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Abstract

This thesis develops Bayesian models to explain credit default and migration risk.

Credit risk models used in practice are based on an assumption of conditionally inde-

pendent events given a realization of systematic risk factors. The systematic risk can

be modelled with both observed and unobserved factors.

On the one hand we consider generalised linear mixed models (GLMMs) for default

count data where random effects account for unobserved factor risk. On the other

hand we consider survival models with shared frailties to model unobserved factors in

time-to-default and time-to-rating-transition data. The latter models are developed

in the Anderson-Gill counting process framework for the Cox proportional hazards

model to allow multiple events and time-dependent covariates.

Using Standard and Poor’s data on default and rating transitions we control for

observed macroeconomic factors in the fixed effect parts of the models. We allow the

latent factors to have autoregressive time series structure.

The results from both kinds of model show clear evidence of heterogeneity between

industry sectors/countries and time period suggesting that different latent factor ef-

fects are present in different sectors. This is an important message that should be

accounted for in risk analyses.

We implement Bayesian inference for all our models and use the MCMC approach

(Gibbs sampling). We show some tractable model formulations that capture the

main sources and implement Bayesian model choice procedures to select the most

explanatory models.
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There are couple of contributions in this thesis: First, this is an analysis of industry

effects on default and migration rates using vector-valued random effects in default

count models and vector-valued dynamic frailties in time-to-event/survival models.

While this has been done before in models for default counts (McNeil-Wendin) it is

quite novel for time-to-event models. Koopman, Lucas and Schwaab (2012) which has

some similarities but the estimation is by Monte Carlo maximum likelihood, not by

Bayesian methods. Second, estimation of rating transition model with shared dynamic

frailties for different industry sectors and macroeconomic covariates using Bayesian

techniques (MCMC). This is a new model which is based on a simpler model used in

medical statistics (Manda & Mayer(2005)) that has been adapted and extended for

the credit risk application. We show how to estimate the new model using a Bayesian

approach. Finally, we use the model to compute point-in-time dynamic estimates of

rating transition probabilities for different industry sectors and forecast these into the

future, while taking into account macroeconomic factors. This can be very useful for

risk management applications and economic scenario generation.
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Chapter 1

Introduction

Credit risk is the risk of the change in value of a portfolio caused by unexpected

changes in the credit quality of borrowers, bond issuers or trading partners. Credit

risk, together with market risk and operational risk, are the three fundamental risk

categories in the banking sector of the financial industry.

The Basel Capital Accord requires banks to hold risk-weighted assets against future

potential losses in order to manage the credit risk of business activities. Banks may

choose between standardized and advanced approaches for measuring credit risk. In

the advanced approach, banks are allowed to build their own internal-ratings-based

(IRB) models for measuring certain aspects of credit risk. The IRB approach uses

statistical techniques to estimate such quantities as probability of default (PD), loss

given default (LGD) and exposure at default (EAD). This has stimulated the devel-

opment of statistical models in credit risk. Furthermore, the Accord also requires

financial institutions to establish rigorous procedures for the validation of statistical

models. Thus the measurement and management of credit risk is of interest to both

banks and regulators.

Banks need to estimate the credit rating transition probabilities (including default

probability) and keep the probability estimation updated for risk management and e-

conomic capital purpose. Banks need to compare realized transition probabilities with
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the estimated probabilities to demonstrate models work reasonably. Those compar-

isons must use historical data over a long time period. Probabilities of default (PDs)

play a prominent role in the areas of pricing credit derivatives, portfolio management

and capital allocation. They also determine banks’ regulatory capital requirements.

For many years, a number of model solutions have been very successful in the financial

industry, such as CreditMetrics (CreditManager by RiskMetrics, originally owned by

JP Morgan), Portfolio Manager (Moody’s KMV), CreditRisk+ (Credit Suisse Finan-

cial Products) and CreditPortfolioView (McKinsey). See Crouhy et al. (2000) for a

survey. Since the whole industry still has relatively limited historical default data,

these credit risk models do not rely on the formal statistical estimation for all param-

eters from historical default data. Normally we separate the default probability and

the parameters which describe the default dependence.

It is well understood that default probabilities partly depend on the macroeconomic

situation and rating transitions are also influenced by macroeconomic variables. In

building models it is necessary to confirm that this is the case and to find the most

explanatory variables. However macroeconomic variables can not fully explain his-

torical patterns of defaults and rating transitions, there is also a need for unobserved

(latent) factors in models (McNeil and Wendin (2007)).

All four industrial models above belong to the class of factor models for the approach

to dependence (Frey and McNeil (2003)). Gordy (2000) shows these three models

share some similarities and can be mapped to each other. While CreditRisk+ belongs

to the class of so-called reduced-form models for default modelling, CreditMetrics

and Portfolio Manager adopt a structured modelling approach. However these are

really issues of presentation and the probabilistic structure of the models is similar.

In this thesis, we will describe two different statistical methods for modelling credit

risk. These are generalized linear mixed models (GLMMs) which relate quite closely

to the industry models described above and survival models with frailty.

Using both factor and reduced-form models, we need to find the most explanato-

ry macroeconomic variables. Several researchers have tried to estimate the rating

2



changes process by finding some relevant explanatory variables. Nickel, Perraudin,

and Varotto (2000) estimate a multivariate probit model by working with individual

Moodys rating histories. They underline the importance of position in the economic

cycle, of individual industry and geographic origin of every underlying firm. Bangia,

Diebold, and Shuermann (2002) build quarterly transition matrices with expansions

and recessions economic condition. They conclude that the rating transition process

can be considered as markovian after conditioning by the state of the economy.

The time-homogeneity property normally assumes that rating migrations are stable

over time. However, the time-homogeneity and Markovian behavior assumption have

been challenged by many academic studies on the presence of various non-Markovian

behaviors such as industry heterogeneity, rating drift and time variations. Several

empirical studies have found time-variation in default rates and confirmed that varia-

tion could be explained by observed macroeconomic variables; see Nickell, Perraudin,

and Varotto (2000), Bangia, Diebold, and Shuermann (2002), and Hu, Kiesel, and

Perraudin (2002). The time-varying migration probabilities have become an inter-

esting implications for credit risk modelling when Standard & Poor’s rate corporate

bonds through the business cycle. Issuer-specific effects in credit risk analysis also

become popular in academic research in recent years. McNeil and Wendin (2006)

and Koopman, Lucas, and Monteiro (2006) account for issuer-specific effects through

latent factors for the business cycle. There is industrial heterogeneity in rating mi-

grations (including default). In this thesis, we will account for both business cycle

and industry specific effects by random effects in GLMMs and dynamic frailties in

survival models.

There are three contributions in this thesis: First, this is an analysis of industry effects

on default and migration rates using vector-valued random effects in default count

models and vector-valued dynamic frailties in time-to-event/survival models. While

this has been done before in default count models (McNeil and Wendin (2007)), it

is quite novel for time-to-event models. Koopman, Lucas and Schwaab (2012) which

has some similarities but the estimation is by Monte Carlo maximum likelihood, not

3



by Bayesian methods.

Second, estimation of rating transition model with shared dynamic frailties for differ-

ent industry sectors and macroeconomic covariates using Bayesian techniques (MCM-

C). This is a new model which is based on a simpler model used in medical statistics

(Manda & Mayer(2005)) that has been adapted and extended for the credit risk appli-

cation. We show how to estimate the new model using a Bayesian approach. It is very

difficult to calibrate the time-to-event model because of the sparsity of data which

often leads to unrealistic transition probabilities. Therefore we calibrate the model

using Bayesian methods based on Markov Chain Monte Carlo (MCMC) techniques.

Bayesian methods improve estimation accuracy especially for low frequency events.

Stefanescu, Tunaru, and Turnbull (2009), who also advocate Bayesian methodology

for calibrating models for rating transition probabilities using historical data, assert

“Model calibration for this type of application is difficult in a classical frequentist

estimation framework, because the sparsity of data often leads to unrealistic transi-

tion probabilities”. Kadam and Lenk (2008) adopt Bayesian estimation techniques

for Moody’s corporate bond default database and shows strong country and industry

effects on the determination of rating migration behavior. Bayesian estimation also

allows expert opinion to be taken into account through the use of subjective prior

distributions for model parameters. Credit rating process involves a large amount

of non-quantifiable subjective information which experienced credit risk practitioner-

s often help to express their opinions. In the case of low default portfolios, expert

even gain more weight, especially in industry. Bayesian inference makes it straight-

forward to compute derived quantities, for example default correlations, the default

and transition probabilities, therefore it is increasingly popular; see for instance Nick-

ell, Perraudin, and Varotto (2000), Bangia, Diebold, and Shuermann (2002), Kadam

and Lenk (2008) and Stefanescu, Tunaru, and Turnbull (2009). Our model has some

attractive features and can be estimated using a standard software package (BUGS),

albeit quite slowly. BUGS offers the Deviance Information Criterion (DIC) which

developed by Spiegelhalter et al. (2003) to examine the predictive ability of a model.
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It is based on a Bayesian measure of predictive power. The model with the smallest

DIC value is estimated to give the best predictions for a data set of the same structure

as the data actually observed. The DIC measure has the advantage that it does not

require the models to be nested for the purpose of comparison.

Finally, we use the model to compute point-in-time dynamic estimates of rating tran-

sition probabilities for different industry sectors and forecast these into the future,

while taking into account macroeconomic factors. This can be very useful for risk

management applications and economic scenario generation.

1.1 Credit risk modelling using GLMMs

Altman (1968) produces an analysis of bankruptcy prediction using Z-scores (a credit

scoring technique) in his seminal work. This multiple discriminant analysis performs

logistic regression using many different accounting ratios. It has become popular

among practitioners and provides the basic idea for further regression analyses of

default. Merton (1974) assesses the credit risk of a company by characterizing the

company’s equity as a call option on its assets. He then uses put-call parity to price

the value of a put and this is treated as an analogous representation of the firm’s

credit risk. This model has the limitation that it can only be used for companies

with publicly traded equity. For non-listed companies, it is difficult to get asset and

liability information.

Credit scoring technique is widely used in banks for building internal rating system

in recent years. Banks use probability of default to arrange rating categories. Each

rating can be mapped to a probability of default and obligors can be arranged in

rating categories using probability of default. The credit rating gives a brief summary

of obligors’ financial situation, so many banks adopt an internal rating for their own

lending management. Merton’s model assesses credit risk from asset-liability to model

distance to default (DD). Both credit scoring technique and Merton’s model allow

practitioners to model credit risk. However, not every bank needs to or has the
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ability to adopt an internal rating system. Therefore third-party rating agencies,

such as Moody’s, Standard & Poor’s and Fitch rating are needed in financial markets.

These rating agencies assess the creditworthiness of major publicly listed companies.

Servigny and Renault (2004) give a comprehensive discussion of fundamental issues

about credit rating.

When considering a portfolio of loans or bonds, the key issue is to model the joint

default probability. We must consider the dependence because defaults do not oc-

cur independently; knowing the default probability only is far from enough. The

dependence between default events has a crucial impact on the upper tail of a credit

loss distribution. Default intensities vary over time but share common risk which we

refer to as systematic risk. Nickell, Perraudin, and Varotto (2000) and Hu, Kiesel,

and Perraudin (2002) find time-variation in default rates and confirmed that this

time-variation could be explained by observed macroeconomic variables. However,

observed variables as proxies for the systematic risk are challenged for the following

reasons. First, it is difficult to find appropriate proxies and they usually do not en-

tirely explain the variability in default rates. Second, there may also be a lag between

the cycle of a proxy variable and default activity. The lag may vary stochastically

over time. These shortcomings can be remedied by latent factors. Koopman, Lucas

and Klaassen (2005) give further details about the advantages of latent risk factors.

It allow us to capture time-inhomogeneity in default rates and heterogeneity across

individual obligors, industry sectors, or any other desired groupings like country with

a well-chosen fixed and random effects.

Analytical maximum likelihood techniques can be used for relatively simple models

that do not incorporate serial dependence; see for Gordy and Heitfield (2002), Frey and

McNeil (2003), and Rosch (2005). McNeil and Wendin (2007) adopt a computational

Bayesian methodology with Gibbs sampling with serially correlated random effects.

There are some literatures on fitting such models to default data. Crowder et al.

(2005) consider a model for default counts with a two-state latent systematic factor

following a Markov chain. Gagliardini and Gourieroux (2005), and Koopman, Lucas
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and Klaassen (2005) consider models where default risk is driven by continuous latent

factors using the ratio of defaulted obligors instead of the actual default counts.

Mixture models are also referred as factor models or conditional independence mod-

els. Depending on a set of common economic factors like macroeconomic covariates

or latent factors, defaults are assumed to be independent. We will start from the

premise of conditionally independent default given a realization of relevant system-

atic risk factors. The dependence of individual default probabilities comes from the

common factors. We will focus on Bernoulli mixture models for our analysis; other

mixture model like Poisson mixture model can be found in McNeil, Frey, and Em-

brechts (2005). McNeil and Wendin (2007) highlight the usefulness of generalized

linear mixed models (GLMMs) in the modelling of portfolio default risk. Both ob-

served and unobserved risk factors can be accommodated by the class of generalized

linear mixed models (GLMMs). McNeil and Wendin (2007) and Stefanescu, Tunaru

and Turnbull (2009) use Chicago Fed National Activities Index (CFANI) as an im-

portant explanatory variable for US firms. There may be a lag between the cycle of

macroeconomic variables and that of default activity, we include three months moving

average of Chicago Fed National Activities Index (CFANIMA3) in our analysis. And

we will compare different macroeconomic covariates in our first set of analyses and

then use the best ones in subsequent.

Both McNeil and Wendin (2007) and Stefanescu, Tunaru and Turnbull (2009) use

a Bayesian approach to fitting the model with Markov chain Monte Carlo (MCMC)

techniques. However there are some nice existing standard software packages which

can be used for GLMMs instead of using the complicated Bayesian and MCMC tech-

niques. We use the glme function in the S-Plus correlated data library for the following

analysis. The R function glmmPQL is an alternative choice. However, the R func-

tion glmmPQL can be treated as a special case of glme with (RE)PQL method. In

S-plus glme is a more general function; there are four different methods that can be

used in fitting models and these are “AGQUAS”,“LAPLACE”, (restricted) penalized

quasi-likelihood ((RE)PQL) and (restricted) marginal quasi-likelihood ((RE)MQL)
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method. However, (RE)PQL and (RE)MQL gives similar results. Methods AGQUAD

and LAPLACE are restricted to family binomial(“logit”) or poisson(“log”). The “pro-

bit” link function makes it straightforward to calculate default probability for our

one factor model in this analysis, we choose to use the default methods which are

“(RE)PQL”.

1.2 Credit risk modelling using survival analysis

In the first part of this thesis, we analyse event count data using GLMMs. However,

we are not only interested in the number of companies that migrate from one rating

category to another, but also interested in the time period the company spends in

a certain rating category. Hence, we will study the time-to-event analysis which has

become popular in credit risk modelling in recent years. Cox’s hazard model has been

increasingly used to model the hazard of credit risk events these years. In his seminal

work, Cox (1972) proposes the proportional hazards model, where it is possible to

estimate the relative intensity of a decrement without specifying the baseline intensity.

Cox (1975) demonstrates the estimation procedure for the proportional hazards model

with partial likelihood estimation. Andersen and Gill (1982) generalize the model to

allow time-varying covariates using a counting process formulation, and show that the

maximum partial likelihood estimates are asymptotically equivalent to unconditional

maximum likelihood estimates.

As in our count data analysis for GLMMs, we need to capture the time and indus-

try sector heterogeneity using unobserved random variables in survival analysis. The

random effects in GLMMs are named frailty in survival framework. Frailty in sur-

vival models help to capture heterogeneity with unobserved random variables. We

introduce a frailty-based survival model for modelling the intensity of credit rating

transitions (default). This type of model is an extension of the Cox proportion-

al hazards models where a common random variable is used to account for hetero-

geneity. “Frailty models” in survival analysis could capture the unexplained part of
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the traditional Cox proportional model which take the function of random effects in

GLMMs. The frailty factor captures default clustering beyond what can be explained

by observed macroeconomic variables and firm-specific information. The unobserved

component can capture effects with time or industry sector which show default de-

pendence. Default intensities vary over time and shows co-movements in common

or correlated risk factors that all firms are exposed to. Contagion is direct business

liaisons between obligors a company may itself face increased risk if one of its major

customers defaults. Davis and Lo (2001), and Egloff, Leippold, and Vanini (2007) has

investigated this phenomenon.

Kavvathas (2001) and Couderc and Renault (2005) use a similar duration approach

conditional on observed macro-variables and they show that average time-to-default

decreases as economic activity decreases. Shumway (2001) develops a more dynamic

bankruptcy prediction model by combining both financial ratios and market-driven

measures and argues that discrete-time is necessary to calibrate hazards because of the

intermittency of accounts information. Chava and Jarrow (2004) extend Shumway’s

(2001) analysis to consider industry sector heterogeneity using monthly intervals.

Duffie, Saita, and Wang (2007) formulate a doubly stochastic model for firm survival

using firm-specific and macroeconomic covariates.

A credit rating summarises the credit worthiness of an individual, corporation, or even

a country. It is an evaluation made by credit bureaus of a borrower’s overall credit

history. A credit rating is also known as an evaluation of a potential borrower’s ability

to repay debt, prepared by a credit bureau at the request of the lender. Credit ratings

are calculated from financial history and current assets and liabilities. Typically, a

credit rating tells a lender or investor the probability of the subject being able to pay

back a loan and its interest.

We adapt a simpler model used in medical statistics (Manda and Mayer(2005)) and

extended for the credit risk application. We estimate rating transition model with

shared dynamic frailties for different industry sectors and macroeconomic covariates

using Bayesian techniques (MCMC). This is a model that each transition intensity
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follows a Cox type multiplicative regression model with frailties, two level frailties to

account for both time period and industry sector heterogeneity. Delloye, Fermanian

and Sbai (2006) define a reduced-form credit portfolio model which treat rating transi-

tion as independent competing risks with conditionally independent and proportional

hazards assumption. They also allow strong dependence levels by adding heterogene-

ity. However, Delloye, Fermanian and Sbai (2006) split the Standard & Poors’ data

into several groups based on the similar rating transition type and analyze these sep-

arately. We consider the whole transition data and let all rating transitions share the

same macroeconomic covariates and unobservable random process for all companies

in monthly interval.

We consider credit survival model for both default and transition risk and there are

two kinds of model were implemented for transition risk. The first one is frailty

model for credit rating transitions by numbers of levels (notches) which is a simpler

case for credit migration data. It is easy to handle but sacrifice the accuracy for rating

transition, therefore we finally model the actual rating transitions. We have shown

heterogeneity of transition risk over time and industry sector. We can also show

heterogeneity for different countries if we extend our database to all the countries

in Creditpro database. For estimation of these models, there are several ways to

implement Gibbs simulation. WinBUGS is one of the most popular ways to implement

Gibbs simulation. We use the model to compute point-in-time dynamic estimates of

rating transition probabilities for different industry sectors and forecast these into the

future, while taking into account macroeconomic factors. This is very useful for risk

management applications and economic scenario generation.

1.3 Data description

The Standard & Poor’s database CreditPro 6.6 which consists of 10439 companies

from 13 industry sectors over the period January 1981 to December 2003, 6897 of
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them are US obligors. The rating classes included in the database are

K = {CCC,B,BB,BBB,A,AA,AAA,D}

where we merge actual rating k+, k, k− into k. We also merge CCC,CC, and C into

a single rating class CCC. Rating class AAA and AA which rarely default have

been excluded from the default study but be reconsidered in our transition analysis.

More than 75% of the companies in the database from US and it is difficult to find

macroeconomic covariates to explain credit quality changes for all different countries

obligors. The study in this thesis has been restricted to US obligors.

In GLMMs, the default count data have been collected for semester-based periods

rating from January 1981 to December 2003 giving a total of T = 46 periods. The

yearly-based period miss many default events because many obligors migrate many

times within one year, therefore we will misreport the default rating, while quarterly

data improves the accuracy but too few default events in quarterly period. After

comparing these three different data structure, we choose semester-based period in

this default study with GLMMs.

In the time-to-event analysis, we choose one month as the time unit. Firstly our

macroeconomic covariates are recorded in monthly which match the monthly unit.

Secondly, monthly data record most of the transition activities, only very few have

transition within one month, the daily would be ideal but it cannot be handled by

WinBUGS. Although we use monthly time unit for data manipulation, the time shared

frailty is yearly. There are overall 19054 effective rating migrations are recorded in

the CreditPro database as well as 1386 defaults. Among them, 13526 effective rating

migration as well as 1121 defaults are from US obligors. In time-to-event analysis,

we assume the rating migrations only depend on macroeconomic covairates, time

period and industry. Without any firm-specific covariates, we only interest in rating

migration regardless the obligors. 1.1 shows all the possible transitions in our analysis.

We studied default case only in chapter 3 and migration case in chapter 4 with two

different models.
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AAA AA A BBB BB B CCC D Total

AAA 206 148 14 2 2 0 0 0 372

AA 44 481 553 34 5 5 1 0 1123

A 11 285 1246 840 57 27 1 5 2472

BBB 5 27 521 1342 659 72 9 19 2654

BB 3 8 46 483 1147 883 53 64 2687

B 1 7 25 48 520 1382 850 354 3187

CCC 1 0 4 7 18 129 193 679 1031

Total 271 956 2409 2756 2408 2498 1107 1121 13526

Table 1.1: Numbers of transitions for Standard & Poors’ CreditPro 6.6 from

31/12/1980 - 31/12/2003

1.4 Outline of the thesis and main contribution

In this thesis, we model credit risk using two different statistical models which are

GLMMs and survival models with frailties. The thesis is structured as follows:

In Chapter 2, we model credit risk using GLMMs and consider the default risk only in

this chapter. The Standard & Poor’s default count data is used for modelling in this

chapter. We allow two levels of heterogeneity for both different times and industries

which are represented by random effects in GLMMs framework. We also find three

month moving average of Chicago Fed National Activities Index (CFNAIMA3) is

the best observed macroeconomic variable to describe the credit default among the

macroeconomic variables for US market. We find evidence of significant differences

between industry sectors. In Chapter 3, we model default risk using survival model

with frailties. We extend the Manda and Meyer (2005) model to allow two levels

of random effects and apply this to credit risk modelling for the first time. The

Standard & Poor’s default time-to-event data is used for modelling in this chapter.

We allow two levels of heterogeneity for both different times and industries using

survival frailties and serially correlated latent factors. Bayesian inference with Gibbs
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sampler and WinBugs is used in this chapter. In Chapter 4, we extend the model for

default risk to allow multiple events which are ratings transitions. In Chapter 5, we

use the intensities results to calculate the credit rating transition probability matrices

and give an conclusion in Chapter 6.
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Chapter 2

Modelling default risk with

GLMMs

Most credit risk models used in practice are based on an assumption of conditionally

independent defaults given a realization of systematic risk factors, such models are

often referred to as mixture models. The systematic risk can be modelled with both

observed factors and unobserved factors. Statistical models from the class of general-

ized linear mixed models (GLMMs) take observable and unobservable factors as fixed

effects and random effects respectively. Generalized linear model (GLM) is a special

case of the GLMM which has no random effects. The random effects in GLMMs

help to capture patterns of variability in the response that cannot be explained by

the observable factors. The random effects may be scalar or vector. For example, in

this thesis both time and industry sector are often treated as two different levels of

random effect in default analyses.

There is general lack closed forms for latent factors yields joint default distribution

in the form of integrals. Relatively simple models that do not incorporate serial de-

pendence can use analytical maximum likelihood techniques examples include Gordy

and Heitfield (2002), Frey and McNeil (2003), and Rosch (2005). McNeil and Wendin

(2007) test several models with fixed and random effects using latent factor formu-

lation by Bayesian techniques. Stefanescu, Tunaru and Turnbull (2009) develop a
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credit rating process model to capture rating transition patterns and estimate it with

Bayesian as well. Bayesian methods improve the estimation accuracy especially for

low frenquency events. Bayesian estimation also allows expert opinion to be taken

through the use of subjective prior distributions for model parameters. Credit rat-

ing process involves a large amount of non-quantifiable subjective information which

experienced credit risk practitioners often help to express their opinions. In the case

of low default portfolios, expert even gain more weight. Bayesian inference becomes

straightforward to compute the default and transition probabilities, therefore it is

increasingly popular. However, these are a number of software packages for GLMMs

based on ML-methodology. The advantage of these defined function is that they are

simple and very easy to handle. These defined functions use maximum likelihood

inference. We choose to use the glme function in the S-Plus correlated data library

for the following analysis.

In this chapter, we will briefly introduce the mixture models, generalized linear mixed

models and GLMMs first. Then we will express the mixture models as GLMMs. We

will show how standard software can yield point-in-time(PIT) estimates of default

probabilities and illustrate the method using Standard & Poor’s CreditPro data but

we will provide comparative results with credit risk models using survival models

which will be discussed in the next chapter. Alternatively, that may be one or more

random effects included in this analyses, with the industry sector random effect, we

will investigate differences in default probabilities between industry sectors.

2.1 Theory

2.1.1 One-period mixture models

Default risk is assumed to be driven by systematic risk factors, which might be ob-

served macroeconomic covariates but might also be latent factors. Given a realization

of these factors, defaults of individual firms are assumed to be independent. There are
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several types of mixture models, such as Bernoulli mixture models and Poisson mix-

ture models. More details about these mixture models can be found in McNeil, Frey

and Embrechts (2005). Here we consider Bernoulli mixture models in this analysis.

Bernoulli distribution

Consider a portfolio of m obligors. Defaults in a fixed period can be modelled by

multivariate Bernoulli distribution. Consider a fixed time period [0,T] and let τi be

the random time-to-default for obligor i, i ∈ {1, . . . ,m}. The default indicator Yi is a

Bernoulli random variable defined by Yi = I(τi ≤ T ) so that

P (Yi = 1) = 1− P (Yi = 0) = P (τi ≤ T ) =: PDi

where PDi is the default probability for obligor i.

Bernoulli mixture model

Give some p < m and a p-dimensional random vector Ψ = (Ψ1, . . . ,Ψp)
′, the random

vector Y = (Y1, . . . , Ym)′ follows a Bernoulli mixture model with factor vector Ψ, if

there are functions pi : Rp → [0, 1], 1 ≤ i ≤ m,such that conditional on Ψ the default

indicator Y is a vector of independent Bernoulli random variables with P (Yi = 1 |

Ψ = ψ) = pi(ψ).

For y = (y1, . . . , ym)′ in {0, 1}m we have

P (Y = y | Ψ = ψ) =
m∏
i=1

pi(ψ)yi(1− pi(ψ))1−yi

and the unconditional distribution of the default indicator vector Y is obtained by

integrating over the distribution of the factor vector Ψ.

P (Y1 = y1, . . . , Yn = yn) =

∫
· · ·
∫

Rp

m∏
i=1

pi(ψ)yi(1− pi(ψ))1−yidG(ψ)

where y1, . . . , yn ∈ {0, 1},and G is a distribution function on Rp.
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Exchangeability and mixture models

To simply the analysis we will often assume that default indicator are exchangeable

for obligors in a group. The sequence Y1, . . . , Ym of random variables is said to be

exchangeable if

(Y1, ..., Ym)
d
= (YΠ(1), . . . , YΠ(m))

for any permutation (Π(1), . . . ,Π(m)) of 1, . . . ,m. For a group of similarly rated com-

pany without any other information, the assumption of exchangeability is stronger

than merely assuming identical marginal distribution of Y1, . . . , Ym but weaker than

assuming Y1, . . . , Ym to be independent and identically distributed (i.i.d). We intro-

duce a simple notation for default probabilities where

π := P (Yi = 1), i ∈ {1, . . . ,m}

is the default probability of any obligor and

πk := P (Yi1 = 1, . . . , Yik = 1), {i1, . . . , ik} ⊂ {1, . . . ,m}, 2 ≤ k ≤ m

is the joint default probability for k firms. When default indicators are exchangeable

we get

E(Yi) = E(Y 2
i ) = P (Yi = 1) = π, ∀i,

E(YiYj) = P (Yi = 1, Yj = 1) = π2, ∀i 6= j,

so that cov(Yi, Yj) = π2 − π2; then default correlation is give by

ρY := ρ(Yi, Yj) =
π2 − π2

π − π2
, ∀i 6= j (2.1)

Exchangeable Bernoulli mixture models

Let m denote the number of observed companies and M denote the number that

default. Assume that all the pi are identical function. Bernoulli mixture model is

exchangeable since default indicator Y is exchangeable. Let us introduce Q := p1(Ψ)

and take the distribution function of Q to be G(q) conditional on Q = q. The number
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of defaults M is the sum of m independent Bernoulli variables with parameter q. It

is given by a binomial distribution with parameters q and m.

P (M = k | Q = q) =

(
m

k

)
qk(1− q)m−k

The unconditional distribution of M is obtained by integrating over q

P (M = k) =

∫ 1

0

(
m

k

)
qk(1− q)m−kdG(q)

The default probability and joint default probabilities for the exchangeable group are

given by:

π = E(Y1) = E(E(Y1 | Q)) = E(Q)

πk = P (Y1, . . . , Yk = 1) = E(E(Y1, . . . , Yk | Q)) = E(Qk)

For i 6= j

cov(Yi, Yj) = π2 − π2 = var(Q) ≥ 0,

The default correlation ρY defined in (2.1) for exchangeable Bernoulli mixture model

is always non-negative.

Firm-valued models as Bernoulli mixture models

The Merton model is the prototype of all firm-value models. Merton model has been

extended over the years but the original remains an influential benchmark and is still

popular in credit risk analysis. A firm i whose asset value follows some stochastic

process Vt,i has one single debt with face value Bi and maturity T. The process Vt,i

follows a diffusion model under real-world probability measure P

dVt,i = µVt,idt+ σViVt,idWt

which implies that

VT,i = V0,i exp
(

(µVi −
1

2
σ2
Vi

)T + σViWT,i

)
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The default probability of firm i is given by

P (VT,i ≤ Bi) = P (lnVT,i ≤ lnBi) = Φ

( ln Bi

V0,i
− (µVi − 1

2
σ2
Vi

)T

σVi
√
T

)
Industry models can be re-written as mixture models. We assume that default occurs

for obligor i if a critical value Xi (asset value, VT,i in Merton’s model) lies below a

critical threshold di (liabilities, Bi in Merton’s model) at the end of each time peri-

od. KMV/CreditMetrics is industry credit risk models using Merton-type structure.

They can be expressed by a mixture model. In order to apply these models at port-

folio level require a multivariate Merton’s model. Assume that we have m companies

and that the multivariate asset-value process (Vt) with Vt = (Vt,i, . . . , Vt,m)
′

follows

an m-dimensional geometric Brownian motion with drift vector µV = (µVi , . . . , µVm)
′
,

vector of volatilities σV = (σVi , . . . , σVm)
′

and instantaneous correlation matrix P .

This implies that for any firm i default occurs when some critical rv Xi := XT,i lies

below some critical deterministic threshold di at the end of the time period [0, T ].

In Merton’s model Xi is a log-normally distributed asset value and di represents lia-

bilities. Here we typically use multivariate log-normal or normal distribution for the

vector X = (Xi, . . . , Xm)
′
. The dependence among defaults comes from the depen-

dence among the components of the vector X.

We consider a portfolio of m obligors and fix a time horizon T . For 1 ≤ i ≤ m, we

let rv Si be a state indicator for obligor i at time T and assume that Si := ST,i takes

integer values in the set 0, 1, . . . , n representing rating class. We interpret 0 as default

state. Here we will concentrate on the binary outcomes of default and non-default and

ignore the finer categorization of non-defaulted companies. We write Yi := YT,i for the

default indicator variable so that Yi = 1⇔ Si > 0. Random vector Y = (Yi, . . . , Ym)
′

is a vector of default indicators for the portfolio and p(y) = P (Y1 = y1, . . . Ym =

ym),y ∈ (0, 1)m is its joint probability function; the marginal default probabilities are

denoted by p̄i = P (Yi = 1), i = 1, . . . ,m. The default correlations are defined to be the

correlation of the default indicators. var(Yi) = E(Y 2
i )− p̄i2 = E(Yi)− p̄i2 = p̄i − p̄i2,
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then we obtain for firms i and j, with i 6= j,

ρ(Yi, Yj) =
E(YiYj)− p̄ip̄j√

(p̄i − p̄i2)(p̄j − p̄j2)
(2.2)

It is important to distinguish the default correlation ρ(Yi, Yi) of two firms i 6= j from

the asset correlation which is the correlation of the critical variables Xi and Xj.

The vector of critical variables X is assumed to have a multivariate normal distri-

bution and Xi can be interpreted as a change in asset value for firm i over the time

horizon of interest; di1 is chosen so that the probability that Xi ≤ di1 matches the

given default probability p̄i for firm i.

The covariance of X is calibrated using a factor model. We assume that X can be

written as

X = BF + ε (2.3)

for a p-dimensional random vector of common factors F ∼ Np(0,Ω) with p < m, a

loading matrix B ∈ Rm×p, and an m-dimensional vector of independent univariate

normally distributed errors ε, which are also independent of F . The factor structure

(2.3) implies that the covariance matrix P of X (which will be a correlation matrix

due to our assumptions on the marginal distribution ofX) is of the for P = BΩB
′
+Υ,

where Υ is the diagonal covariance matrix of ε.

The conditional independence of defaults given Ψ follows from the independence of

the idiosyncratic terms ε1, . . . , εm. Take bi = (bi1, . . . , bip)
′

for the ith row of B, the

ith critical variable has the following structure:

Xi = b′iF + εi (2.4)

where εi ∼ N(0, 1− βi) with βi = var(b′iF) = b′iΩbi , independent of F and of εj for

j 6= i . Xi can represent lnVT in Merton’s model.

Asset correlation

The three most important drivers in determining portfolio credit risk are default

probability(PD), loss given default (LGD) and default correlation. The most com-
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mon approach to modelling default correlation (defined in equation 2.2)is to combine

default probability with asset correlation. Therefore asset correlation is a critical

driver in modelling portfolio credit risk. Two obligors will default in the same time

if both of their asset value is smaller than their obligations. Asset correlation helps

define the joint behavior of the asset value of two obligors. The asset correlations

show how the asset value of one obligor depends on another obligor’s asset value. The

correlation can also be described as the dependence of the asset value of an obligor on

the general state of the economy and all obligors are depend on the state of economy

which can be described by macroeconomic covariates.

Basel III IRB framework gives a formula for credit risk charge for an exposure using

asset correlation ρ which is the average asset correlation of all pair-wise asset corre-

lation in the portfolio. Here we consider the asset correlation using (2.4). The asset

correlation between companies i and j is given by

ρ(Xi, Xj) = cov(Xi, Xj) = E(XiXj) = b′iΩbj

The asset correlation for practical models will be described in the models we use.

2.1.2 Generalized linear mixed models and its estimation

Clayton (1996) gives a very good overview of generalized linear mixed models(GLMMs).

The special case of GLMMs without random effect all known as generalized linear

models (GLMs). The random effects not only determine the correlation structure

between observations on the same group, they also take account of heterogeneity a-

mong groups that is attributed to unobserved factors. We will start with generalized

linear models and then extend GLMs to GLMMs by adding random effects. Different

inference methods for GLMMs will be introduced.

Generalized linear mixed models

Generalized linear models (GLMs) extend the linear model to allow distributions from

the exponential family. The outcome of the response variables, Y = (y1, . . . , yn)′, is
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assumed to be generated from a particular distribution function in the exponential

family. The mean, µ ≡ (µ1, . . . , µn)′, of the distribution depends on the explanatory

variables, X ∈ Rn×p, through:

E(Y) = µ = g−1(Xβ)

where E(Y ) is the expected value of Y , β = (β1, · · · , βp); Xβ is the linear predictor,

a linear combination of unknown parameters, β; g is the link function. The unknown

but fixed regression parameters in β are estimated by solving the maximum likelihood

equations. Generalized linear models (GLMs) consists of three components: A distri-

bution function f from the exponential family; a linear predictor η = Xβ; and a link

function g such that E(Y ) = µ = g−1(η). The link function provides the relationship

between the linear predictor and the mean of the distribution function. There are

many commonly used link functions, such as probit and logit link function in the

Bernoulli case and log-link function in the Poisson case. Here we give the common

response functions (g−1) for Bernoulli-type GLMMs.

• Probit

Φ(x) = (1/
√

2π)

∫ x

−∞
exp(−u2/2)du

• logit

ex/(1 + ex) = 1/(1 + e−x)

• complementary log-log

1− exp(−ex)

Generalized linear mixed models (GLMMs) are GLMs with one or more random

effects. The linear predictor should be rewritten as

η = Xβ +Zψ

where the fixed effect β remains the same as in GLMs and random effects ψ are ran-

dom variables drawn from a distribution. The random effects generate heterogeneity
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beyond that which can be captured with fixed effects. We firstly consider a single

shared random effect in every time period in our model. Then we consider different

random effects for different sectors. This will capture additional variability associated

with economic effects in different sectors. X are fixed vector and could be rating and

macroeconomic covariates in credit risk models, β are the corresponding fixed effects.

While Z are random vectors and could be year and industry sectors, ψ are random

effects.

Estimation of GLMMs

We can estimate the GLMMs parameters using Markov Chain Monte Carlo(MCMC)

methods from a Bayesian point-of-view. Bayesian MCMC approach allows us to

handle more complex models than standard packages. Furthermore, the Bayesian

approach can work well for sparse default data. For a Bayesian approach to GLMMs

of portfolio credit risk, see McNeil and Wendin (2007) for more information. However,

some standard package like S-plus and R provide some defined functions for estimation

of GLMMs. The advantage of these defined function is that they are simple and very

easy to handle. These defined functions use maximum likelihood inference. We will

give more details about maximum likelihood inference in the next paragraph.

Maximum likelihood (ML) inference for GLMMs is only really a possible option for

the simplest model. The unconditional distribution is obtained by integrating the

random effects. Factor models have conditional independence property, if we write

pYt,i|Ψt(y | ψ) for the conditional probability mass function of Yt,i given Ψt,

L(β, σ; data) =

∫
· · ·
∫ ( n∏

t=1

mt∏
i=1

pYt,i|Ψt(Yt,i | ψ)

)
f(ψ1, . . . , ψn)dψ1 . . . dψn

where f denotes the joint density of the random effects. With the iidGaussian random

effects with marginal Gaussian density fΨ, we can reduce the n−dimensional integral

to

L(β, σ; data) =
n∏
t=1

(∫ mt∏
i=1

pYt,i|Ψt(Yt,i | ψ)fΨ(ψt)dψt

)

23



with the product of one-dimensional integrals. This can be easily solved the unknown

parameters.

For those complicated models where the exact likelihood function is difficult to com-

pute, approximation becomes unavoidable. There are several methods including pe-

nalized quasi-likelihood (PQL), marginal quasi-likelihood(MQL), Laplace and adap-

tive gaussian quadrature. More details about PQL and MQL can be found in Breslow

and Clayton (1993).

We use the glme function in the S-Plus correlated data library for the following

analysis. The R function glmmPQL is an alternative choice. However, the R function

glmmPQL can be treated as a special case of glme with (RE)PQL method. In S-

plus glme is a more general function; there are four different methods that can be

used in fitting models and these are “AGQUAS”,“LAPLACE”, (restricted) penalized

quasi-likelihood ((RE)PQL) and (restricted) marginal quasi-likelihood ((RE)MQL)

method. However, (RE)PQL and (RE)MQL gives similar results. Methods AGQUAD

and LAPLACE are restricted to family binomial(“logit”) or poisson(“log”). The

“probit” link function makes it straightforward to calculate default probability for

our one factor model in this analysis, we choose to use the default methods which are

“(RE)PQL”.

2.1.3 Multi-period mixture models

Notation

Consider a multi-period model, we can write the general latent variable factor model

as

Xit = b′itFt + εit (2.5)

where Ft ∼ Np(0,Ω) and εit ∼ N(0, 1 − βit) with βit = var(b′itFt) = b′itΩbit.

F1, · · · , Ft does not necessary to be i.i.d. Xit can represent lnVT in Merton’s model. In

the credit risk model default occurs according to an indicator variable Yit = I(Xit≤dit)
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so that the conditional default probability is given by

P (Yit = 1 | Ft) = P (εit ≤ dit − b′itFt | Ft)

= Φ

(
dit√

1− βit
− b′itFt√

1− βit

)
(2.6)

and the unconditional default probability by pit = Φ(dit).

In this simple case of (2.5) where is only one factor we have

Xit = bitFt +
√

1− b2
itZit

for iid standard normal variables Ft, Z1t, Z2t, . . . and a common loading −1 < bit < 1.

The asset correlation between credit risks i and j in time period t is given by ρijt =

bitbjt and the conditional default probabilities by

P (Yit = 1 | Ft) = Φ

(
dit√

1− b2
it

− bitFt√
1− b2

it

)
. (2.7)

Mixture models as GLMMs

In one-period setting, we assume conditional default probabilities pi(Ψ) follows

pi(Ψ) = h(µ+ β
′
xi + Ψ)

where h is a link function, such as probit, logit and complementary log-log which

are commonly used in GLMMs. The vector xi contains covariates for company i,

such as company specific information or industry, country group β and µ are model

parameters. The random variable Ψ ∼ N(0, σ2) is normally distributed with scale

parameter σ.

This model can be extended into multi-period model which is suitable for default

counts for different time periods. Consider a series of mixing variables Ψ1, . . . ,Ψn

generate default dependence in each time period t = 1, . . . , n. The default indicator

Yt,i for company i in time period t is assumed to be Bernoulli with default probability

pt,i(Ψt) depending on Ψt

pt,i(Ψt) = h(µ+ x
′

t,iβ + Ψt)

where Ψt ∼ N(0, σ2) and xt,i are covariates for company i at time period t.
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Dynamic latent effect

Both the one-period and multi-period Bernoulli mixture models belong to GLMMs

family. The role of the random effects in GLMMs is to capture patterns of variability

in the responses that cannot be explained by the observed covariates only. These

non-observed factors could be time-period effect which we treat as the state-of-the-

economy in that time period.

The GLMM framework allows more complexity by adding further random effects to

obtain multi-factor mixture models. In our analysis, we also consider industry sector

effects nested inside the time-period effects which is two-levels random effects. We can

capture additional variability in different industry sectors in addition to the global

variability given by time-period effect.

2.2 Models used in practice

It is useful to consider a one-factor model in many practical situations. The infor-

mation may not always be available to calibrate a model with more factors, and

one-factor models may be easily fitted statistically to default data. Here we consider

the models for default risk with GLMMs.

2.2.1 Model 2.1: One-factor model with Equicorrelation struc-

ture

Let us consider the case where the default probability depends only on the credit

rating r(i, t) of the ith individual in period t and where loadings bit for all individuals

in all time periods are the same so that

P (Yit = 1 | Ft) = Φ

(
Φ−1(pr(i,t))√

1− b2
− bFt√

1− b2

)
,
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where b is the common loading and the asset correlation is ρ = b2. This model can

be written in simpler GLMM notation as

P (Yit = 1 | Ψt) = Φ
(
γr(i,t) + Ψt

)
where γr is a fixed rating effect and Ψt ∼ N(0, σ2) is a random effect for period t.

The parameters in the credit risk model and the GLMM are related by

ρ = b2 =
σ2

1 + σ2

pr = Φ

(
γr√

1 + σ2

)
so that both asset correlation and rating class default probabilities may be inferred

from the fitted GLMM.

2.2.2 Model 2.2: Model with macroeconomic covariates

The one-factor model with equicorrelation structure is extended by adding observed

macroeconomic covariates zt. We will try to include several different covariates in our

analysis. Default probability depend on the credit rating effect γr(i,t) of ith individual

in period t and macroeconomic covariates zt (zt could be vector or scale). The default

probability in the same time period with the same rating category will be the same.

This model can be written in simpler GLMM notation as

P (Yit = 1 | Ψt) = Φ
(
γr(i,t) + ηzt + Ψt

)
where η is an additional parameter. The implied asset correlation in period t. If we

also consider correlation coming from macroeconomic factor we get:

ρ =
σ2

1 + σ2

2.2.3 Model 2.3: Model with sector random effects

Now consider the special case of (2.5) where bit = bes(i,t) where ej denotes a unit

vector and s(i, t) gives sector membership. Assume there are p sectors and that Ω is

a symmetric equicorrelation matrix with equicorrelation parameter ρ.
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Since βit = var(b′itFt) = b2 and again assuming that default probabilities depend only

on the rating r(i, t) we have

P (Yit = 1 | Ft) = Φ

(
Φ−1(pr(i,t))√

1− b2
−

bFts(i,t)√
1− b2

)
.

This model has GLMM structure

P (Yit = 1 | Ψt) = Φ
(
γr(i,t) + Ψts(i,t)

)
where Ψt = (Ψt1, . . . ,Ψtp)

′ ∼ Np(0,Σ) where Σ has diagonal elements σ2 + τ 2 and

off-diagonal elements σ2.

Equating the two models we get that

σ2 + τ 2 = var(Ψts) =
b2

1− b2

σ2 = cov(Ψtsi ,Ψtsj) =
ρb2

1− b2

from which it follows that

b2 =
σ2 + τ 2

1 + σ2 + τ 2

ρ =
σ2

σ2 + 1

pr = Φ

(
γr√

1 + σ2 + τ 2

)
.

b2 is the implied within-sector asset correlation, whereas ρ is the across-sector asset

correlation.

2.2.4 Model 2.4: Model with sector random effects and macroe-

conomic covariates

Now consider the model with sector random effects is extended by adding observed

macroeconomic covariates zt.
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This model has GLMM structure

P (Yit = 1 | Ψt) = Φ
(
γr(i,t) + ηzt + Ψts(i,t)

)
where Ψt = (Ψt1, . . . ,Ψtp)

′ ∼ Np(0,Σ) where Σ has diagonal elements σ2 + τ 2 and

off-diagonal elements σ2.

Equating the two models we get that

σ2 + τ 2 = var(Ψts) =
b2

1− b2

σ2 = cov(Ψtsi ,Ψtsj) =
ρb2

1− b2

from which it follows that

b2 =
σ2 + τ 2

1 + σ2 + τ 2

ρ =
σ2

σ2 + 1

Again we can also consider the correlation coming from macroeconomic covariates,

b2 is the implied within-sector asset correlation, whereas ρ is the across-sector asset

correlation.

2.3 Empirical studies of default count data

2.3.1 Data description

A subset of the Standard & Poor’s database CreditPro 6.6 which consists of 6897 US

obligors from 13 industry sectors has been used in this analysis. The default count

data have been collected for semester-based periods rating from January 1981 to

December 2003 giving a total of T = 46 periods. The yearly-based period miss many

default events because many obligors migrate many times within one year, therefore
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we will misreport the default rating, while quarterly data improves the accuracy but

too few default events in quarterly period. After comparing these three different data

structure, we choose semester-based period in this default study with GLMMs. The

empirical default probabilities are presented in Figure 2.1. All the rating-categories

have many defaults at the same time periods and followed by other periods with few

defaults.
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Figure 2.1: Empirical 6-month default rates for 23 years

The not-rated (NR) category in the S&P database is somewhat problematic. Some

authors of empirical studies (e.g. Nickell et al. 2000) simply omit issuers who become

NR from consideration. Other authors (e.g. Lando and Skoedeberg (2002)) treat

transition to the not-rated category as a censoring event. Lando justifies this by citing

evidence (Carty 1997) that the majority of transitions to not-rated are not related

to changes in credit quality. In other words he argues that transition to not-rated

is a non-informative censoring event, unrelated to the hazard of a firm subsequently
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defaulting. There is also the issue that many NR firms subsequently regain a rating

or are recorded as defaulting at a later date. Although we are ignorant about their

true rating during the time that they are NR, it seems a pity to have to exclude them

from a default analysis in particular.

We conducted the following analysis of the NR phenomenon. We considered all tran-

sitions in the S&P database from ratings other than NR. We treated becoming NR as

the event of interest and all other transitions (including default) as censoring events.

We examined the covariates rating, country and sector. The conclusions: the lower

rating categories have a significantly higher hazard of becoming NR than the higher

rating categories; country has no discernable effect; tech firms have a significantly

higher risk of becoming NR and utilities have significantly lower risk.

Thus the firms that become NR tend to be dominated by firms that have a higher

default risk because they are lower rated. However, the question that is relevant

from the point-of-view of the non-informative censoring assumption is whether a firm

with a particular rating that becomes NR at a particular time point has a different

default risk to a firm with the same rating that does not become NR? And there are

many reasons to make a firm to become non-rated, including expiration of the debt,

calling of the debt, failure to pay the requisite fee to S&P, etc. It is impossible for us

to identify the exact reason for companies rating NR. Then we will treat NR case as

censored in our analysis which means obligors whose rating is NR have been excluded

from consideration but reconsider after they regain a rating.

The rating classes included in our analysis are

K = {CCC,B,BB,BBB,A}

where we merge actual rating k+, k, k− into k. We also merge CCC,CC, and C into

a single rating class CCC. Rating classes AAA and AA which rarely default have

been excluded from this study; they will be reconsidered in our transition analysis in

the following chapters. More than 75% of the companies in the dataset from US, so
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Sector Name #Observations

1 “Aerospace/automotive/capital goods/metal” 837

2 “Consumer/service sector”+“Transportation” 1355

3 “Energy and natural resources”+“Utility” 994

4 “Financial Institutions”+“Insurance”+“Real estate” 1666

5 “Hightec/computers/office equipment”+“Telecom” 628

6 “Leisure time/media” 670

Table 2.1: Numbers of industry sectors observations

we choose a subset of the dataset which consists of 6150 US companies from the 6

selected industry sectors in our definition, see Table 2.1:

The industry sectors in our analysis are slightly different from the S&P definition

of industry sectors. We merged Consumer/service with Transportation, Energy with

Utility, Financial institution with Insurance and Real estate, and finally High technol-

ogy with Telecommunications. The industry sectors we merged have broadly similar

business and may be supposed to be similarly impacted by macroeconomic covariates.

2.3.2 Results

Without considering obligor-level covariates, counterparties are grouped according to

rating category. We include an observed macroeconomic variable to partly explain

the time-heterogeneity in the default rates. Several macroeconomic variables including

Chicago Fed National Activity Index (CFNAI)are used. This helps us to detect lags

between the cycle of index and the actual default cycle.

Model 2.1: One-factor model with Equicorrelation structure

Let r = 1, . . . , 5 index the five rating categories in our study and γr is a fixed rating

effect. The rating class default probabilities are given by pr = Φ
(

γr√
1+σ2

)
. The
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random effect for period t is given by Ψt ∼ N(0, σ2).

Model 2.1: GLMMs with Equicorrelation structure

γA γBBB γBB γB γCCC η σ

mean -3.5456 -3.1352 -2.7002 -2.1817 -1.2517 – 0.21629

s.e. (0.1062) (0.069) (0.0518) (0.0394) (0.0461) – –

pr 0.00026 0.00109 0.00416 0.01649 0.11059 – –

Table 2.2: Model 2.1: GLMMs with equicorrelation structure fitted to 23 years his-

torical Standard & Poor’s data

The results for Model 2.1 are shown in Table 2.2. With this simplest GLMMs struc-

ture, each rating category has constant empirical default probability. However, the

default risk might be affected by economic the cycle effects and so macroeconomic

covariates will be added in the following analysis.

Model 2.2: Model with macroeconomic covariates

The numbers of defaults depend on the “state-of-the-economy”. There are several

possible proxies for “state-of-the-economy” which can possibly capture economic cycle

effects. We investigate five different macroeconomic covariates in this analysis in order

to find the best explanatory macroeconomic covariates. These covariates are growth

in real GDP, return on the S&P 500 index (spretl), volatility of return on the S&P 500

index and Chicago Fed National Activities Index (CFNAI). Chava, Stefanescu and

Turnbull (2008) use the S&P 500 index trailing one year return, GDP and CFNAI as

explanatory variables. CFNAI has also been used in McNeil and Wendin (2007).

S&P 500 return (spretl in the following content) is the cumulated monthly return for

the last 12 months at each time period t (the time period t represents semester). This

is the same as in Chava, Stefanescu and Turnbull(2008). The greater the return in the

previous year, the stronger the economy and the lower the probability of default, so

that a negative value is expected for the macroeconomic effect. Default probabilities
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Figure 2.2: Historical macroeconomic covariates CFNAI, CFNAIMA3, SP500 return

and SP500 volatility
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should decrease with increasing S&P 500 return. The growth in real GDP (∆GDP )

also has an expected negative effect. The greater the growth in the economy means

most companies would make more money and have a lower probability of default. The

∆GDP we use first quarter of each time period t. The higher volatility means higher

risk, so we expected a positive relationship for volatility of S&P return and default

probability. Chicago Fed National Activity Index (CFNAI), is a weighted average of

85 existing, monthly indicators of national economic activity. The CFNAI provides

a single, summary measure of a common factor in these national economic data.

Historical movements closely track periods of economic expansion and contraction.

This monthly released index tracks periods of increasing and decreasing inflationary

pressures. The CFNAIMA3 is the three months moving average of CFNAI which

tracks economic expansions and contractions. The CFNAI is a coincident indicator of

economic expansions and contractions. Default events normally happen later than the

economic downturn. After a simple empirical on CFNAI, its two and three months

moving average, we find three month moving average fits the model better than the

other two. We will focus on the CFNAIMA3 rather than CFNAI. As with index

return and GDP, a negative relationship is expected here.

All these five macroeconomic covariates coefficients gave the expected sign, see Table

2.3. We get negative coefficient for ∆GDP , spretl, CFNAI and CFNAIMA3 and

positive coefficient for stock index return volatility. Probabilities of default are given

by P (Yit = 1 | Ψt) = Φ
(
γr(i,t) + ηzt + Ψt

)
. The negative coefficient will decrease the

default probabilities with increasing observed macroeconomic covariates while positive

coefficient will increase the default probabilities.

All of ∆GDP , spretl, CFNAI and CFNAIMA3 have statistically significant effects

while volatility has not. Among them, the p-value for spretl, CFNAI and CFNAIMA3

are smaller than .005 which means statistically significant for 99.5% confidence inter-

val. The p-value for volatility is 0.14 which is not statistically significant. The CFNAI

index is a weighted average of 85 existing, monthly indicators of US national economy

activity which can explain the US economic. S&P is used in reference not only to the
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Model 2.2: GLMM with macroeconomic covariate ∆GDP

γA γBBB γBB γB γCCC η σ

mean -3.4361 -3.0253 -2.5899 -2.0706 -1.1414 -0.0323 0.1960

s.e. (0.1127) (0.0787) (0.0642) (0.0551) (0.0601) (0.0123) –

p-value < .0001 < .0001 < .0001 < .0001 < .0001 0.0119 –

Model 2.2: GLMM with macroeconomic covariate spretl

γA γBBB γBB γB γCCC η σ

mean -3.4873 -3.0777 –2.6426 -2.1231 -1.1947 -0.6293 0.1898

s.e.(γr) (0.1071) (0.0698) (0.0526) (0.0405) (0.0471) (0.2120) –

p-value < .0001 < .0001 < .0001 < .0001 < .0001 0.0048 –

Model 2.2: GLMM with macroeconomic covariate volatility

γA γBBB γBB γB γCCC η σ

mean -3.6875 -3.2777 -2.8424 -2.3242 -1.3950 0.8801 0.2115

s.e. (0.1427) (0.1179) (0.1085) (0.1031) (0.1060) (0.5858) –

p-value < .0001 < .0001 < .0001 < .0001 < .0001 0.1400 –

Model 2.2: GLMM with macroeconomic covariate CFNAI

γA γBBB γBB γB γCCC η σ

mean -3.5682 -3.1575 -2.7229 -2.2033 -1.2735 -0.1186 0.1909

s.e. (0.1064) (0.0686) (0.0507) (0.0376) (0.0446) (0.0400) –

p-value < .0001 < .0001 < .0001 < .0001 < .0001 0.0049 –

Model 2.2: GLMM with macroeconomic covariate CFNAIMA3

γA γBBB γBB γB γCCC η σ

mean -3.5646 -3.1538 -2.7185 -2.1982 -1.2694 -0.1765 0.1681

s.e. (0.1063) (0.0675) (0.0488) (0.0346) (0.0423) (0.0426) –

p-value < .0001 < .0001 < .0001 < .0001 < .0001 0.0001 –

Table 2.3: Model 2.2: GLMM with different macroeconomic covariates
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index but also to the 500 companies that have their common stock included in the

index and S&P default data used in our analysis. That is why these three observed

macroeconomic covariates have the highest explanatory power. See Figure 2.2 for his-

torical macroeconomic covariates. We will compare these three observed factor with

unobserved factor as well.

We compared the observed factor in Model 2.2 with the unobserved factor in Model

2.2 and the two unobserved factors in both Model 2.1 and Model 2.2. The upper plot

of Figures 2.3, 2.4 and 2.5 displays the unobserved factor {(t,Ψt) : t = 1, . . . , T} of

Model 2.1 (solid black line) and observed fixed factors {(t, ztη) : t = 1, . . . , T}(dashed

blue line) in Model 2.2. The lower plot compare the unobserved factor for Model 2.1

(solid black line) and Model 2.2 with macroeconomic covariates(dashed blue line).

There seems to be a fair amount of co-movement between the two series {(t, ztη) :

t = 1, . . . , T} and {(t,Ψt) : t = 1, . . . , T}, but it is obvious that zt does not track Ψt

particularly accurately, and that zt does not fully capture the default activity. This

illustrates the problems associated with observed proxies for the systematic risk. The

lower plots compare unobserved factor of Models 2.1 and 2.2. Although the paths are

very similar, the reduced variance of Ψt when zt is explicitly modelled can be detected.

the standard deviation is reduced from 0.2163 in Model 2.1 to 0.1681 (CFNAIMA3),

0.1898 (spretl) and 0.1909 (CFNAI) in Model 2.2. This can be easily detected from

the plots, the random effects for spretl varies more than CFNAI and CFNAIMA3.

These results help to understand that CFNAIMA3 is the best single macroeconomic

covariate of the ones we have tried to explain US economy.

We studied all these five macroeconomic covariates individually. In order to get

further comparison, we analysis all these macroeconomic covariates in one model.

Volatility is removed from our consideration because it is not statistically significant

in previous analysis. CFNAIMA3 is three months moving average of CFNAI, so we

pick CFNAIMA3 instead of CFNAI. See the results in Table 2.4.

From Table 2.4, both CFNAIMA3 and spretl have statistically significant effects while

GDP has not. Both CFNAIMA3 and spretl give a negative coefficient which is ex-
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Figure 2.3: Visual comparison of systematic risk factors. The upper plot displays the

estimated unobserved effect of factor {(t,Ψt) : t = 1, . . . , T} in Model 2.1 (solid black

line) and the estimated fixed factor CFNAI {(t, ztη) : t = 1, . . . , T}(dashed blue line)

in Model 2.2. The lower plot compare the unobserved factor for Model 2.1 (solid black

line) and Model 2.2 with macroeconomic covariates CFNAI (dashed blue line).
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Figure 2.4: Visual comparison of systematic risk factors. The upper plot displays the

unobserved factor {(t,Ψt) : t = 1, . . . , T} of Model I (solid black line) and observed

fixed factor CFNAIMA3 {(t, ztη) : t = 1, . . . , T}(dashed blue line) in Model 2.2. The

lower plot compare the unobserved factor for Model I (solid black line) and Model 2.2

with macroeconomic covariates CFNAIMA3(dashed blue line).
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Figure 2.5: Visual comparison of systematic risk factors. The upper plot displays the

unobserved factor {(t,Ψt) : t = 1, . . . , T} of Model 2.1 (solid black line) and observed

fixed factor Spretl {(t, ztη) : t = 1, . . . , T}(dashed blue line) in Model 2.2. The lower

plot compare the unobserved factor for Model 2.1 (solid black line) and Model 2.2

with macroeconomic covariates spretl(dashed blue line).
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pected. However, GDP gives a positive relationship which is different from our ex-

pectation. GDP worked well in our previous analysis but not this model. This result

tells us that CFNAIMA3 and spretl explain the US economy better than GDP. CF-

NAIMA3 explained US economy better than spretl. Both CFNAIMA3 and spretl

are statistically significant in our results, although p-value for CFNAIMAS is smaller

than spretl. Here we fit the model for only both two macroeconomic covariates.

From Table 2.5, both CFNAIMA3 and spretl have statistically significant effects. Both

CFNAIMA3 and spretl give a negative coefficient which is expected. This result tells

us that CFNAIMA3 and spretl explain the US economy better than GDP. CFNAIMA3

explained US economy better than spretl with a smaller p-value for CFNAIMAS.

Macroeconomic covariates spretl did some additional explanation, but CFNAIMA3

is the most important covairtes to explain the credit quality changes, we will use the

CFINAMA3 as the observed factor in further analysis.

Model 2.3: Model with sector random effects

GLMMs allow additional random effect to capture patterns of variability in the re-

sponse which cannot be explained by observed covariates. Random effects like indus-

try sector can be added in order to capture additional variability. We use 6 industry

sectors out of 8 industry sector which we created using CreditPro data.

With the additional random effect, the maximum value of the log-likelihood is -1818

in the model with industry sectors and -1913.3 in the basic model, see Table 2.8.

The systematic risk can be thought of as being divided into two parts which are

explained by fixed effects and random effects. With the additional sector random

effect, heterogeneity is allowed in default rates between sectors within a time period.

Further random effects like country can be introduced to allow more heterogeneity,

although we prefer to concentrate on US data.

The default probabilities in models with sector random effect are given by pr =

Φ
(

γr√
1+σ2+τ2

)
.1 We compare with model with sector random effects and the model

1The Equicorrelation Structure here is the same as before. However, we split the data into 6
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Model 2.2 with macroeconomic covariate CFNAIMA3 spretl and GDP

γA γBBB γBB γB γCCC η1

mean -3.5406 -3.1306 -2.6952 -2.1739 -1.2465 -0.1643

s.e. (0.1275) (0.0970) (0.0849) (0.0775) (0.0810) (0.0686)

p-value < .0001 < .0001 < .0001 < .0001 < .0001 0.0210

Remaining Parameters

η2 η3

mean -0.4319 0.0049

s.e. (0.1939) (0.0175)

p-value 0.0312 0.7809

Table 2.4: Model 2.2 with macroeconomic covariate CFNAIMA3 spretl and GDP

Model 2.2 with macroeconomic covariate CFNAIMA3 and spretl

γA γBBB γBB γB γCCC η1 η2

mean -3.552 -3.095 -2.683 -2.138 -1.205 -0.155 -0.454

s.e. (0.1044) (0.0643) (0.0497) (0.0374) (0.0443) (0.043) (0.190)

p-value < .0001 < .0001 < .0001 < .0001 < .0001 0.0008 0.0215

Table 2.5: Model 2.2 with macroeconomic covariate CFNAIMA3 and spretl

Model 2.3: GLMMs with industry sectors

γA γBBB γBB γB γCCC σ τ

mean -3.5806 -3.1774 -2.7606 -2.2445 -1.2834 0.1945 0.2571

s.e. (0.0936) (0.0626) (0.0484) (0.0391) (0.0437) – –

p-value < .0001 < .0001 < .0001 < .0001 < .0001 – –

pr 0.00033 0.00125 0.00430 0.01633 0.11094 – –

Table 2.6: Model 2.3 with industry sectors random effects
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without sector-specific random effects. Model with sector random effects has lower

Akaike Information Criterion (AIC)(AIC = −2 ∗ logL + 2 ∗ k) and Bayesian Infor-

mation Criterion (BIC) (AIC = −2 ∗ logL + k ∗ logN) than model without-specific

random effects, see Table 2.8.

The within-sector implied asset correlation is 9.41%, whereas the across-sector coun-

terpart is only 3.42%. The model without sector-specific random effects has an overall

implied asset correlation 4.47%. Implied asset correlation is obviously increased with-

in an industry sector.

The estimated industry sector random effects show both similarities and difference.

From Figure 2.6 and 2.7, both the industry sectors and empirical default probabilities

have the same peak around 1990. However, around 2000, the “Hightec” industry

has another peak while “Energy” and “Finance” industry do not. The end of the

high-technology speculative bubble starting at 2000 caused a lot of high technology

companies to default. Industry “Aero”,“Consumer” also have peak while the end of

bubble. Industry sector “Energy” has lower random effect around 1995 while other

sectors have higher random effect. This industry sector-specific random effects capture

the information which the simpler one-factor model could not and show difference for

different industry sectors.

Model 2.4: Model with sector random effects and macroeconomic covari-

ates

In the previous research, we find CFNAIMA3 is the best explanatory macroeconomic

covariate for the US economy. Thus CFNAIMA3 will be used as a macroeconomic

coavriate in this analysis. Read Table 2.9 for results.

The macroeconomic variable still has a statistically significance effect. The within-

sector implied asset correlation is 8.03%, whereas he across-sector counterpart is only

2.19%. The model without sector-specific random effects has an overall implied asset

industry which make the data size is 6 time bigger than the data used before
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Model 2.1: GLMMs with Equicorrelation structure

γA γBBB γBB γB γCCC σ

mean -3.5439 -3.1336 -2.6988 -2.1806 -1.2507 0.2143

s.e. (0.10890) (0.07052) (0.05251) (0.03952) (0.04660) –

p-value < .0001 < .0001 < .0001 < .0001 < .0001 –

pr 0.00026 0.00109 0.00416 0.01650 0.11068 –

Table 2.7: Model 2.1: GLMMs with Equicorrelation structure

AIC BIC logLik

With industry sector random effect 3652.0 3693.8 -1818.0

Without industry sector random effect 3840.6 3877.2 -1913.3

Table 2.8: Model with sector random effects and without sector random effects

Model 2.4: GLMMs with industry sectors and CFNAIMA3

γA γBBB γBB γB γCCC η

γr -3.5959 -3.1929 -2.7760 -2.2589 -1.2992 -0.1616

s.e.(γr) (0.09241) (0.06045) (0.04531) (0.03489) (0.04008) (0.04347)

p-value < .0001 < .0001 < .0001 < .0001 < .0001 0.0006

Remaining Parameters

σ τ

γr 0.1497 0.2549

s.e.(γr) – –

p-value – –

Table 2.9: Model 2.4 with industry sectors random effects and CFNAIMA3
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Figure 2.6: The top figure shows empirical default probability with different rating

categories, the following three plots show {(t, bt) : t = 1, . . . , T} for different industry

Aero, Consumer and Energy random effects with rating category “CCC”
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Figure 2.7: The top figure shows empirical default probability with different rating

categories, the following three plots show {(t, bt) : t = 1, . . . , T} for different industry

Finance, Hightec and Leisure random effects with rating category “CCC”
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correlation of 4.47%. Implied asset correlation increased within an industry sector.

The standard deviation is 0.14968 which is reduced from 0.19446 in Model 2.3.

AIC BIC logLik

Model 2.4 3653.6 3700.6 -1817.8

Model 2.3 3652.0 3693.8 -1818.0

Model 2.2 3867.2 3909.0 -1925.6

Model 2.1 3840.6 3877.2 -1913.3

Table 2.10: LogLik,AIC and BIC for four different models

Table 2.10 gives the logLik, AIC and BIC for three different models. The maximum

log-likelihood are similar for model with and without macroeconomic covariate effect

but massively increase with the industry sectors random effects. See Table2.10 for de-

tails. The industry sectors random effect increase the maximum log-likelihood from

-1919.3 and -1925.6 to -1818.0 and -1817.8. But with additional observed macroe-

conomic variable in Model 2.3, the log-likelihood only increased 0.2 to -1817.8, the

log-likelihood even decreased in Model 2.1 with additional observed macroeconomic

variable. This result shows that industry sector random effect can help us to capture

pattern of variability in response that cannot be explained by observed macroeco-

nomic variables alone. The random industry effects even take more contribution than

macroeconomic covariate for default acativity.

2.4 Discussion

GLMMs allow the systematic portfolio risk to be divided into observed fixed effects

and unobserved random effects to capture heterogeneity in default rates. Multivariate

random effects can even capture heterogeneity in time and across industry sectors or

country.

We choose to use standard package S-plus in this analysis. The standard package can

fit one factor credit risk model with equicorrelation structure. Further observed fixed
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effects like macroeconomic covariates and unobserved random effects can be included.

In our empirical study of the Standard and Poor’s default data find CFNAIMA3 is

the best observed macroeconomic covariates to describe the credit default among the

macroeconomic covariates. Other observed covariates like spretl and CFNAI work

well too. The variance of random effects has been reduced with the macroeconom-

ic variables and thus the implied asset correlations. However, the macroeconomic

variables cannot capture the full variability in default rates.

The empirical analysis also considers the industry-specific latent factors. Our results

show increased implied asset correlations within industry sectors. This give us an

important message that the issue of heterogeneity between industry sectors or country

sectors should be considered in credit risk models.

However, the constructed credit portfolio with equicorrelation correlation structure

will give the same loss distribution although the model has been proved to have

improvement. Furthermore, the standard statistical package does not allow serial

dependence. We need to be able to estimate more complicated models for our further

research.

Modelling time-to-event with frailties (called random effects in GLMMs framework)

rather than just numbers of events is one of the possibilities. We will give more details

about the survival models for credit risk modelling in the following two chapters.

Furthermore, we need to extend our default data to transition data. McNeil and

Wendin (2007) study both default and transition probabilities, we will model default

and transition risk with time-to-event models.
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Chapter 3

Modelling default risk with

survival models

For credit risk modelling, we are not only interested in the number of companies that

migrate from one rating category to another, but also interested in the time period

the company spends in a certain rating category. Hence, we will study the time-

to-event analysis which has become popular in credit risk modelling in recent years.

An analysis with GLMM models for credit risk modelling has been provided in the

previous chapter. We will cover time-to-event methods in this chapter.

In his seminal work, Cox (1972) proposes the proportional hazards model, where it is

possible to estimate the relative intensity of a decrement without specifying the base-

line intensity. Cox (1975) demonstrates the estimation procedure for the proportional

hazards model with partial likelihood estimation. Andersen and Gill (1982) generalize

the model to allow time-varying covariates using a counting process formulation, and

show that the maximum partial likelihood estimates are asymptotically equivalent to

unconditional maximum likelihood estimates.

As in our count data analysis for GLMMs, frailty in survival models help to capture

heterogeneity with unobserved random variables. We introduce a frailty-based sur-

vival model for modelling the intensity of credit rating transitions (default). This

49



type of model is an extension of the Cox proportional hazards models where a com-

mon random variable is used to account for heterogeneity. Kavvathas (2001) and

Couderc and Renault (2005) use a similar duration approach conditional on observed

macro-variables and they show that average time-to-default decreases as economic

activity decreases. Shumway (2001) develops a more dynamic bankruptcy prediction

model by combining both financial ratios and market-driven measures and argues

that discrete-time is necessary to calibrate hazards because of the intermittency of

accounts information. Chava and Jarrow (2004) extend Shumway’s (2001) analysis

to consider industry sector heterogeneity using monthly intervals. Duffie, Saita, and

Wang (2007) formulate a doubly stochastic model for firm survival using firm-specific

and macroeconomic covariates.

We adapt a simpler model used in medical statistics (Manda and Mayer (2005)) and

extended for the credit risk application. We estimate rating transition model with

shared dynamic frailties for different industry sectors and macroeconomic covariates

using Bayesian techniques (MCMC). This is a model that each transition intensity

follows a Cox type multiplicative regression model with two levels of frailties to ac-

count for both time period and industry sector heterogeneity. Delloye, Fermanian and

Sbai (2006) define a reduced-form credit portfolio model which treat rating transition

as independent competing risks with conditionally independent and proportional haz-

ards assumption. They also allow strong dependence levels by adding heterogeneity.

However, Delloye, Fermanian and Sbai (2006) split the Standard & Poors’ data into

several groups based on the similar rating transition type and analyze these sepa-

rately. We consider the whole transition data and let all rating transitions share the

same macroeconomic covariates and unobservable random process for all companies

in monthly interval.

We have two aims, First, we will compare the time-to-event model with GLMMs

which were described in the previous chapter. Second, we will investigate differences

between sectors. Cox’s hazard model, which has been increasingly used to model

the hazard of credit risk events in recent years, is used in this analysis. Cox (1972)
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proposed the proportional hazards model and Andersen and Gill (1982) generalized

the model to allow time-varying covariates using counting process formulation.

In this chapter, we will briefly introduce the Cox model and Cox Proportional hazard

model and their estimation methods. Then we will apply Manda and Meyer (2005)

with time-to-event credit risk models. We will present application to Standard &

Poor’s CreditPro data with time-dependent frailty models for recurrent failure time

data in Bayesian context and estimate it using the Markov Chain Monte Carlo meth-

ods. Bayesian methods based on Markov Chain Monte Carlo (MCMC) techniques

have three advantages: Bayesian methods improve estimation accuracy, Bayesian

estimation also allows for taking into account expert opinion through the use of sub-

jective prior distribution of for model parameters, and Bayesian inference becomes

straightforward to compute the default and transition probabilities. We will provide

comparative results with credit risk models using GLMMs. The random effect in

GLMMs models will appear as frailties in survival models. An autoregressive process

is used as time-dependent frailty and two levels frailty time and industry will be used

in this model. We will investigate differences in default intensity between industry

sectors.

3.1 Theory

The Cox regression model for censored survival data specifies that covariates have a

proportional effect on the hazard function of the life-time distribution of an individual.

Anderson and Gill (1982) extend the Cox model to a model where covariate processes

have a proportional effect on the intensity process of a multivariate counting process.

This allows complicated censoring patterns and time dependent covariates.
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3.1.1 Models

Cox proportional hazard model

Cox (1972) specifies the hazard rate or intensity of failure λi(t) = limh↓0 P [Ti ≤ t+h |

Ti > t] for the survival time Ti of an individual with covariate vector zi to have the

form

λi(t) = λi(t|β) = λ0(t) exp(β
′
zi), t ≥ 0. (3.1)

here β is a p−vector of unknown regression coefficients and λ0(t) is the underlying

hazard which is an unknown and unspecified nonnegative function.

Andersen-Gill model

Andersen and Gill (1982) discuss how the Cox model can be extended to a model

where covariate processes have a proportional effect on the intensity process of a

multivariate counting process. The A-G model permits a statistical regression analysis

of the intensity of a recurrent event and allow for complicated censoring patterns and

time dependent covariates. This is relevant for credit risk modelling.

Consider any subject i is followed over time and can experience multiple events of

the same type such that the times of events are ordered 0 < Ti1 < Ti2 < · · · , with

the probability 0 of tied observations. If the event is default, it is of course unlikely

that we would have multiple events but the framework allows this possibility. The

predetermined time interval [0, ci] is divided into discrete time interval. In practice

monthly intervals prove to be sufficiently small. At time t, we have for the ith subject a

d-dimensional vector of risk factorsX i(t), and an observable process Ni(t) that counts

the number of events which have occurred up to time t; and Yi(t), a non-negative

predictable indicator process taking the value 1 if the subject is under observation and

0 otherwise. In modelling such counting process with observed data D = (N,X, Y ),

we look at the intensity of the process which measures the risk of an event at time t.
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This intensity is modelled as time dependent. For the ith subject, the corresponding

intensity at time t is λi(t|β), where β is a vector of unknown parameters which are

associated with the covariate vector X i(t). This model can be extended to a frailty-

based model which can be used for modelling intensity of credit rating transitions.

It uses a common random variable to account for the heterogeneity in intensity rates

that can not be accounted for by observed covariates.

Andersen-Gill model with static frailty

The frailty-based Andersen-Gill model will be extended by adding a subject-specific

random frailty Wi which can capture the risk not accounted for by the included

observed risk variables X i(t). Then the intensity at time t will be λi(t|β,Wi).

The study period for subject i is partitioned into finite disjoint intervals At = [t, t +

dt), 0 ≤ t ≤ ci such that no time interval contains more than one of the consecutive

events of the subject, then the counting process jump dNi(t) = Ni(t+dt)−N(t) takes

only value 0 or 1. The intensity function is given by

λi(t|β,Wi)dt = P (dNi(t) = 1|Ft−;β,Wi) (3.2)

where Ft− is the available data just before time t. Andersen and Gill (1982) give the

intensity function

λi(t|β,Wi) = Yi(t)λ0(t) exp(β
′
X i(t) +Wi) (3.3)

where Yi(t) is indicator function, λ0(t) is an baseline intensity function and exp(β
′
X i(t)+

Wi) is the Cox covariate effect function. The advantage of this intensity model is that

it allows time-varying covariates by risk factor X i(t) and also include subject-specific

frailty Wi on the baseline hazard.
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Andersen-Gill model with dynamic frailty

In frailty models, an independent subject-specific random effect is usually assumed to

be time-constant for each subject. Manda and Meyer (2005) present application to

medical data with time-dependent frailty model for recurrent failure time data in the

Bayesian context and estimate it using the Markov Chain Monte Carlo method; an

autoregressive process is used as time-dependent frailty. The intensity function with

time-dependent frailty is extended as

λi(t|β,Wi(t)) = Yi(t)λ0(t) exp(β
′
X i(t) +Wi(t)) (3.4)

where Wi(t) time-dependent subject specific frailty. In our credit risk application, we

use dynamic shared group frailties instead of subject-specific frailties.

3.1.2 Parameter estimation

Cox originally proposed a partial likelihood approach. There are several methods for

estimating the Andersen-Gill formulation of the Cox proportional hazard model. Like

Maximum likelihood estimation which is available in standard R package, however,

these function only can estimate some simple models. Clayton (1991) formulates

the Cox model using the counting process notation introduced by Andersen and Gill

(1982) and discusses estimation of the baseline hazard and regression parameters

using MCMC methods. Manda and Meyer (2005) also use the Bayesian inference for

recurrent events using time-dependent frailty.

In this thesis, we use Gibbs simulation which is probably the most widely used M-

CMC methods for estimating our different models. The BUGS (Bayesian inference

Using Gibbs Sampling) is concerned with flexible software for the Bayesian analysis

of complex statistical models using Markov chain Monte Carlo (MCMC) methods.

WinBUGS is part of the BUGS project, WinBUGS can use either a standard ‘point-

and-click’ windows interface for controlling the analysis, or can construct the model

using a graphical interface called DoodleBUGS. R2WinBUGS is a package running
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WinBUGS from R. Using this package, it is possible to call a BUGS model, summarize

inferences and convergence in a table and graph, and save the simulations in arrays

for easy access in R.

Partial likelihood

Cox (1975) originally proposed partial likelihood for proportional hazards model esti-

mation. Although it is now well known that partial likelihood is misnamed and not a

likelihood but seemingly based on standard likelihood results.

Suppose we have n possibly right censored survival times T1, · · · , Tn and the corre-

sponding covariate vectors z1, · · · , zn, where zi is observed on [0, Ti]. Cox (1972)

suggested that inference on β be based on the function

L(β) =
n∏
i=1

{
eβ
′
zi∑

j∈Rle
β
′
zj

}δi

(3.5)

whereRl = {j : Tj ≥ Ti} is the risk set and δi is an indicator for failure and 1−δi is an

indicator for censoring. Cox (1975) derived the above formula as a partial likelihood

function. Letting β̂ be the value that maximizes (3.5), then the continuous estimator

obtained by linear interpolation between failure times of

Λ̂(t) =
∑
Ti≤t

δi∑
j∈Rle

β̂
′
zj

(3.6)

for the underlying cumulative hazard Λ0(t) =
∫ t

0
λ0(s)ds was suggested by Bres-

low(1972,1974).

Full maximum likelihood procedure

We consider default risk only in this chapter, but will extend the model to the migra-

tion case in the next chapter. Here we will only consider the full maximum likelihood

procedure for default model and will show in the next chapter for migration case. In

general, let λi(t) be the intensity for firm i . In formula (3.1), λ0 is the baseline hazard

function, β is the parameter to be estimated and z is the macroecnomic covariates in
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this analysis. In our simple model, covariate only depend on time t. The observable

process Ni(t) denote the number of event for firm i at period time t. Yi(t) be the

indicator variable which take value 1 or 0 depend on under observation or not.

Andersen et al. (1993) proposed a full maximum likelihood procedure for estimating

the unknown coefficients. The details can be found in Andersen et al. (1993), Kav-

vathas (2000) or Delloye et al (2005). With n firms, the likelihood could be written

as following:

L =
n∏
i=1

Li

Li =

{∏
t

(λi(t|z))dNi(t)

}
·

(
−
∫ ∞

0

Y (u)λi(u|z)du

)
(3.7)

The log-likelihood will be:

lnLi =
n∑
i=1

lnLi

Bayesian inference

Several authors have discussed Bayesian inference for frailty models. Clayton(1991)

set out a Bayesian representation of the model and discussed inference using Monte

Carlo methods. We propose Manda and Meyer (2005) model in our analysis, thus the

Bayesian inference using time-dependent frailty will be discussed. The joint distribu-

tion of the observed data D given λ0,β,W is given by

p(D|λ0,β,W ) =

I∏
i

{
ci∏
t≥0

[Yi(t)e
β
′
Xi(t)+Wi(t)λ0(t)]dNi(t)

}

× exp

(
−
∫ ci

0
Yi(t)e

β
′
Xi(t)+Wi(t)λ0(t)dt

)

∝
I∏
i

{
ci∏
t≥0

[eβ
′
Xi(t)+Wi(t)dΛ0(t)]dNi(t) exp(−Yi(t)eβ

′
Xi(t)+Wi(t)dΛ0(t))

}

As detailed in Manda and Meyer(2005), the purpose of Bayesian analysis for frailty

is to determine the summary statistics of the posterior distribution of parameters

ψ. The posterior distribution is from p(ψ|D) ∝ p(D|ψ)p(ψ) and the data likelihood
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above is updated with the prior distribution of the model parameter. We use Markov

chain Monte Carlo(MCMC) methods in our analysis. The Gibbs sampler is the most

widely used MCMC methods which can be implemented in BUGS. There are several

things that need to be considered for MCMC output: including the Monte Carlo error,

the Gelman-Rubin convergence diagnostic and Deviance information criterion (DIC).

In the analysis of the MCMC output, Monte Carlo error (MC error) measures the

variability of each estimate due to the simulation. MC error must be low in order

to calculate the parameter of interest with increased precision. There are two com-

mon ways to estimate MC error: the batch mean method and the windows estimator

methods. The first one is simple and easy to implement and has been used in Win-

BUGS. The batch mean estimator of the Monte Carlo error is discussed in details by

Hastings (1970), Geyer(1992), Roberts (1996), Carlin and Louis (2000) and Givens

and Hoeting (2005). Here we give a brief introduction to this method.

We partition the resulting output sample in K batches (K=30 or 50). The sample size

of each batch ν = T̃ /K must be sufficiently large in order to estimate the variance

consistently and also eliminate autocorrelations. Before we calculate the Monte Carlo

error of the posterior of G(ψ),here G(ψ) be arbitrary posterior, we first calculate each

batch mean by

G(ψ)b =
1

ν

bν∑
t=(b−1)ν+1

G(ψ(t)) (3.8)

for each batch b = 1, ..., K, and the overall sample mean by

G(ψ) =
1

T̃

T̃∑
t=1

G(ψ(t)) =
1

K

K∑
b=1

G(ψ)b (3.9)

assuming that we keep ψ(1), . . . ,ψ(T̃ ) observations. The an estimate of the MC error

is simply given by the standard deviation of the batch means estimates G(ψ)b

MCE[G(ψ)] =

√√√√ 1

K(K − 1)

K∑
b=1

(
G(ψ)b −G(ψ)

)2
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The Gelman-Rubin convergence diagnostic (Gelman and Rubin,1992) is available in

WinBUGS via the bgr diag option. With multiple chains generating, each one starting

from different initial values. Then an ANOVA-type diagnostic test is implemented

by calculating and comparing the between-sample and the within-sample variability.

The statistic R can be estimated by

R̂ =
V̂

WSS
=
T̃ − 1

T̃
+
BSS/T̃

WSS

κ+ 1

κ

where κ is the number of generated sample/chains, T̃ is the number of iterations kept

in each sample/chians, BSS/T̃ is the variance of the posterior mean values over all

generated samples/chains(between sample variance), WSS is the mean of the variances

within each sample(within-sample variability), and

V̂ =
T
′ − 1

T ′
WSS +

BSS

T ′
κ+ 1

κ

is the pooled posterior variance estimate. When convergence is achieved and the size

of the generated data is large, then R̂ → 1. Brook and Gelman (1998) adopted a

corrected version of this statistic:

R̂c =
d+ 3

d+ 1
R̂

where d is the estimated degrees of freedom for the pooled posterior variance estimate

V̂ . We will use this statistic to check the convergence.

We use deviance information criterion (DIC) to compare different fitting models. We

refer to Spiegelhalter et al. (2002) and Ntzoufras (2008, sec.6.4) for more details about

DIC. The DIC is defined as DIC = D̄ + pD where D̄ is the posterior mean of the

deviance and pD is the effective number of parameters in the model. The parameter

pD is calculated using pD = D̄ − D(ψ̄), where D(ψ̄) is the deviance evaluated at

the posterior mean of the unknown parameters. The DIC is particularly useful for

complex hierarchical models where the numbers of parameters used is unknown. DIC

is a generalization of the Akaike information criterion (AIC).
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3.2 Model used in practice

Recall the formula 3.4, we start by ignoring frailties and setting λ0(t) = λ0, where

λ0 is baseline intensity parameter. Now we assume: the meaning of this assumption

is that we have constant baseline hazard of default, all the time dependence comes

through the macroeconomic covariates X i(t). This model can be extended by adding

a random effect b and allow both time-dependent and time-independent risk factors.

3.2.1 Model 3.1: Model with macroeconomic covariates

Suppose the intensity function depends on time-dependent macroeconomic covariates

z(t) which are the same for all subjects and credit rating effect γr(i,t) of the ith

company at time t. The intensity function is given by:

λi(t|γ,η) = Yi(t)λ0 exp(η
′
z(t) + γr(i,t)) (3.10)

This model allows for difference in the events times that only depend on the macroe-

conomic variables and credit rating effect γr(i,t); it does not allow for the random

effect.

3.2.2 Model 3.2: Model with yearly shared frailty

The model with macroeconomic covariates will be extended by adding a component

of yearly heterogeneity by(t) captures heterogeneity not captured by z(t), this frailty

process is only depend on time t and will take the number yearly. Suppose the

intensity function depends on time-dependent macroeconomic covariates z(t), credit

rating effect γr(i,t) of the ith company at time t and yearly frailty. The intensity

function is given by:

λi(t|γ,η) = Yi(t)λ0 exp(η
′
z(t) + γr(i,t) + by(t)) (3.11)

where y(t) gives the year period corresponding to time t. This model allows for

difference in the events times that depend on the macroeconomic variables and credit
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rating effect γr(i,t) as well as the shared frailty for each year. However, it does not

allow serial dependence between each yearly shared frailty.

3.2.3 Model 3.3: Model with serial dependence for yearly

shared frailty

The model with yearly shared frailty will be extended by adding serial dependence for

yearly heterogeneity by(t). Suppose the intensity function depends on time-dependent

macroeconomic covariates z(t), credit rating effect γr(i,t) of the ith company at time

t and yearly frailty. The intensity function is given by:

λi(t|γ,η) = Yi(t) exp(η
′
z(t) + γr(i,t) + by(t)) (3.12)

by = α + ϕby−1 + εy

A simple model AR(1) process has been used to capture the serial dependence for

yearly shared frailty. This model allows for difference in the events times that depend

on the macroeconomic variables and credit rating effect as well as yearly shared frailty

with serial dependence.

3.2.4 Model 3.4: Model with shared sector frailties

We will add shared sector frailties as the second level of frailty. Then the frailties

with two levels will become by(t),s(i). The frailties will be by(t),s(i) with yearly shared

frailty extended by adding shared sector frailties. Suppose the intensity function

depends on time-dependent macroeconomic covariates z(t), sector effect s(i) of the

ith company,rating effect γr(i,t) for ith company at time t and yearly frailty. The

intensity function is given by:

λi(t|γ,η) = Yi(t) exp(η
′
z(t) + by(t),s(i) + γr(i,t)) (3.13)

by,s ∼ N(by, σ
2)

by = α + ϕby−1 + εy

60



A simple model AR(1) process has been used to capture the serial dependence for

yearly shared frailty. This model allows for difference in the events times that depend

on the macroeconomic variables and sector effect as well as two levels of shared frailties

with serial dependence. We can tell the difference for companies in different sectors

in different year.

3.3 Empirical study of default data

3.3.1 Data description

We use the Standard & Poor’s database CreditPro 6.6 which consists of 10439 com-

panies from 13 industry sectors over the period January 1981 to December 2003.

Overall 19054 effective rating migrations are recorded in the CreditPro database as

well as 1386 defaults. Here we remove the rating transitions which started with rating

category “NR” and treat the transitions as censored for those ending with “NR”.

The rating classes included in this analysis are

K = {CCC,B,BB,BBB,A,AA,AAA,D}

where we merge actual rating k+, k, k− into k. We also merge CCC,CC, and C in-

to a single rating class CCC. The whole database consists of 13 industries among

93 countries or region and 6897 of them are US companies. The industry sectors

in this analysis are modified from the S&P industry sectors. We merged 13 indus-

tries into 8 industries, Consumer/Service with Transportation, Energy with Utility,

Financial Institution with Insurance and Real Estate, Forest and Building products

with Homebuilders, Health Care with Chemicals and finally High Technology with T-

elecommunications. The industry sectors we merged are have similar business which

have high correlation between industry sectors.

We start to look at default analysis of the whole database in this analysis in order

to study the models suggested. Rating class AAA and AA which rarely default have
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Sector Name #Obligors

1 “Aerospace/automotive/capital goods/metal” 803

2 “Consumer/service sector”+“Transportation” 1238

3 “Energy and natural resources”+“Utility” 903

4 “Financial Institutions”+“Insurance”+“Real estate” 1340

5 “Forest and building products”+“Homebuilders” 258

6 “Health care”+ “Chemicals” 448

7 “Hightec/computers/office equipment”+“Telecom” 588

8 “Leisure time/media” 644

Table 3.1: Numbers of obligors used for different industry sectors

been excluded from this study, they will be reconsidered in our transition analysis in

the following chapters. Here we consider the rating Kd = {CCC,B,BB,BBB,A}

to default D of US companies which include 6222 companies as well as 1356 defaults

(some companies censored). The details about the industries for the data we used in

this analysis are shown in Table 3.1.

3.3.2 Results

There are several ways to implement Gibbs simulation. WinBUGS is one of the most

popular ways to implement Gibbs simulation. In running the Gibbs sampling algo-

rithm, the prior specifications are very important, we set them up as follows: for all

the constant baseline, the precision τ of time-dependent fixed effect macroeconomic

variables was set to 0.001, resulting a normal distribution which is very uninformative.

A non-informative Gamma prior is assumed for τ , the precision of the frailty param-

eters. Note that the above ‘additive’ formulation of the frailty model is equivalent to

assuming multiplicative frailties with a log-Normal population distribution. Clayton

(1991) discusses the Cox proportional hazards model with multiplicative frailties, but

assumes a Gamma population distribution.
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Model 3.1: Model with macroeconomic covariates

The rating migration or default depend on the “state-of-the-economy”. There are

several possible proxies and we have shown that Chicago Federal National Activities

Index three month moving average (CFNAIMA3) is the best macroeconomic covariate

to capture the US economy cycle among them, therefore we use the CFNAIMA3 as

the macroeconomic covariates in this analysis. All the details about macroeconomic

covariates can be found in Chapter 2. Obviously we could easily include further

macroeconomic covariates if desired, but CFNAIMA3 captures the main business

cycle effect.

Model 3.1: Model with macroeconomic covariates only

µ η γA γBBB γBB γB γCCC

mean -3.625 -1.225 -7.333 -5.428 -4.109 -2.656 0

sd (0.0416) (0.0437) (0.5288) (0.2372) (0.1301) (0.0658) 0

MCerror 0.0010 0.0008 0.0070 0.0039 0.0020 0.0012 0

Table 3.2: Model 3.1 with macroeconomic variable only

With 10000 iterations and burn-in 5000, the first 5000 iterations were discarded.

The posterior estimation for Model 3.1 are given in Table 3.2. The posterior mean

of macroeconomic covariate CFNAIMA3 coefficient η is -1.225 and standard devia-

tion(SD) 0.04372, which means the increase of CFNAIMA3 will reduce the default

intensity for all the rating category. The posterior mean of µ is -3.625 with standard

deviation 0.04162, which is the parameter for constant baseline, exp(µ) is the constant

baseline in our model, and exp(µ+η
′
z(t)) equal to baseline including macroeconomic

effect. The rating category is treated as a fixed effect in our analysis, we set the

default from rating CCC to 0, and the rest coefficients of rating category shows that

higher rating with lower default intensity. The MC error number is quite small which

means the model fits the data well. Figure 3.1 compares log-scale intensity function

for all ratings.
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Figure 3.1: Intensity vs macroeconomic covariates in upper figure and monthly inten-

sity for all five different rating categories with Model 3.1
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Figure 3.2: Monthly intensity for rating category BBB with Model 3.1; posterior

means with 95% credible intervals
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Model 3.2: Model with yearly shared frailty

µ η γA γBBB γBB γB γCCC σ

mean -2.699 -0.3981 -7.307 -5.411 -4.085 -2.617 0 0.919

sd 0.2098 0.0897 0.5296 0.2375 0.1316 0.0661 0 0.1548

MCerror 0.0203 0.0032 0.0087 0.0037 0.0022 0.0014 0 0.0038

Table 3.3: Model 3.2 with yearly shared frailty

The upper figure shows opposite direction of the monthly intensity and macroeconom-

ic covariates CFNAIMA3 which confirm the negative effect of macroeconomic effect

for intensity of default rating. The increase of CFNAIMA3 will reduce the default

intensity for all the credit rating categories in this analysis. The lower figure show

that lower rating has higher default intensity. The lowest log-intensity to the highest

are represent rating categories A, BBB, BB, B and CCC to default respectively. Fig-

ure 3.2 shows the estimated monthly default intensity for rating category BBB and

its corresponding 95% credible intervals. For simplicity, we will show other rating

category’s default intensity in the following models. The monthly intensity for rat-

ing category BBB changes over time and shows opposite direction of macroeconomic

covariate.

Model 3.2: Model with yearly shared frailty

The rating migration or default depend on the “state-of-the-economy”. However,

further random effect is needed to capture patterns of variability in responses that

cannot be explained by the observed macroeconomic covariates alone. Random effects

are additional unobserved factors help to explain the rating migration activity. In

Model 3.2, we add yearly shared frailties and try to capture the variability between

different years.

As in Model 3.1, we run 10000 iterations and burn-in 5000, the first 5000 iterations

were discarded. The results for Model 3.2 are presented in Table 3.3. The MC
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error number for all parameters are quite small which means the model fits the data

well and results are acceptable. The posterior mean for baseline hazard effect µ

is increased from -3.625 in Model 3.1 to -2.699 in Model 3.2, with σ the standard

deviation 0.2098, which is the parameter for constant baseline, exp(µ) is the constant

baseline in this model, and exp(µ+η
′
z(t)) equal to baseline including macroeconomic

effect. The rating fixed effect shows that lower rating has higher intensity function.

The systematic risk factors in Model 3.1 can be divided into observed fixed effects

and unobserved yearly shared frailty to capture heterogeneity for default intensity.

We compared the observed factor Model 3.1 with the unobserved factor in Model 3.2

and will show it in the default intensity. There is some co-movement between these

two series. The observed macroeconomic covariate does capture the credit rating

transitions but not fully capture them. In Figure 3.3, we display default intensity for

rating category B, two risk factors exp(µ+η
′
z(t)) in Model 3.1 and exp(µ+η

′
z(t) +

b) in Model 3.2 are shown. The risk factors in Model 3.2 generally have higher

default intensities than in Model 3.1. The unobserved yearly shared frailty in Model

3.2 to capture heterogeneity which cannot be explained by observed macroeconomic

covariates. The macroeconomic covariates around 1990s affect default intensity in

Model 3.1 much more than in Model 3.2 since it is the only factor in Modle 3.1. Figure

3.4 shows the estimated monthly intensity for rating category B and its corresponding

95% credible intervals.

Model 3.3: Model with serial dependence for yearly shared frailty

In Model 3.2, the realizations of yearly shared frailty by are assumed to be independent

over different time periods (yearly in our analysis). We can extend this model by

adding a dependence structure on the yearly shared frailty. In credit risk modelling,

it seems appropriate to assume the current value of yearly shared frailty by depends on

its previous time period. We introduce a first-order autoregressive, AR(1), time series.

Here, we remove the baseline coefficient µ and introduce a mean α for autoregressive

process AR(1). The baseline hazard can be calculated by µ = α
1−φ .
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Figure 3.3: Default intensity for rating category B: The blue plot displays the intensity

for Model 3.1 with macroeconomic only and the red plot display the intensity with

unobserved yearly shared frailty b in Model 3.2
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Figure 3.4: Monthly default intensity for rating categories B with Model 3.2; posterior

means with 95% credible intervals
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Model 3.3: Model with serial dependence for yearly shared frailty

node α η γA γBBB γBB γB γCCC

mean -1.167 -0.3889 -7.323 -5.420 -4.091 -2.616 0

sd 0.6962 0.0911 0.5320 0.2356 0.1324 0.0660 0

MCerror 0.0225 0.0039 0.0078 0.0037 0.0021 0.0013 0

Remaining Parameters

σ φ

mean 0.7710 0.6139

sd 0.1383 0.2692

MCerror 0.0028 0.0089

Table 3.4: Model 3.3 with serial dependence for yearly shared frailty

We run 10000 iterations and burn-in 5000, the first 5000 iterations were discarded.

The results for Model 3.3 are presented in Table 3.4. The MC error number for all

parameters are quite small which means the model fits the data well and results are

acceptable. The posterior mean for autoregressive coefficient α is -1.167 with standard

deviation 0.6962 and φ is 0.6139 with standard deviation 0.2692. So the baseline

hazard coefficient µ is -3.0225 where µ is -2.699 in Model 3.2. The macroeconomic

covariate effect η increase from -0.3981 to -0.3889, so the total number is almost

the same in Model 3.2 and Model 3.3. The variance of frailty has posterior mean

0.8725 and standard deviation 0.1636, which means apart from the serial dependence,

the event time within a time period share a common frailty effect that partially

summarizes the dependence within the time period.

In Figure 3.5, we display default intensity for rating category BB, three risk factors

exp(µ+η
′
z(t)) in Model 3.1 and exp(µ+η

′
z(t)+b) in Model 3.2 and Model 3.3 shows

co-movement. The difference between Model 3.2 and Model 3.3 is the latter include

a serial dependence AR(1) process. The unobserved yearly shared frailty in Model

3.2 and Model 3.3 to capture heterogeneity which cannot be explained by observed

macroeconomic covariates. All the three lines share the co-movement, where the red
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Figure 3.5: Default intensity for rating category BB. The black plot displays the

default intensity for Model 3.1 with macroeconomic only and default intensity function

with unobserved yearly frailty b in Model 3.2 (red line) and Model 3.3 (blue line)
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Figure 3.6: Monthly default intensity for rating categories BB with Model 3.3; pos-

terior means with 95% credible intervals
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Model 3.4: Model with shared sector frailties

node α η γA γBBB γBB γB γCCC

mean -1.135 -0.3847 -7.404 -5.492 -4.183 -2.728 0

sd 0.6581 0.09262 0.537 0.2362 0.1353 0.06929 0

MCerror 0.02063 0.00501 0.00814 0.00402 0.00288 0.00218 0

Remaining Parameters

φ σ σ1

mean 0.6264 0.747 0.4303

sd 0.2563 0.1467 0.06121

MC.error 0.00539 0.00203 0.00193

Table 3.5: Model 3.4: Model with shared sector frailties (have been omitted for a

simpler presentation)

line (Model 3.2) and blue line (Model 3.3) are almost identical. The serial dependence

shows within a time period default share a common frailty. The adding of AR(1)

process improves not as significant as the introducing of yearly shared frailties. The

risk factors in Model 3.3 generally have higher default intensities than in Model 3.1

but lower default intensities in particular time period which have peak macroeconomic

covariates. Figure 3.6 shows the estimated monthly intensity for rating category BB

and its corresponding 95% credible intervals.

Model 3.4: Model with shared sector frailties

We use yearly yearly shared frailty to capture the variability for different time period

for any company. Further frailties like industry sector can be introduced to capture

additional variability. We divided the CreditPro data into 8 industry sectors.

We run 10000 iterations and burn-in 5000, the first 5000 iterations were discarded.

The part of results for Model 3.4 are presented in Table 3.5 which shows two levels

of frailties. The MC error number for all parameters are quite small which means
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Figure 3.7: Different sector’s default intensity for rating category CCC

the model fits the data well and results are acceptable. The posterior mean for

autoregressive coefficient α is -1.135 with standard deviation 0.6581 and φ is 0.6264

with standard deviation 0.2563. So the baseline hazard coefficient µ is -3.0380 where

µ is -3.0225 in model 3.3. The macroeconomic covariate effect η decrease from -0.3889

to -0.3847, but the intensity keep same in model 3.3 and model 3.4.

The following Figure 3.7 shows default intensity for rating category CCC with 8 differ-

ent industry sectors in Model 3.4 and try to show the co-movements and heterogeneity

for 8 different industries.

We can easily find the co-movement for each sector as well as the heterogeneity. The

Aero, Consumer, Forest and Health show higher default intensity around 1990 but

Energy and Finance shows lower default intensity at the same time. Almost all the

industry sectors shows lower default intensity around 1995. With introducing the

second-level shared sector frailties, it capture the heterogeneity which cannot be ex-
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Figure 3.8: Monthly default intensity for rating categories CCC with Model 3.4;

posterior means with 95% credible intervals
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Dbar Dhat pD DIC

Model 3.1 12089.300 12083.400 5.933 12095.200

Model 3.2 10956.500 10930.200 26.339 10982.900

Model 3.3 10954.500 10928.600 25.956 10980.500

Model 3.4 10822.600 10736.900 85.674 10908.300

Table 3.6: Deviance information criterion for four different Models

plained by the one-level yearly shared frailty model. Figure 3.8 shows the estimated

monthly intensity for rating category CCC and its corresponding 95% credible inter-

vals for 8 different industry sectors.

Deviance information criterion (DIC)

We use deviance information criterion (DIC) to compare these different models.

For each model discussed above, the Gibbs sample was run for 10000 iterations. The

first 5000 iterations were discarded, and the remaining 5000 iterations were used for

analysis. The estimates for DIC and pD for the four different models are presented

in Table 3.6. The use of DIC is rather to compare different models than choose

the true model. Model 3.2 and 3.3 have introduced yearly shared frailty and these

are significantly better than Model 3.1. With AR(1) for yearly frailty, Model 3.3 is

sightly better than Model 3.2 without AR(1) from the DIC estimation. By introducing

second level of shared sector frailties,, Model 3.4 improved compared with Model 3.2

and Model 3.3. The more complexity of model we introduced in this analysis, the

better performance according the DIC.

3.4 Discussion

In this chapter, we apply Manda and Meyer(2005) model for default risk model and

allow two-levels shared frailties which are yearly shared frailty and shared sector frail-
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ties. Survival model with shared frailties allow the systematic portfolio risk to be

divided into observed fixed effects and unobserved random effects to capture hetero-

geneity in rating default risk. The shared sector frailties model can even capture

heterogeneity in time and across industry sector or other different groups like coun-

try. Because CFNAIMA3 capture the main business cycle effect, therefore we did not

include other macroeconomic covariates in this analysis. For implement the survival

frailty model, MCMC is one of the best technique could be used for model calibration.

We chose WinBUGS to implement our model. Using deviance information criterion

(DIC), we show that a model with serial dependence and two-levels of shared frailties,

which accounts the heterogeneity in both time period and industry sectors , provides

a better fit than other models.

However, only the default model was considered in this study, in order to make our

model universally applicable for credit modelling. We will extend our model from

default risk to rating transition. We exclude the highest rating AAA and AA which

rarely default and non-US companies from our modelling. We will reconsider these

two ratings in our transition risk model.
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Chapter 4

Modelling migration risk with

survival models

From the definition of credit risk, we know it is the risk of the change in value of

a portfolio caused by unexpected changes in the credit quality of issues or trading

partners. Default risk is a special case of transition risk. In Chapter 3, we used time-

to-event methods in the survival framework to model the default risk and would like

to extend the models in chapter 3 to general models for all transition risk.

We extend a simpler model used in medical statistics (Manda and Mayer (2005)) for

the credit risk application. We estimate rating transition model with shared dynamic

frailties for different industry sectors and macroeconomic covariates using Bayesian

techniques (MCMC). In this chapter each transition intensity follows a Cox type

multiplicative regression model with two levels of frailties to account for both time

period and industry sector heterogeneity. Delloye, Fermanian and Sbai (2006) define

a reduced-form credit portfolio model which treat rating transition as independent

competing risks with conditionally independent and proportional hazards assumption.

They also allow strong dependence levels by adding heterogeneity. We consider the

whole transition data and let all rating transitions share the same macroeconomic

covariates and unobservable random process for all companies in monthly interval

although Delloye, Fermanian and Sbai (2006) split the Standard & Poors’ data into
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several groups based on the similar rating transition type and analyze these separately.

We have five aims in this chapter and the following chapter: First, we will extend anal-

ysis of Chapter 3 to all transitions with Standard & Poor’s CreditPro data. Second,

we will consider a simplification in which we model the size of transition measured by

the number of notches on a rating scale. Third, we will derive genuine point-in-time

(PIT) transition matrices. Fourth, we will look at the sectoral variation. Fifth, we

will show how a Bayesian Gibbs sampling solution is possible. We will extend Cox’s

hazard model which has been increasingly used to model the hazard of credit risk

events in recent years. We will consider randomness in the intensity function caused

by shared frailties that are associated with unobserved business cycle covariates. Such

a model can be analysed in Anderson & Gills counting process formulation. In this

chapter, firms are subject competing hazards because one ratings could go to different

rating at the end of time period.

In this chapter, we will briefly introduce the Manda and Meyer (2005) model and

its estimation methods. Then we will apply Manda and Meyer (2005) with time-to-

event credit risk models with credit transition data. We will present application to

Standard & Poor’s CreditPro data with time-dependent frailty model for recurrent

failure time data in Bayesian context and estimate it using the Markov Chain Monte

Carlo methods. McNeil and Wendin (2006) use Bayesian techniques for ratings mi-

gration modelling. As we discussed in the previous chapter, Bayesian methods based

on Markov Chain Monte Carlo (MCMC) techniques have three advantages: Bayesian

methods improves the estimation accuracy, Bayesian estimation also allows for taking

into account expert opinion through the use of subjective prior distribution of for

model parameters, and Bayesian inference becomes straightforward to compute the

default and transition probabilities. We will provide comparative results with credit

risk models using GLMMs. The random effect in GLMMs models will appear as frail-

ties in survival models. An autoregressive process is used as time-dependent frailty

and two levels frailty time and industry will be used in this model as in default model.

We will investigate differences in transition intensity between industry sectors. In this
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chapter, we will model the frailty models for credit transitions by numbers of levels

(notches) and actual credit rating transitions.

4.1 Theory

Anderson and Gill (1982) extend the Cox model to a model where covariate processes

have a proportional effect on the intensity process of a multivariate counting process.

We extend the Anderson-Gill model in chapter 3 to allow multiple event types which

are suitable for modelling multiple transitions.

4.1.1 Models

Our model is relative to that of Manda and Meyer (2005) in medical research. We

apply these ideas to credit rating transitions for the first time. As in default model,

two-levels of frailties for credit risk modelling is allowed. At every time t, any compa-

ny i has k possible ratings categories. The time durations are assumed independent

conditionally on the macro-economic process and the idiosyncratic firm characteris-

tics. Time of events are ordered 0 < Ti1 < Ti2 < · · · , suppose the study period

for company i is partitioned into finite disjoint intervals At = [t, t + dt), 0 ≤ t ≤ ci

such that no time interval contains more than one of the consecutive events (rating

transitions) of the company. The predetermined time interval [0, ci] is divided into

discrete time intervals. In practice monthly intervals prove to be sufficiently small.

Therefore we finally choose monthly for our analysis. Thus, the company’s counting

process jump for transition couple (h, j)

dNhji(t) = Nhji(t+ dt)−N(t)

takes only value 0 and 1. Nhji(t) is an observable process that counts the number of

events occurred up to time t for transition (h, j); Yhi(t) is a non-negative predictable

process taking the value 1 if the company i is under observation and the value 0

otherwise. X i(t) is a d-dimensional vector of risk factors, including time-dependent
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macro-economic process and the time-independent fixed effects. For ith subject, the

corresponding intensity at time t is λhji(t|β) for subject i moving from start state h to

j. As in chapter 3, the frailty-based Andersen-Gill frailty model will be extended by

adding shared frailty Whji(t) which can capture the risk not accounted by observed

risk variables for any transition from h to j. The intensity function (3.2) and (3.3)

will be extended as following for multiple events: This implies that

λhji(t|β)dt = P (dNhji(t) = 1|Ft−;β,Whji(t))

where Ft− is the available data just before time t. The intensity function for a tran-

sition type (h, j) at time t for company i is given by

λhji(t|β) = Yhi(t)λhj0(t) exp(β
′

hjX i(t) +Whji(t)) (4.1)

where λhj0(t) is baseline intensity function. And βhj is a parameter for each transitions

(h, j). As in the default model, this model can be extended by adding random effect

Ws(i) and allow both time-dependent and time-independent risk factors.

The Andersen-Gill model with dynamic frailty in (3.4) will be extended as following

for multiple events:

λhji(t|β,Whji(t)) = Yhi(t)λhj0(t) exp(β
′

hjX i(t) +Whji(t)) (4.2)

4.1.2 Parameter estimation

We have shown the parameter estimation methods for Cox and Andersen-Gill model

in chapter 3. Here we will extend the full maximum likelihood methods and Bayesian

inference in order to fit the transition data. Bayesian methods based on Markov

Chain Monte Carlo (MCMC) techniques have three advantages: Bayesian methods

improves the estimation accuracy, Bayesian estimation also allows for taking into

account expert opinion through the use of subjective prior distribution of for model

parameters, and Bayesian inference becomes straightforward to compute the default

and transition probabilities. WinBUGS can use either a standard ‘point-and-click’
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windows interface for controlling the analysis, or can construct the model using a

graphical interface called DoodleBUGS. R2WinBUGS is a package running WinBUGS

from R. Using this package, it is possible to call a BUGS model, summarize inferences

and convergence in a table and graph, and save the simulations in arrays for easy

access in R.

Let λhji(t) be the intensity for firm i start with state h and end with state j. In

formula (4.2), for each transition (h, j), h 6= j, β is the parameter to be estimated and

X is the macroeconomic covariates in this analysis. In our simple model, covariate

does not depend on each transition (h, j) but could extend to transition dependent

by considering different explanatory macroeconomic variables for different transition

transition (h, j). The observable process Nhji(t) which denote the number of transi-

tions for firm i from h to j at period time t. Yhi(t) be the indicator variable which

take value 1 or 0 depend on under observation or not.

The likelihood in (3.7) is extended by the following:

L =
n∏
i=1

Li

Li =

{∏
t

∏
j 6=h

(λhji(t|X))dNhji(t)

}
·

(
−
∑
j 6=h

∫ ∞
0

Yhi(u)λhji(u|X)du

)
(4.3)

The log-likelihood will be:

lnLi =

n∑
i=1

lnLi

lnLi =
∑
t

∑
j 6=h

dNhji(t)[lnλhj0 + β
′
hjXi(t) +Whji(t)]−

∑
j 6=h

∫ ∞
0

Yhi(u)λhj0(u) exp(β
′
hjX(u) +Whji(u))du

=
∑
j 6=h

{∑
t

dNhji[lnλhj0(t) + β
′
hjXi(t) +Whji(t)]−

∫ ∞
0

Yhi(u)λhj0(u) exp(β
′
hjX(u) +Whji(u))du

}

=
∑
j 6=h

lnL∗hji

lnL =
∑
j 6=h

lnL∗hj
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This likelihood can be split into a sum of each transition (h, j) which means we can

estimate the parameters separately. This is very useful and will reduce the implemen-

tations in practice.

We extend Manda and Meyer (2005) model to use transition data. As in chapter

3 , the Bayesian inference using time-dependent frailty will be discussed. The joint

distribution of the observed data D given λhj0,βhj,W is given by

p(D|λhj0,βhj,Whji(t)) =
I∏
i

{
ci∏
t≥0

∏
j 6=h

[Yhi(t)e
β
′
hjXi(t)+Whji(t)λhj0(t)]dNi(t)

}

× exp

(
−
∑
j 6=h

∫ ci

0

Yhi(t)e
β
′
hjXi(t)+Whji(t)λhj0(t)dt

)

∝
I∏
i

∏
j 6=h

{
ci∏
t≥0

[eβ
′
hjXi(t)+Whji(t)dΛhj0(t)]dNi(t)

× exp(−Yhi(t)eβ
′
hjXi(t)+Whji(t)dΛhj0(t))

}

There are several ways to compare the performance of different models with posterior

MCMC output: including the Monte Carlo error and The Gelman-Rubin convergence

diagnostic and Deviance information criterion (DIC).

4.2 Frailty models for credit transitions by num-

bers of levels (notches)

Transition matrices are at the center of modern credit risk management. The reports

on rating migrations published by Standard and Poors and Moodys are studied by

credit risk managers everywhere and several of the most prominent risk management

tools are built around estimates of rating migration probabilities. Transition matrices

are widely used for risk management purpose, economic capital purpose and credit

derivatives pricing. In this section, we will extend the default model in previous
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chapter and build the transitions model with different numbers of levels (notches)

with frailty model. Then an empirical study using Standard & Poor’s CreditPro data

will be provided and discussed.

4.2.1 Theoretical models for credit rating transitions by num-

bers of levels (notches)

In this section we extend credit default models to credit rating transitions by numbers

of levels (notches). For rating migration to its neighbour rating called 1-notch upgrade

or downgrade, however 1-notch upgrade and downgrade are two different kinds of type

rating transition. This model does make strong assumption which is that the rating

transition of n-notches is the same type of event regardless whether the start rating

is lower or higher. The multi-state feature of the model is represented as a set of

transition types, U = {1, 2, . . . , U}. We consider all the possible n-notches in our

sample database.

Model 4A.1: Model with macroeconomic covariates only

Suppose the intensity function depends only on time-dependent macroeconomic co-

variates zt and transition type u ∈ U of the ith company. The monthly intensity

function is given by:

λui(t|η, υ) = Yi(t) exp(η
′

uz(t) + υu) (4.4)

The intensity function only dependent on macroeconomic covariates and transition

type u. Each transition type u has different effect with macroeconomic covariates.

This model allows for difference in the events times that only depend on the macroe-

conomic variables for each transition type; frailty is not considered in this simple

model. With our strong assumption, rating transition of n-notches is the same kind

of event.
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Model 4A.2: Model with yearly time-dependent shared frailty

The model with macroeconomic covariates is extended by adding a component of

yearly heterogeneity by(t), this frailty process is only depend on time t for each tran-

sition type u and will take the number yearly. And we suppose each transition of

n-notches has its own yearly heterogeneity. Suppose the intensity function depends

on time-dependent macroeconomic covariates zt, transition of n-notches effect υu, γu

and yearly frailty. The monthly intensity function is given by:

λui(t|η, υ,γ) = Yi(t) exp(η
′

uz(t) + υu + γuby(t)) (4.5)

where y(t) gives the year period where t belongs to. For each rating transition type u,

macroeconomic covariates have different parameter η and different frailty process by.

This model allows for difference in the events times that depend on the macroeconomic

variables and transition of n-notches as well as the random effect for each year for

each transition type. However, it does not allow serial dependence between each

yearly random effect.

Model 4A.3: Model with serial dependence for yearly shared frailty

The model with yearly shared frailty will be extended by adding serial dependence for

yearly heterogeneity by(t). Suppose the intensity function depends on time-dependent

macroeconomic covariates zt, transition of n-notches υu, γu and yearly shared frailty.

The monthly intensity function is given by:

λui(t|η, υ,γ) = Yi(t) exp(η
′

uz(t) + υu + γuby(t)) (4.6)

by = ϕby−1 + εy

A simple model AR(1) process has been used to capture the serial dependence for

yearly shared frailty. This model allows for difference in the events times that depend

on the macroeconomic variables and transition of n-notches as well as random effect

with serial dependence.
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Model 4A.4: Model with shared sector frailties

We will add sector frailty as the second level of frailty. Then the frailty with two

levels will become by(t),s(i), s(i) denotes sector of obligor i. The model with yearly

shared frailty will be extended by adding serial dependence for yearly heterogeneity

by(t). Suppose the intensity function depends on time-dependent macroeconomic co-

variates zt, transition of n-notches and yearly, sector two levels of frailty. The monthly

intensity function is given by:

λu,i(t|η, υ,γ) = Yi(t) exp(η
′

uz(t) + υu + γuby(t),s(i)) (4.7)

by,s ∼ N(by, σ
2)

by = ϕby−1 + εy

A simple model AR(1) process has been used to capture the serial dependence for

yearly shared frailty. This model allows for difference in the events times that depend

on the macroeconomic variables and sector effect as well as two levels of random effect

with serial dependence. We can tell the difference for companies in different sectors

in different year.

4.2.2 Empirical study of rating transition data of n-notches

Data description

We use the Standard & Poor’s database CreditPro 6.6 which consists of 10439 compa-

nies from 13 industry sectors over the period January 1981 to December 2003. Overall

19054 effective rating migrations are recorded in the CreditPro database. The rating

category “NR” is treated the same as in chapter 2. Three companies have starting

time after the ending time which is certainly wrong, it might because of errors made

by CreditPro database. Since we couldn’t get enough information about what had

happened, therefore those three companies were removed from our database.
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Sector Name #observations

1 “Aerospace/automotive/capital goods/metal” 1676

2 “Consumer/service sector”+“Transportation” 2699

3 “Energy and natural resources”+“Utility” 2200

4 “Financial Institutions”+“Insurance”+“Real estate” 3126

5 “Forest and building products”+“Homebuilders” 555

6 “Health care”+ “Chemicals” 859

7 “Hightec/computers/office equipment”+“Telecom” 1235

8 “Leisure time/media” 1176

Table 4.1: Industry sectors used in our analysis

The start rating classes included in our analysis are

K = {CCC,B,BB,BBB,A,AA,AAA}

We treat default rating D as an absorb state, so the end rating would be include an

additional default rating.

K0 = {CCC,B,BB,BBB,A,AA,AAA,D} ∪ {D}

where we merge actual rating k+, k, k− into k. We also merge CCC,CC, and C

into a single rating class CCC. The whole database consists of 13 industries and 93

countries or region. We use a subset of the data which consists of 6732 US companies

with totally 13526 effective rating migrations recorded. The industry sectors in our

analysis are different from the S&P industry sectors. We merged 13 industries to

8, Consumer/service with Transportation, Energy with Utility, Financial institution

with Insurance and Real estate, Forest and Building products with Homebuilders,

Health care with Chemicals and finally High technology with Telecommunications.

The industry sectors we merged are have similar business. The details about the

industries for the data we used are shown in Table 4.1.
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The subset database does not record all the possible rating transitions. We find in

total 11 different types of rating transitions as measured by the number of notches.

The number of levels (notches) rating transition data we used are shown in Table 4.2.

The multi-state feature of the model is represented as a set of U of transition types,

U = {1, 2, . . . , U}. Standard & Poor’s dataset has rating classesK0 = {CCC,B,BB,BBB,A,AA,AAA,D}∪

{D}, default rating category D is absorb state. If transition from rating category

A to AA is 1 notch upgrade, then we total get {1,2,3,4,5,6} notches upgrade and

{1,2,3,4,5,6,7} notches downgrade. Furthermore, there is no observation for 6 and 7

notches downgrade. In Table 4.2 we find that only very few observation available for

transition more than 3 notches, therefore we combine all the notches equal or greater

than 3 into one transition type. Finally the transition type we considered in this

section are {1, 2, 3+} notches upgrade and downgrade, totally 6 transition types so

that U = {1, 2, . . . , 6}.

Results

There are many ways to implement Gibbs simulation, but we choose WinBUGS in our

analysis as the way to implement. Using R package “R2WinGBUS”, WinBugs can be

run from R, this package will save your time from click and set up WinBUGS param-

eters by writing a Bugs model including everything. For running Gibbs simulation

in WinBUGS, how to choose the prior specifications are very crucial, we set them up

as follows: for all the constant baseline, time-dependent fixed effect macroeconomic

variables and time-independent fixed effect sector, the precision τ was set to 0.001, re-

sulting a normal distribution which is very uninformative. A non-informative Gamma

prior is assumed for τ , the precision of the frailty parameters. Note that the above

’additive’ formulation of the frailty model is equivalent to assuming multiplicative

frailties with a log-Normal population distribution.
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Model 4A.1: Model with macroeconomic covariates only

The rating migration depend on the “state-of-the-economy”. There are several possi-

ble proxies and we have shown that Chicago Federal National Activities Index three

month moving average (CFNAIMA3) is the best macroeconomic covariate to explain

the US economy among them. Therefore we continue to use the CFNAIMA3 as the

macroeconomic covariate in our analysis.

With 50000 iterations and 25000 burn in, therefore the first 25000 iterations were

discarded. The posterior estimation for Model 4A.1 are given in Table 4.31. The

posterior mean of macroeconomic covariate CFNAIMA3 are η and its standard de-

viation(SD). In our model, ηd3+ to ηd1 represents downgrades 3 or more notches to

downgrades 1 notch and ηu1 to ηu3+ represents upgrades 1 notch to upgrades 3 or

more notches. The negative value of ηd and positive value of ηu means the increase

of CFNAIMA3 will reduce the intensity rating transitions of downgrade and increase

the intensity rating transitions of upgrades. The bigger absolute value of ηd means

rating agency much easier to downgrade obliger than upgrade, this could be easily

found in the CreditPro database. The posterior mean of υ, which is the parameter for

baseline for different rating transitions, exp(υ) is the baseline in our model for differ-

ent rating transition type. The value of υ for both downgrade and upgrade are very

close which means for the same number of notches, monthly intensity are effected by

macroeconomic covariates only. In this simple model, we didn’t include yearly shared

frailty and will include it in next model. The MC error number is quite small which

means the model fits the data well.

Figure 4.1 shows monthly intensity for two notch downgrade and two notch upgrade,

the blue line for downgrade and red for upgrade which shows opposite direction.

The increasing of macroeconomic covariates will increase the upgrade intensity and

decrease the downgrade intensity. Figure 4.2 shows the posterior mean of monthly

intensity with 95% credible intervals. The value of ηd2 ηu2 are 0.1794 and -0.3680

gives more flat plot for upgrade intensity.

1dn and un represent downgrade and downgrade n-notches
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Downgrade Notches 5 4 3 2 1 Censor

#Observation 6 27 107 584 4612 5997

Upgrade Notches 1 2 3 4 5 6

#Observation 1982 150 45 14 1 1

Table 4.2: Numbers of notches for Standard & Poors’ CreditPro 6.6 from 31/12/1980

- 31/12/2003

Model 4A.1: Model with macroeconomic covariates only

ηd3+ ηd2 ηd1 ηu1 ηu2 ηu3+

mean -0.4292 -0.3680 -0.3367 0.0008 0.1794 0.0361

sd (0.11) (0.05268) (0.0194) (0.0330) (0.1289) (0.1810)

MCerror 0.0007 0.0004 0.0001 0.0002 0.0008 0.0011

Remaining Parameters

υd3+ υd2 υd1 υu1 υu2 υu3

mean -4.271 -3.868 -3.742 -3.769 -3.878 -3.612

sd 0.08813 0.04261 0.01532 0.0224 0.08238 0.1304

MCerror 5.97E-4 3.093E-4 1.132E-4 1.537E-4 4.857E-4 8.706E-4

Table 4.3: Model 4A.1 with macroeconomic variable only
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Figure 4.1: Monthly intensity for two notch downgrade VS two notch upgrade, the

blue line shows downgrade and red line for upgrade

Timemo
nth

ly t
wo

 no
tch

 do
wn

gra
de 

inte
nsi

ty

1985 1990 1995 2000

0.0
1

0.0
3

0.0
5

Timemo
nth

ly t
wo

 no
tch

 up
gra

de 
inte

nsi
ty

1985 1990 1995 2000

0.0
1

0.0
3

0.0
5

Figure 4.2: Monthly intensity for two notches downgrade and upgrade; posterior

means with 95% credible intervals, the upper plot shows downgrade and lower plot

for upgrade
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Model 4A.2: Model with yearly time-dependent shared frailty

ηd3+ ηd2 ηd1 ηu1 ηu2 ηu3+ σ

mean -0.2217 -0.2141 -0.1393 0.1551 0.4832 0.1536 0.07915

sd 0.1358 0.06902 0.03681 0.0432 0.1552 0.2021 0.02655

MCerror 0.0012 0.0007 0.0005 0.00045 0.0013 0.0014 0.0017

Remaining Parameters

υd3+ υd2 υd1 υu1 υu2 υu3

mean -4.277 -3.825 -3.785 -3.691 -3.755 -3.532

sd 0.2128 0.1696 0.1515 0.1228 0.212 0.1789

MCerror 0.01335 0.0114 0.01049 0.008399 0.01348 0.008138

Table 4.4: Model 4A.2 with yearly time-dependent shared frailty

Model 4A.2: Model with yearly time-dependent shared frailty

The rating migration depend on the “state-of-the-economy”. Yearly shared frailty are

additional unobserved factors help to explain the rating migration activity, therefore

further frailty is needed to capture patterns of variability in responses that cannot be

explained by the observed macroeconomic covariates alone. In Model 4A.2, we add

yearly shared frailty and try to capture the variability between different years.

As in Model 4A.1, we run 50000 iterations and 25000 burn in, therefore the first 25000

iterations were discarded. We show part of the results for Model 4A.2 in Table 4.4.

The macroeconomic covariates have negative effect for downgrade events and positive

effect for upgrade event. The MC error number for all parameters are quite small

which means the model fits the data well and results are acceptable. The systematic

risk factors in Model 4A.1 can be divided into observed fixed effects and unobserved

random effect to capture heterogeneity for intensity function. In the following figure,

we can see the two risk factors in model 4A.1&2 shoes co-movement.

Figure 4.4 shows monthly intensity for one notch downgrade, the blue line for down-

grade with Model4A.2 and red line for Model4A.1. Two lines show some co-movement.
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Figure 4.3: Monthly intensity for one notch downgrade and upgrade; posterior mean-

s with 95% credible intervals, the upper plot shows downgrade and lower plot for

upgrade

Model4A.2 VS Model4A.1
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Figure 4.4: Monthly intensity for one notch downgrade for Model 4A.1 (red line) and

Model 4A.2 (blue line)
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Model 4A.3: Model with serial dependence for yearly shared frailty

ηd3+ ηd2 ηd1 ηu1 ηu2 ηu3+ σ

mean -0.2195 -0.2138 -0.1375 0.1546 0.4812 0.1588 0.255

sd 0.1374 0.06785 0.03564 0.04247 0.154 0.2012 0.1042

MCerror 0.0013 0.00069 0.00050 0.00045 0.00182 0.00186 0.00734

Remaining Parameters

υd3+ υd2 υd1 υu1 υu2 υu3 φ

mean -3.196 -2.901 -2.926 -3.0 -2.658 -2.896 0.9361

sd 1.556 1.321 1.232 0.9912 1.609 0.9813 0.05978

MCerror 0.123 0.1049 0.09804 0.07877 0.1267 0.0725 0.001816

Table 4.5: Model 4A.3 with serial dependence for yearly shared frailty

Figure 4.3 shows the posterior mean of monthly intensity with 95% credible intervals.

Model 4A.3: Model with serial dependence for yearly shared frailty

The rating migration depend on the “state-of-the-economy”. Frailties are additional

unobserved factors help to explain the rating migration activity, therefore further

shared frailties are needed to capture patterns of variability in responses that cannot

be explained by the observed macroeconomic covariates alone. In Model 4A.3, we

add yearly random effect and try to capture the variability between different years.

With 50000 iterations and 25000 burn in, part of the results for Model 4A.3 are pre-

sented in Table 4.5. The macroeconomic covariates have negative effect for downgrade

events and positive effect for upgrade event. The MC error number for all parameters

are quite small which means the model fits the data well and results are acceptable.

The systematic risk factors in Model 4A.1 can be divided into observed fixed effects

and unobserved random effects to capture heterogeneity for intensity function.In the

following figure, we can see the two risk factors in model 4A.1,2&3 shoes co-movement.
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Figure 4.5: Monthly intensity for one notch downgrade and upgrade; posterior mean-

s with 95% credible intervals, the upper plot shows downgrade and lower plot for

upgrade

Model4A.3 VS Model4A.1,ModelA4.2
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Figure 4.6: Monthly intensity for one notch downgrade for Model 4A.1 (red line),

Model 4A.2 (black line) and Model 4A.3 (blue line)
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Model 4A.4: Model with shared sector frailties

ηd3+ ηd2 ηd1 ηu1 ηu2 ηu3+ σ σ1

mean -0.1892 -0.1876 -0.1309 0.1256 0.4917 0.1389 0.3563 0.2769

sd 0.1397 0.0687 0.0373 0.0419 0.1561 0.1955 0.0824 0.050

MCerror 0.0038 0.0019 0.0014 0.0012 0.0048 0.0039 0.0061 0.0051

Remaining Parameters

υd3+ υd2 υd1 υu1 υu2 υu3 φ

mean -2.1916 -2.029 -2.112 -2.512 -1.678 -2.334 0.9482

sd 0.4279 0.3348 0.2905 0.2227 0.4625 0.5331 0.033

MCerror 0.04445 0.03749 0.03385 0.02526 0.04753 0.04181 0.00094

Table 4.6: Model 4A.4: Model with shared sector frailties (results have been omitted

for a simpler presentation)

Figure 4.6 shows monthly intensity for one notch downgrade, the blue line for down-

grade with Model4A.3 and red line for Model4A.1 and black line for Model4A.3.

Three lines show some co-movement. Figure 4.5 shows the posterior mean of monthly

intensity with 95% credible intervals.

Model 4A.4: Model with shared sector frailties

We use yearly shared frailty to capture the variability for different time period for

any company. Further frailties like industry sectors can be introduced to capture

additional variability. We divided the CreditPro data into 8 industry sectors. The

following table shows posterior mean for this two-level random effect model.

We run 50000 iterations and discard first 25000 iterations. The part of results for

Model 4A.4 are presented in Table 4.6. The macroeconomic covariates have negative

effect for downgrade events and positive effect for upgrade event. The MC error

number for all parameters are quite small which means the model fits the data well

and results are acceptable. The posterior mean for autoregressive coefficient φ is
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Dbar Dhat pD DIC

Model 4A.1 1354910.0 1354900.0 11.970 1354920.0

Model 4A.2 1352500.0 1352510.0 -4.462 1352500.0

Model 4A.3 1352500.0 1354160.0 -1656.390 1350850.0

Model 4A.4 1352170.0 1352030.0 133.898 1352300.0

Table 4.7: Deviance information criterion for four different frailty models

0.9482 with standard deviation 0.033. We can easily find the co-movement for each

sector as well as the heterogeneity. With introducing the second-level sector random

effect, it capture the heterogeneity which cannot be explained by the one-level random

effect model. Please see the figure.

Figure 4.7 shows monthly intensity for one notch downgrade with different sectors,

these sectors shows co-movement and heterogeneity. Figure 4.8 shows the posterior

mean of monthly intensity with 95% credible intervals for sector Finance and Forest.

For simplicity, we only pick up these two sectors to see the difference. We can clearly

see difference between these two sectors, other sectors also have heterogeneity.

We use deviance information criterion (DIC) to compare these different models.

For each model, the Gibbs sample was run for 50000 iterations, the first 25000 itera-

tions were discarded, and the remaining 25000 iterations for each chain were used for

analysis. The estimates for DIC and pD for the four different models are presented

in Table 4.7. The use of DIC is rather to compare different models than choose the

true model. Model 4A.2 and Model 4A.3 have been introduced one level shared frail-

ties and there are better than Model 4A.1. And Model 4A.3 has been introduced an

AR(1) process, it is better than Model 4A.2 from the DIC estimation. By introducing

second level of shared frailties, Model 4A.4 improved compared with Model 4A.2 but

do not improved by Model 4A.3 according DIC estimation.
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Figure 4.7: Monthly intensity for one notch downgrade with Model 4A.1 (black line),

Model 4A.4 (red and blue line) for different sectors
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Figure 4.8: Monthly intensity for one notch downgrade; posterior means with 95%

credible intervals, the upper plot shows sector Finance and lower plot for sector Forest

4.3 Frailty model for actual credit rating transi-

tions

With the strong assumption that the rating transition of n-notches is the same kind

of event, we have merged many different rating transitions into one category in the

previous section. However, rating transition of n-notches with different starting rating

are different rating transitions. As we know, transition matrices are at the center of

modern credit risk management. Transition matrices are widely used for risk manage-

ment purpose, economic capital purpose and credit derivatives pricing. But we still

cannot get estimated transition matrices with the previous model, therefore we will

extend the previous simple model to allow for all the actual rating transitions which

can used for transition matrices calculation.
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4.3.1 Theoretical models for actual credit rating transition

Model 4B.1: Model with macroeconomic covariates only

Suppose the intensity function depends on time-dependent macroeconomic covariates

zt and actual rating transition effect υhj for rating transition (h, j). The monthly

intensity function is given by:

λhji(t|η, υ) = Yi(t) exp(η
′

hjz(t) + υhj) (4.8)

This model only depend on macroeconomic covariates for each transition (h, j), frailty

is not considered in this simple model.

Model 4B.2: Model with yearly time-dependent shared frailty

The model with macroeconomic covariates will be extended by adding a component

of yearly heterogeneity by(t), this frailty process is only depend on time t for each

transition (h, j) and will take the number yearly. Suppose the intensity function

depends on time-dependent macroeconomic covariates zt, rating transition effect υ

and yearly shared frailty. The monthly intensity function is given by:

λhji(t|η, υ,γ) = Yi(t) exp(η
′

hjz(t) + υhj + γhjby(t)) (4.9)

where y(t) gives the year period corresponding to time t. For each rating transi-

tion (h, j), macroeconomic covariates have different parameter η and different frailty

process bt. This model allows for difference in the events times that depend on the

macroeconomic variables, rating transition effect as well as the frailty for each year.

However, it does not allow serial dependence between each yearly shared frailty for

different rating transition.

Model 4B.3: Model with serial dependence for yearly shared frailty

The model with yearly shared frailty will be extended by adding serial dependence for

yearly heterogeneity by(t). Suppose the intensity function depends on time-dependent
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macroeconomic covariates zt, rating transition effect υhj and yearly shared frailty.

The monthly intensity function is given by:

λhji(t|η, υ,γ) = Yi(t) exp(η
′

hjz(t) + υhj + γhjby(t)) (4.10)

by = ϕby−1 + εy

A simple model AR(1) process has been used to capture the serial dependence for

yearly shared frailty. This model allows for difference in the events times that depend

on the macroeconomic variables, rating transition effect as well as yearly shared frailty

with serial dependence for different rating transition.

Model 4B.4: Model with shared sector frailties

We will add shared sector frailty as the second level of frailty. Then the shared

frailty with two levels will become by(t),s(i). The model with yearly shared frailty will

be extended by adding serial dependence for yearly heterogeneity by(t). Suppose the

intensity function depends on time-dependent macroeconomic covariates zt, rating

transition effect and two levels of shared frailty of yearly and sector. The monthly

intensity function is given by:

λhji(t|η, υ,γ) = Yi(t) exp(η
′

hjz(t) + υhj + γhjby(t),s(i)) (4.11)

by,s ∼ N(by, σ
2)

by = ϕby−1 + εy

A simple model AR(1) process has been used to capture the serial dependence for

yearly shared frailty. This model allows for difference in the events times that depend

on the macroeconomic variables and rating transition effect as well as two levels of

random effect with serial dependence. We can tell the difference for companies in

different sectors in different year.
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AAA AA A BBB BB B CCC D Total

AAA 206 148 14 2 2 0 0 0 372

AA 44 481 553 34 5 5 1 0 1123

A 11 285 1246 840 57 27 1 5 2472

BBB 5 27 521 1342 659 72 9 19 2654

BB 3 8 46 483 1147 883 53 64 2687

B 1 7 25 48 520 1382 850 354 3187

CCC 1 0 4 7 18 129 193 679 1031

Total 271 956 2409 2756 2408 2498 1107 1121 13526

Table 4.8: Numbers of transitions for Standard & Poors’ CreditPro 6.6 from

31/12/1980 - 31/12/2003

4.3.2 Empirical study of rating transition data

Data description

In the previous section, we study numbers of notches for credit rating transition. In

this section, the subset database will record all the possible rating transitions. We

totally find 44 different rating transitions and censored database.

The multi-state feature of the model is represented as a set of U of transition types,

U = {1, 2, . . . , U}. Standard & Poor’s dataset has rating classesK0 = {CCC,B,BB,BBB,A,AA,AAA,D}∪

{D}, default rating category D is absorb state. Therefore the total number of possible

rating transition types is 49 and censored case. There are no transitions recorded in

Standard & Poor’s for rating AAA to B,CCC and D, rating AA to D and CCC to

AA. So the total number of transition types which has been considered in our analysis

is S = 44.
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Results

We use “R2WinGBUS” to implement Gibbs simulation for actual rating transition

estimation in this section. How to set up prior distribution is very crucial. We use

similar model as in the previous section, with the prior specifications as follows: For all

the constant baseline, time-dependent fixed effect macroeconomic variables, the pre-

cision τ was set to 0.001, resulting a normal distribution which is very uninformative.

A non-informative Gamma prior is assumed for τ , the precision of the frailty param-

eters. Note that the above ‘additive’ formulation of the frailty model is equivalent to

assuming multiplicative frailties with a log-Normal population distribution.

Model 4B.1: Model with macroeconomic covariates

The rating migration depend on the “state-of-the-economy”. There are several possi-

ble proxies and we have shown that Chicago Federal National Activities Index three

month moving average (CFNAIMA3) is the best macroeconomic covariate to explain

the US economy among them. Therefore we will use the CFNAIMA3 as the macroe-

conomic covariates in this analysis.

With 50000 iterations and 25000 burn in, therefore the first 25000 iterations were

discarded. In this model, we have totally 44 actual rating transitions. The posterior

mean of macroeconomic covariate CFNAIMA3 η and its standard deviation(SD) are

shown in Table 4.9. The results show that the increase of CFNAIMA3 will reduce the

intensity rating transitions of downgrade and increase the intensity rating transitions

of upgrades. Most of the downgrades have negative η and upgrades have positive η.

However, some parameters have large errors in such a complicated model especially

for the low number transition types. The posterior mean of υ, which is the parameter

for baseline for different rating transitions, exp(υ) is the baseline in our model for

different rating transition type. In this simple model, we didn’t include frailty and

will include it in next model. The MC error number is quite small which means the

model fits the data well. The results are omitted from showing in the content.
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Model 4B1: Posterior mean for η

AAA AA A BBB BB B CCC D

AAA - 0.2420 -0.3544 0.2461 -9.0700 0 0 0

AA 0.0653 - -0.3217 0.2105 -0.7040 -0.1849 5.6450 0

A 0.3534 -0.0302 - -0.3150 -0.1059 0.4394 0.6133 -0.5849

BBB -0.7852 0.5325 0.1004 - -0.2500 0.0285 -0.4717 -0.4969

BB 0.5113 0.3202 0.2072 -0.1205 - -0.2534 -0.5838 -0.8407

B 0.3892 -0.3512 0.1565 -0.1103 0.0036 - -0.6255 -0.5560

CCC -11.930 0 -6.2420 1.0910 0.5004 0.06764 - -0.3838

Model 4B1: Posterior standard deviation for η

AAA AA A BBB BB B CCC D

AAA - 0.1061 0.3907 1.3900 4.6150 0 0 0

AA 0.2091 - 0.0550 0.2340 0.5027 0.4985 8.0550 0

A 0.3971 0.0785 - 0.0440 0.1740 0.2525 1.2640 0.6212

BBB 0.5775 0.3247 0.0620 - 0.0534 0.1371 0.5295 0.3016

BB 1.2360 0.5314 0.2132 0.0704 - 0.0488 0.1745 0.1633

B 1.1520 0.4961 0.2816 0.2248 0.0709 - 0.0494 0.0703

CCC 10.230 0 2.5040 1.0180 0.4558 0.1320 - 0.0571

Model 4B1: Posterior mean for υ

AAA AA A BBB BB B CCC D

AAA - -5.2020 -5.4460 -5.3590 -4.0210 0 0 0

AA -4.836 - -4.982 -5.204 -4.774 -4.543 -5.105 0

A -3.574 -3.984 - -4.117 -3.895 -4.259 -5.659 -5.153

BBB -6.477 -5.944 -5.633 - -5.548 -5.505 -4.982 -6.444

BB -5.416 -5.398 -5.327 -5.301 - -5.059 -4.972 -6.049

B -6.614 -5.21 -5.097 -5.409 -5.090 - -4.88 -5.263

CCC -9.343 0 -3.996 -4.876 -5.710 -4.842 - -4.304

Model 4B1: Posterior standard deviation for υ

AAA AA A BBB BB B CCC D

AAA - 0.0844 0.2877 0.8524 1.0740 0 0 0

AA 0.1531 - 0.0437 0.1762 0.7067 0.4924 1.8850 0

A 0.3196 0.06024 - 0.03622 0.132 0.2072 1.544 0.5364

BBB 0.6020 0.2137 0.04307 - 0.0406 0.1200 0.3818 0.2433

BB 0.7145 0.3826 0.1501 0.04526 - 0.03494 0.1523 0.1425

B 1.5590 0.4101 0.2053 0.1470 0.04387 - 0.0373 0.0573

CCC 4.5720 0 0.5961 0.5037 0.2405 0.0897 - 0.04174

Table 4.9: Model 4B.1 with macroeconomic variable
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Figure 4.9: Monthly intensity for downgrade and upgrade for rating BBB, the blue

line shows downgrade and red line for upgrade
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Figure 4.10: Monthly intensity for transition BBB to BB; posterior means with 95%

credible intervals
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Model4B.2 VS Model4B.1
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Figure 4.11: Monthly intensity for rating transition AA to A, the blue line shows

Model 4B.2 and red line for Model 4B.1

Figure 4.9 shows monthly intensity for rating transition BBB to BB and BBB to A,

the downgrade (blue) and upgrade (red) show different effect with macroeconomic

covariates. Downgrade and upgrade are showing opposite direction, and downgrade

normally has larger intensity than upgrade because rating agency are easier to down-

grade than upgrade. Figure 4.10 shows the posterior mean of monthly intensity with

95% credible intervals for rating transition BBB to BB.

Model 4B.2: Model with yearly shared frailty

The rating migration depend on the “state-of-the-economy”. Frailties are addition-

al unobserved factors help to explain the rating migration activity, therefore further

frailty is needed to capture patterns of variability in responses that cannot be ex-

plained by the observed macroeconomic covariates alone. In Model 4B.2, we add

yearly shared frailty and try to capture the variability between different years.

As in Model 4B.1, we run 50000 iterations and 25000 burn in, therefore the first 25000

iterations were discarded. We show the results for Model 4B.2 in Table 4.10 and 4.11.
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Model 4B2: Posterior mean for η

AAA AA A BBB BB B CCC D

AAA - 0.3338 -0.0628 0.6204 -9.0560 0 0 0

AA 0.2244 - -0.1782 0.4820 -0.8058 -0.0789 5.8960 0

A 0.3784 0.0318 - -0.1784 0.0479 0.6111 0.6841 -0.5099

BBB -0.7863 0.7776 0.2434 - -0.0799 0.1129 -0.3425 -0.3005

BB 1.3750 0.4254 0.4231 -0.0116 - -0.0488 -0.5222 -0.6817

B 0.4341 -0.3375 0.2540 0.2102 0.2051 - -0.4044 -0.4265

CCC -11.2800 0 -6.2770 1.6840 0.7777 0.3400 - -0.2935

Model 4B2: Posterior standard deviation for η

AAA AA A BBB BB B CCC D

AAA - 0.1190 0.4811 1.6260 4.6060 0 0 0

AA 0.2362 - 0.0746 0.2792 0.5474 0.5786 8.4540 0

A 0.4133 0.08767 - 0.06279 0.2141 0.3212 1.326 0.6877

BBB 0.6387 0.3671 0.0757 - 0.0672 0.1555 0.5823 0.3736

BB 1.6230 0.5917 0.2452 0.0795 - 0.0636 0.1956 0.2011

B 1.1490 0.5140 0.3215 0.2720 0.0829 - 0.0647 0.0850

CCC 10.440 0 2.4610 1.2770 0.5232 0.1584 - 0.0641

Model 4B2: Posterior mean for υ

AAA AA A BBB BB B CCC D

AAA - -5.120 -5.596 -5.650 -4.018 0 0 0

AA -4.772 - -4.953 -5.148 -4.900 -4.232 -5.141 0

A -3.551 -3.876 - -4.106 -3.772 -3.977 -5.616 -5.297

BBB -6.627 -5.79 -5.536 - -5.630 -5.405 -5.108 -6.527

BB -5.708 -5.462 -5.220 -5.242 - -5.156 -5.018 -6.231

B -6.524 -5.084 -4.877 -5.401 -5.110 - -5.041 -5.287

CCC -9.033 0 -4.063 -5.080 -5.682 -4.965 - -4.423

Model 4B2: Posterior standard deviation for υ

AAA AA A BBB BB B CCC D

AAA - 0.1573 0.3471 0.9940 1.1080 0 0 0

AA 0.2358 - 0.2241 0.3085 0.7720 0.6656 2 0

A 0.4109 0.1548 - 0.2045 0.3174 0.4412 1.6280 0.6029

BBB 0.6733 0.3278 0.1788 - 0.1627 0.2087 0.4348 0.3704

BB 0.8403 0.4155 0.2719 0.1243 - 0.1416 0.2246 0.2868

B 1.5860 0.5105 0.3767 0.2686 0.1311 - 0.1606 0.1887

CCC 4.6990 0 0.6746 0.5924 0.3142 0.1597 - 0.0853

Table 4.10: Model 4B.2 with yearly shared frailties

104



Model 4B2: Posterior mean for γ

AAA AA A BBB BB B CCC D

AAA - 16.210 20.130 13.530 3.8680 0 0 0

AA 21.490 - 26.690 29.740 14.450 37.800 3.010 0

A 8.844 17.120 - 24.720 34.120 37.60 10.360 18.080

BBB 15.830 28.710 21.070 - 19.140 20.760 9.576 30.220

BB 19.550 10.360 27.030 14.000 - 16.790 19.380 28.810

B 8.100 22.250 28.490 27.220 14.950 - 19.160 21.950

CCC 4.155 0 15.340 16.590 21.200 15.860 - 8.696

Model 4B2: Posterior standard deviation for γ

AAA AA A BBB BB B CCC D

AAA - 4.9650 7.4000 22.140 31.670 0 0 0

AA 6.6430 - 3.9470 7.0060 18.840 28.560 32.030 0

A 23.930 3.9130 - 3.5790 7.6270 23.330 31.700 12.130

BBB 14.190 12.090 3.5060 - 2.8990 5.4050 10.810 7.962

BB 20.120 13.840 8.9910 2.9500 - 2.4940 5.4160 5.2680

B 31.110 27.450 19.560 6.4060 2.5470 - 2.8460 3.5460

CCC 31.350 0 31.070 17.620 11.210 3.0370 - 1.5780

Table 4.11: Model 4B.2 with yearly shared frailties

Compare to Model 4B.1, we add yearly shared frailty (γhjby(t)) into the model. The

systematic risk factors in Model 4B.1 can be divided into observed fixed effects and

unobserved yearly shared frailty to capture heterogeneity for intensity function. The

macroeconomic covariates have negative effect for downgrade events and positive effect

for upgrade event. Most of the results are acceptable especially near the diagonal but

some off-diagonal η with low transitions are not reasonable. The posterior mean of

υ, which is the parameter for baseline for different rating transitions, exp(υ) is the

baseline in our model for different rating transition type. γ is the parameter for yearly

shared frailty. The MC error number for all parameters are quite small which means

the model fits the data well and results are acceptable. Figure 4.11 shows monthly

intensity for rating transition AA to A, Model 4B.1 and Model 4B.2, we can see the

two risk factors in Model 4B.1&2 shows co-movement. Figure 4.12 shows the posterior

mean of monthly intensity with 95% credible intervals for rating transition AA to A.

Figure 4.13 compares macroeconomic covariates and yearly shared frailties γAA→Aby(t).

Both γ and bt are calibrated from model, therefore these two parameters are effected
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Figure 4.12: Monthly intensity for transition AA to A; posterior means with 95%

credible intervals
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Figure 4.13: Macroeconomic covariates vs yearly shared frailty
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Model4B.1,2&3
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Figure 4.14: Monthly intensity for rating transition CCC to D, the blue line shows

Model 4B.3, red line for Model 4B.2 and black for Model 4B.1

by each other. It is better to compare macroeconomic covariates with γAA→Aby(t).

ηAA→Azt andγAA→Aby(t) will have co-movement.

Model 4B.3: Model with serial dependence for yearly shared frailty

The rating migration depend on the “state-of-the-economy”. Frailties are additional

unobserved factors help to explain the rating migration activity, therefore further

shared frailty is needed to capture patterns of variability in responses that cannot be

explained by the observed macroeconomic covariates alone. In Model 4B.3, we add

yearly shared frailty with serial dependence and try to capture the variability between

different years.

With 50000 iterations and 25000 burn in, part of the results for Model 4B.3 are

presented in Table 4.12 and 4.13. Compare to Model 4B.2, we add serial dependence

for yearly shared frailty (γhjby(t)). The systematic risk factors in Model 4B.1 can be

divided into observed fixed effects and unobserved yearly shared frailty to capture

heterogeneity for intensity function. The macroeconomic covariates have negative
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Model 4B3: Posterior mean for η

AAA AA A BBB BB B CCC D

AAA - 0.3370 -0.02780 0.9224 -9.2150 0 0 0

AA 0.2283 - -0.1723 0.5078 -0.8370 0.0398 5.9900 0

A 0.3742 0.0351 - -0.1759 0.0582 0.7061 0.7204 -0.5090

BBB -0.7951 0.8226 0.2483 - -0.0802 0.1243 -0.3475 -0.2888

BB 1.7950 0.4410 0.4348 -0.0091 - -0.0474 -0.5194 -0.6834

B 0.4454 -0.3506 0.2947 0.2230 0.2056 - -0.4024 -0.4269

CCC -11.950 0 -6.2490 1.8680 0.7963 0.3397 - -0.2898

Model 4B3: Posterior standard deviation for η

AAA AA A BBB BB B CCC D

AAA - 0.1187 0.4841 1.8340 4.7910 0 0 0

AA 0.2383 - 0.0745 0.2913 0.5566 0.6968 8.5190 0

A 0.4176 0.0860 - 0.0614 0.2120 0.3512 1.3830 0.6969

BBB 0.6428 0.3822 0.0733 - 0.0676 0.1600 0.5932 0.3797

BB 1.8710 0.5902 0.2462 0.0789 - 0.0628 0.1931 0.1999

B 1.1790 0.5439 0.3244 0.2727 0.0827 - 0.0640 0.0844

CCC 10.550 0 2.5530 1.3550 0.5325 0.1568 - 0.06442

Model 4B3: Posterior mean for υ

AAA AA A BBB BB B CCC D

AAA - -4.923 -5.339 -5.688 -3.780 0 0 0

AA -4.506 - -4.612 -4.753 -4.736 -3.023 -4.907 0

A -3.382 -3.658 - -3.793 -3.331 -3.308 -5.091 -5.076

BBB -6.427 -5.421 -5.270 - -5.388 -5.134 -4.999 -6.143

BB -5.543 -5.331 -4.877 -5.070 - -4.945 -4.778 -5.87

B -5.937 -4.412 -4.350 -5.057 -4.922 - -4.798 -5.01

CCC -9.157 0 -4.769 -4.916 -5.399 -4.764 - -4.314

Model 4B3: Posterior standard deviation for υ

AAA AA A BBB BB B CCC D

AAA - 0.3218 0.4995 1.1960 1.7240 0 0 0

AA 0.4446 - 0.4934 0.5925 0.9000 1.8940 2.3550 0

A 0.8029 0.3264 - 0.4568 0.6618 1.1530 2.2710 0.6793

BBB 0.7372 0.6745 0.3898 - 0.3530 0.4179 0.4862 0.6225

BB 1.0160 0.5345 0.5642 0.2640 - 0.3140 0.4015 0.5564

B 2.3510 1.4060 0.9247 0.5436 0.2792 - 0.3552 0.4079

CCC 4.7030 0 1.6740 0.7557 0.5452 0.3106 - 0.1674

Table 4.12: Model 4B.3 with serial dependence for yearly shared frailties
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Model 4B3: Posterior mean for γ

AAA AA A BBB BB B CCC D

AAA - -10.100 -13.330 -13.670 -7.413 0 0 0

AA -13.830 - -17.040 -19.400 -11.000 -45.430 -6.775 0

A -7.283 -10.860 - -15.760 -22.110 -32.700 -16.770 -12.280

BBB -11.090 -19.600 -13.400 - -12.150 -13.450 -6.229 -19.610

BB -16.690 -6.985 -17.690 -8.875 - -10.730 -12.440 -18.520

B -15.090 -27.740 -23.210 -17.700 -9.526 - -12.240 -13.97

CCC -6.965 0 -23.370 -12.54 -14.450 -10.160 - -5.548

Model 4B3: Posterior standard deviation for γ

AAA AA A BBB BB B CCC D

AAA - 3.6410 5.3210 17.430 30.450 0 0 0

AA 4.6090 - 3.4780 5.3840 13.340 25.010 31.610 0

A 17.960 3.0080 - 3.2640 5.7430 18.050 30.170 7.9800

BBB 9.1870 8.1640 3.0140 - 2.5370 4.0020 7.1660 5.7300

BB 15.300 9.3770 6.4930 2.3270 - 2.2560 3.9540 4.3110

B 31.090 24.940 14.000 5.0150 2.1570 - 2.5490 3.1060

CCC 31.960 0 31.540 12.680 7.6600 2.5130 - 1.3030

Table 4.13: Model 4B.3 with serial dependence for yearly shared frailties

effect for downgrade events and positive effect for upgrade event. Most of the results

are acceptable especially near the diagonal but some off-diagonal η with low transitions

are not reasonable. The posterior mean of υ, which is the parameter for baseline for

different rating transitions, exp(υ) is the baseline in our model for different rating

transition type. γ is the parameter for yearly shared frailty. The MC error number

for all parameters are quite small which means the model fits the data well and results

are acceptable. Figure 4.14 shows monthly intensity for rating transition type CCC

to D which is different from figure 4.11. We can see the three risk factors in Model

4B.1,2&3 shoes co-movement, especially for Model 4B.2 and 4B.3. The only difference

of these two models are serial dependence. The yearly shared frailty makes it different

from Model 4B.1.

Figure 4.15 shows the posterior mean of monthly intensity with 95% credible intervals

for rating transition CCC to D with Model 4B.3.

Here we consider rating transition AA → A again, Figure 4.16 compares macroe-

conomic covariates and yearly shared frailties γAA→Aby(t) in Model 4B.2 and 4B.3.

109



Time

mo
nth

ly i
nte

nsi
ty f

or 
CC

C t
o D

1985 1990 1995 2000

0.0
2

0.0
4

0.0
6

0.0
8

0.1
0
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γAA→Aby(t) in Model 4B.2 and 4B.3 are difference, but the difference are from υAA→A

in two models.

Model 4B.4: Model with shared sector frailties

We use yearly shared frailty to capture the variability for different time period for

any company. Further frailties like industry sectors can be introduced to capture

additional variability. We divided the CreditPro data into 8 industry sectors. The

following table shows posterior mean for this two-level frailties model.

We run 50000 iterations and discard first 25000 iterations. Part of results for Model

4B.4 are presented in Table 4.14 and 4.15. Compare to Model 4B.2, we add second

level of shared sector frailty (γhjby(t)). The systematic risk factors in Model 4B.1

can be divided into observed fixed effects and unobserved to capture heterogeneity

for intensity function. The macroeconomic covariates have negative η for downgrade

events and positive η for upgrade event. Most of the results are acceptable especially

near the diagonal but some off-diagonal η with low transitions are not reasonable.

ηA→AA is negative but very close to zero but ηAAA→AA is positive. The posterior mean

of υ, which is the parameter for baseline for different rating transitions, exp(υ) is the

baseline in our model for different rating transition type. γ is the parameter for yearly

shared frailty. The MC error number for all parameters are quite small which means

the model fits the data well and results are acceptable. The MC error number for

all parameters are quite small which means the model fits the data well and results

are acceptable. The posterior mean for autoregressive coefficient φ is 0.9482 with

standard deviation 0.033. We can easily find the co-movement for each sector as well

as the heterogeneity. With introducing the second-level sector frailties, it capture

the sectoral heterogeneity which cannot be explained by the one-level shared frailty

model.

Figure 4.17 shows monthly intensity for rating transition BB to B with different

sectors, these sectors shows co-movement and heterogeneity. The ηBB→B is -0.0025

which is very close to zero, this is why this figure is different from Figure 4.7. In
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Model 4B4: Posterior mean for η

AAA AA A BBB BB B CCC D

AAA - 0.3408 -0.02390 1.2990 -18.620 0 0 0

AA 0.1815 - -0.1922 0.5127 -0.8008 0.9868 8.0270 0

A 0.2950 -0.0017 - -0.1886 0.0533 1.2220 2.2690 -0.5462

BBB -0.8305 0.8131 0.1898 - -0.0633 0.1393 -0.6461 -0.2345

BB 2.2490 0.4048 0.4001 -0.0256 - -0.0025 -0.4369 -0.6017

B 1.4670 -0.2218 0.2177 0.2593 0.2187 - -0.3230 -0.3797

CCC -20.130 0 -9.2730 1.6090 1.0310 0.3647 - -0.2641

Model 4B4: Posterior standard deviation for η

AAA AA A BBB BB B CCC D

AAA - 0.1193 0.4897 1.9860 10.010 0 0 0

AA 0.2372 - 0.07181 0.2901 0.5996 1.181 9.9870 0

A 0.4338 0.0849 - 0.0620 0.2086 0.4660 3.2200 0.6855

BBB 0.6699 0.3745 0.0670 - 0.0689 0.1552 0.6095 0.3750

BB 2.0830 0.5879 0.2447 0.0778 - 0.0653 0.2001 0.2081

B 1.9440 0.6155 0.3067 0.2731 0.0835 - 0.0685 0.0889

CCC 14.460 0 4.5990 1.2470 0.5754 0.1605 - 0.0641

Model 4B4: Posterior mean for υ

AAA AA A BBB BB B CCC D

AAA - -4.6520 -4.8790 -4.6140 5.2750 0 0 0

AA -4.2820 - -4.1230 -4.0290 -4.1870 4.4930 -5.3490 0

A -4.0550 -3.4690 - -3.2330 -2.7350 -0.7678 3.8440 -4.6180

BBB -6.0230 -5.0270 -4.9940 - -4.9070 -4.7650 -5.4190 -5.3250

BB -4.2070 -5.2560 -4.5190 -4.8580 - -4.4940 -4.1620 -5.0270

B 2.7030 -2.2090 -4.4800 -4.3690 -4.5660 - -4.2780 -4.4150

CCC -8.7840 0 -13.680 -4.7130 -4.6780 -4.3580 - -4.0880

Model 4B4: Posterior standard deviation for υ

AAA AA A BBB BB B CCC D

AAA - 0.3472 0.4899 1.7340 7.7940 0 0 0

AA 0.3734 - 0.4509 0.6014 1.0160 4.8730 12.840 0

A 1.1660 0.2685 - 0.4376 0.5803 2.1100 13.330 0.7468

BBB 0.8395 0.6552 0.2876 - 0.3709 0.3790 0.9105 0.6553

BB 1.6340 0.6732 0.4816 0.2186 - 0.3352 0.5151 0.6185

B 8.1140 2.7460 0.7948 0.5779 0.2728 - 0.3891 0.4470

CCC 7.4430 0 6.3890 0.8465 0.6324 0.3109 - 0.1762

Table 4.14: Model 4B.4 with shared sector frailties
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Figure 4.17: Monthly intensity for rating transition BB to B with Model 4B.1 (black

line), Model 4B.4 (red and blue line)
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Model 4B4: Posterior mean for γ

AAA AA A BBB BB B CCC D

AAA - -1.9410 -2.5530 -6.3410 -28.940 0 0 0

AA -2.0880 - -3.1810 -3.9600 -2.6570 -27.470 0.7132 0

A 1.3280 -1.6570 - -3.2040 -3.7900 -11.210 -27.520 -2.4590

BBB -2.5190 -3.4130 -2.0560 - -2.6230 -2.2930 1.8570 -4.3710

BB -4.9580 -0.8052 -2.7680 -1.4070 - -2.3740 -3.3890 -4.3060

B -26.060 -9.7190 -2.0030 -3.6820 -1.8920 - -2.7430 -3.1170

CCC -29.730 0 26.810 -1.5550 -3.7000 -2.0990 - -1.2050

Model 4B4: Posterior standard deviation for γ

AAA AA A BBB BB B CCC D

AAA - 0.6933 0.9569 6.7040 18.720 0 0 0

AA 0.9235 - 0.5204 0.9424 2.4450 11.750 29.330 0

A 3.0250 0.4607 - 0.5101 0.9254 3.9160 40.270 1.6630

BBB 1.8700 1.6450 0.4129 - 0.4283 0.7649 3.1800 1.1880

BB 4.3150 1.9700 1.0950 0.3702 - 0.3929 0.8196 0.8636

B 20.390 6.900 2.1950 0.8965 0.3409 - 0.4450 0.5521

CCC 20.420 0 14.980 2.6730 1.2240 0.4465 - 0.2349

Table 4.15: Model 4B.4 with shared sector frailties
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Figure 4.18: Monthly intensity for rating transition BB to B; posterior means with

95% credible intervals, the upper plot shows sector Energy and lower plot for sector

Hightec
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No.Parameters Dbar Dhat pD DIC

Model 4B.1 88 4667310.00 4667230.00 82.354 4667390.00

Model 4B.2 158 4665410.00 4665270.00 133.185 4665540.00

Model 4B.3 160 4665400.00 4665270.00 130.515 4665530.00

Model 4B.4 320 4665070.00 4664850.00 226.707 4665300.00

Table 4.16: Deviance information criterion for four different frailty models

this case, monthly intensity are decided by yearly shared frailty (keep constant for

12 months) for each sector, therefore monthly intensities looks piece-wise constant2.

Sector Aero and Consumer have strong co-movement while sector Energy and Finance

are moving differently. Figure 4.18 shows the posterior mean of monthly intensity with

95% credible intervals for sector Energy and Hightec. For simplicity, we only pick up

these two sectors to see the difference. We can clearly see difference between these

two sectors, other sectors also have heterogeneity.

We use deviance information criterion (DIC) to compare these different models. For

each model, the Gibbs sample was run for 50000 iterations, the first 25000 iterations

were discarded, and the remaining 25000 iterations for each chain were used for anal-

ysis. The estimates for DIC and pD for the four different models are presented in

Table 4.16. The use of DIC is rather to compare different models than choose the

true model. Model 4B.2 and Model 4B.3 have been introduced one level random

effect and there are better than Model 4B.1. And Model 4B.3 has been introduced

an AR(1) process, it is slightly better than Model 4B.2 from the DIC estimation.

By introducing second level of random effect, Model 4B.4 improved compared with

Model 4B.2 and Model 4B.3

2we are trying to show different kinds of results other than pick up the best results
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4.4 Discussion

In this chapter, we extend our credit survival model from default risk to all transition

risk. Two kinds of model were implemented, the first one is frailty model for credit

rating transitions by numbers of levels (notches) which is a simpler case for credit

migration data. It is easy to handle but sacrifice the accuracy for rating transition,

therefore we finally model the actual rating transitions. Systematic portfolio risk is

divided into observed fixed effects and unobserved random effects which were known

as frailty in survival analysis to capture heterogeneity in migration analysis. We

have shown heterogeneity of transition risk over time and industry sector. We can

also shown heterogeneity for different countries if we extend our database to all the

countries in Creditpro database. It is very ambitious and challenging to model the

whole default and migration risk within one model since we have a very huge database,

some parameters are estimated with quite large errors because of low numbers of

transitions. With the limitation of time and resource got for research, the frailty

model we used here can be extended by adding firm-specific covariates which is crucial

for financial practitioners.
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Chapter 5

Estimating default probabilities

and transition matrices

Transition matrices are at the center of modern credit risk management. Transition

matrices are widely used for risk management purpose, economic capital purpose and

credit derivatives pricing. We have modelled credit risk using both GLMMs and

survival analysis for default and transition risks. The default probabilities can be

easily computed in GLMMs model. The transition matrices need to be calculated

using the results in survival models. We have four aims in this chapter: First, we

need to calculate transition matrices and default probabilities from intensities with

survival model output. Second, we will show appropriate graphics of how transition

rates change over time. Third, we will contrast with a stationary through-the-cycle

estimate. Fourth, we will discuss any sectoral variation.

The modeling and estimation of transition matrices is an important issue because of

the requirement of Basel III. Lando and Skodeberg (2002) give a review of different

approaches to estimate migration matrices. Lando and Skodeberg (2002), and Chris-

tensen, Hansen and Lando (2004) address the issue of computing point and interval

estimates for default probabilities with rare events, using a continuous time homoge-

neous Markov chain transition matrix. Some rare events like AAA to default will have

no observation in the period of observation, but the transition rate is non-zero. There
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is also considerable evidence that the Markovian assumption for ratings transitions is

unrealistic (Altman and Kao, 1992; Nickell, Perraudin and Varotto, 2000; Bangia et

al., 2002; Frydman and Schuermann, 2005; Chava, Stefanescu and Turnbull, 2006).

Jarrow, Lando and Turnbull (1997) make the distinction between implicit and explicit

estimation of transition matrices. Implicit estimation refers to extracting transition

matrices (including default probability) from market prices of risky zero-coupon bonds

while explicit use historical transition information.

In this chapter, we will briefly introduce the time homogeneous hazard rate approach

first. Then we develop a time-inhomogeneous model, assume the stochastic process

is stationary within each month which is piece-wise constant. We will focus on the

explicit methods and explore the time inhomogeneous hazard rate approach. We will

use the output in previous chapters to calculate time-varying or time inhomogeneous

transition and default rates.

5.1 Time homogeneous hazard rate approach

The cohort methods calculate the transition matrix by the ratio of total number of

transitions from state h to j and the number of companies in state i during the

observation period. An important consequence of this is that if the transition from

h to j does not occur in the observation period, the estimate transition probability

will be zero although it is non-zero. We will start with the time homogeneous hazard

rate approach. The primary assumption of time homogeneous approach is that credit

rating migrations are a homogenous Markov chain. The time homogeneous method

(used by Lando and Skodeberg) is a method based on the assumption of a stationary

continuous-time Markov chain. Let Rt denote a stochastic process taking values in

S = {0, 1, ..., n} at times t = 0, 1, · · · . The set S defines rating state and (Rt) models

the evolution of an obligor’s rating over time. The stochastic process Rt is a Markov

chain if for all t ≥ 1 and all h, r0, r1, · · · , rt−2, j ∈ S

P (Rt = h|R0 = r0, R1 = r1, · · · , Rt−1 = j) = P (Rt = h|Rt−1 = j)
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This means conditional probabilities of rating transitions given an obligor’s rating

history depend only on the previous rating at the last time. The Markov chain is

stationary if

P (Rt = h|Rt−1 = j) = P (R1 = h|R0 = j)

for all t ≥ 1 and all rating states h and j.

Following Lando & Skodeberg (2002), transition matrices can be described by a k×k

generator or intensity matrix Λ, and define P (t) is a k × k matrix of probabilities

where hjth element is the probability of migration from start state h to j at time

period t: For a small time step δt we assume that the transition probability from

rating h to j is given approximately by λhjδt. The probability of staying at rating h

is given by 1 −
∑

j 6=h λhjδt. Define a matrix Λ to have off-diagonal entries λhj and

diagonal entries −
∑

j 6=h λhj, summarise these transition probabilities for a small time

step in the matrix In+1 + Λδt. In the period [0, t], let δt = t/N for N steps. The

matrix of transition probabilities P (t) can be approximated by

P (t) ≈
(
In+1 +

Λt

N

)N
which converges, as N →∞ to the matrix exponential of δt

P (t) = exp(Λt) t ≥ 0 (5.1)

where the exponential is a matrix exponential, and Λ satisfy

λhj ≥ 0 h 6= j

λhh = −
∑
h6=j

λhj (5.2)

λhh gives the diagonal elements which are chosen to ensure the rows sum to zero.

λhj is obtained in previous chapters. An obligor remains in rating state h for an

exponentially distributed amount of time with parameter
∑

h6=j λhj. To estimate

the element of the generator under time-homogenous assumption, we use maximum

likelihood estimator:

λ̂hj =
Nhj(T )∫ T

0
Yh(t)dt
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AAA AA A BBB BB B CCC D

AAA 0.9938 0.0056 0.0005 0.0000 0.0001 0.0000 0.0000 0.0000

AA 0.0005 0.9925 0.0065 0.0004 0.0001 0.0001 0.0000 0.0000

A 0.0001 0.0017 0.9928 0.0001 0.0003 0.0050 0.0000 0.0000

BBB 0.0000 0.0002 0.0037 0.9907 0.0048 0.0005 0.0001 0.0001

BB 0.0000 0.0001 0.0004 0.0047 0.9853 0.0087 0.0006 0.0002

B 0.0000 0.0001 0.0002 0.0003 0.0043 0.9850 0.0075 0.0026

CCC 0.0001 0.0000 0.0003 0.0006 0.0012 0.0102 0.9347 0.0529

D 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 1.0000

Table 5.1: The one month transition matrix calculated using the homogeneous hazard

rate methods. The matrix was calculated for the period from Jan1980 to Dec2003

where Yi(s) is the number of obligors with rating h at time t.

We use the Standard & Poor’s database CreditPro 6.6 over the period January 1981

to December 2003 for computing monthly transition probability. Using 5.1, the one

month homogenous transition matrix are presented in Table 5.1:

5.2 Time non-homogeneous hazard rate approach

The homogeneous assumption means that the transition probability matrix for a giv-

en period only depend on the length of the period. However, the credit transition

probability matrices also depend on the time period selected. Here we develop a

time-inhomogeneous model, assume the stochastic process is stationary within each

month which is piece-wise constant. This assumption is the same as in our mod-

elling migration and default risk with survival models. For each month, we estimate a

separate generator matrix and one month transition probability matrix based on the

theory for homogeneous models in the previous section. We calculate one month tran-

sition probability matrix using 5.1. By composition, we get an estimated transition
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matrix between two arbitrary times t1, t2

P̂ (t1, t2) =

t2−1∏
t=t1

P (t) (5.3)

where Pt stand for the matrix of transition probabilities in month t. Define P (t)

is a k × k matrix of probabilities where hjth element is the probability of migration

from start state h to j at time period t. An one-year transition matrix is obtained by

composition of 12 successive monthly transition matrices.

In the previous two chapters, we have used three different survival models for default

and transition risk. We only consider default case for Model 3 and by numbers of

levels (notches) for transition risk in Model 4A. Both of them are not suitable for

computing transition matrices because only part of the transition risks are modelled

in these two models. In Model 4B we have calibrate the frailty model for migration

risk with actual transition types which cover all the transition types in our database.

The S&P database has recorded 44 different transition types with 5 rating transitions

have no observations from 1981-2003. We have discussed the calibration results in

Chapter 4, the intensity function changes over time and shows the sectional variation.

In this chapter, we will calculate the transition matrices with our output in Chapter

4 and show how the transition probability changes over time as well as the sectional

variation for transition probability.

We have four different models fitting for transition risk for 23 years database, therefore

we calculated 23 years transition matrices for four different models. Using 5.1, we get

P t = exp(Λt) (5.4)

where Λt is the generator for month t, which can be defines as in the estimated model

in Model 4B. For each element of Λt from rating state h to j, λhjt = exp(η
′

hjzi(t) +

υhj + γhjby(t)) where y(t) gives the year period where t belongs to, time-dependent

macroeconomic covariates zt, rating transition effect υ and yearly frailty. We use the

estimated results in Model 4B, then we get monthly transition probability matrix.

As we fitted four models in the previous chapter, Model 4B.2 is chosen for showing
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AAA AA A BBB BB B CCC D

AAA 0.9827 0.0070 0.0038 0.0046 0.0016 0.0001 0.0001 0.0000

AA 0.0097 0.9223 0.0069 0.0073 0.0065 0.0151 0.0320 0.0003

A 0.0330 0.0211 0.8729 0.0164 0.0240 0.0229 0.0051 0.0046

BBB 0.0013 0.0041 0.0044 0.9737 0.0039 0.0051 0.0060 0.0015

BB 0.0054 0.0051 0.0063 0.0058 0.9630 0.0062 0.0062 0.0018

B 0.0020 0.0060 0.0084 0.0053 0.0070 0.9600 0.0063 0.0050

CCC 0.0001 0.0001 0.0031 0.0108 0.0046 0.0083 0.9610 0.0121

D 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 1.0000

Table 5.2: The one month transition matrix calculated using the inhomogeneous

methods for Dec2003

the calculation. The rest three models are the same. Table 5.2 shows the one month

transition matrix for December 2003 which is different for every month.

In order to show how transition rates change over time, three different rating transition

types are chosen and we will show their transition probabilities through-the-cycle.

For generality, we choose rating transitions (BBB,A), (AA,A) and (BB,BB) which

are stand for upgrade, downgrade and censor case separately. For simplicity, we only

show these three transition types probabilities for Model 4B.2 because Model 4B.1 is

a simple model among the models we fitted. The lines shows homogeneous hazard

rate approach for three different rating transitions respectively. The credit transition

probability for homogeneous model only depend on the length of time which means the

monthly transition probability keeps constant over the observation period. While time

inhomogeneous shows it changes over time. See figure 5.1: Transition probabilities

changes through-the-cycle, especially we can find that upgrade and downgrade changes

to different direction. Of course we find some noise around year 1990 where both

downgrade and upgrade have relatively higher probabilities. Around year 1990 and

2000, we have a higher γAA→Abt. This result is very useful for bank’s regulatory capital

requirements and pricing credit derivatives.
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Figure 5.1: Monthly transition probabilities for three different rating transitions
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Using 5.1, we get

P ts = exp(Λts) (5.5)

where Λts is the generator for month t, which can be defined as the estimated model

in Model 4B.4. For each element of Λt from rating state h to j, λhjts = exp(η
′

hjz(t) +

υhj + γhjby(t),s). It depends on time-dependent macroeconomic covariates zt, rating

transition effect and two levels of shared frailties of yearly and sector.

With the output of Model 4B.4, we plot the transition probability for different sectors

and capture the heterogeneity for different sectors which cannot be explained by the

one-level yearly shared frailty model. We choose transition (BB,B) for Model 4B.4

as an example. The black line shows one-level shared frailty model and red line for

section Aero Energy Forest and Hightech and blue line for rest of the section. Finance

sector has higher default probability around 1990 while other sectors relatively low.

From figure 5.2, we can clearly see the sectoral variation.

5.3 Summary

The output of Model 4B in Chapter 4 has been used for calculating matrices of

transition probability in this chapter. While transition rates in the time homogeneous

model only depend on the length of time in a rating state, in the time inhomogeneous

model the transition rates clearly change over time. They show considerable variation

around the stationary transition rates. We also have shown there is sectional variation

between transition rates. Our model can be used to forecast transition rates in the

future. We note that this also requires the forecasting of the macroeconomic covariate

CFNAIMA3.
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Figure 5.2: Monthly transition probabilities for 8 different industries
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Chapter 6

Summary and conclusions

To manage credit risk effectively we need to identify sources of heterogeneity in default

risk and rating migration risk. The most fundamental determinant of heterogeneity

in credit portfolio is the credit quality or rating of the obligors; the probability of

default differs across different rating classes. Basel III introduced more information

than credit quality to explain heterogeneity.

In this thesis, we have explored some important additional sources of heterogeneity.

First, the default risk varies due to time-varying macroeconomic covariates. Among

a list of macroeconomic covariates we find a smoothed version of the Chicago Fed

National Activity Index (CFNAIMA3) is the best observed macroeconomic covariates

to describe credit quality changes. Second, the default and transition risk also relate

to industry sectors and countries. Different industry sectors show different default

and transition probability and obligors sharing industry sector show higher levels of

default correlation than others. This issue proposed by BCBS (2002) as concentration

risk which violate single-factor models assumption.

We use two different kinds of statistical models - GLMMs and survival models -

for modelling default and transition risk. In both models, our empirical study us-

ing CreditPro data shows that the most predictive credit model includes observed

macroeconomic covairates CFNAIMA3, random unobserved factors like time and in-
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dustry sectors. This implies that the rating transition matrix depends on the state

of the economy, time and industry sectors. We consider generalised linear mixed

model (GLMMs) for default count data where fixed effect account for observed factor

risk and random effect for unobserved factor risk. GLMMs capture heterogeneity in

time and across industry sectors in our research. With the consideration of industry-

specific factors, we find the heterogeneity of industry sectors are one of the source of

default risk. However, we are not only interested in the number of companies cred-

it rating transfer but also the length of time for obligors stay in. Therefore we use

time-to-event analysis to model default risk. Andersen & Gill model generalize Cox

proportional hazard model to allow time-varying covariates using counting process

formulation. The frailty in survival models captures time and sector heterogeneity

with unobserved random variables. We introduce the statistical model which was

used in medical research by Manda & Meyer into credit risk modelling for the first

time. We show an empirical study on credit rating default risk with survival analysis

before moving to transition risks model. The default risk model with survival analysis

shows business cycle through the time period. The frailty captures unobserved ran-

dom effects. We use two levels of frailty, corresponding to time and sector, to estimate

intensity function of default risk and in some models we include serial dependence for

time random effect.

We extend the model to all transition risk and model numbers of levels (notches) and

actual rating transitions in a survival analysis framework. With the results of tran-

sition risk, we develop a time inhomogeneous model with piecewise constant models

to calculate transition matrix probabilities. We compute the transition matrices from

the intensity output in transition risk model and show how transition rate change over

time and display sectoral variation. With the output from the transition risk model,

we can forecast transition probabilities with the forecast of macroeconomic covari-

ates. We try to model transition risk within one model because of our ambition. The

estimation results of transition with less events are not as good as the transition with

plenty of events in our observation time period. The public database in credit risk
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has been improved in the last few years. We show an applicable way of modelling

transition risk and forecasting transition matrices with our models.
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