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Abstract
Ultra-high-speed data transmission (terabit-per-second per channel) is urgently required in

optical communication systems to fulfill the emerging demands of 3D multimedia applica-

tions, cloud computing, and bandwidth-hungry applications. In one way by using single-

carrier optical communication systems for the data transmission rates ≥ 1 Tb/s, we need the

high baud rate and/or the high-order modulation formats (i.e. 512-QAM, 1024-QAM). An-

other way is to group the data carrying subcarriers without a guard bands (tightly spaced)

to form a superchannel which gives increase in channel capacity. In a superchannel, the

requirements of high-order modulation formats and high baud rates are relaxed. In an all-

optical orthogonal frequency division multiplexing (AO-OFDM) system, the subcarriers are

orthogonal and closely packed which gives more suitability to form superchannel. This thesis

focuses on the time and frequency offsets in AO-OFDM systems.

A theoretical model to investigate the performance of on-off-keying (OOK) modulated

AO-OFDM system is developed for analytical simulation. The analytical (statistical) model

considers the random characteristics of time and frequency offsets in adjacent subcarriers

as well as the common noise sources such as shot and thermal noises to calculate the in-

terference variances for evaluating the BER performance. The effects of time and frequency

offsets on the BER performance of AO-OFDM system is evaluated with the number of optical

subcarriers (NSC), receiver bandwidth (BWRX ), and cyclic prefix (CP)

We further develop an analytical model to evaluate the performance of AO-OFDM system

with advanced modulation format (M-QAM) in the presence of time and frequency offsets,

and the performance is compared with numerical simulations of other emulation setups (odd-

and-even subcarriers and decorrelated systems). The performance is investigated with NSC,

BWRX , and CP in AO-OFDM system. A delay-line interferometer based all-optical method

to reduce the effects of time and frequency offsets is proposed and evaluated.

Finally, performance of demultiplexed subcarriers from an optical discrete Fourier trans-

ii



form (O-DFT) in AO-OFDM system in the presence of chromatic dispersion and limited

modulation bandwidth is evaluated. The fiber Bragg grating (FBG) based passive device is

proposed to reduce the interference and the results are compared with existing method us-

ing sampling gates. The proposed method using FBG for interference reduction provides a

cost-effective design of AO-OFDM system.
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Chapter 1

Introduction

1.1 Evolution of optical transport networks

In the last two decades, the expansion of the internet has increased a growth of transport

network bandwidth [1]. In Figure 1.1 (red circles), the growth rate is 60% per year from

2001 to 2010, with the total network traffic of 20 Tb/s for the US network in year 2010 [2].

Similar trends can be seen in regions in the rest of world (Australia, Hong Kong, Japan, South

Korea, and Western Europe) [3]. Due to future data-centric cloud applications, which takes

the role of distributed system, the growth rates may be accelerated. As per Amdahl’s rule

of thumb [4, 5], the processor’s bandwidth is proportional to its power of processing. These

two things binds the growth in network traffic and have evolution of supercomputers with

the scaling slope of 2.7 dB/year, as shown in Figure 1.1 (green squares). Furthermore, the

multimedia application requiring the large network bandwidth is gaining importance.

For large amounts of data traffic, a high-speed optical interfaces at an access network and

a transmission network (including intermediate nodes in the core networks) are required [1].

For point-to-point serial interfaces, the rates of multiplexed interfaces are scaled at 0.5 dB

Figure 1.1: Evolution of Optical Transport Networks [2].
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per year which is proportional to speed of the semiconductor devices, as shown in Figure

1.2. From 2005 to 2010, the transmission rates are nearly constant at 100 Gbps but there is

transition to advanced modulations (quadrature phase shift keying (QPSK) and quadrature

amplitude modulation (QAM)) with coherent detection [6], in order to get the high spectral

efficiencies in wavelength division multiplexing (WDM). With the use of advanced modu-

lation formats, the scaling of physical interfaces to high data rates is not easier due to the

requirements of high effective number of bits of data converters (DAC and ADC) [7]. Com-

paring the scaling trends in Figure 1.2, the interface rate of 200 Gbps per polarization has

already been demonstrated but the electronic multiplexed serial transmissions of signals of 1

Tbps are still in research.

Figure 1.2: Evolution of serial interfaces and WDM systems in research and products [1].

Until 2006, the optical networks normally operates on circuit-switched serial interfaces,

and with the new 100 Gb/s standards (IEEE and ITU-T) the networks are moved to packet

switched parallel interfaces. The upgradation of switching networks (circuit to packet) allows

the technological development in OTN data rates, for e.g. SONET/SDH/OTN (white), WAN

devices (black) and ethernet devices (grey) are shown in Figure 1.2.
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1.2 Advanced Modulation Formats for High Spectral

Efficiency

The evolution of spectral efficiency in research is recorded at 1.2 dB per year, as shown in

Figure 1.3(a) [1]. Furthermore, the use of polarization division multiplexing (PDM) allows

to maintain the same rate of scaling. Due to the fundamental reason of direct relationship

between the spectral efficiency of system and required signal-to-noise ratio, increasing the

level of modulation format from 4 QAM to 16 QAM (twice) requires the SNR of 3.8 dB

more. Further increase in level of modulation format from 16 QAM to 256 QAM incurs

SNR penalty 8.8 dB, as shown in Figure 1.3(b). The SNR penalties associated with the use

of higher level modulation formats reduce the transmission distances [8]. Further, with the

short system’s reach the cost and energy consumption of a system increases due to more

electro-optic regenerations at the intermediate nodes. In [8], the spectral efficiency limitation

is estimated in 1000 km fiber link is nearly 16 b/s/Hz by using PDM. With the decrease in

transmission distance to half gives improvement in the spectral efficiency of 2 b/s/Hz.

Figure 1.3: Spectral efficiency in research (a) evolution and (b) required SNR [1].

1.3 Single-carrier versus multi-carrier approaches

In a single carrier approach, only one carrier frequency carries the data information while in

a multicarrier approache, information is transmitted in parallel on low data-rate subcarriers.
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Orthogonal frequency division multiplexing (OFDM) technique is a one of the approach of

multicarrier data transmission. In OFDM, the spectrum of an orthogonal subcarriers are over-

lapped. For information transmission, single-carrier and multi-carrier transmission systems

(coherent optical-OFDM) has advantages and disadvantages given as follows [10, 11]:

1.3.1 Single-Carrier Approach

• Channel estimation is purely based on blind equalization algorithms like constant mod-

ulus algorithm (CMA). The CMA is normally used for phase modulation and not easily

be implemented for multi-level modulations (like M-ary QAM).

• With the increase in order of the multi-level modulation formats, design of optical

modulation part becomes complex due to a serial or parallel configurations of optical

modulators. Due to rise in single-carrier system complexity with order of multi-level

modulation format, the cost of system increases.

• Encodes the data on full available spectrum makes difficult the system scalability in a

bandwidth.

• Implementation is easier and requires low cost of system, and an achieved spectral

efficiency ≤ 1 b/s/Hz in comparison to multi-carrier approach.

1.3.2 Multi-Carrier Approach

• Multicarrier systems have shifted the capabilities of signal processing to the transmitter

by using software-defined optical transmission which gives an adaptivity to transmitter.

The important processing capabilities are the estimation and compensation of channel

and phase. By using pilot symbols or pilot subcarriers in multicarrier system give easier

to an estimation of channel and phase.

• For high-level modulation formats (8-PSK or 8-QAM and above), reduces the system
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cost due to only reconfiguration required in digital signal processor (DSP) and data

converters.

• The spectrum is tighter and signal is generated in frequency domain which makes easier

to partition the rectangular-shaped OFDM spectrum into small multiple bands and each

band can be processed separately.

• Recorded data transmission rates ≥ 1 Tbps in research with an achieved spectral ef-

ficiency ≥ 1 b/s/Hz. The important condition for data rates ≥ 1 Tbps (in an optical

OFDM systems) is orthogonality among subccarriers have to be maintained.

• Optical components commercially available at lower speeds, and an integration of com-

ponents is comparatively complex.

On the basis of above comparisons, multicarrier approaches offers the advantages in terms

of bandwidth scalability, adaptability of transponders, high spectral efficiency and high data

rates. In a multicarrier approaches we have disadvantages of a high peak to average power

ratio which poses the challenges of channel (fiber) nonlinearity, and a strict synchronization

requirements in order to avoid frequency, time and phase offsets.

1.4 Multiplexing Techniques for Optical Superchannels

Scheme

The superchannel of a desired capacity is the combination of several independent data-

modulated optical subcarriers, and the subcarriers are either from single source or multiple

continuous wave (CW) laser sources [12]. For the single laser source (mode-locked laser

diode) generating multiple subcarriers, the phase control is normally not required but for

other case stabilized laser sources are required [13].

The combined subcarriers in a superchannel offers the highest spectral efficiency, and it

can be achieved by using a higher order modulation format (like 16-QAM) with coherent
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detection at receiver [14] and a pulse shaping techniques. Previously, return-to-zero pulse

shape technique and its variants were used for the requirements of high sensitivity, interfer-

ence reduction and increase in tolerance to nonlinearity of transmission medium. Now-a-

days, orthogonal frequency division multiplexing (OFDM)[11], [12], Nyquist-WDM[15] -

[17], and coherent-WDM (CoWDM) [18] are used for (de) multiplexing with less crosstalk

at high spectral efficiency. In AO-OFDM system, the complex-data symbols are modulated

on an orthogonal optical subcarriers. In Nyquist-WDM system (N-WDM), the complex data

symbols are modulated on temporal sinc-shaped subcarriers. In coherent WDM (CoWDM),

the closely packed rectangular-spectra shaped subcarriers carry the complex data symbols.

As shown in Figure 1.4, in an OFDM transmitter no phase control or pulse shaping filter re-

quired while in other two system we need a tight control of phase (in CoWDM) or an optical

filter (in N-WDM) is required to reduce an interchannel interference or fulfill the condition

of Nyquist principle.

Figure 1.4: Superchannels multiplexing types [18].

In Figure 1.5, the spectrums of transmitted superchannels are shown, where ∆ f , and

MBW are subcarrier spacing, and total bandwidth of subcarrier. In AO-OFDM, the electrical

signal is the baseband M-QAM signal which is modulated on optical subcarrier. The spacing

between optical subcarriers is ∆ f and is less than MBW . In the spectrum of Co-WDM, the
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phase control is used to ensure ∆ f = MBW with no guard bands. In Co-WDM, we need a tight

control of phase among data carrying subcarrier in order to minimize an interference [18]. In

a N-WDM, a condition of ∆ f > MBW is required and subcarriers have a rectangular spectral

shape.
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Figure 1.5: Spectrum of multiplexing techniques for superchannels (a) all-optical OFDM
(b)coherent WDM (c) Nyquist WDM [18].
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1.5 Motivation

In the needs of 3D multimedia applications, cloud computing and applications which re-

quires the fat-pipes, the Tbit/sec superchannels are emerged to fulfill the needs of bandwidth

hungry applications [19]. In a traditional time division multiplexing (TDM), multiple data

streams are transmitted in an assigned time slot. The data transmission of 10.2 Tbit/sec is

possible with TDM scheme but the challenges posed on the requirements of optical pulses

with short duration [20]. In optical pulse sources, the spectrum of signal is broader which

needs a precise dispersion compensation [21]. Another way is to use the WDM based super-

channels scheme which allows the several channel transmissions in parallel. With the WDM

based superchannels transmission, the needs of the short temporal pulse durations and the

precise dispersion compensation are relaxed with the compromise on spectral efficiency and

dedicated laser sources are required for each channel which increases the cost of system [13].

Optical OFDM in optical communications systems offers high spectral efficiency, toler-

ance to chromatic dispersion (CD), and the data information is encoded on subcarriers which

are normally > 100, [22] - [27]. With the increased interest in this multicarrier transmission

technique, it is applied to access and long-haul networks for high data rates [28] - [32]. As

well as OFDM based data transmission have several advantages, it is sensitive to synchro-

nization in time, frequency and phase [11]. In the presence of any of the above sensitivity to

synchronization, the orthogonality among overlapped subcarrier is destroyed and the perfor-

mance of OFDM system is seriously degraded.

AO-OFDM system implementation offers the highest aggregated data transmission with

high spectral efficiency [12]. In the experimental demonstrations [33], AO-OFDM system

comprises of one or two modulators to show the proof of concepts. In these demonstrations,

the modulated optical subcarriers carry same data symbols, and the effects of channel impair-

ments and synchronization issues are nearly scaled. Ultimately, the performance measures

(BER and OSNR) are clearly not reflecting an actual system performance [34].
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1.6 Contributions and List of Publications

The key contributions of this work are summarized below.

Chapter 3

• We propose OOK-modulated AO-OFDM model to investigate the symbol time mis-

alignment and subcarrier frequency offsets.

• An analytical model is developed to evaluate the BER performance of AO-OFDM sys-

tem

• Evaluate the performance for AO-OFDM system design parameters.

Chapter 4

• We propose analytical and numerical (Monte-Carlo) models for the performance eval-

uations of M-QAM AO-OFDM system.

• Develop numerical models of emulation setups of AO-OFDM systems.

• Propose a DLI based interference reduction method.

Chapter 5

• We propose a numerical (Monte-Carlo) model for the performance evaluation of OOK-

modulated AO-OFDM system in the presence of CD and limited modulation band-

width.

• Propose the FBG-assisted interference reduction method and the results are compared

with SG based optical sampling method.
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List of Publications The work presented in this thesis has led to the following publications:

• M. Ali, and X. Wang, “FBG-Assisted ICI Reduction for AO-OFDM Demultiplexed

Signal”, Microwave and Optical Technology Letters, vol. 56, pp. 23202324, 2014.

• M. Ali, B. Dai, and X. Wang, “Time and Frequency Synchronization in OOK AO-

OFDM System”, Accepted in IET Communications in 2014.

• M. Ali, B. Dai, and X. Wang, “M-QAM All-Optical OFDM System Performance

Evaluation with Frequency and Timing Offsets”, Submitted in Microwave and Opti-

cal Technology Letters in 2014.

• M. Ali and X. Wang,“Effects of symbol time misalignment and frequency offset on

performance of realistic all-optical OFDM system”, 15th International Conference on

Transparent Optical Networks (ICTON 2013), Cartagena, Spain, July, 2013.

• M. Ali, B. Dai, and X. Wang, “Performance Evaluation of Superchannels Using All-

Optical M-QAM OFDM and Coherent Receiver in the Presence of Time and Frequency

Offsets”, Accepted Full Paper (ID:255601) in Chinacom2014, Maoming, China, 2014.

1.7 Thesis Outline

The remainder of this thesis is organized as follows:

Chapter 1: Introduction In this chapter, we introduces our research work and highlight

the importance of superchannels in a Tbit/sec data transmissions. Furthermore, it provides a

motivation of choosing this research topic.

Chapter 2: Background of OFDM for Optical Communication System In this chapter,

we illustrated the principles of OFDM based data transmission with mathematical expres-

sions, highlighted the advantages over single-carrier approach. The three variant of OFDM in
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optical communication systems, IM/DD OFDM, CO-OFDM and AO-OFDM, are discussed

and compared their advantages with their limitations. Existing methods of detection of a

composite AO-OFDM signal are discussed. Finally, the requirements of synchronization in

OFDM systems are discussed.

Chapter 3: Time and Frequency Synchronization in OOK AO-OFDM System In this

chapter, we have investigated the performance of OOK-modulated AO-OFDM system in

the presence of symbol time misalignment and subcarrier frequency offset. In AO-OFDM

system, the superchannel at the transmitter is based on optical subcarriers are independently

OOK-modulated and combined to form the composite AO-OFDM signal, and the coherent

detection at receiver. We have developed an analytical simulation model and evaluated a BER

performance for two cases: numbers of subcarriers (NSC) from 8 to 512, and from 3 to 128

at the data rate 10 Gbit/sec. Further, the system performance is evaluated with NSC, receiver

bandwidth, and cyclic prefix.

Chapter 4: M-QAM All-Optical OFDM System Performance Evaluation with Fre-

quency and Timing Offsets This chapter provides AO-OFDM system (AO-OFDM trans-

mitter and coherent detection) performance evaluation for advanced modulation format (M-

QAM). For performance evaluations, we have first developed an analytical model and the

simulation results are compared with the results of existing emulation setups. Our model

considered not only the effects of interferences due to time and frequency offsets but also

the receiver’s shot and thermal noises. Further, an existing method of interference reduc-

tion (cyclic prefix) is also discussed. Finally, we have proposed a DLI based interference

reduction method for AO-OFDM system.

Chapter 5: FBG-Assisted ICI Reduction for AO-OFDM Demultiplexed Signal In this

chapter, the effects of CD and limited modulation bandwidth are evaluated on the perfor-

mance of O-DFT based receiver in AO-OFDM system. FBG based passive device for inter-
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ference reduction is proposed and results are compared with SG based existing method of

optical sampling for all four subcarriers.

Chapter 6: Conclusions and Future Works This chapter summarizes the work in this

thesis with future work.
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Chapter 2

Background of OFDM for Optical

Communication Systems

Orthogonal frequency division multiplexing (OFDM) is much mature type of multicarrier

transmission in wired and wireless communication systems [32]. The main reason of using

OFDM is the tolerance to an intersymbol interference (ISI) caused by dispersion of trans-

mission medium. This effect important for high data rates and a traditional serial modulation

formats like quadrature amplitude modulation (QAM) or non-return to zero (NRZ), which

requires equalization in time domain. Another advantage of OFDM is that the multicarrier

transmitter and receiver implementations are in digital domain rather than in analog domain.

Due to these advantages of OFDM based data transmission, it has been adopted in a high-end

symmetrical digital subscriber lines (DSL), digital television (TV), broadcasting of high-

definition TV (HDTV), wireless local area network such as 802.11 a/g, long term evolution

(LTE), and IEEE 802.16 [31], [39]. It has also been deployed in power line systems (PLC)

[40], cognitive systems [41] and free-space optical systems [42]-[44]. Furthermore, OFDM

has been introduced in optical communication systems for multiple carrier transmissions in

parallel [35] - [37].

In OFDM system, the parallel transmission of original data symbols on multiple subcar-

riers have different frequencies which results the extension of original symbol duration. The

resultant OFDM symbol duration is larger than the original data symbol duration of a serial

transmission system. Due to longer OFDM symbol duration, it is more tolerable to ISI and

ultimately the equalization circuit complexity reduces. Furthermore, the residual ISI can be
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removed by using cyclic prefix (CP) [32].

When the existing multicarrier transmission techniques are used in wireless and optical

communication systems like frequency division multiplexing (FDM) and wavelength division

multiplexing (WDM), then a simultaneous data is also transmitted on a number of different

frequency channels. In FDM and WDM systems, the guard bands are used between sub-

carriers in order to reduce the spectral overlap. The main difference in OFDM system from

FDM/WDM system is the subcarriers frequencies are chosen in such a way that there are no

guard bands among subcarriers and the subcarriers are orthogonal to each other. The inverse

Fourier transform (IFT) is used to multiplex in a digital domain which reduces the implemen-

tation cost and complexity of system design. In FDM/WDM system, an analog filter is used

to recover the desired subcarrier. In Figure 2.1, the graphical illustration of FDM, WDM and

OFDM spectra are shown [31]. In OFDM, the subcarriers are overlapped (for bandwidth effi-

ciency) and orthogonal, and they can be demultiplexed at a receiver with only single Fourier

transform (FT) block. The shape of subcarriers’ is a sinc form and have many side lobes.

This is the main drawback of OFDM system which causes the system sensitive to frequency

and phase offsets [32].

Figure 2.1: Graphical illustration of spectra of FDM, WDM, and OFDM [31].

2.1 OFDM transmitter and receiver

In OFDM system, the transmitter first maps the digital bits information into a waveforms of

particular modulation format, like phase shift keying (PSK) or QAM symbols. The serial
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modulated symbols are converted to N parallel data streams by a serial-to-parallel (S/P) con-

verter. After S/P conversion, N different subcarriers carry N data symbols. Consider Xl[k]

denote the kth subcarrier carried by lth symbol, where k = 1, 2, ... , N, l = 1, 2, ... , ∞. After

S/P conversion, the symbol duration is increased to NTs which will ultimately the duration of

OFDM symbol, Tsym = NTs. Consider Ψl,k(t) denote the kth subcarrier carried by lth OFDM

symbol, which is given as

Ψl,k(t) =

 e j2π fk(t−lTsym),

0,

0 < t ≤ Tsym

elsewhere
(2.1)

The relationship between the low frequency and the high frequency signals can be ex-

pressed as

xl(t) =
∞

∑
l=0

N−1

∑
k=0

Xl[k]e j2π fk(t−lTsym) (2.2)

and

xl(t) = Re

{
1

Tsym

∞

∑
l=0

{
N−1

∑
k=0

Xl[k]Ψl,k(t)

}}
, (2.3)

It is noted that xl(t) is the IFT of PSK or QAM symbols. The received OFDM signal,

yl(t) =
∞

∑
l=0

N−1
∑

k=0
Xl[k]e j2π fk(t−lTsym), is processed to reconstruct Xl[k] by FT operation which is

given as

Yl[k] =
1

Tsym

∞∫
−∞

yl(t)e− j2π fk(t−lTsym)dt

=
1

Tsym

∞∫
−∞

{
N−1

∑
i=0

Xl[i]e j2π fi(t−lTsym)

}
e− j2π fk(t−lTsym)dt

=
N−1

∑
i=0

Xl[i]

 1
Tsym

Tsym∫
0

e j2π( fi− fk)(t−lTsym)dt


= Xl[k]

(2.4)

At the OFDM receiver, the FT algorithms are used to efficiently demodulate the subcar-
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rier. The graphical illustration of above mathematical expressions for OFDM modulation and

demodulation process is shown in Figure 2.2 (a) [10]. The symbol, in frequency domain, X [k]

is modulated on the kth subcarrier. In this illustration, six subcarriers, with kth subcarrier fre-

quency is fk = k/Tsym, are used for OFDM signal transmission. In the demodulation process,

an orthogonality property is used to demodulate the subcarriers. The sketch between trans-

mitter and receiver shows the total OFDM symbol duration, Tsym, is longer than the original

symbol, X [k], duration which is Ts. Actually, OFDM symbol is a composite signal of N sym-

bols which have total duration of Tsym. In Figure 2.2 (b), the spectra of overlapped OFDM

subcarriers is shown. The overlapping of OFDM subcarriers is used for bandwidth efficiency.

In Figure 2.3, the multicarrier modulation and demodulation in an OFDM is implemented by

IFFT and FFT blocks at the transmitter and receiver sides.

Figure 2.2: Graphical illustration of OFDM system [10].

16



Figure 2.3: Block diagram of OFDM system [10].

2.2 Orthogonality condition in OFDM

The orthogonality condition is required in OFDM system in order to be intercarrier interfer-

ence (ICI)-free [10]. In a given OFDM signal,
{

e j2π fkt}N−1
k=0 , where 0 ≤ t ≤ Tsym, the kth

subcarrier have the frequency fk = k/Tsym. The subcarriers are orthogonal if the integration

of the products is zero, which is given as

1
Tsym

Tsym∫
0

e j2π fkte− j2π fktdt =
1

Tsym

Tsym∫
0

e j2π
k

Tsym te− j2π
i

Tsym tdt

=
1

Tsym

Tsym∫
0

e j2π
(k−i)
Tsym tdt

=

 1,

0,

∀int k = i

otherwise

(2.5)

2.3 OFDM in an optical domain

An optical signal of a continuous wave (CW) laser source offers wide range of data mod-

ulations like modulation of its amplitude, phase, polarization, intensity, or amplitude and a
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phase combined. Same variants of detection schemes are available at receiver. By introduc-

ing OFDM in an optical domain, new ways of transmitter and receiver implementations are

possible. In this section, we discuss three related modulation/detection schemes. These are

optical intensity/field modulation with direct-detection (IM/DD), coherent optical modula-

tion with coherent detection (CO-OFDM), and all-optical OFDM (AO-OFDM), as shown in

Figure 2.4 - Figure 2.6 [38].

2.3.1 IM/DD-OFDM

In this scheme, the multicarrier signal as OFDM signal in an electrical domain is generated

by digital signal processor (DSP) and converted to an analog signal by digital-to-analog con-

verter (DAC). An analog electrical OFDM signal is upconverted with radio-frequency (RF)

front-end, as shown in Figure 2.4 [38]. An electrical OFDM signal (complex valued data

signals) conversion to optical domain using optical modulation (OM) can be done by either

an intensity modulation or a field modulation.

Figure 2.4: Block diagram of IM/DD optical OFDM scheme [38].

For field modulation case, an optical I/Q modulator can be used which translate the com-

plex OFDM signal on an optical field. In an intensity modulation case, the modulated optical

signal is directly proportional to the electrical OFDM signal. As an optical intensity have to

be real and non-negative, the electrical OFDM signal must also needs to be real and positive

in order to avoid distortion. In an optical intensity modulation, the real electrical OFDM

signal can be obtained by an electrical I/Q modulator or a Hermitian symmetry (at the out-

put of IFFT). In a Hermitian symmetry, there are no issues of I/Q multiplexing so we have

no problem of I/Q imbalance. On the other side of using Hermitian symmetry, we have to

discard the second half of OFDM symbol frame which ultimately reduces the data rate by
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half. Another requirement for intensity modulation is to operate a modulator at its point of

quadrature. For this purpose, a high dc bias have to be added to the RF signal in order to be

positive RF OFDM signal. In this way, an optical carrier, which have no information, contain

much optical power in an optical OFDM signal transmission. As a result, system operates

at cost with low performance. Further, fiber nonlinearity poses a challenges for high optical

carrier power. Different ways of OFDM signal clipping and a dividing the optical power of

an optical carrier with sidebands have been proposed to reduce these effects of high power in

OFDM systems [46], [47].

After optical OFDM signal transmission through fiber channel, a direct photodetection of

double-side band (with linear phases) would gives a destructive interference at receiver. This

effect can be avoided by using optical single sideband (OSSB) filter at transmitter. By using

the OSSB filter in optical OFDM transmission system, the effects of chromatic dispersion

(CD) reduces to a phase shift in only one sideband [48]. The advantage of linear phase shift

is the correction at the receiver side is easier by the use of cyclic prefix (CP) and frequency

domain equalization (FDE).

At the receiver side, the direct detection by using single photodiode translates the optical

intensity to a beating terms of desired carrier with sideband RF term, and undesirable mix-

ing products of sidebands (baseband/low frequency). The mixing product of sidebands have

spectral width of 0 Hz to OFDM subcarrier of maximum frequency. In order to avoid the

performance degradation of an IM/DD optical OFDM system, the frequency of RF is chosen

to be much high to have guard band between the desired and undesired frequency compo-

nents [47] [49]. With this technique of avoiding the performance degradation, the spectral

efficiency of a system is compromised. Another disadvantage of using an IM/DD OFDM

technique in an optical domain is the need of high optical power. In spite of the above dis-

advantages, for the next-generation of an optical access networks, an IM/DD optical OFDM

provides a cost-effective solution with the use of off-the-shelf optical components.
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2.3.2 Coherent Optical-OFDM

In a coherent optical-OFDM system (CO-OFDM), an inphase/quadrature (I/Q) modulator is

used to modulate the optical field of an optical signal with an electrical multicarrier signal

(OFDM). As an optical I/Q modulator generates only one sideband so we don’t have to use

the OSSB filter at the transmitter side but we need to use a local oscillator (LO) at the receiver

side, as shown in Figure 2.5 [38]. At a transmitter side, the power requirements of an optical

carrier is low as it will be suppressed and only power is allocated to the modulated OFDM

sideband. So in a CO-OFDM system, we have more resilience to a SNR performance degra-

dation. As a guard band is required in IM/DD OFDM system to avoid the mixing products at

the detection, there is no need in CO-OFDM system due to the linear capturing of an optical

field by using coherent detection at receiver side [50]. Without guard bands, CO-OFDM sys-

tem offers a higher bandwidth/spectral efficiency if compared with IM/DD OFDM system.

With the use of LO at receiver, the sensitivity of receiver increases which ultimately increases

the reach of the system.

Figure 2.5: Block diagram of coherent optical OFDM scheme [38].

As shown in Figure 2.5 [38], after an electrical multicarrier signal generated from DSP,

an optional analog RF front-end is used for electrical I/Q multiplexing before optical modu-

lation. An OSSB is used to filter one sideband in case of intensity modulation, as discussed

in the scenario of an IM/DD OFDM system. As described above that there is no need of

guard bands in a CO-OFDM system but by considering the sharp edges of an OSSB filter’s

passband for OFDM signal modulated on an optical carrier, we still need small guardband.

After optical signal propagated through fiber channel, a CW laser as a LO, an optical hybrid,

and balanced detection are required for coherent detection of OFDM signal. For a downcon-
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version from OFDM signal to baseband signal, an analog front-end is used. For the case of

homodyne detection, the signal after coherent detection doesn’t need an analog front-end.

Due to requirements of LO in a CO-OFDM system, the cost of a system increases. More-

over, the needs of LO poses a system’s sensitivity to a phase offset and a frequency offset.

In a CO-OFDM system, the DSP algorithms to estimate and compensate these offsets are the

major requirements.

2.3.3 AO-OFDM

In an all-optical OFDM (AO-OFDM) system, the inverse discrete Fourier transform (IDFT)

is implemented in an optical domain, as shown in Figure 2.6 [38], which is main difference

between an AO-OFDM system and an IM/DD OFDM and a CO-OFDM systems, where

FFT/IFFT is implemented in an electrical domain by using DSP. In AO-OFDM system, an

optical subcarriers, generated from a comb laser source or CW laser sources, are separated

by demultiplexer, like arrayed waveguide grating (AWG). After separation of an optical sub-

carriers or tones, each tone is independently modulated with a complex baseband signal,

like M-QAM [12], [51]. For AO-OFDM system with N optical tones, N independent I/Q

modulators are required. After N I/Q modulators, the modulated parallel optical streams are

combined by multiplexer, such as AWG, and transmitted through fiber channel as a compos-

ite AO-OFDM signal. At the receiver side, the composite AO-OFDM signal is demultiplexed

and a coherently detected.

In [52], AO-OFDM based superchannel of 1.5 Tbit/sec over transmission distance of

1200km is reported, as shown in Figure 2.7. In an experimental setup, 15 phase-locked sub-

carriers at the spacing of 12.5 GHz are 16-QAM modulated by using two I/Q modulators

in an odd-and-even configuration. The spectra of modulated odd-and-even subcarriers are

shown in Figure 2.8 (a). For the alignment of symbols, a tunable optical delay line is used

after modulation of odd-and-even subcarriers. After combining the odd-and-even subcarri-

ers, the modulated signal is splitted by 3 dB coupler and one signal path is delayed by 100
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Figure 2.6: Block diagram of all-optical OFDM scheme [38].

symbols. After delaying, the polarization of signal (Y ) is rotated by 90o and combined with

other path (X) by using polarization beam combiner. The composite signal of 15 subcarri-

ers dual-polarization 16-QAM modulated is transmitted over 1200 km (3×5×80 km) with

spectra shown in Figure 2.8 (b).

For demodulation of received composite AO-OFDM signal, LO is used as down-converter

of superchannel to desired band. After downcoversion, 90o optical hybrid with polarization

diversity is used to separate the X and Y polarizations before photodetectors. In an investiga-

tion of limited receiver bandwith and sampling rate of ADC, the symbol rate of 12.5 Gbaud

with varied 2× to 6× analog-to-digital converters (ADC) sampling rate is used in [52]. The

bandwidth of sampling scope is set to 30 GHz and in range of 8 GHz to 26 GHz is the cut-

off of low pass filter (LPF) in order to investigate the effects of using commercial low-grade

photodetectors and ADC. In an experiment, 4× oversampling is the minimum requirement

to get the BER < 10−3 and larger ADC bandwidth leads to better BER performance. Further

in cases of 5× and 6× oversampling, the BER performance achieved is much better than 4×

oversampling case. For BER threshold of 10−3, the minimum required bandwidth of ADC is

17.3 GHz for 4× to 6× oversampling range.
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Figure 2.7: Experimental setup of 1.5 Tbit/sec AO-OFDM Transmission and Digital Coher-
ent Receiver [52].

In an experimental results, the launch power of 2 dBm is required for 1.5 Tbit/sec data

transmission over 1200 km for BER = 10−3 (achieved spectral efficiency of 7 b/s/Hz), as

shown in Figure 2.9(a). Furthermore, the BER performance of all 15 subcarriers shows below

the threshold of FEC, as shown in Figure 2.9 (b).

Optical receivers in an AO-OFDM systems

In Figure 2.6, the coherent receivers comprises of an analog-to-digital converters (ADC)

which can sample the incoming analog signal upto four times the sampling rates of an digital-

to-analog converters (DAC) at transmitter side. For the higher rates of transmission, it is

required to process the incoming composite signal in an optical domain before photodetection

in order to reduce it to a lower-rate. Optical DFT provides this preprocessing in an optical

domain which comprises of optical time-delay lines to first convert the serial incoming data

to parallel data and then phase shifters, as per DFT principle, to demultiplex the subcarriers.

The DFT operation in an optical domain is a continuous process (different from electrical

OFDM counterpart), and the output of optical DFT is continuous due to DFT window moves

in time domain. In order to correctly detect the received signal after DFT operation for a given
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Figure 2.8: Output spectra (a)after modulation (b) superchannel before and after 1200 km
[52].

Figure 2.9: BER performance versus (a) launch power (dBm), and (b) optical subcarriers
[52].

OFDM symbol, a sampling gates are required. In Figure 2.10, the schematic of optical FFT

(O-FFT) is shown which have combined the functions of S/P conversion and FFT operation in

an optical domain. The O-FFT operation is implemented by using delay lines, phase shifters,

and 3 dB optical couplers. For correct symbol detection of desired subcarrier after O-FFT,

electro-absorption modulator based sampling gates are used. For correct symbol detection,

the sampling gates are needed to be synchronized with the symbol. Another condition of an

O-FFT is the requirements of a minimum phase offsets in the phase shifters (used in O-FFT

circuit) in order to correctly demultiplex the subcarriers.

An O-FFT have advantages over electronic counterpart. It can be used for processing of

high speed incoming signal due to sampling windows of sampling gates are much shorter than
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Figure 2.10: Schematic of optical fast Fourier transform based all-optical OFDM composite
signal receiver [12].

the sampling windows of ADC in electronic domain. In an O-FFT circuit, the components are

passive (delay lines, coupler) and power consumption of these components are much lower.

In a case study, the power consumption of 8-point FFT of an incoming signal at the rate of

28 GBd is mainly dominated by an sampling gate driver amplifier, which is 14 W. Additional

power is required to compensate the modulation and insertion losses of an optical sampling

gates. For the electrical sampling, 160 W is required to process 224 GSa/s signal by using

28 GSa/s ADC (consumes electrical power of 10 W). With the increase of sampling rates,

the power consumption (electronic domain) also increases. For performance improvement in

electrical OFDM, a guard intervals are normally used. With the guard intervals at the same

data rate, power consumption also increases due to processing of guard intervals. In O-FFT,

the power consumption remains same with the use of guard intervals [53].

In order to overcome the limitations of ADC and photodiodes bandwidth, the research

towards implementation of all-optical transmitter and receiver based on OFDM principle is

progressed in [54] - [56] and an all-optical transmitter for superchannel at the data rate of 10.8

Tbit/sec has been reported in [12]. For an all-optical receiver, O-DFT circuits are proposed

in [51], [57], which can achieve the FFT function without need of an optical to electrical
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domains conversion. In [57], an O-DFT is used to demultiplex 8 subcarrier optically.

In [58], the optical circuits are realized for IFFT and FFT operations by using arrayed

waveguide gratings (AWG). Traditionally, AWGs are used in a WDM system for a wave-

lengths multiplexing and demultiplexing. The main advantage of AWG based FFT/IFFT is a

passive integrated device with simple design for large number of subcarriers.

Figure 2.11: Block diagram of AWG based All-Optical OFDM system [58].

The proposed all-optical AWG based FFT/IFFT diagram is shown in Figure 2.11. In the

system, the performance is evaluated for 4 and 16 subcarriers and have subcarriers spacing of

10 GHz. The modelocked laser source is used for generation of pulse train at the repetation

rate of 10 GHz. The pulse train is splitted by 1:N splitter and each splitted signal is OOK

modulated by N independent data sources at 10 Gbaud. After modulation, an AWG is used as

IFFT device for incoming parallel modulated data streams. At the receiver side, again AWG

is used for FFT function to demultiplex the desired subcarrier(s). An AWG based IFFT/FFT

requires the optical sampler for detection of desired demultiplexed subcarrier.

Figure 2.12 shows the eye opening in the results of an AWG based IFFT/FFT in AO-

OFDM system. Due to IFFT/FFT operation, the eyes are not much opened which depends

on number of subcarriers the system. With the increase in subcarriers, the interference-free

regions becomes shrink. For detection of desired subcarrier, a precise and narrow optical

sampling gates are required in order to avoid the interference. By using optical sampling gates

the system cost increases. The eyes opening is also depends on the modulator bandwidth
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Figure 2.12: Results of proposed AWG based IFFT/FFT for AO-OFDM system [58].

which causes the modulated signal have non-zero symbol rise and fall times. Further, the

fabrication imperfections and incoming signal distortions poses challenges to the AWG based

AO-OFDM system performance.

Figure 2.13: AWG-CP based IFFT circuit for AO-OFDM system [59].

In [59], an optical method of inserting cyclic prefix (CP) in an AWG based transmitter

for AO-OFDM system is proposed. With the CP, the duration of interference-free region

increases which relaxes the need of narrow sampling gates and exact sampling point. In Fig-

ure 2.13, the circuit of AWG with CP for IFFT function is shown. An optical signal from

pulsed laser source is entered at the input of first slab coupler which works as an optical split-

ter. After dividing input signal, each signal is modulated to produce a Fourier coefficients,
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and then the second slab coupler is used as a phase shifter as per principle of IFFT process.

The number of inputs and outputs of second slab coupler depends on number of subcarriers

in AO-OFDM system and its design is based on methods of Rowland circle in order to obtain

desired phase shifts. For parallel-to-serial conversion, an arrayed waveguides are used for

time delays with an additional waveguide (n=4) for the CP insertion. The third slab coupler

serves as only an optical combiner [60].

Figure 2.14: Results of proposed AWG-CP based IFFT/FFT for AO-OFDM system without
dispersion compensation [59].

In the proposed AWG-CP design for AO-OFDM system, the number of waveguides are

required to perform FFT function is same as the number of subcarriers ,NSC, with no CP. The

delay between waveguides, τ , is needed to be τ = Tsym/NSC. In a performance evaluation of

proposed design, number of subcarriers are 4 with spacing of 10 GHz. The data rate of QPSK

modulation sources are 10 Gbit/s with the aggregate system transmission rate of 80 Gbit/sec

per polarization. The arrayed waveguides are designed to give delay of 12.5 ps. The laser

source have pulse duration of 3.25 ps at the rate of 10 GHz. The system simulations shows the

received OFDM symbol have some interference due to CP (duration 25 ps) carry the coherent

data. The advantage of using system with CP is the broader duration of interference-free

region. The proposed system is also simulated with fiber chromatic dispersion (CD) of 16
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ps/nm/km. In case of OFDM symbols are perfectly aligned, the dispersion causes the shifting

of sampling point and sampling point needs to be tunable to coincide with interference-free

region. Another way to reduce the dispersion effects is to use the CP duration slight larger

than the delay caused by dispersive link. In Figure 2.14, the performance without dispersion

compensation of systems with/without CP and guard interval (GI). Reducing the data rate is

an approach of introducing guard interval between symbols in time domain [12]. The system

without any CP or GI shows poor performance and Q-factor is reduce by 10 dB at fiber length

of 10 km. By using GI, the performance of system is improves by 3 dB with the compromise

on reduced symbol rate to 64 Gbit/sec. With CP, the system performance improves with more

tolerance to the effects of bandwidth-limitations of photodetector.

Figure 2.15: Proposed IM-DD AO-OFDM system (a) schematic, (b) desired subcarrier with
waveform shaping, (c) ICI with waveform shaping , and (d) BER performance [61].

In [61], an experimental demonstration of an IM/DD AO-OFDM system with eight sub-

carriers with a spacing of 12.5 GHz is reported. As shown in Figure 2.15(a), The signal is

divided and modulated by two modulators in an odd-and-even configuration. The format and

data rate of modulation sources are NRZ-OOK and 12.5 Gbit/sec with lengths of pattern are

215-1 and 231-1 for odd-and-even subcarriers. After data modulation, each signal is splitted

into four signals and decorrelated with an optical delay lines. The polarization controllers and

attenuators are used to align the polarisations of subcarriers and maintain the equal powers of

subcarriers. The AWG is used to multiplex the signal. To control the point of orthogonality,
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waveform shaping based on lithium niobate-intensity modulator (LN-IM) is used to perform

equalization in an optical domain. By using a waveform shaping before AWG, the interfer-

ence from adjacent subcarriers of desired subcarrier is cancelled at the orthogonal point. At

the receiver side, an AWG is used for optical FFT device. The desired demultiplexed subcar-

rier is sampled at an orthogonal point by using sampling gate. Comparing the Figure 2.15(b)

and Figure 2.15(c), the eye diagrams confirms that the interference is cancelled at middle of

symbol duration by using waveform shaping. Furthermore, BER performance of AO-OFDM

system by using technique of equalization is improves from 10−4 to 10−6 [61]. For BER <

10−3, the minimum received power of AO-OFDM signal have to be -6 dBm, as shown in

Figure 2.15(d).

In an experimental demonstrations of AO-OFDM systems, the results sometimes not

show the actual system performance due to the off-line signal processing [62] - [65]. In [66],

a series of the fiber Bragg gratings (FBG) are used for all-optical OFDM signal transmission

over 80 km link, as shown in Figure 2.16. The AO-OFDM composite signal is generated by

five channels and each channel is formed by five subcarriers. The subcarriers are differential

quadrature phase-shift keying (DQPSK) modulated, and with polarization multiplexing, the

aggregate transmission rate of AO-OFDM signal is 1 Tbit/sec. The received signal is detected

in real-time by using FBG based optical Fourier transform (OFT) filters.

Figure 2.16: Experimental setup of all-optical sampling OFDM system [66].
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Figure 2.16 shows the proposed block diagram of an experimental setup. A pulse source

transmits a pulses at the repetition rate of 10 GHz and have pulsewidth is 2 ps. After op-

tical signal processing for improving pulse-to-pulse coherence, the inphase and quadrature

signals modulated on an optical signals at the total bit rate of 20 Gbit/sec. For AO-OFDM

signal generation, FBG based multiplexer of five subcarriers for each WDM channel is used.

After polarization multiplexer, all-optical PolMux OFDM signal have line rate of 1 Tbit/sec

which is calculated from 2 (polarization multiplexing) × 5 (WDM channels) × 5 (subcar-

riers per channel) × 20 Gbits/sec (total data rate of inphase and quadrature signals). The

AO-OFDM signal is transmitted over 80 km, and the received signal is passed through an

arrayed waveguide grating in order to demultiplex the desired WDM channel. After channel

demultiplexing, the optical signal is passed through to polarization beam splitter (PBS) and

FBG based demultiplexer for desired subcarrier demultiplexing. The function of FBGs is to

act as a matched filters. The total bandwidth of each channel is 65 GHz with the spectral effi-

ciency of 3.07 b/s/Hz (corresponding to total data rate of channel 200 Gbit/sec). Figure 2.17

shows the BER performance of 50 subcarriers. The reason of variations in performances is

due to fabrication structures of FBGs. After 50 km transmission, the BER of all channels

in an AO-OFDM system is lower than the threshold of the FEC limit (10−3). The constella-

tions of received data of 12th subcarrier show that the standard deviations of received symbols

after 80 km are within the decision boundary regions. The results show that the proposed sys-

tem offers high line rate transmission, but with the increase of subcarriers the precise phase

control required to prevent loss of orthogonality among subcarriers.

2.4 Disadvantages of OFDM

In the electrical OFDM receiver, an analog signal after down conversion is sampled by ADC.

After data conversion, the DSP perform following steps before symbol decision [11]:

• DFT window or symbol time synchronization

31



Figure 2.17: BER performances of 50 subcarriers and constellations of 12th subcarrier in (a)
B2B and (b) 80 km cases [66].

• Carrier frequency synchronization

• Discrete Fourier transform

• Channel estimation

• Phase noise estimation

In this section, we focus on the synchronization issues which are critical functions in the

OFDM systems.

2.4.1 Symbol Time Synchronization

In the presence of time offset between OFDM transmitter and receiver, the received signal is

given as [68]

s(t,τ) =

 s(t + τ),

e(t−TS + τ),

0≤ t ≤ TS− τ,

TS− τ ≤ t ≤ TS

(2.6)

where e(t) is the interference term. Without cyclic extension/prefix (CP) or guard interval

(GI), e(t) is the part of OFDM symbol, as shown in Figure 2.18. In case of GI larger than the
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time offset τ , the interference term is zero, i.e. e(t) = 0. In OFDM system using CP of larger

duration than the time offset, the interference term is a part of CP i.e. e(t) = s(t). If the CP

duration or guard interval is less than τ , the interference term e(t) mixed with desired OFDM

signal.

Figure 2.18: Time Offset effects on received OFDM signal [68].

Mathematically, in the presence of time offset (τ 6= 0), the demodulated signal is given as

Xm =
1
TS

TS∫
0

s(t,τ)e− j2π fmtdt

=
1
TS

TS−τ∫
0

s(t + τ)e− j2π fmtdt +
1
TS

TS∫
TS−τ

e(t−TS + τ)e− j2π fmtdt

=
1
TS

TS∫
0

s(t)e− j2π fm(t−τ)dt− 1
TS

τ∫
0

s(t)e− j2π fm(t−τ)dt +
1
TS

τ∫
0

e(t)e− j2π fm(t−τ)dt

= sme j2π fmτ +
1
TS

τ∫
0

[e(t)− s(t)]e− j2π fm(t−τ)dt

(2.7)
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Due to the time offset, the detected symbol is phase rotated and have additive interfer-

ence. Without CP or guard interval, the system performance degrades much with non-zero

τ . The average interference terms are 1
TS

τ∫
0

s(t)e− j2π fm(t−τ)dt and 1
TS

τ∫
0

e(t)e− j2π fm(t−τ)dt.

With proper selection of CP duration, the additive interference terms due to time offset are

cancelled.

Figure 2.19: OFDM frame synchronization based on Schmidl principle [11].

One of the famous methods for time synchronization is Schmidl-Cox approach in which

the pilot symbols is transmitted with data symbols [11]. Figure 2.19 shows the pilot symbols

comprises of an identical segments (Schmidl synchronization signal) which can be expressed

as

sm = sm−NSC/2, m ∈ [NSC +1,NSC] (2.8)

where sm is random value of mth sample for m = 1, ...NSC/2. At the receiver, a symbol’s

delineation is found by following correlation function with the assumption that the constant

phase across the received OFDM symbol:

Rd =
NSC/2

∑
m=1

r∗m+drm+d+NSC/2, (2.9)

where rm = e j∆ωtsm is received sampled signal. The Schmidl’s principle of synchroniza-

tion is based on finding the maximum value of the correlation Rd between the two identical

segments.

34



2.4.2 Sensitivity to Carrier Frequency Offset

OFDM system performance degrades with carrier frequency offset (CFO) which causes not

only phase offset in detected symbol but also intercarrier interference (ICI) from other sub-

carriers in OFDM system. One advantage of long OFDM symbol duration is less sensitive

to CFO. If CFO is greater than the maximum tolerable limits, the performance of system is

seriously degraded. The sensitivity of OFDM system to CFO is reduced by using DSP for

estimation and compensation. In the presence of CFO, the received OFDM signal is given as

s̃(t) = s(t)e j2π fε t , (2.10)

where fε is CFO between transmitter and receiver. The received signal is demodulated for

mth subcarrier and is given as

Xm =
1
TS

TS∫
0

s(t)e j2π fε te− j2π fmtdt

=
N

∑
l=1

sl
1
TS

TS∫
0

e j2π fε te j2π( fl− fm)tdt

= sme j2π fε t +
1
TS

∑
l 6=m

sl

TS∫
0

e j2π fε te j2π( fl− fm)tdt

= η0 +ηm,

(2.11)

where η0 is the desired signal term with phase offset e j2π fε t for mth subcarrier. The ICI term,

ηm, after integration is termed as ICI coefficient (considering average power of transmitted

symbol sm on mth subcarrier)

ηm = sin
(
(π(m+δ ))

π(m+δ )

)
e− jπ(m+δ ), (2.12)
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where δ = fεTS is the normalized carrier frequency offset. In Figure 2.20, ηm is plotted in dB

at δ = 0 and 0.25 for subcarrier index m = 0 to 125. The plot verifies that the contribution to

the ICI value is mainly from adjacent subcarrier, which also verifies the expression of ηm.

Figure 2.20: ICI due to Carrier frequency offset [11].

In RF OFDM, various methods to estimate and compensate a CFO are proposed [11].

In CO-OFDM system, the correlation function from time synchronization (in Figure 2.19)

is used to find the CFO. The samples from sm to sm+NSC/2 have the phase difference of

π fεNSC/FS, where FS is the sampling frequency of an ADC. For CFO, the correlation func-

tion is given as

Rd =
NSC/2

∑
m=1
|rm+d|2eπ fε NSC/FS . (2.13)

The correlation function provides a phase information from which frequency offset is

derived as

fε =
FS

πNSC
∠Rd. (2.14)

The range of ∠Rd is from 0 to 2π . The disadvantage of this approach is large CFO is not

uniquely identified and only support for -∆ f to ∆ f , where ∆ f is the subcarrier spacing. To

increase the range of CFO estimation, the symbols of synchronization are needed to be further

divided. Further various approaches are proposed to perform CFO estimation in [69] - [75].

In [76], a method to estimate the frequency offset in an experimental setup of PDM-QPSK

optical communication system of data rate 112 Gbit/sec is presented by using the samples

for finding autocorrelation functions. The frequency offset ( fε ) is derived from sampled
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autocorrelation function (ACF), R(l), which is given as

fε =
1

8πTS
arg{

N

∑
l=1

R(l)R∗(l−1)}, (2.15)

and

R(l) =
1
M

M

∑
k=1

S(k)S∗(k− l), (2.16)

where M is the number of received signal samples, l = 1,...,N is the index of sample ACF,

and S(k) is the 4th power of received signal. The method of calculating the 4th power of

received signal is dominated in QPSK data-modulated symbols for frequency offset estima-

tion. In QPSK data signal, the correlated signal (x(k)x∗(k− 1))4 is directly proportional to

exp(4 j∆φ [k]) [101], where x(k) is received signal. By using the mean value of laser phase

noise 1/(8πTS) and the probability density function of 4∆φ , the maximum likelihood tech-

nique is used to find the estimate of fε , as given in equation 2.15.

In an experimental setup, 16 subcarriers with spacing of 50 GHz are multiplexed and

modulated by QPSK data source at 28 Gsym/sec. After modulation, the modulated signal

is polarization-multiplexed. After transmission over 2000 km fiber, the received signal is

detected by coherent receiver. The linewidth of LO is 100 kHz and photodetected signal

sampled by 50 GSa/sec ADC. In performance evaluation of ACF algorithm, a data set of

56000 symbols for middle subcarrier is used and compared with the FFT-based algorithm.

Figure 2.21 shows the histograms for different samples (N) used to estimate frequency offset

using ACF algorithm. The difference of ACF algorithm and FFT-based algorithms is used as

an estimation error. With the increase in sample ACF, the standard deviation of an estimation

error decreases which ultimately increases the accuracy of a CFO estimate. For N = 20, BER

= 10−4 is reported for PMD-QPSK optical system.
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Figure 2.21: Histogram of an error in frequency offset estimation [76].

2.4.3 Joint time and frequency synchronization

In [77], the maximum likehood (ML) estimator of time and frequency offsets is proposed

by using the advantage of exploiting the CP in the OFDM symbols without pilot symbols.

Figure 2.22 shows the structure of OFDM symbol with cyclic prefix I of data symbols L

out of total symbols N. The samples 2N +L are observed in the received samples r(k) and

have probability density function f (r|θ ,ε) at given time offset θ and frequency offset ε . The

expression of log-likelihood function Λ(θ ,ε) = log( f (r|θ ,ε)) as a function of time offset θ

and frequency offset ε is given as

Λ(θ ,εML(θ)) = |γ(θ)|−ρΦ(θ), (2.17)

where ρ is the correlation coefficient between received samples r(k) and r(k+N). The joint

estimation of θ and ε is given as

θML = argmax{|γ(θ)|−ρΦ(θ)} (2.18)

and

εML =− 1
2π

∠γ(θML) (2.19)

where γ and Φ are the correlation and energy estimation parameters of received samples r(k)

and r(k+N), as shown in Figure 2.23. It can be noted that the Φ is independent of ε and only
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two parameters affects the estimation of Λ: length of cyclic prefix L, and ρ which ultimately

depends on SNR of system. The compensation of magnitude of quantity γ gives a maximum

estimate value of θ at the intervals of θML, while the phase of γ at the same intervals of

θML is directly proportional to εML. In spite of advantages of joint estimation of time and

frequency offsets by using CP, the pilots symbols are required for channel estimation [11]

which demands further research towards hybrid estimation schemes.

Figure 2.22: ith OFDM symbol structure contains cyclic prefix I of L data symbols I′ [77].

Figure 2.23: Joint estimation of ML time and frequency offsets [77].

The modified synchronization scheme is proposed for CO-OFDM system [78] in order

to estimate the time and frequency offsets. In an estimation of time offset, the modified

correlation function of Schmidl’s principle [11] have impulse-shaped metric with stability in

estimation. In the presence of CD in system, the proposed method is not robust to tolerate
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the delayed OFDM symbols. In the presence of frequency offset, the estimation range is

increased to ±NSC ·∆ f/2 with small number of training symbols are required compared to

Schmidl’s principle, where NSC is number of subcarrier and ∆ f is subcarriers spacing. With

the CD compensating fiber, the modified synchronization algorithms show stability and the

optical SNR (OSNR) of CO-OFDM is increased by 3 dB for required BER = 10−3.

2.4.4 Phase Noise

The impact of laser phase noise is important when using high order modulation in order to

achieve high spectral efficiency [79] - [82]. For the system with phase noise, θn, the received

time domain signal samples are given as

yn = xne jθn. (2.20)

The system under consideration have constant phase error of θ0, then we can write the

above sampled signal for demodulated signal as [31]

Ym = Xme jθ0. (2.21)

In presence of constant phase error, θ0, the constellation is rotated by θ0, as shown in Fig-

ure 2.24(a). The rotation of constellation is simply corrected by DSP with single tap equal-

ization algorithm. Now, in case of random phase noise and the phase noise between two

samples are uncorrelated, E{θlθn} = 0, where l 6= n and E{} is average operator. Then the

FFT of received signal, ym is given as

Ym =
1√
N

N−1

∑
n=0

yme
(
− j2πmn

N

)

=
1√
N

N−1

∑
n=0

xme jθne
(
− j2πmn

N

)
.

(2.22)
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Considering the phase noise is small, then the exponential term, e jθn , is approximated to

1+ jθn and mth subcarrier is given as

Ym =
1√
N

N−1

∑
n=0

xm(1+ jθn)e
(
− j2πmn

N

)

= Xm +
j√
N

N−1

∑
n=0

xmθne
(
− j2πmn

N

)

= Xm +Nm.

(2.23)

In presence of phase noise, the received signal contains the desired signal plus noise from all

subcarriers in system. The nature of θn is random and effects on constellation are shown in

Figure 2.24(b).

Figure 2.24: Effects of phase noise when (a) θn is constant and (b) θn is random [31].

In [83], an estimation of maximum likelihood (ML) common phase error (CPE) due to

the linewidth of laser sources (range of 100 - 1000 KHz) in CO-OFDM system is proposed.

For pilot subcarrier, Np subcarriers are used to track the CPE. The expression of ML CPE is

given as

φi = arg

(
Np

∑
k=1

r′kih
∗
ks∗ki/δ

2
k

)
, (2.24)

where ski, r′ki, and hk are transmitted signal, received received, and transfer function of chan-

nel. The indices i and k are for OFDM symbols and subcarriers. The deviation δk of constella-

tions points of an kth subcarrier gives an estimation of CPE in order to recover the transmitted

data.
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2.4.5 Effects of Chromatic Dispersion

Due to signal interaction or passing through an optical fiber over a long distances causes a

broadening of pulses. In a high dispersion medium, a bit steam of pulses will be spread in

time domain and degrades the system performance if used for transmission through long fiber

length. The types of dispersion are: intermodal dispersion, polarization mode dispersion, and

chromatic dispersion [102].

The chromatic dispersion (CD) is dependent on the group velocity νg of signal’s wave-

length λ and dispersion parameter D [94] is given as

D =
d

dλ

(
1
νg

)
=−2πc

λ 2 β2 (2.25)

where c is the light velocity in vacuum, and β2 is the group velocity parameter.

In [84], an effects of dispersive channel on OFDM system performance is studied. The

time delay between subcarriers causes intercarrier interference (ICI) and intersymbol inter-

ference (ISI). In order to reduce the effects of dispersion, a CP can by used in each OFDM

symbol, as shown in Figure 2.25. In OFDM symbol with CP, the last part of symbol is copied

to the start of OFDM symbol. The addition of CP is done after the inverse FFT function

in OFDM system. By using CP, the symbol is able to accommodate the time delay caused

by dispersion of fiber in each subcarrier. As a result, the symbol remains periodic in a syn-

chronized FFT window at receiver. Further, the phase errors in frequency domain can be

estimated and compensated by a DSP equalizers. The advantage of using CP is the spectral

efficiency is compromised.

The effects of CD with fiber nonlinearity over transmission performance for CO-OFDM

systems are studied in [85]. In a Monte-Carlo simulations of the CO-OFDM system, the data

carrying subcarriers are 128 with symbol duration of 25.6 ns, the modulation format is QPSK,

the fiber dispersion (D) is 16 ps/nm/km and a nolinearity coefficient is 2.6× 10−20m2/W .

At OFDM transmitter and receiver, the lasers linewidths are 100 kHz. In Figure 2.26 the
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Figure 2.25: Effects of chromatic dispersion on OFDM signal and performance improvement
with cyclic prefix (CP) [84]

.

(a) (b) (c)

Figure 2.26: Effects of chromatic dispersion (CD) on received data (a) before (b) after re-
moving CD, and (c) after removing CD and phase noise is averaged [85].

constellations of received 51 OFDM symbols after transmission over 3200 km fiber is shown.

As shown in Figure 2.26(a), the CD causes the rotation of OFDM symbol [86, 46], and

the phase shift due to CD is given as

φ =
1
2

β2ω
2L, (2.26)

where ω is frequency of subcarrier and L is length of fiber. The phase shift is commonly

estimated and compensated by using training sequences. After CD and average of received

51 OFDM symbols, the performance is slightly improves but phase noise is still dominant

in drifting the OFDM symbols, as shown in Figure Figure 2.26(b). After OFDM symbols

transmission over 3200 km, the phase noise due to lasers is estimated and compensated and
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symbols are recovered with small deviations due to nonlinearity of fiber, as shown in Fig-

ure 2.26(c).

Figure 2.27: Proposed all-optical chromatic dispersion monitoring and compensation in AO-
OFDM system [87].

For all-optical CD monitoring and compensation in an AO-OFDM systems is proposed

in [87]. In proposed CD compensation technique, a pilot symbols are added to the edge

subcarriers (frequency spacing of 87.5 GHz) and after estimation of their relative delays the

phased array device is used for CD compensation. The power of pilot symbols are 9 dB

higher than the OFDM symbols which can be used for extraction by using threshold circuit

at receiver. Figure 2.27 shows the block diagram of proposed experimental setup for CD

monitoring and compensation. After transmission over fiber, the subcarriers 1 and 2 are

demultiplexed in dispersion monitoring circuit. The pilot symbol of subcarrier 1 is extracted

by threshold device after photodetection. The pilot symbol of subcarrier 8 is extracted by

using electroabsoption modulator (EAM) with pilot symbol of subcarrier 1 is used as a gate

signal. The output of EAM is a pilot symbol with reduced width which depends on relative

delay of two edge subcarriers. The BER performance of an AO-OFDM system improved

from 10−3 to 10−6 for signal transmission over 5 km and received signal power -10 dBm, as

shown in Figure 2.28.
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Figure 2.28: BER performance of proposed all-optical chromatic dispersion monitoring and
compensation in AO-OFDM system [87].

2.5 DSP Techniques for Single- and Multi-Carrier Optical

Communication

In single-carrier optical communication systems, the DSP algorithms for time and/or fre-

quency offset estimation and compensation are well known and are easy to be implemented

due to no issue of ICI [101]. The time offset estimation is used to correct the sampling point of

ADC in DSP and frequency offset estimate is used to tune the local oscillator (LO) at receiver,

as shown in Figure 2.29(a). In AO-OFDM, the estimation and compensation of STM and

ScFO by using DSP algorithms of single-carrier doesn’t gives accurate received data mea-

sure due to presence of ICI in AO-OFDM system. In [88, 33], the ICI is first estimated and

then compensated by using pre-filter/filter initialization before CMA algorithms, as shown in

Figure 2.29(b). The estimation and compensation of ICI affected desired demultiplexed sub-

carrier is accurate depends on implementation and performance of DSP algorithms. In [98],

the ICI issue in N-WDM system is addressed by using joint DSP algorithms to cancel the lin-

ear ICI, as shown in Figure 2.29(c). In the joint DSP based ICI compensation, the desired and

adjacent subcarriers are first estimated and compensated by using algorithms of single-carrier

optical communication systems. In the DSP based ICI suppression, the algorithms can pro-

vide the robustness to AO-OFDM system and enhancing the coherent receiver performance

but have high computational requirements which can increase the overall system cost. In this
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Figure 2.29: Subsystems of DSP for (a) single-carrier optical communication systems [101],
(b) AO-OFDM [88, 33], and (c) N-WDM [98]. Coh. Det.: coherent detection; ADC: analog
to digital converter; Ch. Est.: channel estimation; Tim. Rec.: timing recovery; Freq. Est.:
frequency estimation; Carr. Ph. Est.: carrier phase estimation; Ad. Subc. Rej.: adjacent
subcarriers rejection.

thesis, the system performance is investigated with proposed passive optical devices in order

to reduce ICI effects. The details of design and operation of proposed devices are presented

in Chapter 4 and Chapter 5.
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Chapter 3

Time and Frequency Offsets in OOK

AO-OFDM System

In wireless communication systems, an orthogonal frequency division multiplexing (OFDM),

as a multicarrier transmission technique, has been successfully employed in numerous digi-

tal standards which offers high data transmission on multiple subcarriers with high spectral

efficiency. Furthermore, in OFDM based multiple subcarrier transmissions have ability to

combat the distortion due to intersymbol interference (ISI), and improved tolerance to inter-

carrier interference (ICI). As discussed in Chapter 2, OFDM is also considered as a promising

data transmission technique on multiple carriers in optical communications systems. In this

chapter, OOK-modulated AO-OFDM system (AO-OFDM transmitter and digital coherent re-

ceiver) is presented and the performance is investigated in the presence of time and frequency

offsets in OOK-modulated symbols and optical subcarriers.

3.1 Problem Statement

OFDM based multiple subcarriers transmission offers numerous benefits but these benefits

can only be achieved when subcarriers are orthogonal. The orthogonality among subcarriers

degrades when synchronization errors exist in OFDM system [88] -[91]. The research on the

effects of time and frequency offsets is discussed in Chapter 2. Here we give details of the

random nature of synchronization errors in AO-OFDM system perspective.

Figure 3.1 shows the graphical interpretation of symbol time misalignment (STM) and
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Figure 3.1: Graphical interpretation of STM (a) and ScFO (b) effects on AO-OFDM system
with NSC subcarriers.

subcarrier frequency offset (ScFO) effects on AO-OFDM system which comprises of NSC

subcarriers. Depending on the arrival of individual subcarriers, the STM causes two interfer-

ences i.e. ISI from previous symbol and ICI from NSC−1 subcarriers in the desired subcarrier,

as shown in Figure 3.1(a). E(t− τk) is the delayed function and have phase offset e− jωkτk in

frequency domain which depends on subcarrier index k and its delay τk. In the presence of

ScFO εk between the transmitted subcarrier frequencies ωk and local oscillator (LO) center

frequency ωLO, the center frequency of kth subcarrier is shifted in frequency domain by εk

which causes degradation of an orthogonality and ultimately ICI occurs, i.e. interference

from NSC−1 subcarriers, as shown in Figure 3.1(b).
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Figure 3.2: Block Diagram of OOK-modulated AO-OFDM system (AO-OFDM transmitter
and coherent detection).

In this chapter, we analytically investigate the performance of AO-OFDM system in the

presence of random STM and ScFO effects. It is the first time to theoretically evaluate the

issues of synchronization in the time and frequency domains. In [88, 92], issues of syn-

chronization in AO-OFDM systems (emulation setups) were considered, and in our work the

analytical model with details of the effects of synchronization on AO-OFDM system design

parameters are given.

3.2 OOK AO-OFDM System Model Description

In AO-OFDM transmission system model NSC optical subcarriers from continuous wave laser

diodes (LDk) are OOK modulated by Modk with independent data sources Ak ∈ {0,1}, as

shown in Figure 3.2, where k is subcarrier index from 1 to NSC. After modulation, kth optical

subcarrier

Ek(t) = Ak
√

Pk exp( jωkt) (3.1)

is time misaligned by τk and multiplexed (Mux) to transmit AO-OFDM signal

ET (t) =
NSC

∑
k=1

Ek(t− τk) =
NSC

∑
k=1

Ak
√

Pk exp( jωk(t− τk)) (3.2)
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where Ak and Pk are data symbols (either logical 0 or 1) and average power at given frequency

ωk of kth subcarrier. The phase of LDk is considered as constant during OOK-modulated

symbol duration and the system performance is evaluated w.r.t frequency offset only. A mul-

tiplicative noise ScFO εk, is introduced in a composite AO-OFDM signal given in equation

(3.2) as

ER (t) = ET (t)e j2πεkt . (3.3)

The time and frequency offsets (τk and εk) in the kth subcarrier are modelled as absolute

values between transmitter and receiver in AO-OFDM.

Single Branch Coherent Detection In an optical communication, a coherent detection is

first introduced for its advantage of receiver sensitivity. Generally, the mixed signal of a

LO with received optical signal is equivalent to an optically amplified signal without noise

component [93]. If we compare the receiver sensitivity, the amplified signal from an erbium

doped fiber amplifier gives lower sensitivity than the coherent detection, in case of OOK

modulation. A basic structure of a single branch coherent detection is shown in Figure 3.3.

For mixing of optical signals, the polarizations of received optical signal and LO signal must

be aligned. For this purpose, an automatic polarization controller is used. In coherent de-

tection, the phase or frequency of LO signal also needs to be locked with received optical

signal. The term phase or frequency locked is used for homodyne or heterodyne detection.

In our performance evaluations of OOK-modulated AO-OFDM system, we consider the time

and frequency offsets and we are assuming that the polarizations are aligned and phases are

locked.

Homodyne and Heterodyne Detection Before giving the details of the process of detec-

tion for AO-OFDM composite signal, the differences of homodyne and heterodyne detections

with their suitability for AO-OFDM are firstly presented. In the technique of coherent detec-

tion, the frequency of LO, fLO, is tuned to be same as of received optical signal frequency
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Figure 3.3: Coherent optical receiver for OOK-modulated symbols [93].

fRC. By tuning the LO with the same frequency, the intermediate frequency (IF), fIF= fRC-

fLO, is zero. The photocurrent, IHO(t), is produced at the output of a photodetector is given

as

IHO(t) = 2ℜ
√

PRCPLO. (3.4)

In a heterodyne detection, the frequency of LO, fLO, is selected to be not same as the

frequency of received optical signal, fRC. In this case the intermediate frequency, fIF , is in

the range of approximately 1 GHz [93]. The photocurrent, IHE(t), is produced at the output

of a photodetector is given as

IHE(t) = 2ℜ
√

PRCPLO cos(2π fIFt). (3.5)

In a homodyne detection, the SNR of optical system is higher than the heterodyne de-

tection but at the cost of complex receiver design. In multicarrier transmission systems such

as optical OFDM, the received signal contains subcarriers normally greater than 100 and the

desired signal needs to be demodulated before optical signal detection. A direct detection

gives an alternative but at the cost of high crosstalk from adjacent subcarriers [11].
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3.2.1 Homodyne detection for OOK-modulated AO-OFDM system

At the receiver side of AO-OFDM system, the incoming AO-OFDM signal is added with

local oscillator ELO (t) =
√

PLOe j2π f1t tuned for subcarrier 1 for homodyne detection. For

AO-OFDM signal detection, an optical DFT (O-DFT) for subcarrier demultiplexing [12] or

a 90o optical hybrid with coherent detection is used [33]. In O-DFT, we can demultiplex

the closely packed optical subcarriers passively (without LO) with the additional burden of

the cost of optical sampling gates. A bandpass filter can also be used for subcarrier filtering

before direct detection with a photodetector (PD) but its performance remain lower than the

O-DFT or coherent detection [12]. In O-DFT based demultiplexing, the desired subcarrier

is demultiplexed first and then the sampling gate and the PD are used to sample/extract the

demultiplexed subcarrier in the symbol duration and to detect it. The detailed description on

O-DFT based subcarrier demultiplexing is explained in the Chapter 2. In this chapter, the

subcarriers are OOK modulated at AO-OFDM transmitter side, and at the receiver side LO

and PD are used with no need of 90o optical hybrid [33, 94, 95]. The current produced by

the PD comprises of two dc terms and one ac term [94]. In the homodyne detection [95],

the third ac term contains the transmitted information of desired subcarrier and interference

terms from NSC−1 subcarriers and is given as

I(t) = 2ℜ

NSC

∑
k=1

Ak
√

PkPLO× cos(2π( fk + εk)(t− τk)−2π f1t). (3.6)

3.2.2 Time Misalignment

After signal detection given in equation (3.6), demodulated time-misaligned signal at receiver

is given in a complex form as
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zST M = (
2ℜ
√

PRPLO

TS
)×Re[A1

TS∫
τ1

e j2π f1(t−τ1)e− j2π f1tdt

︸ ︷︷ ︸
ηST M 1

+ ∑
k 6=1

Ak

τk∫
0

e j2π fk(t−τk)e− j2π f1tdt

︸ ︷︷ ︸
ηST M ICI

+Ap
1

τ1∫
0

e j2π f1(t−τ1)e− j2π f1tdt

︸ ︷︷ ︸
ηST M ISI

], (3.7)

where zST M is demodulated signal containing ηST M 1, ηST M ICI and ηST M ISI as desired, ICI

and ISI terms in presence of STM. Ap
1 is previous bit of symbol at subcarrier 1. Also,

√
PR

is same for all subcarriers in the received signal, ℜ is responsitivity of photodetector, and TS

is symbol duration. The ICI beats in a time misaligned AO-OFDM system are considered

as coherent due to the dependence on power and phase. The nature of STMs is random and

the random variables τk in equation (3.7) are Gaussian independent variables with zero-mean

and variance στk
2. Simplifying equation (3.7), ηST M 1 is given as

ηST M 1 = Re[A1(TSe−j2πf1τ1− τ1e−j2πf1τ1)]. (3.8)

In equation (3.8) the mean of random functions, e− j2π f1τ1 and τ1e− j2π f1τ1 , which depends

on τ1 are computed as

µηST M 1 = TSe−2π2 f 2
1 σ2

τ1 − 2στ1e−2π2 f 2
1 σ2

τ1
√

2π
. (3.9)

In equation (3.7) the ICI term is integrated and given as

ηST M ICI =
NSC

∑
k=2

Akg(τk) (3.10)
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where

g(τk) =
NSC

∑
k=2

e− j2π fkτk

j2π( fk− f1)

[
e j2π( fk− f1)τk−1

]
. (3.11)

With the derivation given in Appendix B, the mean and variance of ICI are

µηST M ICI =
NSC−1

∑
h=1

P(h)×

(
h+1

∑
k=2

exp
(
−2π2f2

1σ2
τk

)
− exp(−2π2f2

kσ2
τk
)

jπ(fk− f1)

)
(3.12)

and

σ
2
ηST M ICI

=
NSC−1

∑
h=1

P(h)×

h+1

∑
k=2

1− exp
(
−2π2(fk− f1)

2
σ2

τk

)
2π2(fk− f1)

2

− ∣∣µηSTM ICI

∣∣2, (3.13)

where P(h) is a probability that subcarrier(s) carry bit 1 information, i.e. Ak=1.

In equation (3.7) the ISI term after integration is given as

ηST M ISI = Ap
1g(τ1) (3.14)

where g(τ1) = τ1e− j2π f1τ1 . The mean and variance of ISI, derived in Appendix C, are given

as

µηST M ISI =
στ1e−2π2 f 2

1 σ2
τ1

√
2π

, (3.15)

and

σ
2
ηST M ISI

=
σ2

τ1

2
− (µηST M ISI)

2. (3.16)

To find the effect of STM on the performance of system, Q-factor used as a performance

metric and is given as in general form Q = (I1− I0)
/
(σ1 +σ0), where I1− I0 is difference

of mean currents in response to bit 1 and bit 0 carried by kth subcarrier, and σ1 +σ0 is their

total standard deviation. The parameter Q in shot noise limited synchronous coherent optical

systems is related to signal-to-noise ratio (SNR) by Q = (1/2)
√

SNR . For OOK-modulated
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optical systems, the bit error rate (BER) is related with Q as BER = (1/2)erfc(Q/
√

2) [12].

Shot Noise and Thermal Noise In optical receivers, the shot and thermal noises are re-

sponsible for fluctuations in a photodetected current. Due to a random generation of electrons

which causes random shot noise current adds to the constant photodetected current. The shot

noise variance is directly dependent on the photodetected current, Ip, and the bandwidth of

receiver, BWRX , and is given as

σ
2
shot = 2 q ℜ PLO BWRX , (3.17)

where q is the electron charge, and BWRX is the receiver bandwidth. The thermal noise

is generated due to thermally random motion of an electron in a load (resistor). The load

resistor adds the thermal current in the photodetected current. The thermal noise variance is

only dependent on the bandwidth of receiver, BWRX , and is given as

σ
2
thermal = (4kBT/RL)BWRX , (3.18)

where kB is the Boltzmann constant, T is the absolute temperature, and RL is the load resis-

tance.

STM: Q-factor and BER expressions

In AO-OFDM system design, Q expression related to derived mean currents and variances of

ICI and ISI due to STM is given as

Q =
α(TSe−2π2 f 2

1 σ2
τ1 −2στ1e−2π2 f 2

1 σ2
τ1/
√

2π)

(σ1 +σ0)
(3.19)

where

α = 2ℜ
√

PRPLO
TS
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σ1 = (σ2
shot−1 +α2σ2

ηST M ISI
+α2σ2

ηST M ICI
+σ2

thermal)
1/2

σ0 = (σ2
shot−0 +α2σ2

ηST M ISI
+α2σ2

ηST M ICI
+σ2

thermal)
1/2.

In equation (3.19), the numerator contains the desired signal including the power penalty

term due to STM in desired subcarrier. In the denominator, variances of shot noises, thermal

noise and interference terms (ICI and ISI) for bit 1 and 0 are considered. The shot noise for bit

1 and bit 0 is σ2
shot−1 = 2 q ℜ PLO BWRX (1+σ2

ηST M ICI
) and σ2

shot−0 = 2 qℜ PLO BWRX σ2
ηST M ICI

,

where q is the electron charge, and BWRX is the receiver bandwidth. The thermal noise is

given as σ2
thermal = (4kBT/RL)BWRX , where kB is the Boltzmann constant, T is the absolute

temperature, and RL is the load resistance.

3.2.3 Frequency Offset

The ScFO between transmitted subcarrier frequency and local oscillator’s frequency degrades

the orthogonality and it introduces ICI. By using equation (3.6) for ScFO case, the demodu-

lated received optical signal in complex form have offsets of εk is

zScFO =

(
2ℜ
√

PRPLO

TS

)
Re[A1

TS∫
0

e j2π( f1+ε1)te− j2π f1tdt

︸ ︷︷ ︸
ηScFO 1

+ ∑
k 6=1

Ak

TS∫
0

e j2π( fk+εk)te− j2π f1tdt

︸ ︷︷ ︸
ηScFO ICI

],

(3.20)

where zScFO is demodulated signal for subcarrier 1. The ScFOs, εk, are Gaussian independent

random variables with zero-mean and variance σεk
2 . After simplifying equation (3.20),

means and variances are calculated in ScFO case are

µηScFO 1 = TSe−2π2σ2
ε1

T 2
S (3.21)
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µηScFO ICI =
NSC−1

∑
h=1

P(h)× (
h+1

∑
k=2

[
1− exp(−2π2σ2

εk
T2

S)
]

j2π (fk− f1)
) (3.22)

and

σ
2
ηScFO ICI

=
NSC−1

∑
h=1

[P(h)×
h+1

∑
k=2

1− exp(−2π2σ2
εk

T2
S)

2π2(fk− f1)
2 ]−

∣∣µηScFO ICI

∣∣2. (3.23)

ScFO: Q-factor and BER expressions

The Q expression for ScFO case is given as

Q =
αTSe−2π2σ2

ε1
T 2

S

(σ1 +σ0)
(3.24)

where

α = 2ℜ
√

PRPLO
TS

σ1 = (σ2
shot−1 +α2σ2

ηScFO ICI
+σ2

thermal)
1/2

σ0 = (σ2
shot−0 +α2σ2

ηScFO ICI
+σ2

thermal)
1/2.

3.3 Performance Analysis of AO-OFDM System

In performance analysis, the effects of STM and ScFO are investigated for two cases. In

study I, the NSC values are from 8 to 512, while in study II the NSC values are considered

from 3 to 128.

3.3.1 Study I: Details of AO-OFDM System

Effects of STM and ScFO on AO-OFDM system performance analyzed with different values

of NSC and receiver bandwidth BWRX . The NSC values in our simulations are from 8 to

512 to show the ICI impact in relation with probability of adjacent subcarriers of desired

subcarrier carries bit 1 in given symbol duration. The BER performances of AO-OFDM

system are given with and without cyclic prefix (CP). The requirements of CP are analyzed in
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the presence of STM and ScFO. The relation of CP with TS is given by CP = τCP/(TS +τCP),

where τCP is the duration of cyclic prefix [12]. By reducing the data rate, the objective of a

CP is achieved while total symbol duration remains constant. Another way of introducing CP

in frequency domain in AO-OFDM system is by increasing the subcarrier spacing (∆ f ) [33].

In our performance evaluations, the CP is added by reducing data rate and increasing ∆ f in

order to reduce STM and ScFO effects. The simulation system parameters are listed in Table

3.1.

Table 3.1: Study I calculation parameters in OOK-modulated AO-OFDM system

Parameter Value Unit

numbers of subcarriers (NSC) 8 to 512 -

symbol duration (TS) 0.1 ns

receiver’s bandwidth (BWRX ) 30, 50 GHz

kth subcarrier power (Pk) 1 µW

local oscillator power (PLO) 1 mW

cyclic prefix (CP) 0, 22 %

BER performances versus STM and ScFO

The BER performance of AO-OFDM system in the presence of STM and ScFO is evaluated

for NSC = 20 and 128, BWRX = 30GHz, and with and without CP. The STM causes interference

not only from adjacent subcarriers but also from previous symbol at the desired demultiplexed

subcarrier. For NSC = 20 and without CP, the edge and middle subcarriers have same BER

performance degradation and maximum acceptable relative deviation for STM (στ/TS) is

17% for BER = 10−3. With the increase of NSC = 20 to 128 in AO-OFDM system, στ/TS is

nearly same as of NSC = 20 for BER = 10−3, as shown in Figure 3.4. In the presence of STM
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in AO-OFDM system the BER increases mainly due to ISI and large number of subcarriers

not much contributes in degradation of system performance due to the probability of adjacent

subcarriers carry bit 1 is low as NSC increases which shows strong agreement with equation

(B.14). For AO-OFDM system with NSC = 128, the BER performance remains same as NSC

= 20 case due to much low probability of adjacent subcarriers and tolerance of AO-OFDM

system to STM remain same.

The trend of system’s performance degradation with STM was reported in [88]. Two-

subcarrier QPSK optical communication system was investigated experimentally in the pres-

ence of STM. In offline signal processing, relative STM of 50% of symbol duration causes

degradation of Q2 nearly 4.2dB was reported. In our performance evaluations (without any

estimation and compensation DSP algorithms), we have presented that the STM causes not

only ICI from adjacent subcarriers but also ISI from same desired demodulated subcarrier,

and NSC greater than 20 gives no effect on BER performance in presence of STM. The sta-

tistical evaluation of the system performance with increase in NSC is to show the STM and

ScFO effects in OOK-modulated AO-OFDM system. For advanced modulated (M-QAM,

or QPSK) AO-OFDM systems, equation (B.14) will not be applicable due to average power

of M-QAM modulated adjacent subcarriers of a desired subcarrier is constant. With the CP

value of 22% (TS is increased from 100 ps to 122 ps as introduced in [12]), effects of ISI and

ICI are mitigated and performance of system improved to BER≈ 10−6 at στ/TS = 17% for

NSC = 20 and 128 cases, as shown in Figure 3.4.

In the presence of ScFO in AO-OFDM system, BER performance only depends on ICI

from the adjacent subcarriers of desired subcarrier. For NSC = 20, probability of adjacent

subcarriers carry bit 1 is high which gives BER = 10−3 at maximum relative deviation for

ScFO (σεTS) = 31%. For NSC = 128 case, ScFO tolerance remain the same to σεTS = 31%,

as shown in Figure 3.5. 4. In [92], system performance for an 8-carrier on-off keying (OOK)

modulated AO-OFDM system was investigated, and tolerance of frequency mismatch below

±4% of subcarrier spacing for BER < 10−5 was reported. The low tolerance of ScFO is
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Figure 3.4: Simulated BER performance versus relative deviation for STM (στ/TS).

due to AWG-based AO-OFDM demultiplexing at receiver side needs orthogonality among

all subcarriers should be maintained. Again, our simulation results show the same trend

of system’s performance degradation with ScFO in experiments. In the presence of ScFO,

homodyne detection at receiver side gives more detailed analysis of frequency offset between

transmitted subcarriers and LO (not specific to optical device) for AO-OFDM system [33],

and also highlight the role of adjacent subcarriers in ICI. In the system with CP = 22% (∆ f

is increased from 10 GHz to 12.2 GHz), ScFo tolerance increases to σεTS = 40% for BER <

10−3.

Figure 3.5: Simulated BER performance versus relative deviation for ScFO (σεTS).
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The increase of NSC from 8 to 20 gives more STM and ScFO tolerance due to low prob-

ability of adjacent subcarriers, and for NSC greater than 20, the ICI variances (σ2
ηST M ICI

and

σ2
ηScFO ICI

) does not increase due to ICI dependence on adjacent subcarriers only. The per-

formance evaluations with NSC in OOK-modulated AO-OFDM system is statistical by using

equation (B.14). In advanced modulated AO-OFDM systems, the equation (B.14) will not be

applicable. Furthermore, in our theoretical evaluations the effects of STM and ScFO are pre-

sented with derivations of means and variances without any approximations. In experimental

demonstrations of AO-OFDM systems, the tolerances of STM and ScFO are different and de-

pends on modulations formats ((de)correlated data symbols on adjacent subcarriers), optical

paths ((in)dependent STM effects on adjacent subcarriers), optical subcarriers at transmitter

(continuous wave or comb) and demultiplexing (O-DFT, coherent detection or band pass fil-

ter). The main reason of our investigations is to present the theoretical model of AO-OFDM

transmitter with coherent detection.

Impact of ICI and ISI with NSC

The presence of STM in AO-OFDM system causes not only ICI among desired subcarrier and

neighbouring subcarriers but also ISI from previous symbol on desired subcarrier. In case of

ScFO, the desired subcarrier have ICI from neighbouring subcarriers. Figure 3.6 shows the

plots of ICI and ISI variances (r1, r2, and r3) versus NSC for STM and ScFO cases, where r1,

r2, and r3 stands for σ2
ηST M ICI

/TS
2, σ2

ηScFO ICI
/TS

2, and σ2
ηST M ISI

/TS
2. By observing the effects

of ICI and ISI at relative deviations for STM (στ/TS) and for ScFO (σεTS) in Figure 3.6,

some interesting features can be seen. 1) For NSC = 8, r2 is 4 dB more than r1 at relative

deviations στ/TS = σεTS = 10%, due to high probability of adjacent subcarriers carry 1 bit.

Increasing NSC value from 8, r2 decreases rapidly as compared to r1. 2) Increase in relative

deviations from 10% to 30%, r1 and r2 have same ICI level of -9.7 dB while r3 increases from

-14.2 dB to -8.2 dB. 3) STM causes both ICI and ISI so it degrades the system performance
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more seriously compared with ScFO which only causes ICI. 4) For NSC = 64, r1 and r2 values

are less than -85 dB while r3 remains constant and have no effect with increase in NSC value.

For large NSC values, the probability of adjacent subcarriers carry 1 bit is low, as per relation

in equation (14), which gives low values of ICI variances σ2
ηST M ICI

and σ2
ηScFO ICI

.

Figure 3.6: The Relationship between ICI and ISI variances (r1, r2, and r3) and NSC. r1, r2,
and r3 stands for σ2

ηST M ICI
/TS

2, σ2
ηScFO ICI

/TS
2, and σ2

ηST M ISI
/TS

2.

CP requirements for AO-OFDM

In the presence of STM and ScFO with relative deviations of στ/TS = 17% and σεTS = 31%,

the CP requirements are investigated in AO-OFDM system. The CP is added in time and

frequency domains in order to reduce the STM and ScFO effects. In time domain, TS is

increased from 100 ps to 122 ps, and in frequency domain ∆ f is increased from 10 GHz to

12.2 GHz. Figure 3.7 shows the plots of variances of ICI and ISI (r1, r2, and r3) versus CP

for STM and ScFO cases, where r1, r2, and r3 have same relationships as used in Figure 3.6.

1) At CP = 50%, r1 is reduced by 1.44 dB and r3 is reduced by 2.32 dB but at the cost of

reducing half of data rate of system. 2) At CP = 80%, r2 is reduced by 5.42 dB but at the cost

of increasing spacing between subcarriers from 10 GHz to 18 GHz which ultimately reduces

the spectral efficiency. In [33], the subcarrier spacing was increased (as CP was suggested)
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in order to get better performance. By properly designing AO-OFDM system considering

STM and/or ScFO effects on system performance, we have less requirements of increasing

subcarrier spacing or reducing data rate of subcarriers (or increasing CP) and less desire of

large sampling rate at receiver side.

Figure 3.7: CP requirements in presence of STM and ScFO in AO-OFDM.

Effect of Receiver Bandwidth

The presence of STM and ScFO in AO-OFDM system gives rise in ICI power mainly from

adjacent subcarriers. By increasing the BWRX from 30 GHz to 50 GHz, more adjacent subcar-

riers, which carry bit 1, contributes in increasing ICI power. Further, the receiver shot noise

is dependent on BWRX [38] and degrades the system performance for large BWRX value.

Figure 3.8 shows the plots of variances of ICI with shot noise and ISI (v1, v2, and v3)

versus relative deviations for STM (στ/TS) and for ScFO (σεTS), where v1, v2, and v3 stands

for (σ2
ηST M ICI

+σ2
shot−1)/TS

2, (σ2
ηScFO ICI

+σ2
shot−1)/TS

2, and σ2
ηST M ISI

/TS
2. 1) For BWRX = 30

GHz and NSC = 20 and 128, the ICI with shot noise in both cases of STM and ScFO gives

same values v1 = v2 = -12.5 dB. The increase in NSC value from 20 to 128 decreases the

ICI power in STM and ScFO cases but v1, v2 levels remain same due to shot noises. 2) The

increase in BWRX to 50 GHz increases v1, v2 to -10.6 dB for NSC = 20 due to 4 subcarriers
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contributes in ICI. With the increase of NSC from 20 to 128 gives slight decrease of 0.8 dB

in v1, v2 for relative deviations of STM and ScFO greater than 10%. It is observed that AO-

OFDM system with large NSC, the system performance limited to shot noise. 3) The ISI value

v3 increases to nearly -11 dB at relative deviation of STM (στ/TS) = 17% regardless of BWRX

value.

Figure 3.8: Effects on ICI and ISI variances (v1, v2, and v3) with increase in BWRX . v1, v2,
and v3 stands for (σ2

ηST M ICI
+σ2

shot−1)/TS
2, (σ2

ηScFO ICI
+σ2

shot−1)/TS
2, and σ2

ηST M ISI
/TS

2.

3.3.2 Study II Details of AO-OFDM System

In this study, the theoretical model is optimized towards the parameters of photodetectors

with practical considerations, and the evaluations are started with NSC = 3 in case of BWRX

= 30 GHz. The NSC values in our simulations are from 3 to 128 to show the ICI impact in

relation with the probability of adjacent subcarriers of desired subcarrier carries bit 1 in given

symbol duration. The Bionomial coefficient terms are (
2

h
), (

19

h
), and (

127

h
) in equation

(B.14) for chosen values of NSC, where h = 1, 2. The BER performances of AO-OFDM

system are given with and without cyclic prefix (CP). The simulation system parameters are

listed in Table 3.2.
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Table 3.2: Study II calculation parameters in OOK-modulated AO-OFDM system

Parameter Value Unit

data rate 10 Gbps

symbol duration (TS) 0.1 ns

receiver’s bandwidth (BWRX ) 30, 50 GHz

kth subcarrier power (Pk) 1 µW

local oscillator power (PLO) 1 mW

cyclic prefix (CP) 0, 22 %

3.3.3 Results and Discussions

BER performances versus STM and ScFO

The BER performance of AO-OFDM system in the presence of STM and ScFO is evaluated

for NSC = 3, 20 and 128, BWRX = 30GHz, and with and without CP. For NSC = 3 and without

CP, the edge and middle subcarriers have BER performance degradation and maximum ac-

ceptable relative deviations for STM (στ/TS) are 15% and 11% for BER = 10−3, as shown

in Figure 3.9. The STM tolerance of middle subcarrier in this study is lower than the Study I

due to higher probability of adjacent subcarriers carry 1. The increase in NSC value increases

the tolerance as per relationship for OOK-modulated subcarriers is given (B.14).

In the presence of ScFO in AO-OFDM system, BER performance depends only on ICI

from the adjacent subcarriers of desired subcarrier. For NSC = 3, the maximum relative devi-

ations for ScFO (σεTS) for edge and middle subcarriers are 21% and 14%. For NSC = 20 and

128, probability of adjacent subcarriers carry bit 1 is low which gives BER = 10−3 at σεTS

= 32%, as shown in Figure 3.10. In the presence of ScFO, homodyne detection at receiver

side gives more detailed analysis of frequency offset between transmitted subcarriers and LO

at receiver for AO-OFDM system [88], and also highlight the role of adjacent subcarriers in
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Figure 3.9: Simulated BER performance versus relative deviation for STM (στ/TS).

ICI. In the system with CP = 22%, ScFo tolerances of the middle subcarrier increases to σεTS

= 18% and 40% for BER < 10−3 in NSC = 3 and 128 cases.

The increase in στ/TS with the increase in NSC value is only applicable to statistical

model of OOK-modulated systems. In the case of all subcarriers are ON (carry 1) at the

same time (in non-statistical model of OOK-modulated system), the effect of increase in NSC

value decreases the STM tolerance (στ/TS). The above argument is also valid for the ScFO

tolerance σεTS.

Impact of ICI and ISI with NSC

In Figure 3.11, the plot shows the variances of ICI and ISI (r1, r2, and r3) versus NSC for STM

and ScFO cases, where r1, r2, and r3 stands for σ2
ηST M ICI

/TS
2, σ2

ηScFO ICI
/TS

2, and σ2
ηST M ISI

/TS
2.

By observing the effects of ICI and ISI on middle subcarrier in Figure 3.11, some interesting

features can be seen. 1) For NSC = 3, r1 and r2 are nearly equal and are 5 dB more than r3 at

relative deviations στ/TS = σεTS = 10%. 2) Increase in relative deviations from 10% to 30%

for NSC = 3, the r1 and the r2 are increased by 3.33 dB and 2.37 dB, but the increments are

less than the increase of 5.95 dB in r2. 3) STM causes both ICI and ISI so it degrades the
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Figure 3.10: Simulated BER performance versus relative deviation for ScFO (σεTS).

system performance more seriously compared with ScFO which only causes ICI. 4) For NSC

≥ 32, r1 and r2 values are less than -40 dB while r3 remains constant and have no effect with

increase in NSC value.

As shown in Figure 3.11, the performance of AO-OFDM system is mainly degraded

due to ICI from adjacent subcarriers, and the contribution in ICI variance is from number

of subcarriers depends on bandwidth of photodetectors. It is a major difference between

AO-OFDM system and a coherent optical-OFDM system (CO-OFDM) [38]. In CO-OFDM

system, multicarrier RF signal (OFDM) is modulated on an optical carrier/tone, and in the

presence of time and/or frequency offset in OFDM symbol and/or optical carrier will degrades

the performance of received OFDM signal [31, 90, 91]. For the rest of AO-OFDM system

performance evaluations, we use NSC = 3 and 5 for BWRX = 30 GHz and 50 GHz (bandwidth

windows) at receiver.

CP requirements for AO-OFDM

In the presence of STM and ScFO with relative deviations of στ/TS = 11% and σεTS = 14% ,

the CP requirements are investigated in AO-OFDM system with BWRX = 30GHz. Figure 3.12
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Figure 3.11: The Relationship between ICI and ISI variances (r1, r2, and r3) and NSC. r1, r2,
and r3 stands for σ2

ηST M ICI
/TS

2, σ2
ηScFO ICI

/TS
2, and σ2

ηST M ISI
/TS

2.

shows the plots of variances of ICI and ISI (r1, r2, and r3) versus CP for STM and ScFO

cases, where r1, r2, and r3 have same relationships as used in Figure 3.11. 1) At CP = 50%

(TS is increased from 100 ps to 150 ps), r1 is reduced by 1.62dB and r3 is reduced by 2.24

dB but at the cost of reducing half of data rate of system. 2) At CP=80% (∆ f is increased

from 10 GHz to 18 GHz), r2 is reduced by 6.24 dB but at the cost of increasing spacing

between subcarriers from 10 GHz to 18 GHz which ultimately reduces the spectral efficiency.

By properly designing AO-OFDM system considering STM and/or ScFO effects on system

performance, we have less requirements of increasing subcarrier spacing or reducing data

rate of subcarriers (or increasing CP) and less desire of large sampling rate at the receiver

side.

Effect of Receiver Bandwidth

The presence of STM and ScFO in AO-OFDM system gives rise in ICI power mainly from

adjacent subcarriers. By increasing BWRX from 30 GHz to 50 GHz, more adjacent subcarri-

ers, which carry bit 1, contributes in increasing ICI power. The Figure 3.13 shows the plots
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Figure 3.12: CP requirements in presence of STM and ScFO in AO-OFDM.

of variances of ICI and ISI (v1, v2, and v3) versus relative deviations for STM (στ/TS) and for

ScFO (σεTS), where v1, v2, and v3 stands for σ2
ηST M ICI

/TS
2, σ2

ηScFO ICI
/TS

2, and σ2
ηST M ISI

/TS
2.

For BWRX = 30GHz and NSC = 3, the values of v1 and v2 at στ/TS = 11% and σεTS = 14%, for

the BER = 10−3, are -9 dB and -8.44 dB, while v3 is -13.7 dB. In order to achieve BER below

10−3 for AO-OFDM system with BWRX =50 GHz, the maximum tolerable levels of ICI and

ISI variances are required to be same as in case of BWRX = 30 GHz. As shown in Figure 3.13,

the ICI variances are increased by the 4 adjacent subcarriers (of the desired subcarrier) at the

receiver with BWRX = 50 GHz, and maximum tolerances of στ/TS and σεTS are reduced to

5% and 7%.

3.4 Summary

In this chapter, an analytical model of OOK-modulated AO-OFDM system with ISI and ICI

effects is presented, and the simulation results show that the STM tolerances are lower than

the ScFO tolerances (in Study I and Study II). In Study II, the theoretical model is optimized

towards the parameters of photodetectors with practical considerations. The STM tolerance
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is low due to STM causes not only ICI among neighbouring subcarriers but also ISI from

previous symbol on target subcarrier. Increasing the number of subcarriers reduces the ICI

effects from neighbouring subcarriers and only ISI is a dominant factor in system perfor-

mance degradation. In ScFO case, ICI is only interference which degrades the performance.

The increase in receiver bandwidth gives rise of ICI effects (more adjacent subcarriers con-

tributes in ICI variances). To limit BER performance below 10−3, relative deviations for

STM and ScFO should be lower than 11% and 14% (Study II). To reduce the effects of STM,

the CP gives less than 4 dB reduction of ICI and ISI normalized powers at 50%, which cor-

responds to reducing the data rate from 10 Gbps to 5 Gbps. In ScFO case, the ICI effects are

reduced by 6.24 dB at CP = 80% which corresponds to increasing the subcarrier separation

from 10 GHz to 18 GHz. The simulation results from derived analytical model of AO-OFDM

system provides the relationships between the major system design parameters (NSC, BWRX

and CP), and the ICI and ISI caused by the STM and ScFO.
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Chapter 4

Timing and Frequency Offsets in

M-QAM All-Optical OFDM System

Orthogonal frequency division multiplexing (OFDM) offers high spectral efficiency (greater

than 1 b/s/Hz) with the use of advanced/multilevel modulation formats in optical communi-

cation systems [12]. In multilevel signals transmission, we transmit more than two signal

waveforms over a communication channel [93]. In this chapter, we investigate M-QAM

modulated subcarriers in the presence of time and frequency offsets.

In AO-OFDM, optical subcarriers are multiplexed to transmit composite AO-OFDM sig-

nal without phase controller (as required in CoWDM systems). For demultiplexing at the

receiver side, an optical discrete Fourier transform (O-DFT) or a coherent detection is used at

receiver [12, 33]. The performance of AO-OFDM system is affected by orthogonality among

optical subcarriers. The subcarriers’ frequencies and the symbol times are required to be

synchronized with receiver. If for any reason, symbol time misalignment(s) (STM) and/or

subcarrier frequency offset(s) (ScFO) present in AO-OFDM system, the performance of sys-

tem seriously degraded [88]. In order to overcome the performance degradation due to loss

of an orthogonality among subcarriers, cyclic prefix (CP) is commonly used to reduce the ISI

and the ICI at the cost of reduced data rate and/or spectral efficiency. Another way by using

a digital signal processor (DSP) at the receiver, the effects of ICI from adjacent subcarri-

ers can be reduced [88]. Previously in [88, 33], pre-filtering with constant modulus algorithm

(CMA)-based equalizer in the digital domain was used for the ICI estimation and suppression

for QPSK and 16-QAM modulated AO-OFDM system (emulation setups). Due to random
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nature of STMs and ScFOs in multiple subcarriers, a joint DSP based ICI estimation and

suppression in Nyquist wavelength division multiplexing (N-WDM) system is proposed in

[98]. The DSP based ICI estimation and reduction improves performance of overall system

(as explained in Section 2.5) but it poses challenges on cost-effective and high performance

DSP algorithms for AO-OFDM system [38].

In this chapter, the STM and ScFO effects on the performance of M-QAM AO-OFDM

system are studied using both analytical and Monte-Carlo (numerical) simulations, and com-

pared with results of an odd-and-even and a decorrelated setups [33]. The effects of number

of subcarriers (NSC) on ICI in AO-OFDM system is evaluated. Furthermore, the existing

methods like the CP, the optical delay lines (ODL), the tunable laser diode (TLD), and the

DSP based methods to reduce the effects of STM and ScFO on desired subcarrier are de-

scribed, and a delay line interferometer (DLI) for ICI suppression is proposed and results are

discussed.

4.1 Problem Statement

In AO-OFDM system, τk and εk are STM and ScFO effects, and they are independent Gaus-

sian random variables which varies from 0 to TS and 0 to 1/TS, where TS is the symbol dura-

tion. In order to maintain the BER performance, the relative deviations, στk/TS and σεkTS, of

τk and εk are required to be below the tolerable limits. In ideal case of no offsets i.e. στk/TS

= σεkTS = 0, 16-QAM symbol is at point A with no ISI and ICI, as shown in Figure 4.1(a).

In case of the STM and ScFO effects below the maximum tolerable limits of στk/TS and

σεkTS, QAM symbol moves to point B. With these deviations where orthogonality among

subcarriers is preserved, the phase of kth subcarrier is rotated by φ ′ from the origin and ICI

occurs (with ISI in STM case), shown as region C, but QAM symbols are still within the

decision regions/boundariers and the BER performance of AO-OFDM system is not much

degraded. In case of στk/TS and σεkTS are deviated above the tolerable limits then orthog-

72



onality among overlapped subcarriers is not maintained and the ISI and the ICI occurs, as

shown in Figure 4.1(b).

Figure 4.1: Graphical interpretation of STM and ScFO effects on 16-QAM constellations of
AO-OFDM signal in (a) and (b).

In AO-OFDM system, the number of optical subcarriers (NSC) are normally larger (NSC >

100) and each subcarrier is generated by individual optical source (CW laser) or from comb

source (such as modelocked laser). To modulate each optical subcarrier, NSC independent data

modulation sources and modulators are needed. Due to limited cost and resource availability

of modulators and data converters, the subcarriers are interleaved before data modulator(s) in

odd and even subcarriers and modulated with two data modulators to give proof-of-concept in

the experimental or emulation setups, as shown in Figure 4.2(a) [12, 58, 66]. If any modulator

of odd and even subcarriers is time misaligned or any subcarrier in odd and even subcarriers

has frequency offset, then results are not actual. In [33], the issue of incorrect estimation

of performance in an interleaved and modulated closely-packed subcarriers is preliminary

studied. In this study, a single subcarrier is modulated by 16-QAM modulating signal and

by using an optical loop the subcarrier’s copies are generated to form AO-OFDM signal, as

shown in Figure 4.2(b). The delay in a loop decorrelates a data carrying subcarriers.

In the presence of STM, the subcarriers modulated by independent odd and even modu-
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lators have time offset based on two optical paths and an estimate of BER performance will

be different if compare with a real system. In a decorrelated system, slight timing error in

the optical loop copies a same error in all other the subcarriers, due to single optical path

for all modulated subcarriers. This causes unrealistic results than the results of the practical

system’s configuration which have NSC independent optical modulators and paths to generate

composite AO-OFDM signal.

In the presence of ScFO between transmitted subcarrier and LO at a receiver, the perfor-

mance estimates are different from practical system when single light source is used as seed

subcarrier in an experimental system and duplicates generated by means of optical loop [59].

A seed subcarrier with ScFO, transmitted subcarriers NSC have same ScFO. This will cause

unrealistic results and give incorrect performance estimates.

The aim of this chapter is to model AO-OFDM system (AO-OFDM transmitter and co-

herent detection) with each subcarrier on independent optical path is modulated by an inde-

pendent M-QAM modulation source. The degradation of orthogonality among subcarriers

is evaluated by estimation of intercarrier interference in the presence of time and frequency

offsets (STM and ScFO). Furthermore, BER performance of M-QAM AO-OFDM system in

the presence of random STM and ScFO effects is evaluated and estimated the tolerable limits

of στk/TS and σεkTS in AO-OFDM system.

4.2 M-QAM Modulated AO-OFDM System Model

In AO-OFDM system model, NSC optical subcarriers from CW laser sources are M-QAM

modulated with independent data sources ck, as shown in Figure 4.3 , where k is subcarrier

index from 1 to NSC.

A M-ary QAM signal ckeϕk(t) of kth subcarrier contains both the amplitude ck and the

phase eϕk(t) information from M different waveforms [93]. M-QAM modulation format pro-

vides higher spectral efficiency as compare to M-PSK. In M-QAM system, the M signal
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Figure 4.2: Emulation setups of (a) odd-and-even [12] and (b) decorrelated [33] AO-OFDM
systems. LD: laser diode; OM: optical modulator; OI: optical interleaver; STM: symbol time
misalignment; ScFO: subcarrier frequency offset; Coh. Det.: coherent detection.

waveforms are given as

s(t) = cke jωkt = ak cosωkt−bk sinωkt, (4.1)

where M is an integer, and a,b =−
√

M+1,−
√

M+3, ...,−1,+1, ...,
√

M−1.

Figure 4.4 shows the QAM transmitter based on two Mach-Zehnder modulators (MZM).

The optical signal is first splitted into two optical propagation paths and MZM modulates

each optical path independently as per quadrature inputs (a and b) [93]. The quadrature

inputs have phase difference of π/2.

After modulation, kth subcarrier

Ek (t) = ckEke jωkt (4.2)
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Figure 4.3: Block Diagram of M-QAM AO-OFDM system (AO-OFDM transmitter and co-
herent detection). LD: laser diode; Freq. Off.: frequency offset; Coh. Det.: coherent de-
tection; LO: local oscillator; OH: optical hybrid; BD: balanced detector; Sig. Proc: Signal
Processing.

Figure 4.4: QAM Transmitter [93].

is time misaligned by τk and multiplexed to transmit AO-OFDM signal which is given as

ET (t) =
NSC

∑
k=1

ckEke jωk(t−τk), (4.3)

where ck = ak− jbk and Ek are complex data symbol (QAM data symbol) and optical field at

a given frequency ωk of kth subcarrier. The frequency offset εk is introduced as multiplicative

noise in ET (t) and resultant AO-OFDM signal in the presence of time and frequency offsets
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is

ER(t) =
NSC

∑
k=1

ckEke j2π( fk+εk)(t−τk). (4.4)

Quadrature Receiver In order to recover the two quadrature components from incoming

optical signal, we need a quadrature receiver comprises of coupler, 90o optical hybrid and

balanced photodetectors, as shown in Figure 4.5. The 90o optical hybrid comprises of a 3-dB

coupler and polarization beam splitter at the each output port of coupler. Mathematically, the

input and output of 2x4 90o optical hybrid have relationship

S =
1
2



1 1

1 j

1 −1

1 − j


. (4.5)

In a homodyne-quadrature receiver, iI(t) and iQ(t) are in-phase and quadrature-phase compo-

nents and this type of receiver can be used for multilevel modulation formats (M-QAM and

M-PSK).

Figure 4.5: Block Diagram of Quadrature Receiver [93].

The output signals E1−4 of optical hybrid are related with the received AO-OFDM signal
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ER(t) and the local oscillator signal ELO (t) =
√

PLOe j2π fLOt are given as

E1 = ER +ELO

E2 = ER−ELO

E3 = ER− jELO

E4 = ER + jELO.

(4.6)

After the balanced detections, II(t) and IQ(t) can be expressed as

II(t) = I1− I2 =
1
4

ℜ{|ER +ELO|2−|ER−ELO|2} (4.7)

= ℜ

NSC

∑
k=1
|ck|
√

PkPL cos(2π(( fk + εk)(t− τk)− fLOt +φs) (4.8)

and

IQ(t) = I3− I4 =
1
4

ℜ{|ER− jELO|2−|ER + jELO|2} (4.9)

= ℜ

NSC

∑
k=1
|ck|
√

PkPL sin(2π(( fk + εk)(t− τk)− fLOt +φs), (4.10)

where ℜ is responsitivity of photodetector. Combining equation (4.7) and equation (4.9),

total detected current I(t) is given as

I(t) = II(t)+ jIQ(t) (4.11)

= ℜ

NSC

∑
k=1

ck
√

PkPLe j2π(( fk+εk)(t−τk)− fLOt). (4.12)

4.2.1 Symbol Time Misalignment

We first evaluate the STM effects and rewrite equation (4.11) as

I (t) = ℜ

NSC

∑
k=1

ck
√

PkPLOe j2π fk(t−τk)e− j2π f1t . (4.13)
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The demodulated signal for a symbol with a duration TS is given as

zST M =
1
TS

TS∫
0

I (t)dt (4.14)

=
ℜ

TS

TS∫
0

NSC

∑
k=1

ck
√

PkPLOe j2π fk(t−τk)e− j2π f1tdt (4.15)

Considering the received power of kth subcarrier, PR, the demodulated signal can be expressed

as,

zST M = (
ℜ
√

PRPLO

TS
)× [c1

TS∫
τ1

e j2π f1(t−τ1)e− j2π f1tdt

︸ ︷︷ ︸
ηST M 1

+ ∑
k 6=1

ck

τk∫
0

e j2π fk(t−τk)e− j2π f1tdt

︸ ︷︷ ︸
ηST M ICI

+ cp
1

τ1∫
0

e j2π f1(t−τ1)e− j2π f1tdt

︸ ︷︷ ︸
ηST M ISI

], (4.16)

where zST M is demodulated signal containing ηST M 1, ηST M ICI and ηST M ISI as desired, ICI

and ISI terms in the presence of STM. cp
1 is previous symbol of AO-OFDM signal at subcar-

rier 1. TS is the symbol duration. The ICI beats are considered as coherent due to dependence

on power and phase. The STM random variables τk in equation (4.16) are Gaussian inde-

pendent variables with zero-mean and variance στk
2. Simplifying equation (4.16), ηST M 1 is

given as

ηST M 1 = [c1(TSe− j2π f1τ1− τ1e− j2π f1τ1)]. (4.17)
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In equation (4.17) expected values of random functions, e− j2π f1τ1 and τ1e− j2π f1τ1 , which

depends on τ1 are computed as

µηST M 1 = TSe−2π2 f 2
1 σ2

τ1 − 2στ1e−2π2 f 2
1 σ2

τ1
√

2π
. (4.18)

In equation (4.16) the ICI term is integrated and given as

ηST M ICI =
NSC

∑
k=2

ckg(τk) (4.19)

where

g(τk) =
NSC

∑
k=2

e− j2π fkτk

j2π( fk− f1)

[
e j2π( fk− f1)τk−1

]
. (4.20)

From [97] mean and variance of function g(τk) are

µg(τk) =
NSC

∑
k=2

∞∫
−∞

g(τk) p(τk)dτk (4.21)

σ
2
g(τk)

= E
∣∣g(τk)−µg(τk)

∣∣2 (4.22)

where p(τk) =
1√

2πστk
exp(−τ2

k /(2σ2
τk
)) is probability density function of independent Gaus-

sian distributed variables τk. The mean and variance of ICI are given as

µηST M ICI =
NSC

∑
k=2

exp
(
−2π2 f 2

1 σ2
τk

)
− exp(−2π2 f 2

k σ2
τk
)

j2π( fk− f1)
(4.23)

and

σ
2
ηST M ICI

=

NSC

∑
k=2

1− exp
(
−2π2( fk− f1)

2
σ2

τk

)
2π2( fk− f1)

2

− ∣∣µηST M ICI

∣∣2 (4.24)

In equation (4.16), the ISI term after integration is given as

ηST M ISI = cp
1g(τ1) (4.25)
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where g(τ1) = τ1e− j2π f1τ1. The mean and variance of ISI are given as

µηST M ISI =
2στ1e−2π2 f 2

1 σ2
τ1

√
2π

, (4.26)

and

σ
2
ηST M ISI

= σ
2
τ1
− (µηST M ISI)

2. (4.27)

STM: ESNR and BER expressions

The effective signal-to-noise ratio (ESNR) expression related to derived mean currents and

variances of ICI and ISI due to STM with shot and thermal noises [94] is given as

ESNR =
(µηST M 1)

2

σ2
ηST M ISI +σ2

ηST M ICI +σ2
shot +σ2

thermal
. (4.28)

In equation (4.28), the numerator contains the desired signal including the power penalties

term due to STM. In denominator, variances of shot noises, thermal noise and interference

terms (ICI, and ISI) are considered. The relationships of symbol error probability (PM−QAM)

and bit error rate (BER) with ESNR for M-QAM are given as

PM−QAM = 2(1− 1√
M
)er f c

(√
3ESNR

2(M−1)

)
, (4.29)

and

BER =
1

log2M
(1− (1−PM−QAM)2). (4.30)

4.2.2 Frequency offset

The ScFO between transmitted subcarrier frequency and receiver local oscillator frequency

degrades the orthogonality and it introduces ICI. By using equation (4.11) for ScFO case, the
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demodulated received optical OFDM signal has offset of εk is given as

zScFO =

(
2ℜ
√

PRPLO

TS

)
[c1

TS∫
0

e j2π( f1+ε1)te− j2π f1tdt

︸ ︷︷ ︸
ηScFO 1

+ ∑
k 6=1

ck

TS∫
0

e j2π( fk+εk)te− j2π f1tdt

︸ ︷︷ ︸
ηScFO ICI

],

(4.31)

where zScFO is demodulated signal for subcarrier 1. The ScFOs εk are Gaussian independent

random variables with zero-mean and variance σεk
2. After simplifying equation (4.31), we

calculate the means and variances in ScFO case and derived expressions are

µηScFO 1 =
√

πTS (
2πTSσε1√

2
) (4.32)

µηScFO ICI =
NSC

∑
k=2

[
1− exp(−2π2σ2

εk
T 2

S )
]

j2π ( fk− f1)
(4.33)

and

σ
2
ηScFO ICI

=
NSC

∑
k=2

1− exp(−2π2σ2
εk

T 2
S )

2π2( fk− f1)
2 −

∣∣µηScFO ICI

∣∣2. (4.34)

ScFO: ESNR and BER expressions

The ESNR expression for ScFO is given as

ESNR =
(µηScFO 1)

2

(σ2
ScFo ICI +σ2

thermal +σ2
shot)

. (4.35)

4.3 Performance Analysis of AO-OFDM Systems

4.3.1 Details of Simulation Setups

In AO-OFDM system, we first evaluate the variances of the ICI and ISI due to the STM and

ScFO for NSC values from 2 to 300 in our proposed analytical model. Each subcarrier is

independently 16-QAM modulated with the symbol rate of 10 GBd (single carrier), and the
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derived analytical model is verified with numerical simulation. In simulations, the aggregate

symbol rate is 3 Tb/s (NSC = 300). In numerical simulations, Monte Carlo method is used

with 106 random 16-QAM symbols which are sufficient to get the converged BER and the

details given in Appendix D. The simulation systems parameters are listed in Table 4.1.

Table 4.1: M-QAM AO-OFDM system simulation parameters

Parameter Value Unit

numbers of subcarriers (NSC) 2 to 300 -

symbol duration (TS) 0.1 ns

kth subcarrier power (Pk) 1 µW

cyclic prefix (CP) 0 to 80 %

local oscillator power (PLO) 1 mW

For comparison of the performance of AO-OFDM system with an odd-and-even and a

decorrelated emulation setups, the numerical simulations are performed with simulation se-

tups as shown in Figure 4.2. For an odd-and-even setup, independent data modulation sources

for odd and even subcarriers are used. The ScFO effect is same on all subcarriers with two

optical paths gives two independent effects of STM on odd and even subcarriers. The ad-

jacent subcarriers, either from the odd or the even subcarriers, have correlated data due to

common modulation source, as shown in Figure 4.2(a). In a decorrelated emulation setup,

modulated seed subcarrier is duplicated to decorrelated subcarriers by an optical modulator

derived by RF frequency synthesizer. In this setup, we considered cases of decorrelated and

correlated subcarriers, and the effects of STM and ScFO are modelled as same for all subcar-

riers due to single optical path for seed subcarrier is used in this emulation setup, as shown

in Figure 4.2(b).
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4.3.2 Effects of STM and ScFO with NSC

The effects of STM and ScFO are evaluated for NSC values from 3 to 300. Figure 4.6(a) shows

the plot between NSC and variances of ICI and ISI (r1, r2, and r3) due to STM and ScFO

effects in an AO-OFDM system, where r1, r2, and r3 stands for σ2
ηST M ICI

/TS
2, σ2

ηScFO ICI
/TS

2,

and σ2
ηST M ISI

/TS
2. At the relative deviations for STM (στ/TS) = 3% and for ScFO (σεTS) =

5, r1 increases from -11.2dB to -10dB and r2 increases from -11.6 dB to -10.7 dB for NSC

from 3 to 10. The corresponding BER performance at NSC = 10 is below 10−3, as shown in

Figure 4.6(b). Increasing NSC from 10 to 300 does not affect r1 and the r2. The value of r3

remains the same for NSC from 3 to 300 for στ/TS = 3% due to the dependence on only the

desired subcarrier. The physical interpretation of these simulation results is the interference

is rapidly decreases with the increase in frequency separation. Therefore, the performance

of the desired subcarrier in AO-OFDM system is mainly degraded due to ICI from adjacent

subcarriers [98], and the contribution of number of subcarriers in the ICI variance depends

on bandwidth of photodetectors at receiver. For the rest of evaluations of the STM and the

ScFO effects, we use NSC = 3 subcarriers and the bandwidth of photodetectors at receiver is

30GHz.

4.3.3 BER performance of AO-OFDM system

In AO-OFDM system, the analytical results based on the derived model shows the BER per-

formance is 10−3 of edge and middle subcarriers at the relative deviations for STM (στ/TS)

= 3.8% and 3.2%, as shown in Figure 4.7. The STM tolerance of edge subcarrier is higher

than the middle subcarrier due to less number of adjacent subcarriers contributes in ICI. The

numerical results of BER by direct symbol error counting in the numerical simulations for

AO-OFDM system verifies the same tolerances at στ/TS = 3.8% and 3.2%. The same trend

of degradation of the performance of QPSK modulated AO-OFDM system with coherent de-

tection is reported in [88]. In two-subcarrier transmitter, the STM effects are evaluated and

with offline signal processing the relative STM (τk/TS) of 50% of symbol duration Q2 degra-
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Figure 4.6: Effects of STM and ScFO with NSC on (a) ICI and ISI variances (r1, r2, and
r3) and (b) BER performance. r1, r2, and r3 stands for σ2

ηST M ICI
/TS

2, σ2
ηScFO ICI

/TS
2, and

σ2
ηST M ISI

/TS
2.

dation nearly 4.2dB was reported in an experimental setup. In our analytical model, we have

presented that the STM causes not only ICI from adjacent subcarriers but also ISI from same

desired subcarrier.

In the presence of ScFO in the system, the BER performance degrades to 10−3 at a relative

deviations for ScFO (σεTS) = 6.6% and 5.5% for edge and middle subcarriers, as shown in

Figure 4.7. The analytical results are verified by numerical simulations. In [61], tolerance to

ScFO for an arrayed waveguide grating (AWG) based on-off keying (OOK) modulated AO-

OFDM system was reported, and the frequency mismatch should be below 4% of subcarrier
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Figure 4.7: BER performance of AO-OFDM system.

spacing for BER < 10−5. Further to improve system performance, waveform reshaping

scheme was used to reduce the effects of slab-diffraction in an AWG. Our results shows little

more tolerance due to desired subcarrier is demultiplexed by using coherent detection which

is less sensitive to ScFO.

In experimental demonstrations of AO-OFDM systems, the tolerances of STM and ScFO

are different and depends on modulations formats (and (de)correlated data symbols on adja-

cent subcarriers), optical paths ((un)similar STM effects on adjacent subcarriers), optical sub-

carriers at transmitter (continuous wave or comb), and demultiplexing and detection method

(O-DFT, coherent detection or band pass filter).

In [88], [99], and [100], the multicarrier communication systems are more sensitive to

STM than ScFO effects was reported that. In [88], the performance of closely spaced QPSK-

modulated optical subcarriers was investigated. In this investigation with adjacent subcarrier

rejection filter (as shown in Figure 2.29), at στ/TS = σεTS = 20% the Q2 is degraded approx.

2 dB in both cases (offsets investigated separately).
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4.3.4 Comparison of AO-OFDM system with its emulation setups

In the simulations for an odd-and-even emulation setup, the numerical results gives no errors

upto στ/TS = 5.7%, which is equivalent to 5.7 ps of STM for symbol duration of 100 ps, as

shown in Figure 4.8(a). The tolerance is higher than the tolerance of practical AO-OFDM

system due to the adjacent subcarriers of desired subcarrier have STM effects based on two

optical paths and carry same information, as shown in Figure 4.2(a), which overestimates

the system performance. For optical loop simulations, the decorrelated subcarriers gives no

errors upto στ/TS = 6.5%. In the case of adjacent subcarriers are correlated then στ/TS in-

creases to 8.1% (8.1 ps for 100 ps symbol duration). For ScFO case, the odd-and-even and

optical loop systems gives data without an error upto σεTS = 7.7% and 10%, as shown in

Figure 4.8(b). In [33], both systems were investigated and compared experimentally. The

subcarrier spacing was increased (as cyclic prefix was suggested) in order to get better results

for optical loop. By proper designing of AO-OFDM system considering STM and/or ScFO

effects on system performance, as shown in Figure 4.7, we have less requirements of increas-

ing subcarrier spacing or reducing data rate of subcarriers and less desire of large sampling

rate at receiver side.

4.4 Methods of Reducing STM and ScFO Effects

4.4.1 Using Cyclic Prefix

In order to reduce the STM and ScFO effects, the easiest solution is to use CP for all subcar-

riers in AO-OFDM system, but we have to compromise on spectral efficiency and data rate

of AO-OFDM system [12]. TS is related to the subcarrier spacing ∆ f by TS = 1/∆ f in OFDM

systems. We have investigated the CP requirements in AO-OFDM system by reducing the

data rate or increasing the subcarrier spacing ∆ f (method of using CP is similar as applied

in Section 3.3). With the CP = 30%, the ICI and ISI variances (r1, and r3) due to STM are
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Figure 4.8: Comparison of BER results versus relative deviation for (a) STM (στ/TS), and
(b) ScFO (σεTS). Downward arrow shows that no data received error upto given relative
deviation.
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Figure 4.9: CP requirements in presense of STM and ScFO in an AO-OFDM.

reduced by 1 dB and 1.2 dB, while the ICI variance (r2) due to ScFO is reduced by 1.5 dB,

as shown in Figure 4.9. r1, r2, and r3 have same relationships as used in Figure 4.6. The CP

= 30% corresponds to increasing TS from 100 ps to 130 ps or ∆ f from 10 GHz to 13GHz. It

can be seen in Figure 4.9 that by increasing the CP up to 50% gives reduction in r1, and r3

to 1.5 dB and 1.8 dB, which causes the data rate is half but the change in variances of ICI

and ISI is less than 4 dB. In the ScFO case, r2 reduces approximately 2 dB at CP = 50% and

reduces rapidly from CP = 80% (∆ f = 18 GHz). The main reason of rapid reduction in r2

is the overlapping of adjacent subcarriers with desired subcarrier is minimum, but with the

compromise on the spectral efficiency of AO-OFDM system.

4.4.2 Optical Delay Line and Tunable Laser Diode

By using optical delay line (ODL) and tunable laser diode (TLD) for each subcarrier in AO-

OFDM system, we can reduce the effects of STM and ScFO. We can use ODL and TLD at

either transmitter or at receiver but to avoid the error in ICI measurement at receiver, due to
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Figure 4.10: Block diagram of optical delay line (ODL) and tunable laser diode (TLD) based
STM and ScFO compensation of middle subcarrier.

incorrect estimates of the STM and the ScFO of the adjacent subcarriers, we have used at

the transmitter. The block diagram of AO-OFDM system with ODLs and TLDs for middle

subcarrier at transmitter is shown in Figure 4.10. We have evaluated the performance of the

middle subcarrier in the presence of ICI from adjacent subcarriers. The τ2 and ε2 of desired

subcarrier are equals to 0, by using ODL and TLD, while adjacent subcarriers have non-zero

STM and ScFO values.

With the aligned desired middle subcarrier (τ2 = 0), the effects of phase offset and the ISI

are mitigated and STM tolerance increase from 3.2% to 5.3%. The results of aligned middle

subcarrier are compared with system of misaligned all three subcarriers with CP. With the CP

= 30%, TS is increased from 100 ps to 130 ps in all three subcarriers, the tolerance of STM

is increased from 3.2% to 4.5%, as shown in Figure 4.11. The ODL based aligned middle

subcarrier gives slight increased in tolerance then misaligned subcarriers with CP but gives

some interesting finding: 1) For the relative deviation of STM less than or equal to 3%, the

tolerance of aligned middle subcarrier is less than misaligned subcarriers with CP, 0.5 dB,

due to the ICI is dominated; 2) CP for STM reduction doesn’t gives much improvement in

BER performance as described in terms of variance of ICI due to STM in Figure 4.11.

In an investigation of ICI due to ScFO in an adjacent subcarriers, the ε2 between T LD2

and LO for subcarrier 2 is equal to 0. The ScFO tolerance is increased from 5.5% to 6%.
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Figure 4.11: optical delay line (ODL) based STM compensation of middle subcarrier.

By comparing this result with three subcarriers have non-zero ScFOs with CP = 30%, the CP

provides more tolerance of 7% due to increases in subcarriers spacing which reduces the ICI

and the phase offset penalty in desired subcarrier, as shown in Figure 4.12. The difference in

BER performances between middle subcarrier compensated and subcarriers with ScFOs and

CP is 1.8 dB. The middle subcarrier compensation gives less ScFO tolerance due to phase

offset penalty is reduced but ICI still high, and the CP gives better BER performance but at

the cost of reduced spectral efficiency. For AO-OFDM system with large NSC, the method of

using ODL and TLD for STM and ScFO compensation makes the system design complex.

4.4.3 DLI based ICI suppression

DLI Theory and Operation

A delay line interferometer (DLI) is a passive device that is based on an interference of two

optical beams coming from two paths of different lengths. The interference of beams is used

to filter/demultiplex the different wavelengths [102]. It can be a Mach-Zehnder interferometer
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Figure 4.12: TLD based ScFO compensation of middle subcarrier.

(MZI) based or a Michelson interformeter based passive device. The typical construction of a

DLI is an integrated optics and it comprises of two 3 dB couplers interconnected by two fibers

with different lengths, as shown in Figure 4.13. A DLI is constructed in an integrated optics

and the substrate is normally silicon with the silica (SiO2) material for the waveguide and

region of cladding. For the filtering and multiplexing/demultiplexing, MZIs are very useful

passive device. In comparison, the other filtering devices like thin-film filters (for narrow

band filtering) are better technologies and MZI are much useful for wide band filtering [95].

In our theoretical model, the labels of inputs and outputs of DLI device are given in Table

4.2.

Figure 4.13: Structure of DLI [102].
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Table 4.2: DLI Input and Output ports Labels

3 dB Coupler Port Number Label

input 1st Ein1

input 2nd Ein2

input 3rd Ẽout1

input 4th Ẽout2

output 1st Ẽin1

output 2nd Ẽin2

output 3rd Eout1

output 4th Eout2

The input and output of an input lossless 3 dB coupler of the DLI can be given as

 Ẽout1

Ẽout2

=
1√
2
.

 1 j

j 1

 .
 Ein1

Ein2

 . (4.36)

Solving the right hand side of above equation, we have

 Ẽout1(t)

Ẽout2(t)

=
1√
2
.

 Ein1(t)+ jEin2(t)

jEin1(t)+Ein2(t)

 . (4.37)

After incoming signal is equally splitted by input 3dB coupler of the DLI, the signals

passes the two fiber of different lengths with delay of symbol duration TS and we have

 Ẽin1(t)

Ẽin2(t)

=
1√
2
.

 Ein1(t−TS)+ jEin2(t−TS)

jEin1(t)+Ein2(t)

 . (4.38)
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The output 3 dB coupler have same input and output relationship as for input 3 dB coupler,

and we have output signals at the DLI output ports are given as

 Eout1(t)

Eout2(t)

=
1
2
.

 Ein1(t−TS)+ jEin2(t−TS)−Ein1(t)+ jEin2(t)

jEin1(t−TS)−Ein2(t−TS)+ jEin1(t)+Ein2(t)

 (4.39)

In order to find the optical power of each port of the DLI, we have to take the complex

conjugates of output signals of the DLI which are given as

Pout1(t) = Eout1(t).E∗out1(t) = P0sin2
(

φ(t−TS)−φ(t)
2

)
(4.40)

and

Pout2(t) = Eout2(t).E∗out2(t) = P0cos2
(

φ(t−TS)−φ(t)
2

)
(4.41)

In case of φ(t − TS)− φ(t), the power at port 1 is zero, i.e. Pout1(t)=0 and only even

numbered wavelengths are appeared at port 2. The spectra of both output ports of DLI is

shown in Figure 4.14.

Figure 4.14: Spectra of constructive and destructive ports of DLI [103].

The DLI is used to separate the odd and even subcarriers from received composite AO-

94



Figure 4.15: Proposed DLI based ICI suppression method in AO-OFDM system. S: splitter.

OFDM signal ER(t) before coherent detection stage in order to minimize the ICI from adja-

cent subcarriers caused by STM and ScFO. The advantage of using the DLI based passive

method of ICI suppression in an optical domain is to reduce the requirements of DSP based

algorithms for ICI suppression. The block diagram of a proposed DLI based ICI suppression

is shown in Figure 4.15. In AO-OFDM composite signal ET (t), the middle desired subcarrier

with index k = 2 have τ2 and ε2 equals to 0, while adjacent subcarriers (k = 1,3) have non-zero

STM and ScFO values. The main reason of setting adjacent subcarriers with offsets only is

to suppress ICI first. The received AO-OFDM signal ER(t) is first split by an input coupler,

and a propagation delay of Td = TS/2 is introduced in one arm before the signals in two arms

are recombined by an output coupler. The electric fields of even, Eeven
R (t), and odd, Eodd

R (t),

subcarriers, without STM and ScFO effects, are given as

Eeven
R (t) =

j
2
·ER(t)(e− j2π fkTd +1), (4.42)

and

Eodd
R (t) =

1
2
·ER(t)(e− j2π fkTd −1). (4.43)

The Eeven
R (t) contains only even subcarriers and the power of DLI port for even subcarriers

(|Eeven
R (t)|2 /Pk = [cos(π fkTS/2)]2) is plotted in Figure 4.16. In the presence of STM and

ScFO, the photodetected signals for subcarrier 2 (middle subcarrier) are derived using same
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Figure 4.16: Simulated power transmission for even subcarriers at delay line interferometer
(DLI) output port.

procedure given in section 4.2 and expression are given as

zST M−DLI = (
ℜ
√

PRPLO

TS
)× [ηST M 2 · (e− jπ f2TS +1)+ ∑

k 6=2
ηST M ICI · (e− jπ fkTS +1)

+ηST M ISI · (e− jπ f2TS +1)], (4.44)

and

zScFO−DLI =

(
2ℜ
√

PRPLO

TS

)
[ηScFO 2 · (e− jπ( f2+ε2)TS +1)

+ ∑
k 6=2

ηScFO ICI · (e− jπ( fk+εk)TS +1)], (4.45)

where η have same relations used in equation (4.16) and in equation (4.31) for subcarrier 2. In

equation (4.44) the STM doesn’t change the transmission of even and odd subcarriers through

the DLI respective port, and equation (4.45) shows that the ScFO change the transmission

characteristics of DLI for even and odd subcarriers.
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Figure 4.17: DLI based STM-ICI suppression.

STM-ICI suppression

With the DLI, the tolerance to ICI is increased to στ/TS = 29%, as shown in Figure 4.17. With

CP = 20% (TS increased from 100 ps to 120 ps), which is less than the CP = 50% required

in Figure 4.9, the tolerance of στ/TS is increased to 50%. At στ/TS = 50%, the symbols are

misaligned by TS/2 and at this point the ICI is maximum and normally termed as complete

loss of orthogonality [88]. The DLI based STM-ICI suppression provides the more tolerance

to στ/TS with less requirements of CP. With the increase in NSC the design of DLI based

passive device for ICI suppression will be same Td = TS/2.

ScFO-ICI suppression

In AO-OFDM system, the ScFO between free running lasers at transmitter and receiver

causes ICI and DLI based ICI suppression increases the σεTS from 5.5% to 10% without

CP, as shown in Figure 4.18. The low tolerance improvement with DLI is due to the DLI

ports outputs are dependent on ScFO which prevent the complete cancellation of adjacent

subcarriers of desired subcarriers, as derived in Eq. 34. With CP = 15% (∆ f increased from

10 GHz to 11.5 GHz), the σεTS increased to 13%. The ScFO tolerance of 10% with DLI is
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Figure 4.18: DLI based ScFO-ICI suppression.

nearly twice the tolerance of AO-OFDM system without DLI in Figure 4.7. In the presence

of ScFO with tolerance of 10% in DLI based AO-OFDM system, the appropriate solution

is to use the comb source instead of CW lasers at transmitter. In the comb source, optical

subcarriers have same ScFOs and can easily estimated and compensated with single-carrier

algorithms [101].

4.5 Summary

In this chapter, we analytically derived M-QAM AO-OFDM system model and compared

with numerical simulations. The simulation results show that the orthogonality degrades

among subcarriers in the presence of STM and/or ScFO and causes ICI among subcarriers.

The results of practical AO-OFDM are compared with the results of odd-and-even and optical

loop emulation setups. In practical AO-OFDM model, the modulation sources, modulators

and optical paths are considered independent in simulations. In AO-OFDM system model

with time and frequency offsets, to keep BER performance below 10−3 the relative deviations

for STM and ScFO should be lower than 3.2% and 5.5%. With the proposed DLI-based ICI

suppression method, the relative deviations for STM and ScFO increase to 29% and 10%
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without CP. The STM tolerance improved more than the ScFO tolerance with the proposed

method of ICI suppression, and this method is more suitable for AO-OFDM transmitter have

optical subcarriers generated from comb source such as MLLD.
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Chapter 5

FBG-Assisted ICI Reduction for

AO-OFDM Demultiplexed Signal

In Chapter 3 and Chapter 4, we have focused on the time and freqency offsets in the co-

herently detected received AO-OFDM signal by using local oscillator (LO). In this chapter,

the receiver of AO-OFDM signal is an optical discrete fourier transform (O-DFT), which is

one of the methods to demultiplex the subcarriers from the received composite AO-OFDM

signal [104]. For an N-point O-DFT, a single and compact optical circuit can be utilized to

demultiplex all the subcarriers at the same time, as presented in Figure 2.11. Conceptually,

an O-DFT circuit comprises of the optical delay lines which are used to convert the incoming

serial data stream to parallel data, and the phase shifters are used to perform DFT operation

for desired subcarrier. In this concept, the values of the delay lines are same but the values

of phase shifters are different for demultiplexing of each subcarrier as per DFT operation

explained in Chapter 2. In this chapter, the effects of modulation bandwidth and chromatic

dispersion on the performance of AO-OFDM system with O-DFT circuit (optical delay lines

and phase shifters) are investigated.

5.1 Optical Discrete Fourier Transform

For the multiplexing and demultiplexing of optical subcarriers, there are several devices for

the O-DFT function, such as arrayed waveguide gratings (AWG)[58], coupler-based mesh

[104], Mach-Zehnder interferometers (MZI) with phase shifters and couplers [12], and fiber
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Bragg gratings (FBG)[54]. The brief details of O-DFT circuits are given here.

5.1.1 Arrayed waveguide gratings

An AWG as WDM demultiplexer and optical codes generation in an optical packet switching

and optical code division multiple access (OCDMA) systems, it is utilized with a two star

couplers interconnected by arrayed waveguide gratings to produce OFDM symbols (equiv-

alent to OCDMA codes with Fourier coding) [58]. The term of frequency domain is used

to define the carriers in OFDM systems are orthogonal in frequency domain. The AWG

configuration is shown in Figure 5.1.

Figure 5.1: Arrayed waveguide gratings schematic [104].

The first star coupler or slab region distributes the incoming optical signal to the array

of waveguides. The lengths of interconnecting arrayed waveguides provides an incremental

delay of τ = total symbol duration/number of subcarriers in order to perform the serial-to-

parallel operation. The second star coupler is designed in such a way that the termination of

arrayed waveguides Im at its input have phase shifts of Om, as schematic shown in Figure 5.2.

By using an AWG, the DFT operation is in spatial domain which can be equivalent to an

imaging system of two-lens system, as shown in Figure 5.2, where a focal length f is equal

to a radius of curvature R of the star couplers. In an AWG, the second star coupler performs

a DFT operation of inputs from arrayed waveguides. For an AWG based DFT operation, the
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Figure 5.2: Output star coupler of AWG (a) with its equivalent two-lens model[104].

design parameters must satisfy the following condition:

d = d0 =

√
λR
N

, (5.1)

where N is number of inputs/outputs, and l is the length of slab which is equal to the radius

of curvature R of the star couplers.

5.1.2 Coupler-and-waveguide mesh device

The coupler-and-waveguide mesh (CWM) device comprises of passive optical couplers, waveg-

uides and phase shifters to perform O-DFT operation of an input signal, am, to an output

signal, bm, as shown in Figure 5.3(b) [104]. In order to perform N-point DFT with CWM

device, log2N stages are required with each stage composed of 2×2 optical coupler which is

equivalent to the 2-point DFT circuit, as shown in Figure 5.3(a). In order to utilize a CWM

device to perform DFT operation in an optical communication system, where the data sym-

bols are transmitted serially, we need a serial-to-parallel converter before a CWM device for

a DFT function.
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Figure 5.3: Coupler-and-waveguide mech device (a) with its mathematical model (b)[104].

5.1.3 Delay line interferometer with phase shifters

In a CWM based DFT operation, the performance of AO-OFDM system is highly sensitive

to phase errors and fabrication errors during design, and with the increase of an order of

DFT, a CWM design will be complex [104]. In order to minimize these drawbacks, a novel

configuration of MZIs as a time delay array is proposed, as shown in Figure 5.4 [53]. The

MZIs are configured in a cascaded or tree architecture in order to demultiplex N subcarriers.

Figure 5.4: Design steps of combined optical DFT and serial-to-parallel Converter; (a) Tra-
ditional design, (b)-(c) two DLIs are replaced to one DLI, (d) simple O-DFT design [53]

In Figure 5.4, by re-ordering the delay lines and rearrangement of the output ports of 4-

point optical DFT is shown. In step (a), the delays are reordered in a S/P conversion block.
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Due to this step the output ports X1 and X2 are rearranged. In this way the input stage of

an O-DFT circuit consists of two delay paths which have non-equal absolute delays. From

step (b) to step (c), the delays of T/4 in lower input branch, which are common, are moved

to outputs. In step (d), the redundancy of two couplers, T/2 delay line, and phase shifter

is replaced with one DLI and one coupler. The advantage of this type of O-DFT is small

number of couplers, 2(N−1), are needed to perform N-point DFT. The transfer function of

DLI based O-DFT is given as

Hpm(ω) =
1√
2

 1 j

j 1


︸ ︷︷ ︸
out put 3dB coupler

.

 1 0

0 e− j(ωTp+ϕm)

 .
1√
2

 1 j

j 1


︸ ︷︷ ︸
int put 3dB coupler

.

 1 0

0 0


︸ ︷︷ ︸

upper input isolation

, (5.2)

where p, m, Tp, and ϕm, is DLI stage, subcarrier index, interferometer delay, and DLI phase.

5.1.4 Fiber Bragg grating for DFT/IDFT operation

Fiber Bragg grating (FBG) based sampling and processing of ultra-short laser pulses provides

all-optical OFDM without the need of sampling gates at a receiver side [54]. In Figure 5.5,

the FBGs are shown as O-DFT and O-IDFT modules.

From the ultra-short laser source, the pulse passes through circulator and entered in the

FBG device which works as an O-DFT module. The design of the FBG have many subgrat-

ings and spatial modulation of the FBG’s refractive index is given as

δn(z) =
M−1

∑
m=0

A(z−mZ0)ϕkme j 2π

Λ
z + c.c., (5.3)

where Λ is the grating period, and Z0, A(z), and ϕkm are chip’s period, amplitude and phase.

The relationship of a pulse entered in the FBG and a reflected signal from the FBG is given

as

y(t) = x(t)⊗h(t) =
M−1
∑
m

B(t +m2n
c Z0)ϕkm (5.4)
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Figure 5.5: FBG designs as (a) O-DFT and (b) O-IDFT modules [54]

where

B(t) = 2Kx(t)⊗
(

A
( ct

2n

)
cos
(

2π

Λ

ct
2n

))
, (5.5)

and

h(t) = Kδn
( ct

2n

)
. (5.6)

For the condition that the FBG works as O-DFT and IDFT, the relationship must hold as

Z0 =
cT

2nM
, (5.7)

and

ϕkm = e− j2πmk/M, (5.8)
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where m, k, M, and K, is the time sample, the subcarriers index, the total samples in time

domain, and the constant. The reflected signal from the FBG have duration equal to OFDM

symbol duration which actually contains the multiple copies for input ultra-short pulse with

an identical amplitude, and a phase values as per DFT principle. The number of samples

in the reflected signal is depends on the number of subgratings in the FBG structure. In

Figure 5.5(a), the time-domain waveforms of reflected signals of five subcarriers (SC) show

the cycles are integer multiples, as per required principle of OFDM. The O-IDFT at a receiver

have same structure of O-DFT at the transmitter, as shown in Figure 5.5(b). The FBG of

desired/corresponding SC receives large number of pulses and a reflected signal from desired

SC have pulses in middle of OFDM symbol duration while the undesired/non-corresponding

FBG have null in the middle. Further, the design of a FBG as O-DFT and O-IDFT for 32

subcarriers is included as an Appendix E.

5.2 Fiber Bragg Grating for ICI Reduction

5.2.1 Theory and Properties

Fiber gratings are passive devices and are produced by an exposition of an optical fiber to an

ultraviolet intensity. They are simply an diffraction gratings in an optical domain. Mathemat-

ically, the incident light at an angle θ1 is effected by diffraction grating is given as

nsinθ2 = nsinθ1 +m
λ

Λ
, (5.9)

where θ2 is a diffracted wave angle and m is an integer which depends on a diffraction order

of a wave, as shown in Figure 5.6. This mathematical expression is only useful to find an

angle of a diffracted light and a direction of an occurrence of constructive interference, but

no information of coupling of modes at a specific wavelength [105].

Fiber gratings have two classes: a Bragg gratings and a transmission gratings. In this
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chapter a Bragg gratings are used to reduce the ICI effects in AO-OFDM systems and we

focus on theory and operation of a Bragg gratings.

Figure 5.6: Fiber grating as a diffracting device [105].

Fiber Bragg grating (FBG) reflects a narrow band optical field due to index variations.

The spatial index perturbation ∆n of FBG have length LFBG [105] is

∆n(z) = δne f f (z)
{

1+ cos(
2π

Λ
z)
}
, (5.10)

where Λ, and δne f f (z) are nominal period, and refractive index change spatially averaged

over a grating period. In Figure 5.7, the reflected mode with θ2 in−z-direction from the FBG

is a same as of mode traveling in z-direction with θ1. The relationship of both modes is θ2 =

-θ2. The propagation constant of mode is given as

β =
2π

ne f f
, (5.11)

where ne f f = ncore sinθ . The propagation constant of guided modes is derived as

β2 = β1 +m
2π

Λ
. (5.12)

In single mode fiber, only one mode is dominated and due to reflection from Bragg grat-
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Figure 5.7: Reflected modes illustration in Bragg grating [105]

ing the diffracted mode, m=-1, shown on the β axis with solid circles in z and −z direc-

tions in Figure 5.7. An effective index, ne f f for core modes must have value in range of

ncladding < ne f f < ncore. The propagation constant of a reflected mode with β2 <0, the res-

onating wavelength reflects for mode of index, ne f f ,1, into mode of index, ne f f ,2 is given

as

λ = (ne f f ,1 +ne f f ,2)Λ. (5.13)

In case of two identical modes, the above equation becomes the

λB = 2ne f f Λ. (5.14)

The maximum reflectivity, rmax, from FBG is related to its length, LFBG, and a coupling

coefficient, κ as

rmax = tanh2 (κL) (5.15)
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5.2.2 Types of Bragg Grating

In this section, common types of Bragg gratings are given which have difference in terms of

variation in the index profile along the fiber axis.

Uniform FBG

Uniform Bragg grating have the constant induced index profile (typically, 10−5 - 10−2) along

the length of grating. The parameters of design uniform FBG in Optigrating Software are

given in Table 5.1. In Figure 5.8, the plots of an index profile, with peak index value of

0.0002, and spectrum of an uniform FBG shown. At given parameters, the 3 dB bandwidth

(∆λ ) of reflected signal from FBG is 0.14 nm. With the increase in δne f f from 0.0001 to

0.0003, the peak index value increases to 0.0006 and 3dB ∆λ increases to 0.4 nm. One way

to get the FBG response as a narrowband filter by increase in LFBG. The increase in LFBG

from 10000 µm to 15000 µm gives the decrease in ∆λ from 0.14 nm to 0.11nm.

Table 5.1: Parameters of Uniform FBG

Parameter Value Unit

grating shape sine -

length (LFBG) 10000 µm

center wavelength (λ ) 1550.0873 nm

index modulation (δne f f ) 0.0001 -

Chirped FBG

In a chirped FBG (C-FBG), the grating period is monotonically varies along its length, as

shown in Figure 5.9. The chirped is introduced axially varying either the grating period Λ or

the index of core, ncore, or both. The main application of C-FBGs is dispersion compensation
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(a) (b)

Figure 5.8: Uniform FBG (a) refractive index profile and (b) transmitted (red) and reflected
(blue) signal spectrum

for compression of incoming signal pulse in time domain [102]. A pulse in time domain have

wide spectrum, λbroad , and small Λ along C-FBG reflect short wavelength, λshort , and large

Λ reflect long wavelength, λshort . The parameters of design C-FBG in Optigrating software

are given in Table 5.2. With the given configuration, the 3 dB ∆λ is 3.6 dB to cover the red

and blue regions of profile of C-FBG, as shown in Figure 5.10.

Figure 5.9: Chriped grating structure [106]

Series FBGs as WDM filter

Multiple uniform FBGs in a series configuration can be used in WDM system as a multi-

channel filter. The simulated WDM filter have parameter given in Table 5.3. The reflected

signal from each FBG have 3 dB ∆λ = 0.22nm, as shown in Figure 5.11. The main application

of WDM filter is for optical add-drop multiplexer [102].
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Table 5.2: Parameters of Chirped FBG

Parameter Value Unit

period chirp (total chirp) linear (2) nm

length (LFBG) 50000 µm

center wavelength (λ ) 1550 nm

index modulation (δne f f ) 0.0006 -

(a) (b)

Figure 5.10: Chirped FBG (a) refractive index profile and (b) transmitted (red) and reflected
(blue) signal spectrum.

5.3 Problem Statement

In Figure 5.12(a), the block diagram of serial-to-parallel converter (SP) and N-point DFT

with optical sampler (derived with a clock signal) is shown. The received composite AO-

OFDM signal is first split at point S into N optical paths and each optical signal is delayed

(by an optical delay lines) and phase shifted with multiples of

τSP = TS/N

and

φ = e− j2πmn/N ,
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Table 5.3: Parameters of FBGs based WDM filter

Parameter Value Unit

index profile and number of FBGs uniform and 4 -

total length (L) 80000 µm

index modulation (δne f f ) 0.0004 -

(a) (b)

Figure 5.11: Schematic of series FBG as WDM filter (a) refractive index profile and (b)
transmitted (red) and reflected (blue) signal spectrum.

where TS is the symbol duration, m is sample on DFT circuit path and n is the index of

demultiplexed subcarrier. The delayed and phase shifted optical signals are combined at point

C and the duration of symbol at point C increased (due to SP conversion) to 2TS−τSP contains

ICI and ICI-free regions. Main reason of combining the delayed and phased shifted optical

signals is to add all the time samples in N paths as per DFT expression for kth subcarrier given

as equation (2.4) in Chapter 2. At point C, the constructive interference of delayed optical

signals of desired subcarrier gives highest power within duration τSP (due to SP conversion)

while N− 1 undesired subcarriers have null power [12]. This duration of τSP is commonly

known as ICI-free region. In order to avoid ICI, an optical sampling gate (SG) is required to

sample each demultiplexed subcarrier available in a narrow interval of duration τSP.

The graphical interpretation of modulation bandwidth and chromatic dispersion (CD) ef-

fects on the delayed and phase shifted optical signals in the DFT circuit paths (m) and on
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the sampled demultiplexed signal at points 1 and 2 are shown in Figure 5.12(b) and Figure

5.12(c). In an ideal case, modulation bandwidth ( fm−bw) is infinite (the values of 10-90% of

rise time (trise) and fall time (t f all) of the modulated symbol are equal to 0), and the symbol

caused no delay due to CD. The 3 dB modulation bandwidth is related to trise by

fm−bw =
1

2πtrise
.

The ICI-free region can be sampled with a SG having sampling instant in the center of de-

multiplexed signal, as shown in Figure 5.12(b). In a practical case where fm−bw is limited and

symbols are delayed due to CD, the ICI free region is narrowed and shifted in time domain.

The durations of received symbol of kth subcarrier and ICI-free region of demultiplexed kth

subcarrier are reduced to T ′S = TS− trise− t f all and τ ′SP = τSP− trise− t f all . The shifted and nar-

rowed ICI-free window causes AO-OFDM system performance degradation due to the clock

sampling position/instant does not coincide with the ICI-free region. To overcome the shift-

ing problem in the presence of CD, a SG is needed to be tunable which have tunable sampling

instant [104]. In AO-OFDM system, the number of subcarriers are normally greater than 100

and to sample each demultiplexed subcarrier a same number of tunable SGs are needed [12].

Furthermore, for a wider interval of ICI-free region, cyclic prefix (CP) is used by increasing

symbol duration at the AO-OFDM transmitter in order to broaden the window of ICI-free

region. The CP gives tolerance to CD but at a cost of reduced data transmission rate. In this

chapter, we theoretically evaluate performance of AO-OFDM system with FBG-assisted ICI

reduction in the demultiplexed subcarrier and compare with existing method of SG.

5.4 AO-OFDM System Model Description

In AO-OFDM system model NSC optical subcarriers from CW laser diodes LDk are modu-

lated with independent data sources Ak, as shown in Figure 5.13. k is subcarrier index from 1
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Figure 5.12: (a) Block diagram of subcarrier demultiplexing by O-DFT and sampling at the
receiver in AO-OFDM, and graphical interpretation of delayed and phase shifted signals in
DFT circuit paths (m) and sampled subcarrier at points 1 and 2 in (b) ideal and (c) practical
cases. SP: serial-to-parallel converter.

to NSC. After modulation, electric field of the kth optical subcarrier is

Ek (t) = Ak
√

Pkhk(t)e jkω1t , (5.16)

where Ak, hk(t) and Pk are modulated data symbol, rectangular pulse shape of duration TS

and optical subcarrier power at a given frequency kω1 of kth subcarrier. The kth subcarrier

is combined with NSC−1 subcarriers by combiner (or WDM Mux), with no guard bands, to

transmit AO-OFDM signal which is given as

ET (t) =
NSC

∑
k=1

Ak
√

Pkhk(t)e jkω1t . (5.17)
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Figure 5.13: AO-OFDM system (with O-DFT) and optical sampling by using fiber Bragg
grating (FBG) or electro-absorption modulator (EAM) based optical gate. LD: laser diode;
WDM Mux:wavelength division multiplexer; OS: optical sampler; PD: photo detector.

In the frequency domain, transmitted signal ET can be expressed as

ET (ω) = 2π

NSC

∑
k=1

Ak
√

PkHk(ω− kω1). (5.18)

At the receiver side, the DFT of composite signal is performed to demultiplex the desired

subcarrier (phase shifter are set to demultiplex target subcarrier) and the transfer function of

DFT for the nth subcarrier [104] is

Dn(ω) =
1
N

N−1

∑
m=0

e jmτSP(ω−n∆), (5.19)

where τSP, m, n, N, and n∆ = 2πn
Nτ

are time delay for serial-to-parallel conversion, DFT

circuit path index, desired subcarrier index, total samples in symbol duration, and phase

shift for desired demultiplexed subcarrier. Multiplying ET (ω) and Dn(ω) gives Rk,n(ω) =

ET (ω)Dn(ω) and the time-domain expression of demultiplexed signal, rk,n(t) = F−1Rk,n(ω),

is written as

rk,n(t) =
2π

N
Ak
√

Pke jkω1t
N−1

∑
m=0

e j2πm(k−n)/Nhk(t +mτSP), (5.20)
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For a target demultiplexed subcarrier, i.e. k = n, equation (5.20) can be written as

rk,k(t) =
2π

N
Ak
√

Pke jkω1t
N−1

∑
m=0

hk(t +mτSP). (5.21)

5.4.1 Designs of Optical Samplers

In an optical sampling, a sampling gate (SG) based on an electro-absorption modulator

(EAM) is used to sample the demultiplexed subcarrier in an ICI-free window, as shown in

Figure 5.13. It is driven by electrical clock signal with duty cycle,

DSG = τSG/TS, (5.22)

where τSG is a SG sampling time. The SG have sampling function, hSG(t), equals to 1 for

t≤ |τSG/2| interval, and otherwise is 0.

In the design of FBG, impulse response can be found by using the scaling factor t =
2ne f f z

c for the conversion from spatial- to time-domain, where ne f f and c are effective index

of grating and speed of light. The scaling factor is commonly used for a low reflectivity or

weak FBG. The impulse response of FBG [107] is derived from equation (5.10) is given as

hFBG(t) = ∆n(
ct

2ne f f
). (5.23)

For the ICI reduction in the demultiplexed subcarrier, LFBG and bandwidth (∆λ ) are re-

lated to the FBG interval τFBG as

LFBG =
cτFBG

2ne f f
(5.24)

and

∆λ =
λ 2

cτFBG
, (5.25)
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Figure 5.14: Reflection spectra (dB) versus wavelength (µm) for uniform profile FBGs of
lengths, LFBG, 3.2 mm (dashed line) and 8.3 mm (solid line).

where λ is wavelength of subcarrier. The ∆λ is derived for weak FBG have relation [105]

∆λ

λ
=

λ

2ne f f LFBG
. (5.26)

To evaluate FBG performance in the presence of an ICI, LFBG values from 1.2 mm to 8.3

mm are considered. The reflectivity of designed uniform FBG of rectangular index envelope

with LFBG = 3.2 mm and 8.3 mm for an ICI reduction in AO-OFDM system are shown in

Figure 5.14. With the increase in τFBG designed for subcarrier at λ = 1.55µm, the 3 dB

bandwidth (∆λ ) of reflected signal, and the insertion loss decreases from 0.27 nm to 0.18

nm and 5 dB to 1.1 dB, and reflectivity increases from -3.34 dB to -0.23 dB. The increase in

reflectivity for τFBG = 8.3 mm due to more reflected signal in a given symbol duration.

5.4.2 Chromatic Dispersion

The impulse response and transfer function of CD are given as [53, 94]

hCD(t) =

√
jc

Dλ 2d
e− j πc

Dλ2d
t2
, (5.27)
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and

HCD(ω) = e j Dλ2d
4πc ω2

, (5.28)

where D, d, and λ are CD coefficient, length of fiber, and wavelength. For FBG, convolving

equation (5.21), (5.23), and (5.28), we have received signal for the kth subcarrier as

yk−FBG(t) = rk,k(t)∗hCD(t)∗hFBG(t), (5.29)

and for SG case, convolution of equation (5.21) and (5.28) is multiplied with hSG(t) for kth

subcarrier which is as follows,

yk−SG(t) = [rk,k(t)∗hCD(t)] ·hSG(t), (5.30)

where ∗ is convolution operator. Mathematically, the incoming signal is convolve with the

transfer function of FBG and multiply with the transfer function of SG.

5.4.3 Bit Error Rate Expression

The desired middle subcarrier y2(t) from SG or FBG is photo detected for bit 1, I1, and is

given as

I1 = ℜ

∣∣∣∣∣y2(t)+ ∑
k 6=2

yk(t)

∣∣∣∣∣
2

, (5.31)
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and after expanding I1 is given as

I1 =
ℜ

TS
[
∫ TS

0
|y2(t)|2 dt︸ ︷︷ ︸

ηd

+
∫ TS

0
∑
k 6=2
|yk(t)|2 dt︸ ︷︷ ︸

ηxtalk

+2
∫ TS

0
∑
k 6=2

y2(t)yk(t) · cos(φ2(t)−φk(t))dt︸ ︷︷ ︸
ηd xtalk

+
∫ TS

0
(η1−3 +η1−4 +η3−4)dt︸ ︷︷ ︸

ηxtalk xtalk

], (5.32)

where η1−3, η1−4, and η3−4 is equal to 2y1(t)y3(t)·cos(φ1(t)−φ3(t)), 2y1(t)y4(t)·cos(φ1(t)−

φ4(t)), and 2y3(t)y4(t) · cos(φ3(t)− φ4(t)), and φk(t) is phase of kth subcarrier in equation

(5.29) or (5.30). The photo detected current for bit 0, I0, contains only the crosstalk terms

(ηxtalk,ηxtalk xtalk). The SNR and BER expressions for AO-OFDM system with SG or FBG

are given as

SNR =
ηd

|ηd xtalk|+2|ηxtalk|+2|ηxtalk xtalk|+σ2
sh +σ2

th
, (5.33)

and BER = 1
2er f c(

√
SNR/2), where σ2

sh , and σ2
th is shot noise and thermal noise modeled in

BER calculations for bit 1 and bit 0.

5.5 Performance Analysis of AO-OFDM System

5.5.1 Details of Calculations

In AO-OFDM system, the performance of desired demultiplexed subcarrier is degraded due

to ICI from adjacent subcarriers [104]. The number of adjacent subcarriers contribution in

ICI depends on bandwidth (window) of photodetector at receiver side. In our performance

analysis of SG and FBG, the received AO-OFDM composite signal contains 4 subcarriers and

to demultiplex desired subcarrier the 4-point DFT is used. In the simulations, the electrical
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NRZ signal composed of a pseudo-random bit sequence (PRBS 210-1) at 10 Gbit/s is used.

The optical delay lines for SP conversion have τSP = TS/4 which is required for 4-point DFT

operation. To evaluate optimum intervals for SG and FBG (with δne f f = 0.0001), system

performance versus DSG and LFBG are evaluated for trise = {5, 10, 15} ps without CD effects.

The simulation parameters are listed in Table 5.4.

Table 5.4: FBG-Assisted AO-OFDM System Simulation parameters

Parameter Value Unit

symbol duration (TS) 0.1 ns

transmitted kthsubcarrier power (Pk) 1 mW

fiber chromatic dispersion (D) 16.75 ps/nm/km

kth subcarrier wavelength (λk) 1550, 1550.08, nm
1550.16, 1550.24

symbol rise time (trise) 5, 10, 15 ps

index modulation (δne f f ) 0.0001 -

bandwidth of photodetector (BWRX ) 40 GHz

5.5.2 Optimum Sampling Windows with Modulation Bandwidth Limi-

tations and without CD

For an optimum interval of a SG, DSG is varied from 5% to 80% based on τSG = 5 ps to 80

ps. For trise = 5 ps, the optimum required DSG−optimum value is 22% with a minimum BER

= 10−28, and at this value τSG is smaller than τSP due to trise reduced the ICI-free region,

as shown in Figure 5.15(a). The curves in Figure 5.15(a) shows some trends for different

values of DSG. DSG values below optimum value gives worse performance due to small

optical signal is sampled although ICI level is low, and DSG values above optimum value
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gives poor performance due to ICI is also sampled with desired subcarrier. In trise = 10 ps

and 15 ps cases, the optimum required DSG−optimum values are reduced to 17% and 13% due

to narrowed ICI-free window, and BER increases to 10−19 and 10−12.
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Figure 5.15: BER performances of (a) optical gate (SG) and (b) fiber Bragg grating (FBG),
for trise = {5, 10, 15}ps and without CD effects.

In a FBG-assisted ICI reduction method, LFBG is varied from 1.2 mm to 8.3 mm cor-

responding to τFBG = 11.6 ps to 80.2 ps. For different trise values, the optimum required
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LFBG−optimum values are 3.2 mm and it is same for all three cases of trise, as shown in Fig-

ure 5.15(b). Increasing trise degrades the BER performance of AO-OFDM system but it does

need the FBG to alter its length LFBG in order to get LFBG−optimum value. By comparing the

eye diagrams in Figure 5.15(a) and Figure 5.15(b), a timing jitter exist in SG and FBG cases

in back-to-back configurations. With the increase in DSG the sampling time at the middle

of symbol duration changes, while with the increase in LFBG the eye-opening remains same

for FBG case. In AO-OFDM system, the phase errors in an O-DFT operation causes loss

of orthogonality and needed to be under tolerable limits to preserve orthogonality among

subcarriers [101, 108], as described in Chapter 2.

5.5.3 Effects of Chromatic Dispersion

In the evaluation of CD effects on SG and FBG performances, the values of trise and t f all

are considered to be much less than τSP in order to maintain orthogonality [53, 104]. In an

AO-OFDM system with TS = 0.1 ns, the values of trise and t f all are 5 ps (< τSP = 25 ps) are

considered and corresponding 3 dB modulation bandwidth is 32 GHz which is higher than

10 GHz bandwidth of modulating signal (Ak).
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Figure 5.16: BER performances of sampling gate (SG) and fiber Bragg grating (FBG) trans-
mission distance for middle subcarrier λ2 at trise=5ps.
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The SG with DSG = 22% in AO-OFDM system, the BER in back-to-back case is very low,

i.e. < 10−25. With the increase in transmission distance (with CD) the BER of the system

increases rapidly, as shown in Figure 5.16. The maximum transmission distance with DSG

= 22% is 23 km with BER< 10−3 for middle subcarrier 2 at λ2 = 1550.08 nm. The reason

of rapid increase in BER is the shifting of ICI-free region and broadening of ICI due to CD.

The ICI from NSC− 1 subcarriers broaden which causes an incomplete cancellation of ICI

at clock sampling position/instant. To keep BER< 10−3 for SG with DSG = 22%, tuning

of sampling instant is required. When the SG with DSG = 80% is used, the transmission

distance is increased from 23 km to 30 km with BER< 10−3. The improvement is because

the sampling gate with large duty cycle is able to cover the ICI-free region even though it is

shifted.

The FBG of LFBG = 3.2 mm is able to support middle subcarrier 2 to transmit up to 30 km

with the BER performance < 10−3, as shown in Figure 5.16. The FBG of 8.3 mm, provides

a large interval is able to support the transmission up to 45km with BER< 10−3, because the

increment in LFBG leads to more reflected signal in a given symbol duration. Details of FBG

length and its relationship with reflected signal is given in Section 5.2.

In our simulations, we investigated the sampling gate by increase in sampling window

from 25% to 90%. We have chosen the sampling window of 90% which is less than symbol

duration of 100 ps in order to minimize the effects of residual modulation of the subcarriers

at symbol boundaries. With sampling gate of duty cycle 90%, the transmission distance is

increased from 20 to 30 km with BER< 10−3.

By comparing the performances of both optical methods for ICI reduction, the CD causes

a shifting of the ICI-free region and the SGs are required to be synchronized/tuned with the

shifting of ICI-free region. For synchronization of sampling instant with ICI-free region,

complex tuning circuits are required in the SGs. In contrast, FBG is a passive optical device

which does not have any issues of tuning interval for ICI reduction in the demultiplexed

subcarrier in an AO-OFDM system.
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In Figure 5.16, there are two crossovers where BER performance of narrow interval de-

vice (SG or FBG) crosses the BER performance of wide interval device (SG or FBG). The

crossovers are points where BER of narrow interval device increases rapidly and have worse

performance than wide interval device. The reason of increase in BER of narrow interval

device is the delay caused by CD which shifts the ICI free region from sampling instant. For

SG, the crossover occurred at 10 km while for FBG the crossover occurred at 17 km.

We have further evaluated and compared the BER performances of both ICI reduction

methods for four subcarriers. In the case of edge subcarriers 1 and 4 at λ1 = 1550 nm and

λ4 = 1550.24 nm, the FBG of length 8 mm performs better than SG and gives a maximum

transmission distance of 50 km with BER< 10−4, as shown in Figure 5.17. The middle

subcarriers λ2 and λ3 shows the better performance in FBG than SG based sampling, and

have BER = 10−3 at transmission distance < 45 km. The difference in BER performances of

edge (λ1 and λ4) and middle (λ2 and λ3) subcarriers are due to ICI from one/two interferers

(subcarriers) to edge/middle subcarriers.
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Figure 5.17: Comparison of BER performances of FBG (length 8.3mm, solid lines) and
SG (duty cycle 80%, dash-dotted lines) versus transmission distance of four demultiplexed
subcarriers.
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5.6 Summary

In this chapter, the advantages of O-DFT device based subcarriers demultiplexing are pre-

sented and the performance degradation issues are highlighted with consideration of the CD

and modulation bandwidth effects. The performance of FBG-assisted ICI reduction is com-

pared with the existing method of optical sampling. Increase in symbol rise times requires the

reduced intervals of the SG but the length of FBG remains same. The rise time of 5 ps (total

symbol duration 100 ps) and the presence of delay due to CD, the BER performance of FBG

is better than that of SG, especially for the transmission distance above 30 km. In the case

of middle subcarriers (two adjacent subcarriers), FBG gives BER < 10−3 for 45 km. In AO-

OFDM system with FBG based passive device, synchronization between the ICI-free region

and sampling instant is not needed, which omitting complex tuning circuits and reducing the

system cost, and the CP is not required due to tolerance to CD increased.
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Chapter 6

Conclusions and Future Works

In this thesis, the performance of OOK-modulated AO-OFDM system with a data rate of 10

Gbit/sec is theoretically evaluated in the presence of symbol time misalignment and subcar-

rier frequency offset. The performance is evaluated for spectral-efficient AO-OFDM systems

which typically use 10 Gbaud M-QAM modulation format for optical subcarriers transmis-

sions. In the presence of chromatic dispersion and limited modulation bandwidth, the syn-

chronization issues in the demultiplexed subcarriers after O-DFT in AO-OFDM system are

also discussed.

6.1 Time and Frequency Offsets in OOK AO-OFDM Sys-

tem

In the presence of symbol timing and subcarrier frequency offsets, the overall system per-

formance degrades. Due to limited resources and cost, an odd-and-even and a decorrelated

systems are commonly used in experiments to evaluate the performance of AO-OFDM sys-

tems. In Section 3.2, we presented the analytical model of OOK-modulated AO-OFDM

system (AO-OFDM transmitter and coherent detection) with 10 Gbit/sec data rate. The per-

formance of AO-OFDM system is evaluated for the two cases. In the case I, the numbers of

subcarriers are from 8 to 512 with receiver bandwidths 30 GHz and 50 GHz. In the case II,

we focused on 3 and 5 number of subcarrier for receiver bandwidths of 30 GHz and 50 GHz.

In both studies, the tolerance of subcarrier frequency offset is higher than the symbol time

misalignment. In AO-OFDM system with 3 number of subcarriers, the tolerance of the sym-
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bol time misalignment and the subcarrier frequency offset is 11% and 14%. We presented

that the CP increases the tolerances of symbol time misalignment and subcarrier frequency

offset. With CP = 50%, the ISI and ICI variances due to symbol time misalignment are re-

duced by 4 dB. In the presence of subcarrier frequency offset, the ICI variance is reduced by

6.24 dB at CP = 80%. In this chapter, we have investigated the relationships of AO-OFDM

system design parameters (number of subcarriers, receiver bandwidth, cyclic prefix) with the

time and frequency offsets.

6.2 Timing and Frequency Offsets in M-QAM All-Optical

OFDM System

For high spectral efficiency and data rate, optical subcarriers are normally modulated by us-

ing advanced modulation formats such as M-QAM. In this work, we modelled M-QAM mod-

ulated AO-OFDM system (AO-OFDM transmitter with coherent detection) with 10 Gbaud

symbol rate. The performance of M-QAM AO-OFDM system in the presence of symbol time

misalignment and subcarrier frequency offset shows lower tolerance limits than the OOK-

modulated AO-OFDM system. In the presence of symbol time misalignment and subcarrier

frequency offset, the BER performance of the system is compared with the existing emula-

tion setups in section 4.3. In section 4.4, the existing methods of reducing ICI effects such

as CP, optical delay lines, and tunable laser diode are investigated. After evaluation of the

effects of the time and frequency offsets on AO-OFDM system performance, a DLI based

passive device is proposed for ICI reduction. With the proposed method, the tolerances of the

symbol time misalignment and subcarrier frequency offset are increased from 3.2% to 29%

and 5.5% to 10%. The proposed method of reducing ICI shows the better performance in the

presence of time offset in AO-OFDM system, but the dependance of DLI transfer function

on frequency offset gives only 4.5% improvement in tolerance, as discussed in section 4.4.3.
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6.3 FBG-Assisted ICI Reduction for AO-OFDM Demulti-

plexed Signal

An O-DFT based demultplexing of optical subcarriers in AO-OFDM system overcomes the

requirement of high-speed data converters, and existing optical circuits of O-DFT with its

application in AO-OFDM system is discussed in section 2.3.3 and in section 5.1. The trans-

mitted AO-OFDM composite signal after transmission over fiber have relative delay among

the subcarriers due to the CD which degrades the orthogonality among subcarriers. In the

presence of CD, the sampling point at the output of O-DFT is shifted and further narrowed if

modulation bandwidth is limited. Both ideal and real cases of O-DFT function with sampling

clock are discussed in section 5.3. In the theoretical evaluations of AO-OFDM system perfor-

mance in the presence of CD effect with limited modulation bandwidth, the SG performance

shows degradation. We proposed the FBG-assisted ICI reduction method for AO-OFDM

system. The differences in the designs of FBGs as an O-DFT/IDFT device and as an ICI

reducing device are given with their transfer functions in section 5.1.4 and in section 5.4.1.

With the FBG as ICI reducing device, the BER of the system is below 10−3 for fiber length

45 km without using CP.

6.4 Future Works

In this section, a brief discussion on future research works is given with some suggestions.

1. OFDM in optical communication system is emerged as the promising technology for

spectral-efficient superchannels transmission. In Chapter 4, the theoretical investiga-

tion of performance of M-QAM AO-OFDM systems in the presence of time and fre-

quency offsets is conducted, and the simulations show the lower tolerances than the

tolerances of emulation setups, such as M-QAM modulated odd-and-even and decorre-

lated configurations. The future research efforts can be made on an experimental setup
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for the performance evaluation of AO-OFDM system with M-QAM modulation format

in the presence of time, frequency, and phase offsets. In these efforts, a higher order

of modulation format and independent modulation sources for desired and adjacent

subcarriers will be considered.

2. In Chapter 4, a DLI based ICI reduction method is proposed and performance of AO-

OFDM system is theoretically evaluated. In the future work, the performance improve-

ment of AO-OFDM system in an experimental setup by using DLI based passive device

is highly desirable.

3. The methods of ICI reduction by using DSP is studied in this thesis. In future, joint time

and frequency offset estimation and compensation by using DSP for superchannels

would also be desirable.

4. OFDMA based PON offers flexible channel bandwidth sharing and cost-effective solu-

tion. With the increase in number of ONUs in PON, the complexity of algorithms for

MAC layer and dynamic bandwidth assignment increases. In Appendix F, the prelimi-

nary study of protocols (random access and MAC) is conducted by using commercially

available softwares (Matlab and OPNET). Future work on protocols for OFDMA based

PON is particularly attractive to get the most of the advantages of using OFDM in op-

tical communication system.
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Appendices

A Random Variables

A.1 Gaussian Random Variables

The Gaussian random variables are the most commonly used random variables in many phys-

ical phenomena including thermal noise, interference in communication circuits [90, 91, 97].

The probability density function (PDF) fX(x) of Gaussian random variable X with its mean

µ , variance σ2 and standard deviation σ is given as [97]

fX(x) =
1√

2πσ2
e−

(x−µ)2

2σ2 (1)

The cumulative distribution function (CDF) is required to find the probability of deviation

σ of a Gaussian random variable from its mean µ which is given as

FX(x) =
∫ x

−∞

fX(y)dy

=
∫ x

−∞

1√
2πσ2

e−
(y−m)2

2σ2 dy
(2)

The CDF expression contains integral which is impossible to be expressed as closed form.

One way is to find the integral by numerical simulations which gives approximate CDF of a

Gaussian random variable.

Figure A.1(a) shows the Gaussian PDF is centered at mean and width is directly propor-

tional to σ . For µ = 0 and σ = 1, the random variable X is referred as normal Gaussian

random variable. In Figure A.1(b) some useful properties of a Gaussian random variable is
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(a) (b)

Figure A.1: Probability density function of Gaussian random variable for (a) different m and
σ2 values and (b) probabilities associated with σ2 [109].

shown. For a given random variable, the probabilities of random variable are

P(µ−σ < X < µ +σ) = 0.6827

P(µ−2σ < X < µ +2σ) = 0.9545

P(µ−3σ < X < µ +3σ) = 0.9973.

(3)

The PDF of X decreases as it deviates from its µ and area under the PDF beyond 3σ from µ

is quite small.

Commonly, the CDF is converted to the standard forms: error function erf(x), comple-

mentary error function erfc(x), Φ-function, and Q-function which are given as [97]

erf(x) = 2√
π

∫ x
0 e−t2

dt

erfc(x) = 1− er f (x) = 2√
π

∫
∞

x e−t2
dt

Φ(x) = 1√
2π

∫ x
−∞

e−
t2
2 dt

Q(x) = 1√
2π

∫
∞

x e−
t2
2 dt.

(4)

The Φ and Q expressions offers straightforward method to express the CDF of a Gaussian

random variable. The CDF is related to the Φ-function with the transformation t = (y−m)/σ
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applied to equation (A.2) as

FX(x) =
∫ x

−∞

1√
2πσ2

e−
(y−m)2

2σ2 dy

=
∫ x−m

σ

−∞

1√
2π

e−
t2
2 dt

= Φ(
x−m

σ
).

(5)

In order to evaluation the Gaussian CDF, we just need to evaluate the Φ-function from−∞ to

(y−m)/σ . Similar approach is used to find the Pr(X > x) using Q-function which is given as

Pr(X > x) =
∫

∞

x−m
σ

1√
2π

e−
t2
2 dt = Q(

x−m
σ

) (6)

The apparent relationship between the Φ-function and the Q-function is

Q(
x−m

σ
) = 1−Φ(

x−m
σ

). (7)
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B Derivation of Variance of ICI

In an experiment, the sequence of N independent trials have sample space of 2N points and

each point represent the possible sequence of length N. For example, if N=2 then possible

points are 4 in sample space. Here we use the 2N points to find the relative frequency of

an event occurrence [96]. In the direct method, the relative frequency in an experiment of

two independent trials, with one event is A and second complementary event is B = ∆AC, is

calculated by first counting the number of occurences, N(A,B) and then divide by N which is

given as

fN(A,B) =
N(A,B)

N
. (8)

In the indirect method, the conditional relative frequency of B given A is calculated first

and multiplied with relative frequency of A which is given as

fN(A,B) = fN(A) fN(B|A). (9)

Both methods of calculating the relative frequency of two independent trials yields equal

values. But in case of large N, the values of fN(B) and fN(B|A) have same values and equation

(B.9) can be written in an approximate form as

fN(A,B) = fN(A) fN(B) (10)

Now we find the probabilities of each sequence or sample point, where probability is

actually representing the relative frequency of a sample point. Thus, if the probability of A

is p then probability of B is 1− p. The assignment of probabilities and events to the sample

points is shown in Table 1. The number m(A) is used to tie the repeated physical experiment

with the model which is given as

m(A)
∆
=

h
N
, (11)
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where h is the total number of A in the sample point.

Table B.1: Probability Assignment

Sample Point Event Probability m(A)

s1 AAA p3 1

s2 AAB p2(1− p) 2
3

s3 ABA p2(1− p) 2
3

s4 BAA p2(1− p) 2
3

s5 BBA p(1− p)2 1
3

s6 BAB p(1− p)2 1
3

s7 ABB p(1− p)2 1
3

s8 BBB (1− p)3 0

The probability of a sample points with two A′s, P[s2,s3,s4], is given as

P
[

m(A) =
2
3

]
=

4

∑
i=2

P[si] = 3p2(1− p) (12)

The general expression of probability that m(A) = h/N is given as

P
[

m(A) =
h
N

]
=

 N

h

 ph(1− p)N−h

=
N!

h!(N−h)!
ph(1− p)N−h,

(13)

where probability assignment in equation (13) is known as the binomial distribution and the

term

 N

h

 is binomial coefficients [96].
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In equation (3.10) Ak is equally likely to be 1 or 0 with probability 1/2. From [96],

probability of h Heads in N tosses of an unbiased coin:

P(h) =

 N

h

(1
2

)N

=
N!

h!(N−h)!

(
1
2

)N

. (14)

Here, N=Nsc-1 and h=1,2,3,. . . , Nsc-1. The total mean and variance of ICI are

µηST M ICI = µh×µg(τk)|h = ∑
h

P(h)×µg(τk)|h, (15)

and

σ
2
ηST M ICI

= µh×σ
2
g(τk|h)− (µh×µg(τk)|h)

2

= ∑
h
[σ2

g(τk|h)×P(h)−
(
µg(τk)|h×P(h)

)2
].

(16)

In order to elaborate the function P(h) in relation with the receiver bandwidths, BWRX =

30 GHz and 50 GHz, the two cases are explained below:

For BWRX = 30 GHz In this case, the number of adjacent subcarriers of desired subcarrier

are 2 and h values are 1 and 2. The expressions of mean and variance for desired edge and

middle subcarriers are given as

µηST M ICI E = P(h = 1)×µg(τk)|h (edge subcarrier), (17)

µηST M ICI M = 2×P(h = 1)×µg(τk)|h +2×P(h = 2)×µg(τk)|h (middle subcarrier), (18)

σ
2
ηST M ICI E

= [σ2
g(τk|h)×P(h = 1)−

(
µg(τk)|h×P(h = 1)

)2
] (edge subcarrier), (19)
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and

σ
2
ηST M ICI M

= 2× [σ2
g(τk|h)×P(h = 1)−

(
µg(τk)|h×P(h = 1)

)2
]

+2× [σ2
g(τk|h)×P(h = 2)−

(
µg(τk)|h×P(h = 2)

)2
] (middle subcarrier).

(20)

For BWRX = 50 GHz The number of adjacent subcarriers of desired subcarrier at receiver

with BWRX = 50 GHz are 4 and h = 1 to 4. The expressions of mean and variance for desired

edge and middle subcarriers are given as

µηST M ICI E = P(h = 1)×µg(τk)|h +P(h = 1)×µg(τk+1)|h +P(h = 2)×µg(τk)|h

+P(h = 2)×µg(τk+1)|h (edge subcarrier),
(21)

µηST M ICI M = 2×P(h = 1)×µg(τk)|h +2×P(h = 1)×µg(τk+1)|h

+6×P(h = 2)×µg(τk)|h +6×P(h = 2)×µg(τk+1)|h

+6×P(h = 3)×µg(τk)|h +6×P(h = 3)×µg(τk+1)|h

+2×P(h = 4)×µg(τk)|h +2×P(h = 4)×µg(τk+1)|h (middle subcarrier),

(22)

σ
2
ηST M ICI E

= σ
2
g(τk|h)×P(h = 1)−

(
µg(τk)|h×P(h = 1)

)2

+σ
2
g(τk+1|h)×P(h = 1)−

(
µg(τk+1)|h×P(h = 1)

)2

+σ
2
g(τk|h)×P(h = 2)−

(
µg(τk)|h×P(h = 2)

)2

+σ
2
g(τk+1|h)×P(h = 2)−

(
µg(τk+1)|h×P(h = 2)

)2
(edge subcarrier),

(23)
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and

σ
2
ηST M ICI M

= 2×{σ2
g(τk|h)×P(h = 1)−

(
µg(τk)|h×P(h = 1)

)2}

+2×{σ2
g(τk+1|h)×P(h = 1)−

(
µg(τk+1)|h×P(h = 1)

)2}

+6×{σ2
g(τk|h)×P(h = 2)−

(
µg(τk)|h×P(h = 2)

)2}

+6×{σ2
g(τk+1|h)×P(h = 2)−

(
µg(τk+1)|h×P(h = 2)

)2}

+6×{σ2
g(τk|h)×P(h = 3)−

(
µg(τk)|h×P(h = 3)

)2}

+6×{σ2
g(τk+1|h)×P(h = 3)−

(
µg(τk+1)|h×P(h = 3)

)2}

+2×{σ2
g(τk|h)×P(h = 4)−

(
µg(τk)|h×P(h = 4)

)2}

+2×{σ2
g(τk+1|h)×P(h = 4)−

(
µg(τk+1)|h×P(h = 4)

)2} (middle subcarrier),

(24)

where k and k+1 are adjacent subcarriers spaced at 10 GHz and 20 GHz from desired sub-

carrier.

From [97] mean and variance of function g(τk) are

µg(τk) =
NSC

∑
k=2

∞∫
−∞

g(τk) p(τk)dτk (25)

σ
2
g(τk)

= E
∣∣g(τk)−µg(τk)

∣∣2 (26)

where p(τk) =
1√

2πστk
exp(−τ2

k /(2σ2
τk
)) is probability density function of independent Gaus-

sian distributed variables τk. So, we finally arrive at

µg(τk) =
NSC

∑
k=2

exp
(
−2π2 f 2

1 σ2
τk

)
− exp(−2π2 f 2

k σ2
τk
)

jπ( fk− f1)
(27)
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and

σ
2
g(τk)

=
NSC

∑
k=2

1

2π2( fk− f1)
2 ×{1− exp

(
−2π

2( fk− f1)
2
σ

2
τk

)
−2
(
exp
(
−2π

2 f 2
1 σ

2
τk

)
− exp(−2π

2 f 2
k σ

2
τk
)
)2}. (28)

Substituting relations given in equation (B.27) and equation (B.28) in equation (B.15) and

equation (B.16) yields equation (3.12) and equation (3.13), the desired moments of ICI due

to STM.
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C Derivation of Variance of ISI

The value of previous symbol Ap
1 is either 0 or 1 with equal probability 0.5. Total mean and

variance of ISI are given as

µηST M ISI = ∑
Ap

1={0,1}
µg(τ1)|Ap

1
P(Ap

1)

= µg(τ1)|Ap
1=1×P

(
Ap

1 = 1
) (29)

and

σ
2
ηST M ISI

= σ
2

g(τ1)|Ap
1
×µAp

1
−
(

µg(τ1)|Ap
1
×µAp

1

)2

= ∑
Ap

1={0,1}
σ

2
g(τ1)|Ap

1
×P(Ap

1)−

 ∑
Ap

1={0,1}
µg(τ1)|Ap

1
×P(Ap

1)

2

= σ
2
g(τ1)|Ap

1=1×P
(
Ap

1 = 1
)
− [µg(τ1)|A

p
1=1×P

(
Ap

1 = 1
)
]2.

(30)

The mean and variance of g(τ1) are derived and given as

µg(τ1) = 2στ1e−2π2 f 2
1 σ2

τ1/
√

2π (31)

and

σ
2
g(τ1)

= σ
2
τ1
− (µg(τ1))

2. (32)

Substituting equation (C.31) and equation (C.32) in equation (C.29) and equation (C.30)

gives equation (3.15) and equation (3.16).
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D Monte Carlo Simulation Model

In digital communication system, Monte Carlo simulations are commonly performed for BER

performance evaluations in the presence of noise and interference. In the process of estimat-

ing a bit error probability, the random variable Y (with mean m and variance σ2 defined by

Gaussian random variable G) is given as

Y = m+G. (33)

For estimation of probability that Y < 0 at given m, the series of experiments based on Monte

Carlo method is performed. In an experiments, independent and identically distributed (IID)

Guassian random variables are generated G and added with constant value m which can be

written as

Yi = m+Gi, (34)

where i=1, 2, ... , N. In order to find P(m) = P(Y < 0|m) in an experiment, the value

of Yi is tested for < 0 and a new random variable Xi generate 1 or 0 output which can be

mathematically written as

Xi =

 0, if Yi ≥ 0

1, if Yi < 0
(35)

After testing of state of Yi, the probability P(Y < 0|m) is estimated as

P(m) =
1
N

N

∑
i=1

Xi (36)

In equation (D.36), the number of received random variables Yi that are less than zero is

divided by total number of Gaussian random variables transmitted.

In Monte Carlo simulation model, the performance of the M-QAM modulation format in

an AO-OFDM is evaluated. The main advantage of rectangular constellations of QAM signal

is easy generations of two pulse amplitude modulation (PAM) signals which are marked on
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quadrature signals [110]. At transmitter, the random numbers are generated uniformly as

the information symbols corresponding to required 4-bit combination for 16-QAM symbols,

as shown in Figure D.2. The output of 16-QAM signal selector is the signal points with

coordinates of (Amc,Ams). The shot and thermal, and interferences from adjacent subcarriers

and previous symbol in the desired subcarrier are considered and are modelled as Gaussian

random noise and have components {nc,ns}. The received signal is given as

r = [Amc +nc Ams +ns] (37)

The received signal r is detected and computation of distance metric performed in order to

find the closest signal point to the r. For BER counter, the detected 16-QAM symbols are

compared with transmitted symbols. In Monte Carlo simulations, over 106 symbols are used

for error counting.

Figure D.2: Monte Carlo model for M-QAM communication system [110].
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E SSFBG based optical DFT device

In chapter 2, the requirements of high-speed data converters (ADC and DAC) and complex

DSP algorithms for AO-OFDM system are discussed, and needs of optical DFT/IDFT are

also studied in chapter 2 and chapter 5. In [12], N−1 passive delay interferometers (DI) with

N sampling gates are proposed to perform the optical DFT function, as shown in Figure 5.4.

For the large number of subcarriers, the design of DI based O-DFT device becomes complex,

and we need an integrated and scalable solution based on arrayed waveguide grating (AWG)

device for optical DFT and IDFT functions [58]. In an AWG device, two slab regions are

interconnected with arrayed waveguides, as shown in Figure 5.1. The drawback of DI- and

AWG- based O-DFT functions are the requirement of short and precise optical sampling

techniques in order to extract the desired subcarrier in an intercarrier interference (ICI) - free

window. Furthermore, the details of O-DFT function with electroabsorption modulator based

sampling gate are discussed in section 1.3. The superstructure fiber Bragg grating (SSFBG)

based O-DFT/IDFT function provides a real-time system without the needs of a synchronous

optical sampling gates and a local oscillator (LO) at the receiver. In this appendix, we give

details of design of SSFBG device for O-DFT/IDFT function.

E.1 Realization of SSFBG device for AO-OFDM system

In the SSFBG design, the grating refractive index profile is sinusoidally modulated is given

as

δne f f (z) = A(z−mZ0)× cos
(

2π

Λ

)
ϕ, (38)

where Z0 is the length of mth segment of the SSFBG device and ϕ is grating phase term.

The steps of derivation of impulse response h(t) of SSFBG are discussed in section 5.1.4.

The linear convolution of input signal x(t) and h(t) gives the final expression of the reflected

signal y(t) which is given as

y(t) = B
(

t−m
2nZ0

c

)
, (39)

142



where

B(t) = Kx(t)⊗
(

A
( ct

2n

)
cos
(

2π

Λ

ct
2n

))
ϕ. (40)

For designed SSFBG O-DFT/IDFT device, the segment length Z0 and phase ϕ terms are

given as

Z0 =
cT

2n(N +C
, (41)

and

ϕ = e− j2πmk/N , (42)

where m is mth sample of an OFDM symbol, k is kth subcarrier, and C is cyclic prefix (CP).

Required time samples for N = 32

In order to support N = 32 subcarriers, the condition of number of time samples must be equal

to N. Figure E.3 shows the plot of sampled input signal of x(t) = [1 1 1 1 1 1 1 1] and k varies

from 1 to N. The x(m) with zero-padding gives the linear phase but magnitude plot shows

edge subcarriers can be easily demultiplexed. In RF-OFDM systems, zero-padding is usually

used as guard interval/CP [10]. In order to design SSFBG for 32 subcarriers, the length is

increased from 8 to 32 and phase ϕ is varied for m = 0,1 · · ·31, k = 0,1 · · ·31, and N = 32, as

shown in Figure E.4.

Figure E.3: DFT of x(m) = [1 1 1 1 1 1 1 1] and N=32.
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Figure E.4: DFT of x(m) with time samples equal to number of subcarriers without zero-
padding.

SSFBG structure for 32 subcarriers

For N = 32 subcarriers, the SSFBG for O-DFT/IDFT functions is designed in Optigrating

package and parameters are given in Table E1.

Table E.2: Parameters of SSFBG for DFT/IDFT Functions

Parameter Value Unit

data rate 10 Gbit/sec

OFDM symbol duration (T ) 0.1 ns

chip period (Z0) 256 µm

kth subcarrier range 1550.08 to 1552.56 nm

subcarrier spacing (∆ f ) 0.08 nm

maximum index change 9E-05 -

For subcarrier 1 at λ1 = 1550.08 nm, the total length of SSFBG is 10.24 mm and phase of

each segment is an integer multiple of π/16. The structure and reflected signal of designed

SSFBG for λ1 are shown in Figure E.5 and Figure E.6. The duration of CP is 20 % of total

OFDM symbol duration and can be increase for high dispersive medium.
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SSFBG for O-DFT for λ1

C

SSFBG for O-IDFT for λ1

Zo=256um

T=100ps, N+C=32+8 samples

Zo=256um

T=100ps, N=32 samples

Figure E.5: SSFBG design for all-optical signal generation and detection for subcarrier 1.

Figure E.6: Reflected time domain signal from SSFBG at transmitter.
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E.2 Proposed SSFBG based IM/DD AO-OFDM System

The SSFBG based passive device for O-DFT/IDFG function in AO-OFDM system provides

a cost effective solution with more number of subcarriers, as shown in Figure E.7. The

multicarrier source such as modelocked laser diode generates N = 32 subcarriers that are

modulated at 10 Gbit/sec by intensity modulator (IM). The pulse width of optical signal from

multicarrier source is varied from 1 ps to 1.12 ps with power of 3 dBm. After modulation, the

bank of SSFBGs are used to perform O-DFT function with an optical delay lines (ODL) are

used to align the subcarrier in time-domain. Before transmission over fiber, the OFDM signal

is filtered by optical bandpass filter (OBPF) with bandwidth 320 GHz (32×10 GHz) in order

to reduce the noise. Total fiber length is 10 km with chromatic dispersion of 16.75 ps/(nm.km)

is used in simulations. At the receiver side, after splitter (remote node) the SSFBG is used to

demultiplex the desired subcarrier. In a direct-detection, the shot, thermal, signal-ASE, and

ASE-ASE are considered in receiver noise.

Figure E.7: Proposed SSFBG based All-Optical OFDM system.

Results and Discussions

In the simulations of SSFBG based AO-OFDM system, the BER performance is evaluated

with and without OBPF and varying the pulse width of optical signal from multicarrier

source. In case of without OBPF and pulse width = 1 ps, the edge subcarriers have BER

< 10−4 while five middle subcarrier have BER > 10−3, as shown in Figure E.8(a). In or-

der to reduce the effects of ASE, OBPF of bandwidth = 320 GHz is used while pulse width

remains same as first case. In case of OBPF of 320 GHz, the BER performance of middle
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subcarriers becomes better while due to passband’s edges of OBPF the edge subcarriers show

reduced BER performance, as shown in Figure E.8(b). With the increase in the pulsewidth

duration from 1 ps to 1.12 ps, the bandwidth of subcarriers is reduce which ultimately reduces

the spectral overlap and the intercarrier interference. In Figure E.8(c), the BER performance

of AO-OFDM system with OBPF of bandwidth 320 GHz and pulse width 1.12 ps is shown.

With the increase in pulse width, the edge subcarrier have BER< 10−5 and also BER perfor-

mances of middle subcarriers are in between 10−4−10−3.

(a) (b)

(c)

Figure E.8: BER performances of AO-OFDM system with SSFBG based O-DFT/IDFT. (a)
Without OBPF and pulse width = 1 ps, (b) with OBPF=320 GHz and pulse width = 1ps, and
(c) with OBPF = 320 GHz and pulse width = 1.12 ps.
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F MAC Protocols for Next Generation-PON

With the exponential growth in demand of bandwidth hungry multimedia services, the cur-

rent wire (very high speed digital subscriber line) and wireless (Worldwide Interoperability

for Microwave Access, WiMax)techniques cannot support the bandwidth requirements in an

access networks. Passive optical networks (PON) are widely adopted as a cost-effective solu-

tion for broadband access networks [112, 113]. The multiple access network architectures in

the PONs are evolved from time division multiple access (TDMA), wavelength division mul-

tiple access (WDMA), hybrid TDMA/WDMA, code division multiple access (CDMA) and

orthogonal frequency division multiple access (OFDMA). In an OFDMA PONs, the channel

bandwidth is divided into a orthogonal subcarriers and distributed statistically among optical

network units (ONU) which can be further exchanged between ONU by using TDM [114].

Figure F.9: Variants of OFDMA-PON: (a) Statistically assigned different OFDM subcarriers
to different ONUs; (b) Assigned different ONUs different subcarriers and time slots; (c)
Assigned different ONUs different subcarriers and time slots on different wavelengths [38].

There are multiple variants of OFDMA in PON which are graphically illustrated in Fig-

ure F.9. In the simple architecture of OFDMA-PON, the different subcarriers are assigned

to different ONUs from the common OFDM band and the assignment can be adaptive for

the real-time traffic demand by using media access control (MAC) algorithms [115]. For

the higher flexibility of subcarriers’ allocation, the ONU’s bandwidth resources are divided
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in time which gives the advantage of using same subcarriers to multiple ONUs in differ-

ent time slots, as shown in Figure F.9(b). This type of architecture is normally referred as

OFDMA+TDMA approach and can be implemented by MAC layer protocols. In the three

dimensional approach, the OFDM+TDMA approach is implemented on each possible wave-

length of WDM by using DSP based algorithms. In the third approach, the wavelength as-

signments are static if laser sources are generating fixed wavelengths signals which provides

a WDM overlay. By adoption of WDM overlay in PON, the aggregate capacity increases

which can further be exploited with the novel MAC protocols for OFDMA-PON [116, 117].

In [118], the MAC protocol for the OFDMA-PON is proposed. The OFDMA frame

format of proposed system consists of optical line termination (OLT) and several ONUs is

shown in Figure F.10. The OFDM subcarriers are assigned dynamically by implementing

modified frame format which includes the time slot assignment also. The use of subcarriers

by ONU in an allocated time slot is scheduled by OLT.

Figure F.10: Proposed architecture of OFDMA-PON [118].

In [119], the control schemes between OLT and ONUs are proposed to avoid the collisions

in upstream transmissions. The ONUs transmit data by using allocated subcarriers with one

additional dedicated control subcarrier (scco) between OLT and ONUs. The scco is normally

used for control signalling and can only be used for data transmission if a particular ONU

have real-time data request. After data transmission is completed through the scco, the scco

is released and available to be used for all ONUs in the PON. In Figure F.11(a), the scco

is shown as bus line for dedicated control signalling channel between OLT and ONU. The

procedure of request and grant messages between OLT and ONU is shown in Figure F.11(b).

The performance in terms of packet delay and throughput of the proposed MAC protocol
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Figure F.11: Proposed Layer 2 (MAC) based control scheme [119].

design for OFDMA-PON is numerically evaluated. In an OFDMA-PON, 128 ONUs are

connected with OLT as point-to-point topology and transmission distance of 20 km. Total

OFDM subcarriers are 512 including one subcarrier as scco. The length of message signal is

64 bytes and data transmission rate is 19.53 Mbit/sec. In the bursty uplink transmissions, the

ONUs follows the Pareto distribution with mean = 62.37 kbytes. In Figure F.12, the packet

transmission delay in proposed scheme is small for traffic load < 0.95. The traffic load is

defined as the ONUs traffic over the capacity of network. When load is higher than 0.95, the

packet delay eventually increases due to large number of packets are in queue which increases

the packet collisions and decreases the throughput.

Figure F.12: Packet delay versus traffic load in proposed MAC algorithm [119].

F.1 Random Access Protocol

In our study of random access protocol for NG-PON, the most common protocol pure ALOHA

is considered first in which the ONUs transmit the packets when they have packets without
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sensing the medium. In this protocol, each ONU hopes that the other ONU are not transmit-

ting to the destination at the same time. In simulations, total number of ONUs are 10, data

rate of each ONU is 10 Mbit/sec, and packet frame size is 8000 bits. The performance is

evaluated by calculating the total number of successful reception Ps. The throughput, S, of

pure ALOHA protocol is given as

S = GPs = Ge−2G, (43)

where G is the number of attempts by ONU in given time and e−2G terms shows the ALOHA

protocol have the Poisson distribution. Figure F.13 shows the throughput first increases with

the increase in arrival rate upto 4 Mbit/sec and then performance of system decrease for arrival

rate > 5 Mbit/sec due to no control of packet transmission in the pure ALOHA protocol.

Figure F.13: Simulation results from Matlab for pure ALOHA protocol.

In [120], the MAC protocol based on carrier sense multiple access/collision detection

(CSMA/CD) for PON is proposed. In proposed architecture, the upstream and downstream

data transmission over two different wavelengths, λ u and λ d and WDM multiplexer/demultiplexer

is used to combine/seperate the wavelengths at OLT. For uplink transmissions, the an echo
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from splitter/combiner is used by ONU to detect the other ONUs’ transmissions. For down-

link transmission, the most common protocol of broadcast is used [121]. The experimental

setup of proposed protocol for PON comprises of two ONUs which generates the packets of

131 bytes at data rate 155 Mbit/sec, as shown in Figure F.14. The signals of ONUs after com-

biner and transmission over 10m fiber are monitored at OLT. In case of collision, the OLT

stops recovering the signals. The other signal from combiner is further splitted by coupler

for carrier-sensing circuits in order to detect and compare the signals for extraction of correct

time of collision.

Figure F.14: Experimental setup of proposed optical CSMA/CD protocol[120].

F.2 CSMA based MAC Protocol

For CSMA protocol implementation, the OPNET software package is used with the stages

required for transeiver implementation is shown in Figure F.15. The link between OLT and

ONUs is configured for following 6 stages:

Tx delay Time required to complete the transmission of packet, Td = packet length/data rate

Channel Match classify transmission is valid, noise or ignore on the basis DFT operation at

receiver

Background Noise Thermal and Shot noise are considered in our system
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Noise Defined two conditions: valid packet received and other packet is valid; valid packet

received but other packet is invalid. The validity of packet is decided on the basis of

Channel Match stage.

SNR Calculation on the basis of stages 7, 8, and 9.

BER Derived from SNR calculations

Figure F.15: Transceiver pipeline stages in OPNET software package [122].

After implementation of pipeline stages required for CSMA based MAC protocol for op-

tical network of 20 nodes, the performance is evaluated and compared with ALOHA protocol.

Each node transmit data on the allocated subcarrier with equal priority of data transmission.

The network architecture in bus topology is shown in Figure ??. The CSMA protocol pro-

vides cost effective solution as each node in the network receives the network traffic which

can be utilize for carrier sensing function. In case of more than one packet received at the

node, then receiving node decides that the packet is valid, noise/interference, or ignore. De-
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spite of different subcarriers assigned to nodes, the simultaneous packet transmissions from

more than one node causes interference. The model and simulation results comparison of

ALOHA and CSMA protocols is shown in Figure F.16. In CSMA model, the link between

the node’s receiver (bus rx) and transmitter (tx proc) is enabled in order to implement the

packets transmissions from nodes after carrier sensing, while in ALOHA the carrier sensing

link is disabled. For perofrmance evaluations, two parameters are configured which are given

as

Channel Traffic, G=
Submitted Packets

time
(44)

and

Channel Throughput, S =
Received Packets

time
. (45)

(a)

(b)

Figure F.16: Implementation and results of (a) CSMA and (b) ALOHA protocols in OPNET
software.

With the increase in G, S increases in both models but ALOHA have low performance of

S = 0.41 at G = 1 than CSMA based MAC protocol which gives S = 0.6 at G = 1, as shown
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in Figure F.16. For 1 ≤ G ≤ 1.4, the CSMA protocol still shows better S performance than

ALOHA, but for G >1.4 the S reduces for CSMA, due to intercarrier interference from other

nodes in the network. In order to further improve the performance of CSMA protocol, the

possible ways are use the collision domain feature of nodes, implement the star topology, and

time slots assignments [115] to the nodes in the network .
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