notably in this circle is the Theory of Planned Behaviours (TPB) of 

Ajzen (1991), which immensely contributed to the behavioural aspect of HECCE 

by serving as theoretical knowledge-base to many studies. However, the TPB 

framework cannot be used as a standalone framework for explaining HECCE 

because the theory only used personal constructs like attitudes and beliefs without 

any recourse to other aspects like social and cultural contexts. This then led to 

studies in the field of sociology and anthropology in a bid to conceptualize energy 

and society.  

 

Reflecting on all these approaches, it is evident that they are unlikely to capture 

the kind of complex problems plaguing the energy sector now and hence the need 

for a more robust approach capable of integrating a number of disciplinary 

approaches together. It is on the basis of this that a small number of literatures 

suggest “integrated” frameworks that cut across many disciplines.  

 

 

Integrated Framework 

 

The argument from the foregoing reinforces the need for a more robust 

interdisciplinary framework to conceptualise the HECCE. This then led to a 
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combination of different disciplines to conceptualise the issue of HECCE in order 

to aid a better understanding of energy issues and proffer adequate solutions. In 

this regard, a number of “integrated” frameworks have, therefore, been used to 

conceptualise the HECCE. Among those studies is the work of van Raaij and 

Verhallan (1983), which provides a novel approach to conceptualising energy 

behaviour. His framework made use of both the physical parameters of dwellings 

and behavioural characteristics of households. While this work has been 

continually cited by many studies in the area of consumer behaviour and 

economic psychology, the framework is yet to be fully developed into simulation 

model by both the researchers and industry practitioners. Further to the work of 

van Raaij and Verhallan (1983), the research of Lutzenhiser (1992) proposes a 

cultural framework of HECCE by conducting a survey of existing approaches in 

the fields of engineering, economics, psychology, and sociology and 

anthropology. The framework highlights how the householders (“consumers”) 

make some decisions regarding their choices that are “culturally sensible” and 

“collectively sanctioned” containing engineering and economic aspects as sub-

systems in the framework. However, the framework remains a theoretical 

framework without any further work to turn the idea into simulation models. 

 

Another study by Hitchcock (1993) uses the systems theory to provide an 

integrated framework of energy use and behaviour in dwellings. He argues that 

the energy consumption patterns in dwellings needs to be fully understood from 

the systems perspective because of the complexity involved in integrating both 

the technical and social phenomenon together. He further contends that while the 

engineering models used in capturing the physical processes of dwellings and 

their effects on energy consumption do give a better understanding of the physical 

characteristics of dwellings; they, however, fail to capture the effects of human 

aspect on dwellings. Additionally, he contends that the social models are used in 

capturing the human aspect effects and as such, can influence energy 

consumption in dwellings. The study used the concept of socio-technical systems 

to conceptualise HECCE and came up with a framework. Yet, no modelling 

technique was proposed to capture these socio-technical systems. There are, 
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however, some previous studies that have empirically studied the interactions 

among the socio-technical variables influencing the HECCE. The next sub-

section discusses this. 

 

 

2.3.2 Empirical Studies on the Social and Technical Variables Influencing 

Household Energy Consumption and Carbon Emissions 

 

The work of Hitchcock (1993) sees household as a system being defined by both 

a physical and a social sense. This implies that the physical household is in form 

of materials and devices, whereas the social household is in the form of occupants 

living within the dwelling. Further, the combination and the way these two 

systems interact that determine energy consumption in dwellings (Hitchcock, 

1993). There is therefore a third system that plays a very important role in the 

relationship, which is the household environment. It is universally accepted that 

domestic dwellings are basically to provide comfortable environment for human 

activities by providing space heating, lighting, hot water, and the host of others. 

Hitchcock (1993) contends that the amount of energy consumed in dwellings 

depends on the level of service required and the efficiency with which the 

dwelling can provide such a service. As a result, energy consumption is driven by 

the needs or behaviour of occupants and/or by the physical characteristics of 

dwelling (Hitchcock, 1993). 

 

Within this clime, there are various empirical studies that have explored the socio-

technical interactions that influence HECCE such as: Hitchcock (1993), Moll et 

al. (2005), Bartiaux & Gram-Hanssen (2005), Bin & Dowlatabadi (2005), Yun & 

Steemers (2011), Abrahamse & Steg (2011), Kelly (2011), CIBSE (2013), Tweed 

et al. (2014), Gram-Hanssen (2014), etc. These studies generally cover the 

identifications of affecting variables, ranking these variables based on importance, 

defining the causal effects of variables on the HECCE.  
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For example, the study of Hitchcock (1993) identifies three elements within the 

household system to include physical, human, and environmental components. 

Within the physical elements, Hitchcock (1993) posits that this subsystem 

consists of physical parameters and variables that influence energy consumption 

like physical characteristics of dwellings in the form of its size, materials, heating 

system, stock of appliances and so on; and physical variables in the form of 

dwelling internal temperature, ventilation rates, amount of hot water, appliances 

use, and so on. Additionally, Hitchcock (1993) argues that the human subsystem 

consists of variables relating to the biophysical, demographic, psychological 

aspects. For example, the biophysical aspect consists of variables like occupants 

thermal comfort in the form of metabolic rate, respiration, clothing and so on. He 

refers to demographic variables as household income, socio status, and number of 

occupants, and so on; whereas psychological variables relate to the individual 

beliefs, attitudes, knowledge, and personalities. Furthermore, Hitchcock (1993) 

highlights that the environmental aspect of household consist three major 

elements of the climate system, the economic system, and the cultural system. For 

example, the climate system consists of external temperatures, insulations, and 

wind levels. Interaction of these affects the demand for heating and lighting.  The 

economic system involves variables like energy prices, energy tax, and the likes; 

whereas the cultural system embraces the general beliefs held by society, 

consumption habits and the likes. His studies posit that all these variables 

seamlessly work together to influence household energy consumption. 

 

Yun and Steemers (2011) identified six categories of variables that influence 

energy consumption in dwellings. These are variables that are related to: climate 

(cooling degree days), building (total floor area, number of windows, year of 

construction, and type of housing unit), occupant (number of household members, 

total annual income, and age of householder), equipment (type of air conditioning 

equipment), behaviour (number of cooled rooms and frequency of air 

conditioning equipment use), and energy (total energy for space cooling). The 

study carried out a path analysis to identify the significant direct/indirect effect on 
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cooling energy use and revealed that climate is the most significant variable 

influencing cooling energy use. 

 

In another study, Moll et al. (2005) posits that the household energy consumption 

is strongly related to socio-demographic variables, such as income and household 

size. They argue that households with higher incomes or with larger sizes tend to 

consume more energy. Moll et al., (2005) used the hybrid energy analysis of 

household consumption as the methodological approach based on the concept of 

household metabolism. This approach involves some statistical analyses. The 

study of Bartiaux and Gram-Hanssen (2005) consider some soicio-political 

variables influencing household electricity consumption by comparing Denmark 

and Belgium. The work of Abrahamse and Steg (2011) highlight some 

psychological and socio-demographic variables influencing HECCE. The 

research of Bin and Dowlatabadi (2005) illustrate a series of variables influencing 

HECCE in the US. Another study by Gatersleben et al. (2002) and Poortinga et 

al. (2004) investigate some attitudinal and socio-demographic variables and found 

that household income and size are better explanatory variables of HECCE, while 

environmental attitudes are weaker predictor.  

 

There are quite a number of studies that have empirically explored the importance 

of occupants’ behaviour regarding HECCE. For example, the research of Barr and 

Gilg (2006) examine “the ways in which environmental action is constructed in 

everyday life and related to everyday practices” and “the extent to which there are 

identifiable groups of individuals with different behavioural properties that 

exemplify alternative environmental lifestyles and consequently from lifestyle 

groups”. The study used the socio-psychological approach to investigate the 

problem via a questionnaire survey. This study identified four clusters of 

individuals as “committed environmentalists”, “mainstream environmentalist”, 

“occasional environmentalists”, and “non-environmentalists”. The study also 

investigated some variables relating to social and environmental values of group 

of individuals involved in the research. Variables included in the social value are 

“altruistic”, “openness to change”, “conservative”, and “egoism”. Also 
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environmental value variables included in the research are “faith in growth: 

anthropocentrism”, “spaceship earth: biospherism”, and “ecocentrism-

technocentrism”. Further to these variables, the research sought to know the 

environmental attitudes of the respondents and included the following factors by 

framing the questions posed in a pro-environmental direction way: “concern and 

commitment”, “moral motives”, “outcome beliefs”, “price”, “satisfactions”, 

“logistics”, “green consumer attitudes”, “comfort”, “environmental rights”, 

“awareness of norms”, “trust and responsibility”, “extrinsic motivation”, 

“personal instinct”, “brand loyalty”, and “personal threat”. 

 

Isaacs et al., (2010) carried out surveys on occupants’ behaviour in New Zealand. 

This study according to Stevenson and Leaman (2010) was adjudged to be the 

largest surveys in housing. The results of the study reveal that the occupants of 

the studied area are more comfortable living with a very low temperature. This is 

highly puzzling and surprising! Probing further by this study to know the cause(s) 

of this behaviour indicates that culture coupled with the lack of heating appliances 

is responsible for this behaviour. That is, the lack of central heating may suggest 

that rooms are heated on one-by-one basis thereby enabling the occupants to set 

the temperatures of each room according to their expectations. This then suggests 

that a room-by-room monitoring of comfort level provision will then be worth 

researching on. 

 

Of interest to this study is the work of Gill et al., (2010) entitled: Low-energy 

dwellings: the contribution of behaviours to actual performance. The theoretical 

knowledge base underpinning this study is the work of Ajzen (1985) on the 

Theory of Planned Behaviour. Gill’s et al., (2010) work gives a simple statistical 

computation on how to actually estimate the contribution of occupants’ behaviour 

to variations witnessed on the dwelling performance when the performance of 

heat, electricity and water consumption were carried out. The study used high-

performing dwellings as their case study and a detailed post-occupancy evaluation 

was undertaken to reveal energy and water consumption performance, and the 

comfort and satisfaction of the occupants. The results of the study indicate that 
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resource-conscious behaviours account for 51%, 37% and 11% of the variance in 

heat, electricity and water consumption respectively between dwellings studied. 

The study then shows the importance and significance that has to accord to human 

factor as the study demonstrates how the behaviour of occupants can influence the 

use of energy. Premise on the above, Stevenson and Leaman (2010) then argues 

that designers should not use the behaviour of occupants as an excuse for the lack 

of performance of dwellings. They contend that designers need to understand the 

influence of occupants’ behaviour on the dwellings performance and incorporate 

same appropriately in their designs. 

 

The study of Williamson et al. (2010) is another thought provoking study that 

challenged the failure of regulatory provisions to capture behaviours of occupants 

in reality. The study investigates five award-winning dwellings in Australia for 

their ability/inability to meet relevant regulatory standards. The results of the 

study reveal that the regulatory concept of ‘meeting generic needs’ fails to 

account for the diversity of socio-cultural understandings, the inhabitants' 

expectations and their behaviours. As a result of this, however, comfort levels and 

low-energy consumption was unable to be predicted by the so-called standards 

and regulations. The study then suggests that occupants’ behaviours and goals 

needed to be captured by the standards and regulations. 

 

Reflecting on the above reviews it has been established that there are still more to 

do as relates to the relationship between environment and behaviour in and 

around dwellings. Stevenson and Rijal (2010) argue that researchers are still 

wrestling with this relationship and finding means to establish a concrete 

methodology that links the technical assessment of dwellings with that of 

occupants. This debate therefore sits squarely within the socio-technical approach 

which recognises the fact that technological development in the built environment 

is influenced by human aspects. This problem can then be viewed as a socio-

technical problem, which is the main crux of this thesis. 

 

 



Chapter 2: Energy Consumption and Carbon Dioxide Emissions in Housing Sector 
 

 

30 
 

2.3.3 Energy Consumption Behaviours 

 

Different studies (Yu et al., 2011; Hoes et al., 2009) have established that energy 

consumption can change significantly under different consumption behaviours. 

These studies highlight the importance of accounting for different occupants’ 

behaviour for it will aid in reliable and accurate estimation of dwellings energy 

(Azar & Menassa, 2012). A number of studies have established the classification 

of different energy behaviours. For example, a survey conducted by the Scottish 

Environmental Attitudes and Behaviour (SEAB) (2008) classifies environmental 

behaviour into five as deep greens, light greens, shallow greens, distanced, and 

disengaged. In another study, the research of Accenture (2010) classifies energy 

consumers in different countries around the world into eight different categories. 

Additionally, the Low Carbon Community Challenge (DECC, 2012) classifies 

energy consumption behaviour into four as active energy savers, energy aware, 

energy ambivalent, and energy wasters. The classification of Energy Systems 

Research Unit (ESRU) (2012) and Azar and Menassa (2012) are similar. For 

example, ESRU (2012) classifies energy consumption behaviour into profligate, 

standard and frugal. Azar and Menassa (2012) classify them into high energy 

consumers, medium energy consumers, and low energy consumers to respectively 

mean profligate, standard, and frugal consumption behaviour. Profligate energy 

consumers here mean those occupants who over-consume energy. The standard 

energy consumers mean those occupants who make little efforts at reducing 

energy consumption, whereas frugal energy consumers use energy efficiently. 

Within this research (as we will later see in Chapter 6 and thereafter), the energy 

consumption behaviour will follow the categories of both ESRU (2012) and Azar 

and Menassa (2012). 

 

The next section conducts a review of some previous and current methods used in 

modelling and simulating the issue of HECCE beyond the frameworks and 

empirical studies provided in this section. 
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2.4 The Epistemology of Household Energy Consumption and CO2 

Emissions Models  

 

This section of the Chapter provides a review of the underlying approaches to 

modelling issues relating to HECCE in the domestic sector of economy. It is, 

however, worthy to acknowledge that there are several researchers that have 

carried out a full review of the extant literature on HECCE modelling 

methodologies and techniques as previously used in this domain. Among these 

researchers are Bohringer and Rutherford (2008), Strachan and Kannan (2008), 

Tuladhar et al. (2009), Swan and Ugursal (2009), and Kavgic (2010). However, 

there is the need to have these updated and map them to the objectives formulated 

for this thesis. To this end, the following sub-sections look at these approaches. 

 

 

2.4.1 Epistemic Modelling Approaches  

 

For decades now there have been a number of studies on modelling 

approaches/techniques to capture domestic energy consumption especially at the 

national level. Johnston (2003) and Kavgic et al. (2010) argue that these 

approaches/techniques vary tremendously in terms of requirements, assumptions 

made, and the predictive abilities of the models. Within the energy studies 

research circle, it is overwhelmingly agreed that there are basically two epistemic 

approaches to modelling domestic energy consumption and the resulting CO2 

emissions. According to the IEA (1998), these approaches are either top-down 

approach or bottom-up approach. Interestingly, both Kelly (2011) and Kavgic et 

al. (2010) acknowledge the recent advances in the development of another 

modelling approach paradigm derived from both top-down and bottom-up 

approaches. This development has then seen some cases where a hybrid of the 

two approaches has been made in order to develop more robust models as 

suggested by Bohringer (2007). IEA (1998) provides the main epistemological 

approach to both the top-down and bottom-up techniques of energy models as 

illustrated in Figure 2.1.  
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Figure 2.1: Top-down and bottom-up modelling approaches 

(Adapted from IEA, 1998) 

 

Basically, the perspective to top-down modelling approach is quite different from 

that of bottom-up approach as it starts with aggregate data and then disaggregates 

these down as far as possible in a bid to provide a comprehensive model. Johnston 

(2003) subsumes that the top-down approach gives a comprehensive approach to 

modelling and therefore possesses the ability of aiding a high level government’s 

policy and schemes decisions. Conversely, bottom-up approach begins with 

highly disaggregated data and end up aggregating them up as far as possible. 

Bottom-up models are seen as incomprehensive when compared to top-down 
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models. This is mainly due to the methodological foundation of the bottom-up 

approach that models a part/unit of the system under consideration at a time and 

then aggregates this in a way to provide same information as top-down approach. 

While it is unarguably true that the two approaches of top-down and bottom-up 

represent the two main alternatives to modelling energy consumption and carbon 

emissions in the domestic sector of economy, Johnston (2003) submits that both 

of them share a degree of commonality. These, according to him, are that (1) they 

possess the capability to operate at the same level of disaggregation, and (2) they 

both use the same information, but in different ways. The following further 

discusses issues regarding the top-down and bottom-up energy models. 

 

 

2.4.2 Energy and Carbon Dioxide Modelling Using Top - down Approach  

 

As argued above, the top-down modelling approach is a method that is based on 

aggregate data and works well at an aggregated level. The approach focusses 

majorly on the relationships between the energy sector and the large scale 

economy. Generally, top-down modelling approach works in predicting future by 

fitting the historical time series data on energy and carbon emissions to 

macroeconomic variables using econometric and multiple regression methods. 

These are capable of explaining the variance between dependent and independent 

covariates (Kelly, 2011; Johnston, 2003). Data normally used for the development 

of such econometric top-down models include fuel prices, gross domestic 

product, income, average dwelling efficiency. 

 

Within the energy studies research circle, the econometric top-down modelling 

approach has received quite a degree of criticisms recently. Among the criticisms 

is in its lack of flexibility in using and incorporating details regarding current and 

future technological improvement complete with other variables adjudged to 

influence energy consumption and carbon emissions, as against using only the 

macroeconomic trends and relationships previously observed (MIT, 1997). The 

argument of Kelly (2011) follows the line of thought of MIT (1997) when he 



Chapter 2: Energy Consumption and Carbon Dioxide Emissions in Housing Sector 
 

 

34 
 

criticises the approach. He argues that the models from this approach lack details 

on how best to incorporate the changes in environmental, social and economic 

dimensions should there be any in them as a result of the challenge of climate 

change around the globe as being witnessed at the moment. The approach has also 

been criticised for its failure to consider, more importantly, the socio-technical 

and behavioural aspects of energy consumption and carbon emissions at the 

disaggregated level of the household. As previously mentioned under Section 

2.3.1, Hitchock (1993) contends that the issue of energy consumption and carbon 

emissions are to be viewed as a complex technical and social phenomenon that be 

studied simultaneously from the perspectives of engineering and social science. 

 

In the domestic energy sector, top-down modelling approach has been extensively 

used and implemented for several household energy consumption and carbon 

emissions models. For example, the model developed by Hirst et al. (1977) to 

explore the residential energy use sensitivity to demographic, economic, and 

technological factors. The model they developed is found to be sensitive to major 

demographic and economic variables that continually need updating annually in a 

bid to improve the outputs quality. Similarly, Haas and Schipper (1998) used the 

top-down modelling approach for their study that evaluates the role of efficiency 

improvements on residential energy demand. The results of their study suggest a 

non-elastic response to energy consumption due to irreversible improvements in 

technical efficiency.  

 

In yet another study by FitzGerald et al. (2002), a whole economy top-down 

model for energy demand in Ireland was developed. The output of the model 

suggests that between 1960 and 2001, electricity demand in the study area 

increased annually by up to 5% per annum (pa), while within the same period the 

non-electricity demand witnessed an increase of 1.2% pa. In their model, the 

effect of cost on energy demand was only considered with no recourse to other 

important variables affecting electricity consumption.  
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Further to the above, the work of Summerfield et al. (2010) applies a simple top-

down approach, based on multiple regression analysis, to model the annual 

delivered energy price and temperature (ADEPT). This ADEPT model gives 

annual household energy consumption in the UK since 1970. Lee and Yao (2013) 

argues that the strength of the model lies in its ability to appropriately predict 

overall household energy consumption. However, the model was criticised for its 

inappropriateness for short term overall predictions. Summing up all these 

limitations, Swan and Ugursal (2009) submit that the top-down approach may not 

be suitable in identifying key areas for improvements regarding the demand side 

of energy consumption at household level.  

 

 

2.4.3 Energy and Carbon Dioxide Modelling Using Bottom - up Approach  

 

The bottom-up approach to modelling has been identified to consist of models 

that apply a disaggregated approach to model energy consumption and carbon 

emissions with the use of high resolution data as input (Mhalas et al., 2013; 

Hoogwijk, et al., 2008). Shorrock and Dunster (1997) and Johnston (2003) argue 

that the data input required for these kinds of models are heavily reliant on 

extensive databases of quantitative data of physically measurable variables like 

the energy efficiency of hot water system, dwellings’ fabric insulation in terms of 

thermal performance, and the likes. They further contend that these quantitative 

disaggregated data together with some other information are then used in 

modelling energy consumption and carbon emissions units like individual 

dwellings, groups of dwellings, or households. Energy consumption and carbon 

emissions from these units are then extrapolated to sectorial, regional or national 

levels in a bid to aggregate the consumption and emissions as the case may be.  

 

Premise on the fact that these models vary considerably in terms of structure and 

type of data input required, quite a number of researchers (Lee & Yao, 2013; 

Mhalas et al. 2013; Kelly, 2011, Kavgic et al., 2010; Swan & Ugursal, 2009; 

Johnston, 2003) acknowledge that there are basically two major epistemic 
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methods that have previously used for bottom-up models. These methods are 

categorised as statistics and building physics4 methods. However, Kavgic et al. 

(2010) explore the case of mixing both the statistical and building physics 

approaches to form a more robust and highly sophisticated hybrid bottom-up 

modelling method. A typical example of this approach is evidenced in the 

Canadian Hybrid Residential End-use Energy and Emission Model (CHREM) as 

reported in Swan et al. (2008) and Mohmed et al. (2008). 

Statistical Methods 

Within the energy and carbon emissions modelling domain, the statistical 

modelling methods of bottom-up approach have been extensively explored by 

different researchers. They have used these modelling methods to generate quite a 

number of models relating to energy consumption as a function of household 

characteristics for example. The main driver of this has been attributed to the ease 

of mapping energy billing data of householders to household characteristics as 

collected and made available by energy suppliers through the use of statistics. 

However, these data may not be readily available to public because of the 

sensitive information of householders contained therein.  Swan and Ugursal 

(2009) identified three major and well-documented methods that have been used 

over the years by different researches. These methods include regression analysis 

(RA), conditional demand analysis (CDA), and neural network (NN). 

 

The RA carries out the analyses of energy consumption and carbon emissions and 

regress these on the variables and parameters of interest that are identified to 

influence them (Fung, 2003). The models so developed are assessed and 

evaluated based on some criteria like goodness of fit. The variables or parameters 

that are found to contribute insignificantly are removed from the models. In the 

case of CDA however, the method base its analysis on regressing household 

energy consumption on available end-uses appliances in the household. The main 

strength of this approach as argued by Swan and Ugursal (2009) is based on the 

ease of obtaining relevant information required for the model. This may mean 

                                                 
4 Some researchers use physical or engineering for building physics categorisation 
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conducting a simple survey of occupants’ appliances and map these with energy 

billing information as collected from the energy suppliers. However, data from 

many occupants (running into thousands) may be required in order for the model 

to yield reliable results. The NN method is based on a simplified mathematical 

model. 

 

Statistical techniques (RA, CDA and NN) have been extensively used within the 

energy studies research domain, especially at the level of household. For example, 

Tonn and White (1988) used RA method to develop models of electricity use 

associated with space heating, appliances and lighting, wood use, and indoor 

temperature, in which household characteristics played a major role in the models 

produced. In yet another research conducted by Donthitt (1989) in Canada, the 

RA approach was used to develop a model of household space heating fuel 

consumption based on historic fuel price, substitute fuel price, total fuel 

consumption, and a vector of building structure, climatic, and occupants 

characteristics. The study of Kavousian, Rajagopal, and Fischer (2012) uses RA 

method to analyse large data sets regarding household electricity consumption to 

derive insights for policy makers on effectiveness of energy efficiency measures. 

 

Further to the above studies that utilised the RA approach, another set of studies 

attempted the use of CDA approach to create bottom-up models regarding 

household energy consumption. Among those studies are the works of Parti and 

Parti (1980), Aigner et al. (1984), Caves et al. (1987), Goldfarb and Huss (1988), 

Hsiao et al. (1994), Mountain and Illman (1995), Lins et al. (2002), Aydinalp et 

al. (2003), and Swan and Ugursal (2009). The usage of NN method to model 

HECCE has been limited. Swan and Ugursal (2009) attribute this to high 

computational and data requirements of the approach. However, some studies 

have utilised the approach like Issa et al. (2001), Aydinalp et al. (2002), 

Mihalakakou et al. (2002), Aydinalp et al. (2004), and Yang et al. (2005). 

 

 

Building Physics Methods 
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The building physics technique of bottom-up modelling approach is recognised as 

the only modelling technique that do not rely on historical data relating to energy 

consumption in order to fully develop the energy consumption and carbon 

emissions models at the level of individual dwellings or households (Swan & 

Ugursal, 2009). The models produced here are developed based on physical 

characteristics of the dwellings. Therefore, it needs to emphasise that the energy 

computation of this technique requires quantitative data on physically measurable 

variables (Shorrock & Dunster, 1997; Johnston, 2003) like information on 

dwellings’ fabric insulation, efficiency of space heating or hot water systems, 

internal temperatures and heating patterns, external temperatures, ventilation 

rates, and the host of others (Mhalas et al., 2013). To this extent, Wilson and 

Swisher (1993) argue that modellers employing the building physics method in 

estimating dwellings or households’ energy consumption immensely benefit from 

a combination of dwellings’ physically measurable data and empirical data from 

national database including house condition surveys. According to Swan and 

Ugursal (2009), three major methods of analysis of energy consumption and 

carbon emissions based on building physics approach have evolved over the 

years. These methods are termed: distributions, archetypes, and sample methods. 

 

In the distributions method, appliances ownership distributions of different 

households or dwellings within the housing stock are mapped to the ratings of 

those appliances in order to estimate the likely energy consumption and the 

resultant carbon emissions based on end-uses of those households or dwellings. 

The regional or national energy consumption and carbon emissions can then be 

estimated by aggregating appliances consumption for each households or 

dwellings as the case may be. Archetypes method on the other hand base its 

estimation of energy consumption and carbon emissions on the housing stock 

classification according to dwelling type, size, age, or even tenure. The 

consumption and emissions for each dwelling type representatives, for example, 

are therefore scaled up and then aggregated to form the regional or national 

energy consumption and carbon emissions. For sample method, the approach 
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models regional or national energy consumption and carbon emissions based on 

the actual sample dwellings data collected and serve as the input to the model. 

Here, the methodology firmed up for the sampling exercise is rigorous and 

scientifically proven to be the true representative of the population as adopted in 

English or Scottish house condition survey for example. By following this 

method, the consumption and emissions of different variety of dwelling types are 

account for and form the basis for the modelling, which again are aggregated to 

form the regional or national estimate. 

 

There are quite a number of studies that have applied these different building 

physics techniques (distributions, archetypes, or sample) of bottom-up modelling 

approach to model energy consumption and carbon emissions of the housing 

stock. For example, the distributions technique has been utilised by both the 

developing and developed nations to estimate the regional or national energy 

consumption and/or carbon emissions of their respective nations. The study of 

Saidur et al. (2007) applied distributions method of appliances ownership to 

model a non-space heating household energy in Malaysia. The output of the 

model generates the annual energy consumption for the nation. In yet another 

study in India, Kadian et al. (2007) developed a model of energy-related 

emissions for households in Delhi by combining the distributions and micro-level 

data sources. For household energy in Italy, the study of Capaso et al. (1994) 

utilised the appliance use profile of householders based on the distributions 

technique to generate an outlook of energy consumption for the entire housing 

stock. The model combined the data of householders’ lifestyle and engineering 

data of different types of appliances as input for the model. Similarly, the work of 

Jaccard and Baille (1996) in Canada demonstrate the application of distributions 

method to model carbon emissions reduction cost of householders based on 

appliances use behaviour of the householders. 

 

The archetypes technique of building physics modelling method has been 

extensively utilised by many modellers within the household energy domain. As 

such, a considerable number of publications have emerged in the literature. The 
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model of Parekh (2005) in Canada was developed based on archetypes of 

dwellings characteristics in a bid to simplify the analysis and evaluation of 

household energy use. Another study from the United States of America (USA) 

models space heating and cooling loads of the USA housing stock (Huang & 

Broderick, 2000) for 16 different regions using 16 multifamily and 45 single-

family archetypes of dwellings. The outcome of this study produced energy 

simulation results for space heating and cooling loads for 16 different dwelling 

archetypes for the USA housing stock. The results were disaggregated in a way 

that the contributions of thermal conductivity of walls, roof, windows, and others 

could be seen.  

 

In the study of Petersdorff et al. (2006), three different archetypes of dwellings 

(terrace, small apartment, and large apartment) were used when the European 

Union (EU)-15 building stock was modelled. The study examines and considers 

five standard dwellings and eight insulation standards using the built environment 

analysis model. The results produced the heating demand based on the archetypes 

for 15 different EU countries. Similarly in the UK, the study of Johnston (2003) 

develops energy consumption and carbon emissions for the UK housing stock to 

represent different types of dwellings. The model was further disaggregated to 

include two types of dwellings according to construction date (i.e. pre-1996 and 

post-1996). This disaggregation hence reflects the entire housing stock. Other 

studies that have utilised archetypes approach for their models include Clarke et 

al. (2008), Jenkins (2008), Gupta (2009), Firth et al. (2010), Natarajan et al. 

(2011), Mhalas et al. (2013), etc.  

 

In contrast to archetypes method, the application of sample method as one of the 

techniques of building physics modelling approach has been limited. This is likely 

due to the huge amount of data requirement of the method. And as such, not many 

studies have used the approach in the literature. Among these few studies are 

Shorrock and Dunster (1997), Farahbakhsh et al. (1998), Larsen and Nesbakken 

(2004), Boardman et al. (2005), and Natarajan and Levermore (2007a). The 

Building Research Establishment’s Housing Model for Energy Studies 
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(BREHOMES) (Shorrock & Dunster, 1997) developed in the early 1990s used 

1000 dwellings types (defined by age group, built form, tenure type and 

ownership of central heating) as the sample upon which the annual household 

energy consumption of UK housing stock is based. 8787 dwellings (defined by 

type, space heating fuels, vintage and province) were used in Canada 

(Farahbakhsh et al., 1998) to provide the Canadian residential energy end-use 

model (CREEM) in a bid to test the effect of different strategies of carbon 

reductions based on two standards.  

 

The model developed by Larsen and Nesbakken (2004) used 2013 dwellings to 

produce the model of household energy consumption of the Norway’s housing 

stock. The UK domestic carbon model (UKDCM) developed by the 

Environmental Change Institute of Oxford University (Boardman et al., 2005) 

made use of 20,000 dwelling types using national statistics to produce the 

monthly HECCE. The model produced three different scenarios until 2050. In 

concluding this section, the domestic energy and carbon (DECarb) model 

(Natarajan & Levermore, 2007a) developed by the research unit for the 

Engineering and Design of Environments, Department of Architecture and Civil 

Engineering, University of Bath in 2007 used 8064 unique combinations for six 

age bands of the UK housing stock to produce the monthly energy consumption 

for the UK. 

 

 

2.4.4 Benefits and Limitations of the Top-down and Bottom-up Modelling 

Approaches 

 

Undoubtedly from the foregoing, it has been revealed that both the top-down and 

bottom-up approaches have their strengths and at the same time weaknesses. It is 

therefore imperative to have them summarised before critically reviewing some 

notable energy consumption models in the domestic sector of the UK economy.  
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Table 2.2 therefore gives some benefits and limitations of the top-down and 

bottom-up approaches as evidenced from the work of Kavgic et al. (2010). It is 

necessary to add that both the top-down and bottom-up approaches have not 

utilised the advantage of incorporating qualitative data input. Unfortunately, 

Kavgic et al. (2010) fails to recognise this as one of the limitations of those 

approaches. This, however, limits the capability of those approaches. Importantly, 

incorporating both the qualitative and quantitative data sources to any modelling 

efforts improves the robustness of such approaches as its lack undermines their 

capabilities.  

 

 

2.5 The Notable UK Household Energy Consumption and CO2 Emissions 

Models 

 

As can be noted from Section 2.4 that several models have evolved over the years 

in the UK to estimate and forecast the current and future trends of HECCE for the 

UK housing stock, it is therefore imperative to discuss in details some of the 

notable HECCE models that are specifically developed for the UK. Some of these 

models include: 

• The BREHOMES (Shorrock & Dunster, 1997; Shorrock et al., 2005). 

• The Johnston model (Johnston, 2003). 

• The UKDCM (Boardman et al., 2005). 

• The DECarb model (Natarajan & Levermore, 2007a). 

• The Community Domestic Energy Model (CDEM) (Firth et al., 2010).  

• The Cambridge Housing Model (CHM) (Huges, 2011; Huges & Palmer, 

2012). 

• The Domestic Dwelling Model (DDM) (Mhalas et al., 2013). 
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2.5.1 The Building Research Establishment’s Housing Model for Energy 

Studies 

 

The BREHOMES as developed by Shorrock and Dunster (1997) is seen as the 

earliest UK household energy model that is based on the building physics method 

of the bottom-up modelling approach (Section 2.3.3) to estimate the HECCE of 

UK housing stock. The model is highly disaggregated model and used weighted 

average stock transformation method to convert over 18,000 households surveyed 

to over 1000 different dwelling types in a bid to build this dwelling types profile. 

The core calculation engine for the model is based on the Building Research 

Establishment’s Domestic Energy Model (BREDEM) in order to establish energy 

use for dwellings. It needs to state that BREDEM energy model accepts input on 

different areas of dwelling elements to include dwellings’ thermal characteristics, 

number of occupants or household size, internal and external temperatures, solar 

gains, heating patterns, etc. The BREHOMES model architecture as adapted from 

the work of Shorrock and Dunster (1997) is shown in Figure 2.2.  

 

 

Figure 2.2: BREHOMES model architecture 



Chapter 2: Energy Consumption and Carbon Dioxide Emissions in Housing Sector 
 

 

45 
 

(Adapted from Shorrock & Dunster, 1997) 

 

The output of the model produces the annual energy consumption and carbon 

emissions at the national level of aggregation. Two different scenarios are 

explored by the model to include (1) the baseline model termed ‘Reference’ 

(business-as-usual) scenario, and (2) ‘Efficiency’ scenario. The earlier version of 

this model as reported in Shorrock and Dunster (1997) produces the output from a 

base year of 1990 to 2020. However, a more recent version of the model as 

reported in Shorrock et al. (2005) used a base year of 1993 and extends the output 

trends till 2050. The model has been extensively applied as policy advice tool for 

the Department for Environment, Food and Rural Affairs (DEFRA). However, the 

model is not transparent as it is difficult to replicate the study. Also, the model 

lacks the capability of capturing qualitative data as input data source as it is 

heavily rely on highly disaggregated quantitative data source. 

 

 

2.5.2 The Johnston Model 

 

The Johnston model is another one of the notable HECCE for the UK housing 

stock. As for BREHOMES, it is also a model based on building physics technique 

of bottom-up modelling approach. As previously mentioned in Section 2.3.3 

above, the Johnston model has the capability of reflecting the different types of 

dwellings of the entire UK housing stock. However, the model basically 

disaggregated the overall housing stock into two by using dwellings’ year of 

construction as the main criterion for the disaggregation. Here, the entire UK 

housing stock is represented in the model as (1) pre-1996, and (2) post-1996. In 

like manner to BREHOMES, the model adapted the BREDEM’s calculation 

algorithm for each dwelling types in order to calculate energy and emissions of 

these individual dwelling types. The architecture of Johnston model is shown in 

Figure 2.3 as adapted from Johnston (2003). 
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Figure 2.3: Johnston’s model architecture  

(Adapted from Johnston, 2003) 

 

The overall output of the model appropriately produces the total annual energy 

consumption and carbon emissions for the entire UK housing stock with 1996 as 

the base year and this continues until 2050. This is in a bid to give the previous, 

current, and then project into the future regarding household consumption and 

emissions level. In order to explore the effects of changes to certain assumptions 

(like uptake of new technology, trends in population, energy usage changes, etc.) 

made in the model, three major scenarios as typical applicability of the model 

were produced. The first scenario termed the ‘business-as-usual (BAU)’ looks at 

the current trends and projects these until 2050 with an assumption that there 

won’t be any further action or intervention from government to reduce the 

emissions. With these trends, the output of the scenario reveals that about 33% of 

the emissions could be reduced by the year 2050 when compared to the emissions 

level of 1996, which was used as the base year.  

 

The second scenario termed the ‘demand side’ is based on BAU and extends it in 

order to incorporate some other measures should new evidence regarding the 

climate change, for example, emerges in the near future. This scenario explores 

improvements in energy efficiency of the demand side of household energy. The 

output of the model predicted a 58% reduction in carbon emissions for this 

scenario. Additionally, the third scenario termed the ‘integrated’ scenario 

combines both the supply and demand sides of the UK housing stock and explores 
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their effects on carbon emissions of the entire housing stock. The results show 

that about 74% reduction is achievable. Johnston (2003) notes the limitations of 

the model. That is the model suffers from usability and transparency as he 

recommends transferring the model to a more suitable platform. Regarding the 

application of the model, it is capable of being used as a policy advice tool. 

However, the application of the model has been limited to its developer alone. 

Therefore, it has not been extensively used in practice. 

 

 

2.5.3 The UK Domestic Carbon Model 

 

The UKDCM model (Figure 2.4) was developed by the Environmental Change 

Institute of the Oxford University in the year 2005 in order to explore and 

investigate how 60% reduction in carbon emissions could be achieved in the UK 

housing sector. The model is based on building physics. The model processes a 

huge amount of data that include those obtained from the English Housing 

Condition Survey and its equivalents in Scotland and Northern Ireland. Among 

the data input required by the model are population figures, levels of insulation, 

efficiency of heating equipment, etc. as contained in the 40% House report 

(Boardman et al., 2005). The model contains highly disaggregated datasets for 

nine geographical areas, seven age classes and ten types of construction of some 

20,000 UK dwellings. Additionally, the model has the capability to process 

different combinations of these datasets in order to further sub-divide the 

dwellings based on tenure, construction method and number of floors. In like 

manner as the BREHOMES and Johnston models, the model made use of the 

BREDEM calculation engine to estimate the emissions of these dwellings. The 

structure of UKDCM is shown in Figure 2.4 as adapted from Boardman et al. 

(2005). 

 

 



Chapter 2: Energy Consumption and Carbon Dioxide Emissions in Housing Sector 
 

 

48 
 

 

Figure 2.4: UKDCM architecture 

(Adapted from Boardman et al., 2005) 

 

 

The output and temporal resolution of the model gives the monthly energy 

consumption and carbon emissions of the UK housing stock. The model 

performed three different scenarios to explore the effects of some policy 

formulations regarding energy use. The scenarios tested are (a) BAU, (b) 44% 

emission reduction, and (c) 25% emission reduction below 1990 levels. This 

model in general together with the scenarios tested was improved upon by another 

version of the model termed ‘UKDCM2’ (Hinnells et al., 2007). According to 

Boardman (2007), this newer version was used to prepare the Home Truths 

report, where the analysis of different scenarios regarding reduction in future 
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carbon emissions were conducted and explored. The scenario A of this newer 

version represented a plausible scenario to reflect what would happen should 

there be “a continuation of current and near-terms trends, technologies, policies 

and practices, with changes occurring slowly into the future” (Hinnells et al., 

2007). Scenario B updates the scenario B of ‘40% House report’ and this now 

investigates the way Government’s target of 60% emissions reduction by the year 

2050 could be achieved through the assumption that members of the society now 

know more about the issue of energy use and carbon emissions with attendant 

technological change and societal change to bring about reduction in carbon 

emissions. In the other hand, Scenario C explores how a further reduction in 

carbon emissions in excess of 60% could be achieved by assuming higher uptake 

of renewable and other efficient energy sources, additional demolition and new 

build, etc. The model is being used generally as policy advice tool and it is freely 

available over the internet. 

 

 

2.5.4 The Domestic Energy and Carbon Model 

 

The DECarb is another notable model of the HECCE for the UK housing stock 

with the capability of mapping different technical and climate scenarios in order 

to generate future trends and options regarding consumption and emissions. The 

model is an object oriented one that is capable of running on any of the operating 

systems and it is user friendly in terms of selecting input data. The model is based 

on building physics approach. Figure 2.5 shows the structure of the model as 

adapted from the work of Natarajan and Levermore (2007a). Similarly to other 

models in Sections 2.5.1, 2.5.2, and 2.5.3, DECarb model uses a highly 

disaggregated housing stock approach that has unique 8064 combinations of six 

historical age classes of the UK housing stock. Likewise other previous models 

discussed above, DECarb made use of the BREDEM algorithm for the calculation 

of consumption and emissions profiles for individual dwellings in the model. 

There are six different files for the dataset with each to represent each of the six 

different age classes and these dataset consists of different variables that include 
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dwelling type, insulation characteristics, etc. The model is then used to run future 

scenarios regarding UK housing stock. 

 

 

Figure 2.5: DECarb model architecture 

(Adapted from Natarajan & Levermore, 2007a) 

 

As the overall output, the model calculates the annual energy consumption and 

carbon emissions in a bid to perform a forecast of their trends from the base year 

1996 until 2050. Interestingly, the model has the capability of performing a back-

cast analysis from 1996 backwards. This is embedded into the model in order to 

serve as a way of validating the model. The model was then used to test climate 

change scenarios according to UKCIP02 in addition to the BREHOMES, 

Johnston, and UKDCM scenarios. For example, using the Johnston’s model 

scenarios, the results suggest that it is unlikely to meet the target of up to 50% 

reduction in carbon emissions for all these scenarios run (Natarajan & Levermore, 

2007b). As for other models discussed above, the model is being used as a policy 

advice tool and readily available online as open framework. As noted above, the 

model is user friendly in selecting the input data; however, the mode of output 

data presentation is poor as they are displayed in text file. This then presents 

difficulty in reading the results of the model. 
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2.5.5 The Community Domestic Energy Model 

 

The CDEM is another notable model of energy consumption and carbon 

emissions of the UK housing stock that was developed by the Department of Civil 

and Building Engineering, Loughborough University in the year 2009 (Firth et 

al., 2010) based on building physics approach. In like manner to other previous 

models above, this model is highly disaggregated, but with 47 house archetypes 

that are derived from unique combinations of built form type and dwelling age. 

For house architecture calculation engine, the model requires input from many 

sources to include English House Condition Survey (EHCS), BREDEM-8 

calculation engine, SAP rating, etc. (Figure 2.6).  

 

 

Figure 2.6: CDEM model architecture 

(Adapted from Firth et al., 2010) 
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Regarding the core dwelling model, the main data requirement comes from the 

BREDEM-8 calculation engine, monthly average external temperatures and 

monthly average solar radiation as obtainable from the Met Office. The output of 

the model produces monthly energy consumption and carbon emissions of the 

whole UK housing stock. Also, the model is capable of producing output based on 

city or neighbourhood housing stock. Apparently, the model fail to test any 

scenarios, instead used the model to estimate and predict energy consumption and 

carbon emissions of the 2001 English housing stock alone. 

 

 

2.5.6 The Cambridge Housing Model 

 

The CHM model was developed by the Cambridge Architectural Research in a 

bid to forecast energy consumption and carbon emissions for housing stock in 

England, Scotland, Great Britain, and the UK in general. It is another building 

physics-based bottom-up model that uses the calculations formulated and 

established by SAP 2009 (BRE, 2011) and BREDEM engine (Shorrock & 

Dunster, 1997) in order to perform all its internal calculations. The model has 

three basic data input components as shown in Figure 2.7 to include climate data, 

housing data, and building physics data. For climate data input, the model uses 

SAP’s monthly solar declination and regional latitude data, BREDEM-8’s 

monthly/regional solar radiation data, and monthly/regional year-specific wind 

speed and external temperature data as taken from quite a number of different 

stations across the UK.  

 

Regarding the housing data input, the main source here is based on 16,670 

dwellings as contained in English Housing Survey of 2010 (Palmer & Cooper, 

2012) with an adjustment to scale this up to reflect the UK housing stock. 

However, the building physics data input are the direct results of the calculations 

performed in SAP and BREDEM. The model then reads in data for individual 

representative dwelling in order to perform building physics calculations. The 
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CHM is one of the most transparent models because the model is built and all its 

calculations performed in Microsoft Excel.  

 

 

 

Figure 2.7: CHM model architecture 

(Adapted from Huges, 2011) 

 

The output of the model therefore gives the energy consumption together with 

associated carbon emissions according to fuel and end-use. These are presented 

for representative of each dwelling type, English housing stock, Scotland housing 

stock, etc. as well as for the entire UK housing stock. It is worthy of note that the 

output of this model is one of the studies that made up the UK housing fact file 

domicile in the Department of Energy and Climate Change (DECC) (Palmer & 

Cooper, 2012). 

 

 

2.5.7 The Domestic Dwelling Model 

 

The DDM is a new approach being proposed by the Technology Futures Institute 

of the Teesside University (Mhalas et al., 2013) to model energy consumption 

and carbon emissions of dwellings and neighbourhood based on visualisation. The 

model is highly disaggregated as it estimates each dwelling independently within 

the neighbourhood. The model uses the SAP/BREDEM energy calculation 
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engine. As input to the SAP core calculation engine, the model utilises 

information from aerial and terrestrial imagery, digital maps, household surveys, 

census, and ONS. As a first step in the development of this approach, models of 

the dwellings in the neighbourhood are developed (Mhalas et al., 2013).  

 

Following this is to undertake energy performance calculation of the models 

according to the SAP algorithms. The carbon emissions reduction capability of 

the dwelling is hence quantified based on the existing characteristics of the 

dwelling before using a decision support system to implement the effectiveness of 

energy improvement measures. This model is implemented on a GIS platform. 

Figure 2.8 shows the architecture of the model. 

 

 

2.6 Summary and Critique of the Notable UK Housing Stock Energy 

Models 

 

By considering the contribution of emissions from domestic dwellings, it can be 

deduced from Section 2.5 that considerable efforts have been invested into energy 

models for dwellings in the UK. One thing that is common and central to all the 

reviewed models under Section 2.5 is that they all share the same BREDEM 

algorithms in estimating and forecasting energy consumption and carbon 

emissions. BREDEM has been adjudged as a well-established method to 

accurately predict UK dwelling energy consumption (Natarajan et al., 2011) as it 

forecasts dwellings’ energy consumption and carbon emissions at highly 

disaggregated level based on deterministic building physics. Additionally, domain 

of application of these models is common as they all applied as policy advice 

tools. However, the models are varied in terms of their level of disaggregation, 

resolution of output, output aggregation level, scenario analysis performed, model 

validation, and their availability to the members of public for scrutiny, as shown 

in Table 2.3.  
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Unfortunately, these models have been criticised due to a number of limitations in 

them. Firstly, all the models have been criticised for their low level of 

transparency. Kavgic et al. (2010) and Mhalas et al. (2013) argue that the models 

transparency, in terms of the architecture and data sources, is seen as one of the 

most essential issue worth considering for future deployment of the models. 

Regrettably, some of these models are not available to the members of public; 

even those that are made available to public contain little information about their 

structure and operational details. As such, the models could not be scrutinised as 

getting access to raw input data or the algorithms used by the models has been a 

mirage for the majority of them. This is because it is unclear on how the 

relationships among the different variables making up the models are formulated 

and built up. Consequently, the outputs of these models are extremely difficult to 

replicate. 

 

Secondly, the models fail to take into consideration the complex, 

interdependencies, and dynamic nature of the issue of energy consumption and 

carbon emissions, especially in households. This is because the modelling 

approaches of these models are based on static and deterministic method, which is 

classified as reductionist paradigm that uses linear orientation to give the forecast 

of a system, which; for example; is just for a particular point in time. These 

models therefore work with particular sets of data inputs in a bid to produce 

particular sets of outputs that have little or no room to accommodate uncertainty 

in input datasets. This is because the approaches for the models are hinged on the 

notion that exact relationships exist between the variables in the models without 

uncertainty. For example, some of them employ the use of simple regression 

analysis that relies on historical data. Here, the future trends are predicted based 

on the historical without putting into consideration any undesirable or chaotic 

events that may occur in the near future. 
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Thirdly, the importance of occupants-dwelling interaction cannot be over 

emphasised regarding energy consumption in homes. Therefore, special attention 

needs to be accorded to this aspect as well. This is evidenced from the assertion 

made on the report of the Inter-governmental Panel on Climate Change (IPCC) 

mitigation (IPCC, 2007) that “occupant behaviour, culture and consumer choice 

and use of technologies are also major determinants of energy use in buildings 

and play a fundamental role in determining carbon emissions”. Conversely, IPCC 

(2007) report further suggests that there is limited evidence to show that these 

determinants are being incorporated into energy models. While it is evident that 

BREDEM, for example, incorporates some degrees of occupants’ aspect like 

number of occupants into their model, Natarajan et al. (2011) confirms that the 

behavioural aspect has been limited and not explicitly considered.  

 

Fourthly, it is evident that the issue of energy and carbon emissions remain 

increasingly complex and difficult to manage. This is due to the fact that quite a 

number of issues regarding energy sector of the economy are evolving on a daily 

basis. For example, in order to accurately predict and forecast energy 

consumption and carbon emissions, energy sector would undoubtedly interact 

with other sectors like economic and environment sectors and the host of others. 

These sectors are difficult to manage on their own merit. However, dynamically 

integrating these external sectors to energy sector further compounds the problem 

of household energy issues. As such, all the models reviewed in Section 2.5 have 

not demonstrated enough capacity to dynamically accommodate additional 

systems that utilise both the quantitative and qualitative data inputs and where 

some variables may interact in a non-linear way. This then portends to mean that 

the models are profoundly limited for their lack of ability to incorporate the 

feedback from these external sectors. 

 

From the forgoing, it is apparent that there is the need to look both inwardly and 

outwardly for sophisticated modelling approaches capable of dealing with the 

limitations above and then model the kind of complexity and challenges that are 

facing the HECCE. This may mean to further broaden the scope and level of 
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interaction of different HECCE drivers and the capacity to expand this should the 

need arise in the near future. In order to further reinforce this, several researchers 

advocate and propose the use of the STS as an approach to model this complexity 

due to high inter-dependencies, chaotic and non-linearity of the variables 

involved, such as: Hitchcock, 1993; Kohler & Hassler, 2002; Shipworth, 2005; 

2006; Motawa & Banfill, 2010. It needs to emphasise that STS is one of the 

methodologies of the systems-based approach of scientific inquiry. This 

methodology has previously been used as an approach to model the complexity of 

real systems’ elements and relationships (as will be discussed in Chapter three). 

Modelling complexity enables capturing the interdependent and multi-causal 

correlation structure of the elements of STS and determining the efficacy of 

different change strategies. This helps in analysing the non-linear behaviour of the 

studied systems where changes in input are neither proportional to changes in 

output, nor is the input to output relationship fixed over time. This thesis will then 

use the STS approach to model HECCE. The theoretical backgrounds and the 

modelling techniques for the STS are covered in Chapter three of this thesis with 

previous attempts in energy sector. 

 

 

2.7 Chapter Summary 

 

This chapter has shown that there are a wide range of frameworks that previous 

studies have formulated to conceptualise the issue of energy consumption and 

carbon emissions, which are now serving as the theoretical backgrounds 

underpinning energy models. They are therefore principally fall within two major 

domains: disciplinary and integrated frameworks. Disciplinary framework focuses 

on how individual disciplines illustrate the approach to solving energy and carbon 

emissions problems by formulating a framework. For example, engineering 

approach looks at the technology of energy consumption and carbon emissions. 

On the hand, integrated framework uses a holistic approach to combine a number 

of disciplines together and provide a framework capable of shaping the issue of 

energy consumption and carbon emissions based on the limitations of disciplinary 
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framework. Within the body of literature, it was established that the social and 

technical variables influencing household energy consumption and carbon 

emissions come basically from three interacting systems comprising of the 

dwellings, occupants, and external environment. The variables identified within 

the dwellings system are related to dwellings’ physical characteristics. Also, 

variables related to occupants system are in terms of household characteristics, 

occupants’ thermal comfort, and occupants’ behaviour. And finally, the variables 

related to external environment system are in terms of climatic, economic, and 

cultural influences. The variables used for model conceptualisation in Chapter six 

are drawn from these frames of variables and mapped into six different modules. 

 

 

Further to this, the chapter has demonstrated that quite a number of energy and 

carbon emissions models have evolved over the years with the capability of 

forecasting and estimating energy consumption and carbon emissions, especially 

in the domestic sector of the economy. These models are found to vary 

considerably based on the levels of disaggregation, complexity, resolution of 

output, output aggregation levels, scenario analysis performed, model validation, 

and their availability to the members of public for scrutiny, using basically two 

major epistemic approaches that include: top-down or bottom-up approaches. The 

top-down techniques rely on the kind of interaction subsisting between the energy 

sector and the economy in general at aggregated level in order to predict and 

forecast the behaviour of energy consumption and carbon emissions, especially at 

the household level, when some changes are made to the policy parameters within 

such models. On the other hand, bottom-up techniques mainly focus on only the 

energy sector utilising a disaggregated approach of either statistical or building 

physics method that contain a high level of details to model energy consumption 

and carbon emissions, especially at household level. 

 

After a careful appraisal of the existing modelling approaches, the chapter 

concludes that there are a number of limitations in the existing modelling 

techniques that prevent them from being used in this thesis. These are (1) lack of 
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transparency in the model algorithms, (2) inability to account for the complex, 

interdependencies, and dynamic nature of the issue of energy consumption and 

carbon emissions, (3) limited evidence to show for the occupants-dwelling 

interactions, and (4) lack of enough capacity to accommodate qualitative data 

input. And as such, there is the need to scout for more robust and sophisticated 

modelling approaches that take into consideration the kind of complexity 

involved and bedevilling the issue of HECCE due to high inter-dependencies, 

chaotic, non-linearity, and qualitative nature of some of the variables involved. 
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Chapter 3 
 

MODELLING THE SOCIO–TECHNICAL SYSTEMS 
 

 

 

3.1 Introduction 

 

In Chapter two it was concluded that there is the need for more robust approaches 

that have the capability of modelling the kind of complexity involved in 

household energy consumption and carbon emissions by taking into consideration 

the limitations of existing modelling approaches as discussed in Section 2.6. It 

was argued in Section 1.1 of Chapter one that the problem under investigation in 

this thesis sits squarely within the domain of STS. In this chapter systems idea 

that brought about the STS is first discussed by reviewing the rationale, historical 

backgrounds as well as the basic concepts of the systems-based approach. Further 

to this, the chapter discusses the theory of STS together with its basic concepts. 

Literature on the domain of application and modelling techniques of STS will be 

also reviewed. Additionally, the literature study specifically assesses and critiques 

the identified STS modelling techniques against a set of criteria that meets the 

requirements of the problem under investigation as highlighted in Sections 1.1, 

and 2.6 of this thesis. Finally, the choice of the most suitable STS modelling 

technique concludes the chapter. 

 

 

3.2 Systems-based Approach of Scientific Inquiry 

 

The systems idea of scientific inquiry came into limelight not until in the fifties, 

when the main concepts and principles relating to the general systems theory were 

formulated. Banathy (2000a) noticed that the systems ideas of different fields 

share a common ground on systems orientations as those ideas embrace 

research/professional activities in the area of “system engineering, operations 
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research, system dynamics, cybernetics and information science, general theory 

of systems, living systems and evolutionary theory, soft systems and critical 

systems theory, and chaos and complex systems theory”  (Banathy, 2000a). As a 

result of this, these researchers now recognise the necessity of an interdisciplinary 

research field with capability of coping with ever increasing complexities that fall 

beyond the scope of a single discipline. The systems-based approach of scientific 

inquiry that emphasised the intrinsic order and interdependence of the complex 

problem in all its ramifications is therefore born. 

 

Systems-based approach of scientific inquiry, however, incorporates systems 

theory, systems philosophy, and systems methodology; as three main inter-related 

domains of disciplined scientific inquiry. While the systems theory and 

philosophy provide the philosophical basis for the systems-based approach, 

systems methodology gives the sets of methods, strategies, models and tools for 

systems-based approach of scientific inquiry. The rest of this section discusses the 

rationale behind the systems-based approach of scientific inquiry, historical 

background of the systems-based approach, its concepts, components and 

characteristics, and types of systems. 

 

 

3.2.1  Rationale Behind the Systems-based Approach to Scientific Inquiry 

 

Science is a way of acquiring testable knowledge about the world (Clayton & 

Radcliffe, 1996). The classical method of scientific inquiry has played prominent 

role in understanding and treating complexities in the ‘world of science’ and came 

into luminance during the last 17th and 18th centuries based on Descartes’ 

analytic-deductive method which was used in studying complex phenomena. 

Clayton and Radcliffe (1996) argue that science has a number of defining 

characteristics of which three are particularly important to include ‘replicability’, 

‘refutability’, and ‘reductionism’. Descartes, however, bolstered reductionism by 

publishing ‘Discourse on Method’ in 1637 and this publication gives four 
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precepts which influence science for years (Capra, 1996). According to Capra 

(1996), these precepts are: 

• Accept only that which you are certain of, 

• Divide topic into as small parts as possible, 

• Solve simplest parts first, 

• Make as complete lists as possible. 

This method breaks down the complex entities into small parts and studies them 

separately in order to gradually have the understanding of the whole, which forms 

the philosophical basis of classical view of scientific inquiry that born the 

technological and industrial revolutions in the globe (Panagiotakopoulos, 2005). 

 

Panagiotakopoulos (2005) reports that by the end of the 19th century and during 

the 20th century complexity in ‘real world’ expanded in such a way that classical 

method of scientific inquiry reached its limits in explaining the world. Due to this 

fact, Banathy (2000a) contends that the reductionist approach was no longer able 

to explain ‘wholeness’ which results from the mutual interaction of ‘parts’. 

Premise on this, Skyttna (2006) submits that to have a full understanding of the 

reason why a particular problem occurs and still persists, there must be a savvy of 

the parts in relation to the whole. This argument is, however, absolutely against 

the classical view of scientific reductionism and philosophical analysis as 

promulgated by Descartes (Capra, 1996). In view of this, there is no doubt that 

simple tools cannot be used to capture ever increasing complex problems in the 

world that is embedded in interconnected systems which are operating in 

dynamically changing environments (Banathy, 2000a). This therefore necessitates 

the needs for a shift in classical approach paradigm to systems approach of 

scientific inquiry. 

 

Systems approach of scientific inquiry therefore represents a kind of paradigm 

shift which is now changing the emphasis from ‘parts’ to the study of ‘whole’ 

(Banathy, 2003) since it is difficult to observe properties of the whole bit by bit. 

Systems approach of scientific inquiry, hence, provides a multi-dimensional 

framework in which information from different disciplines and domains can be 
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integrated without being forced into a one-dimensional mapping, which is not 

possible from the view of classical approach. 

 

 

3.2.2 Historical Background of the Systems-based Approach 

 

The account of historical background of the systems-based approach of scientific 

inquiry has been widely reported in the literature. This subsection therefore gives 

a summary of how the approach has evolved over the years as reported by 

Decleris (1986). 

 

Banathy (2000b) reports the pioneer work of Ludwig von Bertalanffy in the area 

of biology in 1932 as being the first to develop the systemic idea on general 

systems theory in early 20th century. This work spurs research activities in many 

areas of scientific endeavours as it is capable of dealing with messy complex 

problems. Table 3.1 depicts how the systems approach has transcended over the 

years and this is complete with the major actors within those years. Also, Table 

3.2 shows how the ideas of the systems researchers have expanded due to more 

and more complex problems being confronted with. 

 

In Decleris (1986), it was reported that the first phase of the systems-based 

approach evolution marks the start of the systems theory formulation between 

1916 and 1940. This emanates as a result of the fact that the classical method of 

scientific inquiry finds it difficult to cope with ever increasing complex problems 

and the need to depart from the thinking of traditional analytic-deductive 

approach. This is where the basic systemic ideas are then defined and announced 

as depicted in Table 3.2. The second phase of this evolution is termed the 

practical orientation phase as the period witnessed a more practical relevance of 

the technological revolution. This is the period when the technological 

advancement skyrocketed mainly due to the need to tackle many complex 

problems that arose from World War II. The main complex problem that 

developed then was that of coordination of complex actions (Table 3.2), which 
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brought about the main idea of compilation of optimum theoretical models based 

on the Operations Research and Policy Science disciplines (Tables 3.1 & 3.2). 

 

The third phase witnessed the development of highly sophisticated systems-

based technological advancement that contributed in no small measure to the birth 

of new scientific disciplines. This causes the systems approach to be reoriented 

and refined in order to accommodate these developments. The phase saw the 

emergence of Mathematical Theory of Communication, Cybernetics, Network 

and Linear Systems Theory, Systems Analysis, and Systems Construction. In fact, 

the phase is known for the formation of hard systems (Table 3.1). The major 

problem of this phase is in the area of Information Transmission and Construction 

of Complex Artefacts, which brought about the ideas of Information and Control 

Systems (Table 3.2). Decleris (1986) argues that subsequent inventions in the 

fields of Cybernetics and Mathematical Theory of Communication had a 

remarkable impact in the world of science today, especially in the area of human-

machine systems (i.e. STS). 

 

The fourth phase is seen as the formation of soft systems. This is because the 

period saw an enormous expansion in the systems approach across many fields of 

study in a bid to solve complex social problems. Principally, problems in human 

systems are solved by this approach. During this period, the problem of 

uncertainty and change in complex systems behaviour grew and difficult to 

manage due to the soft nature of the problem. The main ideas communicated here 

to solve these were the ideas of dynamic systems and information processing 

systems (Table 3.2). These ideas were seen to be effective is disciplines like 

Systems Management, Spatial Planning, Education, Transportation, etc.  

 

Arguably, the world is in the fifth phase of systems approach where complex 

problems due to global climate change have surfaced in the last two decades 

involving soft and hard systems. The main idea here in order to solve the problem 

of climate change is sustainability, especially issues of carbon emissions, under 



Chapter 3: Modelling the Socio-Technical Systems 
 

 

68 
 

purview of which the study in this thesis falls. This problem then necessitated the 

use of systems approach to capture the problem. 

 

Table 3.1: Systems approach evolution 

 

(Adapted with extension from Decleris, 1986) 
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Table 3.2: Systemic ideas evolution 

 

 

Banathy (2000b) regards researchers like Ashby, Bertalanffy, Boulding, Fagen, 

Gerard, and Rappoport as the pioneers that set forth the basic concepts and 

principles of the general theory of systems that metamorphosed into systems-

based approach today. The concept of systems approach advocates that the 

properties and characteristics of the whole, which is the systems itself, is quite 

different from summing up the parts in such a way that properties of a whole 

cannot be observed bit by bit as against the view of classical, traditional method 

of scientific inquiry that studies parts with linear cause and effect. Banathy 

(2000a) argues that deterministic, linear cause and effect is practically inadequate 

in dealing with many interactive variables of complex, dynamic systems. In 

contrast, systems-based approach is able to capture the dynamics of multiple, 

mutual and recursive complex causation (Banathy, 2000a) and sees the behaviour 

of the systems as non-linear, non-deterministic and expansionist in nature as 

negates the reductionist approach of classical science. Based on the ideas of the 

pioneers of the systems-based approach, Banathy (2000a) proposes an overview 

of the key distinctions between the classical view of scientific inquiry and 

systems view of scientific inquiry. These distinctions are based on what they 
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‘focus on’, their ‘mode of inquiry’, the way they ‘reason’, the ‘rule’ guiding them, 

‘goal’ and finally ‘control’ as shown in Figure 3.1. 

 

  

Figure 3.1: Key distinctions between classical and systemic orientations 

(Adapted from Banathy, 2000a) 
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3.2.3 Components and Characteristics of Systems-based Approach  

 

Based on the basic concepts of systems-based approach enunciated above and the 

works of researchers like Turner (1978), Capra (1996) and Blockley (1998), it is 

undoubtedly evident that the systems-based approach encapsulates many 

interrelated components, the properties of which are altered should the systems 

cloaked in any way (Waterson, 2009). These components are the main anchor of 

the systems-based approach. To this end, adopting a systems approach to solving 

the problem relating to HECCE in the context of this thesis entails getting insights 

into the effects of interactions among different variables hypothesised to influence 

household energy consumption as reported in Chapter five of this thesis. 

 

By drawing from the studies of Turner (1978) and Blockley (1998), Waterson 

(2009) was able to capture those components and their characteristics that are the 

central idea being communicated by the systems-based approach as shown in 

Figure 3.2. The characteristics are therefore similar to the problem under 

investigation by this thesis (Chapter 1). The three main components given by 

Waterson (2009) (Figure 3.2) are:  

• Input-output processes – this aspect gives the relationships that exist 

between the systems inputs and their corresponding outputs containing 

elements like multifinality, equifinality, etc. 

• Whole-part relationships – the main idea being communicated by this 

component is hinged on the fact that the working of the systems as a 

whole needs to be firstly analysed in parts as suggested by Gibson (1979). 

The component further suggests that the whole is quite more than just 

summing up the parts (Banathy, 2000a) as this kind of relationships 

existing between them are argued to be complex, dynamic, and chaotic in 

nature (Sinclair, 2007). Holism, entropy, and system elements are 

therefore expressed as the major elements of this component. 
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• Connectivity between elements – this component expresses the 

interrelationships among different elements within the systems in terms of 

hierarchy, interactions and regulation. The complexity of the systems here 

are hence elaborated based on causal relationships and feedback structure 

among these elements (Katz & Kahn, 1966). 

 

Additionally, Wilson et al. (2007) and Walker et al. (2008) offer the description 

of behaviour exhibited by the system in order to further capture its characteristics. 

They argue that a systems as a dynamic and complex whole containing an 

integrated interacting functional parts has energy, material, and information 

flowing through it. These energy, material, and information of the studied systems 

are placed within an environment that is surrounded by permeable boundaries, 

which is capable of exhibiting erratic behaviour while its elements seek 

equilibrium. 

 

 

3.2.4 Types of Systems  

 

The study of Decleris (1986) classified systems into hard and soft systems as 

evidenced from Table 3.1 in Section 3.2.2. Hard systems, for example, are 

described as technical and physical systems that can be quantified while its 

behaviour can be fully controlled at the same time (Panagiotakopoulos, 2005). 

However, these cannot easily take unquantifiable variables into consideration. 

Different from the hard systems, soft systems are good at capturing and 

understanding unquantifiable variables like people’s opinions, cultures, 

viewpoints and the likes. In short, it will address qualitative aspects of any 

problem situations. To this end, the classification brought about the concept of 

STS as a systems-based approach capable of handling the complexity posed by 

the interaction of ‘human’ and ‘machine’, which is good at combining the 

quantitative and qualitative research strategies together. The next section then 

discusses the STS theory. 
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3.3  The Socio-Technical Systems Theory 

 

STS theory has evolved over the years as a kind of coaction among the 

sociologists that specialised in a new area of academic endeavour termed the 

“sociologists of technology” (Dwyer, 2011). There was a general belief that 

engineers/technologists, for example, tend to ignore the importance of socio 

aspect of their work; while on the other hand, the social scientists tend not 

knowing much about the technology and therefore reluctant at considering the 

artificial reality of technical objects (Ropohl, 1999). STS theory has then been 

used as the theory that combines the two divides together. Therefore, the STS 

theory serves as the theoretical basis for this study. The rest of this section 

discusses the basic concepts of the STS theory and its domain of application. 

 

 

3.3.1 Basic Concepts of Socio-Technical Systems Theory 

 

The origin of the concepts of STS as a methodology for the systems-based 

approach of scientific inquiry could be traced to the studies undertaken by the 

Tavistock Institute, London especially during the post-war reconstruction of 

industry (Trist, 1981; Cartelli, 2007). Cartelli (2007) reports that the emergence of 

the concepts is highly necessary in pursuit of a fit between the work force and 

machine during the introduction of technological systems for work automation 

when it was found out that workers are resistant to technological innovation. 

Since then, the concept has come into luminance and serves as the theoretical 

framework underpinning many studies. 

 

According to Walker et al. (2008), STS as a concept is founded on two main 

principles. The first one is the interaction between the social and technical sub-

systems that set the conditions for successful (or unsuccessful) systems 

performance. They argued that the interactions are comprised partly of linear 

“cause and effect” relationships, the relationships that are normally “designed”, 
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and partly from “non-linear”, complex, and even unpredictable relationships; 

which are those that are often unexpected. Soft, which is socio, does not 

necessarily behave like the hard, which is technical (Walker et al., 2008). 

Additionally, Walker et al. (2008) contends that the growth in complexity and 

interdependence makes the “technical” systems, for example to start to exhibit 

non-linear behaviours. And as such, the STS as a technique of the systems-based 

approach of scientific inquiry is used to handle this kind of complexity as both the 

methodology and tools. The second of the two main principles, is founded on 

“ joint optimisation” of the two systems.  

 

Interestingly, Dwyer (2011) illustrates the concept of STS by the use of a generic 

model as shown in Figure 3.3. According to her, STS is seen to contain 

components that are referred to as social structures and artifacts that are called 

technical elements, which contribute directly or through other components to a 

common system goal. It was shown that both the components and artifacts 

interact with each other. What is guiding the overall behaviour of the system is 

the system goal. 

          

 

Figure 3.3: A model of a socio-technical system 
(Adapted from Dwyer, 2011) 
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The feedback loop enables the actual output of the system to be compared to the 

system goal. Hughes (2000) argues that it is only through the feedback loop that 

errors are detected and thereby corrected in order to have an improvement in 

system performance. 

 

The central idea from the concepts of the STS can be applied to the issue of 

HECCE in order to put the discussion here in context. As presented under Section 

1.1 in Chapter 1 of this thesis, household systems consists of an interplay among 

the dwellings systems (in terms of dwellings’ physical characteristics and 

technological systems put in place within it) refers to as technical systems 

(artifacts), occupants systems (in terms of behaviour towards energy 

consumption, for example) refers to as socio systems (components), and external 

environment systems (in terms of external temperature, energy prices, etc.) refers 

to as technical and/or socio systems. These systems are then interrelate and 

appropriately influence energy consumption and associated carbon emissions.  

 

A detailed analysis of all the variables in the systems suggests that they all 

depends one another thereby making the systems to be a complex one. This is so 

mainly because the variables within each of the systems have multiple 

interdependencies with multi-causal feedback structure considering their effect on 

energy consumption and carbon emissions. Further, they are interconnected, 

chaotic in nature, and difficult to understand, predict and keep under control, 

thereby calling for a pragmatic approach like STS approach to handle the 

situation under consideration. An appraisal of the thesis problem suggests that the 

STS approach is adequate in capturing it. Hence, STS theory serves as the 

theoretical background to the research. 

 

 

3.3.2 Domain of Application of Socio-Technical Systems 

A review of domain of application of STS by different researchers is undertaken. 

During the review, it was noted that the concept of STS means slightly different 
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things to researchers in different fields of study, for example: in engineering, it 

means that organisational form follows technical function, while technical 

function too follows organisational form; in computer science, the technical 

system consists of hardware and software that make an information system, while 

the users of this system and the organisation in which it is embedded form the 

social system; etc. However, similarities in the use of this concept is stronger and 

more than the differences. Literature search was then conducted irrespective of 

the definition used for the STS by different researchers.  

 

Based on the review, STS has been successfully implemented in human-computer 

interaction studies, information technology, software engineering, engineering 

(general), business and management, medicine and the host of others. For 

example, de Greene (1988) used STS in the context of organisational design 

management. Likewise, Appelbaum (1997) used STS in the context of 

organisational development where it was argued that integration of organisational 

development with technological advancement into a total system could prove 

difficult, but the use of STS will make it possible. Also, STS was used in the 

context of innovation which predisposes systemic changes in any organisation 

(Geels & Kemp, 2007). Williams and Edge (1996), Rohracher (2003) and Geels 

(2004) used STS in the context of diffusion of technology in an organisation. 

 

Further, STS has been used in energy supply and demand, especially when it was 

necessary to study the socio-technical influences on energy use, e.g. Shipworth 

(2005), Shipworth (2006), and Motawa and Banfill (2010). STS has been used in 

the computer/software engineering as well as communication and 

telecommunication engineering (Patnayakuni & Rupple, 2010). This concept of 

STS has also been found application in the domain of water management while 

considering irrigation project (Jayanesa & Selka, 2004) and in the domain of 

agriculture and food (Marques et al., 2010). The above then shows how research 

has transcended using STS in solving real life problems. 
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STS has, therefore, been previously used as methodology to model the complexity 

of real systems’ elements and relationships as indicated above. STS is difficult to 

model because of its complex nature. It is complex because its elements are with 

multiple interdependencies and have multi-causal correlation structure. Further, 

STS exhibits a kind of non-linear behaviour where changes in input are neither 

proportional to changes in output, nor is the input to output relationship fixed over 

time (Motawa & Banfill, 2010). The ability of STS to integrate both “hard” and 

“soft” data together under the conditions described above makes it different from 

other complex systems. 

 

3.4 Modelling Techniques for Socio-Technical Systems 

This section covers the techniques utilised by different researchers, under 

different themes, in order to model STS. Based on the review conducted in 

Section 3.3.2 above, a detailed analysis of selected articles from the pool of 

articles reviewed was undertaken. Specifically, these articles were analysed for 

the modelling techniques utilised in the context of STS. The articles were then 

analysed according to the STS domain, STS definition, whether or not 

modelling/simulation was performed, the modelling/simulation techniques that 

was utilised, whether or not the results produced are reproducible, whether or not 

the techniques presented are capable of being generalised to another domains of 

application, and whether or not the model can be easily extended and if it can be, 

to what extent can this be done? The main aim of this exercise is to identify the 

major techniques that have been used by different studies to conceptualise STS 

problems. Table 3.3 shows the results of this review. As shown in Table 3.3, the 

articles reviewed were assessed to indicate any presence of evidence to suggest 

within their body that there is a match or no match or unclear in STS application 

domain, STS definition, modelling/simulation, modelling/simulation technique, 

reproducible, generalizable, and extendable. The (+) sign indicates that there is a 

match, whereas a (-) sign shows that there is no match. The (?) sign signifies that 

evidence of those criteria is unclear.  
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Table 3.3: Review of modelling techniques for socio-technical systems 
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Table 3.3: Continued. 

ANT – Actor Network Theory, ABM – Agent-based Modelling, BBN – Bayesian Belief Network, 

CM – Configuration Modelling, FL – Fuzzy Logic, MA – Morphological Analysis, SNA – Social 

Network Analysis, SD – System Dynamics. ‘+’ means there is a match, ‘-‘ means there is no 

match, ‘?’ means unclear. 

 

The result of the review conducted shows that most of the articles analysed 

explicitly indicate STS as the domain of application for their studies. Also, about 

half of those articles claim that the STS method presented can be generalised. 

Furthermore, the analysis shows that just some of the STS approach presented can 

be reproduced and further extended to accommodate additional modules/sub-

systems. It was also concluded from the review that out of 32 articles analysed, 20 

of them provided the modelling/simulation techniques utilised for their different 

studies within the context of STS. Therefore, the output of the study shows some 

of the techniques that have served as decision support tools/platforms under 

which STS of real problems are modelled. To this extent, this study therefore 

identified the following as the techniques for modelling STS. 

1. Actor Network Theory (ANT) 

2. Agent-Based Modelling technique (ABM) 

3. Bayesian Belief Network (BBN) 

4. Configuration Modelling (CM) 
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5. Fuzzy Logic (FL) 

6. Morphological Analysis (MA) 

7. Social Network Analysis (SNA) 

8. System Dynamics (SD) 

The next section therefore summarises and critiques these modelling techniques. 

 

 

3.5 Summary and Critique of the Modelling Techniques 

 

For any of those techniques to be adequate in the context of this thesis, there are 

some criteria they must fulfil based on the nature of the problem under 

investigation in this thesis. For example, different researchers have criticised the 

energy models in the housing sector for the lack of transparency (Kavgic et al., 

2010; Mhalas et al., 2013) as discussed in Chapter two. Also, Hitchcock (1993), 

Kohler and Hassler (2002) and Shipworth (2005; 2006) established that the 

complex socio-technical systems are highly interdependent, chaotic, and non-

linear, and problems involving these are better solved using a pluralistic approach.  

 

Therefore, it is important to set the criteria upon which the STS modelling 

techniques will be compared. And as such, the modelling techniques are 

compared to one another based on (1) transparency, (2) multiple 

interdependencies (3) dynamic situations (4) feedback processes (5) non-linear 

relationships (6) hard and soft data (7) uncertainties of the variables involved, (8) 

chaotic assumptions and (9) the use of the model as learning laboratory. It is 

against this background the techniques were all assessed, compared, and critiqued 

in order to decide on which one of them will be able to capture the problem under 

investigation based on the above criteria. Table 3.4 summarises and compares all 

the STS modelling techniques. The tenets as well as strengths and weaknesses of 

each of the STS modelling techniques are therefore discussed accordingly in the 

following sub-sections. This exercise would, undoubtedly, help in identifying 

which of them is best for conceptualising the problem under investigation in this 

thesis. 
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Table 3.4: Comparative analysis of STS modelling techniques 

Criteria ANT ABM BBN CM FL MA SNA SD 

Transparency √ √ √    √ √ 

Multiple interdependencies √ √ √    √ √ 

Dynamic situations  √      √ 

Feedback processes        √ 

Non-linear relationships √ √ √ √ √ √ √ √ 

Considering “hard” and “soft” 
data 

√ √ √ √ √ √ √ √ 

Chaotic assumptions √ √ √ √ √ √  √ 

Uncertainties  √ √ √ √ √  √* 

Learning laboratory tool   √     √ 

* Limited capability in handling uncertainties. 

 

 

3.5.1 Actor Network Theory 

 

Actor Network Theory (ANT) was first proposed by Michel Callon and Bruno 

Latour (Callon & Latour, 1981; Callon, 1986). Olla et al., (2003) argues that ANT 

provide a platform for understanding the creation of networks of aligned interests 

where, according to Olla et al., (2003), the world is full of hybrid entities 

containing both human and non-human elements. Carroll (2012) contends that the 

greatest strength of ANT lies in its ability to integrate both hard and soft data 

together (Table 3.4). Also, the approach is capable of modelling problems 

containing variables that have multiple interdependencies with non-linear 

relationships under chaotic assumptions. It, therefore, has some merit in 

modelling STS problems. However, the approach has been criticised for its 

inability to provide the means of differentiating between humans and non-humans 

elements within the model (Carroll, 2012). 
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3.5.2 Agent-Based Modelling 

 

According to Jennings (2000), an agent is seen to be an entity or component that 

is autonomous, reactive, pro-active and capable of social interaction. Agent-Based 

Modelling (ABM) aims to model the global consequences of each of the 

entities/components of a system including their behaviour and interactions. This is 

then the main distinguishing element that sets agent-based models apart from 

other models (van Dam et al., 2009). In general, the ABM approach is applicable 

for modelling of complex systems if the following conditions are satisfied (van 

Dam and Lukszo 2006): 

• The problem has a distributed character; 

• The subsystems operate in a highly dynamic environment; 

• The subsystems have to interact in a flexible way; and 

• The subsystems are characterised by reactivity, pro-activeness, 

cooperativeness and social ability. 

As shown in Table 3.4, ABM seems to be a suitable approach to create models of 

STS because of its capability to handle both hard and soft data with multiple 

interdependencies and treat non-linear behaviour of such data set under small 

uncertainties (Bergman et al, 2008; Natarajan et al., 2011). To this end, a number 

of studies have utilised the approach for modelling complex problems. For 

example, the study of Yahja and Carley (2005) used the approach to model 

improvement in multi-agent social-network systems. Also, Natarajan et al. (2011) 

found the approach useful in modelling energy consumption and carbon 

emissions of the UK housing stock. However, the approach has some drawbacks. 

For example, its weakness lies in its inability to handle multiple feedback 

processes and difficulty in being used as a learning laboratory.  

 

3.5.3 Bayesian Belief Networks 

 

Bayesian Belief Networks (BBN) was developed around late 1980’s and its 

applicability didn’t come into luminance until 1990s. According to Jensen (2001), 
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BBNs emerged as an intuitive technique for reasoning under uncertainty. This 

technique combines different data types as well as learning from new 

observations as they become available. Advantages (Table 3.4) of using BBNs as 

opined by Gill (2002) are: 

• The ability to learn as new information is received or population variables 

change 

• The capacity to systematically integrate a wider variety of data types and 

any prior available knowledge 

• Allow predictions about the likely future state of the system based on what 

is currently known about the system and assumptions about future data 

• The capability to learn causal relationships and gain understanding of a 

problem domain and then predict the consequences of intervention 

• Overt and clear model assumptions 

• Straightforward sensitivity testing. 

 

This approach has been successfully used in a number of applications. 

Application of BBN in the field of environmental management include: 

management of fisheries (Fernandez et al., 2002), land use change (Bacon et al., 

2002), agricultural land management (Cain et al., 2003), and integrated water 

resource management (Bromley et al., 2004). This approach has also been applied 

to modelling the socio-technical influences on domestic energy consumption in 

one of the UK’s Carbon Vision programme: Carbon Reduction in Buildings 

(CaRB) project (Shipworth, 2005; Shipworth, 2006). As argued by Shipworth 

(2005), however, BBN is used as decision support systems mainly because of 

their capability to integrate different array of data together, as well as synthesise 

relevant factors in social, economic, ecological and technical fields which then 

makes it particularly useful in the complex socio-economic/socio-technical 

environments of sustainable development. However, BBN approach is not 

without its own drawbacks. De Waal and Ritchey (2007) argue that using BBN 

may prove a little bit difficult during the initial problem formulation phase of the 

modelling process and difficult to deal with time dependent data set with 

feedback processes. 
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3.5.4 Configuration Modelling 

 

Configuration Modelling (CM) is another technique and decision support tool 

recently proposed by Simon Lock (Lock, 2004; 2005) for modelling the STS. 

Lock (2005) acknowledges that managing the evolution of large systems is a 

complex and difficult task where the full social and technical implications of any 

proposed changes must be fully appreciated before a decision is made whether or 

not to proceed with their implementation. He contends that the task becomes 

challenging and difficult to manage since the interplay between the technical and 

non-technical components is often complex and the various human factor that are 

involved inject much variability and unpredictability into the system. It is against 

this backdrop that a new decision support tool that permits the investigation and 

exploration of different configurations of socio and technical components is 

needed in order to fully predict how changes made to the individual components 

or the overall configuration of a system will affect operational behaviour of that 

system during the real world operation (Lock, 2005). Lock (2004), however, 

argues that this modelling paradigm is a novel approach in the sense that it is easy 

and quick to construct and can as well help to promote understanding of different 

stakeholders. However, there is lack of evidence from the body of literature to 

suggest that this approach has the capability to capture multiple interdependencies 

of data set under dynamic situation. Furthermore, the domain of application of 

this approach has been limited to the area of software engineering as this has not 

gained a wider application, but has some merits in modelling STS. 

 

 

3.5.5 Fuzzy Logic 

 

The capability of Fuzzy Logic (FL) to model STS has been highlighted in 

literature. FL began with the 1965 proposal of fuzzy set theory by Lotfi Zadeh 

(Zadeh, 1979). It is a mathematical approach that is used to represent uncertain 

and imprecise information. Cai et al. (2009) argues that this method deals with 
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reasoning that is approximate rather than fixed and exact, but effective in 

describing highly complex, ill-defined mathematical systems. Furthermore, the 

approach can effectively support linguistic imprecision and vagueness (Li et al., 

2010). A number of studies have used this approach to model complex systems 

under different themes. For example, Cai et al. (2009) used the approach to 

identify optimal strategies within energy sector planning under multiple 

uncertainties of variables involved. Also, under the same theme as Cai et al. 

(2009), Li et al. (2010) combined the approach with stochastic programming to 

model energy and environmental planning systems. Further to this, Wu and Xu 

(2013) combined FL with SD to predict and optimise energy consumption of 

world heritage areas in the People’s Republic of China. While the major strength 

of the approach lies in its ability to model systems under varying degrees of 

uncertainties, it does have some limitations that may debar it from being used 

within the context of this thesis. It lacks the ability to handle multiple 

interdependencies of variables under dynamic situations. Also, it does not support 

feedback processes and cannot be used as learning laboratory. As can be seen, the 

strengths and limitations of this technique are profound as succinctly summarised 

in Table 3.4. 

 

 

3.5.6 Morphological Analysis 

 

Morphological Analysis (MA) was developed by Zwicky – the Swiss-American 

astrophysicist and aerospace scientist – as a general method for structuring and 

investigating the total set of relationships contained in multi-dimensional, usually 

non-quantifiable, complex problems (Zwicky, 1969; Ritchey, 2011). The concept 

and application of MA as strategic decision support is closely related to BBNs. 

According to de Waal and Ritchey (2007), it allows small groups of subject 

specialists to define, link and internally evaluate the parameters of complex 

problem spaces easily, thus creating a solution space and flexible inference. They, 

however, argued that MA cannot easily treat hierarchal structure and causal 

relationships, but when combine with BBNs the benefits of both of these 
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techniques can be optimised. This technique has previously applied to diverse 

fields based on the work of Zwicky. Among them are astrophysics, the 

development of propulsive power plants and propellants, the legal aspects of 

space travel and colonisation (de Wall and Ritchey, 2007). Suitability of this 

approach to the area of application of this thesis is limited, though it has some 

potential when combined with other suitable approaches as shown in the Table 

3.4 above. 

 

 

3.5.7 Social Network Analysis 

 

Social Network Analysis (SNA) views social relationships in terms of network 

theory that consists of nodes and ties (also called edges, links, or connections). 

Nodes, according to (Freeman, 2006), are individual actors within the networks, 

and ties are the relationships between the actors. The resulting graph-based 

structures are often very complex. There can be many kinds of ties between the 

nodes. Research in a number of academic fields has shown that social networks 

operate on many levels, from families up to the level of nations, and play a critical 

role in determining the way problems are solved, organisations are run, and the 

degree to which individuals succeed in achieving their goals. Most importantly, 

SNA has the capability of modelling non-linear, multiple interdependent 

quantitative and qualitative variables (Carroll et al., 2010).  Therefore, it has some 

merits in modelling STS, but its strength could be improved upon when combined 

with other approaches.  

 

 

3.5.8 System Dynamics 

 

System Dynamics (SD) emerged in the 1950s as introduced by Jay Forrester as 

multi-disciplinary field of study that has the capability to deal with complex 

systems. SD, as a systems-based approach, is seen as a methodological approach 

and set of analytical tools for modelling STS (Motawa & Banfill, 2010). 
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Ogunlana, Lim and Saeed (1998) mention that the SD is an approach useful for 

managing processes with two major characteristics:  

• They involve changes over time, 

• They allow feedback, the transmission and receipt of information. 

Interestingly, Coyle (1997) offers a robust definition of SD as a method “that 

deals with the time-dependent behaviour of managed systems with the aim of 

describing the system and understanding through a qualitative and quantitative 

model, how information feedback governs its behaviour, and designing robust 

information feedback structures and control policies through simulation and 

optimisation”.  

 

Over the years, the approach has developed itself into a very powerful tool for 

modelling complex systems. To this extent, it has found a wider application in 

quite an array of different fields. For example, Ogunlana et al. (1998) used it in 

the field of project management, Feng et al. (2013) in the area of energy 

consumption and carbon emissions, and the host of other applications. The 

approach was able to garner use in different capacities based on its strength. 

Accordingly, Sterman (1992) justifies the application of SD to modelling complex 

problems in the sense that: 

• SD models are well suited in capturing multiple interdependencies. 

• SD was developed to deal with dynamics. 

• SD is the modelling method of choice where there are significant feedback 

processes. 

• SD, more than any other modelling technique, stresses the importance of 

non-linearities in model formulation, therefore, is able to capture any form 

of non-linear relationships. 

• SD modelling permits both “hard” and “soft” data. 

However, SD has limited capability of handling situations under uncertainties. 

This weakness has received due attention from the SD research circles and 
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significant improvements have been made on this as some of the SD software 

now incorporate optimisation and sensitivity analysis of uncertain parameters. 

 

3.5.9 Conclusion from the STS Modelling Techniques for the Research 

 

The above summary and critique of different STS modelling techniques give the 

appropriateness of each of the techniques to conceptualise the problem under 

investigation in this thesis. Of the nine criteria used in appraising the techniques, 

the analysis done suggests that SD almost meets all the nine criteria, except for its 

inability to fully handle parameters under uncertainties, of which a full scale 

improvement on this aspect is underway. As argued in Section 3.5.8, SD was 

specifically introduced by Jay Forrester in order to handle complex problems that 

have multiple interdependencies and are dynamic in nature with many feedback 

structures. The tools for this technique have in-built functions to capture the non-

linear relationships existing among different variables making up the model with 

the capability of accepting both qualitative and quantitative data and convert same 

to simulation. The technique can also handle chaotic situations by invoking the 

delay functions in-built in the tools. It is necessary to mention that the technique 

is undergoing a constant review and over the years, the transparency aspect of it 

has been greatly enhanced and improved upon. This means that all the model 

variables including the algorithms can be assessed and scrutinised by third parties. 

Summing up all these characteristics of SD makes it more appropriate to 

conceptualise the problem under investigation in the context of this thesis. 

 

However, there are other techniques that meet substantial parts of the criteria of 

assessment of the techniques. For example, both ABM and BBN met seven each 

of those criteria. In ABM, the models developed using the technique can be easily 

scrutinised for its algorithms. The major drawback is in its inability to handle 

feedback processes which has been argued as germane to the dynamic 

characteristic of any of the techniques. Also, the approach cannot be used as 

learning laboratory where policies can be tested for results of implementation 

before being actually implemented in reality. In the case of BBN, the technique is 
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transparent as well. Clearly, it is unsuitable for this thesis because of its inability 

to handle dynamic situations involving feedback processes.  

 

3.6 Chapter Summary 

 

The main aim of this chapter was to identify the most suitable modelling approach 

to conceptualise the complex socio-technical systems of household energy 

consumption and carbon emissions. This chapter identified this modelling 

approach. Before the review of literature for modelling techniques of STS, the 

chapter first reviewed literature on systems-based approach of scientific inquiry 

as they form the theoretical knowledge base underpinning the STS. This is mainly 

to give the philosophical backgrounds of STS. 

 

Literature search was then conducted and the review results revealed that the 

domain of application of STS has been in the area of human-computer interaction 

studies, information technology, software engineering, engineering (general), 

business and management, medicine and the host of others. Also, the review was 

analysed for modelling techniques for STS. The following techniques were 

identified to include: actor network theory, agent-based modelling technique, 

Bayesian belief network, configuration modelling, fuzzy logic, morphological 

analysis, social network analysis, and system dynamics. These techniques were 

further probed for their capability in capturing the problem under investigation in 

the thesis against a set of criteria. After a careful appraisal of all the techniques, 

the study identified system dynamics as the most suitable technique in 

conceptualising the problem under investigation in the context of this thesis. The 

next chapter discusses the research methodology developed for this study. 
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Chapter 4 
 

RESEARCH METHODOLOGY 
 
 
 
4.1 Introduction 

 

The research methodology is seen as a roadmap of any research undertaken that is 

firmed up to direct the research in terms of theoretical underpinning of the 

approach, data collection methods, and modelling technique used in solving the 

problem. The preceding Chapters two and three present the literature review 

towards solving the research problem as directed by the study objectives. It is 

therefore necessary to discuss and describe the methodology adopted and used to 

achieve the objectives of the research in the context of this thesis. The chapter 

first discusses the philosophical foundations guiding any research in attempt to 

underpin the methodology used for this research in philosophically. The rest of 

the chapter therefore provides details regarding the methodological approach 

developed for the research including the method of data collection, and model 

development and validation. 

 

 

4.2 Philosophical Background Underpinning Any Research 

 

Pruyt (2006) argues that what constitute different research paradigms are rooted 

in and consistent with the sets of basic assumptions about epistemology5, 

ontology6, axiology7, human nature, methodology, causality and logic. And these 

paradigms frame philosophies, meta-methodologies, multi-methodologies, 

methodologies, methods, techniques, tools, and their interpretations (Pruyt, 2006). 

                                                 
5 An epistemological issue concerns the question of what is (or should be) regarded as acceptable 
knowledge in a discipline (Bryman, 2008). 
6 Ontology answers the question: what is the nature of reality? 
7 Axiology answers the question: what is the role of values? Values here reflect either the personal 
beliefs or the feelings of a researcher (Bryman, 2008). 



Chapter 4: Research Methodology 
 

 

92 
 

Table 4.1 illustrates the interconnectivity among these different concepts by 

giving their meaning and examples as used within this thesis.  

 

Therefore, for a researcher to arrive at a research methodology decision, the 

decision needs justification by considering the philosophical underpinning of the 

approach, procedures of inquiry, and specific methods of data collection, analysis, 

and interpretations. Additionally, Creswell (2009) posits that the selection of 

adequate research methodology still largely depends on the research problem or 

issues being addressed, the researchers’ personal experiences, and the audiences 

for the study. Different researchers, however, admit that an adequate 

understanding of the philosophical paradigm of any research is a necessity as this 

forms the basis for researchers’ understanding of the research method to utilise at 

any point in time.  

 

Table 4.1:  Basic concepts of philosophical paradigms 

Concept Meaning Examples 
 

Paradigm Coherent set of meta-theoretical (ontological, 
epistemological, praxiological, methodological, 
nature-of-society, human-nature, …) assumptions 
which constitutes a distinct worldview 
 

Positivism 

 
 
(Philosophical or 
sociological) theory 

Coherent explanations of (social, material, personal, 
…) life by a distinct philosophical or sociological 
school of thought  
 

Giddens’ structuration 
theory 

 
 
Meta-methodology 

Framework for choosing between methodologies 
and for matching and mixing methodologies 
 

Multimethodology 

 
 
Multi-methodology 

A (new) methodology consisting of the combination 
of (parts of) other existing methodologies 
 

Adaptive control 
methodology 

 
 
Methodology 

Structured set of guidelines or activities to assist 
people in undertaking research or interventions 
 

Mainstream SD 
methodology 

 
 
Method 

Structured set of processes and activities that 
includes tools, techniques, and models, that can be 
used in dealing with the problem or problem 
situation 
 

Mainstream SD method 

 
 
Technique 

Specific activity that has a clear and well-defined 
purpose within the context of a methodology 
 

Stock-flow diagram, 
numerical simulation 

 
 
Tool 

Artefact, often computer software, that can be used 
in performing a particular technique 

Vensim, Stella, … 

(Adapted from Pruyt, 2006) 
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Before further discussion, it is imperative to define the term paradigm. To this 

effect, Bogdan and Biklen (1998) define paradigm as “a loose collection of 

logically related assumptions, concepts, or propositions that orient thinking and 

research”. In a more straightforward manner, Cohen and Manion (1998) view it 

as “the philosophical intent or motivation for undertaking a study”. It is equally 

important to clarify that different authors at different times used distinct 

interpretive words to depict the word paradigms. For example, Creswell (2009) 

expresses this as worldviews, Crotty (1998) – epistemologies and ontologies, and 

even Neuman (2000) – research methodologies. 

 

Philosophical research paradigms have been therefore discussed extensively in 

literature. While some of these authors argue that the philosophical paradigms 

underpinning any research are positivism, interpretivism or pragmatism 

(Amaratunga and Baldry, 2001; Bryman, 2003; Punch, 2005); others have gone 

beyond these three paradigms. For example, Creswell (2009) views the 

philosophical paradigms underpinning any research from four different schools of 

thought to include: postpositivism, constructivism, advocacy/participatory, and 

pragmatism. Blaikie (2009) extends these four schools of thought to ten under two 

covers of classical research paradigms: positivism, critical rationalism, classical 

hermeneutics, interpretivism; and contemporary research paradigms: critical 

theory, social science realism, contemporary hermeneutics, ethnomethodology, 

saturation theory, and feminism.  

 

As can be seen from the foregoing, literature suggests that authors have used 

diverse terms with wide-ranging claims regarding philosophical paradigms 

underpinning any research. It then makes this aspect look occasionally more 

confusing to early career researchers.  To this end, the following common 

philosophical research paradigms are further discussed here: positivism, 

interpretivism, and pragmatism. These are linked to the research strategy and 

method of data collection used in this research. 
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4.2.1 The Positivist Philosophical Research Paradigm 

 

Bryman (2008) observes that the doctrine of positivism is extremely difficult to 

pin down mainly because different authors used it in different ways. This 

reinforces the assertion made towards the end of the last paragraph of Section 4.2 

that authors have used diverse terms to reflect a wide-range of claims regarding 

philosophical research paradigms. However, the ideas of different authors do 

converge.   

 

To this extent, Pruyt (2006) therefore argues that the positivist philosophical 

research paradigm describes the ontological-epistemological position that is 

realist-objective. Kelly’s (2004) position about the positivist philosophical 

paradigm assumes that “reality is objectively given and can be described by 

measuring properties which are independent of the researcher and instrument”. 

Bryman (2008) adds to this by describing positivism as an “epistemological 

position that advocates the application of the methods of the natural sciences to 

the study of social reality and beyond”. The argument subsumes that the principle 

of positivism could be applied to the world of social sciences based on the 

assumption that social sciences can be studied in like manner as the natural 

sciences (Mertens, 2005). This principle is argued to entail the following 

(Bryman, 2008): 

1. Only phenomena and hence knowledge confirmed by the senses can 

genuinely be warranted as knowledge (the principle of phenomenalism). 

2. The purpose of theory is to generate hypothesis that can be tested and will 

thereby allow explanations of laws to be assessed (the principle of 

deductivism). 

3. Knowledge is arrived at through the gathering of facts that provide the 

basis for laws (the principle of inductivism). 

4. Science must (and presumably can) be conducted in a way that is value 

free (that is, objective). 

5. There is a clear distinction between scientific statements and normative 

statements and a belief that the former are the true domain of the scientist. 
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The last principle above by implication depicts the first one mainly 

because the truth or otherwise of normative statements cannot be 

confirmed by the senses. 

 

In terms of research strategy, Pruyt (2006) contends that positivism research 

paradigm adopts methodologies that are purely quantitative and decontextualized, 

often named ‘hard’; which by implication portends that the paradigm aligned with 

the data collection and analysis that portrays quantitative methods (Essa, 2008).  

The methodological approach firm up for this research aligns with some features 

of this frame as will be discussed in Section 4.3. The next sub-section discusses 

the interpretivist research philosophy. 

 

 

4.2.2 The Interpretivist Philosophical Research Paradigm 

 

A number of researchers (Creswell, 2009; Schwandt, 2007; Lincoln & Guba, 

2000; Neuman, 2000; Crotty, 1998; Lincoln & Guba, 1985; Berger & Luekmann, 

1967) bluntly view the interpretivist philosophical research paradigm as an 

approach to qualitative research that, according to Bryman (2008) and Blaikie 

(2009), holds a sharp contrasting epistemology to positivism. This research 

paradigm seeks the understanding or meaning of phenomena subjectively through 

participants that make up this paradigm (Creswell, 2011). The view of Remenyi et 

al. (1998) is in no way different from that of Creswell (2011) that interpretive 

research tends to understand and explain a phenomenon, rather than searching for 

the external cause of fundamental laws.  

 

Additionally, Bryman (2008) opines that it is a paradigm that is “predicated upon 

the view that a strategy is required that respects the differences between people 

and the objects of the natural sciences and therefore requires the social scientist 

to grasp the subjective meaning of social action”. Here social scientists are seen 

to be saddled with the responsibility of gaining access to the ‘common-sense 
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thinking’ of people and therefore have their actions interpreted from their point of 

view. Along this same line of thought, Creswell (2009) simply puts the 

interpretivist philosophical research paradigm as the researcher’s intent to make 

sense of the meanings others have about the world, where the researcher 

inductively develops a theory rather than starting with a theory.  

 

However, it needs to emphasise that all above submissions are based on the 

following summarised assumptions by Creswell (2009) as identified by Crotty 

(1998): 

• Meanings are constructed by human beings as they engage with the world 

they are interpreting. Qualitative researchers tend to use open-ended 

questions so that the participants can share their views. 

• Humans engage their world and make sense of it based on their historical 

and social perspectives – we are all born into a world of meaning 

bestowed upon us by our culture. Thus, qualitative researchers seek to 

understand the context or setting of the participants through visiting this 

context and gathering information personally. They also interpret what 

they find, an interpretation shaped by the researcher’s own experiences 

and background. 

• The basic generation of meaning is always social, arising in and out of 

interaction with a human community. The process of qualitative research 

is largely inductive, with the inquirer generating meaning from the data 

collected in the field. 

 

As reflected from the foregoing, the interpretivist research paradigm advocates 

the qualitative research strategy, which invariably involves collecting qualitative 

data. Again, the methodological approach for this research takes some features of 

this research philosophy which is further discussed in Section 4.3. The next sub-

section discusses the pragmatist research paradigm. 
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4.2.3 The Pragmatist Philosophical Research Paradigm 

 

Essa (2008) argues that pragmatism is not consecrated to just only one system of 

philosophy or reality. Both Pruyt (2006) and Creswell (2009) express that 

pragmatism position is grounded and enormously benefitted from the work of 

philosophical pragmatists like Peirce, James, Mead, Dawey, Davidson, Bentley, 

and Rorty as identified in Maxcy (2002) and Cherryholmes (1992). The 

epistemology and ontology of this research paradigm are founded on the tenets of 

finding solutions to research problems (Creswell, Guttman, & Plano-Clark, 2002) 

as raised by the research questions (Tashakkori & Teddlie, 1998), rather than 

focussing on a specific method or the paradigm or (epistemology/ontology/……) 

assumptions fundamental to such a method.  

 

Therefore, Creswell (2003) contends that pragmatist researchers mainly focus on 

the ‘what’ and ‘how’ of the research problem by applying all the methods based 

on the criterion they think will work best in answering their research questions 

utilising both qualitative and quantitative approaches (Tashakkori & Teddlie, 

1998). Following on from this, Creswell (2009) summarises the following as the 

assumptions that are central to the pragmatist philosophical research paradigm as 

identified by Cherryholmes (1992) and Morgan (2007): 

 

• Pragmatism is not committed to any one system of philosophy and reality. 

This applies to mixed methods research in that inquirers draw liberally 

from both quantitative and qualitative assumptions when they engage in 

their research. 

 

• Individual researchers have a freedom of choice. In this way, researchers 

are free to choose the methods, techniques, and procedures of research that 

best meet their needs and purposes. 

 

• Pragmatists do not see the world as an absolute unity. In a similar way, 

mixed methods researchers look to many approaches for collecting and 
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analysing data rather than subscribing to only one way (e.g. quantitative or 

qualitative). 

• Truth is what works at the time. It is not based on a duality between reality 

independent of the mind or within the mind. Thus, in mixed methods 

research, investigators use both quantitative and qualitative data because 

they work to provide the best understanding of a research problem. 

 

• The pragmatist researchers look to the what and how to research, based on 

the intended consequences – where they want to go with it. Mixed 

methods researchers need to establish a purpose for their mixing, a 

rationale for the reasons why quantitative and qualitative data need to be 

mixed in the first place. 

 

• Pragmatists agree that research always occurs in social, historical, 

political, and other contexts. In this way, mixed methods studies may 

include a postmodern turn, a theoretical lens that is reflective of social 

justice and political aims. 

 

• Pragmatists have believed in an external world independent of the mind as 

well as that lodged in the mind. But they believe that we need to stop 

asking questions about reality and the laws of nature (Cherryholmes, 

1992). “They would simply like to change the subject” (Rorty, 1983). 

 

• Thus, for the mixed methods researcher, pragmatism opens the door to 

multiple methods, different worldviews, and different assumptions, as well 

as different forms of data collection and analysis. 

 

From the foregoing, it is evident this research paradigm extends their view of 

research methodology beyond using a single research approach to achieve the 

objectives of any research problem. Instead, this strategy takes a holistic view at 

the problem and uses any method or a combination of methods to solve the 

research problem. This may mean combining both the qualitative and quantitative 
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research strategies, thereby triangulating data collection methods. The next 

section therefore discusses the methodological approach developed for this 

research and how these paradigms align with it based on supported philosophical 

evidences. 

 

 

4.3 Methodological Approach Developed for the Research 

 

This section of the thesis provides details on the methodological approaches used 

to achieve the objectives of the research in this thesis. The preceding section 

shows the discussion of philosophical paradigms guiding any research upon 

which the methodology adopted for this research is drawn. This research uses a 

mixed-method research design drawn from the pragmatist philosophical view in 

order to achieve its objectives. The reason for adopting the mixed-method 

research design is motivated based on three main reasons that include the nature 

of the research problem, the data and the methods of collecting these data, and the 

purpose of the research. The research problem as discussed in Chapter one of this 

thesis entails answering quite a number of research questions in order to fulfil the 

aim and objectives of the research. This includes answering questions relating to 

‘what’ and ‘how’ questions and as such, it portends to mean that no single 

approach could be used to answer those questions. This then informed the 

decision to use a method that complements both the qualitative and quantitative 

research strategies and all-encompassing.  

 

The purpose of this research is to develop a dynamic model of the socio-technical 

systems of energy consumption and carbon emissions of the UK housing stock 

and provide a tool to policy makers capable of testing a range of possible futures 

regarding household energy consumption and carbon emissions. As discussed in 

Chapter three, the modelling platform adopted for this research to implement the 

purpose of this study is system dynamics. As will be seen in Chapter five, the 

system dynamics approach, on its own merit, is hinged on a pluralistic approach 

that considers both the qualitative and quantitative approaches to modelling. Let 



Chapter 4: Research Methodology 
 

 

100 
 

this alone has the capability of informing this research on the choice of research 

method and design to use. Additionally, it is extremely important to justify that 

the knowledge claim in this research is valid and highly reliable. And the only 

way to demonstrate such, according to Awodele (2012), is to desire 

complementariness, completeness of ideas, credibility, and diversity of views, 

which are tantamount to reliability and validity.  

 

From the foregoing, it is evident that the nature of the research in this thesis 

entails capturing both the qualitative and quantitative data, which by implication 

means triangulation of data collection methods (detail is discussed in Section 4.4). 

Qualitative data, which is majorly collected via interviews (see Section 4.4.1), is 

necessary in order to capture the views of the experts and practitioners regarding 

the model conceptualisation (see Sections 5.6.2, 6.2, and 6.5). Also, quantitative 

data like household energy consumption based on end-uses, population, number 

of households, etc. (see Section 4.4.2), are required for the research problem. All 

these then justifies the use of mixed-method research. 

 

Johnson and Onwuegbuzie (2004) define mixed-method research as “the class of 

research where the researcher mixes or combines quantitative and qualitative 

research techniques, methods, approaches, concepts or language into a single 

study”. Philosophically, Johnson and Onwuegbuzie (2004) argue that mixed-

method research uses the concept and system of philosophy of pragmatic method. 

In this regard, de Waal (2001) points out that the logic of inquiry of mixed-

method makes use of induction8, deduction9, and abduction10. Mixed-method 

research design is all inclusive, pluralistic, and complementary in nature (Johnson 

& Onwuegbuzie, 2004) as it uses multiple approaches in achieving the research 

objectives. This means that this research design do not limit the researchers’ 

choice of method to just a single method. Additionally, mixed-method research 

design suggests that the researchers are in control and use an eclectic approach in 

                                                 
8 Induction here refers to discovery of patterns. 
9 Deduction relates to testing of theories and hypotheses. 
10 Abduction pertains to uncovering and relying on the best of a set of explanations for 
understanding one’s results. 
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conducting the research. Fundamentally, what guide the adoption of mixed-

method research design is the research questions/objectives and as such dictates 

the best way to answer the research questions or achieve the research objectives. 

The strengths and weaknesses of mixed-method are therefore shown in Table 4.2. 

Table 4.2: Strengths and weaknesses of mixed-method 

Strengths Weaknesses 

• Words, pictures, and narrative can be used to add 

meaning to numbers. 

• Numbers can be used to add precision to words, 

pictures, and narrative. 

• Can provide quantitative and qualitative research 

strengths. 

• Researcher can generate and test a grounded theory. 

• Can answer a broader and more complete range of 

research questions because the researcher is not confined 

to a single method or approach. 

• The specific mixed research designs discussed in this 

article have specific strengths and weaknesses that should 

be considered.  

• A researcher can use the strengths of an additional 

method to overcome the weaknesses in another method 

by using both in a research study. 

• Can provide stronger evidence for a conclusion through 

convergence and corroboration of findings. 

• Can add insights and understanding that might be 

missed when only a single method is used. 

• Can be used to increase the generalizability of the 

results. 

• Qualitative and quantitative research used together 

produce more complete knowledge necessary to inform 

theory and practice. 

• Can be difficult for a single 

researcher to carry out both 

qualitative and quantitative research, 

especially if two or more approaches 

are expected to be used concurrently; 

it may require a research team. 

• Researcher has to learn about 

multiple methods and approaches and 

understand how to mix them 

appropriately. 

• Methodological purists contend that 

one should always work within either 

a qualitative or a quantitative 

paradigm. 

• More expensive. 

• More time consuming. 

• Some of the details of mixed 

research remain to be worked out 

fully by research methodologists 

(e.g., problems of paradigm mixing, 

how to qualitatively analyse 

quantitative data, how to interpret 

conflicting results). 

 

(Adapted from Johnson & Onwuegbuzie, 2004) 

Figure 4.1 provides the research objectives, the major tasks performed, the 

methodology to achieve each of the tasks, and the chapters where each of the 

objectives are achieved as firmed up for the research. The method of data 

collection is discussed in the next section. 
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4.4 Method of Data Collection for the Research 

 

The methodological approach firmed up for this research, as discussed in the 

preceding section, suggests that the pragmatic research approach is most suitable 

and appropriate for this research. The philosophical foundation underpinning this 

has already been discussed in Section 4.2.3 and this falls within the pragmatist 

research paradigm. Pragmatic approach entails using a combination of qualitative 

and quantitative research strategies by collecting both the qualitative and 

quantitative data. As such, the aim of this research involves developing a dynamic 

model of the socio-technical systems of household energy consumption and 

carbon emissions. To this extent, Luna-Reyes and Andersen (2003) state that 

models, especially SD models (as will be discussed in Chapter five), require 

moving between qualitative and quantitative research strategies. This is to 

ascertain that the data mimic reality of the system under study. As a result of this, 

triangulation of data collection approach is inevitable. 

 

This study employed a number of quantitative and qualitative data for the 

research. Qualitatively, the research used literature review to achieve some of the 

objectives of the research even before the modelling efforts. At model 

development stage of this research, Luna-Reyes and Andersen (2003) argue that 

qualitative data collection brings about rigour in modelling process and adds to 

the richness of the process, which quantitative data may not be able to provide. 

This is by bringing insights into the model from the mental models of experts via 

interviews. In fact, Forrester (1975c) attaches much importance to qualitative data 

sources and identifies them as the main sources of data in SD as will be discussed 

in Chapter five. To this extent, this research collected some qualitative data in 

order to conceptualise and drive the model via literature review and interview of 

experts and practitioners in the field of this study. 

 

In order to develop and drive the model, which is the final output of this research, 

quantitative data were used. The main quantitative data used is sought primarily 

from three different secondary sources to include DECC, metrological 
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department, ONS, and other sources like Government reports and documents for 

example SAP. DECC is acknowledged as the main power house for data related 

to any form of energy and issues concerning climate change in the UK. DECC 

collates energy and climate change data from different sectors of the UK 

economy such as: housing, transport, industry, etc. The published DECC dataset 

specifically used for the study is the UK housing energy fact file 2012 (Palmer & 

Cooper, 2012), which draws together, in a compact form, most of the important 

data regarding household energy use in the UK since 1970. The rest of this 

section discusses data collected in details basically as primary and secondary data 

sources. 

 

 

4.4.1 Primary Data: Interview 

 

Asika (2009) states that data are classified as either primary or secondary data. 

The classification is based on two possible data sources as primary data source 

and secondary data source. He further argues that primary data mainly come from 

direct observation of the event, manipulation of variables, contrivance of research 

situations including performance of experiments and responses to questionnaires 

and interviews. 

 

Interviews with experts and practitioners on a problem, for example, often play a 

crucial role in modelling process as they enable the modeller to obtain the mental 

data of these experts/practitioners’ mental models. Interviews capture their 

thoughts, expressions, and understanding of the system under study. Mental data 

is not directly accessible except it is elicited from the experts via interviews. 

According to Fellows and Liu (2003), interviews can be structured, semi-

structured, or unstructured. The characteristic of each type of interviews is given 

in Table 4.3 as adapted from the work of Coombs (1999). Both unstructured and 

semi-structured interviews were employed in this study. That is, unstructured 

interview method was used to elicit interviewees’ mental knowledge and for face 

validation of the model, whereas the semi-structured interview approach was used 
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at model validation stage alone, especially during model validation based on 

scoring method (details are provided in Section 8.6 of Chapter 8). Note that 

majority of the qualitative data used in this model are captured from the experts 

and industry practitioners that took part in the study.  

 

Table 4.3: Types of interviews 

Type Characteristics 

Structured Wording of the questions and the order in which they are asked 

is the same from one interview to another. Respondents are 

expected to choose an answer from a series of alternatives given 

by the interview. 

Semi-structured Interviewer asks certain major questions the same each time, but 

is free to alter their sequence and probe for more information. 

Unstructured Interviewer prepares a list of topics that they want the 

respondent to talk about, but is free to phrase the questions as 

they wish, ask them in any other that seems sensible and even 

join in conversation by discussing what they think of the topic 

themselves. 

(Adapted from Coombs, 1999) 

The interviews were conducted twice. Firstly, at the system conceptualisation 

stage of the modelling process (as will be discussed in Section 5.5.2 of Chapter 

five), the mental data of experts and industry practitioners were captured in the 

form of knowledge elicitation through unstructured interviews. This is basically to 

ascertain the correctness of the initial causal loop diagrams (CLDs) drawn based 

on the modellers knowledge of the system under study as elicited through the 

review of literatures and government documents. Also, at this stage respondents 

were interviewed on formulation of some of the relationships between certain 

variables in the model that are with lack of empirical data and/or evidence of 

relationships existing among them. This method is in line with the approach of 

Coyle (1997) regarding establishing the causal relationships among the variables 

in SD models as will be fully explained in Chapter 5. 
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Secondly, semi-structured interviews were conducted at the validation stage of the 

modelling stage (as shown in Section 5.5.4 of Chapter 5 and Chapter 8). At this 

stage, experts and industry practitioners were engaged with in order to validate 

the output of the model in terms of its behaviour. This is to make sure that the 

behaviour of the model outputs reflect their expectations or otherwise based on 

their experience and advance reasons for any plausible behaviour noticed. 

Additionally, the interviews were conducted with system dynamicists in order for 

them to assess the model and then validate it. The system dynamicists selected for 

this exercise were those with requisite experience in modelling SD systems and 

are conversant with the Vensim software, since the model is implemented using 

the software. This is to ascertain that all the tenets of such software are duly 

adhered to and no floatation of the software rules whatsoever. 

 

Those that took part in the first stage of interviews were selected using double 

sampling method (Asika, 2009). The database of the Scottish Statistic Register for 

professionals in energy and environment consisting of 365 individuals as at 

September, 2012 was used. The whole population of those on the register was 

first sampled by sending an email seeking their participation in the study with 

brief background information on the research. They were requested to answer 

some questions relating to their area of expertise, academic qualification, years of 

experience in energy related issues, and availability to partake in the study. 

Taking cognisance of the above criteria, only ten of those that were responded 

were found adequate to partake in the study. And as such, ten of them were 

interviewed at this stage in order to elicit their knowledge regarding the system 

under study.  

 

At the second stage of interviews, 15 respondents took part in the exercise. This 

consists of eight respondents that were interviewed at the system 

conceptualisation stage. Additional four were sampled from the same database 

above, all making 12 experts and industry practitioners from energy background. 

The remaining three experts are drawn from the SD background. They were 
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randomly selected from the list of SD experts from the UK that attended the 31st 

International Conference of the System Dynamics Society in the US. Their 

availability were then sought and confirmed accordingly. 

 

 

4.4.2 Secondary Data 

 

Bryman (2008) argues that the term secondary data source refers to those data 

sources in which the researcher making use of such data may not have been 

involved in the collection of such data. Dale et al. (1988) advance some reasons 

why collection of secondary data should be given a thought and seriously 

considered. Among these are that it saves cost and time as well as having access 

to high-quality data.  

 

In this study, it is practically impossible to personally collect the required data 

that will drive the model as they are best collected by the government agencies 

because they have all the requisite resources to do so. And as such, data for the 

following variables are extracted from the UK housing energy fact file of the 

DECC (Palmer & Cooper, 2012): space heating, hot water, lighting, appliances, 

and cooking energy; carbon emissions; energy efficiency (SAP) ratings; fabric 

insulation in the form of loft, cavity and solid wall insulation; energy prices in the 

form average annual gas and electricity bills; abridged version of population and 

households. The Metrological Department is the home for weather related data in 

the UK. The main weather related data collected includes external air temperature 

and humidity. Data extracted from the ONS database include data related to 

demographic variables, which includes a full version of population, and 

households’ data, average life expectancy, average fertility rate, and reproductive 

time. These specific data are sought as motivated by the variables included in the 

model.  

 

Table 4.4, therefore, shows a sample quantitative data of some of the variables 

used in the model. It is important to state that the data are subjected to further 
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analysis to show the minimum, maximum, mean, standard error and standard 

deviation of these variables. 

 

Table 4.4: Sample data 

Variable Unit of 
Measurement 

Minimum Maximum Mean Standard 
Error 

Standard 
Deviation 

Households Households 18791000 26863000 2.2664E7 3.63850E5 2.35802E6 

Population People 55632000 62736000 5.7931E7 3.00346E5 1.94646E6 

Space heating MWh 10.14 15.84 13.54 0.18 1.19 

Hot water MWh 3.03 6.64 4.78 .17 1.10 

Average 
annual gas bill 

£ 372 659 542.07 12.44 79.66 

 

 

Literature review 

 

The main qualitative secondary data collected for the study is in the form of 

literature review. Majorly, the intention of literature review is to show the level of 

existing knowledge relating to the subject of study, i.e. HECCE as the case is in 

this study. Literature review provides a solid theoretical background regarding the 

topic under study as it gives the gaps in knowledge (Fellows & Liu, 2003).  The 

literature review needs to be thorough, critical, and up-to-date. In fact, the study 

of Hart (1998) highlights some of the purposes of literature review as follows: 

• Differentiate what has been done from what needs to be done; 

• Discover important variables relevant to the research problem;  

• Synthesise and obtain a new perspective; 

• Identify relationships between ideas and practice; 

• Establish the context of the research problem; 

• Rationalise the significance of the research problem; 

• Improve and obtain the subject vocabularies; 

• Develop an understanding of theory and method; 

• Communicate ideas and theory to applications; 
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• Identify the main methodologies and research techniques that have been 

used; and 

• Place the research in a historical context to show familiarity with state of 

the art developments. 

 

In this study; beyond gathering data for some of the variables involved in the 

model, a comprehensive literature review was undertaken in order to first gain 

initial insights into the issues relating to HECCE. This approach of literature 

review was used to collect relevant information regarding the research problem 

(Chapter 1), factors influencing household energy consumption and carbon 

emissions (Chapter two), methods of modelling HECCE (Chapter 2), methods of 

modelling the STS (Chapter 3) as well as gathering of information on research 

method for the study (Chapters 4 and 5). This implies that literature review was 

conducted at different stages of this study and information collected was critically 

appraised. For example, literature review is the major data source for the initial 

system conceptualisation in the form of causal loop diagrams as will be discussed 

in Chapter six. 

 

 

4.5 Model Development and Validation  

As given previously, the platform for modelling in this thesis is system dynamics. 

Therefore, it is important to discuss in details the approach employed in 

developing the model as well as in validating it. Details relating to this are 

provided in a separate chapter dedicated to the system dynamics approach, which 

is Chapter 5. Specifically, the model development and validation are discussed in 

Sections 5.6 and 5.7 of Chapter 5. 

 

4.6 Chapter Summary 

The epistemology and ontology of research paradigms guiding the methodology 

of any research endeavour was succinctly discussed in this chapter. It is shown in 
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the chapter that the qualitative and quantitative research strategies emanate from 

the interpretivist and positivist research paradigm positions respectively, while a 

combination of both is from the pragmatic research paradigm position. The 

chapter also established the use of mixed-method research design that is based on 

the concept and system of philosophy of pragmatic method for the research in this 

thesis. Due to the fact that the mixed-method research design is all inclusive, 

pluralistic, and complementary in nature, the chapter discussed different 

approaches used in collecting data. This involved collecting both the primary data 

(in the form of interview) and secondary data (literature review and hard data 

from databases of government agencies). Information on model development and 

validation of the research was given as well. The next chapter discusses the 

system dynamics modelling as the approach to implement the modelling task in 

this research. 
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Chapter 5 
 

THE SYSTEM DYNAMICS APPROACH  
 
 

 

5.1 Introduction 

 

In Chapter three, the system dynamics approach was selected as the most suitable 

approach to conceptualise the problem under study in the context of this thesis. 

The research methodology in terms of theoretical underpinning of the 

methodology and research strategy including the methods of data collection used 

in solving the research problem are discussed in Chapter four.  It is equally 

important to discuss the system dynamics approach in detail and present how it is 

applied in this thesis. Therefore, this chapter describes the theoretical background 

of the system dynamic approach and its philosophical underpinnings. The 

software used to implement the system dynamics modelling are discussed 

including description of symbols and conventions used in system dynamics. The 

details of the SD modelling process firmed up for the research including the step 

by step approach used in building the model in this thesis are discussed. 

 

 

5.2 System Dynamics Modelling 

 

The SD approach is the chosen research methodology and tool for this research 

based on critical appraisal of different approaches as conducted in Chapter three. 

It is therefore necessary to link this research approach to the philosophical 

research paradigms as discussed in Section 4.2 above. In order to address the 

philosophical issues regarding SD, it would be necessary to first ask: what is 

system dynamics? Is it a paradigm, philosophy, theory, methodology, method, or 

a set of techniques or tools? Answering these questions has, indeed, generated a 

high level debate in the SD research circle as different system dynamicists and 

researchers have attributed different names to it. For example, some system 
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dynamicists see SD as a theory (Flood & Jackson, 1991; Hitchcock & Salmon, 

2000), a (group of) method(s) (Coyle, 1979; Meadows, 1980; Wolstenholme, 

1990; Sterman, 2000; Lane, 2001), a methodology [Roberts, 1978; system 

dynamics society (SDS), 2013], a field of study (Richardson, 1991; Coyle, 2000), 

a tool (Luna-Reyes & Andersen, 2003; Zhao et al., 2011; Ansari & Seifi, 2013), a 

paradigm (Andersen, 1980; Randers, 1980; Meadows, 1980; Meadows & 

Robinson, 1985; Forrester, 1994; Richardson & Pugh, 1999; Maani & Maharaj, 

2004), and a host lot of nouns.  

 

Historically, SD emanates from MIT’s Sloan School of Management in the 1950s 

when Jay W. Forrester introduced the approach in his quest to link engineering 

and management together. This idea was conceived in order to solve complex 

problems considering Forrester’s background in computers and feedback control 

systems. His ideas on this methodology were made known in 1956 through a 

seminar paper presented at the Faculty Research Seminar of the MIT’s Sloan 

School of Management (Forrester, 2003). Forrester started communicating his 

ideas by fiercely offer criticism of economic models and its assumptions. 

Forrester’s main criticism of economic models is hinged on the fact those 

economic models (Olaya, 2011): 

• fail to adequately reflect the loop structure that make up economic 

systems and as such neglect leads to exclude inherent properties of closed 

loops such as resistance to change, accumulations and delays;  

• are incapable of including flows of goods, money, information, and 

labour in one single interrelated model;  

• exclude changing mental attitudes that affect and explain economic 

processes;  

• use linear equations for describing systems;  

• offer a restriction in building models as constrained by the capacity for 

manipulating numerical data and solving the equations;  

• rely on multiple regression analysis for obtaining coefficients for 

equations that define economic behaviour;  
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• lack reflection on the very assumptions underlying the models. 

 

After all these arguments, Forrester then went ahead to present his approach that 

was hinged on servomechanisms and differential equations: the techniques that 

were argued to be largely underutilised then (Forrester, 1975a). Premise on the 

above, Forrester considered a new approach to understanding the firm and 

economy, as reported in Forrester (1975a) by proposing a new kind of models that 

incorporate (1) dynamic structure; (2) information flows; (3) decision criteria; (4) 

non-linear systems; (5) differential equations; (6) incremental changes in 

variables; (7) model complexity (8) symbolism and correspondence with real 

counterparts; and (9) structure over coefficient accuracy. 

 

Forrester then made more advances on the technique, which led to the publication 

of an article entitled “Industrial dynamics: A major breakthrough for decision 

makers” in Harvard Business Review (Forrester, 1975b) in the year 1958. In this 

article, Forrester was able to shape his ideas and since then, SD has emerged as a 

multi-disciplinary field of study that deals with the analysis of complex systems. 

The approach has, indeed, remained a powerful and well-established methodology 

and tool for modelling and understanding feedback structure in complex systems 

(Ansari & Seifi, 2013; Zhao et al., 2011; Ranganath & Rodrigues, 2008). The 

approach, according to Coyle (1997), “deals with the time-dependent behaviour 

of managed systems with the aim of describing the system and understanding, 

through qualitative and quantitative models, how information feedback governs 

its behaviour, and designing robust information feedback structures and control 

policies through simulation and optimisation”, that was grounded in theory of 

modern feedback control and nonlinear dynamics. Further to this, it is built on 

‘cause and effect’ relations among different variables influencing the system 

under investigation (Ranganath & Rodrigues, 2008) and indeed a “method to 

enhance learning in complex systems” (Sterman, 2000).  The next gives the 

philosophical underpinnings of SD approach. 
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5.3 System Dynamics – A Positivist, Interpretivist, or Pragmatist 

Philosophical Research Paradigm? 

 

The preceding sub-sections in chapter four highlight the philosophical research 

paradigms guiding any research methodology. It is therefore necessary to place 

the SD approach within the philosophical research paradigm space. However, 

correctly placing the SD approach within this space has generated a high level 

debate within the research circle. And as such, it is important to assess the 

premises of SD regarding how it is grounded in philosophical foundations. Is it a 

positivist, interpretivist or pragmatist philosophical research paradigm? 

 

In answering the above question, Jackson (2003), for example, considers SD 

models to be representation of an assumed “objective” real world; thereby 

labelling the SD approach as a “hard” approach as further reflects in the work of 

Flood and Jackson (1991). This means that the SD approach is placed within the 

one dimensional array of positivism. This categorisation cannot be utterly refuted 

as Zagonel (2004) gives some examples of SD practices that illustrate this 

position as policy engineering, optimisation based simulation, purely quantitative 

SD and micro-world modelling. Following this position, Pruyt (2006) contends 

that the positivist SD assume an ontological position that modelled systems 

correspond to existing systems in the real world. Also, the epistemological 

position of this paradigm assumes that stock and flow diagrams and causal loop 

diagrams are good objective representations of the external reality. This position 

presumes that the resulting quantitative SD simulation presents an approach to 

replicate the dynamics of these real-world systems. 

 

In yet another circumstance, some other studies have criticised viewing the SD 

approach as purely objective (interepretivist) research paradigm. Forrester11 

himself (Forrester, 1961) stressed that “a model can be useful if it represents only 

what we believe to be the nature of the system under study…we are forced to 

commit ourselves on what we believe is the relative importance of various factors. 

                                                 
11Jay W. Forrester is the pioneer of SD approach 
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We shall discover inconsistencies in our basic assumptions…Through any of 

these we learn”. The justification to disproof the arguments of critics who 

mistakenly placed SD approach within the purely positivism space is apparent 

from this statement that SD is more than simulations alone. This is because it 

qualitatively captures the mental models of practitioners involved in SD 

modelling. Further to this, quite a number of system dynamicists (Forrester, 

1975c; Doyle & Ford, 1998; Sterman, 2000) have argued that the central concept 

driving the SD approach lies on “mental models”, which presumably is purely 

subjective.  

 

However, the ability and adequacy of “mental models” that is labelled as the core 

of the SD approach to accurately depict reality have generated a kind of debate 

within the research circles (Doyle & Ford, 1998). Apparently, it would be 

necessary to further explore the idea of mental models in order to see on how it 

has helped shape the SD approach. Sterman (2000), for example, expressly refers 

to “mental models” as “our beliefs about the networks of causes and effects that 

describe how a system operates, along with the boundary of the model (which 

variables are included and which are excluded) and the time horizon we consider 

relevant…Most of us do not appreciate the ubiquity and invisibility of mental 

models, instead believing naively that our senses reveal the world as it is. On the 

contrary, our world is actively constructed (modelled) by our senses and brain”. 

Further, Lane (1999) considers “mental models” as desired systems conceived 

and existing in the mind of the modeller. Pruyt (2006) describes both the 

ontological and epistemological positions of interpretivist SD. He sees the 

ontological position as relativist and the epistemological position as subjective. 

 

From the foregoing, it is yet unclear if it is adequate to place the SD approach in 

any of the research paradigm divides above or both. This then necessitates the 

need to assess the pragmatist SD. Pruyt (2006), for example, argues that most SD 

practices contain pragmatist elements within them as they tend to reflect the 

characteristics of both the positivist and interpretivist paradigms. That is, the 

ontological/epistemological assumption of SD approach is more realist/objective 
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– as the case is during the simulation phase – and sometimes more 

nominalist/subjective – as the case is during modelling and interpretation phases 

(Pruyt, 2006). Barton (2002) adds to this by suggesting that the philosophical 

underpinning of systems thinking stage of SD approach (refers to as modelling 

phase by Pruyt, 2006) lies on pragmatism.  

 

 

5.4 System Dynamics as a Multi-disciplinary Modelling Approach 

 

In order to put SD in context as a multi-disciplinary modelling approach, it is 

important to further discuss its application in addition to the one briefly discussed 

in Section 3.5.8 of Chapter three. Undoubtedly, SD has developed itself into a 

unique and very powerful tool that finds applications in a wide range of fields, 

where the behaviour of a system is to be studied (Ranganath & Rodrigues, 2008). 

For example, SD has found application in economics and finance 

(Ghaffarzadegan & Tajrishi, 2010; Forrester, 1971), resource management (Rehan 

et al., 2011; Dyson & Chang, 2005), education (Homer, 1997), health (Milstein et 

al., 2010; Homer et al., 2006), production management (Ellis, 2001, Repenning & 

Sterman, 2001), project management (Ogunlana et al., 1998), public policy and 

management (Rouwette et al., 2007; Dangerfield, 2006), strategy (Barabba et al., 

2002; Homer, 1996) energy and environment (Balnac et al., 2009; Yudken & 

Bassi, 2009). Within the energy consumption and carbon emissions domain (Feng 

et al., 2013; Wu & Xu, 2013), SD models have been developed and applied in 

different contexts and not limited to energy efficiency (Davis & Durbach, 2010; 

Motawa & Banfill, 2010; Dyner et al., 1995) and energy policy evaluation (Chi et 

al., 2009; Naill, 1992; Ford, 1983).  

 

It needs to clearly state that within the energy policy evaluation domain, which is 

the main focus of this research, Ford (1983) used SD to generate different policy 

analysis scenarios regarding electricity planning in the United States (US). 

Similarly in the US, Naill (1992) adopted SD approach to model policy related to 

energy supply and demand for better energy planning in the US economy. 
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Likewise within the same context in the UK, Chi et al. (2009) considers SD as an 

approach to understand the dynamics of the UK natural gas industry in order to 

formulate a long time energy policy. While some of these studies reinforce the 

application of SD approach to energy policy evaluation, there is, however, paucity 

of sufficient evidence to support that due attention has been paid to the issues 

relating to HECCE from the SD perspective. 

 

 

5.5 System Dynamics Software 

 

It is important to note that there is quite a number of software under which SD 

can be implemented. These include: DYNAMO, Powersim, STELLA/iThink, 

AnyLogic, Vensim and the host of others. Brief details about some of the 

software are presented hereunder based on the extension of Eberlein’s (2013) 

work:  

 

• DYNAMO: Within the SD modelling, DYNAMO (Dynamic Models) 

represents the first simulation language developed in the field. The 

software was developed at Massachusetts Institute of Technology (MIT) 

by Jack Pugh around 1960s. It can run on personal computers under 

DOS/Windows platform. It provides an equation-based modelling 

environment. 

 

• Powersim: Powersim came into limelight in the mid – 1980s as a result of 

the research sponsored by the Norwegian government in a bid to support 

and improve the quality of high school students in the use of SD models. 

The output of the research gave birth to the object-oriented simulation-

based games that primarily used for education. Powersim can be used in 

Windows based environment for creating SD models with the ability of 

facilitating interactive games or learning experiments. 
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• STELLA (Structural Thinking Experimental Learning Laboratory with 

Animation): STELLA was first inaugurated on the Macintosh in the 

1980s, but now available on Windows. The software provides a graphical 

interface for the development of SD models. It supports a series of tools in 

the model development which allows easy access to equation writing. 

 

• AnyLogic: AnyLogic software was developed in the 2000s as organised by 

the Distributed Network Computer research group at St. Petersburgh 

Technical University. The software has the capability of supporting the 

SD, discrete event simulation, and ABM. The software can as well work 

on Windows, Macintosh, and Linus. 

 

• Vensim: Vensim was developed around the mid-1980s primarily for use in 

consulting projects by Ventana Systems. The software became 

commercially available in 1992 and works well in both Windows and 

Macintosh. Vensim fully supports SD modelling with flexible graphical 

representations without any form of clustering on the interface. The 

software contains panoply of tools for model analysis and testing, and the 

results can be visualised instantly on invoking SyntheSim. Vensim has the 

capability of using data and calibrating same. The software also has the 

capability of being linked to other software like C, C++, Visual Basic, etc. 

Also, other SD modelling software like Powersim, STELLA can be easily 

converted to Vensim. 

 

According to Coyle (1997), before settling for any of the software, there is the 

need to assess the software package based on: its basis in fundamental SD theory; 

the ease of which it can be used; the support it gives to model building; the extent 

to which models can be documented and explained to a sponsor; the facilities it 

has for debugging a model; the ease of making experiments and producing output; 

and the scope of its facilities for policy design. When all the identified SD 

software is assessed against the above set of criteria together with their 

capabilities as explained above, they all have what it takes to be used. However, 
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Vensim is chosen as the SD software for the modelling in this thesis because of its 

flexible graphical representations, which aid its clarity in presenting the CLDs. 

Also, its ability to incorporate optimisation, the method that was derived from 

numerical mathematics, an added advantage over all other software motivates its 

use.  

 

Within the Vensim software, there is quite an array of symbols used in creating 

SD model sketches. Also, it needs to state that Vensim utilises a workbench that 

allows the modeller to build and analyse a model and its accompanied datasets 

(Ventana, 2010). According to Ventana (2010), the workbench comprise of a 

menu, a model, a toolbar, a variable, control panel, one or more toolsets, output 

windows and model building windows. An example of this workbench is shown 

in Figure 5.1 displaying different tools and symbols used in Vensim.  

 

 

Figure 5.1: Vensim workbench 

 

Within the Title Bar, the Model (Model_Test-06122013.mdl) and Variable 

(average household size) are named and displayed. Immediately after the Title 
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Bar is the Menu, which is followed by the Main Toolbar for the software. Below 

the Main Toolbar is the Sketch Toolset used in sketching the model.  To the left 

of the screen is the Analysis Toolset for performing the analysis of the Model 

Output as shown in another window in Figure 5.1. Also, the Control Panel is 

shown in another window displaying the Loaded and Available Datasets. The 

Build Window reflects the workbench where sketches related to the model are 

created and edited.  

 

Additionally, Figure 5.1 shows some of the conventions used in Vensim 

especially in depicting different types of variables within the SD models like 

stock, flow, etc. Some of the other conventions are highlighted too. The 

description of these terminologies is given in Table 5.1. 

 

Table 5.1: Conventions used in SD modelling 

Name Description 

Stock (Level) A stock can be defined as a structural term for anything that 

accumulates. 

Flow (Rate) If stocks/levels are bathtubs, then flows/rates are pipes that feed 

and drain them. 

Cloud A cloud is an infinite reservoir representing the boundary. The 

capacity of cloud is so great that it makes no sense to worry about 

filling or draining it. 

Connector (Arrow) A connector/arrow is used to link the variables in the model 

together. 

Auxiliary Variables These are computed from Levels, Constants, Data, and other 

Auxiliaries. Auxiliary variables have no memory, and their current 

values are independent of the values of variables at previous times. 

Look-ups They are used in specifying arbitrary non-linear relationships in 

Vensim. 

(Adapted with modifications from Morecroft, 1988) 
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5.6 System Dynamics Research Process Developed for the Research 

In SD literature, different authors suggest different, but overlapping, stages 

involved in any SD modelling efforts. For example, Wolstenholme (1990) simply 

identifies two phases to include diagram conceptualisation, and analysis and 

simulation phases. Randers (1980) however goes beyond the two phases 

identified by Wolstenholme (1990) to suggest four stages comprising of model 

conceptualisation, formulation, testing, and implementation. Sterman (2000) gives 

problem articulation, dynamic hypothesis, model formulation and simulation, 

testing, and policy formulation and evaluation as the main stages involved in any 

SD process. Robert et al. (1983), Richardson and Pugh (1999), and Ranganath 

and Rodrigues (2008) are of the opinion that any SD modelling efforts should 

incorporate the following stages: problem identification, system 

conceptualisation, model formulation, analysis of model behaviour, model 

evaluation, policy analysis and improvement, and policy implementation. 

Martinez-Moyano and Richardson (2013) extends what Robert et al. (1983), 

Richardson and Pugh (1999), and Ranganath and Rodrigues (2008) consider 

being the main stages of SD modelling efforts.  

 

Due to the nature of the research problem in this thesis, this study firmed up a SD 

modelling that consists of problem identification and definition, system 

conceptualisation, model formulation, model behaviour analysis, model behaviour 

analysis, model testing and validation, and policy formulation and analysis as 

shown in Table 5.2. These are then mapped into four main stages as Figure 5.2 

depicts. The modelling process for the research includes the timeline, major tasks 

performed, and the methodology employed to achieve each of the tasks 

performed. 
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5.6.1 Stage 1: Problem Identification and Definition 

 

The first stage (Figure 5.2) identifies the problem for the research and properly 

defines it by reviewing extant literature in the subject. This is necessary in order 

to properly put in context the problem SD approach intends to solve. This has 

been established in Chapter one of this thesis.  

 

 

5.6.2 Stage 2: System Conceptualisation 

 

The second stage as shown in Figure 5.2 is the system conceptualisation. This 

stage does not necessarily require the modeller to catalogue quantitative data in 

order to conceptualise the problem. However, the modeller mainly focuses on 

extant literature review on the problem and how the mental knowledge of the 

experts in the field of study can be captured all in a bid to develop the initial 

characterisation of the problem. Sterman (2000) reinforces the importance of this 

exercise when he submits that modellers usually have discussions with relevant 

stakeholders within the frame of the research, which is supplemented by literature 

review, interviews, and direct observations or participation. 

 

The above exercise performed involves identification of model variables and 

establishment of model boundary, which includes the reference modes as 

evidenced from the review of extant literature, reports and documents from 

different sources including the UK government agencies like department of 

energy and climate change (DECC). At this stage, the variables identified are 

related to one another in order to establish the causal relationships and feedback 

structure within the system under study. This then leads to the initial formulation 

of the ‘cause and effect’ relationships among those variables in the system and 

pictorially represented them by what is called ‘causal loop diagrams’ (CLDs). The 

study achieved the CLDs for the system under study with the use of SD software 

(Vensim DSS version 5.11).  
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The CLDs represent sets of dynamic hypotheses for the study. It is necessary to 

note that the initial CLDs were based on the knowledge elicitation of the modeller 

(author). Input from the experts on the subject is then captured in the form of 

knowledge elicitation by having discussions with ten of them (this was fully 

explained in Section 4.4.1 of Chapter four). The purpose of this exercise is to 

verify and validate the initial CLDs that were purely based on the knowledge 

elicitation of the modeller alone as evidenced from the literature review and 

archival analysis. This exercise witnessed removal and addition of some causal 

links and variables until the final CLDs were achieved. The experts and industry 

practitioners that took part in the interview were selected based on double 

sampling frame as explained in Section 4.4.1 of Chapter 4. It is worth mentioning 

that at this stage the final CLDs do not indicate the stock or the flow but merely 

indicate the influence of one variable on the other. Details about the CLDs are 

explored in Chapter six. 

 

 

5.6.3 Stage 3: Model Formulation and Behaviour Analysis 

 

In this stage, a detailed model structure is given together with model parameter 

values. Depending on the research problem, this stage used to mostly contain 

elements of quantitative data as the case is in this thesis. In some cases, however, 

formulation of qualitative concepts is done here as well as the case is in this thesis 

also. In fact, one of the main strengths of the SD approach is in its ability to 

combine both the qualitative and quantitative research approach together as 

debated in Section 5.3 of this chapter. Richardson and Pugh (1981) add to the 

qualitative model formulation by suggesting that “the modeller may wish to 

represent a concept explicitly. To do this requires the invention of units and a 

measurement scale, and consistent treatment throughout the model”.   

 

The use of qualitative data sources for model formulation has received criticism 

within the research circles as quite a number of researchers have raised some 

concerns on the applicability of qualitative data in equations formulation. The 



Chapter 5: System Dynamics Approach 
 

 

128 
 

defence against this query has been that the tenet of SD approach is founded on 

taking advantage of the mental models of experienced practitioners with the 

subject area. For example, Richardson (1996) addresses the issue of qualitative 

mapping and formal modelling. In the same vein, Sterman (2000) contends that 

“omitting structures or variables known to be important because numerical data 

are unavailable is actually less scientific and less accurate than using your best 

judgement to estimate their values”. Taking all these into cognisance, the model 

in this thesis is formulated with the use of both qualitative and quantitative data 

sources as previously enunciated.  

 

Stage three of the research process, as depicted in Figure 5.2, involves model 

formulation and behaviour analysis. Formulating the model requires representing 

the model using the stock and flow diagrams (SFDs). The SFDs show a pictorial 

representation of the behaviour of the system in the form of accumulation (stock) 

and flow (rate), and it is achieved with the use of SD software. It needs to 

emphasise that mere CLDs or SFDs do not result in SD. This will constitute SD 

when the variables in the model are related together in terms of equations and 

model simulation performed. So, model equations are developed based on a 

combination of different approaches involving qualitative and numerical data. For 

example, equations were developed by the use of SD functions in Vensim 

software to capture qualitative and quantitative data, regression analysis, 

structural equation modelling, and other means like some equations that were 

developed by SAP. In building the equations, the model is subjected to various 

data sourced and collected from a number of different sources in the UK such as: 

DECC, metrological department, and ONS. Also, data collected via interviews 

during the knowledge elicitation and from literature are qualitatively inputted into 

the model through “look-ups” in Vensim software. Once the system configuration 

is found satisfactory, the simulation is then run based on Vensim SD software 

from 1970 to 2050 with a year time step and the use of Euler form of integration 

type. Model behaviour are then analysed and discussed accordingly. A full detail 

about model formulation is presented in Chapter six and model behaviour analysis 

is addressed in Chapter seven. 
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5.6.4 Stage 4: Model Testing and Validation, and Policy Formulation and 

Analysis 

 

Stage four, as shown in Figure 5.2, concludes the modelling process in building 

SD model of the problem addressed in this thesis. This stage consists of model 

testing and validation, and policy formulation and analysis. The studies of 

Forrester and Senge (1980) and Sterman (2000) provide a comprehensive array of 

different tests to be performed in order to have SD models validated. The studies 

broadly divide the tests into two to include (1) structure verification and (2) 

behaviour verification (Chapter eight lists all the tests based on Sterman, 2000). 

Forrester and Senge (1980) highlight the importance of this exercise when they 

commented on structure verification, for example, that “the model must not 

contract knowledge about the structure of the real system…In most instances, the 

structure verification test is first conducted on the basis of the model builder’s 

personal knowledge and is then extended to include criticisms by others with 

direct experience from the real system”. In the same vein, Randers (1980) 

establishes how the test should be performed and who should take part in it by 

suggesting that “…the modeller should not restrict himself to the small fraction of 

knowledge available in numerical form fit for statistical analysis. Most human 

knowledge takes a descriptive non-quantitative form…Model testing should draw 

upon all sources of available knowledge”. These statements emphasise the 

importance of model validation with experts and practitioners in the field of 

study. 

 

In this study, model validation involved testing and verifying the model structure, 

behaviour and sensitivity analysis with the use of SD functions within the Vensim 

software. Further to this, validation against historical data was performed based 

on the available historical data and the predictive ability of the model in its ability 

to mimic reality in the future was assessed statistically. Additionally, interviews 

were conducted with 15 experts and industry practitioners, eight of which are 

among those that were previously contacted at the second stage of the study in 
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order to assess the model structure and output in terms of its behaviour whether or 

not they meet their expectations based on their experience in the field.  

 

After the model testing and validation were satisfactorily done, policy formulation 

was done in order to carry out policy analysis based on the policy levers 

introduced within the model. This then necessitates running a number of policy 

scenarios with the model upon which decisions regarding HECCE may be based 

as fully discussed in Chapter nine. The next section discusses how the model 

algorithms were developed. 

 

 

5.7 Development of Model Algorithms 

 

Variables (especially levels, rates, auxiliary, etc.) are to be related to one another 

in the form of equations. Developing the main algorithms in contemporary SD 

paradigm involves using an array of functions embedded in the SD modelling 

software. For example, within the Vensim software, algorithms are formed with 

the use of simple functions like addition, subtraction, multiplication, and division. 

Also, special functions are used within the SD modelling platform software 

(Vensim for example) to implement some computational tasks in the model. For 

example, there are functions like DELAY, FORECAST, IF THEN ELSE, RAMP, 

SMOOTH, STEP, and the host of rest. The ability to utilise these functions is still 

subject to availability of requisite data or correct parameter assumptions to 

implement these tasks and then successfully drive the model. Where there is lack 

of empirical data, qualitative data are gleaned by interviews, for example, through 

knowledge elicitation of the experts (Sterman, 2000). In this research, SD 

functions within the Vensim software are used to mimic the reference modes12 

that are illustrating the problem. On the other hand, where there is evidence of 

empirical data, the modeller explores the advantages of some other methods of 

establishing the relationships among the variables in the model (e.g. regression 

analysis).  

                                                 
12 Reference modes are elaborately discussed in Section 6.4 of Chapter six 
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In the context of this thesis, both qualitative and quantitative data were used to 

develop the model algorithms as given in the preceding sections. As a result of 

this, a combination of regression analysis, structural equation modelling, and pre-

defined equations (e.g. SAP algorithms) in some aspects are used in addition to 

some special functions within the Vensim software. Table 5.3 gives an example 

of regression-based equation developed for relationship between population and 

households as will be seen in equation 6.5 of Chapter six. Also, an example of 

algorithm based on structural equation modelling with a combination of Vensim 

special function developed is shown in equation 6.25 of Chapter six. Furthermore, 

examples of equations based on SAP algorithms are shown in equations 6.7 to 

6.14 of Section 6.7.2 of Chapter six. 

 

Table 5.3: Sample relationship developed from regression analysis 

Model 

Unstandardized Coefficients 

Standardized 

Coefficients 

t Sig. B Std. Error Beta 

1 (Constant) -3.436E8 4538500.746  -75.712 .000 

Population .067 .017 .056 3.886 .000 

Time 182057.612 2746.898 .947 66.278 .000 

Dependent Variable: Households 

 

 

5.8 Chapter Summary 

 

The system dynamics approach was selected as appropriate modelling platform 

for the research problem in this thesis. The chapter then discussed the system 

dynamics approach employed in the research. The chapter underpinned the 

system dynamics approach as belonging to one of the philosophical paradigms 

discussed in Chapter four. And as such, the system dynamics approach was 
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identified within the frame of the pragmatic paradigm. This indicates that any 

research involving the system dynamics falls within the purview of qualitative 

and quantitative research strategies which is adopted research strategy for this 

thesis as discussed in Chapter four. Furthermore, DYNAMO, Powersim, 

STELLA/iThink, AnyLogic and Vensim as some of the software under which 

system dynamics can be implemented were briefly discussed. Vensim was chosen 

as the modelling software for the thesis. This is because of its flexible graphical 

representations, which aid its clarity in presenting the causal loop diagrams as 

well as its ability to incorporate optimisation. The chapter also discussed the 

stages involved in the SD modelling process as adopted for the research to include 

four stages: problem identification and definition; system conceptualisation; 

model formulation and behaviour analysis; and model testing and validation, and 

policy formulation and analysis stages. This is in addition to the methodological 

approach developed for the research discussed in Chapter four. The discussion of 

the methods used in the development of the relationships among the model 

variables concludes the chapter. These methods include the use of SD functions 

within the Vensim software, regression analysis, and SEM as well as other 

established equations like those provided in SAP algorithms. The next chapter 

discusses the development of the model in terms of conceptualisation and 

formulation. 
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Chapter 6 
 

MODEL CONCEPTUALISATION AND FORMULATION 
 

 

6.1 Introduction 

This chapter presents the main features and structures of the model in this thesis. 

The chapter starts by discussing the details of the experts who participated in the 

model conceptualisation. This is followed by presenting the reference modes of 

key variables in the model as evidenced from historical data. Further to this, the 

dynamic hypotheses (casual loop diagrams) for each of the sub-modules in the 

model are described and discussed. Discussion of the model formulation in terms 

of stock and flow diagrams for each of the sub-modules concludes the chapter. 

 

 

6.2 Details of Participants in Model Conceptualisation  

The main purpose of this sub-section is to explain in details of those experts who 

participated in model conceptualisation stage in addition to the information given 

under the research methodology chapter (see Section 4.4.1 of Chapter four). It 

needs to mention that prior to this exercise; the modeller had already identified 

the variables relevant to the scope of the study and linked them together with the 

use of causal diagramming. Each of the causal diagrams was studied in detail and 

feedback loop structures within these diagrams were located and labelled 

appropriately. The developed causal diagrams were used to establish the effect of 

one variable on the others as hypothesised that they are likely to influence 

household energy consumption.  

 

After the input from the experts, Section 6.5 therefore contains the final/validated 

CLDs for the research. In order to validate these CLDs, the research adapted the 

approach used by Mohammed (2007) by showing all the diagrams to each of the 

experts who participated in the unstructured interviews (Table 6.1) to perform the 

following tasks: 



Chapter 6: Model Conceptualisation and Formulation 
 

 

134 
 

• Verify the existence of the link with ‘1’ for ‘there is link’ and ‘0’ for 

‘there is no link’. 

• Indicate the strength of the link with ‘3’ for ‘strong link’, ‘2’ for 

‘reasonable link’, and ‘1’ for ‘weak link’. 

• Verify the direction of link with ‘+’ for ‘agree the direction’ and ‘-’ for 

‘disagree the direction’. 

• Indicate any missing link(s), using the above value. 

As explained in the research methodology chapter, ten experts participated in the 

unstructured interviews. Evidently from Table 6.1, the organisation types the 

interviewees belong to are either public or private sector (50% are from the public 

sector and 50% are from the private sector). This mix, therefore, strikes a balance 

between the public and private sectors interviewees as there may likely be some 

differences regarding their perception of issues relating to household energy 

consumption. Table 6.1 further indicates that the lowest academic qualification of 

the interviewees is bachelor’s degree (50% of the interviewees). 40% of those 

interviewed hold a master’s degree, while the remaining 10% hold a PhD degree. 

The implication of this is that all the interviewees have the requisite academic 

qualification to be presumably knowledgeable about the issues being sought by 

the study. 

 

Table 6.1 indicates the years of experience of the interviewees to ensure that those 

interviewed have involved and have deep knowledge on issues relating to 

household energy consumption. The result indicates that the interviewees have an 

average of 17.5 years of experience on issues relating to household energy. In 

addition, the result shows that none of the interviewees have pre-knowledge or 

experience in SD modelling. From the foregoing background information of 

experts participated in the causal diagrams validation process, it can be concluded 

that the evaluation will be made by relevant and qualified experts whose inclusion 

in producing the final causal diagrams can be relied upon and serve as the true 

representation of reality in the field of study. 
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Table 6.1: Background information of experts participated in casual diagrams 

validation 

Category Classification Frequency Percentage (%) 

Organisation Type Public 

Private 

Total 

5 

5 

10 

50 

50 

100 

 

Academic 

Qualification 

Bachelor’s degree 

Master’s degree 

PhD 

Total 

5 

4 

1 

10 

50 

40 

10 

100 

 

Years of Experience 

in Household Energy 

Related Issues 

6-10 

11-15 

16-20 

21-25 

Mean = 17.5 

3 

2 

4 

1 

 

30 

20 

40 

10 

 

 

Experience in System 

Dynamics Modelling 

No 

Yes 

Total 

10 

0 

10 

100 

0 

100 

 

Having established the reliability of participation of interviewees in the validation 

of the causal diagrams, the interview of each interviewee began with a brief 

description of the research by highlighting its aim and objectives. This was then 

followed by explanation of the methodology adopted for the research and the 

expected outcome from the unstructured interview. This is necessary in order to 

ensure that the exercise is clear enough to the interviewee. After this, the 

interviewee was given the causal diagrams that were produced based on the 

modeller’s (interviewer’s) knowledge of the system under study as captured from 

the review of extant literatures and government documents. The diagrams were 

explained to the interviewees. Each of the interviewees was then asked to make a 

review of the variables in the causal diagrams. Following this, they were asked to 

assess the appropriateness of the causal links for the variables included in the 

diagram and suggest additional variables and links should there be any need for 



Chapter 6: Model Conceptualisation and Formulation 
 

 

136 
 

such. Also, they were asked to strike out some of the variables or links as they 

deemed fit or alter the direction of the variables links as necessary. This 

validation exercise therefore ensures that the view of energy experts are captured 

and reflected in the causal diagrams. The duration of each interview was between 

45 minutes and 75 minutes. 

 

6.3 Model Boundary Chart 

Energy and CO2 emissions issues are highly complex systems in which quite a 

number of decisions need to be made on a continual basis. Considering the 

amount of details and information required, any attempt to model all the activities 

within this domain constitute an effort in futility. As such, a model of such would 

be undesirable mainly because its complexity would obscure the dynamic nature 

of the parameters being observed. To this end, the research needs to carefully 

select a level of aggregation in order to ensure that the model built sufficiently 

gives all the essential parameters and policy levers required. The research 

combined both the top-down and bottom-up approaches (as explained in Chapter 

2) in selecting all the variables and as such, all the variables are aggregated at the 

level of policy makers in top level management regarding HECCE. 

 

As previously highlighted, the boundary of the model needs to be carefully 

selected. According to Sterman (2000), a model boundary chart summarises the 

scope of the model by listing which key variables are included endogenously, 

which are exogenous, and which are excluded from the model. Therefore, the 

model requires including all the important variables that need consideration by the 

policy makers together with some variables beyond the system control. To this 

end, the variables included in this research are extracted from extant literature, 

government documents and reports as well as inputs from knowledge elicitation 

process of the interviews conducted on ten seasoned experts and industry 

practitioners in the field as explained in Section 6.2. Table 6.2 shows the variables 

included and those that are excluded from the model at this stage and this list is 

not exhaustive. It needs to mention that within the SD modelling paradigm, 
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variables that are included in the model are divided into (Sterman, 2000): (1) 

endogenous – dynamics variables that form the internal structure of the system; 

and (2) exogenous – variables whose values are not directly affected by the 

system. As given in Table 5.1 and explained in Section 5.5 of Chapter five, the 

variables that are designated “S” and “F” illustrate stock and flow variables 

respectively. However, all other undesignated variables represent auxiliary, data, 

constant, or lookup variables. 

 

6.4 Reference Modes 

 

In SD modelling, a reference mode is seen as an important element of the 

modelling process. That is, there is the need to consider the historical behaviour 

of the key variables in the system under consideration and what their behaviour 

might be in the future (Sterman, 2000). Therefore, a reference mode depicts a 

pattern of behaviour that represents the dynamic nature of the problem in 

question. Consequently, it serves as a reference behaviour upon which the validity 

of a simulated model is assessed and determined. Sterman (2000) argues that 

there is the need to identify the time horizon for those variables considered to be 

of high importance to the problem under consideration. The main output of this 

research is the trend of household energy consumption and carbon emissions as 

affected by some key variables and how they respond to changes in some policy 

parameters. In order to identify the time horizon for the model in this research, it 

is necessary to consider the time horizon of historical data available on household 

energy consumption and carbon emissions, as domiciled in DECC (Palmer & 

Cooper, 2012), which are presented from 1970 and are updated on a yearly basis. 

Equally, it is of paramount importance to align to this research the time horizon of 

what carbon emissions reductions would be in the year 2050 as stipulated in the 

climate change act of 2008 in the UK. As a result of these considerations, the time 

horizon of 1970 to 2050 is therefore adopted for the model in this research. The 

following sub-sections therefore present the reference modes for some of the key 

variables as evidenced from available historical data. 
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Table 6.2: Model boundary 

Endogenous Variables Exogenous 
Variables/Parameters 

Excluded Variables 

heat losses total floor area 
Some variables relating to 
occupants behaviour e.g.: 

dwelling heat gain (dhg) due to cooking area of opening 
 - occupants' social class 
influence 

dhg due to no of people solar flux 
 - occupants' social group 
influence 

dhg due to appliances less cooking 
solar transmittance factor for 
glazing 

 - occupants' cultural 
influence 

dhg due to artificial lighting frame factor 
 - occupants' personal 
influence 

average effect of solar gains average solar access factor 
Some variables relating to 
dwellings physical 
parameters e.g.: 

total dwelling heat gains pi  - dwelling exposure 

Natural heat transfer (F) dhg due to water heating  - dwelling orientation 

Artificial heat transfer (F) insulation factor  - air changes 

Dwelling Internal Heat (S) setpoint temperature 
Some variables relating to 
external environment like: 

discrepancy in internal and external 
temperature 

temperature conversion factor  - political uncertainties 

dwelling internal temperature 
growth in occupants activity 
level 

 - energy securities 

discrepancy in internal and setpoint 
temperature 

external air temperature  

humidex value relative humidity   

Occupants activity level (F) SAP rating   

Occupants Metabolic Buildup (S) average annual gas bill   

Perceived dwelling temperature (F) average annual electricity bill   

Occupants Comfort (S) 
energy to carbon conversion 
factor 

  

probability of window opening carbon depletion factor   

probability of putting on clothing demand for cooking energy   
effect of energy efficiency standard 
improvement on dwelling energy 
efficiency 

lighting energy demand   

effect of fabric insulation on energy 
efficiency 

appliances energy demand   

effect of combined fabric insulation and 
energy efficiency standard on dwelling 
energy efficiency 

population equilibrium time   

effect of energy efficiency standard on 
cooking energy 

reproductive time   

effect of energy efficiency standard on 
appliances energy 

average total fertility rate   

effect of energy efficiency standard on 
lighting energy 

average life expectancy   

effect of energy efficiency on hot water 
energy 

occupants behaviour   
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Table 6.2: Continued. 

Endogenous Variables Exogenous 
Variables/Parameters 

Excluded Variables 

effect of energy efficiency on space heating 
energy 

  

effect of dwelling energy efficiency on 
energy bills 

  

effect of energy bills on energy 
consumption 

    

climatic effects on international energy 
price 

    

climatic effects      

average annual energy bills     

space heating demand     

space heating energy rate (F)     

Space Heating Energy Consumption (S)     

Energy to carbon conversion (F)     

Space Heating Carbon Emissions (S)     

Carbon depletion (F)     

rate of hot water energy usage (F)     

hot water energy usage demand     

Hot Water Energy Consumption (S)     
Carbon Emissions due to Hot Water Usage 
(S) 

    

Cooking energy rate (F)     

Cooking Energy Consumption (S)     
Carbon Emissions due to Cooking Energy 
(S) 

    

rate of lighting energy usage (F)     

Lighting Energy Consumption (S)     
Carbon Emissions due to Lighting Energy 
(S) 

    

Appliances Energy Consumption (S)     

rate of appliances energy usage (F)     
Carbon Emissions due to Appliances 
Energy (S) 

    

average annual energy consumption per 
household 

    

total annual household energy consumption     
average annual carbon emissions per 
household 

    

total annual household carbon emissions     

Population (S)     

births (F)     

deaths (F)     

mortality     

households     

household size     
S= stock, F= flow. 
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6.4.1 Population 

 

The historical data of UK population analysed in Figure 6.1 is based on the UK 

housing energy fact file published by the Department of Energy and Climate 

Change (Palmer & Cooper, 2012). The historical data of UK total population 

suggests that the population is growing. The pattern of growth as evidenced from 

Figure 6.1 reveals that between the year 1970 and 1982, the growth is minimal 

and not noticeable. Since the year 1982 therefore, the growth has followed a 

gentle slope until the year 2004. Thereafter, the slope of the growth trend has 

been steeper compared to between 1982 and 2004. This trend suggests that in 

years to come, it is most likely for the UK population to continue to grow. The 

implication of this growth is profound in that population drives households and 

households drive household energy consumption, which in turn drives household 

carbon emissions. The trend therefore highlights the problem posed by the 

behaviour of UK population. 

 

 

Figure 6.1: Reference mode for population 

(Source: Palmer & Cooper, 2012) 
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6.4.2 Households 

 

The reference mode of UK households’ number is shown in Figure 6.2. The trend 

indicates that a growth in the number of households over the years. If this trend is 

sustained, it means that the number of households in the UK would continue to 

grow. The implication of this, as explained in Section 6.4.1, is attendant growth in 

average household energy consumption, which means average household carbon 

emissions would witness an increase as well. This then shows that certain policy 

regarding the number of households could melt household energy consumption 

and consequently, household carbon emissions. This research will then try to 

mimic this trend and project the trend into the future. 

 

 

Figure 6.2: Reference mode for households 

(Source: Palmer & Cooper, 2012) 
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consumption as a result of space heating has been following an upward direction 

until the year 2004 when it began to decline a bit. The growth follows a ‘lumpy’ 

trend with attendant troughs and peaks indicating the times of mild and severe 

weather conditions. With this reference mode, the problem associated with 

household space heating energy is therefore profound. The research will thus 

attempt to simulate the trend as shown in Figure 6.3, which will serve as the basis 

for validating the output of the model. 

 

 

Figure 6.3: Reference mode for household space heating energy consumption 

(Source: Palmer & Cooper, 2012) 
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that lesser hot water energy will be consumed now than before. The insight from 

this reference mode will then shape the model in this research. 

 

 

Figure 6.4: Reference mode for household hot water energy consumption 

(Source: Palmer & Cooper, 2012) 
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Figure 6.5: Reference mode for household cooking energy consumption  

(Source: Palmer & Cooper, 2012) 

 

 

6.4.6 Lighting Energy Consumption 

 

Undoubtedly, lighting energy has always been a fraction of household total 

energy. However, the insight from the reference mode as shown in Figure 6.6 

indicates that energy use for lighting has been on the increase until year 2002 

when it began to decline. The decline reveals attempts by different schemes aimed 

at reducing household energy use through the use of energy efficient lights in 

homes. 

 

Figure 6.6: Reference mode for household lighting energy consumption  

(Source: Palmer & Cooper, 2012) 
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6.4.7 Appliances Energy Consumption 

 

The reference mode the household appliances energy consumption is shown in 

Figure 6.7. The trend indicates that since 1970, appliances energy has been on the 

increase. 

 

 

Figure 6.7: Reference mode for household appliances energy consumption 

(Source: Palmer & Cooper, 2012) 
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Figure 6.8: Reference mode for average annual energy consumption per household  

(Source: Palmer & Cooper, 2012) 
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The pattern of behaviour of average annual carbon emissions per household as 

shown in Figure 6.9 shows that household carbon emission has been on the 
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peaks and troughs. 

 

 

Figure 6.9: Reference mode for average annual carbon emissions per household 

(Source: Palmer & Cooper, 2012) 
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6.5 Causal Loop Diagrams (CLDs) 

 

CLDs as dynamic hypotheses are essential tool in SD and they are not only the 

foundation upon which quantitative models are built but are also a valuable 

device in their own right for describing and understanding systems (Coyle, 1997). 

They provide qualitative explanation of the underlying structure operating in a 

system in the form of ‘cause and effect’. According to Sterman (2000), CLDs are 

used to: 

• Quickly capture hypotheses about the causes of dynamics in a system; 

• Elicit and capture the mental models of individuals or teams; 

• Communicate the important feedbacks believe to responsible for a 

problem. 

 

CLDs are constructed by incorporating the various variables associated with a 

system. Casual loops show how each variable relate with one another. That is, the 

relationship between any two variables is annotated by the use of an arrow 

connecting them together. A positive relationship means an increase in arrow tail 

variable would cause an increase in arrow head variable and vice-versa, whereas a 

negative relationship means an increase in arrow tail variable would cause a 

decrease in arrow head variable and vice-versa. This relationship polarity is 

illustrated with symbol, interpretation, mathematics, and examples as shown in 

Table 6.3 based on the work of Sterman (2000). 

 

Dynamics exhibited by the system under study are achieved based on the 

feedback loops of the CLDs. As such, feedback loops can be positive or negative. 

Positive feedback loops (reinforcing loops) denote that the system increase or 

decrease indefinitely, whereas negative feedback loops (balancing loops) stabilise 

over time. Loops polarity is achieved by summing up the negative polarity of 

each of the variables within such a loop. 
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Table 6.3: Relationship polarity 

Symbol Interpretation Mathematics Examples 
 
 
 
 

 

All else equal, if 
X increases 
(decreases), then 
Y increases 
(decreases) above 
(below) what it 
would have been. 
 
In  the case of 
accumulations, X 
adds to Y. 

���� > 0 

 
In the case of 
accumulations, 
 
Y = 

� �� +⋯	
��
�
+ �� 

 
 
 

 
 
 
 
 

 

 
 
 

 

All else equal, if 
X increases 
(decreases), then 
Y decreases 
(increases) below 
(above) what it 
would have been. 
 
In  the case of 
accumulations, X 
subtracts from Y. 

���� < 0 

 
In the case of 
accumulations, 
 
Y = 

� �−� +⋯	
��
�
+ �� 

 

 
 

 

(Adapted with some modifications from Sterman, 2000) 

The development of CLDs has its own sets of rules and guidelines to follow. To 

this extend, Pruyt (2013) provides the guidelines for drawing CLDs as the 

following: 

• Make different types of CLDs for different purposes/audiences/uses 

(conceptualisation, loop analysis, communication,…) and at different 

levels of aggregation. 

• Choose the right level of aggregation (but never too detailed) dependent 

on the intended use/goal/audience. 

• Iterate, use SD software to redraw your diagrams. 

X

Y
+

births

population
+

X

Y
-

deaths

population
-
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• Use nouns or noun phrases with a clear (positive) sense of direction as 

variable names. Choose variable names that, together with the causal links 

and polarities, enable to easily “read the loops”. 

• Don’t use/conjugate verbs in variable names. The arrows with their 

polarities perform the role of verbs when reading a CLD. 

• Links between variables are causal and direct, not correlational nor 

indirect. 

• Unambiguously label link polarities (split out links into different effects if 

polarities are ambiguous). 

• Links should be drawn/interpreted under the ceteris paribus assumption, 

i.e. that everything else remains the same. 

• Links are relative: they tell the value of the variable will be above/below 

what it would have been without the effect. 

• Explicitly include the goals of goal-seeking loops. 

• Distinguish between actual versus perceived conditions. 

• Trace and unambiguously label loop polarities, and name loops such that 

they immediately convey their role, and that the names can be used in 

texts/presentations. 

• Indicate important delays on causal links 

• Use curved lines, make important loops circular, and minimise crossed 

lines. 

• For communication purposes, don’t use too large a diagram with too many 

loops. 

• Don’t try to make comprehensive or final CLDs: they will never be. They 

are either conceptualisation tools or tools to communicate (specific) 

messages. 

• Draw CLDs from different angles/perspectives and at different levels of 

aggregation. 

• It is useful to integrate points of view in one and the same CLD, unless the 

points of view represent fundamentally different or irreconcilable world 

views. Then, different CLDs need to be draw. 
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In this study CLDs are constructed for each of the modules in the model based on 

the methods explained in Chapter four and Section 6.2. All of them are therefore 

interlinked. CLDs for each of the modules are presented in the next sub-sections. 

 

 

6.5.1 CLD for Population/Household Module 

 

Figure 6.10 shows a combination of positive and negative loops involving some 

of the variables hypothesised to drive population and hence households. The 

positive loop could be read as “the more the people, the more the births there will 

be; the more births there are, the more people there will be”. Alternatively, this 

could be read as “the fewer people there are, the fewer births there will be; the 

fewer births there are, the fewer people there will be”.  

 

The model postulates that the number of births is based on the number of deaths, 

reproductive time, population equilibrium time, average total fertility rate, and of 

course population as well. The positive or reinforcing feedback shows that 

population will continue to grow or decline as births continue to grow or decline 

respectively. However, the negative or balancing loop involving population and 

deaths will act to stabilize and balance the system from continual increamemt or 

decreament as the case may be. It needs to mention that population drives deaths 

and vice – versa. Also, average life expectancy drives mortality, and mortality in 

turn drives deaths.  

 

The expected behaviour of the output of this module will be based on the 

interaction of the loops as we have multi-loops in this module. Some of the loops 

may be dominant. For example, if the positive loop is a dominant one; it may 

mean that population will continue to grow, though the rate of growth may vary. 

However, if the negative loop is the dominant one, it means that as deaths 

continue to grow, population may decline until such a time that the total 
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population will go into extinction and there will be no households which is the 

major output of this module. 

 

 
Figure 6.10: CLD for population/household module 

 

 

6.5.2 CLD for Dwelling Internal Heat Module 

 

CLD for dwelling internal heat module is presented in Figures 6.11. The structure 

shows the thermodynamics of dwelling internal heat based on interaction and 

inter-dependencies of different variables hypothesised to be driving it. For 

example, natural and artificial heat transfers in dwelling as well as Dwelling Heat 

Gains (DHGs) are identified as the main variables hypothesised to be driving 

dwelling internal heat. That is, gaps (in terms of change in temperature) identified 

as a result of change in dwelling internal and external temperature dictate whether 

or not heat will flow into or out of the dwelling.  

 

Similarly, artificial heat transfer within the dwelling is regulated according to the 

temperature set-point and dwelling internal temperature and this accordingly 

drives the dwelling internal heat. Further to these, DHGs is a function of heat 

gains from many sources as indicated in Figure 6.11 (DHG due to no of people, 

DHG due to appliances, DHG due to cooking, DHG due to water usage, DHG due 
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to artificial lighting, and solar gains). However, heat losses due to infiltrations and 

the likes reduce the DHGs.  

 

In needs to emphasise that the dwelling internal heat drives the dwelling internal 

temperature, which in turn, in combination with some other environmental 

factors, dictates the perceived dwelling temperature by the occupants. Within this 

module, two loops of a positive and a negative feedback loops are constructed as 

shown in Figure 6.11. As previously discussed under Section 6.5.1 above, the 

positive feedback loop indicates that dwelling internal heat will continue to 

increase or decline, while the negative feedback loop sets out to stabilise and 

balance the system over time based on the effect of artificial heat transfer in 

dwelling.  

 

The expected output behaviour could be S – shaped behaviour due to the 

interaction of asymptotic growth (negative feedback) with exponential growth 

(positive feedback). Though, the non-linear behaviour could be shifted and 

regulated according to loop predominance as discussed in Section 6.5.1 above, 

and hence the behaviour may not be S – shaped as postulated above. 

 

 

Figure 6.11: CLD for dwelling internal heat module 
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6.5.3 CLD for Occupants’ Thermal Comfort Module 

 

CIBSE (2006a) divides thermal environment of occupants in dwellings into three 

broad categories to include thermal comfort, thermal, discomfort, and thermal 

stress. According to the International Standard Organisation (ISO) 7730 (ISO, 

1994), the American Society of Heating, Refrigerating and Air Conditioning 

Engineers (ASHRAE) (ASHRAE, 2004), and CIBSE (2006a), thermal comfort is 

defined as “that condition of mind which expresses satisfaction with the thermal 

environment”. That is, the condition when someone is not feeling either too hot or 

too cold. Thermal discomfort, however, expresses the condition when people start 

to feel uncomfortable, but without any unwell conditions (CIBSE, 2006a). 

Similarly, thermal stress gives uncomfortable conditions to occupants which have 

the potential of causing harmful medical conditions.  

 

The occupants’ thermal environment is not straight forward and cannot be 

expressed in degrees nor can it be satisfactorily defined by acceptable temperature 

ranges. This is a personal experience dependent on a great number of variables, 

which is likely to be different from person to person within the same space. These 

variables can be (1) environmental – air temperature, relative humidity, air 

velocity, radiant temperature; (2) personal – clothing, metabolic heat; (3) other 

contributing variables – access to food and drink, acclimatisation, state of health.  

 

In this module, we produce a causal model of different variables hypothesised to 

affect occupants’ thermal comfort herein refers as occupants’ comfort. We 

postulate that the major variables that drive occupants’ comfort here are 

“occupants’ activity level” and “perceived dwelling temperature”.  It needs to 

mention that “perceived dwelling temperature” is at the heart of this causal model 

with five different inflows from “relative humidity”, “dwelling internal 

temperature”, “occupants’ activity level”, “probability of putting on clothing”, 

and “probability of windows opening”. All these variables are interrelated in a 

non–linear way and work seamlessly together as shown in Figure 6.12. A total of 
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three different feedback loops (with two negative and a positive feedback loops) 

are constructed for the module.  

 

The first balancing feedback loop involves [occupants’ comfort – probability of 

putting on clothing – perceived dwelling temperature], while the second one takes 

the following variables [occupants’ activity level – occupants metabolic build-up 

– probability of putting on clothing]. Additionally, the reinforcing loop involves 

[occupants’ comfort – probability of windows opening – perceived dwelling 

temperature]. The behaviour of the model is expected to be predominately 

dictated by the multi-loops within the CLD. 

 

Figure 6.12: CLD for occupants’ thermal comfort module 

 

 

6.5.4 CLD for Climatic – Economic – Energy Efficiency Interaction Module 

 

There are a series of variables in climatic, economic, and energy efficiency 

domains interacting together in a complex manner to influence and consequently 

affect household energy. These variables are defined by this research and not 

limited to climatic effects as a result of adverse weather condition; influence of 

Dwelling
internal temp

Percieved
dwelling temp

Occupants comfort

Relative humidity

Probability of
putting on clothing Occupants

activity level

+

+ +

+

+

+

Occupants
metabolic build-up

-

-

+

+Probability of
windows opening

-

-



Chapter 6: Model Conceptualisation and Formulation 
 

 

155 
 

international fuel prices as a major variable triggering Government’s policy 

regarding energy tax, alternative energy sources, subsidy on alternative energy 

sources, energy prices, etc.; energy efficiency of dwellings, fabric insulation, and 

household income, and their effects on variables like household fuel poverty.  

 

However, not all the above-mentioned variables are included in this module due 

to consideration of ease of data for the simulation later and the need to keep the 

model as simple as possible. To this end, Figure 6.13 shows the interrelationships 

among the climatic – economic – energy efficiency variables that are included in 

the model. Dwelling energy are considered from two perspectives of fabric 

insulation and its effects on energy efficiency, and Government’s Standard 

Assessment Procedure (SAP) rating of dwellings and its effects on dwelling 

energy efficiency as well. It was assumed that the effect of energy efficiency 

standard improvement on dwelling energy efficiency will improve energy 

efficiency standard of cooking energy as well as lighting and appliances energy. 

This is because it is believed that the efficiency standards of these areas make up 

the Government’s SAP rating of dwellings. Furthermore, it was hypothesised that 

the combined effect of fabric insulation and energy efficiency standard of 

dwellings will increase the effect of dwelling energy efficiency on energy bills, 

which undoubtedly will affect space heating and hot water energy use.  

 

Effect of energy bills on energy consumption generally is postulated to be as a 

result of three different variables that include average annual energy bills in terms 

of gas and electricity bills, effect of dwelling energy efficiency on energy bills, 

and effect of unfavourable climatic effects on energy prices. It is further 

hypothesised that the accumulation of carbon emissions is likely to trigger 

unfavourable climatic effects under the assumption that this will not be sudden; 

hence an introduction of a delay function before this happens. Feedback loops 

cannot be seen from this structure as represented in Figure 6.13. However, these 

will definitely show up when this module interrelates with other modules as it will 

be seen in Section 6.5.5. 
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Figure 6.13: CLD for climatic – economic – energy efficiency module 

 

 

6.5.5 CLD for Household Energy Consumption and CO2 Emissions Modules 

This section combines household energy consumption and CO2 emissions 

modules together in order to depict the complex interrelationships ensuing among 

the variables of these modules. The structure of the CLD for these modules show 

the variables that are hypothesised to drive household energy consumption and 

carbon emissions based on five different household energy end–uses. These 

include energy use for space heating, hot water, appliances, cooking, and lighting. 

The CLD is therefore developed for each of these household energy end-uses and 
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are interlinked to depict the main feedback loops dictating the behaviour of the 

outputs.  

Figure 6.14 shows the CLD involving all the household energy end-uses 

considered in the research that include space heating, hot water, cooking, lighting, 

and appliances energy. By taking the loops involving space heating energy 

consumption for example, the CLD (Figure 6.14) indicates that there are many 

variables hypothesised to be driving the rate of space heating by occupants or 

householders. Obviously, these variables include dwelling internal temperature 

and set-point temperature from dwelling internal heat module; occupants comfort 

(from occupants thermal comfort module) driving space heating demand, and 

space heating demand in turn propelling the rate of space heating; effect of energy 

efficiency on space heating and effect of energy bills on energy consumption 

(from climatic – economic – energy efficiency interaction module); and of course, 

occupants behaviour.  

It was hypothesised that rate of space heating drives space heating energy 

consumption, and the consumption drives space heating carbon emissions. Carbon 

emissions from different household energy end-uses contribute to average annual 

carbon emission per household, which is assumed to reinforce unfavourable 

climatic effects under delay function as discussed under Section 6.5.4. It is 

important to note that there was an assumption that not all carbon emitted to the 

atmosphere will cause unfavourable climatic effects as some of them will be 

depleted from the atmosphere by different means like absorption by plants and the 

likes. Carbon depletion factor was introduced to take care of carbon depletion as 

shown in Figure 6.14. Discussions of other household energy end-uses are not 

much differ from above as discussed for space heating energy.  

Obviously, the outcome of the CLD expressed in Figure 6.14 is expected to 

exhibit a non-linear behaviour because of a combination of different loops as 

shown. However, loops predominance is likely to moderate the outputs from the 

model. 
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6.6 Model Formulation 

 

The dynamic hypotheses (CLDs) are useful, without any iota of doubt, in many 

situations. They capture the mental models of interdependencies and feedback 

processes of a given modelling exercise. However, they suffer from a number of 

limitations among which are their inability to capture the stock and flow structure 

of systems (Sterman, 2000). Hence, there is the need for SFDs for the models as 

they are, according to Sterman (2000), the two central concepts of dynamic 

systems theory. At this stage, the variables/parameters in the causal relations 

developed are transformed into SFDs. The SFDs distinguish the model parameters 

into the controlling ‘flow’ acting as regulators and ‘stock’ where accumulations 

take place. Accumulations characterise the state of the system and generate 

information upon which decisions and actions are based. Stocks give systems 

inertia and provide them with memory. Stocks create delays by accumulating the 

difference between the inflow to a process and its outflow. By decoupling rates of 

flow, stocks are the source of disequilibrium dynamics in systems. The 

parameters in the model are linked together with equations in preparation for 

simulation. It is necessary to restate that the models in this research is built and 

implemented using the SD software Vensim DSS for Windows Version 5.11A 

produced by The Ventana Simulation Environment. The next sub-sections 

describe the SFDs for each of the modules in the model. 

 

 

6.6.1 Population/Household Module 

 

In a bid to estimate energy consumption and CO2 emissions per household, it is 

expedient to model the number of households in the UK. Based on the regression 

analysis performed on historical data of UK population and households, a 

significant relationship was found between the two. Hence, the research utilised 

the model of population to estimate the number of households in the UK. 

Population is being influenced by a number of variables. In this model, a limited 

number of variables are considered which include, birth and death rates, 
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reproductive time, population equilibrium time, average total fertility rate, 

mortality and average life expectancy as shown in Figure 6.15.  

 

 

Figure 6.15: SFD for population/household module 

 

Population is modelled as ‘stock’. This is being controlled by an inflow (births) 

and an outflow (deaths). ‘Births’ is influenced by ‘reproductive time’, ‘population 

equilibrium time’, ‘average total fertility rate’, and ‘deaths’. On the other hand, 

‘deaths’ is determined primarily by ‘mortality’ rate.  ‘Mortality’ is generated 

based on ‘average life expectancy’ and ‘mortality lookup’ profile. ‘Mortality 

lookup’ is one of the variables in the model that is based on qualitative data of 

relying on experts’ judgement as well as information from literature. Relating 

together different variables in this sector of the model involves generating a set of 

equations by employing both regression analysis and tools within the system 

dynamics software (Vensim). For example, equation 6.1 shows the Vensim 

interpretation of ‘Population’ acting as the stock with ‘births’ as inflow (rate) and 

‘deaths’ as outflow (rate). This equation is automatically generated by the 

software. However, the equation for ‘births’ (see eq. 6.2) was developed based on 
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little adjustment to the similar equation developed by Forrester (1971) for his 

World Dynamics model. The adjustment made was mainly to reflect the number 

of years from the last year of data (which in this case is 2011) and the last year of 

model run (which in this case is 2050), which translates to 39 years. 

 

Additionally, ‘mortality’ (see eq. 6.4) is determined based on the profile of 

mortality rate that is qualitatively captured as ‘mortality lookup’ according to 

available data from the Office of National Statistics as shown in Figure 6.16. 

‘Households’ is determined based on regression analysis as shown in Table 6.4. 

The main data source for the development of this algorithm (population and 

household) is shown in Table 6.5. Therefore, equations (6.1) to (6.6) give the 

major equations developed for this module. It needs to further state that the model 

is run from the year 1970 to 2050 and initial population corresponds to population 

in the year 1970. The complete set of equations can be found in Appendix A. 

 

 

Figure 6.16: Mortality lookup 
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Table 6.4: Relationship developed for households from regression analysis 

Model 

Unstandardized Coefficients 

Standardized 

Coefficients 

t Sig. B Std. Error Beta 

1 (Constant) -3.436E8 4538500.746  -75.712 .000 

Population .067 .017 .056 3.886 .000 

Time 182057.612 2746.898 .947 66.278 .000 

Dependent Variable: Households 

 

 

 

Table 6.5: Sample data for households and population 

Variable Unit of 
Measurement 

Minimum Maximum Mean Standard 
Error 

Standard 
Deviation 

Households Households 18791000 26863000 2.2664E7 3.63850E5 2.35802E6 

Population People 55632000 62736000 5.7931E7 3.00346E5 1.94646E6 

 

 

 

Population (t) = INTEGRAL [births – deaths, population (t0)] (Eq. 6.1) 

  

   

����ℎ� =

	
���
�
���

��	�� !	 "# 	���$% = &�&'()���*	%+'�(����'$	��$%, 
%)�ℎ�,
��	�� !	 "# 	���$% ≤ 2011, )1%�)2%	���)(	3%���(��4	�)�% ∗ 6�&'()���*

∗ 0.08/�%&��
':��1%	��$%,
�;< =>#�	�)1%�)2%	���)(	3%���(��4	�)�% ∗ 6�&'()���* ∗ 0.08/�%&��
':��1%	��$%, 39, 100			

       

         (Eq. 6.2) 
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deaths = Population  * mortality      (Eq. 6.3) 

 

mortality = mortality lookup (average life expectancy/one year) (Eq. 6.4) 

 

households = -3.436e008+182058 * Time + 0.067 * Population (Eq.6.5) 

 

household size = Population/households    (Eq.6.6) 

 

 

 

6.6.2 Dwelling Internal Heat Module 

 

The structure of this module in the form of SFD is shown in Figure 6.17. 

Dwelling internal heat is modelled as an accumulation of natural and artificial 

heat transfers (which are modelled as flows). Natural heat transfer is driven by the 

dwellings’ insulation level, internal and external temperature. Similarly, artificial 

heat transfer is propelled by total dwelling heat gains (DHGs), dwelling’s 

temperature set-point, and internal temperature. Temperature conversion factor 

was used to convert dwelling internal heat measured in Watts to degree 

centigrade.  However, DHGs were estimated based on the procedure and formulae 

of the Government’s SAP as published by the Building Research Establishment 

(BRE) on behalf of DECC (BRE, 2012). As such, DHGs due to cooking, number 

of people, appliances, artificial lighting, hot water, and solar gain effects were 

included in the calculation. Likewise, heat losses from the dwelling fabric were 

estimated based on the procedure of SAP and this amount was deducted from the 

total DHGs. To this extent, equations 6.7 to 6.12 are based on the formulae 

provided by SAP (equations appear on page 22 and Table 5 of page 145 of BRE, 

2012). The remaining equations 6.13 and 6.14 show the equations developed for 

the level variable ‘dwelling internal heat’ and ‘total dwelling heat gains’ 

respectively. The only data driving this module is ‘external air temperature’, 

which is yearly average for the UK as summarily shown in Table 6.6.  
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Figure 6.17: SFD for dwelling internal heat module 

 

 

heat losses = -40*household size     (Eq. 6.7) 

 

dhg due to cooking = 35+(7*household size)    (Eq. 6.8) 

 

dhg due to people = 60*household size    (Eq. 6.9) 

 

dhg due to appliances less cooking = (207.8*(total floor area*household 

size)*EXP(0.4714))*(1+0.157*COS(2*pi*(Time-1.178)))*1000/60 

         (Eq. 6.10) 

 

dhg due to artificial lighting = (59.73*(total floor area*household 

size)^0.4714)*0.96^2*(1+0.5*COS(2*pi*(Time-

0.2)))*0.85*1000/(24*30*12)            (Eq. 6.11) 

 

average effect of solar gains = 0.9*area of opening*frame factor*average solar 

access factor*solar flux*solar transmittance factor for glazing         

                (Eq. 6.12) 
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Dwelling internal heat (t) = INTEGRAL [natural heat transfer + artificial heat 

transfer,        dwelling internal heat (t0)]           (Eq. 6.13) 

 

Total dwelling heat gains = (DHG due to appliances less cooking + DHG due to 

artificial lighting + DHG due to cooking + DHG due to no of people + DHG due 

to water heating + average effect of solar gains - heat losses)        (Eq. 6.14) 

 

 

Table 6.6: Sample data for external air temperature 

Variable Unit of 
Measurement 

Minimum Maximum Mean Standard 
Error 

Standard 
Deviation 

External air 
temperature 

Degree 
centigrade 

8.06 10.80 9.78 0.10 0.69 

(Source: Palmer & Cooper, 2012) 

 

 

 

6.6.3 Occupants Thermal Comfort Module 

 

There are a great number of techniques for estimating likely thermal comfort, 

including; effective temperature, equivalent temperature, wet bulb globe 

temperature, resultant temperature and so on’ and charts exist showing predicted 

comfort zones within ranges of conditions. However, ISO 7730 (ISO, 1994) 

suggests thermal comfort can be expressed in terms of predicted mean vote 

(PMV) and percentage people dissatisfied (PPD). These were developed by 

Professor Ole Fanger (Fanger, 1970) by using the principles of heat balance 

equations and empirical studies regarding the skin temperature in order to define 

thermal comfort. In line with the PMV and PPD, the Chartered Institution of 

Building Services Engineers (CIBSE) (CIBSE, 2006a; 2006b) recommended 

comfort criteria for specific applications in certain areas of the dwellings in terms 

of temperature, occupants’ activity, and clothing levels. For example, the guide 
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(CIBSE, 2006b) stipulates a winter operating temperature of 17 – 190C, activity 

of 0.9 met., and clothing level of 2.5 clo., for bedrooms.  

 

In building a SFD for this module, the criteria as set out by CIBSE (2006b) was 

employed and this is presented in Figure 6.18. Both the ‘occupants comfort’ and 

‘occupants’ metabolic build-up’ were modelled as stock based on equations (6.15) 

and (6.16). Accumulation of ‘occupants comfort’ stock, for example, is driven by 

the ‘perceived dwelling temperature’ (inflow). This is in turn depends on a 

number of factors like humidex value, clothing, windows opening within the 

dwelling as well as occupants metabolic build-up. ‘Humidex value’ was modelled 

from the dwelling internal temperature and relative humidity based on Figure 6.19 

which shows different ranges of humidex value for different degrees of comfort 

by qualitatively mimic it with the use of lookups within the model. As shown in 

Figure 6.18, the ‘probability of window opening’ and ‘probability of putting on 

clothing’ by occupants were determined qualitatively using lookups as shown in 

Figures 6.20 and 6.21 respectively according to the mental data collected from the 

interviewees at model conceptualisation stage (see Section 4.4.1). The main data 

driving this module are from relative humidity (summary shown in Table 6.7), 

which is externally sourced and internally generated data from the previous 

module (i.e. internal dwelling temperature) Examples of equations developed for 

this module is shown in equation (6.17- 6.19). 

 

Table 6.7: Sample data for relative humidity 

Variable Unit of 
Measurement 

Minimum Maximum Mean Standard 
Error 

Standard 
Deviation 

Relative 
humidity 

Percentage 67 94 85.09 1.32 8.67 

(Source: Met Office, 2013) 
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Figure 6.18: SFD for occupants thermal comfort module 

 

 

Figure 6.19: Humidex chart 

 

Occupants Metabolic
Buildup

Occupants Comfort
Perceived

dwelling temp
Occupants

activity level

probability of
putting on clothing

probability of
window opening

relative humidity

no discomfort lookup

window opening
lookup

humidex value

no discomfort from
heat stress

some discomfort
heat stress

<dwelling int temp>

some discomfort
lookup

great discomfort
lookup

<some discomfort
heat stress>

<some discomfort
heat stress>

great discomfort

some discomfort

no discomfort

growth in
occupants activity

level

<Occupants
Metabolic Buildup><dwelling int temp>

dwelling internal
temp 0

<dwelling int temp>

putting on
clothing lookup



Chapter 6: Model Conceptualisation and Formulation 
 

 

168 
 

 

Figure 6.20: Window opening lookup 

 

 

 

Figure 6.21: Putting on clothing lookup 
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Occupants comfort (t) = INTEGRAL [perceived dwelling internal temperature,        

occupants comfort (t0)]          

 (Eq. 6.15) 

 

 

Occupants metabolic build-up (t) = INTEGRAL [occupants activity level + 

perceived dwelling internal temperature, 

occupants metabolic build-up (t0)] 

           (Eq. 6.16) 
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6.6.4 Climatic – Economic – Energy Efficiency Interaction Module 

 

The structure of SFD for this module is not much different from its CLD as 

discussed under Section 6.5.4 apart from establishing the relationships (in form of 

equations) between different variables in the module. It needs to state that no 

variable is represented as stock and flow. However, their impact is felt much in 

order modules like Section 6.6.5. To this end, this module shows the interactions 

of some energy efficiency, economic, and climatic variables that are included in 

the model. Other variables of interest could, however, be incorporated into the 

model by changing the structure of the model.  

 

As shown in Figure 6.22, importance of household energy efficiency measures to 

household energy bills are highlighted. Also, the effects of unfavourable climatic 

conditions have on international energy prices and consequently on household 

energy bills are elaborated. All these work together seamlessly as a system to give 

effect of energy bills on energy consumption, which ultimately have effects on 

carbon emissions. An example of sample data driving this module is given in 

Table 6.6. Examples of major equations in this module are given in equations 

(6.20 – 6.24). 

 

Table 6.8: Sample data under climatic-economic-energy efficiency interaction module 

Variable Unit of 
Measurement 

Minimum Maximum Mean Standard 
Error 

Standard 
Deviation 

Average 
annual gas bill 

£ 372 659 542.07 12.44 79.66 

Average 
annual 
electricity bill 

 
£ 

 
378 

 
578 

 
490.43 

 
8.43 

 
53.96 

Weighted 
average energy 
prices 

- 3.45 6.01 4.74 0.10 1.61 

SAP rating - 17.60 55.00 37.86 1.61 10.31 

(Source: Palmer & Cooper, 2012) 
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Figure 6.22: SFD for economic – climatic – energy efficiency interaction module 
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effect of dwelling energy efficiency on energy bills = 1/effect of combined fabric 

insulation and energy efficiency standard on dwelling energy 

efficiency 

       (Eq. 6.22) 

 

effect of energy efficiency standard improvement on dwelling energy efficiency = 

WITH LOOKUP (SAP rating/normal SAP value)                  (Eq. 6.23) 

 

effect of fabric insulation on energy efficiency = WITH LOOKUP (insulation 

factor/normal insulation)                              (Eq. 6.24) 

 

 

6.6.5 Household Energy Consumption Module 

 

In this module, household energy consumption is modelled. This is based on five 

different end uses of energy (space heating energy consumption, hot water energy 

consumption, cooking energy consumption, lighting energy consumption, and 

appliances energy consumption). The details of SFD developed for ‘space heating 

energy consumption’, ‘appliances energy consumption’, ‘hot water energy 

consumption’, ‘lighting energy consumption’, and ‘cooking energy consumption’ 

are shown in Figures 6.23 - 6.27 respectively. As shown in Figures 6.23 - 6.27, it 

is necessary to state that the ‘space heating carbon emissions’, ‘carbon emissions 

due to appliances energy’, ‘carbon emissions due to hot water usage’, ‘carbon 

emissions due to lighting’, and ‘carbon emissions due to cooking’ are 

systematically modelled as accumulation of ‘space heating energy consumption’, 

‘appliances energy consumption’, ‘hot water energy consumption’, ‘lighting 

energy consumption’, and ‘cooking energy consumption’ respectively converted 

to carbon emissions through the use of ‘energy to carbon conversion factor’. This 

method is used for all other household energy consumption end uses. ‘Average 

annual household energy consumption’ (shown in Figure 6.28) is therefore 

determined by adding all the household energy consumption stocks: space 

heating, hot water, cooking, lighting, and appliances energy consumption. Total 
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annual household energy consumption is determined by multiplying the ‘average 

annual energy consumption per household’ by ‘households’. Example of data 

driving the module is shown in Table 6.7. As example as well, equations relating 

to household energy consumption component of Figure 6.23 are given (Eq. 6.25 – 

6.29). However, those relating to the carbon emissions component are given in 

Section 6.7.6 (Eq. 6.30 – 6.31). 

 

Table 6.9: Sample data for household energy by end-uses 

Variable Unit of 
Measurement 

Minimum Maximum Mean Standard 
Error 

Standard 
Deviation 

Space heating MWh 10.14 15.84 13.54 0.18 1.19 

Hot water MWh 3.03 6.64 4.78 .17 1.10 

Cooking MWh 0.48 1.36 0.86 0.04 0.28 

Lighting MWh 0.55 0.69 0.65 0.01 0.04 

Appliances MWh 1.07 2.39 1.92 0.06 0.37 

(Source: Palmer & Cooper, 2012) 

 

 

Figure 6.23: SFD for space heating energy consumption and carbon emissions 
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Figure 6.24: SFD for appliances energy consumption and carbon emissions 

 

 

 

Figure 6.25: SFD for hot water energy consumption and carbon emissions 
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Figure 6.26: SFD for lighting energy consumption and carbon emissions 

 

 

 

Figure 6.27: SFD for cooking energy consumption and carbon emissions 
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Figure 6.28: SFD for household energy consumption 
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       (Eq. 6.26) 
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6.6.6 Household CO2 Emissions Module 

 

As previously mentioned in Section 6.6.5 above, carbon emissions are modelled 

by converting energy consumption to carbon emissions through the use of a 

conversion factor termed ‘energy to carbon conversion’ (Figure 6.23 – 6.27). It is 

important to state that the ‘energy to carbon conversion factor’ used in this model 

is assumed to be the conversion factor of energy to carbon conversion factor of 

energy from electricity source. This is done for simplicity sake. Ideally, energy 

conversion factor of different fuels (i.e. gas, oil, electricity, etc.) to meet 

household energy consumption by end-uses needs to be determined and applied 

appropriately. This is however acknowledged as one of the limitations of this 

model. Average annual carbon emissions per household and total annual 

household carbon emissions (Figure 6.29) are determined by the same approach 

as described under household energy consumption module in Section 6.6.5. 

 

 

Figure 6.29: SFD for household carbon emissions 
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carbon depletion = Space Heating Carbon Emissions*carbon depletion factor 

       (Eq. 6.31) 

 

average annual carbon emissions per household = Carbon Emissions due to 

Cooking Energy + Carbon Emissions due to Hot Water Usage + 

Carbon Emissions due to Lighting Energy + Carbon Emissions due to 

Appliances Energy + Space Heating Carbon Emissions        (Eq. 6.32) 

 

total annual household carbon emissions = average annual carbon emissions per 

household*households/10^6                  (Eq. 6.33) 

 

 

6.7 Discussion of the Variables not Considered by the Model 

 

Section 6.3 discusses the boundary for the model in this thesis. It was discussed 

there that it is necessary to have a model boundary chart that detailed the 

variables included in the model in the form of endogenous and exogenous 

variables, and those that are excluded. Considering the type of complexity 

involved in the system being modelled in this research, some variables relating to 

occupants’ behaviour like “occupants’ social class influence”, “occupants’ 

cultural influence”, etc. (Table 6.2) are excluded from the model. This is mainly 

because of the fact that “occupants’ behaviour” in the developed model is 

currently modelled exogenously based on the assumption that “occupants’ 

behaviour” externally affects household energy consumption. Inclusion of these 

variables will mean that a lot of time will be committed to conducting social 

research relating to different influences on “occupants’ behaviour” leading to 

modelling the “occupants’ behaviour” endogenously. This is, however, seen as a 

limitation of this research. 

 

Additionally, some variables relating to the physical characteristics of dwellings 

like dwelling exposure, air changes, etc. are also excluded from the model. These 
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variables are specific to individual dwellings. In Section 1.3.2 of Chapter one, the 

level of aggregation/disaggregation to be incorporated into the model was 

discussed. And it was emphasised that there is the need to strike a balance 

between aggregated and disaggregated variables to be included in the model 

because of the target audience of the model output, which in this case are the 

energy policy decision makers. Furthermore, some variables relating to external 

environment like political uncertainties and energy securities are not modelled 

considering the scope of the research and non-inclusion of them signifies the 

potential of the model to explore quite an array of issues. 

 

 

6.8 Chapter Summary 

 

This chapter has described and discussed the model conceptualisation and 

formulation. The chapter discussed in details information about those that 

participated in the model conceptualisation process. The mental model developed 

by these individuals was captured in the form of knowledge elicitation in order to 

improve and validate the causal diagrams drawn by the modeller. The final causal 

diagrams developed for the model were therefore described and discussed for 

each of the modules in the model. The chapter also described and discussed the 

model formulation in the form of stock and flow diagrams for all the modules. 

The key algorithms relating the variables together were also given. The next 

chapter will discuss the behaviour of the model based on ‘baseline’ scenario. 
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Chapter 7 
 

MODEL BEHAVIOUR ANALYSIS (‘BASELINE’ SCENARIO) 
 

 

7.1 Introduction 

 

This chapter presents the model behaviour based on the ‘baseline’ scenario. It 

communicates the most likely way in which the household energy and carbon 

emissions of the UK housing stock will evolve over the years starting from 1970 

until 2050. The ‘‘baseline’’ scenario assumes the continuation of the trends 

depicted by historical data based on the current trends of energy efficiency 

measures, ‘standard’ consumption behaviour, and energy prices. The chapter first 

describes the general assumption underpinning the ‘baseline’ scenario. This is 

followed by a discussion of the insights from the model in terms of the behaviour 

generated. These are discussed based on the modules of the model. Comparison 

of the results of the model with some previous studies concludes the chapter. 

 

 

7.2 General Assumptions and Description of ‘Baseline’ Scenario 

 

The ‘baseline’ scenario functions as the reference case to all other scenarios 

formulated for this research as will be the proposed policies to experiment, which 

will be discussed in Chapter nine. It serves as the base case upon which these all 

other scenarios can be compared. The scenario assumes that there are no much 

substantive changes made to the current trends in energy efficiency policy and 

efforts with an assumption that no other policy measures are further introduced 

apart from the continuation of the existing ones currently in operation. In terms of 

energy efficiency measures of dwellings, efficiency of heating systems, cooking, 

lighting and appliances as evidenced from historical data available will continue 

to follow the current trend, without any specific efforts to upturn the trend.  
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Three behavioural classifications are included within the model. These are 

‘frugal’, ‘profligate’ and ‘standard’ behavioural classifications (as discussed in 

Section 2.3.3). ‘Standard’ here means that the consumption behaviour of 

occupants is assumed to be a mid-way between the profligate and frugal 

consumption behaviours. The ‘baseline’ scenario therefore assumes that the 

energy consumption behaviour of householders in UK is ‘standard’. This is 

assumed to see the dwelling internal temperature of householders having a set-

point of 19ºC. Further, the scenario assumes that any change to energy bills will 

not significantly affect the energy consumption behaviour of the householders as 

the ‘standard’ consumption behaviour will be maintained. Both the number of 

households and average household size in the UK impact on the energy 

consumption profile of the UK housing stock, and as such there future trends as 

emanate from the output of UK population are maintained for the scenario. 

 

 

7.3 Behaviour Analysis of Some Variables in Population/Household 

Module 

 

It is shown in the preceding chapter that one of the modules that constitute the 

model of HECCE in this thesis is the population/household module. The 

importance of this module cannot be over-emphasised as the number of 

households play a major role in accurately estimating the amount of energy 

consumption in the entire UK’s housing stock. This is mainly due to the fact that 

energy consumption in homes is driven by the quest for energy services like 

comfort by occupants. This is to mean that actual energy required in meeting 

these services reflects, for example, the type of services required by the occupants 

and the factors relating to fabric insulation in homes, heating systems, appliances 

use, etc. Invariably, householders consume energy as a result of them seeking 

comfort at home. With this notwithstanding, it is unsurprising that household 

energy consumption is strongly influenced by the population, the number of 

households and the average household size. For example, the amount of 

household energy consumption attributable to hot water consumption and usage 
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of some appliances is greatly influenced by the household size. However, there is 

the minimum level of household energy consumption applicable to each 

household as the operation of some energy consuming appliances like fridge, 

fridge-freezer, or freezer, etc. don’t depend on the household size. 

 

The model outputs in this module are presented in Figures 7.1, 7.2, and 7.3 to 

respectively illustrate the behaviours of total UK population, total number of UK 

households, and average household size in the UK from 1970 until 2050. The 

model shows that the total UK population is on an upward trend till 2050 (Figure 

7.1). The model indicates that the UK population of 55.63 million in 1970 will 

grow to 69.78 million by the year 2050. This figure shows a yearly increase of 

0.31% on the average. Comparing this figure with data from the Office of 

National Statistics (2013) suggests that the UK population receive an annual 

growth of 0.28% averagely between the year 1970 and 2010. Within the same 

time horizon of 1970 and 2010, the model output shows an average of yearly 

growth of 0.26% in population. The slight difference in the two estimates can be 

attributed to the methods used in the development of the models. 

 

 

Figure 7.1: Projected total UK population under the ‘baseline’ scenario 
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Additionally, Figure 7.2 shows that the average number of households on a yearly 

basis grows steeply when compared to the steepness of the population output as 

shown in Figure 7.1. The result of the model indicates the number of households 

of 18.78 million will grow to 34.10 million by the year 2050. This reflects an 

overall average yearly increment of about 1.02%. The growth in the number of 

households is an indication of rising number of smaller households, which reflects 

that more people tends to live all alone and/or in smaller family sizes. This is not 

only has implications on adequate provision of housing for the citizenry, but alter 

the housing stock energy consumption profile of homes. Unsurprisingly, this by 

implication means that per capital energy consumption will tend to grow as the 

number of households increases with attendant decrease in the average household 

size. It then shows that the projection of number of households is key to 

accurately estimating the household energy consumption and carbon emissions. 

 

 

 

Figure 7.2: Projected total number of UK households under the ‘baseline’ scenario 
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Furthermore, in order to gain a more insight into the behaviour of the number of 

households as produced by the model, a further analysis was conducted at an 

interval of ten years from 1970. The results of this study are compared with that 

of Johnston (2003) and Palmer and Cooper (2012) as shown in Table 7.1. The 

behaviour of this study indicates that an increase in the number of households on 

a yearly basis, but with a decline in the level of this growth until 2050. The result 

shows almost the same downward trend as the output of Johnston (2003) model. 

The major difference in the two models lies in the region of 2040 – 2050, where 

Johnston (2003) specifically stated that he fixed the trend of this region (and not 

the result of analysis) based on the assumption that the number of households will 

not change in those years. This assumption then explains the difference in the two 

models. Correspondingly, when the output of this model is compared with that of 

Palmer and Cooper (2012), which is based on the ONS available data till 2010, 

the results follow a ‘lumpy’ trend with a combination of peaks and troughs, but 

overall the number of households grow at 0.99% yearly, whereas the results of 

this model show a growth of 1.02% yearly (Table 7.1). 

 

Table 7.1: Average yearly percentage increase/decrease in the number of households 

Year Johnston (2003) 
(%) 

Palmer and 
Cooper (2012)               

(%) 

This Study        
(%) 

1970 – 1980  - 0.82 0.93 

1980 – 1990  - 0.88 0.84 

1990 – 2000  0.76* 0.72 0.77 

2000 – 2010  0.70 0.81 0.71 

2010 – 2020  0.68 - 0.67 

2020 – 2030  0.53 - 0.63 

2030 – 2040  0.37 - 0.59 

2040 – 2050  -0.09 - 0.55 

Overall yearly 

average 

0.56*† 0.99† 1.02† 

* The year starts from 1996; †was computed based on [(final year value – base year 

value)/number of years*100%]. 
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Equally, it is expedient to explain some insights shown by the behaviour of 

average household size trend as depicted in Figure 7.3. The model result suggests 

that the trend of the UK household size averagely follows a downward trend with 

the slope of graph between 1970 and 2020 a little bit steeper than that of between 

2020 and 2050. That is, the average household size declines steadily from 2.96 in 

1970 to 2.04 in 2050. The reason for this trend may be attributed to the growth in 

the number of single person households without children as previously advanced. 

Traditionally, households, for example, used to comprise of married couples 

living together with their dependent children, but a decline in this kind of 

proportion may also likely responsible for the model behaviour. Further to this, it 

may be that there is growth in the number of households consisting of married 

couples without dependent children or increase in the proportion of lone parent 

households. All these factors may be responsible for the decline witness in 

average household size by the model. The results of this model are consistent with 

historical data as contained in Palmer and Cooper (2012) and the output of 

Johnston’s (2003) model. The next section discusses the behaviour of key 

variables within the dwelling internal heat module. 

 

 

Figure 7.3: Average UK household size under the ‘baseline’ scenario 
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7.4 Behaviour Analysis of Some Variables within the Dwelling Internal 

Heat Module 

 

In this module, the only variable that changes from one scenario to others is the 

set-point temperature ‘setpoint temp’. The baseline value assumed for this 

variable is 19ºC. This section, therefore, presents the behaviour of key variables 

within the dwelling internal heat module. As enunciated in Chapter six, dwelling 

internal heat is required by the developed model majorly with the aim of 

modelling its impact on occupants comfort and consequently on space heating and 

hot water requirements of the householders. The dwelling internal heat is 

principally influenced by the amount of heat gained into the dwelling and 

determines the dwelling internal temperature. The total dwelling heat gains 

(DHGs) for the entire UK housing stock is modelled from six different sources as 

explained in Chapter six to include: DHGs due to appliances, artificial lighting, 

cooking, number of people (metabolic heat gains), water heating, and solar gains 

as advanced in BRE (2012). The degree of infiltration into/out of the dwelling is 

modelled and captured as heat losses.  

 

Figure 7.4 shows the model behaviour for DHGs due to appliances, artificial 

lighting, cooking, water heating, heat losses, and number of people. It should be 

noted that the graph (Figure 7.4) uses a multi-scale approach in the presentation. 

The values ‘-80’ and ‘-200’ denote upper and lower values respectively for the 

variable designated ‘1’ in the graph, which in this case is ‘heat losses’. Similarly, 

the values of ‘400’ and ‘200’ respectively denote the upper and lower values of 

the second variable designated ‘2’, which in this case is ‘dhg due to appliances 

less cooking’; and so on. The behaviour exhibit reveals that the DHGs due to 

appliances, artificial lighting, cooking, number of people, and water heating 

follow the same trajectory patterns of gentle decline. These patterns are, however, 

not too distant from the behaviour displayed by the average household size as 

shown in Figure 7.3 above. The main reason that could be advanced for these 

insights is the dominant effect of average household size of the UK housing stock 
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that has been on decline trend from an average of 2.96 in 1970 to 2.04 by 2050 as 

the model results suggest.  

 

 

Figure 7.4: Heat losses and dwelling heat gains due to appliances, artificial lighting, 

cooking, no of people, and water heating under the ‘baseline’ scenario 
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average area of openings in dwellings. All these parameters are constant and this 

is why the trend exhibited by solar gains is perfect horizontal trend. The total 

DHGs as a result of the summation of these different gains produces gentle 

decline behaviour as illustrated in Figure 7.5.  

 

 

Figure 7.5: Total dwelling heat gains under the ‘baseline’ scenario 
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‘troughs’ and ‘peaks’ corresponding to the periods of extreme and milder winter 

weather respectively. For example, there was a drop ‘trough’ in temperature in the 

year 2010 due to extreme weather condition of that year, which correspondingly 

affects ‘dwelling internal heat’ and ‘dwelling internal temperature’ (Figures 7.6 

and 7.7). The model then suggests that the weather condition will improve. This 

is, therefore, reflected in picking-up again as the behaviours of these two 

variables suggest. These results are consistent with the output of a number studies 

in the UK predicting that in years to come the UK faces the risk of overheating in 

dwellings especially at summer time (Banfill et al., 2012; CIBSE, 2013) and the 

concerns raised by the global climate warming as a result of increase in dwelling 

internal heat and accordingly average dwelling internal temperature. Also, the 

results are illuminating in the sense that infiltration into the dwellings will decline 

as a result of improved fabric insulation leading a reduced wind forces, which 

creates pressure differences within dwellings. This means buildings will be able 

to retain more internal heat as a result of space heating and internal temperature 

will rise. 

 

 

Figure 7.6: Dwelling internal heat under the ‘baseline’ scenario 
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For example, the model results envisaged that the average dwelling internal 

temperature will continue to increase based on the desire of occupants to improve 

thermal comfort by raising the temperature set-point as long as energy prices are 

kept low. It needs to emphasise that this will not go on increasing indefinitely. At 

last, it will get to a saturation level upon which any further increase would 

constitute a kind of discomfort to occupants. 

 

 

Figure 7.7: Dwelling average internal temperature under the ‘baseline’ scenario 
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temperature is modelled qualitatively based on humidex chart referred to in 

Figure 6.18 of Chapter 6. The chart takes the values of average dwelling internal 

temperature and average relative humidity to estimate the humidex value, which 

in turn produces the perceived dwelling temperature as shown in Figure 7.8. This 

is in combination with other variables like the probability of window opening, 

probability of putting on clothing, occupants’ metabolic build-up and occupants 

comfort as discussed in Section 6.6.3. The pattern exhibited by the perceived 

dwelling temperature variable resembles that of the average dwelling internal 

temperature as there is gentle growth in the perceived dwelling temperature. As 

the value of perceived dwelling temperature increases, it will trigger actions from 

the occupants. The actions assumed and included in the model are either to open 

window(s) or put on more clothing with high thermal resistance as the case may 

be in order to get the required comfort level. 

 

 

Figure 7.8: Perceived dwelling temperature under the ‘baseline’ scenario 
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of behaviour of perceived dwelling temperature (see Figure 7.8), occupants’ 

metabolic build-up (see Figure 7.10), and occupants’ comfort (see Figure 7.11) as 

generated from the model are shown in Figure 7.9. Since the result of the 

perceived dwelling temperature shows a gentle slope in growth (see Figure 7.9), 

this implies that occupants will tend to open their dwellings window(s) in order to 

get the required thermal comfort. Also, it is possible for them to remove dense 

clothing, which obviously has high thermal resistance and put on light clothing 

with reduced thermal resistance purposely to regulate their body temperature and 

get the desired thermal comfort. The insights from the model as shown in Figure 

7.9 indicate that over the years, starting from 1970 until 2050, the probability of 

putting on clothing with increased thermal resistance will tend to decline on the 

average, while at the same time horizon, the probability of occupants opening 

windows to get the required thermal comfort will increase as the perceived 

dwelling temperature increases. Again, these results are profound in that they are 

consistent with the global climate warming predictions. 

 

 

Figure 7.9: Probabilities of putting on clothing and window opening under the ‘baseline’ 

scenario 

*Dmnl – dimensionless. 
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Stemming from the above, the output of the model as shown in Figures 7.10 and 

7.11 suggest that the pattern of behaviour of occupants’ metabolic build-up and 

occupants comfort grow over time. It is as a result of rise in perceived dwelling 

temperature which may lead to a decline in the quest for more space heating and 

hot water usage. It needs to mention that there will be a time when these growths 

would reach a saturation level at which time, they tend to decline. Though, this 

model produces no such plausible insight, may be due to the fact that occupants 

comfort is being regulated by the two aforementioned actions of the occupants – 

window opening and putting on of clothing. It is also possible that artificial 

ventilation may be introduced in future should the value of occupants comfort 

outrageously increased in such a way that the two aforesaid actions of the 

occupants as assumed in this model no longer validly hold. This may, however, 

add to household energy consumption profile. 

 

 

 

Figure 7.10: Occupants metabolic build-up under the ‘baseline’ scenario 
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Figure 7.11: Occupants comfort under the ‘baseline’ scenario 
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to the global climate are as a result of increase in carbon emissions in the 

atmosphere (Rogelj, Meinshausen, & Knutti, 2012). Increase in carbon emissions 

is then likely to have unfavourable climatic effects. The results of this model 

shown in Figure 7.12 suggest that unfavourable climatic effects tend to decline. 

The reason behind this insight is that carbon emissions tend to reduce in 

atmosphere. This may be due to different efforts geared towards reducing carbon 

emissions released into the atmosphere.  

 

 

Figure 7.12: The behaviour of unfavourable climatic effects 
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Figure 7.13: The behaviour of effect of energy efficiency standard improvement on 
dwelling energy efficiency 
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heating energy is by far took the biggest chunk of UK household energy 

consumption. This is because its average annual value has been hovering around 

15MWh per household for the first four decades. Within this period, space 

heating energy has been moving in an upward direction until the year 2004 when 

it begins to fall apart from the year 2010 (which is due to bad weather condition 

of 2010). The reason that could be advanced for the growth in energy over the 

first four decades may be due to the behavioural attitude of occupants as they seek 

more thermal comfort at home thereby raising the internal temperature of their 

homes. It may also due to homes extension over the years that results in increased 

heated volume, which significantly adds to the space heating energy. 

 

Based on the assumptions for the ‘baseline’ scenario, the model forecasts that the 

space heating energy would continue to follow a downward trend from the year 

2004 until 2050 due to improvements in energy efficiency (SAP rating) as a result 

of stringent building regulations and other areas of government campaign 

including occupants’ behavioural change towards energy consumption. Further to 

these reasons, the downward trend as revealed by the model results may be due to 

energy costs that have been on the increase since 2004 as advanced by 

Summerfield et al. (2010) and may be unconnected to milder winters (Palmer & 

Cooper, 2012). 

 

 

Figure 7.14: Average space heating energy consumption per household 
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7.7.2 Behaviour Analysis of Hot Water Energy Consumption  

 

The result of the model suggests that hot water energy use for average UK homes 

has significantly reduced since 1970 and continues in this downward trend as 

shown in Figure 7.15. The reason that may be adduced for this trend may be 

connected to reduction in heat loss from hot water tanks (in terms of improvement 

in energy efficiency ‘SAP rating’) due to improved lagging of hot water pipes and 

tanks coupled with improvements in household heating systems that is being 

witnessed due to changes to building regulations. A further probe into the 

behaviour of the model indicates that the slope of the trend slightly changed 

around the year 2014 and follows this new trend until the year 2050. Should the 

trend follow the slope of the graph since 1970 until 2014 as shown in Figure 7.15, 

it may mean that by 2040, the average energy consumption for hot water would 

have net zero, which is practically impossible. It needs to note that irrespective of 

the demand for cut in household energy consumption, it will not translate to mean 

that no hot water would be required at homes in years to come as there will be a 

minimum amount of hot water energy required for each household. 

 

 

Figure 7.15: Average hot water energy consumption per household 
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7.7.3 Behaviour Analysis of Cooking Energy Consumption  

 

The insight as revealed by the model output for average cooking energy 

consumption per household is illustrated in Figure 7.16. Generally, the trend has 

been on a downward direction since 1970 until 2050 with a steep slope till 1990s 

and the downward trend seems levelling for a short period since year 2000 apart 

for a short period of between 2008 and 2016. The general downward trend may be 

due to changes in lifestyle through saving in household cooking energy as most 

families eat in eateries, which consequently reduces the rate of cooking at home. 

However, the trend levelling up is more pronounced around the year 2016 until 

2050. This saw the slope of the trend of average household cooking energy to be 

gentler compared to the preceding years. The reason that could be adduced for 

this trend could be explained as a result of a decline in the size of households. 

This is due to the fact that cooking energy per head is claimed to be higher in 

single – person households [Energy Saving Trust (EST), DECC, & (Department 

of Environment, Food and Rural Affairs (DEFRA), 2012].  

 

 

Figure 7.16: Average cooking energy consumption per household 
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7.7.4 Behaviour analysis of lighting energy consumption  

 

Household lighting energy remains a small fraction of total household energy. 

The behaviour exhibited by the output of the model is shown in Figure 7.17. The 

graph shows that the average lighting energy consumption per household 

remarkably follows an upward trend since 1970 until 2004 when begins to 

gradually come down. This decline may be as a result of Government’s policy of 

the Carbon Emissions Reduction Target (CERT), which ensures that energy – 

consuming incandescent bulbs are replaced in homes with energy – efficient ones. 

However, the simulation result suggests that the rate of decline of household 

lighting energy consumption would decrease as from 2016 as against the trend 

witnessed between 2004 and 2016. This may be as a result of likely increase in 

the lighting points in homes especially in the kitchens and bathrooms, which are 

even most times of higher specifications. This may therefore likely reduce rate of 

decline by offsetting the savings that would have recorded should the trend of 

decline between 2004 and 2016 maintained.  

 

 

Figure 7.17: Average lighting energy consumption per household 
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7.7.5 Behaviour Analysis of Household Appliances Energy Consumption  

 

The simulation result of the model as shown in Figure 7.18 suggests that 

household appliances energy use has been on the increase since 1970. This result 

is consistent with historical data (Palmer & Cooper, 2012). The reasons for this 

trend are explained based on three factors that could be responsible based on the 

author’s conjecture. Firstly, the trend may be due to the fact that many homes 

now acquire electric gadgets more than before, which continue to grow, based on 

changes in occupants’ lifestyle and their access to more disposable income. 

Secondly, owing these gadgets alone may not result in surge in household 

appliances energy if they are not put into use. So, the rate at which these gadgets 

are being put into use has been on the increase. This may probably due to changes 

in lifestyle as previously argued. Additionally, changing to the use of energy – 

consuming appliances for some tasks or games that were previously or 

traditionally completed manually as well as using homes as offices may be 

responsible for this surge.  

 

Thirdly, the results of the study conducted by EST et al. (2012) indicate that the 

use of cold appliances like freezer and large fridges has been on the increase and 

they constitute about 50% of the household appliances energy use. Further, there 

has been growth in the use of microwaves to thaw out frozen food. Combining all 

these together has seen household appliances energy on the increase. However, 

there is an event overturn in and around 2016 as dictated by the result of the 

simulation that household appliances energy will follow a gentle decline till 2050. 

This output may explain the optimistic view regarding different on-going research 

efforts directed at improving the energy efficiency of cold appliances. This 

hopefully would see the deployment of even more energy efficient cold 

appliances in the coming years as they have a lion share in the household 

appliances energy consumption. 
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Figure 7.18: Average appliances energy consumption per household 
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growth in number of households may have overblown the total annual household 

energy consumption for the UK housing stock to some extent. 

 

 

Figure 7.19: Average annual energy consumption per household 

 

 

Figure 7.20: Total annual energy consumption for the UK housing stock 
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analysis is conducted for the years 2020 and 2050 relative to the year 1990. This 

kind of analysis is necessary majorly to determine the extent to which the 

household energy consumption has been reduced or otherwise under the 

‘baseline’ scenario assumptions for the model. Tables 7.2 and 7.3 illustrate the 

changes in household energy for the year 2020 and 2050 relative to the year 1990 

respectively. 

 

The results of this analysis for the year 2020 based on the ‘baseline’ scenario as 

shown in Table 7.2 suggest that the total household energy consumption for the 

entire UK housing stock is expected to witness a reduction of about 45.92TWh of 

energy. This amount translates to about 9% reduction by the year 2020. Further to 

this, the analysis within the period suggests that space heating is expected to 

witness a reduction of about 8%, hot water about 26%, cooking about 44% and 

lighting about 11%. However, appliances energy for the same period is expected 

to increase by about 35%. 

 

Table 7.2: Change in household energy consumption by end-use based on ‘baseline’ 

scenario for the year 2020 relative to 1990 

 Household 

energy 

consumption 

(1990) 

(TWh) 

Household 

energy 

consumption 

(2020) 

(TWh) 

*Change in 

household 

energy 

consumption 

(TWh) 

*Percentage 

change in 

household 

energy 

consumption 

(%) 

Space heating 300.92 276.88 -24.04 -7.99 

Hot Water 108.20 79.41 -28.79 -26.61 

Cooking 18.88 10.52 -8.36 -44.28 

Lighting 15.29 13.62 -1.67 -10.92 

Appliances 47.93 64.87 +16.94 +35.34 

Total 491.22 445.30 -45.92 -9.35 

*Relative to 1990 base as enshrined in Climate Change Act of 2008 
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For the year 2050, the analysis of results as shown in Table 7.3 indicates that the 

total household energy for the UK housing stock is expected to reduce by about 

27% relative to 1990 under the ‘baseline’ scenario assumptions. This percentage 

sees the total household energy less by 130.67TWh when compared to 

491.22TWh it was in the base year 1990. Additionally, the results of the model 

suggest that the energy consumption due to space heating is expected to reduce by 

76.37TWh, which translates to about 25% reduction in energy by 2050 relative to 

1990 as base case. Also, the energy consumption attributable to hot water is 

anticipated to reduce as well by 44.47TWh, which amounts to about 41% 

reduction, again relative to 1990 base case. Correspondingly, the results of the 

model suggest that the energy consumption for cooking is expected to marginally 

reduce by about 45% as against the 44% reduction envisaged for the year 2020. 

As expected, the model results indicate that the energy consumption for lighting is 

expected to reduce as well for about 25%. Regarding the appliances energy 

consumption, the model results suggest that this is anticipated to increase by 

about 5% relative to the base year 1990. However, this witnesses a reduction in 

consumption when compared to the results of the year 2020. 

Table 7.3: Change in household energy consumption by end-use based on ‘baseline’ 

scenario for the year 2050 relative to 1990 

 Household 

energy 

consumption 

(1990) 

(TWh) 

Household 

energy 

consumption 

(2050) (TWh) 

*Change in 

household 

energy 

consumption 

(TWh) 

*Percentage 

change in 

household energy 

consumption (%) 

Space heating 300.92 224.55 -76.37 -25.38 

Hot Water 108.20 63.73 -44.47 -41.10 

Cooking 18.88 10.40 -8.48 -44.92 

Lighting 15.29 11.44 -3.85 -25.18 

Appliances 47.93 50.43 +2.5 +5.21 

Total 491.22 360.55 -130.67 -26.60 

*Relative to 1990 base as enshrined in Climate Change Act of 2008 
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The changes expected to occur in energy consumption based on end uses are 

based on the projection of continuation of current trends in fabric insulation, 

energy efficiency, energy prices, and consumption behaviour. As fabric insulation 

(‘insulation factor’) and energy efficiency improve (‘effect of energy efficiency 

standard improvement on dwelling energy efficiency’), reduction in household 

energy consumption is anticipated. Also, standard consumption behaviour with 

moderate rise in energy prices (‘% increment on energy bills’) is expected to lead 

to a reduction in household energy consumption by the year 2050 as model output 

suggests. However, it needs to emphasise that the results of the simulation run for 

the ‘baseline’ scenario indicate that the total number of UK households as well as 

average internal temperature increases within this period. They now tend to 

increase the total household energy consumption. Within this period, the 

occupants’ thermal comfort also increases as can be seen in Figure 7.11, Section 

7.5 of this chapter. The implication of these would result in rebound effects as the 

majority of the savings accruable would have been expended on getting an 

improved comfort.  

 

 

7.8 Behaviour Analysis of Household CO2 Emissions Module 

 

Figure 7.21 (see Table B2 in Appendix B for the values) show the graphs of 

household carbon emissions by end-use, while Figure 7.22 show that of 

household carbon emissions in terms of average annual household and total 

household respectively. These results are profound as the behaviour exhibited by 

household carbon emissions by end-use (Figure 7.21) as well as the one shown in 

Figure 7.22 is similar to the ones demonstrated by household energy consumption 

by end-use (Figures 7.14 – 7.18), and average and total annual household energy 

consumption (Figures 7.19 – 7.20) respectively. This trend may be due to the fact 

that carbon emissions are as a result of energy consumption. However, the 

dominant type of energy consumed by householders would go a long way in 

moderating household carbon emissions. Assessing the average annual carbon 
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emissions per household and total annual household carbon emissions, it was 

noted that carbon emissions has been on a downward direction since 1970. That 

is, average annual carbon emissions per household have fallen remarkably since 

1970 and the model projects that the trend will be sustained till 2050 based on the 

carbon reductions agenda of the government. The output is similar to the trend 

witness in historical data (Palmer & Cooper, 2012) as the trend (Figure 7.22) 

follows a ‘lumpy’ trend with troughs and peaks that corresponds to mild and 

severe weather conditions. 

 

It is necessary to conduct a further analysis of results in order to reveal additional 

insights as well as see the extent to which the carbon emissions reductions target 

are achieved for the ‘baseline’ scenario. Tables 7.4 and 7.5 illustrate the changes 

or reductions expected in household carbon emissions for the years 2020 and 

2050 relative to the year 1990. The Climate Change Act of 2008 in the UK 

stipulates carbon emissions reductions target of 34% and 80% relative to 1990 

level by the years 2020 and 2050 respectively.         

 

 

Figure 7.21: The graph of household carbon emissions by end-use under the ‘baseline’ 

scenario 
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Figure 7.22:  The graph of total and average annual household carbon emissions under 

the ‘baseline’ scenario 

 

Table 7.4: Change in household carbon emissions by end-use based on ‘baseline’ 

scenario for the year 2020 relative to 1990 

 Household 

carbon 

emissions 

(1990) (million 

tonnes of CO2) 

Household 

carbon 

emissions 

(2020) (million 

tonnes of CO2) 

*Change in 

household 

carbon 

emissions 

(million 

tonnes of CO2) 

*Percentage 

change in 

carbon 

emissions (%) 

Space heating 94.47 53.19 -41.28 -43.70 

Hot Water 44.15 32.09 -12.06 -27.32 

Cooking 7.93 4.21 -3.72 -46.91 

Lighting 6.04 5.50 -0.54 -8.94 

Appliances 18.43 26.29 +7.86 +42.65 

Total 171.01 121.28 -49.73 -29.08 

*Relative to 1990 base as enshrined in Climate Change Act of 2008 
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To this end, the model results in Table 7.4 suggest that the carbon emissions 

ascribable to the UK households are expected to decline by 49.73 million tonnes 

of CO2 by the year 2020. This amount represents about 29% reductions in carbon 

emissions. The implication of this result is that under the ‘baseline’ scenario, it 

unlikely to meet the target reductions of 34% as enshrined in the Climate Change 

Act of 2008. A further analysis based on end uses reveals that the greatest 

reductions are expected to happen in space heating, which is anticipated to 

witness 41.28 million tonnes of CO2 reductions by the year 2020. 

Table 7.5: Change in household carbon emissions by end-use based on ‘baseline’ 

scenario for the year 2050 relative to 1990 

 Household 

carbon 

emissions 

(1990) (million 

tonnes of CO2) 

Household 

carbon 

emissions 

(2050) (million 

tonnes of CO2) 

*Change in 

household 

carbon 

emissions 

(million 

tonnes of CO2) 

*Percentage 

change in 

carbon 

emissions (%) 

Space heating 94.47 32.46 -62.01 -65.64 

Hot Water 44.15 25.71 -18.44 -41.77 

Cooking 7.93 4.16 -3.77 -47.54 

Lighting 6.04 4.61 -1.43 -23.68 

Appliances 18.43 20.35 +1.92 +10.42 

Total 171.01 87.28 -83.73 -48.96 

*Relative to 1990 base as enshrined in Climate Change Act of 2008 

 

The analysis conducted for the year 2050 reveals that the carbon emissions 

attributable to the UK housing stock are expected to decline by up to 83.73 

million tonnes of CO2. This amount represents about 49% reductions in carbon 

emissions by the middle of this century. Similarly, the implication of this result 

under the ‘baseline’ scenario suggests that it unlikely to meet the target reductions 

of 80% as enshrined in the Climate Change Act of 2008. An additional analysis 

based on end uses shows that the chunk of the reductions expected in carbon 
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emissions are to occur in space heating. This is anticipated to witness about 62 

million tonnes of CO2 reductions by the year 2050. 

 

 

7.9 Comparison of ‘Baseline’ Scenario Results with Other Model Results 

 

The section discusses results of comparison of the ‘baseline’ scenario with the 

results of Johnston’s (2003) ‘business-as-usual’ scenario. The Johnston’s (2003) 

‘business-as-usual’ scenario is based on the current trends of energy efficiency 

improvements as at the time the research was conducted. Most of the assumptions 

made by Johnston (2003) for the scenario are similar to this model’s ‘baseline’ 

scenario assumptions. The results of this comparative analysis are summarised in 

Tables 7.6 and 7.7 for household energy consumption and household carbon 

emissions respectively. The results shown in Tables 7.6 and 7.7 for the total 

annual household energy consumption and carbon emissions display the same 

pattern of trend. There are, however, some differences in the two models. The 

values of total annual household energy consumption are lower than that of 

Johnston (2003). 

 

 

Table 7.6:  Change in household carbon emissions by end-use based on ‘baseline’ 

scenario for the year 2050 relative to 1990 

 Total annual household energy consumption 

(KWh) 

1990 2000 2010 2020 2030 2040 2050 

‘Baseline’ scenario 491.2 546.8 519.4 445.3 413.1 385.4 360.6 

Business-as-usual scenario 

of Johnston (2003) 

- 556.9 555.0 547.8 530.1 511.4 437.9 
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Table 7.7:  Change in household carbon emissions by end-use based on ‘baseline’ 

scenario for the year 2050 relative to 1990 

 Total annual household carbon emissions 

(million tonnes of CO2) 

1990 2000 2010 2020 2030 2040 2050 

‘Baseline’ scenario 171.0 164.2 140.1 121.3 109.2 98.0 87.3 

Business-as-usual scenario 

of Johnston (2003) 

- 132.7 132.5 137.1 127.7 118.0 97.5 

 

This may likely due to the fact that the evidence from historical data utilised by 

this model suggest a drastic reduction in energy consumption. This is because of 

different schemes of Government regarding energy consumption yielding positive 

results. These differences are likely due to different assumptions made, input data 

utilised, and/or the modelling philosophy employed by the two models. Regarding 

the different assumptions made, the two models clearly show that there are some 

differences in household carbon emissions (see Table 7.7). This difference may be 

as a result of the assumption made by this model regarding the energy to carbon 

conversion factor as enunciated in Section 6.6.6. Also, input data utilised are 

different. Johnston (2003) used data from a number of sources, basically from 

Shorrock and Dunster (1997) as published by BRE. This research too utilised data 

from different sources, basically from Palmer and Cooper (2012) as published by 

DECC. It should be noted that DECC is the Government body housing energy 

data in the UK. Data used in this research is more recent than that of Johnston 

(2003). This may therefore account for the differences. Finally, it may be due to 

the modelling philosophy used by the two models. Johnston’s model was 

implemented using Excel template based on building physics, which only utilises 

quantitative data; while the model in this research is implemented using SD, 

which is based on feedback control. It is worth mentioning that the SD modelling 

approach utilised in this thesis combined both the quantitative and qualitative data 

sources together, this is seen as the main strength of this approach. 
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7.10 Chapter Summary 

 

This chapter has described and discussed the general assumptions made under the 

‘baseline scenario’. The model behaviour under this scenario suggested the way 

by which household energy consumption and carbon emissions attributable to the 

UK housing stock would evolve over the years under the assumptions that the 

current energy efficiency measures, consumption behaviour and energy prices 

trends will be sustained. The results of key variables from each of the modules 

were discussed. In the population/household module, the model behaviour 

indicated that the total UK population is on the upward trend until 2050. Also, the 

number of households in the UK was predicted by the model to likely grow on a 

yearly average of 1.02%, while the average household size tends toward two per 

household by the year 2050.  Under the dwelling internal heat module, the model 

output suggests that both the dwelling internal heat and dwelling internal 

temperature will continue to grow. These are due to improvements envisaged in 

dwellings’ thermal performance, thereby increasing dwellings’ airtightness and 

the desire to improve thermal comfort by raising the temperature set-point by 

householders.  

 

Furthermore, the chapter discussed the insights observed from key variables under 

the occupants thermal comfort module. These include the behaviour of perceived 

dwelling temperature that the model output suggests that will grow over the year 

until 2050. The reason for this trend is as offered under the discussion of dwelling 

internal heat and dwelling internal temperature. This is seen to result in improved 

occupants’ thermal comfort. Within the climatic-economic-energy efficiency 

interaction module, the model results suggest that the unfavourable climatic 

effects will decline as a result of efforts aiming at reducing carbon emissions. 

However, the model result suggests that the effect of energy efficiency standard 

improvement on dwelling energy efficiency will tend to improve. The results 

from the scenario suggest that about 9% and 27% reductions in household energy 

consumption are visible by the years 2020 and 2050 respectively below the year 

1990 levels. These translate to savings of 29% and 49% in carbon emissions by 
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the years 2020 and 2050 respectively. The insights from the model show that the 

greatest savings in both household energy consumption and carbon emissions are 

expected from space and water heating. 
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Chapter 8 
 

MODEL TESTING AND VALIDATION 
 

 

 

8.1 Introduction 

 

In SD methodology, model testing and validation are regarded as important 

stages. This chapter therefore reports the model testing and validation process as 

completed for the developed model in this thesis. This chapter first discusses the 

SD validation tests that can be performed. This is followed by some background 

information on experts and professionals who took part in the validation exercise. 

Afterward, the chapter discusses the results of the validation tests performed in 

terms of structure-oriented and behaviour pattern tests.  

 

 

8.2 Model Validation Tests 

 

As previously given under Section 6.6, the developed model in this thesis is 

simulated using Vensim DSS for Windows Version 5.11A software. Vensim is 

one of the SD modelling tools that commonly in use to build, simulate and 

analyse SD models. Researchers acknowledge Model Testing and Validation 

(MTaV) as an important aspect of any model-based methodology like SD (Barlas, 

1996; Ranganath & Rodrigues, 2008) and as such, a crucial step that is not to be 

disregarded whatsoever. It is significant in the sense that the validity of results 

emanating from the model is heavily dependent on the validity of the model itself. 

MTaV is the process of testing the soundness and correctness of construction of 

the model while establishing confidence in the usefulness of the model (Coyle, 

1997; 1977). Hence, this MTaV exercise proves the credibility of the outputs 

from the model and ascertains that the results accurately represent reality. Testing 

the model actually means validating it.  
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However, some researchers argue that MTaV is a controversial issue (Barlas, 

1996) because there is no single approach that would allow the modellers to 

ascertain that their models have been validated. Further to this controversy, 

Sterman (2000) contends that complete model validation is practically impossible 

and as such more emphasis needs to be laid on model testing in order to build 

confidence that the model is adequate for the intended purpose.  

 

To this extent, there are quite a number of tests to assess the validity of SD 

models. This is generally divided into structure-oriented and behaviour pattern 

tests (Forrester & Senge, 1980; Barlas, 1985; 1996; Richardson & Pugh, 1999; 

Sterman, 2000; Groesser & Schwaninger, 2012). The tests include and not limited 

to (1) structure-oriented tests – boundary adequacy, structure assessment, 

dimensional consistency, parameter assessment, extreme conditions, and 

integration error, (2) behaviour pattern tests – behaviour reproduction, behaviour 

anomaly, family member, surprise behaviour, sensitivity analysis, and system 

improvement. The purpose of each of these test and tools/procedures required are 

illustrated in Table 8.1 as adapted from the work of Sterman (2000). The tests are 

therefore discussed in Sections 8.4 and 8.5. 

 

 

8.3 Details of Participants in Model Testing and Validation 

 

This section discusses the details of the experts (both from energy and SD 

backgrounds) that participated in the model validation process as explained in 

research methodology chapter. Table 8.2 shows the background information of 

the fifteen experts that took part in the review of the model and its output (see 

Appendix D1 for the validation instrument). 

 

Similarly to the background questions asked the interviewees during the model 

conceptualisation validation as explained in Chapter 6, these same background 

questions were asked. This is basically to once again establish the reliability of 

the participants in the model validation.  
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Table 8.1: SD validation tests 

Test Purpose of Test Recommended Tools and Procedures 
 

A. Structure Validity 
1. Boundary 

Adequacy 
Are the important concepts for addressing 
the problem endogenous to the model? 
Does the behaviour of the model change 
significantly when boundary assumptions 
are relaxed? 
Do policy recommendations change when 
the boundary is extended? 

Use model boundary charts, subsystem 
diagrams, causal diagrams, stock and flow 
maps, and direct inspection of model 
equations. 
Use interviews, workshops to solicit expert 
opinion, archival materials, review of 
literature, direct inspection/participation in 
system processes, etc. 
Modify model to include plausible additional 
structure; make constants and exogenous 
variables endogenous, then repeat sensitivity 
and policy analysis 
 

2.   Structure 
Assessment 

Is the model structure consistent with 
relevant descriptive knowledge of the 
system? 
Is the level of aggregation appropriate? 
Does the model conform to basic physical 
laws such as conservation laws? 
Do the decision rules capture the 
behaviour of the actors in the system? 

Use policy structure diagrams, causal 
diagrams, stock and flow maps, and direct 
inspection of model equations. 
Use interviews, workshops to solicit expert 
opinion, archival materials, direct inspection 
or participation in system processes, as in (1) 
above. 
Conduct partial model tests of the intended 
rationality of decision rules.  
Conduct laboratory experiments to elicit 
mental models and decision rules of system 
participants. 
Develop disaggregate submodels and 
compare behaviour to aggregate formulations. 
Disaggregate suspect structures, then repeat 
sensitivity and policy analysis. 
 

3.   Dimensional 
Consistency 

Is each equation dimensionally consistent 
without the use of parameters having no 
real world meaning? 

Use dimensional analysis software. 
Inspect model equations for suspect 
parameters. 
 

4. Parameter 
Assessment 

Are the parameter values consistent with 
relevant descriptive and numerical 
knowledge of the system? 
Do all parameters have real world 
counterparts? 

Use statistical methods to estimate parameters 
(wide range of methods available). 
Use partial model tests to calibrate 
subsystems. 
Use judgemental methods based on 
interviews, expert opinion, focus groups, 
archival materials, direct experience, etc.  
Develop disaggregate submodels to estimate 
relationships for use in more aggregate 
models. 
 

5. Extreme 
Conditions 

Does each equation make sense even 
when its inputs take on extreme values? 
Does the model respond plausibly when 
subjected to extreme policies, shocks, and 
parameters? 

Inspect each equation. 
Test response to extreme values of each 
input, alone and in combination. 
Subject model to large shocks and extreme 
conditions. Implement tests that examine 
conformance to basic physical laws. 
 

6. Integration 
Error 

Are the results sensitive to the choice of 
time step or numerical integration 
method? 

Cut the time step in half and test for changes 
in behaviour.  
Use different integration methods and test for 
changes in behaviour. 

(Adapted from Sterman, 2000) 
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Table 8.1: Continued. 

Test Purpose of Test Recommended Tools and Procedures 
 

B. Behaviour Validity 
7. Behaviour 

Reproduction 
Does the model reproduce the 
behaviour of interest in the system 
(qualitatively and quantitatively)? 
Does it endogenously generate the 
symptoms of difficulty motivating the 
study? 
Does the model generate the various 
modes of behaviour observed in the 
real system? 
Do the frequencies and phase 
relationships among the variables 
match the data? 

Compute statistical measures of 
correspondence between model and data: 
descriptive statistics (e.g. R2); time domain 
methods (e.g. autocorrelation functions); 
frequency domain methods (e.g. spectral 
analysis); many others. 
Compare model output and data 
qualitatively, including modes of 
behaviour, shape of variables, 
asymmetries, relative amplitudes and 
phasing, unusual events. 
Examine response of model to test inputs, 
shocks, and noise. 
 

8. Behaviour 
Anomaly 

Do anomalous behaviours result when 
assumptions of the model are changed 
or deleted? 

Zero out key effects (loop knockout 
analysis). 
Replace equilibrium assumptions with 
disequilibrium structures. 
 

9. Family 
Member 

Can the model generate the behaviour 
observed in other instances of the same 
system? 

Calibrate the model to the widest possible 
range of related systems. 
 
 

10. Surprise 
Behaviour 

Does the model generate previously 
unobserved or unrecognised behaviour? 
Does the model successfully anticipate 
the response of the system to novel 
conditions? 

Keep accurate, complete, and dated records 
of model simulations. Use model to 
simulate likely future behaviour of system. 
Resolve all discrepancies between model 
behaviour and your understanding of the 
real system. 
Document participant and client mental 
models prior to the start of the modelling 
effort. 
 

11. Sensitivity 
Analysis 

Numerical sensitivity: Do the numerical 
values change significantly…. 
Behavioural sensitivity: Do the modes 
of behaviour generated by the model 
change significantly…. 
Policy sensitivity: Do the policy 
implications change significantly…. 
….when assumptions about parameters, 
boundary, and aggregation are varied 
over the plausible range of uncertainty? 

Perform univariate and multivariate 
sensitivity analysis. 
Use analytic methods (linearization, local 
and global stability analysis, etc.). 
Conduct model boundary and aggregation 
tests listed in (1) and (2) above. 
Use optimisation methods to find the best 
parameters and policies. 
Use optimisation method to find parameter 
combinations that generate implausible 
results or reverse policy outcomes.  
 

12. System 
Improvement 

Did the modelling process help change 
the system for the better? 

Design instruments in advance to assess the 
impact of the modelling process on mental 
models, behaviour, and outcomes. 
Design controlled experiments with 
treatment and control groups, random 
assignment, pre-intervention and post-
intervention assessment, etc. 
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As shown in Table 8.2, the organisation type, academic qualification, years of 

experience in household energy related issues, and years of experience in system 

dynamics modelling of the interviewees are captured.  The interview participants 

are nine from the private sector representing 60% of the interviewees, while the 

remaining six representing 40% belongs to the public sector. This indicates that 

the views of both the public and private sectors regarding issues relating to 

household energy consumption are captured. The academic qualification of the 

participants reveal that majority (N=9) of the interviewees hold a minimum of 

master’s degree (60% of the interviewees), four of them representing 26.7% hold 

a bachelor’s degree, while the remaining 13.3% hold a PhD degree. The 

implication of this is that all the interviewees have the requisite academic 

qualification qualified them to presumably knowledgeable about the issues being 

sought by the study. 

 

It is equally important to capture the years of experience of the interviewees in 

order to ensure that those interviewed have involved and have deep knowledge on 

issues relating to household energy consumption and/or SD. The interviewees 

have an average of 17.5 years of experience on issues relating to household 

energy, which incidentally, the same as for those interviewed during the model 

conceptualisation stage in Chapter 6. Similarly, the mean years of experience of 

the three interviewees in SD modelling is 18.4 years as shown in Table 8.2. This 

implies that the system dynamicists that participated in the validation are with 

requisite years of experience. 

 

Again as done at the model conceptualisation stage in Chapter 6, the interview of 

each interviewee started with a brief description of the research by highlighting its 

aim and objectives. The purpose of the validation task together with the expected 

outcomes was explained to each of the interviewees mainly to ensure that the 

exercise is as clear as possible to them. The interviewees were first given the final 

causal diagrams produced for each of the modules in the model. The SFD 

developed from the CLDs were shown to them on the laptop together with the 

assumptions made. Some of the tests performed within the Vensim software were 
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demonstrated to them prior to the model simulation. The model simulation was 

then performed for the ‘baseline’ scenario and the graphs of the major outputs 

from the model were viewed by the interviewees. Some other scenarios were 

performed and the outputs from them were assessed. This face validity then forms 

the basis for the validity by scoring approach based on some pre-determined 

criteria as shown in Table 8.3. Further to the face validation, the system 

dynamicists interviewed subjected the model to another round of scrutiny by 

performing all the necessary model validation tests. Also, they check some of the 

equations developed in the model and assess their appropriateness and conformity 

with the general rules guiding the SD modelling.   

 

Table 8.2: Background information of experts participated in model validation 

Category Classification Frequency Percentage (%) 

    

Organisation Type 

(N=15) 

Public 

Private 

Total 

6 

9 

10 

40 

60 

100 

 

Academic 

Qualification (N=15) 

Bachelor’s degree 

Master’s degree 

PhD 

Total 

4 

9 

2 

10 

26.7 

60 

13.3 

100 

 

Years of Experience 

in Household Energy 

Related Issues 

(N=12) 

6-10 

11-15 

16-20 

21-25 

Mean = 17.5 

2 

3 

6 

1 

 

16.7 

25 

50 

8.3 

 

 

    

Years of Experience 

in System Dynamics 

Modelling (N=3) 

            11-15 

16-20 

Mean = 18.4 

1 

2 

 

33.3 

66.7 

 

N = Number of interviewees 
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For scoring method, the interviewees were asked to assess the model according to 

a set of pre-determined criteria based on the SD model reviewed by them. Chew 

and Sullivan (2000) argues that the objective of any model validation is to ensure 

that it adequately reflects the model objectives. Further to this, Sargent (2005) and 

Martis (2006) suggest that the model developed should adequately meet the 

following criteria: logical structure, clarity, comprehensiveness, practical 

relevance, applicability, and intelligibility of the model. These criteria were the 

ones included in the questions asked the interviewees. The scores ascribed to each 

of the criteria are based on ‘5’ representing ‘excellent’, ‘4’ – ‘above average’, ‘3’ 

– ‘average’, ‘2’ – ‘below average’, and ‘1’ – ‘poor’. Table 8.7 shows the results 

for this method of validation. 

 

Table 8.3: Model validation based on scoring method 

Criteria Score Mean*  

5 4 3 2 1 Score 

Logical structure 4 8 3 0 0 4.07 

Clarity 5 8 2 0 0 4.20 

Comprehensiveness 3 9 3 0 0 4.00 

Practical relevance 4 10 1 0 0 4.20 

Applicability 2 9 4 0 0 3.87 

Intelligibility 2 7 6 0 0 3.73 

*Mean Score =(5*ns + 4*n4 +3*n3 + 2*n2 +1*n1)/(5+4+3+2+1) where ns, n4,…. correspond  

responses relating to 5, 4, …. respectively. 

 

The logical structure has a mean score of 4.07 indicating that this score is by far 

above the average. The logical structure here assesses the consistency of the 

model with the properties of the real system being mimicked. This results indicate 

that no logical disjoint with the real system exist. Also, the mean scores for clarity 

and practical relevance are each 4.02 suggesting that the respondents agree that 

the model is well clear with practical relevance on issues relating to household 

energy consumption and carbon emissions. Furthermore, model 

comprehensiveness has a mean score of 4.00, which shows that the model 
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captures important variables purporting to influence energy and carbon emissions 

and has the capability of addressing the problem under study. Applicability and 

intelligibility of the model have a mean score of 3.87 and 3.73 respectively as 

shown in Table 8.3. These scores are, once again, above the average suggesting 

the usefulness of the model. They also reinforce the comments of the experts 

interviewed as given under the Section 8.4.2. 

 

 

8.4 Structure – Oriented Tests 

 

The main aim of structure-oriented tests is to ascertain that the model outputs 

capture and consistent with the real system being replicated. The tests ensure that 

the model is appropriate for the target audience (Ranganath & Rodrigues, 2008). 

Further to this, the tests focus on the suitability of the level of aggregation and 

determine whether or not the basic physical laws are strictly adhered to regarding 

the parameters utilised in the model. In this research, the model is subjected to the 

following structure-oriented tests in order to have it validated. 

 

 

8.4.1 Boundary Adequacy Test 

 

As shown in Table 8.1, the boundary adequacy tests assess the appropriateness of 

the model boundary to capture the problem under investigation. The model 

boundary charts for this model is shown in Table 6.2 of Chapter 6, which is one 

of the useful tools to conduct boundary adequacy tests. Apart from the model 

boundary chart, the model CLDs of different modules were validated qualitatively 

through a series of interviews held with experts and practitioners in issues relating 

to household energy as explained in research methodology chapter as well as 

Section 6.2 of Chapter 6. The feedback from these interviews indicates that the 

study captures important variables relating to HECCE. However, some of the 

interviewees are of the opinion that there are more rooms for improvement 

through making some of the exogenous variables like occupants’ behaviour in the 
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model endogenous as well as expanding the boundary of the model by including 

some of the excluded variables in the upgraded version of the model. 

 

 

8.4.2 Structure Assessment Test 

 

According to Sterman (2000), the structure assessment tests whether or not the 

model structure is consistent with relevant descriptive knowledge of the system 

and conforms to basic physical laws. It also tests whether or not the level of 

aggregation of the model is appropriate as tested under the model boundary 

adequacy tests. In this research, the modeller (author) ensures that the structure of 

the model considers all the real life issues that are consistent with relevant 

descriptive knowledge in the subject. This is done at both model 

conceptualisation and complete model validation stages.  

 

At the model validation stage, the results of the interviews conducted indicate that 

both the energy and SD experts interviewed are satisfied with the structure of the 

model in terms of its description of the relevant knowledge in the subject. One of 

the interviewees reports that “the structure of the model makes it easy to follow 

and is simple to understand even if you are not familiar with energy issues or 

system dynamics”. Another interviewee expresses that “the structure of the model 

demonstrates how a large number of variables are interrelated in a logical 

manner”. When asked to comment generally on the structure of the model, 

another interviewee notes that “this is a very well developed model which appears 

to represent a very impressive body of work”.   

 

Additionally, both the modeller and the system dynamicists interviewed 

qualitatively inspected some of the model equations in order to assess whether or 

not they are conformable to and consistent with the basic physical laws. The 

result of this exercise suggests that all the equations inspected are conformable to 

basic physical laws and do make sense. Also, the reports of the interviews 

conducted the energy experts suggest that the model includes all the significant 
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variables and the level of aggregation is consistent with the target audience for the 

model.  

 

 

8.4.3 Dimensional Consistency Test 

 

The dimensional consistency test assesses the model equations for dimensional 

consistency and check whether or not all the units and values attributed to the 

model parameters are consistent with relevant understanding of the system under 

investigation (Sterman, 2000). In order to ensure that the model is validated 

accordingly, the dimensional analysis tool within the Vensim software was used 

to conduct this test. In Vensim, the software automatically checks the dimensions 

of all the variables and the equations in the model in order to ascertain that they 

are consequently balanced. For the model in this thesis, the dimensional analysis 

tool was invoked and all the units of the model variables and equations were 

verified and balanced accordingly. 

 

 

8.4.4 Parameter Assessment Test 

 

According to Sterman (2000), the parameter assessment test evaluates the model 

parameters and check whether or not all their values are consistent with relevant 

descriptive and numerical noesis of the system. This is consistent with the 

argument of Ranganath and Rodrigues (2008) that the numerical values of 

parameters should have real system equivalents. In order to ensure that the 

parameter assessment of the model variables is adequately evaluated, Sterman 

(2000) suggests the tools and procedures for achieving this as shown in Table 8.1. 

Among the ways suggested are the statistical and judgemental methods. The 

values of majority of parameters in the model are taken from relevant published 

data sources as discussed in Section 4.4.2. For example, the following parameters 

(solar flux, solar transmittance factor for glazing, frame factor, etc.) under the 
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dwelling internal heat module are extracted from the SAP data (BRE, 2012) (See 

Section 4.42. 

 

 

8.4.5 Extreme Conditions Test 

 

The extreme conditions test evaluates how sound and robust the model is based 

on its response to the variables subjected to extreme values. This test then 

assesses the model equations and check whether or not they still make any sense 

when subjected to extreme conditions. In order to test and validate the model 

against this structure-oriented test, the model was subjugated to extreme values of 

some parameters. For example, the model was submitted to extreme values of 

‘insulation factor’ and ‘% increment of energy bills’, which are varied for 0% and 

100%. The model results indicate that the behaviour of the output still make sense 

without any plausible or irrational response in terms of the values of outputs as 

shown in Figures 8.1 to 8.4. 

 

 

Figure 8.1: Total annual household energy consumption under ‘insulation factor’ set to 

0% and 100% 
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Figure 8.2: Total annual household carbon emissions under ‘insulation factor’ set to 0% 

and 100% 

 

 

Figure 8.3: Total annual household energy consumption under ‘increment in energy 

bills’ set to 0% and 100% 
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Figure 8.4: Total annual household carbon emissions under ‘increment in energy bills’ 

set to 0% and 100% 

 

 

8.4.6 Integration Error Test 

 

In this section, the model’s robustness was further assessed by performing the 

integration error tests for the model. Sterman (2000) argues that the integration 

error tests the sensitivity of the model results to the choice of Time Step and/or 

numerical integration methods employed in the simulation. He recommends 

cutting the Time Step used in the simulation into halve in order to check whether 

or not there are changes in the behaviour of the model outputs. Similarly for the 

integration method employed, Sterman (2000) submits that changes in model 

behaviour need to be checked and tested against different integration methods. 

 

In this research, both the changes attributed to the choice of Time Step and 

integration method tests were conducted. Integration error test was conducted by 
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first splitting the Time Step of one (Time Step = 1) used for the simulation into 

two (i.e. Time Step = 0.5) and then run the simulation again. The final outputs (in 

terms of household energy consumption and carbon emissions) (see appendix D2) 

of the models were examined to check whether or not there are changes in their 

behaviour. In order to test whether or not there are changes, a hypothesis was set 

up. The null hypothesis (H0) signifies that there is no statistically significant 

difference between the means of the model outputs for Time Step=1 and Time 

Step=0.5, while the alternate hypothesis (H1) signifies that there is statistically 

significant difference between the two means. Mathematically the hypothesis was 

set up as shown in the below equations: 

 

H0:  µi Time Step=1 – µi Time Step=0.5 = 0   (Eq. 8.1) 

 

H1:  µi Time Step=1 – µi Time Step=0.5 ≠ 0   (Eq.8.2) 

Where µi indicates the mean of variable of interest in the model 

 

A paired sample t-test was conducted for ten different variables in the model, 

which includes energy consumption and carbon emissions for space heating, hot 

water, cooking, lighting, and appliances for the UK housing stock as shown in 

Table 8.4. In order to take a decision regarding the hypothesis, the significance 

value (p-value) is compared to the significance level (α = 0.05), and based on 

these two values, the null hypothesis is either rejected or not rejected. If the p-

value is less than the significance level, the null hypothesis is rejected (i.e. p-

value < α, reject the null); otherwise the null hypothesis is not rejected. In this 

case, the t statistics computed for the ten paired variables of interest as shown in 

Table 8.4 reveals that the p-value for all the ten paired variables is greater than the 

value of significance level.  This means that the p values of 0.527, 0.181, 0.251, 

0.259, 0.779, 0.495, 0.418, 0.567, and 0.320 are greater than the α-value of 0.05. 

Therefore, the null hypothesis is accepted and the alternative hypothesis rejected. 

This by implication means that there is no statistically significant difference in the 

means of output of variables of interest shown in Table 8.4. That is, the results 
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portend to indicate that there are no changes in behaviour of those selected 

outputs.  

 

Table 8.4: Paired sample t-test for Time Step changes 

 

Paired Differences 

t df 
Sig. (2-
tailed) Mean 

Std. 
Deviation 

Std. 
Error 
Mean 

Pair 1 SHEC_1 - SHEC_0.5 .00827 .11729 .01303 .635 80 .527 

Pair 2 HWEC_1 - HWEC_0.5 .00111 .00742 .00082 1.348 80 .181 

Pair 3 CEC_1 - CEC_0.5 -.00049 .00384 .00043 -1.157 80 .251 

Pair 4 LEC_1 - LEC_0.5 -.00037 .00293 .00033 -1.136 80 .259 

Pair 5 AEC_1 - AEC_0.5 .00049 .00384 .00043 1.157 80 .251 

Pair 6 SHCE_1 - SHCE_0.5 .00222 .07101 .00789 0.282 80 .779 

Pair 7 HWCE_1 - HWCE_0.5 .00037 .00486 .00054 0.686 80 .495 

Pair 8 CCE_1 - CCE_0.5 -.00025 .00273 .00030 -0.815 80 .418 

Pair 9 LCE_1 - LCE_0.5 .00012 .00193 .00021 0.575 80 .567 

Pair 10 ACE_1 - ACE_0.5 .00037 .00333 .00037 1.000 80 .320 

SHEC = space heating energy consumption; HWEC = hot water energy consumption; CEC = 
cooking energy consumption; LEC = lighting energy consumption; AEC = appliances energy 
consumption; SHCE = carbon emissions due to space heating energy; HWCE = carbon emissions 
due to hot water energy; CCE = carbon emissions due to cooking energy; LCE = carbon 
emissions due to lighting energy; ACE = carbon emissions due to appliances energy; Sig. = 
significance, Std. = standard; df = degree of freedom. 
 

In addition to cutting the Time Step into half with the use of Euler numerical 

integration method, the model is simulated using four different integration 

methods. These integration methods are (1) fixed second order Runge-Kutta 

(fRK2), (2) auto second order Runge-Kutta (aRK2), (3) fixed fourth order Runge-

Kutta (fRK4), and (4) auto fourth order Runge-Kutta (aRK4). As done for the 

hypothesis testing above under the Time Step splitting, hypotheses were again set 

up as follow: 

 

1. To test whether or not there is statistically significant difference between 

the results of the simulation performed by Euler and fRK2 numerical 
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integration methods, the hypothesis in equations 8.3 and 8.4 are 

formulated. 

 

H0:  µi Euler – µi fRK2 = 0    (Eq. 8.3) 

 

H1:  µi Euler – µi fRK2 ≠ 0    (Eq. 8.4) 

 

2. To test whether or not there is statistically significant difference between 

the results of the simulation performed by Euler and aRK2 numerical 

integration methods, the hypothesis in equations 8.5 and 8.6 are 

formulated. 

 

H0:  µi Euler – µi aRK2 = 0    (Eq. 8.5) 

 

H1:  µi Euler – µi aRK2 ≠ 0    (Eq. 8.6) 

 

3. To test whether or not there is statistically significant difference between 

the results of the simulation performed by Euler and fRK4 numerical 

integration methods, the hypothesis in equations 8.7 and 8.8 are 

formulated. 

 

H0:  µi Euler – µi fRK4 = 0    (Eq. 8.7) 

 

H1:  µi Euler – µi fRK4 ≠ 0    (Eq. 8.8) 

 

4. To test whether or not there is statistically significant difference between 

the results of the simulation performed by Euler and aRK4 numerical 

integration methods, the hypothesis in equations 8.9 and 8.10 are 

formulated. 
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H0:  µi Euler – µi aRK4 = 0    (Eq. 8.9) 

 

H1:  µi Euler – µi aRK4 ≠ 0    (Eq. 8.10) 

 

Again, a paired sample t-test was carried out for energy consumption and carbon 

emissions of space heating, hot water, cooking, lighting, and appliances for the 

entire UK housing stock as shown in Table 8.5. The same decision rules as for the 

Time Step splitting were used to test if there is any statistically significant 

difference between the behaviour of simulation outputs performed by Euler and 

four other integration methods. As before, the t statistics computed for the ten 

paired variables of interest as shown in Table 8.4 for each of fRK2, aRK2, fRK4, 

and aRK4 show that the p-value for all the ten paired variables are greater than the 

value of significance level for all the four integration methods (Table 8.5).  

Therefore, the null hypothesis is accepted and the alternative hypothesis rejected 

for all of them. This by implication means that it is safe to say that there is no 

statistically and significantly difference in the means of output of variables of 

interest shown in Table 8.5. That is, there are no significant changes in behaviour 

of these variables of interest. 

 

 

8.5 Behaviour Pattern Tests 

 

The main purpose of behaviour pattern tests is to ensure that the model output is 

consistent with the behaviour patterns of historical time series data of the 

variables in the real system under investigation (Ranganath & Rodrigues, 2008). 

A model is therefore considered validated behaviourally if the results of 

simulation performed give similar behavioural patterns when compared with 

behaviour patterns observed in the time series data of the real system (Sterman, 

2000). The historical time series are shown in the reference modes as discussed in 

Section 6.4 of Chapter 6.  
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In this research, the behaviour pattern validation is achieved by comparing the 

pattern of behaviour of the baseline simulation run with the historical time series 

data (reference modes). The behaviour anomaly, behaviour reproduction and 

behavioural sensitivity analysis tests are the behaviour pattern validation tests 

conducted and they are discussed in the following sub-sections. 

 

 

8.5.1 Behaviour Anomaly Test 

 

The behaviour anomaly test assesses the behaviour shown by the model and 

check whether its output conflict in any way with the real system behaviour 

(Ranganath & Rodrigues, 2008). Also according to Sterman (2000), the behaviour 

anomaly test evaluates how implausible behaviour arises should the assumptions 

made in the model altered. In order to conduct this test in this research, a loop 

knockout analysis was carried out on one of the loops in the occupants’ thermal 

comfort module and its effect was assessed on the output of the model (see Figure 

8.5 for example). The results of the behaviour anomaly test indicate that no 

anomaly of any kind exists in the output of the model as no erratic behaviour was 

noticed when the simulation was performed.  

 

 

Figure 8.5: Effect of loop knockout on occupants comfort 
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8.5.2 Behaviour Reproduction Test 

 

To conduct behaviour reproduction test, Sterman (2000) suggests computation of 

some statistical measures as shown in Table 8.1 to include descriptive statistics 

(e.g. R2). Similarly, Barlas (1996) recommends trend comparison between the 

model output and actual (historical) data by formulating a linear, quadratic, or an 

exponential trend; comparing the periods by performing an autocorrelation 

function test; and comparing the means by determining percentage error in the 

means.  

 

The baseline model output of this research were compared to actual (historical) 

data by carrying out a trend analysis of the model output and historical data based 

on autoregressive integrated moving averages (ARIMA).  Two variables of 

interest in the model were selected for the purpose of this test. The variables 

selected are the ‘average annual energy consumption per household’ and ‘average 

annual CO2 emissions per household’. The choice of these variables is dictated by 

the fact that the main output of this research is both household energy 

consumption and household carbon emissions. However, the historical time series 

data available on carbon emissions are not disaggregated as done for energy 

consumption end uses. Therefore, the ‘average annual energy consumption per 

household’ and ‘average annual CO2 emissions per household’ are chosen as the 

test variables. The ‘goodness of fit’ (R squared) results for the two variables of 

interest are as shown in Table 8.6. The results suggest a good ‘goodness of fit’ for 

the two variables explored based on the values of R2 as 0.991 and 0.999 for 

average annual CO2 emissions per household and average annual energy 

consumption per household respectively.  

 

The results also show the mean absolute percentage error (MAPE) for the two 

variables as very small (MAPE=0.900% for average annual CO2 emissions per 

household, and MAPE=0.074% for average annual energy consumption per 

household) (Table 8.6).  
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Swanson, Tayman and Bryan (2011) suggest a MAPE of less than 10% as being 

very good. Based on this suggestion, it is then safe to say that the maximum 

absolute percentage error (MaxAPE) computed for the two variables as indicated 

in Table 8.6 is adequate as well (MaxAPE=3.494% for average annual CO2 

emissions per household, and MaxAPE=0.482% for average annual energy 

consumption per household). 

 

Further to these tests, autocorrelation function tests were conducted in order to 

detect any significant errors in the periods of the time series for the model outputs 

and actual data by testing a hypothesis. If sample autocorrelation function for 

simulated model is represented by rs (k) and the one for the actual (historical) data 

is ra (k), then the null hypothesis is formulated thus: 

 

H0: rs (1) -  ra (1) = 0, rs (2) -  ra (2) = 0,……., rs (M) -  ra (M) = 0        (Eq. 8.11) 

 

and the alternative hypothesis is, 

 

H1: rs (k) -  ra (k) ≠ 0 for at least one k           (Eq. 8.12) 

Where k is any pair of values 

 

It needs to note that [rs (k) -  ra (k)] = 0 under the H0 and as such an interval is 

constructed based on the standard error (SE) of the difference of rs (k) -  ra (k)  

under which the H0 is rejected should the difference [rs (k) -  ra (k)] fall outside the 

interval: 

K−# L��	�M	 − 	�)	�M	N,
			# L��	�M	 − 	�)	�M	N,             (Eq. 8.13) 

In order to take a decision regarding the hypothesis, the same decision rule as 

formulated under Section 8.4.6 above was used. That is, the significance value (p 

value) is compared to the significance level (α = 0.05), and the null hypothesis is 

either rejected or accepted. That is, if the p value is less than the significance 



Chapter 8: Model Testing and Validation 
 

236 
 

level, the null hypothesis is rejected (if p value < α, reject the null); otherwise the 

null hypothesis is accepted.  

In this case, the LJung – Box Q statistics computed for the two variables of 

interest as shown in Table 8.6 reveals that the p value for average annual CO2 

emissions per household is greater than the significance level (p value of 0.741 > 

α-value of 0.05). Therefore, the null hypothesis is not rejected and it is safe to 

conclude that there are no significant errors in the periods of the time series for 

the model outputs and actual data for average annual CO2 emissions per 

household. Similarly, the null hypothesis is not rejected for average annual energy 

consumption per household (p value of 0.940 > α-value of 0.05), which implies 

that there are no significant errors in the periods of the time series for the model 

outputs and actual data for average annual energy consumption per household.  

The plots of the residual autocorrelation function (ACF) fall within the upper 

critical limit (UCL) and lower critical limit (LCL) for the two variables as shown 

in Figures 8.6 and 8.7 for average annual CO2 emissions per household and 

average annual energy consumption per household respectively. The results in 

these figures imply that the values of [rs (k) - ra (k)] for within acceptable limits 

set. These results further reinforce the outcome of the hypothesis tested. 

 

Figure 8.6: Plots of residual autocorrelation function for carbon emissions 
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Figure 8.7: Plots of residual autocorrelation function for energy consumption 

 

 

8.5.3 Behavioural Sensitivity Analysis 

 

As part of model behaviour patterns validation in SD methodology, sensitivity 

analysis considers the sensitivity of the model to various model structures or 

different parameter values. Sterman (2000) and Moxnes (2005) argue that the 

most common type of sensitivity analysis conducted for SD models validation are 

numerical sensitivity, behavioural sensitivity, and policy sensitivity. The details 

of these sensitivity analyses are as shown in Table 8.1. In this research, 

behavioural sensitivity analysis was performed in order to find out whether or not 

the patterns of behaviour of the model outputs generated are significantly changed 

when there are changes to some of the parameters in the model. 

 

The research used the approach reported in Rahmandad and Sterman (2012) to 

carry out the sensitivity analysis for behaviour patterns test. Table 8.7 reports the 

results of the sensitivity analysis performed for the model. Two parameters 

adjudged by the modeller (author) to possibly influence the model output in terms 

of household carbon emissions and energy consumption is further investigated. 
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These parameters are ‘energy to carbon conversion factor’ and ‘carbon depletion 

factor’.  

 

Table 8.7: Results of a set of behavioural sensitivity analysis for the model 

Mean (SD) with different i 
and j based on 1000 

iterations 

Energy to carbon conversion factor i 

0.4246 0.5246 0.6246 

Carbon depletion factor j   

 
SHCE 73.00 (24.41)** 74.40 (25.38)** 75.47 (26.20)** 

 
HWCE 38.76 (8.29)** 39.88 (8.65)** 40.37 (8.89)** 

1.225 CCE 6.39 (2.28)** 6.69 (2.36)** 6.99 (2.43)** 

 LCE 5.78 (0.93)** 5.99 (0.88)* 6.39 (0.85)** 

 ACE 21.07 (5.98)** 22.13 (5.79)** 22.96 (5.65)** 

     

 
SHCE 67.44 (22.76)* 68.81 (23.68) 69.95 (24.46)* 

 
HWCE 35.85 (7.75)* 36.88 (8.09) 37.39 (8.42)* 

1.325 CCE 5.99 (2.13)* 6.19 (2.20) 6.87 (2.27)* 

 LCE 5.13 (0.85)* 5.54 (0.80) 5.94 (0.78)* 

 ACE 19.72 (5.48)* 20.47 (5.30) 21.43 (5.17)** 

     

 SHCE 63.05 (21.36)** 63.99 (22.23)** 64.52 (22.98)** 

 HWCE 33.27 (7.30)** 34.29 (7.62)** 35.33 (7.94)** 

1.425 CCE 5.45 (2.00)** 5.75 (2.07)* 5.96 (2.13)** 

 LCE 4.94 (0.78)** 5.15 (0.74)* 5.45 (0.71)* 

 ACE 18.70 (5.06)** 19.04 (4.89)* 19.27 (4.77)* 

SHCE = carbon emissions due to space heating energy for UK housing stock; HWCE = carbon 

emissions due to hot water energy for UK housing stock; CCE = carbon emissions due to cooking 

energy for UK housing stock; LCE = carbon emissions due to lighting energy for UK housing 

stock; ACE = carbon emissions due to appliances energy for UK housing stock; **significant at 

p-value<0.01; *significant at p-value<0.05, SD = standard deviation 
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The two of them are changed over three values each. A factorial analysis of 

method of experimentation was used to formulate the scenarios. The results of 

this formulation yield a total of nine different scenarios. The nine scenarios are 

achieved by varying the energy to carbon conversion factor (i) and carbon 

depletion factor (j) around their baseline values of 0.5246 and 1.325 respectively 

as shown in Table 8.7.  

 

In the table, the report of 1000 simulations performed for each of the scenarios in 

terms of mean values and standard deviation of the model outputs for carbon 

emissions due to space heating, hot water, cooking, lighting, and appliances are 

given. This amounts to total simulations of 9000 with each simulation from 1970 

to 2050 using a Time Step of one year. In order to assess how sensitive the model 

output to the changes in the two parameters under consideration, a t-test for group 

means with unequal variances was conducted by comparing the results to the 

baseline results for the values of i and j. The results indicate that all the scenarios 

compared with the baseline are statistically different. Those with p-value < 0.05 

are shown with a single asterisk, while those that are statistically different at p-

value < 0.01 are with double asterisks. 

 

 

8.7 Chapter Summary 

 

This chapter has described and discussed the testing and validation exercises 

conducted for the model. The chapter discussed the validation done with 15 

experts in the field of energy and SD. Further, the chapter described and discussed 

the tests performed within the SD modelling software – Vensim. These tests are 

categorised into the structure-oriented and behaviour-pattern tests. For the 

structure-oriented tests, the following tests were performed: boundary adequacy 

tests, structure assessment test, dimensional consistency test, parameter 

assessment test, extreme conditions test, and integration error test. Also, the 

behaviour pattern tests include behaviour anomaly test, behaviour reproduction 

test, and behavioural sensitivity analysis. The results of all these tests yielded 
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positive answers confirming that the model satisfies all the rules and regulations 

of the SD approach and the model output are consistent with the real system.  
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Chapter 9 
 

POLICY FORMULATION AND ANALYSIS (ILLUSTRATIVE 
SCENARIOS) 

 

 

 

9.1 Introduction 

 

In Chapter seven, the ‘baseline’ scenario that was presented communicates the 

most probable way in which the household energy consumption and carbon 

emissions of the UK housing stock will evolve over the years starting from 1970 

until 2050. This is based on the assumption that the trends depicted by historical 

data will continue in that way. Evidently, if there is therefore any policy change in 

future that is clearly different from the current ones, the profile of household 

energy consumption and carbon emissions could be altered. This may result in 

producing a set of entirely different consumption/emissions profile of the UK 

housing stock. For example, the UK Government may decide to implement a 

stringent energy efficiency policy if it is apparent that the current energy 

efficiency is unlikely to yield the required legally binding carbon emissions 

reduction targets. To this end, this chapter uses the discussions under the 

‘baseline’ scenario to develop illustrative scenarios that may evolve as a result of 

some policy changes. Many scenarios can be assumed and for the purpose of 

illustration, four hypothetical scenarios are assumed that include ‘efficiency’, 

‘behavioural change’, ‘economic’, and ‘integrated’ scenarios. In all of these 

scenarios, the future of household energy consumption and carbon emissions for 

the entire UK housing stock is explored. And as such, the household energy 

consumption carbon emissions reductions attributable to each of the scenarios are 

given and discussed. The rest of the chapter therefore explains the underlay 

assumptions for each of the scenarios and discusses the results emanating from 

them. 
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9.2. ‘Efficiency’ Scenario 

 

9.2.1 ‘Efficiency’ Scenario Assumptions 

 

This scenario is based on the assumptions made under the baseline scenario, but 

describes a situation whereby more evidence regarding the negative impact of 

climate change as a result of greenhouse emissions continues to emerge. This new 

evidence about the threat of negative effect of climate change is assumed to 

continue. This will further reinforce the need to meet the legally binding carbon 

reduction targets as set by the Government, for example reduction targets based 

on Climate Change Act of 2008 in the UK. Also, the scenario assumes that more 

evidence will emerge on the possibility of not meeting the legally binding carbon 

reduction targets as the report of European Union (EU) entitled “EU study 

predicts clean energy, climate failure by 2050” EU (2013) suggests. Based on this 

new evidence, it is then portends to trigger a more stringent energy efficiency 

measures in order to deeply cut carbon emissions.  

 

Energy efficiency measures are then assumed to concentrate on household 

dwellings and this is technology led. And as such, it is assumed that there will be 

improvements in the uptake of dwelling insulation measures thereby resulting in 

each household’s dwelling thermally insulated with increasing energy efficiency 

rating of dwellings like SAP rating. Further to these assumptions, airtightness of 

dwellings will increase and it is again assumed that a great deal energy savings 

will arise from this scenario. However, occupants will offset any savings that 

would have been made by seeking for more thermal comfort thereby increasing 

their dwellings internal temperature set-point from 19ºC to 21ºC. At this, 

‘standard’ consumption behaviour is still assumed to be maintained by the 

householders as done under the ‘baseline’ scenario. Fabric insulation depicted as 

‘insulation factor’ in the model is therefore assumed to increase by 25% beyond 

the levels set under the ‘baseline’ scenario.  
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Additionally, a structural adjustment is made to the model as shown in Figure 9.1. 

Under the ‘baseline’ scenario, the ‘SAP rating’ of the dwellings in the UK are 

qualitatively modelled within the SD and this was used to directly model the 

‘effect of energy efficiency standard improvement on dwelling energy efficiency’. 

However, in this scenario, it is assumed that the ‘SAP rating’ will gradually 

increase until 2040 at a gentle slope of 0.75% beyond the level it were in the year 

2010. This is assumed not to go beyond 0.95 (in a scale of 0 – 1). To qualitatively 

achieve this, an intermediary dummy variable was introduced within the model as 

shown in Figure 9.1. The model equation for it is also shown in Equation 9.1.  

 

 

Figure 9.1: Structural adjustment to the climatic-economic-energy efficiency 

interaction module 

 

effect of energy efficiency standard improvement on dwelling energy efficiency = 

IF THEN ELSE(Time<=2010, effect of SAP rating on energy efficiency 

standard improvement, MIN (0.95, effect of SAP rating on energy efficiency 

standard improvement + RAMP (0.0075, 2010, 2040)))          (Eq. 9.1) 

<insulation factor>
effect of combined fabric insulation
and energy efficiency standard on

dwelling energy efficiency

effect of fabric insulation
on energy efficiency

normal insulation

effect of SAP rating on
dwelling energy efficiency

SAP rating

normal SAP value

effect of energy efficiency
standard improvement on
dwelling energy efficiency

<Time>
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9.2.2 Analysis of the ‘Efficiency’ Scenario Results for Household Energy 

Consumption 

 

Figure 9.2 captures the combined behaviour of energy consumption per household 

by end-uses as attributable to space heating, hot water, cooking, lighting, and 

appliances based on efficiency scenario (see appendix C1 for the combined 

behaviour with the baseline scenario). Also, Figure 9.3 shows a combined graph 

of total and average annual household energy consumption under the efficiency 

scenario. Visually, the graphs (Figures 9.2 & 9.3) display a downward trend for 

all the variables indicated in the graphs thereby showing that there are reductions 

in household energy consumption across the board. However, the graphs show 

little information on the extent to which household energy consumption 

reductions in the years 2020 and 2050 relative to the year 1990. This information 

is necessary in order to know whether or not the reduction targets based on the 

Climate Change Act of 2008 are achieved by this scenario. To this end, more 

analysis of the simulation results is carried out to provide further insights into the 

reduction targets achieved. 

 

 

Figure 9.2: Household energy consumption by end-use under the efficiency scenario 
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Figure 9.3: Total and average annual household energy consumption under the 

efficiency scenario 

 

The results of further analysis conducted on the household energy consumption 

based on end uses for the entire UK housing stock is shown in Tables 9.1 and 9.2 

illustrating the changes in household energy for the year 2020 and 2050 relative to 

the year 1990 respectively. 

 

For the year 2020, the results of analysis of ‘efficiency’ scenario as shown in 

Table 9.1 suggest that the total household energy consumption for the entire UK 

housing stock is expected to reduce by about 60.59TWh of energy representing 

12.33% reduction relative to the year 1990 levels. Furthermore, the analysis 

suggests that apart for the household appliances energy that is expected to surge 

within this period by about 30%, others are expected to decline within this same 

period. That is, household energy for space heating, hot water, cooking and 

lighting is expected to dip relative to 1990 levels. This is with a reduction of 

about 11% for space heating, about 29% for hot water, about 47% for cooking, 

and about 15% for lighting.  
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Table 9.1: Change in household energy consumption by end-uses based on ‘efficiency’ 

scenario for the year 2020 relative to 1990 

 Household 

energy 

consumption 

(1990) 

(TWh) 

Household 

energy 

consumption 

(2020) 

(TWh) 

*Change in 

household 

energy 

consumption 

(TWh) 

*Percentage 

change in 

household 

energy 

consumption 

(%) 

Space heating 300.92 268.84 -32.08 -10.66 

Hot Water 108.20 76.74 -31.46 -29.08 

Cooking 18.88 9.97 -8.91 -47.19 

Lighting 15.29 12.96 -2.33 -15.24 

Appliances 47.93 62.14 +14.21 +29.65 

Total 491.22 430.63 -60.59 -12.33 

*Relative to 1990 base as enshrined in Climate Change Act of 2008 

 

A similar analysis was conducted for the year 2050 as shown in Table 9.2. The 

results of the analysis indicate a reduction of 34.03% relative to 1990 levels in 

total household energy consumption for the entire UK housing stock. When this 

total household energy is disaggregated by end-use, the model results suggest that 

the household energy consumption attributable to space heating is anticipated to 

reduce by 94.89TWh, which is about 32% reduction compared to 1990 levels. 

Further to this, the household energy consumption due to hot water is expected to 

reduce by about 50.32TWh, which amounts to about 47% reduction, again 

relative to the base case 1990. Additionally, the model results suggest that 

cooking energy is expected to decline by about 54% while the lighting energy is 

as well expected to witness a fall of about 39%. Paradoxically, household energy 

consumption for appliances declines by about 12% for the year 2050 relative to 

1990 levels, which indeed increased by about 30% for the year 2020 as discussed 

above. Ordinarily, this is expected to surge under the guise of technological 

improvements in household appliances. This is premised on the possibility of 
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increment in its adoption rate among the householders with increasing number of 

households.  

 

Table 9.2: Change in household energy consumption by end-uses based on ‘efficiency’ 

scenario for the year 2050 relative to 1990 

 Household 

energy 

consumption 

(1990) 

(TWh) 

Household 

energy 

consumption 

(2050)   

(TWh) 

*Change in 

household 

energy 

consumption 

(TWh) 

*Percentage 

change in 

household energy 

consumption (%) 

Space heating 300.92 206.03 -94.89 -31.53 

Hot Water 108.20 57.88 -50.32 -46.51 

Cooking 18.88 8.70 -10.18 -53.92 

Lighting 15.29 9.41 -5.88 -38.46 

Appliances 47.93 42.06 -5.87 -12.25 

Total 491.22 324.07 -167.15 -34.03 

*Relative to 1990 base as enshrined in Climate Change Act of 2008 

 

Changes to the parameters and structure of the model as relates to the fabric 

insulation and energy efficiency improvement for ‘efficiency’ scenario is 

expected to reduce household energy consumption. The results in Tables 9.1 and 

9.2 suggest that there are reductions in energy consumption apart from that of 

appliances for the year 2020. These percentage reductions are then compared with 

the ‘baseline’ scenario results as shown in Table 9.3. While the results generally 

show reductions in the total household energy and household energy by end-use, 

the amount of these reductions to meet the necessary carbon emissions reduction 

targets for the year 2020 and 2050 is therefore unlikely. This is due to the fact that 

efforts aiming at only the fabric insulation and energy efficiency improvement in 

general cannot bring about the required level of savings in energy consumption. 

In fact, a rebound effect is even likely to set in, such that the savings made may be 

expended on getting an improved thermal comfort.  
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Table 9.3: Comparison of ‘efficiency’ scenario with ‘baseline’ scenario results for the 

percentage reductions in household energy consumption 

 ‘baseline’ 

scenario 

(2020) 

‘efficiency’ 

scenario 

(2020) 

‘baseline’ 

scenario  

(2050) 

‘efficiency’ 

scenario  

(2050) 

Space heating -7.99 -10.66 -25.38 -31.53 

Hot Water -26.61 -29.08 -41.10 -46.51 

Cooking -44.28 -47.19 -44.92 -53.92 

Lighting -10.92 -15.24 -25.18 -38.46 

Appliances +35.34 +29.65 +5.21 -12.25 

Total -9.35 -12.33 -26.60 -34.03 

 

 

 

9.2.3 Analysis of the ‘Efficiency’ Scenario Results for Household Carbon 

Emissions 

 

Household carbon emissions by end-uses, and total and average annual household 

carbon emissions are shown in Figures 9.4 and 9.5 respectively. The behaviour of 

efficiency scenario simulation results for household carbon emissions based on 

end-uses (Figure 9.4) (see appendix C2 for the combined behaviour with the 

baseline scenario) displays a similar behaviour as shown for household energy 

consumption by end-uses (Figure 9.2). The graph shows a downward trend for 

carbon emissions for all the end-uses. This, therefore, indicates reductions in 

carbon emissions profile for space heating, hot water, cooking, lighting, and 

appliances. 

 

Similarly, the insights from the average and total annual household carbon 

emissions (Figure 9.5) follow a downward trend as well. These trends correspond 

to the same trends witnessed in average and total annual household energy 

consumption as shown in Figure 9.3. The similarity is based on the reason 

advanced in Section 7.8 of Chapter 7 that there is a strong correlation between 
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energy consumption and carbon emissions. However, the behaviour of space 

heating carbon emissions plays a central role in explaining the behaviour 

displayed by both the average annual and total annual carbon emissions for the 

UK housing stock. This is in consonance to the observation of Palmer and Cooper 

(2012) as well.  

 

As expected for the average annual carbon emissions per household and total 

annual household carbon emissions, they are moving on a downward direction 

since 1970. The two have remarkably fallen since 1970 and the model suggests 

that the trend is anticipated to be sustained until 2050 based on the carbon 

reductions agenda of the government. However, Figure 9.5 shows little detail 

about the amount of reductions achieved under this scenario. Hence, there is the 

need for a further analysis. 

 

 

 

Figure 9.4: Household carbon emissions by end-uses under the ‘efficiency’ scenario 
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Figure 9.5: Total and average annual household carbon emissions under the 

‘efficiency’ scenario 

 

The amount of reductions in carbon emissions anticipated in the years 2020 and 

2050 are respectively shown in Tables 9.4 and 9.5. The results suggest that the 

largest amount of reductions is expected to come from space heating in the 

amount of 42.79 and 65.71 million tonnes of CO2 for 2020 and 2050 respectively. 

The results also indicate that substantial amount of reductions is expected from 

hot water as well. Both the space and water heating therefore remain the dominant 

end-uses where much of the reductions to meet the carbon emissions targets are 

anticipated. Correspondingly, some reductions are also anticipated in cooking and 

lighting below the 1990 levels for the years 2020 and 2050 as respectively shown 

in Tables 9.4 and 9.5. However, for appliances, the expectation is a mixed one as 

the results show that no reductions in carbon emissions below the 1990 levels are 

anticipated. Although, there are technological improvements in home appliances 

in terms of energy efficiency, but this advancement could not be immediately 

translated into much savings. However, by 2050 (Table 9.5), some savings are 

expected. Generally, it is clear from the results of this scenario that carbon 

emissions target for 2020 and 2050 will not be met.  
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Table 9.4:  Change in household carbon emissions by end-uses based on ‘efficiency’ 

scenario for the year 2020 relative to 1990 

 Household 

carbon 

emissions 

(1990) (million 

tonnes of CO2) 

Household 

carbon 

emissions 

(2020) (million 

tonnes of CO2) 

*Change in 

household 

carbon 

emissions 

(million 

tonnes of 

CO2) 

*Percentage 

change in 

carbon 

emissions (%) 

Space heating 94.47 51.68       -42.79 -45.29 

Hot Water 44.15 31.15 -13.00 -29.44 

Cooking 7.93 4.03 -3.90 -49.18 

Lighting 6.04 5.28 -0.76 -12.58 

Appliances 18.43 25.39 +6.96 37.76 

Total 171.01 117.53 -53.48 -31.27 

*Relative to 1990 base as enshrined in Climate Change Act of 2008 

 

Table 9.5:  Change in household carbon emissions by end-uses based on ‘efficiency’ 

scenario for the year 2050 relative to 1990 

 Household 

carbon 

emissions 

(1990) (million 

tonnes of CO2) 

Household 

carbon 

emissions 

(2050) (million 

tonnes of CO2) 

*Change in 

household 

carbon 

emissions 

(million 

tonnes of CO2) 

*Percentage 

change in 

carbon 

emissions (%) 

Space heating 94.47 28.76 -65.71 -69.56 

Hot Water 44.15 23.36 -20.79 -47.09 

Cooking 7.93 3.47 -4.46 -56.24 

Lighting 6.04 3.79 -2.25 -37.25 

Appliances 18.43 17.00 -1.43 -7.76 

Total 171.01 76.37 -94.64 -55.34 

*Relative to 1990 base as enshrined in Climate Change Act of 2008 
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The results show that savings of about 31% and 55% will be met for 2020 and 

2050 as against minimum targets of 34% and 80% respectively. The implication 

of this is that laying much of the emphasis on energy efficiency improvements 

alone without corresponding efforts on other aspects of policy target is unlikely to 

yield the required level of savings. 

 

 

9.2.4 Comparison of ‘Efficiency’ Scenario with Johnston’s Model Results 

 

The results of the ‘efficiency’ scenario are compared with the results of 

Johnston’s (2003) ‘demand side’ scenario. The Johnston’s (2003) ‘demand side’ 

scenario is based on a strong desire to make a significant stride in energy 

efficiency improvements. Most of the assumptions made are similar to this 

model’s ‘efficiency’ scenario assumptions. The results of this comparative 

analysis are succinctly summarised in Tables 9.6 and 9.7 for household energy 

consumption and household carbon emissions respectively. 

 

Table 9.6: Comparative analysis of household energy consumption attributable to 

‘efficiency’ scenario and ‘demand side’ scenario of Johnston (2003) 

 Total annual household energy consumption 

(KWh) 

1990 2000 2010 2020 2030 2040 2050 

‘Efficiency’ scenario 491.2 546.8 519.4 430.6 387.0 348.9 324.1 

 

‘Demand side’ scenario of 

Johnston (2003) 

- 556.4 517.2 461.0 415.6 371.9 278.9 

 

The results as shown in Tables 9.6 and 9.7 for the total annual household energy 

consumption and carbon emissions display the same pattern of trend. However, 

the results clearly indicate that there are some differences in the two models. 

These differences are likely due to different assumptions made, input data used, 
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and the modelling philosophy employed by the two models as explained in 

Section 7.9.  

 

Table 9.7: Comparative analysis of household carbon emissions attributable to 

‘efficiency’ and ‘demand side’ scenarios 

 Total annual household carbon emissions (million 

tonnes of CO2) 

1990 2000 2010 2020 2030 2040 2050 

‘Efficiency’ scenario 171.0 164.2 140.1 117.53 101.9 87.6 76.37 

 

‘Demand side’ scenario of 

Johnston (2003) 

 

- 

 

132.6 

 

119.5 

 

107.0 

 

93.6 

 

81.7 

 

60.7 

 

 

 

 

9.3  ‘Behavioural Change’ Scenario 

 

9.3.1 ‘Behavioural Change’ Scenario Assumptions 

 

This scenario is also based on major assumptions made under the ‘baseline’ 

scenario. The effects of occupants’ behavioural change on household energy 

consumption and carbon emissions are the main policy driver that this scenario 

illustrates. And as such, frugal consumption behaviour is emphasised by this 

scenario. That is, their daily habitual behaviours tend towards energy saving in 

their homes. In addition, it is assumed that this will have effect on the dwelling 

internal temperature set-point as maintained by the occupants. A set-point of 

dwelling internal temperature is therefore assumed to be 18.5ºC. Also, within this 

scenario, energy prices are assumed to increase a little bit thereby necessitating 

the energy bills paid by the householders to slightly increase by 5% beyond the 

level assumed under the ‘baseline’ scenario. In terms of energy efficiency, the 

assumption of this scenario is similar to that of ‘baseline’ scenario that no much 

substantive changes are made to the current trends in household energy efficiency 
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apart from the continuation of the existing trends. For this scenario, no attempt is 

made to change any of the parameters within the population/household module. 

Therefore no special effects are anticipated from the ‘number of households’ and 

‘average household size’ other than their profile as generated internally within the 

model. 

 

 

9.3.2 Analysis of the ‘Behavioural Change’ Scenario Results for Household 

Energy Consumption 

 

The behaviour of household energy consumption based on end-uses is shown in 

Figure 9.6 (see appendix C3 for the combined behaviour with the baseline 

scenario). Also, the behaviour of average and total annual household energy 

consumption are depicted in Figure 9.7. A visual inspection on the two Figures 

indicates that household energy consumption under the ‘behavioural change’ 

scenario is identical to the household energy consumption under the ‘efficiency’ 

scenario illustrated in Figures 9.2 and 9.3 above as the trends tend to decline as 

they approach 2050. However, they are different in terms of the level of 

reductions achieved by 2020 and 2050. The reductions in ‘behavioural change’ 

scenario are more pronounced and as such the insights there portend that they are 

likely to be more than the reductions achieved under the ‘efficiency’ scenario. 

 

Tables 9.8 and 9.9 show the results of the further analysis carried out. This time 

around, as done for the ‘baseline’ and ‘efficiency’ scenarios, the household 

energy consumption for the entire UK housing stock is analysed for the year 2020 

and 2050 relative to the year 1990 respectively (Tables 9.8 and 9.9). The 

consumption profile is unchanged as such when compared to the ‘efficiency’ 

scenario because the space heating is still the one responsible for the largest 

chunk with a reduction of about 72.20TWh and 117.01TWh for 2020 and 2050 

respectively. This is followed by hot water, which account for reductions of 

45.85TWh and 55.94TWh based on expectation for the year 2020 and 2050 
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respectively. For these two years cooking and lighting energy are also expected to 

decline as well. Although, the reductions anticipated by the results are minimal.  

 

 

Figure 9.6: Behaviour of household energy consumption based on end-uses under the 

‘behavioural change’ scenario 

 

Figure 9.7: Behaviour of average and total annual household energy consumption under 

the ‘behavioural change’ scenario 
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However, household energy consumption for appliances grew by 6.64TWh 

beyond 1990 levels in the year 2020 as experienced in the ‘efficiency’ scenario. 

This is likely to attribute to the fact that the number of households continues to 

increase thereby increasing the number of household appliances acquisition 

during this period. By 2050 however, the scenario results suggest that the 

appliances energy consumption will marginally reduce below 1990 levels (Table 

9.9).  

 

The profound insight from the analysis conducted reveals that the savings in the 

total household energy consumption under the ’behaviour change’ scenario is 

generally more than that of ‘efficiency’ and ‘baseline’ scenarios. These results 

reinforce the comment of Janda (2011) that ‘buildings don’t use energy; people 

do’. The result implies that occupants’ behavioural change have the capability of 

contributing to the household energy consumption reductions and consequently 

contribute to carbon emissions reduction targets of Government in conjunction 

with other policy frameworks.   

 

Table 9.8: Change in household energy consumption by end-uses based on 

‘behavioural change’ scenario for the year 2020 relative to 1990 

 Household 

energy 

consumption 

(1990) 

(TWh) 

Household 

energy 

consumption 

(2020) 

(TWh) 

*Change in 

household 

energy 

consumption 

(TWh) 

*Percentage 

change in 

household 

energy 

consumption 

(%) 

Space heating 300.92 228.72 -72.20 -23.99 

Hot Water 108.20 62.35 -45.85 -42.38 

Cooking 18.88 11.88 -7.00 -37.08 

Lighting 15.29 11.44 -3.85 -25.18 

Appliances 47.93 54.57 6.64 13.85 

Total 491.22 368.95 -122.27 -24.89 

*Relative to 1990 base as enshrined in Climate Change Act of 2008 
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Table 9.9: Change in household energy consumption by end-uses based on 

‘behavioural change’ scenario for the year 2050 relative to 1990 

 Household 

energy 

consumption 

(1990) 

(TWh) 

Household 

energy 

consumption 

(2050)   

(TWh) 

*Change in 

household 

energy 

consumption 

(TWh) 

*Percentage 

change in 

household energy 

consumption (%) 

Space heating 300.92 183.91 -117.01 -38.88 

Hot Water 108.20 52.26 -55.94 -51.70 

Cooking 18.88 12.06 -6.82 -36.12 

Lighting 15.29 9.53 -5.76 -37.67 

Appliances 47.93 42.07 -5.86 -12.23 

Total 491.22 299.84 -191.38 -38.96 

*Relative to 1990 base as enshrined in Climate Change Act of 2008 

 

 

 

9.3.3 Analysis of the ‘Behavioural Change’ Scenario Results for Household 

Carbon Emissions  

 

As before, Figures 9.8 (see appendix C4 for the combined behaviour with the 

baseline scenario) and 9.9 illustrate the profile of household carbon emissions by 

end-uses, and total and average annual household carbon emissions respectively. 

The two Figures display similar consumption behaviour as shown for the 

household energy consumption above (Figures 9.6 and 9.7). Again, the graphs 

show a downward trend for carbon emissions for all the end-uses till 2050 under a 

varying degree of reductions. This, therefore, indicates reduction in carbon 

emissions profile of UK housing stock is anticipated.  
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Figure 9.8: Behaviour of household carbon emissions based on end-uses under the 

‘behavioural change’ scenario 

 

 

 

Figure 9.9: Behaviour of average and total annual household carbon emissions under 

the ‘behavioural change’ scenario 
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Tables 9.10 and 9.11 clearly illustrate the amount of reductions in carbon 

emissions anticipated in the years 2020 and 2050 respectively. Similar results are 

observed when this scenario is compared to that of ‘efficiency’ scenario. As for 

‘efficiency’ scenario, the largest chunk of reductions is expected from space 

heating (50.71 and 70.12 million tonnes of CO2 for 2020 and 2050 respectively). 

This is followed with the carbon emissions attributable to hot water (18.51 and 

23.12 million tonnes of CO2 for 2020 and 2050 respectively). It is therefore clear 

that both the space and water heating still remain the dominant end-uses where 

the greatest reductions in carbon emissions targets are expected. Accordingly, 

some reductions are also anticipated in cooking and lighting below the 1990 

levels for the years 2020 and 2050 similar to what the results for ‘efficiency’ 

scenario suggest. Like ‘efficiency’ scenario, the appliances energy consumption is 

expected to show no reductions in carbon emissions below the 1990 levels. The 

implication of this is that Government policy is required to address this trend.  

 

Generally, it is clear from the results of this scenario that carbon emissions target 

for the year 2020 is likely to be met. The model results show a total of about 41% 

as against the target of 34% as enshrined in the Climate Change Act of 2008. This 

result is illuminating in the sense that a vigorous behavioural campaign, as it is in 

this scenario, in additional to the efficiency measures through building regulations 

and other Government’s policy frameworks has the capability of meeting the 

relevant emissions reduction targets. However, by the middle of this century, the 

results for this scenario indicate it is unlikely to meet the carbon emissions 

reduction targets of 80%. The results show that only about 58% carbon emissions 

reductions are likely to be met. As suggested under the ‘efficiency’ scenario, the 

Government policy should target other policy areas in addition to the ‘behavioural 

change’ in order to meet the required level of reductions.  

It is equally important to state that the results of this scenario are not compared 

with model results from other studies because of unavailability relevant previous 

results to compare with. 
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Table 9.10: Change in household carbon emissions by end-uses based on ‘behavioural 

change’ scenario for the year 2020 relative to 1990 

 Household 

carbon 

emissions 

(1990) (million 

tonnes of CO2) 

Household 

carbon 

emissions 

(2020) (million 

tonnes of CO2) 

*Change in 

household 

carbon 

emissions 

(million 

tonnes of 

CO2) 

*Percentage 

change in 

carbon 

emissions (%) 

Space heating 94.47 43.76 -50.71 -53.68 

Hot Water 44.15 25.64 -18.51 -41.93 

Cooking 7.93 4.75 -3.18 -40.10 

Lighting 6.04 4.64 -1.40 -23.18 

Appliances 18.43 22.19 3.76 20.40 

Total 171.01 100.98 -70.03 -40.95 

*Relative to 1990 base as enshrined in Climate Change Act of 2008 

 

Table 9.11: Change in household carbon emissions by end-uses based on 

‘behavioural change’ scenario for the year 2050 relative to 1990 

 Household 

carbon 

emissions 

(1990) (million 

tonnes of CO2) 

Household 

carbon 

emissions 

(2050) (million 

tonnes of CO2) 

*Change in 

household 

carbon 

emissions 

(million 

tonnes of CO2) 

*Percentage 

change in 

carbon 

emissions (%) 

Space heating 94.47 24.35 -70.12 -74.22 

Hot Water 44.15 21.03 -23.12 -52.37 

Cooking 7.93 4.81 -3.12 -39.34 

Lighting 6.04 3.84 -2.20 -36.42 

Appliances 18.43 16.99 -1.44 -7.81 

Total 171.01 71.02 -99.99 -58.47 

*Relative to 1990 base as enshrined in Climate Change Act of 2008 
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9.4  ‘Economic’ Scenario 

 

9.4.1 ‘Economic’ Scenario Assumptions 

 

Economic scenario is also based on the ‘baseline’ scenario, but with emphasis on 

the effects of energy bills on household energy consumption and carbon 

emissions. The scenario describes a future where the UK Government will 

formulate a policy freezing the energy prices in order to score some political 

points. This is assumed to cause a reduction in energy bills payable by the 

householders. The scenario anticipates the likelihood of this dip in energy bills to 

free up more disposable income for householders in an attempt to lower the 

number of those in fuel poverty. With this, the scenario assumes that the 

householders will seek more thermal comfort as a result of more disposable 

income, thereby increasing their dwelling internal temperature set-point a little 

bit, though with ‘standard’ consumption behaviour. It is necessary to state that the 

scenario has the potential of illustrating the impact of energy prices surge or dip 

on the household energy consumption and carbon emissions. Therefore, for this 

scenario, all other variables are kept as they were for the ‘baseline’ scenario apart 

from the following changes made to some of the parameters within the model. 

The ‘% increment in energy bills’ is set at -5% and the dwelling internal 

temperature set-point is set to 20ºC.  

 

9.4.2 Analysis of the ‘Economic’ Scenario Results for Household Energy 

Consumption  

 

The behaviour exhibited by the household energy consumption in terms of end-

uses and average and total annual household energy consumption are illustrated in 

Figures 9.10 (see appendix C5 for the combined behaviour with the baseline 

scenario) and 9.11 respectively. Similarly to other scenarios run, a visual 

inspection of the two Figures shows that the trends of household energy 

consumption under the ‘economic’ scenario are on the downward approach as 

they tend towards 2050. The slopes are gentler as the graphs tend towards 2050 
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when compared with both the ‘efficiency’ and ‘behavioural change’ scenarios. 

The reductions in ‘economic’ scenario seem subtle and the insights there 

auspicate that they are unlikely to meet the required reductions target. Therefore, 

a detailed analysis is required to reveal any hidden insights. 

 

 

Figure 9.10: Behaviour of household energy consumption based on end-uses under the 

‘economic’ scenario 

 

 

Figure 9.11: Behaviour of average and total annual household energy consumption 

under the ‘economic’ scenario. 
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Tables 9.12 and 9.13 show the results of detailed analysis conducted on 

household energy consumption of UK housing stock for the year 2020 and 2050 

respectively as done for other previous scenarios. Interestingly, the results of 

simulation for the scenario show that only about 10.87% and 22.62% reductions 

are expected to happen in the year 2020 and 2050 respectively in total household 

energy consumption for the UK housing stock (Tables 9.12 and 9.13). These 

results indicate reduced savings when compared to the results of the ‘efficiency’ 

and ‘behavioural change’ scenarios in Sections 9.2.2 and 9.3.2 above. The results 

are therefore unsurprising as they are expected because of the assumptions of the 

scenario relating to energy prices reduction. Reduction in energy bills frees up 

more disposable income to householders, which they won’t mind spending on an 

improved thermal comfort at home. This allows occupants to raise their dwellings 

internal temperature set-point. Also, freezing energy prices by Government 

threatens energy security and innovative investments in clean energy by energy 

service providers. All these explain the insights from the results. 

 

Additionally, the consumption profile remains unchanged as such as witnessed in 

the previous scenarios simulated. This is mainly due to the fact that space heating 

still account for the largest amount of savings in household energy consumption.  

The savings here are about 37.47TWh and 62.17TWh for 2020 and 2050 

respectively. This is closely followed by hot water with reductions of 24.01TWh 

and 40.41TWh as expected for the year 2020 and 2050 respectively. Both the 

cooking and lighting energy are expected to decline as well. As usual, household 

energy consumption for appliances is expected to grow by about 17.76TWh 

beyond 1990 levels in the year 2020 (Table 9.12). Again, this increase may be 

attributed to rise in number of households thereby increasing the number of 

household appliances acquisition during this period. Also, availability of more 

disposable income as result of reduction in energy bills may encourage 

householders to purchase more home appliances, which invariably results in 

increased energy consumption. By 2050 however, the scenario results suggest that 

the appliances energy consumption will marginally reduce below 1990 levels 
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(Table 9.13). Again, there is no suitable past studies to compare the output of this 

scenario with. 

 

Table 9.12: Change in household energy consumption by end-uses based on ‘economic’ 

scenario for the year 2020 relative to 1990 

 Household 

energy 

consumption 

(1990) 

(TWh) 

Household 

energy 

consumption 

(2020) 

(TWh) 

*Change in 

household 

energy 

consumption 

(TWh) 

*Percentage change 

in household 

energy 

consumption (%) 

Space heating 300.92 263.45 -37.47 -12.45 

Hot Water 108.20 84.19 -24.01 -22.19 

Cooking 18.88 10.69 -8.19 -43.38 

Lighting 15.29 13.82 -1.47 -9.61 

Appliances 47.93 65.69 17.76 37.05 

Total 491.22 467.84 -53.38 -10.87 

*Relative to 1990 base as enshrined in Climate Change Act of 2008 

 

 

Table 9.13: Change in household energy consumption by end-uses based on ‘economic’ 

scenario for the year 2050 relative to 1990 

 Household 

energy 

consumption 

(1990) (TWh) 

Household 

energy 

consumption 

(2050)   (TWh) 

*Change in 

household 

energy 

consumption 

(TWh) 

*Percentage change 

in household energy 

consumption (%) 

Space heating 300.92 238.75 -62.17 -20.66 

Hot Water 108.20 67.79 -40.41 -37.35 

Cooking 18.88 10.58 -8.30 -43.96 

Lighting 15.29 11.66 -3.63 -23.74 

Appliances 47.93 51.33 3.40 7.09 

Total 491.22 380.11 -111.11 -22.62 

*Relative to 1990 base as enshrined in Climate Change Act of 2008 
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9.4.3 Analysis of the ‘Economic’ Scenario Results for Household Carbon 

Emissions  

 

The behaviour exhibited by the household carbon emissions by end-uses, and 

total and average annual household carbon emissions are illustrated in Figures 

9.12 (see appendix C6 for the combined behaviour with the baseline scenario) and 

9.13 respectively. These results are again profound as they depict similar trends as 

demonstrated by the ones for household energy consumption shown in Figures 

9.10 and 9.11 above. The emissions profile displayed in the two Figures indicate 

that towards the year 2050, the household carbon emissions is expected to fall. 

However, the rate of decline of the graphs is gentle making it to be a little bit 

different from those of ‘efficiency’ and ‘behavioural change’ scenarios. Based on 

the author’s conjecture, this gentle slope suggests that it unlikely for this scenario 

to meet the legally binding carbon emissions reduction targets of Government. 

 

 

Figure 9.12: Behaviour of household carbon emissions based on end-uses under the 

‘economic’ scenario 
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Figure 9.13: Behaviour of average and total annual household carbon emissions under 

the ‘economic’ scenario 
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the total carbon emissions reductions for the year 2020 and 2050 are examined, it 

is evident from the Tables 9.14 and 9.15 that the results of this scenario are 

unlikely to meet the carbon emissions reduction targets as enshrined in the 

Climate Change Act of 2008. The results show that savings of about 25.86% and 

46.04% are anticipated by the year 2020 and 2050 as against the minimum targets 

of 34% and 80% respectively. The implication of these results is profound that 

freezing energy prices as Government policy in order to score some political 

points is at the detriment of meeting the required legally binding carbon emissions 

reduction targets. 

 

 

Table 9.14: Change in household carbon emissions by end-use based on ‘economic’ 

scenario for the year 2020 relative to 1990 

 Household 

carbon 

emissions 

(1990) (million 

tonnes of CO2) 

Household 

carbon 

emissions 

(2020) (million 

tonnes of CO2) 

*Change in 

household 

carbon 

emissions 

(million 

tonnes of 

CO2) 

*Percentage 

change in 

carbon 

emissions (%) 

Space heating 94.47 56.43 -38.04 -40.27 

Hot Water 44.15 33.88 -10.27 -23.26 

Cooking 7.93 4.28 -3.65 -46.03 

Lighting 6.04 5.58 -0.46 -7.62 

Appliances 18.43 26.61 8.18 44.38 

Total 171.01 126.78 -44.23 -25.86 

*Relative to 1990 base as enshrined in Climate Change Act of 2008 
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Table 9.15: Change in household carbon emissions by end-use based on ‘economic’ 

scenario for the year 2050 relative to 1990 

 Household 

carbon 

emissions 

(1990) (million 

tonnes of CO2) 

Household 

carbon 

emissions 

(2050) (million 

tonnes of CO2) 

*Change in 

household 

carbon 

emissions 

(million 

tonnes of CO2) 

*Percentage 

change in 

carbon 

emissions (%) 

Space heating 94.47 35.29 -59.18 -62.64 

Hot Water 44.15 27.35 -16.80 -38.05 

Cooking 7.93 4.23 -3.70 -46.66 

Lighting 6.04 4.69 -1.35 -22.35 

Appliances 18.43 20.71 2.28 12.37 

Total 171.01 92.27 -78.74 -46.04 

*Relative to 1990 base as enshrined in Climate Change Act of 2008 

 

 

9.5  ‘Integrated’ Scenario 

 

9.5.1 ‘Integrated’ Scenario Assumptions 

 

The ‘integrated’ scenario integrates and harmonises the assumptions made under 

the ‘efficiency’, behavioural change, and ‘economic’ scenarios as they impact on 

the household energy consumption and carbon emissions of the UK housing 

stock. The scenario assumes that the energy efficiency improvements as described 

and emphasised under the ‘efficiency’ scenario will be maintained. Further, the 

scenario assumes that householders will display frugal energy consumption 

behaviour. And as such, they are interested in monitoring their energy usage at 

home. That is, they exercise some behavioural habit aiming at saving energy 

consumption at home like turning down heating in vacant rooms, washing at 

lower temperature, etc. With all these, they are however assumed to maintain a 
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dwelling internal temperature set-point of 20ºC. Additionally, within this period, 

energy prices are expected to be frozen as explained under the ‘economic’ 

scenario in Section 9.4.1. 

 

 

9.5.2 Analysis of the ‘Integrated’ Scenario Results for Household Energy 

Consumption 

 

Figures 9.14 and 9.15 display the behaviours of household energy consumption 

based on end-uses, and the behaviours of average and total annual household 

energy consumption per household in the UK housing stock. By conducting a 

quick visual inspection on Figure 9.14 (see appendix C7 for the combined 

behaviour with the baseline scenario), the trends that observed are similar to the 

ones display by the ‘behavioural change’ scenario. This indicates that the 

household energy consumption under the ‘integrated’ scenario tends to decline as 

they approach 2050. Similarly, the profile of average and total annual household 

energy consumption as shown in Figure 9.15 also tends to decline as they move 

towards 2050.  

 

Energy savings from these graphs when compared to that of ‘behavioural change’ 

scenario are almost the same thing as little or no differences are noticed by the 

visual inspection. However, there is a well pronounced difference between the 

behaviour of this scenario (in terms of household energy) when compared to 

corresponding Figures under the ‘efficiency’ scenario. The insights from the 

scenario then show that there is possibility of more savings from this scenario 

than ‘efficiency’ scenario. But, it is difficult to make this kind of conjecture when 

compared to the ‘behavioural change’ scenario. 
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Figure 9.14: Behaviour of household energy consumption based on end-uses under the 

‘integrated’ scenario 

 

 

 

Figure 9.15: Behaviour of average and total annual household energy consumption under 

the ‘integrated’ scenario 

 

 

4 MWh
2 MWh
8 MWh

0.8 MWh
20 MWh

0 MWh
0 MWh
0 MWh
0 MWh
0 MWh

5

5 5
5

5
5

5
5

4
4 4 4

4

4

4
4

3

3

3

3

3

3
3

3

2

2

2
2

2
2 2 2

1

1

1
1

1

1

1
1

1

1970 1978 1986 1994 2002 2010 2018 2026 2034 2042 2050
Time (Year)

Appliances Energy Consumption : Integrated Scenario MWh1 1 1 1 1
Cooking Energy Consumption : Integrated Scenario MWh2 2 2 2 2
Hot Water Energy Consumption : Integrated Scenario MWh3 3 3 3 3 3
Lighting Energy Consumption : Integrated Scenario MWh4 4 4 4 4
Space Heating Energy Consumption : Integrated Scenario MWh5 5 5 5 5

 

40 MWh
600 TWh

20 MWh
300 TWh

0 MWh
0 TWh

2
2

2
2

2

2
2

2

2
2

2
2 2 2

1
1 1 1 1 1 1

1

1
1

1 1 1 1

1970 1978 1986 1994 2002 2010 2018 2026 2034 2042 2050
Time (Year)

average annual energy consumption per household : Integrated Scenario MWh1 1 1 1 1 1
total annual household energy consumption : Integrated Scenario TWh2 2 2 2 2 2 2



Chapter 9: Policy Formulation and Analysis (Illustrative Scenarios) 
 

271 
 

As done for all the previous scenarios, a further analysis is carried out in order to 

bring forth all the hidden insights from the scenario that Figures 9.14 and 9.15 

cannot explain. The household energy consumption for the UK housing stock is 

analysed for the year 2020 and 2050 relative to the year 1990 and shown in 

Tables 9.16 and 9.17 respectively. The profile of the contribution of each 

household energy end-use to energy savings for this scenario remains unchanged 

when compared to the previous scenarios because the space heating is still 

responsible for the lion share of savings of expected in household energy 

consumption. For example, the results of this scenario suggest that about 

79.31TWh and 131.56TWh reductions are anticipated by the year 2020 and 2050 

respectively. As expected, this is followed by hot water with savings of 

48.38TWh and 60.48TWh for the year 2020 and 2050 respectively (Tables 9.16 

and 9.17 respectively). These figures show that they are lower than the savings 

anticipated under both the ‘efficiency’ and ‘behavioural change’ scenarios.  

 

Correspondingly, cooking and lighting energy are also expected to follow suit as 

space and water heating. However, the volume of the savings anticipated are 

small as only 7.22TWh and 4.11TWh are expected to be saved in cooking and 

lighting energy consumption respectively for the year 2020. The results of 

household energy consumption for appliances are unsurprising for this scenario 

when compared to the previous trends. For the year 2020, this no savings is 

recorded below the levels of the year 1990. Again, the likely reason for this 

insight is due to the fact that the number of households continues to increase (as 

the model results suggest) thereby increasing the number of household appliances 

acquisition and consequently more energy are used. However, the scenario results 

suggest that the appliances energy consumption will reduce below 1990 levels by 

11.41TWh by the year 2050 (Table 9.17).  

 

The analysis of results are illuminating as Table 9.16 shows that a total savings of 

about 27% below 1990 levels is expected by the year 2020, whereas a total 

savings of about 44% is anticipated by the 2050. These figures are more than any 

of the previous scenarios. 
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Table 9.16: Change in household energy consumption by end-uses based on ‘integrated’ 

scenario for the year 2020 relative to 1990 

 Household 

energy 

consumption 

(1990) 

(TWh) 

Household 

energy 

consumption 

(2020) 

(TWh) 

*Change in 

household 

energy 

consumption 

(TWh) 

*Percentage 

change in 

household 

energy 

consumption 

(%) 

Space heating 300.92 221.61 -79.31 -26.36 

Hot Water 108.20 59.82 -48.38 -44.71 

Cooking 18.88 11.66 -7.22 -38.24 

Lighting 15.29 11.18 -4.11 -26.88 

Appliances 47.93 53.49 5.56 11.60 

Total 491.22 357.76 -133.46 -27.17 

*Relative to 1990 base as enshrined in Climate Change Act of 2008 

 

Table 9.17: Change in household energy consumption by end-uses based on 

‘integrated’ scenario for the year 2050 relative to 1990 

 Household 

energy 

consumption 

(1990) 

(TWh) 

Household 

energy 

consumption 

(2050)   

(TWh) 

*Change in 

household 

energy 

consumption 

(TWh) 

*Percentage 

change in 

household energy 

consumption (%) 

Space heating 300.92 169.36 -131.56 -43.72 

Hot Water 108.20 47.72 -60.48 -55.90 

Cooking 18.88 10.93 -7.95 -42.11 

Lighting 15.29 8.18 -7.11 -46.50 

Appliances 47.93 36.52 -11.41 -23.81 

Total 491.22 272.70 -218.52 -44.49 

*Relative to 1990 base as enshrined in Climate Change Act of 2008 



Chapter 9: Policy Formulation and Analysis (Illustrative Scenarios) 
 

273 
 

 

9.5.3 Analysis of the ‘Integrated’ Scenario Results for Household Carbon 

Emissions  

 

As shown for all other previous scenarios, Figures 9.16 (see appendix C8 for the 

combined behaviour with the baseline scenario) and 9.17 illustrate the behaviour 

exhibited by the household carbon emissions by end-uses, and total and average 

annual household carbon emissions respectively. Again, both Figures display a 

downward trend for carbon emissions for all the end-uses, and total and average 

annual household carbon emissions as they approach 2050 under a varying degree 

of savings. This downward trends show a relieve sign of likelihood of achieving 

reductions in carbon emissions profile of UK housing stock. A detail analysis of 

these savings is carried out below. 

 

 

 

Figure 9.16: Behaviour of household carbon emissions based on end-uses under the 

‘integrated’ scenario 

 

 

1 Tonnes
0.6 Tonnes

4 Tonnes
0.4 Tonnes

6 Tonnes

0 Tonnes
0 Tonnes
0 Tonnes
0 Tonnes
0 Tonnes

5 5

5

5

5
5

5
5

4
4 4 4

4

4
4

4

3

3

3
3

3

3 3 3

2

2

2

2
2

2 2 2

1

1

1
1

1

1

1

1
1

1970 1978 1986 1994 2002 2010 2018 2026 2034 2042 2050
Time (Year)

Carbon Emissions due to Appliances Energy : Integrated Scenario Tonnes1 1 1 1
Carbon Emissions due to Cooking Energy : Integrated Scenario Tonnes2 2 2 2 2
Carbon Emissions due to Hot Water Usage : Integrated Scenario Tonnes3 3 3 3 3
Carbon Emissions due to Lighting Energy : Integrated Scenario Tonnes4 4 4 4
Space Heating Carbon Emissions : Integrated Scenario Tonnes5 5 5 5 5



Chapter 9: Policy Formulation and Analysis (Illustrative Scenarios) 
 

274 
 

 

Figure 9.17: Behaviour of average and total annual household carbon emissions under 

the ‘integrated’ scenario 
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However, the model results for this scenario are similar to previous scenarios that 

carbon emissions due to the appliances are unlikely to fall below the 1990 levels. 

Government policy is therefore required to overturn this trend with a deep cut in 

carbon emissions attributable to home appliances. However, the model results for 

this scenario in Table 9.19 suggest that the carbon emissions attributable to 

appliances is expected to fall below 1990 levels thereby showing a sign of 

savings. 

 

Generally, it is apparent from the results of this scenario that carbon emissions 

reduction target for the year 2020 is likely to be met. This is similar to the 

‘behavioural change’ scenario. The result in Table 9.18 suggests that a total of 

about 43% carbon emissions are expected as against the target of 34% that is 

legally binding. This result therefore shows the efficacy of a vigorous behavioural 

change campaign, which in additional to the improvements in energy efficiency 

measures through stringent building regulations and other UK Government’s 

policy frameworks display the capability of meeting the legally binding emissions 

reduction targets.  

 

With these giant strides shown by the scenario for the year 2020, yet it unlikely to 

meet the carbon emissions reduction targets of 80% by the middle of this century. 

The result indicates that only about 63% carbon emissions reductions are likely to 

be achieved. As suggested under the ‘efficiency’ and ‘behavioural change’ 

scenarios, the Government policy needs to allow the market forces to dictate 

energy prices as this will ensure energy security and levels of commitment from 

the energy service provider to further invest in clean energy. Although, the effect 

of growth in the number of households and decline in average household size are 

not independently explored by this model, the model has the capability of 

exploring these effects. However, Government policy is required to moderate the 

growth in the number of households and decline in the average household size as 

the duo controls the profile of the UK housing stock carbon emissions profile. 
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Table 9.18: Change in household carbon emissions by end-use based on ‘integrated’ 

scenario for the year 2020 relative to 1990 

 Household 

carbon 

emissions 

(1990) (million 

tonnes of CO2) 

Household 

carbon 

emissions (2020) 

(million tonnes 

of CO2) 

*Change in 

household 

carbon 

emissions 

(million tonnes 

of CO2) 

*Percentage 

change in 

carbon 

emissions (%) 

Space heating 94.47 42.42 -52.05 -55.10 

Hot Water 44.15 24.74 -19.41 -43.96 

Cooking 7.93 4.69 -3.24 -40.86 

Lighting 6.04 4.57 -1.47 -24.34 

Appliances 18.43 21.91 3.48 18.88 

Total 171.01 98.33 -72.68 -42.50 

*Relative to 1990 base as enshrined in Climate Change Act of 2008 

 

Table 9.19: Change in household carbon emissions by end-use based on ‘integrated’ 

scenario for the year 2050 relative to 1990 

 Household 

carbon emissions 

(1990) (million 

tonnes of CO2) 

Household 

carbon emissions 

(2050) (million 

tonnes of CO2) 

*Change in 

household 

carbon 

emissions 

(million tonnes 

of CO2) 

*Percentage 

change in 

carbon 

emissions (%) 

Space heating 94.47 21.43 -73.04 -77.32 

Hot Water 44.15 19.18 -24.97 -56.56 

Cooking 7.93 4.36 -3.57 -45.02 

Lighting 6.04 3.29 -2.75 -45.53 

Appliances 18.43 14.75 -3.68 -19.97 

Total 171.01 63.01 -108.00 -63.15 

*Relative to 1990 base as enshrined in Climate Change Act of 2008 
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9.5.4 Comparison of ‘Integrated’ Scenario with Johnston’s Model Results 

 

The results of the ‘integrated’ scenario are compared with the results of 

Johnston’s (2003) ‘integrated’ scenario. It needs to emphasise that the Johnston’s 

(2003) ‘integrated’ scenario has a different modelling assumptions compared to 

the ‘integrated’ scenario in this thesis. However, this scenario is viewed as the 

closest to this thesis’ ‘integrated’ scenario. The ‘integrated’ scenario in Johnston 

(2003) tries to capture both the supply and demand sides of energy and carbon 

emission with an assumption of clean energy coming from the supply side. That 

is, improved energy efficiency in electricity generation is assumed. The results of 

this comparative analysis are succinctly summarised in Tables 9.20 and 9.21 for 

household energy consumption and household carbon emissions respectively. 

 

Table 9.20: Comparative analysis of household energy consumption attributable to 

‘efficiency’ and ‘demand side’ scenarios 

 Total annual household energy consumption (KWh) 

1990 2000 2010 2020 2030 2040 2050 

‘Integrated’ scenario 491.2 546.8 519.4 357.8 321.5 291.5 272.7 

 

‘Integrated’ scenario of 

Johnston (2003) 

- 556.4 517.2 461.0 415.6 371.9 278.9 

 

Table 9.21: Comparative analysis of household carbon emissions attributable to 

‘efficiency’ and ‘demand side’ scenarios 

 Total annual household carbon emissions (million 

tonnes of CO2) 

1990 2000 2010 2020 2030 2040 2050 

‘Integrated’ scenario 171.0 164.2 140.1 98.3 84.2 72.3 63.0 

 

‘Integrated’ scenario of 

Johnston (2003) 

 

- 

 

132.6 

 

115.4 

 

96.6 

 

83.5 

 

71.6 

 

51.2 
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The results clearly indicate that there are some differences in the output of the two 

models. These differences are however likely to due to different assumptions 

made, different input data, and possibly the modelling philosophy employed by 

the two models as previously argued in Section 7.9. Again, it is worth 

highlighting that the model in this thesis captured both the quantitative and 

qualitative data of which current and previous modelling paradigms lacks. 

Qualitative data were captured based on knowledge elicitation of those considered 

as experts in the field of energy. This makes the approach in this thesis to be more 

robust and inclusive enough. 

 

9.6 Summary of the Results for all the Scenarios 

 

The summary of the results for all the scenarios for household energy and carbon 

emissions is shown in Tables 9.22 and 9.23 respectively. 

Table 9.22: Percentage reductions in household energy consumption for all scenarios 

 Baseline 

scenario 

(%) 

Efficiency 

scenario 

(%) 

Behavioural 

change 

scenario (%) 

Economic 

scenario 

(%) 

Integrated 

scenario 

(%) 

2020      

Space heating -7.99 -10.66 -23.99 -12.45 -26.36 

Hot Water -26.61 -29.08 -42.38 -22.19 -44.71 

Cooking -44.28 -47.19 -37.08 -43.38 -38.24 

Lighting -10.92 -15.24 -25.18 -9.61 -26.88 

Appliances +35.34 +29.65 13.85 37.05 11.60 

Total -9.35 -12.33 -24.89 -10.87 -27.17 

2050      

Space heating -25.38 -31.53 -38.88 -20.66 -43.72 

Hot Water -41.10 -46.51 -51.70 -37.35 -55.90 

Cooking -44.92 -53.92 -36.12 -43.96 -42.11 

Lighting -25.18 -38.46 -37.67 -23.74 -46.50 

Appliances +5.21 -12.25 -12.23 7.09 -23.81 

Total -26.60 -34.03 -38.96 -22.62 -44.49 



Chapter 9: Policy Formulation and Analysis (Illustrative Scenarios) 
 

279 
 

One of the most significant evidence from all the scenarios is that it is unlikely for 

any of the scenarios to individually meet the required legally binding reductions 

of 80% cut in carbon emissions. 

 

Table 9.23: Percentage reductions in household carbon emissions for all scenarios 

 Baseline 

scenario 

(%) 

Efficiency 

scenario 

(%) 

Behavioural 

change 

scenario (%) 

Economic 

scenario 

(%) 

Integrated 

scenario (%) 

2020      

Space heating -43.70 -45.29 -53.68 -40.27 -55.10 

Hot Water -27.32 -29.44 -41.93 -23.26 -43.96 

Cooking -46.91 -49.18 -40.10 -46.03 -40.86 

Lighting -8.94 -12.58 -23.18 -7.62 -24.34 

Appliances +42.65 37.76 20.40 44.38 18.88 

Total -29.08 -31.27 -40.95 -25.86 -42.50 

2050      

Space heating -65.64 -69.56 -74.22 -62.64 -77.32 

Hot Water -41.77 -47.09 -52.37 -38.05 -56.56 

Cooking -47.54 -56.24 -39.34 -46.66 -45.02 

Lighting -23.68 -37.25 -36.42 -22.35 -45.53 

Appliances +10.42 -7.76 -7.81 12.37 -19.97 

Total -48.96 -55.34 -58.47 -46.04 -63.15 

 

 

 

9.7 Chapter Summary 

 

This chapter has described and extensively discussed some policy scenarios 

formulated in order to illustrate the use of the model in this thesis. The illustrative 

scenarios developed demonstrated the other ways by which household energy 

consumption and carbon emissions attributable to the UK housing stock would 

evolve over the years under different assumptions. The ‘efficiency’ scenario 

generally considers the effects of improvements in energy efficiency measures on 
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household energy consumption and ultimately on household carbon emissions. 

Also, the ‘behavioural change’ scenario tries to model the effects of occupants’ 

change of energy consumption behaviour on household energy consumption and 

carbon emissions profile. Further, the ‘economic’ scenario assumes a case of 

policy change by Government favouring energy prices reduction, thereby 

reducing the energy bills payable by the householders and its consequences on 

household energy consumption and carbon emissions. And lastly, an ‘integrated’ 

scenario combines the assumptions in the first three scenarios and then analyses 

its effects on household energy consumption and carbon emissions. 

 

The results from the ‘efficiency’ scenario suggest that about 12% and 34% 

reductions in household energy consumption are visible by the years 2020 and 

2050 respectively below the year 1990 levels. The results further suggest that the 

household carbon emissions are likely to be reduced by about 31% and 55% in 

the years 2020 and 2050 respectively below the 1990 levels. Additionally, the 

results of the ‘behavioural change’ scenario indicate that about 25% and 39% 

reductions in household energy consumption are possible in the years 2020 and 

2050 respectively below the year 1990 levels. The model suggests that these 

reductions in household energy consumption is likely to translate to about 41% 

and 58% reductions in household carbon emissions in the years 2020 and 2050 

respectively when compared to 1990 as the base case. Furthermore, the results for 

the ‘economic’ scenario show that about 11% and 23% reductions in household 

energy consumption in the years 2020 and 2050 respectively are possible when 

compared to the base year 1990. These translate to savings of 26% and 46% in 

carbon emissions by the years 2020 and 2050 respectively. And finally, the results 

from the ‘integrated’ scenario suggest that reductions of about 27% and 44% in 

household energy consumption are possible for the years 2020 and 2050 

respectively. These figures amount to about 43% and 63% savings in household 

carbon emissions for the years 2020 and 2050 respectively.  

 

One of the most significant evidence from the scenarios is that it is likely to meet 

the 34% carbon emissions target under the ‘behavioural change’ and ‘integrated’ 
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scenarios under vigorous campaign of energy consumption behavioural change of 

householders. However, the results for all the scenarios indicate that it is unlikely 

for any of the scenarios to meet the required legally binding reductions of 80% 

cut in carbon emissions. Comparison of the model results with other studies 

clearly indicates there are some differences in the results. These are attributed to 

different assumptions made, different input data, and possibly the modelling 

philosophy employed. 
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Chapter 10 
 

CONCLUSIONS AND RECOMMENDATIONS  
 

 

 

10.1 Introduction 

 

The aim of this research is to develop a system dynamics based model of the 

socio-technical systems of energy consumption and carbon emissions of UK 

housing sector. This Chapter brings together the findings emanating from the 

research as discussed in Chapters two to nine and the main conclusions are drawn 

from them to reflect the achievement of research objectives. Prior to highlighting 

the research originality and contribution to knowledge, the Chapter provides 

details on the implications of research findings for research, practice, and society. 

The Chapter also presents the limitations of the research in this thesis and the 

recommendations for future research directions conclude the Chapter. 

 

 

10.2 Achievement of Research Objectives and Summary of the Main 

Conclusions 

 

Objective 1: To identify the social and technical variables influencing household 

energy consumption and carbon emissions. 

 

Chapter two was used to fulfil this objective. Particularly, Section 2.3 of the 

chapter carries out the review of extant literature on previous empirical studies 

relating to the STS of household energy consumption and carbon emissions. This 

is with a view to establishing the theoretical underpinning of frameworks used in 

conceptualising household energy consumption and carbon emissions. It was 

shown that the frameworks are principally fall within two major domains: 

disciplinary and integrated frameworks. Disciplinary framework focuses on how 

individual disciplines illustrate the approach to solving energy and carbon 
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emissions problems by formulating a framework. For example, engineering 

approach looks at the technology of energy consumption and carbon emissions.  

 

On the hand, integrated framework uses a holistic approach to combine a number 

of disciplines together and provide a framework capable of shaping the issue of 

energy consumption and carbon emissions based on the limitations of disciplinary 

framework. With these serving as background to achieving this objective, Section 

2.3.2 of Chapter two reviews extant literature and established that the social and 

technical variables influencing household energy consumption and carbon 

emissions come basically from three interacting systems comprising of the 

dwellings, occupants, and external environment. The variables identified within 

the dwellings system are related to dwellings’ physical characteristics. Also, 

variables related to occupants system are in terms of household characteristics, 

occupants’ thermal comfort, and occupants’ behaviour. And finally, the variables 

related to external environment system are in terms of climatic, economic, and 

cultural influences. The variables used for model conceptualisation in Chapter six 

are drawn from these frames of variables and mapped into six different modules. 

 

 

Objective 2: To review the modelling approaches used in forecasting household 

energy consumption and carbon emissions. 

 

Chapter two was used to achieve this objective based on the review of extant 

literature within the field of study. The review demonstrates that there are quite a 

number of energy and carbon emissions models that have evolved over the years 

with the capability of forecasting and estimating energy consumption and carbon 

emissions, especially in the housing sector of the economy. The findings and 

conclusions emanating from the literature review suggest the following: 

 

• The models used in forecasting energy and carbon emissions of the 

housing sector basically follow two major epistemic approaches of top-
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down and bottom-up methods. The top-down technique relies on the kind 

of interaction subsisting between the energy sector and the economy in 

general at aggregated level in order to predict and forecast the behaviour 

of energy consumption and carbon emissions when some changes are 

made to the policy parameters within such models. On the other hand, 

bottom-up techniques mainly focus on only the energy sector utilising a 

disaggregated approach of either statistical or building physics method 

that contains a high level of details to model energy consumption and 

carbon emissions. 

 

• The identified models vary considerably based on the levels of 

disaggregation, complexity, resolution of output, output aggregation 

levels, scenario analysis performed, model validation, and their 

availability to the members of public for scrutiny. 

 

• A careful appraisal of the existing modelling approaches suggests that 

there are a number of limitations in the existing modelling techniques, 

which are (1) lack of transparency in the model algorithms, (2) inability to 

account for the complex, interdependencies, and dynamic nature of the 

issue of energy consumption and carbon emissions, (3) limited evidence to 

show for the occupants-dwelling interactions, and (4) lack of enough 

capacity to accommodate qualitative data input. 

 

• And as such, there is the need to scout for more robust modelling 

approaches that take into consideration the kind of complexity involved 

and bedevilling the issue of household energy consumption and carbon 

emissions due to high inter-dependencies, chaotic, non-linearity, and 

qualitative nature of some of the variables involved. 
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Objective 3: To identify the most suitable modelling approach to conceptualise 

the complex Socio-Technical Systems (STS) of household energy consumption and 

carbon emissions. 

 

Chapter three was used to achieve this objective. The later part of Chapter two 

serves as the background upon which the discussion in Chapter three was based. 

This highlights the shortcomings of the current energy and carbon emissions 

modelling tools for housing sector in use. Chapter three therefore discusses the 

shortcomings identified in Section 2.6 of Chapter two as the main strengths of the 

STS. Before the review of extant literature on modelling techniques for STS, 

Chapter three grounded the STS theoretically and philosophically. The findings 

from the chapter reveal the following: 

 

• The domain of application of STS is majorly in the areas of human-

computer interaction studies, information technology, software 

engineering, engineering (general), business and management, medicine 

and the host of others.  

 

• The modelling techniques for the STS include actor network theory, 

agent-based modelling technique, bayesian belief network, configuration 

modelling, fuzzy logic, morphological analysis, social network analysis, 

and system dynamics.  

 

• These techniques are analysed for their capability to capture the problem 

under investigation within this thesis against a set of criteria that include 

(1) transparency, (2) multiple interdependencies (3) dynamic situations (4) 

feedback processes (5) non-linear relationships (6) hard and soft data (7) 

uncertainties of the variables involved, (8) chaotic assumptions and (9) the 

use of the model as learning laboratory. A careful appraisal of all the 

techniques shows that the system dynamics approach is the most suitable 

technique in conceptualising the problem under investigation in the 

context of this thesis based on its ability to meet all the set criteria.  
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Objective 4: To develop the dynamic model of the socio-technical systems of 

household energy consumption and carbon emissions. 

 

This objective is the main thrust of the research work in this thesis. Chapters five, 

six, seven and eight were used to fulfil this objective. Chapter five thoughtfully 

discusses and explains the system dynamics methodology as applied to the 

developed model within this thesis. The model has been developed and includes 

modules, which are: population/household, dwelling internal heat, occupants 

thermal comfort, climatic-economic-energy efficiency interaction, household 

energy consumption, and household CO2 emissions. Chapter six therefore 

discusses the development of the model. The chapter described and discussed the 

model conceptualisation which is regarded as the system thinking stage of the 

modelling process in the form of causal diagrams. This then leads to the model 

formulation stage in the form of stock and flow diagrams and the model 

algorithms are subjected to both quantitative and qualitative data sources. Chapter 

seven discusses the model results for the ‘baseline’ scenario, which serves as the 

base case for all other scenarios formulated in Chapter nine. The key findings 

from the ‘baseline’ simulation conducted on the developed model reveal the 

following: 

 

• In the population/household module, the model behaviour indicated that 

the total UK population is on the upward trend until 2050 with an average 

yearly increase of 0.31%. When comparing this result with historical data 

available from ONS (2013), it shows an annual growth of 0.28%. 

 

• The number of households in the UK was predicted by the model to likely 

grow on a yearly average of 1.02%, while the average household size 

tends toward two per household by the year 2050.  When comparing the 

model results with historical data available from DECC (Palmer & 

Cooper, 2012), the number of households grows by a yearly average of 

0.99% and the mean household size stands at 2.29 as at 2010 as against 

2.95 in 1970. 
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• Under the dwelling internal heat module, the model output suggests that 

both the dwelling internal heat and dwelling internal temperature will 

continue to grow. This is mainly because of the improvements envisaged 

in dwellings’ thermal performance due to increasing dwellings’ 

airtightness. Also, because of the desire of householders to improve 

thermal comfort by raising the temperature set-point.  

 

• The insights observed from the occupants thermal comfort module suggest 

that the behaviour of perceived dwelling temperature would grow over the 

year until 2050 with improved occupants’ thermal comfort. 

 

• Within the climatic-economic-energy efficiency interaction module, the 

model findings suggest that the unfavourable climatic effects will decline 

as a result of efforts aiming at reducing carbon emissions.  

 

• The findings relating to household energy consumption suggest that about 

27% savings in household energy consumption are visible by the year 

2050 below the year 1990 levels.  

 

• The model result indicates that reductions in household energy 

consumption translate to the savings of about 49% in carbon emissions by 

the year 2050 below the base year of 1990.  

 

• The insights from the model show that the greatest savings in both 

household energy consumption and carbon emissions are expected from 

space and water heating.   

 

Chapter eight validates the model. The testing and validation of the developed 

model are done basically to build confidence in the model results. 
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Objective 5: To use the developed model to evaluate the effects of energy 

efficiency, occupants behavioural change, and energy prices on household energy 

consumption and carbon emissions. 

 

This objective was achieved in Chapter nine. The chapter describes and 

extensively discusses some policy scenarios formulated in order to illustrate the 

use of the model. The illustrative scenarios developed demonstrates the other 

ways by which household energy consumption and carbon emissions attributable 

to the UK housing stock would evolve over the years under different assumptions. 

Four scenarios were illustrated to include ‘efficiency’, ‘behavioural change’, 

‘economic’, and ‘integrated’ scenarios.  

 

The ‘efficiency’ scenario generally considers the effects of improvements in 

energy efficiency measures on household energy consumption and ultimately on 

household carbon emissions. Additionally, the ‘behavioural change’ scenario tries 

to model the effects of occupants’ change of energy consumption behaviour on 

household energy consumption and carbon emissions profile. Furthermore, the 

‘economic’ scenario assumes a case of policy change by Government favouring 

energy prices reduction, thereby reducing the energy bills payable by the 

householders and its consequences on household energy consumption and carbon 

emissions. And lastly, an ‘integrated’ scenario combines the assumptions in the 

first three scenarios and then analyses its effects on household energy 

consumption and carbon emissions.  

 

The following therefore give the summary of findings and conclusions from the 

illustrative scenarios: 

 

1. ‘Efficiency’ Scenario 

 

• The findings from the ‘efficiency’ scenario suggest that about 12% 

reductions in household energy consumption are visible by the year 2020 

below the base year 1990.  
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• Also for the year 2050, it is visible to make savings of about 34% in 

household energy consumption below the base year 1990.  

 

• The results further suggest that the household carbon emissions for this 

scenario are likely to reduce by about 31% in the year 2020 below the 

base year 1990.  

 

• Additionally, the results indicate that the household carbon emissions are 

likely to reduce by about 55% in the year 2050 below the base year 1990. 

 

 

2. ‘Behavioural Change’ Scenario 

 

• For ‘behavioural change’ scenario, the findings show that about 25% 

savings in household energy consumption are possible in the year 2020 

below the 1990 levels. 

 

• Also, the findings for this scenario indicate that about 39% savings in 

household energy consumption are possible in the year 2050 below the 

1990 levels. 

  

• For household carbon emissions under this scenario, it is likely to have 

about 41% reductions by the year 2020 when compared to 1990 as the 

base case.  

 

• The model results also suggest that about 58% savings in household 

carbon emissions by the year 2050 are possible when compared to 1990 as 

the base case.  
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3. ‘Economic’ Scenario 

 

• The findings under the ‘economic’ scenario show that about 11% 

reductions in household energy consumption in the year 2020 are possible 

when compared to the base year 1990.  

 

• Also for the year 2050, the scenario suggests that about 23% reductions in 

household energy consumption are possible when compared to the base 

year 1990.  

 

• For household carbon emissions, the results suggest that there is likely to 

be savings of about 26% by the year 2020 relative to the base year 1990.  

 

• Additionally, the findings show that the reductions in household energy 

consumption under this scenario for the year 2050 are likely to translate to 

savings of about 46% in household carbon emissions for the same year 

relative to the base year 1990.  

 

 

4. ‘Integrated’ Scenario 

 

• The results from the ‘integrated’ scenario suggest that reductions of about 

27% in household energy consumption are possible by the year 2020 

below the base year 1990.  

 

• Also, the findings from this scenario suggest that reductions of about 44% 

in household energy consumption are possible by the year 2050 below the 

base year 1990.  

 

• For the household carbon emissions, there is likely to be about 43% 

savings by the year 2020 below the base year 1990.  
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• Finally, the reductions witnessed in household energy consumption for the 

year 2050 are likely to amount to about 63% savings in household carbon 

emissions for the same year below the base year 1990.  

 

 

5. General Conclusions from all the Scenarios 

 

• One of the main findings for all the scenarios indicates that it is unlikely 

for any of the scenarios by its own to meet the required legally binding 

reductions of 80% cut in carbon emissions by 2050 unless this is 

vigorously pursued.  

 

• For all the scenarios, the insights from the model show that the greatest 

reductions in both household energy consumption and carbon emissions 

are expected from both the space and water heating.   

 

• Comparison of the model results with similar studies like that of 

Johnston’s (2003) clearly indicates there are some differences in the 

results. These are attributed to difference in assumptions made, input data, 

and possibly the modelling philosophy employed. 

 

 

10.3 Implications of Research Findings for Research, Practice, and Society 

 

The developed model as the output of the research in this thesis has a number of 

implications for research, practice, and/ or society.  

 

Firstly, the study explored the complex intrinsic interrelationships among the STS 

of dwellings, occupants, and environment, as related to energy consumption and 

carbon emissions, by capturing their causes and effects. This is with the sole aim 

of improving the understanding of the complex system of household energy 

consumption and carbon emissions from systems thinking perspective thereby 
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extending the knowledge base of system dynamics to household energy and 

carbon emissions. For example, the causal diagrams can lead to theory building 

by the interested researchers. Additionally, the output of this research has the 

capability to spur research activities as enunciated under the recommendations for 

future research directions in Section 10.6. 

 

Secondly, the research in this thesis has implications for practice. The developed 

model in this research builds on the existing modelling efforts, which are 

traditionally restricted to building physics and regression-based forecasting, in 

order to generate new insights into the future using a non-deterministic systems 

approach. This then adds to the pool of tools available in the field for 

practitioners. Since the developed model is highly transparent as all the variables 

and algorithms developed can be scrutinised, it therefore has capacity to 

immensely benefit from the software developers by prototyping it into other 

suitable user friendly platforms. 

 

Thirdly, the outcome of this research has implications for society. This is by 

providing the policy makers with a decision making tool upon which different 

scenarios regarding HECCE can be tested before implementation. 

 

 

10.4 Research Originality and Contribution to Knowledge 

 

The originality of this research lies in the application of system dynamics 

approach to capture and solve the complex problem relating to the future profiles 

of household energy consumption and carbon emissions by providing a policy 

advice tool to the policy makers. This is in an attempt to meet the carbon 

emissions reduction targets as enshrined in the Climate Change Act of 2008. 

Consequently, the research effort within this thesis has made a number of 

contributions to knowledge. The unique contribution is the development of a 

model that incorporates socio-technical issues that can be used for decision 

making over time.  Other contributions are highlighted below: 
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• The research in this thesis indicates the first system dynamics modelling 

efforts applied to the entire UK housing sector in order to model the 

household energy consumption and carbon emissions based on the 

complex socio-technical interactions of the influencing variables. 

 

• The model, especially the developed conceptual model – system thinking 

aspect, is capable of improving the theoretical knowledge base regarding 

the complex intrinsic inter-relationships that exist among the socio-

technical influences of household energy consumption and carbon 

emissions. 

 

• The developed model within this thesis has the capability of being used to 

simulate and predict the future profiles of UK household energy 

consumption and carbon emissions over different time horizons. 

 

• The developed model has the capability of producing a clear 

understanding of household energy consumption and carbon emissions 

associated with it. This can serve as a decision making policy tool with the 

capability to direct policy decisions by testing the effect different policy 

scenarios such as energy efficiency improvements and behavioural change 

likely to have on household energy consumption and carbon emissions. 

The insights generated will allow policy makers to make informed 

decisions regarding any future policy formulations concerning energy and 

carbon emissions within the UK housing sector.  

 

• The developed model is also capable of modelling and exploring the 

potential rate at which the carbon emissions reduction targets are being 

achieved within the UK housing sector. 
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10.5 Limitations of the Research 

 

Any research effort relating to systems modelling, as the case is in this thesis, is 

likely to have a number of strengths as well as suffer some drawbacks. The 

strengths of this research in terms of contribution to knowledge are stated in 

Section 10.4. The limitations of this research upon which further developments 

can be made are therefore summarised below: 

 

• The research within this thesis is based purely on modelling of the 

household energy consumption and carbon emissions (demand side). And 

as such, the energy generation (energy supply side) attributable to the 

housing sector has not been considered and modelled by the model 

developed in this thesis. Therefore, the developed model cannot explicitly 

explore the technical improvements to the energy supply side in terms of 

reduced carbon content of supplied energy as envisaged by these technical 

improvements. This then serves as a limitation to the research. 

 

• The developed model in this thesis is an aggregated model of the entire 

UK households. And as such, no attempt is made to disaggregate the 

household energy consumption and carbon emissions based on different 

dwelling types. Consequently, it is difficult to explore the energy 

consumption and carbon emissions profiles attributable to the households 

within these different dwelling types. This is another limitation of this 

research. However, its inclusion will in no way affect the final results of 

the developed model. 

 

• There are a number of variables that are not considered in the developed 

model, since it is necessary to set a boundary for the research. The 

variables include some that are relating to dwellings physical 

characteristics and occupants behaviour as stated in Section 6.3 of Chapter 

six such as dwelling exposure, dwelling orientation, occupants’ social 
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class, and the likes. Inclusion of these variables and others, undoubtedly, 

would improve the accuracy of the developed model and allow further 

options in the output of the developed model to be explored. 

 

• Another limitation of the research is in the energy to carbon conversion 

factor used in the developed model. It is believed that different fuels are 

used for different end uses with different carbon emission factors. For 

example, householders are likely to use gas, electricity, or oil, etc. as fuel 

in order to achieve space and water heating in their dwellings. The carbon 

emission contents of each of these fuels differ. This research therefore 

used the same aggregated energy to carbon emission factors for all the 

household energy consumption end uses. Changes to these carbon 

emissions factor will greatly alter the profile of household carbon 

emissions estimated by the developed model. 

 

• The developed model in this research is limited in its application to other 

countries because it is specifically developed for the UK housing sector. 

This is mainly because the model algorithms are based on the UK data. 

However, other countries can benefit from it by domesticating the model 

algorithms. 

 

 

10.6 Recommendations for Future Research Directions 

 

The work within this thesis serves as the foundational system dynamics model 

upon which further research can be conducted in order to fully explore other 

options required to reduce the carbon emissions of the UK households. To this 

extent, the following areas of further research are recommended to vigorously 

pursue in the coming years: 

 

• A research on the energy supply side of the housing sector based on the 

system dynamics approach is encouraged. This is considered important 



Chapter 10: Conclusions and Recommendations 
 

296 
 

because of the need to highlight the effect of clean energy supply, due to 

technological advancement, on the household energy consumption and 

carbon emissions. The output of such a research can be linked to the 

developed model in this research to form an improved socio-technical 

model of energy and carbon emissions of the UK housing sector. 

 

• The current version of the developed model in this thesis is an aggregated 

model of the entire UK households. Another line of research can be 

followed by disaggregating this based on different dwelling types such as 

detached, semi-detached dwellings and the likes. This is to evaluate the 

carbon emissions profiles attributable to each of these dwelling types. This 

line of research is considered important mainly because of the need to 

expand the capability and scope of the analysis performed by the 

developed model. 

 

• The research within this thesis can be replicated with an expanded model 

boundary to accommodate all the variables that are excluded by this 

current research. This will include incorporation of the carbon emission 

factors of different fuels used for different end uses of household energy 

consumption. Also, this further research is considered important in order 

to improve on the accuracy of the developed model. 

 

• Additionally, it needs to highlight that the developed model within this 

thesis is specifically developed for the UK. And as such, the research 

within this thesis can be replicated for other developed countries. This is 

considered necessary in order for other developed countries to benefit 

from it by domesticating the model. Domesticating the model will entail 

using the data collected from the country replicating the model. This will 

be at the system conceptualisation and formulation stages of model 

development.  
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10.7 Chapter Summary 

 

This chapter serves as the reflective summary of the research presented within 

this thesis as it brings together the findings of the research. The chapter has 

indeed demonstrated how the aim and objectives of the research have been 

achieved and gave the main conclusions that follow the findings. The implications 

of the research for research, practice, and society were highlighted and discussed. 

Undoubtedly, the research effort within this thesis has made some contributions to 

knowledge and these were accordingly highlighted by the chapter. The snapshots 

of the research limitations and recommendations for further research were given 

as well. 
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APPENDIX A 

Model Equations 

 

"% increament on energy bills"= 

  -5 

 Units: per cent [0,100,25] 

  

appliances energy:= 

 GET XLS DATA ( 'Datasets.xlsx' , 'Datasets' , 'A' , 'M2' ) 

Units: MWh 

 

Appliances Energy Consumption= INTEG ( 

 (rate of appliances energy usage-energy to carbon conversion a), 

  initial appliances usage) 

Units: MWh 

 

appliances energy consumption for UK housing stock= 

 Appliances Energy Consumption*households/10^6 

Units: TWh 

 

appliances usage demand= 

 2 

Units: Dmnl 

 

area of opening= 

 10 

Units: m*m 

Area of windows and glazed doors 

 

Artificial heat transfer= 
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 ("discrepancy in int & setpoint temp"*insulation factor)+"total dwelling 

heat gains (dhg)" 

/Time 

Units: Watts/Year 

 

average annual carbon emissions per household= 

 Carbon Emissions due to Cooking Energy+Carbon Emissions due to Hot 

Water Usage 

+Carbon Emissions due to Lighting Energy+Carbon Emissions due to Appliances 

Energy 

+Space Heating Carbon Emissions 

Units: Tonnes 

 

average annual electricity bill:= 

 GET XLS DATA ( 'Datasets.xlsx' , 'Datasets' , 'A' , 'P2' ) 

Units: £ 

 

average annual energy bills= 

 IF THEN ELSE(Time<=2010, ((average annual electricity bill+average 

annual gas bill 

)+(5139.16-2.455*Time+164.363*weighted average energy prices+12.612 

 *effect of dwelling energy efficiency on energy bills))/2, 

FORECAST(((average annual electricity bill 

+average annual gas bill)+(5139.16-2.455*Time+164.363*weighted average 

energy prices 

+12.612 

 *effect of dwelling energy efficiency on energy bills))/2,39,-45)) 

Units: £ 

 

average annual energy consumption per household= 

 Cooking Energy Consumption+Hot Water Energy Consumption+Lighting 

Energy Consumption 
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+Space Heating Energy Consumption+Appliances Energy Consumption 

Units: MWh 

 

average annual gas bill:= 

 GET XLS DATA ( 'Datasets.xlsx' , 'Datasets' , 'A' , 'O2' ) 

Units: £ 

 

average effect of solar gains= 

 0.9*area of opening*frame factor*average solar access factor*solar 

flux*solar transmittance factor for glazing 

Units: Watts 

 

average household size= 

 Population/households 

Units: People/Households 

 

average life expectancy= 

 78.8 

Units: Year 

 

average solar access factor= 

 0.7 

Units: Dmnl [0.3,1,0.01] 

 

average total fertility rate= 

 3 

Units: Dmnl 

 

 

births= 

 IF THEN ELSE(Time=population equilibrium time,deaths, IF THEN 

ELSE(Time<=2011 
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, average total fertility rate*Population 

 *0.08/reproductive time, FORECAST(average total fertility 

rate*Population 

 *0.08/reproductive time,39,100))) 

Units: People/Year 

 

carbon depletion= 

 Carbon Emissions due to Appliances Energy*carbon depletion factor 

Units: Tonnes/Year 

 

carbon depletion factor= 

 1.325 

Units: 1/Year [-2,5,0.005] 

 

Carbon Emissions due to Appliances Energy= INTEG ( 

 (energy to carbon conversion -carbon depletion)*0.5246, 

  initial appliances usage carbon emissions) 

Units: Tonnes 

 

carbon emissions due to appliances energy of UK housing stock= 

 Carbon Emissions due to Appliances Energy*households/10^6 

Units: Million tonnes 

 

Carbon Emissions due to Cooking Energy= INTEG ( 

 (energy to carbon conversion - carbon depletion)*0.5246, 

  initial cooking carbon emissions) 

Units: Tonnes 

 

carbon emissions due to cooking energy of UK housing stock= 

 Carbon Emissions due to Cooking Energy*households/10^6 

Units: Million tonnes 
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carbon emissions due to hot water energy of UK housing stock= 

 Carbon Emissions due to Hot Water Usage*households/10^6 

Units: Million tonnes 

 

Carbon Emissions due to Hot Water Usage= INTEG ( 

 (energy to carbon conversion hw-hw carbon depletion)*0.5246, 

  initial hot water usage carbon emissions) 

Units: Tonnes 

 

Carbon Emissions due to Lighting Energy= INTEG ( 

 (energy to carbon conversion l-l carbon depletion)*0.5246, 

  initial lighting usage carbon emissions) 

Units: Tonnes 

 

carbon emissions due to lighting energy of UK housing stock= 

 Carbon Emissions due to Lighting Energy*households/10^6 

Units: Million tonnes 

 

carbon emissions due to space heating energy of UK housing stock= 

 Space Heating Carbon Emissions*households/10^6 

Units: Million tonnes 

 

 

cooking energy:= 

 GET XLS DATA ( 'Datasets.xlsx' , 'Datasets' , 'A' , 'K2' ) 

Units: MWh 

 

Cooking Energy Consumption= INTEG ( 

 (cooking energy rate-energy to carbon conversion), 

  initial cooking energy) 

Units: MWh 
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cooking energy consumption for UK housing stock= 

 Cooking Energy Consumption*households/10^6 

Units: TWh 

 

cooking energy rate=cooking energy*effect of energy efficiency standard on 

cooking energy/ 

 effect of energy bills on energy consumption/0.88 

 -0.35*FORECAST(cooking energy/1.88, 40, e)) ,                                                                

  

Units: MWh/Year 

 

deaths= 

 Population*mortality 

Units: People/Year 

 

demand for cooking energy= 

 2 

Units: Dmnl 

 

dhg due to appliances less cooking= 

 ((207.8*(total floor area*average household 

size)*EXP(0.4714))*(1+0.157*COS 

(2*pi*(Time-1.178)))*1000/60)/5000 

Units: Watts 

 

dhg due to artificial lighting= 

 (59.73*(total floor area*average household 

size)^0.4714)*0.96^2*(1+0.5*COS 

(2*pi*(Time-0.2)))*0.85*1000/(24*30*12) 

Units: Watts 

 

dhg due to cooking= 
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 35+(7*average household size) 

Units: Watts 

 

dhg due to no of people= 

 60*average household size 

Units: Watts 

 

dhg due to water heating= 

 80.5*average household size 

Units: Watts 

 

"discrepancy in int & ext temp"= 

 external air temp-dwelling int temp 

Units: Deg Cent 

 

"discrepancy in int & setpoint temp"= 

 IF THEN ELSE("% increament on energy bills"=0, setpoint temp-

dwelling int temp 

, IF THEN ELSE( "% increament on energy bills"=25, setpoint temp-0.5-dwelling 

int temp 

, IF THEN ELSE( "% increament on energy bills"=50, setpoint temp-1-dwelling 

int temp 

, IF THEN ELSE( "% increament on energy bills"=75, setpoint temp-1.5-dwelling 

int temp 

, setpoint temp-2-dwelling int temp)))) 

Units: Deg Cent 

 

dwelling int temp= 

 Dwelling Internal Heat/(65*temperature conversion factor) 

Units: Deg Cent 

 

Dwelling Internal Heat= INTEG ( 
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 (Artificial heat transfer+Natural heat transfer), 

  130000) 

Units: Watts 

 

dwelling internal temp= 

 dwelling int temp*1.7 

Units: Deg Cent 

 

effect of combined fabric insulation and energy efficiency standard on dwelling 

energy efficiency 

= 

 IF THEN ELSE( Time<2011, 1+(effect of energy efficiency standard 

improvement on dwelling energy efficiency 

+effect of fabric insulation on energy efficiency 

 ), 1+(effect of energy efficiency standard improvement on dwelling 

energy efficiency 

+effect of fabric insulation on energy efficiency 

 )+RAMP(0.01,2010,2050)) 

Units: Dmnl 

 

effect of dwelling energy efficiency on energy bills= 

 1/effect of combined fabric insulation and energy efficiency standard on 

dwelling energy efficiency 

Units: Dmnl 

 

effect of energy bills on energy consumption= 

 1-(1/((1+(1/average annual energy bills)*100)+effect of dwelling energy 

efficiency on energy bills 

)-0.9)*(1-(1/(1+"% increament on energy bills" 

 /normal energy bills)))/effect of unfavourable climatic effects on 

international energy prices 

Units: Dmnl 
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effect of energy efficiency on hot water energy= 

 1/effect of combined fabric insulation and energy efficiency standard on 

dwelling energy efficiency 

Units: Dmnl 

 

effect of energy efficiency on space heating= 

 1/effect of combined fabric insulation and energy efficiency standard on 

dwelling energy efficiency 

Units: Dmnl 

 

effect of energy efficiency standard improvement on dwelling energy efficiency 

= WITH LOOKUP ( 

 SAP rating/normal SAP value, 

  ([(0,0)-

(1,1)],(0.18,0),(0.23,0.048),(0.303,0.084),(0.365,0.154),(0.402,0.222 

),(0.434,0.312),(0.455,0.407),(0.481,0.544),(0.507645,0.657895),(1,1) )) 

Units: Dmnl 

 

effect of energy efficiency standard on cooking energy= 

 IF THEN ELSE( Time<2011, 1/(1+(effect of energy efficiency standard 

improvement on dwelling energy efficiency 

)), 1/(1+(effect of energy efficiency standard improvement on dwelling energy 

efficiency 

)+RAMP(0.01,2010,2050))) 

Units: Dmnl 

 

effect of energy efficiency standard on lighting and appliances energy= 

 IF THEN ELSE( Time<2011, 1/(1+(effect of energy efficiency standard 

improvement on dwelling energy efficiency 

)), 1/(1+( 
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 effect of energy efficiency standard improvement on dwelling energy 

efficiency 

)+RAMP(0.01,2010,2050))) 

Units: Dmnl 

 

effect of fabric insulation on energy efficiency= WITH LOOKUP ( 

 insulation factor/normal insulation, 

  ([(0,0)-

(1,1)],(0,0),(0.1,0.058),(0.2,0.162),(0.3,0.248),(0.4,0.305),(0.5 

,0.364),(0.6,0.391),(0.7,0.491),(0.75,0.524) )) 

Units: Dmnl 

 

effect of unfavourable climatic effects on international energy prices= 

 2*unfavourable climatic effects 

Units: Dmnl 

 

energy to carbon conversion for space heating= 

 Space Heating Energy Consumption*energy to carbon conversion factor 

Units: Tonnes/Year 

 

energy to carbon conversion aappliances= 

 Appliances Energy Consumption*energy to carbon conversion factor 

Units: Tonnes/Year 

 

energy to carbon conversion ck= 

 Cooking Energy Consumption*energy to carbon conversion factor 

Units: Tonnes/Year 

 

energy to carbon conversion factor= 

 0.5246 

Units: Dmnl [-1,1,0.01] 
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energy to carbon conversion hw= 

 Hot Water Energy Consumption*energy to carbon conversion factor 

Units: Tonnes/Year 

 

energy to carbon conversion l= 

 Lighting Energy Consumption*energy to carbon conversion factor 

Units: Tonnes/Year 

 

external air temp:= 

 GET XLS DATA ( 'Datasets.xlsx' , 'Datasets' , 'A' , 'B2' ) 

Units: Deg Cent 

 

frame factor= 

 0.7 

Units: Dmnl [0.7,0.8,0.01] 

frame factor for windows and doors (fraction of opening that is  

  glazed) (0.7-0.8) 

 

great discomfort= 

 LOOKUP EXTRAPOLATE( great discomfort lookup , dwelling int temp 

) 

Units: Dmnl 

 

great discomfort lookup( 

 [(30,33)-

(40,43)],(31.1927,33.0877),(32.8746,33.7895),(34.4342,34.886),(35.9939 

,36.2018),(37.5229,37.4298),(38.7156,38.5702),(39.9388,39.7544)) 

Units: Dmnl 

 

growth in occupants activity level= 

 1.25 

Units: Dmnl [0,3,0.1] 
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heat losses= 

 -40*average household size 

Units: Watts 

 

Hot Water Energy Consumption= INTEG ( 

 (rate of hot water energy usage-energy to carbon conversion hw), 

  initial hot water usage) 

Units: MWh 

 

hot water energy consumption for UK housing stock= 

 Hot Water Energy Consumption*households/10^6 

Units: TWh 

 

hot water usage demand= 

 Occupants Comfort 

Units: Dmnl 

 

hot water usage energy:= 

 GET XLS DATA ( 'Datasets.xlsx' , 'Datasets' , 'A' , 'J2' ) 

Units: MWh/Year 

 

households= 

 -3.436e+008+182058*Time+0.067*Population 

Units: Households 

 

humidex value= 

 IF THEN ELSE( dwelling int temp<25                                                                         

:OR:                                                                                        

 relative humidity<50,                                                                      

MAX(dwelling int temp*2.35,dwelling internal temp),                                                                        

 no discomfort from heat stress                                                             
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) 

Units: Dmnl 

 

hw carbon depletion= 

 Carbon Emissions due to Hot Water Usage*carbon depletion factor 

Units: Tonnes/Year 

 

initial appliances usage= 

 1.07 

Units: MWh 

 

initial appliances usage carbon emissions= 

 0.375 

Units: Tonnes 

 

initial cooking carbon emissions= 

 0.55 

Units: Tonnes 

 

initial cooking energy= 

 1.36 

Units: MWh 

 

initial hot water usage= 

 6.64 

Units: MWh 

 

initial hot water usage carbon emissions= 

 2.7 

Units: Tonnes 

 

initial lighting usage= 
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 0.55 

Units: MWh 

 

initial lighting usage carbon emissions= 

 0.21 

Units: Tonnes 

 

initial occupants comfort= 

 10 

Units: com 

 

initial occupants metabolic buildup= 

 0.9 

Units: met 

 

initial population= 

 5.5632e+007 

Units: People 

 

initial space heating carbon emissions= 

 5.85 

Units: Tonnes 

 

initial space heating energy= 

 13.18 

Units: MWh 

 

insulation factor= 

 0 

Units: Watts/Year/Deg Cent [0,100,25] 

 

l carbon depletion= 
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 Carbon Emissions due to Lighting Energy*carbon depletion factor 

Units: Tonnes/Year 

 

lighting energy:= 

 GET XLS DATA ( 'Datasets.xlsx' , 'Datasets' , 'A' , 'L2' ) 

Units: MWh/Year 

 

Lighting Energy Consumption= INTEG ( 

 (rate of lighting energy usage-energy to carbon conversion l), 

  initial lighting usage) 

Units: MWh 

 

lighting energy consumption for UK housing stock= 

 Lighting Energy Consumption*households/10^6 

Units: TWh 

 

lighting energy demand= 

 2 

Units: Dmnl 

 

mortality= 

 mortality lookup(average life expectancy/one year) 

Units: 1/Year 

 

mortality lookup( 

 [(20,0)-

(80,0.006)],(20,0.00567),(30,0.00366),(40,0.00243),(50,0.00155),(60 

,0.00082),(70,0.00023),(80,0.0001)) 

Units: 1/Year 

 

Natural heat transfer= 

 “discrepancy in int & ext temp”*(100-insulation factor) 
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Units: Watts/Year 

 

no discomfort= 

 LOOKUP EXTRAPOLATE(no discomfort lookup, dwelling int temp ) 

Units: Dmnl 

 

no discomfort from heat stress= 

 IF THEN ELSE( dwelling int temp<30                                                                          

:AND:                                                                                       

 relative humidity>25,                                                                      

no discomfort,                                                                      

 some discomfort heat stress) 

Units: Dmnl 

 

no discomfort lookup( 

 [(20,26)-

(25,30)],(0.202446,31.6009),(0.234251,29.2807),(0.292966,26.7588) 

,(0.346789,25.2456),(0.449541,23.2281),(0.540061,22.1184),(0.657492,21.0088 

),(0.784709,20.5044),(0.899694,20.4035),(0.992661,20.3026),(20.0153,26.0526 

),(21.1009,26.3333),(22.0489,26.5439),(22.844,26.7368),(23.578,27.0351),(24.18

96 

,27.3333),(25,27.8246)) 

Units: Dmnl 

 

normal energy bills= 

 100 

Units: Dmnl 

 

normal insulation= 

 100 

Units: Dmnl 

 



 

353 
 

normal SAP value= 

 100 

Units: Dmnl 

 

Occupants activity level= 

 (Occupants Metabolic Buildup*growth in occupants activity level) 

Units: act 

 

occupants behaviour= 

 2 

Units: Dmnl [1,3,1] 

 

Occupants Comfort= INTEG ( 

 Perceived dwelling temp*"discrepancy in int & setpoint temp", 

  initial occupants comfort) 

Units: Dmnl 

 

Occupants Metabolic Buildup= INTEG ( 

 ((Perceived dwelling temp/30)/Occupants activity level)*0.05, 

  initial occupants metabolic buildup) 

Units: Dmnl 

 

one year= 

 1 

Units: Year 

 

Perceived dwelling temp= 

 IF THEN ELSE(humidex value<=(Occupants Comfort+Occupants 

Metabolic Buildup 

)*probability of putting on clothing*probability of window opening 

 , (Occupants Comfort+Occupants Metabolic Buildup)*probability of 

putting on clothing 
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*probability of window opening , FORECAST 

 (humidex value,200,-100)) 

Units: Deg Cent 

 

pi= 

 3.142 

Units: Dmnl 

 

Population= INTEG ( 

 births-deaths, 

  initial population) 

Units: People 

 

population equilibrium time= 

 2500 

Units: Year 

 

probability of putting on clothing= 

 IF THEN ELSE(Occupants Metabolic Buildup>0                                                                      

:AND:                                                                                    

some discomfort heat stress                                                                

>0,            

                          LOOKUP EXTRAPOLATE (putting on clothing lookup,                                             

Occupants Comfort/10), 0) 

Units: Dmnl 

 

probability of window opening= 

 IF THEN ELSE(Occupants Metabolic Buildup>0                                                                      

:AND:                                                                                    

some discomfort heat stress                                                                

>0,            

                          LOOKUP EXTRAPOLATE (window opening lookup,                                             
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Occupants Comfort/100), 0) 

Units: Dmnl 

 

putting on clothing lookup( 

 [(0,0.6)-

(1,1)],(0,1),(0.058104,0.898246),(0.165138,0.814035),(0.284404,0.742105 

),(0.425076,0.7),(0.593272,0.670175),(0.761468,0.650877),(0.990826,0.635088 

)) 

Units: Dmnl 

 

rate of appliances energy usage= 

appliances energy*effect of energy efficiency standard on lighting and appliances 

energy 

/effect of energy bills on energy consumption 

 /0.88-0.25* 

 FORECAST(appliances energy/0.88, 39, 507)                                                                 

  

Units: MWh/Year 

 

rate of hot water energy usage=  

  (hot water usage energy 

*effect of energy efficiency on hot water energy/effect of energy bills on energy 

consumption 

 /0.88-0.25*FORECAST (hot water usage energy 

 /1.88,  39, 175))*(0.6*setpoint temp)/dwelling internal temp 

) 

  

Units: MWh 

 

rate of lighting energy usage=  

                          lighting energy*effect of energy efficiency standard on 

lighting and appliances energy 
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/effect of energy bills on energy consumption 

 /0.88-0.25* 

 FORECAST (lighting energy/0.88, 39, 600)) ,                                                                

  

Units: MWh/Year 

 

rate of space heating= 

                                         (space heating energy 

*effect of energy efficiency on space heating 

 /effect of energy bills on energy consumption 

 *1.14-0.15*FORECAST (space heating energy 

 *0.53,                        39, 450))*(0.6*setpoint temp)/dwelling internal temp 

) ,    

Units: MWh/Year 

 

relative humidity:= 

 GET XLS DATA( 'Datasets.xlsx' , 'Datasets' , 'A' , 'D2' ) 

Units: per cent [0,100,1] 

 

reproductive time= 

 90 

Units: Year 

 

SAP rating:= 

 GET XLS DATA ( 'Datasets.xlsx' , 'Datasets' , 'A' , 'N2' ) 

Units: Dmnl [0,100,1] 

 

setpoint temp= 

 20 

Units: Deg Cent [10,30,0.5] 

 

sh carbon depletion= 



 

357 
 

Space Heating Carbon Emissions*carbon depletion factor 

Units: Tonnes/Year 

 

solar flux= 

 150 

Units: Dmnl [0,500,1] 

solar flux on the applicable surface (solar irradiance) 

 

solar transmittance factor for glazing= 

 0.76 

Units: Dmnl [0.5,0.9,0.01] 

 

some discomfort= 

 LOOKUP EXTRAPOLATE(some discomfort lookup, dwelling int temp ) 

Units: Dmnl 

 

some discomfort heat stress= 

 IF THEN ELSE( dwelling int temp<36                                                                         

:OR:                                                                                      

 relative humidity>50,                                                                      

some discomfort,                                                                    

 great discomfort) 

Units: Dmnl 

 

some discomfort lookup( 

 [(25,27)-

(30,33)],(25.2905,27.0263),(26.422,27.4211),(27.4159,27.8684),(28.4557 

,28.4737),(29.2355,29.0789),(29.9847,29.8947)) 

Units: Dmnl 

 

Space Heating Carbon Emissions= INTEG ( 

 (energy to carbon conversion-sh carbon depletion)*0.5246, 
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  initial space heating carbon emissions) 

Units: Tonnes 

 

space heating demand= 

 Occupants Comfort/ one com 

Units: Dmnl 

 

space heating energy:= 

 GET XLS DATA ( 'Datasets.xlsx' , 'Datasets' , 'A' , 'I2' ) 

Units: **undefined** 

 

Space Heating Energy Consumption= INTEG ( 

 (rate of space heating-energy to carbon conversion), 

  initial space heating energy) 

Units: MWh 

 

space heating energy consumption for UK housing stock= 

 Space Heating Energy Consumption*households/10^6 

Units: TWh 

 

temperature conversion factor= 

 225 

Units: Watts/Deg Cent [0,1000,1] 

 

total annual household carbon emissions= 

 average annual carbon emissions per household*households/10^6 

Units: Million tonnes 

 

total annual household energy consumption= 

 average annual energy consumption per household*households/10^6 

Units: TWh 
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"total dwelling heat gains (dhg)"= 

 (dhg due to appliances less cooking+dhg due to artificial lighting+dhg due 

to cooking 

+dhg due to no of people+dhg due to water heating+average effect of solar gains 

+heat losses) 

Units: Watts 

 

total floor area= 

 85 

Units: **undefined** 

 

unfavourable climatic effects= 

 SMOOTH( (1-(1/average annual carbon emissions per household)), 5) 

Units: Dmnl 

 

weighted average energy prices:= 

 GET XLS DATA ( 'Datasets.xlsx' , 'Datasets' , 'A' , 'Q2' ) 

Units: **undefined** 

 

window opening lookup( 

 [(0,0)-

(1,1)],(0,0),(0.0795107,0.258772),(0.198777,0.495614),(0.40367,0.75 

),(0.617737,0.890351),(0.801223,0.960526),(1,1)) 

Units: **undefined** 
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APPENDIX B 
Baseline Scenario 

Table B.1: Baseline Household Energy Consumption (TWh) 
Time 
(Year) Space Heating Hot Water Cooking Lighting Appliances 

1970 247.54 124.71 25.54 10.33 20.10 

1971 251.94 124.45 25.51 10.46 20.62 

1972 244.24 124.89 25.37 10.66 21.61 

1973 244.59 124.38 25.19 10.93 22.97 

1974 252.12 123.99 25.06 11.22 24.67 

1975 257.69 123.57 24.94 11.52 26.59 

1976 254.39 122.74 24.79 11.83 28.40 

1977 248.98 122.95 24.58 12.15 29.99 

1978 253.92 122.98 24.36 12.46 31.37 

1979 262.15 121.78 24.10 12.72 32.66 

1980 284.08 120.88 23.84 13.02 33.84 

1981 284.70 119.29 23.51 13.32 34.97 

1982 283.88 118.27 23.15 13.58 36.13 

1983 280.52 117.06 22.77 13.85 37.32 

1984 277.80 115.53 22.31 14.08 38.58 

1985 269.80 113.66 21.78 14.29 39.98 

1986 290.58 112.90 21.31 14.54 41.72 

1987 309.69 112.73 20.74 14.76 43.46 

1988 318.24 110.91 20.13 14.96 45.20 

1989 315.37 109.53 19.51 15.15 46.66 

1990 300.92 108.20 18.88 15.29 47.93 

1991 297.64 106.92 18.12 15.40 48.89 

1992 321.25 105.65 17.51 15.55 49.70 

1993 328.89 104.29 17.03 15.68 50.50 

1994 341.94 103.20 16.67 15.85 51.28 

1995 338.86 101.95 16.36 16.00 51.96 

1996 330.04 100.77 16.10 16.13 52.46 

1997 360.09 99.78 15.90 16.30 53.00 

1998 353.88 98.85 15.75 16.50 53.56 

1999 359.33 98.25 15.62 16.65 54.18 

2000 362.70 97.02 15.52 16.84 54.77 

2001 368.84 96.26 15.42 17.04 55.29 

2002 380.81 94.99 15.34 17.25 55.84 

2003 379.56 94.23 15.43 17.45 56.74 

2004 382.72 93.86 15.48 17.44 57.87 

2005 389.48 93.54 15.52 17.37 59.32 

2006 383.08 92.46 15.48 17.17 60.82 

2007 372.20 91.32 15.46 17.18 62.55 

2008 356.90 89.82 15.38 17.11 63.65 

2009 356.29 87.65 15.08 16.91 63.90 
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Table B.1: Continued. 

Time (Year) Space Heating Hot Water Cooking Lighting Appliances 

2010 339.89 84.85 14.02 16.10 64.57 

2011 367.04 82.69 13.48 15.77 65.14 

2012 320.58 81.25 11.95 15.67 65.65 

2013 299.39 80.86 11.22 15.68 66.15 

2014 290.28 80.97 10.86 14.81 67.28 

2015 286.96 81.33 10.69 14.35 67.45 

2016 285.51 81.40 10.61 14.09 67.17 

2017 283.53 81.08 10.56 13.92 66.68 

2018 281.35 80.58 10.54 13.80 66.10 

2019 279.11 80.01 10.53 13.71 65.49 

2020 276.88 79.41 10.52 13.62 64.87 

2021 274.69 78.81 10.52 13.54 64.25 

2022 272.54 78.21 10.51 13.46 63.64 

2023 270.44 77.62 10.51 13.39 63.05 

2024 268.39 77.04 10.50 13.31 62.46 

2025 266.38 76.46 10.50 13.24 61.89 

2026 264.41 75.90 10.50 13.16 61.33 

2027 262.47 75.34 10.49 13.09 60.78 

2028 260.57 74.78 10.49 13.01 60.24 

2029 258.70 74.24 10.49 12.94 59.71 

2030 256.86 73.70 10.48 12.86 59.19 

2031 255.05 73.16 10.48 12.79 58.69 

2032 253.26 72.63 10.47 12.72 58.19 

2033 251.50 72.10 10.47 12.64 57.70 

2034 249.76 71.58 10.47 12.57 57.21 

2035 248.04 71.06 10.46 12.50 56.74 

2036 246.34 70.55 10.46 12.43 56.28 

2037 244.66 70.04 10.46 12.35 55.82 

2038 243.01 69.53 10.45 12.28 55.37 

2039 241.37 69.03 10.45 12.21 54.92 

2040 239.75 68.53 10.44 12.14 54.49 

2041 238.15 68.03 10.44 12.07 54.05 

2042 236.57 67.54 10.44 12.00 53.63 

2043 235.01 67.05 10.43 11.93 53.21 

2044 233.46 66.56 10.43 11.86 52.80 

2045 231.93 66.08 10.42 11.79 52.39 

2046 230.42 65.60 10.42 11.72 51.99 

2047 228.93 65.13 10.42 11.65 51.59 

2048 227.45 64.66 10.41 11.58 51.20 

2049 225.99 64.19 10.41 11.51 50.81 

2050 224.55 63.73 10.40 11.44 50.43 
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Table B.2: Baseline Household Carbon Emissions (Million Tonnes of CO2) 

Time (Year) Space Heating Hot Water Cooking Lighting Appliances 

1970 109.87 3.94 10.33 3.94 7.04 

1971 102.66 4.09 10.28 4.09 7.76 

1972 100.65 4.17 10.26 4.17 8.12 

1973 96.85 4.25 10.21 4.25 8.51 

1974 94.72 4.35 10.14 4.35 9.00 

1975 95.09 4.46 10.09 4.46 9.63 

1976 95.65 4.57 10.04 4.57 10.35 

1977 93.79 4.70 9.98 4.70 11.08 

1978 90.59 4.82 9.90 4.82 11.74 

1979 89.81 4.95 9.81 4.95 12.33 

1980 90.69 5.06 9.71 5.06 12.87 

1981 95.85 5.17 9.61 5.17 13.36 

1982 96.40 5.29 9.49 5.29 13.82 

1983 95.10 5.40 9.35 5.40 14.29 

1984 92.52 5.51 9.20 5.51 14.76 

1985 89.69 5.61 9.02 5.61 15.25 

1986 85.30 5.69 8.82 5.69 15.79 

1987 88.41 5.79 8.63 5.79 16.44 

1988 93.33 5.88 8.41 5.88 17.12 

1989 95.86 5.96 8.17 5.96 17.81 

1990 94.47 6.04 7.93 6.04 18.43 

1991 88.63 6.10 7.68 6.10 18.97 

1992 84.51 6.15 7.39 6.15 19.40 

1993 88.36 6.20 7.13 6.20 19.76 

1994 90.21 6.26 6.92 6.26 20.09 

1995 92.92 6.32 6.75 6.32 20.40 

1996 91.40 6.38 6.61 6.38 20.69 

1997 86.97 6.44 6.50 6.44 20.91 

1998 92.41 6.50 6.41 6.50 21.13 

1999 90.80 6.57 6.34 6.57 21.35 

2000 90.24 6.64 6.28 6.64 21.59 

2001 89.41 6.71 6.23 6.71 21.82 

2002 89.24 6.79 6.19 6.79 22.04 

2003 90.87 6.87 6.16 6.87 22.26 

2004 89.36 6.95 6.17 6.95 22.57 

2005 88.10 6.97 6.19 6.97 22.98 

2006 87.88 6.96 6.20 6.96 23.51 

2007 84.32 6.90 6.20 6.90 24.08 

2008 78.48 6.88 6.19 6.88 24.74 
2009 70.68 6.86 6.17 6.86 25.25 
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Table B.2: Continued. 

Time (Year) Space Heating Hot Water Cooking Lighting Appliances 

2010 66.34 6.79 6.07 6.79 25.47 

2011 58.66 6.55 5.75 6.55 25.72 

2012 78.69 6.38 5.50 6.38 25.95 

2013 57.58 6.30 5.00 6.30 26.17 

2014 59.64 6.28 4.65 6.28 26.37 

2015 55.94 6.03 4.44 6.03 26.75 

2016 56.10 5.83 4.33 5.83 26.91 

2017 55.26 5.69 4.27 5.69 26.88 

2018 54.66 5.61 4.24 5.61 26.73 

2019 53.90 5.55 4.22 5.55 26.53 

2020 53.19 5.50 4.21 5.50 26.29 

2021 52.45 5.46 4.21 5.46 26.05 

2022 51.73 5.43 4.21 5.43 25.80 

2023 51.01 5.40 4.20 5.40 25.55 

2024 50.30 5.37 4.20 5.37 25.31 

2025 49.59 5.33 4.20 5.33 25.07 

2026 48.89 5.30 4.20 5.30 24.84 

2027 48.19 5.27 4.20 5.27 24.61 

2028 47.49 5.24 4.19 5.24 24.39 

2029 46.80 5.21 4.19 5.21 24.17 

2030 46.11 5.18 4.19 5.18 23.96 

2031 45.42 5.15 4.19 5.15 23.75 

2032 44.74 5.12 4.19 5.12 23.54 

2033 44.05 5.09 4.19 5.09 23.34 

2034 43.37 5.06 4.18 5.06 23.14 

2035 42.68 5.04 4.18 5.04 22.94 

2036 42.00 5.01 4.18 5.01 22.75 

2037 41.32 4.98 4.18 4.98 22.56 

2038 40.64 4.95 4.18 4.95 22.38 

2039 39.96 4.92 4.18 4.92 22.20 

2040 39.28 4.89 4.17 4.89 22.02 

2041 38.59 4.86 4.17 4.86 21.84 

2042 37.91 4.83 4.17 4.83 21.67 

2043 37.23 4.80 4.17 4.80 21.49 

2044 36.55 4.78 4.17 4.78 21.32 

2045 35.87 4.75 4.17 4.75 21.16 

2046 35.19 4.72 4.16 4.72 20.99 

2047 34.51 4.69 4.16 4.69 20.83 

2048 33.82 4.66 4.16 4.66 20.67 

2049 33.14 4.63 4.16 4.63 20.51 

2050 32.46 4.61 4.16 4.61 20.35 



 
  

364 
 

 

APPENDIX C 

Illustrative Scenarios 

C1: Household Energy Consumption by End-Use for the ‘Baseline’ and 

‘Efficiency’ Scenarios 

 

 

Figure C.1: Space heating energy consumption for the ‘baseline’ and ‘efficiency’ 

scenarios  

 

 

Figure C.2: Hot water energy consumption for the ‘baseline’ and ‘efficiency’ scenarios 
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Figure C.3: Cooking energy consumption for the ‘baseline’ and ‘efficiency’ scenarios  

 

 

 

Figure C.4: Lighting energy consumption for the ‘baseline’ and ‘efficiency’ scenarios  
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Figure C.5: Appliances energy consumption for the ‘baseline’ and ‘efficiency’ scenarios  
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C2: Household Carbon Emissions by End-Use for the ‘Baseline’ and 

‘Efficiency’ Scenarios 

 

 

Figure C.6: Carbon emissions due to space heating for the ‘baseline’ and ‘efficiency’ 

scenarios 

 
 
 

 

Figure C.7: Carbon emissions due to hot water for the ‘baseline’ and ‘efficiency’ 

scenarios 
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Figure C.8: Carbon emissions due to cooking for the ‘baseline’ and ‘efficiency’ 

scenarios 

 
 
 
 

 

Figure C.9: Carbon emissions due to lighting for the ‘baseline’ and ‘efficiency’ 

scenarios 
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Figure C.10: Carbon emissions due to appliances for the ‘baseline’ and ‘efficiency’ 

scenarios 
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C3: Household Energy Consumption by End-Use for the ‘Baseline’ and 

‘Behavioural Change’ Scenarios 

 

 

Figure C.11: Space heating energy consumption for the ‘baseline’ and ‘behavioural 

change’ scenarios  

 

 

 

Figure C.12: Hot water energy consumption for the ‘baseline’ and ‘behavioural change’ 

scenarios  
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Figure C.13: Cooking energy consumption for the ‘baseline’ and ‘behavioural change’ 

scenarios  

 

 

Figure C.14: Lighting energy consumption for the ‘baseline’ and ‘behavioural change’ 

scenarios  
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Figure C.15: Appliances energy consumption for the ‘baseline’ and ‘behavioural 

change’ scenarios  
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C4: Household Carbon Emissions by End-Use for the ‘Baseline’ and 

‘Behavioural Change’ Scenarios 

 

 

Figure C.16: Carbon emissions due to space heating for the ‘baseline’ and ‘behavioural 

change’ scenarios 

 

 

Figure C.17: Carbon emissions due to hot water for the ‘baseline’ and ‘behavioural 

change’ scenarios 
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Figure C.18: Carbon emissions due to cooking for the ‘baseline’ and ‘behavioural 

change’ scenarios 

 

 

 

Figure C.19: Carbon emissions due to lighting for the ‘baseline’ and ‘behavioural 

change’ scenarios 
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Figure C.20: Carbon emissions due to appliances for the ‘baseline’ and ‘behavioural 

change’ scenarios 
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C5: Household Energy Consumption by End-Use for the ‘Baseline’ and 

‘Economic’ Scenarios 

 

 

Figure C.21: Space heating energy consumption for the ‘baseline’ and ‘economic’ 

scenarios  

 

 

Figure C.22: Hot water energy consumption for the ‘baseline’ and ‘economic’ scenarios  
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Figure C.23: Cooking energy consumption for the ‘baseline’ and ‘economic’ scenarios  

 

 

 

 

Figure C.24: Lighting energy consumption for the ‘baseline’ and ‘economic’ scenarios  
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Figure C.25: Appliances energy consumption for the ‘baseline’ and ‘economic’ 

scenarios  
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C6: Household Carbon Emissions by End-Use for the ‘Baseline’ and 

‘Economic’ Scenarios 

 

 

Figure C.26: Carbon emissions due to space heating for the ‘baseline’ and ‘economic’ 

scenarios 

 

 

Figure C.27: Carbon emissions due to hot water for the ‘baseline’ and ‘economic’ 

scenarios 

 

200

150

100

50

0

2
2 2 2 2 2 2

2 2 2 2 2 2 2 2

1
1 1

1 1 1 1

1
1 1 1 1 1 1 1

1970 1978 1986 1994 2002 2010 2018 2026 2034 2042 2050
Time (Year)

M
ill

io
n

 t
o

nn
es

carbon emissions due to space heating energy of UK housing stock : Baseline 1 1 1 1 1 1
carbon emissions due to space heating energy of UK housing stock : Economic Scenario 2 2 2 2 2

 

60

50

40

30

20

2 2
2

2

2
2

2

2
2 2

2
2

2
2

2

1 1
1

1

1
1

1
1

1 1
1

1
1

1 1

1970 1978 1986 1994 2002 2010 2018 2026 2034 2042 2050
Time (Year)

M
ill

io
n

 t
on

n
es

carbon emissions due to hot water energy of UK housing stock : Baseline 1 1 1 1 1 1 1
carbon emissions due to hot water energy of UK housing stock : Economic Scenario 2 2 2 2 2 2



 

380 
 

 

 

 

Figure C.28: Carbon emissions due to cooking for the ‘baseline’ and ‘economic’ 

scenarios 

 

 

Figure C.29: Carbon emissions due to lighting for the ‘baseline’ and ‘economic’ 

scenarios 
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Figure C.30: Carbon emissions due to appliances for the ‘baseline’ and ‘economic’ 

scenarios 
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C7: Household Energy Consumption by End-Use for the ‘Baseline’ and 

‘Integrated’ Scenarios 

 

 

Figure C.31: Space heating energy consumption for the ‘baseline’ and ‘integrated’ 

scenarios  

 

 

Figure C.32: Hot water energy consumption for the ‘baseline’ and ‘integrated’ scenarios  
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Figure C.33: Cooking energy consumption for the ‘baseline’ and ‘integrated’ scenarios  

 

 

 

Figure C.34: Lighting energy consumption for the ‘baseline’ and ‘integrated’ scenarios  
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Figure C.35: Appliances energy consumption for the ‘baseline’ and ‘integrated’ 

scenarios  
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C8: Household Carbon Emissions by End-Use for the ‘Baseline’ and 

‘Integrated’ Scenarios 

 

 

Figure C.36: Carbon emissions due to space heating for the ‘baseline’ and ‘integrated’ 

scenarios 

 

 

Figure C.37: Carbon emissions due to hot water for the ‘baseline’ and ‘integrated’ 

scenarios 
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Figure C.38: Carbon emissions due to cooking for the ‘baseline’ and ‘integrated’ 

scenarios 

 

 

 

Figure C.39: Carbon emissions due to lighting for the ‘baseline’ and ‘integrated’ 

scenarios 
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Figure C.40: Carbon emissions due to appliances for the ‘baseline’ and ‘integrated’ 

scenarios 
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APPENDIX D 

Validation 

 

D1: Instrument for Model Validation  

 

Dynamic Modelling of the Socio-Technical Systems of Household Energy and 

CO2 Emissions in the UK 

Dear Sir/Madam 

The above research is using system dynamics approach to model the social-
technical variables influencing household energy consumption and CO2 emissions 
(HECCE) in the UK. The study intends to contribute to the body of knowledge by 
improving the understanding of the complex nature of HECCE by providing a 
tool capable of studying the behaviour of policies regarding energy and carbon 
emissions issues in the UK.  
 
As part of the system dynamics processes, model testing and validation by experts 
in the subject is of paramount importance. Therefore, we seek your assistance in 
sparing us approximately one hour of your time to assess the model as guided by 
this protocol. 
 
Please be assured that any information given will be treated in the strictest 

confidence and used for research purposes only.  

Thanks in anticipation. 

 

Yours Sincerely, 

Michael Michael Michael Michael     G. Oladokun  G. Oladokun  G. Oladokun  G. Oladokun     Dr Ibrahim Dr Ibrahim Dr Ibrahim Dr Ibrahim     I. MotawaI. MotawaI. MotawaI. Motawa        

Postgraduate Research Student     Supervisor 
Institute for Building and Urban Design,    Institute for Building and Urban Design,  

School of the Built Environment   School of the Built Environment 

Edinburgh  EH14 4AS    Edinburgh  EH14 4AS 

t: +44 (0) 131 451 4434 |  e: mgo5@hw.ac.uk    t: +44 (0) 131 451 4620 |  e: I.A.Motawa@hw.ac.uk
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A. Background Information 
 

1. Name of organisation (optional)………………………………………….. 
 

2. Organisation type 
i. Public    
ii.  Private 

 

3. Academic  
i. Diploma 
ii.  Bachelor’s degree 
iii.  Master’s degree 
iv. PhD 
v. Others (specify)…………………………………………………… 

 

4. Experience in household energy related issues 
i. Yes    
ii.  No  

 

5. Years of experience in household energy related issues 
i. 1 – 5     
ii.  6 – 10   
iii.  11 – 15   
iv. 16 – 20  
v.       21 – 25     
vi.       Others……………….  

 

6. Experience in system dynamics modelling 
i. Yes    
ii.  No  

 

7. Years of experience in system dynamics modelling 
i. 1 – 5     
ii.  6 – 10   
iii.  11 – 15   
iv. 16 – 20  
v. 21 – 25     
vi. Others………………. 
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B. Model Validation 
 

8. Based on the system dynamics model reviewed, please assess the model 
according to the following criteria (with 5 – Excellent, 4 – Above average, 
3 – Average, 2 – Below average, 1 – Poor)  

 

   

5 4 3 2 1

Logical structure

Clarity 

Comprehensiveness

Practical relevance

Applicability

Intelligibility

Criteria
Rating

 

 

9.  Kindly comment on the model’s point of strength 
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10. Kindly comment on the model’s point of weakness 
 

    

 

 

 

 

 

 

 

 

 

 

 

11. Please give your general comment regarding the model 
 

 

 

 

 

 

 

 

 

 

 

 

 

*****Thank you***** 
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D2: Time Step Changes for Euler Integration Method 

Table D.1: Energy Consumption per Household - Time Step = 1 

Time (Year) Space Heating  Hot Water  Cooking   Lighting  Appliances 

1970 13.18 6.64 1.36 0.55 1.07 

1971 13.28 6.56 1.34 0.55 1.09 

1972 12.74 6.52 1.32 0.56 1.13 

1973 12.64 6.43 1.30 0.56 1.19 

1974 12.90 6.34 1.28 0.57 1.26 

1975 13.05 6.26 1.26 0.58 1.35 

1976 12.76 6.16 1.24 0.59 1.42 

1977 12.37 6.11 1.22 0.60 1.49 

1978 12.50 6.05 1.20 0.61 1.54 

1979 12.78 5.94 1.18 0.62 1.59 

1980 13.72 5.84 1.15 0.63 1.63 

1981 13.63 5.71 1.13 0.64 1.67 

1982 13.47 5.61 1.10 0.64 1.71 

1983 13.19 5.50 1.07 0.65 1.75 

1984 12.94 5.38 1.04 0.66 1.80 

1985 12.46 5.25 1.01 0.66 1.85 

1986 13.30 5.17 0.98 0.67 1.91 

1987 14.05 5.11 0.94 0.67 1.97 

1988 14.31 4.99 0.91 0.67 2.03 

1989 14.06 4.88 0.87 0.68 2.08 

1990 13.30 4.78 0.83 0.68 2.12 

1991 13.05 4.69 0.79 0.67 2.14 

1992 13.97 4.59 0.76 0.68 2.16 

1993 14.18 4.50 0.73 0.68 2.18 

1994 14.62 4.41 0.71 0.68 2.19 

1995 14.37 4.32 0.69 0.68 2.20 

1996 13.88 4.24 0.68 0.68 2.21 

1997 15.03 4.16 0.66 0.68 2.21 

1998 14.65 4.09 0.65 0.68 2.22 

1999 14.76 4.04 0.64 0.68 2.23 

2000 14.78 3.95 0.63 0.69 2.23 

2001 14.91 3.89 0.62 0.69 2.24 

2002 15.28 3.81 0.62 0.69 2.24 

2003 15.11 3.75 0.61 0.69 2.26 

2004 15.12 3.71 0.61 0.69 2.29 

2005 15.27 3.67 0.61 0.68 2.33 

2006 14.91 3.60 0.60 0.67 2.37 

2007 14.38 3.53 0.60 0.66 2.42 

2008 13.69 3.44 0.59 0.66 2.44 

2009 13.56 3.34 0.57 0.64 2.43 
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Table D.1: Continued. 

Time (Year) Space Heating  Hot Water  Cooking   Lighting  Appliances 

2010 12.84 3.21 0.53 0.61 2.44 

2011 13.77 3.10 0.51 0.59 2.44 

2012 11.94 3.03 0.45 0.58 2.45 

2013 11.07 2.99 0.41 0.58 2.45 

2014 10.66 2.97 0.40 0.54 2.47 

2015 10.46 2.96 0.39 0.52 2.46 

2016 10.33 2.95 0.38 0.51 2.43 

2017 10.19 2.91 0.38 0.50 2.40 

2018 10.04 2.88 0.38 0.49 2.36 

2019 9.89 2.84 0.37 0.49 2.32 

2020 9.75 2.80 0.37 0.48 2.28 

2021 9.60 2.76 0.37 0.47 2.25 

2022 9.46 2.72 0.37 0.47 2.21 

2023 9.33 2.68 0.36 0.46 2.17 

2024 9.19 2.64 0.36 0.46 2.14 

2025 9.07 2.60 0.36 0.45 2.11 

2026 8.94 2.57 0.35 0.44 2.07 

2027 8.82 2.53 0.35 0.44 2.04 

2028 8.69 2.50 0.35 0.43 2.01 

2029 8.58 2.46 0.35 0.43 1.98 

2030 8.46 2.43 0.35 0.42 1.95 

2031 8.35 2.39 0.34 0.42 1.92 

2032 8.23 2.36 0.34 0.41 1.89 

2033 8.13 2.33 0.34 0.41 1.86 

2034 8.02 2.30 0.34 0.40 1.84 

2035 7.91 2.27 0.33 0.40 1.81 

2036 7.81 2.24 0.33 0.39 1.78 

2037 7.71 2.21 0.33 0.39 1.76 

2038 7.61 2.18 0.33 0.38 1.73 

2039 7.51 2.15 0.33 0.38 1.71 

2040 7.42 2.12 0.32 0.38 1.69 

2041 7.32 2.09 0.32 0.37 1.66 

2042 7.23 2.06 0.32 0.37 1.64 

2043 7.14 2.04 0.32 0.36 1.62 

2044 7.05 2.01 0.31 0.36 1.59 

2045 6.96 1.98 0.31 0.35 1.57 

2046 6.88 1.96 0.31 0.35 1.55 

2047 6.79 1.93 0.31 0.35 1.53 

2048 6.71 1.91 0.31 0.34 1.51 

2049 6.63 1.88 0.31 0.34 1.49 

2050 6.55 1.86 0.30 0.33 1.47 
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Table D.2: Carbon Emissions per Household - Time Step = 1 
Time (Year) Space Heating Hot Water Cooking Energy Lighting Energy Appliances 

1970 5.85 2.70 0.55 0.21 0.38 

1971 5.41 2.65 0.54 0.22 0.41 

1972 5.25 2.61 0.54 0.22 0.42 

1973 5.00 2.59 0.53 0.22 0.44 

1974 4.85 2.56 0.52 0.22 0.46 

1975 4.82 2.53 0.51 0.23 0.49 

1976 4.80 2.49 0.50 0.23 0.52 

1977 4.66 2.45 0.50 0.23 0.55 

1978 4.46 2.43 0.49 0.24 0.58 

1979 4.38 2.41 0.48 0.24 0.60 

1980 4.38 2.37 0.47 0.24 0.62 

1981 4.59 2.33 0.46 0.25 0.64 

1982 4.57 2.28 0.45 0.25 0.66 

1983 4.47 2.24 0.44 0.25 0.67 

1984 4.31 2.20 0.43 0.26 0.69 

1985 4.14 2.15 0.42 0.26 0.70 

1986 3.90 2.10 0.40 0.26 0.72 

1987 4.01 2.06 0.39 0.26 0.75 

1988 4.20 2.04 0.38 0.26 0.77 

1989 4.27 1.99 0.36 0.27 0.79 

1990 4.18 1.95 0.35 0.27 0.81 

1991 3.89 1.91 0.34 0.27 0.83 

1992 3.67 1.87 0.32 0.27 0.84 

1993 3.81 1.84 0.31 0.27 0.85 

1994 3.86 1.80 0.30 0.27 0.86 

1995 3.94 1.76 0.29 0.27 0.87 

1996 3.85 1.73 0.28 0.27 0.87 

1997 3.63 1.69 0.27 0.27 0.87 

1998 3.83 1.66 0.27 0.27 0.87 

1999 3.73 1.63 0.26 0.27 0.88 

2000 3.68 1.61 0.26 0.27 0.88 

2001 3.62 1.58 0.25 0.27 0.88 

2002 3.58 1.55 0.25 0.27 0.88 

2003 3.62 1.52 0.25 0.27 0.89 

2004 3.53 1.50 0.24 0.27 0.89 

2005 3.45 1.48 0.24 0.27 0.90 

2006 3.42 1.46 0.24 0.27 0.91 

2007 3.26 1.44 0.24 0.27 0.93 

2008 3.01 1.41 0.24 0.26 0.95 

2009 2.69 1.38 0.23 0.26 0.96 
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Table D.2: Continued. 

Time (Year) Space Heating  Hot Water Cooking  Lighting  Appliances  

2010 2.51 1.34 0.23 0.26 0.96 

2011 2.20 1.29 0.22 0.25 0.96 

2012 2.93 1.25 0.20 0.24 0.97 

2013 2.13 1.21 0.18 0.23 0.97 

2014 2.19 1.19 0.17 0.23 0.97 

2015 2.04 1.18 0.16 0.22 0.98 

2016 2.03 1.18 0.16 0.21 0.97 

2017 1.99 1.17 0.15 0.20 0.97 

2018 1.95 1.16 0.15 0.20 0.95 

2019 1.91 1.14 0.15 0.20 0.94 

2020 1.87 1.13 0.15 0.19 0.93 

2021 1.83 1.11 0.15 0.19 0.91 

2022 1.80 1.10 0.15 0.19 0.90 

2023 1.76 1.08 0.14 0.19 0.88 

2024 1.72 1.07 0.14 0.18 0.87 

2025 1.69 1.05 0.14 0.18 0.85 

2026 1.65 1.04 0.14 0.18 0.84 

2027 1.62 1.02 0.14 0.18 0.83 

2028 1.58 1.01 0.14 0.17 0.81 

2029 1.55 0.99 0.14 0.17 0.80 

2030 1.52 0.98 0.14 0.17 0.79 

2031 1.49 0.97 0.14 0.17 0.78 

2032 1.45 0.95 0.14 0.17 0.77 

2033 1.42 0.94 0.14 0.16 0.75 

2034 1.39 0.93 0.13 0.16 0.74 

2035 1.36 0.92 0.13 0.16 0.73 

2036 1.33 0.90 0.13 0.16 0.72 

2037 1.30 0.89 0.13 0.16 0.71 

2038 1.27 0.88 0.13 0.15 0.70 

2039 1.24 0.87 0.13 0.15 0.69 

2040 1.22 0.86 0.13 0.15 0.68 

2041 1.19 0.84 0.13 0.15 0.67 

2042 1.16 0.83 0.13 0.15 0.66 

2043 1.13 0.82 0.13 0.15 0.65 

2044 1.10 0.81 0.13 0.14 0.64 

2045 1.08 0.80 0.13 0.14 0.64 

2046 1.05 0.79 0.12 0.14 0.63 

2047 1.02 0.78 0.12 0.14 0.62 

2048 1.00 0.77 0.12 0.14 0.61 

2049 0.97 0.76 0.12 0.14 0.60 

2050 0.95 0.75 0.12 0.13 0.59 
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Table D.3: Energy Consumption per Household - Time Step = 0.5 

Time (Year) Space Heating  Hot Water Cooking Lighting Appliances 

1970 13.18 6.64 1.36 0.55 1.07 

1971 13.12 6.57 1.34 0.55 1.09 

1972 12.76 6.51 1.32 0.56 1.14 

1973 12.74 6.42 1.30 0.57 1.19 

1974 12.93 6.34 1.28 0.57 1.27 

1975 12.96 6.25 1.26 0.58 1.35 

1976 12.69 6.17 1.24 0.59 1.42 

1977 12.46 6.11 1.22 0.60 1.49 

1978 12.59 6.04 1.20 0.61 1.54 

1979 13.00 5.94 1.17 0.62 1.59 

1980 13.58 5.83 1.15 0.63 1.63 

1981 13.53 5.71 1.12 0.64 1.67 

1982 13.38 5.61 1.10 0.64 1.71 

1983 13.15 5.50 1.07 0.65 1.75 

1984 12.86 5.38 1.04 0.66 1.80 

1985 12.75 5.26 1.01 0.66 1.85 

1986 13.43 5.18 0.97 0.67 1.91 

1987 14.00 5.10 0.94 0.67 1.97 

1988 14.16 4.99 0.90 0.67 2.03 

1989 13.85 4.88 0.87 0.67 2.08 

1990 13.32 4.79 0.83 0.68 2.11 

1991 13.35 4.69 0.80 0.68 2.14 

1992 13.95 4.59 0.76 0.68 2.16 

1993 14.23 4.50 0.74 0.68 2.18 

1994 14.48 4.41 0.71 0.68 2.19 

1995 14.23 4.33 0.70 0.68 2.20 

1996 14.22 4.24 0.68 0.68 2.21 

1997 14.83 4.17 0.67 0.68 2.21 

1998 14.66 4.10 0.65 0.68 2.22 

1999 14.74 4.03 0.64 0.68 2.23 

2000 14.80 3.96 0.63 0.69 2.23 

2001 14.98 3.89 0.62 0.69 2.24 

2002 15.18 3.81 0.62 0.69 2.24 

2003 15.10 3.76 0.62 0.69 2.26 

2004 15.15 3.71 0.61 0.69 2.29 

2005 15.16 3.66 0.61 0.68 2.33 

2006 14.81 3.60 0.60 0.67 2.37 

2007 14.28 3.52 0.60 0.66 2.41 

2008 13.78 3.44 0.59 0.65 2.43 

2009 13.46 3.33 0.57 0.64 2.43 
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Table D.3: Continued. 

Time (Year) Space Heating  Hot Water Cooking Lighting Appliances 

2010 13.20 3.21 0.53 0.61 2.44 

2011 13.27 3.11 0.51 0.59 2.44 

2012 11.91 3.04 0.45 0.59 2.44 

2013 11.17 3.00 0.42 0.58 2.45 

2014 10.76 2.98 0.41 0.55 2.46 

2015 10.54 2.97 0.39 0.53 2.45 

2016 10.34 2.94 0.39 0.51 2.42 

2017 10.16 2.90 0.38 0.50 2.39 

2018 10.00 2.86 0.38 0.49 2.36 

2019 9.85 2.82 0.37 0.49 2.32 

2020 9.70 2.78 0.37 0.48 2.28 

2021 9.56 2.75 0.37 0.47 2.25 

2022 9.43 2.71 0.37 0.47 2.21 

2023 9.30 2.67 0.36 0.46 2.17 

2024 9.17 2.63 0.36 0.46 2.14 

2025 9.04 2.60 0.36 0.45 2.11 

2026 8.92 2.56 0.35 0.44 2.07 

2027 8.80 2.53 0.35 0.44 2.04 

2028 8.68 2.49 0.35 0.43 2.01 

2029 8.56 2.46 0.35 0.43 1.98 

2030 8.45 2.43 0.35 0.42 1.95 

2031 8.33 2.39 0.34 0.42 1.92 

2032 8.22 2.36 0.34 0.41 1.89 

2033 8.12 2.33 0.34 0.41 1.86 

2034 8.01 2.30 0.34 0.40 1.84 

2035 7.91 2.27 0.33 0.40 1.81 

2036 7.80 2.24 0.33 0.39 1.79 

2037 7.70 2.21 0.33 0.39 1.76 

2038 7.61 2.18 0.33 0.38 1.73 

2039 7.51 2.15 0.33 0.38 1.71 

2040 7.41 2.12 0.32 0.38 1.69 

2041 7.32 2.09 0.32 0.37 1.66 

2042 7.23 2.06 0.32 0.37 1.64 

2043 7.14 2.04 0.32 0.36 1.62 

2044 7.05 2.01 0.31 0.36 1.60 

2045 6.96 1.98 0.31 0.35 1.57 

2046 6.88 1.96 0.31 0.35 1.55 

2047 6.79 1.93 0.31 0.35 1.53 

2048 6.71 1.91 0.31 0.34 1.51 

2049 6.63 1.88 0.31 0.34 1.49 

2050 6.55 1.86 0.30 0.33 1.47 
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Table D.4: Carbon Emissions per Household - Time Step = 0.5 

Time (Year) Space Heating Hot Water Cooking Lighting Appliances 

1970 5.85 2.70 0.55 0.21 0.38 

1971 5.48 2.65 0.54 0.21 0.40 

1972 5.23 2.62 0.53 0.22 0.42 

1973 5.02 2.59 0.53 0.22 0.44 

1974 4.90 2.56 0.52 0.22 0.46 

1975 4.85 2.53 0.51 0.23 0.49 

1976 4.77 2.49 0.50 0.23 0.52 

1977 4.62 2.46 0.50 0.23 0.55 

1978 4.49 2.43 0.49 0.24 0.58 

1979 4.43 2.40 0.48 0.24 0.60 

1980 4.49 2.37 0.47 0.24 0.62 

1981 4.55 2.32 0.46 0.25 0.64 

1982 4.52 2.28 0.45 0.25 0.65 

1983 4.42 2.24 0.44 0.25 0.67 

1984 4.28 2.20 0.43 0.26 0.69 

1985 4.10 2.15 0.42 0.26 0.71 

1986 4.03 2.10 0.40 0.26 0.73 

1987 4.11 2.07 0.39 0.26 0.75 

1988 4.20 2.03 0.38 0.26 0.77 

1989 4.20 1.99 0.36 0.27 0.79 

1990 4.06 1.95 0.35 0.27 0.81 

1991 3.86 1.91 0.34 0.27 0.83 

1992 3.81 1.87 0.32 0.27 0.84 

1993 3.84 1.84 0.31 0.27 0.85 

1994 3.89 1.80 0.30 0.27 0.86 

1995 3.88 1.76 0.29 0.27 0.86 

1996 3.76 1.73 0.28 0.27 0.87 

1997 3.76 1.70 0.27 0.27 0.87 

1998 3.77 1.66 0.27 0.27 0.87 

1999 3.72 1.64 0.26 0.27 0.88 

2000 3.67 1.61 0.26 0.27 0.88 

2001 3.62 1.58 0.25 0.27 0.88 

2002 3.61 1.55 0.25 0.27 0.88 

2003 3.58 1.52 0.25 0.27 0.89 

2004 3.52 1.50 0.24 0.27 0.89 

2005 3.47 1.48 0.24 0.27 0.90 

2006 3.37 1.46 0.24 0.27 0.92 

2007 3.20 1.43 0.24 0.27 0.93 

2008 2.95 1.41 0.24 0.26 0.95 

2009 2.71 1.37 0.23 0.26 0.96 
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Table D.4: Continued. 

Time (Year) Space Heating Hot Water Cooking Lighting Appliances 

2010 2.47 1.33 0.23 0.25 0.96 

2011 2.36 1.29 0.21 0.25 0.96 

2012 2.49 1.25 0.20 0.24 0.97 

2013 2.30 1.22 0.19 0.23 0.97 

2014 2.17 1.20 0.17 0.23 0.97 

2015 2.09 1.19 0.17 0.22 0.97 

2016 2.04 1.18 0.16 0.21 0.97 

2017 1.99 1.17 0.16 0.21 0.96 

2018 1.94 1.15 0.15 0.20 0.95 

2019 1.90 1.14 0.15 0.20 0.94 

2020 1.86 1.12 0.15 0.19 0.92 

2021 1.83 1.11 0.15 0.19 0.91 

2022 1.79 1.09 0.15 0.19 0.90 

2023 1.75 1.08 0.15 0.19 0.88 

2024 1.72 1.06 0.14 0.18 0.87 

2025 1.68 1.05 0.14 0.18 0.85 

2026 1.65 1.03 0.14 0.18 0.84 

2027 1.61 1.02 0.14 0.18 0.83 

2028 1.58 1.01 0.14 0.17 0.81 

2029 1.55 0.99 0.14 0.17 0.80 

2030 1.52 0.98 0.14 0.17 0.79 

2031 1.48 0.97 0.14 0.17 0.78 

2032 1.45 0.95 0.14 0.17 0.77 

2033 1.42 0.94 0.14 0.16 0.75 

2034 1.39 0.93 0.13 0.16 0.74 

2035 1.36 0.92 0.13 0.16 0.73 

2036 1.33 0.90 0.13 0.16 0.72 

2037 1.30 0.89 0.13 0.16 0.71 

2038 1.27 0.88 0.13 0.15 0.70 

2039 1.24 0.87 0.13 0.15 0.69 

2040 1.21 0.86 0.13 0.15 0.68 

2041 1.19 0.84 0.13 0.15 0.67 

2042 1.16 0.83 0.13 0.15 0.66 

2043 1.13 0.82 0.13 0.15 0.65 

2044 1.10 0.81 0.13 0.14 0.64 

2045 1.08 0.80 0.13 0.14 0.64 

2046 1.05 0.79 0.12 0.14 0.63 

2047 1.02 0.78 0.12 0.14 0.62 

2048 1.00 0.77 0.12 0.14 0.61 

2049 0.97 0.76 0.12 0.14 0.60 

2050 0.95 0.75 0.12 0.13 0.59 
 


