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Abstract

In this thesis we study the BPS spectrum and vacuum moduli spaces of membrane
matrix models derived from dimensional reduction of the BLG and ABJM M2-
brane theories. We explain how these reduced models may be mapped into each
other, and describe their relationship with the IKKT matrix model. We construct
BPS solutions to the reduced BLG model, and interpret them as quantized Nambu-
Poisson manifolds. We study the problem of topologically twisting the reduced
ABJM model, and along the way construct a new twist of the IKKT matrix model.
We construct a cohomological matrix model whose partition function localizes onto
the BPS moduli space of the ABJM matrix model. This partition function computes
an equivariant index enumerating framed BPS states with specified R-charges.
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Chapter 1

Introduction

In this introduction we motivate the topics to be addressed in this thesis. First,

we give a brief review of M-theory, and discuss the recent M2-brane developments

due to Bagger-Lambert and Gustavsson, as well as Aharony, Bergman, Ja↵eris, and

Maldacena. We motivate the study of M2-brane BPS configurations using matrix

models, and then describe the methods we will use. We conclude this chapter by

summarizing the remaining chapters.

In order to describe physical phenomena, two theories are required. To explain

gravitational interactions, we use the theory of general relativity, which describes

the gravitational force on a large scale. Understanding the electromagnetic, weak,

and strong interactions requires the use of the standard model, which is a quantum

field theory with gauge group SU(3) ⇥ SU(2) ⇥ U(1). There is unfortunately one

problem with this description of nature. While the standard model explains the

three forces on a quantum level, general relativity is a classical theory which uses

the di↵erential geometry of manifolds. Attempting to quantize general relativity

and thus unify the theories leads to a theory that is non-renormalizable.

String theory solves this problem mathematically by assuming that the funda-

mental particles are not point-like in nature, but 1-dimensional loops of energy.

From this assumption, the normal laws of electrodynamics and general relativity

emerge in the low energy limit. In the particular case of general relativity, it arises

in a low energy limit in considering a bosonic string with periodic boundary con-

ditions. If one considers supersymmetric strings of this form, then there are five
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Chapter 1: Introduction

di↵erent ways to construct a such a string: the type I theory, the type IIA theory,

the type IIB theory, and the heterotic E8 ⇥ E8 and SO(32) theories. It was later

shown that these theories are related by various dualities, called s-duality, t-duality,

u-duality, mirror symmetry, and the conifold transition. In 1995 at the Strings ’95

conference, Witten suggested that these theories were di↵erent perturbative limits

of an underlying theory he called M-Theory.

Not much is known about M-theory. We do know that the low energy limit

is described by 11-dimensional supergravity. Furthermore, it is a nonperturbative

theory which contains no strings. That is, the objects of interest are 2-dimensional

branes and 5-dimensional branes called M2-branes and M5-branes. Hence, it is

interesting to study the properties of M2-branes and M5-branes in order to learn

more about M-theory.

1.1 Recent M2-brane developments

Our understanding of the properties of M2-branes has increased significantly due

to the work of Bagger, Lambert, and independently Gustavsson(BLG)[9, 49]. In

these papers, they proposed a lagrangian description for a stack of two M2-branes.

It was a theory with N = 8 supersymmetry, as well as a SO(8) R-symmetry group.

The novel feature of this theory was that for the supersymmetries to close, the

matter fields need to take values in an algebraic structure called a 3-Lie algebra. A

3-Lie algebra is a straightforward generalization of the normal Lie algebra in that

it is a vector space equipped with a totally antisymmetric triple bracket obeying

a generalization of the Jacobi identity called the fundamental identity. In order to

write down a meaningful lagrangian, they required the 3-Lie algebras to be equipped

with an inner product. Such 3-Lie algebras are said to be metric 3-Lie algebras. In

order to respect unitarity, the inner product should be positive definite. It was soon

found that there was only one 3-Lie algebra respecting this property, called A4. In

order to generalize the theory, one can relax the requirement of positive-definiteness,

and study 3-Lie algebras with split signature. This does not violate unitarity, as the

ghost modes present in the theory decouple from the action.

2



Chapter 1: Introduction

The other option in seeking generalizations of this theory is to relax the amount

of supersymmetry required. A theory of M2-branes with N = 6 supersymmetry

was constructed by Aharony, Bergman, Ja↵eris, and Maldacena(ABJM) [4]. In

this theory, the matter fields take values in the bifundamental representation of

a U(N) ⇥ U(N) gauge group. They showed that in the case of N = 2, and for

an SU(2) ⇥ SU(2) gauge group, this theory was equivalent to the BLG lagrangian.

Furthermore, they showed that this theory could describe an arbitrary amount of

M2-branes. Following this, Bagger and Lambert showed that the ABJM theory

could be reformulated in a 3-algebraic language. By dropping the requirement of

total antisymmetry of the 3-bracket, they rewrote this theory using what they called

hermitian 3-algebras.

1.2 M2-brane BPS configurations

States for which the mass is equal to one or more eigenvalues of the central charge

of the supersymmetry algebra of a theory are known as BPS states. They are static

bosonic solutions which minimize their energy, and furthermore are minima of the

action. BPS states are important to study in supersymmetric theories because the

dimension of the corresponding representation is an integer. This means that it

cannot be changed by varying the parameters of the theory in a continuous way. In

particular the BPS states receive no quantum corrections. We should therefore study

M2-brane BPS configurations in order to learn more about the nonperturbative

aspects of M-theory.

In this thesis we will study the BPS spectrum and vacuum moduli space of

the BLG and ABJM theories by studying supersymmetric matrix models that are

related to these theories. A powerful tool for the enumeration of supersymmetric

vacua is provided by the Witten index since it is invariant under deformations of the

continuous parameters of the field theory. However, supersymmetric gauge theories

have much richer structures that are only partially captured by the Witten index; to

extract more information about the field theory, we need to exploit its symmetries.

In three dimensions, a generalization of the Witten index is constructed using not

3



Chapter 1: Introduction

only the dilatation operator H, but also the SO(2) angular momentum J and the

generators Ri of the Cartan subalgebra of the R-symmetry group; schematically this

refined index is given by

I (x, y, t) = TrHBPS
(�1)F xH y2J

Y

i

tRi
i (1.1)

where the fugacities x, y, t are inserted to resolve degeneracies. Like the Witten

index, it can be interpreted as a Feynman path integral with euclidean action by

compactifying the time direction on a circle S1 with supersymmetric twisted bound-

ary conditions involving the SO(2) rotation J and the global R-symmetry twists Ri;

then H is the generator of translations along S1 and HBPS is the Hilbert space of

the theory with 2 regarded as the spatial slice. In the weak coupling limit x ! 0

where the circle decompactifies, this theory reduces to a supersymmetric quantum

mechanics on the moduli space of BPS solutions; these are the models that we will

study in this thesis. We also attempt to study these states directly using 3-algebraic

structures. We will investigate stable bosonic solutions to the equations of motion of

the related M2-brane matrix models, and attempt to make sense of their geometry.

1.3 Quantum geometry

What we know about the geometry of M2-branes has been obtained by considering

appropriate lifts of D1-brane analysis to M-theory. In the string theory setting, the

noncommutative geometries arising are formed from a Lie algebra structure. Lie

algebras can often be regarded as the quantization of a Poisson structure which gives

rise to noncommutative geometries. An important example is the Berezin quantized

sphere, where the operators x̂i, corresponding to the euclidean coordinates xi which

satisfy xixi = 1, form the generators of su(2), [x̂i, x̂j] = i✏ijkx̂k. This fuzzy sphere

arises naturally in the description of D1-branes ending on D3-branes.

In Type IIB string theory, magnetic monopoles of charge N can be regarded as

a stack of N D1-branes ending on a D3-brane [26]. From the perspective of the

D1-brane string theory, the e↵ective dynamics are described by the Nahm equations

4



Chapter 1: Introduction

dT i

ds
+ "ijk [T j, T k] = 0 , (1.2)

where T i describe fluctuations of the D1-branes parallel to the worldvolume of the

D3-brane. These equations have a solution T i(s) = f(s) ⌧ i, where f(s) = 1
s
and ⌧ i =

"ijk [⌧ j, ⌧ k], which describes the transverse scalar fields by a fuzzy 2-sphere [74, 31].

The two extra fuzzy dimensions are required to reconstruct the D3-brane from the

D1-branes.

The Basu-Harvey equations [14] are conjectured to describe stacks of M2-branes

ending on an M5-brane in M-theory, analogously to the Nahm equations describing

stacks of D1-branes ending on a D3-brane. Reformulated, they read

dT i

ds
+ "ijkl [T j, T k, T l] = 0 . (1.3)

It should allow for a solution via factorization T i(s) = f(s) ⌧ i, where f(s) = 1p
2s

and ⌧ i = "ijkl [⌧ j, ⌧ k, ⌧ l]. Thus the transverse scalar fields T i could live in the 3-

Lie algebra A4, which describes the intersecting configuration in terms of multiple

M2-branes again as a fuzzy funnel, this time with the extra three worldvolume

dimensions of the M5-brane arising as a fuzzy 3-sphere.

In [28] it was demonstrated how the Nahm equations can be understood as a

boundary condition for open strings. This point of view becomes insightful when

examining how the worldvolume geometry of the D3-brane is deformed by a constant

B-field applied in the transverse directions to the D1-branes. This induces a constant

shift in the Nahm equations which can be accounted for by a noncommutative

geometry on the D3-brane, described by the Heisenberg commutation relations

[T i, T j] = i ✓ij , (1.4)

where ✓ij is a constant antisymmetric matrix whose components are related to the

components of the B-field.

Analogously, the Basu-Harvey equations can be derived as a boundary condition

of open membranes. By including a constant C-field on the M5-brane, the M2-

5



Chapter 1: Introduction

brane funnel from the M5-brane point of view can be reproduced if the Basu-Harvey

equations are suitably modified [28]. This modification identifies the open membrane

boundary conditions in the presence of a C-field, which describes the M5-brane

worldvolume by a quantum geometry of the form

[T i, T j, T k] = i⇥ijk , (1.5)

where ⇥ijk is a totally antisymmetric constant tensor whose components are related

to the components of the constant C-field.

Both the Nahm equations and the Basu-Harvey equations are special cases of

generalized Nahm equations built on n-Lie algebras. Just like the commutator (1.4)

arises by quantizing a Poisson bracket on 2, it is suggested in [28] that the correct

form of the 3-Lie algebra (1.5) is given by a quantization of the Nambu 3-bracket

on 3, see e.g. [52] and references therein. One of the questions we answer in this

thesis is: Does such a quantization exist? If so, are we able to make sense of the

resulting geometry?

1.4 Cohomological membrane models

The final topic we consider in this thesis is formulating topologically twisted mem-

brane matrix models that localize the dynamics onto the BPS moduli spaces. These

are theories that have a fermionic scalar supersymmetry that is a twisted version

of the original theory. This technique has already been applied to the IKKT ma-

trix models [51, 71, 61] and solved using the cohomological field theory formalism.

Similar twists have been constructed for the BLG theory [68]; We investigate con-

structing a similar twist for the ABJM matrix model.

1.5 Thesis plan

This thesis is concerned with studying M2-brane BPS states via matrix models.

Specifically, we address the following questions: Do the matrix models constructed

6



Chapter 1: Introduction

from the M2-brane theories admit BPS solutions? Can we understand their ge-

ometry in terms of quantized manifolds? Can we twist these models so that their

dynamics localize on the BPS moduli spaces?

In the following chapters we address the answers to these questions. This thesis

commences with a review of the algebraic structures necessary to understand the

M2-brane matrix models. We review the concept of n-Lie algebras, and then discuss

the particular case of n = 3. We present several examples of 3-Algebras relevant to

the remainder of the discussion.

The next chapter contains a review of Berezin-Toeplitz quantization. We discuss

the notion of a prequantization, We then introduce Berezin quantization, discuss

the quantization of complex projective space, and conclude the chapter with a pre-

sentation of the basic ideas behind Toeplitz quantization.

The following chapter concerns the quantization of Nambu-Poisson structures.

In it, we show that for a certain type of Nambu n-bracket, they are mapped under a

modified Berezin-Toeplitz quantization to a specific n-Lie algebra. We then attempt

to make sense of the resulting geometries and apply these results to the geometry

of M5-branes.

The next chapter involves using these results in the study of BPS solutions of

the matrix models derived from the BLG and ABJM theories. We first construct

the BLG and ABJM matrix models via dimensional reduction to zero dimensions,

and then show how they can be mapped into each other depending on various

scaling limits, or choice of 3-algebra. We also demonstrate how these models may

be mapped to the IKKT matrix model under the higgs mechanism proposed by

Mukhi and Papageorgakis [73]. We then find several BPS solutions to the reduced

BLG model, and interpret them as quantized geometries in the sense of the previous

chapter.

We would like to use the reduced ABJM model to compute an equivariant index,

so the next chapter is concerned with cohomological 3-algebra models. We review

the twist of the BLG theory constructed in [68], and we investigate the e↵ect of the

Muhki-Papageorgakis map on this model. After dimensional reduction, the resulting

7



Chapter 1: Introduction

3-algebra model could potentially induce a cohomological deformation of the reduced

ABJM model under the mappings of the previous chapter. We conclude this chapter

by demonstrating how this is related to a novel twist of the IKKT matrix model.

The final chapter deals with equivariant 3-algebra models, wherein we construct

by hand a cohomological matrix model with N = 2 supersymmetry that allows us to

compute the equivariant index of the reduced ABJM model index we are interested

in using localization methods. We first briefly review the ideas behind localization,

and then explain the construction of the cohomological model. We end the chapter

with the explicit calculation of the equivariant index.

The work presented in this this appeared in the published papers [34, 35] and

the preprint [36].

8



Chapter 2

n-algebras

In this chapter we define algebraic structures called n-algebras. The special case

of n-Lie algebras were originally considered by Filippov [42] as a straightforward

generalization of a Lie algebra. 3-Lie algebras have seen recent interest due to the

proposal of Bagger-Lambert and Gustavsson [9, 49] for modeling two M2-branes in

terms of an N = 8 supersymmetric theory.

Hermitian 3-algebras were first studied by Bagger and Lambert [10]. They used

these algebras to rewrite the ABJM theory in a language that uses ternary brackets.

These algebras di↵er from n-Lie algebras in that one drops the requirement of total

antisymmetry of the bracket.

This chapter is structured in the following way. We begin by reviewing n-Lie

algebras. We discuss the particular case of the Nambu n-bracket, and a specific

truncation of this bracket. We then specialize to the n = 3 case, where we discuss

3-Lie algebras as well as hermitian 3-algebras. We also examine several examples.

Part of the review present here originally appeared in [34].

2.1 n-Lie algebras

An n-Lie algebra [42] is a vector space A equipped with a totally antisymmetric,

multilinear bracket [�, . . . ,�] : A^n ! A, which satisfies the fundamental identity

⇥

x1, x2, . . . , xn�1, [y1, y2, . . . , yn]
⇤

=
n
X

i=1

⇥

y1, . . . , [x1, . . . , xn�1, yi], . . . , yn
⇤

(2.1)

9



Chapter 2: n-algebras

for all xi, yi 2 A. The fundamental identity is a generalization of the Jacobi

identity. While the adjoint action of a Lie algebra on itself generates its inner

derivations, the space of inner derivations of an n-Lie algebra A is spanned by

operators D(x1 ^ · · · ^ xn�1) 2 gl(A), xi 2 A, defined by

D(x1 ^ · · · ^ xn�1) · y := [x1, . . . , xn�1, y] (2.2)

for y 2 A. The inner derivations form a Lie algebra

⇥

D(x), D(y)
⇤

·z := D(x)·
�

D(y)·z
�

�D(y)·
�

D(x)·z
�

, x, y 2 A^(n�1) , z 2 A , (2.3)

where closure of the Lie bracket is guaranteed by the fundamental identity. We

call the Lie algebra of inner derivations of an n-Lie algebra A its associated Lie

algebra gA.

We can reduce an n-Lie algebra A to an n � 1-Lie algebra A0, cf. [42]. We

choose an element x0 2 A and identifies the vector space of A0 with A. The n� 1-

Lie bracket on A0 is defined as [x1, . . . , xn�1]A0 = [x1, . . . , xn�1, x0], xi 2 A. By

placing an inner product on the vector space A0, we can moreover restrict A0 to the

orthogonal complement of x0 in A0. Applying this procedure n� 2 times, we arrive

at a second Lie algebra hA starting from A, which generally di↵ers from gA.

2.1.1 Nambu brackets

The Nambu n-bracket is a generalization of the Poisson bracket to a bracket acting

on n functions that satisfies both a generalized Leibniz rule and generalized Jacobi

identity. Nambu’s original goal was to define an extended hamiltonian mechanics

built on these brackets. Requiring both the Leibniz rule and Jacobi identity makes

the quantization of this bracket extremely di�cult. These structures play important

roles in recent proposals for describing M-brane configurations. Here we briefly

review these brackets.

A Nambu-Poisson structure [75, 85] on a smooth manifold M is an n-ary, totally

antisymmetric linear map {�, . . . ,�} : C1(M)^n ! C1(M), which satisfies the

10



Chapter 2: n-algebras

generalized Leibniz rule

{f1 f2, f3, . . . , fn+1} = f1 {f2, . . . , fn+1}+ {f1, . . . , fn+1} f2 (2.4)

as well as the fundamental identity

{f1, . . . , fn�1, {g1, . . . , gn}} = {{f1, . . . , fn�1, g1}, . . . , gn}+ . . .

+ {g1, . . . , {f1, . . . , fn�1, gn}} (2.5)

for fi, gi 2 C1(M). The map {�, . . . ,�} is called a Nambu n-bracket, the manifold

M is called a Nambu-Poisson manifold, and we call the algebra of smooth functions

C1(M) endowed with the Nambu n-bracket a Nambu-Poisson algebra. The Leibniz

rule and the fundamental identity imply that the manifold M admits an n-vector

field $ 2 (TM)^n called a Nambu-Poisson tensor, such that

{f1, . . . , fn} = $(df1 ^ · · · ^ dfn) (2.6)

for all fi 2 C1(M).

In this thesis we will be predominantly interested in the case where M is a

sphere. Recall that the canonical symplectic structure on the sphere S2 reads as

! =

0

B

@

0 vol✓

�vol✓ 0

1

C

A

(2.7)

in the basis given by the usual angular coordinates ' = ('1,'2) := (✓,�), where

✓ 2 [0, ⇡] and � 2 [0, 2⇡]. Here vol✓ = sin ✓ is the volume element on S2. The

2-vector field $ defining the Poisson or Nambu 2-bracket is obtained by inverting

the matrix !, and we have1

{f1, f2} := $(df1 ^ df2) =
"ij

vol✓

@f1
@'i

@f2
@'j

. (2.8)

1Throughout this thesis, we will always implicitly sum over repeated indices irrespective of their
positions.

11
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Analogously, we define the d-vector field $ yielding the Nambu d-bracket on Sd

parameterized by the usual angular coordinates 'i by

{f1, . . . , fd} := $(df1 ^ · · · ^ dfd) :=
"i1...id

vol'

@f1
@'i1

. . .
@fd
@'id

. (2.9)

Consider now the standard embedding of the sphere Sd of radius R into d+1, where

the cartesian coordinates xµ, µ = 1, . . . , d+ 1 are given by

x1 = R cos('1) , x2 = R sin('1) cos('2) , x3 = R sin('1) sin('2) cos('3) , . . . .

(2.10)

This embedding induces the volume element on Sd given in spherical coordinates by

vol' := Rd sind�1('1) sind�2('2) · · · sin('d�1) . (2.11)

We will not use vol' directly in the definition, but rescale it by a factor of R1�2d.

The Nambu d-bracket of the embedding coordinate functions xµ('i) can then be

calculated to be

�

xµ1('i), . . . , xµd('i)
 

= Rd�1 "µ1...µdµd+1 xµd+1('i) . (2.12)

We can extend this bracket to polynomials in xµ by using the generalized Leibniz

rule in the following way. Given a Nambu-Poisson bracket on a subset ⌥ of the

algebra of smooth functions C1(M) on a manifold M, we can consistently extend

this bracket to the subset [⌥] ⇢ C1(M) of polynomials in elements of ⌥. We will

use complete induction to verify the fundamental identity. By direct computation,

we can see that the relation

{f1, . . . , fn�1, {g1, . . . , gn}} =
n
X

i=1

{g1, . . . , {f1, . . . , fn�1, gi}, . . . , gn} (2.13)

implies

{f1, . . . , fn�1, {x g1, . . . , gn}} =
n
X

i=1

{x g1, . . . , {f1, . . . , fn�1, gi}, . . . , gn} (2.14)

12
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for an arbitrary element x 2 ⌥. Furthermore, the relation (2.13) implies

{x f1, . . . , fn�1, {g1, . . . , gn}} =
n
X

i=1

{g1, . . . , {x f1, . . . , fn�1, gi}, . . . , gn} (2.15)

as well if and only if

n
X

i=1

�

{g1, . . . , gi�1, x, . . . , gn} {f1, . . . , fn�1, gi}

+ {g1, . . . , gi�1, f1, . . . , gn} {x, f2, . . . , fn�1, gi}
�

= 0 . (2.16)

The relation (2.16) is satisfied for fi, gi 2 ⌥, as here the fundamental identity holds.

Moreover, it extends trivially to [⌥] by complete induction. Thus the fundamental

identity indeed holds on all of [⌥].

Let us assume that the components of the Poisson tensor$ on a smooth manifold

M are given by homogeneous polynomials of degree d($) � 1 in some coordinates

(xµ). If the polynomial ring [xµ] is furthermore a subset of C1(M), then there is

a truncation of the Nambu-Poisson algebra C1(M) to an n-Lie algebra structure

on [xµ] [53, 27] as reviewed below.

We define for every K 2 a totally antisymmetric, linear n-bracket on [xµ]

according to

{f1, . . . , fn}K :=

8

>

<

>

:

{f1, . . . , fn} if d(f1) + . . .+ d(fn) + d($)� n  K

0 else
,

(2.17)

where fi 2 [xµ] and d(fi) denotes the degree of the polynomial fi. It is immediately

clear that the Leibniz rule cannot survive the truncation. The fundamental identity,

however, does, as we show in the following, cf. [53, 27]. Let fi, gi 2 [xµ]. We then

have

{f1, . . . , fn�1, {g1, . . . , gn}K}K =
n
X

i=1

{g1, . . . , {f1, . . . , fn�1, gi}K , . . . , gn}K . (2.18)

The cases d(fi) = 0 or d(gi) = 0 for some i are trivial, let us therefore assume

that d(fi) > 0 and d(gi) > 0. Equation (2.18) is nontrivial if and only if the outer

13
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brackets on either side are non-vanishing, which amounts to

d(f1) + . . .+ d(fn�1) + d(g1) + . . .+ d(gn) + 2d($)� 2n  K . (2.19)

Because of d($) � 1, it is easy to see that this condition also implies that none of

the inner brackets of (2.18) vanish. Thus, whenever (2.18) is nontrivial, the brackets

are given by the ordinary Nambu-Poisson brackets and thus satisfy the fundamental

identity.

2.2 Ternary algebras

We now consider the case n = 3. We define metric 3-Lie algebras, as well as the

more general hermitian 3-algebras. We explain several examples important to the

remainder of this thesis.

2.2.1 Metric 3-Lie algebras

A metric 3-Lie algebra is a vector space A equipped with a positive-definite symmet-

ric bilinear form (·, ·), along with totally antisymmetric trilinear map [·, ·, ·], which

maps A^3 ! A so that we have

[⌧a, ⌧b, ⌧c] = fabcd⌧d , (2.20)

for generators ⌧a, and totally antisymmetric structure constants fabcd. This bracket

satisfies the fundamental identity

[⌧d, ⌧e, [⌧a, ⌧b, ⌧c]] = [[⌧d, ⌧e, ⌧a], ⌧b, ⌧c] + [⌧a, [⌧d, ⌧e, ⌧b], ⌧c]+ (2.21)

+ [⌧a, ⌧b, [⌧d, ⌧e, ⌧c]] .

We require the metric to satisfy the following compatibility condition

([⌧a, ⌧b, ⌧c], ⌧d) = �(⌧c, [⌧a, ⌧b, ⌧d]) , ⌧a 2 A .

14
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Every metric 3-Lie algebra admits an associated Lie algebra, gA. We define the

generators of gA to be the operators Dab expressed in terms of the 3-Lie bracket as

Dab(⌧c) = [⌧a, ⌧b, ⌧c] . (2.22)

They form a Lie algebra with respect to the commutator given by

[Dab, Dcd](⌧e) = [⌧a, ⌧b, [⌧c, ⌧d, ⌧e]� [⌧c, ⌧d, [⌧a, ⌧b, ⌧e]] , ⌧e 2 A . (2.23)

The closure of this bracket is guaranteed by the fundamental identity.

One can reduce a 3-Lie algebra to a Lie algebra generally di↵erent from gA [42].

One chooses an element ⌧0 2 A, and identifies the vector space A0 with A. The Lie

bracket on A0 is defined as

[⌧a, ⌧b] = [⌧a, ⌧b, ⌧0] , ⌧a 2 A . (2.24)

Let us review some important examples of metric 3-Lie algebras. A subspace I ⇢ A

is an ideal if [I,A,A] ⇢ I. A 3-Lie algebra is said to be simple if it has no proper

ideals. There is a unique simple 3-Lie algebra over the complex numbers. With

respect to a basis {⌧1, ⌧2, ⌧3, ⌧4}, define the 3-Lie bracket as

[⌧a, ⌧b, ⌧c] = ✏abcd⌧d . (2.25)

The inner product relations read as

(⌧a, ⌧b) = �ab . (2.26)

This algebra is denoted A4 and is the 3-Lie algebra that describes a stack of two

M2-branes in the BLG theory.

What we call the Nambu-Heisenberg 3-Lie algebra ANH is generated by four
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elements {⌧1, ⌧2, ⌧3, } and has defining bracket

[⌧a, ⌧b, ⌧c] = ✏abc . (2.27)

The element is central in the sense that

[ , ⌧a, ⌧b] = 0 . (2.28)

This 3-Lie algebra is not strictly metric. We have

( , ⌧a) = 0 , ⌧a 2 ANH . (2.29)

However, is a nonzero element, so the symmetric bilinear form is degenerate.

2.2.2 Lorentzian 3-Lie algebras

It is possible to cure the degeneracy of the Nambu-Heisenberg 3-Lie algebra by con-

sidering 3-Lie algebras of split signature. A large class of 3-Lie algebras A
h

with

compatible metric of lorentzian signature are described as the semisimple indecom-

posable lorentzian 3-Lie algebras of dimension d + 2 which are obtained by double

extension from a semisimple Lie algebra h of dimension d [33]. Let ⌧a, a = 1, . . . , d,

be a set of generators for h with antisymmetric structure constants fabc defined by

the Lie bracket [⌧a, ⌧b] = fabc ⌧c. The 3-Lie algebra A
h

has generators ⌧a, J and

with the 3-bracket relations

[⌧a, ⌧b, ⌧c] = fabc , [J, ⌧a, ⌧b] = fabc ⌧c , [ , ⌧a, ⌧b] = 0 = [ , ⌧a, J] (2.30)

and the inner product relations

( , ) = 0 , ( , ⌧a) = 0 , ( , J) = �1 ,

(J, ⌧a) = 0 , (J, J) = � , (⌧a, ⌧b) = �ab ,

(2.31)
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where � 2 is an arbitrary constant. Note that with Z0 = ⌧0, the reduced bracket

(2.24) coincides with the Lie bracket of h and A0
h

= h� . On the other hand, the

associated Lie algebra of A
h

is the semi-direct sum

gAh
= u(1)d n h . (2.32)

We will often be interested in the following example of a lorentzian 3-Lie algebra.

The Nappi-Witten 3-Lie algebra ANW , with generators { ⌧1, ⌧2, ⌧3, J, }, is defined

by the relations

[⌧a, ⌧b, ⌧c] = ✏abc , [J, ⌧a, ⌧b] = ✏abc⌧c , [ , ⌧a, ⌧b] = 0 . (2.33)

This 3-Lie algebra is the semisimple finite dimensional indecomposable lorentzian

3-Lie algebra obtained by double extension from the Lie algebra so(3). This is a

metric 3-Lie algebra of lorentzian signature. The inner product relations read as

( , ) = 0 , ( , ⌧a) = 0 , ( , J) = �1 ,

(J, ⌧a) = 0 , (J, J) = b , (⌧a, ⌧b) = �ab .
(2.34)

where b 2 R. Its associated Lie algebra is

gANW
⇠= iso(3) . (2.35)

2.2.3 Hermitian 3-algebras

We will now relax the requirement of total antisymmetry of the 3-bracket; these 3-

algebras are generally called 3-Leibniz algebras. Here we are interested in the special

class of 3-Leibniz algebras called hermitian 3-algebras. They comprise a complex

metric 3-algebra which is a finite-dimensional complex vector space A equipped

with a hermitian inner product (�,�) and a trilinear map [�,�;�] : A^3 ! A.

We require that the 3-bracket is antisymmetric in its first two entries only, and that

it is complex linear in its first two arguments and complex antilinear in its third

argument. A complex metric hermitian 3-algebra is a vector space A equipped with
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hermitian inner product (·, ·), along with a map [·, ·; ·]

[⌧a, ⌧b; ⌧c] = fabcd⌧d . (2.36)

We require that this bracket is antisymmetric in the first two entries only. It is

complex linear in the first two arguments and complex anti-linear in the third. It

satisfies a version of the fundamental identity

[[⌧m, ⌧n; ⌧k], ⌧a; ⌧b]� [[⌧m, ⌧a; ⌧b], ⌧n; ⌧k]� [[⌧m, [⌧n, ⌧a; ⌧b], ⌧k] (2.37)

+ [[⌧m, ⌧n; [⌧k, ⌧b; ⌧a]] = 0 .

We require the metric to satisfy the following compatibility conditions

([⌧a, ⌧b; ⌧c], ⌧d) = �([⌧a, ⌧b; ⌧d], ⌧c) . (2.38)

Every complex metric 3-algebra satisfying the fundamental identity admits an asso-

ciated Lie algebra gA. The generators of gA are defined to be operatorsDab expressed

in terms of the 3-bracket as

Dab(⌧c) := [⌧c, ⌧a; ⌧b] . (2.39)

They form a Lie algebra with respect to the commutator given by

[Dab, Dcd](⌧e) = [[⌧e, ⌧c; ⌧d], ⌧a; ⌧b]� [[⌧e, ⌧a; ⌧b], ⌧c; ⌧d] . (2.40)

The closure of this bracket is guaranteed by the fundamental identity. In this thesis

we are primarily interested in the following hermitian 3-algebra. Consider the vector

space A = Hom (VL, VR) of linear maps X : VL ! VR between two complex inner

product spaces VL and VR. The 3-bracket defined by

[X, Y ;Z] = � (X Z† Y � Y Z† X) , (2.41)

18
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for an arbitrary constant � 2 , satisfies the fundamental identity (2.37). The

metric on A given by the Schmidt inner product

(X, Y ) = Tr VL(X
† Y ) (2.42)

then satisfies the compatibility conditions (2.38). This 3-algebra has associated Lie

algebra gA = u(VL) � u(VR): An endomorphism � = (�L,�R) 2 gA acts on X 2 A

as

�X = X �L � �R X . (2.43)
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Berezin-Toeplitz quantization

In this chapter we review both Berezin and Toeplitz quantization as well as geometric

quantization of complex projective spaces P n, as this is the approach we consider

in this thesis. The original constructions are due to Kostant and Souriau [67, 66,

83]. Berezin-Toeplitz quantization is a hybrid form of geometric and deformation

quantization in that it uses the Hilbert space of geometric quantization together

with the relaxed correspondence principle of deformation quantization. The Hilbert

space is chosen as the space of holomorphic sections of a very ample line bundle over

the Kähler manifold one wishes to quantize and functions turn into endomorphisms

of this Hilbert space under quantization.

This chapter is organized in the following way. We first review prequantization,

and then proceed to the geometric quantization of complex projective spaces. Then,

we review Berezin quantization of complex projective spaces, and we conclude this

chapter with a review of Toeplitz quantization. Parts of the review presented here

appeared in [34].

3.1 Prequantization

Prequantization is a procedure that relates a a Kähler manifold M, together with its

algebra of smooth functions, to a hermitian line bundle equipped with a hermitian

connection r, called a prequantum line bundle. The resulting line bundle is of too

large a dimension, so we will see how to reduce its dimension using polarizations.
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We fix a Kähler manifold M with complex dimension n. Let r : �(TM) ⇥

�(E) ! �(E) be a connection on a vector bundle E ! M. The space of sections

is denoted by �(E), and the space of vector fields on the manifold is denoted by

�(TM). The curvature of this connection is a section of ⇤2(T ⇤M)⌦ End (E). It is

defined by

F (X, Y )s = rX(rY s)�rY (rXs)�r[X,Y ]s , (3.1)

for vector fields X, Y and sections s.

If r is hermitian, then its curvature is a 2-form with values in End (E). If E is

a complex line bundle, then we have

End (E) ⇠= M⇥ iR . (3.2)

This implies that we have

iF 2 ⌦2(M,R) , (3.3)

so that F is a real valued 2-form.

Now consider the collection of all triples M := (L, h,r). L ! M is a complex

line bundle, and h is a hermitian metric. The curvature defines a map

M ! ⌦2(M) , (L, h,r) ! iF . (3.4)

In order to define a prequantization we need to consider the inverse of this map. In

particular, given a Kähler manifold (M,!), one would like to find a hermitian line

bundle with connection h so that we have

! =
i

2⇡
F . (3.5)

This is the prequantization condition. In geometric quantization, this condition guar-

antees that the correspondence principle is satisfied. For our purposes, we merely
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observe that (3.5) implies that L is a positive or ample line bundle and therefore

that a certain power L⌦k0 of this line bundle is very ample1. In the following, we

will assume that L is already very ample, for otherwise one can make the necessary

replacements L ! L⌦k0 , ! ! k0 !, r ! r⌦k0 , and h ! h⌦k0 . The line bundle

(L, h) is called a quantum line bundle for (M,!) and (M,!, L, h) is a prequantized

Hodge2 manifold.

The hermitian metric h together with the Liouville volume form dµ = !n

n!
on M

induces a metric on the space of smooth sections �1(M, L) given by

(s1|s2) :=
Z

M
dµ hx

�

s1(x), s2(x)
�

, (3.6)

for s1, s2 2 �1(M, L). This yields a projection from L2(M, L), the L2-completion

of the space �1(M, L), to H0(M, L), the space of global holomorphic sections of L.

The inner product on L2(M, L) also induces an inner product on H0(M, L), which

we denote by the same symbol.

We are now ready to define prequantization. Prequantization is a linear map

Q : C1(M) ! Hom (�(E),�(E)) , f ! Qf . (3.7)

The operator Qf is defined by

Qf (s) = r✓f s� 2⇡ifs , (3.8)

for all functions f 2 C1(M) and sections s 2 �(E). ✓f denotes the hamiltonian

vector field of f with respect to the Kähler form !. This map is a map of Lie

algebras in that

[Qf , Qg]s = Q{f,g}s , (3.9)

for all sections s 2 �(E) and functions f, g 2 C1(M). This map is also skew-

1A line bundle is very ample if it posses enough global sections to set up an embedding of its
base manifold into complex projective space

2We can choose an appropriate normalization such that [!] 2 H2(M, ).
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hermitian:

h(Qfs, s
0) + h(s,Qfs

0) = 0 . (3.10)

It associates to a Kähler manifold a Hilbert space H0(M, L) and to each function f

on M a skew-hermitian operator Qf . Unfortunately this results in a Hilbert space

that is too large. For the case of a real manifold, we consider the real line R. The

corresponding phase space is the cotangent bundle T ⇤R with canonical symplectic

form ! = dp ^ dq. The corresponding prequantum line bundle is E = T ⇤R ⇥ C !

T ⇤R. Therefore, the prequantum Hilbert space H0(T ⇤R, L) is the space L2(T ⇤R,C)

of complex valued square integrable functions. However, quantum mechanics tells

us that the correct Hilbert space is square integrable functions of one variable, not

two variables. A standard solution to this problem is to use polarizations.

A complex polarization is a complex distribution P on a manifold M such that

1. For all m 2 M, Pm ⇢ TmM is lagrangian.

2. The dimension of Vx is constant.

3. It is integrable .

A lagrangian manifold is a manifold that is maximally isotropic. A distribution on a

complex manifold M is a choice of subspace Vm of each tangent space Tm(M) which

changes in a smooth way . It is integral if, at least locally, there is a foliation, of

constant dimension, of M by submanifolds such that Vm is the tangent space of the

submanifolds containing m. A complex manifolds has at least two polarizations, the

holomorphic polarization spanned by vectors @
@z

and antiholomorphic polarization,

spanned by vectors @
@z̄
. In this thesis, we identify H0(M, L) with the Hilbert space

H = HL, and by doing so we choose to work with holomorphic polarization.

3.2 Berezin quantization

In this section we briefly review Berezin quantization. Previously, we considered

mappings that assigned operators to functions using the geometry of the Kähler

23



Chapter 3: Berezin-Toeplitz quantization

manifold. Here we consider mappings in the other direction. That is, we assign

functions to operators; These functions are called the symbol of the operator.

3.2.1 Coherent states

Consider the total space L of the line bundle L, with projection ⇡ : L ! M, and

Lo = L\o, where o is the zero section. We define a function  q(s) which indicates

how much we have to scale a section s 2 HL to pass through a given point q 2 Lo

via

s
�

⇡(q)
�

=:  q(s) q . (3.11)

By Riesz’s theorem, there is a unique holomorphic section eq such that

(eq|s) =  q(s) (3.12)

for all sections s 2 HL. The element eq is called the Rawnsley coherent state vector,

a generalization of the Perelomov coherent states appearing from a group theoretic

perspective. The Rawnsley coherent state projector is given by

Px :=
|eq)(eq|
(eq|eq)

, q 2 Lo . (3.13)

Note that Px only depends on ⇡(q) = x. This is due to the scaling of  q,  c q =
1
c
 q.

In our quantization of M = P n with L = O(k), the Rawnsley coherent states

are simply the truncated Glauber vectors |z, ki on n+1 (cf. e.g. [59]) given by

|zi = exp
�

z̄↵ â
†
↵

�

|0i =
X

~p

z̄ ~p

p
~p !

|~p i =
1
X

k=0

|z, ki , (3.14)

where

|z, ki = 1

k!

�

z̄↵ â
†
↵

�k|0i =
X

|~p |=k

z̄ ~p

p
~p !

|~p i . (3.15)

The coherent state projector takes the form

Pz =
|z, kihz, k|
hz, k|z, ki . (3.16)
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Useful relations for the computations which follow are â↵|z, ki = z̄↵|z, k � 1i and

hz, k|z, ki = 1
k!
|z|2k.

3.2.2 Berezin quantization

The lower or covariant Berezin symbol of an operator f̂ 2 End (HL) is defined as

�(f̂ )(x) := tr (f̂ Px) . (3.17)

The space �(End (HL)) is the space of quantizable functions ⌃ ⇢ C1(M). The map

� is injective and thus we can define the Berezin quantization of a function as the

inverse of � on ⌃ given by

f 7�! Q(f) := f̂ = ��1(f) , f 2 ⌃ . (3.18)

3.3 Toeplitz quantization

In Toeplitz quantization (see e.g. [24]), the operator TL(f) corresponding to a func-

tion f acts on an element s of the Hilbert space HL by multiplying the correspond-

ing section s and subsequent projection back to holomorphic sections via the inner

product (�|�). Hence

TL(f)(s) := ⇧(f s) , f 2 C1(M) , s 2 HL . (3.19)

The appropriate projector is the coherent state projector Px and we arrive at

TL(f) =

Z

M
dµ f(x)Px . (3.20)

The Toeplitz quantization map is the adjoint of the Berezin quantization map with

respect to the Hilbert-Schmidt norm and the L2-measure induced by the Liouville

volume form [81]. The ordering prescriptions resulting from Berezin and Toeplitz

quantizations ofM = P n correspond toWick and anti-Wick ordering, respectively,

cf. [59].
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Chapter 3: Berezin-Toeplitz quantization

Toeplitz quantization is of interest for various reasons. First, it converges towards

geometric quantization as shown in [87]. Second, strict convergence theorems can

be deduced, and in particular for M = P n one has [24]

lim
k!1

�

�

�

i k
⇥

TO(k)(f), TO(k)(g)
⇤

� TO(k)

�

{f, g}
�

�

�

�

HS
= 0 . (3.21)
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Chapter 4

Kinematical quantization of n-Lie

algebras

Quantization in physics is best understood as a recipe for passing from a classical

system to some corresponding quantum system. It is expected that in the limit

where Planck’s constant goes to zero, the quantum system should reduce to the

classical system. Over time, it has been shown that that this idea is not totally

appropriate. In fact, there are several mathematical theorems that state that there

is no quantization recipe that satisfies all the required quantization axioms. This is

especially true in considering the quantization of n-Lie algebras. As we mentioned

earlier, n-Lie algebras in physics were first considered by Nambu in attempts to

generalize hamiltonian physics. Finding both a correspondence between classical

and quantum observables, as well as deriving appropriate quantum dynamics, has

proved to be a di�cult problem.

In this chapter we consider only the problem of kinematical quantization. That

is, we find an explicit map that relates truncated Nambu-Poisson brackets on a

sphere to a generalization of the commutator. This chapter is structured in the

following way. We first list our generalized quantization axioms and write down a

deformation quantization of truncated Nambu-Poisson structures. Then, we perform

Berezin-Toepiltz quantization of these brackets on a sphere, and show how they are

mapped to a particular n-Lie bracket, in both the even and odd dimensional case. We

also show how our quantized spheres are related to previously studied fuzzy spheres.
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Chapter 4: Kinematical quantization of n-Lie algebras

We then consider the quantization of Nambu-Poisson brackets on a hyperboloid.

Finally, we consider the quantization of Rn and in particular study the case of the

Nambu-Heisenberg 3-Lie algebra. We then interpret this algebra as a quantization

of an M5-brane geometry in a constant C-field background. The work presented

here appeared in [34].

4.1 Quantization of Nambu-Poisson structures

4.1.1 Conventional quantization

The problem of quantization splits into two parts. The first task is to establish the

kinematical relationship between classical and quantum observables. The second is

to deduce the dynamical laws of a quantum system from their classical counterparts.

Classically, the state space of a dynamical system is a Poisson manifold M and

the observables are the smooth functions on M. We will demand that the Poisson

structure is non-degenerate, which requires that M has even dimension and turns

the Poisson structure into a symplectic structure on M. At the quantum level, the

states of a physical system are given by rays in a complex Hilbert space H and

observables are linear operators acting on H .

The problem of finding a quantization for a given Poisson manifold is highly

nontrivial and not understood in full generality. We will impose the following axioms,

which yield a full quantization (cf. e.g. [2]):

Q1. The map f 7! f̂ is linear over and maps smooth real functions on M to

hermitian linear operators on H .

Q2. If f is a constant function, then f̂ is scalar multiplication by the corresponding

constant.

Q3. The correspondence principle: If {f1, f2} = g then [f̂1, f̂2] = �i ~ ĝ.

Q4. The operators x̂µ and p̂µ act irreducibly on H .

Here f, fi, g 2 C1(M) and {�,�} and [�,�] denote the Poisson bracket on M and

the commutator of elements of End (H ), respectively. However, the Grönewold-
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Chapter 4: Kinematical quantization of n-Lie algebras

van Howe theorem states that there is no such quantization, see [2] or [46]. There

is an analogous theorem for M = S2.

There are three common loopholes to this obstruction. First, we can drop irre-

ducibility and ignore axiom Q4. Second, we could quantize a subclass of functions in

C1(M). Third, we could generalize the correspondence principle such that it only

holds up to first order in ~. The first two approaches lead to prequantization and fur-

ther to the formalism of geometric quantization [90], while the third approach leads

to approximate operator representations and eventually to the machinery of defor-

mation quantization [16, 65]. We recall that the canonical quantization prescription

of Weyl, von Neumann and Dirac is not Q3, but just the corresponding condition

on the coordinates of phase space, which further supports the third approach.

Our constructions are based on Berezin1 and Toeplitz quantization, which are

hybrids of geometric and deformation quantization. They both rely on the Hilbert

space constructed in geometric quantization but satisfy the correspondence principle

only to first order in ~. We restrict to quantizing only a subset of functions in Berezin

quantization. We will therefore impose axioms Q1 and Q2, and axiom Q3 only to

linear order in ~. In Berezin-Toeplitz quantization, these representations are usually

irreducible. In our extension of this construction we will, however, have to allow for

reducible representations as well.

We will not require that quantizing a complete set of classical observables yields

a complete2 set of quantum observables, which would establish a one-to-one corre-

spondence between End (H ) and C1(M).

4.1.2 Generalized quantization axioms for Nambu brackets

We start by demanding that a quantization associates to a Nambu-Poisson manifold

M a Hilbert space H and maps a set of quantizable functions ⌃ ⇢ C1(M) on M

to endomorphisms on H . We impose the quantization conditions Q1, Q2, and Q4 0,

1By Berezin quantization, we mean the standard constructions of fuzzy geometry. The algebra
of functions is reduced to the algebra of lower Berezin symbols of End (H ), where the product is
given by the corresponding operator product.

2Completeness here means Schur’s lemma: If an operator commutes with each element, it is
proportional to the identity. Completeness in the classical case is the analogous statement involving
the Poisson bracket and the constant function.
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Chapter 4: Kinematical quantization of n-Lie algebras

but relax Q3 in the spirit of Berezin-Toeplitz quantization. The quantization map

will always be injective, and on its image b⌃ ⇢ End (H ) we introduce its inverse �.

(In Berezin-Toeplitz quantization, � is the lower Berezin symbol.) The axiom Q3 is

then modified to

Q3 0. The quantization maps a subalgebra of the Nambu-Poisson algebra on M

to an n-Lie algebra structure on a subspace of End (H ), which satisfies the

constraint3

lim
~!0

�

�

�

i

~ �
�

[f̂1, . . . , f̂n]
�

� {f1, . . . , fn}
�

�

�

L2
= 0 (4.1)

for all quantizable functions fi 2 ⌃.

In conventional quantization, � is bijective and therefore the correspondence prin-

ciple as stated here is equivalent to the usual one formulated in terms of operators.

The canonical choice for an n-ary linear and totally antisymmetric bracket on

End (H ) in the literature (cf. e.g. [75, 85, 32]) is the totally antisymmetric operator

product

[f̂1, . . . , f̂n] := "i1...in f̂i1 . . . f̂in . (4.2)

This bracket neither satisfies the fundamental identity nor the Leibniz rule, in gen-

eral.

A di↵erent bracket can be defined on Nambu-Poisson manifolds, on which we

can truncate the Nambu-Poisson structure as discussed in §2.1.1: In the cases we

are interested in, the set of quantizable functions ⌃ is a set of polynomials of a

certain maximal degree K. On this set, an n-Lie algebra structure is given by the

truncated Nambu-Poisson bracket {�, . . . ,�}K . This n-Lie algebra structure can

be lifted from ⌃ to an n-Lie algebra structure on End (H ): The bracket

[Â1, . . . , Ân] := ��1(�i~{�(Â1), . . . , �(Ân)}K) (4.3)

is linear, antisymmetric and satisfies the fundamental identity for arbitrary operators

Âi 2 End (H ), as � � ��1 = id. We note that for ~ ! 0, we have K ! 1, and

3We assume the existence of a measure dµ on M. As we quantize Kähler manifolds exclusively,
we can use the Liouville volume form dµ = !n

n! , where ! is the Kähler 2-form and dim M = n.
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Chapter 4: Kinematical quantization of n-Lie algebras

the truncated n-Lie algebra approaches the Nambu-Poisson algebra on M. For this

reason, the correspondence principle Q3 0 is satisfied by definition. Also, in some

cases this bracket will turn out to be equal to the totally antisymmetric operator

product if all the arguments are linear polynomials. For n = 2, this bracket does

not reproduce the commutator, but a deformation thereof.

4.1.3 Quantization of complex projective spaces

To quantize M = P n, we choose L to be the holomorphic line bundle O(k) of

degree k 2 and ! the Kähler form giving rise to the Fubini-Study metric on P n.

For L = O(k), the space Hk := HL = H0(M, L) is finite-dimensional and spanned

by homogeneous polynomials of degree k in the standard homogeneous coordinates

z↵, ↵ = 0, 1, . . . , n on P n. Hence

Hk := span
�

z↵1 · · · z↵k

�

� ↵i = 0, 1, . . . , n
 

= span
n

zp00 zp11 · · · zpnn
�

�

�

p↵ 2 0 , |~p | :=
n
P

↵=0

p↵ = k
o

. (4.4)

For later convenience, we identify this space with the k-particle Hilbert space in the

Fock space of n+ 1 harmonic oscillators given by

Hk
⇠= span

n â†↵1
· · · â†↵k

N |0i
o

= span
n(â†0)

p0 · · · (â†n)pnp
p0! · · · pn!

|0i =:
1p
~p !

|~p i
o

, (4.5)

where N 2 is a normalization constant. The creation and annihilation operators

satisfy the usual Heisenberg-Weyl algebra [â↵, â
†
�] = �↵�, and |0i denotes the vacuum

vector with â↵|0i = 0.

We can show that the quantization axioms are verified for M = P n. The map

Q : ⌃ ! End (Hk) is linear, and the constant function is mapped to the identity

operator since from the form of the coherent state projector we find

Q
⇣z↵1 · · · z↵k

z̄�1 · · · z̄�k

|z|2k
⌘

=
1

k!
â†↵1

· · · â†↵k
|0ih0|â�1 · · · â�k

(4.6)

with |z|2 := z̄↵ z↵, so that in particular Q(1) = Hk
. To check the third quantization
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axiom, it is convenient to employ a “star product4” on P n. The star product is

induced by pulling back the operator product onto the set of quantizable functions

to get

f ⇤ g := �(f̂ ĝ) , f, g 2 ⌃ . (4.7)

To obtain a particularly nice form, we need an embedding P n,! (n+1)2�1 given

by the Jordan-Schwinger transformation

xM =
z̄↵ �

M
↵� z�

|z|2 , M = 1, . . . , (n+ 1)2 � 1 , (4.8)

where �M↵� are the Gell-Mann matrices of the isometry group SU(n+ 1) of P n. In

terms of the coordinates xM , we can write this star product as [12]

(f ⇤ g)(x) =
k
X

l=0

(k � l)!

k! l!

�

@M1 · · · @Ml
f(x)

�

KM1N1 · · ·KMlNl
�

@N1 · · · @Nl
g(x)

�

,

(4.9)

where @M := @
@xM and

KMN =
1

n+ 1
�MN +

1p
2

�

dMN
K + i fMN

K

�

xK � xM xN . (4.10)

Here dMN
K and fMN

K are the symmetric tensor and structure constants of SU(n+1).

Note that (4.9) forms an expansion in terms of ~ = 1
k
for k large. It is possible to

show that the symplectic form which gives rise to the Fubini-Study metric on P n in

the coordinates xM is given by 2 iK [MN ] [12]. The correspondence principle therefore

reads as

lim
k!1

�

� i k (f ⇤ g � g ⇤ f)� 2 iK [MN ] (@Mf) (@Ng)
�

�

L2 = 0 , (4.11)

which one verifies using (4.9).

Let us examine the case of P 1 ⇠= S2 in some more detail. With the choice L =

O(k), ⌃ corresponds to the set of spherical harmonics Y`m with angular momentum

4This product, sometimes called the coherent state star product, is not a formal star product.
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`  k. The Poisson bracket is

{xµ, x⌫} = R "µ⌫ x , (4.12)

where R is the radius of the sphere S2. The quantization axiom Q3 implies that the

quantizations x̂µ of the coordinates xµ satisfy the Lie algebra

[x̂µ, x̂⌫ ] = �i ~R "µ⌫ x̂ . (4.13)

The deformation parameter ~ here is not continuous. To compute it, we again use

the Jordan-Schwinger transformation (4.8),

xµ :=
R

|z|2 z̄↵ �
µ
↵� z� , (4.14)

where xµ are coordinates on S2 ,! 3 and z↵ are homogeneous coordinates on the

projective line P 1, while �µ, µ = 1, 2, 3, is the standard basis of 2 ⇥ 2 Pauli spin

matrices for su(2), see Appendix A. We work out the quantization of the coordinate

functions to be

xµ 7�! x̂µ =
R

k!
�µ
↵� â

†
↵ â

†
⇢1
· · · â†⇢k�1

|0ih0|â� â⇢1 · · · â⇢k�1
=:

R

k!
�µ
↵� |↵, ki•hk, �| .

(4.15)

Working through the details, we find

~ =
2

k
. (4.16)

The classical limit is obtained for k ! 1, and (4.13) suggests that in this limit the

algebra of coordinate functions (and thus the whole algebra of functions) becomes

commutative.
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4.2 Quantization of spheres

In this section, we will provide an extension of Berezin-Toeplitz quantization to

spheres. We shall also examine in detail the n-Lie algebra structure on the aris-

ing operator algebra and compare these quantizations to previous versions of fuzzy

spheres in higher dimensions.

4.2.1 Hyperspherical harmonics

Consider the space d+1 with its usual cartesian coordinates xµ, µ = 1, . . . , d + 1.

Let Sd be the sphere of radius R embedded in this space as the quadric xµ xµ = R2.

The hyperspherical harmonics Y`m spanning the algebra of smooth functions C1(Sd)

correspond to polynomials which are of degree ` in the coordinates xµ after imposing

the equation xµ xµ = R2.

There is an embedding of even-dimensional spheres Sd into P r, with r + 1 :=

2b
d+1
2

c the dimension of the spinor representation of SO(d+1). We consider the gen-

erators �µ, µ = 1, . . . , d+ 1, of the Cli↵ord algebra5 Cl( d+1) satisfying {�µ, �⌫} =

2�µ⌫ . If d is even, the spinor representation of SO(d+1) is irreducible. The relation6

[�µ⌫ � r+1, �
⇢ � �⇢] = 0 , (4.17)

where �µ⌫ := 1
2
[�µ, �⌫ ], together with Schur’s lemma implies �⇢��⇢ = c r+1� r+1,

c 2 , for even d. Using the generators �µ↵� of the Cli↵ord algebra constructed in

Appendix A yields c = 1, so �⇢ � �⇢ = r+1 � r+1. Therefore, the embedding

relation xµ xµ = R2 is satisfied for

xµ :=
R

|z|2 z̄↵ �
µ
↵� z� , (4.18)

which generalizes the usual Jordan-Schwinger transformation. The space of hyper-

5A construction of the explicit matrix representation of the Cli↵ord algebras yielding spinor
representations is given in Appendix A

6Here and in the following, � denotes the normalized symmetric tensor product.
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spherical harmonics Y`m with `  k is thus spanned by the functions

�µ1

↵1�1
· · · �µj

↵j�j
�↵j+1�j+1

· · · �↵k�k
z̄↵1 · · · z̄↵k

z�1 · · · z�k
, (4.19)

Our embedding Sd ,! P r induces an injection ⇢ : C1(Sd) ,! C1( P r). Polyno-

mials in the coordinates xµ restricted to Sd form a dense subset in C1(Sd) and they

are turned into global functions on P r via the substitution (4.18). Moreover, the

Fubini-Study metric on P r induces the standard round metric on Sd, with volume

form dµSd , which is can be seen as the embedding is manifestly SO(d+1)-invariant.

This implies in particular that for a function f 2 C1(M), one has

Z

P r
dµ ⇢(f) = vol

Z

Sd

dµSd f , (4.20)

where vol is a constant volume factor. Therefore, the L2-inner product on P r

with respect to the Fubini-Study metric is naturally compatible with the L2-inner

product on Sd with respect to the round metric.

We will obtain odd-dimensional spheres as a reduction of even-dimensional spheres.

We reduce S2d to S2d�1 by putting x2d+1 = 0. Let us introduce s := r+1
2
. Using

the inductive construction of the Cli↵ord algebra given in Appendix A, we have

�2d+1 = id s ⌦ �3, where the gamma-matrices act on r+1 = 2s. In complex

coordinates, the condition x2d+1 = 0 thus implies

s�1
X

↵=0

z̄↵ z↵ �
2s
X

↵=s

z̄↵ z↵ = 0 . (4.21)

This condition reduces the space P r, into which we embedded S2d, to P s�1 ⇥

P s�1. In particular, this reduces the embedding S4 ,! P 3 to S3 ,! P 1 ⇥ P 1.

We can further reduce S2d�1 to S2d�2 by putting x2d = 0. In the inductive

construction, we have �2d = s ⌦ �1, which yields the condition

s�1
X

↵=0

(z̄↵ z↵+s + z̄↵+s z↵) = 0 . (4.22)

This equation is solved by putting z↵+s = i z↵, which reduces P s�1 ⇥ P s�1 to
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the diagonal subspace P s�1. It follows from both the reduction as well as the fact

that the embedding respects the isometries that (4.20) also holds for odd-dimensional

spheres.

4.2.2 Berezin quantization of even-dimensional spheres

Even-dimensional spheres Sd are straightforward to quantize, and we therefore start

with them. Our goal is to construct a Hilbert space Hk together with a quantization

map xµ 7! x̂µ taking functions on Sd to endomorphisms of Hk such that x̂µ x̂µ =

R2
F Hk

, where the “fuzzy radius” RF will be identified below. We also want to

construct the bracket of a d-Lie algebra, such that ideally it satisfies the generalized

quantization axiom Q3 0. For the spheres, this implies that we are looking for a

quantization map xµ 7! x̂µ together with a d-Lie bracket satisfying

[x̂µ1 , . . . , x̂µd ] = �i ~(k)Rd�1 "µ1...µdµd+1 x̂µd+1 . (4.23)

We return to the embedding of Sd into P r and use the Hilbert space Hk of

Berezin-quantized P r with quantum line bundle L = O(k). Thus Hk is identified

as the k-particle subspace of the Fock space of r + 1 harmonic oscillators, with

â†↵1
· · · â†↵k

|0i 2 Hk , [â↵, â
†
�] = �↵� , â↵|0i = 0 . (4.24)

We define the lower Berezin symbol �R(f̂ ) of an operator f̂ 2 End (Hk) by the L2-

projection of the lower Berezin symbol �(f̂ ) 2 ⌃ ⇢ C1( P r) onto ⌃R ⇢ C1(Sd).

Explicitly, this amounts to introducing the restricted coherent state projector

PR
x :=

k
X

m=0

xµ1 · · · xµm k!

✓

2

R

◆m

�µ1

↵1�1
· · · �µm

↵m�m

⇥ â†↵1
· · · â†↵m

â†⇢1 · · · â
†
⇢k�m

|0ih0|â�1 · · · â�m â⇢1 · · · â⇢k�m

=:
k
X

m=0

xµ1 · · · xµm k!

✓

2

R

◆m

�µ1

↵1�1
· · · �µm

↵m�m
|↵1 . . .↵m, ki•hk, �1 . . . �m| ,

(4.25)

and with eq. (A.4) of Appendix A we conclude that PR
x PR

x = PR
x . The coordinates
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xµ can be substituted again by (4.18) to obtain an expression for PR
x in terms of

homogeneous coordinates on P r. The restriction of the lower Berezin symbol now

reads

�R(f̂ )(x) := tr (PR
x f̂ ) . (4.26)

The map �R : End (Hk) ! ⌃R is no longer injective due to the projection

involved from ⌃ ⇢ C1( P r) to ⌃R. However, since ⌃R ⇢ ⌃, we can use the inverse

of the unrestricted Berezin symbol � to define a quantization map

Q : ⌃R �! End (Hk) , f 7�! ��1(f) . (4.27)

For the coordinate functions, this quantization yields

xµ 7�! x̂µ := Q(xµ) =
R

k!
�µ↵� |↵, ki•hk, �| . (4.28)

The operators x̂µ generate all of End (Hk). This can be shown in the following

way. We first note that totally antisymmetric products of d � 1 of the operators

x̂µ span the space of all operators of the form |↵1, ki•hk, �1|. A product of two such

antisymmetric products decomposes into operators of the form |↵1↵2, ki•hk, �1�2|

and |↵1, ki•hk, �1|. In this way, we can inductively construct all of End (Hk) by

noncommutative polynomials in the operators x̂µ of maximal degree k (d� 1). This

implies in particular that the noncommutative polynomials of degree k (d� 1) form

an algebra. This agrees with the known result for the fuzzy sphere, where the algebra

End (Hk) consists of noncommutative polynomials of degree k.

This quantization satisfies the quantization axioms Q1, Q2, and Q4 0, as these

properties trivially survive the projection. We will come back to the d-Lie algebra

structure and the correspondence principle Q3 0 shortly.

4.2.3 Toeplitz quantization of spheres

Recall that the embedding (4.18) induces an injection ⇢ : C1(Sd) ,! C1( P r). We

can therefore identify the Toeplitz quantization of a function f 2 C1(Sd) with
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the Toeplitz quantization of ⇢(f) 2 C1( P r). This means, in particular, that the

convergence theorems of [24] hold on Sd as well. Recall that for M = P r we have

lim
k!1

�

�TO(k)(f)
�

�

HS
= kfkL2 (4.29)

together with (3.21). On Sd, we consider the Poisson structure which is obtained

via the pull-back of the symplectic form ! along the embedding Sd ,! P r. It

follows that the Poisson algebra thus obtained on Sd is embedded in the Poisson

algebra on P r, and the estimates (3.21) and (4.29) for Sd are just restrictions of

the corresponding estimates on P r.

4.2.4 d-Lie algebra structure

As discussed in §4.1, we will use the d-Lie bracket constructed out of a lift of the

truncation of the Nambu-Poisson structure on ⌃R. For this, note that ⌃R consists of

polynomials in the xµ of maximal degree k, and that the components of the Nambu-

Poisson tensor are homogeneous polynomials of degree 1. We can therefore endow

⌃R with the truncated Nambu-Poisson bracket {�, . . . ,�}k. Furthermore, we lift

this bracket to End (H ) as described in §4.1 The resulting d-Lie bracket satisfies

the correspondence principle by definition. Note that it vanishes on operators Â 2

End (H ) with vanishing Berezin symbol �R(Â).

Let us now examine how this bracket is related to the totally antisymmetric

operator product (4.2). First, note that

[x̂1, . . . , x̂d] = �i~x̂d+1 . (4.30)

The antisymmetric product of two operators is given by

x̂µ x̂⌫ =

✓

R

k!

◆2
�

�µ↵� |↵, ki•hk, �|
� �

�⌫�� |�, ki•hk, �|
�

=
R2

k! k
(�µ �⌫)↵� |↵, ki•hk, �|+

R2 (k � 1)

k! k
�µ↵1�1

�⌫↵2�2
|↵1↵2, ki•hk, �1�2| .

(4.31)

Due to SO(d + 1)-invariance of the construction, we can focus on the expression
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[x̂1, . . . , x̂d]. Using (4.31) we compute

d
X

µi=1

"µ1...µd x̂µ1 · · · x̂µd =
d
X

µi=1

"µ1...µd x̂µ1µ2 · · · x̂µd�1µd , (4.32)

where we introduced x̂µ⌫ := 1
2
[x̂µ, x̂⌫ ] = R2

k! k
(�µ⌫)↵� |↵, ki•hk, �|. From (4.31), we

notice that for large k the dominant contribution to the above d-bracket is given by

d
X

µi=1

"µ1...µd

✓

R2

k! k

◆

d
2
�

(k � 1) (k � 1)!
�

d
2
�1

⇥ (�µ1µ2)↵1↵2 · · · (�µd�1µd)↵d�1↵d
|↵1↵3 . . .↵d�1, ki•hk,↵2↵4 . . .↵d| .

(4.33)

Thus we have to study the symmetric tensor product

d
X

µi=1

"µ1...µd �µ1µ2 � · · ·� �µd�1µd , (4.34)

and the desired outcome would be proportional to �d+1 � r+1 (and hence the full

result to x̂d+1).

Before we can evaluate this product, we need the following result. Recall that

we showed the generators �µ of Cl( d+1) obey

�µ � �µ = r+1 � r+1 (4.35)

in an irreducible representation of SO(d+ 1). Using this result, we have

�
d
X

µ,⌫=1

�µ⌫ � �µ⌫ = (d� 2) r+1 � r+1 + 2 �ch � �ch . (4.36)
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We also find

d
X

µ,⌫=1

�ch �
µ⌫ � �µ⌫ = �d �ch � r+1 ,

( �ch � r+1 � . . .� r+1
| {z }

`

)2 =
1

`

�

r+1 � · · ·� r+1 + (`� 1) �ch � �ch

� r+1 � · · ·� r+1

�

. (4.37)

We can now evaluate this product for various d. For example, for d = 4 we have

4
X

µi=1

"µ1µ2µ3µ4 �µ1µ2 � �µ3µ4 = �
4
X

µi=1

�5 �µ3µ4 � �µ3µ4 = 4�5 � 4 . (4.38)

Including all orders in k we find

[x̂µ1 , x̂µ2 , x̂µ3 , x̂µ4 ] = 8R3 k + 2

k3
"µ1µ2µ3µ4µ5 x̂µ5 . (4.39)

This agreement between the totally antisymmetric operator product and the d-Lie

bracket on End (H ) breaks down, however, for polynomials of higher degree: While

the latter d-ary product satisfies the fundamental identity for arbitrary operators,

the former does not. Also, performing the same calculation for d = 6, one concludes

that both d-ary products do not agree here even for linear polynomials. The same

feature is expected to hold for higher d. Summarizing, the d-Lie bracket agrees with

the totally antisymmetric operator product for linear polynomials and d  4.

4.2.5 Commutative limit

A nice feature of the rather explicit quantization prescription given above is that the

commutative limit is intuitively very clear. Consider again the product (4.31). While

the first term receives contributions from both symmetric and antisymmetric parts in

µ and ⌫, the second term is symmetric. The first term is also relatively suppressed by

a factor of k� 1. It therefore vanishes in the limit k ! 1, rendering the coordinate

algebra commutative. Analogously, one can show that the nonassociativity for odd-

dimensional spheres (see below) vanishes in the limit, cf. [20].
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The radius of the fuzzy spheres is defined through x̂µ x̂µ = R2
F Hk

. By direct

computation, we find

x̂µ x̂µ = R2
⇣

1 +
d

k

⌘

Hk
, Hk

=
1

k!
|ki•hk| . (4.40)

In the limit k ! 1, the fuzzy radius RF =
q

1 + d
k
R approaches the classical radius

of Sd.

4.2.6 Quantized isometries

We now examine how the SO(d + 1) isometries of the sphere translate to quantum

level. Recall first that on ⌃R, the rotations act according to

Mµ⌫ B f := xµ@⌫f � x⌫@µf = z̄↵ �µ⌫↵�
@

@z̄�
f � z↵ �µ⌫↵�

@

@z�
f . (4.41)

This action is contained in the associated Lie algebra of the d-Lie algebra ⌃R. Note

that the lift of this structure to End (H ) produces the correct action of SO(d + 1)

only for operators Â, for which (��1 � �)(Â) = Â. Operators Â for which �(Â) = 0

are obviously left invariant under the action of gEnd (H ).

Note also that the associated Lie algebra of the d-Lie algebra ⌃R contains a

subset of the di↵eomorphisms, as well, which is similarly translated appropriately

only to some operators in End (H ).

4.2.7 Odd-dimensional spheres

The quantization of odd-dimensional spheres is slightly more subtle. We want to

obtain the odd spheres S2d�1 from the even spheres S2d by some kind of reduction

process. A naive approach would be to translate the constraint x2d+1 = 0 to the

operator equation x̂2d+1|µi = 0 for all |µi 2 Hk. This approach does not work,7

as the condition is not invariant under the action of operators corresponding to

other coordinates. The underlying reason is that the Hilbert space Hk corresponds

to a subring of the homogeneous coordinate ring of P r, and imposing operator

7Nor does the slight generalization x̂2d+1 x̂2d+1|µi = 0.
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conditions on the Hilbert space corresponds to factoring by a holomorphic ideal,

cf. [80]. The condition x2d+1 = 0, however, is not holomorphic.

The main problem here is that although we still have [�µ⌫ � r+1, �
⇢ � �⇢] = 0,

Schur’s lemma does not apply as the representation is reducible. It is therefore

necessary to restrict to a maximal set of irreducible representations on which x̂µ x̂µ =

R2
F Hk

. The construction [48, 79] is rather technical, and so we just comment on

the interpretation in terms of oscillators.

For simplicity, consider S3 ,! P 1 ⇥ P 1 ⇢ P 3. We split the annihilation

and creation operators of the harmonic oscillators appearing in the quantization of

P 3, â↵, â†↵, ↵ = 0, 1, 2, 3, into two groups of harmonic oscillators appearing in the

quantization of P 1 ⇥ P 1, b̂�, b̂
†
� and ĉ�, ĉ

†
�, � = 0, 1. The reduced Hilbert space

is spanned by the two classes of vectors

b̂†�1
· · · b̂†�s�1

ĉ†�s
· · · ĉ†�k

|0i 2 Vk,s�1 , b̂†�1
· · · b̂†�s

ĉ†�s+1
· · · ĉ†�k

|0i 2 Vk,s , (4.42)

where s = k+1
2

and k is restricted to odd values. The operator product is always fol-

lowed by a projection back onto this Hilbert space, which renders it nonassociative.

On the irreducible representations Vk,s and Vk,s�1 of Spin(4), the operator product

x̂µ x̂µ is indeed proportional to the identity operator. We need to recall that

Vk :=
k
M

s=0

Vk,s (4.43)

is an irreducible representation of Spin(5). Since (�µ)2 / 4, it su�ces to examine

the eigenvalues of the operator O := �5��5� 4� · · ·� 4, where �5 = ��1 �2 �3 �4.

We can show that the eigenvalues ofO in the representations Vk,s and Vk,k�s are iden-

tical. Consider the quantization of P r, r = 2n� 1 with creation and annihilation

operators satisfying the Heisenberg-Weyl algebra [â↵, â
†
�] = �↵�, ↵, � = 1, . . . , 2n.

The vectors â†↵|0i generate the reducible spinor representation V of SO(d + 1), for

d odd. The k-fold totally symmetrized tensor product representation V �k is then

generated by â†↵1
· · · â†↵k

|0i. The spinor representation V splits into the direct sum

of two irreducible representations, V = V+�V�, where V± are the ± 1 eigenspaces of
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the chirality operator �ch. The totally symmetrized tensor product representations

then split according to

Vk := V �k =
k
M

s=0

�

V �s
+ � V

�(k�s)
�

�

=:
k
M

s=0

Vk,s . (4.44)

We now calculate the action of the operator O := �ch��ch� r+1� · · ·� r+1 on

the subspace Vk,s. To do this, we first split the creation and annihilation operators

into two groups (b̂i, b̂
†
i ) = (âi, â

†
i ) and (ĉi, ĉ

†
i ) = (âi+n, â

†
i+n), where i = 1, . . . , n.

Vectors |~p, si 2 Vk,s then take the form b̂†i1 · · · b̂
†
is
ĉ†is+1

· · · ĉ†ik |0i and the operator O

acts according to

O|~p, si =
�

b̂†i1 b̂
†
i2
|k � 2i•hk � 2|b̂i1 b̂i2 + ĉ†i1 ĉ

†
i2
|k � 2i•hk � 2|ĉi1 ĉi2

�

|~p, si . (4.45)

For a vector |~p, si 2 Vk,s with k � 3, we can verify that O|~p, si / |~p, si, and that

the eigenvalue of O is identical in the representations Vk,s and Vk,k�s.

Moreover, on S3, the totally antisymmetric operator product which agrees with

the 3-Lie bracket at linear level should actually be modified to read as

[x̂µ, x̂⌫ , x̂] := �[x̂µ, x̂⌫ , x̂, x̂5] = i ~(k)R2 "µ⌫� x̂� , (4.46)

which has been suggested in [14]. Because of these technicalities, we have focused

our discussion on even-dimensional spheres with the extensions to odd-dimensional

spheres being technical, but obvious.

4.2.8 Comparison to other fuzzy spheres

Let us now put our quantization prescription into the context of previous construc-

tions of fuzzy spheres. First, the idea of embedding spheres into complex projective

space has been used previously to construct fuzzy spheres. In particular, the fuzzy

4-sphere has been constructed from the fact that P 3 is a sphere bundle over S4,

S2 ,! P 3 ! S4, cf. [70, 38, 1]. Second, a purely group theoretic approach was

pursued in [48, 79].

43



Chapter 4: Kinematical quantization of n-Lie algebras

The Hilbert space in both approaches agrees with the Hilbert space we found

from a generalization of Berezin-Toeplitz quantization. The point at which the

approaches di↵er is in the handling of radial fuzziness. As we showed above, the

algebra of quantum operators x̂µ exhausts all of End (Hk). Therefore the algebra

of quantum operators is isomorphic to the algebra of lower Berezin symbols of the

complex projective space P r used in the embedding Sd ,! P r, and not to the

corresponding algebra for Sd. This means that at quantum level the multiplication

of two quantized functions yields modes which should be interpreted as transverse

or radial to the embedding Sd ,! P r.

There are two solutions to this problem in the literature. In [47, 48, 79] it was

suggested to project out these modes after operator multiplication, which yields a

nonassociative algebra. In [70], where fuzzy S4 was used as a regulator for quan-

tum field theories, it was suggested to modify the Laplace operator such that the

unwanted modes are dynamically punished by a mass term, i.e. their excitation is

suppressed.

As eliminating the radial modes by projecting them out after multiplication

immediately yields inconsistencies in the interpretation of solutions to the Basu-

Harvey equation in terms of fuzzy 3-spheres (see e.g. [77]), we insisted on keeping

these modes. This allowed us to interpret fuzzy S3 and fuzzy S4 as quantizations

of Nambu-Poisson manifolds under the assumption of a reasonable correspondence

principle.

Note also that the d-Lie bracket vanishes if one of the arguments is a purely radial

mode. Moreover, the d-Lie bracket always yields operators which are quantizations

of a function on Sd. That is, if d-Lie brackets are exclusively used and the binary

operator product is avoided, the radial modes are naturally projected out.

4.3 Quantization of hyperboloids

Our approach to quantizing spheres Sd was based on properties of the euclidean

Cli↵ord algebra Cl( d+1). A natural question at this stage is whether it is possible

to extend our quantization procedure using Cli↵ord algebras for indefinite metrics.
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The answer is a�rmative if we relax our quantization axiom Q1 and allow for non-

unitary representations.

4.3.1 Classical hyperboloids

Recall that a space-like direction is turned into a time-like one by multiplying the

Cli↵ord algebra generator �µ corresponding to this direction by i. In this way we

obtain the spinor representation of the isometry group of the space p,q of dimension

d + 1 := p + q. Into this space we can embed the d-dimensional hyperbolic space

Hp,q as the quadric

xµ x⌫ ⌘µ⌫ := (x1)2 + · · ·+ (xp)2 � (xp+1)2 � · · ·� (xp+q)2 = r , (4.47)

where ⌘µ⌫ is the metric on p,q. We will always consider the case r > 0. This re-

striction eliminates only cones, as by multiplying the embedding equation by �1 one

exchanges the roles of (p, q) and inverts the sign of the curvature. The hyperboloid

Hp,q corresponds to the coset SO(p, q)/SO(p � 1, q), and Hd+1,0 = Sd. For p = 1,

the hyperboloid splits into two sheets.

The treatment of hyperboloids proceeds analogously to the analysis of spheres.

An embedding into p+q is obtained by substituting trigonometric functions with

hyperbolic functions in (2.10), as appropriate for angles in a plane of signature

(1, 1), and setting R =
p
r. The same substitution applies to the volume element

(2.11). The natural Nambu brackets di↵er from those on the sphere only through

the volume element that one divides by, and we thus define the Nambu bracket on

Hp,q by

{f1, . . . , fd} :=
"i1...id

vol'

@f1
@'i1

. . .
@fd
@'id

, (4.48)

which translates into the Nambu bracket of the embedding coordinates

{xµ1 , . . . , xµd} = Rd�1 "µ1...µd
µd+1

xµd+1 . (4.49)

Here we have defined "µ1...µd
µd+1

:= "µ1...µd⌫ ⌘⌫µd+1
.
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4.3.2 Quantization of Hp,q

As we are concerned only with the kinematical problem of quantization, which we

presume to lead to an algebra of quantized functions approximating the algebra of

functions on a space in a well-defined manner, we can choose to relax the quanti-

zation axiom Q1 by mapping real functions to non-hermitian operators and thus to

work with non-unitary representations. This was done in [40] in order to construct a

fuzzy AdS2. This approach is a straightforward generalization of the description of

quantum spheres given in §4.2, and it also fits into the deformation quantization pre-

scription of §4.1 For a quantization of a hyperboloid using unitary representations,

see e.g. [11].

To allow for an indefinite metric in the Cli↵ord algebra, we have to allow for

non-hermitian generators.8 To quantize the hyperboloid Hp,q embedded in p,q, we

thus multiply the generators �µ along the time-like directions µ = p+1, . . . , p+q by

a factor of i and follow the same steps as in the quantization of the sphere Sp+q�1.

The factors of i guarantee that the equation x̂µ x̂⌫ ⌘µ⌫ = R2
F Hk

is satisfied for the

indefinite metric ⌘µ⌫ . We introduce again the d-Lie algebra bracket by the lift of

the truncated Nambu-Poisson structure on the set of lower Berezin symbols to the

operator algebra. It is only for d  4 that this bracket agrees with the totally

antisymmetric operator product

[x̂µ1 , . . . , x̂µd ] = �i ~Rd�1 "µ1...µd
µd+1

x̂µd+1 (4.50)

at linear level. This bracket on its own forms the d-Lie algebra Ap,q. Recall that

every simple d-Lie algebra over is isomorphic to a d+1-dimensional d-Lie algebra

Ap,q, for some (p, q) with d = p+ q � 1, cf. e.g. [41].

As the technical details of the construction (e.g. the restriction to certain ir-

reducible representations for odd-dimensional hyperboloids) work exactly as for

spheres, we refrain from going into further details. We stress, however, that while the

quantization of spheres is intimately related to harmonic analysis in the sense that

End (Hk) was related to certain hyperspherical harmonics, this is not the case for

8Recall that the square of a hermitian matrix always has positive eigenvalues.
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the quantum hyperboloids. Thus their quantization is somewhat di↵erent in spirit

from the standard examples of noncommutative spaces, such as the noncommutative

torus.

Strictly speaking, we actually quantize the one-point compactifications of the

hyperboloids, as there is still an embedding of this compactified hyperboloid into

the complex projective space appearing in the construction. Here a point ' =

('1, . . . ,'d) on Hp,q is mapped to a point '0 on the sphere Sd with the same an-

gular coordinates and subsequently embedded into P r via the Jordan-Schwinger

transform (4.8). In this embedding, the point corresponding to infinity on the hy-

perboloid is also mapped to a point of Sd. It is in this sense that we quantize the

compactifications of the hyperboloids.

4.4 Quantization of n by foliations

As a final set of examples, we will now look at the implications of the quantization

axioms for the quantization of n. The relevant n-Lie algebras at linear level cor-

respond to Nambu-Heisenberg n-Lie algebras, which in turn suggest a quantization

of n in terms of foliations by fuzzy spheres Sn�1
F or noncommutative hyperplanes

n�1
✓ . We also briefly study an extension of this quantization by adding an ex-

tra outer automorphism to the Nambu-Heisenberg n-Lie algebra, which describes a

twisting of the n-Lie algebra and a dimensional oxidation of the quantization of n.

4.4.1 Nambu-Poisson structures on n and

Nambu-Heisenberg n-Lie algebras

The natural Nambu n-bracket on n is defined by the linear extension (via the

generalized Leibniz rule) and completion (with respect to the canonical L2-norm) of

the bracket

{xµ1 , . . . , xµn} = "µ1...µn . (4.51)

This Nambu-Poisson structure is naturally SO(n)-invariant. Additionally, we can

impose further Nambu-Poisson structures on n with Nambu n � 1-brackets. The
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SO(n) symmetry suggests to add the Nambu-Poisson structure of a foliation of n

by spheres9 Sn�1, with bracket

{xµ1 , . . . , xµn�1} = Rn�2 "µ1...µn�1µn xµn . (4.52)

Alternatively, one could break the SO(n) invariance to SO(n� 1) and introduce the

Nambu-Poisson structure of a foliation of n by hyperplanes n�1, with bracket

�

xµ̌1 , . . . , xµ̌n�1
 

= "µ̌1...µ̌n�1 , µ̌i = 1, . . . , n� 1 . (4.53)

In the latter case, we can continue and introduce additionally a Nambu-Poisson

structure with a Nambu n�2-bracket, and so on. We denote the space n endowed

with k  n � 2 successive hyperplane foliations and one spherical foliation by n
k .

In the case k = n � 2 there is no spherical foliation, while for k = 0 there is only

the spherical foliation.

The components of the Nambu-Poisson tensor are constants, so that the trunca-

tion of the Nambu-Poisson structure as presented in §2.1.1 unfortunately does not

work here. We will therefore restrict to an n-Lie algebra structure which is non-

trivial only at linear level and there agrees with the totally antisymmetric operator

product. Correspondingly, the quantization axiom Q3 0 can only be satisfied at lin-

ear level. Thus, the Nambu-Poisson structure (4.51) has to turn under quantization

into the n-Lie algebra ANH with bracket

[x̂µ1 , . . . , x̂µn ] = �i ~ "µ1...µn , (4.54)

where the vector spaceANH is spanned by the operators x̂µ, µ = 1, . . . , n, and . This

algebra is called the Nambu-Heisenberg n-Lie algebra. The nested foliations yield

additional n � 1-Lie algebra structures on ANH. We will study these quantizations

in the following, starting from the quantizations of 3
0 and 3

1.

9In the case of p,q, one would instead use the hyperboloids Hp,q.
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4.4.2 Quantization of 3
0 and 3

1

The 3-Lie algebra ANH was examined in the original paper [75], as well as in [85]. Re-

call that it has the defining relation (2.27). This relation is a consistency constraint

for a quantization of both 3
0 and 3

1 according to our generalized quantization

axioms.

To realize the quantization map on the endomorphism algebra of some Hilbert

space H , we assume that the generator appearing on the right-hand side of

(2.27) is central in this algebra and acts on vectors of the Hilbert space H as

multiplication by a complex number. This implies that its commutator with any

other endomorphism vanishes. From the definition of the 3-bracket as a totally

antisymmetrized operator product,

[Â, B̂, Ĉ] :=

8

>

<

>

:

Â [B̂, Ĉ] + B̂ [Ĉ, Â] + Ĉ [Â, B̂] for Â, B̂, Ĉ 2 span(x̂, ŷ, ẑ, )

0 else
,

(4.55)

it is clear that a central element of the 2-Lie bracket will not, in general, be a central

element in the 3-Lie algebra. Thus we will have the relations

[ , Â, B̂] = ↵ [Â, B̂] , ↵ 2 ⇥ (4.56)

for all Â, B̂, rather than [ , Â, B̂] = 0.

The possibilities of realizing the relation (2.27) as a totally antisymmetric opera-

tor product have been listed in [75]. Nambu employs the Lie algebras of SU(2),

SO(1, 2) ⇠= SL(2, ), the euclidean group in two dimensions, and the galilean group

in one dimension. Here we restrict ourselves to the three-dimensional cases. We will

show below that the first three cases correspond to quantizations of 3
0,

1,2
0 , and

3
1, respectively.

3
0

In the first case of SU(2), the Lie algebra yielding (2.27) corresponds to the coor-

dinate algebra of the fuzzy sphere S2
F . The radial restriction x̂µ x̂µ = ⇢ H for a
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constant ⇢ 2 ⇥, however, is missing. We thus obtain a foliation of 3 by fuzzy

spheres. This space is usually denoted 3
� in the literature [50, 15]. Recall that on a

fuzzy sphere built on the Hilbert space Hk = H0( P 1,O(k)), the 3-bracket is given

by

[x̂1, x̂2, x̂3] =

✓

R

k!

◆3
�

(k�1)!
�2

k ("µ⌫ �µ �⌫ �)↵� |↵, ki•hk, �| = �i
6R3

k
Hk

, (4.57)

and the fuzzy radius is RF = RF,k := R
q

1 + 2
k
. As R2

F,k Hk
= x̂µ x̂µ is not fixed,

the relation (2.27) admits fuzzy spheres of various radii. For given deformation

parameter ~, we have ~ = 6R3

k
from (4.57) and consequently a quantization of the

radius of the fuzzy sphere

RF,k =

r

1 +
2

k
3

r

~ k
6

(4.58)

built on the Hilbert space Hk.

We now introduce the Hilbert space H :=
L

k2 Hk together with the algebra

of “quantum functions” A :=
L

k2 End (Hk). This corresponds to a “discrete

foliation” of 3 by fuzzy spheres with radii RF,k. The quantization of a polynomial

in the coordinates xµ corresponding to a function on 3 is given by a quantization of

this coordinate function on each fuzzy sphere. The 3-bracket is non-vanishing only

on those elements of A which are all at most linear elements of the same subalgebra

End (Hk). The geometry corresponding to the noncommutative algebra of functions

A is the space 3
�, with � =

p

2~/3R.

Let us now examine how the associated Lie algebra gA is related to the isometries

of 3
�. A priori, there is no reason to expect a direct connection, as the “funda-

mental” object in this quantization is the Lie bracket of the quantized coordinate

functions x̂µ. The associated Lie algebra of this 2-Lie algebra is the 2-Lie algebra

itself, i.e. su(2), which indeed corresponds to the (continuous) isometries of 3
�.

The associated Lie algebra gA is of dimension six with generators Dµ⌫ := D(x̂µ^
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x̂⌫), µ, ⌫ = 0, 1, 2, 3, where x̂0 := �i ~ . In the basis

X1 = D12 �D30 , X2 = D23 �D10 , X3 = D13 +D20 ,

Y 1 = D12 +D30 , Y 2 = D23 +D10 , Y 3 = D13 �D20 ,

(4.59)

the non-vanishing commutation relations read

[X i, Xj] = 2"ijk Xk , [Y i, Y j] = 2"ijk Y k , i, j, k = 1, 2, 3 . (4.60)

Thus the associated Lie algebra is so(3) � so(3), as expected since A ⇠= A4 in this

case. The generators X i � Y i generate the su(2) isometries on 3
�. The remain-

ing generators transform the operator ⇢ , which corresponds to a (scalar) radius

function in the geometric picture

1,2
0

An analogous construction holds for the 3-bracket built on the Lie algebra SO(1, 2) ⇠=

SL(2, ). Here the fuzzy spheres are replaced by the fuzzy hyperboloids H1,2
F (or

H2,1
F ) constructed in §4.3. This defines the noncommutative space 1,2

� . We thus

obtain a foliation of 3 by fuzzy hyperboloids in this case.

3
1

In the third case, the euclidean group in two dimensions, we start from the Lie

algebra

[x̂1, x̂2] = �i ⇠ x̂3 , [x̂3, x̂1] = [x̂3, x̂2] = 0 (4.61)

with a constant ⇠ 2 . This algebra breaks the explicit SO(3) invariance down to

SO(2). Since x̂3 is a central element of this algebra we can assume it acts as ↵ ,

↵ 2 on any irreducible representation, and thus we can put ⇠ = ~
↵2 . The 3-bracket

defined from the antisymmetric operator product is then given by

[x̂1, x̂2, x̂3] = x̂3 [x̂1, x̂2] = �i ~ . (4.62)
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The quantum geometry behind this algebra A is thus a foliation of 3 in terms of

standard noncommutative planes 2
✓ extending in the directions parameterized by

x1 and x2. The eigenvalues of x̂3 corresponding to the x3 position of the noncommu-

tative plane determine the noncommutativity parameter ✓ = ~
x3 . This implies that

the plane through x3 = 0 is somewhat ill-defined. As SO(3)-invariance is broken by

the Nambu-Poisson structure here, one can equally well interpret the eigenvalues of

(x̂3)�1 as the position of the noncommutative plane. In this case, we obtain a com-

mutative plane 2 through the origin. The noncommutative space with coordinate

algebra A in this case is denoted 3
1,✓.

The associated Lie algebra gA is again spanned by the six generators Dµ⌫ :=

D(x̂µ ^ x̂⌫), µ, ⌫ = 0, 1, 2, 3 satisfying the non-vanishing commutation relations

[D12, D13] = �D10 , [D10, D20] = �D30 ,

[D12, D23] = �D20 , [D10, D12] = �D13 ,

[D23, D13] = +D30 , [D20, D13] = �D23 .

(4.63)

This is an indecomposable simple Lie algebra. The isometries of 3
1,✓, however, span

the Lie algebra R� so(2), corresponding to translations along the x3 direction and

rotations in the foliating planes. As the so(2) rotations act as outer derivations of

the Heisenberg algebra [x̂1, x̂2] = �i ✓ , there is no relation between the isometries

and the associated Lie algebra. Worthy of note is the maximal subalgebra of the

associated Lie algebra given by

[D12, D23] = �D20 , [D12, D20] = D23 , [D30,�] = 0 , (4.64)

which is isomorphic to iso(2)nR. We conclude that the associated Lie algebra only

describes non-geometric symmetries, and hence purely quantum isometries of the

space 3
1,✓ in the sense explained above. Note that as the operators appearing in

the construction of 2
✓ are not trace-class, we cannot use the trick (??) to render

a central element of the 3-Lie algebra of coordinate functions in this case.
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4.4.3 Quantum geometry of M5-branes

We have thus found a geometric interpretation of the equations

[X̂µ, X̂⌫ , X̂] = �i ~⇥µ⌫ and [ ,�,�] = 0 (4.65)

found by Chu and Smith in [28] describing the quantum geometry of an M5-brane

in a constant C-field background, where

⇥µ⌫ =

8

>

>

>

>

<

>

>

>

>

:

"µ⌫ C1 , µ, ⌫, = 0, 1, 2

"µ⌫ C2 , µ, ⌫, = 3, 4, 5

0 otherwise

(4.66)

and C1, C2 are constants related to the components of the C-field. They corre-

spond to the quantizations of 1,2⇥ 3 with foliations by either fuzzy hyperboloids

and spheres or noncommutative planes. We may heuristically regard the foliating

noncommutative geometries as the dimensional reductions of the M5-brane configu-

ration in the presence of a C-field to a configuration of D-branes in the appropriate

B-field background.
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Membrane matrix models

Dimensional reductions of ten-dimensional maximally supersymmetric Yang-Mills

theory lead to interesting zero-dimensional and one-dimensional matrix models,

called respectively the IKKT [57] and BFSS [13] models. The IKKT matrix model

is conjecturally a non-perturbative completion of type IIB string theory, while the

BFSS matrix quantum mechanics is dual to M-theory in discrete light-cone quan-

tization on flat space. Their classical solutions describe brane configurations which

have also found interpretations in terms of noncommutative geometry.

In string theory, fuzzy spheres appear as classical solutions to D0-brane equa-

tions of motion in the presence of an external Ramond-Ramond flux [74]. In the

IKKT matrix model description they arise as solutions to the classical equations of

motion if one adds a Chern-Simons term representing the coupling to the external

field [58]. The corresponding modification of the BFSS model is a massive matrix

model with Chern-Simons term, called the BMN matrix model [19], which conjec-

turally describes the discrete light-cone quantization of M-theory on a supersymmet-

ric pp-wave background and lifts the flat directions of the BFSS model. In this case

both fuzzy spheres and fuzzy hyperboloids appear as half-BPS solutions [11, 78],

and describe static large M2-branes or static large longitudinal M5-branes.

In this chapter we describe an analogous treatment of the BLG and ABJM

membrane theories. We consider a dimensional reduction of these theories to a zero-

dimensional 3-Lie algebra model and matrix model, respectively. We first introduce

the reduced BLG and ABJM models by describing how to construct them from
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dimensional reduction. We show how both can be mapped to the IKKT matrix

model using the Muhki-Papageorgakis map. We then show how to map between

this models by taking various scaling limits, or by making a choice of 3-algebra. We

end this chapter by finding several BPS solutions to the 3-Lie algebra model, and

interpreting them as Nambu-Poisson manifolds in the sense of the previous chapter.

5.1 Reduced 3-Lie algebra model

5.1.1 BLG theory

The BLG theory [9, 49] is an N = 8 supersymmetric Chern-Simons-matter theory in

three dimensions with matter fields taking values in a metric 3-Lie algebra A and a

connection one-form taking values in the associated Lie algebra gA. The matter fields

consist of eight scalar fields XI , I = 1, . . . , 8 and their superpartners, which can be

combined into a Majorana spinor  of SO(1, 10) satisfying �012 = � ; throughout

we denote �M1···Mk
:= 1

k!
�[M1 · · ·�Mk]. The Chern-Simons term is constructed using

the alternative cyclic invariant form ((�,�)) available on gA which is induced by the

inner product (�,�) on the 3-Lie algebra A. Altogether the action reads

SBLG =

Z

d3x
⇣

� 1
2

�

rµX
I ,rµXI

�

+ i
2

�

 ̄,�µ rµ 
�

+ i
4

�

 ̄,�IJ [X
I , XJ , ]

�

� 1
12

�

[XI , XJ , XK ], [XI , XJ , XK ]
�

+ 1
2
✏µ⌫� ((Aµ, @⌫A� +

1
3
[A⌫ , A�]))

⌘

,

(5.1)

where µ, ⌫,� = 0, 1, 2 are indices for euclidean coordinates on 1,2. The matrices

�µ, together with �I , form the generators of the Cli↵ord algebra C`( 1,10). The

covariant derivatives act according to

rµX
I = @µX

I+Aµ X
I := @µX

I+Aab
µ D(⌧a, ⌧b)X

I := @µX
I+Aab

µ [⌧a, ⌧b, X
I ] , (5.2)

where ⌧a are generators of the 3-Lie algebra A.
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5.1.2 Dimensional reduction

The reduced 3-Lie algebra model presented in [35] is the zero dimensional reduction

of the BLG lagrangian. We reduce the covariant derivatives rµ to an action of the

gauge potential Aµ, which yields

SBLG = 1
6
✏µ⌫� Tr

gA

�

Aµ [A⌫ , A�]
�

� 1
2
(AµX

I , AµXI) + i
2
( ̄,�µAµ )

+ i
4
( ̄,�IJ [X

I , XJ , ])� 1
12
([XI , XJ , XK ], [XI , XJ , XK ]) .

(5.3)

This action is invariant under the N = 8 supersymmetry transformations

�XI = i "̄�I  ,

� = AµX
I �µ �I "� 1

6
[XI , XJ , XK ]�IJK " ,

�Aµ = i "̄�µ �I [X
I , ,�] . (5.4)

It is also invariant under the gauge transformations generated by ⇤ 2 gA given as

Aµ 7�! �[Aµ,⇤] , XI 7�! [⇤, XI ] ,  7�! ⇤ . (5.5)

The vacuum moduli space MBLG
A of the 3-Lie algebra model is defined by setting

Aµ = 0 =  and
⇥

XI , XJ , XK
⇤

= 0 (5.6)

in order to satisfy the BPS equations implied by (5.4). For the 3-Lie algebra A = A4,

the moduli space is given by [37]

M

BLG
A4

=
�

8/ 2

�

⇥
�

8/ 2

�

. (5.7)

5.1.3 Reduction to the IKKT matrix model

If we assume that the BLG theory describes M2-branes, then we ought to be able to

reduce the BLG theory to the e↵ective description of D2-branes which is given by
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maximally supersymmetric Yang-Mills theory in three dimensions. In the paper [73],

Mukhi and Papageorgakis proposed such a reduction procedure for the BLG theory

with 3-Lie algebra A4, which reduces to N = 8 supersymmetric Yang-Mills theory

with gauge group SU(2). Below we briefly review this reduction by going through

the corresponding procedure for the dimensionally reduced model.

We start from our model (5.3) with 3-Lie algebra A4, whose generators are de-

noted ei, i = 1, 2, 3, 4, and assume that one of the scalar fields, corresponding to

the M-theory direction, develops a vacuum expectation value (vev) which is propor-

tional to the radius R of the M-theory circle. Using the SO(4)-invariance of A4, we

can align this vev in the e4 direction so that

hX8i = � R

`
3/2
p

e4 = �gYM e4 , (5.8)

where `p and gYM are the 11-dimensional Planck length and the Yang-Mills coupling

constant, respectively. We now expand the action (5.3) around this vev by rewriting

X8 = �gYM e4 + Y 8 , (5.9)

where Y 8 2 A still has components along the e4 direction. The 3-brackets containing

X8 reduce according to

[A,B,X8] = gYM [A,B, e4] + [A,B, Y 8] , A,B 2 A , (5.10)

and in the strong coupling limit, i.e. for large values of gYM, 3-brackets containing

X8 reduce to the Lie bracket of so(3) due to [ei, ej,�e4] = "ijk4 ek. It is easy to see

that the potential terms in (5.3) containing matter fields reduce to the corresponding

terms of the IKKT matrix model for � ! 1 and µ = 0.

The reduction of the terms involving the gauge potential is slightly more involved.

We consider the splitting gA4 = so(4) ⇠= so(3) � so(3). Specifically, we decompose

the gauge field into terms involving the e4 direction and those independent of that

direction.
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Aµ = Aij
µ D(ei, ej) = Ai

µ D(ei, e4) + Bi
µ

1
2
"ijk D(ej, ek) , (5.11)

where we use the notation

Ai4
µ D(ej, e4) = Ai

µD(ei, e4) . (5.12)

In the action (5.3), the field Bi
µ appears in the strong coupling limit only alge-

braically, and its equation of motion reads

Bi
µ = 1

2gYM
⌘µ⌫ "

⌫⇢� "ijk Aj
⇢ A

k
� � 1

2gYM
"ijk Aj

µ X
8 k , (5.13)

where ⌘µ⌫ denotes the Minkowski metric on 1,2. Altogether, the reduction (5.10)

together with the splitting (5.11) and the equation of motion (5.13) reduce the action

(5.3) with � ! 1 and µ = 0 to the action of the IKKT matrix model with gauge

group su(2) ⇠= so(3),

SIKKT = �1
4

�

[XM ,XN ], [X
M ,X N ]

�

+ i
2

�

 ̄,�M [XM , ]
�

, (5.14)

where we combined the fields (Aµ, X
I) with µ = 0, 1, 2 and I = 1, . . . , 7 into X M

with M = 0, 1, . . . , 9, and absorbed the coupling gYM into a rescaling of fields.

Here the invariant bilinear inner product coincides with the Cartan-Killing form on

the Lie algebra su(2), (X ,Y ) = Tr(X Y ). This matrix model possesses N = 2

supersymmetry.
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5.2 Reduced ABJM model

5.2.1 ABJM theory

The Van Raamsdonk formulation of the ABJM model [88] is a matrix valued action

describing stacks of M2-branes with gauge group U(NL) ⇥ U(NR)1 With a gauge

group isomorphic to SU(2) ⇥ SU(2), it is equivalent to the BLG lagrangian. The

ZA are bifundamental scalar fields, and  A are bifundamental spinor fields with

A = 1, .., 4. The covariant derivative is defined to be

DµZ := @µZ + AR
µZ � ZAL

µ . (5.15)

The gauge transformations of the model are

ZA ! gRZ
Ag�1

L , A
(L,R)
µ ! g(L,R)Aµg

�1
(L,R) + g(L,R)@µg

�1
(L,R) ,

 A ! gR 
Ag�1

L .
(5.16)

The lagrangian is

L = k
4⇡
✏µ⌫�(AL

µ@⌫A
L
� + 2i

3
AL

µA
L
⌫A

L
� � AR

µ@µA
R
� � 2i

3
AR

µA
R
⌫ A

R
� )

�DµZ
†
AD

µZA � i ̄A�µDµ A + 2⇡i
k
(Z̄AZ

A ̄B B �  ̄BZAZ†
A B

� 2Z†
AZ

B ̄A B + 2 ̄BZAZ̄B A � ✏ABCDZ†
A BZ

†
C D

+ ✏ABCDZ
A ̄BZC ̄C) + 4⇡2

3k2
(ZAZ†

AZ
BZ†

BZ
CZ†

C

+ Z†
AZ

AZ†
BZ

BZ†
CZ

C + 4ZAZ†
BZ

CZ†
AZ

BZ†
C � 6ZAZ†

BZ
BZ†

AZ
CZ†

C) . (5.17)

1Strictly speaking, this is the ABJ model [3]. We will still refer to this model as as the ABJM
model for simplicity, although we refer to the specialization NL = NR as the “ABJM limit ”.
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The supersymmetry transformations read as

�ZA = i!AB B ,

�Z†
A = i ̄B!AB ,

� A = ��µ!ABrµZ
B + 2⇡

k

⇣

�!AB(Z
CZ†

CZ
B � ZBZ†

CZ
C) + 2!CDZ

CZ†
AZ

D
⌘

,

� ̄A = rµZ
†
B!

AB�µ + 2⇡
k

⇣

�(Z†
BZ

CZ†
C � Z†

CZ
CZ†

B)!
AB + 2Z†

DZ
AZ†

C!
CD

⌘

,

�AL
µ = ⇡i

k
(�ZA ̄B�µ!AB + !AB�µ AZ

†
B) ,

�AR
µ = ⇡i

k
(� ̄AZB�µ!AB + !AB�µZ

†
A B) .

(5.18)

5.2.2 Dimensional reduction

We perform a dimensional reduction which modifies the gauge fields and covariant

derivatives change in the following way: Gauge fields AL,R
µ become scalar fields

A
(L,R)
i , i = 1, ..., 3. Covariant derivatives reduce to the following

DµZ
A ! AR

i Z
A � ZAAL

i , DµZ
†
A ! AL

i Z
†
A � Z†

AA
R
i ,

Dµ 
A ! AR

i  
A �  AAL

i , Dµ 
†
A ! AL

i  
†
A �  †

AA
R
i .

(5.19)

The gauge transformations are changed so that we have

ZA ! gRZ
Ag†L , A

(L,R)
i ! g(L,R)Aig

†
(L,R) .

 A ! gR 
Ag†L .

(5.20)

The reduced lagrangian reads as

SABJM = Tr V

⇣

2 i
3
 ✏µ⌫�

�

AL
µ A

L
⌫ A

L
� � AR

µ AR
⌫ AR

�

�

� 2AL
µ Z

†
i A

R
µ Zi + AL

µ Z
†
i Z

i AL
µ + AR

µ Zi Z†
i A

R
µ � i  ̄i �

µ AR
µ  

i

+ i  ̄i �
µ  i AL

µ + i
2

�

Z†
i Z

i  ̄j  
j �  ̄j Z

i Z†
i  

j � 2Z†
i Z

j  ̄i  j (5.21)

+ 2 ̄j Zi Z†
j  i � ✏ijkl Z†

i  j Z
†
k  l + ✏ijkl Z

i  ̄j Zk  ̄l
�

+ 1
122

�

Zi Z†
i Z

j Z†
j Z

k Z†
k + Z†

i Z
i Z†

j Z
j Z†

k Z
k

+ 4Zi Z†
j Z

k Z†
i Z

j Z†
k � 6Zi Z†

j Z
j Z†

i Z
k Z†

k

�

⌘

. (5.22)
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The corresponding supersymmetry transformations are

�Z i = i!ij  j ,

�Z†
i = i †

j !ij ,

� i = ��µ !ij

�

Zj AL
µ � AR

µ Zj
�

� 1
2

⇣

!ij

�

Zk Z†
k Z

j � Zj Z†
k Z

k
�

� 2!kl Z
k Z†

i Z
l
⌘

,

� ̄i =
�

Z†
j A

R
µ � AL

µ Z
†
j

�

!ij �µ � 1
2

⇣

�

Z†
j Z

k Z†
k � Z†

k Z
k Z†

j

�

!ij � 2Z†
l Z

i Z†
k !

kl
⌘

,

�AL
µ = � i

4

�

Zi  †
j �µ !ij � !ij �µ  i Z

†
j

�

,

�AR
µ = � i

4

�

 †
i Z

j �µ !ij � !ij �µ Z
†
i  j

�

, (5.23)

where !ij are N = 6 supersymmetry transformation parameters obeying !ij =

(!ij)⇤ = �1
2
✏ijkl !kl.
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We can also regard the ABJM matrix model in terms of a quiver. The ABJM

quiver is constructed by adding arrows to the A1 quiver2 to give the ABJM quiver

• ((!!
66== • (5.24)

We deform the generic N = 2 supersymmetric Chern-Simons quiver matrix model

((C.10)) by adding a suitable quartic superpotential of the chiral superfields �i [44,

17] which reads as

W(�) = 
4!
✏ijkl Tr V

�

�i �
†
j �k �

†
l

�

. (5.25)

The extrema of the superpotential define the relations of the double quiver asso-

ciated to the ABJM quiver (5.24). The BPS equations of the ABJM theory were

derived in [62]; here we present them for the dimensionally reduced model. They

are determined by the quantities

Zjk
i := Zj Z†

i Z
k � Zk Z†

i Z
j (5.26)

for j < k. We set the fermions equal to zero. The BPS equations for the supersym-

metric solutions of the matrix model then follow from the fermionic supersymmetry

variations in (5.23) using the independence of the gamma-matrices as a basis of the

2 See appendix (C.14) .
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Cli↵ord algebra, and are given by

⇥

AL
µ , A

L
⌫

⇤

= 0 =
⇥

AR
µ , A

R
⌫

⇤

,

AR
1 Z1 � Z1 AL

1 � i
�

AR
2 Z1 � Z1 AL

2

�

= 0 ,

AR
µ Zi � Zi AL

µ = 0 (i 6= 1 , µ = 1, 2) ,

AR
0 Z2 � Z2 AL

0 � iZ21
1 = 0 ,

AR
0 Z3 � Z3 AL

0 � iZ13
1 = 0 ,

AR
0 Z4 � Z4 AL

0 � iZ14
1 = 0 ,

Z31
3 = Z41

4 = Z21
3 ,

Z43
4 = Z34

3 = Z32
3 = 0 = Z42

4 = Z23
2 = Z24

4 ,

Zjk
i = 0 (i 6= j 6= k) . (5.27)

5.2.3 Reduction to the IKKT matrix model

Let us now extend the Mukhi-Papageorgakis map to reduce the ABJM model (5.22).

Here we work within the ABJM limit. We break the product gauge group G =

U(N) ⇥ U(N) to a diagonal U(N) subgroup by taking an axial combination of the

gauge fields

AL
µ = Aµ + iBµ , AR

µ = Aµ � iBµ . (5.28)

We write the real and imaginary parts of the scalars and the spinors as

Zi = X i + iX i+4 ,  i = �i + i�i+4 (5.29)
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for i = 1, 2, 3, 4. We further decompose the fields into the generators of the U(N)

gauge group as

Zi = X i
0 ⌧0 + iX i+4

0 ⌧0 +X i
a ⌧a + iX i+4

a ⌧a ,

 i =  i
0 ⌧0 + i i+4

0 ⌧0 +  i
a ⌧a + i i+4

a ⌧a . (5.30)

We expand the scalar fields around a fixed vacuum configuration proportional

to a coupling constant g. Using the SU(4) invariance of the matrix model, we can

select the scalar field Z4 to expand around so that

Zi = i g �i,4 +X i
0 ⌧0 +X i

a ⌧a + iX i+4
0 ⌧0 + iX i+4

a ⌧a . (5.31)

We first investigate the e↵ect of the scaling limit on the Chern-Simons matrix

action from the first line of (5.22). The various terms of the action separate into

U(1) and SU(N) components, and in the strong coupling limit g ! 1 the U(1)

terms decouple so we will ignore them from now on. When we make the gauge field

replacement (5.28), the Chern-Simons term reads as in (5.56), which in the scaling

limit will reduce to (5.57).

The contributing terms to the reduction of the second line of (5.22) give

Sk = Tr V

⇣

�
4
X

i=1

�

[Aµ, X
i]2 + [Aµ, X

i+4]2
�

� 4g [Aµ, X
8]Bµ � 4g2 Bµ B

µ

� i
4
X

i=1

�

�̄i �
µ [Aµ,�

i + i�i+4] + i �̄i+4 �
µ [Aµ,�

i + i�i+4]
�

⌘

. (5.32)

Combining (5.57) and (5.32), we can integrate out Bµ using its equation of motion

Bµ = �1
g
[Aµ, X

8] + 
g2
✏µ⌫� [A

⌫ , A�] . (5.33)

This causes the scalar field X8 to decouple from the action. We write the minimal

spinor of SO(1, 2)⇥ SO(7) for the reduced theory as in (5.59), where each �I is also
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a two-component Majorana spinor. Then the action (5.32) reduces to

Sk = Tr V

⇣

�
3
X

a=1

�

[Aµ, X
a]2 + [Aµ, X

a+4]2
�

� [Aµ, X
4]2

� 82 [Aµ, A⌫ ]
2 � i  ̄ �µ [Aµ, ]

⌘

. (5.34)

We now investigate the potential terms from the last four lines of (5.22). The

surviving terms from the bosonic potential are of the form

Vb(X) = � 1
82 Tr V

⇣

3
X

a,b=1

�

[Xa, Xb]2 + [Xa+4, Xb+4]2
�

+ 2
3
X

a=1

�

[Xa, X4]2 + 2[Xa+4, X4]2
�

⌘

. (5.35)

The fermions produce a potential that reads as

Vf(X, ) = � 1

Tr V

⇣

3
X

a=1

�

 ̄ �a [X
a, ] +  ̄ �a+4 [X

a+4, ]
�

+  ̄ �4 [X
4, ]

⌘

(5.36)

for a suitable basis of SO(7) gamma-matrices �a, �4, �a+4, a = 1, 2, 3.

Finally, we rescale the fields as

Bµ �! g Bµ , X i
0 �! 1

g
X i

0 ,  i
0 �! 1

g
 i
0 (5.37)

and then the full reduced action takes the form

Sred = 1
g2

Tr V

⇣

�
3
X

a=1

�

[Aµ, X
a]2 + [Aµ, X

a+4]2
�

� [Aµ, X
4]2 � 82 [Aµ, A⌫ ]

2

� 1
82

3
X

a,b=1

�

[Xa, Xb]2 + [Xa+4, Xb+4]2
�

� 1
42

3
X

a=1

�

[Xa, X4]2 + [Xa+4, X4]2
�

� 1


3
X

a=1

�

 ̄ �a [X
a, ] +  ̄ �a+4 [X

a+4, ]
�

� 1

 ̄ �4 [X

4, ]� i  ̄ �µ [Aµ, ]
⌘

.

(5.38)

We can combine the bosonic fields into a single fieldXM = (2Aµ, X
a, X4, Xa+4) with

M = 1, . . . , 10. Then this action, along with the choice of Chern-Simons coupling
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constant  = 1
2
, produces the action of the ten-dimensional IKKT matrix model.

For later use, we note the similarity between the BPS equations of the ABJM and

IKKT matrix models. In the case of the ABJM model the BPS equations are given

by (5.27), while in the case of the IKKT model the BPS equations are determined

by commuting matrices

⇥

XM , XN
⇤

= 0 . (5.39)

However, the 3-algebra form (5.46) of the ABJM equations does not map to the

IKKT equations (5.39) under the scaling limit described here. This is due to the

removal of the gauge fields from (5.27): In the axial limit (5.28) of the gauge fields,

the field Bµ causes a bosonic degree of freedom to decouple from the action in the

scaling limit in order that one may combine the gauge fields with the scalars in the

appropriate way.

5.3 Hermitian 3-algebra Model

Alternative 3-algebra models can be written down if one relaxes the requirements

of maximal supersymmetry and of total antisymmetry of the 3-bracket. We first

break the SO(8) R-symmetry group of the maximally supersymmetric theory to

SU(4) ⇥ U(1). The supercharges transform under SU(4) ⇠= SO(6), whilst the U(1)

factor provides an additional global symmetry. Introduce four complex 3-algebra

valued scalar fields Zi, i = 1, 2, 3, 4. Denote the corresponding four fermions by  i;

they are two-component Dirac spinors of SO(1, 2). We select a real set of gamma-

matrices �µ, with �012 = . The Majorana condition is "̄ = "> �0. For a generic

hermitian 3-algebra A, the analog of our 3-Lie algebra model (5.3) is given by

SBLG = 1
6
✏µ⌫� Tr

gA

�

Aµ [A⌫ , A�]
�

� (AµZ
†
i , A

µZi) + i ( ̄i, �
µ Aµ 

i)� V(Z)

� ( ̄i, [ i, Z
j;Zj]) + 2 i ( ̄i, [ j, Z

j;Zi]) +
i
2
✏ijkl ( ̄

i, [Zk, Z l; j])

� i
2
✏ijkl (Z

l, [ ̄i, j;Zk]) , (5.40)
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where the sextic potential is given by

V(Z) = 2
3

�

⌥jk
i (Z) , ⌥jk

i (Z)†
�

(5.41)

with

⌥jk
i (Z) = [Zj, Zk;Zi]� 1

2
�ji [Z

l, Zk;Zl] +
1
2
�ki [Z

l, Zj;Zl] . (5.42)

The supersymmetry transformations of this model read

�Z i = i "̄ij  j ,

� i = ��µ AµZj "
ij + [Zj, Z

k;Zk] "
ij + [Zk, Z l;Zi] "kl ,

�Aµ = �i [�, Zi; j] �µ "
ij + i "̄ij �µ [�, j;Zi] . (5.43)

5.4 Matrix model mappings

In this section we describe relationships between our membrane matrix models. The

various formulations of these models are related to each other, and it is possible to

pass between them when certain constraints are placed on the relevant 3-algebras.

For a particular 3-algebra, we show that it is possible to pass from a certain reduced

3-Lie algebra model to our ABJM matrix model. Furthermore, in a certain scaling

limit, one can reach the 3-algebra model from the ABJM matrix model from, again

for a particular 3-Lie algebra.

5.4.1 Mapping to the ABJM matrix model

We will now parallel the construction of [10] to demonstrate that our reduced model,

for a particular choice of hermitian 3-algebra A and gauge group, yields the N =

6 ABJM matrix model. Let A = Hom (VL, VR) with 3-bracket (2.41) and inner

product (2.42). The gauge group is the product U(NL) ⇥ U(NR), corresponding to

the associated Lie algebra gA = u(NL) � u(NR). With these choices, the action
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(5.40) becomes

SBLG = Tr V

⇣

AL
µ Z

†
i Z

i AL
µ + AR

µ Zi Z†
i A

R
µ � 2AL

µ Z
†
i A

R
µ Zi � i  ̄i �µ AR

µ  i

+ i  ̄i �µ  i A
L
µ + 1

6
✏µ⌫�

�

AL
µ

⇥

AL
⌫ , A

L
�

⇤

� AR
µ

⇥

AR
⌫ , A

R
�

⇤�

� V(Z)

� i�
�

 ̄i  i Z
†
j Z

j +  ̄i Zj Z†
j  i � 2 ̄i  j Z

†
i Z

j +  ̄i Zj Z†
i  j

�

+ i�
�

✏ijkl  ̄
i Zk  ̄j Z l � ✏ijkl Z†

l  i Z
†
k  j

�

⌘

. (5.44)

Our choice of 3-bracket is antisymmetric in the first two entries. This lets us rewrite

the potential (5.41) as

V(Z) = Tr V

�

� 2
3

⇥

Zi, Zj;Zk
⇤ ⇥

Z†
i , Z

†
j ;Z

†
k

⇤

+ 1
2

⇥

Zk, Zi;Zi
⇤ ⇥

Z†
k, Z

†
j ;Z

†
j

⇤�

. (5.45)

The global minima of V(Z) are described by the equations

Zjk
i :=

⇥

Zj, Zk;Zi

⇤

= 0 , (5.46)

which are just the BPS equations (5.27) with Aµ = 0. These equations coincide

with the extrema of the superpotential (5.25), and hence define the relations of the

double of the ABJM quiver (5.24). We can evaluate the 3-brackets explicitly, and

then the potential assumes the manifestly SU(4)-invariant form

V(Z) = �2�2

3
Tr V

�

2Zk Z†
j Z

i Z†
k Z

j Z†
i + 2Zk Z†

j Z
i Z†

i Z
j Z†

k

+ 1
2
Zi Z†

i Z
k Z†

k Z
j Z†

j +
1
2
Z†

i Z
i Z†

j Z
j Z†

k Z
k
�

. (5.47)

For the choice of constant � = 1
2
, we recover the N = 6 ABJM matrix model (5.22).

Note that the BPS equations (5.46) and their conjugates imply that the collection

Z†
i Z

j of endomorphisms of VL for i, j = 1, 2, 3, 4 form a mutually commuting set of

NL⇥NL matrices; similarly Zj Z†
i are a mutually commuting set ofNR⇥NR matrices.

In the ABJM limit NL = NR = N , the operators Z†
i Z

j and Zj Z†
i moreover have

the same spectra, and the vacuum moduli space M

ABJM
N is therefore given by the
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N -th symmetric product orbifold

M

ABJM
N =

�

4
�N �

SN (5.48)

where SN is the Weyl group of U(N) acting by permuting the components of N -

vectors. As we will make use of this result later, let us derive it explicitly. For

this, we note that the BPS equations in this case are solved by commuting matrices

[Zi, Zj] = 0, i, j = 1, 2, 3, 4. Then Zi can be put simultaneously into their Jordan

normal forms, with k eigenvalues ⇣ i1, . . . , ⇣
i
k of each endomorphism Zi, i.e. for each

fixed i 2 {1, 2, 3, 4}, each ⇣ il , l = 1, . . . , k, corresponds to a Jordan block; doing so

breaks the U(N) ⇥ U(N) gauge symmetry to a diagonal U(N) subgroup. To every

Jordan block one associates its dimension �l, independently of i 2 {1, 2, 3, 4} because

Zi mutually commute. The collection � = (�1, . . . ,�k) of dimensions satisfies

�1 � �2 � · · · � �k � 0 ,
k
X

l=1

�l = N , (5.49)

and thus defines a linear partition of the rank N of length k. Then the isomorphism

(5.48) is generated by the map

�

Z1, Z2, Z3, Z4
�

7�!
k
X

l=1

�l ~zl 2
�

4
�N �

SN , (5.50)

where
�

~zl = (⇣1l , ⇣
2
l , ⇣

3
l , ⇣

4
l )
 

l=1,...,k
is a set of k points in 4 with multiplicities given

by the linear partition �.

5.4.2 Mapping to the lorentzian Lie algebra model

Following [55], we shall now demonstrate how a particular contraction relates the

lorentzian version of the 3-Lie algebra model (5.3) with the ABJM matrix model

(5.22). The first step is to construct the lorentzian Lie algebra model. We fix a

semisimple Lie algebra h and expand the fields of the reduced 3-Lie algebra model
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in terms of the generators of A
h

satisfying the 3-bracket relations (2.33) as

XI = XI
c +XI

0 ⌧0 +XI
a ⌧a ,

 =  c + 0 ⌧0 + a ⌧a ,

Aµ = Aµ
0a D0a + Aµ

ab Dab . (5.51)

It is convenient to make the field definitions

X̂I = XI
a ⌧a ,  ̂ =  a ⌧a , Âµ = Aµ

0a ⌧a , Bµ = fabc A
µ
ab ⌧c . (5.52)

We insert these expansions into (5.3), and denote the inner product (2.34) by Tr
h

here. Using (2.24), 3-brackets involving the generator ⌧0 induce the Lie bracket of

A0
h

through

⇥

XI , XJ , ⌧0
⇤

=
⇥

X̂I , X̂J
⇤

. (5.53)

A similar reduction occurs for the brackets involving fermions. For the terms involv-

ing the gauge fields, we use (2.34) to infer that terms proportional to the central

element decouple from the gauge interactions, and in fact completely from the

action. In this way we find the lorentzian Lie algebra model

S
h

= Tr
h

⇣

�

1
2
[Âµ, X̂I ] + Bµ XI

0

�2
+ 1

4
(XK

0 )2 [X̂I , X̂J ]2 � 1
2

�

XI
0 [X̂

I , X̂J ]
�2

+ i
2

¯̂ �µ [Âµ,  ̂]� i  ̄0 �
µ Bµ  ̂� 1

2
 ̄0 X̂

I [X̂J ,�IJ ̂] +
1
2

¯̂ XI
0 [X̂

J ,�IJ ̂]

+ 1
2
✏µ⌫� [Âµ, Â⌫ ]B�

⌘

. (5.54)

It is invariant under the supersymmetry transformations

� ̂ =
�

[Âµ, X̂I ] + Bµ XI
0

�

�µ �I "� 1
2
XK

0 [X̂I , X̂J ]�IJK " , � 0 = 0 ,

�X̂I = i�I "̄  ̂ , �XI
0 = i�I "̄ 0 ,

�Bµ = i "̄�µ �I [X̂
I ,  ̂] , �Âµ = i "̄�µ �I X̂

I  0 + i "̄�µ �I X
I
0  ̂ . (5.55)
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In the following we show how this model is related to the ABJM matrix model

(5.22): For a particular choice of gauge symmetry breaking and scaling limit, we

show that one can recover the lorentzian Lie algebra model (5.54) from (5.22). As

we will make use of similar reductions throughout this paper, we describe it here in

detail.

For this, we consider the ABJM limit NL = NR = N . To take the scaling limit,

we first make the gauge field redefinitions (5.28) which breaks the gauge symmetry

to a diagonal U(N) subgroup of G = U(N) ⇥ U(N). With this replacement, the

Chern-Simons term from the first line of (5.22) reads

Sg =  ✏µ⌫� Tr V

�

Bµ [A⌫ , A�]� 1
3
Bµ B⌫ B�

�

. (5.56)

We write the real and imaginary parts of the scalars and fermions as (5.29).We

decompose the scalars and fermions further into trace and traceless components as

(5.30)

In this decomposition we have identified ⌧0 with the generator of u(1), and ⌧a,

a = 1, . . . , d = N2 � 1, are the generators of su(N). We scale the fields as (5.37)

with all other fields unchanged, and the coupling constant as  ! 1
g
. Taking the

limit g ! 0 we find that the Chern-Simons term (5.56) reduces to

Sg =  ✏µ⌫� Tr V

�

Bµ [A⌫ , A�]
�

, (5.57)

while the second line of (5.22) becomes

Sk = �Tr V

⇣

�

[Aµ, X
I ] + 2Bµ X

I
0

�2
+ i  ̄ �µ [Aµ, ]� 2 ̄ �µ Bµ  0 � 2 ̄0 �

µ Bµ  
⌘

.

(5.58)

In this reduction we have combined the indices i and i + 4 for i = 1, 2, 3, 4 into

an index I = 1, . . . , 8, and the components of the spinors into a single Majorana

fermion

 =
�

�1, . . . ,�8
�>

. (5.59)
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Now we consider the bosonic sextic potential. In the scaling limit, the surviving

terms from the potential contain four trace components and eight real traceless

components. Using SU(4) R-symmetry we arrange them as

Zi = �i,1
�

X i
0 + iX i+4

0

�

⌧0 +
�

X i
a + iX i+4

a

�

⌧a . (5.60)

If we combine the trace components as

XI
0 =

�

X1
0 , 0, 0, 0, X

5
0 , 0, 0, 0

�

, (5.61)

then the reduced bosonic potential reads

Vb(X) = � 1
22 Tr V

⇣

1
4

�

XK
0

�2 ⇥
XI , XJ

⇤2 � 1
2

�

XI
0 [X

I , XJ ]
�2
⌘

. (5.62)

We finally consider the quartic Yukawa potential. In this scaling limit, the surviving

term of this potential has contributions from two bosonic trace components and

two traceless bosonic components. We arrange them as in (5.60) and the spinor

components into a Majorana fermion as in (5.59). The resulting potential reads

Vf(X, ) = � 1

Tr V

�

 ̄XI
0 [X

J , �IJ  ]
�

(5.63)

for suitable antisymmetrized products of 8 ⇥ 8 gamma-matrices �IJ (see e.g. [55,

App. A]).

The fully contracted theory thus reads

Sred = �Tr V

⇣

�

[Aµ, X
I ] + 2Bµ X

I
0

�2
+ i  ̄ �µ [Aµ, ]� 2 ̄ �µ Bµ  0 � 2 ̄0 �

µ Bµ  

� 1
22

�

1
4
(XK

0 )2 [XI , XJ ]2 � 1
2
XI

0 [X
I , XJ ]2

�

� 1

 ̄XI

0 [X
J , �IJ  ]

+  ✏µ⌫� [Aµ, A⌫ ]B�

⌘

. (5.64)

This is the original lorentzian Lie algebra model (5.54) with h = su(N) and inner

product (2.42).
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5.5 Solutions to 3-Lie algebra model

In this section we study the equations of motion of the reduced 3-Lie algebra model.

We introduce deformation terms, construct various BPS solutions, and interpret

them as quantized Nambu-Poisson manifolds in the sense of the previous chapter.

5.5.1 Deformations

We introduce deformations consisting of mass and Myers-like flux terms given re-

spectively by

Smass =

Z

d3x
⇣

� 1
2

8
X

I=1

µ2
1,I

�

XI , XI
�

+ i
2
µ2

�

 ̄,�3456 
�

⌘

,

Sflux =

Z

d3x HIJKL
�

[XI , XJ , XK ], XL
�

,

(5.65)

where HIJKL is totally antisymmetric and can be thought of as originating from a

four-form flux. A particularly interesting deformation is given by

µ1,I = µ2 = µ and HIJKL = �µ
6

8

>

>

>

>

<

>

>

>

>

:

"IJKL I, J,K, L  4

"(I�4)(J�4)(K�4)(L�4) I, J,K, L � 5

0 otherwise

.

(5.66)

This deformation was studied first in [45], see also [82, 56]. It is closely related

to the deformation giving rise to the BMN matrix model [19] and homogeneous

gravitational wave backgrounds, as we will discuss later on. It explicitly breaks the

R-symmetry group SO(8) down to SO(4) ⇥ SO(4), but preserves all 16 supersym-

metries if the matter fields live in a 3-Lie algebra. The complete deformed 3-Lie
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algebra model reads as

S = �1
2

�

AµX
I , AµXI

�

+ i
2

�

 ̄,�µ Aµ 
�

� 1
2

8
X

I=1

µ2
1,I

�

XI , XI
�

+ i
2
µ2

�

 ̄,�3456 
�

+HIJKL
�

[XI , XJ , XK ], XL
�

+ i
4

�

 ̄,�IJ [X
I , XJ , ]

�

� 1
12

�

[XI , XJ , XK ], [XI , XJ , XK ]
�

+ 1
6
✏µ⌫� Tr

gA

�

Aµ [A⌫ , A�]
�

.

(5.67)

This deformed model has the same amount of supersymmetry as the original

unreduced field theory. However, it is only invariant under the group SO(1, 2) ⇥

SO(8) instead of the desired 11-dimensional Lorentz group SO(1, 10), which is due

to the dichotomy of gauge and matter fields in the original BLG theory. This is in

marked contrast to the IKKT matrix model which arises from dimensional reduction

of maximally supersymmetric Yang-Mills theory to zero dimensions, and therefore

exhibits manifest SO(1, 9) invariance.

We also consider similar deformations of the IKKT matrix model.In the strong

coupling limit, the Myers-like term in (5.67) is reduced according to

HIJKL
�

[XI , XJ , XK ], XL
�

�! 4gYM HIJK8
�

[XI , XJ ], XK
�

, (5.68)

and this is the Myers term appearing in the deformation of the BFSS model to the

BMN matrix model [19]. Including the mass terms, the deformation terms reduce

to

Smass+flux = �1
2

7
X

I=1

µ2
1,I

�

X I+2,X I+2
�

+ i
2
µ2

�

 ̄,�3456 
�

+ 4gYM

7
X

I,J,K=1

HIJK8
�

[X I+2,X J+2],X K+2
�

.

(5.69)
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5.5.2 Equations of motion

The classical equations of motion of this model with a metric 3-Lie algebra A read

Aµ A
µ XI � µ2

1,I X
I � i [ ̄, XJ ,�IJ ]

+ 1
2

⇥

XJ , XK , [XJ , XK , XI ]
⇤

+ 4HIJKL [XJ , XK , XL] = 0 ,

�µ Aµ + µ2 �3456 + 1
2
�IJ [X

I , XJ , ] = 0 ,

1
2
✏µ⌫� [A⌫ , A�]� 1

�2

⇥

A⌫ , [A
⌫ , Aµ]

⇤

�D(XI , AµXI) + i
2
D( ̄,�µ ) = 0 .

(5.70)

The classical equations of motion of the IKKT matrix model (5.14), i.e. the strong

coupling limit of the deformed 3-Lie algebra model (5.67), read

⇥

XN , [X
N ,X M ]

⇤

� i
2
�µ
↵�{ �,  ̄↵}+�M = 0 ,

[XM , ] + µ2 �3456 = 0 ,

(5.71)

where ↵, � are spinor indices of a Majorana-Weyl spinor of SO(1, 9) and the defor-

mation contribution is

�M =

8

>

>

<

>

>

:

�µ2
1,M�2 X M + 12gYM

7
X

I,J=1

HIJ(M�2)8 [X I+2,X J+2] for 3  M  9

0 for M = 0, 1, 2

.

(5.72)

In the following we will study solutions to these equations and examine their classical

stability.

5.5.3 Fuzzy spheres

As it is the most prominent 3-Lie algebra, let us start with a solution involving

A4. For this, we choose the supersymmetric deformation (5.66) to obtain a natural

SO(4) symmetry group, which matches the associated Lie group of A4. We put

Aµ =  = 0. As our scalar fields, we choose

X i = ↵ ei , X i+4 = 0 , with ↵4 + 4
3
µ↵2 + 1

3
µ2 = 0 , (5.73)
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where ei, i = 1, 2, 3, 4 are generators of A4. This solution corresponds to fuzzy

three-sphere. We can compute the hessian of the action �2S
�Xi a �Xj b , where �X i a

describes the variation of X i in the 3-Lie algebra direction ea. We find a 16 ⇥ 16

matrix with eigenvalues (0, 2, 6) occurring in multiplicities (6, 9, 1). The six flat

directions correspond to variations rotating the fuzzy sphere. (The other eigenvalues

correspond to “squashing” the fuzzy sphere in various ways.) We conclude that the

solution (5.73) is indeed a stable stationary point of the action (5.67). Moreover,

like the ground states used in [45], our solutions are invariant under the full set of 16

supersymmetries of the deformed action. This can be checked explicitly by noting

that the supersymmetry transformation for Aµ = 0 reads [45]

�"X
I = i "̄�I , �" = �1

6
[XI , XJ , XK ]�IJK"� µ�3456 �

I XI" , (5.74)

where " is a constant Majorana spinor of SO(1, 10) satisfying �012" = ", and hence

our fuzzy three-sphere background satisfies the supersymmetry condition �"X
I =

0 = �" .

We can now apply the Higgs mechanism. We assume that one of the scalar

fields acquires a vev and perform a strong coupling expansion. Let us choose X4 =

gYM e4 + Y 4 and take a double scaling limit gYM, µ ! 1 with µ̂ = µ
gYM

fixed. The

equations of motion reduce to

⇥

Xj, [X i, Xj]
⇤

� 2µ̂ "ijk [Xj, Xk] = 0 ,

⇥

Xj, Xk, [Xj, Xk, X4]
⇤

+ 2µ̂ "4jkl [Xj, Xk, X l] = 0 ,

(5.75)

for i = 1, 2, 3. The first equation is the equation of motion of the IKKT model with

a Myers term and its solution is a fuzzy two-sphere, i.e. the matrices X i take values

in su(2). The second equation requires the Lie algebra su(2) to be consistently

embedded in A4. Altogether, we see that the fuzzy two-sphere originates as the

strong coupling limit of the fuzzy three-sphere. Geometrically, we reduced the fuzzy

three-sphere to its equator with radius gYM, which corresponds to the fuzzy two-

sphere solution. This is not the projection of the Hopf fibration S1 ,! S3 ! S2.
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Note that our deformation is very similar to that of the BMNmodel, which can be

considered as the BFSS model on a non-trivial pp-wave background. The fuzzy two-

sphere solution is in that case interpreted as giant gravitons, i.e. M2-branes wrapping

the fuzzy S2 with certain kinematical properties. The supersymmetric deformation

(5.66) has been holographically linked in [45] to the matrix model description of the

maximally supersymmetric type IIB plane wave in discrete light-cone quantization;

this Hpp-wave background is a ten-dimensional Cahen-Wallach symmetric space

with metric

ds2 = 2dx+ dx� +
X

I

⇣

dx2
I � 1

4
µ2 x2

I (dx
+)2

⌘

, (5.76)

and constant null self-dual Ramond-Ramond five-form flux HRR = µ dx+^(dx1234+

dx5678), where the sum runs over I = 1, . . . , 8 and dxIJKL := dxI ^dxJ ^dxK ^dxL,

which arises as a Penrose limit of the near horizon black hole geometry AdS5 ⇥ S5

in type IIB supergravity [22]. The fuzzy three-sphere solution obtained here was

identified in [45] with longitudinal D3-brane giant gravitons in this background.

5.5.4 3
� and the noncommutative plane

In the (undeformed) IKKT matrix model, the simplest classical solution is given

by operators X 1 = �1 and X 2 = �2, where �1 and �2 are the generators of

the Heisenberg algebra [�1,�2] = ✓ , ✓ 2 . The D-brane interpretation of this

solution involves D(�1)-branes described by the scalar fields in a background B-field

proportional to ✓�1 which are smeared out into a D1-brane, whose worldvolume is the

noncommutative space 2
✓. This solution can be evidently extended to direct sums

of 2
✓, by demanding that further pairs of scalar fields satisfy the Heisenberg algebra.

Note, however, that there is an issue with the normalizability of the central element

, as the Heisenberg algebra only has infinite-dimensional unitary representations.

The classical vacuum state of the reduced model with action (5.14) is given by

commuting matrices X M . Noncommutative spacetime arises instead as a vacuum
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configuration of the twisted reduced model with action

eSIKKT = Tr
⇣

� 1
4

�

[XM ,XN ]� ✓MN

� �

[X M ,X N ]� ✓MN
�

+ i
2
 ̄ �M [XM , ]

⌘

,

(5.77)

where the “twist” ✓MN is generically a 10⇥ 10 constant antisymmetric real matrix;

in the special case considered above only ✓12 = ✓ is nonzero. The solutions with

X M = �M , [�M ,�N ] = ✓MN correspond to BPS-saturated backgrounds which

preserve half theN = 2 supersymmetry. Upon introducing the covariant coordinates

XM = �M + ✓MN A N , (5.78)

corresponding to expansion around the infinitely-extended D-branes in the original

IKKT model, we obtain the action for U(1) noncommutative supersymmetric Yang-

Mills theory with 16 supercharges [6] and trivial vacuum state A M = 0; the gauge

fields A M are interpreted as dynamical fluctuations about the noncommutative

spacetime. To obtain the action for noncommutative Yang-Mills theory with U(m)

gauge group, corresponding to the background of m coincident D-branes, we expand

around the vacuum X M = �M⌦ m. Exactly the same sort of configurations arise in

our model. The configuration X i = ⌧i for i = 1, 2, 3 and Xj = 0 for j = 4, 5, 6, 7, 8,

where ⌧1, ⌧2, ⌧3, are generators of the Nambu-Heisenberg 3-Lie algebra ANH,

[⌧1, ⌧2, ⌧3] = ✓ , [ , ⌧i, ⌧j] = 0 , (5.79)

forms a solution to our equations of motion (5.70) in the absence of fluxes and for

Aµ =  = 0. Recently it was derived as a boundary condition on the geometry of

an M5-brane in the M2–M5 brane system in a constant background C-field [28]. It

has associated Lie algebra gANH
⇠= R6.

The solution XI = ⌧I , [⌧I , ⌧J , ⌧K ] = ⇥IJK , with ⇥IJK a constant real three-

form flux, describes the vacuum state of the “twisted” version of the scalar potential

of the action (5.67) based on the 3-Lie algebra A = ANH in the absence of masses
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and fluxes, which generically reads

eV (X) = � 1
12

�

[XI , XJ , XK ]�⇥IJK , [XI , XJ , XK ]�⇥IJK
�

. (5.80)

In fact, this solution preserves 16 supersymmetries. This follows from the general

fact that the model (5.67) based on a 3-Lie algebra A with central element for the

configuration (5.66) possesses an additional 16 kinematical supersymmetries [45]

�̃⇠X
I = 0 , �̃⇠ = ⇠ , (5.81)

where ⇠ is a constant spinor of SO(1, 10) satisfying �012⇠ = �⇠. Setting XI = ⌧I ,

µ = 0 and ⇠ = 1
6
⇥IJK �IJK" in the supersymmetry transformations (5.74) and

(5.81), we find the relations

(�" + �̃⇠)X
I = 0 , (�" + �̃⇠) = 0 , (5.82)

and hence half of the 32 supersymmetries are preserved in these backgrounds. This

is consistent with the calculation of [86] which shows that the one-loop vacuum

energy of these backgrounds vanishes.

We can interpret this solution as a quantized Nambu-Poisson manifold. If we

assume thatX3 acquires a vev proportional to a coupling constant, then in the strong

coupling limit the Nambu-Heisenberg algebra reduces to the ordinary Heisenberg

algebra. In this sense, the noncommutative plane 2
✓ can be regarded as the strong

coupling limit of 3
�. Again, we can extend our solution to the direct sum 3

� � 3
�

by demanding that three more of the scalar fields form another copy of the Nambu-

Heisenberg 3-Lie algebra; This is the quantized geometry relevant to an M5-brane

in a constant C-field background [28, 34]. As in the case of the IKKT matrix

model, there is a problem with the normalizability of the 3-central element ; The

compatibility condition (2.22) forbids us to assign finite norm to .
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5.5.5 Homogeneous plane wave backgrounds

The homogeneous plane wave with metric (5.76), and supported by a Neveu-Schwarz

flux, can be constructed as the group manifold of the twisted Heisenberg group whose

Lie algebra is an extension of the Heisenberg algebra by one additional generator J

defined by

[�M ,�N ] = ✓MN , [J,�M ] = ✓MN �N , [ ,�M ] = [ , J ] = 0 . (5.83)

The simplest case is ✓MN = "MN , M,N = 1, 2 corresponding to the Nappi-Witten

algebra [76], which is a non-semisimple lorentzian Lie algebra of dimension four.

The Lie brackets (5.83) are then those of the universal central extension of iso(2).

Let us now consider the mass and flux deformations of the IKKT model (5.69)

given by

µ1,6 = µ1,7 = µ , H5678 = h , (5.84)

where all other mass terms and components of H vanish. We choose the ansatz

X 6 = ↵ , X 7 = � J , X 8 = � �1 , X 9 = � �2 , (5.85)

with X M = 0 =  for M = 0, 1, 2, 3, 4, 5, for our solution. Then the equations of

motion (5.71) are satisfied if

µ2 = 576g2YM h2 and � = �24gYM h , (5.86)

while the parameters ↵ and � are arbitrary. These solutions are not supersymmetric.

This noncommutative background can be regarded as a linear Poisson structure

on a four-dimensional Hpp-wave. The invariant, non-degenerate symmetric bilinear

forms on the Nappi-Witten Lie algebra are parametrized by a real number b and are

defined by

(�i,�j) = �ij , ( , J) = 1 , (J, J) = b (5.87)

for i, j = 1, 2, with all other pairings vanishing. Then the group manifold possesses
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a homogeneous bi-invariant lorentzian metric defined by the pairing of the left-

invariant Cartan-Maurer one-forms as

ds24 = (g�1 dg, g�1 dg) . (5.88)

We can parametrize group elements g as

g = exp
�

ei� x+/2 z Z+ + e�i� x+/2 z Z�
�

exp
�

x� X 6 + x+ X 7
�

, (5.89)

where Z± = X 8 ± iX 9, x± 2 and z 2 . Then the metric in these global

coordinates reads

ds24 = 2↵� dx+ dx� + �2 |dz|2 � 1
4
�2

�

�2 |z|2 � b
�

(dx+)2 , (5.90)

which is the standard form of the plane wave metric of a four-dimensional Cahen-

Wallach symmetric spacetime in Brinkman coordinates. This spacetime is further

supported by a constant null Neveu-Schwarz three-form flux

HNS = �1
3

�

g�1 dg, d(g�1 dg)
�

= 2 i � �2 dx+ ^ dz ^ dz , (5.91)

which is proportional to the flux deformation h of the matrix model.

The hessian for this solution is a 16⇥ 16 matrix with eigenvalues

(0, 1728, 576, 1152)h of multiplicities (6, 1, 1, 8). The six flat directions corresponds

to the following symmetries of the matrix model defined by (5.14) and (5.69) with

the appropriate inner product (5.87). One direction corresponds to the U(1) sub-

group of the plane wave isometry group rotating the transverse space z 2 . Three

directions correspond to translations of the Nappi-Witten generators by multiples

of the central element . Of these, only shifts of the generator J are inner auto-

morphisms of the Lie algebra (5.83); In particular, the automorphism J 7! J � b

can be used to set the parameter b to 0 in (5.87), which is equivalent to the redef-

inition x� ! x� � 1
8

�2 �
↵

b x+ in the plane wave metric (5.90). The shifts in �i are

isometries which translate the transverse space along the null direction x+. Another

81



Chapter 5: Membrane matrix models

direction corresponds to scale transformations ! e⇣ , which becomes a Lie alge-

bra automorphism after redefining �i ! e⇣/2 �i. The final symmetry of the action

corresponds to the simultaneous scale transformations J ! e�⇣ J , �i ! e⇣ �i.

This Hpp-wave background is thus a stable solution of the deformed IKKT ma-

trix model. It arises as a Penrose limit of the maximally supersymmetric black

hole solution with near horizon geometry AdS2 ⇥ S2 in four-dimensional toroidal

compactification of string theory and M-theory, or alternatively of the near horizon

region of NS5-branes [22]. Extending this solution by an additional noncommuta-

tive plane gives a Cahen-Wallach space which is a Penrose limit of the near horizon

geometry AdS3 ⇥ S3 of the self-dual string in six dimensions [22].

We can find a similar solution to our 3-Lie algebra model if we consider the

Nappi-Witten 3-Lie algebra (2.33), if we choose the background (5.65) with mass

and flux terms

µ1,6 = µ1,7 = µ1,8 = µ , H5678 = h , (5.92)

and all other mass terms and components of H are zero. The obvious generalization

of the ansatz (5.85) to the 3-Lie algebra model reads

X4 = ↵ , X5 = � J , X6 = � ⌧1 , X7 = � ⌧2 , X8 = � ⌧3 , (5.93)

with Aµ = 0 =  and XI = 0 for I = 1, 2, 3, and from the equations of motion we

obtain conditions on the parameters

µ2 = 64h2 , � = �8h
�

, (5.94)

while the parameters ↵ and � are again arbitrary. It is natural to associate this solu-

tion with the extension of the pp-wave geometry (5.90) by an additional transverse

direction y 2 ,

ds25 = 2↵� dx+ dx� + �2
�

|dz|2 + dy2
�

� 1
4
�2

�

�2 (|z|2 + y2)� b
�

(dx+)2 . (5.95)

This five-dimensional Cahen-Wallach space arises as a Penrose limit of an AdS2⇥S3
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background, which corresponds to the near horizon geometry of black hole solutions

for N = 2 supergravity in five dimensions [22].

The hessian of this solution is a 25⇥ 25 matrix with eigenvalues

(0, 192, 64, 128, 256, 320)h of multiplicity (8, 5, 3, 3, 3, 3). Again the eight flat direc-

tions correspond to the SO(3) subgroup of the plane wave isometry group generating

rotations of the transverse space (z, y) 2 ⇥ ⇠= 3, to null translations of the

transverse space, to automorphisms J 7! J � b of the Nappi-Witten 3-Lie algebra,

and to conformal rescalings of the 3-central element . This background is thus a

stable solution of the 3-Lie algebra reduced model (5.3).
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Cohomological 3-algebra models

In what follows we shall be interested in the exact computation of the partition func-

tion of the ABJM matrix model using localization techniques. For this, we shall need

to deform the model in suitable ways in order to obtain a theory with equivariant

cohomological symmetries that will enable the localization procedure to be applied

exactly. In this chapter we shall study cohomological versions of our membrane

matrix models that are obtained by a topological twisting procedure, and point

out various ensuing di�culties. The possible inequivalent twists of Chern-Simons-

matter theories in three dimensions with N > 4 supersymmetry were classified in

[64]. In the case of an N = 8 theory with R-symmetry group SO(8), restricting the

supercharges to the vector representation does not generate any additional twists.

However, letting the supercharges transform in the spinor representation via the

triality of the R-symmetry group does allow for two additional twists. One of these

new twists was constructed in [68]; in this section we investigate the e↵ect of ap-

plying the Mukhi-Papageorgakis map to this topologically twisted theory. After

dimensional reduction, the ensuing 3-algebra model can potentially induce a coho-

mological deformation of the ABJM matrix model under the mappings of §5.4 which

is dual to a novel topological twisting of the ten-dimensional IKKT model.

We begin this chapter by reviewing a topological twist of the BLG theory. We

then show how this theory is mapped to theN = 4 equivariant extension of the Blau-

Thompson model under the Mukhi-Papageorgakis map. Applying this mechanism

to the dimensionally reduced twisted BLG theory, we find a novel topological twist
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of the ten-dimensional IKK matrix model. We then discuss lifting this twist to the

ABJM matrix model using the mappings of §5.4.

6.1 Topologically twisted BLG theory

We begin by briefly reviewing the topologically twisted theory constructed in [68]. In

the conventions of §5.1.2, the BLG action without deformations in euclidean space

reads

SBLG =

Z

d3x
⇣

i
2 ✏

µ⌫�Tr
gA

�

Aµ @⌫A� � 1
3 Aµ [A⌫ , A�]

�

+ 1
2 (rµX

I ,rµXI)

� i
2 ( ̄,�

µrµ ) +
i
4 ( ̄,�IJ [X

I , XJ , ]) + 1
12 ([X

I , XJ , XK ], [XI , XJ , XK ])
⌘

.

(6.1)

This action is invariant under the 16 supersymmetries generated by

�XI = i "̄�I  ,

� = rµX
I �µ �I "� 1

6 [X
I , XJ , XK ]�IJK " ,

�Aµ = i "̄�µ �I [X
I , ,�] . (6.2)

The main di↵erence from the split signature case is that the euclidean action involves

only the holomorphic part of the spinor, so that we must make the definition

 ̄ :=  > C , (6.3)

where C is the charge conjugation matrix satisfying

C �M C�1 =
�

� �M
�>

, C> = �C , (6.4)

and M is the 11-dimensional vector index which decomposes into µ = 1, 2, 3 and

I = 4, . . . , 11.

Consider now the rotational symmetry breaking Spin(11) ! Spin(3)⇥ Spin(3)⇥
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Spin(5), under which the corresponding gamma-matrices can be decomposed as

�µ = �µ ⌦ ⌦ ⌦ �3 ,�µ+3 = ⌦ �µ ⌦ ⌦ �1 , �i+6 = ⌦ ⌦ �i ⌦ �2

(6.5)

where �µ, µ = 1, 2, 3, are Pauli spin matrices and �i, i = 1, . . . , 5, are 4⇥ 4 gamma-

matrices in five euclidean dimensions. The charge conjugation matrix decomposes

as

C = i �2 ⌦ i �2 ⌦ C ⌦ , (6.6)

where C is the five-dimensional charge conjugation matrix. The SO(8) chirality

matrix is

�123 = �i�4···11 = ⌦ ⌦ ⌦ i �3 . (6.7)

This means that the spinors have four indices: two for the SO(3) factors, one for the

SO(5) factor, and one for SO(8) chirality. The twist is constructed by replacing an

SO(3) factor with the diagonal subgroup of Spin(3)⇥ Spin(3). Then we can expand

the twisted spinors

 = ( ,�µ) (6.8)

into an SO(3) scalar and vector. We also decompose the bosons

XI = (Xµ, Y i) (6.9)

into an SO(3) vector and five scalars.

The resulting twisted BLG action is the sum of a topological action

Stop =

Z

d3x
⇣

i
2
✏µ⌫� Tr

gA

�

A+
µ @⌫A

+
� + 1

3
A+

µ [A+
⌫ , A

+
� ]
�

� 1
2
✏µ⌫� (�̄µ,r+

⌫ �� � i �i [�⌫ , X�, Y
i])
⌘

(6.10)
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plus a metric-dependent cohomological action

Sm =

Z

d3x
⇣

1
4
(rµX⌫ �r⌫Xµ,rµX⌫ �r⌫Xµ) + 1

2
(r+

µY
i,r�

µY
i) (6.11)

+ 1
2
(rµX

µ + i
6
✏µ⌫� [X

µ, X⌫ , X�],rµX
µ + i

6
✏µ⌫� [X

µ, X⌫ , X�])

+ 1
2
([Y i, Y j, Y k], [Y i, Y j, Y k]) + 1

2
([Xµ, Y j, Y k], [Xµ, Y j, Y k])

+ ( ̄,r�
µ�

µ + i �i [Y
i, Xµ,�µ] +

i
4
�ij [Y

i, Y j, ])

+ i
4
(�̄µ, �ij [Y

i, Y j,�µ])
⌘

,

where the gauge fields and covariant derivatives have been complexified so that

A±
µ := Aµ ⌥ i

2
✏µ⌫� [X

⌫ , X�,�] , r±
µ := rµ ± i

2
✏µ⌫� [X

⌫ , X�,�] . (6.12)

The total action Stop + Sm is invariant under the supersymmetry transformations

�Xµ = "̄ �µ ,

�Y i = "̄ �i  ,

� = �
�

rµX
µ + i

6
✏µ⌫� [X

µ, X⌫ , X�]
�

" ,

��µ = ✏µ⌫� r⌫X� "+r+
µY

i �i "+
i
2
[Y i, Y j, Xµ] �ij " ,

�Aµ = i "̄
�

� [Xµ, ,�] + ✏µ⌫� [X
⌫ ,��,�] + �i [Y

i,�µ,�]
�

. (6.13)

Setting the fermions equal to zero in (6.13), one finds that the corresponding BPS

equations for the supersymmetric solutions of the field theory are

r+
µX

µ � i
3
✏µ⌫� [X

µ, X⌫ , X�] = 0 = r+
µX⌫ �r+

⌫ Xµ ,

r+
µY

i = 0 = F+
µ⌫ ,

[Y i, Y j, Y k] = 0 = [Y i, Y j, Xµ] (6.14)
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where the twisted field strength is defined by

F+
µ⌫ := Fµ⌫ � i ✏⌫�⇢ [rµX

�, X⇢,�] + i ✏µ�⇢ [r+
⌫ X

�, X⇢,�] (6.15)

with Fµ⌫ = [rµ,r⌫ ].

6.1.1 Mapping to the Blau-Thompson model

Let us consider the metric 3-Lie algebra A = A4 and apply the higgsing procedure

to the twisted BLG theory. We proceed by letting the scalar fields Y i have classical

values proportional to fixed 3-Lie algebra elements. Using SO(5) symmetry we can

assume that only Y 1 acquires a vacuum expectation value, and by SO(4) invari-

ance we can align this value in the 3-Lie algebra direction ⌧4. Hence we make the

replacement

Y 1 �! �g ⌧4 + Y 1 , (6.16)

where g is a gauge coupling constant. The reduction of the gauge fields works in

the usual way: With respect to the splitting gA = so(4) = so(3) � so(3), we make

the replacements

A±
µ �! A±

µ ± 1
2
Bµ , (6.17)

where now we regard A±
µ , Bµ 2 so(3). In the strong coupling limit g ! 1, 3-

brackets containing Y 1 reduce to the brackets [Xµ, X⌫ ] := [Xµ, X⌫ ,�⌧4] of the Lie

algebra A0 = so(3); We denote the invariant form on either factors of so(3) = su(2)

by TrA0 , which coincides with the Cartan-Killing form. We also define a modified

field strength

eFµ⌫ := Fµ⌫ � i ✏⌫�⇢ [rµX
�, X⇢] + i ✏µ�⇢ [r⌫X

�, X⇢] . (6.18)

By inserting this combination of gauge fields into the total action Stop + Sm, we

find that in the strong coupling limit the field Bµ only interacts with the Chern-
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Simons and scalar kinetic terms algebraically. Its equation of motion reads as

Bµ = 1
2g
✏µ⌫� eF

⌫� � 1
2
rµY

1 , (6.19)

where we keep only those terms that will remain in the strong coupling limit. In-

tegrating out the field Bµ, we find that the Chern-Simons term from the first line

of (6.10) reduces to the modified Yang-Mills term
R

d3x TrA0
�

( eFµ⌫)2
�

. We further

find that the field Y 1 decouples from the remaining terms of the total action, so we

introduce a new index a = 1, 2, 3, 4. After suitable rescaling of the fields we find

that the reduced action is given by

Sred =

Z

d3x TrA0
�

1
2
( eFµ⌫)

2 � i
2
✏µ⌫� �̄µ (r⌫�� + [�⌫ , X�])

+ 1
2
[Xµ, X⌫ ]2 + [Xµ, Y a]2 + 1

2
[Y a, Y b]2

+ 1
2
(rµX

⌫)2 �rµX
⌫ r⌫X

µ + 1
2
(rµX

µ)2 + 1
2
rµY a rµY

a

+  ̄rµ�
µ � i  ̄ [Xµ,�µ]� i

2
 ̄ �a [Y

a, ]� i
2
�̄µ �a [Y

a,�µ]
�

. (6.20)

As with the original twisted BLG action, the reduced action is the sum of a topo-

logical term and a metric dependent cohomological action.

In [64] it was shown that the Mukhi-Papageorgakis map is compatible with the

topological twisting procedure. We thus expect that the reduced model is some

topological twist of N = 8 supersymmetric Yang-Mills theory in three dimensions.

The possible twists for this gauge theory were classified in [23]: We can either arrive

at a twisted N = 2 supersymmetric BF-theory, or a twisted N = 4 equivariant

extension of the Blau-Thompson model. Comparing our lagrangian (6.20) with

those listed in [23], we find that we have obtained the on-shell formulation of the

N = 4 equivariant extension of the Blau-Thompson model; it can be realized as the

worldvolume gauge theory of D2-branes wrapping supersymmetric three-cycles in

Type IIA string theory. Maximally supersymmetric Yang-Mills gauge theories on

S3 are also considered in [43].
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6.1.2 Cohomological IKKT matrix model

As the equivariantly extended Blau-Thompson model is a twist of N = 8 supersym-

metric Yang-Mills theory, its dimensional reduction should yield some topological

twist of the IKKT matrix model. The zero-dimensional reduction of the action

(6.20) becomes

SBT = TrA0
�

1
2
([Aµ, A⌫ ]� i ✏⌫�⇢ [[Aµ, X

�], X⇢] + i ✏µ�⇢ [[A⌫ , X
�], X⇢])2

+ 1
2
[Aµ, X

⌫ ]2 � [Aµ, X
⌫ ] [A⌫ , X

µ] + 1
2
[Aµ, X

µ]2

+ 1
2
[Xµ, X⌫ ]2 + [Xµ, Y a]2 + 1

2
[Y a, Y b]2 + 1

2
[Aµ, Y

a]2

� i
2
✏µ⌫� �̄µ ([A⌫ ,��] + [�⌫ ,��])� i

2
�̄µ �a [Y

a,�µ]

+  ̄ ([Aµ,�
µ]� i  ̄ [Xµ,�µ]� i

2
 ̄ �a [Y

a, ])
�

. (6.21)

This matrix model defines an N = 4 equivariant extension of the usual IKKT

matrix model in ten dimensions, which can be solved exactly by using localization

techniques. It possesses a nilpotent N = 2 topological symmetry which acts on the

fields as

�Aµ = "̄ �µ ,

�Xµ = i "̄ �µ ,

��µ = i ✏µ⌫� [Aµ, A⌫ ] " ,

��̄µ = � �a [Aµ, Y
a] " ,

� = 0 ,

� ̄ = � [Aµ, X
µ] "� i �ab [Y

a, Y b] " ,

�Y a = � 2 i "̄ �a  . (6.22)

In §5.4 we showed how the reduced ABJM and BLG models are related. We

could thereby hope to lift the cohomological deformation (6.21) of the IKKT ma-

trix model to obtain an analogous twist of the ABJM matrix model which would

enable the exact computation of the deformed partition function using localization
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techniques. However, it was shown in [64] that for three-dimensional N = 6 Chern-

Simons-matter theories the only possible twists involve vector supercharges, and

hence it is not possible to directly obtain such a cohomological deformation of the

ABJM theory. In the next chapter we shall alleviate this problem by constructing a

cohomological matrix model by hand which explicitly localizes onto the BPS equa-

tions of the ABJM matrix model; hence it computes an equivariant index for the

model explicitly, and moreover possesses the same qualitative features as the matrix

model (6.21) under the Mukhi-Papageorgakis map.
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Equivariant 3-Algebra Models

In this final chapter we shall relate the computation of partition function of the

ABJM matrix model to those of a certain cohomological matrix model. Cohomo-

logical matrix models comprise a certain type of topological field theory which are

constructed by specifying a set of fields, a set of equations, and a set of symmetries;

the correlation functions constructed from this data compute intersection numbers

on the moduli space of solutions to the equations modulo the symmetries [21]. They

have actions of the form

S(�) = QV(�) , (7.1)

where Q is the nilpotent BRST charge of the model acting on a gauge-invariant

functional V(�) of the field content �. Matrix models of this type have appeal-

ing properties. For example, they are often exactly solvable by using localization

methods. A prominent example of this type of theory is due to Moore, Nekrasov

and Shatashvili [71]: They computed the path integral for the Yang-Mills matrix

model by constructing a related cohomological field theory, and then solving the

cohomological deformation using localization techniques. This formalism was gen-

eralized to a large class of quiver matrix models in [30]. Since our dimensionally

reduced membrane models and the IKKT matrix model are related via the Mukhi-

Papageorgakis map, we could expect that the deformation approach of [71] can be

lifted to our model; in this section we will apply this approach to the ABJM matrix
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model by constructing a related cohomological matrix model and then computing

the path integral using localization methods. The deformation of the matrix inte-

gral is accomplished using the global SU(4) = Spin(6) R-symmetry of the model,

and it preserves N = 2 supersymmetry. It involves a choice of a generic element

in the Cartan subalgebra of the R-symmetry group, which enables one to construct

well-defined matrix integrals.

The structure of this chapter is as follows. We begin with a review of equivari-

ant localization. Then, we discuss the localization of N = 2 Chern-Simons quiver

matrix models, and the related di�culties. We then proceed to construct a cohomo-

logical matrix model that will localizes onto the BPS equations of the ABJM matrix

model. We conclude with an analysis of the vacuum moduli space, and an explicit

computation of the partition function.

7.1 Equivariant localization

We begin by summarizing the main features involved in equivariant localization, in

a form that we shall employ it. Localization is a technique used in supersymmetric

quantum field theory by which a path integral over an infinite-dimensional field

domain is reduced to a finite-dimensional integral; here we apply it to reduce the

partition functions for our quiver matrix models to integrals over the critical point

locus of some matrix functional. For this, we perturb the action S(�) of our model

and consider the deformed partition function

Zt =

Z

d� e�S(�)�tQV(�) , (7.2)

where d� is a suitably normalized, supersymmetry-invariant measure on field space

and t 2 parameterizes a continuous family of partition functions such that Z :=

Z0 is the partition function of the original matrix model. Since the action S(�) is

supersymmetric, QS(�) = 0, and the scalar supercharge Q is nilpotent on gauge-

93



Chapter 7: Equivariant 3-Algebra Models

invariant operators, we have

@Zt

@t
= �

Z

d� QV(�) e�S(�)�tQV(�) = �
Z

d� Q
�

V(�) e�S(�)�tQV(�)
�

= 0 ,

(7.3)

where in the last step we have integrated by parts using the derivation property of

the BRST operator Q with QS(�) = 0, and used invariance of the measure d�

on field space under the BRST symmetry. This means that the original partition

function Z = Z0 is computed by (7.2) at any value of t. In the limit t ! 1, the

partition function often simplifies; in particular, if QV(�) is positive definite then

the contributions to the integral in this limit come from the minima �0 in field space

where QV(�0) = 0. The partition function (7.2) can then be evaluated by applying

the method of steepest descent. The di↵erences between contributions from �0 and

a generic point� in field space are exponentially suppressed as t ! 1; the dominant

contributions to this integral therefore come from points in a neighbourhood N (�0)

of �0. Assuming that e�S(�) varies slowly with respect to e�tQV(�), the partition

function reduces to

Z =

Z

QV(�)=0

d�0 e�S(�0)

Z

N (�0)

d�0 e�tQV(�0 ) (7.4)

with �0 2 N (�0) denoting fluctuations around the minima �0; here we have

dropped higher order terms using nilpotency of the supersymmetry variations. The

t-dependence of the fluctuation integral in (7.4) cancels by supersymmetry of the

measure d�0 when one performs the bosonic and fermionic integrations. Note that

for cohomological matrix models with actions of the form (7.1), we can apply this

argument directly to the integral
R

d� e�tS(�) itself, so that (7.4) is given by an

integral over minima of the original action S(�) with S(�0) = 0.
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7.1.1 Localization of N = 2 Chern-Simons quiver matrix

models

Let us apply this formalism to the matrix models having actions (C.10) with a

positive definite quadratic form Tr
g

; to ensure convergence of the matrix integral,

here we set A0 = iA3 with A3 hermitian and �0 = i �3. For the cohomological

deformation of this action we take

QV = QQ̄Tr
g

�

1
2
�̄ �� 2D �

�

, (7.5)

where the supercharge Q generates the nilpotent supersymmetry transformations

(C.6) with ⌘ = " and the spinor normalization "̄ " = 1. The deformation term then

reads explicitly as

QV = Tr
g

�

� 1
2
[Aµ, A⌫ ]

2 � [Aµ, �]
2 +D2 + i

2
�̄ �µ [Aµ,�] + i [�̄, �]�

�

. (7.6)

Writing XI = (Aµ, �),  = (�1,�2), �I = (�µ, i ), and F = D, this is just the

action of the four-dimensional Yang-Mills matrix model (B.5) (with g = 1). The

localization locus QV = 0 is given by

[Aµ, A⌫ ] = 0 = [Aµ, �] , D = 0 = � = �̄ (7.7)

for the gauge sector, which coincides with the BPS equations (C.11). By noting

that the matter part of the action (C.8) is itself a BRST-exact term

Sm = QQ̄Tr
g

�

 ̄  � 2Z† � Z
�

, (7.8)

we may choose the localization locus

Z = F = 0 =  (7.9)

for the matter interactions. Then the action (C.10) vanishes at the critical points.

For gauge group G = U(N), the fixed point locus thus coincides with the moduli
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variety of quadruples (Aµ, �) of commuting matrices; for G = U(NL)⇥ U(NR), it is

a subvariety of the vacuum moduli space of the ABJM matrix model defined by the

BPS equations (5.27). While the analogous localization procedure works nicely in

the field theory setting to provide exact results for supersymmetric Chern-Simons-

matter theories on S3 [60, 69] and their dimensional reductions to a point [7, 54], in

our dimensionally reduced model the result of the localization integral (7.4) comes

out to involve terribly divergent integrals over the Cartan subalgebra of g which are

beyond regularization; the partition function in our case is not well-defined because

the action lacks supersymmetric mass terms for the scalars. Below we shall cure

this problem by constructing a cohomological matrix model whose fixed point locus

provides a rigorous definition of the same moduli variety via a further equivariant

deformation parametrized by the R-symmetry group of the matrix model. We follow

the method of [30] to compute a supersymmetric equivariant index using localization

techniques. Although the localization integral still formally diverges, the presence

of twisted masses enables one to define it via a suitable prescription that we explain

in detail.

7.1.2 Cohomological matrix model formalism

As only theories with N > 4 supersymmetry can be twisted to produce deformed

scalar supercharges, we focus our attention henceforth on the N = 6 ABJM matrix

model from §5.2.2 for definiteness; we construct a cohomological matrix model which

localizes onto the BPS equations. In view of our discussion from §7.1.1, here we

consider instead the localization locus with AL,R
µ = 0 as the gauge fields do not

themselves transform under the R-symmetry; the BPS equations (5.27) then reduce

to the relations (5.46) of the double of the ABJM quiver (5.24). Put di↵erently, we

localize the partition function of the matrix model onto the F-term constraints rather

than the D-term constraints. We localize the matrix integral with respect to the

equivariant BRST operator in the gauge group G = U(NL)⇥U(NR), twisted by the

toric action of the maximal torus 4 of the R-symmetry group SU(4) of the matrix

model; this deforms the nilpotent BRST charge to a di↵erential of SU(4)-equivariant
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cohomology. We denote the generators of this torus by ✏i 2 , i = 1, 2, 3, 4, and set

ti = e i ✏i with the SU(4)-constraint

4
X

i=1

✏i = 0 (7.10)

on the toric parameters. The full symmetry group of the equivariant model is thus

U(NL)⇥ U(NR)⇥ 4. The transformation properties of the fields and equations of

motion under the toric action of 4 are given by

Zi 7�! e�i ✏i Zi , Zjk
i 7�! e�i (✏j+✏k�✏i) Zjk

i . (7.11)

In order to construct a supersymmetric matrix model we assign superpartners

to these fields to give multiplets (Zi, i) with BRST transformations

QZi =  i , Q i = �R Zi � Zi �L � ✏i Z
i , (7.12)

where the hermitian gauge parameters �L,R 2 End (VL,R) transform in the adjoint

representation of the factors U(NL,R) of the gauge group. (There is no sum over i in

the second equation.) We now add the Fermi multiplet of auxiliary fields (�jk
i , Hjk

i )

related to the BPS equations, where the antighosts are defined as maps �jk
i 2

Hom (VL, VR) with transformations that read as

QHjk
i = �R �

jk
i � �jk

i �L � (✏j + ✏k � ✏i)�
jk
i , Q�jk

i = Hjk
i . (7.13)

To these fields we include the gauge multiplet (�L,R, �̄L,R, ⌘L,R) which is necessary

to close the BRST algebra o↵-shell; these fields have transformations

Q�L,R = 0 , Q�̄L,R = ⌘L,R , Q⌘L,R =
⇥

�L,R, �̄L,R

⇤

. (7.14)

In order to obtain a localization onto a well-defined moduli space of matrices that

can be described as a non-singular quotient of a critical locus by the gauge group G,

we incorporate additional fields ', IL,R into the collection of bosonic fields, together

97



Chapter 7: Equivariant 3-Algebra Models

with their superparters ⇣, ⇢L,R into the collection of fermions. The new field ' 2

Hom (VL, VR) transforms in the bifundamental representation of the U(NL)⇥U(NR)

gauge group and in the determinant representation of the R-symmetry, and hence is

invariant under the toric action of 4 by (7.10). The fields IL,R 2 VL,R = NL,R are

also taken to be invariant under the action of the torus 4 for simplicity, and they

transform as vectors under the actions of the left and right gauge groups U(NL,R);

in what follows we shall refer to the fundamental matter fields IL,R as “framing

vectors”. The equations of motion for these additional fields are given by

' IL = 0 = '† IR (7.15)

and they ensure stability of the vacua of our quiver matrix model, as we discuss in

detail later on. Their BRST transformations are

Q' = ⇣ , QIL,R = ⇢L,R , Q⇣ = �R '� '�L , Q⇢L,R = �L,R IL,R .

(7.16)

We now add the corresponding antighost and auxiliary fields ⇠L,R 2 V ⇤
L,R and hL,R

with the BRST transformations

Q⇠L,R = hL,R , QhL,R = �⇠L,R �L,R . (7.17)

The BRST symmetry Q squares to a gauge transformation twisted by a 4 rotation

of the fields.

Following the treatment of §7.1.1, we will now write down a cohomological Yang-

Mills type matrix model that has this field content, equations of motion, and BRST
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transformations. It is given by the N = 2 action

Scoh = QTr V

�

(�jk
i

† (g
2
Hjk

i � i [Zj, Zk;Zi]) +  i (�L Z
†
i � Z†

i �̄R) + ⌘L [�L, �̄L]

� ⌘R [�R, �̄R] + ⇠†L ⌦ (g0 hL � I†R ')� ⇠†R ⌦ (g0 hR � I†L '
†) + �̄L ⇢L ⌦ I†L

� �̄R ⇢R ⌦ I†R + (�̄L '
† � '† �̄R) ⇣ +

g1
2
(Zi  †

i + Z†
i  

i) + g2
2
(IL ⌦ ⇢†L � IR ⌦ ⇢†R)

+ g3
2
(' ⇣† + '† ⇣) + hermitian conjugates

�

, (7.18)

where we used the canonical identifications End (VL,R) = VL,R ⌦ V ⇤
L,R. The deforma-

tion by the last three BRST-exact terms in (7.18) removes flat directions from the

matrix integral for the partition function (see [30] for details); the equivariant defor-

mation further has the e↵ect of generating mass terms for all bosonic fields, which as

we will see yields a well-defined matrix integral. Note that the relevant bosonic part

of the action from the first line of (7.18) is Tr V

�

g
2
Hjk

i
† Hjk

i �iHjk
i

† Zjk
i

�

; integrating

out Hjk
i gives the bosonic potential energy 1

2g
Tr V

�

Zjk
i

† Zjk
i

�

and supersymmetry,

and thus the path integral of the matrix model localizes onto the configurations

where Zjk
i = 0, as desired.

Since this matrix model is cohomological, it is independent of the couplings

g, g0, g1, g2, g3 in the action (7.18). We can compute the partition function by taking

various limits of these couplings. The first step is to use the U(NL)⇥ U(NR) gauge

symmetry to diagonalize the gauge generators �L,R; we denote their eigenvalues

by �a
L, a = 1, . . . , NL, and �b

R, b = 1, . . . , NR. This change of variables produces

Vandermonde determinants
Q

a<b

�

�b
L � �a

L

�2
and

Q

a<b

�

�b
R � �a

R

�2
in the path

integral measure. Let us now take the limit g ! 1. The dominant part of the

action is

g
2
Tr V

⇣

Hjk
i

† Hjk
i + �jk

i
† ��R �

jk
i � �jk

i �L � (✏j + ✏k � ✏i)�
jk
i

�

⌘

. (7.19)

The auxiliary BRST field integrals should not a↵ect the partition function, so we

fix their integration measures such that

Z

dHjk
i dHjk

i
† exp

⇣

Tr V

�

Hjk
i

† Hjk
i

�

⌘

= 1 . (7.20)
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Integrating over the fermions gives a factor of the form
Q

a,b

Q

i

Q

j<k

�

�b
L � �a

R +

✏j + ✏k � ✏i
�

. Now we take the limit g1 ! 1. The relevant part of the action reads

as

g1

4
X

i=1

Tr V

�

 i  †
i + Zi (Z†

i �R � �L Z
†
i � ✏i Z

†
i )
�

. (7.21)

Performing the matter integrations puts a term in the localized matrix integral of

the form
Q

a,b

Q

i

�

�b
L��a

R�✏i� i 0
��1

, where we have added a small imaginary part

to the generic real parameters ✏i to ensure convergence of the gaussian integrations.

Next we treat the stabilizing fields IL,R,' and their superpartners. We first take the

limit g0 ! 1. The dominant part of the action is

g0 Tr V

�

h†
L ⌦ hL � h†

R ⌦ hR � ⇠†L ⌦ ⇠L �L + ⇠†R ⌦ ⇠R �R

�

. (7.22)

The fields hL,R can be trivially integrated out, while performing the left and right

fermionic integrations puts terms in the path integral of the form
Q

a �
a
L

Q

b �
b
R.

Finally, performing the path integral in the large g2 limit gives terms of the form
�

Q

a �
a
L

��1 �Q

b �
b
R

��1
, while performing the integrations in the limit g3 ! 1 gives

terms of the form
�

Q

a,b (�
b
L � �a

R)
��1

.

Combining all of the above evaluations, the final result for the localization of the

cohomological matrix integral can be written in terms of integrations over the left

and right gauge generators in the Cartan torus of the gauge group as

Z ABJM
NL,NR

(✏) =

I NR
Y

a=1

d�a
R

2⇡ i

NL
Y

b=1

d�b
R

2⇡ i

Q

a<b

�

�b
L � �a

L

�2 Q

a<b

�

�b
R � �a

R

�2

NR
Q

a=1

NL
Q

b=1

�

�b
L � �a

R � i 0
�

(7.23)

⇥
NR
Y

a=1

NL
Y

b=1

4
Y

i=1

Q

j<k

�

�b
L � �a

R + ✏i � ✏j � ✏k
�

�b
L � �a

R � ✏i � i 0
.

As a Lebesgue integral, this expression formally diverges. Hence we define it via an

analytic continuation to a suitable contour integral prescription in the complex plane

which picks up the poles of the integrand; the precise choice of contour keeps track

of the auxiliary multiplet of fields that have been eliminated by taking the large
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coupling limits above. It is straightforward to see that the poles occur precisely

on the supersymmetric solutions of the cohomological matrix model. For this, we

consider the critical points of the action (7.18) where the fermions are set equal to

zero. They are determined by the zeroes of the BRST charge. By (7.12) and (7.16)

the fixed point equations are then

Zi
ab

�

�b
L � �a

R � ✏i
�

= 0 = 'ab

�

�b
L � �a

R

�

= 0 , IaR �
a
R = 0 = IbL �

b
L (7.24)

for each i = 1, 2, 3, 4, a = 1, . . . , NR, and b = 1, . . . , NL.

We can evaluate the integral (7.23) explicitly in dimensions NL = NR = 1. As

its integrand depends only on the combination � := �L � �R in this case, it can be

evaluated from the residue theorem by picking up the contributions from the simple

poles at � = 0 and � = ✏i, i = 1, 2, 3, 4, to get

Z ABJM
1,1 (✏) =

4
Y

i=1

1

✏i

Y

j<k

(✏i � ✏j � ✏k)

+
4
X

i=1

1

✏i

Y

l 6=i

1

✏i � ✏l

4
Y

i0=1

Y

j<k

(✏i0 + ✏i � ✏j � ✏k) . (7.25)

On the other hand, for NR = 0 one finds that the contour integral vanishes for

NL > 5; more generally, the integral vanishes for |NL � NR| su�ciently large, in

agreement with recent analysis of the ABJM theory through the partition function

of the U(NL)⇥ U(NR) lens space matrix model [8]. However, for higher dimensions

an explicit evaluation of (7.23) becomes increasingly intractable.

In the remainder of this section we shall develop an alternative local model for

the fluctuation integrals in (7.4) through a geometric analysis of the neighbourhoods

N (�0) around the fixed point subset of the critical point locus with respect to the

action of the R-symmetry torus 4. In particular, we compute an equivariant index

INL,NR(t) = TrHBPS
(�1)F

4
Y

i=1

tRi
i (7.26)

whose infinitesimal limit ✏i ! 0 explicitly evaluates the contour integrals (7.23); here

HBPS is the Hilbert space of framed BPS states of the cohomological field theory
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and Ri are the generators of the Cartan subalgebra of the global symmetry group

SU(4) = SO(6). In writing (7.26) we have used the fact that the hamiltonian H

vanishes in any cohomological field theory, and set the fugacity y = 1 for SO(2)

rotations as we take Aµ = 0.

7.1.3 Vacuum moduli space and fixed point analysis

The partition function (7.23) can be regarded as computing a regularised volume of

the non-compact vacuum moduli space MNL,NR [72], which we now define explicitly.

For this, we recall the equations of motion (7.15) which imply that the vector IL sits

in the kernel and the vector IR in the cokernel of '. The presence of the bifundmental

field ' also implies that the quotient of the fixed point locus Zjk
i = 0 by the gauge

group G is equivalent to a quotient by the action of the complexified gauge group

G . Then the moduli space can be represented as a quasi-projective variety

MNL,NR =
�

(Zjk
i )�1(0)

 ��

GL(NL, )⇥ GL(NR, ) , (7.27)

where the GIT quotient on the right is taken by removing the points at which the

action of G is not free. Such a quotient can be defined by imposing an additional

stability condition on the data (Zi, IL,R,'); a suitable notion of stability for our

purposes can be given as follows: We say that a datum (Zi, IL,R,') is stable if there

are no non-trivial proper subspaces WL,R ( VL,R which contain the vectors IL,R

and which are invariant under the bilinear commuting operators Z†
i Z

j, Zj Z†
i for

all i, j = 1, 2, 3, 4, respectively. Let us demonstrate that the gauge group G acts

freely on stable data. Suppose that (Zi, IL,R,') is fixed by (gL, gR) 2 G . Then

gR Zi = Zi gL, gL Z
†
j = Z†

j gR, and gL,R IL,R = IL,R, which respectively imply that

the subspaces WL,R = ker( � gL,R) have Z†
i Z

j(WL) ⇢ WL, Zj Z†
i (WR) ⇢ WR and

IL,R 2 WL,R. It follows by stability that gL,R = , and hence the G -action is free.

The corresponding quotient (7.27) defines a suitable moduli space of solutions to

the BPS equations (5.46) modulo gauge equivalence.

Let us now characterize the fixed points of this moduli space. A fixed point

⇧ = (Zi, IL,R,') 2 M

4

NL,NR
with respect to the action of 4 ⇢ SU(4) is characterized
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by the condition that an equivariant rotation is equivalent to a gauge transformation

of the fields, so that

gR Zi g�1
L = t�1

i Zi , gL,R IL,R = IL,R , gR ' = ' gL . (7.28)

Under the 4-action the vector spaces VL,R admit the weight space decompositions

VL,R =
M

↵2Z4

VL,R(↵) (7.29)

with

VL,R(↵) =
�

v 2 VL,R

�

� g�1
L,R v = t↵1

1 t↵2
2 t↵3

3 t↵4
4 v

 

(7.30)

for ↵ = (↵1,↵2,↵3,↵4) 2 4. It is a straightforward consequence of (7.28) that the

nonvanishing components of the maps (Zi, IL,R,') are given by

Zi : VL(↵) �! VR(↵� ei) , IL,R 2 VL,R(0) ,' : VL(↵) �! VR(↵) , (7.31)

where ei 2 4, i = 1, 2, 3, 4, is the vector with 1 in its i-th component and 0

elsewhere. With the weight space decompositions (7.30) and (7.31), it is also easy

to show that the solution of the fixed point equations (7.24) is given by setting the

eigenvalues of the gauge parameter matrices �L,R in this basis equal to

�↵L,R

L,R =
4
X

i=1

✏i ↵
L,R
i , (7.32)

and Zi = 0 = IL,R except for the components Zi
↵�ei,↵

and I0L,R. Moreover, the only

non-trivial components of the BPS equations (5.27) are given by

Zj
↵+ei�ej�ek,↵+ei�ek

�

Z†
i

�↵+ei�ek,↵�ek Zk
↵�ek,↵

= Zk
↵+ei�ej�ek,↵+ei�ej

�

Z†
i

�↵+ei�ej ,↵�ej Zj
↵�ej ,↵ , (7.33)
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and for the conjugates of these equations one has

�

Z†
j

�↵+ej+ek�ei,↵+ek�ei Zi
↵+ek�ei,↵+ek

�

Z†
k

�↵+ek,↵

=
�

Z†
k

�↵+ej+ek�ei,↵+ej�ei Zi
↵+ej�ei,↵+ej

�

Z†
j

�↵+ej ,↵ . (7.34)

We can describe the graded components of the 4-module decomposition (7.30)

explicitly in terms of the fixed point maps as follows. Recalling the discussion at

the end of §5.3, we unambiguously define subspaces of VL,R by

WL =
M

nij�0

4
Y

i,j=1

�

Z†
i Z

j
�nij IL , WR =

M

nij�0

4
Y

i,j=1

�

Zj Z†
i

�nij IR . (7.35)

Clearly IL,R 2 WL,R, the subspace WL is Z†
i Z

j-invariant, and WR is Zj Z†
i -invariant

for all i, j. Whence WL,R = VL,R by stability, and hence

VL(↵) =
M

P
j (nij�nji)=↵i

4
Y

i,j=1

�

Z†
i Z

j
�nij IL , VR(↵) =

M

P
j (nij�nji)=↵i

4
Y

i,j=1

�

Zj Z†
i

�nij IR .

(7.36)

Note that the constraints on the sums in (7.36) imply that the weights must satisfy

4
X

i=1

↵i = 0 . (7.37)

We define finite sets of lattice points ⇧L,R ⇢ 4 by

⇧L,R =
�

↵ 2 4
�

� VL,R(↵) 6= 0
 

, (7.38)

with
�

�⇧L,R

�

� = NL,R nodes; the meaning of the restrictions ⇧L,R ⇢ 3 implied by

(7.37) will be elucidated below. The vertices of these lattices are related by the

actions of commuting matrices through the commutative diagrams

VL(↵)

Z†
k Zl

✏✏

Z†
i Zj

// VL(↵ + ei � ej)

Z†
k Zl

✏✏

VL(↵ + ek � el)
Z†
i Zj

// VL(↵ + ei + ek � ej � el)

(7.39)
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and

VR(↵)

Zl Z†
k

✏✏

Zj Z†
i // VR(↵ + ei � ej)

Zl Z†
k

✏✏

VR(↵ + ek � el)
Zj Z†

i

// VR(↵ + ei + ek � ej � el)

(7.40)

We can gain a better combinatorial understanding of the sets (7.38) by employing

some machinery from the theory of quiver representations (see e.g. [18]); in this

setting we identify torus-invariant framed BPS states ⇧ in the cotangent bundle of

the moduli space of framed representations of the ABJM quiver (5.24) with fixed

dimension vector (NL, NR). In fact, many interesting features of BPS states in

three-dimensional supersymmetric gauge theories find natural realizations within the

quiver framework. For example, there is a conjectural Seiberg duality for Chern-

Simons gauge theories with N > 2 supersymmetry (see e.g. [3]); in the present

context this duality is realized as a mutation of quivers, which is a tilting procedure

that therefore yields an equivalence of the corresponding derived categories of quiver

representations [89].

A quiver representation is the same thing as a module for the path algebra A

of the ABJM quiver (5.24) with relations (5.46). The path algebra A is generated

by acting with arrows Zi, Z†
i , i = 1, 2, 3, 4, on the framing vectors IL,R, as in (7.35);

we refer to such quiver representations as cyclic modules. In this setting we replace

our definition of stable points ⇧ above with the more natural notion of ✓-stability

appropriate to moduli spaces of quiver representations [63]. By regarding the con-

jugate fields Z†
i as independent arrows, our quiver moduli problem is then formally

equivalent to that of the conifold quiver whose path algebra is a noncommutative

crepant resolution of the conifold singularity in six dimensions [84], except that we

use multiple framings as in [29] in order to preserve the left/symmetry inherent in

the original ABJM matrix model. This provides us with a concrete geometrical de-

scription of the vacuum moduli space. The R-symmetry torus 4 acts on the arrows

Zi, i = 1, 2, 3, 4; hence it acts on the whole path algebra A and leaves the relations

(5.46) invariant. The diagonal torus 2 of the gauge group G induces an action of
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= U(1) on the arrows via overall rescaling; this can be used to set e.g. ✏4 = 0.

Modding out by this gauge group action, the overall torus action is Q
⇠= 3. We

shall now argue that the Q-fixed points are isolated and are parametrized by cer-

tain filtrations of the finite pyramid partitions of the conifold quiver. For this, we

note that the Q-fixed points in the moduli space of framed cyclic modules corre-

spond bijectively to Q-fixed ideals in the path algebra A . There is a one-to-one

correspondence between Q-fixed modules of the path algebra A with relations and

the Q-fixed annihilator A of the framing vectors IL,R 2 VL,R consisting of stabi-

lizing bifundamental fields ' which satisfy (7.15); the finite-dimensional annihilator

A is a left ideal of the path algebra and it is generated by linear combinations of

elements of the same weight. We claim that A is generated by monomials of the

path algebra, such that its class [A] is an isolated Q-fixed point in the moduli space

of cyclic representations with dimension vector (NL, NR). For this, note that A is

generated by linear combinations of path monomials of the same weights. Given a

torus weight t↵1
1 t↵2

2 t↵3
3 , we can find finitely many monomial paths pl emanating from

the nodes VL,R. Elements of A with weight t↵1
1 t↵2

2 t↵3
3 are most generally written as

finite sums of paths
P

l ⇠l pl for some ⇠l 2 ; if ⇠l0 6= 0, then pl0 should be included

as one of the monomial generators of the Q-fixed annihilator A, since each pl0 is a

linear map from the framing vectors IL,R to di↵erent vector spaces. By exhausting

all monomial generators in this way, we conclude that the torus fixed point A is

generated by monomials and hence corresponds to an isolated point in the moduli

space of quiver representations.

The problem of parametrizing finite-dimensional cyclic A -modules (up to iso-

morphism) is now equivalent to the problem of parametrizing finite-codimensional

ideals of A (up to A -module isomorphism). Following [29], they are classified in

terms of filtered pyramid partitions of length two empty room configurations. Re-

call [84] that a pyramid partition consists of two types of layers of stones, labelled L

(coloured white) and R (coloured black), which denote one-dimensional subspaces

VL,R(↵) of given toric weights ↵ from (7.36). For i � 0, there are (i + 1)2 L-type

stones on layer 2i, and (i+ 1) (i+ 2) R-type stones on layer 2i+ 1. A finite subset
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⇧ of this combinatorial arrangement is a pyramid partition if, for every stone of ⇧,

the two stones immediately above it (of di↵erent colour) are also in ⇧.

In the ABJM limit NL = NR = N , we can make this description of the vacuum

moduli space somewhat more explicit. Then the stability condition implies that

the moduli space is a resolution of the N -th symmetric product orbifold (5.48)

provided by the Hilbert scheme ( 4)[N ] of N points in 4, which parametrizes zero-

dimensional subschemes of 4 of length N . The map (Zi, I) 7!
P

l �l ~zl from (5.50)

gives the Hilbert-Chow map

�

4
�[N ] �!

�

4
�N �

SN (7.41)

which is constructed in detail in [39]. Following the derivation in [30], the 4-fixed

points in this case are parametrized by three-dimensional solid partitions [5] of the

positive integer N ; they are specified by height functions ⇧(◆) 2 on a cubic lattice

with sites ◆ 2 3, such that ⇧(◆) � 0 are decreasing functions in each of the three

lattice directions satisfying
X

◆2 3

⇧(◆) = N . (7.42)

7.1.4 Equivariant index for the ABJM quiver

The localization formula allows one to calculate the contribution to the partition

function from each fixed point; as we have discussed, the sum over fixed points

is captured by applying the residue theorem to write the contour integral (7.23)

as a sum over simple poles at the critical points (7.32). As the explicit form of

the residue formula is di�cult to handle, we generalize the technique of [25] to

extract the eigenvalues of the superdeterminants of the BRST operator Q, arising

in the fluctuation integrals (7.4), from the character of the tangent space to the

moduli space at each critical point. Let Q be the fundamental representation of 4

with weight (1, 1, 1, 1); the dual module Q⇤ has weight (�1,�1,�1,�1). The local

geometry of the moduli space of BPS solutions MNL,NR near a particular fixed point
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⇧ = (Zi, IL,R,') can be described by the complex of vector spaces

End (VL)

�

End (VR)

d⇧1��!

Hom (VL, VR) ⌦ Q

�

VL � VR

�

Hom (VL, VR)

d⇧2��!

Hom (VL, VR) ⌦
�

Q⇤ ⌦
V2 Q

�

�

VL � VR

(7.43)

where the map d⇧
1 is an infinitesimal gauge transformation

d⇧
1

0

B

@

�L

�R

1

C

A

=

0

B

B

B

B

B

B

B

@

�R Zi � Zi �L

�L IL

�R IR

�R '� '�L

1

C

C

C

C

C

C

C

A

, (7.44)

while the map d⇧
2 is the di↵erential of the equations (5.46) and (7.15) that define

the vacuum moduli space so that

d⇧
2

0

B

B

B

B

B

B

B

@

Y i

vL

vR

Y

1

C

C

C

C

C

C

C

A

=

0

B

B

B

B

@

⇥

Y j, Zk;Zi

⇤

+
⇥

Zj, Y k;Zi

⇤

+
⇥

Zj, Zk;Yi

⇤

'† vR + Y † IR

' vL + Y IL

1

C

C

C

C

A

. (7.45)

The first cohomology ker(d⇧
2 )/im(d⇧

1 ) parametrizes deformations and provides a lo-

cal model for the tangent space T⇧MNL,NR at the fixed point ⇧. As supersymmetric

ground states are in one-to-one correspondence with cohomology classes of MNL,NR ,

the total cohomology of this complex is identified with the Hilbert space HBPS of

framed BPS states of the cohomological field theory.

The complex (7.43) has a natural meaning in the local geometry of the moduli

space of representations of the framed ABJM quiver. Write V for a given repre-

sentation of the ABJM quiver (5.24) with fixed dimension vector (NL, NR), and

Ext p(�,�) for the extension groups in the abelian category of modules for the path

algebra A . Then the first term of (7.43) is the space Ext 0(V, V ) = Hom (V, V ) of
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nodes of the quiver (5.24), the second term is the space Ext 1(V, V ) of arrows includ-

ing the framing, and the third term is the vector space Ext 2(V, V ) of all relations; as

there are no relations among the F-term relations (5.46), in our case Ext p(V, V ) = 0

for all p � 3 and the deformation complex contains only three terms. Note that

since here the 4 action leaves invariant the F-term relations (5.46) but not the

superpotential (5.25) itself, the deformation complex (7.43) is neither symmetric

nor self-dual; as a consequence, the local weight of a fixed point ⇧ is not simply

a sign (�1)dimT⇧MNL,NR but is rather a rational function of the equivariant defor-

mation parameters ✏i, i = 1, 2, 3, 4. In the following we compute the equivariant

Euler character of the deformation complex (7.43) for the ABJM quiver. Via our

deformation of the nilpotent BRST operator, the equivariant Euler character can

still be interpreted as a Witten index in the topologically twisted supersymmetric

quantum mechanics on the moduli space MNL,NR of supersymmetric vacua.

The equivariant character of the complex (7.43) can be calculated from its coho-

mology which is given by an alternating sum of the weights of the various 4 rep-

resentations. In the representation ring of the torus group 4, one has Q =
P

i t
�1
i

and
V2 Q =

P

i<j ti tj, and we obtain the virtual sum

ch
4

⇧ (t) = V ⇤
L ⌦ VL + V ⇤

R ⌦ VR �
⇣

�

V ⇤
L ⌦ VR

�

4
X

i=1

t�1
i + VL + VR + V ⇤

L ⌦ VR

⌘

+
�

V ⇤
L ⌦ VR

�

4
X

i=1

ti
X

j<k

t�1
j t�1

k + VL + VR , (7.46)

where we use the weight decompositions of the vector spaces

VL,R =
X

↵L,R2⇧L,R

4
Y

i=1

t
↵L,R
i

i =
X

↵L,R2⇧L,R

3
Y

i=1

t
↵L,R
i +↵L,R

1 +↵L,R
2 +↵L,R

3
i (7.47)

as 4 representations, and the second equality here follows from the constraints

(7.10) and (7.37); the dual involution acts on the weights as inversion (ti)⇤ = t�1
i .

Inserting this decomposition into the character formula (7.46) and using the SU(4)-
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constraint t1 t2 t3 t4 = 1 we find

ch
4

⇧ (t) =
⇣

X

j 6=k

tj t
2
k + 2

4
X

j=1

t�1
j � 1

⌘

X

↵L,R2⇧L,R

4
Y

i=1

t
↵R
i �↵L

i
i

+
X

↵L,�L2⇧L

4
Y

i=1

t
↵L
i ��L

i
i +

X

↵R,�R2⇧R

4
Y

i=1

t
↵R
i ��R

i
i . (7.48)

The corresponding top form then gives the equivariant version of the fluctuation

integral over the normal bundle N (⇧) in (7.4) at each fixed point ⇧ of the vacuum

moduli space MNL,NR . As the second cohomology of the complex (7.43) is non-

vanishing, there is a non-trivial obstruction theory for the moduli space and the

localization formula computes the equivariant Euler character of the virtual tangent

bundle over MNL,NR , i.e. the di↵erence in K-theory between the tangent and normal

bundles at each fixed point of the moduli space. By summing over all fixed points

⇧ we arrive at an explicit combinatorial expression for the contour integral (7.23)

given by the finite sum

Z ABJM
NL,NR

(✏) =
X

⇧2M 4
NL,NR

Q

↵L,�L2⇧L

⇣ 4
P

i=1

�

↵L
i � �Li

�

✏i

⌘

Q

↵R,�R2⇧R

⇣ 4
P

i=1

�

↵R
i � �Ri

�

✏i

⌘

Q

↵L,R2⇧L,R

⇣ 4
P

i=1

�

↵R
i � ↵L

i

�

✏i

⌘

⇥
Y

↵L,R2⇧L,R

4
Y

j=1

⇣

�

↵R
j � ↵L

j � 1
�

✏j +
X

i 6=j

�

↵R
i � ↵L

i

�

✏i

⌘2
(7.49)

⇥
Y

j 6=k

⇣

�

↵R
j � ↵L

j + 1
�

✏j +
�

↵R
k � ↵L

k + 2
�

✏k +
X

i 6=j,k

�

↵R
i � ↵L

i

�

✏i

⌘

.

Consistently with the fact that it computes an equivariant index, the partition func-

tion Z ABJM
NL,NR

(✏) is a Laurent series in the deformation parameters (✏1, ✏2, ✏3) with

rational coe�cients. The partition weights ↵L,R 2 ⇧L,R in this formula are nat-

urally interpreted as R-charges of framed BPS particles of the three-dimensional

supersymmetric gauge theory.
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Summary of results

In chapter 4 we considered the quantization of Nambu-Poisson structures. We de-

scribed an extension of the usual quantization axioms in which Nambu-Poisson

structures are translated to n-Lie algebras for both spheres and hyperboloids. We

interpreted the Nambu-Heisenberg n-Lie algebra in terms of foliations of Rn by

fuzzy spheres and fuzzy hyperboloids. We then applied this result to the quantum

geometry of M5-branes in M-theory.

In chapter 5 we constructed our membrane matrix models from dimensional

reduction of the BLG and ABJM theories. We showed how these models map to the

IKKT matrix model under the Mukhi-Papageorgakis map. We demonstrated how

these models are related to each other by using specific scaling limits, or through

particular choice of 3-algebra. We then found several stable BPS solutions to the

3-Lie algebra model, and interpreted them as quantized Nambu-Poisson manifolds.

In chapter 6 we studied cohomological 3-algebra models in order to derive a twist

for the reduced ABJM model. We studied a particular twist of the BLG theory, and

showed that under the Mukhi-Papageorgakis map it reduces to the on-shell N = 4

equivariant extension of the Blau-Thompson model. For the dimensionally reduced

case, we derived a novel twist of the IKKT matrix model, with the hope that this

twist could be lifted to the ABJM matrix model via the mappings of the previous

chapter. We explain why this is not possible.

In chapter 7 we avoided the the problem of twisting the ABJM matrix model by

constructing a cohomological matrix model by hand which localizes onto the BPS
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equations of the ABJM matrix model. We presented the construction of the cohomo-

logical matrix model. We then analyzed its vacuum moduli space by characterizing

its fixed points. We concluded by explicitly calculating its partition function, which

computes an equivariant index which enumerates framed BPS states.
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Appendix A

Generators of Cli↵ord algebras

If �i, i = 1, . . . , 2d� 1 generate the Cli↵ord algebra Cl( 2d�1), then the 2d-tuple

(�µ) = (�i ⌦ �2, s ⌦ �1) , s = 2d�1 , µ = 1, . . . , 2d (A.1)

generates Cl( 2d). On the other hand, we just add �ch := id �1 · · · �2d to the gen-

erators of Cl( 2d) to obtain a set of generators of Cl( 2d+1). We can start the

induction from the usual Pauli matrices �i, which generate Cl( 3) and satisfy

[�i, �j] = �2 i "ijk �k. In this case, all the generators are hermitian and we have

�ch = diag( s,� s). In our chapter on quantization, we use the basis of Pauli

matrices given by

�1 =

0

B

@

0 1

1 0

1

C

A

, �2 =

0

B

@

0 i

�i 0

1

C

A

, �3 =

0

B

@

1 0

0 �1

1

C

A

. (A.2)

Recall that for even d + 1, there is a set of generators �a, a = 1, . . . , r2 of u(r),

r = 2
d�1
2 given by

1p
r

r ,
2

r
�µ ,

2 i

r
�µ⌫ ,

2 i

r
�µ⌫⇢ ,

2

r
�µ⌫⇢� , . . . , (A.3)

where �µ1...µk is the normalized antisymmetric product of gamma-matrices �µ1 , . . . , �µk .
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With this normalization, they satisfy the Fierz identity

�a↵� �
a
�� = �↵� ��� . (A.4)

As these generators of u(r) form an orthogonal set with respect to the Hilbert-

Schmidt norm, we conclude that all of them are traceless except for the identity

matrix.
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IKKT matrix model

In this appendix we briefly review the construction of the four dimensional IKKT

matrix model as a dimensional reduction of supersymmetric Yang-Mills theory [57].

In 4 dimensions, the N = 1 Yang-Mills lagrangian reads as

L = 1
4
FijFij � i

2
 ̄�iri . (B.1)

The fields of this model are the gauge fields Aµ and the fermions  ↵. The index i

runs from 1 to 4. The fields are taken to be in the adjoint representation of a gauge

group G. The field strength is defined as

Fij = @iAj � @jAi + i[Ai, Aj] . (B.2)

The covariant derivative reads as

ri = @i + i[Ai, ] . (B.3)

The relevant gauge transformations are

 ! g g�1 , Ai ! gAig
�1 � i(@ig)g

�1 . (B.4)

We obtain a matrix model from this action by assuming that the fields are inde-

pendent of space and time. This e↵ectively means we drop terms involving partial
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derivatives. The resulting Yang-Mills matrix model reads as

L = �Tr(1
4
[Ai, Aj][Ai, Aj] +

1
2
 ̄�i[Ai, ]) . (B.5)
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Dimensional Reduction of

supersymmetric Chern-Simons

Matter Theories

This appendix concerns reduced supersymmetric Chern-Simons matter models. The

resulting model is a quiver matrix model, which we use in the main body of this thesis

provide an alternative construction of the ABJM matrix model. First, we review

the general N = 2 Chern-Simons theory coupled to matter, and then consider the

dimensional reduction of this theory to zero dimensions. Then, we show how in

the special case of a product gauge group, this model and its supersymmetries may

be mapped to the N = 1 4-dimensional IKKT matrix model under the Mukhi-

Papageorgakis map.

C.1 N = 2 Chern-Simons quiver matrix models

The field content for the N = 2 supersymmetric Chern-Simons gauge multiplet V

in three-dimensional flat space 1,2 consists of a gauge field Aµ, µ = 0, 1, 2, two

auxiliary scalar fields D and �, and a two-component complex auxiliary fermion

field �. The fields are valued in the Lie algebra g of a matrix gauge group G. The
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action is given by

Sg =

Z

d3x  Tr
g

⇣

✏µ⌫�
�

Aµ @⌫A� +
2 i
3
Aµ A⌫ A�

�

� �̄ �+ 2D �
⌘

, (C.1)

where  2 is a coupling constant and Tr
g

is an invariant quadratic form on the Lie

algebra g. The generators of the Cli↵ord algebra C`(R1,2) are the gamma-matrices

�µ which satisfy the anticommutation relations

�

�µ, �⌫
 

= 2⌘µ⌫ (C.2)

and are taken to be Pauli spin matrices

�0 =

0

B

@

1 0

0 �1

1

C

A

, �1 =

0

B

@

0 1

1 0

1

C

A

, �2 =

0

B

@

0 �i

i 0

1

C

A

, (C.3)

while the spinor adjoint is

�̄ = �† �0 . (C.4)

We perform a dimensional reduction to zero dimensions in which the gauge fields

Aµ become a collection of g-valued scalar fields, and similarly for the other fields of

V . The reduced action is

Sg =  Tr
g

�

2 i
3
✏µ⌫� Aµ A⌫ A� � �̄ �+ 2D �

�

. (C.5)
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This action is invariant under the N = 2 supersymmetry transformations

�Aµ = i
2
(⌘̄ �µ �� �̄ �µ ") ,

�� = i
2
(⌘̄ �� �̄ ") ,

�D = i
2
(⌘̄ �µ [Aµ,�] + [Aµ, �̄] �

µ ") + i
2
(⌘̄ [�, �] + [�̄, �] ") ,

�� = � i
�

1
2
�µ⌫ [Aµ, A⌫ ] +D + �µ [Aµ, �]

�

" ,

��̄ = i ⌘̄
�

� 1
2
�µ⌫ [Aµ, A⌫ ] +D + �µ [Aµ, �]

�

, (C.6)

where ⌘ and " are two independent Dirac spinors of SO(1, 2) and �µ⌫ := 1
2
[�µ, �⌫ ].

The two supersymmetry transformations generated by ⌘ or " alone commute. The

commutator of an ⌘-supersymmetry with an "-supersymmetry generates a sum of a

gauge transformation, a Lorentz rotation, a dilatation, and an R-rotation.

This action can be extended to include supersymmetric matter fields. The matter

content is a chiral multiplet � with component fields � = (Z,Z†, ,  ̄, F, F †), which

are also valued in the Lie algebra g. The field Z is a complex matter field, F is an

auxiliary complex scalar field, and  is a two-component Dirac spinor field. The

action reads

Sm =

Z

d3x Tr
g

�

rµZ
† rµZ � Z† �2 Z + Z† DZ + F † F

+ i  ̄ �µ rµ �  ̄ �  � i  ̄ �Z + iZ† �̄  
�

, (C.7)

where the gauge covariant derivatives act as rµZ := @µZ + i [Aµ, Z]. We perform a

dimensional reduction as above, so that the reduced matter action reads as

Sm = Tr
g

�

� [Aµ, Z
†] [Aµ, Z]� Z† �2 Z + Z† DZ + F † F

�  ̄ �µ [Aµ, ]�  ̄ �  � i  ̄ �Z + iZ† �̄  
�

. (C.8)
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The supersymmetry transformations are given by

�Z = ⌘̄  ,

�Z† =  ̄ " ,

� = i
�

�µ [Aµ, Z]� � Z
�

"+ F "⇤ ,

� ̄ = i ⌘̄
�

�µ [Aµ, Z
†] + Z† �

�

,

�F = ⌘̄ ⇤ ��µ [Aµ, ] + i�Z + �  
�

. (C.9)

The complete action of the reduced N = 2 Chern-Simons-matter theory thus

reads as

S = Tr
g

⇣


�

2 i
3
✏µ⌫� Aµ A⌫ A� � �̄ �+ 2D �

�

� [Aµ, Z
†] [Aµ, Z]� Z† �2 Z + Z† DZ

+ F † F �  ̄ �µ [Aµ, ]�  ̄ �  � i  ̄ �Z + iZ† �̄  
⌘

. (C.10)

The BRST transformations imply that the supersymmetric configurations satisfy

[Aµ, A⌫ ] = 0 = [Aµ, �] , [Aµ, Z] = 0 = [Aµ, Z
†] , D = 0 = F . (C.11)

When the gauge group is a product of unitary groups

G =
r
Y

a=1

U(Na) , (C.12)

we decompose the reduced vector multiplet as V =
L

a V a where V a 2 End (Va)

are regarded as linear transformations of complex inner product spaces Va = Na

for a = 1, . . . , r, while the reduced matter multiplet is decomposed as � =
L

a,b �
ab

with �ab 2 Hom (Va, Vb) and �†
ab 2 Hom (Vb, Va) for a, b = 1, . . . , r; then Tr

g

refers

to the trace in the fundamental representation of G which is possibly graded over the

factors of G. In this case the supersymmetric Chern-Simons-matter theory reduces

to a quiver matrix model, which defines a finite-dimensional representation of the

double of the quiver with r nodes that carry the gauge degrees of freedom Aa
µ (plus
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their superpartners and auxiliary fields) transforming in the adjoint representation

of U(Na), and with an arrow from node a to node b for every non-zero matter field

Zab (plus their superpartners and auxiliary fields) transforming in the bifundamental

representation of U(Na)⇥ U(Nb), along with an arrow in the opposite direction for

the adjoint Z†
ab. The double quiver is further equiped with a set of relations among

the arrows that follow from the BPS equations of the supersymmetric gauge theory,

which define a system of static quiver vortices; geometrically, representations of the

double quiver are cotangent to representations of the original quiver.

C.1.1 A1 quiver matrix model

The simplest example of the above construction is with a product gauge group

G = U(NL)⇥ U(NR) . (C.13)

The matter content � of the theory provides a representation of the double of the

A1 quiver

• // • (C.14)

We place complex inner product spaces VL = NL and VR = NR at the left

and right nodes of the quiver (C.14), respectively. The matter field is regarded

as a linear map Z : VL ! VR representing the arrow of the quiver (C.14), with

hermitian conjugate Z† : VR ! VL. The matrices Z, F and  are bifundamental

fields, i.e. they transform in the fundamental representation of U(NR) and in the

anti-fundamental representation of U(NL). The vector multiplet has field content

V =
�

AL,R
µ , �L,R,�L,R, �̄L,R, DL,R

�

. The matrices AL,R
µ 2 End (VL,R) for µ = 0, 1, 2

transform in the adjoint representation of U(NL,R), �L,R are two-component complex

fermionic matrices, while �L,R and DL,R are auxiliary matrix fields. The invariant

quadratic form is given by Tr
g

= Tr VL � (�Tr VR), and the action of the quiver
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matrix model takes the form

SA1 = Tr V

✓


⇣

2 i
3
✏µ⌫�

�

AL
µ A

L
⌫ A

L
� � AR

µ AR
⌫ AR

�

�

� �̄L �L + �̄R �R + 2DL �L

� 2DR �R
⌘

�
�

AL
µ Z

† � Z† AR
µ

� �

AR
µ Z � Z AL

µ

�

�  ̄ �µ
�

AR
µ  �  AL

µ

�

+ F † F + Z DL Z† � Z† DR Z � i  ̄ Z �L + i  ̄ �R Z + i �̄L Z†  � iZ† �̄R  

+ Z† Z �2
L � Z† �2

R Z + 2Z† �R Z �L �  ̄  �L +  ̄ �R  

◆

, (C.15)

where the trace is taken over V = VL or V = VR where appropriate. The supersym-

metry transformations of this matrix model are given by

�AL,R
µ = i

2

�

⌘̄ �µ �
L,R � �̄L,R �µ "

�

,

��L,R = i
2

�

⌘̄ �L,R � �̄L,R "
�

,

�DL,R = i
2 ⌘̄ �

µ
⇥

AL,R
µ ,�L,R

⇤

+ i
2

⇥

AL,R
µ , �̄L,R

⇤

�µ "+ i
2 ⌘̄

⇥

�L,R,�L,R
⇤

+ i
2

⇥

�̄L,R,�L,R
⇤

" ,

��L,R = i
�

1
2 �

µ⌫
⇥

AL,R
µ , AL,R

⌫

⇤

�DL,R � �µ
⇥

AL,R
µ ,�L,R

⇤�

" ,

�Z = ⌘̄  ,

�Z† =  ̄ " ,

� = i �µ
�

Z AL
µ �AR

µ Z
�

"� i "
�

Z �L � �R Z
�

+ F "⇤ ,

� ̄ = i ⌘̄ �µ
�

Z†AR
µ �AL

µ Z†�+ i ⌘̄
�

�L Z† � Z† �R
�

,

�F = ⌘̄ ⇤
⇣

�µ
�

 AL
µ �AR

µ  
�

+ i
�

Z �L � �R Z
�

+
�

 �L � �R  
�

⌘

. (C.16)

We begin with the simplest example for which the reduction is relatively straight-

forward to construct. We consider the dimensionally reduced N = 2 Chern-Simons-

matter theory (C.15), and show that under the Mukhi-Papageorgakis map it reduces

to the four-dimensional IKKT matrix model with N = 1 supersymmetry and gauge

group SU(N). We work with the Cli↵ord algebra C`( 1,2), and use Dirac spinors.

Our gamma-matrices are the Pauli spin matrices, and the Majorana conditions read

"̄ � = �̄ " , "̄ �µ � = ��̄ �µ " . (C.17)
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As previously, we break the gauge symmetry to a U(N) subgroup by making the

field replacements (5.28). We also restrict the matter field Z to be hermitian. We

decompose Z into components Z 0 2 su(N) and Z0 2 u(1), and expand it around a

classical value proportional to the identity with a coupling constant g as

Z = g + Z0 + Z 0 . (C.18)

Using global U(1) symmetry, we may take g 2 . For the gaugino and auxiliary

fields, we take a diagonal limit in which

�L = ��R =: � , DL = DR =: D , �L = �R =: � , (C.19)

and further couple the gauge and matter sectors of the model together by the re-

quirements

� = �g  , � = g Z , D = �g F . (C.20)

With these gauge field replacements, and diagonal limits of the gauginos and

auxiliary fields, we find that the pure Chern-Simons component from the first line

of the action (C.15) reduces to (5.56). For the remaining matter contributions in

(C.15), by inserting the field identifications above and expanding around the vacuum

value we obtain

Sm = Tr V

�

� [Aµ, Z
0 ]2 � 4g2 Bµ B

µ

+ i  ̄ �µ [Aµ, ]�  ̄ �µ {Bµ, }+ i g  ̄ [Z 0, ] + F 2
�

. (C.21)

We now scale the fields appropriately and take the strong coupling limit g ! 1.

We can integrate out the auxiliary field Bµ using its equation of motion

Bµ = 
g2
✏µ⌫� [A

⌫ , A�] . (C.22)

In deriving this equation we have ignored cubic and higher order interactions in-
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volving Bµ that become suppressed in the strong coupling limit. Inserting (C.22)

into the pure Chern-Simons action (5.56), we find

Sg = �42

g2
Tr V

�

[Aµ, A⌫ ]
2
�

. (C.23)

We scale the matter field Z by the factor 1
g
, and similarly for the matter fermion

(and its adjoint) and the auxilliary field F . Replacing Bµ by its equation of motion

(C.22), we find that the matter action (C.21) reduces in the strong coupling limit

to

Sm = Tr V

�

� 1
g2
[Aµ, Z

0 ]2 � 42

g2
[Aµ, A⌫ ]

2 + i
g2
 ̄ �µ [Aµ, ] +

i
g2
 ̄ [Z 0, ] + 1

g2
F 2
�

.

(C.24)

We combine the scalar and gauge fields into a single field

XI = (Xµ, X3) = (Aµ, Z 0 ) (C.25)

where I = 0, 1, 2, 3. Then with  = 1
4
, the sum of (C.23) with the first two terms

of (C.24) can be written as � 1
2g2

Tr V

�

[XI , XJ ]2
�

, which is the bosonic potential of

the IKKT model. For the last three terms of (C.24), we define a four-dimensional

Majorana spinor of the Cli↵ord algebra C`( 1,3) by

 =
�

 1, 2
�>

, (C.26)

where each real component  1,  2 of the Dirac spinor  is a two-component Majo-

rana spinor. We then construct a set of four-dimensional gamma-matrices from our

three-dimensional Pauli spin matrices as

�µ = i

0

B

@

0 �µ

��µ 0

1

C

A

, �3 = �i

0

B

@

0

0

1

C

A

. (C.27)
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For the chirality and charge conjugation matrices, we take

�5 =

0

B

@

0

0 �

1

C

A

, C =

0

B

@

�i �2 0

0 i �2

1

C

A

. (C.28)

We can then combine the last three terms of (C.24) as 1
g2

Tr V

�

�  ̄ �I [XI , ]+F 2
�

,

which is the fermionic term of the IKKT model together with an auxiliary field.

Altogether the A1 quiver matrix model action is reduced under the Mukhi-

Papageorgakis map to the action of the four-dimensional IKKT model

SIKKT = 1
g2

Tr V

�

� 1
2
[XI , XJ ]2 �  ̄ �I [XI , ] + F 2

�

. (C.29)

C.1.2 Supersymmetry reduction

We will now show explicitly how the supersymmetry transformations of the A1 quiver

matrix model map to those of the IKKT model under the Mukhi-Papageorgakis map.

The original matrix model has N = 2 supersymmetry, while the IKKT model in

four dimensions has N = 1 supersymmetry. Hence the scaling limit must reduce

the supersymmetry; we do this by identifying the infinitesimal supersymmetry gen-

erators in (C.16) so that " = ⌘ are no longer independent. We demonstrate the

reduction on each field transformation of (C.16) individually.

For the transformations of the gauge fields Aµ in (C.16), we make the gauge field

identifications, identify the supersymmetry generators with each other, and scale

the spinor. In four dimensions we write the fermions as four-component Majorana

spinors obeying (C.17), and along with the four-dimensional gamma-matrices (C.27)

we can write

�Aµ = "̄�µ � . (C.30)

Following a similar process for the supersymmetry transformations of the matter

field Z, the requirement (C.19) reveals the Majorana spinor condition (C.17). After

expanding Z around its classical value and scaling, we can combine its supersym-
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metry transformation with (C.30) to get

�XI = "̄�I  . (C.31)

For the supersymmetry variation of the auxiliary field D in (C.16), we identify

the supersymmetry generators with each other, scale the fields and expand around

the classical value, so that the resulting supersymmetry transformation reads as

�D = i
2

�

"̄ �µ [Aµ,�] + [Aµ, �̄] �
µ "
�

+ i
2

�

"̄ [�, Z 0 ] + [�̄, Z 0 ] "
�

. (C.32)

Identifying the four-dimensional gamma-matrices (C.27) and (C.28), applying the

Majorana spinor identity (C.17), and combining Z 0 with Aµ as in (C.25) results in

the transformation

�D = i "̄�5 �I [XI , ] . (C.33)

A similar modification occurs for the supersymmetry transformation of the auxiliary

field F . We take an axial combination (5.28) of the gauge fields in (C.16) which

reduces the interaction of the fermion and the gauge field to a commutator, at the

cost of introducing the field Bµ, so that after making the field replacements (C.19)

we arrive at

�F = "̄ ⇤��µ [Aµ, ] + i �µ {Bµ, }+ [�, ] + i {�, Z}
�

. (C.34)

Expanding around the vacuum, and taking the appropriate scaling limit, the Bµ

contribution decouples. After combining the gauge and matter fields, and rewriting

the spinor and gamma-matrices, the reduction (C.34) coincides with (C.33).

Finally, we consider the spinor supersymmetry transformations. For the gaugino

variation �� in (C.16), we make the usual field identifications and scalings, and

combine the terms involving Aµ and Z to get

� = � i�IJ [X
I , XJ ] "� F " . (C.35)
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For the matter fermions in (C.16), we take the axial limit of the gauge fields and

make the field replacements to get

� = i �µ "
�

[Aµ, Z] + i {Bµ, Z}
�

+ F "⇤ . (C.36)

Inserting the equation of motion (C.22) for Bµ and taking the scaling limit we find

� = i �µ "
�

[Aµ, Z] + 2 i ✏µ⌫� [A
⌫ , A�]

�

+ F "⇤ . (C.37)

By setting  = 1
4
and using the Pauli spin matrix identity

i
2
✏µ⌫� �� = �µ⌫ , (C.38)

we find that (C.37) coincides with (C.35).
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