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Abstract

In this thesis we describe the nonassociative geometry probed by closed strings in flat
non-geometric R-flux backgrounds, and develop suitable quantization techniques.
For this, we propose a Courant sigma-model on an open membrane with target
space M , which we regard as a topological sector of closed string dynamics on R-
space. We then reduce it to a twisted Poisson sigma-model on the boundary of
the membrane with target space the cotangent bundle T ∗M . The pertinent twisted
Poisson structure is provided by a U(1) gerbe in momentum space, which geometrizes
R-space.

From the membrane perspective, the path integral over multivalued closed string
fields in Q-space (i.e. the T-fold endowed with a non-geometric Q-flux which is
T-dual to the R-flux), is equivalent to integrating over open strings in R-space.
The corresponding boundary correlation functions reproduce Kontsevich’s global
deformation quantization formula for the twisted Poisson manifolds, which we take
as our proposal for quantization. We calculate the corresponding nonassociative star
product and its associator, and derive closed formulas for the case of a constant R-
flux. We then develop various versions of the Seiberg–Witten map, which relate our
nonassociative star products to associative ones and add fluctuations to the R-flux
background.

We also propose a second quantization method based on quantizing the dual of a
Lie 2-algebra via convolution in an integrating Lie 2-group. This formalism provides
a categorification of Weyl’s quantization map, and leads to a consistent quantization
of Nambu–Poisson 3-brackets. We show that the convolution product coincides with
the star product obtained by Kontsevich’s formula, and clarify its relation with the
twisted convolution products for topological nonassociative torus bundles.

As a first step towards formulating quantum gravity on non-geometric spaces,
we develop a third quantization method to study nonassociative deformations of
geometry in R-space, which is analogous to noncommutative deformations of ge-
ometry (i.e. noncommutative gravity). We find that the symmetries underlying
these nonassociative deformations generate the non-abelian Lie algebra of transla-
tions and Bopp shifts in phase space. Using a suitable cochain twist, we construct
the quasi-Hopf algebra of symmetries that deforms the algebra of functions, and the
exterior differential calculus in R-space. We define a suitable integration on these
nonassociative spaces, and find that the usual cyclicity of associative noncommu-
tative deformations is replaced by weaker notions of 2-cyclicity and 3-cyclicity. In
this setting, we consider extensions to non-constant R-flux backgrounds as well as
more generic twisted Poisson structures emerging from non-parabolic monodromies
of closed strings.

As a first application of our nonassociative star product quantization, we develop
nonassociative quantum mechanics based on phase space state functions, wherein
3-cyclicity is instrumental for proving consistency of the formalism. We calculate
the expectation values of area and volume operators, and find coarse-graining of
the string background due to the R-flux. For a second application, we construct
nonassociative deformations of fields, and study perturbative nonassociative scalar
field theories on R-space. We find that nonassociativity induces modifications to the
usual classification of Feynman diagrams into planar and non-planar graphs, which
are controlled by 3-cyclicity. The example of ϕ4 theory is studied in detail and the
one-loop contributions to the two-point function are calculated.
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Chapter 1

Introduction

String theory vacua consist of higher dimensional spaces that require compactifica-

tion of the extra dimensions in order to relate them to observable phenomenology and

cosmology. In the presence of p-form field fluxes along the compact dimensions, these

compactifications are referred to as flux compactifications, and they have been inten-

sively studied in recent years because of their ability to cure some of the problems

suffered by the more conventional Calabi–Yau compactifications (see e.g. [55, 46, 26]

for reviews). Flux compactifications lead to generalized non-geometric structures

wherein open neighbourhoods are patched together by T-duality [116], and in this

sense they arise as consistent string theory solutions [43].

Non-geometric flux backgrounds exhibit noncommutative and even nonassocia-

tive structures. To understand how these structures are probed by strings, let us

briefly recall how noncommutative spaces emerge when we take open strings ending

on D-branes in a constant B-field background. Canonical quantization of the open

string sigma-model results in commutation relations for the string endpoints given

by [38] [
X i(τ, σ) , Xj(τ, σ′ )

]∣∣∣
σ=σ′=0,2π

= i θij , (1.1)

where θ = −2π α′F (1+F2)−1 and F = B−F , with F the gauge field strength two-

form on the D-brane. By (1.1) it is evident that the D-brane worldvolume becomes

noncommutative. In the double-scaling limit α′ → 0 , B →∞ the open string modes

decouple from the closed string modes, i.e. from gravity, and the open string two-
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Chapter 1: Introduction

point function becomes a well-defined target space entity that is independent of

the worldsheet coordinates [115]. The deformation of the commutator (1.1) is then

proportional to B−1 and yields a star product of fields on D-brane worldvolumes, i.e.

a noncommutative gauge theory, which can be related to ordinary gauge theories

via Seiberg–Witten maps [115].

The discovery of noncommutative geometry in string theory has led to a flurry

of investigation into the structures and properties of these noncommutative field

theories; see e.g. [47, 117] for early pedagogical reviews on the subject. At the level

of the worldsheet theory, it was soon realised that θ defines a Poisson bivector which

is dual to the two-form B-field. The associated Poisson sigma-model describes the

dynamics of the topological sector of the open string theory, and it can be quantized

using Kontsevich’s deformation quantization [32, 34]. On the other hand, twist

deformation techniques were employed in [8] to systematically deform differential

geometry and general relativity on noncommutative spacetime, and thus formulate

a noncommutative theory of gravity.

However, it is more natural to seek noncommutative gravity structures emerging

in the closed string sector. This question had remained somewhat unclear until the

recent works [27, 90, 21]. In closed string theory, the two-point function on a sphere

depends explicitly on the worldsheet coordinates in the low-energy limit, and so is

not a well-defined target space quantity. The three-point function does not exhibit

the same pathology; it depends only on the relative orientation of the three insertion

points on the sphere, and hence the following tenary bracket emerges on target space

[X i, Xj, Xk] := lim
σi→σ

[
[X i(τ, σ1), Xj(τ, σ2)], Xk(τ, σ3)

]
+ cyclic . (1.2)

The 3-bracket (1.2) is naturally identified as a measure of nonassociativity of the

closed string coordinates. For a linearized conformal field theory in flat space with

constant Neveu–Schwarz H-flux H = dB, it yields the non-trivial result [27, 21]

[X i, Xj, Xk] = iκ θijk , (1.3)
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Chapter 1: Introduction

where θijk is proportional to the background flux, and κ = 0 for the H-flux back-

ground while κ = 1 after an odd number of T-duality transformations. The de-

formation is now provided by a trivector induced by a non-geometric R-flux which

is T-dual to the constant three-form H-flux. In chapters 3, 4 and 5 we will de-

scribe techniques for the proper quantization of this nonassociative deformation of

geometry, which is anticipated to lead to closed string nonassociative gravity.

The same type of nonassociativity emerges in the context of closed string flux

compactifications. The prototypical example is provided by the flat three-torus

T3 endowed with a constant three-form H-flux. Applying the Büscher rules in

this background gives rise to geometric and non-geometric fluxes via the T-duality

chain [73, 116]

Hijk
Ti−−→ f ijk

Tj−−→ Qij
k

Tk−−→ Rijk . (1.4)

Here Ti, i = 1, 2, 3 denotes a T-duality transformation along the i-th cycle of T3,

which in each step maps the flux to a new flux with a raised index. Geometrically

this means that a given differential form component is dualised to a vector field

component. Let us now examine more closely the geometric and non-geometric

interpretations of each duality frame in (1.4).

The first member of the T-duality chain is the flat three-torus T3 endowed with

a constant Neveu–Schwarz H-flux H = dB, which can be regarded as the identity

fibration T3 → T3 with zero-dimensional fibres. Since abelian fluxes in string theory

obey analogues of the Dirac quantization condition, the three-form determines a

cohomology class [H] ∈ H3(T3;Z) = Z which is the characteristic class of a gerbe.

The H-flux frame is mapped under T-duality to a circle bundle over T2 of degree

equal to [H] ∈ H3(T3;Z) = Z. In this frame the B-field vanishes; however, a metric

flux f appears which determines a torsion through the Maurer–Cartan equation.

Therefore, the geometry is that of a twisted torus or Heisenberg nilmanifold, which

is still a geometric frame.

A further T-duality along a cycle of the base yields a non-geometric space with

Q-flux that can be locally modelled as a T2 fibre bundle over a circle S1. Contrary

to the situation encountered above, the closed string sigma-model fields do not
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Chapter 1: Introduction

commute on Q-space. Via T-duality, this maps back to the original geometric space

as a noncommutativity relation [90]

[
X i(τ, σ) , X̃j(τ, σ)

]
6= 0 (1.5)

between string coordinates X i ∈ M and the dual coordinates X̃i ∈ M∗. In partic-

ular, as the closed strings wrap around the base they fail to satisfy the periodicity

condition in S1 up to non-trivial SL(2,Z) monodromies of the T2 fibres. For the

parabolic flux model, which we treat throughout this thesis, the monodromies of

T2 lie in a parabolic conjugacy class of SL(2,Z). The fibre directions then ac-

quire a noncommutative deformation which is given by the commutation relation

[xi, xj] = iQij
k w

k, where xi are the local T2 coordinates and wk is the winding num-

ber along the base direction [90, 6, 61]. As a result, the transition functions between

local charts now involve T-duality transformations therefore the metric and B-field

are well-defined locally but not globally. In this sense Q-space is locally geometric

but globally non-geometric, i.e. it is an example of a T-fold [42, 73]. Non-geometric

Q-flux backgrounds dual to three-spheres were also recently constructed in [106].

In the case of open strings, the non-geometry of the T-fold can be globalised at

the topological level by a fibration of noncommutative two-tori T2
θ over S1 [95, 57].

In particular, within a C∗-algebra framework the T-fold is described as a topolog-

ical approximation to a T2-equivariant gerbe with 2-connection on T3 [31]. The

noncommutativity parameters are parametrized by the local coordinates xk of the

base S1 as θij(x) = Qij
k x

k, and thus they define a non-trivial Poisson bivector field.

This Poisson structure is naturally dual to the B-field which is a potential for the

original H-flux in the T-duality chain. In chapter 2 we shall see how to regard

this identification in the context of closed strings which wind in the non-geometric

background.

The final background of the T-duality chain (1.4) involving the non-geometric

R-flux is not even locally geometric [116]. It comes about by taking a final T-

duality of the base S1; however, since this is not a Killing isometry, the standard

Büscher rules cannot be applied to the Q-flux background. Nevertheless, a well-
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Chapter 1: Introduction

defined prescription exists at the level of worldsheet conformal field theory, and the

final T-duality transformation is performed by flipping the sign of the corresponding

right-moving closed string coordinate. The failure of the Büscher rules simply reflects

the absence of local geometric structures (see e.g. [20] and references therein). In the

context of open string theory the globalisation of this non-geometry is a (topological)

nonassociative three-torus, regarded as a fibration over a point [28, 51].

In the parabolic flux model, the final T-duality along S1 maps Q-flux to R-flux,

and the closed string winding variables wk to the momentum modes pk, which are

canonically conjugate to the local string position coordinates xi. Together with

the standard Heisenberg commutation relations, this yields the nonassociative alge-

bra [90]

[xi, xj] = i ~Rijk pk , [xi, pj] = i ~ δij , [pi, pj] = 0 , (1.6)

which exhibits the same type of nonassociativity that was observed in [27, 21]; in

particular, it has a non-trivial Jacobiator given by

[xi, xj, xk] :=
[
[xi, xj], xk

]
+ cyclic permutations = 3 ~2Rijk , (1.7)

that reproduces (1.3) for an odd (three) number of T-dualities. The above relations

arise from a twisted Poisson structure on phase space [91]; the nonassociative defor-

mation is controlled by a three-vector which is T-dual to the original Neveu–Schwarz

H-flux since its components are the R-flux components. In chapter 2 we will de-

scribe a membrane sigma-model which encompasses the nonassociative structure of

the parabolic R-flux model; its boundary will be an R-twisted Poisson sigma-model

on the cotangent bundle of the target space that will provide the precise geometric

interpretation of R-space. Noncommutative and nonassociative phase space struc-

tures were also found on geometric twisted tori in [36] as solutions of matrix theory

compactification conditions.

In the context of worldsheet conformal field theory, non-geometric backgrounds

are regarded as left-right asymmetric orbifold theories with respect to the action

6



Chapter 1: Introduction

of the SL(2,Z) monodromy on T2, where the asymmetric twisting is related to

the presence of non-geometric fluxes [40, 39]. Such conformal field theories exhibit

the nonassociative structure of the underlying target space as a discontinuity of

the three-point functions [27]. In fact, one can read off a deformed product of three

functions up to linear order in the background flux by calculating off-shell correlation

functions of tachyon vertex operators [21].

However, the fact that Q-space noncommutativity corresponds to a noncommu-

tativity relation between T-dual coordinates on the original geometric H-flux back-

ground (c.f. (1.5)), suggests that closed string non-geometry should be investigated

within a framework that implements T-duality transformations at the level of target

space geometry. In particular, since transition functions of a d–dimensional smooth

manifold M are valued in the structure group of the tangent bundle, the existence

of stringy O(d, d) transition functions leads to the notion of a generalized tangent

bundle of rank 2d. This doubling introduces additional geometric variables (such as

winding coordinates) which provide a bona fide local geometric description of non-

geometric spaces. The above observation has motivated two different approaches to

non-geometry; namely, generalized geometry and doubled geometry, which can be

used in a complimentary way to construct string actions in non-geometric frames.

In the generalized geometry approach (see e.g. [57, 56, 59]), the key observation

is that the T-duality group O(d, d) is also the structure group of the generalized

tangent bundle

C = TM ⊕ T ∗M (1.8)

over the target space M . This bundle is equipped with a generalized metric which

combines the usual Riemannian metric and the B-field in an O(d, d)-invariant way.

The non-geometric fluxes are generated by an abelian subgroup of O(d, d) transfor-

mations of sections of C, which are called β-transforms. Specifically, β-transforms

take the standard geometric description in terms of a metric, B-field and dilaton

field into a framework where the non-geometric fluxes are expressed in terms of a

bivector field β = 1
2
βij ∂i ∧ ∂j. Non-geometry enters via the bivector β, which can

only be defined locally using the T-duality group; however, the non-geometric fluxes

7



Chapter 1: Introduction

are globally well defined [59]. In particular, for the case of vanishing metric flux the

non-geometric fluxes are given by

Qij
k = ∂kβ

ij , R = [β, β]S (1.9)

where [−,−]S is the Schouten bracket which is the natural extension of the Lie

bracket to multivector fields (see appendix A.3). By the second member of (1.9)

the bivector β is a quasi-Poisson structure [22]; the generalized tangent bundle (1.8)

together with this observation will play a prominent role in this thesis.

On the other hand, doubled geometry [73] (see also [71] for a review) takes a

more direct approach to implementing O(d, d) invariance in string theory formalism.

Here, spacetime coordinates xi and their dual coordinates x̃i, which are canonically

conjugate to the winding numbers wi are put on an equal footing. By defining xI :=

(xi, x̃i) and ∂I := (∂i, ∂̃
i := ∂

∂x̃i
), where I = 1, · · · , 2d, the target space geometry is

doubled. However, since the winding coordinates correspond to non-physical degrees

of freedom, their dynamics should be eliminated in the low-energy effective action of

any field theory on doubled space. This is accomplished by using the projection ∂̃i =

0 while keeping the generalized tangent bundle (1.8). This relation between doubled

space and generalized geometry and suggests that an O(d, d) invariant formulation of

string theory should be pursued in both doubled geometry and generalized geometry.

For this, double field theory [75, 76] (see also [1, 17, 72] for reviews) uses the

doubled geometry variables xI and the generalized metric of generalized geometry

to propose a manifestly O(d, d) invariant action on doubled space. Within this

framework, a field theory on M for the non-geometric fluxes of the T-duality chain

(1.4) can be obtained simply by performing a formal T-duality transformation and

a field redefinition in the doubled field theory action using the β-transforms of

generalized geometry [5]. In fact, it is possible to formulate a bi-invariant action,

i.e. invariant under both diffeomorphisms and β-transforms, for closed strings in

non-geometric flux backgrounds [23] (see also [24]). With these methods, double

field theory provides a suitable context for a desired deformation quantization of

non-geometric spaces. The structure of nonassociative deformations of geometry in

8



Chapter 1: Introduction

double field theory is analysed in [25]. In this thesis we study noncommutative and

nonassociative deformations of non-geometric spaces by employing and developing

methods within the generalised geometry framework.

The appearance of nonassociative geometry in string theory is not new. It arises

naturally in the context of open string noncommutative gauge theory when D-branes

are placed in a non-constant B-filed background∗. The nonassociative deformation

is controlled by the three-form H-flux H = dB 6= 0 via Kontsevich’s deformation

quantization of the pertinent H-twisted Poisson structure, which is reproduced by

the correlation functions of open string tachyon vertex operators [41, 66, 63]. How-

ever, nonassociativity disappears in on-shell tachyon scattering amplitudes by using

the Dirac–Born–Infeld field equations on the D-brane [63, 65]. This is also true

for the closed string sector: Once momentum conservation in tachyon scattering

amplitudes is taken into account, all traces of nonassociativity disappear and the

usual crossing symmetry of correlation functions in two-dimensional conformal field

theory is recovered [21].

Nonassociativity appears also in ordinary quantum mechanics when charged par-

ticles in three dimensions are placed in the field of a magnetic monopole [80]. In this

case the physical momenta π satisfy the commutation relation [πi, πj] = i ~ e εijk Bk,

where e is the particle’s charge and B is the magnetic field, and together with the

canonical commutation relations they define a noncommutative momentum space.

In this background translations U(a) = e
i
~ a·π by a vector a do not commute. The

violation of translation invariance is given by a phase equal to the magnetic flux

Φa1,a2 = 1
2

(a1×a2) ·B through the triangle spanned by the two vectors. This phase

is a 2-cocycle of the abelian group of translations. Nonassociativity arises through

a non-trivial Jacobiator for the momenta, and thus translations do not associate by

a phase equal to the magnetic flux Φa1,a2,a3 = 1
6

(
(a1 × a2) · a3

)
∇ ·B through the

tetrahedron spanned by the three vectors, which is a 3-cocycle of the abelian group

of translations. For ∇ ·B = 0 the magnetic field satisfies Maxwell’s equations and

associativity persists. In particular, for a constant magnetic field the phase space

∗A different approach is taken in [93], where gauge theory on the octonions and other nonasso-
ciative algebras is formulated in the framework of cochain twist deformations.
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Chapter 1: Introduction

commutation relations in the strong field limit reproduce the non-commuting coor-

dinates of the lowest Landau level [118]. On the other hand, if magnetic monopoles

are present, then ∇ ·B 6= 0, and nonassociativity persists unless the magnetic flux

is quantized, i.e.

e
~ Φa1,a2,a3 ∈ π Z . (1.10)

This is simply the Dirac quantization condition for magnetic charge. In this context

it ensures the basic postulates of quantum mechanics, wherein associativity of op-

erators is required. Similarly, nonassociativity in string theory should be regarded

as a feature whose consistency induces constraints, such as flux quantization, and

teaches us something about the nature of non-geometric string theory.

In the rest of this thesis we shall investigate the origins of noncommutative and

nonassociative geometry for closed strings in R-space, and perform deformation

quantization using various methods (see [101] for a review). In particular, inspired

by [69, 59], we will argue in Chapter 2 that the suitable analogue of the open string

Poisson sigma-model for closed strings in flux backgrounds, is a higher version of

the Poisson sigma-model called the Courant sigma-model. This is a sigma-model on

an open three-dimensional membrane with target space M , where the boundaries

of the membrane are regarded as the closed strings [99]. Its field content is valued

in a Courant algebroid, which in the present case is the standard Courant algebroid

C = TM ⊕T ∗M with the structure functions of C appropriate to the pure constant

R-flux background [59, 77, 22]. We will show that the membrane sigma-model

reduces to a twisted Poisson sigma-model on the boundary whose target space is

the cotangent bundle T ∗M of the original target space M . The twisting is given by

a non-flat U(1)-gerbe on momentum space, and the resulting linear twisted Poisson

structure coincides exactly with that proposed in [90, 91]. Our membrane sigma-

model thus gives a straightforward dynamical explanation of the nonassociative

phase space algebra (1.6) and also a geometric interpretation for the effective target

space geometry seen by closed strings in R-flux compactifications.

With the twisted closed string boundary conditions considered in [90, 40], we

will then argue that the closed string path integral is equivalent to that of an open

10



Chapter 1: Introduction

string twisted Poisson sigma-model on a disk. The resulting boundary correlation

functions define a quantization of the R-flux background, and in fact one can re-

produce the entire setting of Kontsevich’s global deformation quantization [89] for

twisted Poisson structures.

In Chapter 3 we develop Kontsevich’s global deformation quantization for arbi-

trary R-flux, and describe the resulting nonassociative star product, the correspond-

ing associator as well as their various derivation properties through the formality

maps [99]. In the case of constant R-flux we derive explicit closed formulas which

resemble the Moyal–Weyl formula. We shall also see that our formalism appears to

have the right features to define a proper nonassociative quantization of Nambu–

Poisson 3-brackets, at least for constant trivectors. We will further demonstrate

how the three-product of fields proposed in [21] arises in special subsectors of our

general formalism.

Using this approach we are also able to clarify the meaning of Seiberg–Witten

maps in this setting. As discussed in [7], the deformation quantization of twisted

Poisson structures leads to noncommutative gerbes. The nonassociative star product

can be “untwisted” to a family of associative star products that are all related

by Seiberg–Witten maps. This formulation has a large gauge symmetry given by

star commutators with gauge parameters that live on phase space. In our setting

we can also work directly with the nonassociative star product by restricting the

class of admissible gauge fields. Seiberg–Witten maps can then be used to describe

fluctuations at the boundary of the membrane (or at the endpoints of the open

strings), and are closely related to quantized general coordinate transformations.

We find two particularly interesting examples. Firstly, a dynamical Seiberg–Witten

map from the associative canonical star product on phase space to the nonassociative

R-twisted star product, which can be computed explicitly to all orders in closed form

and may be the first example of its kind. Secondly, Nambu–Poisson maps that can

be used to add fluctuations to the (constant) R-flux background.

In Chapter 4 we develop an alternative approach to deformation quantization of

the non-geometric R-flux background [99]. There we show that our twisted Poisson

11



Chapter 1: Introduction

structure has the structure of a Lie 2-algebra, which is a categorified version of an

ordinary Lie algebra with the Jacobi identity weakened to a natural transformation.

In fact, the Lie 2-algebra that we use is related to the noncommutative Q-space

background, and it can be regarded as a reduction of the structure algebra of the

Courant algebroid C over a point. This Lie 2-algebra is integrated to a Lie 2-group

G which is a categorification of the Heisenberg group that defines the double twisted

torus. By using the nonassociative convolution product induced by horizontal multi-

plication in G , we induce a nonassociative star product on the algebra of functions on

phase space by embedding it as an algebra object in the category G . This mapping

can be regarded as a higher version of the Weyl–Wigner quantization map, which

is familiar from conventional approaches to noncommutative field theory [117]. We

demonstrate that this star product is identical to the nonassociative Kontsevich star

product calculated in chapter 3.

In Chapter 5 we provide a third way of quantizing non-geometric R-flux back-

grounds using twist deformation techniques [100]. In particular, we construct a Hopf

algebra H from the Lie algebra of symmetries acting on the phase space description

of R-space (see e.g. [92]). In order to accommodate nonassociativity, we regard H

as a quasi-Hopf algebra [48] with a trivial three-cocycle φ ∈ H ⊗H ⊗H called the

associator, and deform it using a cochain twist F ∈ H ⊗H. Our approach in this

chapter is related to the categorical constructions of chapter 4 by the observation

that every braided monoidal category whose objects are vector spaces, is equivalent

to the representation category of some (quasi-)Hopf algebra H (see e.g. [92, Chap. 9]

for details).

To demostrate that twisting methods naturally allow for the introduction of a

3-form R-flux in phase space, we proceed in three steps. First we construct the Hopf

algebra K related to the abelian Lie algebra of translations in 2d-dimensional phase

spaceM, and deform it using an abelian 2-cocycle twist F ∈ K ⊗K. The action of

the twisted Hopf algebra KF on the algebra of functions C∞(M) yields the canonical

Moyal–Weyl star product on phase space. We then endow M with a trivector R

which is T-dual to the 3-form of a uniform background H-flux, and bring it into the

12



Chapter 1: Introduction

twist quantization scheme by introducing a unique family of twist elements which

are parametrised by constant momentum. The pointwise product of functions on

phase space then deforms to a family of associative noncommutative Moyal–Weyl

type star products on constant momentum slices. These deformed products are

equal to the ones derived in chapter 3 for Q-flux backgrounds, and are related to the

nonassociative star product by twists. In the context of chapter 3, these relations

are described by Seiberg–Witten maps. Finally, we promote constant momenta to

dynamical momenta appropriate to R-space, and twist the pertinent Hopf algebra

H using a cochain twist F , which is tantamount to an abelian cocycle twist of the

canonical Moyal–Weyl product. The underlying Lie algebra of symmetries of R-

space is non-abelian, nilpotent, and includes non-local Bopp shifts on phase space

that mix positions with momenta. The resulting twisted Hopf algebra is a quasi-Hopf

algebra whose action on C∞(M) quantizes the phase space structure of constant

R-flux backgrounds and yields the nonassociative star product of chapter 3.

The advantage of this method is in its algorithmic character: Once a twist is

known, it is just a matter of applying the cochain twist machinery to systematically

deform all geometric structures which are covariant under the symmetries of a man-

ifold. We demonstrate this by deforming the differential calculus on phase space

M, and thus formulate nonassociative deformations of the exterior differential alge-

bra and of the C∞(M)-bimodule structure on R-flux backgrounds. We then define

integration on the deformed algebra of forms on phase space to be the standard

integration. This is crucial for the calculation of quantum mechanical averages in

chapter 6, and also for setting up a framework to study field theories on R-space in

chapter 7. We find that the integral of multiple exterior star products of differential

forms is not (graded) cyclic, but rather satisfies weaker notions of 2-cyclicity and

3-cyclicity that we describe. In particular, 3-cyclicity turns out to be crucial for a

consistent formulation of quantum theory on R-space, and ensures that nonassocia-

tive deformations of field theory can be made consistent with the requirements of

crossing symmetry of conformal field theory scattering amplitudes.

Some generalizations of our twist deformation methods to non-constant R-flux

13
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backgrounds as well as more generic R-flux string vacua are also briefly consid-

ered. In particular, we study the case of position-dependent R-fluxes in (1.6) and

the conditions under which the techniques of twist deformation quantization devel-

oped in this chapter carry through at least locally. By restricting to functions of

the position coordinates in M , this technique provides a framework for quantizing

generic Nambu-Poisson 3-brackets determined by the trivector field R. We also con-

sider the extension of the phase space algebra (1.6) to quasi-Poisson structures that

are generic non-linear functions of the momenta. This type of structures appear

in R-flux backgrounds that arise from non-parabolic monodromies of T2, and in

particular, in the elliptic model of [90, 40]. In this case we apply Kontsevich’s defor-

mation quantization of phase space to compute the nonassociative star product and

associator up to third order in a derivative expansion in the R-flux, which is used to

identify the pertinent Hopf algebra of symmetries and a (non-unique) cochain twist.

In Chapter 6 we develop a consistent formulation of nonassociative quantum me-

chanics on a phase space M endowed with a constant 3-form R-flux [100]. Since a

conventional treatment in terms of linear operators on separable Hilbert spaces is

not possible when associativity is lost, we achieve this by employing our phase space

star product quantization. To construct states we introduce an appropriate unital

composition of functions in C∞(M) which is noncommutative and associative. We

then investigate the role of observables without referring to their representations and

show that expectation values of functions on phase space satisfy reality and posi-

tivity using the 3-cyclicity condition of the star product. In this formalism we find

that a triple of operators that do not associate does not have common eigenstates,

which is a clear sign of position space quantization in the presence of R-flux. This

induces an uncertainty relation proportional to the transverse momentum for the

measurement of a pair of position coordinates. We also find non-zero expectation

values for the uncertainty of suitably defined area and volume operators in config-

uration space, leading to a minimal volume element. We thus provide a concrete

and rigorous derivation for the uncertainty relations anticipated by [90, 27]. In this

sense, our treatment is the first step towards realising more elaborate models, such
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as field theory or gravity, on non-geometric flux compactifications. We also study

the dynamics of the theory and find that operator time evolution in the Heisenberg

picture is not a derivation of the star product algebra of operators.

Finally, in Chapter 7 we undertake the construction of nonassociative scalar

field theories within the phase space description of non-geometric R-flux back-

grounds [102]. Here, we propose action functionals for a single real scalar field ϕ and

introduce interactions to study the effects of the nonassociativity, which enters via

the nonassociative star product we calculated in chapters 3 and 5. We demonstrate

that interactions up to ϕ5 are associative at tree level using the 3-cyclicity of the

star product, and find that many features which are familiar from noncommutative

scalar fied theories (see e.g. [117, 47] for reviews) persist in the nonassociative case.

In particular, momentum conservation along the non-commuting directions is vio-

lated due to the dynamical character of our star product, while loop corrections to

the propagator exhibit the usual UV/IR mixing observed in noncommutative scalar

field theories with non-constant noncommutativity parameter [108]. However, in

contrast to the associative case, the phase factor induced by the deformation is not

invariant under cyclic permutations of the external momenta, and thus the usual

classification of the Feynman diagrams that enter the perturbation expansion into

planar and non-planar diagrams is modified. We describe these modifications in

detail using some considerations from graph theory, and explaining the crucial role

that is assumed by 3-cyclicity in their derivation. As an application of our formalism,

we study ϕ4 and calculate the one-loop contributions to the propagator.

Two appendices at the end of the paper are delegated to some of the more tech-

nical aspects of our analysis. In appendix A we review in some detail all notions

regarding the higher algebraic and geometric structures that are employed in the

main text. In appendix B we present some technical details of the explicit compu-

tation of Kontsevich’s formula.
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Chapter 2

Membrane σ-models for

non-geometric backgrounds

In this chapter we propose sigma-models for closed strings in R-flux backgrounds.

The Poisson sigma-model with target space M describes the topological sector of

string theory in two-form B-field backgrounds. To incorporate non-trivial three-form

fluxes, one instead needs a coupling to membranes, which motivates the need for

using higher mathematical structures for the twistings that arise in these instances.

The effective dynamics in three-form flux backgrounds is thus provided by suitable

Courant sigma-models with target space M which describe topological sectors of

membrane theories. We will first review how the sigma-model appropriate to H-

space can be reduced on the boundary of an open membrane to a twisted Poisson

sigma-model with target space M [105, 69, 70, 30]. Then we will show that for

constant R-flux the appropriate Courant sigma-model reduces to a string theory

with target space the cotangent bundle of M with twisted Poisson structure which

coincides with that found in [90, 91]. This geometric interpretation of the R-flux

background is related to the doubled geometry description of non-geometric flux

compactifications [73, 43].
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Chapter 2: Membrane σ-models for non-geometric backgrounds

2.1 Poisson and Courant sigma-models

AKSZ sigma-models [3] whose target spaces comprise a symplectic Lie n-algebroid E

over a manifold M may be constructed using higher Chern–Simons action function-

als [53] (see appendix A.6 for the relevant details concerning algebroids). A simple

case is the cotangent Lie algebroid E = T ∗M over a Poisson manifold M with

Poisson bivector Θ = 1
2

Θij(x) ∂i ∧ ∂j, where x = (xi) ∈ M are local coordinates

with ∂i := ∂
∂xi

. This is a symplectic Lie 1-algebroid with the canonical symplectic

structure on the cotangent bundle T ∗M . Let Σ2 be a two-dimensional string world-

sheet. The AKSZ construction defines a topological field theory on C∞(TΣ2, T
∗M)

(regarded as a space of Lie algebroid morphisms). A Poisson Lie algebroid-valued

differential form on Σ2 is given by the smooth embedding X = (X i) : Σ2 →M of the

string worldsheet in target space, and an auxiliary one-form field on the worldsheet

ξ = (ξi) ∈ Ω1(Σ2, X
∗T ∗M). The corresponding AKSZ action is

S
(1)
AKSZ =

∫
Σ2

(
ξi ∧ dX i +

1

2
Θij(X) ξi ∧ ξj

)
, (2.1)

which coincides with the action of the Poisson sigma-model [78, 114, 32, 33]. The

Poisson sigma-model is the most general two-dimensional topological field theory

that can be obtained from the AKSZ construction.

Note that although on-shell the bivector field Θ is required to have vanishing

Schouten–Nijenhuis bracket with itself (in particular so that it defines a differential

dΘ on the algebra of multivector fields, see appendix A.3), the perturbative expan-

sion of [32] still makes sense when Θ is a twisted Poisson bivector and reproduces

the Kontsevich formality maps for nonassociative star products [34]. The topolog-

ical nature of the Poisson sigma-model allows for it to be perturbatively expanded

around a non-vacuum solution.

A Courant structure is the first higher analogue of a Poisson structure. The

corresponding AKSZ sigma-model has target space comprising a symplectic Lie 2-

algebroid with a “degree 2 symplectic form”, which is the same thing as a Courant

algebroid E over a manifold M [109]. In [109] it is shown that Courant algebroids
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E → M are in a canonical bijective correspondence with AKSZ sigma-models on a

three-dimensional membrane worldvolume Σ3. A Courant algebroid-valued differ-

ential form on Σ3 is given by the smooth embedding of the membrane worldvolume

X = (X i) : Σ3 → M in target space, a one-form α = (αI) ∈ Ω1(Σ3, X
∗E), and

an auxiliary two-form field on the worldvolume φ = (φi) ∈ Ω2(Σ3, X
∗T ∗M). The

structure functions of the Lie 2-algebroid are specified by choosing a local basis

of sections {ψI} of E → M such that the fibre metric hIJ := 〈ψI , ψJ〉 is con-

stant. We define the anchor matrix PI
i by ρ(ψI) = PI

i(x) ∂i, and the three-form

TIJK(x) := [ψI , ψJ , ψK ]E. Then the canonical three-dimensional topological field

theory associated to the Courant algebroid E → M is described by the AKSZ

action

S
(2)
AKSZ =

∫
Σ3

(
φi ∧ dX i +

1

2
hIJ α

I ∧ dαJ − PI i(X)φi ∧ αI+

+
1

6
TIJK(X)αI ∧ αJ ∧ αK

)
,

(2.2)

which is the action of the Courant sigma-model [79, 69, 111].

2.2 Sigma-models for geometric fluxes

The Courant algebroid of exclusive interest in geometric flux compactifications of

string theory is the standard Courant algebroid C = TM ⊕T ∗M twisted by a closed

NS–NS three-form flux H = 1
6
Hijk(x) dxi ∧ dxj ∧ dxk. The structure maps of C

comprise the skew-symmetrization of the H-twisted Courant–Dorfman bracket given

by [121]

[
(Y1, α1) , (Y2, α2)

]
H

:=
(
[Y1, Y2]TM , LY1α2 − LY2α1 (2.3)

− 1
2

d
(
α2(Y1)− α1(Y2)

)
+H(Y1, Y2,−)

)
for vector fields Y1, Y2 ∈ C∞(M,TM) and one-form fields α1, α2 ∈ Ω1(M), the

metric is the natural dual pairing between TM and T ∗M ,

〈
(Y1, α1) , (Y2, α2)

〉
= α2(Y1) + α1(Y2) , (2.4)
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and the anchor map is the trivial projection ρ : C → TM onto the first factor; the

map d : C∞(M) → C∞(M,C) is given by df = 1
2

df . This is an exact Courant

algebroid, i.e. it fits into the short exact sequence

0 −→ T ∗M
ρ∗−−→ C

ρ−→ TM −→ 0 , (2.5)

where ρ∗ : T ∗M → C∗ is the transpose of the anchor map ρ followed by the iden-

tification C∗ ∼= C induced by the pairing on the Courant algebroid. Every exact

Courant algebroid on M is isomorphic to one of the form C = TM ⊕ T ∗M with

the structure maps given as above. The isomorphism classes are parametrized by

elements [H] ∈ H3(M,R) of the degree 3 real cohomology of the target space.

To determine the structure maps of the exact Courant algebroid in a convenient

basis, we suppose henceforth that the tangent bundle TM ∼= M × Rd is trivial,

where d = dim(M). This assumption will avoid the appearance of geometric f -

fluxes and other fluxes, as eventually we will want to apply triple T-duality to take

us directly into the pure R-flux background. Then in local coordinates x = (xi) for

M , a natural frame for TM ⊕ T ∗M is given by

%i = ∂i and χi = dxi (2.6)

for i = 1, . . . , d. Writing %i for (%i, 0) and χi for (0, χi) for simplicity, the metric is

given by

〈%i, χj〉 = δi
j . (2.7)

The corresponding twisted Courant–Dorfman algebra is isomorphic to the algebra

with the sole non-trivial brackets

[%i, %j]H = Hijk χ
k . (2.8)
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The non-vanishing ternary brackets are given by (see appendix A.6)

[%i, %j, %k]H = Hijk . (2.9)

As reviewed in [91], the brackets (2.8) and (2.9) for constant H-flux mimic the

phase space quasi-Poisson algebra of a charged particle in the background field of a

magnetic monopole [80].

We now write

(αI) = (α1, . . . , α2d) := (α1, . . . , αd, ξ1, . . . , ξd) (2.10)

where (αi) ∈ Ω1(Σ3, X
∗TM) and (ξi) ∈ Ω1(Σ3, X

∗T ∗M); throughout, upper case

indices I, J, · · · ∈ {1, . . . , 2d} run over directions of the doubled geometry, while lower

case indices i, j, · · · ∈ {1, . . . , d} run over directions of the original configuration

space. Then the action (2.2) becomes

S
(2)
WZ =

∫
Σ3

(
φi ∧ dX i + αi ∧ dξi − φi ∧ αi +

1

6
Hijk(X)αi ∧ αj ∧ αk

)
. (2.11)

When Σ2 := ∂Σ3 6= ∅, this is the action of the canonical open topological membrane

theory [105]. In this case we can take the consistent Dirichlet boundary conditions

αi = φi = 0 on Σ2 (we could also take X i = ξi = 0 and hybrids thereof; see [69]

for a discussion of the resulting modifications). One can also modify the action by

adding a boundary term of the form

S∂WZ =

∮
Σ2

(
ξi ∧ dX i +

1

2
Θij(X) ξi ∧ ξj + Γij(X) ξi ∧ αj+

+
1

2
Ξij(X)αi ∧ αj

)
.

(2.12)

In [69, 70] only the Θ-deformation is kept, corresponding to a canonical transfor-

mation on the Courant algebroid which gives the boundary/bulk open topological
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membrane action

S̃
(2)
WZ =

∫
Σ3

(
φi ∧

(
dX i − αi

)
+ αi ∧ dξi +

1

6
Hijk(X)αi ∧ αj ∧ αk

)
+

+

∮
Σ2

1

2
Θij(X) ξi ∧ ξj .

(2.13)

In this case the consistent boundary conditions require that Θ = 1
2

Θij(x) ∂i ∧ ∂j is

an H-twisted Poisson bivector on M , i.e. its Schouten–Nijenhuis bracket with itself

is given by

[Θ,Θ]S =
∧3Θ](H) , (2.14)

and the Jacobi identity for the corresponding bracket is violated (see appendix A.3).

Here
∧3 Θ](H) denotes the natural way to turn the three-form H into a three-vector

by using Θ to “raise the indices”. After integrating out the two-form fields φi we

arrive at the AKSZ action

S̃
(1)
AKSZ =

∮
Σ2

(
ξi ∧ dX i +

1

2
Θij(X) ξi ∧ ξj

)
+

+

∫
Σ3

1

6
Hijk(X) dX i ∧ dXj ∧ dXk ,

(2.15)

which is the action of the H-twisted Poisson sigma-model with target space M [105,

88]. Note that including the last term of (2.12) would result in an additional global

B-field coupling 1
2

Ξij(x) dX i ∧ dXj on the string worldsheet.

2.3 Sigma-models for non-geometric fluxes

The relevance of the topological twisted Poisson sigma-model (2.15) in the effective

theory of strings in R-flux backgrounds was noted in [51, 58]. Here we shall start with

the general Courant sigma-model (2.2) and the argument of [59] that the appropriate

theory in R-space is described by a non-topological membrane sigma-model, not a

string theory. The membrane action in this case is not generally equivalent to

the action of a string theory on the boundary of a membrane. This would also

corroborate the observation of [51] that the R-space geometry does not seem to exist
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as a low-energy effective description of string theory, in the sense that open strings in

R-space cannot be consistently decoupled from gravity. The absence of a topological

limit and the non-decoupling of gravity for open strings in H-space was also observed

in [63]. In a sense to be elucidated below, the membrane theory geometrizes the non-

geometric R-flux background, in a way reminiscent of the manner in which M-theory

geometrizes string dualities. Although the R-space is not even locally geometric as

a Riemannian manifold [116], in this paper we work only at tree-level in the low-

energy effective field theory on target space where we can treat the R-space locally

as the original d-dimensional manifold M .

The Courant algebroid pertinent to the R-flux background is again the standard

Courant algebroid C = TM ⊕ T ∗M , but now twisted by a trivector flux R =

1
6
Rijk(x) ∂i ∧ ∂j ∧ ∂k satisfying a suitable integrability condition. The bracket on

C is the skew-symmetrization of Roytenberg’s R-twisting of the Courant–Dorfman

bracket given by [110, 59, 22]

[
(Y1, α1) , (Y2, α2)

]
R

:=
(
[Y1, Y2]TM +R(α1, α2,−) , (2.16)

LY1α2 − LY2α1 − 1
2

d
(
α2(Y1)− α1(Y2)

))
,

while the remaining structure maps are identical to those of section 2.2.

Writing the generators of the natural frame for TM ⊕ T ∗M as %i and χi as

before, the corresponding Roytenberg algebra is isomorphic to the algebra with the

non-trivial brackets

[χi, χj]R = Rijk %k (2.17)

and the metric (2.7). When R is a constant flux this is the d-dimensional Heisenberg

algebra. This mimics the commutation relations for closed string fields which are

obtained by applying three T-duality transformations to the H-space M = T3 [90,

91], with the remaining non-trivial structure map

[χi, χj, χk]R = Rijk . (2.18)
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Below we will recover the commutation relations of [90, 91] dynamically from an

associated twisted Poisson sigma-model.

With the same splitting (2.10), the action (2.2) in the pure R-flux background

becomes

S
(2)
R =

∫
Σ3

(
φi ∧

(
dX i − αi

)
+ αi ∧ dξi +

1

6
Rijk(X) ξi ∧ ξj ∧ ξk

)
+

+

∮
Σ2

1

2
gij(X) ξi ∧ ∗ξj ,

(2.19)

where g−1 = 1
2
gij(x) ∂i⊗∂j is the inverse of a chosen metric tensor on target spaceM ,

and ∗ is the Hodge duality operator with respect to a chosen metric on the worldsheet

Σ2 = ∂Σ3. Here, we have again chosen Dirichlet boundary conditions αi = φi = 0 on

Σ2. As in [59], we have added a metric-dependent term on the boundary Σ2 of the

membrane, which breaks the topological symmetry of the Courant sigma-model, in

order to ensure that the choice Rijk 6= 0 is consistent with the equations of motion

and also with the gauge symmetries of the field theory [69]. Note that only g−1

appears, not the metric g itself; it will play the role of a metric on momentum space

later on. Integrating out the two-form fields φi leads to the action

S
(2)
R =

∮
Σ2

ξi ∧ dX i +

∫
Σ3

1

6
Rijk(X) ξi ∧ ξj ∧ ξk +

∮
Σ2

1

2
gij(X) ξi ∧ ∗ξj . (2.20)

We will now specialize to the case where both the R-flux and the target space

metric are constant; this is the situation relevant to the considerations of [27, 90,

21, 91]. On the boundary of the membrane, the equations of motion for X i then

force ξi = dPi to be an exact form (modulo harmonic forms on Σ2), where Pi ∈

C∞(Σ3, X
∗T ∗M) is a section of the cotangent bundle of M restricted to Σ3. This

solution is also consistent with the equations of motion in the bulk and henceforth

we restrict the configuration space for the path integral to this domain of fields.

Then the action (2.20) reduces to a pure boundary action of the form

S
(2)
R =

∮
Σ2

(
dPi ∧ dX i +

1

2
Rijk Pi dPj ∧ dPk

)
+

∮
Σ2

1

2
gij dPi ∧ ∗dPj . (2.21)
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This action can be recast in the form

S
(2)
R =

∮
Σ2

−1

2
Θ−1
IJ (X) dXI ∧ dXJ +

∮
Σ2

1

2
gIJ dXI ∧ ∗dXJ , (2.22)

where the fields

X = (XI) = (X1, . . . , X2d) := (X1, . . . , Xd, P1, . . . , Pd) (2.23)

embed the string worldsheet Σ2 in the cotangent bundle of M , i.e. the effective

target space is now phase space. Here, we have introduced the block matrix on

T ∗M given by

Θ =
(
ΘIJ

)
=

Rijk pk δij

−δij 0

 (2.24)

with local phase space coordinates

x = (xI) = (x1, . . . , x2d) := (x1, . . . , xd, p1, . . . , pd) . (2.25)

The “closed string metric”

(
gIJ
)

=

0 0

0 gij

 (2.26)

acts on momentum space but not on configuration space. The matrix Θ is always

invertible and its inverse is given by

Θ−1 =
(
Θ−1
IJ

)
=

 0 −δij

δij Rijk pk

 . (2.27)

We can linearise the action (2.22) in the embedding fields X = (XI) : Σ2 → T ∗M

by introducing auxiliary fields ηI ∈ Ω1(Σ2, X
∗T ∗(T ∗M)) to write

S
(2)
R =

∮
Σ2

(
ηI ∧ dXI +

1

2
ΘIJ(X) ηI ∧ ηJ

)
+

∮
Σ2

1

2
GIJ ηI ∧ ∗ηJ , (2.28)
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where the “open string metric”

(
GIJ

)
=

gij 0

0 0

 (2.29)

is related to (2.26) by the usual closed-open string relations [115] that involve Θ and

the “B-field” Θ−1 (note that (gIJ) is not the inverse of (GIJ)). This is the action of

the non-topological generalized Poisson sigma-model for the embedding of the string

worldsheet Σ2 into the cotangent bundle T ∗M of the manifold M with bivector field

Θ = 1
2

ΘIJ(x) ∂I ∧ ∂J , (2.30)

whose coefficient matrix ΘIJ is given by (2.24), and ∂I := ∂
∂xI

; below we will write

phase space derivatives as ∂i := ∂
∂xi

and ∂̃i := ∂
∂pi

. For completeness, we express the

action (2.28) more explicitly in phase space component form by decomposing the

one-form fields

(ηI) = (η1, . . . , η2d) := (η1, . . . , ηd, π
1, . . . , πd) (2.31)

and writing

S
(2)
R =

∮
Σ2

(
ηi ∧ dX i + πi ∧ dPi +

1

2
Rijk Pk ηi ∧ ηj + ηi ∧ πi

)
+

+

∮
Σ2

1

2
gij ηi ∧ ∗ηj .

(2.32)

The first order action (2.32) is equivalent to the string sigma-model (2.21). Note

that only the momentum space components Pi of the strings have propagating de-

grees of freedom in T ∗M . In this sense the generalized Poisson sigma-model is still

topological in the original configuration space M . Moreover, the bivector field Θ

defines a twisted Poisson structure on the cotangent bundle, with twisting provided

by a (trivial) non-flat U(1)-gerbe in momentum space: Computing its Schouten–
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Nijenhuis bracket with itself yields

[Θ,Θ]S =
∧3Θ](H) , (2.33)

where

H = 1
6
Rijk dpi ∧ dpj ∧ dpk (2.34)

is a closed three-form H-flux on the cotangent bundle T ∗M . A 2-connection on this

gerbe is given by the B-field

B = 1
6
Rijk pk dpi ∧ dpj (2.35)

with H = dB, which is gauge equivalent to the topological part of the string sigma-

model (2.21). In this way our membrane sigma-model (2.19) provides a geometric

interpretation of the R-flux background. This gerbe description will be exploited in

chapter 3 for the derivation of Seiberg-Witten maps .

The antisymmetric brackets at linear order

{xI , xJ}Θ = ΘIJ(x) (2.36)

are given explicitly by

{xi, xj}Θ = Rijk pk , {xi, pj}Θ = δij and {pi, pj}Θ = 0 . (2.37)

The corresponding Jacobiator is

{xI , xJ , xK}Θ := [Θ,Θ]S(xI , xJ , xK) = ΠIJK , (2.38)

where

ΠIJK = 1
3

(
ΘKL ∂LΘIJ + ΘIL ∂LΘJK + ΘJL ∂LΘKI

)
. (2.39)
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The only non-vanishing components of this trivector field are

{xi, xj, xk}Θ = Rijk . (2.40)

The expressions (2.37) and (2.40) are precisely the nonassociative phase space com-

mutation relations for quantized closed string coordinates which were derived in [90,

91].

Although we are mostly interested in the case of constant Rijk, we can specu-

late on how to extend our discussion to non-constant R-flux. By local orthogonal

transformations the 3-vector R can be brought into canonical form wherein its only

non-vanishing components are Rijk(x) = |R(x)|1/3 εijk for i, j, k = 1, 2, 3, where

εijk is the totally antisymmetric tensor and |R(x)| is the determinant of the matrix

RiJ(x), J = (jk). By a suitable coordinate transformation, Rijk can thus be taken

to be the constant tensor εijk. Depending on how the remaining structure functions

of the Courant algebroid C →M transform, this may then yield a reduction of the

membrane sigma-model (2.19) on Σ3 to a string sigma-model on the boundary Σ2

as before.

In any case, the sigma-model (2.32) and its associated brackets also make sense

when Rijk is a general function of x ∈ M , i.e. a generic trivector field on con-

figuration space. Quantizing these brackets thus provides a means for quantizing

generic Nambu–Poisson structures on M with 3-bracket determined by the trivec-

tor R. Moreover, quantization of the membrane sigma-model provides a dynamical

realization of the nonassociative geometry. This quantization is explored in the

following chapters.

2.4 Boundary conditions and correlation functions

It is natural to expect that the path integral for the R-twisted Courant sigma-model

provides a universal quantization formula for closed strings in R-space, regarded as

the boundaries of the membranes. For the H-space open membrane sigma-model of

section 2.2, it is argued in [69, 70] that the path integral defines a formal quantization
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for the corresponding twisted Poisson structure. There, an explicit prescription is

given for quantizing appropriate current algebra and L∞ brackets of the boundary

strings from correlation functions of the open topological membrane theory. For

more general deformations of the exact Courant algebroid C = TM⊕T ∗M , the path

integral is argued to provide a universal quantization formula for generic quasi-Lie

bialgebras [70]. Unfortunately, the complicated nature of the BV formalism which is

necessary to quantize the open topological membrane theory obstructs a complete

quantization. In particular, the Courant sigma-model with R-flux involves very

complicated 2-algebroid gauge symmetries; for the general Courant sigma-model

the full gauge-fixed action can be found in [111], and it involves both ghost fields

and ghosts-for-ghosts.

Here we would like to develop a quantization framework that is based on the in-

duced twisted Poisson sigma-model (2.32), which involves only Lie algebroid gauge

symmetries, and whose quantization on the disk is described in [32, 33]. For this,

we will interpret the membrane theory as an effective theory of open strings with

suitable boundary conditions imposed on the string embedding fields. In [69] (see

also [30]) it is proposed that the boundary Σ2 = ∂Σ3 can be taken to be an open

string worldsheet in the open topological membrane theory by regarding the mem-

brane worldvolume Σ3 as a manifold with corners (see e.g. [81]), and allowing for

different boundary conditions on the various components of the boundary. In the

following we will take another approach that is directly related to the way in which

the twisted Poisson structure originates in closed string theory on the R-flux back-

ground [90, 40] (see [91] for a review). We shall argue that the corners of the

membrane worldvolume can be mimicked via branch cuts on a closed surface which

give the multivalued string maps responsible for the target space noncommutativity.

In this way the membrane serves to provide a sort of open/closed string duality; the

analogy between closed strings in non-geometric flux backgrounds and open strings

was also pointed out in [90].

The setting of [90, 40, 6] is that of closed strings on the Q-space duality frame

obtained by applying two T-duality transformations to the three-torus M = T3

28



Chapter 2: Membrane σ-models for non-geometric backgrounds

with constant NS–NS three-form flux H = h dx1 ∧ dx2 ∧ dx3. Locally, this space

is a fibration of a two-torus T2 over a circle S1; globally it is not well-defined as

a Riemannian manifold and is the simplest example of a T-fold [73]. A represen-

tative class of twisted torus fibrations are provided by elliptic T-folds where the

monodromies act on the fibre coordinates as rotations. The closed string worldsheet

is the cylinder C = R × S1 with coordinates (σ0, σ1). The embedding field corre-

sponding to the base direction is denoted X3, while for the fibre directions we use

complex fields denoted Z,Z = 1√
2

(X1 ± iX2). As an extended closed string wraps

w3 times around the base of the fibration, the fibre directions need only close up

to a monodromy corresponding to an SL(2,Z) automorphism of the T2-fibre. One

thus arrives at the twisted boundary conditions

Z(σ0, σ1 + 2π) = e 2π i θ Z(σ0, σ1) and

X3(σ0, σ1 + 2π) =X3(σ0, σ1) + 2π w3 ,

(2.41)

where θ = −hw3; more precisely, one should impose asymmetric boundary condi-

tions for the left- and right-moving fields in the fibre directions. To linear order

in the flux, one can solve the equations of motion of the closed string worldsheet

sigma-model in the usual way via oscillator mode expansions for the fibre coor-

dinate fields subject to the twisted boundary conditions (2.41). As we explained

in chapter 1, by standard canonical the fibre directions acquire a noncommutative

deformation determined by the H-flux and the winding number (or T-dual Kaluza–

Klein momentum) w3 in the S1-direction, in exactly the same way in which open

string boundaries are deformed in the presence of a B-field. Written in terms of a

real parametrization, we may express this closed string noncommutativity generally

in the Q-flux background via the Poisson brackets

{xi, xj}Q = Qij
k w

k and {xi, wj}Q = 0 = {wi, wj}Q , (2.42)

with constant flux Qij
k = −2π h εijk. These brackets define a bona fide Poisson

structure, since they are just the relations of a Heisenberg algebra, as in the defining
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2-brackets of the corresponding Courant algebroid. A T-duality transformation to

the R-flux background sends Qij
k 7→ Rijk and wk 7→ pk, and maps the Poisson

brackets (2.42) to the twisted Poisson structure (2.37). This change of duality frame

will be useful for some of our later considerations.

The interplay between open and closed string interpretations of the noncommu-

tative and nonassociative flux backgrounds was noted in [28, 51]. A step towards

understanding the pertinent picture was recently carried out in the context of matrix

theory compactifications on twisted tori in [36], which constructs solutions with non-

commutative and nonassociative cotangent bundles. To explicitly relate the closed

and open string pictures, we use the fact that the boundary conditions (2.41) define

a twisted sector of an orbifold conformal field theory on the quotient of M = T3 by

the free action of a discrete abelian monodromy group; they describe closed strings

on the orbifold, which can be regarded as open strings on the covering space M .

When computing conformal field theory correlation functions, the monodromy can

be implemented by inserting a suitable twist field at a point σ′ 1 ∈ S1 which cre-

ates a branch cut along the temporal direction R for the multivalued closed string

fields. We now extend the worldsheet C = R × S1 to the membrane worldvolume

Σ3 = R × (S1 × R) with coordinates (σ0, σ1, σ2) such that the branch point at

σ′ 1 ∈ S1 is blown up to a branch cut I = {σ′ 1} × R ⊂ S1 × R extended along

the σ2-direction, i.e. the branch cut on the closed string worldsheet is blown up to

a “branch surface” on a closed membrane worldvolume. The membrane fields are

also taken to be multivalued and non-differentiable across the branch cut I; hence

Stokes’ theorem on Σ3 receives contributions from the multivalued fields across the

cut whenever integration by parts is used to reduce worldvolume integrals, as we

did in section 2.3. This effectively reduces the membrane to an “open string” with

worldsheet Σ2 := ∂Σ3 = R × I and coordinates (σ0, σ2); classically, the mapping

Σ3 → Σ2 is a simple application of Stokes’ theorem on the equations of motion

ξi = dPi. In this way the branch cut I plays the role of a “corner” separating Σ3

into regions. The more general orbifolds of [40] can be treated in an analogous way.

We can depict these two reductions from the membrane theory to the closed and
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open string theories via the following schematic diagram:

σ′ 1

σ1

σ1

σ2

σ2

C Σ3

I

Σ2

I

We do not display the temporal direction as it plays no role. The mapping Σ3 → C is

obtained by restriction of the domain of the membrane path integral to fields which

are independent of σ2. This gives a dimensional reduction of the membrane fields to

closed string fields which is reminiscent of the Kaluza–Klein reduction of M-theory

to Type IIA string theory. The mapping Σ3 → Σ2 is a restriction of field variables

in the membrane path integral to the cut I of the spatial membrane cylinder. By

reparametrization of the membrane worldvolume, it also defines a map to the disk

Σ2 viewed as the complex upper half-plane with boundary the real line R, where

the endpoints of the cut at ±∞ are mapped to finite values. These two restrictions

of the field domain in the membrane path integral define the open/closed string

duality that we were after; in a certain sense it represents a sort of transmutation

between D-branes and fluxes. It is somewhat in line with the recent analysis of [44]

which demonstrates how non-geometric doubled space coordinates arise as solutions

to Neumann boundary conditions in open string theory on flux backgrounds. Note

that in order to ensure independence of the specific location of the branch cut I,

it is important to assume that the R-flux is constant. However, this restriction is

no longer needed after we take the 2 + 1-dimensional Courant sigma-model as the

fundamental model for closed strings in the R-flux background.

Considering that the endpoints are at ±∞, it is natural to choose the boundary

conditions for the open string on the cut I to coincide with those of [32]. In this

sense, the twisted boundary conditions (2.41) on Q-space can be made compatible

with the Cattaneo–Felder boundary conditions for the open twisted Poisson sigma-

model. In the following we will take the topological limit of (2.32) where g � R;

this essentially decouples the open string modes from the closed string modes. Then
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the propagator of the topological sigma model is given by

〈
XI(w) ηJ(z)

〉
= i ~

2π
δIJ dzφ

h(z, w) , (2.43)

where ~ is a formal expansion parameter, the harmonic angle function

φh(z, w) :=
1

2 i
log

(z − w) (z − w )

( z − w) ( z − w )
(2.44)

for z, w ∈ C is the Green’s function for the Laplacian on the disk with Neumann

boundary conditions, and dz := dz ∂
∂z

+ dz ∂
∂z

. In this case, the Feynman dia-

gram expansion of suitable observables in the sigma-model reproduces Kontsevich’s

graphical expansion for global deformation quantization of our twisted Poisson struc-

ture [89, 32, 33, 34], which we will take as our proposal for the quantization of the

R-flux background. In chapter 3 we shall compute the following schematic func-

tional integrals, whose precise meaning will be explained later on and whose precise

definitions can be found in [32, 33, 34]. For x ∈ T ∗M , functions fi ∈ C∞(T ∗M),

and a collection of n ≥ 1 multivector fields Xr = 1
kr!
X I1...Ir
r (x) ∂I1 ∧ · · · ∧ ∂Ikr ∈

C∞(T ∗M,
∧kr T (T ∗M)) of degree kr, define

Un(X1, . . . ,Xn)(f1, . . . , fm)(x) =

∫
e

i
~ S

(2)
R

i

~
SX1 · · ·

i

~
SXn Ox(f1, . . . , fm) , (2.45)

where m = 2 − 2n +
∑

r kr, SXr =
∮

Σ2

1
kr!
X I1...Ir
r (X) ηI1 · · · ηIr , and the boundary

observables Ox(f1, . . . , fm) are given by

Ox(f1, . . . , fm) =

∫
X(∞)=x

[
f1

(
X(q1)

)
· · · fm

(
X(qm)

)](m−2)

(2.46)

with 1 = q1 > q2 > · · · > qm = 0 and ∞ distinct points on the boundary of

the disk ∂Σ2. The path integrals are weighted with the full gauge-fixed action and

the integrations taken over all fields including ghosts. In particular, for functions

f, g ∈ C∞(T ∗M) one may define a star product by the functional integral

(f ? g)(x) =

∫
X(∞)=x

f
(
X(1)

)
g
(
X(0)

)
e

i
~ S

(2)
R , (2.47)
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whose properties will be thoroughly investigated in what follows.

2.5 Twisted and higher Poisson structures

We close this chapter with some general remarks about the twisted Poisson struc-

tures we have derived, which will serve to help understand some of the higher struc-

tures that will arise in chapter 4. Consider the algebra V] = C∞(T ∗M,
∧] T (T ∗M))

of multivector fields on the cotangent bundle of the target space M . Let H =

1
6
HIJK(x) dxI ∧ dxJ ∧ dxK be the closed three-form (2.34) on T ∗M ; it extends by

the Leibniz rule to give a ternary bracket [−,−,−]H on V] of degree 1. Together with

the Schouten–Nijenhuis bracket [−,−]S, it defines an L∞-structure on V] with zero

differential, generalizing the canonical differential graded Lie algebra structure in the

case of vanishing R-flux (see appendix A for the relevant definitions and background

material). On the subspace C∞(T ∗M) of smooth functions on T ∗M , the H-twisted

Poisson structure (2.30) naturally defines a 2-term L∞-algebra
(
V1

d−−→ V0

)
. Here

V1 = C∞(T ∗M) and V0 is the space of vector fields X ∈ C∞(T ∗M,T (T ∗M)) which

preserve Θ in the sense that LXΘ = 0, where LX is the Lie derivative along X .

The map d = dΘ = −[−,Θ]S is the Lichnerowicz differential which sends a function

f ∈ C∞(T ∗M) to its Hamiltonian vector field Xf = Θ(df,−) [110]. The derived

bracket (A.13) on V1 is just the quasi-Poisson bracket on C∞(T ∗M) determined by

Θ as

{f, g}Θ := [df, g]S = Θ(df, dg) . (2.48)

The associated Jacobiator (A.14) can be written as

{f, g, h}Θ = H(Xf ,Xg,Xh) . (2.49)

Note that here the differential d is not nilpotent, and the right-hand side of (2.49)

can be expressed in terms of d2 6= 0; this is reminiscent of a covariant derivative

that does not square to zero when the curvature is non-zero.
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The corresponding commutation relations in the associated semistrict Lie 2-

algebra V are (see appendix A.1)

[X ,Y ]V = [X ,Y ]T (T ∗M) ,[
(X , f) , (Y , g)

]
V

=
(
[X ,Y ]T (T ∗M) , X (g)− Y(f) + {f, g}Θ

)
, (2.50)

while the Jacobiator is

[X ,Y ,Z]V =
([

[X ,Y ]T (T ∗M),Z
]
T (T ∗M)

, H(X ,Y ,Z)
)

(2.51)

for X ,Y ,Z ∈ C∞(T ∗M,T (T ∗M)) and f, g ∈ C∞(T ∗M). At linear order, denoting

the generators (∂I , 0) and (0, xI) by pI and xI for simplicity, we have

[pI ,pJ ]V = 0 , [pI ,x
J ]V = δI

J and [xI ,xJ ]V = ΘIJ (2.52)

together with

[pI ,pJ ,pK ]V = HIJK . (2.53)

In the following we will quantize this Lie 2-algebra.

As a side observation, it is intriguing to note that the twisted Poisson brackets

(2.37) on the phase space T ∗M have an alternative interpretation as a higher Poisson

structure on the configuration space M (see appendix A.5). In this setting we

regard the momenta pi as the degree 0 generators ∂i of the multivector field algebra

V ] = C∞(M,
∧] TM). We take a degree 3 multivector field R = Rijk ∂i ∧ ∂j ∧ ∂k,

where Rijk is a constant R-flux on M . Then the non-trivial derived brackets (A.31)

of R are generated by

dxi := {xi}R = Rijk ∂j ∧ ∂k ,

{xi, xj}R = Rijk ∂k ,

{xi, xj, xk}R = Rijk , (2.54)
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with all other brackets vanishing at linear order in xi and ∂i. These higher Poisson

brackets define a 2-term L∞-algebra structure on V ].
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Global deformation quantization

As discussed in section 2.4, a suitable perturbation expansion of the membrane/string

sigma-model of chapter 2 motivates an approach to the quantum geometry of the R-

flux background based on deformation quantization. In [89], Kontsevich constructs

a deformation quantization of an arbitrary Poisson structure, based on a graphical

calculus which is reproduced by the Feynman diagram expansion of the open Pois-

son sigma-model on a disk [32]. In this chapter we shall follow this prescription to

derive a nonassociative star product deformation of the usual pointwise product of

functions onM = T ∗M along the direction of a generic twisted Poisson bivector Θ,

and describe its derivation properties. We then restrict to the case of constant R-flux

where we derive an explicit closed formula for the star product and its associator,

giving a quantization of the 2-brackets (2.37) and the 3-brackets (2.40) respectively.

We apply this formalism to derive Seiberg–Witten maps relating nonassociative and

associative deformations, and also add fluctuations to the R-flux background. We

further explain how the 3-product proposed in [21] fits into our formalism.

3.1 Formality map and star products

Kontsevich’s formalism relies on the construction of the formality map. The for-

mality map is a sequence of L∞-morphisms Un, n ∈ Z≥0 that map tensor products

of n multivector fields to m-differential operators on the manifold M. It defines

an L∞-quasi-isomorphism between the differential graded Lie algebra of multivec-
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tor fields equipped with zero differential and the Schouten–Nijenhuis bracket (see

appendix A.3), and the differential graded Lie algebra of multidifferential operators

equipped with the Hochschild differential and the Gerstenhaber bracket (see ap-

pendix A.2). Consider a collection of multivectors Xi of degree ki for i = 1, . . . , n.

Then Un(X1, . . . ,Xn) is a multidifferential operator whose degree m is determined

by the relation

m = 2− 2n+
n∑
i=1

ki . (3.1)

In particular, U0 yields the usual pointwise product of functions while U1 is the

Hochschild–Kostant–Rosenberg map which takes a k-vector field to a k-differential

operator defined by

U1

(
X I1...Ik ∂I1 ∧ · · · ∧ ∂Ik

)
(f1, . . . , fk) =

1

k!

∑
σ∈Sk

sgn(σ)X Iσ(1)...Iσ(k) ∂Iσ(1)
f1 · · · ∂Iσ(k)

fk

(3.2)

for fi ∈ C∞(M). When the multivector fields Xi are all set equal to the bivector Θ,

the star product of functions f, g ∈ C∞(M) is given by the formal power series

f ? g :=
∞∑
n=0

( i ~)n

n!
Un(Θ, . . . ,Θ)(f, g) ≡ Φ(Θ)(f, g) , (3.3)

where ~ is a formal deformation parameter and Un(Θ, . . . ,Θ) is a bidifferential op-

erator by (3.1).

Kontsevich introduced a convenient diagrammatic representation on the upper

hyperbolic half-plane H that provides all possible (admissible) differential operators

to each order of the expansion (3.3), and thus determines the formality map Un.

Kontsevich diagrams encode the rules for contracting indices and positioning partial

derivatives. Each diagram Γ consists of:

1. Edges e that are geodesics in H and represent partial derivatives;

2. A set q1, . . . , qm ∈ R of grounded vertices that represent functions; and

3. A set p1, . . . , pn ∈ H \R of aerial vertices that represent the ki-vector fields

Xi, and thus ki edges may emanate from them.
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Here the real line R is the boundary of H. An edge emanating from a given point pi

is labelled as ekii . Edges that start from a vertex v can land on any other vertex apart

from v, while the condition 2n+m− 2 ≥ 0 must be satisfied. The multidifferential

operator

Un(X1, . . . ,Xn) :=
∑

Γ∈Gn

wΓDΓ(X1, . . . ,Xn) (3.4)

is calculated by summing over operators DΓ(X1, . . . ,Xn) in the class Gn of all n-th

order admissible diagrams Γ, each contributing with weight wΓ given by the integral

[87]

wΓ =
1

(2π)2n+m−2

∫
Hn

n∧
i=1

(
dφhe1i

∧ · · · ∧ dφh
e
ki
i

)
, (3.5)

where Hn is the space of pairwise distinct points pi ∈ H and the role of the harmonic

angles φh
e
ki
i

is explained in appendix B.

In this setting, the diagrams for the bivector (quasi-Poisson bracket) Θ(f, g) =

1
2

ΘIJ ∂If ∂Jg and the trivector (Jacobiator) Π(f, g, h) = 1
3

ΠIJK ∂If ∂Jg ∂Kh contri-

butions are

∂I ∂J

f g

Θ

and ∂I ∂J ∂K

f g h

Π

which we will call the wedge and triple wedge respectively. The geodesics here have

been drawn as straight lines for the sake of clarity. Computing (3.3) then provides

the nonassociative star product deformation along the quasi-Poisson structure Θ.

Kontsevich’s construction allows for one or more multivectors to be inserted in

Un(Θ, . . . ,Θ). In our case, inserting the trivector Π = [Θ,Θ]S that we acquired

from the Schouten–Nijenhuis bracket is of particular interest since it encodes the

nonassociativity of our star product. Then on functions f, g, h ∈ C∞(M) the series

(3.3) is replaced with

[f, g, h]? :=
∞∑
n=0

( i ~)n

n!
Un+1(Π,Θ, . . . ,Θ)(f, g, h) ≡ Φ(Π)(f, g, h) (3.6)

38



Chapter 3: Global deformation quantization

which, as we show in section 3.2, is the associator for the star product (3.3). The

condition (3.1) now implies that Un+1(Π,Θ, . . . ,Θ) is a tridifferential operator. The

map Un+1 is calculated as in (3.4); this time though the integrations for the diagrams

that give the associated weights (3.5) are much more involved since the edges of the

triple wedge can land on any other wedge. Restricting to constant R-flux Rijk cures

this problem, making the derivation of an explicit expression possible; this will be

analysed in section 3.3.

3.2 Derivation properties and the associator

In order to define L∞-morphisms, the maps Un must satisfy for n ≥ 1 the formality

conditions [89, 94, 85, 119]

dµ2Un(X1, . . . ,Xn) +
1

2

∑
ItJ=(1,...,n)
I,J 6=∅

εX (I,J )
[
U|I|(XI) , U|J |(XJ )

]
G

=
∑
i<j

(−1)αij Un−1

(
[Xi,Xj]S,X1, . . . , X̂i, . . . , X̂j, . . . ,Xn

)
, (3.7)

where dµ2Un := −[Un, µ2]G with µn : C∞(M)⊗n → C∞(M) the usual commutative

and associative pointwise product of n functions, [−,−]G denotes the Gerstenhaber

bracket defined in appendix A.2, and for a multi-index I = (i1, . . . , ik) we denote

XI := Xi1 ∧ · · · ∧ Xik and |I| := k; the sign factor εX (I,J ) is the “Quillen sign”

associated with the partition (I,J ) of the integer n, (−1)αij is a prescribed sign

rule arising from the L∞-structure (see appendix A.1), and the hats denote omitted

multivectors. Formality follows from the Ward–Takahashi identities for the Lie

algebroid gauge symmetry of the Poisson sigma-model in the BV formalism. In our

case of interest, the conditions (3.7) reduce to

d?Φ(Θ) = i ~Φ(dΘΘ) , (3.8)

39



Chapter 3: Global deformation quantization

where the coboundary operators are d? = −[−, ?]G and dΘ = −[−,Θ]S with dΘΘ =

Π. Using (3.8) and (A.15) we derive a formula for the associator (3.6) given by

[f, g, h]? = 2 i
~

(
(f ? g) ? h− f ? (g ? h)

)
, (3.9)

which is non-zero since the product ? is not associative. This formula provides an

exact formal expression which can be calculated up to any order in the deformation

parameter ~ using Kontsevich diagrams.

The formality conditions give rise to derivation properties. Using (3.6) we can

define a new function f for every function f by [85, 119]

f = f +
( i ~)2

2
U3(f,Θ,Θ) +

∞∑
n=3

( i ~)n

n!
Un+1(f,Θ, . . . ,Θ) . (3.10)

The formality condition is then d? f = i ~Φ(dΘf), which tells us that the Hamilto-

nian vector field dΘf is mapped to the inner derivation

d? f = i
~ [ f ,−]? , (3.11)

where [f, g]? := f ? g − g ? f is the star commutator of functions f, g ∈ C∞(M).

Similarly, a new vector field X for any vector field X is defined by

X = X +
( i ~)2

2
U3(X ,Θ,Θ) +

∞∑
n=3

( i ~)n

n!
Un+1(X ,Θ, . . . ,Θ) . (3.12)

The formality condition is now d?X = i ~Φ (dΘX ). dΘ-closed vector fields X pre-

serve the twisted Poisson structure, i.e. dΘX = 0. The formality condition then

implies the derivation property

X (f ? g) = X (f) ? g + f ? X (g) (3.13)

for f, g ∈ C∞(M).
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Finally, we consider the formality condition

d?Φ(Π) = i ~Φ(dΘΠ) . (3.14)

Using (3.6), we can express the left-hand side of this expression as

d?Φ(Π)(f, g, h, k) =f ? [g, h, k]? − [f ? g, h, k]?+

+ [f, g ? h, k]? − [f, g, h ? k]? + [f, g, h]? ? k ,

(3.15)

while the Schouten–Nijenhuis bracket on the right-hand side is

dΘΠ := [Π,Θ]S = 1
24

(
ΘLM ∂MΠIJK −ΘIM ∂MΠJKL + ΘJM ∂MΠKLI−

−ΘKM ∂MΠLIJ + ΠIJM ∂MΘKL − ΠJKM ∂MΘLI+

+ ΠKLM ∂MΘIJ − ΠLIM ∂MΘJK − ΠIKM ∂MΘJL+

+ ΠJLM ∂MΘKI
)
∂I ∧ ∂J ∧ ∂K ∧ ∂L .

(3.16)

Then (3.14) relates these two expressions and gives the derivation property for

f, g, h, k ∈ C∞(M).

3.3 Nonassociative star product for constant flux

We now turn our attention to the case of constant Rijk considered in chapter 2

and calculate the products we found in section 3.1 explicitly. Let us begin by

computing (3.3). The zero order diagram is the usual pointwise multiplication.

There is only one admissible first order diagram (the wedge) whose weight is found

to be 1
2

in appendix B, hence U1(Θ)(f, g) = 1
2

ΘIJ ∂If ∂Jg. The admissible second

order diagrams are

, and

The first one represents ΘKL ∂LΘIJ ∂If ∂K∂Jg = Rijk ∂if ∂j∂kg = 0 due to antisym-

metry of Rijk. The second diagram also vanishes for the same reason. Consequently,
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all higher order diagrams that contain these two sub-diagrams are equal to zero. The

third diagram is simply the product of two wedges, therefore its weight is 1
4
. Hence

U2(Θ,Θ)(f, g) = 1
4

ΘIJ ΘKL ∂I∂Kf ∂J∂Lg. Since wedges that land on wedges do not

contribute to Un(Θ, . . . ,Θ), there is only one admissible diagram to each order of

the form
. . .

Hence the star product for the constant R-flux background is given by the Moyal

type formula

f ? g = µ2

(
exp

(
i ~
2

ΘIJ ∂I ⊗ ∂J
)
(f ⊗ g)

)
, (3.17)

where as before µ2 is the pointwise multiplication map of functions.

The associator (3.6) for constant Rijk can be computed either by calculating

Kontsevich diagrams and summing the series or by using the star product (3.17) to

compute the left-hand side of (3.9). Here we will follow the second approach, but

before doing so it is instructive to calculate diagrams up to third order. A method for

calculating Kontsevich diagrams involving two functions for linear Poisson structures

was developed in [87]; however we have found this setting unsuitable for calculations

involving more than two grounded vertices and so we calculate diagrams in the usual

manner. The lowest order admissible diagram is the triple wedge, whose weight is 1
6

(see appendix B), thus U1(Π) = 1
6

ΠIJK ∂If ∂Jg ∂Kh. In U2(Π,Θ) a wedge is added,

but since Rijk is constant, diagrams where the wedge lands on the trivector Π are

zero; thus all non-zero diagrams have weight 1
12

. Third order is more interesting as

we now have two wedges that may land on each other. These diagrams are non-zero

since the remaining edges all land on different functions. Calculating their weights

(see appendix B) we find that they combine to a trivector diagram according to the

formula

= + +
1

3

( )

which when written out explicitly reproduces the formula (2.39) for the Schouten–
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Nijenhuis bracket [Θ,Θ]S with constant Rijk.

To calculate the associator (3.9) explicitly to all orders, we first observe that due

to antisymmetry of Rijk the star product (3.17) factorizes as

f ? g = µ2

(
exp

(
i ~
2
Rijk pk ∂i ⊗ ∂j

)
exp

[
i ~
2

(
∂i ⊗ ∂̃i − ∂̃i ⊗ ∂i

)]
(f ⊗ g)

)
=: f ?p g ,

(3.18)

where as before we write ∂i = ∂
∂xi

and ∂̃i = ∂
∂pi

. Here we denote the nonassociative

product ? := ?p where p is the dynamical momentum variable. By replacing the

dynamical variable p with a constant p̄ we obtain the associative Moyal star product

?̄ := ?p̄. Nonassociativity arises because ? acts non-trivially on the p-dependence

of ? := ?p in the associator. Applying this on (f ? g) ? h and f ? (g ? h) using

antisymmetry of Rijk we find

(f ? g) ? h := (f ?p g) ?p h

=
[
?̄
(

exp
(~2

4
Rijk ∂i ⊗ ∂j ⊗ ∂k

)
(f ⊗ g ⊗ h)

) ]
p̄→p

f ? (g ? h) := f ?p (g ?p h)

=
[
?̄
(

exp
(
− ~2

4
Rijk ∂i ⊗ ∂j ⊗ ∂k

)
(f ⊗ g ⊗ h)

) ]
p̄→p

,

(3.19)

where no ordering is required on the right-hand sides due to associativity of the

Moyal product and the operation [−]p̄→p reinstates the dynamical momentum de-

pendence. Using (3.9) we therefore find

[f, g, h]? =
4 i

~

[
?̄
(

sinh
(~2

4
Rijk ∂i ⊗ ∂j ⊗ ∂k

)
(f ⊗ g ⊗ h)

) ]
p̄→p

. (3.20)

This manner of regarding our nonassociative products is consistent with the obser-

vation of section 2.3 that only the momentum directions in the membrane sigma-

model are dynamical on M. From (3.20) it follows that our nonassociative star

product is cyclic, i.e. the associator is a total derivative and for Schwartz functions

f, g, h ∈ C∞(M) we have

∫
M

d2dx [f, g, h]?(x) = 0 . (3.21)
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The cyclic property (3.21) also holds for the nonassociative star products derived

from open string amplitudes in curved backgrounds [63, 65] (see also [51]).

We conclude by writing out the derivation property (3.15) explicitly for constant

R-flux. The Schouten–Nijenhuis bracket (3.16) now vanishes, and therefore (3.15)

reduces to

[f ? g, h, k]? − [f, g ? h, k]? + [f, g, h ? k]? = f ? [g, h, k]? + [f, g, h]? ? k (3.22)

for four functions f , g, h, and k, while the remaining derivation properties we found

in section 3.2 remain unaffected. We can interpret (3.22) in the following way.

Just as the star commutator provides a quantization of the twisted Poisson struc-

ture defined by the antisymmetric 2-bracket {f, g}Θ := Θ(df, dg), in the sense that

[f, g]? = 2 i ~ {f, g}Θ + O(~2), the associator (3.20) defines a quantization of the

Nambu–Poisson structure (see appendix A.4) defined by the completely antisym-

metric 3-bracket

{f, g, h}Θ := Π(df, dg, dh) , (3.23)

in the sense that

[f, g, h]? = 6 i ~ {f, g, h}Θ +O
(
~2
)
. (3.24)

To this order, the star derivation property (3.22) is just a consequence of the usual

Leibniz rule

{f g, h, k}Θ = f {g, h, k}Θ + {f, h, k}Θ g (3.25)

for the Nambu–Poisson bracket (3.23). However, it is not clear whether higher

derivation properties encode the fundamental identity. We will return to this issue

in chapter 4 where we will see that the equation (3.22) can also be interpreted as

the star product version of the pentagon identity (A.42) for the Lie 2-group that we

encounter there.
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3.4 Seiberg–Witten maps

We will now apply the formalism of this chapter to analyse the effect of adding

fluctuations to the membrane boundary and the open string endpoints. To start,

we shall recall a few relevant facts of the open string case with an ordinary Poisson

structure. We will then show how this generalizes to the case of H-twisted Poisson

structures and ultimately to the membrane setting with R-flux.

By studying open strings in a closed string background, Seiberg and Witten [115]

found equivalent effective descriptions in terms of ordinary as well as noncommuta-

tive gauge theories. Realizing this, they proposed the existence of maps Â(a) and

Λ̂(λ, a) from an ordinary gauge potential aµ and gauge parameter λ to their noncom-

mutative cousins Âµ and Λ̂, such that an ordinary infinitesimal gauge transformation

δλaµ = ∂µλ induces its noncommutative analogue

δΛ̂Âµ = ∂µΛ̂ + i Λ̂ ? Âµ − i Âµ ? Λ̂ . (3.26)

Further analysis has revealed [82, 84] that the Seiberg–Witten map can be inter-

preted as a special generalized change of coordinates induced by an invertible linear

operator D, which is a non-linear functional of the gauge potential a. This operator

maps ordinary spacetime coordinates xµ to covariant coordinates

x̂µ = D(xµ) = xµ + Θµν Âν(x) , (3.27)

where Θ = 1
2

Θµν ∂µ ∧ ∂ν is a Poisson bivector, and it is therefore called the co-

variantizing map. The covariantizing map transforms by a star commutator with

Λ̂ under gauge transformations, implying the appropriate noncommutative gauge

transformation for Âµ. For simplicity, we have written here equations for abelian

gauge fields and have focused on the case of constant Poisson structure Θ. We will

continue to focus on the abelian case, but drop all other simplifying assumptions in

the following.

The construction of the covariantizing map is based on the observation that the

Seiberg–Witten equivalence between two associative star products ? and ?′ is the
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quantum analogue of Moser’s lemma in symplectic geometry [82]. By this lemma,

two symplectic forms ω and ω′ on a symplectic manifold M are related by coordinate

transformations generated by the flow of a vector field. In particular, it is possible to

construct a semi-classical version of this flow which is appropriate to abelian gauge

theory, and can be quantized to the covariantizing map D via Kontsevich’s formality

theorem [84]. Let us briefly review these constructions, before we show how they

generalize for twisted Poisson structures in our membrane model.

Moser’s lemma states that for a family of non-degenerate closed symplectic forms

ωt, where t ∈ [0, 1], there exists a family of diffeomorphisms ρt such that the pullback

by ρ0 is the identity map and (ρt)
∗ωt = ω0. The diffeomorphisms ρt are generated

by the flow of a vector field X, i.e. X satisfies the equation

∂tρt = X(ρt) , (3.28)

where ∂t := ∂
∂t

. In fact, equation (3.28) can be integrated to the flow

(ρt)
∗ = e ∂t+X e −∂t |t=0 . (3.29)

By differentiating (ρt)
∗ωt = ω0 with respect to t, and using the property

(
∂t(ρt)

∗)ωt =

(ρt)
∗LXωt, where LX denotes the Lie derivative along X, we arrive at the condition

(ρt)
∗ (∂tωt + d ιXωt

)
= 0 , (3.30)

where Cartan’s formula, and the fact that ωt is closed have been used. It follows

from (3.30) that ∂tωt is closed, and thus by Poincaré’s lemma it is also exact, i.e.

∂tωt = da (3.31)

for some 1-form a. The vector field is then completely determined by the equation

ιXωt + a = 0 . (3.32)
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Consider now a gauge transformation a 7→ a + dλ; under this transformation

X 7→ X +Xλ, where Xλ is a Hamiltonian vector field satisfying the condition

ιXλωt + dλ = 0 , (3.33)

as it can be seen from equation (3.32). Since Xλ is a Hamiltonian vector field, it

induces a Poisson bracket on M corresponding to the Poisson structure ωt by the

relation

{λ, g}t = ωt
(
Xg, Xλ

)
= dg(Xλ) = LXλg , (3.34)

where λ, g ∈ C∞(M). Then the gauge transformation and the diffeomorphisms give

the total transformation [82]

g
dλ7−→ g + {λ, g}t

a7−→ ρ∗g + ρ∗{λ, g}t = ρ∗g + {ρ∗λ, ρ∗g} , (3.35)

where {−,−} is the Poisson structure given by ω0 = ω.

This formalism is used in [85] (see also [84]) to construct a semi-classical version

of the Seiberg–Witten map. The construction employs the Poisson bivector Θ =

1
2

Θij ∂i ∧ ∂j dual to the Poisson structure ω, i.e. Θijωjk = δik. Motivated by the

role of the gauge potential 1-form a in Moser’s lemma, the authors of [85] introduce

the vector field

aΘ = Θ(a,−) = Θij aj ∂i , (3.36)

and the bivector field corresponding to the 2-form field strength f = da

fΘ = dΘaΘ = −1

2
Θij fjk Θkl ∂i ∧ ∂l , (3.37)

where fij = ∂i aj − ∂j ai and dΘ = −[−,Θ]S, with [−, ]S the Schouten–Nijenhuis

bracket (see appendix A.3). The Poisson bivector is perturbed by introducing by

a one-parameter family of bivectors Θt, where t ∈ [0, 1], which correspond to ωt.

Equation (3.31) then becomes

∂tΘt = dΘtaΘt = fΘt , (3.38)
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with Θt=0 = Θ, and its solution is given by the geometric series

Θt = Θ− tΘ fΘ + t2Θ fΘ fΘ +O(t3) =
Θ

1 + t f Θ
, (3.39)

where the bivector Θ corresponding to the Poisson structure ω0 = ω is “twisted” by

the two-form field strength to Θt=1 = Θ′, which corresponds to the Poisson structure

ω1 = ω′. The flow ρ∗a generated by aΘt is obtained by integrating (3.38), which of

course yields (3.29) with X substituted by aΘt .

The Seiberg–Witten map in this setting is given by the semi-classical generalized

gauge potential

Aa = ρ∗a − id . (3.40)

As before, under the gauge transformation a 7→ a+dλ the vector field aΘ transforms

as

aΘ 7−→ aΘ + dΘλ , (3.41)

where dΘλ is a Hamiltonian vector field. Then for a function g and t = 1, the total

transformation (3.35) becomes

g
dλ7−→ g + {λ, g}Θ′

a7−→ ρ∗ag + ρ∗a{λ, g} = ρ∗ag + {λ̂, ρ∗ag} , (3.42)

with

λ̂(λ, a) =
∞∑
n=0

(aΘt + ∂t)
n(λ)

(n+ 1)!
|t=0 , (3.43)

and the gauge potential transforms as

Aa+dλ = Aa + dΘλ̂+ {λ̂, Aa} , (3.44)

which is the semi-classical analog of (3.26). Equations (3.40) and (3.43) are the semi-

classical versions of the Seiberg–Witten map, while the flow ρ∗a is the semi-classical

covariantizing map.

In the quantum case, the covariantizing map Da is similarly obtained as the

“flow” of the differential operator aΘ, which is given by the deformation quantization
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of aΘ using equation (3.12) [84, 85]. The pertinent bidifferential operator is given

by

fΘ = d?aΘ , (3.45)

where d? = −[−, ?]G is the coboundary operator and [−,−]G is the Gerstenhaber

brackets (see appendix A.2); this equation is the image of (3.37) under the for-

mality map. The differential operators aΘ and fΘ satisfy quantum equations that

mimic their semi-classical counterparts, and thus substituting vectors, bivectors and

functions with their deformed versions yields the covariantizing map

Da = exp
(
∂t + aΘ

)
exp

(
− ∂t

)
|t=0 , (3.46)

as the “flow” of the differential operator aΘ.

It is now straightforward to obtain the quantum Seiberg–Witten map. For this,

consider the generalized noncommutative gauge potential

Aa = Da − id , (3.47)

and an infinitesimal gauge transformation a 7→ a+ dλ, under which the differential

operator aΘ transforms as

aΘ 7−→ aΘ +
1

i ~
d?λ , (3.48)

where d?λ is the deformation of the Hamiltonian vector field dΘλ, and λ is given by

(3.10). In (3.41), which is the classical analogue of this transformation, δaΘ = dΘλ

is a Hamiltonian vector field, and thus the gauge transformation induces a canonical

transformation. In the quantum case, the formality condition following (3.12) maps

dΘλ to an inner derivation of the star product, and thus it induces a noncommutative

gauge transformation δΛ̂, for which

Aa+dλ = Aa +
1

i ~

(
d?Λ̂ + [Λ̂,Aa]?

)
, (3.49)
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where the Seiberg–Witten map Λ̂(λ, a) is obtained from (3.43) by substituting aΘt

with aΘt . The transformation chain (3.42) now becomes

g
dλ7−→ g + [λ, g]?′

a7−→ Dag +Da[λ, g]?′ = Dag + [Λ̂,D∗ag]? , (3.50)

from which it can be seen that the covariantizing map Da relates the star products ?

and ?′ via Da(f ?′ g) = Daf ? Dag, i.e. it is an isomorphism of associative algebras

where noncommutative gauge transformations are realised as inner automorphisms.

For further technical details of the construction, we refer to [82, 84, 85, 86]. In the

following, we will describe several covariantizing maps and the corresponding gauge

symmetries for twisted Poisson structures, which relevant for strings in the R-flux

background.

The presence of a non-trivial closed three-form background H leads to a twisted

Poisson structure: The bivector Θ fails to fulfill the Jacobi identity and its Schouten–

Nijenhuis bracket is consequently non-zero: [Θ,Θ]S = ~
∧3 Θ](H), where we have

introduced a factor ~ to ensure formal convergence of all expressions in the ensuing

contruction. (Such a factor is understood to be implicitly included in Θ in the rest

of this section.) From the point of view of background fields and fluctuations, the

structure we are dealing with is a gerbe: Given a suitable covering of the target

space manifold by contractible open patches (labelled by Greek indices α, β, . . .),

we can write H in terms of local two-form fields Bα as H = dBα on each patch.

On the overlap of two patches, the difference Bβ − Bα =: Fαβ is closed, hence

exact and can be expressed in terms of one-form fields aαβ as Fαβ = daαβ. On

triple overlaps we then encounter local gauge parameters λαβγ that satisfy a suitable

integrability condition. This hierarchical description in terms of forms has a dual

description in terms of multivector fields that is suitable for deformation quantization

and leads to noncommutative gerbes in the sense described in [7]: The twisted

Poisson bivector Θ can be locally untwisted by the two-form fields Bα, leading to

bona fide Poisson bivectors Θα = Θ (1 − ~Bα Θ)−1. These local Poisson tensors

Θα and the corresponding associative star products ?α are related by covariantizing

maps computed from aαβ.

50



Chapter 3: Global deformation quantization

As mentioned in section 2.3, the relevant geometric structure inR-space is a gerbe

in momentum space, with curvature (2.34) and 2-connection (2.35). Here we are

dealing with a topologically trivial setting, so the forms and multivector fields are all

globally defined. Nevertheless, the constructions of twisted noncommutative gauge

theory and Seiberg–Witten maps are non-trivial and interesting. On M = T ∗M

the patch index α is replaced by a constant momentum vector p̄ that parametrizes

a degree of freedom in the choice of Poisson structure Θp̄ and two-form background

field Bp̄. In matrix form, the pertinent bivector and two-form fields are

Θ =

~Rijk pk δij

−δij 0

 , Θp̄ =

~Rijk p̄k δij

−δij 0

 (3.51)

and

Bp̄ =

0 0

0 Rijk (pk − p̄k)

 . (3.52)

They satisfy

H = dBp̄ , [Θ,Θ]S = ~
∧3Θ](H) and [Θp̄,Θp̄]S = 0 , (3.53)

together with

Θ = Θp̄ (1 + ~Bp̄ Θp̄)
−1 and Θp̄ = Θ (1− ~Bp̄ Θ)−1 . (3.54)

The corresponding 1-connection is given by ap̄,p̄ ′ = Rijk pi (p̄k − p̄ ′k) dpj. Note that

we cannot choose ~B to be equal to Θ−1 as that would add terms of order ~−1

to H = dB, which is incompatible with (3.53), and it would lead to convergence

problems for the geometric series in (3.54). The deformation quantizations along Θ

and Θp̄ yield the nonassociative star product ? and the associative star product ?p̄

respectively. For the special case p̄ = 0, Θ0 and ?0 are respectively the canonical

Poisson structure and associative star product on phase space. For fixed three-form

H, choices for B can differ by any closed (and hence exact) two-form F = dA.

The corresponding choices of Poisson structures and star products are related by
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covariantizing maps constructed from gauge potentials

A = AI(x) dxI = ai(x, p) dxi + ãi(x, p) dpi . (3.55)

Associated to these covariantizing maps are Seiberg–Witten maps as explained be-

fore. Gauge transformations δλA = dλ, where λ = λ(x, p), induce a change of the

covariantizing maps by a star commutator with Λ̂(λ, a).

So far we have discussed ordinary Seiberg–Witten maps for bona fide Pois-

son bivectors. It would appear to be more natural to find also a construction

based directly on the twisted Poisson bivector Θ. Terms involving the non-zero

Jacobiator (Schouten–Nijenhuis bracket) usually spoil such a construction. In the

present case it turns out, however, that for the class of gauge potentials of the form

A = (AI) = (0, ãi(x, p)) (i.e. with ai(x, p) = 0) the unwanted terms drop out, because

([Θ,Θ]S)IJK AK is proportional to Rijk ak = 0. The restriction thus imposed on the

class of admissible gauge potentials leads to a corresponding restriction on the class

of covariantizing maps. The admissible class of maps is, however, still very large and

actually quite interesting: Evaluating Θ(A,−) = ΘIJ AJ ∂I = δij ã
j(x, p) ∂i shows

that any map generated by a vector field of the form ãi(x, p) ∂i, which acts on con-

figuration space and may even depend on the momentum variables, is admissible.

The associated class of ordinary and noncommutative gauge transformations is more

restricted: The gauge parameters λ and Λ̂ may only depend on the momenta p.

An interesting subclass of the covariantizing maps just described are generated

by gauge potentials of the form A = R(a2,−), where a2 is a two-form on config-

uration space and we have used the natural map
∧2 T ∗M → TM induced by the

three-vector R; in components ãi(x) = Rijk (a2)jk(x). The semi-classical version

of the resulting maps has been discussed in the context of Nambu–Poisson struc-

tures on p-branes in [83], where a2 plays the role of a two-form gauge potential,

and (noncommutative) gauge transformations are computed using Nambu–Poisson

brackets and x-dependent one-form gauge parameters. (The restriction to gauge pa-

rameters that depend only on momenta is not needed here.) Section 3.3 provides a

quantization of these Nambu–Poisson maps for membranes (p = 2) with a constant
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Nambu–Poisson trivector R.

Another interesting special example concerns the relationship between ?0 and ?p̄:

The corresponding covariantizing map Dp̄ is constructed from Fp̄ = dAp̄ = B0−Bp̄,

with a gauge potential defined by

Ap̄ = ãj(p) dpj = 1
2
Rijk pi p̄k dpj (3.56)

up to gauge transformations δλ̃ã
j(p) = ∂̃jλ̃(p). It satisfies f ?p̄g = D−1

p̄ (Dp̄f ?0 Dp̄g).

Formally replacing the constant p̄ by the dynamical momentum variable p in this

equation gives a Seiberg–Witten map from the associative canonical star product ?0

to the nonassociative star product ? := ?p as

f ? g =
[
D−1
p̄ (Dp̄f ?0 Dp̄g)

]
p̄→p . (3.57)

In view of the foregoing discussion, this can also be written as

f ? g =
[
Dp̄(f ? g)

]
p̄→p =

[
Dp̄f ?0 Dp̄g

]
p̄→p , (3.58)

since the underlying vector field Θ(Ap̄,−) from (3.56) vanishes when p̄→ p and the

covariantizing map becomes trivial. In the given gauge, the vector field Θ(Ap̄,−)

receives no quantum corrections from deformation quantization and the Seiberg–

Witten map can thus be computed explicitly in closed form. This is one of the very

rare cases where this is possible.

From the point of view of noncommutative gauge theory as well as noncommu-

tative string geometry, gauge transformations preserve star products. Expressed in

terms of gauge fields, gauge transformations correspond to different choices of one-

form potentials A that preserve the curvature two-form F = dA. From the mem-

brane point of view, however, the three-form H is the fundamental global quantity

and gauge transformations correspond to different choices of two-form potentials B

that preserve the gerbe curvature H = dB. The role of the gauge parameter is taken

by a one-form gauge potential A. As we have discussed, such one-forms generate

covariantizing maps D. These maps preserve associativity (as well as nonassocia-
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tivity). The collection of these maps describes the gauge degrees of freedom of our

system. Concretely, our construction for the twisted Poisson structure Θ yielded

covariantizing maps Dξ for all vector fields ξ on configuration space. This evidently

generates a huge gauge degree of freedom generated by quantized general coordinate

transformations. This point adds some credibility to the terminology “nonassocia-

tive gravity” that was coined in [27] to describe the quantum geometry of closed

strings in non-geometric flux backgrounds.

3.5 Closed string vertex operators and 3-product

We close this chapter by comparing our associator with the ternary product for

closed strings propagating in a background with constant R-flux which was proposed

in [21]. Here the authors perform a linearized conformal field theory analysis of the

three-point function of tachyon vertex operators in a flat background with constant

H-flux. After applying three T-dualities they arrive at a nonassociative algebra of

closed string vertex operators in the R-flux background, from which they propose a

deformation of the pointwise product of functions via a 3-product of the form

f • g • h = f g h+Rijk ∂if ∂jg ∂kh+O
(
R2
)
. (3.59)

In the light of the above analysis, we are able to explain this result analytically and

relate it to our expressions. Expanding either of the two bracketings (3.19) to linear

order we have

f ? g ? h = f g h+R′ ijk
[
∂if ?̄ ∂jg ?̄ ∂kh

]
p̄→p +O

(
R′ 2
)
, (3.60)

from which we conclude that (3.59) agrees with (3.60) to first order in R′ := ± ~2

4
R,

but without the Moyal star product between the derivatives of f , g and h, and with-

out the dependence on the dynamical variable p. For functions that are independent

of p, the two formulas agree to linear order. The main difference between the two

formulas stems from our consideration of the cotangent bundle of M as the effective
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target space geometry of closed strings in the R-flux compactification.

This also explains the proposal of [21] that the binary product of functions is

the usual pointwise multiplication, as for closed strings only three and higher point

correlation functions experience the effect of the flux background. Setting p = p̄ = 0

corresponds to the sector of zero winding number in the T-dual Q-space frame. It

truncates phase space to the original configuration space M and recovers the usual

commutative pointwise product f ?̄ g = f g = f ? g, consistent with the fact that

only extended closed strings with non-trivial winding number (dual momentum)

are sensitive to the noncommutative deformation in the Q-flux background (see

section 2.4); nevertheless, this sector still retains a non-trivial associator (3.20) of

fields in the nonassociative R-flux background as in [27, 21]. Moreover, as in [21],

higher order associators are not simply related to successive applications of (3.20).

Together with the cyclic property (3.21), we see therefore that in this sector our

deformation quantization approach agrees with the 3-product of [21]. The authors

of [21] also conjecture an all orders ternary product obtained by exponentiation of

the trivector R as a straightforward generalization of the Moyal–Weyl formula. Our

results confirm this conjecture insofar that the exponential of R is indeed part of

the correct all order expressions (3.19).

As we discussed in section 2.5, the twisted Poisson structures we have found

naturally give rise to an L∞-structure on the algebra C∞(M). In [41] it is shown

that correlators of open string vertex operators in a non-constant H-flux background

endow the Kontsevich deformation of the algebra of functions on M with the struc-

ture of an A∞-algebra (see appendix A.1), or more precisely an A∞-space, which

are the natural algebras that appear in generic open-closed string field theories; in

particular, the corresponding star commutator algebra is an L∞-algebra. The cor-

relators of closed string vertex operators computed in [21] also exhibit dilogarithmic

singularities analogous to those found in [41] (see also [63]), and it would be inter-

esting to see if they lead to an analogous A∞-structure; indeed in [2] it is shown

that the reflection identity for the Rogers dilogarithm relates four-point correlation

functions to two-point correlators in a manner reminiscent of an associator, while
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the pentagonal identity is related to a factorization property of five-point functions

which is reminiscent of the higher coherence relation for the associator. The simi-

larity between open and closed string correlators is also noted in [19]. In chapter 4

we will see such structures emerging rather directly in the full quantized algebra of

functions.
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Strict deformation quantization

In [87], Kathotia compares the two canonical deformation quantizations of the lin-

ear Kirillov–Poisson structure on the vector space W = g∗, where g is a finite-

dimensional Lie algebra. These quantizations are provided by the Kontsevich for-

malism and the associated Lie group convolution algebra. Let us briefly recall how

this latter quantization scheme proceeds [107]. One should first Fourier transform

functions on W to obtain elements in C∞(g). The Lie algebra g is then identified

with its integrating Lie group G in a neighbourhood of the identity element via

the exponential mapping. On G, the convolution product between functions in-

duced by the group multiplication and the Baker–Campbell–Hausdorff formula can

be used. By performing the inverse operations to pullback the result a star product

on C∞(W ) is obtained. For nilpotent Lie algebras, the exponential map between g

and G is a global diffeomorphism. In this case, the above construction is equivalent

to both Kontsevich’s deformation quantization and quantization via the universal

enveloping algebra of g [87].

Since our twisted Poisson structure (2.37) is linear for constant R-flux, it is nat-

ural to ask if there is an analogous approach which would provide an alternative

quantization framework to the combinatorial approach we took in chapter 3. In this

chapter we shall develop such an approach based on integrating a suitable Lie 2-

algebra to a Lie 2-group which will define a convolution algebra object in a braided

monoidal category (see Appendices A.1 and A.7 for the precise definitions), and

demonstrate that it is equivalent to the quantization of chapter 3 which was based
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on our proposed membrane sigma model. Here we focus for definiteness on the case

of configuration space M = Td which is a d-dimensional torus with constant R-flux.

This approach will then further clarify how the R-space nonassociativity is real-

ized by a 3-cocycle associated to a nonassociative representation of the translation

group, as arises in the presence of a magnetic monopole [80], and its relation to the

topological nonassociative tori studied in [28].

4.1 Lie 2-algebras for non-geometric backgrounds

Let V ∼= R2d be a vector space of dimension 2d with a fixed choice of basis elements

which we denote by

(x̂I) = (x̂1, . . . , x̂2d) = (x̂1, . . . , x̂d, p̂1, . . . , p̂d) , (4.1)

where throughout this chapter we use hats to distinguish abstract vector space and

categorical elements from the concrete coordinate functions we used in previous

sections. We define a bracket [−,−]R : V ∧ V → V by the relations

[x̂i, x̂j]R = iRijk p̂k , [p̂i, p̂j]R = 0 and [x̂i, p̂j]R = i ~ δij = −[p̂j, x̂
i]R , (4.2)

which is just an abstract presentation of the twisted Poisson brackets (2.37). This

bracket defines a pre-Lie algebra structure on V , i.e. it is antisymmetric but does

not satisfy the Jacobi identity; it leads to the non-vanishing Jacobiator

[x̂i, x̂j, x̂k]R := 1
3

([
[x̂i, x̂j]R, x̂

k
]
R

+
[
[x̂k, x̂i]R, x̂

j
]
R

+
[
[x̂j, x̂k]R, x̂

i
]
R

)
= ~Rijk ,(4.3)

and all other Jacobiators vanish. Hence the bracket naturally defines a Lie 2-algebra

V (see appendix A.1). For this, we set V0 = V , V1 = V , and let d : V1 → V0 be

the identity map idV . Let [−,−] : V0 ∧ V0 → V0 and [−,−] : V0 ⊗ V1 → V1 be the

bracket (4.2) of V , and let [−,−,−] : V0 ∧ V0 ∧ V0 → V1 be the Jacobiator (4.3) of

V . Then
(
V1

d−−→ V0

)
is a 2-term L∞-algebra canonically associated to the pre-Lie

algebra V .
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We can identify the twisted Poisson structure (2.37) on the algebra of functions

C∞(M) with the natural twisted Poisson structure on the dual V ∗ of the pre-Lie

algebra V as follows. We first identify linear functions on V ∗ with elements of V ,

and define {v̂1, v̂2}R(x) := 〈x, [v̂1, v̂2]R〉, where v̂1, v̂2 ∈ V , x ∈ V ∗ and 〈−,−〉 :

V ∗⊗V → R denotes the dual pairing. By imposing the Leibniz identity, this defines

a quasi-Poisson bracket that extends to polynomial functions on V ∗, which in turn

are dense in C∞(V ∗).

As we discuss in appendix A.7, there is no general construction of Lie 2-groups

from Lie 2-algebras, but we can build a suitable integration map with some intuition

provided from our considerations in chapter 2. For this, we will write down an

equivalent Lie 2-algebra for which a corresponding Lie 2-group can be “guessed”.

We start by replacing the pre-Lie algebra V with a quadratic Lie algebra g whose

generators x̂i, ˆ̄pj, i, j = 1, . . . , d have the Lie brackets

[x̂i, x̂j]Q = iRijk ˆ̄pk and [x̂i, ˆ̄pj]Q = 0 = [ˆ̄pi, ˆ̄pj]Q , (4.4)

together with the non-degenerate inner product defined by

〈x̂i, ˆ̄pj〉 = δij and 〈x̂i, x̂j〉 = 0 = 〈 ˆ̄pi, ˆ̄pj〉 (4.5)

which is invariant under the adjoint action and is of split signature. There are two

ways to think about this Lie algebra. Firstly, it is the reduction of the Courant

algebroid of section 2.3 over a point; we may regard g ∼= Rd⊕ (Rd)∗ as the cotangent

bundle T ∗Rd with its canonical symplectic structure. Secondly, it is an abstract ver-

sion of the Q-space Poisson brackets (2.42), and in particular it coincides with the

~ = 0 limit of the brackets given by (4.2) and (4.3); in this way we will mimic the dy-

namical quantization of section 3.3 by first integrating the d-dimensional Heisenberg

algebra (4.4) involving the “non-dynamical momenta” ˆ̄pi, and then making the mo-

menta “dynamical” ˆ̄pi → p̂i to recover the T-dual pre-Lie algebra (4.2) appropriate

to the R-space frame with the non-trivial Jacobiator (4.3).

Associated to the quadratic Lie algebra g is a Lie 2-algebra Ṽ corresponding to
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the 2-term L∞-algebra

Ṽ =
(
Ṽ1 = R d̃−−→ Ṽ0 = g

)
(4.6)

which is skeletal, i.e. d̃ = 0, with brackets [−,−] : Ṽ0 ∧ Ṽ0 → Ṽ0 given by the Lie

bracket (4.4) of g and [−,−] : Ṽ0 ⊗ Ṽ1 → Ṽ1 given by [v̂, c] = 0 for v̂ ∈ g, c ∈ R,

and Jacobiator [−,−,−] : Ṽ0 ∧ Ṽ0 ∧ Ṽ0 → Ṽ1 given by [v̂1, v̂2, v̂3] = 〈[v̂1, v̂2]Q, v̂3〉 for

v̂i ∈ g; this is just the reduction over a point of the Lie 2-algebra structure (A.40)

canonically associated to the exact Courant algebroid C → M of section 2.3. The

corresponding classifying triple is (g,R, j) where R is the trivial representation of g

and the 3-cocycle j : g ∧ g ∧ g→ R is given by

j(v̂1, v̂2, v̂3) =
〈
[v̂1, v̂2]Q , v̂3

〉
. (4.7)

The cocycle condition (or equivalently the pentagonal coherence relation (A.7)) fol-

lows from adjoint-invariance of the inner product and since g acts trivially on R;

note that its only non-trivial values on generators are given by

j(x̂i, x̂j, x̂k) = Rijk (4.8)

as in (4.3). The cohomology of the Heisenberg Lie algebra (4.4) is described in [113];

in particular for degree 3 one has

dimH3(g,R) = D := 1
6
d (d− 1) (d− 2)− d (4.9)

and the space of 3-cocycles

Z3(g,R) =
∧3(x̂∗1, . . . , x̂∗d) (4.10)

is the vector space of homogeneous elements of degree 3 of the Grassmann algebra

over the dual basis to x̂1, . . . , x̂d. It follows that the Jacobiator (4.7) gives rise to

a generator [j] of H3(g,Z) = ZD, and all generators are obtained via a choice of
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basis for the space of totally antisymmetric 3-vectors as in (4.8) (modulo linear

redefinitions of the central elements ˆ̄p1, . . . , ˆ̄pd).

4.2 The integrating Lie 2-groups

The classifying data (g,R, j) of the Lie 2-algebra Ṽ , with R = u(1) regarded as

the one-dimensional abelian Lie algebra, can be straightforwardly exponentiated

to a triple (G,U(1), ϕ) corresponding to a special Lie 2-group G = (G0,G1) (see

appendix A.7), modulo one subtlety. The universal 2-step nilpotent Lie algebra g

of rank d integrates to the non-compact simply connected d-dimensional Heisenberg

group G, the associated free 2-step nilpotent Lie group. In order to exponentiate the

generator [j] ∈ H3(g,R) induced by the Jacobiator (4.7) of Ṽ to a compact element

[ϕ] ∈ H3(G,U(1)), it is necessary to restrict the space of 3-cocycles (4.10) to a lattice

Λ ∼= Zd of maximal rank in the linear span of the generators x̂1, . . . , x̂d. This lattice

injects into a cocompact lattice Γ in G; the resulting quotient G/Γ is a Heisenberg

nilmanifold or “double twisted torus”, familiar in d = 3 dimensions as the doubled

space of the geometric T-dual to the three-torus with H-flux [75]. We assume that

the lattice is equipped with a non-degenerate inner product which is given in a

suitable basis by η = (ηab) : Λ⊗Z Λ→ R, a, b = 1, . . . , d, with inverse η−1 = (ηab) :

Λ∗ ⊗Z Λ∗ → R, and a non-degenerate dual pairing Σ = (Σa
i) : Λ ⊗R (Rd)∗ → R

which is a vielbein for the inner product, i.e. Σa
i δij Σb

j = ηab.

With these restrictions understood, the Lie 2-algebra Ṽ given by (4.6) integrates

to the Lie 2-group

G1 = G× U(1)
s //
t
// G0 = G (4.11)

having U(1) as the group of automorphisms of its unit object 1 in G, in which

the source and target maps s, t are both projections onto the first factor, vertical

multiplication is given by (g, ζ) ◦ (g, ζ ′ ) = (g, ζ ζ ′ ) for g ∈ G and ζ, ζ ′ ∈ U(1), and
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horizontal multiplication ⊗ given by group multiplication. The associator

Pg,h,k : (g ⊗ h)⊗ k −→ g ⊗ (h⊗ k) (4.12)

is the automorphism given by

Pg,h,k =
(
g h k , ϕ(g, h, k)

)
, (4.13)

where we have integrated the Lie algebra 3-cocycle (4.7) to the smooth normalised

Lie group 3-cocycle ϕ : G×G×G→ U(1) with

j(v̂1, v̂2, v̂3) =
∂3

∂t1 ∂t2 ∂t3

∣∣∣∣
ti=0

ϕ
(

exp t1 v̂1 , exp t2 v̂2 , exp t3 v̂3

)
(4.14)

for all v̂i ∈ Λ. All other structure maps of the Lie 2-group G are identity isomor-

phisms. Finally, to make the transformation to “dynamical” momentum variables

ˆ̃pi → p̂i, and hence integrate our original Lie 2-algebra V with brackets (4.2) and

(4.3), we endow G with a braiding

Bg,h : g ⊗ h −→ h⊗ g (4.15)

which is the automorphism given by

Bg,h =
(
g h , β(g, h)

)
, (4.16)

where we have integrated the inner product (4.5) to the smooth normalised map

β : G×G→ U(1) with

〈v̂1, v̂2〉 =
∂2

∂t1 ∂t2

∣∣∣∣
ti=0

β
(

exp t1 v̂1, exp t2 v̂2

)
(4.17)

for all v̂i ∈ Λ. The braided monoidal category G is then the Lie 2-group that

integrates the Lie 2-algebra V .

We can make this construction somewhat more concrete and explicit in a way

that will be suitable to our ensuing constructions. For this, we formally exponentiate
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the Lie 2-algebra generators to define

Ẑa = exp
(
2π i (Σ−1)i

a x̂i
)

and P̂ξ = exp
(

i ξi p̂i
)

(4.18)

for a = 1, . . . , d and ξ = (ξi) ∈ Rd. We may compute exterior products ⊗ :

G × G → G of the elements (4.18) in the Lie 2-group G by formally applying the

Baker–Campbell–Hausdorff formula using the brackets (4.2) and (4.3); since the

bracket functor in this case is nilpotent, the Hausdorff series is still applicable to

the sole finite non-vanishing order that we require it without any need of the Jacobi

identity. The commutation relations are then given by

Ẑa ⊗ Ẑb = P̂ξabR ⊗ Ẑ
b ⊗ Ẑa , (4.19)

Ẑa ⊗ P̂ξ = e 2π i ~ (Σ−1)i
a ξi P̂ξ ⊗ Ẑa , (4.20)

P̂ξ ⊗ P̂ξ′ = P̂ξ′ ⊗ P̂ξ , (4.21)

where ξabR ∈ Rd is given by

(
ξabR
)i

= −4π2 (Σ−1)j
aRijk (Σ−1)k

b . (4.22)

In (4.20) we recognize the non-trivial braiding isomorphism BẐa,P̂ξ
on 2-group ob-

jects given by the map β : Rd × Λ∗ → U(1) whose only non-trivial values are

β(ξ,m) = e 2π i ~ ξi (Σ−1)i
ama (4.23)

for ξ = (ξi) ∈ Rd and m = (ma) ∈ Λ∗ ∼= Zd, while the remaining commutation

relations in (4.19)–(4.21) are those of the rank d Heisenberg group G. The non-

trivial associators follow by applying the Baker–Campbell–Hausdorff formula once

more to find (
Ẑa ⊗ Ẑb

)
⊗ Ẑc = e −2π i ~Rabc Ẑa ⊗

(
Ẑb ⊗ Ẑc

)
, (4.24)

where

Rabc = 2π2Rijk (Σ−1)i
a (Σ−1)j

b (Σ−1)k
c (4.25)
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are the dimensionless nonassociativity R-flux parameters. This expression is the

Lie 2-group version of the “cyclic double commutator” that was calculated in [27],

which we recognise as the action of the non-trivial associator isomorphism PẐa,Ẑb,Ẑc

on 2-group objects. The corresponding 3-cocycle can be regarded as a group homo-

morphism or tricharacter ϕ : Λ∗ × Λ∗ × Λ∗ → U(1) defined by

ϕ(m,n, q) = e −2π i ~Rabcma nb qc . (4.26)

This map is normalised, i.e. ϕ(m,n, q) = 1 if either of m, n, or q is 0; this implies

that the two obvious maps from Ẑa ⊗ (1 ⊗ Ẑb) = P
(
(Ẑa ⊗ 1) ⊗ Ẑb

)
to Ẑa ⊗

Ẑb are consistent. It is also skew-symmetric, i.e. ϕ(m,n, q) = ϕ(n,m, q)−1 =

ϕ(m, q, n)−1 = ϕ(q, n,m)−1, and it obeys the required pentagonal cocycle identity

ϕ(m,n, q)ϕ(m,n+ q, r)ϕ(n, q, r) = ϕ(m+ n, q, r)ϕ(m,n, q + r) (4.27)

form,n, q, r ∈ Λ∗, which is equivalent to the pentagon identity (A.42) of the category

G . The pentagon identity can also be derived explicitly by iterating the above

calculations to find the non-trivial higher nonassociativity relations

Ẑa ⊗
(
Ẑb ⊗ (Ẑc ⊗ Ẑd)

)
= e 2π i ~Rbcd Ẑa ⊗

(
(Ẑb ⊗ Ẑc)⊗ Ẑd

)
= e 2π i ~ (Rabc+Rabd)

(
Ẑa ⊗ Ẑb

)
⊗
(
Ẑc ⊗ Ẑd

)
(4.28)

= e 2π i ~ (Racd+Rabd+Rbcd)
(
Ẑa ⊗ (Ẑb ⊗ Ẑc)

)
⊗ Ẑd

= e 2π i ~ (Rabc+Racd+Rabd+Rbcd)
(
(Ẑa ⊗ Ẑb)⊗ Ẑc

)
⊗ Ẑd .

As discussed in appendix A.7, MacLane’s coherence theorem implies that these

relations automatically imply all higher associativity relations in the category G .

This is particularly interesting from the perspective of the quantization of Nambu–

Poisson structures that we discussed in section 3.3: As the fundamental identity

(A.26) should be encoded in the coherence relations involving five objects, our cate-

gorical approach automatically encodes its quantization. This should therefore help

to alleviate at least some of the difficulties that arise in implementing the funda-
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mental identity for Nambu–Poisson brackets at the quantum level (see e.g. [45] for

a discussion).

4.3 Categorified Weyl quantization

We will now apply this categorical formalism to the deformation quantization of

the algebra of functions C∞(M) on M = T ∗M = Td × (Rd)∗, regarded as the

algebra C∞(V ∗) as explained before. Here Td = Rd/Λ, and the d × d invertible

matrix Σ = (Σa
i) defines the periods of the directions of the d-torus M = Td, i.e.

xi ∼ xi + Σa
i, a = 1, . . . , d for each i = 1, . . . , d; in particular, the (inverse) metric

of Td is given by Σa
i δab Σb

j = gij. We embed C∞(M) as an algebra object A of the

Lie 2-group G via a categorification of the Weyl quantization map, see e.g. [117];

it is defined as the linear isomorphism on C∞(M) given on the dense set of plane

waves by

W
(

e i kI x
I)

= Ŵ (m, ξ) := exp
(

i kI x̂
I
)
, (4.29)

and extended by linearity; here

(kI) = (k1, . . . , k2d) = (k1, . . . , kd, ξ
1, . . . , ξd) (4.30)

with

ki = 2π (Σ−1)i
ama , m = (ma) ∈ Λ∗ (4.31)

the quantized Fourier momenta appropriate to smooth single-valued functions on

Td. We regard (4.29) as an object in a suitable enrichment of the Lie 2-group G to

a linear category over C, which we think of as an analogue of a convolution group

algebra generated by the operators (4.18). This map can be applied to an arbitrary

Schwartz function f on Td × (Rd)∗ by expanding f in its Fourier transformation

f(x, p) =
∑
m∈Λ∗

e 2π i (Σ−1)i
ama xi

∫
Rd

ddξ

(2π)d
fm(ξ) e i ξi pi , (4.32)
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where the inverse Fourier transform is given by

fm(ξ) =
1

| det Σ|

∫
Td

ddx e −2π i (Σ−1)i
ama xi

∫
(Rd)∗

ddp e − i ξi pi f(x, p) . (4.33)

We then set

W (f) :=
∑
m∈Λ∗

∫
Rd

ddξ

(2π)d
fm(ξ) Ŵ (m, ξ) . (4.34)

The convolution product ~ of two functions f, g ∈ C∞(M) is defined via the

horizontal product of two quantized functions as

W (f ~ g) := W (f)⊗W (g) (4.35)

in the 2-group G and the inverse map W −1 from (4.29). Another straightforward

application of the Baker–Campbell–Hausdorff formula as in (4.19)–(4.21) yields the

2-group multiplication law

Ŵ (m, ξ)⊗ Ŵ (n, λ) = e π i ~ (Σ−1)i
a (ma λi−na ξi)

× Ŵ
(
m+ n , ξ + λ−Rabcma nb Σc

)
,

(4.36)

and we obtain

(f ~ g)(x, p) =
∑

m,n∈Λ∗

∫
Rd

ddξ

(2π)d

∫
Rd

ddλ

(2π)d
fn(λ) gm−n(ξ − λ)

× e −π i (Σ−1)i
a (~ (ma λi−na ξi)−2π (Σ−1)j

bma nbR
ijk pk)

× e 2π ima (Σ−1)i
a xi+ i ξi pi .

(4.37)

After introducing a factor of ~ as in (3.53), this formula is identical to the star

product (3.18) that we found by formal deformation quantization along the twisted

Poisson structure Θ, and hence the two quantizations are equivalent in this partic-

ular case. This result is a Lie 2-algebra version of Kathotia’s theorem [87, section 5]

which asserts the equivalence between Kontsevich’s deformation quantization and

the group convolution algebra quantization of the dual of a nilpotent Lie algebra.
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The crux of this theorem does not rely on the Jacobi identity, and is easily applied

to our pre-Lie algebra: By a trivial relabelling of the generators, the commuta-

tion relations (4.2) satisfy the conclusions of [87, Theorem 5.2.1]. It is tempting to

conjecture that the Lie 2-group convolution algebra quantization that we have de-

veloped in this section is equivalent to Kontsevich’s deformation quantization along

the linear twisted Poisson bivector field on the dual of any nilpotent pre-Lie algebra.

It would be interesting to similarly characterise the nonassociative quantizations of

generic semistrict nilpotent Lie 2-algebras, but these questions lie beyond the scope

of this thesis.

We conclude by establishing that the algebra of functions A = C∞(Td × (Rd)∗)

endowed with the nonassociative product ~ is really an algebra object of the Lie

2-group G , i.e. it satisfies the associativity relation (A.44) of the category. Using

the multiplication law (4.36) of the 2-group G we compute triple products of the

operators (4.29) to get

(
Ŵ (m, ξ)⊗ Ŵ (n, λ)

)
⊗ Ŵ (q, η)

= e π i ~Rabcma na qc e π i ~ (Σ−1)i
a (ma λi−na ξi+(m+n)a ηi−qa (ξ+λ)i) (4.38)

× Ŵ
(
m+ n+ q , ξ + λ+ η −Rabcma nb Σc −Rabc (m+ n)a qb Σc

)
.

A completely analogous calculation for the other ordering shows that

Ŵ (m, ξ)⊗
(
Ŵ (n, λ)⊗ Ŵ (q, η)

)
= ϕ(m,n, q)

(
Ŵ (m, ξ)⊗ Ŵ (n, λ)

)
⊗ Ŵ (q, η)

= P
[(
Ŵ (m, ξ)⊗ Ŵ (n, λ)

)
⊗ Ŵ (q, η)

]
,

(4.39)

where ϕ is the 3-cocycle (4.26) and we have used (4.24) to identify the application of

the associator isomorphism P to 2-group objects (4.29); this formula is extended to

operators (4.34) in the usual way using linearity. Using (4.38) and the quantization

map (4.29), (4.35) we now compute the triple convolution product of functions
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f, g, h ∈ C∞(M) to get

(
f ~ (g ~ h)

)
(x, p) =

∑
m,n,q∈Λ∗

e −π i ~Rabcma nb qc e 2π i (Σ−1)i
ama xi

∫
Rd

ddξ

(2π)d
e i ξi pi

×
∫
Rd

ddλ

(2π)d

∫
Rd

ddη

(2π)d
fm−n−q(ξ − λ− η) gn(λ)hq(η)

× e π i ~ (Σ−1)i
a ((m−q)a λi−na (ξ−η)i+ma ηi−qa ξi)

× e iRabc ((m−q)a nb+ma qb) Σci pi , (4.40)

which agrees with the corresponding formula of (3.19). From (4.39) it follows that

(
f ~ (g ~ h)

)
(x, p) = P

(
(f ~ g)~ h

)
(x, p) (4.41)

as required, where here P((f ~ g)~ h) is short-hand notation for the composition

of morphisms on the right-hand side of (A.44) applied to (f ⊗ g)⊗ h.

4.4 Monopole backgrounds and topological nonas-

sociative tori

We conclude this chapter by comparing our noncommutative and nonassociative de-

formation of the cotangent bundleM = Td× (Rd)∗ with some other appearances of

nonassociativity in the literature. The relations (4.36) (or (4.19)) are reminiscent of

those obeyed by the gauge invariant operators which generate a projective represen-

tation of the translation group in the background field of a Dirac monopole [80] (see

also [104]), where the projective phase is a 2-cochain determined by the magnetic

flux through a 2-simplex; in our case this flux is proportional to ξR(m,n) ∈ Rd where

ξR(m,n)i = −Rabcma nb Σc
i , (4.42)

and it arises as the gerbe 2-holonomy of the B-field (2.35) through the triangle at

p formed by the lattice vectors m,n ∈ Λ∗ ⊂ (Rd)∗ in momentum space. The triple

product relation (4.39) (or (4.24)) is reminiscent of the nonassociativity relation
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which arises from the 3-cocycle proportional to the flux through the 3-simplex en-

closing the monopole; in our case the 3-cocycle (4.26) is determined by the gerbe

H-flux (2.34) through the tetrahedron at p formed by the lattice vectors m, n and

q in momentum space. See [51] for an open string realization of the monopole back-

ground in terms of D0-branes in H-space, or equivalently D3-branes in R-space.

Let us now compare our construction with the nonassociative tori discussed

in [28, 29, 60]. For n, q ∈ Λ∗, we use the 3-cocycle (4.26) to define unitary operators

Ûn,q on the Hilbert space `2(Λ∗) of square-summable sequences fm on the momentum

lattice Λ∗ of M = Td by

(
Ûn,qf

)
m

= ϕ(m,n, q) fm . (4.43)

These operators obey the composition law

ϕ(m,n, q) Ûm,n Ûm+n,q = αm
(
Ûn,q

)
Ûm,n+q , (4.44)

where αm is the adjoint action by the regular representation fn 7→ fn+m of lattice

translations by m ∈ Λ∗. One then defines the twisted convolution product

(f ~ϕ g)m =
∑
n∈Λ∗

fn αn(gm−n) Ûn,m−n (4.45)

on the algebra C∞(Λ∗,K), where K = K
(
`2(Λ∗)

)
is the algebra of compact op-

erators on `2(Λ∗). This defines a nonassociative twisted crossed-product algebra

K
(
`2(Λ∗)

)
oϕ Λ∗ which is identified with the algebra of functions on the nonassocia-

tive torus. When ϕ = 1 (R = 0), the operators Ûn,q all act as the identity operator

on `2(Λ∗) and αm can be taken to be the identity; then ~ϕ=1 is just the usual con-

volution product on the algebra C∞(Td)⊗K of stabilized functions on the torus Td,

which is Morita equivalent to the usual commutative algebra C∞(Td). In the general

case, by [28, Proposition 3.1] the twisted convolution product ~ϕ satisfies (A.44)

and hence makes K
(
`2(Λ∗)

)
oϕΛ∗ an algebra object of the tensor category G ; in [60]

it is shown that this defines a strict (i.e. non-formal) nonassociative deformation
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quantization.

We can identify a covariant representation of
(
Λ∗ , K(`2(Λ∗))

)
by using the com-

mutation relations (4.20) to identify the generators of translations in the lattice Λ∗

as the operators Ŵ (m, 0) for m ∈ Λ∗. From (4.36) we may then identify operators

through the 2-group multiplication law

Ŵ (m, 0)⊗ Ŵ (n, 0) := Ûm,n ⊗ Ŵ (m+ n, 0) , (4.46)

where

Ûm,n = P̂ξR(m,n) (4.47)

and we have used the Baker–Campbell–Hausdorff formula together with antisym-

metry of Rabc. By (4.39), it follows from [28, section 3] that these operators coincide

with the ones introduced in (4.43). This correspondence is completely analogous to

that found in [51, section 5.2] via an open string analysis of D3-branes in R-space;

in particular, our representation of the operators Ûm,n is determined by the surface

holonomy (4.42) of the pertinent B-field as in [51]. However, in our picture, the

meaning of the stabilization by the algebra of compact operators K is clear: It rep-

resents precisely the additional cotangent degrees of freedom through the unitary

momentum operators P̂ξ ∈ K from (4.18).

We close by commenting on how our nonassociative algebras may be related to

associative ones which can be represented as operator algebras on separable Hilbert

spaces, hence justifying some of the constructions above. In the context of open

strings in non-trivial H-flux backgrounds, it was shown in [68, 66] how to map the

nonassociative algebra of functions equipped with the Kontsevich star product to

an associative algebra by enlarging the deformed configuration space to a deformed

phase space; the resulting algebra is interpreted as an algebra of pseudo-differential

operators as now both coordinates xI and derivatives ∂I appear. This mapping

is the analogue of the Bopp shift which maps the Heisenberg commutation rela-

tions onto trivial commuting variables when viewed as a subalgebra of extended
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canonical phase space commutation relations. In [36] such Bopp shifts are used to

map noncommutative twisted tori onto commutative tori with the same phase space

nonassociativity. In our case, the resulting algebra should be compared with the

Lie 2-algebra constructed in section 2.5 which has underlying associative coordi-

nate algebra. The construction of [68, 66] is simply a physical implementation of

MacLane’s coherence theorem, which states that any monoidal category is equiva-

lent to a strict monoidal category in which the associativity isomorphism (4.12) is

simply the obvious identification by rebracketing (g ⊗ h)⊗ k 7→ g ⊗ (h⊗ k). In the

present case, it is shown in [29] that the equivalence functor is obtained by applying

P−1 to (4.45) and it takes an algebra object A to the associative crossed product

algebra A o Λ∗; this augmented algebra is in a sense the “exponentiation” of the

extended algebras of [68, 66].
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Twist deformation quantization

In this chapter we describe a third way of quantizing non-geometric R-flux back-

grounds using twist deformation techniques. The terminology “twist” refers to a

deformation of a Hopf algebra H which is constructed from the universal enveloping

algebra of a Lie algebra of symmetries acting on the phase space description of R-

space. Such deformations are typically provided by a 2-cocycle F ∈ H ⊗H called a

twist (see e.g. [92]); gauge and gravity theories on a noncommutative space as defor-

mations of their classical counterparts using twisting techniques can be found e.g.

in [8, 10] (see also [11]). The advantage of twist deformation quantization is that

it accommodates nonassociativity in a natural and concrete way which overcomes

the difficulties encountered in quantizing nonassociative algebras using (higher) Lie

algebraic methods, such as Baker-Campbell-Hausdorff quantization: One simply

requires that the usual coassociativity of the Hopf algebra H holds only up to a 3-

cocycle φ ∈ H ⊗H ⊗H called the associator ; this yields a quasi-Hopf algebra [48].

If φ is trivial, i.e. it is the coboundary of a 2-cochain F ∈ H ⊗H, then the twisting

is provided by F . Once a twist is known, it is just a matter of applying the cochain

twist machinery to deform all geometric structures which are covariant under the

symmetries of a manifold; such cochain twists were employed in [16] to describe

nonassociative differential calculus and in [93] to formulate gauge theory on nonas-

sociative algebras (see also [15]).

The use of trivial 3-cocycles as sources of nonassociativity first appeared in the

physics literature in the description of magnetic translations of charged particles
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in the background of a magnetic monopole, where it was shown that demanding

associativity yields the Dirac quantization condition [80]. In this case one finds an

associative representation of the global translations, even though the Jacobi iden-

tity for the infinitesimal generators continues to fail. This point of view is taken

in the description of non-geometric toroidal flux backgrounds within the framework

of Matrix theory compactifications in [37]. Thus although one finds a non-trivial

Jacobiator (1.7) on R-space, demanding associativity of global quantities may teach

us something about the structure of non-geometric fluxes, such as flux quantization;

indeed, the on-shell worldsheet tachyon scattering amplitudes computed in [21] ex-

hibit no violations of associativity once momentum conservation is taken into ac-

count, in accord with the standard crossing symmetry of correlation functions in

two-dimensional conformal field theory. This point of view of nonassociative R-

space is addressed in the context of double field theory in [25], while the parallels

between nonassociative parabolic R-flux string models and the dynamics of charged

particles in uniform magnetic charge distributions is elucidated in [14].

5.1 Hopf algebras and deformation quantization

Twist deformation techniques provide a very precise and systematic way of quantiz-

ing any algebraic structure acted upon by a (quasi-)Hopf algebra. Such is the case

for the algebra of functions on a space acted upon by a Lie group of symmetries

which will be our main application in this paper. In this section we briefly review

standard deformation quantization by cocycle twists as well as the more general case

of cochain twists which is our main case of interest.

5.1.1 Cocycle twist quantization

We begin by defining some of the basic algebraic structures that we will encounter

in the following. We then describe deformation quantization via a Drinfel’d cocycle

twist.

A bialgebra H over C is an associative unital algebra with a counital coalgebra
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structure that satisfies the properties

(idH ⊗∆) ◦∆ = (∆⊗ idH) ◦∆ , (5.1)

(idH ⊗ ε) ◦∆ = idH = (ε⊗ idH) ◦∆ , (5.2)

where ε : H → C is the counit and ∆ : H → H ⊗H is the coproduct. The

relation (5.1) means that the coalgebra is coassociative. Throughout we use the

usual Sweedler notation ∆(h) =
∑

h(1)⊗h(2) with h, h(1), h(2) ∈ H and suppress

the summation.

A quasi-triangular bialgebra is a pair (H,R) where H is a bialgebra, and R =

R(1)⊗R(2) ∈ H ⊗H is an invertible element which obeys

(∆⊗ idH)(R) = R13R23 , (idH ⊗∆)(R) = R13R12 , (τ ◦∆)(h) = R∆(h)R−1

(5.3)

for all h ∈ H, where R12 = R(1)⊗R(2)⊗ 1H , R13 = R(1)⊗ 1H ⊗R(2), R23 =

1H ⊗R(1)⊗R(2) with 1H the unit of H, and we abbreviate the product map µ :

H ⊗H → H by µ(h⊗h′ ) = hh′ for all h, h′ ∈ H. Here we have defined the

transposition map τ : H ⊗H → H ⊗H as

τ(h⊗h′ ) := h′⊗h (5.4)

for all h, h′ ∈ H.

Through the transposition map the co-opposite coproduct ∆op : H → H ⊗H is

defined by

∆op(h) := (τ ◦∆)(h) = h(2)⊗h(1) . (5.5)

Then H is a cocommutative coalgebra if ∆op(h) = ∆(h) for all h ∈ H. If (H,R)

is a quasi-triangular bialgebra then cocommutativity simply means that ∆(h)R =

R∆(h) for all h ∈ H as can be easily seen from (5.3); in general the element R

intertwines the action of the coproduct ∆ with the co-opposite coproduct ∆op.

A Hopf algebra over C is a bialgebraH equipped with an algebra anti-automorphism
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S : H → H called the antipode satisfying

µ ◦ (idH ⊗S) ◦∆ = η1H ◦ ε = µ ◦ (S⊗ idH) ◦∆ , (5.6)

where ηh : C → H is the unit homomorphism with ηh(1) = h for h ∈ H. A quasi-

triangular Hopf algebra (H,R) consists of a quasi-triangular structure R on the

underlying bialgebra of H.

In this thesis we will be primarily interested in the large class of Hopf algebras

H which arise as universal enveloping algebras U(g) of Lie algebras g. The algebra

U(g) is constructed by taking the quotient of the tensor algebra T (g) =
⊕

k≥0 g⊗ k =

C ⊕ g ⊕ (g⊗ g) ⊕ · · · by the two-sided ideal I generated by elements of the form

x⊗ y − y⊗x − [x, y], where x, y ∈ g. Next we equip U(g) with the symmetric

coalgebra structure

∆ : U(g) −→ U(g)⊗U(g) , ∆(x) = x⊗ 1 + 1⊗x ,

ε : U(g) −→ C , ε(x) = 0 ,

S : U(g) −→ U(g) , S(x) = −x

(5.7)

defined on primitive elements x ∈ g and extended to all of U(g) as algebra (anti-

)homomorphisms. The desired Hopf algebra H is then U(g) = T (g)/I with these

structure maps. Finally, we further equip H with the trivial quasi-triangular struc-

ture

R0 = 1⊗ 1 , 1H := 1 (5.8)

which turns it into a cocommutative quasi-triangular Hopf algebra.

A Hopf algebra H can act on a complex vector space V to give a representation of

H on V . In particular, a left action of H on V is a pair (λ, V ), where λ : H ⊗V → V

is a linear map, λ(h⊗ v) =: λh(v), such that λh g(v) = λh(λg(v)) and λ(1H ⊗ v) = v,

where g, h ∈ H and v ∈ V . It is customary to denote the action of H on V by .

and write the above relations as

h . v ∈ V , (h g) . v = h . (g . v) , 1H . v = v . (5.9)
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Such a vector space is called a left H-module. If V carries additional structure,

for example if it is an algebra (A, µA) where µA : A⊗A → A is the product on

A, or a coalgebra (C,∆C) where ∆C : C → C ⊗C is the coproduct on C, then we

demand that the action of H is covariant in the sense that it preserves the additional

structure of V . Thus we say that a unital algebra (A, µA) over C is a left H-module

algebra if A is a left H-module and

h . (a b) = h . µA(a⊗ b) = µA
(
∆(h) . (a⊗ b)

)
=
(
h(1) . a

) (
h(2) . b

)
, (5.10)

where h ∈ H and a, b ∈ A. Here we abbreviate µA(a⊗ b) = a b; we use this notation

throughout when no confusion arises. Likewise, a counital coalgebra (C,∆C) is a

left H-module coalgebra if C is a left H-module and

(h.c)(1)⊗ (h.c)(2) = ∆C(h.c) = ∆(h).∆C(c) =
(
h(1) .c(1)

)
⊗
(
h(2) .c(2)

)
, (5.11)

where h ∈ H and c ∈ C. Similar definitions hold for right H-modules, and right

H-module algebras and coalgebras.

From the above definitions it is understood that a left or right H-module is

a representation by an algebra A or a coalgebra C of the Hopf algebra H; if H

is modified then so is the representation. Such modifications were introduced by

Drinfel’d. Let H[[~]] denote the ~-adic completion of H consisting of all formal H-

valued power series in a deformation parameter ~. A Drinfel’d twist is an invertible

element F = F(1)⊗F(2) ∈ H[[~]]⊗H[[~]] that satisfies the two conditions

(F ⊗ 1H) (∆⊗ idH)(F ) = (1H ⊗F ) (idH ⊗∆)(F ) , (5.12)

(ε⊗ idH)(F ) = 1H = (idH ⊗ ε)(F ) . (5.13)

We will further demand that F = 1H ⊗ 1H+O(~) is a deformation of the trivial twist,

which is always formally invertible for sufficiently small ~. By these two conditions

F is a counital 2-cocycle which can be used to define a new Hopf algebra HF with

the same underlying algebra as H[[~]] but with a twisted coalgebraic structure given
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by the twisted coproduct

∆F (h) = F ∆(h)F−1 (5.14)

and the twisted antipode

SF (h) = UF S(h)U−1
F where UF = µ ◦ (idH ⊗S)(F ) (5.15)

for h ∈ H. This new bialgebra HF is called a twisted Hopf algebra; coassociativity

and counitality of (5.14) follow respectively from the 2-cocycle condition (5.12) and

the counital condition (5.13). If (H,R) is a quasi-triangular Hopf algebra then the

quasi-triangular structure is also twisted by the formula

RF := τ(F )RF−1 = F21RF−1 , (5.16)

where F21 = F(2)⊗F(1) in Sweedler notation. The Hopf algebra HF need not be

cocommutative even if H is cocommutative; this may be checked by calculating the

twisted co-opposite coproduct

∆op
F (h) = RF ∆F (h)R−1

F , (5.17)

where h ∈ H.

For the twisted Hopf algebra HF to act covariantly on a left H-module algebra

(A, µA) we need to twist (deform) the binary product µA : A⊗A → A to a new

product defined by

a ? b = µA
(
F−1 . (a⊗ b)

)
=
(
F−1

(1) . a
) (
F−1

(2) . b
)
, (5.18)

for a, b ∈ A. The deformed product is called a star product and (A[[~]], ?) is a

deformation quantization of (A, µA); indeed one has a ? b = a b + O(~). The twist

cocycle condition (5.12) ensures associativity of the star product (5.18), while the

counital condition (5.13) implies that if (A, µA) is unital with unit 1A then (A[[~]], ?)

77



Chapter 5: Twist deformation quantization

is also unital with the same unit.

5.1.2 Quasi-Hopf algebras and cochain twist quantization

In this thesis we are concerned with nonassociative twist deformations, therefore we

will be using an appropriate generalisation of a Hopf algebra, called a quasi-Hopf

algebra [48]. To explain what a quasi-Hopf algebra is let us begin by defining the

notion of a quasi-bialgebra. This is simply a bialgebra H where coassociativity is

required to hold only up to a 3-cocycle φ, i.e. the condition (5.1) is substituted by

(idH ⊗∆) ◦∆(h) = φ
[
(∆⊗ idH) ◦∆(h)

]
φ−1 , (5.19)

where h ∈ H and φ = φ(1)⊗φ(2)⊗φ(3) ∈ H ⊗H ⊗H is an invertible 3-cocycle (see

e.g. [92]) in the sense that

(1H ⊗φ)
[
(idH ⊗∆⊗ idH)(φ)

]
(φ⊗ 1H) =

[
(idH ⊗ idH ⊗∆)(φ)

] [
(∆⊗ idH ⊗ idH)(φ)

]
.

(5.20)

We say that φ is counital if it additionally satisfies the condition

(ε⊗ idH ⊗ idH)(φ) = (idH ⊗ ε⊗ idH)(φ) = (idH ⊗ idH ⊗ ε)(φ) = 1H ⊗ 1H . (5.21)

These two conditions on φ ensure that all distinct orderings of higher coproducts by

insertions of φ yield the same result and are consistent with the counital condition

(5.2).

The definition of a quasi-triangular quasi-bialgebra is that of a quasi-triangular

bialgebra with the two first axioms of (5.3) modified by φ to

(∆⊗ idH)(R) = φ321R13 φ
−1
132R23 φ , (idH ⊗∆)(R) = φ−1

231R13 φ213R12 φ
−1

(5.22)

in the notation of section 5.1.1 with φabc := φ(a)⊗φ(b)⊗φ(c), while the third axiom

of (5.3) remains unchanged.

A quasi-Hopf algebra H = (H,φ) is a quasi-bialgebra H equipped with an an-
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tipode that consists of two elements α, β ∈ H and an algebra anti-automorphism

S : H → H obeying

S(h(1))αh(2) = ε(h)α , h(1) β S(h(2)) = ε(h) β , (5.23)

φ(1) β S(φ(2))αφ(3) = 1H , S
(
φ−1

(1)

)
αφ−1

(2) β S
(
φ−1

(3)

)
= 1H , (5.24)

for all h ∈ H. The antipode is determined uniquely only up to the transformations

S ′(h) = uS(h)u−1 , α′ = uα , β′ = β u−1 , (5.25)

for any invertible element u ∈ H and any h ∈ H. When φ = 1H ⊗ 1H ⊗ 1H is

the trivial 3-cocycle, the conditions (5.24) imply that αβ = β α = 1H , and the

symmetry (5.25) allows us to suppose without loss of generality that α = β = 1H .

Then (5.19) reduces to the coassociativity condition (5.1) and (5.23) to the usual

definition of an antipode given by (5.6), thus the quasi-Hopf algebra H becomes a

coassociative Hopf algebra.

A useful way to construct a quasi-Hopf algebra is to start with a Hopf algebra

H and an invertible twist element F ∈ H[[~]]⊗H[[~]] that does not satisfy the

cocycle condition (5.12). In particular, if (H,φ,R) is a quasi-triangular quasi-Hopf

algebra and F is an arbitrary invertible element in H[[~]]⊗H[[~]] obeying (5.13),

then (HF , φF ,RF ) defined as follows is also a quasi-triangular quasi-Hopf algebra. It

has the same algebra and counit as H, with twisted coproduct and quasi-triangular

structure defined by the same formulas (5.14) and (5.16), with twisted antipode

SF = S , αF = S
(
F−1

(1)

)
αF−1

(2) , βF = F(1) β S
(
F(2)

)
, (5.26)

and with twisted 3-cocycle given by the coboundary

φF = ∂∗F := F23

[
(idH ⊗∆)(F )

]
φ
[
(∆⊗ idH)

(
F−1

)]
F−1

12 , (5.27)

where F23 = 1H ⊗F , F−1
12 = F−1⊗ 1H and φF ∈ H[[~]]⊗H[[~]]⊗H[[~]] is called the

associator (see e.g. [93]). A Hopf algebra H viewed as a trivial quasi-Hopf algebra
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has α = β = 1H and the symmetry (5.25). Twisting H with the counital 2-cochain

twist F then provides a quasi-Hopf algebra HF = (HF , φF ) with SF = S, αF =

µ ◦ (S⊗ idH)(F−1) and βF = µ ◦ (idH ⊗S)(F ) = α−1
F which by (5.25) is equivalent

to (5.15). The twisted coproduct ∆F fails to satisfy (5.1), and in particular (5.19)

is a consequence of this definition.

A left H-module algebra (A, µA) is then twisted to a nonassociative algebra

(A[[~]], ?) by the same formula (5.18) with the associator appearing when we re-

bracket products of three elements as

(a ? b) ? c =
(
φF (1) . a

)
?
[(
φF (2) . b

)
?
(
φF (3) . c

)]
, (5.28)

for a, b, c ∈ A. The cocycle condition (5.20) on φF ensures that the distinct ways of

re-bracketing higher order products by inserting φF all yield the same result.

5.1.3 Twist quantization functor

A natural way to deal with both noncommutative and nonassociative structures

arising as above is through the formalism of braided monoidal categories. The

algebras encountered above are “braided-commutative” and “quasi-associative”, in

the sense that they are noncommutative and nonassociative but in a controlled way

by means of a braiding and a multiplicative associator, respectively. This means that

the algebras are commutative and associative when regarded as objects of a suitable

braided monoidal category which is different from the usual category of complex

vector spaces. The twist deformation quantization described above can then be

regarded as a functor that yields algebras in such a braided monoidal category, and

at the same time quantises all other covariant structures with respect to a symmetry.

We briefly review this framework here as we will make reference to it later on, and

because it connects with some of the constructions of chapter 4.

Recall that a monoidal category C consists of a collection of objects X, Y, Z, . . .

with a tensor product between any two objects and a natural associativity iso-

morphism PX,Y,Z : (X ⊗ Y ) ⊗ Z → X ⊗ (Y ⊗ Z) for any three objects obeying

the pentagon identity, which states that the two ways of re-bracketing morphisms
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(
(X⊗Y )⊗Z

)
⊗W → X⊗

(
Y ⊗(Z⊗W )

)
are the same. Then MacLane’s coherence

theorem states that all different ways of inserting associators P as needed to make

sense of higher order re-bracketed expressions yield the same result. A braiding on

C is a natural commutativity isomorphism BX,Y : X ⊗ Y → Y ⊗ X for any pair

of objects which is compatible with the associativity structure in a natural way. If

C is the category of complex vector spaces, then the associator P is the identity

morphism and the braiding B is the transposition morphism.

If H = (H,φ) is a quasi-Hopf algebra, we take C to be the category HM of

left H-modules. This is a monoidal category with tensor product defined via the

coproduct ∆ and with associator given by

PX,Y,Z

(
(x⊗ y)⊗ z

)
=
(
φ(1) . x

)
⊗
[(
φ(2) . y

)
⊗
(
φ(3) . z

)]
(5.29)

for all x ∈ X, y ∈ Y and z ∈ Z. If in addition H is quasi-triangular then there is a

braiding defined by

BX,Y (x⊗ y) =
(
R(1) . y

)
⊗
(
R(2) . x

)
(5.30)

for all x ∈ X and y ∈ Y .

Given a cochain twist F ∈ H[[~]] ⊗ H[[~]], the constructions of this chapter

determine a functorial isomorphism of braided monoidal categories

FF : HM −→ HFM (5.31)

which acts as the identity on objects and morphisms, but intertwines the tensor,

braiding and associativity structures. In particular, the covariance condition (5.10)

means that the product map µA is a morphism in the category HM ; hence FF

functorially deforms H-module algebras into HF -module algebras, and in this sense

it may be regarded as a “twist quantization functor”.

In our main case of interest in this chapter, we will take H = U(g) to be the

universal enveloping algebra of a Lie algebra g of symmetries acting on a manifold

M; then the Hopf algebra H acts on the algebra of smooth functions A = C∞(M),
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and by functoriality of the twist deformation it is also quantized to a generically

noncommutative and nonassociative algebra AF , which is in fact commutative and

associative in the category HFM . Similarly, the exterior algebra of differential forms

Ω•(M) is quantized to Ω•F (M) as a differential calculus on AF ; in this way any

geometry can be systematically quantized with respect to a symmetry and a choice

of 2-cochain F .

5.2 Cochain twist quantization of non-geometric

flux backgrounds

In this section we employ the formalism of section 5.1 to study nonassociative de-

formations of certain non-geometric closed string backgrounds. In order to make

contact with the key ideas of chapter 2 we will initially study standard deformation

quantization on the cotangent bundle of a closed string vacuum and subsequently

add a constant background R-flux. This approach has the advantage of illuminating

pertinent non-local and non-geometric symmetry transformations analogous to the

ones which arise on T-folds induced by parabolic monodromies.

5.2.1 Quantum phase space

Let us begin by considering a manifold M of dimension d with trivial cotangent

bundleM := T ∗M ∼= M × (Rd)∗ and coordinates xI = (xi, pi), where I = 1, . . . , 2d,

(xi) ∈ M , (pi) ∈ (Rd)∗ and i = 1, . . . , d. Throughout we use upper case indices

for the full phase space while lower case indices will be reserved for position or

momentum space individually. Consider the abelian Lie algebra h = Rd ⊕ (Rd)∗

of dimension 2d generated by Pi and P̃ i. It is realised on M by its action on the

algebra of smooth complex functions C∞(M) which we take to be given by the

vector fields

Pi . f := ∂if and P̃ i . f := ∂̃if , (5.32)

where f ∈ C∞(M), ∂i = ∂
∂xi

and ∂̃i = ∂
∂pi

. For constant vectors a = (ai) ∈ Rd and

a = (ãi) ∈ (Rd)∗ we can define Pa = ai Pi and P̃ã = ãi P̃
i which as vector fields on
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M translate xi and pi by ai and ãi respectively, hence h is the classical phase space

translation algebra on M .

We can now construct the related Hopf algebra K that acts on an algebra (A, µA)

in the usual way, i.e. we consider the universal enveloping algebra K = U(h) and

equip it with the coalgebra structure from section 5.1.1. In particular, the action

of K on A = C∞(M) is given by (5.32) extended covariantly to all elements in K

using linearity and the Leibniz rule for the vector fields ∂i and ∂̃i.

Phase space quantization is carried out simply by twisting K in the manner

described in section 5.1.1. A suitable abelian twist F ∈ K[[~]]⊗K[[~]] is given by

F = exp
[
− i ~

2
(Pi⊗ P̃ i − P̃ i⊗Pi)

]
, (5.33)

where ~ is the deformation parameter. In this simple case ∆F = ∆, where the

coproduct ∆ is defined in (5.7), and thus the twisted Hopf algebra KF is cocommu-

tative. The twisted quasi-triangular structure is easily calculated from (5.16) and is

given by

Q = F−2 = exp
[

i ~ (Pi⊗ P̃ i − P̃ i⊗Pi)
]
. (5.34)

We may now deform any left (or right) K-module algebra (A, µA) using (5.18)

and the relevant action. Let us do this for the algebra of functions on M, i.e. we

set A = C∞(M) and µA(f ⊗ g) = f g the pointwise multiplication of functions,

and derive its deformation quantization (C∞(M)[[~]], 5 ); the star product given by

(5.18) is

f 5 g = µA

(
exp

[
i ~
2

(
∂i ⊗ ∂̃i − ∂̃i ⊗ ∂i

)]
(f ⊗ g)

)
, (5.35)

where the action (5.32) has been used. This noncommutative star product is the

canonical associative Moyal-Weyl star product familiar from quantum mechanics.

With its use, the usual quantum phase space commutation relations are calculated

as

[xi, pj]5 = i ~ δij , [xi, xj]5 = 0 = [pi, pj]5 , (5.36)

where [f, g]5 := f 5 g − g 5 f for all f, g ∈ C∞(M).
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5.2.2 Noncommutative quantum phase space

Let us endow M with a constant trivector R = 1
3!
Rijk ∂i ∧ ∂j ∧ ∂k which is T-

dual to the background H-flux of a non-trivial closed string B-field. To bring R

into the twist quantization scheme we introduce a family of antisymmetric linear

combinations of the generators of h as

M̄ij := M p̄
ij = p̄i Pj − p̄j Pi , (5.37)

which we will regard as parametrized by constant momentum surfaces p̄ = (p̄i) ∈

(Rd)∗. The generators M̄ij are unique in the sense that they are the only rank

two tensors constructed by primitive elements in h to lowest order that can be non-

trivially contracted with the constant antisymmetric trivector components Rijk. The

restriction to constant momentum surfaces here will ensure (co)associativity, but will

be relaxed in the next subsection.

The unique twist element that can be constructed in this way from generators

of h is the abelian twist F̄R ∈ K[[~]]⊗K[[~]] given by

F̄R = exp
(
− i ~

8
Rijk (M̄ij ⊗Pk − Pi⊗ M̄jk)

)
, (5.38)

where ~ is the deformation parameter. The Hopf algebra K is twisted to a new Hopf

algebra KF̄R which is cocommutative with quasi-triangular structure given by

R̄ = F̄R
−2 , (5.39)

and the algebra of functions (C∞(M), µA) is quantized to (C∞(M)[[~]], Ē := Ep̄).

The star product Ē is calculated by (5.18) as

f Ē g = µA

(
exp

[
i ~
2
Rijk p̄k ∂i ⊗ ∂j

]
(f ⊗ g)

)
(5.40)

for all f, g ∈ C∞(M), and it is a family of Moyal-Weyl products. This can be seen by

calculating the Ē -commutators [f, g] Ē := f Ē g− g Ē f on phase space coordinate
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functions where we find

[xi, xj] Ē = i ~ θij(p̄) , [xi, pj] Ē = 0 = [pi, pj] Ē , (5.41)

where

θij(p̄) = Rijk p̄k . (5.42)

This reveals that upon twisting, the cotangent bundle M = T ∗M is deformed to

Mθ(p̄) × (Rd)∗; hence configuration space is quantized to a family of noncommuta-

tive spaces Mθ(p̄) with constant noncommutativity parameters proportional to the

constant background R-flux and parametrized by the surfaces of constant momen-

tum p̄ = (p̄i) ∈ (Rd)∗. This is similar to what happens in the associative Q-flux

T-duality frame with parabolic monodromy, where the configuration space noncom-

mutativity is proportional to the winding numbers w ∈ Zd of closed strings, i.e.

[xi, xj] = i ~Qij
k w

k.

The above construction is further extended to give a noncommutative quantum

phase space if we use the abelian twist

F̄ := F̄R F = F F̄R

= exp
[
− i ~

2

(
1
4
Rijk (M̄ij ⊗Pk − Pi⊗ M̄jk) + Pi⊗ P̃ i − P̃ i⊗Pi

)]
.

(5.43)

The quasi-triangular Hopf algebra (K,R0) is twisted to the cocommutative quasi-

triangular Hopf algebra (KF̄ , Q̄) with quasi-triangular structure

Q̄ = F̄−2 = QR̄ = R̄Q , (5.44)

and quantization of (C∞(M), µA) is given by (C∞(M)[[~]], ?̄ := ?p̄), where

f ?̄ g = µA

(
exp

[
i ~
2

(
Rijk p̄k ∂i ⊗ ∂j + ∂i ⊗ ∂̃i − ∂̃i ⊗ ∂i

)]
(f ⊗ g)

)
, (5.45)

for all f, g ∈ C∞(M). In this case the full cotangent bundleM becomes a noncom-
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mutative quantum phase space with commutation relations

[xi, xj] ?̄ = i ~ θij(p̄) , [xi, pj] ?̄ = i ~ δij , [pi, pj] ?̄ = 0 (5.46)

where [f, g] ?̄ := f ?̄ g−g ?̄ f for all f, g ∈ C∞(M). In particular, the zero momentum

surface p̄ = 0 recovers the canonical Moyal-Weyl product 5 = ?0 on phase space

from subsection 5.2.1.

The star product (5.45) is exactly the one that appeared in section 3.3 as the

restriction of the nonassociative star product (3.18) to slices of constant momentum

in phase space. However, in the context of cocycle twist quantization its origin can

be traced back to the unique choice of contraction of the R-flux Rijk which is com-

patible with the “minimal” (translation) symmetries of M and associativity. We

will see below how this choice naturally extends to dynamical momentum and leads

to the nonassociative star product (3.17), thus further clarifying the operations of

restricting to constant momentum and of reinstating dynamical momentum depen-

dence that were used in section 3.3 for the derivation of the quantized associator.

5.2.3 Nonassociative quantum phase space

As discussed in chapter 2, the trivector R has no natural geometric interpretation

on configuration space except via T-duality. On the other hand, it is a 3-form on

phase spaceM which is in fact the curvature of a non-flat U(1) gerbe in momentum

space. The presence of this 3-form enhances the symmetries of M = T ∗M and

thus the abelian Lie algebra h should be enlarged in order to accommodate the

new symmetries. For this, we extend h to the non-abelian nilpotent Lie algebra g

of dimension 1
2
d (d + 3) generated by Pi, P̃

i and Mij = −Mji with commutation

relations given by

[P̃ i,Mjk] = δij Pk − δik Pj , (5.47)
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while all other commutators are equal to zero. The actions of Pi and P̃ i on C∞(M)

are still given by (5.32) from which we find the action of Mij on C∞(M) to be

Mij . f := pi ∂jf − pj ∂if (5.48)

for all f ∈ C∞(M). Introducing elements Mσ = 1
2
σijMij ∈ g, where σij = −σji ∈

R, we see that Mσ generates the non-local coordinate transformations

xi 7−→ xi + σij pj , pi 7−→ pi (5.49)

that mix positions and momenta, which in quantum mechanics are called Bopp

shifts. This symmetry is reminiscent of those encountered in T-folds (Q-space),

where diffeomorphism symmetries include T-duality transformations that mix po-

sitions with winding numbers which are T-dual to the conjugate momenta. This

points to the use of doubled geometry,∗ while here we are on a phase space of 2d

coordinates. In this sense the symmetries (5.49) can be regarded as the analogue of

T-duality transformations in our algebraic framework.

One may now proceed as we did previously to find the related quasi-triangular

Hopf algebra (H,R0) = (U(g),∆, ε, S,R0), i.e. we equip the universal enveloping

algebra U(g) with the structure maps (5.7) and the quasi-triangular structure (5.8).

Then H can be twisted by the abelian Drinfel’d twist

FR = exp
(
− i ~

8
Rijk (Mij ⊗Pk − Pi⊗Mjk)

)
. (5.50)

The result is a cocommutative twisted Hopf algebra HFR with quasi-triangular struc-

ture R = FR
−2. We can use HFR to twist the algebra of functions (C∞(M), µA),

and the resulting star product has the form

fEp g := fEg = µA

(
exp

[
i ~
2
Rijk pk ∂i ⊗ ∂j

]
(f ⊗ g)

)
(5.51)

∗It is possible to extend our star products below to T-duality covariant star products defined
on double phase space, as in [14]; a field theory written in this formalism is manifestly O(d, d)-
invariant. However, in order to avoid overly cumbersome equations with essentially the same
generic features, for simplicity we write all formulas below only in the R-flux duality frame.
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for all f, g ∈ C∞(M), and it is a noncommutative, associative Moyal-Weyl type star

product similar to the one found in subsection 5.2.2. The algebra (C∞(M), µA) is

hence quantized to (C∞(M)[[~]],Ep := E) and M acquires a spatial noncommuta-

tivity since

[xi, xj]E = i ~ θij(p) , [xi, pj]E = 0 = [pi, pj]E , (5.52)

where [f, g]E := fEg − gEf for all f, g ∈ C∞(M) and θij(p) is defined by (5.42).

We can incorporate quantum phase space in this description using the method

of subsection 5.2.2. The pertinent non-abelian twist F ∈ H[[~]]⊗H[[~]] is

F := FR F = F FR = exp
[
− i ~

2

(
1
4
Rijk (Mij ⊗Pk − Pi⊗Mjk) + Pi⊗ P̃ i − P̃ i⊗Pi

)]
,

(5.53)

where we have used the antisymmetry of Rijk. Equivalently, instead of (5.53) we

can use the action of (5.43) on C∞(M) to write

F = [F̄ ]p̄→p (5.54)

where the operation [−]p̄→p denotes the change to dynamical momentum. †

The twist F is an invertible counital 2-cochain, hence HF defines a quasi-Hopf

algebra H = (HF , φ) where the associator φ = φF calculated from (5.27) is

φ = exp
(~2

2
Rijk Pi⊗Pj ⊗Pk

)
. (5.55)

Its coproduct ∆F : HF → HF ⊗HF is given by (5.14); calculating this on the

generating primitive elements we get

∆F(Pi) = ∆(Pi) ,

∆F(P̃ i) = ∆(P̃ i) + i ~
2
Rijk Pj ⊗Pk ,

∆F(Mij) = ∆(Mij)− i ~ (Pi⊗Pj − Pj ⊗Pi) .

(5.56)

†We can also restrict to constant momentum by taking a double scaling limit ~→ 0, Rijk →∞
with R̄ijk := ~Rijk held constant. This limit is equivalent to the restriction F̄R = [FR]p→p̄ when
acting on C∞(M).
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In particular, H is a non-cocommutative quasi-Hopf algebra with quasi-triangular

structure R = F−2, as a straightforward calculation of the co-opposite coproduct

∆op
F on primitive elements using (5.17) reveals.

A left (or right) H-module algebra (A, µA) can now be deformed using (5.18)

and the relevant action. Let us do this for the algebra of functions on M, i.e. we

set A = C∞(M) and µA(f ⊗ g) = f g, and derive its deformation quantization

(C∞(M)[[~]], ? := ?p) with the star product given by (5.18). We find

f ? g = µA

(
exp

[
i ~
2

(
Rijk pk ∂i ⊗ ∂j + ∂i ⊗ ∂̃i − ∂̃i ⊗ ∂i

)]
(f ⊗ g)

)
, (5.57)

where the actions (5.32) and (5.48) have been used. This is a nonassociative star

product and hence (C∞(M)[[~]], ?) is a nonassociative algebra, i.e. the product of

three functions is associative only up to the associator (5.55). This is expressed by

(5.28) which in this case can be written in the more explicit form

(f ? g) ? h = f ? (g ? h) +
∞∑
n=1

1

n!

( ~2

2

)n
Ri1j1k1 · · ·Rinjnkn (∂i1 · · · ∂inf) ?

?
(
(∂j1 · · · ∂jng) ? (∂k1 · · · ∂knh)

)
.

(5.58)

From (5.56) we find the (modified) Leibniz rules

∂i(f ? g) = (∂if) ? g + f ? (∂ig) ,

∂̃i(f ? g) = (∂̃if) ? g + f ? (∂̃ig) + i ~
2
Rijk (∂jf) ? (∂kg) ,

(5.59)

and in particular ∂i is a derivation of the star product. These relations simply re-

flect the fact that the nonassociative R-flux background exhibits space translation

symmetry, but not momentum translation symmetry, due to the dynamical nonas-

sociativity. The loss of translation invariance in momentum space is related to the

violation of Bopp shift symmetry through

∆F(P̃ i)−∆(P̃ i) = −1
4
Rijk

(
∆F(Mjk)−∆(Mjk)

)
, (5.60)

indicating that the Bopp shift generators Mij are observables which detect effects
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of nonassociativity.

The nonassociative star product (5.57) coincides with the star products (3.17)

and (4.37) which we calculated in sections 3.3 and 4.3 respectively for functions on

M. To see that (5.58) coincides with the associator (4.26), it is enough to compute

it on the position space plane waves Uã = e i ãi x
i

where ã = (ãi) ∈ (Rd)∗ are constant

vectors. One easily finds

(
Uã ? Ub̃

)
? Uc̃ = ϕR

(
ã , b̃ , c̃

)
Uã ?

(
Ub̃ ? Uc̃

)
, (5.61)

where

ϕR
(
ã , b̃ , c̃

)
:= exp

(
− i ~2

2
Rijk ãi b̃j c̃k

)
(5.62)

is the 3-cocycle of the group of translations that was obtained in section 4.3 (see

also [14]).

Using (5.57) we can calculate the ?-commutation relations on the coordinate

functions of M. We find

[xi, xj]? = i ~ θij(p) , [xi, pj]? = i ~ δij , [pi, pj]? = 0 (5.63)

where [f, g]? := f ? g − g ? f for all f, g ∈ C∞(M) and i, j, k = 1, . . . , d. Nonasso-

ciativity of (5.57) can also be seen through the failure of the Jacobi identity for this

?-commutator, analogously to (1.7).

5.2.4 Integral formulas

The star product formula (5.57) that we found in the previous subsection is written

in the language of differential operators, in practise though for explicit calculations it

is useful to employ an integral representation of the star product. A Fourier integral

formula for this product was derived in section 4.3 (see also [14, section 4.2]), however

a related but more useful formula can be easily derived by expressing g(x) in terms

of its Fourier transform ĝ(k), where k ∈ M∗; here M := T ∗M ∼= M × (Rd)∗ ∼=

Rd × (Rd)∗ andM∗ ∼= (Rd)∗ ×Rd. Let us recall that the star product (5.57) can be
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written in upper case index notation as in equation (3.17). The derivative ∂J turns

into multiplication by i kJ and we can interpret the exponential exp
(
−~

2
ΘIJ kJ ∂I

)
as a shift operator to rewrite (3.17) as

(f ? g)(x) =

∫
M∗

d2dk f
(
x− ~

2
Θk
)
ĝ(k) e i kI x

I

, (5.64)

where (Θk)I := ΘIJ kJ . Using the inverse Fourier transformation, this becomes

(f ? g)(x) =
1

(2π)2d

∫
M∗

d2dk

∫
M

d2dx′ f
(
x− ~

2
Θk
)
g(x′ ) e i kI (x−x′ )I . (5.65)

Since the matrix Θ is unimodular, we can use the inverse matrix (B-field)

Θ−1 =
(
Θ−1
IJ

)
=

 0 −δij

δi
j Rijk pk

 (5.66)

to change variables to z = −~
2

Θk and w = x′− x, and in this way we finally obtain

a nice expression in terms of a twisted convolution product

(f ? g)(x) =
( 1

π ~

)2d
∫
M

d2dz

∫
M

d2dw f(x+ z) g(x+ w) e −
2 i
~ zI Θ−1

IJ w
J

(5.67)

that is often more convenient for computations than (3.17); it is also well-defined

as a non-perturbative formula on the larger class of Schwartz functions on phase

space M. One should not forget that the matrix Θ−1 in (5.67) depends on pi and

hence on xI , but otherwise the expression is again formally identical to the standard

twisted convolution product formula for the Moyal-Weyl product (see e.g. [117] for

a review).

There are also integral formulas available for our twists. Changing the sign of

Θ and dropping the multiplication operator µ2 in (3.17), we can similarly derive an

integral formula for the action of the twist on a pair of functions f and g (evaluated
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at x and y respectively) given by

(
F . (f ⊗ g)

)
(x, y) =

( 1

π ~

)2d
∫
M

d2dz ×

×
∫
M

d2dw
(

e
i
~ z

I Θ−1
IJ w

J

f
)
⊗
(

e
i
~ z

I Θ−1
IJ w

J

g
)
(x+ z, y + w) .

(5.68)

Introducing the shift operator (Taf)(x) := f(x + a) for any 2d-vector a, the twist

element acting on C∞(M) thus becomes

F =
( 1

π ~

)2d
∫
M

d2dz

∫
M

d2dw
(

e
i
~ z

I Θ−1
IJ w

J Tz
)
⊗
(

e
i
~ z

I Θ−1
IJ w

J Tw
)
. (5.69)

5.3 Nonassociative differential calculus on non-

geometric flux backgrounds

The approach of section 5.2 has the great virtue of enabling a systematic devel-

opment of exterior differential calculus on these deformations. In this section we

develop the basic ingredients necessary for both an investigation of nonassocia-

tive quantum mechanics within a phase space quantization formalism, which we

undertake in chapter 6, as well as a putative formulation of field theories on the

nonassociative R-flux backgrounds which we discuss in chapter 7.

5.3.1 Covariant differential calculus

In this subsection we will use the cochain twist (5.53) to deform the exterior algebra

of differential forms (Ω•, µ∧, d), where Ω• :=
⊕

n≥0 Ωn with Ωn = Ωn(M) the vector

space of complex smooth n-forms on M, µ∧ : Ωn⊗Ωm → Ωn+m the usual exterior

product µ∧(ω⊗ω′ ) := ω∧ω′ and d : Ωn → Ωn+1 the exterior derivative with d2 = 0.

We demand that the action of the Hopf algebra H = U(g) from subsection 5.2.3

on (Ω•, µ∧, d) is covariant in the sense that (c.f. (5.10))

h . (ω ∧ ω′ ) =
(
h(1) . ω

)
∧
(
h(2) . ω

′ ) (5.70)
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and that d is equivariant under the action of H in the sense that

h . (dω) = d(h . ω) , (5.71)

for all ω, ω′ ∈ Ω• and h ∈ H; in the framework of subsection 5.1.3, these two

conditions respectively mean that the structure maps µ∧ and d are both morphisms

in the category HM of left H-modules. The action of H on Ω• can be determined

by finding the action on Ω1 and extending it to Ω• as an algebra homomorphism

using the Leibniz rule

d(ω ∧ ω′ ) = dω ∧ ω′ + (−1)degω ω ∧ dω′ (5.72)

for all ω, ω′ ∈ Ω•. Employing (5.71), the action of H on Ω0 given by (5.32) and

(5.48), and the fact that d commutes with the Lie derivative along any vector field,

we conclude that the action of H on Ω• is given by the Lie derivative Lh along

elements h ∈ H. As previously the action is defined on primitive elements of H

as an algebra homomorphism, i.e. Lξ ξ′ := Lξ ◦ Lξ′ for ξ, ξ′ ∈ g ⊂ U(g), and it

extends to a left action via linearity of the Lie derivative and the Leibniz rule to get

Lhh′ = Lh ◦ Lh′ for all h, h′ ∈ H. Calculating this action on the generating 1-forms

gives

Mij . dxk := LMij

(
dxk
)

= δj
k dpi − δik dpj , (5.73)

with all other generators dxI invariant under the action of H.

Following the methods of section 5.1 (with A = Ω• and µA = µ∧), we ensure

that Ω• is covariant under the action of H = (HF , φ) by introducing a deformed

exterior product ∧? on Ωn[[~]]⊗Ωm[[~]]→ Ωn+m[[~]] given by the formula

ω ∧? ω′ = µ∧
(
F−1 . (ω⊗ω′ )

)
=
(
F−1

(1) . ω
)
∧
(
F−1

(2) . ω
′ ) , (5.74)

for all ω, ω′ ∈ Ω•. The exterior derivative is still a derivation for the deformed

exterior product and thus we call the twisted exterior algebra (Ω•[[~]],∧?, d) the

nonassociative exterior differential calculus. Using (5.74) on the generating 1-forms
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we find the relations

dxI ∧? dxJ = −dxJ ∧? dxI = dxI ∧ dxJ , (5.75)

where I, J ∈ {1, . . . , 2d}. We can again write (5.28) in a more enlightening form for

the case at hand as

(ω ∧? ω′ ) ∧? ω′′ =ω ∧? (ω′ ∧? ω′′ ) +
∞∑
n=1

1

n!

( ~2

2

)n
Ri1j1k1 · · ·Rinjnkn ×

× Li1 · · · Lin(ω) ∧?
(
Lj1 · · · Ljn(ω′ ) ∧? Lk1 · · · Lkn(ω′′ )

) (5.76)

for all ω, ω′, ω′′ ∈ Ω•, where we have abbreviated Li := L∂i . When ω, ω′, ω′′ ∈ Ω1,

this formula takes an even simpler form given by

(ω ∧? ω′ )∧?ω′′ = ω ∧? (ω′ ∧? ω′′ ) +
∞∑
n=1

1

n!

( ~2

2

)n
Ri1j1k1 · · ·Rinjnkn ×

× (∂i1 · · · ∂inωL) dxL ∧?
(
(∂j1 · · · ∂jnω′M) dxM ∧? (∂k1 · · · ∂knω′′N) dxN

)
,

(5.77)

where il, jl, kl ∈ {1, . . . , d} and L,M,N ∈ {1, . . . , 2d}. It follows that

(
dxI ∧? dxJ

)
∧? dxK = dxI ∧?

(
dxJ ∧? dxK

)
=: dxI ∧? dxJ ∧? dxK , (5.78)

where I, J,K ∈ {1, . . . , 2d}.

The exterior product provides an A-bimodule structure on Ω•, where A =

(C∞(M), µA), with right and left action given by the pointwise multiplication of

an n-form by a function. Let us denote this action by I and J respectively; then

covariance of the bimodule under the action of the Hopf algebra H means

h.(f I ω) =
(
h(1).f

)
I
(
h(2).ω

)
, h.(ω J f) =

(
h(1).ω

)
J
(
h(2).f

)
, (5.79)

for all h ∈ H, f ∈ C∞(M) and ω ∈ Ω•. To ensure that the bimodule is covariant

under the action of the quasi-Hopf algebra H we must replace its action by the
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deformed right and left actions given respectively by the formulas

f I? ω = λI
(
F−1 . (f ⊗ω)

)
, ω ?J f = λJ

(
F−1 . (ω⊗ f)

)
, (5.80)

where λI(f ⊗ω) = f I ω = f ω for all ω ∈ Ω• and f ∈ C∞(M), and simi-

larly for λJ : Ω•⊗A → Ω•, which yields the deformed A?-bimodule, where A? =

(C∞(M)[[~]], ?). Since f I ω = ω J f , here and throughout we will abuse notation

for the sake of simplicity by denoting I? and ?J by ? where no confusion arises. A

short calculation then reveals the non-trivial bimodule relations between coordinates

and 1-forms given by

xi ? dxj = dxj ? xi + i ~
2
Rijk dpk , (5.81)

while all other left and right A?-actions coincide.

5.3.2 Integration

To compute quantum mechanical averages, and also to set up a Lagrangian formal-

ism for field theory, we need a suitable definition of integration
∫

on (S(M)[[~]], ?),

where S(M) ⊂ C∞(M) is the subalgebra of Schwartz functions on M = T ∗M .

Let us first notice that the star product (5.57) satisfies

f ? g = f g + total derivative . (5.82)

This can be easily verified if we write the star product in the form (3.17), and keep

in mind that a total derivative in phase space includes both position and momentum

derivatives. The order ~n term can then be written as

ΘI1J1 · · ·ΘInJn
(
∂I1 · · · ∂Inf

) (
∂J1 · · · ∂Jng

)
= ∂I1 · · · ∂In

(
ΘI1J1 · · ·ΘInJn f ∂J1 · · · ∂Jng

)
(5.83)

since no momentum derivatives act on the upper left block of Θ, which means that

(5.82) is satisfied to all orders in ~. Then the usual integration on M satisfies the
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2-cyclicity condition

∫
M

d2dx f ? g =

∫
M

d2dx g ? f =

∫
M

d2dx f g (5.84)

for all f, g ∈ S(M), i.e. the standard integral on (S(M)[[~]], ?) is 2-cyclic.

In addition to the 2-cyclicity condition, the standard integral on (S(M)[[~]], ?)

satisfies a cyclicity condition on the associator derived from the property

f ? (g ? h) = (f ? g) ? h+ total derivative , (5.85)

which easily follows from (5.58) and (5.59). Hence the standard integral also satisfies

the property

∫
M

d2dx f ? (g ? h) =

∫
M

d2dx (f ? g) ? h =:

∫
M

d2dx f ? g ? h (5.86)

for all f, g, h ∈ S(M), which we call the 3-cyclicity condition; this property is

identical to equation(3.21) which was derived using Kontsevich’s global deformation

quantization.

The 2-cyclicity condition does not generally guarantee the usual cyclicity prop-

erty involving integration of n-fold star products of functions. This is because the

star product is nonassociative and thus a bracketing for the star product of n func-

tions has to be specified. Once this is done one cannot freely move functions cycli-

cally under integration using (5.84) as one would normally do in the associative case;

instead the 3-cyclicity condition (5.86) can be used to re-bracket the integrated ex-

pression and to investigate its equivalence with expressions involving different brack-

etings. In general, the total number of ways to bracket a star product of n functions

is given by the Catalan number Cn−1, where

Cn =
1

n+ 1

(
2n

n

)
=

(2n)!

n! (n+ 1)!
(5.87)
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for n ≥ 0. Starting from the integral

∫
M

d2dx f1 ?
(
f2 ? (f3 ? (· · · ? fn) · · · )

)
, (5.88)

one can prove that it is equal to a number of different bracketings but always in-

equivalent to any other bracketing of the form f1 ? (bracketed expression), i.e. under

3-cyclicity the distinct ways of bracketing an integrated n-fold star product of func-

tions are organised into Cn−2 classes, one for each different bracketing where f1 is

free at the front. For example, for n = 4 there are five different bracketings out of

which two are of the form (5.88) and thus we have two different classes of equivalent

bracketings, namely

∫
M

d2dx f1 ?
(
f2 ? (f3 ? f4)

)
=

∫
M

d2dx (f1 ? f2) ? (f3 ? f4)

=

∫
M

d2dx
(
(f1 ? f2) ? f3

)
? f4

(5.89)

and

∫
M

d2dx f1 ?
(
(f2 ? f3) ? f4

)
=

∫
M

d2dx
(
f1 ? (f2 ? f3)

)
? f4 . (5.90)

A graded 2-cyclicity condition could also be derived for the deformed exterior

product, provided that we can write an equation similar to (5.82) for it. This seems

complicated since generally (5.74) cannot be written explicitly in closed form, but

fortunately there is a way around this problem: We can use the result of [9] where

it was shown that if the identity

UF = F(1) S
(
F(2)

)
= 1H (5.91)

holds, where UF = µ◦(idH ⊗S)(F) and S is the antipode, then standard integration

on (Ω•[[~]],∧?, d) is graded 2-cyclic. This is always true for abelian twists but does

not hold in general; however, in our case the twisted antipode SF coincides with S. It

is then straightforward to demonstrate (5.91) on S(M) by using the representation

of primitive elements of H on functions in (5.53) and antisymmetry of Rijk. Hence
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we conclude that for the nonassociative exterior differential calculus (Ω•[[~]],∧?, d)

the graded 2-cyclicity condition

∫
M
ω ∧? ω′ = (−1)deg(ω) deg(ω′ )

∫
M
ω′ ∧? ω =

∫
M
ω ∧ ω′ (5.92)

is indeed satisfied.

The 3-cyclicity condition (5.86) can also be generalized by noticing that simi-

larly to ∂i being a derivation for the nonassociative star product by (5.59), the Lie

derivative Li is a derivation of the deformed exterior product ∧? by (5.56) and the

discussion that followed (5.72), and since [Li,Lj] = L[∂i,∂j ] = 0 by (5.76) one has

ω ∧? (ω′ ∧? ω′′ ) = (ω ∧? ω′ ) ∧? ω′′ + total Lie derivative . (5.93)

Since
∫
M Li(ω) = 0 for all ω ∈ Ω• we thus get the generic 3-cyclicity condition

∫
M
ω ∧? (ω′ ∧? ω′′ ) =

∫
M

(ω ∧? ω′ ) ∧? ω′′ =:

∫
M
ω ∧? ω′ ∧? ω′′ (5.94)

for all ω, ω′, ω′′ ∈ Ω•, generalizing (5.86) which is the Ω0 case.

5.4 Generic non-geometric fluxes

We conclude by briefly discussing some preliminary steps towards extending the

analysis of this chapter to more complicated non-geometric R-flux compactifications.

We consider, in particular, the two separate cases in turn where the constant 3-tensor

Rijk is replaced with a general function of the position coordinates x ∈M and where

the 2-tensor θij(p) = Rijk pk is replaced by a general function of the conjugate

momenta p ∈ (Rd)∗. The former type of generalisation has been discussed recently

in the context of double field theory in [25], while the latter type of generalisations

arise in [90, 40].
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5.4.1 Nambu–Poisson three-brackets

The extension of our results to non-constant R-fluxes is closely related to the prob-

lem of quantization of generic Nambu–Poisson structures (see appendix A.4). A

Nambu–Poisson 3-bracket is a skew-symmetric ternary bracket defined on the space

of smooth functions C∞(M) on a manifold M , which generalizes the Poisson 2-

bracket and can be expressed in terms of a trivector field Π ∈ C∞
(
M,
∧3 TM

)
as

{f, g, h} = Π(df, dg, dh). The bracket is used to define a Nambu multi-Hamiltonian

flow [103]

df

dt
= XH1,H2f := {f,H1, H2} (5.95)

with Nambu Hamiltonian vector field XH1,H2 for any two smooth functions H1 and

H2. For a Nambu–Poisson structure, one requires that the vector fields XH1,H2 act

as a derivation on the bracket, so that

XH1,H2{f, g, h} = {XH1,H2f, g, h}+ {f,XH1,H2g, h}+ {f, g,XH1,H2h} . (5.96)

This implies that the linear span of Nambu Hamiltonian vector fields defines a Lie

algebra with Lie bracket

[Xf,g, Xf ′,g′ ] = XXf,gf ′ , g′ +Xf ′ , Xf,gg′ . (5.97)

The condition (5.96), when expressed solely in terms of brackets, is known as the

fundamental identity [120]. It is the generalization of the Jacobi identity for Poisson

brackets, which is a differential condition on a Poisson bivector. For 3-brackets,

the fundamental identity is a differential as well as an algebraic condition on the

3-vector field Π. The algebraic condition implies that Π is a decomposable trivector

Π = X1 ∧X2 ∧X3 . (5.98)

The vector fields X1, X2 and X3 are linearly independent (unless Π = 0) and in view

of (5.97) they define an involutive distribution. This implies that the local as well

as the global Frobenius theorem applies and in particular that around each point of
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the manifold M there exists a coordinate chart (U ;x1, x2, x3) such that

Π =
∂

∂x1
∧ ∂

∂x2
∧ ∂

∂x3
. (5.99)

This expression can be multiplied with a scalar pre-factor (e.g. a constant) without

spoiling the properties of a Nambu–Poisson structure.

The central object of interest of this thesis is a constant trivector R-flux R =

1
3!
Rijk ∂i ∧ ∂j ∧ ∂k. For appropriately chosen coordinates, the decomposition (5.99)

implies that a Nambu–Poisson tensor Π is in fact such a constant trivector, at least

locally, and most of the results of this chapter thus apply, including the formal-

ism of twist deformation quantization. Conversely, if R extends locally in a three-

dimensional submanifold of M , then R is a Nambu–Poisson tensor. The parts of

section 5.3 dealing with integration apply to the particular class of Nambu–Poisson

structures for which (5.99) holds globally.

5.4.2 Non-parabolic monodromies

When a three-torus T3 in the Q-flux duality frame is viewed as a T2-fibration over

S1, a periodic translation along the base must act on the local complex structure

modulus τ of a fibre T2 as an SL(2,Z) Möbius transformation, in order to end

up with an automorphic fibre. These transformations define the monodromy prop-

erties of the fibration and fall into conjugacy classes of SL(2,Z) [74]; the case of

trivial monodromies corresponds to geometric spaces (manifolds), while non-trivial

classes correspond to non-geometric spaces (T-folds). Parabolic monodromies are

of infinite order and act as discrete shifts τ 7→ τ + n, where n ∈ Z. As discussed

in chapter 1, under T-duality the T-fold is mapped to the parabolic R-flux back-

grounds characterized by the phase space relations (1.6); this algebra provides one

of the simplest examples of nonassociativity and may be regarded as the analogue of

the Moyal-Weyl background that arises in open string theory with a constant B-field

(see e.g. [117]). The case of elliptic monodromies, which are of finite order and act

as ZN -transformations on the T2 coordinates, were also considered in [90, 40] where

it was shown that the position coordinate commutator in (1.6) is generalised to a
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particular non-linear function ϑij(p) of momentum and R-flux. We briefly describe

here how to extend the setting of section 5.2 to allow for twist deformations that

correspond to a class of quasi-Poisson structures Θe which are generic functions of

momentum.

The class of generalizations of (2.24) that we are interested in are obtained by

substituting (5.42) with a generic function of momentum ϑij(p̄) to get a bivector

Θe = 1
2

ΘIJ
e ∂I ∧ ∂J on phase space M given by

Θe =
(
ΘIJ
e

)
=

ϑij(p) δij

−δij 0

 . (5.100)

As in the case of chapter 2, a computation of the Schouten-Nijenhuis bracket of this

bivector with itself reveals that it defines an H-twisted Poisson structure on M,

where H is the 3-form

H = 1
6
∂̃iϑjk(p) dpi ∧ dpj ∧ dpk (5.101)

which is the curvature of a twisting U(1) gerbe on momentum space. The corre-

sponding Jacobiator J =
∧3 Θ]

e(H) is the 3-vector whose only non-vanishing com-

ponents are given by

J ijk(p) = 1
3

(
∂̃iϑjk(p) + ∂̃jϑki(p) + ∂̃kϑij(p)

)
. (5.102)

Kontsevich’s deformation quantization of a generic (quasi-)Poisson structure is

a priori quite involved as the number of weights that have to be calculated at each

order of the diagrammatic expansion of the star product increases geometrically. A

nonassociative star product up to third order in a derivative expansion of a generic

B-field was calculated in [65] by using a twisted Poisson sigma-model to determine

the weights of Kontsevich graphs; from the topological sigma-model formalism, the

Kontsevich formula inherits an invariance under the involution which interchanges

functions and maps Θe 7→ −Θe. By applying the open/closed string duality ar-

gument of section 2.4, we can transport their results to our closed string case and
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quantize the R-flux background via the star product

f ? g = [f ?̄ g]p̄→p − ~2

12
∂̃kϑij

(
[∂k∂if ?̄ ∂jg]p̄→p + [∂jf ?̄ ∂k∂ig]p̄→p

)
− i ~3

48
∂̃l∂̃kϑij

(
[∂l∂k∂if ?̄ ∂jg]p̄→p − [∂jf ?̄ ∂l∂k∂ig]p̄→p

)
+ ~4

288

(
∂̃lϑmn

) (
∂̃kϑij

) (
[∂l∂m∂k∂if ?̄ ∂n∂jg]p̄→p

+ 2 [∂l∂m∂jf ?̄ ∂n∂k∂ig]p̄→p + [∂n∂jf ?̄ ∂l∂m∂k∂ig]p̄→p
)

+O
(
∂̃3ϑ, (∂̃ϑ)3

)
(5.103)

for f, g ∈ C∞(M), where as before the operation [−]p̄→p denotes the change from

constant to dynamical momentum and

f ?̄ g = µA

(
exp

[
i ~
2

(
ϑij(p̄) ∂i⊗ ∂j + ∂i⊗ ∂̃i − ∂̃i⊗ ∂i

)]
(f ⊗ g)

)
(5.104)

is an associative Moyal-Weyl type product on C∞(M). One can check that this

star product is nonassociative and that it reduces to the star product (5.57) in the

parabolic case ϑij(p) = θij(p) = Rijk pk, by antisymmetry of the R-flux components.

In particular, by substituting f and g with phase space coordinates we find the

quantum phase space relations

[xi, xj]? = i ~ϑij(p) , [xi, pj]? = i ~ δij , [pi, pj]? = 0 (5.105)

while the quantized Jacobiator is

[[xi, xj, xk]]? = 3 ~2 J ijk(p) . (5.106)

We may now construct the pertinent Hopf algebra of symmetries of the closed

string background. Consider the non-abelian Lie algebra ge generated by P̃ i and

P
(f)
i := f(p)Pi, where f(p) ∈ C∞((Rd)∗), with the only non-trivial commutation

relations given by [
P̃ i , P

(f)
j

]
= P

(∂̃if)
j . (5.107)
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The generators of ge are realised on phase spaceM by the action (5.32) on C∞(M);

they respectively generate momentum translations and position translations to-

gether with a momentum-dependent scaling by f(p). In particular, this infinite-

dimensional Lie algebra contains the Lie subalgebra of translations and Bopp shifts

in phase space g that we used in section 5.2. The pertinent Hopf algebra He is the

universal enveloping algebra U(ge) equipped with the coalgebra structure (5.7).

A suitable (but not unique) twist Fe ∈ He[[~]]⊗He[[~]] that reproduces the star

product (5.103) is given by

Fe = [F̄e]p̄→p − ~2

12
∂̃kϑij(p) [F̄e]p̄→p

(
Pk Pi ⊗ Pj + Pj ⊗ Pk Pi

)
− i ~3

48
∂̃l∂̃kϑij(p) [F̄e]p̄→p

(
Pl Pk Pi ⊗ Pj − Pj ⊗ Pl Pk Pi

)
+ ~4

288

(
∂̃lϑmn(p)

) (
∂̃kϑij(p)

)
[F̄e]p̄→p ×

×
(
Pl Pm Pk Pi ⊗ Pn Pj + 2Pl Pm Pj ⊗ Pn Pk Pi+

+ Pn Pj ⊗ Pl Pm Pk Pi
)

+O
(
∂̃3ϑ, (∂̃ϑ)3

)
,

(5.108)

where

F̄e = exp
[
− i ~

2

(
ϑij(p̄)Pi ⊗ Pj + Pi ⊗ P̃ i − P̃ i ⊗ Pi

)]
. (5.109)

The expression (5.108) defines a 2-cochain on He[[~]] with coboundary φe = ∂∗Fe

given by

φe = 1 ⊗ 1 ⊗ 1 + ~2

2
J ijk(p) [F̄12 F̄23]p̄→p (Pi ⊗ Pj ⊗ Pk)

+ i ~3

8
∂̃lJ ijk(p) [F̄12 F̄23]p̄→p

(
Pl Pi ⊗ Pj ⊗ Pk − Pj ⊗ Pk ⊗ Pl Pi

)
+ ~4

8

(
∂̃lϑmn(p)

)
J ijk(p) [F̄12 F̄23]p̄→p ×

×
(
Pl Pm Pi ⊗ Pk ⊗ Pn Pj + Pl Pm Pi ⊗ Pn Pk ⊗ Pj+

+ Pi Pn ⊗ Pl Pm Pk ⊗ Pj + Pi ⊗ Pl Pm Pk ⊗ Pn Pj+

+ 2Pl Pi ⊗ Pm Pk ⊗ Pn Pj + 2Pn Pi ⊗ Pm Pk ⊗ Pl Pj+

+ Pi ⊗ Pn Pk ⊗ Pl Pm Pj + Pi Pn ⊗ Pk ⊗ Pl Pm Pj
)

+O
(
∂̃3ϑ, (∂̃ϑ)3

)
.

(5.110)
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Chapter 5: Twist deformation quantization

It is straightforward to check that the expression (5.110) satisfies the cocycle con-

dition (5.20) order by order in ~, and hence yields the counital associator 3-cocycle

for the quasi-Hopf algebra obtained from twisting He by Fe. Note that each term

in (5.110) involves the classical Jacobiator (5.102).

The generality of this setting now allows for deformation quantization of the

geometry of elliptic R-flux backgrounds up to third order in the R-flux. However,

in this case cyclicity of the nonassociative star product (5.103) is a more delicate

issue and requires a more sophisticated definition of integration on non-parabolic R-

spaces; see [65] for a detailed analysis of this problem in the context of open string

theory, and [25] for an investigation in the context of double field theory.
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Nonassociative quantum

mechanics

The standard formulation of quantum mechanics is based on linear operators acting

on a separable Hilbert space and the corresponding operator algebras are by con-

struction associative. Nevertheless, it turns out that the mathematical tools and

structures that we have developed in chapter 5 do in fact allow for a direct quan-

titative discussion of nonassociativity in quantum mechanics, adding to the more

qualitative arguments that can already be found in the literature. The lack of asso-

ciativity alters the theory of quantum mechanics drastically, but against all odds a

consistent formulation is apparently indeed possible.

For this, we employ our phase space star product quantization, and constuct

states by introducing an appropriate unital composition of functions in C∞(M)

which is noncommutative and associative. We then use the 3-cyclicity condition to

show that the expectation values of functions (observables) onM satisfy the desired

properties of reality and positivity. Within this framework, we find clear sign of

position space quantization in the presence of R-flux, and compute the non-trivial

uncertainty relation between position coordinates. We also define suitable area and

volume operators in configuration space, which possess non-vanishing uncertainties

and lead to a minimal volume element; therefore our formalism provides a rigorous

derivation for the uncertainty relations anticipated by [90, 27]. Finally, we study

the dynamics of the theory and find that operator time evolution in the Heisenberg
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picture is not a derivation of the star product algebra of operators.

6.1 Nambu-Heisenberg brackets, star products and

compositions

The task of formulating a nonassociative version of quantum mechanics is closely

related to the quest of quantizing Nambu-Poisson brackets. A natural choice would

be the Jacobiator of operators, but it obviously vanishes for associative operator

algebras. As a work-around, a Nambu-Heisenberg bracket was introduced by Nambu

as half of a Jacobiator [103]

[A,B,C]NH = AB C + C AB +B C A−BAC − AC B − C BA . (6.1)

It is straightforward to evaluate the Nambu-Heisenberg bracket on coordinate func-

tions for any of our star products.∗ For instance, for the associative constant p̄ star

product (5.45) we find

[xi, xj, xk] ?̄ -NH = i ~
(
Rijl p̄l x

k +Rjkl p̄l x
i +Rkil p̄l x

j
)
. (6.2)

Nambu suggested to consider nonassociative algebras for the quantization of his

bracket. We do have the tools now to study this proposal. In the nonassociative

case, we need to specify which operators are multiplied first. We choose by default

the first pair and write

[A,B,C]NH = [A,B]C + [C,A]B + [B,C]A , (6.3)

where [A,B]C := (AB)C − (BA)C. For the nonassociative star product (5.57),

evaluated on a triple of coordinate functions, this gives

[xi, xj, xk]?-NH = i ~
(
Rijl pl ? x

k +Rjkl pl ? x
i +Rkil pl ? x

j
)
. (6.4)

∗Nambu-Heisenberg brackets have been previously investigated in the context of phase space
quantum mechanics based on associative star products in [125].
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The opposite Nambu-Heisenberg bracket

[A,B,C]′NH = C [B,A] +B [A,C] + A [C,B] (6.5)

is in general no longer equal to minus the original Nambu-Heisenberg bracket. Their

sum gives the Jacobiator

[A,B,C] := [[A,B], C]+[[C,A], B]+[[B,C], A] = [A,B,C]NH +[A,B,C]′NH . (6.6)

For the nonassociative star product (5.57), evaluated on a triple of coordinate func-

tions, we obtain the non-zero Jacobiator (c.f. (1.7))

[xi, xj, xk]? = i ~
(
Rijl [pl, x

k]? +Rjkl [pl, x
i]? +Rkil [pl, x

j]?
)

= 3 ~2Rijk (6.7)

as a more convincing candidate than (6.2) or (6.4) for a quantized Nambu-Poisson

bracket.

An indirect approach to nonassociative quantum mechanics can be based on the

family of associative star products ?̄ for constant p̄-slices and the mappings that link

them, and to ? by twists, very much in the spirit of describing a general manifold

in terms of Euclidean spaces by local coordinate charts and transition functions. A

regular operator/Hilbert space approach to nonassociative quantum mechanics can

in fact be based on standard canonical quantization and the twist (5.50) from the

Moyal-Weyl product (5.35) to the nonassociative product (5.57); after quantization,

the twist is expressed in terms of operators acting on a suitable Hilbert space.

Instead of these solid but indirect approaches to nonassociative quantum mechan-

ics, we shall pursue a more direct approach: The phase space formulation of quantum

mechanics [98] is powerful enough to study nonassociative quantum mechanics in

situ (see e.g. [124] and references therein). Observables are implemented as real

functions on phase space, states are represented by pseudo-probability Wigner-type

density functions, and noncommutativity of operators enters via a star product of

functions, which is the deformation quantization of a classical Poisson structure.

Let us start by introducing some convenient notation and conventions. We in-
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troduce the compositions ◦ and ◦̄ by

(A ◦B) ? C := A ? (B ? C) , C ? (A ◦̄B) := (C ? A) ? B (6.8)

for all A,B,C ∈ C∞(M)[[~]]. The compositions are related by complex conjugation:

(A ◦ B)∗ = B∗ ◦̄A∗ and vice versa. We choose the convention that ◦̄ is evaluated

before ◦ in all expressions that involve both compositions, so that†

(A ◦B) ? (C ◦̄D) :=
(
(A ◦B) ? C

)
? D =

(
A ? (B ? C)

)
? D . (6.9)

The compositions can be extended to an arbitrary number of functions and are

by construction associative. Like the star products that we are considering in this

thesis, the compositions are noncommutative and unital: 1 ◦ A = A = A ◦ 1. For

an associative algebra, ◦ would just be the product in that algebra. However, in

the nonassociative case A ◦ B cannot even generally be replaced by some suitable

element of the algebra (C∞(M)[[~]], ?), because if this were possible then (A◦B)?1 =

A? (B ?1) = A?B would imply A◦B = A?B and thus (A?B)?C = (A◦B)?C =

A ? (B ? C) for all C ∈ C∞(M)[[~]]. In a nonassociative algebra this is obviously

not true for all A,B ∈ C∞(M)[[~]]. There are, however, some notable exceptions,

e.g. xi ◦ xi = xi ? xi = (xi)2 and pi ◦ pi = pi ? pi = (pi)
2.

6.2 States, operators and eigenvalues

States map observables to numbers, which are interpreted as expectation values

and link theory to experiment. For this purpose one requires convexity, reality,

unit trace, and positivity properties. The latter property is particularly difficult to

implement in a nonassociative setting. A definition that ultimately fulfills all these

†This convention looks asymmetric, but as long as we are just computing expectation values, it
gives the same results as the alternative convention as a consequence of 3-cyclicity. Physically this
is a remnant of operator-state duality. In the context of time-evolution and similar transformations
this duality is, however, no longer a symmetry in the nonassociative setting.
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requirements is as follows. A state ρ is an expression of the form

ρ =
n∑

α=1

λα ψα ◦̄ψ∗α , (6.10)

where n ≥ 1, λα > 0,
∑n

α=1 λα = 1, and ψα are complex-valued phase space wave

functions, which are normalized as

∫
M

d2dx |ψα|2 = 1 , (6.11)

but are not necessarily orthogonal.‡ For any two states ρ1 and ρ2, the convex linear

combination ρ3 = λ ρ1 + (1 − λ) ρ2 with λ ∈ [0, 1] is again a state. The space of

states is thus a convex set, whose extrema we call pure states. A necessary (but

not sufficient) condition for a state to be pure is that it is of the form ρ = ψ ◦̄ψ∗.

Given a state ρ, the expectation value of a function on phase space (“operator”) A

is obtained by the phase space integral

〈A〉 :=

∫
M

d2dx A ? ρ

=
n∑

α=1

λα

∫
M

d2dx A ? (ψα ◦̄ψ∗α)

=
n∑

α=1

λα

∫
M

d2dx (A ? ψα) ? ψ∗α

=
n∑

α=1

λα

∫
M

d2dx ψ∗α ? (A ? ψα) =
n∑

α=1

λα

∫
M

d2dx ψ∗α (A ? ψα) ,

(6.12)

where we have used 2-cyclicity. Using 3-cyclicity and the fact that complex con-

jugation acts anti-involutively on the star product, (A ? ψ)∗ = ψ∗ ? A∗, we find

‡Using the familiar language of quantum mechanics, we refer to complex-valued functions on
phase space that are multiplied by star products as “operators” and to real-valued functions on
phase space that are associated to something that can in principle be measured as “observables”.
The phase space wave functions ψα and their complex conjugates ψ∗α should not be confused with
state vector kets or bras. The corresponding objects in ordinary quantum mechanics are normalized
but otherwise arbitrary operators that are not necessarily related to rank one projectors.

109



Chapter 6: Nonassociative quantum mechanics

〈A〉∗ =
n∑

α=1

λα

∫
M

d2dx (A ? ψα)∗ ? ψα =
n∑

α=1

λα

∫
M

d2dx ψ∗α ? (A∗ ? ψα) = 〈A∗〉 .

(6.13)

Observables (i.e. real-valued functions on phase space A∗ = A) therefore have real

expectation values as desired. We will later show that 3-cyclicity also ensures real-

ity of eigenvalues. Thanks to 3-cyclicity, our approach to nonassociative quantum

mechanics is thus not affected by a previously proposed no-go theorem [49].

Expectation values can also be computed for star products of functions (because

star products of functions are again functions). The definition of expectation value

can be further extended to compositions of operators as

〈A1 ◦ A2 ◦ · · · ◦ Ak〉 =
n∑

α=1

λα

∫
M

d2dx (A1 ◦ A2 ◦ · · · ◦ Ak) ? ψα ◦̄ψ∗α

=
n∑

α=1

λα

∫
M

d2dx
[
A1 ?

(
A2 ?

(
· · · ? (Ak ? ψα) · · ·

))]
? ψ∗α .

(6.14)

Positivity is a tricky concept in the nonassociative setting. In terms of our definition

of a state, it is realized for any state ρ and any function on phase space A as

〈A∗ ◦ A〉 =
n∑

α=1

λα

∫
M

d2dx ψ∗α ?
(
A∗ ? (A ? ψα)

)
=

n∑
α=1

λα

∫
M

d2dx (ψ∗α ? A
∗) ? (A ? ψα)

=
n∑

α=1

λα

∫
M

d2dx (A ? ψα)∗ (A ? ψα)

=
n∑

α=1

λα

∫
M

d2dx |A ? ψα|2 ≥ 0 ,

(6.15)

where we have used 2-cyclicity, 3-cyclicity and anti-involutivity with respect to com-

plex conjugation. With a similar computation we see that

(A,B) := 〈A∗ ◦B〉 =
n∑

α=1

λα

∫
M

d2dx (A ? ψα)∗ (B ? ψα) (6.16)
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defines a semi-definite sesquilinear form for any given state ρ. This will be the basis

of the derivation of uncertainty relations below, because it implies the Cauchy-

Schwarz inequality ∣∣(A,B)
∣∣2 ≤ (A,A) (B,B) . (6.17)

Using 3-cyclicity, the expectation value (6.12) of a single operator (no compositions)

can be rewritten in terms of a state function Sρ =
∑n

α=1 λα ψα ? ψ
∗
α as

〈A〉 =
n∑

α=1

λα

∫
M

d2dx (A?ψα)?ψ∗α =
n∑

α=1

λα

∫
M

d2dx A?(ψα?ψ
∗
α) =

∫
M

d2dx ASρ .

(6.18)

The state function Sρ is a real function on phase space that is normalized as

〈1〉 =

∫
M

d2dx Sρ =
n∑

α=1

λα

∫
M

d2dx |ψα|2 = 1 , (6.19)

but is not necessarily non-negative everywhere. It plays the role of a quasi-probability

distribution function, like the Wigner function in the associative case. However, un-

like the associative case, we cannot formulate the theory entirely in terms of the

state function Sρ, but rather we also need to frequently refer to the phase space

wave functions ψα.

A function (“operator”) A can have eigenfunctions f (with respect to the star

product multiplication) with eigenvalues λ ∈ C: A ? f = λ f . Complex conjugation

implies f ∗ ? A∗ = λ∗ f ∗. We can show that real functions A = A∗ have real eigen-

values, but this fact is not quite as straightforward as in the associative case. We

have

f ∗ ? (A ? f)− (f ∗ ? A) ? f = (λ− λ∗) (f ∗ ? f) . (6.20)

The left-hand side of this equation is non-zero in general, but it vanishes after

integrating over phase space and using 3-cyclicity. We obtain

(λ− λ∗)
∫
M

d2dx f ∗ ? f = (λ− λ∗)
∫
M

d2dx |f |2 = 0 . (6.21)

The integral is non-zero unless f is identically equal to zero and therefore λ =
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λ∗ as desired. Using similar manipulations, we can show that eigenfunctions are

orthogonal if they correspond to distinct eigenvalues. In the nonassociative case

we need to distinguish eigen-state functions and eigen-wave functions (unless we

integrate and use 3-cyclicity): A?ψ = λψ does not necessarily imply A?Sρ = λSρ,

where ρ = ψ ◦̄ψ∗ and Sρ = ψ ? ψ∗, because (A ? ψ) ? ψ∗ 6= A ? (ψ ? ψ∗) in general.

All definitions here and in the following are consistent with the associative limit of

phase space quantum mechanics. The nonassociative case is more restrictive and in

a way it teaches us also something about ordinary phase space quantum mechanics.

We have attempted to keep all definitions as general as possible. Depending on

the intended application, further restrictions may be necessary; for example, it is

natural to require states to be symmetric: ρ = ρ′, where ρ is as given in (6.10) and

ρ′ =
∑n

α=1 λα ψ
∗
α ◦̄ψα.

6.3 Uncertainty relations, area and volume oper-

ators

A pair of operators that do not commute cannot have a complete set of common

eigenstates; a pair of operators with a central non-zero commutator do not have

any simultaneous eigenstates. These well-known facts of quantum mechanics are

important for measurements and can also be verified for nonassociative phase space

quantum mechanics. A new feature is that analogous statements hold for any triple

of operators that do not associate. Let us illustrate this for phase space coordinate

functions xI ∈ {x1, . . . , xd, p1, . . . , pd} with commutator and associator

xI ? xJ − xJ ? xI = i ~ΘIJ , (xI ? xJ) ? xK − xI ? (xJ ? xK) = ~2

2
RIJK , (6.22)

respectively, where RIJK := ∂KΘIJ is constant and non-zero (and then equal to

Rijk) only for (selected) configuration space coordinates, c.f. (2.24) and (5.58). Let

us assume that a pair of phase space coordinates xI and xJ with I 6= J have a

common (normalized) eigen-state function S: xI ? S = λI S and xJ ? S = λJ S.
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Using 3-cyclicity, this implies

〈
[xI , xJ ]?

〉
=

∫
M

d2dx
(
xI ? (xJ ? S)− xJ ? (xI ? S)

)
= λI λJ − λJ λI = 0 , (6.23)

and hence xI and xJ with
〈
ΘIJ

〉
6= 0 cannot have a common eigen-state function S.

Let us now assume that a triple of phase space coordinates xI , xJ , and xK have a

common eigen-state function S with eigenvalues λI , λJ , and λK . Using 3-cyclicity

repeatedly we find

∫
M

d2dx
(
(xI ? xJ) ? xK

)
? S =

∫
M

d2dx (xI ? xJ) ? (xK ? S)

= λK
∫
M

d2dx (xI ? xJ) ? S

= λK
∫
M

d2dx xI ? (xJ ? S) = λK λJ λI ,

(6.24)

while using 2-cyclicity, 3-cyclicity and the fact that λI must be real we find similarly

∫
M

d2dx
(
xI ? (xJ ? xK)

)
? S =

∫
M

d2dx (xJ ? xK) ? (S ? xI) = λI λK λJ . (6.25)

Taking the difference of the two expressions implies

~2

2
RIJK = λK λJ λI − λI λK λJ = 0 (6.26)

and we arrive at the striking result that coordinates xi, xj and xk which do not

associate, i.e. for which Rijk 6= 0, cannot have a common eigen-state function S;

whence they cannot be measured simultaneously with arbitrary precision. This is a

clear sign of a coarse-graining (quantization) of space in the presence of R-flux.

Let us now turn to the study of uncertainties. In the definition of the uncer-

tainties, we a priori face the problem of having to make a choice between using

expectation values based on phase space wave functions (with the advantage of the

availability of inequalities) and state functions (with computational advantages). In

the computation of uncertainties for phase space coordinates, this luckily does not
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play a role because xI ◦ xI = xI ? xI and thus

0 ≤
n∑

α=1

λα

∫
M

d2dx ψ∗α?
(
xI ?(xI ?ψα)

)
=

∫
M

d2dx (xI ?xI)?Sρ =
〈
(xI)?2

〉
. (6.27)

Without ambiguity, we can therefore define the uncertainty as usual in terms of the

expectation value of the square of the shifted coordinate x̃I := xI − 〈xI〉 as

∆xI :=
√〈

(x̃I)?2
〉

=

√〈
(xI)?2

〉
−
〈
xI
〉2
. (6.28)

This uncertainty is zero for eigen-state functions (xI ? S = λS) as well as for eigen-

wave functions (xI ? ψ = λψ). The function xI is real and the uncertainty can thus

be rewritten as

(∆xI)2 =
〈
x̃I ? x̃I

〉
=
〈
x̃I ◦ x̃I

〉
=
(
x̃I , x̃I

)
. (6.29)

Using the Cauchy-Schwarz inequality (6.17), and decomposing into imaginary and

real parts we get

(∆xI)2 (∆xJ)2 ≥
∣∣(x̃I , x̃J)

∣∣2 = 1
4

∣∣〈[xI , xJ ]◦
〉∣∣2 + 1

4

∣∣〈{x̃I , x̃J}◦〉∣∣2 , (6.30)

where [A,B]◦ := A ◦ B − B ◦ A and {A,B}◦ := A ◦ B + B ◦ A. Ignoring the last

term yields a Born-Jordan-Heisenberg-type uncertainty relation

∆xI ∆xJ ≥ 1
2

∣∣〈[xI , xJ ]◦
〉∣∣ . (6.31)

To proceed from here, we need to distinguish several cases: Whenever one of the

phase space coordinates is a momentum pi, nonassociativity does not play a role in

the sense that then “◦ = ?”, i.e. [pi, pj]◦ = [pi, pj]? = 0 and [pi, x
j]◦ = [pi, x

j]? =

− i ~ δij, and therefore

∆pi ∆pj ≥ 0 , ∆xi ∆pj ≥ ~
2
δij (6.32)

as in ordinary quantum mechanics. The non-trivial uncertainty relation for a pair of
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coordinates xi and xj is new and requires a more complicated computation. With the

help of the associator (5.58) we can express [xi, xj]◦ in terms of a star commutator

and obtain the surprising result

[xi, xj]◦ ? ψ :=xi ? (xj ? ψ)− xj ? (xi ? ψ)

= [xi, xj]? ? ψ − ~2Rijk ∂kψ

= i ~Rijk
(
pk ? ψ + i ~ ∂kψ

)
= i ~Rijk

(
pk ψ − i ~

2
∂kψ + i ~ ∂kψ

)
= i ~Rijk ψ ? pk ,

(6.33)

that is, the momentum operator ends up on the “wrong” side of ψ. Using this result,

we obtain an uncertainty relation for position measurements

∆xi ∆xj ≥ ~
2

∣∣Rijk 〈pk〉′
∣∣ , (6.34)

where 〈pk〉′ is the expectation value of pk computed with respect to the opposite state

ρ′. Only for symmetric or antisymmetric states, i.e. ρ′ = ± ρ, will this be equal to the

standard expectation value 〈pk〉, and one should consider adding this requirement to

the definition of a state. The new uncertainty relation (6.34) features uncertainties

for position measurements in directions transverse to momentum, while the usual

Heisenberg uncertainty relation relates uncertainties of position and momentum in

the same direction.

It is tempting to interpret the left-hand side of (6.34) as an area uncertainty

that grows linearly with transverse momentum, but this is misleading: The position

uncertainty relation makes a prediction for the average outcome of many identi-

cally prepared experiments in which either xi or xj is measured. In none of these

(Gedanken-)experiments are positions in two different directions measured simulta-

neously (or one shortly after the other), but this would be required for a genuine

area uncertainty. An analogous criticism applies to the superficial interpretation of

Heisenberg uncertainty as an uncertainty of phase space areas in ordinary quantum

mechanics. To remedy the situation, we shall define an area operator whose expec-

tation value can be computed and interpreted as fundamental area measurement
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uncertainty (or minimal area). The approach generalizes to higher dimensional ob-

jects and we will also derive a fundamental volume measurement uncertainty, which

results from the nonassociativity of coordinate functions.

The oriented area spanned by two segments δ~r1 and δ~r2 in three-dimensional

Euclidean space is given by the vector product δ~r1× δ~r2, while the volume spanned

by three segments δ~r1, δ~r2 and δ~r3 is the triple scalar product δ~r1 · (δ~r2× δ~r3). This

can easily be generalized to higher dimensional parallelepipeds and to embedding

spaces of arbitrary dimension. The most convenient description of these areas and

(higher dimensional) volumes for our purposes is in terms of antisymmetrized sums

of products of components of displacement vectors δ~r. For the sake of generality we

might as well consider displacements in phase space. For the description of quantum

uncertainties we replace all of the displacement vectors by the single displacement

vector (of operators) ~̃x = ~x−〈~x 〉, and promote commutative pointwise multiplication

to the noncommutative and nonassociative star product ?. Furthermore, we would

like to construct observables, i.e. real functions on phase space. Taking all this into

consideration, the appropriate area (uncertainty) operator in directions xI , xJ is

AIJ = Im
(
[x̃I , x̃J ]?

)
= − i

(
x̃I ? x̃J − x̃J ? x̃I

)
(6.35)

and the volume (uncertainty) operator in directions xI , xJ , xK is (c.f. (6.4) and

(6.7))

V IJK = Re
(
[x̃I , x̃J , x̃K ]?-NH

)
= 1

2

[[
x̃I , x̃J , x̃K

]]
?
. (6.36)

The expectation values of these (oriented) area and volume operators are easily

computed to be

〈AIJ〉 = ~
〈
ΘIJ

〉
, 〈V IJK〉 = 3

2
~2RIJK , (6.37)

with three interesting special cases

〈Axi,pj〉 = ~ δij , 〈Aij〉 = ~Rijk 〈pk〉 , 〈V ijk〉 = 3
2
~2Rijk . (6.38)
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The first expression describes phase space cells with area ~. The second expres-

sion illustrates an area uncertainty proportional to the magnitude of the transverse

momentum. The third expression indicates a minimal resolvable volume of order

3
2
~2 |R| due to nonassociativity-induced position measurement uncertainties (here

|R| is a generalized determinant of the antisymmetric 3-tensor Rijk). Uncertainties

similar to (6.38) have appeared previously in [90, 27], and here we have provided a

concrete and rigorous derivation of them as expectation values of area and volume

operators.

6.4 Dynamics and transformations

Let us close this chapter with some remarks on dynamics, and similar state and

operator transformations in nonassociative quantum mechanics. Time evolution and

other transformations should leave the structure of the theory intact. In particular

notions of positivity, normalization of probabilities and reality should be preserved.

Observables (i.e. real functions on phase space) should be mapped to observables

and (pure) states to (pure) states. As in ordinary quantum mechanics, there are

two approaches that fulfill all these requirements. In the nonassociative case the

two approaches are, however, no longer equivalent.

A Schrödinger-type approach focuses on evolution equations for the phase space

wave functions. The starting point is the phase space Schrödinger equation

i ~
∂ψ

∂t
= H ? ψ , (6.39)

which applies to all ψα and ψ∗α in the state ρ (c.f. (6.10)), and where the Hamiltonian

H is a real function on phase space. Observationally, only the time evolution ∂
∂t
〈A〉

of expectation values is relevant. It can be computed either from the Schrödinger

equation (6.39) or equivalently from the time evolution equation for operators and

compositions of operators given by

∂α

∂t
=

i

~
[H, α]◦ , (6.40)
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where α = A, or A◦B, or A◦B◦C, etc. The ◦-commutator in (6.40) is a ◦-derivation,

[H, A ◦B]◦ = [H, A]◦ ◦B + A ◦ [H, B]◦ , (6.41)

and thus ∂
∂t

(A ◦B) = ∂A
∂t
◦B +A ◦ ∂B

∂t
. For stationary states, wave functions simply

change by a time-dependent phase and we can study energy eigenvalues E via the

time-independent Schrödinger equation

H ? ψ = E ψ . (6.42)

A Heisenberg-type approach focuses on ?-commutator based evolution equations

for operators given by

∂A

∂t
=

i

~
[H,A]? . (6.43)

This time evolution equation again fulfills all our requirements. It can be applied to

single functions (“operators”) as well as to star products of functions, but it is not

a derivation of ? since

[H,A]? ? B + A ? [H,B]? 6= [H, (A ? B)]? (6.44)

This surprising fact should be seen as an interesting feature of the theory, not as

a mistake. We can still compute the time-dependence of any operator that we are

interested in, but we cannot determine it from the time-dependence of its constituent

parts. Similarly to the Schrödinger-type approach, there is an alternative equivalent

way to compute the time-dependence of expectation values, in this case by the

evolution equation for phase space state functions

∂S

∂t
=

1

i ~
[H,S]? . (6.45)

Stationary state functions ?-commute with the Hamiltonian function H and we can

study energy eigenvalues E via

H ? S = E S . (6.46)
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The only major difference between this equation and (6.42) is that S should be a

real function while there is a priori no such requirement for ψ.

We have found two sets of inequivalent but equally consistent transformation

equations. Which approach should be used for what is ultimately a question of the

physics that we would like to describe. The evolution equations of the Heisenberg-

type approach close in the algebra of operators and appear therefore predestined to

define active transformations like time evolution (i.e. dynamics), while the Schrödinger-

type expressions could then still be useful to describe certain symmetries of the

theory.
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Nonassociative scalar field theory

Noncommutative deformations of spacetime have inspired the formulation of non-

commutative field theory (see e.g. [47, 117] for a review) and noncommutative gravity

(see e.g. [8]). In this chapter we employ the results obtained in chapter 5 to develop

Euclidean scalar field theories on nonassociative constant R-flux backgrounds.

Nonassociative deformations are by construction noncommutative, and thus nonas-

sociative field theories retain features that are familiar from ordinary noncommuta-

tive scalar field theories. For example, momentum conservation is violated due to

the non-constant deformation parameter (2.24), while one-loop corrections to the

propagator suffer from UV/IR mixing [96]. Still nonassociative field theories exhibit

novelties that are not encountered in their associative counterparts. In particular,

nonassociativity of the star product suggests the introduction of an interaction term

for each different way of bracketing an n-fold product of fields. The various terms

are classified under 3-cyclicity of the star product, and induce a modification to the

usual classification of Feynman diagrams into planar and non-planar graphs. How-

ever, it turns out that, for n = 3, 4, 5 the 2-cyclic and 3-cyclic properties of the star

product eliminate this effect at tree level and one needs to perform perturbative

calculations–at least up to one-loop–to detect it.

Another feature particular to field theories on R-space is that they are defined

on phase space M := T ∗M rather than the manifold M , however the complete

physical interpretation of quantum field theory on phase space is at the moment

unclear. A statistical approach is taken in [4] where it was proposed that fields on

120



Chapter 7: Nonassociative scalar field theory

phase space acquire a physical meaning via an association to Wigner functions, but

an interpretation related to deformation theory is still lacking. As the phase space

formalism naturally arises in the geometrization of R-space, it is tempting to think

of this model along the lines of double field theory. It would then be interesting

to understand if there is some analogue of the section condition reducing the phase

space field theory to field theory on the original configuration manifold M .

7.1 Action functionals

The action functional of a free Euclidean scalar field theory on R-space is given by

S0[ϕ] =
1

2

∫
M

d2dx (∂Iϕ ? ∂
Iϕ+m2 ϕ ? ϕ) , (7.1)

where ϕ ∈ S(M) ⊂ C∞(M) is a real scalar field of mass m, I ∈ {1, . . . , 2d} and

the nonassociative star product is given by (3.17) or equivalently (5.57). By the

2-cyclicity condition (5.84) the star products in (7.1) reduce to the usual pointwise

multiplication of functions, and S0 becomes equal to the standard free scalar field

theory action on M := T ∗M . This implies that the bare propagator is not af-

fected by the nonassociative deformation, and thus in a similar way to the usual

noncommutative field theories, we should consider interactions in order to probe

nonassociative effects (see e.g. [117]).

When introducing interactions the nonassociativity of the star product suggests

to include all possible bracketings of the product of n fields in the action. However,

as we discussed in subsection 5.3.2, all possible integrated n-fold products of func-

tions are classified under 3-cyclicity into Cn−1 equivalence classes, where Cn are the

Catalan numbers, and thus we keep only one representative term for each class. For

a single scalar field it follows from 2-cyclicity (5.84) and 3-cyclicity (5.86) that some

of the classes are equivalent, while for n = 3, 4, 5 it can be shown that all possible

bracketings of the interaction term are equal. For example

S
(3)
int [ϕ] ∝

∫
M

d2dxϕ ? (ϕ ? ϕ) =

∫
M

d2dx (ϕ ? ϕ) ? ϕ ≡
∫
M

d2dxϕ ? ϕ ? ϕ (7.2)
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and

S
(4)
int [ϕ] ∝

∫
M

d2dxϕ ?
(
ϕ ? (ϕ ? ϕ)

)
=

∫
M

d2dxϕ ?
(
(ϕ ? ϕ) ? ϕ

)
=

∫
M

d2dx (ϕ ? ϕ) ? (ϕ ? ϕ) =

∫
M

d2dx
(
(ϕ ? ϕ) ? ϕ

)
? ϕ

=

∫
M

d2dx
(
ϕ ? (ϕ ? ϕ)

)
? ϕ ≡

∫
M

d2dxϕ ? ϕ ? ϕ ? ϕ ,

(7.3)

where the final integrals in the above expressions are symbolically written without

brackets to indicate the equality of all possible bracketings. This means that the ϕ3,

ϕ4 and ϕ5 theories are associative at tree level and thus one should study loop cor-

rections in order to detect nonassociativity. The first encounter of nonassociativity

at tree level is for the ϕ6 theory, where four inequivalent interactions appear [64].

Nonassociative interactions turn out to be rather tricky to deal with as they

feature novelties that are not present in their associative counterparts. Since the

geometrization of R-space is a phase space, Fourier modes for both configuration

and momentum spaces have to be considered in the field expansions. We denote

the Fourier momenta corresponding to the phase space coordinates xI = (xi, pi) by

the 2d-vector kI = (ki, ξ
i) and we take M := T ∗M ∼= M × (Rd)∗ ∼= Rd × (Rd)∗ and

M∗ = (Rd)∗ × Rd for simplicity. In this notation the standard Fourier transform is

then given by

f(x) =

∫
M∗

d2dk

(2π)2d
f̃(k) e i kIx

I

=

∫
M∗

ddk ddξ

(2π)2d
f̃(ki, ξ

i) e i (kix
i+ξipi) , (7.4)

where

f̃(k) =

∫
M

d2dx f(x) e − i kIx
I

=

∫
M

ddx ddp f(xi, pi) e − i (kix
i+ξipi) , (7.5)

and the variation of the free field action (7.1) yields a Klein-Gordon equation with

its solution being the free field propagator

∆(k) =
1

k2 +m2
, (7.6)

where k2 = (ki)
2 + (ξi)2.
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It is now straightforward to use the Fourier transform (7.4) on each of the Cn−2

interaction terms and calculate the vertex phase factor. For example, in the case of

the equivalence class given by the interaction term

S
(n)
int =

g

n!

∫
M

d2dx
[
· · ·
[(

(ϕ ? ϕ) ? ϕ
)
? ϕ
]
? · · · ? ϕ

]
=

g

n!

∫
M

d2dx

∫
M∗

n∏
a=1

d2dk(a)

(2π)2d
ϕ
(
k(a)
)
V (x, k(a)) ,

(7.7)

where

V (x, k(a)) =

(
· · ·
[((

e i k
(1)
I xI ? e i k

(2)
I xI

)
? e i k

(3)
I xI

)
? e i k

(4)
I xI

]
? · · ·? e i k

(n)
I xI

)
. (7.8)

Using 2-cyclicity (5.84), the star product (3.17) and the Baker–Campbell–Hausdorff

formula we arrive at the phase factor

V (x, k(a)) = exp

(
i

n∑
a=1

k
(a)
I xI − i ~

2

∑
1≤a<b≤n)

k
(a)
I k

(b)
J ΘIJ(x)

− i ~2

4

∑
1≤a<b<c≤n

k
(a)
I k

(b)
J k

(c)
L RIJL

)
,

(7.9)

where ΘIJ(x) is the phase space deformation parameter matrix given in (2.24) and

(
RIJK

)
=

Rijk 0

0 0

 (7.10)

is the Jacobiator matrix. The first two terms of (7.9) are the familiar phase factor

modification to the Feynman rules that appear in associative noncommutative ϕn

theories, while the last term is due to the nonassociative deformation.

An interesting feature of (7.9) is that it induces violation of momentum conser-

vation at the vertex. This is due to the xI dependence of the deformation parameter

and it is completely analogous to what occurs in the usual noncommutative field

theories with spacetime varying noncommutativity parameter [108]. For this, we

substitute (7.9) in (7.7) and perform the integral over M to obtain the momentum
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relations

n∑
a=1

k
(a)
i = 0 and

n∑
a=1

ξ(a) k =
~
2

∑
1≤a<b≤n

k
(a)
i k

(b)
j Rijk , (7.11)

where the first equation is the usual momentum conservation on configuration space

while the second equation exhibits violation of momentum conservation along the

noncommutative momentum space directions. As we will see in section 7.3 this

violation introduces significant complications to the calculation of loop corrections

even for the relatively simple case of ϕ4 theory.

7.2 Classification of Feynman diagrams

Another intriguing feature of nonassociative scalar field theories is the fact that

the phase factor (7.9) is not invariant under cyclic permutations of the Fourier

momenta. This is not obvious at first sight, but taking a cyclic permutation of

the indices and using (7.11) reveals that the R-dependent block of the deformation

parameter combines with ξ-momentum to violate cyclicity of the interaction. This

novel feature is particular to nonassociative interactions and has drastic effects on

the classification of Feynman diagrams.

For this, regard a connected Feynman diagram as an abstract connected graph

G realised by its embedding in an orientable surface of genus γ. The vertices of

the graph represent spacetime points and the edges represent propagators. For

commutative scalar field theories all vertices are indistinguishable and so are all

edges, therefore edge crossings can always be avoided and all possible Feynman

diagrams are given by planar graph embeddings, i.e. they can be drawn on a surface

of genus γ = 0. Counting all different ways that vertices and edges can be combined

on a plane, provides the number of topologically equivalent diagrams, which enters

as the symmetry factor of the graph in the perturbation series.

For the usual noncommutative deformations the interchange of two edges is no

longer permitted and thus planarity cannot always be accomplished. However, some

symmetry remains as the phase factor of the interaction is invariant under cyclic
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permutations of the edges. The Feynman diagrams are then classified by the minimal

genus of the surfaces in which they are embedded. In fact, it is the cyclicity of

the phase factor which guarantees that every way of embedding a graph G into an

orientable surface Σγ of genus γ is equivalent. This is beautifully captured in matrix

models ribbon graphs (see e.g. [18]) and was employed by Filk in [52] to classify the

Feynman diagrams in noncommutative field theories into planar and non-planar

diagrams.

For nonassociative scalar field theories the vertex interaction is no longer cyclic,

which suggests that the different ways of embedding a graph into Σγ are no longer

equivalent. This is supported by the rotational embedding scheme proposed by

Edmonds [50] and discussed in detail by Youngs [123].

Theorem 1. (The rotational embedding scheme.)

LetG be a non-trivial connected graph whose set of vertices is V (G) = {v1, v2, . . . , vn}.

For each 2-cell embedding∗ of G on a surface Σγ of genus γ, there exists a unique

m-tuple (σ1, σ2, . . . , σm), where σi : V (i)→ V (i) is a counter-clockwise cyclic permu-

tation of the edges connected to the i-th vertex of G and i = 1, 2, . . . ,m. Conversely,

for each such m-tuple (σ1, σ2, . . . , σm), there exists a 2-cell embedding of G on some

surface Σγ such that for i = 1, 2, . . . ,m, the subscripts of the vertices adjacent to vi

and in counter-clockwise order about vi are given by σi.

The proof can be found in [35] (see also section 2 of [97]). For this, the graph

G is promoted to a directed graph D (digraph) by taking both orientations of its

edges, i.e. for each edge (vi, vj) ∈ E(G) we add an edge (vj, vi) ∈ E(D), where

E(D) is the set of edges of D. The boundaries of the 2-cell regions are given by the

orbits of the permutation map π : E(D)→ E(D), where

π((vi, vj)) = (vj, vσj(i)) , (7.12)

while their orientation is determined by the orientation of π (clockwise or counter-

clockwise). The embedding surface Σγ is acquired by gluing together the 2-cells on

∗A 2-cell is a surface for which any closed smooth curve can be continuously contracted to a
point.
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their boundaries and thus its orientation is determined by the orientation of the

2-cell regions. The genus γ of the surface Σγ is given by

γ = 1− 1

2

(
||V (D)|| − ||E(D)||+ ||O(σi)||

)
, (7.13)

where || · || denotes the cardinality and O(σi) is the set of orbits for the particular

m-tuple of cyclic permutations under consideration. Equation (7.13) is of course the

familiar Euler formula

2− 2γ = m− n+ f , (7.14)

for a Feynman diagram with m vertices, n edges and f faces. The minimal em-

bedding of the graph is given by the rotation systems which provide the maximum

number of orbits.

It is now clear that if the interaction vertex is not cyclic, then all different rota-

tional schemes that embed a graph into Σγ are potentially inequivalent. However,

cyclic permutations are also maps between classes of integrated n-fold products of

fields, i.e. between the edges connected to a vertex. Recall from section 5.3.2 that

these classes are given by the Catalan number Cn−2. We can use this residual symme-

try to give a classification for the Feynman diagrams of nonassociative field theories:

It is the standard noncommutative classification into planar and non-planar graphs

where every Feynman diagram of genus γ with m vertices and n legs is subdivided

into mCn−2 inequivalent diagrams.

We close this section by summarizing the Feynman rules for nonassociative scalar

field theories in phase space.

1. For each internal propagator we have
∫

d2dλ
(2π)2d

1
λ2+m2 , where λ is the internal

momentum.

2. For each vertex we have g
n! (2π)2d

∫
d2dxV (x, k(a)) , where the phase factor is

given by (7.9).

3. Each diagram carries a symmetry factor given by its noncommutative coun-

terpart multiplied by 1
Cn−2

.
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In the following we will use these rules to calculate the one-loop corrections to the

two-point function of ϕ4 nonassociative scalar field theory.

7.3 Nonassociative ϕ4 scalar field theory

As an application of the formalism developed above, we set n = 4 in (7.7) and study

ϕ4 scalar field theory on flat R-space. The momentum relations (7.11) take the form

4∑
a=1

k
(a)
i = 0 (7.15)

and

4∑
a=1

ξk, (a) =
~
2

∑
1≤a<b≤3

k
(a)
i k

(b)
j Rijk =

~
2

(
k

(1)
i k

(2)
j + k

(3)
i k

(4)
j

)
Rijk . (7.16)

where (7.15) has been used, while the phase factor (7.9) becomes

V (x, k(a)) = exp

(
i

4∑
a=1

k
(a)
I xI − i ~

2

∑
1≤a<b≤3

k
(a)
I k

(b)
J ΘIJ(x)−

− i ~2

4
k

(1)
I k

(2)
J k

(3)
K RIJK

)
,

(7.17)

where both (7.15) and (7.16) have been used.

As we discussed in section 7.1, there are C2 = 2 classes of interaction terms

which in this case are equal. By taking cyclic permutations of the indices in (7.17)

it can be easily verified that their phase factors are related by

Vσ(x, kσ(a)) = exp
[

i ~
2
k

(1)
I k

(2)
J k

(3)
K RIJK

]
V (x, k(a)) , (7.18)

where σ ∈ S4 is a cyclic permutation of the four indices. It follows that each phase

factor is invariant under the composition of two cyclic permutations, so that each

diagram is subdivided into 2v classes. This suggests that there are two different

2-cell embeddings for each vertex, i.e. the off-shell field theory has two types of ver-

tices, and thus planar and non-planar diagrams will accordingly split into subclasses

determined by which permutation is used to embed each vertex.
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7.3.1 One-loop corrections

Let us now calculate the one-loop corrections to the two-point function in this model.

In this case the contributions from the two subclasses are equal as the R-dependent

term vanishes due to antisymmetry of RIJK .

The planar part is given by (see figure 7.1)

Γ
(2)
pl =

g

3(2π)4d

∫
M

d2dx

∫
M∗

d2dλ

λ2 +m2
V (x, k(2), k(3)) , (7.19)

where k(2), k(3) are the external momenta, λ is the loop momentum and the phase

factor is calculated from equation (7.17), and is given by

V (x, k(2), k(3)) = exp
(

i (k(2) − k(3))I x
I−

− i ~
2

(
λI(k

(2) − k(3))J − k(2)
I k

(3)
J

)
ΘIJ(x)+

+
i ~2

4
λIk

(2)
J k

(3)
K RIJK

)
.

(7.20)

Integrating over x and using the momentum relations (7.15) and (7.16) we find

Γ
(2)
pl =

g

3(2π)2d
δ2d
(
k(2) − k(3)

) ∫
M∗

d2dλ

λ2 +m2
. (7.21)

This amplitude can be turned into a Gaussian integral by using the Schwinger

parametrization

1

k2 +m2
=

∫ ∞
0

ds e −s (k2+m2) . (7.22)

After integrating over the loop momentum we find

Γ
(2)
pl =

g πd

3(2π)2d
δ2d
(
k(2) − k(3)

) ∫ ∞
0

ds
exp(−sm2)

sd
, (7.23)

which is divergent for s→ 0 (large k) and thus an ultraviolet cutoff Λ has to be intro-

duced to regularise the integral. By multiplying the integrand with exp[−1/(sΛ2)]

and using the formula

∫ ∞
0

ds
exp(−sm2 − 1

Λ2s
)

sd
= 2(mΛ)d−1Kd−1

(2m

Λ

)
, (7.24)
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k(2) k(3)

λ

k(2) k(4)

λ

Figure 7.1: 2-point function to 1-loop: the planar and non-planar Feynman dia-
grams.

where Kn is the modified Bessel function of the second kind of order n, we arrive at

the result

Γ
(2)
pl =

g

3(2π)d
δ2d
(
k(2) − k(3)

)(mΛ

2

)d−1

Kd−1

(2m

Λ

)
, (7.25)

which is the familiar result of commutative ϕ4.

Let us now turn our attention to the non-planar diagram in figure 7.1 for which

the phase factor (7.17) becomes

V (x, k(2), k(3)) = exp
[

i (k(2) − k(4))Ix
I + i ~ k(2)

I λJ ΘIJ(x)
]
. (7.26)

In this case it is convenient to postpone the integral over M as it gives a delta-

function constraint which is singular and cannot be used to evaluate the remaining

integrals. Instead we introduce a Schwinger parameter and integrate over the loop

momentum which yields

Γ(2)
np =

g πd

6(2π)4d

∫ ∞
0

dds

sd
exp

(
− sm2 −

~2
(
k(2)
)2

4s

)
×

×
∫
M

ddx exp
(

i (k(2) − k(4))i x
i
)
×

×
∫

(Rd)∗
ddp exp

(
− ~2

4s
Amn pm pn + i

(
ξ(2) − ξ(4)

)i
pi

)
,

(7.27)

where

Amn :=
d∑

k=1

ki kj R
ikmRjkn (7.28)

is a singular symmetric d× d matrix.

In this expression, the integral over M yields a delta function while the momen-

tum space integral is Gaussian. Since A is singular, it has p ≥ 1 zero eigenvalues and
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d − p non-zero real eigenvalues ρ1, . . . , ρd−p. Thus only d − p independent momen-

tum space integrals are Gaussian while the rest yield delta-functions. With these

manipulations we can integrate over x and p in (7.27) to obtain

Γ(2)
np =

g 2−
3d−p

2

6(2π)
3d−p

2

(
2

~

)d−p δ(d)
(
k

(2)
i − k

(4)
i

)
√
ρ1 · · · ρd−p

p∏
j=1

δ
((
ξ(2) − ξ(4)

)
· ej
)
×

×
∫ ∞

0

dds

s
d−p

2

exp

(
− s

[
m2 +

4

~2

d∑
j=n+1

(
ξ(2) − ξ(4)

)
· ej

ρj

]
− ~2(k(2))2

4 s

)
,

(7.29)

where e1, · · · , ed are the eigenvectors of A. We now introduce an ultraviolet cutoff

and integrate over the Schwinger parameter to obtain

Γ(2)
np =

g δ(d)
(
k(2) − k(4)

)
6~d−p 2p (2π)
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2
√
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×

×
( meff Λeff

2

) d−p
2
−1

K d−p
2
−1

(
2meff

Λeff

)
,

(7.30)

where the effective cutoff is given by

1

Λ2
eff

=
1

Λ2
+
(~ k(2)

2

)2

, (7.31)

and the effective mass is given by

m2
eff = m2 +

4

~2

d∑
j=p+1

(
ξ(2) − ξ(4)

)
· ej

ρj
. (7.32)

It is not surprising that the one-loop contribution (7.30) is qualitatively similar to the

one calculated for ordinary noncommutative scalar field theory with non-constant

deformation parameter; it even exhibits the usual UV/IR mixing pathologies [108].

As we discussed in section 7.1, for n = 3, 4, 5 the nonassociative ϕn theories are on-

shell associative, and therefore, the only nonassociative effect that they exhibit is in

the subdivision of their vertices into Cn−2 classes. Although this was not observed

in our example, it can be seen in higher loops and even in the one-loop correction

to the four-point function of the ϕ4 theory.

130



Chapter 8

Summary and outlook

In this thesis we have studied non-geometric backgrounds emerging from closed

string flux compactifications, and their non-commutative and nonassociative struc-

ture. Our main results comprise the geometrization of these backgrounds, their

deformation quantization using three distinct approaches (which we show to be

complementary), the consistent formulation of nonassociative quantum mechanics,

and the construction of nonassociative scalar field theory.

In particular, we proposed a Courant sigma-model on an open three-dimensional

membrane as the topological sector of closed string dynamics in the non-geometricR-

flux background, and reduced it to a twisted Poisson sigma-model on the boundary

of the membrane. The target space of the boundary theory is a phase space equipped

with a twisted Poisson structure, which is provided by a U(1) gerbe in momentum

space and reproduces the nonassociative phase space algebra conjectured in [90].

Therefore, a geometric interpretation for the effective target space geometry seen

by closed strings in R-space as well as a straightforward dynamical explanation of

(1.6) emerged naturally from our membrane description.

We also explained how our membrane sigma-model facilitates the open/closed

string duality observed in [90], by which we asserted that the closed string path

integral is equivalent to that of an open string twisted Poisson sigma-model on a disk.

This suggests that Kontsevich’s global deformation quantization is an appropriate

quantization scheme, wherein the nonassociative star product and the corresponding

associator were calculated. For the case of constant R-flux, we derived explicit closed
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formulas which feature the three-product of fields proposed in [21] as a restriction of

the deformed associator on configuration space. We then developed Seiberg–Witten

maps which relate our nonassociative star product to a family of associative star

products parametrized by constant momentum.

Our second approach to deformation quantization of R-space was based on the

observation that our twisted Poisson structure has the structure of a Lie 2-algebra,

which we integrated to a Lie 2-group G . Within this framework, we constructed

a categorification of the Weyl–Wigner quantization map by embedding the algebra

of functions on phase space as an object in the category G . Using this map, we

demonstrated that the nonassociative convolution product induced by horizontal

multiplication in G , is identical to the nonassociative star product we obtained via

Kontsevich’s global deformation quantization.

For our third approach, we developed twist deformation quantization techniques

appropriate to nonassociative deformations of R-space geometry, which we explic-

itly related to our categorical framework. We found that the symmetries of R-space

form a non-abelian algebra of translations and Bopp shifts, and give rise to a Hopf

algebra, which we deformed to a quasi-Hopf algebra using a cochain twist. With

this quasi-Hopf algebra, we deformed the algebra of functions and the exterior differ-

ential calculus on R-space, and thus provided the first step towards nonassociative

deformations of gravity. We defined integration on the deformed algebra of forms on

R-space to be the standard integration, which introduced the notions of 2-cyclicity

and 3-cyclicity. We also considered extensions of this formalism to non-constant R-

flux backgrounds as well as non-parabolic R-flux string vacua. In the first case we

found that twisting techniques provide a framework for quantizing generic Nambu-

Poisson 3-brackets determined by the trivector field R, while in the second case we

were able to identify the pertinent Hopf algebra and a cochain twist up to third

order in the R-flux.

Using our phase space star product quantization, we proposed a consistent for-

mulation of nonassociative quantum mechanics on R-space. Within its framework,

we demonstrated that a triple of operators that do not associate does not have
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common eigenstates, which suggests position space quantization in the presence of

R-flux, and calculated the pertinent uncertainty relation. We then defined area

and volume operators in configuration space, and provided a concrete and rigorous

derivation for the uncertainty relations anticipated by [90, 27].

Finally, we constructed nonassociative scalar field theories onR-space and demon-

strated that interactions up to ϕ5 are on-shell associative. We observed familiar

noncommutative effects, such as UV/IR mixing and violation of momentum con-

servation along the non-commuting directions, which is induced by the dynamical

character of our star product. However, we also discovered that nonassociative inter-

actions are not invariant under cyclic permutations of the external momenta, which

is a purely nonassociative effect, and proposed a new classification of the Feynman

diagrams that enter the perturbation expansion.

Let us conclude this thesis with a brief discussion on possible directions that

would extend our present work, and the challenges that they present.

Membrane sigma-models and T-duality.

As a natural extension to our membrane sigma-model, we would consider the si-

multaneous presence of both geometric and non-geometric fluxes, i.e. all the T-dual

fluxes that appear in the T-duality chain (1.4). At the membrane level, these fluxes

are related by gauge transformations [69, 70] (see also [30] and references therein),

which should be realised as T-duality transformations on the boundary of the mem-

brane. However, it is not clear how the boundary string theory would be accessed

since the presence of all fluxes in (2.2) hinders the application of Stokes’ theorem.

A possible solution would be to consider a doubled generalized bundle and impose

a suitable constraint to eliminate the extra degrees of freedom. Such approaches

could provide a rigorous derivation of the star products proposed in [14], and relate

our membrane model with the methods of [23, 24].

Twist deformations of double field theory.

The simultaneous presence of all T-dual fluxes could also be investigated by trans-

ferring the twist deformation techniques we have developed here to the setting of

double field theory. It is not difficult to imagine how this could be accomplished;
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for example, one could employ the doubled phase space of [14] and examine its sym-

metries, searching for a suitable cochain twist. However, our formalism does not

offer an analogue of the strong constraint of double field theory, therefore it is not

obvious how one would define truncations from doubled space to the string theory

target space.

Nonassociative field theories.

Our twist deformation framework can a priori be extended to deformations of con-

nections on M = T ∗M, and thus more elaborate models on non-geometric spaces

could be constructed, such as gauge theory or gravity. However, one should realise

such theories in configuration space M in order to acquire a meaningful field the-

ory. We recognise here the same problem that we encountered above: a suitable

truncation scheme from T ∗M to M is at the moment elusive.

Spherical backgrounds.

Non-geometric flux compactifications of spherical backgrounds were recently consid-

ered in [106], where T-duality was expressed in terms of the field strength H = dB

rather that the B-field, and a Q-fluxed T-fold was constructed. An analysis from a

membrane perspective could be performed to explore possible geometric interpreta-

tions of such backgrounds.
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Higher Lie algebra structures

In this appendix we collect the pertinent mathematical material on higher structures

which are used extensively in the main text.

A.1 Lie 2-algebras

Homotopy Lie algebras. An L∞-algebra or strong homotopy Lie algebra is a

graded vector space V together with a collection of totally (graded) antisymmetric

n-brackets [−, . . . ,−] :
∧n V → V , n ≥ 1 of degree n − 2 satisfying the higher or

homotopy Jacobi identities

n∑
i=1

∑
σ∈Sh(i,n−i)

(−1)α(σ)
[
[vσ(1), . . . , vσ(i)], vσ(i+1), . . . , vσ(n)

]
= 0 (A.1)

for each n ≥ 1. Here (−1)α(σ) is a prescribed sign rule for permuting homogeneous

elements v1, . . . , vn ∈ V , while Sh(i, n− i) is the set of permutations σ ∈ Sn which

preserve the orders of the first i elements and of the last n− i elements, i.e. σ(1) <

· · · < σ(i) and σ(i+ 1) < · · · < σ(n) for i = 1, . . . , n.

Denote the 1-bracket by d := [−]. It has degree −1 and the generalized Jacobi

identity (A.1) for n = 1 reads

d2 = 0 , (A.2)

which implies that d : V → V is a differential making V into a chain complex. For
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n = 2 one has

d[v, w] = [dv, w] + (−1)|v| [v, dw] , (A.3)

which implies that d is a derivation with respect to the antisymmetric 2-bracket

[−,−] : V ∧ V → V . The bracket [−,−] satisfies the usual Jacobi identity only up

to a homotopy correction; from (A.1) with n = 3 we obtain

(−1)|v| |u|
[
[v, w], u

]
+ (−1)|w| |u|

[
[u, v], w

]
+ (−1)|v| |w|

[
[w, u], v

]
=

= (−1)|v| |u|+1
(
d[v, w, u] + [dv, w, u] + (−1)|v| [v, dw, u] + (−1)|v|+|w| [v, w, du]

)
,

(A.4)

which implies that the Jacobiator [−,−,−] : V ∧ V ∧ V → V is a chain homotopy

map. For n > 3, the identities (A.1) impose extra coherence relations on this

homotopy and all higher homotopies.

If V has trivial grading, then an L∞-algebra is simply an ordinary Lie algebra.

More generally, an L∞-algebra with vanishing n-brackets for all n ≥ 3 is a differential

graded Lie algebra.

A 2-term L∞-algebra is a strong homotopy Lie algebra with underlying graded

vector space V = V0 ⊕ V1 concentrated in degrees 0 and 1; it has vanishing n-

brackets for n > 3 and the only non-trivial identities in (A.1) occur for n = 1, 2, 3, 4.

It may be regarded as a 2-term chain complex V =
(
V1

d−−→ V0

)
whose bracket

[−,−] : Vi⊗Vj → Vi+j, i+ j = 0, 1, is a chain map and whose Jacobiator [−,−,−] :

V0 ∧ V0 ∧ V0 → V1 is a chain homotopy from the chain map

V0 ∧ V0 ∧ V0 −→ V1 , v ∧ w ∧ u 7−→
[
v, [w, u]

]
(A.5)

to the chain map

V0 ∧ V0 ∧ V0 −→ V1 , v ∧ w ∧ u 7−→
[
[v, w], u

]
+
[
w, [v, u]

]
(A.6)
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satisfying the coherence condition

[
v, [w, u, s]

]
+
[
v, [w, u], s

]
+
[
v, u, [w, s]

]
+
[
[v, w, u], s] +

[
u, [v, w, s]

]
(A.7)

=
[
v, w, [u, s]

]
+
[
[v, w], u, s

]
+
[
w, [v, u, s]

]
+
[
w, [v, u], s

]
+
[
w, u, [v, s]

]
.

This higher Jacobi identity relates the two ways of using the Jacobiator to re-bracket

the expression [[[s, v], w], u].

A related notion is that of an A∞-algebra, or homotopy associative algebra, which

is a graded vector space A endowed with a family of n-multiplication operations

µn : A⊗n → A of degree n− 2, n ≥ 1 obeying the higher or homotopy associativity

relations

∑
j+k+l=n

(−1)σ µn ◦
(
idA⊗j ⊗ µk ⊗ idA⊗l

)
= 0 . (A.8)

The first two relations

d2 = 0 and dµ2(a, b) = µ2(da, b) + (−1)|a| µ2(a, db) (A.9)

for a, b ∈ A make A into a chain complex with differential d := µ1 which is a graded

derivation of the binary product µ2. The third relation states that the product µ2

is associative up to the homotopy µ3, and so on. From an A∞-algebra structure on

A one constructs an L∞-algebra structure through the antisymmetric n-brackets

[a1, . . . , an] :=
∑
σ∈Sn

sgn(σ)µn(aσ(1), . . . , aσ(n)) (A.10)

for a1, . . . , an ∈ A. However, in general there is no converse enveloping algebra type

procedure to construct an A∞-structure from an L∞-structure.

Lie 2-algebras. 2-term L∞-algebras are the same things as Lie 2-algebras [12,

Theorem 36], which are categorified versions of Lie algebras in which the Jacobi

identity is replaced by a Jacobiator isomorphism. For this, recall that a 2-vector

space is a linear category V = (V0,V1) consisting of a vector space of objects V0 and
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a vector space of morphisms V1, together with source and target maps s, t : V1 ⇒ V0

sending a morphism to its domain and range, and an inclusion map 1 : V0 → V1,

v 7→ 1v, sending an object to its identity morphism; the set of composable morphisms

is V1 ×V0 V1 = {(v1, w1) ∈ V1 × V1 | s(w1) = t(v1)}. These maps are all linear and

compatible in the usual sense with the composition ◦ : V1 ×V0 V1 → V1 in the

category.

A Lie 2-algebra is a 2-vector space V together with an antisymmetric bilinear

bracket functor [−,−]V : V × V → V and a natural antisymmetric trilinear Jaco-

biator isomorphism on objects satisfying a higher Jacobi identity. A Lie 2-algebra

V is strict if its Jacobiator is the identity isomorphism; in that case both V0 and

V1 are Lie algebras, and each operation on the category is a homomorphism of Lie

algebras. Otherwise V is semistrict ; this is the case of relevance to this paper.

Given a 2-term L∞-algebra V =
(
V1

d−−→ V0

)
, we construct a 2-vector space V

with vector spaces of objects and morphisms given by V0 = V0 and V1 = V0⊕ V1. A

morphism f = (v0, v1) in V1 with v0 ∈ V0 and v1 ∈ V1 has source and target given

by s(v0, v1) = v0 and t(v0, v1) = v0 + dv1, while the object inclusion is 1v = (v, 0).

The composition of two morphisms f = (v0, v1) and f ′ = (v0 + dv1, v
′
1 ) in V1 is

f ◦ f ′ := (v0, v1 + v′1 ). The bracket functor [−,−]V : V × V → V is defined on

objects v, v′ ∈ V0 by [v, v′ ]V = [v, v′ ], where [−,−] denotes the bracket in the L∞-

algebra V . The bracket of morphisms f = (v0, v1) and f ′ = (v′0, v
′
1 ) in V1 is given

by

[f, f ′ ]V =
(
[v0, v

′
0 ] , [v1, v

′
0 ] + [v0 + dv1, v

′
1 ]
)

=
(
[v0, v

′
0 ] , [v0, v

′
1 ] + [v1, v

′
0 + dv′1 ]

)
.

(A.11)

Finally, the Jacobiator for V is defined on v, w, u ∈ V0 by

[v, w, u]V :=
([

[v, w], u
]
, [v, w, u]

)
, (A.12)

with source s([v, w, u]V ) = [[v, w], u] and target t([v, w, u]V ) = [v, [w, u]] + [[v, u], w]

by (A.4).
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The skew-symmetric bracket

[v1, v
′
1 ] = [dv1, v

′
1 ] = [v1, dv

′
1 ] , (A.13)

defined on elements v1, v
′
1 ∈ V1 which figures in the formula (A.11), is called the

derived bracket. It satisfies the Jacobiator identity

[
v1, [v

′
1, v
′′
1 ]
]
−
[
[v1, v

′
1 ], v′′1

]
−
[
v′1, [v1, v

′′
1 ]
]

= [dv1, dv
′
1, dv

′′
1 ] . (A.14)

Classification of Lie 2-algebras. There is a bijective correspondence between

semistrict Lie 2-algebras and certain classifying “Postnikov data” [12], analogous

to the Faulkner construction of 3-Lie algebras. The data in question are triples

(g,W, j) consisting of a Lie algebra g, a representation of g on a vector space W ,

and a 3-cocycle j on g with values in W ; the isomorphism classes are parametrized

by elements [j] ∈ H3(g,W ) of the degree 3 Lie algebra cohomology .

For a Lie 2-algebra V obtained from a 2-term L∞-algebra V =
(
V1

d−−→ V0

)
, the

corresponding triple (g,W, j) is constructed by firstly setting g = ker(d) ⊆ V1; since

d = 0 on g the 2-bracket of the L∞-structure satisfies the Jacobi identity exactly

and makes g into a Lie algebra. Now let W = coker(d) ⊆ V0, and use the 2-bracket

to define an action g ⊗ W → W by g . w = [g, w] for g ∈ g, w ∈ W ; in this

correspondence W is regarded as the abelian Lie algebra of endomorphisms of the

zero object of V . Finally, the Jacobiator of the L∞-structure gives a map [−,−,−] :

g ∧ g ∧ g→ W which is a Chevalley–Eilenberg 3-cocycle j whose cohomology class

[j] ∈ H3(g,W ) is the obstruction to V being functorially equivalent to a strict Lie

2-algebra, or equivalently to a differential Z2-graded Lie algebra.

A.2 Gerstenhaber brackets

Consider the Hochschild complex Hn(A,A) = HomC(A⊗n,A) of an algebra A with

product ? ∈ H2(A,A). The space of n-cochains Cn(A,A) = HomC(
∧nA,A) is

constructed by antisymmetrization, and the Hochschild coboundary operator d? :
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Cn(A,A)→ Cn+1(A,A) is defined by

d?C(f1, . . . , fn+1) = f1 ? C(f2, . . . , fn+1) +
n∑
i=1

(−1)i C(f1, . . . , fi ? fi+1, . . . , fn+1)

+ (−1)n+1 C(f1, . . . , fn) ? fn+1 (A.15)

for C ∈ Cn(A,A) and fi ∈ A. From the product on A we construct a cup product

? : Hn1(A,A)⊗Hn2(A,A)→ Hn1+n2(A,A) by

(C1 ? C2)(f1, . . . , fn1+n2) := C1(f1, . . . , fn1) ? C2(fn1+1, . . . , fn1+n2) (A.16)

for C1 ∈ Cn1(A,A) and C2 ∈ Cn2(A,A).

The Gerstenhaber bracket of C1 ∈ Cn1(A,A) and C2 ∈ Cn2(A,A) is defined by

[C1, C2]G = C1 ◦ C2 − (−1)(n1+1) (n2+1) C2 ◦ C1 (A.17)

in Cn1+n2−1(A,A), where the composition product is defined as

(C1 ◦ C2)(f1, . . . , fn1+n2−1)

= C1

(
C2(f1, . . . , fn2), fn2+1, . . . , fn1+n2−1

)
(A.18)

+

n1−2∑
i=1

(−1)i n2 C1

(
f1, . . . , fi, C2(fi+1, . . . , fi+n2), fi+n2+1, . . . , fn1+n2−1

)
+ (−1)(n1+1) (n2+1) C1

(
f1, . . . , fn1−1, C2(fn1 , . . . , fn1+n2−1)

)
for fi ∈ A. The coboundary operator is then given by

d?C = −[C, ?]G . (A.19)

The associativity of the product ? ∈ C2(A,A) may be expressed by using

[?, ?]G(f, g, h) = 2
(
(f ? g) ? h− f ? (g ? h)

)
. (A.20)

Associativity is thus equivalent to d?? = [?, ?]G = 0 or d2
? = 0; in that case, the

Gerstenhaber algebra
(
C](A,A), d?, [−,−]G

)
is a differential graded Lie algebra.
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A.3 Schouten–Nijenhuis brackets

Let V] = C∞(M,
∧] TM) be the graded-commutative algebra of multivector fields

on a smooth manifold M; notice that V] contains the associative algebra V0 =

C∞(M) of smooth complex functions on M. The usual Lie bracket of vector fields

[−,−]TM extends to the canonical Schouten–Nijenhuis bracket [−,−]S on V]. It

gives V] the structure of a differential graded Gerstenhaber algebra with vanish-

ing differential, i.e. [−,−]S is a graded Lie bracket of degree −1 satisfying the

graded Leibniz rule with respect to the associative (graded-commutative) exterior

product. Given homogeneous multivector fields X = X I1...I|X| ∂I1 ∧ · · · ∧ ∂I|X| and

Y = YI1...I|Y| ∂I1 ∧ · · · ∧ ∂I|Y| , it is defined by

[X ,Y ]S = (−1)|X |−1X � Y − (−1)|X | (|Y|−1) Y � X (A.21)

in V |X |+|Y|−1, where

X � Y :=

|X |∑
l=1

(−1)l−1X I1...I|X| ∂lYJ1...J|Y| ∂I1 ∧ · · · ∧ ∂̂Il ∧ · · · ∧ ∂I|X|∧

∧ ∂J1 ∧ · · · ∧ ∂J|Y|

(A.22)

and the hat indicates an omitted derivative.

The condition for a bivector Θ = 1
2

ΘIJ ∂I ∧ ∂J to define a Poisson structure on

C∞(M) can be expressed through

[Θ,Θ]S = 1
3!

(
ΘIL ∂LΘJK + ΘJL ∂LΘKI + ΘKL ∂LΘIJ

)
∂I ∧ ∂J ∧ ∂K . (A.23)

The corresponding antisymmetric bracket {f, g}Θ := Θ(df, dg) for f, g ∈ C∞(M)

satisfies the Jacobi identity on C∞(M) if and only if [Θ,Θ]S = 0, and thus defines a

Poisson bracket. In terms of the Lichnerowicz coboundary operator dΘ : Vn → Vn+1

defined by

dΘ = −[−,Θ]S , (A.24)
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the Poisson condition can be expressed as dΘΘ = 0 or d2
Θ = 0. The Poisson bracket

extends to the cotangent bundle T ∗M where it encodes the Schouten–Nijenhuis

bracket of multivector fields.

A.4 Nambu–Poisson structures

Let M be a a smooth d–dimensional manifold. A Nambu–Poisson structure of

order n, 3 ≤ n ≤ d onM is a totally antisymmetric map {−, . . . ,−} : C∞(M)∧n →

C∞(M), which satisfies the generalized Leibniz rule

{f g, h1, . . . , hn−1} = f {g, h1, . . . , hn−1}+ {f, h1, . . . , hn−1} g , (A.25)

and a generalized Jacobi identity called the fundamental identity [120]

{
f1, . . . , fn−1, {g1, . . . , gn}

}
=
{
{f1, . . . , fn−1, g1}, . . . , gn

}
+ · · ·+

+
{
g1, . . . , {f1, . . . , fn−1, gn}

}
,

(A.26)

where f, g, h ∈ C∞(M).

By the generalized Leibniz rule, the Nambu–Poisson n-bracket acts as a vec-

tor field, which implies that it is determined by a Nambu–Poisson n-vector Π =

1
n!

Πi1···in(x) ∂i1 ∧ · · · ∧ ∂in as

{f1, . . . , fn} = Π(df1, . . . , dfn) = Πi1···in(x) ∂i1f1 · · · ∂infn . (A.27)

A Hamiltonian vector field of (n− 1) functions is given by

Xfn−1 =
∧nΠ](dfn−1) , (A.28)

where
∧n Π] denotes the natural way of using Π to “raise indices”. Then the funda-

mental identity means that Hamiltonian vector fields are derivations of the Nambu–
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Poisson bracket, which is preserved by the flow

dg

dt
= {g, f1, . . . , fn−1} . (A.29)

The Nambu 3-bracket was introduced in [103] as a generalization of the Poisson

bracket, and was later extended to the Nambu–Poisson n-bracket [120]. In recent

years, it has attracted a lot of attention due to its intriguing 3-Lie (n-Lie) algebra

structure, which appears in the Bagger–Lambert–Gustavsson description of multiple

M2-branes in M-theory (see e.g. [67] for a review). In this thesis, our prominent

examples are the flat backgrounds M = R3 or M = T 3 equipped with the Nambu–

Poisson 3-bracket, which is defined on coordinate functions in terms of a constant

trivector R = 1
6
Rijk ∂i ∧ ∂j ∧ ∂k by

{xi, xj, xk} = Rijk , (A.30)

and extended by linearity and the generalized Leibniz rule. Its quantization gives

the Nambu–Heisenberg algebra. For further details about the quantization of generic

Nambu–Poisson structures, see e.g. [45] and references therein.

A.5 Higher derived brackets

Let Π ∈ V] = C∞(M,
∧] TM) be a multivector field satisfying [Π,Π]S = 0. Follow-

ing [122], we define the n-th derived bracket of Π as

{X1, . . . ,Xn}Π := [· · · [ [Π,X1]S,X2]S, . . . ,Xn]S (A.31)

for Xi ∈ V] and n ≥ 1. Then the sequence of brackets {−, . . . ,−}Π defines a higher

Poisson structure on V]. Each derived bracket strictly obeys a generalized Leibniz

rule with respect to the exterior product on V], i.e. {−, . . . ,−}Π is a derivation

in each argument. By [122, Corollary 1], this sequence of higher Poisson brackets

gives V] the structure of an L∞-algebra; the full countable tower of homotopy Jacobi

identities is equivalent to the requirement [Π,Π]S = 0.
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In this correspondence we use a parity Z2-grading defined as the multivec-

tor degree modulo 2, and then apply the parity reversion functor. Hence we in-

troduce the total Z2-grading V] = V0 ⊕ V1 where V0 = C∞(M,
∧odd TM) and

V1 = C∞(M,
∧even TM). Owing to the generalized Leibniz rule, in examples it suf-

fices to display the bracket at linear order in the generators of V], with |1| = 1 = |xI |

and |∂I | = 0.

A.6 Courant algebroids

Lie algebroids. A Lie algebroid over a smooth manifold M is a vector bundle

E →M endowed with a Lie bracket [−,−]E on smooth sections of E and a bundle

morphism ρ : E → TM, called the anchor map, which is compatible with the Lie

bracket on sections, i.e. the tangent map to ρ is a Lie algebra homomorphism,

dρ[ψ1,ψ2]E = [dρψ1 , dρψ2 ]TM , ψ1, ψ2 ∈ C∞(M, E) , (A.32)

and a Leibniz rule is satisfied when multiplying sections of E by smooth functions

on M,

[ψ1, f ψ2]E = f [ψ1, ψ2]E + ρψ1(f)ψ2 , ψ1, ψ2 ∈ C∞(M, E) , f ∈ C∞(M) .

(A.33)

Equivalently, a Lie algebroid is a vector bundle E →M endowed with a differential

dE of degree +1 on the free graded-commutative algebra
∧]
C∞(M) C

∞(M, E)∗ over

C∞(M). For ω ∈
∧n−1
C∞(M) C

∞(M, E)∗ and ψi ∈ C∞(M, E), the differential dE is

given here by

dE ω(ψ1, . . . , ψn) =
∑
σ∈Sn

(
ρψσ(1)

(
ω(ψσ(2), . . . , ψσ(n))

)
+ω
(
[ψσ(1), ψσ(2)]E, ψσ(3), . . . , ψσ(n)

))
. (A.34)
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This defines a differential graded algebra

CE(E) =
(∧]

C∞(M)C
∞(M, E)∗ , dE

)
(A.35)

which dually has the structure of a Gerstenhaber algebra with the Lie bracket on

C∞(M, E) extended as a biderivation with [ψ, f ]E = ψ(dEf) for ψ ∈ C∞(M, E) and

f ∈ C∞(M); this bracket generalizes the Schouten–Nijenhuis bracket of multivector

fields. The pair (A.35) is called the Chevalley–Eilenberg algebra of the Lie algebroid.

It is the complex which computes Lie algebroid cohomology.

A Lie algebroid over a point is just a Lie algebra (with trivial anchor map),

and (A.35) is the usual Chevalley–Eilenberg algebra which computes Lie algebra

cohomology. More generally, Lie algebra bundles provide natural examples of Lie

algebroids.

The tangent Lie algebroid over a manifold M is E = TM with the identity

anchor map ρ = idTM and the usual Lie bracket on vector fields. In this case

CE(TM) =
(
Ω](M) , d

)
is the usual de Rham complex.

Any bivector field Θ on M induces a map Θ] : T ∗M → TM via contraction

together with a bracket on C∞(M, T ∗M) = Ω1(M) called the Koszul bracket

[α, β]Θ := LΘ](α)β − LΘ](β)α− dΘ(α, β) (A.36)

for α, β ∈ Ω1(M), where L denotes the Lie derivative. Then E = T ∗M, ρ = Θ],

and [−,−]E = [−,−]Θ defines a Lie algebroid on M if and only if the Schouten–

Nijenhuis bracket of Θ vanishes, i.e. Θ defines a Poisson structure onM. In this case

dT ∗M = dΘ = [Θ,−]S is the Lichnerowicz differential and the Chevalley–Eilenberg

algebra (A.35) computes the Poisson cohomology of M.

Courant algebroids. The higher structures which arise in this paper, such as

twisted Poisson structures, require a higher extension of the notion of Lie algebroid.

For this, consider a vector bundle E →M over a smooth manifoldM equipped with

a metric 〈−,−〉 and an antisymmetric bracket [−,−]E : C∞(M, E)∧C∞(M, E)→

C∞(M, E), together with an anchor map ρ : E → TM. We define the Jacobiator
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J : C∞(M, E) ∧ C∞(M, E) ∧ C∞(M, E)→ C∞(M, E) by

J(ψ1, ψ2, ψ3) =
[
[ψ1, ψ2]E , ψ3

]
E

+
[
[ψ2, ψ3]E , ψ1

]
E

+
[
[ψ3, ψ1]E , ψ2

]
E
, (A.37)

a ternary map [−,−,−]E : C∞(M, E) ∧ C∞(M, E) ∧ C∞(M, E)→ C∞(M) by

[ψ1, ψ2, ψ3]E = 1
3!

(〈
[ψ1, ψ2]E , ψ3

〉
+
〈
[ψ2, ψ3]E , ψ1

〉
+
〈
[ψ3, ψ1]E , ψ2

〉)
, (A.38)

and the pullback d : C∞(M) → C∞(M, E) of the exterior derivative d via the

adjoint map ρ∗ by

〈df, ψ〉 = ρψ(f) , (A.39)

where f ∈ C∞(M) and ψ, ψi ∈ C∞(M, E); this map defines a flat connection,

d2 = 0.

Such a vector bundle is called a Courant algebroid if the following conditions are

satisfied:

(i) The Jacobi identity holds up to an exact expression:

J(ψ1, ψ2, ψ3) = d[ψ1, ψ2, ψ3]E;

(ii) The anchor map ρ is compatible with the bracket: ρ[ψ1,ψ2]E = [ρψ1 , ρψ2 ]TM;

(iii) There is a Leibniz rule: [ψ1, f ψ2]E = f [ψ1, ψ2]E + ρψ1(f)ψ2 − 1
2
〈ψ1, ψ2〉 df ;

(iv) 〈df, dg〉 = 0;

(v) ρψ
(
〈ψ1, ψ2〉

)
=
〈
[ψ, ψ1]E + 1

2
d〈ψ, ψ1〉 , ψ2

〉
+
〈
ψ1 , [ψ, ψ2]E + 1

2
d〈ψ, ψ2〉

〉
;

where ψ, ψi ∈ C∞(M, E) and f, g ∈ C∞(M).

The graded differential Lie algebra (A.35) is now generalized to a Lie 2-algebra:

The structure maps d, [−,−]E, [−,−,−]E of the Courant algebroid E →M on the

complex

C∞(M)
d−−→ C∞(M, E) , (A.40)
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extended as [ψ, f ]E := 1
2
〈df, ψ〉 for ψ ∈ C∞(M, E) and f ∈ C∞(M), define a

2-term L∞-algebra [112].

A.7 Lie 2-groups

A group is a monoid in which every element has an inverse; 2-groups are categorifi-

cations of groups. For this, recall that a tensor or monoidal category is a category

C = (C0,C1) equipped with an exterior product ⊗ : C × C → C together with

an identity object 1 ∈ C0 and three natural functorial isomorphisms: The unity

isomorphisms 1X := 1 ⊗ X ∼= X ∼= X ⊗ 1 in C1 for all objects X ∈ C0, and the

associator isomorphisms

P = PX,Y,Z : (X ⊗ Y )⊗ Z ≈−−→ X ⊗ (Y ⊗ Z) (A.41)

for all objects X, Y, Z ∈ C0. They satisfy the pentagon identities

(1X ⊗PY,Z,W ) ◦PX,Y⊗Z,W ◦PX,Y,Z⊗1W = PX,Y,Z⊗W ◦PX⊗Y,Z,W (A.42)

which state that the five ways of bracketing four objects commutes, and also the

triangle identities which state that the associator isomorphism with Y = 1 is com-

patible with the unity isomorphims. For morphisms F : X → Y and F ′ : X ′ → Y ′,

their exterior product is the morphism F ⊗ F ′ : X ⊗ X ′ → Y ⊗ Y ′ in C1. By

MacLane’s coherence theorem, these identities ensure that all higher associators are

consistent.

We call C braided when there are natural functorial isomorphisms

B = BX,Y : X ⊗ Y ≈−−→ Y ⊗X (A.43)

for any pair of objectsX, Y ∈ C0, called commutativity relations. The braiding BX,Y

satisfies two conditions, one expressing BX⊗Y,Z in terms of associativity relations

idX ⊗BY,Z and BZ,X ⊗ idY , and a similar one for BX,Y⊗Z .

An object A ∈ C0 in a tensor category C is an algebra or monoid object if there
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is a “multiplication” morphism ~ : A ⊗ A → A, written a ⊗ b 7→ a ~ b, which is

associative in the category, i.e. it satisfies the associativity condition

~ ◦ (~⊗ idA) = ~ ◦ (idA ⊗~) ◦PA,A,A (A.44)

as maps (A ⊗ A) ⊗ A → A. By MacLane’s coherence theorem, we can deal with

nonassociative algebras in this way by expressing usual algebraic operations as com-

positions of maps and doing the same in the monoidal category with the relevant

associator P inserted between any three objects as needed in order to make sense

of expressions. If in addition C is braided, then A is commutative if its product

morphism obeys

~ ◦BA,A = ~ (A.45)

as maps A⊗A → A. A group object is a monoid object A together with a “unit”

morphism 1A : 1→ A satisfying the unit condition

~ ◦ (1A ⊗ idA) = idA = ~ ◦ (idA ⊗ 1A) , (A.46)

such that every element of A has an inverse with respect to the product morphism

~ and the identity 1A.

A 2-group is a monoidal category in which every object and morphism has an

inverse. A Lie 2-group is a pair G = (G0,G1) of objects in the category of smooth

manifolds and smooth maps, with source and target maps s, t : G1 ⇒ G0, and

a vertical multiplication ◦ : G1 × G1 → G1 of morphisms. In addition there is

a horizontal multiplication functor ⊗ : G × G → G on objects and morphisms, an

identity object 1, and a contravariant inversion functor (−)−1 : G → G together with

natural isomorphisms provided by the associator Pg,h,k : (g⊗h)⊗k → g⊗(h⊗k), the

left and right units 1⊗g ∼= g ∼= g⊗1, and the units and counits g⊗g−1 ∼= 1 ∼= g−1⊗g

obeying pentagon, triangle and zig-zag identities; see [13, section 7] for details. If

the structure morphisms are all identity isomorphisms, the Lie 2-group G is called

strict ; otherwise G is semistrict.
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A Lie 2-group G = (G0,G1) is special if its source and target morphisms s, t :

G1 ⇒ G0 are equal, and the units and counits are all identity isomorphisms. There

is a bijective correspondence between special Lie 2-groups and triples (G,H, ϕ) con-

sisting of a Lie group G, an action of G as automorphisms of an abelian group H,

and a normalized smooth 3-cocycle ϕ : G×G×G→ H; the isomorphism classes are

parametrized by elements [ϕ] ∈ H3(G,H) in the degree 3 group cohomology with

smooth cocycles. Given a triple (G,H, ϕ), the corresponding semistrict Lie 2-group

G = (G0,G1) has the Lie group G0 = G as the space of objects, the semi-direct prod-

uct Lie group G1 = GnH as the space of morphisms, and the associator P is given

by the action of ϕ; the source and target maps s, t : G1 ⇒ G0 are both projection

onto the first factor of G×H, while the cocycle condition on ϕ is equivalent to the

pentagon identities (A.42). In this correspondence the abelian group H is the group

of automorphisms of the identity object 1 in the monoidal category G .

The exponential map takes an ordinary Lie algebra to its integrating simply con-

nected Lie group, while the tangent space at the identity of an ordinary Lie group is

the corresponding infinitesimal Lie algebra. In marked contrast, there are no general

constructions relating Lie 2-algebras and Lie 2-groups. Integration/differentiation

between strict Lie 2-algebras and strict Lie 2-groups is described in [13, 12]; a gen-

eral procedure for integrating L∞-algebras is described in [54, 62]. In the semistrict

cases of interest to us in this paper, given a triple (G,H, ϕ) representing a special

Lie 2-group G (with H an abelian Lie group), by differentiation we obtain a triple

(g,W, j) representing a 2-term L∞-algebra V (with W regarded as an abelian Lie

algebra); in this case we call the Lie 2-group G an integration of the Lie 2-algebra

V corresponding to V .
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Weights of Kontsevich diagrams

In this appendix we explain in some detail how to calculate the weights (3.5) of the

diagrams that enter into Kontsevich’s formula (3.3) and present some representative

examples of the computations.

The edges of a generic diagram Γ between two vertices p, q ∈ H lie on semicir-

cular geodesics `(p, q) in the hyperbolic upper half-plane H. The harmonic angle

φh = φh(p, q) is defined to be the angle between an edge `(p, q) and the directed

geodesic `(p,∞) at p; it may be integrated to provide the weight wΓ with which

each multidifferential operator contibutes to the star product (3.3). This is depicted

in the following diagram:

φh

φ′ h p

q

p′ R

H

Angles in H are defined in the usual manner; thus φh, φ′ h ∈ [0, π] as points p

and p′ run along the semicircle from the real axis R (the boundary of H) to q in H.

It is important to note that the harmonic angle is measured counterclockwise. This

means that φh ∈ [0, 2π] as we cross q to integrate over H along the semicircle.

Bivector diagrams. As an example, let us calculate the weight of the wedge

which corresponds to the twisted Poisson bracket ΘIJ ∂If ∂Jg; here we denote φh
e11

150



Appendix B. Weights of Kontsevich diagrams

by θ1 and φh
e21

by ψ1:

θ1

ψ1
p1

Integrating the two-form dθ1 ∧ dψ1 over H, keeping in mind that ψ1 > θ1, is

straightforward and gives the weight

1

(2π)2

∫ 2π

0

dψ1

∫ ψ1

0

dθ1 =
1

(2π)2

∫ 2π

0

dψ1 ψ1 =
1

2
. (B.1)

It is important to note here that changing the order of integration produces a minus

sign since dψ1 ∧ dθ1 = −dθ1 ∧ dψ1. This means that the topologically equivalent

tractable wedge has weight equal to −1
2
: A tractable diagram is one that has the

derivatives assigned to its edges reversed, i.e. the tractable wedge corresponds to

ΘIJ ∂Jf ∂Ig.

Triple product diagrams. Let us now calculate the weights of the following

three diagrams which appear at order ~2 when we star multiply three functions:

θ1

ψ1

θ2

ψ2

p1

p2

θ1

ψ1

θ2

ψ2

p1

p2
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θ1

ψ1

θ2

ψ2

p1

p2

For the first two diagrams we have ψ2 > θ2 and ψ2 > ψ1 > θ1, and thus we get

the weights

w1 =
1

(2π)4

∫ 2π

0

dψ1

∫ ψ1

0

dθ1

∫ 2π

ψ1

dψ2

∫ ψ2

0

dθ2 =
1

8
(B.2)

for the first diagram and

w2 =
1

(2π)4

∫ 2π

0

dψ1

∫ ψ1

0

dθ1

∫ 2π

ψ1

dψ2

∫ ψ2

0

−dθ2 = −1

8
(B.3)

for the second diagram (which is tractable). The third diagram has ψ2 > θ2 > θ1

and ψ2 > ψ1 > θ1 which gives the weight

w3 =
1

(2π)4

∫ 2π

0

dψ1

∫ ψ1

0

dθ1

∫ 2π

0

dψ2

∫ ψ2

θ1

dθ2 =
1

12
. (B.4)

Trivector diagrams. Finally, we calculate the weight of the following trivector

diagram that enters the associator Φ(Π):

θ

ψ

φ

p1
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Here ψ > θ > φ and the formula (3.5) for the diagram weight gives [89]

w =
1

(2π)3

∫
H3

dφ ∧ dθ ∧ dψ H(ψ − θ)H(θ − φ)H(ψ − φ)

=
1

(2π)3

∫ 2π

0

dψ

∫ ψ

0

dθ

∫ θ

0

dφ =
1

6
, (B.5)

where H denotes the Heaviside step function.
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deformations of geometry in double field theory,” JHEP 1404 (2013) 141,

[arXiv:1312.0719 [hep-th]].
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