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ABSTRACT 

Mineral carbonation allows to permanently store CO2 into materials rich in metal 

oxides. However, mineralization technologies still suffer of slow reaction rates and low 

carbonation efficiencies and, to improve them, there has been increasing interest in 

employing waste streams as feedstocks. In light of this, the aim of this thesis was to 

determine the potential use of wastes for permanent sequestration of CO2. It was found 

that waste streams available for mineral carbonation in the UK have a capture potential 

of 1Mt/year, and in many cases, waste resources are located close to the CO2 emitters. A 

novel closed-loop, multi-step mineralization process was developed. The process 

consists of extracting calcium from the feedstock followed by its precipitation as 

crystals of calcium sulphate, which are then converted into calcium carbonate. 

Carbonation efficiency of the process increased when temperature was raised and solid 

to liquid ratio and particle size reduced. A 74%, 67% and 59% of carbonation efficiency 

was achieved for steel slag, ground granulated blast furnace slag and phosphorus slag, 

respectively. Finally, a real case scenario, where the mineralization process would be 

retrofitted to a steel plant, was investigated. It was found that, because of the thermal 

and electrical energy required to run the process, the mineralization system would be 

carbon negative (i.e. storing more CO2 than the amount emitted during the process) 

when the solid to liquid ratio would be 240g/l or higher. 
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CHAPTER 1 – INTRODUCTION 

 

This chapter describes the challenges caused by climate change and possible solutions 

to the rising global carbon dioxide (CO2) emissions in atmosphere. This vast release of 

CO2 is producing unprecedented climatic consequences which humanity is called to 

face and tackle before irreversible damages are caused. 

1.1 Climate change 

In 2012, fossil fuels accounted for 82% of the total of world energy use [1.1]. However, 

the use of fossil fuels is facing significant challenges due to the vast amounts of CO2 

released into the atmosphere as a result of their combustion. Considering that CO2 is a 

greenhouse gas, such large and increasing atmospheric CO2 levels are causing climatic 

consequences [1.2].  In fact, recent observations (Figure 1.1) have conclusively shown 

the increase in global average air and ocean temperatures, melting of ice and snow and 

rising global sea levels.  

 

Figure 1.1: Trends of global average surface temperature, sea level and snow cover [1.3] 

It is very unlikely that natural causes can explain the late 20th-century warming [1.3]. 

Data on average earth surface show that the second half of the 20th century was likely 
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the warmest 50-year period in the Northern Hemisphere in the last 1300 years. Climate 

models provide a suitable tool to study the various influences on the Earth’s climate. 

The recorded global warming started during the second half of the 20th century  is 

inconsistent with the scientific understanding of how the climate should respond to 

natural external factors such as variability in solar output and volcanic activity. This 

rapid warming, instead, is consistent with the scientific understanding of how the 

climate should respond to a rapid increase in greenhouse gases like that which has 

occurred over the past century [1.3]. When the effects of increasing levels of 

greenhouse gases are included in the earth system models, such as the European EC-

EARTH or the American CCSM4, as well as natural external factors, the models 

produce good simulations of the warming that has occurred over the past century. The 

models fail to reproduce the observed warming when run using only natural factors. 

When human factors are included, the models also simulate a geographic pattern of 

temperature change around the globe similar to that which has occurred in recent 

decades [1.3]. 

Recently, an increasing number of severe climatic events have been recorded and 

climatologists believe that, continuing warming means that extreme weather, like 

floods, droughts and tropical storms, are likely to become more frequent and dangerous 

[1.3]. The emissions of CO2 will continue to increase as the world economy grows, 

resulting in growth of the level of atmospheric CO2, unless action is taken [1.2]. For this 

reason, in the last few years, scientific organizations and policy makers have been 

developing and implementing new low carbon energy technologies and policies. 

Legislation to cap CO2 emissions has been introduced in some areas of the world in the 

form of carbon taxes (Sweden, Norway, Denmark, the Netherlands, Finland) [1.4] [1.5] 

or carbon-trade schemes (European Union and New Zealand) [1.6] [1.7]. To achieve a 

global reduction of CO2 emissions both, renewable energies and carbon capture and 

storage are expected to play a key role in electricity production, as described in this 

chapter [1.8] [1.9]. 

1.2 World CO2 emissions 

Global CO2 emissions were 32Gt in 2012 and CO2 reached a concentration in 

atmosphere of 400ppm in June 2013 from 356ppm in 1992 and 280ppm in 1750s [1.10] 

[1.11]. Figure 1.2 reports the trends of atmospheric CO2 concentration registered by the 

National Oceanic & Atmospheric Administration at Mauna Loa (Hawaii, USA). The red 
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line represents the CO2 data measured as the mole fraction in dry air, while the black 

curve represents seasonally corrected data. It can be noticed the continuous increase in 

the CO2 concentration, from less than 320ppm in 1960 to 400ppm in 2013. 

 

Figure 1.2: Average annual atmospheric CO2 concentration at Mauna Loa observatory 

from 1960 to 2013 [1.11]  

According to the Intergovernmental Panel for Climate Change (IPCC), by 2100 CO2 

atmospheric concentration could reach 540-970ppm [1.12], resulting in a global 

temperature increase due to the greenhouse effect of 1.8-4°C (Figure 1.3) [1.13]. It has 

been recently assessed that such temperature increase would have drastic impacts on 

human health, ecosystems, biodiversity, food availability, and coastlines [1.3]. 

Figure 1.3 shows temperature increase trends from year 2000 obtained from simulations 

under different scenarios [1.14]: A2 predicts a world with increasing global population 

during all the 21
st
 century, strong economic development regionally oriented; A1B 

considers a future world of very rapid economic growth, population peak at mid-century 

and then it declines and the rapid introduction of new and more efficient technologies; 

energy sources in scenario A1B are balanced between fossil fuels and renewables. 

Scenario B1 is similar to A1B, but economic structure changes towards service and 

information technology, with reduction in material intensity and the introduction of 

clean and resource-efficient technologies. The scenario named constant composition 

commitment represents the case where concentration of greenhouse gases in atmosphere 

remain constant at the value of year 2000. For the scenarios A1B and B1 simulations 

were run beyond year 2100. The forecasted temperature trends range between the worst 
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case scenario A2, reaching a global warming of about 3.5°C by 2100 and the best case 

scenario given by the constant composition commitment reaching only about 0.5°C 

global temperature raise. 

 

Figure 1.3: Prediction of global temperature increase according to different scenarios 

[1.13] 

Figure 1.4 reports the share in CO2 global emissions in 2012; the first five global 

emitters are China (27%), United States (16%), European Union (EU27) (11%) India 

(6%) and Russia (5%) [1.10] [1.15]. In year 2012 global CO2 emissions increased by 

1.4% compared to the previous year [1.10]. In 2009 emissions dropped 1%, while in 

years 2010 and 2011 they raised by 5 and 3%, respectively [1.15]. It should be noted 

that, increased emissions are due to developing countries i.e. in 2011 emissions in the 

EU27 decreased by 3% and in the United States by 2%, while China and India increased 

their emissions by 9% and 6%, respectively [1.15].  

 

Figure 1.4: Share in global CO2 emissions in year 2012 [1.10] [1.15] 

China 

United States 

EU27 

India 

Russia 

Others 
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Other interesting data are represented by the CO2 emissions per capita, where China’s 

CO2 per capita emissions (7.2t/year) have reached developed European countries 

(7.5t/year), while the United States are still the largest emitters per capita (17.3t/year) 

[1.15]. 

1.3 Renewable energy sources 

Zero emission energy technologies can produce electricity from natural resources which 

are renewable (naturally regenerated) like sunlight, wind, waves. Nowadays, renewable 

energy provides about 11% of the overall primary energy used worldwide while it plays 

an important role in electricity production; in 2012, in fact, renewable energy provided 

21% of the overall electricity production [1.1].  

In 2012, half of the electricity capacity added globally were renewable energy sources 

and the global renewable power capacity exceeds 1360GW which represents about 25% 

of the global power capacity (5360GW) [1.16]. Recent investigations [1.17] about 

renewable electricity costs in the UK from different renewable energy technologies are 

reported in Figure 1.5 for 2010 while Figure 1.6 predicts the situation for 2020. A 

general reduction of energy production cost from renewables is expected, thanks to the 

improvements in technology and increased efficiency for generating electricity [1.17]. It 

can be noticed that generation from combined cycle gas turbine (CCGT), the most 

efficient process for production of electricity from fossil fuels, is still more cost 

effective than all other renewable energy options. However, despite the shale gas 

development in the US, the latest projections say that renewable cost will drop further 

and they will surpass gas in the world energy mix by 2016 [1.18].  

Among all the renewable energy options, onshore wind and small anaerobic digestion 

(AD) plants were the most economic in 2010, costing £75/127/MWh and £75-

194/MWh, respectively. Moreover, they are expected to be the cheapest options also in 

2020 with a cost of £71-122/MWh and £70-173/MWh, respectively. It should also be 

noted that solar photovoltaic (PV) is forecasted to be the technology achieving the 

highest drop in cost between 2010 and 2020, from £202-380/MWh to £136/250MWh. 
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Figure 1.5: Cost ranges for renewable electricity technology for 2010 [1.17] 

 

Figure 1.6: Estimated cost ranges for renewable electricity technology for 2020 [1.17] 

In addition to reducing greenhouse gas emissions, renewable energies have a wide range 

of benefits: energy security, reduced import dependency, prevention of biodiversity 

loss, job creation, rural development and energy access [1.16]. These advantages are 

well known by policy makers who have been increasingly developing policies which 
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facilitate renewable energy development. In fact, in early 2012, at least 118 countries 

worldwide had renewable energy targets in place and these will be, together with energy 

efficiency, the foundations of a sustainable energy future [1.16]. 

1.4 CO2 sequestration options 

Renewable energy sources are expected to be the main source of energy in 2050, but 

fossil fuels will keep playing an important role in energy production due to their 

abundance and low cost [1.19]. Therefore, different options for reducing and sequester 

CO2 emissions in atmosphere have been investigated, as outlined below.  

Carbon dioxide capture and storage (CCS) technologies allow capturing CO2 from flue 

gases of power plants, refineries and energy intensive industrial processes and, 

following compression, CO2 is injected in suitable underground storage sites, away 

from the atmosphere. 

Carbon capture utilization and storage (CCUS) includes the reuse of the captured CO2 

for a wide range of applications [1.9]. The most known technology included is enhanced 

oil recovery (EOR) where CO2 is reused by injecting it in an oil or gas reservoir to 

increase the amount of hydrocarbons extracted. CO2 is then stored in the reservoir and 

this technology can be considered also as a CCS option. Other CO2 utilization routes are 

for products like beverage and fire extinguishers. Furthermore, there has been 

increasing interest in CO2 application for the production of chemicals, hydrocarbons 

and fuels [1.9].  

Recently, CCS has not seen significant progress and deployment as expected, in fact, 

only about 20Mt/year [1.20] are currently stored underground, compared to 32Gt/year 

CO2 global emissions [1.10]. Therefore, an alternative technology, called mineral 

carbonation has attracted increasing attention [1.21]. The basic process consists of 

reacting CO2 with a divalent metal oxide, such as calcium, magnesium or iron, to 

produce a metal carbonate and release heat.  

                              (1-1) 
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Despite the simple theoretical concept involved in mineral carbonation, this technology 

suffers from a wide range of challenges. Firstly, the reaction takes geological times to 

happen at ambient conditions [1.22]. Therefore, researchers have been focusing on 

developing different processes to speed-up the reaction, from increasing temperature 

and pressure to develop multi-step techniques able to facilitate the mineralization 

process using the addition of chemicals. Secondly, because in nature pure metal oxides 

are rarely available, it is necessary to identify the right feeding material, able to provide 

metal oxides in silicate form (natural rocks or waste streams). Thirdly, mineral 

carbonation is an exothermic reaction, however pre-treatment of the material (mining, 

crushing, grinding) requires considerable energy [1.22]. Therefore, research into 

reducing energy demand from feedstock preparation is required. Finally, by-products 

from mineral carbonation, because pure metal oxides are scarcely available (see Section 

2.2.2), are generally a mixture of different phases (e.g. metal carbonates, silica, 

unreacted metal oxides etc.). Therefore, final separation steps are needed to obtain a 

range of products with a market value and further research is required [1.23]. 

1.5 Aim and objectives 

The aim of this thesis was to determine the potential use of waste materials as feedstock 

for permanent sequestration of CO2. A novel mineralization process was proposed and 

its feasibility, for several suitable feedstocks, was investigated.  

Several objectives were carried out during the project and they are described below. 

 To investigate state-of-the-art mineral carbonation in order to identify potential 

suitable waste materials to employ in the mineralization process proposed in the 

thesis.  

 To assess the potential areas in the UK where mineral carbonation of waste 

materials can be applied, studying the availability and location of waste streams 

suitable for mineralization. 

 To understand the physico-chemical characteristics of waste streams, assessing 

their suitability for mineralization using different analyses techniques (x-ray 

diffraction and x-ray fluorescence).  

 To develop a novel multi-step mineralization process able to use waste streams 

as feedstocks. 
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 To investigate the process developed, understanding the mechanisms of 

dissolution and carbonation.   

 To research into the best operational conditions, investigating the effect of the 

main parameters on the efficiency of carbonation. 

 To assess the economic viability of the process when applied in a real case 

scenario, analyzing the energy and CO2 balances of the process followed by the 

calculation of capital and variable costs. 

According to the objectives identified, the thesis is structured as follows. Chapter 2 

reviews the existing literature on mineral carbonation, then Chapter 3 presents the 

methodology used, analyses techniques and experimental set-up. Chapter 4 investigates 

the availability and potential CO2 storage capacity of waste materials, while Chapter 5 

discusses the mechanisms of dissolution during the first step of the proposed 

mineralization process. Chapter 6 presents the analyses on the effect of several 

parameters on the efficiency of carbonation for different waste streams, moreover, also 

the mechanisms of carbonation for these materials are presented in this chapter. Finally, 

Chapter 7 includes mass, energy, CO2 balances of the overall process and also a cost 

evaluation in a real case scenario. Conclusions about the work presented in the thesis 

are then summarized in Chapter 8. 
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CHAPTER 2 – CARBON DIOXIDE SEQUESTRATION BY 

MINERAL CARBONATION  

 

This chapter introduces the basic concepts of CO2 capture and underground (called also 

geological) storage followed by a literature review on mineral carbonation. This 

includes a description of potential feedstocks suitable for carbonation, their 

characteristics and availability. Then, the numerous processes available for mineral 

carbonation are classified and described, reporting also their costs. Finally, the use and 

potential market value of the carbonated products are described.  

2.1 Carbon dioxide capture and storage (CCS) 

Renewable energy sources will provide zero emission energy in the next decades, but, 

for the moment, fossil fuel technologies will continue to play a leading role in the 

energy production considering their availability and cost [2.1]. In 2020, for example, 

estimated price of electricity generated from combined cycle gas turbine will range 

between £87-91/MWh, while on-shore wind and off-shore wind will be at £71-

122/MWh and £102-176/MWh, respectively [2.2]. 

Carbon dioxide Capture and Storage (CCS) is a portfolio of technologies which aims to 

capture the CO2 produced from the combustion of fossil fuels for power generation and 

industrial processes. The CO2 must, then, be transported to an underground storage site, 

where, it will be stored away from the atmosphere for a very long time [2.3].  

2.1.1 Capture and storage options 

Fossil fuel power plants are the primary candidates for applying CCS. Capture has the 

purpose to produce a concentrated stream of CO2 (to reduce cost of transportation) 

which then will be compressed and sent to the storage site. There are three different 

technologies available for capturing CO2 presented in Figure 2.1 [2.3]. 

 Post-combustion systems separate the CO2 from the flue gases generated from 

the combustion of fossil fuels. Chemical sorbents (liquid or solids) or 

membranes are employed to capture the fraction of CO2 (usually about 10-15%) 

from the flue gases rich in N2. 
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 Pre-combustion systems produce carbon monoxide (CO) and hydrogen (H2) 

from the fossil fuel (gasification) which then are separated and H2 is burned and 

produces energy/heat without releasing CO2 from the combustion. The CO 

stream, instead, is  reacted with steam producing further H2 for energy/heat 

production and CO2 which is then compressed and transported to the storage 

site. 

 Oxyfuel systems use pure oxygen for the combustion of the fossil fuels. An air 

separation unit, able to separate O2 from air is required upstream. Flue gases 

generated consist of CO2 and steam which is then condensed leaving mainly 

CO2. 

 

Figure 2.1: Overview of the CO2 capture systems [2.3] 

After capturing the CO2 emitted from power plants, carbon dioxide is transported to an 

underground storage site. The different storage options are presented in Figure 2.2 and 

include depleted oil and gas reservoirs, saline aquifers, and oceans. Enhanced oil 

recovery (EOR) and enhanced coal bed methane recovery options benefit of both 

increasing oil and gas extracted and storing CO2. EOR is a well established practice 

used to increase the oil production in mature fields by injecting CO2 in the oil reservoir 

[2.4]. Therefore, lessons learnt from EOR may help developing CO2 storage also in 

other potential sites such as saline aquifers and depleted gas and oil fields. In fact, EOR 

reduces overall CCS cost because of the increased oil production while storing CO2. 

Storage in saline aquifers and depleted gas and oil fields, instead, does not have this 

economic benefit, however, it may be applied in many locations worldwide thanks to 

the large number of these sites. 
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Figure 2.2: Geological storage options for CO2 (image courtesy of CO2CRC [2.5]) 

2.1.2 CCS potential and cost 

CCS is a bridge technology towards renewable energies which will be the zero-emission 

energy sources. CCS may reduce the cost of stabilizing CO2 in atmosphere by 30% or 

more if it is included in a mitigation portfolio of technologies [2.3]. Thanks to strong 

policies, economic incentives and technology development, CCS has the potential of 

storing 230Gt by 2050, which corresponds to 33% reduction in global CO2 emissions 

compared to today’s levels. Therefore CCS alone cannot meet the target set by the 

Intergovernmental Panel for Climate Change (IPCC) of reducing carbon emission by 

50% by 2050 [2.3] and renewable energies have also to play a key role [2.6]. 

CO2 injection underground has been used in oil extraction (EOR) for about 40 years 

[2.7]. Nowadays, implementing CO2 storage into depleted oil and gas fields and in 

saline aquifers has led to eight commercial CCS facilities in operation worldwide: 

Sleipner West (1Mt/year) and Snøhvit (0.7Mt/year) in Norway, Weyburn (3Mt/year) in 

Canada, Shute Creek gas processing (7Mt/year), Enid Fertilizer (0.68Mt/year), Val 

Verde Gas Plants (1.3Mt/year) and Century plant (5Mt/year) in USA, and In Salah 

(1Mt/year) in Algeria [2.4]. All of them, apart from Enid Fertilizer, are related to natural 

gas or syngas operations, and they store the CO2 obtained from the gas cleaning 

operations into a deep saline aquifer or they use it for enhanced oil recovery. There are 
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also numerous demonstration plants in operation and others are planned [2.4] [2.8] 

[2.9]. However there is not yet a fully operating power plant integrated with CCS, and 

therefore, the global quantity of CO2 stored underground is limited to only 20Mt/year 

[2.4]. It has been estimated that about 2000Gt of CO2 can be stored underground 

worldwide [2.3], therefore, the annual global CO2 emissions (about 32Gt [2.12]) 

represent only 1.6% of the amount of CO2 which could be potentially stored by CCS. 

The main barriers to the development and deployments of CCS are the absence of 

financial and public support, high energy penalties, costs and potential impact due to 

possible CO2 leakage [2.3]. 

Predictions of costs for CCS depend on its future development and deployment. Recent 

studies show that cost for CCS demonstration projects built in 2015 is 

60-90€/tCO2 avoided (£50-75/tCO2 avoided) [2.10]. This cost can be reduced to 

30-45€/tCO2 avoided (£25-38/tCO2 avoided) by 2030 thanks to the learning effects from the 

demonstration projects [2.10]. About 70% of the cost of CCS stands for the separation 

of CO2 from the flue gasses [2.10] and this represent one of the challenges to further 

deployment of this technology [2.11].  

2.2 Mineral carbonation 

Due to a slow progress in the deployment of technologies which store CO2 underground 

(about 20Mt/year [2.4], compared to 32Gt/year CO2 global emissions [2.12]), and also 

because access to underground storage may not be feasible due to technical and/or 

economic restrictions [2.13], there has been an increasing interest in mineral 

carbonation [2.14]. Mineral carbonation (often referred in literature also as 

mineralization or mineral sequestration) was first suggested by Seifritz in 1990 [2.15]. 

Dunsmore then further investigated this option for CO2 utilization and storage [2.16] 

followed by Lackner et al. in 1995 [2.17]. The process consists of reacting CO2 with a 

divalent metal oxide (MO), such as calcium, magnesium or iron oxides, to produce a 

metal carbonate (MCO3) and release heat. 

                              (2-1) 

At ambient conditions, the gas-solid mineralization reaction takes place on geological 

time-scales and, therefore, research has focused on developing different processes to 
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speed up the reaction. Pure metal oxides, in nature, are scarcely available but they can 

be easily found in silicate form in rocks present on the earth surface, like serpentine 

(Mg3Si2O5(OH)4), olivine (Mg2SiO4) and wollastonite (CaSiO3).  

Mineralization can be divided into in-situ and ex-situ processes. In-situ mineralization is 

related to geological storage, i.e. injection of CO2 underground but it differs in that it 

aims at accelerating the formation of carbonates with the alkaline-minerals present in 

the geological formation. Therefore, the mineralization mechanism in geological storage 

and in-situ mineral carbonation is the same [2.3] but the geological storage requires 

longer periods [2.18]. This is explained by the fact that when injecting CO2 

underground for in-situ mineralization, water at high pressure is added to increase the 

speed of the reaction, while for the CO2 geological storage, pure streams of CO2 are 

pumped underground. The first fully integrated in-situ mineralization project started in 

2007 in Iceland [2.18] where CO2 dissolved in water at high pressure (from a 

geothermal plant) is injected at 400-800m in a basalt formation underground [2.19]. The 

time-scale of in-situ mineral carbonation is shorter than CO2 trapping in geological 

storage (hundreds of years instead of thousands for complete conversion into carbonates 

[2.19] [2.20]), but it still takes considerable time to permanently store CO2 into 

carbonates. Ex-situ mineralization, instead, groups all the mineral carbonation processes 

which are not carried out in geological formation. An example of ex-situ mineralization 

plant employing minerals is shown in Figure 2.3, where the different stages of the 

process, from mining operations to transport of the final by-products, are presented. 

Mineralization of CO2 produced from a coal power plant would involve solid minerals 

handling of a scale similar to a nowadays metal ore or mineral mining and processing 

activity [2.21] like the ones present in Australia, South Africa and Canada. 

 

Figure 2.3: Mineralization plant employing natural minerals (image courtesy of 

CO2CRC [2.5]) 
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2.2.1 History of mineral carbonation 

This section presents the developments in mineral carbonation research in chronological 

order, more technical details on the processes mentioned are going to be reported in 

Section 2.3.  

As mentioned in Section 2.2, mineral carbonation was firstly investigated  in 1990 by 

Seifritz [2.15], then by Dunsmore in 1992 [2.16] followed by Lackner et al. in 1995 

[2.17]. First mineralization technologies were based on processes using high 

temperature and high pressure reactors and research was focused into optimizing these 

systems. Lackner et al. in 1997 used pressurized CO2 (340bar) at high temperature 

(300°C) to convert serpentine into carbonates by a solid-gas reaction [2.22]. Later, in 

1998, Butt et al., were among the first to explore indirect gas-solid processes, where the 

mineralization carbonation reaction took place after leaching Mg(OH)2, from silicate 

rocks using HCl [2.23]. The process was also able to regenerate and reuse the HCl 

employed. It was immediately noticed the improvement in the extraction and 

carbonation  reaction rates (25% vs. 100% [2.23]) compared to previous studies using 

direct gas-solid reactions. Therefore, research started on the so called direct aqueous 

route.  

One of the most known research groups developing the direct aqueous route was the 

Albany Research Centre (ARC) in the USA. They assessed a direct aqueous process 

optimizing the solution chemistry, heat treatment and grinding [2.24] as described in 

Section 2.3.2.2. This process was considered one of the most successful routes for 

mineral carbonation and a critical assessment of this method found that it would have an 

energy penalty of 20% in a coal power plant  [2.21]. Furthermore, the 

Intergovernmental Panel for Climate Change (IPCC) in 2005 used the cost of the ARC 

process for their comparisons among different CCS options and interest for research in 

mineralization further increased. In fact, the number of papers published on peer-

reviewed journals in the Science Direct database has seen a general increasing trend 

between years 2005 and 2012 (Figure 2.4). 
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Figure 2.4: Number of published papers on peer-reviewed journals about mineral 

carbonation between years 2005 and 2012. 

Over the last 10-15 years, Zevenhoven and his research group in Finland have  

developed firstly a high temperature direct gas-solid process able to reuse the heat 

released during the carbonation reaction [2.25] and then also an aqueous process [2.13]. 

However, due to the high energy requirements for maintaining high temperature and 

pressure during these processes, these direct carbonation routes do not seem feasible at 

industrial or even demonstration/pilot scale. 

More recently, after exploring different options for direct mineral carbonation, 

researchers have also been investigating indirect carbonation routes, where metals are 

firstly extracted from the silicate minerals and then easily carbonated during a following 

step. There are numerous studies in this field employing different chemicals (HNO3, 

HCl, H2SO4) for the extraction phase [2.26] [2.27] [2.28]. However, the main problem 

associated with this carbonation route is the fact that chemicals and acids cannot be 

recovered. This causes several environmental and economic issues, which can only be 

addressed if after extracting the metal ions from the feedstock the chemicals employed 

are regenerated and recycled. In light of this, latest research developments in mineral 

carbonation have focused on processes able to use indirect carbonation routes whilst  

reusing the chemicals utilised (e.g. [2.29] [2.30]). Otherwise, another route has been 

employing less hazardous substances for the environment, like organic or weak acids 

such as citrates, oxalates and ethylenediamine tetraacetic acid (EDTA) [2.31] [2.32] 

[2.33]. 
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2.2.2 Elements and minerals for mineral carbonation 

Potential elements which can carbonate are alkali (e.g. K, Na) and alkali earth (e.g. Ca, 

Mg) metals and other metals like Fe, Mn, Zn, Ni, Cu. However, most of the other 

metals listed are too valuable (Ni, Cu) or too rare (Mn, Zn) to be considered for 

mineralization. Alkali metals are unsuitable for CO2 mineralization because they 

produce alkali bicarbonates, which are very soluble and therefore CO2 may return to the 

atmosphere. Therefore, the most suitable elements for mineral carbonation are Ca and 

Mg. Fe is also suitable, but carbonation of this element means consuming a valuable ore 

which is usually employed in steel production [2.3]. 

Unfortunately, in nature, calcium and magnesium are scarcely available as pure oxides.  

They are mainly present as calcium and magnesium silicates contained in natural rocks 

available on the earth surface and the main candidates among the Mg-rich minerals are 

serpentine, dunite and peridotite. Serpentine (Mg3Si2O5(OH)4) can be found in different 

crystalline phases such as antigorite, lizardite and chrystolite. Dunite and peridotite are 

instead rocks formed mainly (more than 90%) by olivine mineral, MgSiO4. Wollastonite 

(CaSiO3) is instead a Ca-rich silicate rock [2.24]. 

Because of pure oxides are rarely available on the earth, the main carbonation reaction 

(2-1) becomes [2.3]: 

 

                                                         

           (2-2) 

Therefore, the mineralization reaction changes, releasing less heat. The reaction 

involving the pure metal oxide (MgO) releases 118kJ/mol as follows [2.3]: 

 

                                   (2-3) 

When introducing olivine (Mg2SiO4) instead of the pure magnesium oxide, 95kJ/mol 

are released [2.3]: 

 

 
                     

                          (2-4) 



21 

 

In the case of serpentine the reaction becomes [2.3]: 

                                                        (2-5) 

The trend of the equilibrium constant in function of the temperature for the reactions 2-

3, 2-4 and 2-5 are shown in Figure 2.5. It can be seen that reactants are favored over 

products for temperatures below 300°C. 

 

Figure 2.5: Equilibrium constant trend for carbonation of Mg oxide and Mg-rich 

minerals [2.25] 

While, for Ca-rich minerals the mineralization reaction with pure metal oxide (CaO) is 

presented below [2.3]: 

                                 (2-6) 

When using wollastonite (CaSiO3) the reaction becomes [2.3]: 

                                        (2-7) 
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Since the equilibrium constants of reactions 2-6 and 2-7 are given by the partial 

pressure of CO2, Figure 2.6 presents the predominance of reactants or products in 

function of the temperature. 

 

Figure 2.6: Pressure – temperature diagram for carbonation of Ca oxides or Ca-rich 

minerals [2.36] 

2.2.2.1 Availability and capacity of natural minerals for mineral carbonation 

Serpentine, olivine and wollastonite are the major minerals employed for research in 

mineral carbonation, because of their content in  Mg/Ca silicates. In Figure 2.7 red dots 

represent locations where serpentine (Mg-rich mineral) is present, showing high 

abundance in North America and North Europe.  

 

Figure 2.7: Worldwide distribution of serpentine [2.25]  
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It has been reported that in the USA there is enough mineral volume to store the total 

amount of USA CO2 annual emissions (about 7Gt) for 500 years [2.31] and serpentine 

in eastern Finland could provide 2.5-3.5GtCO2 storage capacity when Finnish annual 

emissions are only about 56MtCO2 [2.34]. Apart from the just mentioned serpentine 

resources assessment, there has not been so far any other detailed geographical study on 

the location of olivine (Mg-rich mineral) and wollastonite (Ca-rich mineral) all over the 

world. 

Different minerals have also distinct CO2 uptake capacities, because of their nature and 

chemical composition. RCO2 is defined as the theoretical mass (Kg) of a given material 

necessary to convert a unit mass (Kg) of CO2 into carbonates. Values of RCO2 are 

reported in Table 2.1, together with average metal oxides composition of mineral rocks  

and their potential CO2 storage capacity [2.24] [2.35]. Olivine is the mineral able to 

store CO2 more efficiently (i.e. requiring less material) and, together with serpentine, 

has the biggest storage capacity, while for wollastonite the capacity is smaller. 

 

Material  Formula MgO 

[wt%]  

CaO 

[wt%]  

FeO 

[wt%]  

RCO2 

[kg/kg]  

CO2 

Storage 

Capacity  

[1000Gt] 

Olivine  Mg2SiO4 45-50  0.1-0.5  6-10  1.8  100000  

Serpentine  Mg2Si2O5(OH)4 38-45  0  5-8  2.3  100000  

Wollastonite  CaSiO3 -  35-48  -  3.6  Small 

Table 2.1: Composition and storage capacity of mineral rocks [2.24] [2.35] 

 

2.2.3 Waste materials for mineral carbonation 

Alternatively to minerals, a wide range of waste materials have the chemical 

composition (i.e. rich in alkali earth metals) required for their utilization as feedstocks 

for mineral carbonation. They can be divided into different categories: metal waste 

streams (obtained from metal manufacturing industry), construction sector waste and 

ashes from combustion processes. The following sections present the production 

process and characteristics of each category, focusing on their suitability for mineral 

carbonation. Table 2.2 summarizes the origin and the main qualitative information 

about Ca content of the different waste streams. All the waste materials identified are 

mainly rich in calcium oxides, while minerals previously described (Section 2.2.2.1) are 

predominately formed by Mg silicates. 
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Waste stream Waste origin CaO [wt%] 

Air Cooled Copper Slag 

and Water Cooled 

Copper Slag  

Residues obtained during the smelting and 

refining of copper 

0.6-10.9 

Ground granulated blast 

furnace slag 

Obtained from production of pig iron in 

blast furnaces 

15-41 

Steel slag Obtained from the manufacturing process of 

steel from pig-iron 

25-55 

Recycled concrete 

aggregate 

Obtained from demolition operations 17 

Cement kiln dust Obtained from  portland cement and lime 

high-temperature rotary kiln production 

operations 

31-44 

Incinerator Sewage 

Sludge Ash 

Derived from the processing of sewage from 

various sources 

30 

Pulverized fuel ashes Produced in coal fired power plants from the 

burning of pulverized coal 

1-40 

Biomass and wood ash Residues from combustion of biomass for 

power generation 

24-46 

Municipal waste 

incinerator bottom ashes 

Residues from combustion of waste in 

incineration plants 

32-53 

Red mud Waste slurry obtained from the production 

of alumina from bauxite 

2-8 

Oil shale ashes Residue from combustion of oil shale 42-50 

Air pollution control 

residues 

Produced from cleaning gaseous emissions 

generated during combustion of wastes at 

incineration plants 

50-60 

Paper sludge incinerator 

ash 

Obtained from incineration operation of the 

waste residue of the paper production 

process 

45-69 

Table 2.2: Origin and qualitative composition of suitable waste streams for mineral 

carbonation 

2.2.3.1 Metal waste streams 

Copper slag is the residue obtained during the smelting and refining of copper. The slag 

is cooled from approximately 1300°C to ambient temperature and this can happen in 

either air or in water baths, producing either Air Cooled Copper Slag (ACCS) or Water 

Cooled Copper Slag (WCCS), respectively. Each of these slags has slightly different 

characteristics. When the high temperature slag is cooled slowly in air, it forms a dense, 

hard crystalline product while pouring molten slag into water produces a granulated 

amorphous slag with slightly less calcium and magnesium oxides present [2.37]. CaO 

and MgO content in copper smelt slag have been reported in the range 0.6-10.9wt% and 

0.75-3.7wt% [2.38] respectively. Phosphorus slag (PS) is the residue obtained from the 
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production of phosphorus smelting. PS tends to be black to dark gray, vitreous (glassy), 

and of irregular shape. CaO content in phosphorus slag is around 44wt% [2.39].  

Ground granulated blast furnace slag (GGBS) is a by-product material obtained from 

production of pig iron in blast furnaces. The production process produces glassy 

aggregate granules rich in CaO (15-41wt% [2.40]). Steel slag (SS) is the by-product 

obtained from the manufacturing process of steel from pig-iron. There are mainly two 

types of SS: basic oxygen furnace slag (BOF) and electric arc furnace (EAF) slag, 

generated depending on the type of furnace employed for steel production. Typical SS 

composition includes CaO between 25-55wt% [2.39]. 

2.2.3.2 Construction sector waste streams 

Recycled concrete aggregate (RCA) is the main waste stream of this category. Obtained 

from demolition operations, its quality depends on the separation process RCA 

undergoes. Typical CaO content of samples from UK is 17wt% [2.41]. 

Cement kiln dusts (CKD) are fine by-products of portland cement and lime high-

temperature rotary kiln production operations. CKDs are captured in the air pollution 

control dust collection system. CaO content in this waste stream can vary between 

31-44wt% [2.39]. 

2.2.3.3 Ashes from combustion processes 

Incinerator Sewage Sludge Ash (ISSA) is the end line product derived from the 

processing of sewage from various sources. Sludge ash is a silty-sandy material which 

could have 30wt% CaO content and 3wt% MgO [2.42]. 

Pulverized fuel ashes (PFA, fly ashes) are produced in coal fired power plants from the 

burning of pulverized coal. Fly ashes consist of fine, powdery particles and are mostly 

glassy (amorphous). Composition of PFA varies depending on several factors like type 

and rank of the coal burned and type of burner. CaO content may vary from 1wt% in 

bituminous coals up to 40wt% in lignite coals [2.39]. 
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Biomass and wood ash are residues from combustion and consist of fine powdery 

particles mostly amorphous. Chemical composition vary depending on the nature of 

biomass and wood burned with CaO content values between 24-46wt% [2.43]. 

Municipal waste (MW), before landfilling, is usually treated in incinerators plants 

where its volume is reduced. The final solid product obtained are municipal waste 

incinerator bottom ashes which have a highly variable composition depending on the 

nature of the waste material burned. Their CaO composition may vary between 32-

53wt% [2.43] [2.44] [2.45]. 

2.2.3.4 Other materials 

Other minor waste streams including red mud, oil shale, air pollution control residues 

and paper sludge have interesting chemical composition for mineral carbonation and 

have been previously investigated as outlined in this section. Red mud is a waste slurry 

obtained from the production of alumina from bauxite. Digestion of bauxite into a 

sodium and calcium hydroxide solution produces two different streams: alumina liquor 

for further processing and a highly alkaline slurry called red mud [2.46]. Red mud 

chemical composition may include Al2O3 (10-20wt%) and CaO (2-8wt%) [2.47]. Oil 

shale ash is the residue from combustion of oil shale, a low quality carbonaceous fossil 

fuel, for power production. The CaO content of oil shale ash can be between 42-50wt% 

[2.48] [2.49]. Air pollution control residues are produced from cleaning gaseous 

emissions generated during combustion of wastes at incineration plants. Typical CaO 

content ranges between 50-60wt% [2.50] [2.51]. Finally, paper sludge incinerator ash 

may be considered an interesting waste material for mineral carbonation. It is obtained 

from incineration operation of the waste residue of the paper production process and its 

CaO content may vary between 45-69wt% [2.43]. 

2.2.4 Advantages, challenges and cost of mineral carbonation 

Mineral carbonation presents several advantages as described below. The mineralization 

reaction, which involves a pure metal oxide, requires no energy input, but also produces 

energy releasing heat (exothermic reaction, Section 2.2.2) [2.21]. Furthermore, the 

required feedstocks are abundant; minerals rich in magnesium and calcium can be easily 

found in rocks present on the earth surface, and therefore, mineral carbonation has got a 

vast potential for carbon sequestration (Section 2.2.2.1). Moreover, mineralization is the 

only form, together with agri-char, of permanent carbon sequestration. Geological 
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storage options may, potentially, leak over time and require accurate monitoring 

systems [2.21]. Finally, the carbonated end products could be a suitable revenue stream 

because they can be used as building materials, as partial substitutes of cement in 

concrete production [2.52] and in paper, chemical and textile industries and other 

industrial processes [2.53]. 

However, despite the advantages listed above, mineral carbonation suffers from a range 

of technical and economic barriers for further development and large-scale 

demonstration. Firstly, there is the high energy demand for pre-treatment of virgin 

minerals, including mining, crushing and grinding to prepare the material for the 

mineral carbonation reaction [2.3]. Secondly, the slow reaction rates, particularly for 

direct gas-solid reactions. In fact, gas-solid reactions are feasible only at high pressure 

and temperatures (as seen in Section 2.2.1) for rare pure calcium and magnesium oxides 

or hydroxides [2.54]. Finally, the management of by products; if the end products 

cannot be employed for any application, the most convenient place for their disposal 

would be mining sites. However, the average amount of materials to be disposed is 

about 50-100% by volume more of the raw material and therefore they must be stored in 

an environmentally suitable location [2.3]. 

Recently a few papers have reported costs of mineral carbonation and they are 

summarized here. O’Connor et al. estimated a cost of 54, 68, 74$/tCO2 avoided (£33, 41, 

45/tCO2 avoided) for olivine, serpentine or wollastonite, respectively [2.55]. These costs 

refer only to the mineralization process, therefore cost for capture and transport must be 

added (about £30-36/tCO2 [2.21]) bringing the overall cost to £63-81/tCO2 avoided. 

Newall et al. estimated the cost of mineral sequestration process at 60-100$/tCO2 avoided 

(£36-61/tCO2 avoided ) [2.56] and this cost must be added to the cost for the capture and 

transport (about £30-36/tCO2 [2.21]) bringing the technology to £66-97/tCO2 avoided. 

Huijgen et al. estimated a similar cost for mineral sequestration technology (using 

wollastonite) of 102€/tCO2 avoided (62£/tCO2 avoided) [2.57]. In this case, the cost of 

capture and transport must also be added (£30-36/tCO2), bringing the overall cost to 

£92-98/tCO2 avoided. Gerdemann et al. reported a cost of 112$/tCO2 avoided 

(£68/tCO2 avoided) using wollastonite for their mineralization experiments [2.58].  

All these cost evaluations agree that a tonne of CO2 sequestered by mineralization 

(considering also cost of capture and eventual transport from the CO2 production site to 
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the mineralization plant) ranges between £75-110/tCO2 avoided and therefore costs are 

currently considered not competitive with those of CCS geological storage 

(£50-75/tCO2 avoided, Section 2.1.2) [2.59]. 

2.2.5 Environmental issues for mineral carbonation 

Mineral carbonation processes, especially if carried out at large scale, may present 

several environmental issues. Firstly, the impact which can have large scale mining 

operations. If natural ores are employed as feeding material for large scale 

mineralization operations, significant mining operations are required. This would affect 

the natural environment/landscape and increased pollution due to transportation of 

feedstock/products. Secondly, the disposal/utilization of the carbonated materials must 

be considered. Carbonated products may be returned to the mineral ore mines but, 

because carbonated materials have a volume about 50-100% more than the raw material 

[2.3], if not re-used, a suitable location for their disposal must be found. Instead, if 

valuable products can be obtained from the process, no need of disposal will be required 

and a revenue stream can be generated. However, if mineralization was to be 

implemented on large scale, the production of large quantities of carbonated materials 

would over-saturate any potential market. Thirdly, the use of chemicals also needs to be 

assessed. Multi-step processes, presented in Section 2.3.3, in general employ chemicals 

for the extraction of metals from the feeding material. Some acids may be lost in the 

process (e.g. by products, effluent liquids) even if the process itself has been designed to 

recycle them completely. Furthermore, the need of replenishing the acids lost in the 

process involves extra energy and resources consumption due to their production 

process. 

2.3 State-of-the-art in research on mineral carbonation 

Several mineral carbonation technologies have been reported and they are presented in 

this section. The feeding material is usually pre-treated to increase its reactivity and 

there are different methods available, namely size reduction, heat activation and surface 

activation. Once the material is ready for mineralization reactions, there are different 

mineral carbonation technologies available and they can be divided (Figure 2.8) into 

direct carbonation (also called single-step processes) and indirect carbonation (known 

also as multi-step processes).  
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Figure 2.8: Direct (single-step) and indirect (multi-step) mineral carbonation processes 

Single-step processes involve the reaction of feedstock material with CO2, which is 

usually injected in a reactor maintained at a controlled temperature and pressure. During 

the process, carbonation takes place as aqueous or gas-solid reaction, depending 

whether water is introduced or not. In contrast, multi-step processes using chemicals, 

firstly extract the reactive fraction (e.g. pure metal oxide) from the feedstock, and 

secondly react it with CO2 [2.60]. Table 2.3 lists different processes, which are 

described in the next Sections (2.3.2, 2.3.3), including also their main characteristics. 

Several specific terms are employed to compare the different mineral carbonation 

processes. The most used are:  

 extraction efficiency (%) represents how much of the initial metallic component 

(Mg, Ca, Fe) is extracted from the feedstock for the following carbonation step 

in multi-step processes. 

 Carbonation efficiency (%) is used to quantify how much of the initial metallic 

component (Mg, Ca, Fe) is converted into metal carbonate. 
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 CO2 conversion efficiency (%) indicates how much of the CO2 employed for a 

mineral carbonation reaction is converted into metal carbonate. 

Mineral carbonation process routes 

Single-step Gas-solid -Minerals react directly with gaseous CO2 

  -Simplest mineralization method 

  -Very slow for practical applications 

 
Aqueous -Mineralization reaction happens in an 

aqueous solution 

 
 -Pre-treatment of feedstock required to 

increase efficiency 

Multi-step HCl extraction -Metal ion extracted by HCl and precipitated 

as hydroxide 

  -Recovery of HCl 

  -Energy intensive  

 
Molten salt -Molten magnesium chloride salt used to 

extract metal ions 

  -Metal ions precipitated as hydroxides 

  -Energy intensive  

 
Other acids 

extraction 

-Several acids used to extract metal ions from 

feedstock 

 
 -High extraction efficiencies achieved (up to 

100%) 

 
 -Recovery of acids needed for the processes to 

be economically viable 

 

Bioleaching -Bacteria combined with acid generating 

substances and silicate minerals extract metal 

ions 

  -Low conversion rates 

  -Passive and inexpensive carbonation route 

 
NaOH -NaOH used to extract metal ions from 

feedstock 

  -Energy intensive and long reaction time 

 
Ammonium 

salts 

-Ammonium salts (e.g. NH4HSO4) used to 

extract metal ions from silicate rocks 

  -Ammonium salts recovery 

  -Low stoichiometric carbonation rate 

Table 2.3: Summary of mineral carbonation process routes (modified [2.60]) 

Mineral carbonation becomes more economically viable if the final products are 

relatively pure and represent a potential revenue stream [2.13] (Section 2.4). Single-step 

processes, which react the feedstock directly with CO2, have the disadvantage of 

producing slurries containing a mixture of different phases. The final product could be 

disposed with extra costs (e.g. management, transport, landfill) or needs further 

treatment (and energy consumption) to obtain pure final products. Multi-step processes, 
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instead, allow the production of different streams of high quality products. However, the 

multi-step processes require addition of chemicals and swing of operating conditions, 

which increase the energy consumption and cost related to the process. 

The following sections describe pre-treatment techniques, i.e. size reduction, heat 

activation and surface activation (Section 2.3.1), while single and multi step-processes 

are presented in Sections 2.3.2 and 2.3.3, respectively. 

2.3.1 Pre-treatment options 

The most common pre-treatment technique is size reduction by grinding. The feedstock 

is grounded to a fine particle size before being used in the mineralization process in 

order to increase the surface area. Huijgen et al. investigated the effect of particle size 

on the efficiency of carbonation and found that when reducing the particle size from 

<7mm to <38µm, the efficiency increased from 12% to 60%, respectively [2.61].  

O’Connor et al. also found that reduction of particle size, from 106-150µm to <37µm, 

increased conversion of CO2 into carbonates, from 10% to 90% [2.62]. Despite the 

benefit on improving the efficiency of carbonation, grinding requires energy and causes 

extra CO2 emissions. For example, grinding wollastonite from 0.1m to <38µm requires 

56kWh/t, while for freshly produced steel slag (from 0.02m to <38µm) 31kWh/t are 

required [2.63]. The target for the UK Government is to achieve average emissions of 

50gCO2/KWh from electricity generation in 2030 while the level in 2008 was 

500gCO2/KWh [2.64]. Therefore, for the year 2014, producing 1kWh of electricity 

emits 380gCO2, consequently, 21KgCO2 and 12KgCO2 would be emitted for every 

tonne of grinded wollastonite and steel slag, respectively. 

In addition to size reduction, there are other pre-treatment options to increase the 

carbonation rate of a material. Heat activation can remove the hydroxyl (OH) groups. 

For example, when serpentine is heated at 600-650°C, OH groups evaporate: 

                            (2-7) 

Consequently, an open crystal structure is created [2.62] with enhanced reactivity 

(thanks to increased amount of reactive surface) for mineral carbonation, as observed 

experimentally [2.62]. As for mechanical treatment, also heat activation requires a 
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substantial amount of energy, in the range of 200-250kWh/t, 293kWh/t and 326kWh/t 

of material treated for serpentine, antigorite and lizardite serpentine, respectively [2.24] 

[2.26]. Surface activation, known also as chemical activation, instead increases the 

surface area of a material by reacting it with chemicals, steam or a combination of the 

two. For example, Maroto-Valer et al. increased the surface area of a serpentine sample 

from 8m
2
/g to 330m

2
/g activating it with sulfuric acid [2.26]; this process is similar to 

the first phase of the multi-step carbonation process presented in detail in section 

2.3.3.1. However, chemical activation presents environmental issues unless the process 

is able to recover and reuse the large amounts of chemicals employed. 

In conclusion, all pre-treatment options suffer from important drawbacks and so far 

size-reduction has been the process mostly employed. 

2.3.2 Single-step processes 

Single-step mineralization processes have the advantage of requiring a simple 

experimental set-up and do not need  high quantity of reagents. Single-step processes 

can take place in either aqueous or gaseous phase and may involve feedstock 

pretreatment (e.g. size reduction), but not extraction of metal ions before carbonation.  

2.3.2.1 Direct gas-solid reactions 

The gas-solid reaction (2-1) is the most basic mineralization process and to increase its 

kinetics, high temperature and pressure are required (e.g. 300°C, 340bar [2.22]). 

However, increasing the temperature has a thermodynamic limit because the chemical 

equilibrium favors gaseous CO2 over solid-bound CO2 at high temperature [2.17]. This 

means that over a certain temperature, CO2 is present as a gas and cannot be bound in 

any carbonated form. The maximum temperature at which mineralization can occur 

depends on CO2 pressure and type of mineral (Table 2.4) [2.17]. Increasing the 

pressure, the maximum temperature also raises and it is interesting to notice that olivine 

and wollastonite present a lower maximum mineralization temperature (281°C and 

241°C respectively) compared to serpentine (407°C).  

The gas-solid approach was the first to be studied because of its design simplicity [2.17] 

and a 30% serpentine conversion efficiency was reported at 300°C, 340bar [2.22]. 
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However, even under such high temperature and pressure, the processes are very slow 

(several days [2.22]).  

Mineral Tmax [°C] p CO2 [bar] 

Calcium oxide 888 1 

 
1397 200 

Magnesium oxide 407 1 

 
657 200 

Calcium hydroxide 888 1 

Magnesium 

hydroxide 
407 1 

Wollastonite 281 1 

Olivine  242 1 

Serpentine 407 1 

Table 2.4: Maximum carbonation temperatures at corresponding pressure for several 

minerals [2.17] 

Direct carbonation of pure metal oxides has instead been focusing on capture of CO2 

(instead of storage). This is because pure metal oxides are not widely available in nature 

and the impact of this process on the capacity for storing CO2 would be rather small. 

The process, know as chemical-looping, allows capturing CO2 from flue gases at 

relatively low temperature (200-300°C) forming Ca/Mg carbonates that decompose at 

600-900°C and release a pure stream of CO2 [2.60]. 

2.3.2.2 Direct aqueous carbonation 

Direct aqueous mineral carbonation reacts CO2 with silicate minerals in an aqueous 

suspension in a single step. The process is faster  than the gas-solid reaction (few hours 

instead of few days [2.22] [2.55]) and it consist of three reactions which happen 

simultaneously. Firstly, carbon dioxide dissociates in water into H
+
 and HCO3

-
: 

                        
       (2-8) 

The equilibrium constant of the reaction at 25°C is           meaning that CO2 has 

low solubility in water, remaining mainly as CO2 molecules. As a consequence, the pH 

of the solution is only marginally affected by the reaction. Dissolution of CO2 into water 

varies depending on temperature and pressure (Figure 2.9). 
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Figure 2.9: Solubility of CO2 in water as function of temperature and pressure [2.65] 

After dissolution of CO2 in H2O, Ca/Mg ions are extracted from the Ca/Mg silicates 

thanks to the protons H
+
: 

                                                         (2-9) 

Finally, calcium or magnesium carbonates precipitate: 

                   
                        (2-10) 

Usually, the rate limiting step of the direct aqueous mineralization processes is the 

leaching of Mg/Ca ions from the silicate minerals [2.66]. However, under certain 

process conditions (e.g., high temperature and/or low CO2 pressure), the carbonation 



35 

 

may become limited by inhibition of growth or suppression of nucleation of the 

carbonate [2.66]. Park et al. have reported that the dissolution step of the alkaline earth 

metal no longer controlled the overall reaction rate, but the dissolution of CO2 was the 

rate-limiting step [2.32]. Moreover, the formation of a layer of silica on the particle 

surface can reduce dissolution of Ca and Mg [2.29]. In fact, while Ca and Mg dissolve 

and go into solution, silica does not react and remains in a solid form, creating a layer 

which reduces further dissolution of metals present into the core of the particle.  

One of the most known studies of this carbonation route was carried out at the Albany 

Research Centre, USA (Figure 2.10) [2.62]. Magnesium silicate rocks were firstly 

crushed, then grinded (<37µm), and the resultant fine particles were then carbonated 

using compressed CO2 in a reactor employing distilled water or a 0.5M NaHCO3 

solution. 

 

Figure 2.10: Flow diagram of the ARC direct aqueous mineral carbonation process 

[2.62] 

Carbonation conversion of 90% was achieved for olivine in 24h using a distilled water 

solution at 185°C, 115bar. Maintaining the same experimental conditions, using instead 

a NaHCO3 solution, a 84% conversion efficiency was achieved in 6 hours. Further 
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studies from the same research group showed that increasing the temperature raises the 

reaction rate but causes a reduction in solubility of CO2 into water. Therefore, based on 

the experimental data obtained, optimum temperature for olivine was found to be 185°C 

(152bar) and 155°C (116bar) for heat-treated serpentine [2.55] [2.67]. Furthermore, 

wollastonite was found to require lower pressure, compared to Mg silicate minerals, to 

obtain a substantial conversion, usually in the range 10-40bar instead of 100-175bar 

[2.55].  

Direct aqueous carbonation can be accelerated by using a wide range of chemicals like 

NaHCO3, HCl, H2SO4, NaOH [2.26] [2.32] [2.62] [2.68] and also by using pre-

treatment techniques, as already discussed [2.60]. Many efforts have been carried out by 

adding expensive chemicals to increase conversion efficiency for aqueous direct 

mineralization. However, unless these chemicals can be recycled, the process looks like 

uneconomic to be implemented at large scale [2.68]. 

2.3.3 Multi-step processes 

Multi-step processes carry out mineralization in more than one stage. Usually, metal 

ions (e.g. Ca
2+

, Mg
2+

, Fe
2+

) are extracted from the silicate minerals using acids. 

Afterwards, the extracted components are reacted with gaseous or aqueous CO2 to 

produce metal carbonates. Research in multi-step processes has been focusing on 

different routes aimed at increasing the efficiency of each step, as described in the 

following sections. 

2.3.3.1 HCl extraction 

This process is based on the use of a strong acid (HCl) for extracting the metals from 

the silicate minerals at ambient pressure. Considering serpentine, the first reaction at 

100°C is as follows: 

                                                          (2-11) 

Then, raising the temperature at 150°C, HCl is regenerated and MgCl(OH) is formed: 

                                       (g)  (2-12) 
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Afterwards, when cooling down the system, magnesium hydroxide is produced: 

                                     (2-13) 

Finally, magnesium hydroxide is carbonated with CO2: 

                                   (2-14) 

Lackner et al. [2.17] proposed this process but this carbonation route suffers from some 

important drawbacks mainly the energy requirement for water evaporation [2.69]. It was 

demonstrated that water evaporation requires about 4 times the energy generated by the 

power plant producing the CO2 sequestered [2.70]. Moreover, iron can also be extracted 

and precipitated, becoming a contaminant during the carbonation process [2.71]. 

Furthermore, employing HCl raises several economic issues, e.g. cost of the acid, 

requirement of corrosive resistant materials and environmental issues about supply and 

disposal of the acid. 

2.3.3.2 Molten salt extraction 

This process was developed in an attempt to reduce the energy requirement for HCl 

extraction process. The process is in fact very similar to the one presented in the 

previous section, but instead of using HCl, MgCl2·3.5H2O is employed [2.69] [2.71]. 

The first extraction reaction takes place at 200°C, as follows: 

                                                          

        (2-15) 

Afterwards, because of water addition which dilutes the solution, magnesium hydroxide 

is precipitated at 150°C: 

                                               (2-16) 

The MgCl2 solution is partially dehydrated at 250°C to recover the solvent: 



38 

 

                                            (2-17) 

Finally, magnesium hydroxide is separated and carbonated: 

                                (2-18) 

MgCl2·3.5H2O is a very corrosive chemical and even if it is recovered in the process, 

due to losses or inefficiencies, the need of replenishing the amount of  MgCl2·3.5H2O 

would be commercially unaffordable [2.71]. Furthermore, normal industrial processes 

for producing MgCl2·3.5H2O are based on HCl. Therefore, the requirement of non-

corrosive materials and appropriate disposal of liquid/solid effluents, make also this 

process, as that for HCl (Section 2.3.3.1), economically unattractive [2.71]. 

2.3.3.3 Other acid extractions 

Indirect mineral carbonation processes have employed different acids for leaching 

metals from the silicate minerals. Wang and Maroto-Valer employed ammonium sulfate 

((NH4)2SO4), ammonium chloride (NH4Cl) and sulfuric acid (H2SO4) for extracting Mg 

from serpentine. H2SO4 resulted of being the most efficient, achieving 47% Mg 

extraction efficiency at 70°C in 3 hours [2.29]. Teir et al. used acetic acid (CH3COOH), 

sulphuric acid (H2SO4), nitric acid (HNO3) and formic acid (HCOOH), as well as HCl. 

Using HNO3 and HCl solutions, 100% Mg from serpentine was extracted at 70°C in 2 

hours [2.27]. Kakizawa et al. [2.33] also used acetic acid but employing Ca silicate 

minerals instead of serpentine. In this process, acetic acid extracts Ca and precipitates 

silica.  

                                                            

 (2-19)  

Afterwards, the solution reacts with CO2 to carbonate the calcium and regenerate the 

acetic acid [2.33]. 
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 (2-20) 

A conversion of 20% was reported after 1 hour at 60°C and 1bar employing 

wollastonite [2.33]. In addition, an estimation of cost (about £120/tCO2 sequestered) was 

reported, considering the energy costs and the investment costs. 

Maroto-Valer et al. proposed instead the use of sulphuric acid for the dissolution of 

Ca/Mg from the serpentine matrix according to the reactions below [2.72].  

                                        (2-21) 

                           (2-22) 

The acid can also be recovered and re-used within the process and it is recognized that 

only recovering and reusing the chemicals employed would make mineralization 

processes economically feasible [2.27]. 

Park et al. demonstrated that enhanced Mg leaching from serpentine can be obtained 

adding a mixture of 1vol% orthophosphoric acid, 0.9wt% oxalic acid and 0.1% EDTA 

in the solution [2.32]. 

All these routes use a stirred vessel/reactor at the conditions described above. Firstly, 

the extraction of the metals takes place, followed by the carbonation. However, it must 

be stressed that, employing acids reduces the pH of the solution and therefore the 

precipitation of carbonates [2.73]. It was reported that optimum precipitation of 

magnesium carbonates happens when pH ranges between 8 and 9 [2.73] [2.74].  

2.3.3.4 Bioleaching 

This mineralization route aims to extract metals from silicate minerals utilizing bacteria 

[2.75]. In nature, rock weathering is enhanced by naturally produced organic and 

inorganic acids [2.76]. The combination of silicate minerals, acid generating substances 

(AGS) and specific bacteria accelerates the mineralization processes. In fact, known 
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bacteria can convert the added generating substances (e.g. sulfides and elemental sulfur)  

into sulfuric acid as a by-product of their metabolism [2.75]. Consequently, the sulfuric 

acid leaches out metal ions from the silicate mineral rock and the metals ions can then 

be carbonated for the purpose of CO2 sequestration. In summary, the acid generating 

substances provide nutrients to the bacteria and the bacteria produce sulfuric acid which 

leaches out metal ions from the silicate rock (Figure 2.11). Furthermore, bacteria use 

atmospheric CO2 for their biological processes (e.g. synthesis of new cell material), and, 

therefore, CO2 from atmosphere is fixed also thanks to these activities [2.75] [2.77]. 

 

 

Figure 2.11: Bioleaching schematic picture for carbon sequestration in a geo-engineered 

tailing facility [2.77] 

Bioleaching processes do not aim to achieve high leaching rates, because generation of 

acidic leachate in the environment must be avoided [2.77]. However, this carbonation 

route is favoured by some researchers because of its ability to use waste products (e.g. 

sulfur mine tailings) as acid source for accelerating mineral dissolution by bacteria for 

carbon sequestration [2.60]. 

2.3.3.5 NaOH extraction 

Blencoe et al. developed this process which is based on using NaOH for the purpose of 

mineral carbonation employing Ca/Mg-rich feedstock [2.78]. The process is designed to 

take place at 200°C, p<15bar for 1-3days and the following reactions consider 

wollastonite as feeding material. 

                                    (2-23) 

                                     (2-24) 
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                   (2-25) 

In a solution of NaOH, the silicate mineral reacts to form sodium calcium hydrosilicate 

(reaction 2-23), while NaOH also reacts with CO2 to produce Na2CO3 (reaction 2-24). 

Finally, the two products of the reactions 2-23 and 2-24 together with H2O produce 

NaOH to be re-used and CaCO3 and NaCa2Si3O8(OH) to be disposed. 

Major drawbacks for this process route are the reaction time (1-3 days) and the energy 

requirement for milling the feeding material (<10µm). In light of this, the process does 

not seem to be a promising technique for indirect mineral carbonation [2.60]. 

2.3.3.6 Ammonium salts extraction 

Various ammonium salts have been investigated for multi-step mineralization 

processes. First to attempt this route, with the aim of production of silica from silicate 

minerals and not for storing CO2, was Pundsack in 1967 [2.79]. Serpentine and 

ammonium hydrogen sulphate were employed to produce an intermediate product 

(magnesium sulfate) which then was reacted with ammonium bisulphate for the 

precipitation of magnesium carbonate. An analogue process was then developed by Park 

and Fan [2.28] and more recently by Wang and Maroto-Valer [2.29]. This last process 

aims at extracting magnesium from mineral rocks and producing different streams of 

useful by-products at ambient pressure. The overall process is a close loop, avoiding the 

use of new additives, recovering and reusing them at the end of the process (Figure 2.12 

and Table 2.5). 

In the first step, NH3 is employed to capture CO2 from flue gas to produce NH4HCO3. 

This step allows avoiding desorption and compression of CO2, which is an energy 

intensive phase of amine-based capture technologies [2.80]. In the mineral dissolution 

step, 1.4M NH4HSO4 is used to extract Mg from serpentine ground to a particle size 

range 75-125µm. The Mg-rich solution is neutralized by NH4OH addition, after which 

impurities in the leaching solution are removed by adding NH4OH. In the carbonation 

step, Mg-rich solution reacts with the product from the capture step NH4HCO3 to 

precipitate carbonates. Since formation and stability of hydro-carbonates is temperature 

dependent, MgCO3·3H2O (nesquehonite) can convert to 4MgCO3·Mg(OH)2·4H2O 
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(hydromagnesite) at temperatures above 70°C.  Precipitation of hydromagnesite results 

in a solution that mainly contains (NH4)2SO4. The final step is the regeneration of 

additives where (NH4)2SO4 is heated up to 300°C to regenerate NH3 for the capture 

process and NH4HSO4 to be reused in mineral dissolution.  

 

Figure 2.12: Flow diagram of the ammonium hydrogen sulfate mineralization process 

[2.29] 

 

Table 2.5: Chemical reactions and thermodynamic calculations for the ammonium 

hydrogen sulfate mineralization process [2.29] 

Table 2.5 reports the ΔH (difference (Δ) in enthalpy (H)) between reactants and 

products, giving the heat required (endothermic reaction, ΔH>0) for a reaction to 

happen or released (exothermic reaction, ΔH<0). It can be noticed that all the reactions 

are exothermic with the exception of the regeneration of additives and the carbonate 

formation change. The Gibbs free energy (ΔG), also expressed in Joules, expresses if a 
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reaction happens spontaneously (ΔG<0) or not (ΔG>0) at a certain temperature and 

pressure. Therefore, the regeneration of additive reaction is the only non-spontaneous 

reaction in the process developed by Wang and Maroto-Valer (Table 2.5).  

So far, optimization of the dissolution and carbonation steps for serpentine has been 

performed. Increasing the temperature of dissolution, extraction of magnesium from 

serpentine (and consequent formation of MgSO4) raised up to 100% at 100°C in 3h 

[2.29]. Moreover, it was shown that adding NH3 during the carbonation step improved 

the carbonation efficiency up to 95% conversion of Mg ions into hydromagnesite and 

the mass ratio Mg/NH4HCO3/NH3 is the key factor controlling carbonation with an 

optimum ratio of 1:4:2 [2.14]. 

Sequestering CO2 into serpentine using this process requires that the CO2 emission 

source would be located near to the serpentine mining region and a NH3 production site. 

Otherwise, transportation of NH3 gas to the CO2 emission source and NH4HCO3 to the 

CO2 storage site would increase costs. Sequestering 1kmol of CO2 in the capture step 

releases 0.5kmol of CO2 in the overall carbonation reaction and 0.1kmol of CO2 in the 

carbonate formation change (Table 2.5). Therefore, the CO2 sequestration efficiency for 

single-pass stoichiometric conversion is lowered to 40% (1kmol of CO2 sequestered, 

while 0.6kmol released), reducing considerably the theoretical storage capacity of the 

process. 

An overall economic assessment of this process has not been carried out yet. Production 

of different streams of products would help in reducing costs as they may have market 

value. However, employing ammonia and ammonium salts, which are corrosive, 

involves using suitable material for the reactors and piping systems, increasing the cost 

of the technology. Moreover, impact of water employed on the economy of the process 

should also be considered. In fact, 4.9 and 16t/h of serpentine and water, respectively, 

are required to sequester 1t/h of CO2 [2.81]. 

2.3.4 Mineral carbonation using waste materials 

A large number of mineral carbonation studies has been carried out using minerals as 

their source of metal oxides. Lately, new investigations have indicated that industrial 

wastes require a lower degree of pre-treatment and less energy intensive carbonation 
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conditions, in comparison to raw minerals [2.82]. Many different industrial waste 

materials with suitable characteristics (i.e. rich in Ca, Mg oxides) have been 

investigated as feedstock for mineral carbonation, employing different processes. A 

summary is reported in Table 2.6 and they are discussed in the following sections. 

Despite the large number of industrial waste streams investigated for mineral 

carbonation, only few studies have considered the economics of the processes. Mineral 

carbonation for steel slag costs have been reported to be 77€/tCO2 avoided (£65/tCO2 

avoided) [2.57], which is about 25% less than the cost estimated for mineralization of raw 

minerals (£75-110/tCO2 avoided, Section 2.2.4). This is mainly due to the fact that many 

industrial wastes are already available in appropriate particle size for mineral 

carbonation or require less grinding operations than mined ores [2.58] and they do not 

require any mining operation. It is also interesting to underline that the use of waste 

materials as feedstock for mineralization avoids the disposal requirements for such 

materials, transforming them into a potential revenue resource instead of a costly waste 

stream. 

Waste 

category 

Waste 

stream 

Carbonation route and 

parameters 

Experimental 

results 

Reference 

Municipal solid 
waste ashes 

Air pollution 
control fly 
ashes 

Single step-Aqueous 
carbonation-room 
temperature and pressure, 
2-24h, L/S ratio 0.1-0.25-
0.5l/Kg 

At L/S 0.25l/Kg, 12% 
weight gain 

[2.45] 

 

Air pollution 
control fly 
ashes 

Single step-Aqueous 
carbonation-room 
temperature, 3bar, 3h, L/S 
0.1-0.8l/Kg   

At L/S 0.3l/Kg, 11% 
weight gain 

[2.83] 

 

Air pollution 
control fly 
ashes 

Single step-Aqueous 
carbonation-30-50°C, 1-
10bar, 10min-48h, L/S ratio 
0.02-0.6l/Kg 

At L/S 0.2l/Kg, 30°C, 
3bar, 1h, 25% 
weight gain 

[2.84] 

 

Bottom ashes Single step-Aqueous 
carbonation-30-50°C, 1-
10bar, 30min-48h, L/S ratio 
0-0.6l/Kg  

At L/S 0.3l/Kg, 30°C, 
10bar, 8h, 14% 
weight gain 

[2.85] 

Coal fly ashes Coal fly ashes Single step-Aqueous 
carbonation-155-185°C, 
75atm (75bar), 1h, 100rpm 

At both 
temperatures 50% 
weight gain 

[2.86] 
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Waste 

category 

Waste 

stream 

Carbonation route and 

parameters 

Experimental 

results 

Reference 

 

Coal fly ashes Single step-Aqueous 
carbonation-30-60°C, 10-
40bar, 0-18h, L/S ratio 6.67-
20l/Kg, 450rpm, 40µm 

At 30°C, 18h, no 
pressure and 
temperature 
influence, 2.6% 
weight gain 

[2.87] 

Construction 
sector 

Waste 
cement 

Single step-Aqueous 
carbonation-room 
temperature, 0.9-3Mpa (9-
30bar), 0-120min, S/L ratio 
0.29-2.9wt% (2.9-29g/l), 
900rpm, 100µm 

At  S/L 2.9wt% 
(29g/l), 3MPa 
(30bar), 120min, 
30% Ca extraction 

[2.88] 

 

Waste 
cement 

Single step-Aqueous 
carbonation-room 
temperature, 5bar, 2h, L/S 
ratio 0.15l/Kg 

14% weight gain [2.89] 

 

Cement kiln 
dust 

Single step-Aqueous 
carbonation-room 
temperature and pressure, 
0-8days, L/S ratio 0-
1.25l/Kg 

At L/S 1.25l/Kg, 8 
days, 80% 
carbonation 
efficiency 

[2.90] 

Metal wastes Ground 
granulated 
blast furnace 
slag 

Single step-Aqueous 
carbonation-room 
temperature, 5bar, 2h, L/S 
ratio 0.15l/Kg 

7% weight gain [2.89] 

 

Steel slag Single step-Aqueous 
carbonation-25-225°C, 1-
30bar, 2-30min, L/S ratio 2-
20l/Kg, 100-2000rpm, 0-
500µm 

At 225°C, 30bar, 
30min, 2000rpm, 
L/S 20l/Kg, <38µm, 
74% carbonation 
efficiency 

[2.91] 

 

Steel slag Single step-Aqueous 
carbonation-28-150°C, 0.1-
4MPa (1-40bar), 3-700h, L/S 
ratio 10l/Kg 

At 150°C, 4MPa 
(40bar), 700h, 90% 
conversion 
efficiency 

[2.13] 

Other wastes Oil shale ash Single step-Aqueous 
carbonation-room 
temperature and pressure, 
0-100min, 100rpm, 34-
47µm 

17-20% CO2 bound [2.48] 

 

Paper sludge 
ash 

Single step-Aqueous 
carbonation-room 
temperature and pressure, 
3-24h, L/S ratio 20l/Kg 

30% conversion 
efficiency 

[2.13] 

 

Red Mud Single step-Aqueous 
carbonation-room 
temperature and pressure, 
72h, <160µm 

26% CO2 bound  [2.47] 

Table 2.6: Summary of mineral carbonation processes for waste materials 
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2.3.4.1 Mineral carbonation of municipal solid waste incinerator ashes 

Production of municipal solid waste (MSW) is a global environmental problem and 

incineration is a common management option when recycling and re-using are not 

possible. When incinerated, mass reduction for waste ranges between 65-70% and ashes 

are produced from the combustion. 

Wang et al. (2010) studied mineralization of MSW fly ashes and the effect of liquid to 

solid (L/S) ratio and reaction time [2.45]. Experiments were carried out at room 

temperature in a glass beaker, L/S ratio tested were 0.1, 0.25, 0.5 and reaction times 

were from 2 to 240h. Based on the weight gain of the sample, the best L/S ratio was 

0.25 but most importantly it was found that mineral carbonation is a convenient pre-

treatment method before ash landfilling. In fact, mineralization reduces leaching heavy 

metals from samples [2.45]. 

Li et al. in 2007 investigated the utilization of fly ashes from combustion of MSW in an 

accelerated carbonation step [2.83]. The efficiency of the reaction between ash and CO2 

was examined by measuring the weight increase between the initial dry powder and the 

dried final product. The authors used two different reactors. The first was a stainless 

steel chamber which could examine the influence of temperature on the reaction; a layer 

of ashes and water was placed in the reactor and then mixed CO2 and N2 were injected 

(3bar pressure). The measured pressure in the reactor allowed calculating the 

consumption of CO2. The second reactor, which was employed to assess the optimum 

L/S ratio for carbonation, was a closed chamber containing 100%CO2. Different values 

of L/S ratio were tested. Samples were carbonated for 3h at a pressure of 3bar. Results 

showed that the optimum carbonation reaction was achieved at ambient temperature and 

L/S ratio of 0.3l/Kg [2.83]. 

Baciocchi et al. (2009) investigated the carbonation of air pollution control residues fly 

ashes from a MSW incinerator. A 150ml stainless steel reactor was employed and 

different temperatures (30°C, 40ºC and 50ºC), CO2 pressures (1, 3, 5, 7 and 10bar), L/S 

ratios (0.02, 0.1, 0.2, 0.4 and 0.6l/Kg) and reaction time (from 10min to 48h) were 

investigated. The ashes used in this study showed good reactivity with CO2, due to the 

large content of calcium hydroxides. Under reaction conditions of L/S ratio 

0.2-0.02l/Kg and temperature of 30-50°C, high CO2 uptake capacities of over 250g/kg 

of residue were achieved in less than 1h using 100%CO2 at 3bar [2.84]. Baciocchi et al. 
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in 2010 also investigated the effects of carbonation on the characteristics of bottom ash 

from refuse derived fuel (RDF). The carbonation tests performed assessed the influence 

of temperature, CO2 pressure and L/S ratio. CO2 pressure was observed to be the most 

important parameter. Keeping constant the particle size (0.425–0.150mm), the best 

result (14%CO2 uptake capacity) was achieved with the highest pressure (10bar) at 

temperature of 30°C, L/S ratio of 0.3l/Kg, and 8h running time [2.85]. 

2.3.4.2 Mineral carbonation of coal fly ashes 

Coal fly ashes are by-products from the combustion of coal during electrical production 

in power plants. Fauth et al. (2002) investigated fluidized bed ashes as feedstock for 

mineral carbonation. Their experiments were carried out in a continuous stirred tank 

reactor at two different temperatures (155°C and 185°C) and CO2 pressure 75bar for 1 

hour. Fly ashes were mixed in the reactor with water and an aqueous bicarbonate 

solution (0.5M Na2CO3/0.5NaHCO3, 1MNaCl); For both temperatures, efficiency of 

carbonation achieved was 50% [2.86]. 

Montes-Hernandez et al. (2009) researched the use of coal fly ashes to sequester CO2 by 

carbonation in a 2l reactor. In their experiments the effect of solid to liquid (S/L) ratio 

(6.67, 10, 20l/Kg), CO2 pressure (10, 20, 30 and 40bar), reaction temperature (ambient, 

30°C and 60°C) and reaction time (0-18h) were investigated. The carbonation efficiency 

was calculated considering the consumption of CO2 in the reactor during the 

experiments. Results showed that pressure did not affect the carbonation efficiency and 

this seems to be contradictory with results from Baciocchi et al. and Huijgen et al. 

[2.84] [2.91]. This is probably because CO2 pressure range investigated by Montes-

Hernandez was higher (10-40bar) compared to the other two studies (1-10bar, 1-30bar) 

which instead observed the influence of pressure on carbonation at low values. 

Temperature and fly ash quantity slightly affected the carbonation of experiments 

carried out by Montes-Hernandez et al. and, finally, time of reaction was an important 

parameter. The carbonation efficiency achieved was 82% after 18h at 30°C. Therefore, 

this process can store a tonne of CO2 in 38.2 tonnes of fly ashes [2.87]. 

2.3.4.3 Mineral carbonation of construction sector waste streams 

Portland cement is the main compound used in the production of concrete. Waste 

cement is generated as a by-product of aggregate recycling process from demolition of 
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buildings, when concrete is pulverized and classified to separate aggregates from waste 

cement. 

Iizuka et al. (2004) researched sequestration of CO2 using waste cement. They proposed 

the utilization of a two step process, where the first one extracts calcium ions from the 

cement by pressurizing CO2 and a second step to precipitate calcium carbonate when 

the pressure is reduced. For the experiments, a 500ml reactor was employed and the 

influence of pressure (9, 17 and 30bar), S/L ratio (2.9g/l, 15g/l and 29g/l) and time of 

reaction (0-120 min) were investigated. Results showed that extraction of calcium ions 

was more efficient at higher pressure, S/L ratio, and also increased with time of 

reaction. Furthermore, also the effect of particle size was investigated, showing that 

smaller particles (10-53µm) released calcium ions during the reaction quicker (about 

25-30% in the first 20min) than bigger particles (10-200µm)[2.88]. 

Monkman and Shao (2006) analyzed the behavior of two different cements when 

reacting with CO2. A closed reactor was employed, and, 2h reaction, 5bar CO2 pressure 

and L/S ratio 0.15l/Kg were the main parameters used. The CO2 uptake after 

carbonation was calculated based on the change in mass of the sample and achieved 

12% and 14% for the two cements tested, with the formation of calcium carbonate as 

calcite [2.89]. 

Huntzinger et al. (2009) investigated mineral carbonation for cement kiln dust. 

Experiments were performed at ambient pressure and temperature in a 288l (60 by 60 

by 80cm long) chamber, where CO2 was continuously supplied to replenish the amount 

sequestered. The effect of reaction time (0-8 days) and L/S ratios (0-1.25l/Kg) were 

investigated, calculating the degree of carbonation based on the change in mass after the 

experiments. Results showed that mineral carbonation was more successful with higher 

L/S ratios and also with longer reaction times, reaching 80% after eight days and 

1.25l/Kg L/S ratio [2.90]. 

2.3.4.4 Mineral carbonation of metal waste streams 

Blast furnace slag is the residue from the production of iron from the raw mineral (e.g. 

magnetite, hematite). Monkman and Shao (2006) researched the behavior of GGBS 

during the reaction with CO2. A closed reactor was employed, and, 2h reaction, 5bar 
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CO2 pressure and L/S ratio 0.15l/kg were the main parameters of the carbonation 

reaction. The CO2 uptake was calculated based on the change in mass of the sample and 

achieved 7% with the formation of calcium carbonate as aragonite [2.89]. 

Steel slag is the by-product of the production of steel. Huijgen et al. (2005) investigated 

the potential of steel slag for mineral carbonation. Experiments were performed in a 

450ml reactor and the effects of several parameters were investigated including L/S 

ratio 2-20l/Kg, stirring rate 100-2000rpm, temperature 25-225°C, CO2 pressure 1-30bar 

and reaction time 2-30min. Furthermore also the effect on the carbonation reaction of 

different particle size (<38µm, <106µm, <200µm, <500µm and <2000µm) was 

investigated. The carbonation efficiency was calculated based on the content of calcium 

in calcium carbonate compared to the initial total calcium. Results showed that 

carbonation efficiency increased when the temperature, pressure, time of reaction and 

stirring rate increased, whilst, carbonation efficiency decreased when particle size and 

L/S ratio increased. The maximum carbonation efficiency (74%) was achieved after the 

reaction at temperature 100°C, CO2 pressure 19bar, particle size <38µm and stirring 

speed 500rpm [2.91]. 

Zevenhoven et al. (2010) researched the use of steel slag as feedstock for mineral 

carbonation. Experiments were carried out in a 25l reactor and the parameters employed 

for the reaction were CO2 pressure (1bar, 10bar and 40bar), temperature (28-150°C), 

L/S ratio (about 10l/Kg) time (3-700h) and CO2 vol% (1%, 10% and 40%). Tests 

showed that temperature, time and CO2 vol% were important parameters for the 

reaction, increasing the efficiency at higher temperatures, for longer times of reaction 

and at higher concentration of CO2 in the reactor (up to about 90% conversion 

efficiency). Pressure, instead, slightly affected the experiments, with small differences 

in results after tests at 10bar and 40bar [2.13]. 

2.3.4.5 Mineral carbonation of other waste streams 

Oil shale ash is the residue from combustion of oil shale for power production. Uibu et 

al. (2010)  designed an ash–water suspension carbonation process in a continuous mode 

laboratory-scale plant (consisting of a series of reactor columns) and investigated 

potential means of intensifying the water neutralization process. The pH levels in the 

reactors ranged from alkaline to almost neutral. This produced optimal conditions for 
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Ca(OH)2 dissociation and CaCO3 precipitation. The final products contained 0.6–

2.0wt% of unreacted lime and 17–20wt% of bound CO2 [2.48]. 

Paper bottom ash is obtained from waste paper incineration. Zevenhoven et al. (2010) 

analyzed the use of paper bottom ashes as feedstock for mineral carbonation. 

Experiments were carried out in a 25l reactor and the parameters employed for the 

reaction were CO2 pressure (slightly above ambient), temperature (25°C), L/S ratio (10-

50l/Kg) time (3-24h) and CO2 vol% 100%. The most interesting finding in these 

experiments was the high purity of calcium carbonate produced by mineral carbonation, 

which varied between 90.5wt% and 98.5wt% [2.13]. 

Red mud is a waste slurry obtained from the process largely used to produce alumina 

from bauxite. Because of its high alkalinity (pH>13) its storage is a serious 

environmental issue and CO2 can be used to neutralize it. Red mud carbonation reduces 

its toxicity (lowering the pH) and sequesters CO2, although its sequestration capacity is 

limited [2.92]. Carbonated red mud can be employed in a wide range of applications, 

including land reclamation, fertilizer additive, plastic filler and cement production 

[2.93]. Mineral carbonation employing red mud was investigated following a direct 

aqueous process and the CO2 which was possible to bound in the final product achieved 

26% of the weight of the sample [2.47]. The main products of mineral carbonation were 

Na2CO3 and NaHCO3 Because the main source of alkalinity is present in the liquid 

phase, usually as NaOH [2.47]. 

2.3.4.6 Summary of mineral carbonation of waste materials 

Processes employed so far for mineral carbonation for industrial waste materials have 

been single-step via an aqueous route (Table 2.6). Other options like multi-step 

processes have not been investigated yet and this may allow, as seen in the previous 

sections, to reduce the energy requirement, making the process more economically 

viable. 

The literature review conducted thus far allowed understanding that the parameters 

which affect the mineralization reaction are temperature, time, pressure, particle size 

and L/S ratio. Generally, CO2 stored by mineral carbonation increases when the reaction 

happens at higher temperature and for longer time. Furthermore, mineralization results 
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improved when particle size decreases. The reported effect of pressure and L/S ratio on 

the efficiency of the process, instead, do not provide uniform results. 

Interpretation of data available on the efficiency of the carbonation for the processes 

presented in Table 2.6 is problematic because of a lack of an uniform method for 

calculating the efficiency of carbonation. Some researchers (e.g. [2.45] [2.83] [2.84]) 

consider the weight gain of the sample, assuming that all weight increase is due to CO2 

stored and neglecting that other reactions may happen at the same time (i.e. hydration of 

silica, evaporation of volatile compounds during reactions at high temperature, etc.). A 

more suitable method to calculate the efficiency of carbonation is based on the amount 

of CO2 consumed in the reactor during the experiments [2.87]. However, this method 

may be employed only in processes where CO2 is directly injected into a reactor and 

cannot be accurately applied if CO2 has been previously captured (e.g. NH4HCO3 

obtained from the capture of CO2 into NH3) during a multi-step process [2.29]. In fact, 

the assessment of the amount of CO2 previously captured, which has been effectively 

stored in the carbonated material, could be an issue (e.g. NH4HCO3 may not react 

completely during the carbonation step and it is difficult to assess the amount left at the 

end of the reaction). Efficiency of carbonation is, instead, accurately calculated when 

the exact amount of carbonates present in the initial and final samples can be assessed 

by analytical methods (i.e. thermo-gravimetric analysis) as reported by Huntziger et al. 

[2.90], Huijgen et al. [2.91] and Zevenhoven et al. [2.13]. Therefore, calculation of 

efficiency based on analytical methods is the most accurate method among the ones 

employed in the studies presented in Table 2.6. 

2.4 Use of final products 

Mineral carbonation can produce a range of products which can be divided into two 

groups: 

 Mixture of carbonates (magnesium and calcium), silica sand, metal oxides (mainly 

iron) and residual silicate rock all in one final product. This group of products can 

be obtained from single-step technologies, for example the Albany Research Centre 

process [2.62]. 

 Different streams of final products (with variable purity level) like silica, 

carbonates and other metal oxides (mainly iron). These products can be obtained 
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from multi-step mineralization processes, where, after each phase, solid precipitated 

products can be collected. In this category, Teir et al. [2.34] and Wang and Maroto-

Valer [2.29] processes are included. 

Obviously, from a market value point of view, products with higher purity have bigger 

potential value than mixtures of different materials [2.94]. This is why, in an attempt to 

reduce the costs of mineral carbonation, recently, there has been an increasing interest 

in multi-step mineralization processes. In fact, they are able to produce different streams 

of final products [2.29] and, when the final products obtained from a process are already 

available for being sold on the market, this makes that technology more attractive. 

The next sections present current applications and market value for the main product 

streams which can be obtained from mineral carbonation processes. 

2.4.1 Silica applications and market value 

Mineralization processes can produce, as by-product left from the extraction of metals 

from the feedstock, amorphous silica in a small size range (1-30µm). The main 

application for this material could be the construction sector, as filler or cement 

replacement [2.94]. Furthermore, high level of purity silica can be employed for 

electronic products, ceramics, refractory materials and iron and steel making. Table 2.7 

presents the range of silica applications, properties required and the size of the current 

market for each application. It must be highlighted the high level of purity required for 

the different applications and the fact that it is difficult that by-products from mineral 

carbonation can reach such level of purity without further post-processing [2.94]. 

Therefore, silica from mineralization applications is likely to be mainly used as building 

material (cement additive). 

In 2009 global production of silica was about 112Mt and average price of 1t was £189. 

Micro-silica (<2µm) has a higher market value (£390/t) but mineralization processes 

must be controllable to ensure the precipitation of such micro-sized material [2.94]. 
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Table 2.7: Silica applications, properties requirement and market size [2.94] 

2.4.2 Magnesium and calcium carbonate applications and market value 

Currently, about 98% of magnesium carbonate (magnesite) is converted to magnesium 

oxide for applications such as refractory materials, mostly for iron and steel making. 

Global extraction of MgCO3 is about 8.5Mt/year and about 8.0Mt/year are converted 

(calcinations process at 1450°C) into magnesium oxide. Therefore, magnesium 

carbonate, as such, can be employed only in a few applications (e.g. agriculture, 

construction sector). Therefore, due to the small size of these markets, MgCO3 obtained 

would be employed mainly for low end applications like mining sites restoration [2.94]. 

Calcium carbonate is the main product from carbonation of waste materials (rich in 

calcium oxide) and wollastonite. Calcium carbonate can be employed in the 

construction sector as filler in cement. However, it is important to identify which 

mineral phases of calcium carbonate are produced by mineral carbonation and also the 

LOI (loss on ignition), chlorine and sulphate concentrations in order to assess their 

suitability as a potential cement additive [2.95]. Carbonated materials from 

mineralization were added into concrete cubes and they showed suitable properties 

according to BS EN 12390 [2.94]. 

In addition, calcite is employed in other industrial applications in the form of 

precipitated calcium carbonate (PCC) and ground calcium carbonate (GCC). However, 

for these applications, chemical and physical properties (e.g. average particle size and 
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distribution, morphology, specific surface area, chemical purity) have an important role 

[2.96]. Impurities, like iron and manganese in calcium carbonate produced from 

mineralization of steel slag, reduce the market value of calcite. 

Global market for GCC was 72Mt in 2007 and 13Mt for PCC and its price can range 

between £350-550/t [2.94]. Therefore, if mineral carbonation was able to produce 

calcium carbonate of adequate quality to access these markets (e.g. with low 

impurities), it would become more economically viable. However, even if calcite from 

mineralization would not be able to meet those quality requirements, the products could 

be employed for low-end applications, such as mining site restoration. 

2.4.3 Iron oxide applications and market value 

Iron oxides are mainly employed as pigments for ceramics, porcelain and paints because 

of their tinting strength and resistance to acids [2.97]. In 2010 world production of iron 

oxides pigments was about 1.4Mt in 2006 and the average cost in the USA was about 

£142/t in 2008 [2.98]. Iron oxides are usually a combination of one or more ferrous or 

ferric oxides plus some impurities and their main application is as iron ore mineral. 

Therefore, mineral carbonation by-products can be employed in the iron and steel 

industries which have huge global demand. Iron ore had a market in 2010 of 2.4Gt and 

average price of £57/t [2.94]. 

2.5 Mineral carbonation pilot plants 

As described earlier in Sections 2.1.2 and 2.2, mineral carbonation is a relatively new 

technology compared to underground storage of CO2. Therefore, also the number of 

pilot plants available worldwide is lower. Nowadays mineral carbonation has been 

implemented in three pilot plants [2.99]: 

 Calera process in the gas fired Moss Landing plant (CA, USA) has been running 

for about two years. The plant captures flue gas CO2 (30kt/year) from a 10MW 

power generator at 90% efficiency. The Calera process at Moss Landing plant 

uses brines containing Ca or Mg ions to react with CO2 in a reactor. There is no 

need of previous separation of the CO2 from the flue gases and the final 

carbonate products are suitable for cement manufacture [2.100]. 
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 Alcoa process at Kwinana  (Western Australia) has been running since 2007. 

The process adds CO2 to residues left after alumina is removed from 

bauxite. The Kwinana carbonation plant locks 70kt of CO2 a year. The CO2 is a 

by-product from the nearby ammonia plant which would otherwise be emitted. 

The second environmental benefit is that mixing CO2 with residues from 

extraction of alumina reduces their pH level to values found naturally in many 

alkaline soils and the final products can be reused in road base, building 

materials or soil amendments [2.101].  

 Skyonic group (USA) has developed a process able to remove CO2 from flue 

gases and produce saleable carbonates and bicarbonates. The process can also 

remove SOX, NO2 and heavy metals from the flue gases. Furthermore, green 

chemicals, such as hydrochloric acid, bleach, chlorine, and hydrogen are also 

produced increasing the economics of the process. Skyonic is currently 

retrofitting Capitol’s cement mill (San Antonio, USA) owned by Capitol 

Aggregates and by 2014 the plant should be fully operational and able to 

sequester 75kt/year of CO2 [2.103]. 

Another process is at an advanced stage of development and a pilot plant will be soon 

operational. The University of Newcastle (Australia) in collaboration with GreenMag 

Group and Orica Ltd has recently unveiled plans for building a pilot mineral 

carbonation plant operational by 2017. However, details on the technology employed 

have not been disclosed. The process will sequester 100kt/year of CO2 into serpentine 

minerals and the main aim is to reduce the cost of mineralization to about £25/tCO2 

[2.99] [2.102]. 

2.6 Conclusions 

Carbon capture and storage could reduce CO2 emissions. Underground storage has 

recently seen a slow deployment of the technology (about 20Mt/year stored compared 

to 32Gt/year global emissions) and, therefore, mineralization has gained increasing 

interest and needs further research. Mineralization is a relatively new option in the CCS 

portfolio compared to CO2 underground injection which has been employed for EOR 

for about 40 years. Mineral carbonation, in fact, has been researched only since 1990. 

The numerous advantages of mineralization have been described in this chapter: 
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permanent sequestration of CO2, exothermic reaction, abundant suitable feedstocks. 

However, there are also several drawbacks (e.g. slow reaction rates) which make costs 

of this storage option higher than CCS underground storage (£75-110/tCO2 avoided for 

mineral carbonation while £50-75/tCO2 avoided for CCS underground storage) .  

Suitable feedstocks for mineral carbonation must be rich in calcium and/or magnesium 

and include natural silicate minerals (serpentine, olivine, wollastonite) as well as 

industrial waste streams (municipal solid waste ashes, coal fly ashes, construction sector 

wastes, metal wastes, etc.). There is a vast amount of published data about 

identification, characterization and mineral carbonation tests on suitable feedstocks for 

mineralization. Waste streams have variable composition due to the production 

processes but also caused by other factors (e.g. storage, weathering conditions, age of 

the sample etc.). Therefore, each waste stream should be deeply characterized before 

any mineralization experiments, to assess its characteristics and to understand its 

behaviour. In the future, new suitable materials for mineral carbonation may be 

produced from novel industrial processes or technologies and therefore new feedstocks 

may become available.  

Mineral carbonation technologies can be divided mainly into two groups, namely 

single-step and multi-step processes. Every mineralization process has a specific kinetic 

of the reaction which is differently affected by the main parameters (temperature, 

pressure, time, S/L ratio, particle size). First mineralization studies were carried out 

investigating single-step processes, called also direct mineral carbonation. Afterwards, 

other routes were explored, from aqueous direct mineralization to aqueous indirect 

processes (multi-step). Furthermore, recently, techniques able also to regenerate and 

reuse the chemicals involved were studied. The main aim of all research efforts has 

been to reduce the costs involved with the technology. Multi-step processes, also able to 

regenerate and reuse the chemicals employed, seem to require less energy intensive and 

more economical conditions than single-step processes. However, so far, there is a lack 

of rigorous energy and mass balances reported for the processes proposed. When 

assessing a technology it is important to consider its technical feasibility but also its 

economic viability. Moreover, industrial waste streams have been employed only with 

single-step aqueous processes. There is, therefore, a need for studying multi-step 

processes applied to these waste materials. The effect of the parameters affecting 
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mineralization (i.e. temperature, time, pressure, particle size and L/S ratio) on the 

reactions in multi-step processes needs to be understood to identify the best conditions.  

Another important aspect of mineral carbonation is the nature and potential value of the 

final products. In fact, mineral carbonation would look more attractive if the final 

products can be sold and become a revenue stream. Calcium and magnesium carbonate, 

silica and iron oxides are the main outcomes from mineralization processes and they 

have several applications, ranging from low-end (e.g. cement substitute, mining site 

restoration, land remediation) to high quality (e.g. specific industrial application). It is 

therefore necessary, when evaluating a mineralization process, to combine analyses of 

the efficiency of carbonation with characterization through appropriate techniques of the 

final products, allowing understanding any potential market value.  
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CHAPTER 3 – METHODOLOGY 

 

The methodology followed in the thesis is presented in this chapter.  Procurement of 

suitable waste materials is the first step for developing a mineralization process. In 

Chapter 2 (Section 2.2.3) several waste streams were identified and described. In this 

work, nine waste streams rich in Ca content were selected from various providers, in the 

UK and Europe. The samples received were characterized by X-ray diffraction (XRD) 

and X-ray fluorescence (XRF) to assess the mineral phases present and the chemical 

composition, respectively (Section 5.2). Furthermore, in this chapter, details of the 

sample rig employed for the mineral carbonation experiments are also reported. 

Afterwards, the methodology used for characterising the solution samples, employing 

inductive coupled plasma mass spectrometry (ICP-MS), is described. Efficiency of 

carbonation is the most suitable parameter to report the degree of carbonation achieved 

during the mineralization process and it can be determined by thermo-gravimetric 

analyses (TGA). Moreover, morphology and chemical composition of the final 

carbonated products were investigated by scanning electron microscope (SEM). Finally, 

this chapter presents how the economics of the process was assessed after calculating 

the mass and energy balance. 

3.1 Sample procurement 

Identification of promising waste materials for mineral carbonation was described in the 

previous chapter (Section 2.2.3). Samples of nine different streams namely blast furnace 

slag, pulverised fuel ash, recycled concrete aggregate, steel slag, phosphorus slag, 

cement kiln dust, copper smelt slag, incinerator sewage sludge ash were procured from 

the UK and Europe. Full details of the Companies providing the samples and the 

location of the production sites cannot be disclosed because of confidentiality. 

However, some information on the origin of the different samples are reported in the 

following paragraph. 

Blast furnace slag was obtained from a plant producing 1Mt of blast furnace slag per 

year. Pulverized fuel ashes were produced in a 2000MW coal power plant. Recycled 

concrete aggregate was received from the UK as a cube (15x15x15cm), which usually is 

employed for stress tests on concrete. Steel slag came from a plant producing 3.2Mt per 

year of steel in four electric furnaces. Phosphorus slag was received from a supplier of 

materials for road building and cement kiln dust from a cement plant producing about 
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50Mt per year of cement. Copper smelt slag came from a site extracting 35t per year of 

copper from raw minerals and the incinerator sewage sludge ash was received from a 

wastewater treatment plant serving an area with population of 450,000 inhabitants.  

The samples were obtained from production plants where a representative amount of 2-

3kg of each sample was collected from the residue of the manufacturing processes. 

Once received, the samples were stored in the same indoor location (at ambient 

temperature) prior to the experiments described below.  

3.1.1 Sample preparation 

The samples provided presented a wide range of different size. Pulverized fuel ashes, 

blast furnace slag, cement kiln dust and incineration sewage sludge ashes were obtained 

as already fine particles (<500µm). In contrast, steel slag and phosphorus slag consisted 

of agglomerates of 2-3cm size, but also of fine particles. Recycled concrete aggregate, 

instead, was received as a concrete block (15x15x15cm) normally utilized in the cement 

industry for testing its properties (e.g. compression). In this case, to reduce the particle 

size, a crusher was employed to obtain concrete pieces of 1-2cm. About 700g of each 

sample was grinded with a Tema mill, loading 50-70g of sample every run and grinding 

it for 2min. Afterwards, the grinded samples were homogenized using a riffle. This 

operation allowed to guarantee that the grinded material was representative of the 

sample. The material obtained was then employed for the following experiments and 

analyses. 

The waste materials selected for mineralization experiments (steel slag, phosphorus 

slag, ground granulated blast furnace slag, Chapter 6) were sieved, using an automatic 

shaker, because particle size is one of the factors affecting mineral carbonation, as 

described in the literature review (Section 2.3.4.6). According to previous studies on 

mineral carbonation [3.1] [3.2] [3.3], two different size ranges were selected, 75-150µm 

and 150-300µm. Particle size distribution tests were performed on the different samples 

obtained after sieving. When studying the particle size distribution, d50 represents the 

value of the particle diameter at 50% in the cumulative distribution (i.e. 50% of the 

particles forming the sample have a diameter less than d50). In the same way, d90 

represents the value of the particle diameter at 90% in the cumulative distribution. Table 

3.1 reports the values of d50 and d90 for the different samples employed for the mineral 

carbonation tests. It can be noticed that ground granulated blast furnace slag had the 
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lowest values of d50 and d90, while the particle size 150-300µm could not be obtained 

since the sample tested did not contain particles in the size range 150-300µm (Section 

6.3).  

 75-150µm 150-300µm 

 d50 [µm] d90 [µm] d50 [µm] d90 [µm] 

Steel slag 101 125 215 259 

Phosphorus slag 95 115 207 243 

Ground granulated blast 

furnace slag 
88 104 N/A N/A 

Table 3.1: Values of d50 and d90 for samples employed in mineral carbonation tests 

Sieving operations, as well as milling and crushing, were performed handling materials 

with appropriate gloves and avoiding dust dispersion by using ventilating systems. 

3.2 Sample characterization 

Every waste stream has a high variability in composition and properties due to several 

factors including feedstocks used, process condition, storage, weathering conditions 

etc.. Therefore, samples collected required characterization to understand their 

composition and properties. The techniques selected in this study were X-ray 

fluorescence and X-ray diffraction. These techniques have been largely used for 

characterization of solid samples in mineral carbonation and have proved their 

reliability (e.g. [3.1] [3.2] [3.3]).  

3.2.1 X-ray fluorescence 

X-ray fluorescence (XRF) is used to obtain the chemical composition of a material. 

Some authors in literature choose Inductive Coupled Plasma Mass Spectrometry (ICP-

MS) for analysing chemical composition of solid samples. However, it has been 

demonstrated that both techniques (XRF and ICP-MS) are reliable for detecting the 

chemical composition of a sample since, in some studies, the same author used either 

one or the other achieving the same accuracy of results ([3.1] [3.2]).  XRF is a surface 

sensitive technique and while preparing the sample for analysis the homogeneity 

between the inner part and the surface of the specimen must be ensured.  XRF is based 

on the emission of secondary electrons from a material after it has been excited by X-

rays. Every material gives a different response to the X-rays and, therefore, the 

instrument can detect the chemical oxides contained in the sample analyzed. The X-ray 
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fluorescence principle is based on the fact that an X-ray beam excites and ejects an 

inner shell electron of an atom. Afterwards, another electron moves from a higher 

energy shell to fill the vacancy created. The energy difference between the two shells 

appears as X-ray emitted by the atom (called photon or fluorescent X-ray). The X-ray 

spectrum (peaks with different intensities), acquired during the XRF, reflects the energy 

emitted during the process and allows identifying the chemical oxides present in the 

sample and their concentrations [3.4]. The preparation process used for this analysis 

involved grinding 3g of sample (average grain size <50µm) and then a fusion bead was 

prepared (ensuring homogeneity of the sample between inner and external layer), 

heating the sample up to 1400°C (Figure 3.1). Afterwards, the bead was put into a 

PANalytical Axios Advanced XRF spectrometer with the X-ray tubes operating at 4kW 

output, 160mA. Results of the analyses are given in element (e.g. Ca, Mg, Si) in oxide 

form wt% with an instrumental accuracy of ±0.1wt%. 

 

Figure 3.1: Fused bead preparation and prepared fused bead ready for XRF 

3.2.2 X-ray diffraction 

The most suitable technique to detect crystalline phases present in a material is X-ray 

diffraction (XRD). XRD is a bulk technique and it is based, as XRF, on X-rays and the 

way materials diffracted within and reflected from them. X-rays, of a known 

wavelength λ, are passed incident upon a sample at angle θ, in order to identify its 

crystal structure. The XRD is founded on the Bragg’s law; it considers (a) two atomic 

planes of spacing d and (b) a monochromatic plane x-wave falling on them at an angle 

θ. (c) The path difference between the two reflections is 2d sin(θ) (Figure 3.2). 
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Figure 3.2: Bragg reflection on two atomic planes 

If this path difference equals a whole number, n, of wavelength λ, then the phase 

difference between the two reflected beams is zero throughout the crystal. Therefore, 

according to the Bragg’s law, maximum amplitude of the reflected wave is obtained for 

angles θn, where n is an entire number (i.e. 1,2,3 etc.): 

                (3-1) 

X-ray powder diffraction spectrometers consist, mainly, of an X-ray tube, a sample 

holder and a detector (Figure 3.3). The X-ray tube produces the X-rays, these are sent to 

the sample with a constant angular speed θ/min, and the detector also rotates at an 

angular speed of 2θ/min recording the intensity of the peaks.  

 

Figure 3.3: Basic layout of a X-ray powder diffraction spectrometers 

(a) Atomic planes 

(b) X-rays 

(c) Path difference between two 

reflections 
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When the spacing among different atomic planes is a multiple of the wavelength of the 

X-rays, according to the Bragg’s law, the detector registers a peak of intensity due to the 

constructive interference. Instead, when the spacing among atomic planes is not a 

multiple of the wavelength, the detector records a flat pattern [3.5]. 

For this work, the preparation process involved grinding 10g of sample (average grain 

size <75µm), then placing the material in a sample holder for the analysis (Figure 3.4). 

The instrument employed was a HILTONBROOKS X-ray powder diffraction 

spectrometer and the standard XRD resolution parameters were: scan speed of 2 degrees 

2θ per minute, step size 0.05θ in the range 0-90 2θ-degrees.  

 

Figure 3.4: Prepared samples ready for XRD 

Furthermore, XRD can be used to quantify the content of each crystalline phase in the 

sample and this technique is called quantitative XRD (QXRD). In this work two 

different QXRD computer software were used, to compare and corroborate the results 

obtained. For QXRD in the BRUCKER AXS EVA, the software used the relative 

intensity ratio (RIR) method. This involves a database which includes the RIRs 

(indicated as I/Ic) of all different phases, which were determined for any phase using a 

standard, usually Al2O3 (corundum) and SiO2 (quartz) [3.6]. The software can calculate 

the percentage of each crystalline phase by comparing the database on the pattern 

analyzed. With higher number of phases present, the error in the results is bigger 

because of the approximation of every RIR used for the calculation [3.7].  

In addition, the Rietveld refinement method was also used. This allows analysing the 

whole XRD pattern instead of a few indentified peaks, modelling it until the best fit is 
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achieved [3.6]. MAUD (Materials Analysis Using Diffraction) [3.8] software 

implements the Rietveld method and it was used to corroborate and compare QXRD 

results obtained from BRUCKER AXS EVA software. Results obtained from QXRD 

based on the Rietveld method are typically ±2.5% for concentrations >60wt%, ±5% for 

concentrations between 60 and 30wt%, ±10% for concentrations between 30 and 

10wt%, ±20% for concentrations between 10 and 3wt% and ±40% for concentrations 

<3wt% [3.9]. 

3.3 Experimental rig for mineralization studies 

The aim of this thesis is to investigate an innovative multi-step mineralization process 

for different waste streams (Section 1.5). Details of the process are reported in Chapter 

5 (Section 5.1) while, in Figure 3.5, a simplified diagram presents the different phases 

of the process. The methodology employed for testing the mineral dissolution step (first 

block in Figure 3.5) is reported in Section 3.4, while, Section 3.5 reports the 

methodology employed for testing the sequence of mineral dissolution, pH adjustment  

and carbonation reaction. 

The proposed process operates at ambient pressure, therefore, experiments testing 

mineral dissolution, pH adjustment and carbonation reaction were carried out in the 

experimental rig showed in Figure 3.6. A 500ml, 3-neck glass flask reactor (A) was 

employed. The system was heated by a temperature–controlled (letter B, RCT basic 

IKAMAG® safety control) silicone oil bath (C) incorporating a thermocouple (letter D, 

IKA ETS-D5) inserted into one of the necks of the reactor. The other neck of the glass 

flask was used for the pH meter probe (letter E, Orion 720A Plus). A stirrer was 

employed to continually mix the solution and the apparatus was connected to a water 

cooling system (F) via one of the necks to avoid evaporation losses. Samples were 

loaded into the glass reactor from the free neck (G) and, if required during the 

experiments or when experiments were concluded, the solution was collected and solid 

particles separated thanks to paper filters (pore size 0.22µm) and a vacuum pump 

(Fisher FB65540).  
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Figure 3.5: Simplified block diagram of the mineralization process investigated 

 

Figure 3.6: Mineralization experimental set-up: A) glass flask B) heater and temperature 

controller C) silicone oil bath D) thermocouple E) pH meter F) water cooling system G) 

sample loading neck 
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Mineral dissolution, pH adjustment and carbonation reaction steps (Figure 3.5) have 

been studied at lab-scale level. As described in the literature review (Section 2.3.4.6), 

the main parameters affecting mineral carbonation are temperature, S/L ratio and 

particle size. Accordingly, investigation on the effect of these parameters (Chapters 5 

and 6) on the designed process are required to assess its feasibility. Table 3.2 reports the 

values of the parameters tested in this work. 

Parameter Values tested 

Temperatures 25-40-50-65-90°C 

S/L ratio 15-25-50g/l 

Particle size 75-150µm, 150-300µm 

Table 3.2: List and range of parameters investigated for the mineralization process 

3.4 Chemical reagents 

As seen in the Figure 3.5, in this thesis different chemical reagents were employed in 

the experiments. Crystalline ammonium sulfate (NH4HSO4) was obtained from Fisher 

Scientific in 500g container, 98% min. purity. Crystalline ammonium carbonate 

((NH4)2CO3) min. purity 96.4% in a 500g container was also obtained from Fisher 

Scientific. To avoid uptake of moisture they were stored sealed in a dessicator and the 

exposition of the reagents in the atmosphere at natural conditions was limited as much 

as possible. Batches of experiments were carried out during 5-10 consecutive days after 

which the reagents were bought new again. This has ensured that capture of moisture 

from (NH4)2CO3 was negligible and the accuracy of mineral carbonation estimation was 

not affected.  

3.5 Experimental conditions for testing the  mineral dissolution step 

Four waste streams (steel slag (SS), recycled concrete aggregate (RCA), phosphorus 

slag (PS) and ground granulated blast furnace slag (GGBS)) were selected (Section 5.2) 

for testing the dissolution step of the mineralization process (Figure 3.5 and Table 5.1). 

Employing the experimental set-up presented in Figure 3.6, 400ml solutions were used: 

1.3M NH4HSO4 for tests on steel slag and ground granulated blast furnace slag, while 

0.96M and 0.8M NH4HSO4 for phosphorus slag and recycled concrete aggregate, 

respectively (values of NH4HSO4 concentrations were slightly above stoichiometric). 

Samples employed were in the size fraction of 75-150μm to be consistent with a 
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previous study on serpentine [3.1]. The stirring rate (800rpm),  S/L ratio (50g/l), time 

(3h), sampling procedure (employing a syringe to collect a small amount of solution at 

regular intervals) and initial temperature (50°C) were also identical to those employed 

by Wang and Maroto-Valer [3.1]. Furthermore, experiments were also carried out at 

25°C and 90°C to understand the dissolution trends of the samples at different 

temperatures and determine the dissolution kinetics. 

3.5.1 Characterization of solution samples  

During the dissolution experiments, small amounts of solution (about 10ml) were 

sampled with a syringe at fixed intervals and solid particles were separated thanks to a 

syringe filter unit with 0.22 μm pore size. The solution obtained was then acidified with 

HNO3 to ensure stability and comparability with calibration standards of the ICP-MS. 

Afterwards, these samples were analyzed by ICP-MS to measure the concentration of 

metals in ion form dissolved. The extraction (e.g. dissolution) efficiency of a specific 

metal (e.g. Fe, Mg, Ca) in a solution sample at time t (e.g. at 5, 10, 15 min) was 

calculated by: 

               
                                 

                                   
        (3-2) 

The mass of metal originally present in the sample was determined by XRF (Table 5.2), 

while the mass of metal extracted into solution was obtained from the ICP-MS analyses 

reporting the concentration of metal in the solution.  

3.5.1.1 ICP-MS 

ICP-MS allows analysing chemical composition of liquids, solids and gases. When 

loaded into the instrument the sample is introduced into an high-energy argon plasma 

where the material is split into individual atoms. The plasma consists of positively 

charged argon ions and electrons at about 7000K. When the individual atoms of the 

sample exit the high energy plasma, the mass spectrometer can detect the concentration 

of the atoms present in the sample based on their mass to charge ratio. 

For this work the ICP-MS employed was a Thermo-Fisher Scientific X-Series 2 (Figure 

3.7) which analyzed the concentrations of Mg, Si, Fe, Ca, Al, Ni, Mn, Cr, Cu, Al, Sr, Na 

and Ba. 
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Figure 3.7: Thermo-Fisher Scientific X-Series 2 

3.6 Experimental conditions for testing the sequence of mineral dissolution and 

carbonation reaction steps 

During the course of this study (Chapter 6) three waste streams (steel slag, recycled 

concrete aggregate, phosphorus slag and ground granulated blast furnace slag) were 

identified for testing the sequence of mineral dissolution, pH adjustment and 

carbonation reaction steps (Figure 3.5). Different S/L ratio, temperature and particle size 

were investigated (Table 3.2) employing the experimental set-up presented in 

Figure 3.6.  

The 400ml solutions employed were prepared with slightly above stoichiometric 

NH4HSO4 (Table 3.3) based on i) the S/L ratio used in the experiments, ii) the 

concentration of metals (Ca in the raw materials, Chapter 5, Table 5.2) and iii) the 

theoretical dissolution reaction (Chapter 5, Table 5.1) between Ca silicates and 

NH4HSO4: 

                                          (3-3) 
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NH4HSO4 

concentration [mol/l] 

(NH4)2CO3 

concentration [mol/l] 

SS 

15g/l 0.39 0.20 

25g/l 0.65 0.32 

50g/l 1.3 0.65 

PS 

15g/l 0.29 0.16 

25g/l 0.48 0.24 

50g/l 0.96 0.48 

GGBS 

15g/l 0.39 0.20 

25g/l 0.65 0.32 

50g/l 1.3 0.65 

Table 3.3: NH4HSO4 and (NH4)2CO3 concentration used for the dissolution studies 

based on stoichiometric concentration required, S/L ratio and CaO content. 

As an example, for experiments employing PS at 25g/l the concentration of NH4HSO4 

was calculated as follows. CaO content in PS is 46.7% (Chapter 5, Section 5.2) which 

corresponds to 33.4% Ca content. Mineralization experiments used 400ml Millipore 

water, and therefore, for 25g/l concentration, 10g of PS were required. Hence, the Ca 

content into 400ml solution was 3.3g (0.084mol) and the Ca concentration was 

0.21mol/l. From reaction 3-3, stoichiometric concentration of NH4HSO4 is twice as Ca 

concentration, i.e. 0.42mol/l. NH4HSO4 molar mass is 115g/mol, and consequently, the 

quantity of NH4HSO4 in 1l and 0.4l solution is 48g and 19.2g respectively. Assuming 

that the dissolution reaction will not deviate much from the stoichiometric conditions, 

NH4HSO4 employed for the experiment was 22g (0.48mol/l), 15% more than 19.2g, to 

ensure its full availability for the dissolution of Ca and precipitation of CaSO4. 

According to the analogue mineralization process developed for serpentine by Wang 

and Maroto-Valer [3.1] [3.2], the sequence of mineral dissolution, pH adjustment and 

carbonation reaction took place at different temperature and running time. Mineral 

dissolution was carried out at 50°C for 3 hours. The adjustment of pH and precipitation 

of impurities steps took place by adding ammonia water (NH4OH) in the solution, and 

raising the pH at about 8.2-8.3. The carbonation reaction was then conducted for 1 hour 

at 65°C adding slightly above stoichiometric (NH4)2CO3 (Table 3.3) to ensure its full 

availability for the carbonation reaction. The amount of (NH4)2CO3 was calculated 

based on i) the waste stream and S/L ratio used in the experiments, ii) the amount of 

CaSO4 produced during dissolution reaction (Chapter 5, Table 5.1) according to: 
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                                            (3-4) 

which then reacts with (NH4)2CO3 as follows: 

            
                

     (3-5) 

As an example, for experiments employing PS at 25g/l the concentration of (NH4)2CO3 

was calculated as follows. From the dissolution step, the concentration of NH4HSO4 in 

solution was 0.48mol/l. From reaction 3-4, the concentration of CaSO4 produced was 

0.24mol/L (half of 0.48mol/l) which, according to reaction 3-5, is the same as the 

concentration of (NH4)2CO3. Therefore, considering the molar mass of (NH4)2CO3 of 

96g/mol, the required amount of (NH4)2CO3 per litre was 23g and for the 400ml solution 

9.2g. 

3.6.1 Characterization of mineralization products 

The carbonated final solid residues obtained after filtering the final solution (Section 

3.3) were dried overnight in an oven at 105°C. Characterization of the products obtained 

was performed by calculating the level of carbonation achieved (efficiency of 

carbonation) by XRF and XRD to analyse their chemical composition and crystalline 

phases present and by analyzing the morphology of the particles’ surface employing the 

scanning electron microscope (SEM), as described below. Investigation on the nature 

and morphology of the particles performed with the SEM allows collecting further 

useful information for understanding the dissolution and carbonation steps if the process 

investigated in this thesis. 

3.6.1.1 Efficiency of carbonation 

Efficiency of carbonation achieved by employing a certain material as feedstock for 

mineralization experiments (i.e. including the sequence of mineral dissolution, pH 

adjustment and carbonation reaction) represents the degree of carbonation reached. The 

feeding materials used in this study were rich in Ca and the calculation of the degree of 

carbonation must be based on calcium carbonate produced. Consequently, carbonation 

efficiency for waste materials (i.e. Ca-rich) represents the wt% of Ca initially contained 

in CaO which is converted into CaCO3 during the mineralization process, calculated as 

follows: 
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       (3-6) 

The Ca mass in the feeding material can be calculated from XRF analyses on the parent 

sample, while CaCO3 before and after experiments can be calculated from thermo-

gravimetric analyses (TGA). TGA measures the weight change of a material as function 

of temperature in a controlled atmosphere. The analysis is performed by gradually 

raising at the desired heating rate the temperature in a furnace and the sample weight is 

measured on an analytical balance. The weight of the sample is plotted against 

temperature or time to illustrate the loss of moisture, water of hydration and 

decomposition of the material. 

In the case of carbonated materials, calcium carbonate, when heated between 600-

850°C releases CO2 and leaves CaO [3.10] and consequently the mass of the sample 

decreases. It is therefore possible, thanks to the TGA, to link the mass loss due to the 

CO2 evaporation between 600-850°C to the amount of Ca bounded in CaCO3 in the 

initial solid sample, as follows:  

                 

                         
            

             
                          (3-7) 

The instrument employed in this thesis for the TGA analyses was a TA Q500 

(Figure 3.8). 

Usually between 10-20mg of sample were loaded onto a pan and the analyses took place 

in nitrogen (N2) atmosphere. The temperature heating ramp was 10°C/min, starting from 

ambient, with 10 minutes constant temperature at three different values: 105°C to allow 

residual moisture to evaporate; 500°C to stabilize the sample and prepare for the 

following temperature increase, during which the loss of weight was taken into account 

for the calculation of CaCO3wt%; and finally 900°C to complete the degradation of the 

material. 
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Figure 3.8: TA Q500, instrument employed for TGA 

3.6.1.2 Scanning electron microscope 

A scanning electron microscope (SEM) allows specimens morphological 

characterization with resolution down to nanometer scale. A focused beam of high-

energy electrons is used to generate a variety of signals on the sample surface. The path 

of the beam is correlated to a set of gray level pixels on a screen. The magnification on 

the monitor is simply computed by the ratio of the image width of the output medium 

divided by the field width of the scanned area. Information about the sample, including 

external morphology (texture), crystalline structures and orientation of materials making 

up the sample are revealed. In SEM analyses, the specimens are required to be 

electrically conductive or to be coated with a conductive layer (e.g. C, Pt, etc.). 

When a sample is analyzed by SEM and therefore a beam of electrons is focused on the 

surface, incident electrons (IE) decelerate producing a wide range of different signals: 

secondary electrons (SE), backscattered electrons (BSE), diffracted backscattered 

electrons (EBSD, used to determine the crystal structure and orientation of minerals), 

X-rays and heat (Figure 3.9). SE and BSE are used for imaging samples: SE for 

showing the morphology and topography on samples, while BSE are valuable for 

illustrating contrast in composition in multiphase samples, as the different phases of 

different composition give different contrast in the image. SEM analysis is considered 

to be non-destructive because after the sample has been prepared on the holder and 

coated it can be analyzed several times at different intervals, providing the specimen is 

safely stored. Areas ranging from approximately 1 cm to 5 microns in width can be 

imaged in a scanning mode using conventional SEM techniques. 
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Figure 3.9: Signals generated from a sample analyzed with SEM 

SEM can provide data on chemical composition of selected point locations on the 

sample. This approach is especially useful in qualitatively or semi-quantitatively 

determining chemical compositions, using energy dispersive X-ray spectroscopy, EDS. 

When incident electrons hit the surface, EDS detector can separate the characteristic X-

rays produced by the sample. An energy spectrum is generated in order to determine the 

abundance of specific elements. EDS can be used to find the chemical composition of 

materials down to a spot size of a 2-3µm, and to create element composition maps over 

a much broader raster area. However, EDS can only detect the surface composition of a 

sample, not being a reliable technique if the particles investigated consist of different 

layers of materials 

A SEM JEOL JSM-6400 (Figure 3.10) was employed in this work to study the 

morphology and composition of the particles. Secondary electron (SE) images were 

collected using 20kV beam voltage, 15mm working distance and the chemical 

microanalyses were performed with a Link ISIS 300 EDS microanalysis system fitted 

with a Si(Li) detector. SEM analyses required ~1g representative samples, obtained 

grinding and homogenizing the materials which were analyzed. Before the analysis the 

specimens were adhered to a carbon tab prior to sputter coating with platinum at 2.2kV 

for 90s. 

IE 

BSE 

SE X-

rays 
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Figure 3.10: SEM JEOL JSM-6400 

3.7 Cost evaluation of the mineralization process studied 

A cost evaluation of the mineralization process proposed (Figure 3.5) was carried out. 

For this purpose, a mass balance was firstly conducted considering the chemical 

reactions, reactants and products and their stoichiometric values. Among the different 

waste materials tested in the mineralization experiments, steel slag was the one chosen 

for the economic evaluation of mineral carbonation at industrial scale because of the 

impact of steel industry on the global CO2 emissions. In fact, emission from steel plants 

account about 20% of the world CO2 industrial emissions [3.11].  

From the reaction list reported in Table 5.1 and data on the CO2 emissions and steel slag 

production of a specific steel plant (where the technology may be applied), a mass 

balance for the mineralization process can be performed. These calculations allow 

assessing the quantity of chemicals required and products obtained and, consequently, 

investigate their economic impact on the mineralization process. Afterwards, an energy 

balance of the overall process can be performed. Heat released and required from each 

single step can be calculated using the thermodynamic calculations presented in Table 

5.1 and the quantity of different inputs and outputs of each step of the process, obtained 

from the mass balance. The energy balance should also include an estimation of 

electrical consumption based on the design of the process and consequently the needs of 

electrical equipment (compressors, pumps, conveyors, agitators) to allow its operation. 

Once also the energy balance (heat and electricity) has been investigated, and therefore, 

the energy demand established, CO2 emissions due to the process can be calculated. 

Afterwards, comparison between the CO2 captured and CO2 released, when the 
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mineralization process is implemented in a steel plant, allows evaluating the carbon 

balance. If it is negative, based on estimations of the capital investment, variable and 

other costs, the economic feasibility of the investigated multi-step process at industrial 

scale can be assessed.  
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CHAPTER 4 – WASTE MATERIALS FOR MINERAL 

CARBONATION - A UK PERSPECTIVE 

 

This chapter aims at providing a picture of the potential use of waste streams for CO2 

storage in the UK. Firstly, from literature review, the chemical composition of a variety 

of suitable wastes for mineralization is reported. Afterwards, an assessment of the 

potential waste streams resources available in the UK together with their potential 

storage capacity are presented. It should be noted that availability of historical data on 

the production of some waste streams is limited. Information and data reported in this 

chapter are closely linked to the publication “Waste materials for carbon 

capture and storage by mineralisation (CCSM) – A UK perspective” listed in page XIV. 

The contribution of the author of this thesis to the development of such publication is 

mainly related to data collection and processing on waste streams availability and 

review of the drafts of the paper. 

Detailed discussions on mineralization technologies available, effect of parameters, and 

efficiencies were reported in the literature review (Chapter 2), therefore, in this chapter, 

data from previous studies on mineralization experiments are presented only to 

understand the context in which they were performed. 

4.1 Potential waste materials for mineral carbonation 

Waste materials from a wide range of industrial processes are rich in calcium and 

magnesium oxides and hydroxides, which are desirable for mineral carbonation [4.1]. 

Both natural rocks and wastes, depending on their chemical composition, can be 

suitable for mineral carbonation. However, the potential utilization of waste can be 

more complex than natural rocks, as described here. Firstly, rocks are a resource in a 

specific location which could be the feedstock for mineral carbonation for hundreds of 

years. In contrast, a material previously considered as waste may find a use due to 

developments in technology. Secondly, technology changes can lead to the cessation of 

a particular waste production. Thirdly, changes in legislation such as increasing disposal 

costs for waste, could create markets for ‘waste’ as by-products. The availability of 

waste products can therefore be very uncertain. Moreover, difficulties in retrieving 

long-term data for past production and the unpredictable nature of future sources and 

availability of waste should also be considered.  

http://www.sciencedirect.com/science/article/pii/S0306261912004941
http://www.sciencedirect.com/science/article/pii/S0306261912004941


90 

 

As seen in the literature review (Section 2.2.3), waste streams are characterized by a 

high content of calcium oxides, and therefore, they can be used for mineral carbonation. 

Feedstock employed for mineralization include: Recycled concrete aggregate (RCA), 

steel slag (SS), ground granulated blast furnace slag (GGBS), pulverised fuel ash (PFA) 

including oil shale pulverised ash, incinerator bottom ash (IBA), air pollution control 

(APC) residue, cement kiln dust (CKD), incinerator sewage sludge ash (ISSA), paper 

sludge ash (PSA) and biomass ash (BA). Mineral carbonation using all the above 

materials has been demonstrated in several recent studies [4.2 - 4.8]. In this work the 

assessment of inorganic waste as a resource material for mineralization technology was 

carried out considering the volumes available in the UK, their chemical composition 

and their location. The future availability of these waste resources was also investigated 

and discussed in the following sections, along with the assessment of employing 

mineral carbonation technology as an intermediate process towards the re-use of 

mineral wastes. The parameters used to evaluate current and future potential of the 

mineral wastes as a resource for mineralization are: 

 Amounts of waste streams available (including predicted future trends); 

 Content of calcium, magnesium and other suitable metals for mineral 

carbonation (e.g. iron). 

4.2 Chemical composition and CO2 uptake of potential waste materials 

Suitable waste materials for mineral carbonation, as seen in Chapter 2, must be rich in 

alkali metals (Ca/Mg). The literature review conducted allowed identifying several 

waste streams with these characteristics (Section 2.2.3) and a summary of their chemical 

composition is presented in Table 4.1. In the same table, the theoretical maximum 

CO2 uptake (TCO2 uptake) expressed in wt%  was calculated and reported for each 

potential UK mineralization waste from its chemical composition, using the modified 

Steinour formula [4.9] [4.10].  

                                                    

                                           (4-1) 

This method is based on the assumption that the total amount of Ca and Mg can be fully 

extracted from the waste, and subsequently, carbonated [4.11]. TCO2 uptake and the 
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annual production of the waste in the UK were then used in Section 4.10 to calculate its 

theoretical annual maximum CO2 storage potential (TCO2 capture expressed in MtCO2/yr) 

as follows: 

                                             (4-2) 

The experimental CO2 uptake (ECO2 uptake, Table 4.1) in wt% expresses the experimental 

values of CO2 uptake achieved thus far and reported in literature. ECO2 uptake was 

calculated and reported in the next sections for each potential UK mineralization 

resource from experimental results found in literature. In addition, the experimental 

CO2 capture (ECO2 capture expressed in MtCO2/yr) was calculated based on the waste 

availability, as explained in Formula 4-3, and it is reported in Section 4.10.  

                                             (4-3) 

Numerical values of ECO2 capture, expressing the amount of CO2 which could be stored 

in waste materials, allow evaluating the potential of UK wastes as feedstock for mineral 

carbonation. All the waste streams investigated showed higher calcium content 

compared to magnesium. 

Table 4.1 shows the high variability of the chemical composition of any given waste 

stream which directly depends on the starting material (e.g. coal, iron ore, municipal 

waste), production process and storage conditions. All SS, CKD, BA, oil shale ash, 

APC residue and PSA present high CaO content (40-70%) that is reflected in a high 

TCO2 uptake. MW incinerator bottom ash presents a large amount of SO3 that lowers the 

MW ash TCO2 uptake. The state of the art of mineral carbonation using wastes indicates 

that the maximum ECO2 uptake reached 20-25wt% for GGBS, SS, and APC residue, 

while largely available RCA and PFA present low ECO2 uptake, mainly because of their 

low Ca content.  

The following sections describe in more detail, for each waste stream, their chemical 

composition, TCO2 uptake and ECO2 uptake. Furthermore, data on their annual production 

in UK and historical trends (where available) are also reported with a final assessment 

of their potential for CO2 storage. 
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a
: Assuming 75% of Ca in the RCA binds to CO2 

 

Table 4.1: Chemical composition of the carbonation resources a) [4.15] [4.21] [4.12] b) [4.4] [4.51] c) [4.13] [4.37] [4.59] d) [4.4] [4.30] [4.37] 

e) [4.14] f) [4.11] [4.59] g) [4.4] h) [4.4] [4.5] [4.60] i) [4.28] [4.29] j) [4.46] [4.57] k) [4.15] and their theoretical CO2 uptake (TCO2 uptake) and 

the experimental uptake (ECO2 uptake)

 
Chemical composition (wt%) TCO2 uptake 

(wt%) 
ECO2 uptake (wt%) 

  CaO MgO Fe2O3 SiO2 SO3 Na2O K2O 

Recycled concrete 

aggregate (RCA) a) 
15-24 2-3 

 
64.0 

 
0.9 0.5 6

a
-22[4.21] 16-20[4.17] 

Cement kiln dust (CKD) b) 34.5-46.2 1.5-2.1 2.9 16.4 22 0.5 4-5.8 0.5-30[4.51][4.4] 9-11[4.4][4.51] 

Ground granulated blast 

furnace slag (GGBS) c) 
15-41 8-11 0.5-0.9 34-36 1.4 

 
0.6 20-44[4.21][4.37] 7-23[4.21][4.37] 

Pulverized fuel ash (PFA) 

d) 
1.3-10 1-2 13.8 56 4 0.5 0.1 6-9[4.30][4.27] 1.6-6.7[4.30][4.31] 

Incinerator sewage sludge 

ash (ISSA) e) 
9-37 3 5.6 40 0.3 0.7 2.3 15[4.4] 2[4.4] 

Steel slag (SS) f) 25-55 1.5-15 1.6 1-27 8 0.3 0.1 24-52[4.11] 12-21[4.15][4.45] 

Biomass and wood ash  

(BA) g) 
24-46 8-9 1-1.3 5-17 0.63-3 0.5 14-21 50[4.4] 8[4.4] 

Municipal waste incinerator 

bottom ash (IBA) h) 
32-53 2.8 1-7.9 4-30 27.9 0.5 0.1 25[4.4] 

3-14 

[4.43][4.45][4.46] 

Oil shale ash i) 42-50 5-6.5 4 2.1 
   

15-45 

[4.28][4.29] 
9[4.29] 

Air pollution control (APC) 

residue j) 
50-60 8 0.5-1.5 10 

  
2-6 50-58[4.48] 

7-25 

[4.19][4.46][4.48] 

Paper sludge incinerator ash 

(PSA) k) 
45-69 1.3-5.3 1-4.7 10-25 1-7 0-1 0-2 50[4.4] 17[4.4] 
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4.3 Recycled concrete aggregate 

Recycled concrete aggregate (RCA) results from the processing of inorganic material 

previously used in construction and principally including crushed concrete. The cement 

component of RCA consists of a series of calcium silicate hydrate and calcium 

aluminate hydrate compounds, as well as calcium hydroxide, which is highly alkaline. 

Therefore the most abundant mineral is SiO2, 64wt%, followed by CaO whose content 

can vary between 15-24wt% (Table 4.1). Chloride ions from the application of de-icing 

salts to roadway surfaces or sulphates from contact with sulphate-rich soils can 

sometimes be present [4.14]. Due to the high variability in CaO content, RCA 

TCO2 uptake is also very variable, 6–22wt% (Table 4.1) [4.15] [4.16]. Kashef-Haghighi 

and Ghoshal investigated the carbonation of a fresh concrete block using a flow-through 

reactor under a constant flow of CO2 (20% in nitrogen balanced) at 20°C and 60min 

duration achieving an ECO2 uptake ranging 16-20% [4.17]. An ECO2 uptake  value of 16.5% 

was achieved by direct carbonation at ambient temperature, 4bar pressure, 48min 

duration and a mean particle diameter of 80µm [4.20]. In this process, the cement 

powder was mixed with the desired amount of water (50wt%), moulded into bricks, 

cured with CO2 and then dried overnight. Other investigations have attempted direct 

carbonation of RCA, but unfortunately they did not report the ECO2 uptake. For instance, 

Shtepenko et al. used a pressurized vessel purged with 2bar of pure CO2 for 60min 

[4.18], while Iizuka et al. and Katsuyama et al. employed a two-step process for the 

extraction of Ca
2+ 

from cement waste (30bar, 50°C) and sequent carbonation (1bar) in a 

stirring tank vessel [4.7] [4.16]. 

4.3.1 Assessment of UK resources 

An annual average of about 52Mt of RCA is generated in the UK [4.23] [4.24], and the 

latest data available are presented in Figure 4.1. It can be noticed that between 2008 and 

2009 there was a drop of about 10Mt in RCA production, from 58 to 48Mt, probably 

due to the crisis of the construction sector. The vast majority of RCA is currently re-

used in construction applications as an aggregate, mainly for low-end applications, such 

as ‘hard core’ for building products and land reclamation. Thereby, the amount of RCA 

material sent to landfill and attracting taxes is small, reducing the need for virgin rock 

aggregate in the construction sector [4.22].  
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Figure 4.1: RCA production in the UK [4.23] 

The UK construction sector is facing a number of fundamental changes over the next 

few years to develop a sustainable construction industry capable of delivering a low 

carbon future and to meet the current carbon, water and waste reduction targets [4.22]. 

Economic and legislative developments driven by increasing emphasis on reducing 

energy, water consumption and waste generation, and recycling and disposal issues, will 

influence future aggregate production trends, driving a radical change in the extraction 

and processing aggregates industry [4.22]. Therefore, it is expected that in the future 

there will be a further increase in the amount of RCA recycled  [4.22]. 

4.4 Pulverized fuel ash from coal combustion 

Pulverized-fuel ash (PFA), also known as coal fly ash (FA), is electrostatically 

precipitated from the flue gases of coal-burning power stations. PFA is a fine powder 

made up of individual fused ash particles with a diameter of about 10–15µm.  

As seen in Table 4.1, the principal components of PFA are usually SiO2, Fe2O3, MgO 

(1–2%) and CaO (1.3–10%). The properties of PFA are influenced by those of the coal 

burned, the burning techniques used and also by the type of flue gas system adopted 

[4.26].  

Table 4.1 shows results from mineralization experiments at different conditions 

employing PFA. TCO2 uptake of coal PFA is about 9wt%, and the ECO2 uptake has been 
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reported to achieve about 7wt% maximum (Table 4.1) because of the relatively low 

content of CaO and MgO in the feedstock. Both direct aqueous carbonation of 40µm 

PFA particles at 30°C, 10bar, 18h [4.30] and aqueous carbonation under 2.7bar of 

pressure, 20% moisture and 120h [4.31] were investigated. Moreover, PFA carbonation 

at 30–90°C, 10 and 40bar, using a mean particle diameter of between 20 and 150µm 

and solid/liquid (S/L) ratios between 0.1 and 1l/kg, was carried out in a stainless steel 

autoclave reactor [4.27]. Other direct aqueous carbonation experiments were performed 

at 25-30-60°C, 10-20-30-40bar for 2h and results showed that 1t of coal PFA could 

sequester up to 26Kg of CO2 [4.30].  

Moreover, PFA from combustion of oil-shale has been investigated as feedstock 

material for mineral carbonation. This is relevant for countries such as Estonia, where 

the primary energy source is oil shale (low-grade carbonaceous fossil fuel) and 

pulverised fuel ash from oil-shale contains up 42-50% CaO (Table 4.1). When using 

ambient pressure and temperature in a continuous flow column reactor and stirring at 

1000rpm, an ECO2 uptake of 9wt% was reported for oil-shale PFA [4.29]. 

Whilst the quantities of coal PFA generated are large (Section 4.4.1), the low CaO and 

MgO contents limits the amount of CO2 that can be converted to carbonates. Therefore, 

PFA cannot significantly reduce CO2 emissions from coal fired power plants [4.1]. 

4.4.1 Assessment of UK resources 

About 5.6Mt of PFA are produced every year in the UK [4.62], and this production has 

been constant in the last decades because of the stable employment of coal for power 

generation. In the coming years, for the same reason, the production of PFA is not 

expected to show substantial changes. In UK about 50% of PFA is used by a wide range 

of applications, including cement manufacturing (main use), asphalt, hydraulically 

bound mixtures, uses without any binding agent (e.g. fill material in embankments and 

as capping layers) or as grouts, where the material is hydraulically pumped or injected 

into the ground to fill void space. The remaining 50% of PFA is normally sent to 

landfill as conditioned ash in either a monofill or a lagoon and might be available for 

mineralization [4.22] [4.32]. 
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4.5 Steel and iron slag 

SS is the by-product of the manufacture of steel from pig iron (blast furnace) and metal 

scrap (electric arc furnace). As seen in Section 2.2.3, steel slag production can be 

subdivided into mainly basic oxygen furnace slag (BOF) (62%), electric arc furnace 

slag (EAF) (29%) and, moreover, secondary metallurgical slag such as ladle slag (9%) 

[4.33]. BOF slag generally has lower CaO content than EAF [4.33]. Secondary 

processes for further refinement of stainless steel through reduction of carbon content 

and pollutants, such as sulfur, also produce slags. To further refine the steel after 

coming out of the BOF or EAF, fluxes are added to the molten steel while in a ladle. 

The slag from this process is usually called ladle slag. The chemical composition of 

ladle slag is significantly different from that of steel furnace slag in that the former has a 

very low Fe content (only 2.4wt%) but higher Al content (13.4wt%) [4.33]. Also, a 

mixture of argon and oxygen, with the addition of cleaning agents to remove impurities, 

is added to the molten metal to decrease its carbon content. The oxygen combines with 

carbon in the unrefined steel to reduce the carbon level. The presence of argon enhances 

the affinity of carbon for oxygen, and thus, facilitates the removal of carbon forming 

argon oxygen decarburization slag (AOD) [4.36]. 

BOF and EAF steel furnace slags typically present CaO content between 25–55wt% 

(Table 4.1) making them suitable candidates for mineral carbonation. The maximum 

TCO2 uptake (24 to 52wt%) reported in Table 4.1 would be enough to sequester about 

40% and 10% of the CO2 emissions from EAF and BOF processes, respectively [4.11] 

[4.34] [4.35]. 

Ground granulated blast furnace slag (GGBS) is a by-product from the production of 

iron, resulting from the fusion of fluxing stone (fluorspar) with coke, ash and the 

siliceous and aluminous residues remaining after the reduction and separation of iron 

from the ore [4.22]. The molten slag is equivalent to about 20wt% of iron production 

[4.14]. GGBS typically consists of silicates, alumino-silicates, and calcium-alumino-

silicates and the most abundant compounds include dicalcium silicate, tricalcium 

silicate, dicalcium ferrite, merwinite (calcium magnesium disilicate), calcium aluminate, 

calcium-magnesium, iron oxide, and some free lime and free magnesia. GGBS usually 

contains CaO and MgO in the range of 15–41wt% and 8-11wt%, respectively 

(Table 4.1).  
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An ECO2 uptake of 7–23wt% was reported for GGBS (Table 4.1). EAF, blast furnace slag 

and ladle slag showed an ECO2 uptake on the order of 12wt%, 7wt% and 4.6wt%, 

respectively [4.15] [4.29]. The GGBS and EAF powders were subjected to 100% CO2 at 

a constant pressure of 5bar for 2h [4.15]. Many other studies used these materials for 

mineralization experiments, for instance, GGBS indirect carbonation experiments were 

run in a batch reactor at 70°C, 40bar, 20% acetic acid solution (Ca extraction step) using 

particles between 125 and 250µm. This was followed by carbonate precipitation at 30°C 

and ambient pressure whilst being stirred at 600–700rpm for 2h in the presence of pure 

CO2 and sodium hydroxide solution [4.35]. EAF accelerated carbonation tests were 

performed in stainless steel reactor at 50°C, 10bar pressure, a L/S ratio of 0.4l/kg and 

100% CO2 and at 75% relative humidity that was maintained using a saturated NaCl 

solution [4.38]. EAF carbonation under ambient pressure and temperature using 15% 

CO2 balance in air for 65min and a S/L ration of 0.1l/kg [4.29] was also attempted. EAF 

and BOF slags were employed for leachability tests for extracting Ca
2+

 from <150µm 

powders, using a S/L ratio of 10kg/kg under continuous stirring and at 22°C in the 

presence of 0.5M NaOH, 0.5M H2SO4 or 0.5M HNO3 [4.11]. AOD carbonation was 

performed at 30°C, 20% CO2, at a S/L ratio of 0.5l/kg for 7 days [4.39]. ECO2 uptake 

values from the numerous studies carried out on GGBS and SS range from 7–23wt% 

and 12-21wt% for GGBS and SS, respectively (Table 4.1). 

4.5.1 Assessment of UK resources 

Data available on SS production in UK are quite limited. A total of 1.25Mt of steel slag 

was produced in the UK in 2002 and a similar amount was generated in 2009. Also the 

production of steel in those two years was analogous, reaching about 12Mt [4.61]. 

Virtually all of the steel slag produced is employed as aggregate [4.40] [4.41] and 

therefore cannot be practically considered as mineralization resource in the near future. 

The distribution of the SS is limited to only a few areas in the UK (Teesside, South 

Wales, Kent), and the majority of the works are close to port facilities that facilitate the 

transport of materials. The future availability of SS in UK might decline considering 

that the production of electric arc furnace (EAF) slag is expected to rise in the South 

East and can partially balance the decline of the BOF [4.61]. The latter is used for 

aggregate use and considering that the demand is expected to continue, there is little 

necessity to find alternative uses [4.40]. If mineralization technology can produce an 
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intermediate product with higher market value than the raw slags, then these waste 

materials might represent a resource for mineral carbonation. 

About 3Mt of GGBS is generated in England and Wales every year and in recent years 

75% of the total production of GGBS has been used as a cement replacement material 

by the concrete industry. The remaining fraction (25%) is air-cooled and used as an 

aggregate. Therefore, GGBS is not available for mineral carbonation and the choice 

between the two uses is dictated by production options, economics and demand [4.22] 

[4.23].  

4.6 Bottom ash and air pollution control residue from incinerated municipal 

waste 

Incinerator bottom ash aggregate (IBA) is processed from the material discharged into 

the burning grate of municipal solid waste (MSW) incinerators and comprises 80% to 

90% of the total MSW ash production [4.22]. The most abundant elements in MSW ash 

are Si, Ca and Fe. IBA is a heterogeneous material, whose composition depends on the 

feed waste, combustion and quenching conditions used. IBA presents variable 

mineralogical structure, with amorphous and crystalline phases and (hydr)oxides, 

(alumino)silicates such as gehlenite (Ca2Al2SiO7), hydrocalumite 

(Ca2Al(OH)6[4.Cl1-xOx]·3H2O), calcium hydroxide Ca(OH)2, calcite (CaCO3) formed 

during quenching and storage, forsterite (Mg2SiO4), dicalcium silicate (Ca2SiO4) and 

hematite (Fe2O3) have been identified in bottom ashes [4.43]. Moreover, these ashes 

present heavy metals [4.4] [4.44]. Although ash composition can be expected to vary 

from facility to facility, chemical composition varies within relatively predictable 

ranges. Generally, IBA presents about 32–53% of CaO and about 3% of MgO (Table 

4.1). The use of IBA in mineral carbonation may be an attractive option for this 

material, rather than being employed for the production of aggregates. 

As presented in Table 4.1, municipal waste IBA has showed ECO2 uptake values between 

3–14wt%. IBA carbonation was carried out under different conditions: (1) using a 

pressurized reactor vessel (2bar) with pure CO2 for 72h maintaining 75% relative 

humidity inside the reaction vessel, (2) using a stainless steel pressurized reactor at 

10bar under 100% CO2 atmosphere at 30°C for 24h at a S/L ratio of 0.3l/kg [4.43], and 

(3) direct gas–solid carbonation of incinerator bottom ash at ambient temperature and 

3bar pressure for 2.5h in a stainless steel chamber [4.46]. 
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Air pollution control (APC) residue from MSW incinerators consists of particulates that 

originate in the combustion zone area and are subsequently entrained in the combustion 

gas stream. Then, the particulates are carried into the boiler and air pollution control 

system together with reaction products and excess reagents resulting from flue gas 

treatment. The entrained particulates stick to the boiler tubes and walls or are collected 

in the APC equipment, which consists of scrubber, electrostatic precipitator and 

baghouse. Ash extracted from the combustion gas consists of very fine particles, with a 

significant fraction measuring less than 0.1mm in diameter [4.14]. 

APC residues mainly contain CaO (50-60wt%) and SiO2 (10wt%) (Table 4.1). Other 

elements are also present in different percentages depending on the nature of the 

municipal waste: Cl, Al, Fe, Ca, Mg, K and Na. Abundance of Ca and Cl is due to their 

use in excess for acid gas abatement [4.19]. As regards to heavy metals, Zn, Pb, Cd, Cr, 

Cu, Hg, Ni are the most frequent. Also, trace quantities of very toxic organic 

compounds, such as polycyclic aromatic hydrocarbons (PAH) and chlorobenzenes (CB) 

may be present in these materials [4.47]. APC residue is a hazardous waste that may be 

reclassified to non-hazardous, following mineralization applications, by decreasing their 

metal ion leaching. Obviously, if materials containing chlorine would be employed for 

mineral carbonation, special health and safety precautions, with associated costs, would 

be required. However, the benefit of reclassification from ‘hazardous’ to ‘non-

hazardous’ material would reduce the risk and cost associated with the disposal. The 

ECO2 uptake of the APC residues was found ranging from 7 to 25wt% (Table 4.1). The 

carbonation experiments were performed using a modified muffle furnace, under a 

constant 100% CO2 flow, with temperatures ranging from 200 to 500°C and with a 

residence time of 6h [4.48]. Also, direct gas–solid carbonation of APC residues was 

evaluated at ambient temperature and 3bar pressure for 2.5h in a stainless steel chamber 

[4.46]. 

4.6.1 Assessment of UK resources 

The annual tonnage of IBA produced in the UK is about 1.2Mt where about 0.65Mt 

(55%) are currently used to produce aggregates [4.49]. Figure 4.2 presents the trends of 

production of IBA in UK in the last years and the fraction landfilled in 2011. The 2000 

Waste Strategy predicted a rise of waste-to-energy of about 25% of municipal solid 

waste by 2020 [4.22]. This is likely to result in significant increases in the amount of 
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IBA available for mineralization which has already started in the recent years, as it can 

be noticed in Figure 4.2. 

 

Figure 4.2: IBA from municipal waste produced in UK  and fraction landfilled [4.49] 

Previously, from 1996 to 2000, about 90% of the IBA produced in the UK was sent to 

landfill, but due to strict EU landfill directive, the space used for these hazardous wastes 

has significantly decreased and alternatives such as mineral carbonation are necessary 

[4.5]. However, the amount of IBA available for mineral carbonation will still be 

modest, i.e. below 1Mt [4.22]. 

There is limited information on historical data of APC residues produced. In 2010, 

about 162,000t were produced in the UK and 85%, about 138,000t, were sent to landfill 

as hazardous waste [4.50]. These residues are often transported over long distances for 

treatment and disposal, and alternative sustainable treatments would be beneficial 

[4.50]. APC residues are generated in the same locations as IBA and they might be used 

together as feedstock for mineral carbonation, increasing the amount of CO2 sequestered 

in the incineration plant. 

4.7 Cement kiln dust 

Cement kiln dust (CKD) is a fine by-product of Portland cement and lime high-

temperature rotary kiln production that is captured in the air pollution control dust 

collection system (e.g., cyclones, electrostatic precipitators). CKD is composed of fine 
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particulates of unburned and partially burned raw materials and it is collected from the 

combustion gases within pre-heater and kiln systems. Due to its caustic nature and 

potential as a skin, eye and respiratory irritant, CKD is a potentially hazardous waste. 

Typically, for every 100t of cement produced, 15–20t of CKD are generated [4.51] 

[4.52] [4.53]. The chemical and physical characteristics of CKD mainly depend on the 

method of dust collection employed at the facility. 

The concentration of free lime in CKD is typically higher in the coarser particles 

captured closest to the kiln, while fine particles tend to exhibit higher concentrations of 

sulphates and alkalis. About 75% of the kiln dust particles are finer than 0.03mm. CKD 

from wet-process kilns tends to be lower in calcium content and richer in salts than the 

dust from dry-process kilns. CKD has a chemical composition similar to conventional 

Portland cement with the principal constituents being CaO, SiO2 and Al2O3. As reported 

in Table 4.1, CaO and MgO content in CKD usually varies between 34% to 46% and 

1.5% to 2.1%, respectively. The ECO2 uptake was evaluated as being about 9-11wt% (i.e. 

every kg of CKD has potential to capture 0.09–0.11kg of CO2) based on experiments 

using a direct carbonation route at ambient temperature and pressure over 3 days (38% 

relative humidity) in a column reactor [4.51] and ambient temperature and 2bar over 

72h in a pressurized reaction vessel [4.4]. Results showed that despite the considerable 

differences in temperature, time and pressure employed, the experimental uptake of CO2 

reached almost the same values (9-11wt%, Table 4.1). 

4.7.1 Assessment of UK resources 

In 2008, the UK cement industry disposed about 46,000t of CKD in landfills [4.53]. The 

total annual tonnage of CKD being disposed of has fallen significantly since 1999, i.e. 

from 289,207t in 1999 to 46000t in 2008, because of new technology introduced in the 

cement production process. The production of CKD is expected to remain constant 

between 2010 and 2015, as shown in Figure 4.3, since the construction sector will not 

see a substantial expansion. The CKD produced in the UK per tonne of cement 

produced is very low (<1%) because the CKD is mainly recycled in the kiln during the 

production process. 
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Figure 4.3: CKD produced and disposed in landfills in UK and forecasted production 

for year 2015 [4.46] 

Before 2007, CKD together with sewage sludge could be used to improve soil fertility 

in land reclamation projects, but changes to legislation now precludes this use. 

Therefore, CKD sent to landfill raised to 75,000t in 2010 and it is expected to remain at 

this level at least untill 2015 [4.52].  

However, the cement industry, which is a large CO2 emitter, might decline in the UK 

due to the expected rise in the production costs because of EU regulations on CO2 

emissions. In fact, the EU Emission Trading Scheme, climate change agreements, 

carbon reduction commitments and a carbon levy can add a fee to pay because of the 

CO2 emissions from the process. Therefore, the availability of CKD in the UK in the 

future years is not certain [4.54], but it is possible that it may decrease. 

4.8 Other industrial waste resources for mineral carbonation 

A number of other inorganic materials, such as incineration sewage sludge ash, paper 

and biomass sludge ash, can be considered as a small resource for carbonation in the 

UK. Although their production in UK is small it might be of primary importance in 

other countries based on their availability. 

Incineration sewage sludge ash (ISSA) is the by-product produced during the 

combustion of dewatered sewage sludge in an incinerator. It contains between 9wt% 
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and 37wt% CaO (Table 4.1), and hence, is highly variable in terms of chemical 

composition. About 0.2Mt/year sewage sludge is produced in the UK [4.55] with 

approximated 0.08Mt/year of ISSA remaining after incineration (considering 40% of 

ash left after incineration) [4.14]. Currently, all ISSA produced is sent to landfill. 

Paper sludge incineration ash (PSA) is the residue from incineration of the wastewater 

sludge from paper-making. It consists of residual fibres, fillers and chemicals and 

contains about 45–69% of CaO (Table 4.1). About 0.13Mt/year of PSA is produced in 

the UK. Currently 70% (or 0.091Mt) goes to end uses, such as brick and cement 

manufacturers, and the remaining 30% is landfilled [4.55]. 

Biomass ash (BA) is a by-product of the combustion of biomasses such as spent grains 

after beer and bio-ethanol production, rape-cake after oil extraction. Wood ash (WA) is 

generated from coal power station and combined electricity and heat generation plants 

using wood sources. BA and WA contain between 24% and 46% of CaO (Table 4.1). 

The production of biomass ash in UK is 0.062Mt/year. All sixteen major UK power 

plants are now co-firing a proportion of biomass, at an average level of 3% (energy 

basis) making use of a range of fuels including wood (virgin and recycled), olive cake, 

palm kernal expeller, sewage sludge and energy crops [4.56].  

The ECO2 uptake reported for BA, PSA and ISSA is about 8wt%, 17wt% and 2wt%, 

respectively (Table 4.1). All these materials were tested for CO2 uptake using a reactor 

vessel in a 100% CO2 atmosphere held at 2bar pressure and 75% relative humidity for 

72h [4.4]. Detailed historical data on production of these waste streams in UK could not 

be found in any of the UK authorities databases accessible (e.g. Department of 

Environment, Food and Rural Affairs, Environment Agency). It is however reasonable 

to think that in the future they will not be available in such a quantity to store significant 

amounts of CO2 by mineral carbonation. 

4.9 Quarry waste as a potential resource 

So far, wastes produced from industrial processes have been discussed for mineral 

carbonation. However, quarry waste can also be considered a potential feedstock for 

mineralization. Processing of crushed stone for use as construction aggregate consists of 

blasting, primary and secondary crushing, washing, screening, and stockpiling. These 
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operations produce significant amounts of waste, often referred to as quarry waste and 

fines. Usually sand and gravel workings do not produce permanent waste, while hard 

rock quarries produce variable amounts of quarry waste and fines. Quarry fines are the 

inherent fraction of an aggregate below 63µm, as defined by BS EN 1377:2. However 

quarry fines are more commonly defined as the sub-millimetre ‘sand’ fraction that is the 

undersize from screening coarse aggregate and the 63µm fraction, as the airborne dust, 

collected by extraction filters [4.57]. Only waste and fines from operations processing 

ultramafic rocks should be considered as potential resources but there are no such 

operations in the UK. However, the tailing remaining from the mining industry can 

represent an important resource for mineral carbonation in countries with large mining 

activities. For example, in South Africa, if quarry waste would be employed for mineral 

carbonation, the calculated CCS capacity only for the tailings obtained from the 

platinum industry would be 14Mt/year, which is about 4% of total annual South Africa 

CO2 emissions [4.58]. 

4.10 Summary of UK waste streams as a resource for mineral carbonation 

This chapter presented an up-to-date review of the potential applications of inorganic 

waste materials for mineral sequestration of CO2. Waste production, availability, 

theoretical and experimental CO2 uptake were discussed. A wide range of waste and 

industrial by-product resources are currently available in UK and could be used as 

feedstock for mineralization. However, many of them are already employed for other 

low-end applications. Table 4.2 summarizes this information and reports the quantity 

(Mt/year) of the waste materials that is produced in the UK, and the quantity (Mt/year) 

available for mineralization because not being currently reused/recycled. Furthermore, 

Table 4.2 also reports the potential and effective CO2 that could be captured by mineral 

carbonation of waste materials. The theoretical CO2 capture in Mt (TCO2 capture) was 

calculated by multiplying TCO2 uptake (Table 4.1) by the waste availability (Formula 

4-2), while the experimental CO2 capture was calculated by multiplying the ECO2 uptake 

(Table 4.1) by the waste availability (Formula 4-3).  

Although RCA, SS, and GGBS are produced in UK, they do not currently present any 

tonnage available for mineral carbonation. In contrast PFA, APC, IBA, BA, ISSA, PSA 

and CKD are available for mineralization and their potential CO2 capture capacity is 

about 1Mt/year or 0.2% of the total UK CO2 emissions (about 490Mt). Currently, PFA 

represents the most abundant waste material to be used as mineral carbonation resource. 
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Table 4.2 also indicates that the experimental CO2 capture capacity of the UK waste 

materials would be about 0.1Mt/year. 

 

  

Waste total 

production 

[Mt/yr] 

Waste 

availability 

[Mt/yr] 

TCO2 capture 

[Mt] 

ECO2 capture 

[Mt/yr] 

 RCA 52[4.23][4.24] 0[4.23] 0 0 

SS 1.25[4.59] 0[4.40][4.41] 0 0 

GGBS 3[4.23] 0[4.22][4.23] 0 0 

PFA from 

coal 
5.6[4.62] 3.3[4.4][4.62] 0.752 0.05 

APC from 

MW 
0.13[4.19][4.50] 0.11[4.50] 0.064 0.016 

IBA from 

MW 
1.2[4.4][4.49] 0.55[4.49] 0.085 0.018 

CKD 0.046[4.53] 0.046[4.53] 0.014 0.001 

ISSA 0.08[4.14] 0.08[4.14] 0.012 0.0002 

PSA 0.13[4.55] 0.039[4.55] 0.02 0.01 

BA 0.062[4.56] 0.062[4.56] 0.03 0.005 

 
    

Total 65 3.93 0.98 0.09 

Table 4.2: Primary potential waste resources for carbonation in the UK, considering 

current materials reuse 

It has to be stressed that the majority of the waste streams investigated are currently re-

used for low-end applications to avoid landfill disposal costs and the aggregate levy in 

the case of primary aggregate production for the construction industry. For example, the 

use of the RCA into mineral carbonation could be technically viable integrating the 

mineralization plant after the crushing and sieving step of the construction and 

demolition waste, assuming that the properties of the carbonates produced could be 

compatible to commercial ones and also competitive in terms of cost. In such case, the 

TCO2 capture for RCA would be 11.4Mt/yr which represents about 2.3% of UK annual 

CO2 emissions. 

Furthermore, SS and GGBS, that have high ECO2 uptake (~20wt%), are generally located 

close to the CO2 emitter and could also be attractive candidates for mineral carbonation. 

Figure 4.4 shows the distribution of all the waste resources and the main CO2 emitters 

in the UK, including potential future resources, such as steel and blast furnace slags. 

The location of the mineral waste is widely distributed across the UK, and in many of 
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the cases, the waste resource is located very close to CO2 emitters. In particular, the 

South East, South Wales, the East Midlands and the North East are regions with higher 

potential for mineral carbonation, considering the wastes available. Indeed, steel and 

cement works and incinerators represent ideal locations for the application of this 

technology considering that CCS by geological storage mainly targets large power 

emitters. Consequently, the use of waste resources for mineral carbonation, if proved of 

being a technically feasible and economically viable option, could be considered as a 

niche market that could employ relatively small amounts of feed materials for 

mineralization.  
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Figure 4.4: Waste resources for mineral carbonation and CO2 emitter locations [4.63] 
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CHAPTER 5 – DISSOLUTION OF SELECTED WASTE 

MATERIALS IN NH4HSO4 

 

Chapter 4 focused on assessing waste streams availability in the UK and their potential 

CO2 storage capacity. It was clear that certain waste materials produced close to CO2 

emitters could be employed for mineral carbonation, although this would be a niche 

market using relatively small amounts of waste materials. In this chapter a closed-loop, 

multi-step mineralization process (Section 3.3) which allows precipitation of calcium 

carbonate (CaCO3) from Ca-rich waste streams is presented. Investigations on this 

multi-step process in this chapter aim at providing a comprehensive analysis of the 

dissolution step, for several waste materials. Firstly, results from the characterization of 

the nine waste materials identified previously (Section 3.1) are reported. These samples 

were selected following the identification of potential waste materials suitable for 

mineral carbonation presented in the literature review (Section 2.2.3) and the 

opportunity to receive an appropriate amount of material from providers based in UK 

and the EU. Secondly, four  samples with the highest calcium content and a low level of 

carbonates were considered for the dissolution experiments: steel slag (SS), recycled 

concrete aggregate (RCA), ground granulated blast furnace slag (GGBS) and 

phosphorus slag (PS). Finally, this chapter studies their mineral dissolution step in 

NH4HSO4. 

5.1 Multi-step mineralization process 

Waste materials identified for this work in Chapter 3 (Section 3.1) are rich in CaO, and 

therefore, a mineralization process which employs them must be able to convert CaO 

into calcium carbonate (CaCO3). As described in the literature review (Section 2.3), 

multi-step processes seem more attractive than single-step because they allow the 

production of different streams of high quality products. Wang and Maroto-Valer 

developed a process to extract magnesium from mineral rocks and produce different 

streams of useful by-products at ambient pressure [5.1]. An analogue process employing 

waste streams (rich in CaO) to precipitate calcium carbonate instead of magnesium 

carbonate was introduced in Section 3.3 and it is presented in Table 5.1. In addition, 

thermodynamic data, performed using Chemical Reaction and Equilibrium Software 

HSC Chemistry 5.1, are also reported. HSC Chemistry 5.1 is a software able to perform 

thermodynamic calculation which has proved its reliability also for mineralization 

studies [5.1]. 
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The multi-step mineralization process presented in Table 5.1 includes five main steps: i) 

mineral dissolution, ii) pH adjustment iii) precipitation of impurities, iv) carbonation 

reaction, and v) regeneration of additives. In this process, during mineral dissolution, 

metal ions are extracted from the feedstock material and solid calcium sulphate 

(CaSO4(s)) precipitates. Ammonium carbonate, ((NH4)2CO3), produced during the 

capture of CO2 with ammonia (NH3), is combined with CaSO4 in the carbonation 

reaction and calcium carbonate (CaCO3) precipitates. The pH is raised (adding NH4OH) 

prior to the carbonation step and the impurities (containing Mg, Fe and Al) precipitate 

as hydroxides. Raising the pH is an important step because it allows the following 

precipitation of CaCO3. The proposed carbonation process could also re-circulate and 

regenerate the chemicals involved, i.e. NH4HSO4 and NH3. The proposed process 

differs from the one developed by Wang and Maroto-Valer  because of different 

feedstock used (waste streams instead of mineral rocks) and a different chemical 

employed in the carbonation step, ammonium carbonate, (NH4)2CO3, instead of 

ammonium bicarbonate, NH4HCO3. In the carbonation reaction, in fact, (NH4)2CO3 will 

combine with CaSO4(s) to produce calcium carbonate. 

The energy balance reported in Table 5.1 is based on the thermodynamic calculations 

performed by the thermodynamic computer software (HSC Chemistry 5.1). In 

thermodynamics, ΔH (expressed in Joule) is the difference in enthalpy and represent the 

heat required (endothermic reaction, ΔH>0) for a reaction to happen or released 

(exothermic reaction, ΔH<0) when the reaction takes place. ΔH can be calculated by 

adding each heat of formation (obtained from scientific databases, e.g. NIST) of the 

reactants and products and then subtracting the latter from the former. ΔG is the Gibbs 

free energy, also expressed in Joules, and it expresses if a reaction happens 

spontaneously or not at a certain temperature and pressure. The Gibbs free energy basic 

expression is the following: 

             (5-1) 

where ΔS is the internal entropy of the system and T is the temperature. A chemical 

reaction results spontaneous when ΔG<0, while ΔG>0 indicates that the reaction is non-

spontaneous. Table 5.1 includes ΔH and ΔG and they were based on software HSC 

calculations and database.  
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Steps Reactions T[°C] ΔH[kJ] ΔG[kJ] 

CO2 capture                        10 -168.3 -29.6 

Mineral dissolution 

                                             

                                            

                                            

                                                    

50 

-130.7 

-68.7 

-62.7 

84.1 

-206.1 

-143.4 

-138.0 

-135.0 

pH adjustment                             25 -116 -134.4 

Precipitation of 

impurities 

                                      

                                          
25 

-696.0 

-673.4 

-567.7 

-545.1 

Carbonation reaction                                  60 -1.4 -19.6 

Regeneration of 

additives 
                       300 111.6 90.4 

 

Table 5.1: Chemical reactions list and thermodynamic data of the different steps of the carbonation process studied
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All the reactions result spontaneous apart from the regeneration of additives and 

compared to Wang and Maroto-Valer process (Table 2.4) the dissolution and 

carbonation reactions are less exothermic. In fact, for the dissolution step ΔH is 

-141.1kJ for Wang and Maroto-Valer and -130.7kJ for the process here described, while 

for the carbonation step ΔH is -6.6kJ for Wang and Maroto-Valer and -1.4kJ for the 

process here described. The pH adjustment and regeneration of additives steps have the 

same thermodynamic values, i.e. -116.0kJ and 111.6kJ, respectively. The capture and 

precipitation of impurities reactions, instead, release more heat in the process designed 

for waste streams (-168.3kJ and -696.0kJ). 

5.2 Characterization and selection of wastes for mineralization experiments 

In Chapter 3 (Section 3.1), nine suitable waste streams for mineral carbonation were 

identified. Six materials produced in the UK (Chapter 4, Section 4.2) were selected, 

namely RCA, CKD, GGBS, PFA, ISSA, SS.  

 
Chemical composition (wt%±0.1%) 

  CaO MgO Fe2O3 Al2O3 SiO2 KCl LOI 

Recycled concrete 

aggregate (RCA) 
39.9 0.4 1.1 2.0 27.9 n.d 27.2 

Cement kiln dust 

(CKD) 
28.5 0.4 1.2 1.8 4.9 55.2 0.1 

Ground granulated 

blast furnace slag 

(GGBS) 

39.0 8.7 0.5 12.5 34.6 n.d 0.4 

Phosphorus slag 

(PS) 
46.7 1.2 0.8 2.6 43.0 n.d 0.4 

Pulverized fuel ash 

(PFA) 
4.9 2.1 7.1 23.1 49.8 n.d 4.0 

Water cooled 

copper smelt slag 

(WCSS) 

2.8 0.9 54.3 3.1 31.0 n.d 6.0 

Air cooled copper 

smelt slag (ACSS) 
3.5 1.0 48.7 4.0 30.6 n.d 6.0 

Incinerator sewage 

sludge ash (ISSA) 
7.4 1.7 5.5 31.5 25.8 n.d 2.7 

Steel slag (SS) 38.4 9.0 22.5 2.7 12.1 n.d 9.0 

Table 5.2: Chemical composition by XRF of the samples analysed 
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Furthermore, samples of other three waste materials described in the literature review 

(Section 2.2.3) namely phosphorus slag (PS) and water and air cooled copper smelt slag 

(WCSS and ACSS) were obtained and added to the list of samples investigated. These 

last three materials are not produced in the UK but have a CaO content of 44wt%  and 

1-10wt% for PS and CSS respectively [5.2] [5.3]. Each sample was characterized 

employing XRF and results are reported in Table 5.2. 

XRD patterns of the samples are included in Appendix A. The results obtained from 

XRD and XRF, together with QXRD results, are discussed below.  

 Recycled concrete aggregate (RCA): The main compounds detected by XRF were 

silica and calcium oxide. The main crystalline phases present in RCA were calcite 

and quartz (Figure A1.1). Using BRUCKER AXS EVA software for the phase 

quantification, the phases wt% present were 59%wt and 41wt% for calcite (CaCO3) 

and quartz (SiO2), respectively. This was confirmed using MAUD software [5.4] 

for QXRD, where calcite and quartz were detected as 61wt% and 39wt%, 

respectively. Considering that the RCA analyzed was a fresh concrete (6 months), 

portlandite (Ca(OH)2) formed during the hydration reaction of cement should have 

been detected [5.5]. In order to investigate this, additional XRD studies with higher 

resolution (scan speed of 1 degree 2-theta per minute, 0.02 step size) were 

performed in the range 0-65 2-theta degrees. These additional XRD studies detected 

the presence of portlandite (Figure A1.2). Using BRUCKER AXS EVA software 

for the quantification, the phases present were calcite (60%wt), quartz (36wt%) and 

portlandite (4wt%). Using MAUD, results from QXRD reported 65wt% and 35wt% 

of calcite and quartz, respectively.   

 Cement kiln dust (CKD): XRF indicated a high KCl content (Table 5.1), and this 

was confirmed by XRD (Figure A1.3). BRUCKER AXS EVA software detected 

81wt% sylvite (KCl), 7wt% portlandite (Ca(OH)2), 6wt% calcite (CaCO3) and 

6wt% halite (NaCl). After further investigation with the supplier of this sample on 

the nature of the material, it was re-classified as kiln by-pass dust (BPD). Kiln BPD 

is produced by dry kilns during clinker manufacture where alkalis (mainly K and Cl) 

are volatilised and drawn back through the kiln, where they meet incoming, partly 

calcined, raw materials and condense. Afterwards, dust is extracted by the bypass 

system to remove the excess KCl. The amount of KCl depends on the bypass 

efficiency and it is quite variable depending on kiln operation and the level of 

recycled fuels in use. CKD historically is associated with wet kilns of which there 
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are very few (probably none) in the UK but could be an interesting resource in other 

parts of the world (like India), where this process is largely used in cement 

production. 

 Ground granulated blast furnace slag (GGBS): XRF studies showed a high calcium 

oxide content (39wt%, Table 5.1). The XRD pattern showed that the material is 

mainly amorphous and therefore any trace of carbonates already present could not 

be detected (Figure A1.4). 

 Phosphorus slag (PS): XRF studies showed a high calcium oxide content (46.7wt%, 

Table 5.1). XRD did not detect crystalline calcium carbonate (calcite) or magnesium 

carbonates (magnesite) (Figure A1.5). 

 Pulverized fuel ash (PFA): The main compounds detected by XRF were silica and 

aluminum, while, calcium and magnesium oxides were present in small quantities  

(4.9wt% and 2.1wt%, respectively, Table 5.1). The main crystalline phases detected 

by XRD were silica and aluminium mixtures, while calcium carbonate (calcite) and 

magnesium carbonates (magnesite) were not detected (Figure A1.6). 

 Copper smelt slag (CSS): XRF detected small quantities of calcium and magnesium 

oxide (2.8-3.5wt% and 0.9-1wt% respectively, Table 5.1). XRD from the two 

different CSS samples showed two different results. The water cooled CSS is 

mainly amorphous (Figure A1.8), while the air cooled CSS contains mainly phases 

with silica and iron and not calcium and magnesium carbonates (Figure A1.7).  

 Incinerator sewage sludge ash (ISSA): Both calcium and magnesium oxide were 

determined by XRF in small amounts (7.4wt% and 1.7wt% respectively, Table 5.1). 

XRD did not detect crystalline calcium carbonate or magnesium carbonates in ISSA 

(Figure A1.9). 

 Steel slag (SS): Results from XRF showed a content in calcium oxide of 38.4wt% 

and magnesium oxide of 9wt% (Table 5.1). From the XRD pattern only calcium 

carbonate was detected (Figure A1.10) while magnesium carbonate was not present. 

Because of the several phases present and no one predominant in the XRD pattern, 

QXRD using MAUD and BRUCKER AXS EVA could not be performed accurately  

(Section 3.2.2).  

Following the characterization studies above, the samples with the highest calcium 

content and a low level of carbonates were considered for the next experiments. These 

included metal slags (GGBS, SS and PS) and, furthermore, RCA, due to its availability 

and high content of calcium oxide, despite also its high level of carbonates. As 
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discussed in Section 4.3, waste concrete is largely produced but also recycled in the 

construction sector in UK. However, if mineral carbonation from waste streams was 

able to produce carbonates which could be compatible to commercial ones and also 

competitive in terms of cost, then the use of these wastes as feedstock for mineralization 

would be preferred over low-end applications. 

5.3 Dissolution of steel slag and recycled concrete aggregate 

Employing the experimental set-up for the mineralization tests presented in Section 3.3 

and the experimental conditions described in Section 3.4, the mineral dissolution phase 

of the mineralization process (Table 5.1) was firstly tested with SS and RCA. Trends of 

dissolution for metals allowed conducting a kinetic analyses based on models reported 

in literature. The solid residue, after the mineral dissolution experiments, were dried 

overnight in an oven at 105°C. The oxide composition of solid residue for each product 

was determined using XRF and XRD. SEM-EDS was instead employed to look at the 

morphology and nature of the particles.  

5.3.1 Kinetic analyses 

In order to determine the kinetic parameters of dissolution of SS and RCA, the 

experimental data was analysed according to the standard integral analysis method 

[5.6]. Firstly, experimental results were fitted into several heterogeneous reaction 

models represented by integral rate equations and secondly the multiple regression 

coefficients (R
2
) were calculated. The shrinkage core model was selected, because 

previous studies conducted on dissolution of serpentine showed the formation of a silica 

layer on the surface of the particle [5.1] [5.7]. The experimental rig and conditions 

(particle size, temperature, S/L ratio) employed in this thesis were the same as the ones 

used with serpentine by Wang and Maroto-Valer [5.1] in order to be able to compare the 

kinetics of the experiments. Therefore, the only factors affecting the results obtained 

were the different physical and chemical characteristics of serpentine and industrial 

waste. Waste streams have higher Ca content compared to serpentine, as seen in Section 

2.2, moreover, the content of impurities (elements wt%<1%) is also higher, because of 

their origin from industrial processes. Finally, serpentine consists of a limited number of 

physical phases (e.g antigorite, fosterite [5.1]) while industrial wastes have usually a 

much higher number of mineral phases  (Figures A1.3, A1.5, A1.10) 

 



122 

 

In the shrinking core model the reaction occurs firstly at the outer layer of the particle. 

The zone of reaction then moves into the solid, leaving behind completely converted 

material and inert solid (called “ash”). Thus, at any time there exists an unreacted core 

of material which shrinks in size during the reaction. The main difference between the 

shrinking core model and real reactions is given by the assumption that the reaction 

converts completely the material of the particle leaving behind only inert solids and 

reaction products [5.6]. 

During chemical reactions in a shrinkage core model for spherical particles of 

unchanging size five steps occur [5.6]: 

 Step 1. Diffusion of liquid/gaseous reactant through the film surrounding the 

particle to the surface of the solid.  

 Step 2. Penetration and diffusion of the reactant through the blanket of ash to the 

surface of the unreacted core.  

 Step 3. Reaction of the reactant with the solid at the reaction surface. 

 Step 4. Diffusion of liquid/gaseous products through the ash back to the exterior 

surface of the solid.  

 Step 5. Diffusion of liquid/gaseous products through the liquid/gas film back into 

the main body of fluid. 

However, some of these steps may not exist in some situations (e.g. if no gaseous 

products are formed). In light of this, according to the shrinking-core model, dissolution 

reactions of waste materials take place at the outer surface of the un-reacted particle and 

heterogeneous reactions are controlled by one of the following mechanisms [5.6].  

 Film diffusion control: this mechanism assumes that no reactant is present at the 

particle surface, while its concentration increases in the liquid film surrounding the 

particle. According to this mechanism, the reaction is controlled by the diffusion of 

the fluid reactant from the main body of the fluid film to the surface of the solid and 

this is represented by the equation: 

      (5-2) 
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 Reaction control: The reactant is fully available at the surface of the unreacted 

particle and the reaction is unaffected by the presence of any ash layer. According 

to this mechanism, the reaction is controlled by the reaction, on the surface of the 

particle, between the fluid reactant and the solid and this is represented by the 

equation: 

            
 

 ⁄  (5-3) 

 Product layer diffusion: Products of reaction do not form an ash layer and go back 

from the solid particle into solution. According to this mechanism, the reaction is 

controlled by the diffusion of the products of reaction from the surface of the solid 

through the fluid film back into the main body of the fluid (without ash layer) and 

this is represented by the equation: 

            
 

 ⁄         (5-4) 

Where, in the equations just presented, k is the reaction rate constant and x the fraction 

transformed for the product phase at time t.  

In addition to the three different shrinkage core model mechanisms, it can be assumed 

that also a combination of product layer diffusion and chemical reaction control could 

be a rate limiting step of the dissolution reaction and this can be represented by the 

following equation: 

            
 

 ⁄                  
 

 ⁄   (5-5) 

The activation energy can be estimated from the experimental data according to 

Arrhenius’ law: 

     
  
   (5-6) 
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Where k is the kinetic rate constant, A is the pre-exponential or frequency factor, Ea is 

the apparent activation energy in J/mol, R is the universal gas constant (8.314J/(mol K)) 

and T is the temperature in Kelvin. 

5.3.2 Steel slag 

The main metals present in SS are Fe, Mg and Ca (Table 5.2). Following the dissolution 

experiments, the trends of the main metals into solution (as ions) obtained from 

Inductively Coupled Plasma Mass Spectrometry (ICP-MS) are presented in Figures 5.1, 

5.2 and 5.3. The last sampling of the experiment (5h) was performed twice. After 

acidification with HNO3, the two samples were analysed by ICP-MS to calculate the 

error on the values of metals dissolved and this error was calculated to be ±2% (error 

bars reported in Figures 5.1, 5.2 and 5.3). 

 

Figure 5.1: Fe dissolution trend for SS 
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Figure 5.2: Mg dissolution trend for SS 

 

 

Figure 5.3: Ca dissolution trend for SS 
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NH4HSO4 solution after 3h at 90°C [5.1]. Accordingly, dissolution rates of SS and 

serpentine are similar for magnesium. However, for SS, dissolution rates for iron are 

higher than the ones for serpentine.  Therefore, it is likely to presume that iron present 

in the raw material is easier to extract from SS than from serpentine, supporting the fact 

that in general waste streams require a lower degree of pre-treatment and less energy-

intensive carbonation conditions, in comparison to mineral rocks [5.8]. In fact, 

experimental conditions for testing mineral dissolution employed with serpentine by 

Wang and Maroto-Valer [5.1] and the ones used in this thesis were the same (i.e. 

particle size, temperature, stirring rate, S/L ratio). Therefore, differences in iron 

dissolution rates between serpentine and steel slag could be related to the diverse 

mineral phases forming the two materials, including differences in chemical and 

physical nature of iron present (e.g. type of iron, hydration and presence of 

contaminants). For instance, mineral phases where iron is contained in SS (i.e. Wustite, 

Figure A1.10) have weaker bonds (i.e. iron is easier to extract) compared to serpentine, 

which contains Magnetite (Fe3O4) [5.1]. In fact, since the shorter the bond is the greater 

its strength [5.9], the bond length for Wustite is 2.167Å [5.10] while for Magnetite it is 

1.89Å [5.11]. 

The low Ca levels found in solution (~5%, Figure 5.3) mean that Ca mainly precipitated 

during the experiments. XRD, SEM and XRF results on the solid residue after 

dissolution at 50°C allowed identifying the nature of the precipitated Ca, and it emerges 

that it was in sulphate form (CaSO4). Hydrated CaSO4 in crystalline form was detected 

by XRD (Figure 5.4) with silica (SiO2) present in the amorphous phase (not visible in 

the XRD pattern). Small crystals of CaSO4 in the Secondary Electron (SE) SEM 

micrograph are clearly visible and they cover the surface of the particle analysed 

(Figure 5.5).  
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Figure 5.4: XRD diffractogram of solid residue after dissolution of SS at 50°C

 

 

Figure 5.5: SEM-EDS of solid residue after dissolution of SS at 50°C 
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XRF analysis detected mainly CaO and SO3 (29.4%wt and 42.0%wt, respectively), 

confirming the presence of calcium sulphate (%wt of CaSO4 is 68.0%) together with 

7.6%wt of silica (Table 5.3).  

Component Solid residue (wt%) 

SiO2 7.6 

Al2O3 0.5 

Fe2O3 5.0 

MgO 0.7 

CaO 29.4 

SO3 42.0 

LOI 15.9 

Table 5.3: XRF analyses of solid residue after dissolution of SS at 50°C 

Precipitation of Ca as CaSO4 is due to the low solubility of CaSO4 into a solution of 

(NH4)2SO4, which has previously been reported to be 0.045mol/kg in a 3.19mol/kg 

solution of (NH4)2SO4 at 25°C [5.12]. The reported data on solubility of CaSO4 in water 

shows that values range between 0.015mol/kg of water (at 25°C) to 0.013mol/kg of 

water (at 90°C), showing little dependence of solubility on temperature [5.13]. 

Therefore, it can be assumed that also the solubility of CaSO4 into a solution of 

(NH4)2SO4 is almost constant between 25°C and 90°C, confirming the low values of Ca 

dissolved (Figure 5.3) during the three experiments with SS and the precipitation of 

CaSO4(s).  

5.3.2.1 Kinetic analyses 

Experimental data from dissolution experiments can be fitted into the kinetic models 

introduced in equations (5-2 – 5-5). For steel slag, x is represented by the rate of Mg 

dissolved into solution, because Mg trends correspond to the progress of the reaction 

and also because the rate of Mg dissolved were considered in kinetic analyses in 

previous studies for dissolution of serpentine [5.1] [5.7] [5.14]. When trying to fit data 

obtained from dissolution of SS into the shrinking-core models (equations 5-2 – 5-4), 

plotting calculated data against t, it was clear that none of these models were 

appropriate. In fact, the trends obtained were not a straight line and the multiple 

regression coefficients (R
2
) were well below 1.00 (Table 5.4).  
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Model R
2 

(25°C) R
2 

(50°C) R
2 

(90°C) 

film diffusion 

 

-1.21 -1.71 -2.07 

chemical reaction control 

 

-0.64 -0.92 -1.26 

product layer diffusion 

 

0.46 0.15 -0.24 

product layer diffusion and 

chemical reaction control 

0.95 0.91 0.90 

Table 5.4: R
2
 coefficients for kinetic models applied to dissolution of SS 

Negative R
2
 values arise where linear regression is conducted without including an 

intercept. In fact, because of the need of calculating the activation energy in the 

following step, a model which passes through the axes origin is required. Instead, when 

experimental data, at different temperatures, were fitted into the combination of product 

layer diffusion and chemical reaction control (equation 5-5, Figure 5.6), R
2
 values vary 

between 0.90 and 0.95 (Table 5.4) confirming the accurate approximation achieved with 

the model. 

 

Figure 5.6: Combination of product layer diffusion and chemical reaction control for 

dissolution of SS 
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The good fit of the experimental results into the model combining product layer 

diffusion and chemical reaction control means that the dissolution reaction of SS is 

controlled at the same time by the reaction on the surface of the particle between the 

fluid reactant and the solid and by the diffusion of the products of reaction from the 

surface of the solid through the fluid film back into the main body of the fluid. 

The activation energy can be calculated from the plot of lnk versus 1/T (Figure 5.7) 

employing Arrhenius’ law (equation 5-6) and the calculated value is 2.3kJ/mol.  

 

Figure 5.7: Plot for the calculation of activation energy for SS 

Previous dissolution studies on serpentine found activation energy values of 40.9kJ/mol 

[5.1] where serpentine rock was dissolved into 1.4M NH4HSO4 solution, following the 

same procedure of this work. Fouda et al. calculated an activation energy of 68.1 kJ/mol 

[5.7], dissolving serpentine into 3M H2SO4 solution between 30°C and 75°C. Teir et al. 

determined the activation energy as 35.6 kJ/mol [5.14], using 2M H2SO4 solution 

between 30°C and 70°C (Table 5.5).  

Authors Solution Activation energy [kJ/mol] 

Wang et al. [5.1] 1.4M NH4HSO4, T=70-110°C 40.9 

Fouda et al. [5.7] 3M H2SO4, T=30-75°C 68.1 

Teir et al. [5.14] 2M H2SO4, T=30-70°C 35.6 

Table 5.5: Examples of activation energy calculated for dissolution of serpentine  

lnk = -0,271(1000/T) - 1,853 
R² = 0,96 

-2.9

-2.7

-2.5

-2.3

-2.1

-1.9

-1.7

-1.5

2.75 3.10 3.36

ln
k

 

1/T(10^3)[K] 
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Therefore, values of activation energy from the present study on SS and previous on 

serpentine suggest that metals from SS are easier to dissolve compared to serpentine. In 

fact, as seen in Section 5.3.2, Fe dissolution rates for SS reach 90% compared to 80% 

obtained from previous experiments using serpentine [5.1]. 

5.3.3 Recycled concrete aggregate 

The main metals present in RCA are Al and Ca (Table 5.2) and their trends of 

dissolution obtained during the experiments are reported in Figures 5.8 and 5.9, 

respectively. As described for SS, two samples were taken during the last sampling of 

each experiment and analysed by ICP-MS and the error calculated was ±2% (error bars 

reported in Figures 5.8-5.9). 

 

Figure 5.8: Al dissolution trend for RCA 
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Figure 5.9: Ca dissolution trend for RCA 

As for SS, Ca dissolution trend for RCA does not change substantially at different 

temperatures. In fact, as discussed for SS, CaSO4 has low solubility in (NH4)2SO4 

(Section 5.2.3.1) and therefore Ca almost completely precipitated (only 3.5% into 

solution) producing CaSO4(s) which can later be reacted with ammonium carbonate for 

the carbonation reaction. As for Ca, the dissolution trend of Al was not affected by 

temperature, reaching about 40% at 25-50-90°C (Figure 5.8).  

The presence of CaSO4(s) was confirmed by the results from XRD, SEM and XRF 

analyses of the solid residue after dissolution at 50°C. Hydrated CaSO4 and SiO2 in 

crystalline form were detected by XRD (Figure 5.10) and small crystals of CaSO4 are 

deposited on the surface of the particle analysed with the Secondary Electron (SE) SEM 

(Figure 5.11).  

Results from XRF analyses support these findings, as mainly CaO (24.0%), SO3 

(34.8%) and SiO2 (25.1%) were observed (Table 5.6) and, therefore, wt% of CaSO4 in 

the final residue is 59.1%. The fraction of Al precipitated is negligible because of its 

small concentration in absolute terms in the initial RCA (about 2% in oxidised form 

Al2O3). 
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Figure 5.10: XRD diffractogram of solid residue after dissolution of RCA at 50°C 

 

 

Figure 5.11: SEM-EDS of solid residue after dissolution of RCA at 50°C 
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Component Solid residue (wt%) 

SiO2 25.1 

Al2O3 0.9 

Fe2O3 0.3 

MgO <0.1 

CaO 24.0 

SO3 34.8 

LOI 13.7 

Table 5.6: XRF analyses of solid residue after dissolution of RCA at 50°C 

5.3.3.1 Kinetic analyses 

The concentration of Al into solution is indicative of the reaction progress, because Al 

is the most abundant element (Table 5.2) that is going to dissolve and produce the 

corresponding sulphate in aqueous form (Table 5.1).  

In the kinetic models considered, x corresponds to the rate of Al dissolved. As for SS, 

data obtained from experiments was fitted into the shrinking-core models (equations 5-2 

– 5-4). Values of the multiple regression coefficients R
2
 are reported in Table 5.7.  

Model R
2 

(25°C) R
2 

(50°C) R
2 

(90°C) 

film diffusion 

 

-2.09 -1.38 -2.66 

chemical reaction 

control 

 

-0.64 -1.16 -1.26 

product layer diffusion 

 

-0.83 0.05 -2.02 

product layer diffusion 

and chemical reaction 

control  

0.91 0.92 0.90 

Table 5.7: R
2
 coefficients for kinetic models applied to dissolution of RCA 

Data from dissolution experiments at different temperatures were then fit into the 

combination of product layer diffusion and chemical reaction control (equation 5-5, 

Figure 5.12), R
2
 values vary between 0.90 and 0.95 (Table 5.7) confirming the accurate 

approximation achieved with the model. 
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Figure 5.12: Combination of product layer diffusion and chemical reaction control for 

dissolution of RCA 

As for SS, dissolution of RCA is well represented by the combination of product layer 

diffusion and chemical reaction control. The dissolution reaction of RCA is controlled 

at the same time by the reaction on the surface of the particle between the fluid reactant 

and the solid and by the diffusion of the products of reaction from the surface of the 

solid through the fluid film back into the main body of the fluid. 

The activation energy can be calculated as for SS, plotting lnk versus 1/T (Figure 5.13) 

employing Arrhenius’ law (equation 5-6) and the calculated value is 0.9kJ/mol.  
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Figure 5.13: Plot for the calculation of activation energy for RCA 

5.4 Dissolution of ground granulated blast furnace slag and phosphorus slag 

Ground granulated blast furnace slag (GGBS) and phosphorus slag (PS) are well-known 

pozzolan materials available on the market [5.15]. In these materials, Ca is able to react 

with Si as soon as it goes into contact with water, to form calcium silicate hydrates. 

During dissolution experiments of GGBS and PS in NH4HSO4, Ca also reacts to form 

CaSO4 and leaves the calcium silicate hydrate groups decalcified, forming silica gel, 

which makes the solution dense and viscous [5.16]. For this reason, dissolution 

experiments at 50g/l employing samples in particle size fraction 75-150µm at 50°C and 

800rpm stirring rate produced a dense solution (worse for GGBS than for PS) causing 

problematic sampling and unreliable trends of dissolution for metals. Therefore, kinetic 

analyses based on standard models, as done for SS and RCA, could not be carried out. 

Consequently, precipitation of crystals of CaSO4 during dissolution was based only on 

XRD and SEM studies from the final solid residues. Tests on GGBS and PS, were 

carried out at 50g/l for 3h and they were complemented by experiments lasting 5h and 

at 25g/l, to obtain more evidences on the dissolution mechanisms for these materials. 

5.4.1 Phosphorus slag 

PS was dissolved into a NH4HSO4 solution and the experiments were carried out at 

50°C for 5h at 50g/l (1.3M NH4HSO4), 3h at 50g/l and 3h at 25g/l (0.65M NH4HSO4). 

After filtering the final solution, the solid residue was dried in an oven at 105°C 

overnight and analyzed by XRD and SEM. Overlay of PS XRD patterns are reported in 
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Figure 5.14 and it can be noticed that the peak at about 21 2-theta(°) is related to the 

presence of calcium sulphate hydrate. Decreasing time of dissolution and S/L ratio 

increases calcium sulphate hydrate presence and reduces other phases. 

 

Figure 5.14: XRD patterns overlay for dissolution of PS 

However, after 3h dissolution at 50°C and using 25g/l, the final solid residue still 

consisted of several phases (mainly aluminium and silicon phosphate, plus calcium 

sulphate), as it can be seen in Figure 5.15. 

SEM pictures (Figure 5.16a, b, c) confirmed the observations derived from XRD, 

demonstrating that reducing the time of dissolution and the S/L ratio promotes the 

formation of CaSO4 crystals (solid crystals, as seen for RCA and SS). Therefore, the 

subsequent carbonation reaction should take advantage of more calcium sulphate 

crystals present at lower S/L ratios. 
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Figure 5.15: XRD patterns of dissolved PS at 25g/l, 3h, 50°C 

 

 

Figure 5.16: SEM of dissolved PS at a) 50g/l, 5h b) 50g/l, 3h c) 25g/l, 3h 

a b 

c 
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5.4.2 Ground granulated blast furnace slag 

GGBS was dissolved into a NH4HSO4 solution and the experiments were carried out at 

50°C for 5h at 50g/l (1.1M NH4HSO4), 3h at 50g/l and 3h at 25g/l (0.55M NH4HSO4). 

As for PS, after filtering the final solution, the solid residue was dried in an oven at 

105°C overnight and analyzed by XRD and SEM. Overlay of XRD patterns are 

presented in Figure 5.17 and it can be noticed that reducing dissolution time and S/L 

ratio, increases production of calcium  sulphate (the peak at about 21 2-theta(°)), whilst 

decreases the presence of other phases. 

 

Figure 5.17: XRD patterns overlay for dissolution of GGBS 

After 3h dissolution at 50°C and using 25g/l, the final solid residue was mainly 

crystalline calcium sulphate hydrated (Figure 5.18). 

SEM pictures (Figure 5.19a, b, c) supported findings of the XRD studies. They 

demonstrate that when reducing the S/L ratio and the time of dissolution, the number of 

solid CaSO4 crystals increased. Consequently, as for PS, the subsequent carbonation 

reaction will benefit of a higher number of calcium sulphate crystals when dissolution 

takes place at lower S/L ratios. 
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Figure 5.18: XRD pattern of dissolved GGBS at 25g/l for 3h at 50°C 

 

 

Figure 5.19: SEM of dissolved GGBS at a) 50g/l, 5h b) 50g/l, 3h c) 25g/l, 3h 

a b 

c 
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5.5 Conclusions 

This chapter, firstly, introduced an innovative mineralization multi-step process 

employing Ca-rich waste streams as feedstock. Chemical reactions and thermodynamics 

calculations are reported. The process described in this study can extract Ca from the 

feedstock and precipitate it as calcium sulphate, which afterwards is converted into 

calcium carbonate. NH4HSO4 is employed during the mineral dissolution phase, while 

NH3 is used for capturing CO2 and producing (NH4)CO3, which is then added during the 

carbonation reaction. All the reactions involved in the mineralization process are 

spontaneous (ΔG<0) and exothermic (ΔH<0) apart from the regeneration of additives 

step. 

The characterization by XRD and XRF of nine potential feedstock materials for mineral 

carbonation was discussed. All the materials exhibited a higher content of Ca compared 

to Mg, and furthermore, for all of them, silica was the most abundant element. Based on 

their chemical composition (i.e. highest CaO content) and mineral phases present (i.e. 

low content of calcium carbonate), four samples (i.e. SS, GGBS, PS and RCA) were 

selected for carrying out mineral dissolution tests (Table 5.1). The waste materials 

selected can be divided into two groups on basis of their dissolution behaviour. For SS 

and RCA, it was possible to conduct kinetic analysis based on models reported in 

literature and using XRD and SEM studies. In contrast, GGBS and PS solutions became 

dense and viscous causing unreliable trends of dissolution due to the formation of silica 

gel during the dissolution experiments. In this case, precipitation of CaSO4 crystals was 

investigated employing only XRD and SEM. To support findings on dissolution 

mechanisms of GGBS and PS at 50g/l for 3h, lower S/L ratio (25g/l) but also longer 

time of dissolution (5h) were also tested, allowing also assessing their effect on the 

precipitation of CaSO4. 

Investigation of the dissolution of SS and RCA confirmed the precipitation of CaSO4. 

Results obtained from the dissolution of SS showed that Mg and Fe dissolved into a 

solution of NH4HSO4, while Ca precipitated as CaSO4. Mg dissolution efficiency after 

5h at 90°C (85%) for SS is similar to the one obtained from a previous study on 

serpentine (85%), employing the same dissolution procedure, while extraction of Fe 

occurs more easily, thus achieving higher levels of dissolution (90% for SS, 80% for 

serpentine). Kinetic analyses showed that the simultaneous effect of product layer 

diffusion and chemical reaction control fits the experimental results well. Activation 
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energy, calculated by the Arrhenius’ law, was 2.3kJ/mol which is lower to the one 

calculated by previous papers on serpentine. This suggests that metals present in SS are 

easier to dissolve than the ones in serpentine. Since the experimental conditions 

employed in the previous study on serpentine and the ones used in this thesis were the 

same, the different iron dissolution rates could be related to the diverse mineral phases 

forming the two materials, including differences in chemical and physical nature of iron 

present (e.g. type of iron, hydration and presence of contaminants).  

Similar to SS, RCA dissolved into NH4HSO4 solution extracting calcium and 

precipitating it as CaSO4. The other main metal present, Al, dissolved partially (40% 

after experiment at 25°C) into solution. Also for RCA, the best fit of the experimental 

data was obtained with the combination of product layer diffusion and chemical reaction 

control mechanism. The activation energy for dissolution of RCA was 0.9kJ/mol. RCA, 

therefore, showed a dissolution process similar to SS and despite its large availability 

and high content of calcium oxide the high level of carbonates present limits its CO2 

storage capacity. 

Investigation on dissolution of GGBS and PS confirmed that when dissolved into 

NH4HSO4 solution, they produced solid crystals of precipitated CaSO4 (as during 

dissolution of RCA and SS). Furthermore, according to XRD patterns and SEM 

pictures,  when reducing the S/L ratio from 50 to 25g/l and the time of dissolution from 

5 to 3h the quantity of crystals increases. 
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CHAPTER 6 – EFFECT OF S/L RATIO, PARTICLE SIZE AND 

TEMPERATURE ON THE EFFICIENCY OF CARBONATION 

 

Chapter 5 discussed the dissolution of different waste streams in NH4HSO4 and the 

precipitation of CaSO4. This chapter focuses on studying the effect of several operating 

variables on the main steps of the whole mineralization process (Figure 6.1) namely i) 

mineral dissolution in NH4HSO4, ii) pH adjustment and precipitation of impurities, iii) 

carbonation reaction, and iv) regeneration of additives. These steps can be integrated 

with the CO2 capture from flue gases into ammonia producing (NH4)2CO3 for the 

carbonation reaction and the ammonia absorption into water for obtaining NH4OH for 

the pH adjustment step. Mineral dissolution, pH adjustment and carbonation reaction 

steps were tested at different S/L ratio, temperature and particle size for three metal 

slags: steel slag (SS), phosphorus slag (PS) and ground granulated blast furnace slag 

(GGBS). The dissolution step for these materials, as well as recycled concrete aggregate 

(RCA), was presented in Chapter 5. The dissolution of RCA was similar to that of the 

metal slags and, despite its large availability and high content of calcium oxide, the 

inherent high level of carbonates present in the parent sample limits its CO2 storage 

capacity. Therefore, RCA was not included in the mineralization tests investigated in 

this chapter. Finally, scaled-up experiments (scaling-up factor 6) were carried out to 

asses any potential effect of increasing the size of the experimental rig on the efficiency 

of carbonation. 

6.1 Effect of S/L ratio on efficiency of carbonation 

Solid to liquid (S/L) ratio is an important parameter which has been shown to affect the 

efficiency of mineralization [6.1] [6.2]. Therefore, this section discusses the effect of 

three different S/L ratios, starting from 50g/l, (same value as that employed by Wang 

and Maroto-Valer [6.3]), and then reducing them to 25 and 15g/l in an attempt to 

improve the efficiency of mineralization, as previously reported for coal fly ash and 

wollastonite [6.1] [6.2] [6.4]. 
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 Figure 6.1: Block diagram for the multi-step closed loop mineralization process studied 
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Employing the experimental set-up presented in the methodology chapter (Section 3.3), 

experiments were carried out in a 500ml 3 necks glass flask which was heated by a 

temperature–controlled silicone oil bath and a thermocouple. The solution was 

continuously mixed by a stirrer and, to avoid evaporation losses, the rig was connected 

to a water cooling system via one of the necks. Samples were ground and sieved to a 

particle size fraction of 75-150μm as in previous studies [6.3] [6.5]. The starting 

solutions employed for the experiments testing mineral dissolution, pH adjustment and 

carbonation reaction steps were prepared with slightly above stochiometric NH4HSO4, 

as presented in Section 3.5. The addition of NH4OH and (NH4)2CO3 during the pH 

adjustment and mineral carbonation steps was also based on the methodology described 

in Section 3.5. 

6.1.1 TGA of  carbonated residues 

TGA tests were carried out on the solid residues obtained after the mineralization 

experiments of SS, PS and GGBS samples using three different S/L ratios (15-25-

50g/l). Consequently, also the amount of CaO introduced with the sample in the flask 

varied with the S/L ratio. Data presented in Table 6.1 report the amount of CaO 

introduced in the flask in g/L for each experiment with different waste streams and S/L 

ratio. 

  

S/L ratio [g/L] 

 

CaO wt% in 

sample 15 25 50 

PS 46.7% 7 12 24 

GGBS 39.0% 6 10 20 

SS 38.4% 6 10 19 

Table 6.1: CaO content in each carbonation experiment with different waste streams and 

S/L ratio 

The carbonation efficiencies obtained after the experiments, normalised with the CaO 

content, are presented in Figure 6.2.  Carbonation efficiency, as seen in Section 3.5.1.1, 

represents the wt% of Ca initially contained as CaO in the raw material which is 

converted into CaCO3 during the mineralization process. The Ca mass in the feeding 

material can be calculated from XRF analyses (which provides the CaO wt%) on the 

parent sample, while CaCO3 before and after experiments can be calculated from TGA. 

The experimental error was estimated to be ±2% and it was obtained repeating 30% of 
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the tests. The maximum efficiencies achieved were for 15g/L as S/L ratio with values of 

74%, 67% and 59% for SS, GGBS and PS, respectively.  

 

Figure 6.2: Efficiencies of carbonation for different CaO content in the sample 

Figure 6.2 shows that the carbonation efficiency increases as the CaO content in the 

sample decreases, for all three materials. For multi-step mineralization processes, trends 

of efficiency of carbonation are primarily affected by the Ca extraction conditions 

during the first phase of the experiments [6.2]. When reducing the CaO content, Ca 

extraction efficiency improves meaning that the NH4HSO4 solution can better extract 

the Ca from the waste samples. Since the experimental conditions were the same 

(temperature, stirring rate, particle size, excess of stoichiometric NH4HSO4) in all the 

experiments, from the trend of efficiency it can be seen that there is a need of a higher 

excess of NH4HSO4 for higher levels of CaO in order to improve the extraction of Ca 

and consequently the efficiency of carbonation. 

It should be noted that the carbonation efficiencies of SS are consistently higher than 

those reported for PS, despite SS presenting lower initial CaO content than PS 

(38.4wt% vs. 46.7wt%, Table 6.1). This could be related to the different mineral phases 

present in the parent samples, where extraction of calcium from the mineral phases 

present in SS (Figure A1.10) seems to be easier than from the mineral phases of PS 

(Figure A1.5).  Relation between mineral phases present in the raw material and 

efficiency of carbonation could not be investigated for GGBS because of its amorphous 

structure, as described in Section 5.2. 
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As seen in Section 2.3.4, mineralization of waste materials, in general, requires milder 

reaction conditions in comparison to mineral rocks [6.7] [6.8]. As seen in Section 5.3.2, 

this could be due to the mineral structures forming wastes, which allow easier extraction 

of metals (Ca, etc.) and combination with CO2 than in mineral rocks (e.g. serpentine). 

Consequently, in general, if the same mineralization conditions are applied for 

carbonating mineral rocks and waste materials, the latter would reach a higher 

carbonation efficiency. In fact, the carbonation efficiency achieved by the process 

developed by Wang et al. (similar to the one employed here) using serpentine at 50g/l 

was 25% [6.5] and, considering also the experimental error, it is similar to the one of PS 

(about 20%) and lower than that of GGBS and SS (about 30% and 60%, respectively) 

(Figure 6.2).  

6.1.2 XRF of carbonated residues 

XRF studies on the carbonated residues were carried out according to the methodology 

described in Chapter 3. Results from XRF analyses obtained from the carbonated 

residues are presented in Table 6.2 (instrumental error ±0.1%).  

 

 Chemical composition (wt%) 

    CaO MgO Fe2O3 Al2O3 SiO2 SO3 LOI 

SS 

Residue from 

15g/l 
26.9 3.6 19.1 1.5 8.8 11.1 24.8 

Residue from 

25g/l 
25.9 3.5 18.2 1.4 8.1 14.9 23.8 

Residue from 

50g/l 
25.4 4.4 18.3 1.3 8.4 14.9 23.2 

PS 

Residue from 

15g/l 
29.1 0.5 0.2 1.7 27.1 12.8 26.8 

Residue from 

25g/l 
28.7 0.5 0.3 1.7 28.4 12.9 25.4 

Residue from 

50g/l 
24.9 0.6 0.2 1.4 23.7 15.9 31.6 

GGBS 

Residue from 

15g/l 
22.8 3.8 0.3 7.2 21.7 15.3 27.7 

Residue from 

25g/l 
22.6 3.8 0.4 7.8 22.1 15.7 26.5 

Residue from 

50g/l 
15.0 2.7 0.2 5.1 14.2 21.7 40.2 

Table 6.2: XRF composition of final solid residues after the carbonation step 

As expected, these samples present much higher LOI values than their parent samples 

(Table 5.2), as they have been carbonated (see Section 6.1.3 for further discussion of the 
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carbonated products).  It can be seen that for the three materials investigated, as soon as 

the S/L ratio decreases, the SO3 content diminishes. This is due to the production of 

calcium carbonate being higher when the S/L ratio is lower (higher carbonation 

efficiency, Figure 6.2) causing lower amounts of residual calcium sulphate left from the 

dissolution step. Values of Ca, Mg, Fe, Al and Si oxides in the carbonated samples are 

lower than those reported for the parent samples because of the precipitation of different 

phases during the carbonation reaction of the process (Figure 6.1). 

6.1.3 XRD of  carbonated residues 

The solid residues from the carbonation step were analyzed by XRD and Figures 6.3, 

6.4 and 6.5 show the XRD diffractograms obtained from the carbonated residues of SS, 

PS, GGBS, respectively, for experiments conducted at 15g/l. For all the samples, the 

main phases identified were calcium carbonate and residual hydrated calcium sulphate 

(gypsum). Moreover, the carbonated SS sample showed also the presence of iron oxide 

and magnetite (Figure 6.3), as expected from the iron content of the parent samples. 

Silica peaks (20.5 and 26.5 2-theta degrees) were detected as smaller peaks in 

carbonated SS and PS (Figures 6.3 and 6.4) compared to the raw materials. This is 

consistent with the values of silica from XRF in the carbonated samples (Table 6.2), 

which are smaller than the silica content in the parent samples (Table 5.2). SEM studies 

confirmed the presence of precipitated calcium carbonate and calcium sulphate (Section 

6.1.4). Calcium carbonate and residual calcium sulphate were the main phases 

indentified in the residues for experiments using GGBS at 15g/l (Figure 6.5) and 25g/l 

(not shown here, but almost identical to Figure 6.5). However, the solid residue after the 

experiment at 50g/l, showed the presence of calcium carbonate and sulphate together 

with hydrated magnesium sulphate and calcium phosphate (Figure 6.6). The difference 

between the solid residue after experiment at 50g/l and the ones obtained at 15 and 25g/l 

is due to the dense solution generated during the experiment at 50g/l. The solution 

mixing resulted reduced and therefore the dissolution of Ca was limited. In fact, as seen 

in Section 5.4, GGBS is a pozzolan material, producing silica gel during the dissolution 

experiments [6.9] [6.10]. The more silica gel is produced the more the solution becomes 

dense and viscous.  
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Figure 6.3: XRD diffractogram presenting crystalline phases detected in carbonated SS 

at 15g/l   

 

 

Figure 6.4: XRD diffractogram presenting crystalline phases detected  in carbonated PS 

at 15g/l 
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Figure 6.5: XRD diffractogram presenting crystalline phases detected  in carbonated 

GGBS at 15g/l 
 

 

 

 

 

 

Figure 6.6: XRD diffractogram presenting crystalline phases detected in carbonated 

GGBS at 50g/l 
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6.1.4 SEM-EDS of carbonated residues 

SEM-EDS studies of the final solid residues obtained after experiments on SS, PS and 

GGBS at 15g/l were also carried out to characterize the structure and morphology of the 

carbonated particles.  

Representative images obtained from the PS carbonated residue at 15g/l are presented in 

Figures 6.7, 6.8 and 6.9.  The dispersed small particles seen in Figure 6.7 and identified 

by the letter A, are precipitated calcium carbonate, magnified in Figure 6.8. The big 

particles in Figure 6.7 (identified by letter B), are mainly residual calcium sulphate from 

the dissolution step and silica from the starting material.  This is confirmed by the EDS 

studies, as shown in Figure 6.9, where it can be seen that large calcium sulphate 

particles are plastered with small particles of calcium carbonate. 

 

 

Figure 6.7: SEM image of PS carbonated residue at 15g/l. A) dispersed precipitated 

calcium carbonate B) residual calcium sulphate and silica 

 
 

A 

B 
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Figure 6.8: SEM-EDS spectrograph of small particles A of PS carbonated residue at 

15g/l 
 

 

 

Figure 6.9: SEM-EDS of particles B of PS carbonated residue at 15g/l 

6.2 Effect of temperature on efficiency of carbonation 

Temperature is an important parameter affecting efficiency of carbonation of waste 

materials (Section 2.3.4.6). Accordingly, mineralization tests were carried out at various 

temperatures and employing the same conditions as the previous sections, namely  

particle size 75-150µm, stirring rate 800rpm, S/L ratio 15g/l. Temperatures between 

dissolution (3h) and carbonation (1h) phases were maintained constant, testing at 40, 50 

and 65°C. 

The efficiency of carbonation for the SS sample increases with temperature from 64 to 

72% (Figure 6.11). This could be explained as the dissolution of alkali metals (Ca, Mg, 
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Fe) in NH4HSO4, during the first phase of the process, is more efficient at higher 

temperature [6.3] and consequently more calcium sulphate is formed after the 

carbonation step. Previous studies on steel slag have also confirmed the increase in 

efficiency when rising the temperature up to 150-200°C [6.1] [6.12].  

For the PS sample, the temperature affects the efficiency of carbonation below 50°C, 

and then the efficiency seems to remain constant when the temperature is raised up to 

65°C (Figure 6.10).  

 

Figure 6.10: Effect of temperature on efficiency of carbonation for steel slag and 

phosphorus slag 

Efficiency of carbonation in multi-step mineralization processes are primarily affected 

by the Ca extraction conditions during the first phase of the experiments [6.2]. 

Therefore, higher temperature during the experiments could increase the removal of Ca 

from the mineral structure of the raw material raising the efficiency of carbonation. 

However, Ca extraction reaches a plateau at a certain temperature, preventing further 

improvements for the efficiency of carbonation. Previous studies on different materials 

(wollastonite, SS and serpentine) also demonstrated this trend of reduced influence of 

the temperature on the dissolution/carbonation efficiency as the temperature increases 

[6.1] [6.11] [6.12].  

For the GGBS sample, when rising the temperature from 40-65°C, the efficiency of 

carbonation (about 65%) does not seem to increase significantly (Figure 6.12), when 
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considering the experimental error of ±2 (represented with the error bars in Figure 

6.11). An extra experiment at 30°C was then carried out to assess the influence of 

temperature also at this lower value and it was then noticed an efficiency reduction. 

Therefore, the effect of the temperature on efficiency of carbonation for GGBS is 

similar to PS, higher temperature during the experiments could increase the removal of 

Ca from the mineral structure of the raw material raising the efficiency of carbonation. 

The only difference between efficiency of carbonation for GGBS and PS is that it 

reaches its maximum at 40°C instead of 50°C and then it levels for temperatures up to 

65°C. 

 

Figure 6.11: Effect of temperature on efficiency of carbonation for GGBS 

6.3 Effect of particle size on efficiency of carbonation 

As for temperature, particle size is another important factor affecting efficiency of 

carbonation (Section 2.3.4.6). Therefore, the effect of particle size on the efficiency of 

carbonation was also investigated. The particle size 150-300µm was employed 

maintaining the same experimental conditions used in the tests described in the previous 

sections (15g/l, 800rpm, 50°C dissolution for 3h, 65°C carbonation for 1h).  

Results for steel slag are reported in Table 6.3 and show that when increasing particle 

size the efficiency of carbonation decreases (from 68% to 61%). This is consistent with 

previous studies on carbonation of steel slag and it is due to the higher specific surface 

area available for reaction in smaller particles [6.12]. For instance, specific surface areas 
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values for steel slag have been reported as 5.4m
2
/g and 1.6m

2
/g for particle size <80µm 

and 80-500µm, respectively [6.13].  

Experiments on phosphorus slag showed a similar trend, where efficiency decreases 

from 59% to 45% (Table 6.3), confirming the higher availability of specific surface area 

for the reaction in smaller particles. It was not possible to study GGBS because the 

sample is finely grinded during the production process and the amount of sample 

received did not contain particles in the size range 150-300µm. 

 
Efficiency of carbonation (%) 

Material  Particle size 75-150µm Particle size 150-300µm 

SS 68 61 

PS 59 45 

Table 6.3: Effect of the particle size on the efficiency of carbonation for steel slag and 

phosphorus slag 

6.4 Scaling-up tests 

The purpose of the scaling-up tests was to investigate the potential presence of other 

factors affecting the efficiency of carbonation at bigger scale. Lab-scale experiments are 

normally carried-out in batch reactors which use less than 1000ml [6.14]. When 

investigating experimental scaling-up, it is reasonable to proceed by steps, starting from 

testing a pilot-scale experimental rig employing between 1 and 100l of solution [6.14]. 

Such wide range is due to the specificity of each technology tested, when moving from 

lab-scale to pilot-scale experiments.  

In the case of the multi-step mineralization process tested in this thesis, considering 

budget and technical constrains for the rig set-up and the commercial availability, a 

scaling-up factor of 6 was chosen. A 3l glass flask (Figure 6.12), instead of 500ml 

where 2400ml of NH4HSO4 solution was employed for the experiments.  
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Figure 6.12: Set-up for scaling-up mineralization experiments 

The three materials, SS, PS, GGBS, in the particle size range 75-150μm were tested at 

S/L ratio of 15g/l. The other experimental conditions were maintained identical as for 

the small scale experiments (3h dissolution at 50°C, 1h dissolution at 65°C). The results 

obtained (Table 6.4) show that increasing the reactor size, the efficiency values remain 

similar (within the experimental error), and therefore, there are not scaling-up factors 

able to affect the process, at least when the scaling-up factor is up to 6. This suggests 

that the reaction mechanisms governing the different steps of the mineralization process 

are the same at small and pilot scale (up to a scaling-up factor of 6). It is likely that the 

scaling-up tests did not lead to any change in the efficiency of carbonation because the 

equipment used for the reaction to take place (glass flask, stirrer) reproduced at bigger 

scale the conditions used at small scale. This avoided any alteration of the chemistry of 

the process which would have caused for instance incomplete reactions. 

 
Efficiency of carbonation (%) 

 
Small scale Pilot scale 

SS 74 76 

GGBS 67 68 

PS 59 58 

Table 6.4: Efficiency of carbonation results from scaling-up experiments 
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6.5 Conclusions 

Firstly, the multi-step mineral carbonation process was investigated using three different 

S/l ratio (15-25-50g/l) for SS, PS and GGBS.  It was observed that the carbonation 

efficiencies increased with decreasing CaO content introduced with each sample during 

the experiments. Experiments achieved 74%, 67% and 59% efficiency for SS, GGBS 

and PS, respectively. Wang and Maroto-Valer, using a similar process employing 

serpentine at 50g/l, reached 25% efficiency which is lower than that of GGBS and SS at 

the same S/L ratio, and similar to PS. This confirms that, in general, carbonation 

efficiency for waste materials is higher than the one from mineral rocks. As seen in the 

previous chapter, this could be due to the different mineral phases forming the samples, 

which allow during the first step of the process, easier extraction of metals from the 

waste streams than from rocks (i.e. serpentine). The solid residues from the carbonation 

step were analysed using several techniques (XRF, XRD, SEM-EDS). XRF studies 

showed that reducing the S/L ratio resulted in a decrease of SO3 content. This is due to 

the production of CaCO3 being higher, when the S/L ratio is lower because of higher 

carbonation efficiency. XRD analyses found that the main phases identified in the 

carbonated samples were CaCO3 and residual hydrated calcium sulphate 

(CaSO4·2H2O). 

Moreover, the effect of temperature on the efficiency of carbonation was investigated. It 

was observed that when the experimental temperature for dissolution and carbonation 

was increased between 40 to 65°C, the efficiency of carbonation also raised for SS (up 

to 72%), while for PS the efficiency only increased between 40 and 50°C (up to about 

55%) and then it remained constant till 65°C. GGBS behaved like PS with the only 

difference that efficiency of carbonation rose from 30 to 40°C (up to about 65%) and 

then it levelled for temperatures up to 65°C. In multi-step mineralization processes, 

efficiency of carbonation is mainly affected by the Ca extraction conditions during the 

mineral dissolution step and, therefore, the behaviour and values of efficiency of 

carbonation of SS, PS and GGBS are probably related to the effect of the temperature 

during the first step of the process. The removal of Ca from the mineral structure of the 

raw material could be increased when raising the temperature, leading to better 

efficiency of carbonation. However, Ca extraction reaches a plateau at a certain 

temperature, preventing further improvements for the efficiency of carbonation. 

Previous studies on different materials (wollastonite, SS, serpentine) also demonstrated 

this trend of reduced influence of the temperature on the dissolution/carbonation 
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efficiency as soon as the temperature is raised. In addition, the effect of particle size on 

the efficiency of carbonation was also analysed in this chapter. It was noticed that 

increasing the particle size from 75-150µm to 150-300µm the efficiency lowers for both 

SS and PS from 68% to 61% and from 59% to 45% respectively as found in previous 

studies. This is because, as reported in literature (e.g. for steel slag 5.4m
2
/g and 1.6m

2
/g 

for particle size <80µm and 80-500µm, respectively) [6.1] [6.13], larger specific surface 

area for reactions is available in smaller particles compared to the ones with bigger size. 

Finally, results from scaling-up test are reported. The scaling-up factor employed was 6, 

carrying out experiments in a 3l glass flask instead of 500ml. The results showed that 

the efficiency of carbonation remains the same (within the experimental error). This 

suggests that the reaction mechanisms governing the different steps of the 

mineralization process are the same at small and pilot scale and, therefore, there are not 

scaling-up factors able to affect the process, at least when the scaling-up factor is up to 

6.  
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CHAPTER 7 – MASS, ENERGY, CO2 BALANCES AND COST 

EVALUATION 

 

The studies described in the previous chapters focused on understanding the main steps 

of the mineralization process proposed for waste materials. In this chapter the entire 

system including CO2 capture, ammonia absorption and regeneration of additives, is 

investigated to evaluate its feasibility at industrial scale. Considering the theoretical 

chemical reactions of the multi-step process and data from a steel plant, energy and 

mass balances are obtained. Moreover, based on the heat required and electric 

consumption of the process, CO2 emissions balance was then calculated to assess when 

the mineralization process becomes carbon negative. Furthermore, cost evaluations 

were performed considering the theoretical maximum efficiency as well as the process 

efficiency obtained from the previous chapter (Section 6.1). 

7.1 Steel plant data 

An industrial process emitting CO2 which could be retrofitted on-site with a 

mineralization facility is a steel plant, where CO2 is emitted and an appropriate waste 

material is produced. Steel making, together with cement production, is one of the 

industries responsible for large CO2 emissions to the atmosphere, where emissions from 

the industrial sector are 20% of the total and, within industry, steel accounts for about a 

quarter of the emissions, which means about 4-5% of global CO2 emissions [7.1].  

Steel slag samples employed for carbonation experiments were obtained from one of the 

main steel plants in UK and, as mentioned in Section 3.1, because of confidentiality, 

full details on the location and company owning the plant cannot be disclosed. The steel 

plant considered emitted 7.4Mt of CO2 in 2010 which means 965t/h (assuming 320 

working days per year) and steel slag production was 43t/h. 

7.2 Mass balance 

The mass balance calculations carried out are presented in Figure 7.1. Starting from the 

chemical reactions listed in Table 5.1 and the steel slag production of the plant 

considered (43t/h), a mineralization process with S/L ratio at 15g/l able to sequester 

13t/h of CO2, employing all the steel slag produced, was developed. As an example, the 

calculations for the CO2 capture are presented in Table 7.1 where the stoichiometric 
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amount of each reactant and the mass balance of the reaction are reported. The reaction 

is the following: 

                       (7-1) 

 
Molecular weight Amount Amount 

 

[g/mol] [mol] [g] 

NH3 17.03 2 34.06 

CO2 44.01 1 44.01 

H2O 18.02 1 18.02 

    (NH4)2CO3 96.09 1 96.09 

Table 7.1: Mass balance for the CO2 capture reaction 

The CO2 planned to be sequestered by the process is 13t/h, therefore, the amount of 

(NH4)2CO3 produced is 28.6t/h (96.09 divided by 44.01 and multiplied by 13), the H2O 

and NH3 required are 5.3t/h and 10.1t/h, respectively. The same calculations were 

performed for all the other steps of the process, starting from the stoichiometric 

reactions reported in Table 5.1 and the known amount of inputs. Details of the mass 

balance calculations are reported in Appendix B. 

The dissolution and carbonation steps of the mineralization process applied to the steel 

plant are designed to have a duration of 1 hour each. The process takes place in a series 

of reactors of suitable size at S/L ratio of 15g/l (the same as the one used during lab 

experiments which allowed to achieve the best efficiency) and, because of the volumes 

of solution involved, most of the process equipment will consist of multiple units 

operating in parallel. The different phases of the process detailed in Figure 7.1 are:  

 CO2 capture by ammonia absorption. The capture unit is able to sequester CO2 from 

flue gases using ammonia and water. (NH4)2CO3 is produced at 28.6t/h rate and 

then employed in the carbonation reactor. The ammonia absorption unit uses the 

recycled ammonia and water to produce ammonium hydroxide, NH4OH, (5.1t/h) to 

be used in the pH adjustment and precipitation of impurities phase. 

 Mineral dissolution. Steel slag produced in the plant at a rate of 43t/h is conveyed 

to the mineralization reactor and then mixed for 1h together with NH4HSO4 (about 

85.7t/h, stoichiometric value) and water. This phase allows extraction of Ca and 
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precipitation of CaSO4 for 40.6t/h. Moreover, other sulphate phases are produced at 

a lower rate (i.e. magnesium, iron, aluminum sulphate) and are listed in detail as 

Stream 1 in Figure 7.1. 

 pH adjustment and removal of impurities. Following the mineral dissolution, 

NH4OH is added in the slurry to raise the pH. Mg, Fe, Al hydroxides are 

precipitated at 1.1, 4.0, 0.5t/h rate respectively (Stream 2), while calcium sulphate 

is not affected by the operation.  

 Carbonation reaction. It takes place in 1h and CaSO4 is converted into calcium 

carbonate at a rate of about 30t/h, while other mineral phases present are not 

affected by the reaction (Stream 3). Residual (NH4)2SO4 solution, 98t/h, is then 

passed to the water evaporation unit (Stream 4). 

 Water evaporation and regeneration of additives. Water consumed in the process 

(Streams 1, 2 and 4) is about 2850m
3
/h which needs to be evaporated to allow the 

recovery of 98t/h (NH4)2SO4 for the following regeneration step. Once water is 

evaporated, it must be condensed to be reutilized within the process. When 

regeneration of the additives takes place in a melting vessel, from (NH4)2SO4 about 

85.4t/h of NH4HSO4 and 12.6t/h of NH3 are regenerated and recirculated within the 

process. 

 Water and NH4HSO4 management units. These two units do not carry-out any 

chemical reaction, but they allow to regulate the amount of water and NH4HSO4 

used in the process. The units receive the recovered streams from the end of the 

process (2857t/h water and 85.4t/h NH4HSO4) and they integrate them with the 

limited amount required (1t/h water and 0.3t/h NH4HSO4) to allow the mineral 

dissolution and CO2 capture steps to work properly. 

Overall, it can be noticed that despite the large amount of water required (about 2850t/h, 

Streams 1,2 and 4) the process can reuse it, limiting the requirement of fresh water to 

1t/h. This is also the case for the chemicals employed for dissolution, NH4HSO4, where 

about 85t/h are needed, but the process can regenerate and recirculate it, requiring only 

0.3t/h to be supplied every hourly cycle. These results allow understanding that the  

impact on the process of input materials is limited, because of their small amount 

required (only 1t/h water and 0.3t/h NH4HSO4).  
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Figure 7.1: Mass balance for a mineralization process in a steel plant 
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The final product of the mineralization process is a mixture of different phases among 

which the predominant is calcium carbonate. However, to separate the final phases to 

obtain a valuable product further treatment is required. In fact, as seen in the literature 

review (Section 2.4), high level of purity are needed for silica and calcium carbonate to 

reach an interesting market value (£189-350/t). 

7.3 Energy and CO2 balance 

Results from the energy balance for each step of the process, obtained using the 

software HSC Chemistry 5.1 and the mass balance reported in the previous section, are 

included in Figure 7.1. As an example, the calculations carried out for the CO2 capture 

step were based on the following table (Table 7.2), reporting the amount of reactants 

and products and giving the total heat released by the reaction (difference between the 

sum of the total enthalpy (H) of the reactants and the products). Calculations show that 

the reaction releases 12577Mcal (negative values characterize exothermic reactions, 

Section 5.1), which corresponds to 14628kWh (1Mcal=1.16kWh). 

Input TEMP 

[°C] 

AMOUNT 

[kmol] 

AMOUNT 

[kg] 

Latent H 

[Mcal] 

Total H 

[Mcal] 

NH3 20 593.057 10100 -25.37 -6537 

CO2 20 295.389 13000 -13.06 -27794 

H2O 20 294.196 5300 -26.44 -20124 

Output 

     (NH4)2CO3 20 297.651 28600 0 -67034 

    

Balance -12577 

Table 7.2: Energy balance for the CO2 capture step 

Tables reporting the energy balance calculations for the other chemical reactions of the 

mineralization process are presented in Appendix B. Water evaporation after the 

mineralization reaction needs specific heat (4186J/Kg K) to increase the temperature 

from 65 to 100°C and then latent heat (2260kJ/Kg) to evaporate all the water. These two 

contributions give the total amount of heat required by the water evaporation phase 

which is carried out in a MVR (mechanical vapor recompression) evaporator. MVR 

evaporators allow a more efficient water evaporation, usually between 0.05 and 

0.15kWh/Kg [7.2], therefore the total heat required for this phase of the process is about 

242000kWh since the total water evaporated is 2857t/h. 
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Table 7.3 summarizes the energy balance, where negative values indicate heat released, 

while positive values represent heat required for each step. The process investigated, i.e. 

mineralization system retrofitted into a steel plant, can sequester a theoretical maximum 

of 13t/h CO2 (1.4% of the total emission) using 43t/h steel slag. The total heat released 

corresponds to 2.3MWh/tCO2, while the total heat required is 20MWh/tCO2. The 

highest contribution to the total heat required is due to the water evaporation step 

(18.6MWh/tCO2). The regeneration step, instead, requires 1.8MWh/tCO2 which is 

however much lower than the value reported in a previous study for mineral carbonation 

process with chemical regeneration using NaCl and HCl (3277 and 4361kWh/tCO2, 

respectively) [7.3].  

Capture of 13t/h CO2 

 43t/h steel slag 

 Heat released kWh 

CO2 capture -14628 

  mineral dissolution -12201 

  precipitation of impurities -3549 

  carbonation -100 

  TOTAL HEAT RELEASED -30478 

Heat required kWh 

water evaporation (MVR) 242000 

regeneration 22945 

ammonia adsorption 131 

  TOTAL HEAT REQUIRED 265076 

 

Table 7.3: Energy balance for the mineralization process applied to a steel plant 

Similarly, direct mineral carbonation processes, such as that developed at the U.S. 

Department of Energy’s National Energy Technology Laboratory (NETL), consume 

large amounts of energy in the mineral activation stage (977kWh/tCO2). Also, the 

recovery of the employed chemicals (0.64M NaHCO3 and 1M NaCl), which was not 

addressed in their work, would require additional energy [7.4]. 
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7.3.1 Heat released and required 

The heat release during CO2 capture, mineral dissolution, precipitation of impurities and 

carbonation can be recovered using heat exchangers and reused within the 

mineralization process to heat-up the incoming streams of steel slag, ammonium 

sulphate and water. This would allow minimizing the energy requirement necessary for 

the dissolution, carbonation and ammonia adsorption at 50°C, 65°C and 20°C, 

respectively. 

The heat required for evaporating the water and regenerating the additives (Table 5.1) at 

300°C is high temperature heat. Flue gases from the steel plant are already cooled down 

to 250-300°C (not lower to avoid condensation of acid compounds) before being 

released in the atmosphere from the stack. The cooling of the flue gases allows 

recovering heat for pre-heating the combustion gas and air for the blast furnace. 

Therefore, heat from flue gases cannot be further recovered for the mineralization 

process.  

The ammonium sulphate is separated from the water solution by a MVR evaporator, 

requiring lower energy than the theoretical evaporation energy calculated from heat of 

vaporization and specific heat. This is possible in a MVR evaporator thanks to a 

compressor which increases the pressure of the vapor produced and consequently its 

condensation temperature [7.2]. The compressed vapor, therefore, increases the heat 

provided to the water for producing more vapor.  

The condensed water is then recovered and reutilized within the process. The heat 

required from the MVR evaporator and the regeneration of chemicals (in a melting 

vessel) would be provided by a hot oil system heated by a stand-alone natural gas fired 

heater. HHV (high heating value) for natural gas is 54GJ/t and heat to be provided for 

evaporation and regeneration is 265MWh (Table 7.3), which corresponds to 954GJ. 

Therefore 17.6t of natural gas are required every hour. Natural gas emission is 

2.8kgCO2/Kgfuel, therefore, the emissions associated with the water evaporation and 

regeneration of additives are 49.3tCO2/h. 
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7.3.2 Electric consumption 

Further to heat requirement, which releases CO2, electric consumption for pumps, 

conveyors, agitators and compressor for the MVR evaporator should also be considered, 

as they contribute to the CO2 emissions from the process. Table 7.4 reports the electric 

consumption for each of them and details of the calculations are reported immediately 

after. 

Equipment unit Electric consumption 

MVR compressor 39MW 

Water pumps 3MW 

Conveyors 100kW 

Agitators 2MW 

TOTAL 43MW 

 

Table 7.4: Electric consumption for an industrial mineralization plant operating at 15g/l 

 

 MVR compressor: a unit evaporating 50t/h requires about 700kW [7.2],  therefore, 

considering 2850t/h of water to be evaporated, the electric consumption for the 

compressor will be around 39MW. 

 Water pumps: a pump moving 60m
3
/min (3600m

3
/h) consumes 650kW [7.5], 

therefore moving 2400t/h requires about 450kW. The mineralization process 

requires 4 pumps (between dissolution, pH adjustment, carbonation, water 

evaporation and then one for the recirculation of water). Therefore the total 

electrical consumption for pumps would be around 2MW. Adding then other 

service pumps (lubricant circuit, liquid for heat exchangers, water compensation, 

circulation of ammonia), the total electric consumption can be raised to 3MW. A 

summary of the pumps required and their characteristics are reported in Table 7.5. 

Axial pumps are suitable for streams with high flow rate (about 2800t/h), while for 

the service pumps, centrifugal ones are more appropriate. 

 Conveyors for solid materials: A conveyor requires about 100kW to move 400t/h of 

material [7.6]. The mineralization process requires to handle 43t/h of steel slag, 

98t/h ammonium sulphate, 57.5t/h final solid residue and 85t/h ammonium 

bisulphate. Therefore the 4 conveyors consume about 100kW in total. 

 Agitators: an agitator with a capacity of 22m
3
 consumes 5.5kW [7.7], therefore for 

2850t/h of solution, 700kW are required for each step needing an agitator 

(dissolution, pH raise and carbonation reactors), consequently about 2MW are 

totally required. 
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Pump unit Location (stream 

reported in Figure 7.1) 

Type Electric 

consumption [kW] 

Pump 1 Stream 1 Axial pump 450 

Pump 2 Stream 2 Axial pump 450 

Pump 3 Stream 4 Axial pump 450 

Pump 4 
Water recirculation from 

condensation unit 
Axial pump 450 

Pump 5 
Circulation of ammonia 

after regeneration 

Centrifugal 

pump 
200 

Pump 6 
Water compensation 

input 

Centrifugal 

pump 
200 

Other service 

pumps 

Heat exchangers in 

exothermic steps and oil 

and lubricant circuits 

Centrifugal 

pump 
600 

Table 7.5: List and characteristics of pumps employed in the designed process 

The total electric consumption for the mineralization process studied would be around 

43MW. As seen in Section 2.3.1, emission of CO2 from electricity produced in UK is 

about 380g/kWh, therefore, CO2 emissions from electric consumption would be 

16.0tCO2/h. 

7.3.3 CO2 balance 

7.3.3.1 Theoretical maximum CO2 balance 

Adding the contributions of CO2 released from the heat required and electric 

consumption, the total CO2 emissions are 65.3t/h. The process is designed to capture 

13t/h of CO2, therefore the CO2 balance is positive and the process emits more CO2 than 

sequesters (carbon positive process). 

Increasing the S/L ratio does not affect the chemical reactions of the process reported in 

Table 5.1 (same amount of CO2 stored), but only the amount of water required to be 

evaporated. As an example, instead of 15g/l, with 30g/l, the water amount would be 

1432t/h (about half of 2857t/h), which means CO2 emission for its evaporation to be 

reduced to 25t/h (heat required for evaporation 132MWh which correspond to 8.8t/h 

natural gas). 

When considering S/L ratio of 80g/l, CO2 emissions from water evaporation would be 

9.8t/h (51MWh required for evaporation which correspond to 3.5t/h of natural gas). In 

this case, the electrical consumption (Table 7.6) for MVR compressor, pumps, 
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conveyors and agitators is 7.3MW, 1.5MW, 100kW and 400kW, respectively. Total 

electrical consumption would be about 9.4MW which means 3.5t/h CO2 emissions. 

Total emissions are, therefore, 13.3t/h and the designed process begins to be carbon 

negative (i.e. able to sequester more CO2 than the one emitted to carry out the process) 

with S/L ratio of 80g/l or higher.  

For a S/L ratio of 120g/l, CO2 emission from water evaporation would be 6.5t/h (heat 

required for evaporation is 35MWh which corresponds to 2.2t/h of natural gas). Also in 

this case the electrical consumption is reported in detail in Table 7.6 and the total would 

be about 6.8MW, which means 2.4t/h CO2 emissions. Total emissions from operating 

the process would be therefore 8.9t/h while CO2 sequestered would be 13t/h. 

Equipment unit Electric consumption 80g/l Electric consumption 120g/l 

MVR compressor 7.3MW 4.9MW 

Water pumps 1.6MW 1.4MW 

Conveyors 100kW 100kW 

Agitators 400kW 350kW 

TOTAL 9.4MW 6.8MW 

 

Table 7.6: Electric consumption for an industrial mineralization plant operating at 80g/l 

and 120g/l 

 

7.3.3.2 Experimental CO2 balance 

The energy and CO2 balance (Section 7.3) used in this chapter are based on the 

theoretical 100% maximum conversion efficiency. However, dissolution and 

carbonation efficiencies are not 100% and vary also with S/L ratio (Section 6.1), 

achieving about 75% after experiments employing  steel slag at 15g/l S/L ratio. 

Therefore, in the case of mineralization at 15g/l, the efficiency penalty between 

experimental results and the maximum theoretical value is 25%. The industrial 

application of a mineral carbonation system in a steel plant presented in this chapter is 

designed to sequester 13t/h of CO2, meaning that, due to the 75% experimental 

efficiency achieved, the value is reduced to 9.75t/h. Based on the experimental data 

presented in Section 6.1 for steel slag, trends of efficiency of carbonation at higher S/L 

ratio (120 and 240g/l) could be extrapolated (Figure 7.2). Extrapolation was based on 

the assumption that the trend of efficiency obtained from experiments (15, 25, 50g/l) 

continues at higher S/L ratios as seen previously  [7.8] [7.9] [7.10]. 
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Figure 7.2: Experimental and extrapolated efficiency of carbonation for steel slag 

S/L ratio range 

[g/l] 

Values of carbonation 

efficiencies at different S/L ratio 

Drop of carbonation 

efficiencies between 

different S/L ratio 
 Experimental  

15-30 75-67% 8% 

25-50 70-60% 10% 

 Extrapolated  

30-60 67-57% 10% 

60-120 57-45% 12% 

120-240 45-30% 15% 

240-480 30-11% 19% 

Table 7.7: Details of the experimental and extrapolated efficiencies of carbonation for 

steel slag 

Extrapolation of efficiencies of carbonation at 120 and 240g/L were carried out based 

on the following calculations, which are summarized in Table 7.7. Experimental 

efficiency reported in Figure 7.2 shows that carbonation efficiency for steel slag drops 

8% when doubling the S/L ratio between 15 and 30g/l and the drop is 25% higher than 

8% (therefore 10%) when doubling the S/L ration between 25 and 50g/l. Extrapolated 

data were based on the experimental evidences just presented, therefore, the drop of 

carbonation efficiency between 30 and 60g/l could be assumed still 10% and the drop 

between 60 and 120g/l should be 25% more than 10%, i.e. about 12% (carbonation 

efficiency drops from 57% at 60g/l to 45% at 120g/l). Finally, the drop of carbonation 

efficiency between 120 and 240g/l should be 25% more than 12%, i.e. 15% 
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(carbonation efficiency drops from 45% at 120g/l to 30% at 240g/l). The same 

reasoning applies for the case of doubled S/L ratio between 240 and 480g/l. 

The theoretically maximum CO2 sequestered (13t/h) at 120g/l, considering the 

experimental efficiency, would be reduced to 5.9t/h (45% of 13t/h) in the case of 

employing the mineralization process investigated, while the CO2 emissions due to 

water evaporation and electrical consumption would still be 8.9t/h (as seen in Section 

7.3.3.1). Therefore, the mineralization process would not be carbon negative at 120g/l, 

considering the experimental efficiency, as it is, instead, in the case of considering the  

process with 100% efficiency. At 240g/l carbonation efficiency would be 30% (Table 

7.7), therefore 3.8t/h (30% of 13t/h) of CO2 would be sequestered, while CO2 emitted 

would be 4.4t/h (about 50% of the CO2 emissions due to water evaporation and 

electrical consumption compared to the case at 120g/l) and the process would still be 

carbon positive (i.e. emitting more CO2 than the amount sequestered during the 

process). 

Considering the experimental results and extrapolations of carbonation efficiency 

presented in Figure 7.2 and Table 7.7, increasing the S/L ratio above 240g/l (30% 

efficiency) further reduces the efficiency of carbonation and the process cannot become 

carbon negative. Therefore, a carbon negative process would be achieved only if 

efficiency of carbonation was 34% (or above) at 240g/l. In fact, CO2 captured would be 

4.4t/h (34% of 13t/h), while the CO2 emitted would be 4.4t/h. This value of efficiency 

could be obtained by raising the temperature of dissolution and carbonation, as 

presented in Section 6.2, where it was shown that increasing the temperature from 50 to 

65°C resulted in an increased efficiency by 4%. According to these results, if the 

temperature of dissolution and carbonation for the mineralization system retrofitted to 

the steel plant is raised by 15°C, from 50 to 65°C for dissolution and from 65°C to 80°C 

for carbonation, efficiency of carbonation at 240g/l would achieve 34% (4% more than 

30%). Therefore, when considering the efficiency of carbonation, the mineralization 

system applied to the steel plant would be carbon negative for S/L ratio of 240g/l or 

higher, with dissolution and carbonation temperature of 65°C and 80°C, respectively.  

Considering dissolution and carbonation temperature of 65°C and 80°C, respectively, 

the efficiency of carbonation at 480g/l would  be 15% (4% more than 11%, Table 7.6), 

while at 300g/l the efficiency would be 29%, as presented in Table 7.8. In fact, it can 
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assumed that one quarter of the 19% drop (i.e. 5%) between 34% at 240g/l and 15% at 

480g/l happens between 240g/l and 300g/l. 

S/L ratio [g/l] Values of carbonation 

efficiencies  

240 34% 

300 29% 

480 15% 

Table 7.8: Details of the extrapolated efficiencies of carbonation with dissolution and 

carbonation temperature of 65°C and 80°C, respectively 

In the case of mineralization process carried out at 300g/l and dissolution and 

carbonation temperature of 65°C and 80°C, respectively, CO2 captured would be 3.7t/h 

(29% of 13t/h), while CO2 emissions due to water evaporation and electric consumption 

would be 3.2t/h (one twentieth of the emissions calculated for the case of 15g/l, Section 

7.3.3.1). 

7.4 Cost estimation 

7.4.1 Capital cost 

The process reported in Figure 7.1 involves many operational units of equipment and 

the main ones are summarized below. 

 Agitators/reactors: They are the units where the reactions of the process are held 

(mineral dissolution, pH adjustment and precipitation of the impurities, carbonation 

reaction, regeneration of additives, ammonia absorption, CO2 capture) and because 

of the volumes of solution involved, parallel operations are foreseen in each step. 

The reactors are to be supplied with electricity to allow stirring the solution when 

required and they have a system of heat exchangers which enable the heat recovery 

from the exothermic reactions and to supply heat for the endothermic reactions.  

 Water evaporator and condensation unit: They consist of a MVR evaporator 

supplied with natural gas and electricity for the compressor. The condensation unit, 

thanks to the heat exchangers, allows to cool down the steam and condense the 

water. 
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 Pumps: As seen in Section 7.3.2, they move the solutions from one step of the 

process to another and recirculate also the recovered streams of water and 

ammonia. Moreover, other pumps are needed for the lubricant and oil circuits and 

to move the liquids employed in the heat exchangers. 

 Conveyors: Fresh steel slag and ammonium sulphate (recirculated and fresh) are 

moved thanks to electric conveyors for solid materials.  

The capital cost of the designed process was calculated by considering the fixed-capital 

investment required for each separate functional unit. The functional unit may be 

identified as a unit operation, unit process, or separation method, which involves energy 

transfer or moving parts. For the mineralization process investigated there are 7 

functional units, namely CO2 capture, mineral dissolution, pH adjustment and 

precipitation of impurities, carbonation reaction, water evaporation, regeneration of 

additives, ammonia absorption. 

Bridgwater developed a relatively simple correlation for plants that are predominantly 

liquid and/or solid phase handing processes [7.11]. The correlation equation for the year 

2012  is [7.12]: 

      
 

 
       (7-2) 

Where, C is the capital cost [£] in the year 2012, A is 1320, a coefficient which varies 

according to the year, N is the number of functional units, Q is the plant capacity 

[t/year] and s is the reactor conversion. 

For the process with theoretical maximum efficiency the plant capacity would be 

4Mt/year for 120g/l, N is 7 and s is 1 (100% conversion efficiency). Therefore, the 

estimated capital cost is £170M. 

When taking into account the experimental efficiency, at 300g/l the capital cost can also 

be calculated using the Formula 7-2. The same parameters as in the theoretical 

maximum efficiency case, can be used, changing only Q, the plant capacity, to about 

2Mt year and s to 0.84 (efficiency of the process at 300g/l is 0.29, therefore 7 single 
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units having 84% efficiency have a global efficiency of 29%). The estimated capital 

cost is then £190M. 

7.4.2 Variable costs 

7.4.2.1 Raw materials and energy costs 

Estimations of the raw materials and energy costs calculated for the process with 

theoretical maximum efficiency for the case 120g/l S/L ratio are reported in Table 7.9. 

Unit costs reported refer to the current market situation in UK, while the quantities 

needed were presented previously (Section 7.3.3.1). The total raw materials and energy 

cost annualized are therefore (assuming 320 working days) £7.3M/year. 

Material Quantity Unit cost [£] Total [£/h] 

Natural gas 33MWh 19.11 / MWh 630 

Electricity 6MWh 50 / MWh 300 

Water and 

ammonium sulphate 

integration 

0.1t/h 

1t/h 
20 / t 20 

TOTAL   950 

 

Table 7.9: Raw materials and energy cost estimation for the designed carbonation 

process 

 

When introducing the effect of the experimental efficiency on the mineralization 

process, considering S/L ratio of 300g/l the cost of the raw material and energy would 

be £3M/year. 

7.4.2.2 Other costs 

According to Coulson et al. other costs must be considered when evaluating the 

economic feasibility of a process [7.12]. In the case of process with theoretical 

maximum efficiency (120g/l) and for the process considering also the effect of the 

experimental efficiency (300g/l) these costs are reported in Table 7.10. These costs 

include mainly labor cost related to operation and maintenance cost, as well as capital 

charges and insurance and taxes. These values are usually calculated based on a fixed 

percentage value of the capital cost. 

 



178 

 

Item Unit cost 

Other costs for the 

process with 

theoretical 

maximum 

efficiency 

[£M/year] 

Other costs for the 

mineralization 

process considering 

the experimental 

efficiency [£M/year] 

Maintenance 5% capital cost 9.0 10.0 

Operating labour 15% operating cost 1.5 1.5 

Supervision 
20% of operating 

labour 
0.3 0.3 

Laboratory costs 
20% of operating 

labour 
0.3 0.3 

Plant overheads 
50% of operating 

labour 
0.7 0.8 

Capital charges 
10% of fixed 

capital 
17.0 19.0 

Insurance, local 

taxes and 

royalties 

4% of fixed capital 6.8 7.6 

TOTAL  35.6 39.5 

 

Table 7.10: Other costs estimation for the designed carbonation process 

 

The total amount of other costs is £35.6M/year for the process with theoretical 

maximum efficiency, while they are £39.5M/year when considering the experimental 

efficiency obtained for the process. 

7.4.2.3 Total variable costs 

The total variable cost for the process with theoretical maximum efficiency investigated, 

in the case of 120g/l, is £42.9M (£7.3M for raw material and energy and £35.6M of 

other costs). Consequently, each ton of CO2 sequestered costs £430 (13t/h is equivalent 

to 0.1Mt/year, considering 320 working days). When considering the experimental 

efficiency of the process, the total variable costs are estimated to be £42.5M. 

Consequently, each ton of CO2 sequestered would cost £1500 (CO2 sequestered would 

be 3.7t/h which means 28.4kt/year). Therefore, the variable costs increased significantly 

from the case with theoretical maximum efficiency to the case when the efficiency of 

the process is considered.  

A previous cost evaluation for mineralization of steel slag was carried out by Huijgen et 

al. in 2007 [7.13]. According to their study, variable costs for sequestering CO2 in their 

single-step process were 77€/tCO2 (£65/tCO2). The substantial difference in costs 
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between the process studied in this work and the one studied by Huijgen et al. is due to 

the type of the processes employed (multi-step vs single-step) and the cost evaluation 

approach (HSC and Coulson’s cost analyses vs ASPEN). However, another substantial 

difference is the S/L ratio considered for the cost analyses, 2kg/l for Huijgen et al. 

[7.13] compared to 120g/l and 300g/l in the process studied in this thesis. This last 

parameter has a huge impact on the cost evaluation, as seen in this chapter, because it 

influences the amount of water employed, and therefore, the heat required for its 

evaporation. If 2kg/l is reasonable for a single-step process, pumping such dense 

solutions from one reactor to the other in a multi-step process is not feasible (i.e. 

damage/corrosion of the facilities/equipment used in the process). 

7.5 Conclusions 

This chapter presented the mass and energy balance for the overall mineralization 

process in the case of sequestering 13t/h of CO2 from a steel plant producing 43t/h of 

steel slag and employing a S/L ratio of 15g/l. Because of the close loop, the impact of 

the quantity of NH4HSO4 and H2O needed to be fed continuously into the system is 

small (1t/h for H2O, and 0.3t/h for NH4HSO4).  

Heat released from mineral dissolution, pH adjustment and precipitation of impurities, 

carbonation reaction and CO2 capture is 2.3MWh/tCO2 and could be recovered using 

heat exchangers and reused within the mineralization process to heat-up the incoming 

streams of steel slag, ammonium sulphate and water. Heat required, mainly from water 

evaporation and regeneration of additives, is instead 20MWh/tCO2 and it causes, 

together with electric consumption of compressors, pumps, conveyors and agitators, 

CO2 release of about 65t/h. Therefore, the process is carbon positive, i.e. emits more 

CO2 than the amount sequestered.  

Increasing the S/L ratio decreases the heat and electricity required from the 

mineralization system. The process with theoretical maximum efficiency results carbon 

negative when S/L ratio is 80g/l or higher. For the case of 120g/l, capital cost of the 

process would be around £170M while annual variable costs £43M 

(£430/tCO2 sequestered). However, if experimental data are introduced in the cost 

evaluations, efficiency of the process decreases significantly. It was found that the 

process would be carbon negative when the S/L ratio is 240g/l or higher. Consequently, 

costs raise to £190M for capital cost and £1500/tCO2 sequestered for variable costs. A cost 
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evaluation of a mineralization process employing steel slag was carried out by Huijgen 

et al. in 2007 [7.13]. In their work the mineralization of steel slag employing a single-

step process costs £65/tCO2. However, such difference in costs compared to the ones 

obtained from the process analyzed in this chapter is mainly due to the different 

processes employed (single-step and multi-step), the value of the S/L ratio and the 

different method for cost evaluation. 

As reported in the literature review (Section 2.2.4), there are only a few cost evaluations 

for mineral carbonation employing mineral rocks. The current cost ranges between £75-

110/tCO2, therefore much cheaper compared to the costs of the process investigated in 

this work. The mineralization route analysed in this chapter is still uneconomic and 

needs further research, especially in reducing the energy required for the evaporation of 

water. Moreover, as seen in Section 2.1.2, cost of CCS geological storage is about £50-

75/tCO2, and thus, the mineral carbonation process investigated is much more expensive 

compared to CCS geological storage. However, it should be noted that, as already 

mentioned in Section 4.10, certain waste materials produced close to large CO2 emitters 

could be employed for mineral carbonation although this would be a niche market using 

relatively small amounts of waste materials. Mineral carbonation in fact, does not aim to 

be in competition with CCS geological storage. 
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CHAPTER 8 – CONCLUSIONS AND FUTURE WORK 

 

8.1 Conclusions 

The aim of this thesis was to to determine the potential use of waste materials as 

feedstock for permanent sequestration of CO2. The technical feasibility and costs of a 

novel mineralization process, for several suitable feeding materials, was investigated. 

This chapter summarizes the main findings of the thesis, following the order they were 

presented.  

Carbon dioxide capture and storage by mineralization has been increasingly popular 

among researchers due to the slow deployment of underground storage and the 

technical/economical barriers in some areas for this option. Mineral carbonation, 

however, suffers from several drawbacks, mainly pre-treatment energy requirement and 

slow reaction rates. This thesis has proposed a novel multi-step pH swing mineralization 

process suitable for waste materials rich in calcium to precipitate calcium carbonate. 

The process employs ammonium carbonate, (NH4)2CO3, obtained from the capture of 

CO2 in NH3 instead of direct CO2 carbonation. This work, firstly, investigated the 

availability and potential CO2 storage capacity of suitable waste materials for mineral 

carbonation in UK (Chapter 4). Afterwards, analyses were focused on understanding the 

mechanisms of dissolution of the first step of the novel mineralization process, 

employing four different wastes as feedstocks (Chapter 5). The effect on the efficiency 

of carbonation of several parameters was investigated and mechanisms of carbonation 

were also discussed (Chapter 6). Finally, the costs of implementing the multi-step 

process in a steel production plant were investigated (Chapter 7). 

8.1.1 Waste materials for mineral carbonation in UK 

The availability of suitable materials which could be employed as feedstock was 

investigated. It was reported that a variety of inorganic waste streams are potential 

feedstock for mineralisation in the UK. The waste streams identified in this thesis 

include recycled concrete aggregate, steel slag, ground granulated blast furnace slag, 

pulverised fuel ash including oil shale pulverised ash, incinerator bottom ash, air 

pollution control residue, cement kiln dust, incinerator sewage sludge ash, paper sludge 

ash and biomass ash. 
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It was found that mineral waste resources, suitable for mineralization in the UK, are 

mainly re-used for low-end applications to avoid landfill disposal costs and the 

aggregate levy in the case of primary aggregate production for the construction industry. 

Therefore, only a small fraction of these wastes are nowadays available with a capture 

potential of 1Mt/year of the annual UK emissions, which are estimated being about 

490Mt. The location of the mineral waste is widely distributed across the UK, and in 

many of the cases, the waste resource is located very close to the CO2 emitters. For 

instance, steel and cement works and incinerators represent the ideal locations for the 

application of this technology considering that CCS by geological storage mainly 

targets large power emitters. Consequently, the use of waste resources for mineral 

carbonation should be considered as a niche market that could utilise relatively small 

amounts of feed materials for mineralization.  

8.1.2 Suitable waste materials and dissolution mechanisms 

A novel closed-loop, multi-step process which allows precipitation of calcium carbonate 

from Ca-rich waste streams was investigated in this thesis, as this route was not studied 

before using such feedstocks. This multi-step mineralization process includes five main 

steps: i) mineral dissolution, ii) pH adjustment iii) precipitation of impurities, iv) 

carbonation reaction, and v) regeneration of additives. Samples of nine suitable waste 

materials were collected and their chemical and mineral phases composition were 

analyzed. The materials investigated included recycled concrete aggregate, cement kiln 

dust, ground granulated blast furnace slag, pulverized fuel ashes, incinerator sewage 

sludge ashes, steel slag, phosphorus slag, water and air cooled copper smelt slag. Based 

on the mineral phases present (i.e. low content of calcium carbonate) and chemical 

composition (i.e. highest CaO content), four samples (i.e. steel slag, ground granulated 

blast furnace slag, phosphorus slag and recycled concrete aggregate) were selected as 

the most suitable for mineral carbonation experiments. The first step (mineral 

dissolution) of the examined mineralization process was studied, including 

understanding the mechanisms of dissolution. 

For the steel slag and recycled concrete aggregate samples, dissolution kinetic analyses 

were conducted based on standard models available in literature, XRD and SEM. 

Results obtained from the dissolution of steel slag indicated that calcium precipitated as 

solid crystals of calcium sulphate while Mg and Fe dissolved into a solution of 

NH4HSO4. Kinetic analyses for steel slag showed that the combination of product layer 
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diffusion and chemical reaction control fits well the experimental results. Employing 

the Arrhenius’ law, the calculated activation energy was 2.3kJ/mol. Comparison 

between dissolution of serpentine (from a previous paper) and steel slag, under the same 

experimental conditions, showed that it is easier to extract metals (e.g. iron) from steel 

slag rather than from serpentine, since SS activation energy is lower than serpentine and 

iron dissolved into solution achieved 90 and 80% for steel slag and serpentine, 

respectively. This could be linked to the diverse mineral phases forming the two 

materials, including differences in chemical and physical nature of iron present. 

Recycled concrete aggregate also dissolved into NH4HSO4 extracting calcium and 

precipitating it as calcium sulphate while the other main metals present, aluminium, 

dissolved partially (40% after experiment at 25°C) into solution. Recycled concrete 

aggregate showed a dissolution process similar to steel slag, with calcium precipitating 

as solid crystals of calcium sulphate and the combination of product layer diffusion and 

chemical reaction control mechanism fitting well the experimental results. Activation 

energy for RCA calculated thanks to the experimental results was 0.9kJ/mol. 

For ground granulated blast furnace slag and phosphorus slag, instead, solutions became 

dense and viscous causing unreliable trends of dissolution, due to the formation of silica 

gel during the dissolution experiments. In this case, precipitation of calcium sulphate 

crystals was investigated employing only XRD and SEM. It was observed that  

dissolution of ground granulated blast furnace slag and phosphorus slag in NH4HSO4 

produced solid crystals of precipitated calcium sulphate (as during dissolution of 

recycled concrete aggregate and steel slag). Evidences from XRD and SEM studies for 

ground granulated blast furnace slag and phosphorus slag showed that the quantity of 

calcium sulphate crystals increased when reducing the S/L ratio from 50 to 25g/l and 

the time of dissolution from 5 to 3h. 

8.1.3 Mineral carbonation from metal waste 

The effect of several parameters on the efficiency of carbonation was investigated, 

including assessing the best operational conditions in terms of S/L ratio, temperature, 

particle size. The main steps of the complete mineralization process (mineral 

dissolution, adjustment of pH with precipitation of impurities and carbonation reaction) 

were tested at different S/L ratio, temperature and particle size for three metal slags, 

namely steel slag, phosphorus slag and ground granulated blast furnace slag.  
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The carbonation efficiencies increased with decreasing CaO content in the samples.  

Experiments achieved 74%, 67% and 59% efficiency of carbonation for steel slag, 

ground granulated blast furnace slag and phosphorus slag, respectively. Carbonation 

efficiency of phosphorus slag resulted about the same as that obtained from a similar 

process employing serpentine (25% at 50g/l) while steel slag and ground granulated 

furnace slag achieved higher values, 60 and 30%, respectively. This confirmed the fact 

that wastes employed for mineral carbonation achieve higher efficiencies of 

carbonation, compared to natural rocks. In fact, in multi-step processes, efficiency of 

carbonation is mainly affected by the metals extraction during the first phase of the 

experiments. Therefore, as seen when investigating the dissolution step, it is easier to 

extract metals from the mineral structure of waste streams (e.g. steel slag) than from 

natural rocks (e.g. serpentine). Further XRD analyses on the carbonated products 

showed that the main phases identified in the carbonated samples were CaCO3 and 

residual hydrated calcium sulphate (CaSO4·2H2O). XRF studies showed reduced SO3 

content in samples after experiments at lower S/L ratio, because of higher production of 

CaCO3, supporting the observations on the trends of carbonation efficiencies (i.e. higher 

efficiency at lower S/L ratio).  

It was found that temperature affects differently efficiencies of carbonation for the three 

metal wastes. When the experimental temperature for dissolution and carbonation was 

increased between 40 to 65°C, the efficiency of carbonation raised for steel slag (up to 

72%). For PS the efficiency, instead, only increased between 40 and 50°C (up to about 

55%) and then it remained constant till 65°C. Ground granulated blast furnace slag 

behaved like phosphorus slag with the only difference that efficiency of carbonation 

rose from 30 to 40°C (up to about 65%) and then it levelled for temperatures up to 

65°C. Because efficiency of carbonation in multi-step mineralization processes is 

primarily affected by the calcium extraction conditions during the first phase of the 

experiments, the behaviour and different values of efficiency of carbonation for steel 

slag, phosphorus slag and ground granulated blast furnace slag are probably related to 

the effect of the temperature during the first step of the process. The extraction of 

calcium from the mineral structure of the raw material could increase with the 

temperature, raising the efficiency of carbonation. However, calcium extraction reaches 

a plateau at a certain temperature, and the efficiency of carbonation does not raise more. 

Previous studies on different materials (wollastonite, steel slag, serpentine) also 

demonstrated this trend of reduced influence of the temperature on the 
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dissolution/carbonation efficiency as soon as the temperature is raised [8.1] [8.2] [8.3]. 

The three waste materials investigated in this thesis have different mineral structures 

(Appendix A), and therefore, also their behavior during the experiments is different. In 

fact, as seen when comparing the dissolution step of steel slag and serpentine, 

depending on the mineral phases forming the different wastes, the extraction of metals 

(i.e. the efficiency of carbonation) could vary.  

Efficiencies of carbonation for two of the metal wastes decreased when the particle size 

increased. In fact, it was noticed that increasing the particle size from 75-150µm to 150-

300µm lowers the efficiency for both steel slag and phosphorus slag from 68% to 61% 

and from 50% to 45%, respectively. This is because larger specific surface area for 

reactions is available in smaller particles compared to the ones with bigger size.  

Tests investigating a pilot scale experimental rig with a scaling-up factor of 6 were also 

reported and it was demonstrated that the efficiency of carbonation remains the same 

(within the experimental error) during the small and pilot scale experiments. This means 

that there are not scaling-up factors able to affect the process, at least when the scaling-

up factor is up to 6, suggesting that the reaction mechanisms governing the different 

steps of the mineralization process are the same.  

8.1.4 Mass, energy and CO2 balances and cost evaluation in a real case scenario 

The laboratory studies conducted allowed investigating and understanding the 

mechanisms of dissolution and carbonation of the process and to analyze the effect on 

the efficiency of carbonation of several parameters. The cost evaluation of the 

technology applied to a steel plant was then studied considering mass, energy and CO2 

balances of all the steps of the process. The steel plant considered for the calculations 

produces 43t/h of steel slag and the mineralization plant considered would sequester 

13t/h of CO2.  

The thermal and electrical energy required for the process, mainly coming from water 

evaporation and regeneration of additives, compressors, pumps, conveyors and 

agitators, cause CO2 emissions. Therefore, it was found that the process with theoretical 

maximum efficiency results carbon negative (i.e. storing more CO2 than the amount 

emitted during the process) when S/L ratio is 80g/l or higher. Introducing the 
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experimental data (i.e. efficiency of carbonation obtained from the experiments) the 

mineralization process applied to a steel plant results carbon negative when S/L ratio is 

240g/l or higher. 

In the case of process with theoretical maximum efficiency, with S/L ratio of 120g/l, 

capital cost of the mineralization plant would be around £170M with annual variable 

costs of £43M, resulting in a cost of £430/tCO2 sequestered. However, if experimental data 

are introduced in the cost evaluations, efficiency of the process decreases significantly 

and consequently costs raise to £190M for capital cost and £1500/tCO2 sequestered for 

variable costs.  

The economic evaluation of the mineralization process applied to an existing steel plant 

resulted more expensive compare to a previous study carried out by Huijgen et al. on 

the cost of a mineralization process employing steel slag (£65/tCO2 [8.4]). The 

substantial difference in costs between the process studied in this work and the one 

studied by Huijgen et al. is due to the type of the processes employed (multi-step vs 

single-step) the different S/L ratio and the approach for the cost evaluation (HSC and 

Coulson’s cost analyses vs ASPEN). 

8.2 Future work 

Based on the results and conclusion of this thesis, to continue developing the 

mineralization process described, there are several areas worth to be further 

investigated, as described below. 

 The studies on the mineral dissolution step of the process showed that crystals of 

calcium sulphate are formed from the dissolved calcium into solution and then they 

react with the ammonium carbonate during the carbonation reaction. It was clear 

that producing more crystals of calcium sulphate increases the carbonation 

efficiency. Therefore, it could be interesting to investigate how to improve the 

precipitation of calcium sulphate. 

 Since the experiments were carried out in a reactor consisting in a 500ml, 3 necks 

glass flask, research into different reactor set-up (e.g. fluidized bed), to assess any 

improvement in the achieved efficiency of carbonation, could be a path for 

improving the process. It would also be usefull for the future development of the 
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process to investigate the potential of using a continuous process instead of batch 

reactor to reduce the reaction time. 

 This thesis did not investigate the post-processing of the carbonated products 

obtained. Therefore, to further assess the economy of the process (i.e. the market 

potential of the final products and the potential income which they could generate), 

it is required to research on the separation techniques which could split the different 

phases present in the final carbonated products. Moreover, the potential presence of 

hazardous substances (e.g. heavy metals) should be considered and  appropriate 

removal techniques investigated. 
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APPENDIX A - XRD PATTERNS FROM SAMPLE 

CHARACTERIZATION 

 

Figure A1.1: XRD pattern for RCA 

 

Figure A1.2: Higher resolution XRD for RCA (scan speed of 1 degree 2-theta per 

minute, 0.02 step size) 
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Figure A1.3: XRD pattern for CKD 

 

Figure A1.4: XRD pattern for GGBS 
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Figure A1.5: XRD pattern for PS 

 

Figure A1.6: XRD pattern from PFA 
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Figure A1.7: XRD pattern for air-cooled CSS 

 

Figure A1.8: XRD pattern for water-cooled CSS 
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Figure A1.91: XRD pattern for ISSA 

 

Figure A1.10: XRD pattern for SS 
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APPENDIX B – MASS AND ENERGY BALANCE FOR THE 

MINERALIZATION PROCESS APPLIED TO A STEEL PLANT 

 

Mass balance for the mineralization process applied to a steel plant 

 

Carbonation reaction 

CaSO4 + (NH4)2CO3 = CaCO3 + (NH4)2SO4 

 

Formula 

Molecular 

weight Amount Amount 

 

g/mol mol g 

CaSO4 136.138 1 136.138 

(NH4)2CO3 96.086 1 96.086 

 

g/mol mol g 

CaCO3 100.089 1 100.089 

(NH4)2SO4 132.134 1 132.134 

 

1t (NH4)2CO3 produces 100.089/96.086=1.04t CaCO3 and requires 

136.138/96.086=1.42t CaSO4 

28.6t/h (NH4)2CO3 require 40.6t/h of CaSO4 

28.6t/h (NH4)2CO3 produce 29.7t/h CaCO3 and 39.3t/h (NH4)2SO4 

 

Mineral dissolution 

CaSiO3 + 2NH4HSO4 = CaSO4 + SiO2 + H2O + (NH4)2SO4 

 

Formula 

Molecular 

weight Amount Amount 

 

g/mol mol g 

CaSiO3 116.164 1 116.164 

NH4HSO4 115.104 2 230.208 

 

g/mol mol g 

CaSO4 136.138 1 136.138 

SiO2 60.084 1 60.084 

H2O 18.015 1 18.015 

(NH4)2SO4 132.134 1 132.134 

 

1t CaSO4 requires 116.164/136.138=0.85t CaSiO3  

40.6t/h of CaSO4 require 34.5t/h CaSiO3  
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40.6t/h of CaSO4 require 2*(115.104/136.138)*40.6=68.7t/h NH4HSO4 

Calculation of the amount of (NH4)2SO4 produced from dissolution of Ca: 34.5t/h 

CaSiO3 are fed therefore 34.5*132.1/116.2=39.2t/h 

Calculation of the amount of SiO2 produced from dissolution of Ca: 36.0t/h CaSiO3 are 

fed therefore 34.5*60.08/116.164=17.8t/h 

Calculation of the amount of H2O produced from dissolution of Ca: 34.5t/h CaSiO3 are 

fed therefore 34.5*18.015/116.164=5.35t/h 

From the analyses on the steel slag saple (Chapter 5, Table 5.2) it contains 38.44% 

CaO=>Ca=38.4(40/(40+16))=27.43%. 

CaSiO3 employed in the dissolution step is 34.5t/h this means that Ca content= 

34.5*(40/(40+28+16*3))=11.9t/h 

Steel slag required is threfore 11.9/0.274=42.9t/h 

MgO content in steel slag is 8.96% (Chapter 5, Table 5.2) 

Mg content=8.96(24/(24+16)=5.37%  

Fe2O3 content in steel slag is 22.53% (Chapter 5, Table 5.2) 

Fe content=22.53(56*2/(16*3+56*2))=15.8% 

      content in steel slag is 2.74% (Chapter 5, Table 5.2) 

Al content=2.74(27*2/(16*3+27*2))=1.45%. 

Apart from CaSiO3, assuming that all the remaining 42.9-34.5=8.4t/h in the steel slag 

are formed by MgSiO3, FeSiO3, Al2SiO5 

The amoun of MgSiO3 in steel slag is (5.37/(5.37+15.8+1.45))*8.4=2.0t/h  

The amount of FeSiO3 in steel slag is (15.8/(5.37+15.8+1.45))*8.4=5.9t/h 

The amount of Al2SiO5 in steel slag is (1.45/(5.37+15.8+1.45))*8.4=0.5t/h 

The dissolution reaction for MgSiO3 is:  

MgSiO3 + 2NH4HSO4 = MgSO4 + SiO2 + H2O + (NH4)2SO4 

Formula 

Molecular 

weight Amount Amount 

 

g/mol mol g 

MgSiO3 100.389 1 100.389 

NH4HSO4 115.104 2 230.208 

 

g/mol mol g 

MgSO4 120.363 1 120.363 

SiO2 60.084 1 60.084 

H2O 18.015 1 18.015 

(NH4)2SO4 132.134 1 132.134 
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1t MgSiO3 produces 120.363/100.389=1.2t MgSO4 

Therefore from 2.0t/h MgSiO3, 2.4t/h MgSO4 are produced 

2.0t/h MgSiO3 require 2*(115.104/100.389)*2.0=4.6t/h NH4HSO4 

Amount of SiO2 produced from dissolution of Mg: 2.0t/h MgSiO3 are fed therefore 

2.0*60.08/100.389=1.2t/h 

Amount of H2O produced from dissolution of Mg: 2.0t/h MgSiO3 are fed therefore 

2.0*18.015/100.389=0.36t/h 

Amount of (NH4)2SO4 produced from dissolution of Mg: 2.0t/h MgSiO3 are fed 

therefore 2.0*132.134/100.389=2.6t/h (NH4)2SO4 

 

The dissolution reaction for FeSiO3 is: 

FeSiO3 + 2NH4HSO4 = FeSO4 + SiO2 + H2O + (NH4)2SO4 

Formula 

Molecular 

weight Amount Amount 

 

g/mol mol g 

FeSiO3 131.931 1 131.931 

NH4HSO4 115.104 2 230.208 

 

g/mol mol g 

FeSO4 151.905 1 151.905 

SiO2 60.084 1 60.084 

H2O 18.015 1 18.015 

(NH4)2SO4 132.134 1 132.134 

 

1t FeSiO3 produces 151.905/131.931=1.15t FeSO4 

Therefore from 5.9t/h FeSiO3, 6.8t/h FeSO4 are produced. 

5.9t/h MgSiO3 require 2*(115.104/131.931)*5.9=10.3t/h NH4HSO4 

Amount of SiO2 produced from dissolution of Fe: 5.9t/h FeSiO3 are fed therefore 

5.9*60.08/131.931=2.7t/h 

Amount of H2O produced from dissolution of Fe: 5.9t/h FeSiO3 are fed therefore 

5.9*18.015/131.931=0.81t/h 

Amount of (NH4)2SO4 produced from dissolution of Fe: 5.9t/h FeSiO3 are fed therefore 

5.9*132.134/131.931=5.9t/h (NH4)2SO4 
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The dissolution reaction for Al2SiO5 is: 

Al2SiO5 + 6NH4HSO4 = Al2(SO4)3 + SiO2 + 3H2O + 3(NH4)2SO4 

Formula 

Molecular 

weight Amount Amount 

 

g/mol mol g 

Al2SiO5 162.046 1 162.046 

NH4HSO4 115.104 6 690.623 

 

g/mol mol g 

Al2(SO4)3 342.136 1 342.136 

SiO2 60.084 1 60.084 

H2O 18.015 3 54.046 

(NH4)2SO4 132.134 3 396.403 

 

1t Al2SiO5 produces 342.136/162.136=2.11t Al2(SO4)3 

Therefore from 0.5t/h Al2SiO5, 1.1t/h Al2(SO4)3 are produced 

0.5t/h Al2SiO5 require 6*(115.104/162.046)*0.5=2.1t/h NH4HSO4 

Amount of SiO2 produced from dissolution of Al: 0.5t/h Al2SiO5 are fed therefore 

0.5*60.08/162.046=0.37t/h 

Amount of H2O produced from dissolution of Al: 5.9t/h Al2SiO5 are fed therefore 

0.5*(18.015/162.046)*3=0.17t/h 

Amount of (NH4)2SO4 produced from dissolution of Al: 0.5t/h Al2SiO5 are fed therefore 

0.5*(132.134/162.046)*3=1.22t/h (NH4)2SO4 

 

The total amount of NH4HSO4 required for the disslution step is therefore 

2.1+10.3+4.6+68.7=85.7t/h 

The total amount of (NH4)2SO4 produced during the dissolution step is 

1.22+5.9+2.6+39.2=48.9t/h  

  



200 

 

pH adjustment and precipitation of impurities 

MgSO4 + 2NH4OH = Mg(OH)2 + (NH4)2SO4 

Formula 

Molecular 

weight Amount Amount 

 

g/mol mol g 

MgSO4 120.363 1 120.363 

NH4OH 35.046 2 70.091 

 

g/mol mol g 

Mg(OH)2 58.32 1 58.32 

(NH4)2SO4 132.134 1 132.134 

 

2.4t/h MgSO4 require 2*(35.046/120.363)*2.4=1.4t/h NH4OH 

2.4t/h MgSO4 produce 58.32/120.363*2.4=1.16t/h Mg(OH)2 and 2.6t/h (NH4)2SO4 

 

FeSO4 + 2NH4OH = Fe(OH)2 + (NH4)2SO4 

Formula 

Molecular 

weight Amount Amount 

 

g/mol mol g 

FeSO4 151.905 1 151.905 

NH4OH 35.046 2 70.091 

 

g/mol mol g 

Fe(OH)2 89.862 1 89.862 

(NH4)2SO4 132.134 1 132.134 

 

6.8t/h FeSO4 require 2*(35.046/151.905)*6.8=3.14t/h NH4OH 

6.8t/h FeSO4 produce 89.86/151.905*6.8=4.02t/h Fe(OH)2 and 5.9t/h (NH4)2SO4 

 

Al2(SO4)3 + 6NH4OH = 2Al(OH)3 + 3(NH4)2SO4 

Formula 

Molecular 

weight Amount Amount 

 

g/mol mol g 

Al2(SO4)3 342.136 1 342.136 

NH4OH 35.046 6 210.274 

 

g/mol mol g 

Al(OH)3 78.003 2 156.007 

(NH4)2SO4 132.134 3 396.403 

 

1.1t/h Al2(SO4)3 requires 6*(35.046/342.136)*1.1=0.68t/h NH4OH 
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1.1t/h Al2(SO4)3 produces 2*(78/342.136)*1.1=0.50t/h Al(OH)3 and 1.27t/h (NH4)2SO4 

The total amount of (NH4)2SO4 produced during precipitation of impurities is 

1.27+5.9+2.6=9.8t/h 

The stoichiometric amount of NH4OH required for precipitation of impurities is 

0.68+3.14+0.7=4.5t/h 

The total amount of (NH4)2SO4 genrated during dissolution, pH adjustment and 

carbonation is 48.9+9.8+39.3=98t/h 

Regeneration of additives 

(NH4)2SO4 = NH4HSO4 + NH3 

Formula 

Molecular 

weight Amount Amount 

 

g/mol mol g 

(NH4)2SO4 132.134 1 132.134 

 

g/mol mol g 

NH4HSO4 115.104 1 115.104 

NH3 17.03 1 17.03 

 

The total amout of (NH4)2SO4 produced during mineral dissolution, precipitation of 

impurities and the carbonation reaction is 39.3+48.9+9.8=98t/h  

From 98t/h (NH4)2SO4: 17.03/132.134*98=12.6t/h NH3 are produced 

From 98t/h (NH4)2SO4: 115.104/132.134*98=85.4t/h NH4HSO4 are produced 

Ammonia absorption 

NH3+H2O = NH4OH 

Formula 

Molecular 

weight Amount Amount 

 

g/mol mol g 

NH3 17.03 1 17.03 

H2O 18.015 1 18.015 

 

g/mol mol g 

NH4OH 35.046 1 35.046 

 

The capture of CO2 requires 10.1t/h NH3, therefore the remaining NH3 part (2.5t/h) can 

be used to produce ammonia water 

From 2.5t/h NH3: 18.015/17.03*2.5=2.6t/h H2O are required for the reaction 

From 2.5t/h NH3: 35.046/17.03*2.5=5.1t/h NH4OH which is slightly above the 

stoichiometric amount required for precipitating the impurities (4.5t/h) 
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Energy balance for the mineralization process applied to a steel plant 

 

Mineral dissolution 

CaSiO3 + 2NH4HSO4 = CaSO4 + SiO2 + H2O + (NH4)2SO4 

BALANCE 

TEMP 

[C] 

AMOUNT 

[kmol] 

AMOUNT 

[kg] 

Latent H 

[Mcal] 

Total H 

[Mcal] 

 IN1 50 893.847 103200 680.53 -261500 

 OUT1 50 1188.118 102950 735.12 -270245 

 BALANCE 50 294.27 -250 54.59 -8745 

 

     

-10170 kWh 

 

MgSiO3 + 2NH4HSO4 = MgSO4 + SiO2 + H2O + (NH4)2SO4 

BALANCE 

TEMP 

[C] 

AMOUNT 

[kmol] 

AMOUNT 

[kg] 

Latent H 

[Mcal] 

Total H 

[Mcal] 

 IN1 50 59.886 6600 47.29 -17110.4 

 OUT1 50 79.572 6560 48.63 -17359.9 

 BALANCE 50 19.685 -40 1.34 -249.47 

 

     

-290 kWh 

 

FeSiO3 + 2NH4HSO4 = FeSO4 + SiO2 + H2O + (NH4)2SO4 

BALANCE 

TEMP 

[C] 

AMOUNT 

[kmol] 

AMOUNT 

[kg] 

Latent H 

[Mcal] 

Total H 

[Mcal] 

 IN1 50 134.205 16200 103.6 -34569.9 

 OUT1 50 179.315 16210 111.09 -35283.1 

 BALANCE 50 45.111 10 7.49 -713.15 

 

     

-829 kWh 

 

Al2SiO5 + 6NH4HSO4 = Al2(SO4)3 + SiO2 + 3H2O + 3(NH4)2SO4 

BALANCE 

TEMP 

[C] 

AMOUNT 

[kmol] 

AMOUNT 

[kg] 

Latent H 

[Mcal] 

Total H 

[Mcal] 

 IN1 50 21.33 2600 18.38 -6429.93 

 OUT1 50 28.043 2860 21.65 -7213.41 

 BALANCE 50 6.713 260 3.27 -783.48 

 

     

-911 kWh 
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Precipitation of impurities 

FeSO4 + 2NH4OH = Fe(OH)2 + (NH4)2SO4 

BALANCE 

TEMP 

[C] 

AMOUNT 

[kmol] 

AMOUNT 

[kg] 

Latent H 

[Mcal] 

Total H 

[Mcal] 

 IN1 50 134.362 9940 110.53 -16815.9 

 OUT1 50 89.387 9920 77.06 -18640.8 

 BALANCE 50 -44.975 -20 -33.48 -1824.91 

 

     

-2122.37 kWh 

 

Al2(SO4)3 + 6NH4OH = 2Al(OH)3 + 3(NH4)2SO4 

BALANCE 

TEMP 

[C] 

AMOUNT 

[kmol] 

AMOUNT 

[kg] 

Latent H 

[Mcal] 

Total H 

[Mcal] 

 IN1 50 22.618 1780 23.14 -4134.28 

 OUT1 50 16.021 1770 14.62 -4653.06 

 BALANCE 50 -6.597 -10 -8.52 -518.77 

 

     

-603.32951 kWh 

 

MgSO4 + 2NH4OH = Mg(OH)2 + (NH4)2SO4 

BALANCE 

TEMP 

[C] 

AMOUNT 

[kmol] 

AMOUNT 

[kg] 

Latent H 

[Mcal] 

Total H 

[Mcal] 

 IN1 50 59.888 3800 48.69 -9209.3 

 OUT1 50 39.567 3760 31.88 -9917.33 

 BALANCE 50 -20.32 -40 -16.81 -708.03 

 

     

-823.439 kWh 

 

Carbonation reation 

CaSO4 + (NH4)2CO3 = CaCO3 + (NH4)2SO4 

BALANCE 

TEMP 

[C] 

AMOUNT 

[kmol] 

AMOUNT 

[kg] 

Latent H 

[Mcal] 

Total H 

[Mcal] 

 IN1 65 595.878 69200 295.12 -169209.81 

 OUT1 65 596.158 69200 796.53 -169295.76 

 BALANCE 65 0.28 0 501.41 -85.95 

 

     

-99.96 kWh 

 

  



204 

 

Regeneration of additives 

(NH4)2SO4 = NH4HSO4 + NH3 

BALANCE 

TEMP 

[C] 

AMOUNT 

[kmol] 

AMOUNT 

[kg] 

Latent H 

[Mcal] 

Total H 

[Mcal] 

 IN1 300 741.67 98000 11010.15 -198311 

 OUT1 300 1481.792 98000 11190.57 -178582 

 BALANCE 300 740.122 0 180.42 19729.48 

 

     

22945.39 kWh 

 

Ammonia absorption 

NH3+H2O = NH4OH 

BALANCE 

TEMP 

[C] 

AMOUNT 

[kmol] 

AMOUNT 

[kg] 

Latent H 

[Mcal] 

Total H 

[Mcal] 

 IN1 20 291.119 5100 -19.25 -11490.5 

 OUT1 20 145.525 5100 -26.94 -11377.9 

 BALANCE 20 -145.594 0 -7.69 112.61 

 

     

130.9654 kWh 

 


