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Abstract

In this thesis we quantify costs of adverse selection in insurance markets where there

are multiple sources of adverse selection. We aim to find the relative impact of genetic

information as one of these sources.

Using new data on the effects of components of a polygenic model of breast cancer,

we model adverse selection in a critical illness insurance market. We confirm the

results of a previous study, which used a simpler polygene model without details of

particular genes, that polygenes pose a greater source of adverse selection risk than

the major genes (BRCA1 and BRCA2).

In a start-up market for long-term insurance, we model the progression of adverse

selection costs over time, where premiums are repriced to adapt to the information

the insurer gains about its business mix from its claims experience. In a U.K. setting

we find the greatest costs of adverse selection come from a hypothetical intermediate

stage of dementia progression which is not visible to an insurer, while testing of the

APOE gene poses very little risk. We find the U.K. government’s proposed cap on

care liability has very little impact on adverse selection costs, as it benefits a very

small proportion of people.
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Introduction

In this thesis we are concerned with measuring costs of adverse selection in insurance

markets where there are multiple sources of adverse selection. The aim of the thesis

is to estimate the relative impact of genetic information as one of these sources.

We will use multiple state Markov models to represent the insurance markets of

interest (critical illness insurance and long-term care insurance) with states indicating

health status, whether genetic test has been taken, presence of a family history and

whether the life is insured. These will be parameterised in part using transition

intensities from relevant previous studies, as well as making use of available data

from prospective cohort studies to fit transition intensities ourselves. Other transition

intensities depend on a complex pattern of genetic inheritance, to estimate these we

will simulate the future life histories of a large sample of lives. For the purpose of

illustrating the relative impact of sources of adverse selection, we do not consider the

compatibility of data to be a concern. The simulated samples might diverge slightly

from the populations we attempt to model, but the transition intensities we will use

provide us a baseline for modelling health. From this baseline, we can observe the

order of magnitude of the adverse selection costs from each source and allow us to

understand how they interact. As with any model, careful consideration should be

given over the appropriateness before applying our models to any other purpose.

Chapter 1 gives a background in some of the key concepts which we will use

throughout the work. Firstly, we describe terms relating to genetics which will be

useful to greater understand the work of this thesis. We next describe how adverse

selection arises and review all the available literature on the costs of adverse selection

due to genetics and on the evidence for its occurrence in insurance markets (or lack

thereof). A recent ruling by the European Court of Justice regarding sex discrimina-

tion in the insurance industry, has implications to our work. We close this chapter

with a brief outline of this ruling.

In Chapter 2 we consider a polygenic model of breast cancer, using known gene

data, and use this to outline a model of critical illness insurance in order to calculate

a cost of adverse selection. The multiple sources of adverse selection in this market

are both related to genetics: two major genes whose mutations are rare but confer

a very high risk of developing breast or ovarian cancer; and a polygenic component,
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where each of a large number of ‘polygenes’ increases or decreases risk of developing

breast cancer a small amount but their variants are common among the population.

Common to all previous studies assessing the cost of adverse selection (including

our work of Chapter 2), has been the assumption of an established market, i.e. the

adverse selectors have been buying insurance at that rate for such a period that

premiums have already absorbed it. Their analyses involve calculating the percentage

difference between premiums in a market with adverse selection and one without

adverse selection. They can shed no light on how the premiums would get to this

stage over time and what losses might be incurred in the process.

In Chapter 3 we take the modelling further by outlining a multiple state Markov

model for a start-up market of long-term care insurance. With this model, we explic-

itly show the progression of adverse selection costs using the development of infor-

mation that an insurer would gain from analysing the claims history of its existing

business, to reprice premiums for new business. In long-term care insurance, a major

cause of claim is associated with Alzheimer’s disease, which has a genetic component,

leading to genetics as a potential source of adverse selection. We incorporate adverse

selection from sources other than genetic information, by including states of health in

which the probability of reaching a claim is high and we assume the insurer cannot

identify lives in these states through underwriting. To overcome the complication of

insurance benefit amounts which depend on the value of previous benefit payments, we

develop a simulation approach of estimating the expected present values of insurance

benefits and premium payments.

In Chapter 4 we apply this long-term care insurance model to a United Kingdom

setting. We parameterise benefits based on the cost of care provision in the U.K. and

include a government proposal to limit the individual’s liability for their care costs.

To assess their impact over time, we calculate adverse selection costs under various

scenarios in which different sources of adverse selection are allowed to influence buying

behaviour.

Finally, in Chapter 5 we give the conclusions this work leads to and suggest where

further work may be useful in light of the direction of research in the genetics field.
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Chapter 1

Background

In this chapter we give some background and review some of the available literature

on various concepts that will be used further in this thesis.

1.1 Genetics

Since this thesis is concerned with the use of genetic information in insurance markets,

we start by giving an overview of genetics.

To introduce genetics requires an introduction to what genes are made of: de-

oxyribonucleic acid or DNA. Most living organisms contain the molecule DNA (the

exception being RNA viruses) and use it to code genetic information. The structure

of DNA is of two strands of polymers in a double-helix, joined by hydrogen bonds be-

tween the pairing of bases: adenine with thymine and cytosine with guanine (Watson

and Crick, 1953).

Humans have 3.9× 109 base pairs (Pasternak, 1999) and in most DNA containing

cells these are arranged into 23 pairs of chromosomes in the cell’s nucleus. The sex

cells, or gametes, contain only one of each chromosome allowing one chromosome of

each pair to be received from the father and one from the mother. Mitochondrial

DNA, a sequence of only 16,600 base pairs located in the mitochondria of a cell, is

inherited exclusively from the mother.

A gene is a sequence of bases. These sequences are used to piece together proteins

from their building blocks, amino acids — a set of three bases corresponds to a partic-

ular amino acid or to start/stop the sequence. A gene’s position on a chromosome is

referred to as its locus (plural loci). Only around 1.5% of human DNA codes protein

synthesis (Sudbery, 2002).

When cells reproduce, DNA replicates in order to pass on a complete set of chro-

mosomes to the child cell, identical to the chromosomes of the parent cell. At various

points along each chromosome, DNA unwinds and the hydrogen bonds joining the

individual strands, are broken. The double stranded complementary nature of DNA
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bases allows each strand to act as a template for the other. An enzyme, known as

DNA polymerase, reads the exposed bases and joins the corresponding base to create

the new strand. Since this replication begins at various points, each segment needs

to be joined to form a complete chromosome.

Meiosis, the process of producing gametes, involves genetic recombination whereby

portions of the maternal chromosome and portions of the paternal chromosome are

joined to produce a new chromosome with genes from each of their own parents —

from the offspring’s point of view, this means a chromosome from its father contains

sequences from both paternal grandparents and similarly for the chromosome from

its mother. The probability for recombination to occur at any given location is small,

so genes which are close together are likely to stay together. Whereas, genes which

are further apart or are on a different chromosome, can be seen as being inherited

independently.

Different forms of a gene are known as alleles. For each gene, a person can there-

fore be either homozygous (both alleles are identical) or heterozygous (two different

alleles). Alleles can be associated with particular traits in a dominant (apparent in

heterozygotes) or recessive (apparent only in homozygotes) fashion. The cause of this

is related to the level of gene product being produced. Someone who is heterozygous

for a particular trait is able to synthesise some level of functional gene product from

their normal allele, the other variant they carry may result in overproduction, under-

production or synthesis of a different product. In the case of recessive traits, the level

of functional gene product produced by heterozygotes is adequate for the normal trait

to be shown. However, for dominant traits, the level is inadequate by heterozygotes

and a variant trait is shown although there may be a delay until later in life while the

lack/excess of gene product builds up to a point where the trait is shown. Someone

who is homozygous for a recessive trait will show it because they have no normal

version of the gene to produce sufficient functional gene product. The traits which

are shown are known as the phenotype, whereas the versions of the associated genes

is the genotype.

Actuaries are usually concerned with diseases which act dominantly rather than

recessive. This is because recessive gene disorders are usually present from birth or

childhood e.g. cystic fibrosis, whereas dominant gene disorders might occur later in

life. So an applicant for insurance may not yet be experiencing any visible symptoms

to tell the insurer that they are (at least) at risk of getting the disease.

Gene variations which have a frequency in the population of more than 1% are

referred to as polymorphisms. In particular, single-nucleotide polymorphisms (SNPs)

are polymorphisms with a difference in a single base. Errors in the DNA replication

process occur regularly and are usually repaired quickly (De Bont and van Larebeke,

2004). However, they can persist and exist as mutations. To be passed on to offspring,
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a mutation must be present in the sex cells.

Mutations of genes coding for proteins do not necessarily cause a change in phe-

notype. The probability that a genetic disease develops in a carrier of the associated

version of a gene is its penetrance. Where this probability is very high, the gene is

said to be deterministic and it is fully penetrant. However, if it gives a higher risk of

the disease but the symptoms might never show, the gene is a susceptibility gene and

has incomplete penetrance.

Penetrance of a gene can be regulated by factors other than the gene itself. The

epigenetic processes, DNA-methylation and histone modification, act to either ‘switch

on’ or ‘switch off’ a gene without altering the genetic sequence. These processes can be

influenced by environmental factors including, for instance, a high-fat diet or cigarette

smoking (Aguilera et al., 2010).

Hence, a fully penetrant, dominant single-gene disorder will be displayed by the

carrier, whereas a recessive version may be masked for generations by the dominant

allele. This was first observed by Gregor Mendel, giving rise to the name Mendelian

inheritance.

In a polygenic disorder, multiple genes interact and each contributes to a change

in risk of disease. This creates a more complex pattern of inheritance which can result

in clusters of disease in families, but is not Mendelian.

To uncover the genes associated with diseases, geneticists have historically used

linkage analysis to narrow down the area in the genome to look at in more detail. This

involves testing all chromosomes of family members for markers (making use of the

tendency of genes which are close together to stay together described above) which

are carried by sufferers but not among healthy family members. This technique led to

the discovery of the role of gene locations with rare but high-risk disease associated

alleles, e.g. BRCA1 and BRCA2, associated with breast cancer; CFTR, which causes

cystic fibrosis; and the HD gene, which causes Huntington’s disease (Bailey-Wilson

and Wilson, 2011). More recently, as technology has advanced and costs have reduced,

genome-wide association studies (GWAS) have been used to analyse all genes at high

resolution. These analyses have aimed to find loci related to complex, non-Mendelian

disorders, by the use of thousands of unrelated participants.

Once the gene responsible for a disease is located, epidemiologists study its de-

velopment. However for a rare disorder, sampling at random from the population

is unlikely to include sufficient carriers. Instead, it is common to study the families

of those known to be affected. This will mean oversampling from a subgroup which

is not necessarily representative — it excludes families with carriers who have not

shown symptoms. This ascertainment bias can therefore result in overestimates of

the parameters of interest. Burton et al. (2000) describes this in greater detail.

For further details of human genetics, good textbooks (and also the source of much
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of this introduction) are Pasternak (1999) and Sudbery (2002).

In our modelling we will make great use of the term relative risk, particularly in

the context of gene variants. This is a means of expressing the transition intensity of

an event for one cohort, relative to some baseline cohort:

µa = µbaseline ×RRa, (1.1)

where µa and µbaseline are the transition intensities for cohort a and the baseline

cohort respectively, and RRa is the relative risk for cohort a, relative to the baseline

cohort. Using this representation of genetic risk, relative risks will easily into our

chosen modelling framework (multiple state Markov models), allowing us to estimate

transition intensities for different groups.

1.2 Adverse Selection

When an insurance company sets its premium rates, it uses a set of assumptions about

the future mortality and morbidity of the lives it expects to buy the product. The

population is not homogeneous however, and this pricing basis will produce premiums

that some will see as cheap because they consider themselves more likely to claim than

the rest of the population; while others will consider them expensive if they do not

think they will get much return from the contract. Underwriting serves to alter the

basic premium and offer more appropriate premiums where necessary, e.g. lives who

consume large amounts of alcohol might be charged a rating of say +50% on a critical

illness product; enhanced annuities give a higher rate of annuity but these are only

available to lives in ill-health who would otherwise not gain much from a standard

annuity; and so on.

If underwriters are limited in their ability to identify the heterogeneity of a popu-

lation, lives who think they are likely to claim will see greater value from the contract

and may be more likely to buy insurance. Conversely, lives who think they are un-

likely to claim may be less likely to buy the product. This we refer to as adverse

selection but we recognise that it is simply rational decision making on the part of

the proposer — unlike the similar concept of non-disclosure, whereby the proposer

fraudulently withholds information which the insurer is entitled to use. If adverse

selection occurs in the market then the average risk of the pool will be greater than

that assumed, the premiums will be insufficient to cover benefits and a loss will occur

on the business.

More formally, we define adverse selection as the decision to buy insurance based

on an assessment of one’s own probability to claim to be higher than the market
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average, implied by the premium rates on offer when the insurer is unable to make a

full assessment.

This scenario relies on asymmetric information (or information asymmetry) which

we define as the case where two parties hold differing levels of information which allows

one party a strategic advantage.

A similar, but somewhat different, concept to adverse selection is that of moral

hazard. Moral hazard occurs after the insurance contract has commenced and is de-

fined as being where the insured is not disincentivised from taking risks because their

insurance covers the potential resulting loss.

Adverse selection relies on information asymmetry, however economists largely ig-

nored the impact of asymmetric information and its influence on decisions, assuming

perfect information by all parties, until the seminal work of Akerlof (1970) and Roth-

schild and Stiglitz (1976). They showed this asymmetry leads to inefficiencies in the

insurance markets.

Akerlof (1970) discusses the impact of low quality goods (or ‘lemons’ as he refers

to them from his analogy to used car sales) driving out the high quality goods to

such a point where no market for the latter exists at all. In an insurance market,

when only the lemons (the lives with a high probability of claim) remain, the high

premiums required could make the market unviable.

Rothschild and Stiglitz (1976) explored the nature of information asymmetry fur-

ther in an insurance market with competition and illustrated using indifference curves,

that pooling equilibria (where all are offered the same contract) cannot exist in their

model. Additionally, constructing contracts which appeal differently to the different

risk cohorts (by varying coverage size and price) might also not produce an equilib-

rium. They argue that in withholding the information, high-risk lives are no better off

but low-risk lives are worse off and suggest it is best for the system if high-risk lives

reveal what they know. To understand how pooling equilibria do exist in practice,

Allard et al. (1997) added distribution costs to the model and found that economies

of scale cause pooling equilibria to always exist when costs are large enough.

1.2.1 Genetic Adverse Selection

Underwriting where there is a sound statistical basis to suggest a life is more or

less likely to claim is often acceptable. Indeed there are clauses written into anti-

discrimination laws in the U.K. that permit difference in terms if it “is done by

reference to information that is both relevant to the assessment of the risk to be

insured and from a source on which it is reasonable to rely”1. However, there are

1Equality Act 2010, sch 3 para 21(1)(b)
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certain pieces of information about an individual that are contentious.

In the United Kingdom there is a moratorium on the use of genetic test results in

insurance underwriting, while some other jurisdictions, for instance the United States

of America have the prohibition enshrined in law and Sweden extends this to the

medical history of family members; whereas, in Australia there is a requirement to

divulge test results. Under the terms of the U.K.’s moratorium, an insurer may use

the results of a predictive genetic test only if it has been approved by the government

and the sum assured is greater than a product specific limit:

• Life insurance — £500,000;

• Critical illness insurance — £300,000;

• Income protection — £30,000 pa.

At the time of writing, the only approved test is for Huntington’s disease and only

for life insurance.

Since this moratorium permits individuals to withhold genetic test results, there

is an asymmetry in the information known to the two parties, and the individual is

better able to assess their likelihood of claiming. Genetic testing is not currently a

common occurrence, some tests are available through the National Health Service,

e.g. for breast cancer genes, BRCA1 and BRCA2, but these are offered if there is

a high probability of a mutation being present. Hence, the volume of asymmetric

information will be relatively low. However, it is plausible that testing will become a

more frequent as costs decrease and preventative medical treatments are developed.

Much debate over the ethics and social outcomes of underwriters having access

to test results has ensued over the past two decades. On one side, the insurance

industry argued that it was fair to the other policyholders that those who bring extra

risk to the pool pay for this increased cost and that “genetic information, where

it is actuarially relevant, is little different from other forms of predictive healthcare

information” (Daykin et al., 2003). However opponents to its use see their genes as

the most personal of information and want their privacy protected. They fear the

creation of a genetic underclass who are uninsurable because of what they view as

discrimination.

Before much research had been conducted, the press had hyperbolic reactionary

quotes such as, “Non-disclosure of genetic-test results could spell the end of the life-

insurance market,”2 and headlines including, “Fears raised over genetic tests”3. In

contrast to the extreme statements, the U.K. government has not legislated on the

2Attributed to Achim Wambach, University of Munich, by The Economist magazine on the 19th
of October, 2000 — http://www.economist.com/node/398173

3The Observer on the 22nd of October, 2000 — http://www.guardian.co.uk/money/2000/oct/

22/personalfinancenews.observercashsection2
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subject, but instead set up advisory bodies who would issue advice based on avail-

able evidence: the Human Genetics Advisory Commission in 1996 which became the

Human Genetics Commission (HGC) in 2000. The result is the agreement with the

Association of British Insurers (ABI) to create and implement the moratorium on the

use of genetic testing set out at the start of this section which came into existence in

2001 for 5 years (and renewed three times since, currently until 2017) until further

research could be performed.

The genetics and insurance committee (GAIC) was given the task of approving

genetic tests under the moratorium until it was disbanded in 2009. Although only

one test went through the full approval process (others were submitted but GAIC was

suspended and re-established before completion), under advisement from geneticist,

Professor Sandy Raeburn, the ABI regarded eight genetic disorders being significant

to insurance business:

• Breast and ovarian cancers (of the hereditary form);

• Early onset Alzheimer’s disease;

• Familial adenomatous polyposis;

• Hereditary motor and sensory neuropathy;

• Huntington’s disease;

• Multiple endocrine neoplasia;

• Myotonic dystrophy;

• Adult polycystic kidney disease, although this was later dropped from the list

due to its testing method (discussed below).

To feed into the debate, actuarial research has aimed to quantify the impact on

insurance business of not being able to underwrite when genetic information (with

the possible inclusion of family histories) is withheld from the insurer.

Costs of Genetic Adverse Selection

The history of quantitative research in genetics and insurance begins with Macdonald

(1997). This study used a ‘top-down’ approach to model all genetic disorders in a life

insurance market: extreme assumptions are made regarding the frequency of genetic

disorders, their impact on mortality and the rate of testing. The moments of the

financial impact of not being able to use the results of genetic tests are calculated

— in this case by solving Norberg’s equations (Norberg, 1995) — and where these

are negligible, it can be concluded that adverse selection from genetic testing is not a
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concern. He found that adverse selection in the form of high risk lives buying larger

sums assured posed a greater threat than those lives merely increasing their rate of

purchase. Indeed, there was an approximately linear relation between the size of

benefit purchased by adverse selectors and the size of loss, as a percentage of baseline

costs.

Since the epidemiological consequences often take some time to emerge after the

discovery of the role of genes in particular diseases, the simple assumptions of this

method are an advantage. However, its ability to draw conclusions when the adverse

selection costs are non-negligible, is limited. In this case, a ‘bottom-up’ approach —

modelling particular genetic disorders with realistic assumptions — is more appropri-

ate.

The first such bottom-up modelling was that of Lemaire et al. (2000). They

calculated the relative prices of term assurance for women with a family history of

BC or OC (which itself can be argued to be genetic information) and for women with

mutations in either the BRCA1 or BRCA2 genes which are known to cause BC and

OC. The epidemiology of BRCA1 and BRCA2 mutations available to them at this

time was limited to estimates of the penetrance and a normal distribution for age of

onset for a non-specific BRCA mutation.

In the follow-up to this work, Subramanian et al. (1999) considered the insurance

purchase behaviour for lives before and after a test for BRCA1 or BRCA2 mutations

and used this to calculate costs of adverse selection — the percentage by which pre-

miums calculated assuming no adverse selection should be increased in the presence

of adverse buying behaviour. Set in a Markov environment, this model allowed the

possibility of buying varying sums assured at an increased probability after a positive

test; and a possibly lower sum assured at a decreased probability of purchase after

a negative test. Additionally the probability of lapsing the policy was lower after a

positive test. When pricing in knowledge of any family history, these adverse selection

costs were minimal. However, when family history could no longer be used as a rating

factor, adverse selection costs were substantial.

Possibly because BC is the most prevalent form of cancer in the world (Parkin

et al., 2001), a large body of research on the disease exists. This has yielded a

progression of epidemiology which has been followed by a series of actuarial studies

involving BC since the first work by Lemaire et al. (2000). We list the key milestones

of this research here:

• The epidemiology available to Macdonald et al. (2003b) allowed them to calcu-

late stand-alone critical illness premiums specific to those with either a BRCA1

or BRCA2 mutation respectively. Subsequently they calculated the adverse se-

lection cost from lives testing positive for either of these buying insurance at an

increased rate.
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• Gui et al. (2006) included the development of a family history of BC or OC

among first degree relatives (mother/sisters) as a state in their models of life

insurance and critical illness markets. This allowed them to consider testing

to be done after a family history has emerged (which is more realistic) and to

calculate adverse selection in situations where family history can and cannot be

used as a rating factor.

• Antoniou et al. (2002) proposed a hypothetical polygenic model of BC risk

without epidemiology of particular genes. Macdonald and McIvor (2006, 2009)

used this to calculate family history ratings and adverse selection costs in a

critical illness insurance market.

• Viswanathan et al. (2007) used an elastic demand model to create a dynamic

response from lives, to the price being charged by the insurer (which itself is

dynamic based on how it thinks the population would respond). The underlying

model of BC/OC was that of Subramanian et al. (1999). Elasticity of demand

was calculated based on survey responses. They found price elasticity of demand

to have only a minimal impact on adverse selection costs.

• Lu et al. (2011b) applied the semi-Markov model of progression of BC and OC

from Lu et al. (2011a) (which included the major genes, BRCA1 and BRCA2

only) to an income protection insurance market and answered questions similar

to those answered by the preceding studies. This model incorporated the varying

treatments given to women with and without a BRCA1 or 2 mutation and the

recurrence of their cancer later in life. During the period of any treatment (or

during some other sickness), she would be unable to work.

In each of these studies the results were similar: premiums chargeable to lives with a

high risk genotype would be very high and possibly beyond insurability limits, however

in a market the size of the U.K., the costs of adverse selection would be negligible

or small enough to be managed by the insurer. Chapter 2 of this thesis develops the

polygenic model of BC risk in the advent of the development of actual epidemiology

for some of the polygenes hypothecated by Antoniou et al. (2002).

Actuarial research involving other disorders has also been conducted, a signifi-

cant volume of which has been done in the Genetics and Insurance Research Centre

(GIRC).

The first bottom-up modelling performed by GIRC was on Alzheimer’s disease

(AD), a form of dementia which primarily affects older people, above 60 years old. It

is known that the APOE gene is associated with AD (Saunders et al., 1993) however

this is not the only component of the genetic risk. Macdonald and Pritchard (2001)

calculated the adverse selection costs from lives who know they have a high risk
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genotype for AD in a long-term care market. While the premiums appropriate for

lives with the highest risk variant of APOE may be up to 40% higher than average

premium, adverse selection costs were generally not significant. The only case where

single-premiums would have to rise significantly is when the market is small, APOEε4

carriers (the high risk variant) have risks of developing AD at least as high as observed

and are highly likely to buy insurance and there is extensive testing of APOE.

AD can also affect people under 60 years old, in a form known as early-onset

Alzheimer’s disease. The genes involved in early-onset AD are known to include

APP, PSEN-1 and PSEN-2. Gui and Macdonald (2002) modelled critical illness and

life insurance markets in a Markov and semi-Markov framework respectively — due

to the survival after diagnosis being duration dependent, the life insurance market

is semi-Markov. They considered a method whereby they paid out the value of the

reserve upon transition into the early-onset AD state or the sum assured on death

without early-onset AD. This is the same method referred to as ‘instantly reinsuring’

in Gui et al. (2006). They found similar conclusions to those of Macdonald and

Pritchard (2001), that adverse selection costs are negligible unless the market is small

and buying behaviour of high risk lives is ‘extreme’.

Adult polycystic kidney disease (APKD) is a single gene disorder caused by muta-

tions in one of at least two genes: APKD1 and APKD2. It can lead to end stage renal

disease (kidney failure), thereby triggering a critical illness claim. Before DNA-based

testing was available, at risk individuals (those with a family history of APKD) could

be tested with ultrasound for signs of cysts, long before symptoms had developed.

Since this does not involve direct testing of DNA or chromosomes, it was outside

the narrow definition of a genetic test in the moratorium. Gutiérrez and Macdonald

(2003) modelled a critical illness insurance market where adverse selection comes af-

ter a positive test result which is hidden from the insurer. They also considered the

cases where negative results were also hidden and where family history rating was not

permitted. Again, while premiums for those carrying an APKD mutation were large,

the costs of adverse selection were not very high — around 5% increase to premiums

in a small market when the moratorium is extended to family history.

With the development of reliable DNA-based tests for APKD, Gutiérrez and Mac-

donald (2007) revisited their previous work to perform their analysis with the 3 genetic

subgroups (no mutations, APKD1 mutation and APKD2 mutation) now possible,

as opposed to their previous 2 genetic subgroups (no mutation, mutation of either

APKD1 or APKD2). Additionally, they assumed dialysis is available to those with

ESRD and the possibility of a kidney transplant (with varying scarcity) to model

the development post-ESRD to extend the model to a semi-Markov model of a life

insurance market. One of the more interesting points of this work was that individ-

uals with a family history could be charged lower premiums if they tested positive
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for APKD2. However, as this would be divulging an ‘adverse’ test result, this would

not be permitted under the moratorium and consequently the individual would not

be able to benefit from this extra knowledge.

Huntington’s disease (HD) is a neurological disease which leads to loss of cognitive

function and death and whose sole cause is from mutations in the HD gene. These

mutations are of the form of repetitions of the trinucleotide, CAG, in a particular

region of the gene. Penetrance depends on the number of CAG repeats with a lower

average age of onset as number of repeats increases: < 36 repeats is normal and won’t

develop HD; 36–39 repeats, the individual could develop HD; ≥ 40 repeats will cause

HD. Gutiérrez and Macdonald (2002) modelled the onset and development of HD and

they applied it to critical illness insurance and life insurance markets in Gutiérrez and

Macdonald (2004). Although the positive test result for the HD gene is the only one

which is permitted under the moratorium, the adverse selection costs calculated by

Gutiérrez and Macdonald (2004) were negligible for life insurance and very small for

critical illness insurance (where the test results are not usable).

MacCalman (2009) performed further analysis on HD to address an issue of relia-

bility of insurance estimates when epidemiological data could be affected by ascertain-

ment bias. She fitted a Normal distribution for age-at-onset which did not include the

allowance of number of CAG repeats that Gutiérrez and Macdonald (2004) included.

She confirmed the high premiums that would be necessary when genotype of HD is

known to be adverse.

Lu et al. (2007) modelled hereditary nonpolyposis colorectal cancer (HNPCC), a

form of cancer which is caused by mutations in any of MLH1, MSH2, MSH6, PMS1

and PMS2 (the DNA mismatch repair genes). Colorectal cancer is one of the most

common forms of cancer and, like many other cancers, it can be sporadic or hereditary.

The majority of HNPCC cases are a result of mutations in MLH1 and MSH2 so these

are what they considered in their modelling of a critical illness insurance market.

Premium rates for people with a mutation exceeded the common limit of insurability

(extra premiums of 250%), while those with a family history of the disease could be

charged an extra premium of 30–374% depending on entry age and term. However,

the cost of adverse selection on genetic tests or family history was very small.

Although each of these studies has found that in isolation the adverse selection

costs are small, they noted a caveat that it could mount up when considering a bigger

picture, with all genetic disorders contributing. Macdonald and Yu (2011) brings

together all of the major gene disorders discussed above (the polygenic model of BC

is excluded), with the addition of myotonic dystrophy (MD). By piecing together the

models for each disease, they model them all in the context of both critical illness

and life insurance markets. In each market, the impact of a moratorium on genetic

testing was minimal and on use of family history small enough that they would not
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have ‘any measurable effect.’

Economic Outcomes

The impact of adverse selection has also been measured in terms of welfare and market

efficiency. Before genetic testing was the issue, tests for human immunodeficiency

virus (HIV) were a concern in a similar manner. Doherty and Thistle (1996) found

that when information was symmetric between the insurer and individual, the value

of the information was negative so insurance discourages them from being tested.

This is due to a risk-averse individual preferring to avoid the lottery they would be

faced with around the high and low risk policies for which they would be charged.

Obviously, a public health goal would not be to deter testing so this is an undesired

outcome. However, if test results cannot be observed, there is a positive private value

in getting tested but at a trade-off in loss of market efficiency since premiums would

be increased to cover adverse selection.

A similar study was performed by Hoy and Polborn (2000) in the case of a life

insurance market — where the loss to be covered is not clearly definable like it is

in other markets. They created scenarios in which a new test could lead to either

Pareto improvements or Pareto worsenings. They suggest that when only few people

are tested, it is likely that prices will not change much but those being tested will

benefit.

Hoy and Witt (2007) applied their results to the genetic testing of BRCA1 and

BRCA2. In a simulated market of 10-year term assurances offered to women aged

35 to 39, they showed that market efficiency could suffer when a large proportion of

women made use of genetic tests.

Evidence of Genetic Adverse Selection

Justification for the existence of genetic adverse selection can be found in some of

the available literature but most studies do not find evidence to reject a hypothesis

of no adverse selection in the market. Understandably from the rarity of mutations,

empirical evidence for adverse selection based on genetic testing is limited. Some

studies have been done, which we review below, but we will see that their results are

not necessarily reliable.

Macdonald and Tapadar (2010) aimed to find how high average insurance pre-

miums would have to go before low-risk lives would stop buying, thereby creating

adverse selection, using utility theory. They argued that adverse selection would oc-

cur if the expected utility from insurance purchase was lower than if insurance was

not purchased. Under their model, purchase was binary: the life bought insurance if

this improved their expected utility, or they did not buy it. They fitted 4 models of
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utility, for a genetic disorder with environmental interactions, and found no evidence

that adverse selection would cause a serious risk.

Macdonald and McIvor (2009) performed a similar analysis, using the same utility

functions as Macdonald and Tapadar (2010), with their own BC polygene model.

Their findings were that very low-risk polygenotypes would not buy insurance under

2 of the utility models.

Both of these studies assumed rational behaviour on the part of the customer,

without any allowance for emotion. However, knowledge that one’s risk profile implies

a higher than average probability of disease can create anxiety (Aktan-Collan et al.,

2001), while Loewenstein (2000) outlines how this type of visceral factor can have

‘important, but often unappreciated consequences for behaviour’.

The first study to use empirical data to assess the existence of adverse selection

was Zick et al. (2000). They were concerned with how testing for BRCA1 might

influence purchase of life insurance. Their ‘at-risk’ group comprised female members

of kindred K2082, a large extended family in Utah and Idaho which is known to be

at risk of having a particular BRCA1 mutation (Goldgar et al., 1994; Botkin et al.,

1996). They were given genetic counseling before any decision to take a test and at

the receipt of test results. The control group comprised of women who had previously

been interviewed for having a family history of BC or OC. The same selection criteria

— no missing data, no life insurance paid by employer and no personal history of

cancer — was applied to both groups. Their statistical analyses showed that neither

positive, nor negative test results, were significant factors in buying insurance giving

insufficient evidence to reject the hypothesis of no adverse selection. They suggest

reasons why there was not stronger evidence of adverse selection. These include that

these women and the insurers have knowledge of their family history so a test ‘serves

to confirm’ what they already suspected — their behaviour might have been impacted

upon first suspicion but at the same time, the insurers would put up their premiums.

Additionally, they suggest that a year’s follow-up period may have been too short as

the women who tested positive would have more pressing concerns than insurance, e.g.

how to reduce their risk of cancer. As the authors acknowledged, most of the women

in the study identified themselves as ‘active members of the Church of Jesus Christ

of Latter Day Saints’, a very patriarchal religion which supports traditional gender

roles. Since life insurance tends to be used as a means of protecting income, a group

where women are often housewives might be expected to have lower life insurance

cover. Putting these two points together could make generalising the results invalid.

Aktan-Collan et al. (2002) surveyed participants of a genetic testing programme for

HNPCC one year after their test. Prior to testing, all participants were considered to

have 50% chance of having a mutation based on confirmations of mutations in family

members in a previous study. In a questionnaire the participants were asked about life
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and health insurance before and after the test. Although they found no significant

increase in purchases after the test which would have illustrated adverse selection

from the test results, a significantly higher proportion of mutation carriers had health

insurance before even having the test. They suggest respondents not wishing to admit

that they had used the test results as means of making their decision to buy could be

a possibility for this anomaly.

Armstrong et al. (2003) performed a retrospective cohort study on women who had

received genetic counseling and/or a genetic test for BRCA1 or BRCA2 mutations at

their university clinic. Their counseling involved up to 3 stages: general information

about BRCA1 and BRCA2 testing and breast cancer risk; an individualised assess-

ment of their breast cancer risk before testing; women who agree to testing receive

their results with ‘further counseling’ to explain its implications. For this study, the

participants were mailed questionnaires to ask about life insurance and their experi-

ences in purchasing it. The results showed an association with the predicted level of

breast cancer risk and increases in life coverage. Additionally, carriers of a BRCA1/2

mutation were significantly more likely to increase the life cover.

Zick et al. (2005) used the results of a randomised controlled trial that aimed to

evaluate genetic education and counseling for adult children of AD patients. Ques-

tions about insurance were only a part among a wider whole in the evaluation. The

control group were told of their AD risk based on sex and family history, while the

other subjects were tested for at least one APOEε4 allele, the high risk variant, and

advised based on this additional information and given counseling. Participants were

followed for a year after the initial interview. In a bivariate analysis, the authors

found the percentage of APOEε4 positive subjects who had changed their long-term

care insurance coverage to be significant, as was the percentage who were considering

changing their level. Taylor et al. (2010)’s research using a later iteration of the trial

which went further in genotyping, agrees with this finding. However, in a multivariate

analysis by Zick et al. (2005), which controlled for confounding factors, this signifi-

cance was reduced, such that the p-value was 5.11% for a positive test result being a

factor in those who had changed. The sample size was small and the authors stressed

the need for a larger and more diverse sample.

Oster et al. (2010) compared ownership levels of long-term care insurance of lives

at risk of HD with the general population. Their study followed a group of lives

with a family history of HD who were to be given a genetic test, asking them at

various intervals about their level of insurance coverage. They compared this with

details of the Health and Retirement Survey (HRS) of individuals over 50 years old,

which also includes a small number of individuals under 50 years old, because it asks

about long-term care insurance ownership. Since HD has usually manifested by the

time people are old, they excluded people older than 65 from the HRS dataset in
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an attempt to address the mismatch. In comparing ownership after controlling for

various factors including age, they found that the individuals who they were following

had a significantly higher ownership than the general population. Additionally, they

found a significant difference between ownership among those with a positive test

result and those with a negative test result, implying adverse selection based on test

results. However their design has flaws which could invalidate their results. They

acknowledge that there is an issue with the sample size of tested individuals and

that there is selection bias. However, they do not consider the effect of repeatedly

asking individuals whether they have insurance to cover the potential costs of their

care. Since this is not a product that is commonly purchased, particularly at the

ages in the dataset, this could have the potential to affect a significant proportion of

purchases.

Evidence of Adverse Selection — Other than Genetics

We now turn to examples of adverse selection being found without specific cause for

its occurrence. If genetics is considered as merely one of many ways that individuals

can measure themselves as likely or unlikely to claim under a policy then there may

be no reason to assume that their decision making process would differ and we review

a selection of work on more general adverse selection in insurance markets.

Health insurance in the United States is often provided as an employment benefit

so commonly people are automatically enrolled in a group policy. Brown (1992)

measured adverse selection in terms of the underbuying of lives who see themselves as

low risk. Since automatic enrollment reduces adverse selection in the group market

(low-risk lives would be unlikely to opt out as it is paid for by the employer), he

suggests that the individual market would have higher potential adverse selection.

He uses data from a national survey which collected details of insurance levels and

opinions of health from 2,745 randomly selected families (2,515 with a group policy

and 225 in the individual market). From this he estimated a measure for the quantity

of insurance for each family as a factor of the insured’s risk characteristics and design of

the policy. To find the discrepancy between predicted and actual insurance purchase,

he fitted a linear model which controlled for various variables expected to influence

purchase. A response of good health in the survey was a significant factor in this

model, hence he concluded the presence of adverse selection. He notes however, it

may be possible that low-risk lives are off their demand curve (i.e. in receipt of

more insurance than they would otherwise purchase) in the group market, hence the

‘control’ does not necessarily follow what behaviour would truly be, distorting results.

Finkelstein and Poterba (2004) analysed a U.K. insurance company’s book of

compulsory and voluntary annuity business, sold over a 17-year period, for evidence

of adverse selection. They focused on three features of annuities: the initial annual
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payment; degree of back-loading (from some form of escalation); and size of payments

to the estate after death. Since these features would appeal differently according to

how a person views their mortality (assuming the insurer has not got the information

to make the pricing indifferent to mortality i.e. asymmetric information), they analyse

the mortality experience with a statistical model. Their results show significantly

lower mortality among lives who bought policies with a high degree of back-loading in

both markets; in the voluntary market there was significantly higher mortality among

those who bought policies with payments to the estate, however the in the compulsory

market this was only the case among lives who bought a 10 year guarantee period.

They argue that this suggests some unobserved factors of mortality is correlated to the

choice of annuity and is consistent with models of adverse selection. They highlight

that adverse selection is but one possibility and suggest that preference, for instance

to leave a bequest, could be the causative factor if they are correlated with mortality

even if the individual is unaware.

Finkelstein and McGarry (2006) investigated the nature of private information

in a long-term care insurance market. They analysed results of the HRS, which in

addition to asking about about long-term care cover, also asks participants about

nursing home use and the expectation of moving to a nursing home among other

questions. Their findings included a positive correlation between private information

about level of risk of going into a nursing home and insurance coverage (adverse

selection). However, in looking at the actual experience, they found nursing home

care use not to be positively correlated with insurance coverage. They suggest the

discrepancy is partly due to pessimism — individuals who actively try to improve

health, thereby avoiding/delaying nursing care, are likely to overestimate their risk.

This pessimism could be considered an example of the inability to assess one’s

own risk described by Siegelman (2003). He views methods used for testing adverse

selection as flawed because they rely on an individual to assess their own health

which is inherently difficult. Indeed, he suggests an insurance company who receives

a medical report about the individual will no doubt have a better ability to assess the

risk. While he concedes that adverse selection does exist, he considers the impact of

adverse selection on the markets to be the more important aspect for researchers.

Courbage and Roudaut (2008) analysed the French market for long-term care

insurance using the second wave of the Survey of Health, Ageing and Retirement in

Europe (Börsch-Supan et al., 2005), a database of over 22,000 Europeans over 50

years old with details including various influences on health and insurance ownership.

Their aim was to understand the variables influencing demand for long-term care

insurance in the French market, one of the largest for this type of insurance in the

world. They found that individuals with high alcohol consumption or body mass

index have a higher probability of owning long-term care insurance. Additionally,

18



Chapter 1: Background

those who self-reported their health to be bad had a higher probability of buying the

insurance.

1.3 Sex Discrimination

Across most types of insurance, experience generally differs by sex. In some types,

the difference reverses as age progresses e.g. critical illness morbidity is lower for men

at young ages but higher after around age 45, when males start to have a higher risk

of stroke and heart attack (see Chapter 2).

In the U.K., sex was permitted to be used as a rating factor under the Equality

Act (2010) and previously the Sex Discrimination Act (1975) in a similar wording to

that for disability mentioned above. Similar practice existed in many countries across

the European Union and the wider world, as limited by local laws. In 1985, the

insurance industry’s interpretation of the law was tested in the U.K. legal system in a

case regarding a woman being charged more for her permanent health insurance4 with

the court finding in favour of the insurance company. Thus clear biological differences

(and statistical correlations in the untested case of car insurance) prevailed in allowing

sex as a pricing factor.

This legal exemption to discriminate was brought to an end in March 2011, when

the European Court of Justice ruled in a case brought initially before the Belgian

courts by Belgian consumer organisation Test-Achats. The court’s finding was that

pricing with sex as a rating factor is contrary to the principles of the European Union

and would not be permitted from 22nd December, 2012 (European Court of Justice,

2011).

Sex is a genetic difference, determined by the sex chromosomes: XX for females

and XY for males, but it is not unknown to the insurer. The Court’s ruling restricts

insurers only for using sex in their pricing (premiums must be equal for males and

females). When setting reserves or performing valuations the insurer is not prevented

from using the information of a policyholder’s sex.

We assume that insurers’ responses will be to charge premiums based on aggregate

risk on an assumed business mix. There is the potential that this could increase

adverse selection. However, while insurers are able to collect detail of sex from the

application (or at least infer to some extent from the name) the response time to

adjust prices should restrict the potential adverse selection costs. The ability to

determine the sex of the customer should also ensure capital positions are not subject

to uncertainty of future benefits/premium due to the mix of sex.

4Pinder v The Friends Provident Life Office (County Court, 15.8.85) EOR5D
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Chapter 2

Polygenes and Major Genes for

Breast Cancer in a Critical Illness

Market

2.1 Introduction

Breast cancer (BC) is the most prevalent form of cancer in the world (Parkin et al.,

2001) and a common cause of critical illness insurance claims. Established risk factors

for BC include age, lifestyle factors, reproductive factors, and genetics (Washbrook,

2006). We consider the impact of the genetic risk on insurance products. Legal

restrictions on the ability to use genetic information in insurance underwriting create

an opportunity for individuals to select against an insurance company.

Rare inherited mutations in either of two genes, BRCA1 and BRCA2, confer

greatly increased risk of BC and of ovarian cancer (OC). These are known as ‘single

genes’ or ‘major genes’ because mutations in either are sufficient to increase the risk,

in this case by affecting production of a DNA-repairing protein produced in the BC

pathway (Tutt and Ashworth, 2002). Mutations come in many different forms, and

although some are benign, others cause a very high risk of BC or OC. Epidemiology

rarely goes to the level of particular mutation, so they are commonly treated as

being homogeneous and it is only the presence of a mutation that determines the

risk. Moreover, occurrences of mutations are more common within subgroups of the

population, e.g. the frequency of BRCA1 185delT and BRCA2 6174delT among the

American Ashkenazi Jewish population is about 1% each (Sudbery, 2002), compared

to about 0.2% each for any mutation in either BRCA1 or BRCA2 based on Antoniou

et al. (2002)’s prevalence estimates.

The implications for life, critical illness and income protection insurance of these

genes have been extensively studied (Lemaire et al., 2000; Subramanian et al., 1999;

Macdonald et al., 2003a,b; Gui et al., 2006; Viswanathan et al., 2007; Lu et al.,
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2011a; Lu et al., 2011b). These studies came to the same general conclusions: high

premiums for lives known to have mutations, however the overall impact of adverse

selection when underwriters cannot use test results is minimal.

Current and future epidemiology is turning towards multifactorial models of ge-

netic risk, in which variations in large numbers of genes, and environmental factors,

interact to modify disease risk. Antoniou et al. (2002) proposed such a model for BC

risk, known as a ‘polygenic’ model because it assumes: (a) that a large number of

genes have two variants each; (b) that one variant of each gene increases risk and the

other reduces risk; and (c) that the overall risk is the sum of the contributions from

each gene (in a sense to be made precise later). The ‘high-risk’ varieties of each gene

are not necessarily rare, but the additional risk they each confer is small compared

with that conferred by BRCA1 and BRCA2 mutations. We refer to the collection of

genetic loci in this model, and the variants at each, as a ‘polygene’.

In the absence of any known candidates for genetic loci contributing to the poly-

gene, Antoniou et al. (2002) assumed that there were three, each contributing an effect

of identical size independently of the others. Using the hypergeometric inheritance

model of Lange (1997), they estimated the standard deviation of the distribution of

the relative risk attributable to a BC polygene.

Macdonald and McIvor (2006, 2009) incorporated this polygenic model, along with

models of BRCA1 and BRCA2 risk, into a Markov model of stand-alone critical illness

(CI) insurance. They estimated premium ratings conditional on either knowing an

individual’s genotype (assuming genetic testing for the major genes and the polygene)

or a family history of BC and OC. They found that the larger proportion of premium

increases was the result of the polygene. However, they suggested that the heavy tails

in the distribution of relative risks caused by there being only three genetic loci in

the polygene could have skewed the results.

Seven single nucleotide polymorphisms (SNPs) that affect the onset of BC have

subsequently been described (Easton et al., 2007; Hunter et al., 2007; Stacey et al.,

2007; Cox et al., 2007). They are all candidates for the actual genetic loci in the

polygene hypothesised by Antoniou et al. (2002). However, since in total they con-

tribute about 3.6% of the heritable risk of BC (Easton et al., 2007) and the two major

genes another 25%, it is highly probable that the number of genetic loci involved will

be well over 100. We describe these developments in Section 2.2.1, and extend the

findings to a plausible polygenic model accounting for 75% of the total heritable risk.

We note that even since commencing work on this project using these seven SNPs,

another eighteen loci have been identified with similar distributions, validating the

assumptions we make in Section 2.2.2. The identification of the genetic loci that con-

tribute to the risk of BC is progressing quickly and replication of results is already

being sought for a further sixty-nine loci (Ghoussaini et al., 2012).
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In Section 2.3 we estimate the effect on stand-alone CI premiums of this polygenic

model, given a family history of BC or OC, along the lines of Macdonald and McIvor

(2006). We simulate the life histories of women within families. We find the distri-

bution of genetic risk within families that develop a family history of BC or OC, and

families that do not.

The European Court of Justice in March 2011 removed sex as a permissible in-

surance underwriting factor, from December 2012. This has particularly interesting

implications for the pricing of BC risk, because men and women carry genotypes and

develop family histories equally, but the risk of developing BC overwhelmingly affects

women (male BC exists but is very rare). Thus men may disclose information affect-

ing BC risk while being at virtually no risk of developing it themselves. We adapt

our model to this new European context in Section 2.4. Additionally, in Section 2.5,

we adapt the model to the terms of the moratorium in force in the United Kingdom

which limits the use of genetic information in underwriting. This extends the insur-

ance market model of Macdonald and McIvor (2009) to potential adverse selection in

the light of recent epidemiology and in the new legal environment.

The work in this chapter has been published in the Scandinavian Actuarial Journal

(Adams et al., 2013).

2.1.1 Review of Previous Actuarial Models

In Chapter 1 we reviewed the findings of previous models of adverse selection across

all of the genetic studies. Here, we review the modelling methodology in the previous

actuarial studies briefly mentioned above, pertaining to BC and OC.

Lemaire et al. (2000)’s life insurance model was of the form of a double decrement

for death before BC or BC development with a single decrement for death from

any cause after BC. Their approach used one-year probabilities of decrement and an

assumption of mid-year payment of benefit to calculate single premiums by summing

over possible outcomes. This was done for lives with varying family history details

(one or two first-degree relatives; BC or OC; and age of onset of affected relative) using

the probabilities derived by Claus et al. (1994) for BC and Hartge et al. (1994) for OC.

For BRCA mutation, they performed their modelling by use of penetrance and age

at onset distribution of BC from Claus et al. (1994) and an estimated adjustment to

population probabilities for OC based on the broad range of estimates in the medical

literature.

Subramanian et al. (1999) set out a Markov model for the term assurance market.

They calculated ratios between the forces of mortality for women with family history

or BRCA mutation compared to the baseline mortality based on the model of Lemaire

et al. (2000). Their market model worked as follows:
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• Women started untested, either insured or uninsured;

• Family history during modelling and was set according to the scenario;

• Testing for BRCA mutation was at a constant rate, with the probability of

positive result determined by family history;

• Test results would influence a woman’s decision to purchase life insurance,

change sum assured or lapse her policy.

In common with subsequent models, they calculated average single premiums by

solving Norberg (1995)’s equations and compared to their baseline to calculate costs

of adverse selection.

Macdonald et al. (2003a) used a Markov model for BC/OC to estimate the con-

ditional probabilities of BRCA1 or BRCA2 mutations (epidemiology had developed

allowing them to consider these separately), given at least partial knowledge of family

history. They used a ‘brute force’ method, summing over the possible family struc-

tures and the associated probabilities. Transition intensities for the development of

BC and OC with a BRCA1 or BRCA2 mutation were fitted to Ford et al. (1998)

and the distribution of the mutations came from Parmigiani et al. (1998). Macdonald

et al. (2003b) used these results when calculating the premiums for stand-alone critical

illness insurance charged with only a partial knowledge of family history. They com-

puted adverse selection costs using a Markov model for the insurance market where

all lives started uninsured and there could be no lapsing. The transition intensity for

purchase after test was allowed to increase for positive results. Similarly, the sum

assured for adverse selectors could be at an increased level.

Gui et al. (2006) set up semi-Markov and Markov models for life insurance and

critical illness insurance markets respectively. These included the development of

family history itself as a state. They calculated the probabilities of developing a family

history (two first-degree relatives having BC/OC before age 50) directly for each

genotype and from these the transition intensities by summing over the probabilities

of each possible event leading to a family history. In their models, genetic testing was

only available after the development of a family history. To deal with the semi-Markov

nature of life insurance markets, they used the method of Gutiérrez and Macdonald

(2004): calculate the expected present values of the reserve at the point of BC/OC

development and set this to be the sum assured payable on developing BC or OC.

Transition intensities related to BRCA1 and BRCA2 mutations were from models

fitted to Antoniou et al. (2003)’s estimates. Mortality after BC/OC diagnosis was

independent of the genotype and based on Coleman et al. (1999). Other transition

intensities were those used by Macdonald et al. (2003b).

Macdonald and McIvor (2006)’s polygenic model had women inheriting common

but small impact genes. Inheritance of these polygenes was not the Mendelian pattern
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they used for the major genes; instead parents were each assigned a total number of

identical high risk alleles and inheritance was through a hypergeometric distribution

based on Lange (1997) (as discussed above). Due to the number of possible geno-

types, performing the same summation as Gui et al. (2006) would have taken a vast

amount of computer time so they performed simulations to derive their family history

details (premium rates and transition intensities). They used the BRCA1 and BRCA2

transition intensities and allele frequencies of Antoniou et al. (2002) since these had

been calculated in a model which included the polygenic component. Macdonald and

McIvor (2009) applied this model in a market for critical illness insurance, with a

state for family history, in a similar manner to Gui et al. (2006) to compare the costs

of adverse selection from the polygenes and the major genes.

Viswanathan et al. (2007) allowed lives to react not only to test results, but to the

changes in price also. They set out a discrete-time Markov model of annually renew-

able life insurance based on Subramanian et al. (1999). The quantity of insurance to

purchase at the renewal date was such that for price, P , quantity, Q and elasticity of

demand, λ, P λQ = c, where c is a constant. Elasticity of demands were estimated by

asking a small sample of health care workers how much insurance they would purchase

given prices and a higher or lower risk risk of death. Premiums were also allowed to

change based on anticipated demand (after taking account of the change in price),

such that an equilibrium was reached where the insurer calculated an expected profit

of zero.

Lu et al. (2011a) modelled the development of BC in the context of income pro-

tection insurance with allowance for only the major genes (BRCA1 and BRCA2). To

allow for the possibility of recovery, they included the effects of treatments; while

after recovery, they allowed for recurrence. These treatments depended on the type

of BC diagnosed so transition intensities to various levels of severity were fitted using

medical literature. Their overall BC onset intensities were those fitted by Gui et al.

(2006). Lu et al. (2011b) used this model of BC development in order to calculate the

associated insurance premiums and policy values. Since their recovery was duration

dependent, the model is semi-Markov; in common with Gui et al. (2006), they used

Gutiérrez and Macdonald (2004)’s trick of paying the prospective policy value upon

transition into an otherwise duration dependent state to bring it back into the Markov

framework.

Following on from this work, we will set out a multiple state Markov model for an

insurance market. We will draw greatly from Macdonald and McIvor (2006, 2009),

the only other studies to include a polygenic component of BC risk.
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2.2 The Polygenic Model

In this section we describe the polygenic model of BC risk, which we will use to

estimate genotype specific transition intensities for BC onset when we set out our

Markov model of female lifetime in Section 2.3. This will further allow us to model

adverse selection for lives who have a high (or low) risk of developing BC.

A polygenic model of inheritance exists where a trait is affected by variants of

multiple genes. The trait of interest to us is the age-related risk of developing BC.

We assume that individual genes — BRCA1, BRCA2 and the loci contributing

to the polygene — each show simple Mendelian inheritance. Thus a parent with

a single mutated copy of either BRCA1 or BRCA2 (other risky major genotypes

being rare enough to ignore) has a 50% chance of passing the mutation on to each

offspring (male or female) they have. A parent with no such mutation (which we

call the BRCA0 genotype) passes on only the BRCA0 genotype to offspring. Thus

the increased BC risk associated with major gene mutations shows the same simple

Mendelian inheritance as the major gene itself.

However BC risk conferred by the polygene does not show simple Mendelian inher-

itance. The phenotype associated with the polygene is the aggregate of the ‘pheno-

types’ associated with each contributing genetic locus. Although these ‘phenotypes’

may be thought of as each obeying Mendel’s laws, they are effectively unobservable

individually. Thus, a mother who has an average polygenic risk of BC may have

daughters whose polygenic risk can range between very high and very low. Espe-

cially when the number of contributing loci is high, this may distort the pattern and

usefulness of a family history of BC.

2.2.1 Pharoah’s Model

The model of Pharoah et al. (2008) combines multiplicatively the effects of seven

known genetic loci to assign a total relative risk of BC. They are assumed to have no

effect on OC risk. Since everyone has two functioning alleles of every gene (except

those on the X and Y chromosomes), there are three possible combinations of alleles

at each locus: no high-risk alleles; one low-risk allele and one high-risk allele; or

two high-risk alleles. If the population prevalence of a high-risk allele at locus i

is pi, these three genotypes have population prevalences (1 − pi)
2, 2pi(1 − pi) and

p2
i respectively. They report the relative risk of developing breast cancer for each

high-risk allele, relative to a low-risk allele, known as the per allele risk. Table 2.1

sets out the estimated per allele risk and associated 95% confidence interval of the

high-risk variant relative to the low-risk and population prevalences for each of these

polygenes with their identification number in the SNP database1, commonly referred

1http://www.ncbi.nlm.nih.gov/projects/SNP/
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Table 2.1: Per allele risk with 95% confidence intervals and population prevalences
of genetic loci known to contribute to the polygenic risk of breast cancer (Pharoah
et al., 2008) with the approximate standard deviation of the per allele risk estimate.

Locus i dbSNP Per Allele Risk Population Prevalence, σi

Number (95% Confidence Interval) pi

1 rs2981582 1.26 (1.23, 1.30) 0.38 0.0179
2 rs3803662 1.20 (1.16, 1.24) 0.25 0.0200
3 rs889312 1.13 (1.10, 1.16) 0.28 0.0153
4 rs3817198 1.07 (1.04, 1.11) 0.30 0.0179
5 rs13281615 1.08 (1.05, 1.11) 0.40 0.0153
6 rs13387042 1.20 (1.14, 1.26) 0.50 0.0179
7 rs1053485 1.13 (1.06, 1.18) 0.86 0.0310

to as ‘dbSNP Number’, as well as our own reference label, locus i for i = 1, 2, . . . , 7.

For example, an individual with 2 high-risk alleles at both the rs2981582 and the

rs1053487 loci has a relative risk of 1.262× 1.132 = 2.0272 and the probability of this

combination is 0.382 × 0.862 = 0.1068. Also given is our calculation of the standard

deviation of the estimate, calculated based on a normal approximation since their

point estimates for the mean are based on GWAS of large numbers of lives, as

σi =
Upper Confidence Interval− Lower Confidence Interval

2× 1.96
, for i = 1, 2, . . . , 7.

(2.1)

2.2.2 Extending The Model

Easton et al. (2007) suggest that these seven loci account for 3.6% of familial risk,

while the major genes BRCA1 and BRCA2 account for another 25%. Antoniou et al.

(2001) concluded that a polygenic model is a better fit for the remaining familial

risk than any model incorporating another major gene (a putative BRCA3, which

has not been found despite intensive searching). We assume that the genetic loci

which contribute to the polygene and have yet to be discovered, have characteristics

broadly similar to the seven described above. Therefore we assume that there are

20 additional sets of seven loci with relative risk and associated confidence intervals

identical to those of the set of seven known loci. Thus in total we have 147 loci with

the 140 undiscovered loci labelled locus 8, 9, 10, . . . , 147. For convenience, we index

the postulated loci such that loci 8, 15, . . . , 141 all have the same characteristics as

locus 1; loci 9, 16, . . . , 142 have the same characteristics as locus 2, and so on. These

additional 140 loci account for the remaining 71.4% of familial risk. Thus, our model

is an extrapolation from the characteristics of known loci to complete the posited
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polygene.

The interaction of major gene mutations with genetic loci contributing to the

polygene was not discussed in Pharoah et al. (2008). Further research has suggested

where interactions may or may not exist (see Antoniou et al., 2008), but this is not yet

well established, so we have assumed that the effect of the polygene risk on a BRCA1

or BRCA2 mutation carrier is the same as that on a non-carrier — the relative risk

arising from the polygenotype is multiplicative to the BRCA specific onset of BC.

Since BRCA mutations are rare — Antoniou et al. (2002) estimated mutant allele

frequencies of BRCA1 and BRCA2 as 0.00051 and 0.00068 respectively — this should

not distort results greatly.

2.2.3 Notation

We introduce notation to describe genotypes, hazard rates and relative risks.

1. Let G be the set of all possible polygenotypes. Assume that n genetic loci

contribute to the polygene. Let Gi be the set of all possible genotypes at the

ith genetic locus. (For our model, Gi = {0, 1, 2} for all i would suffice.) Then

the polygenotype in G of a woman drawn at random from the population is a

random variable denoted by G = (G1, G2, . . . , Gn), with Gi ∈ Gi, i = 1, . . . , n.

Additionally, we denote by g = (g1, g2, . . . , gn) a realisation of G.

2. Choose a starting age x low enough that no cases of BC have occurred. As

noted in Antoniou et al. (2001), the proportions of lives in the population with

each polygene mutation will change as higher-risk lives get BC and die earlier

than lower-risk lives, lowering the average risk of survivors. The population

prevalence of major genes and the polygene at age x will be that arising from

Mendelian inheritance, with no survivorship effect yet.

3. Let tp
g
x be the probability that a woman free of BC at age x is still free of it age

x+ t, given she has genotype g.

4. Let pg be the population prevalence of polygenotype g ∈ G, assumed to be that

of our chosen starting age x.

5. Denote the age-dependent population BC transition intensity at age x + t by

µBC (x+ t), and the polygenotype-specific transition intensity at age x + t by

µBCg (x+ t) for polygenotype g ∈ G.

6. Define λ (x+ t) to be the baseline BC transition intensity at age x + t. We

choose our baseline genotype to be a woman with zero high-risk variants at

each locus contributing to the polygene, i.e. λ (x+ t) = µBC(0,0,...,0) (x+ t).

27



Chapter 2: Polygenes and Major Genes for Breast Cancer in a Critical Illness Market

7. Define RRi,gi to be the relative risk associated with polygenotype gi ∈ Gi at

locus i ∈ {1, . . . , n}, and RRg to be the relative risk for polygenotype g ∈ G,

assuming that the relative risks associated with genotypes at each contributing

genetic locus are constant (so we have proportional hazards). The average

relative risk within the population at age x+ t is denoted RR (x+ t).

8. For the ith locus, define

βi = log(RRi,1), (2.2)

where RRi,1 is the per allele relative risk of the high-risk variant of locus i, given

in Table 2.1.

With our notation established, we can now set out the main definition of our

model. The multiplicative model is defined by assuming that a woman with genotype

gi at the ith locus (i = 1, . . . , n) has onset rate of BC equal to:

µBCg (x+ t) = λ (x+ t)RRg = λ (x+ t)RR(g1,...,gn) = λ (x+ t)
n∏
i=1

RRi,gi . (2.3)

In our simple model, we may define gi to be the number of high-risk alleles carried

at the ith locus. Then

µBCg (x+ t) = µBC(g1,...,gn) (x+ t) = λ (x+ t) exp(β1g1 + . . .+ βngn), (2.4)

which is a Cox-type proportional hazards model with the gi as covariates.

2.2.4 Distribution of Relative Risk

Since each locus contributes three possible genotypes, and we have assumed that

there are 147 loci, in total the polygene has 3147 (of the order of 1070) variants. For

comparison, the population of the world today is less than 1010. We have modelled

the 147 loci as 21 independent duplicates of the set of seven known loci. This means

that many of the resulting 3147 polygenotypes have identical relative risks. However

there are still too many to carry out computations by direct summation over all

polygenotypes. We therefore find an approximate distribution for relative risk to

allow the use of numerical methods to simplify the calculations.

In this section, we assume that the genotype at each locus is both defined and

denoted by the number of high-risk alleles denoted Gi, for Gi ∈ Gi = {0, 1, 2}. Define

p∗i to be the population prevalence of the high-risk allele at the ith locus, so Gi ∼
Bin (2, p∗i ) for i = 1, 2, . . . , 147. Then the relative risk contributed from locus i, RRi,Gi

in a woman drawn at random from the population is a random variable, taking on the

values RRi,0 = 1, RRi,1 and RRi,2 = RR2
i,1 with probabilities (1−p∗i )2, 2p∗i (1−p∗i ) and
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p∗i
2 respectively. G1, G2, . . . , G147 are assumed to be independent random variables

and for j = 1, . . . , 7, the random variable Gj+7k has the same distribution as Gj, for

each k = 0, 1, . . . , 20.

Then the (random) log relative risk associated with locus i can be written as

logRRi,Gi
= βiGi. (2.5)

We assume that p∗j+7k = pj for j = 1, 2, . . . , 7 and k = 0, 1, . . . , 20 with the value of

pj given by Table 2.1. For j = 1, . . . , 7, let G∗j be the random variable representing the

total number of high-risk variants in the 21 analogues of locus j, in a woman drawn at

random from the population, i.e. G∗j =
20∑
k=0

Gj+7k ∼ Bin(42, p∗j). This distribution can

be well approximated by a normal distribution: G∗j ∼ N (42p∗j , 42p∗j(1 − p∗j)). More-

over, let RR∗j,G∗j be the random variable representing the total relative risk contributed

by the 21 analogues of that locus, in that same woman, i.e. RR∗j,G∗j =
20∏
k=0

RRj+7k,Gj+7k

and

logRR∗j,G∗j =
20∑
k=0

logRRj+7k,Gj+7k
=

20∑
k=0

βj+7kGj+7k =
20∑
k=0

βjGj+7k = βjG
∗
j . (2.6)

Now, we have the distribution,

βjG
∗
j ∼ Bin

(
2× 21× βj, p∗j

)
. (2.7)

Hence, assuming polygenes are inherited and act independently, the total relative risk

RRG of a woman drawn at random from the population has a distribution given by:

logRRG =
7∑
j=1

βjG
∗
j ∼ N

(
7∑
j=1

42βjp
∗
j ,

7∑
j=1

42β2
j p
∗
j(1− p∗j)

)
. (2.8)

Hence, relative to polygenotype g = (0, 0, . . . , 0) using the point estimates of rela-

tive risk and their associated probabilities from Table 2.1, the polygene relative risk is

approximately log-normally distributed with parameters E (logRRG) = 17.4289 and

σlogRR = 1.20 at outset, where σlogRR is the standard deviation of logRRG . This is

reasonably close to the simpler model using the hypothetical polygene with three loci

(which was used in Macdonald and McIvor, 2006) of Antoniou et al. (2002), who cal-

culated an estimate of 1.29 for the standard deviation with a 95% confidence interval

of (1.096, 1.521) using a U.K. population based cohort.
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2.2.5 Baseline Rate of Onset of Breast Cancer

In Equation (2.3), µBCg (x+ t) is defined in terms of baseline hazard rate, λ (x+ t).

However, λ(x + t) is not directly observable. What is observable is the population

average onset rate, µBC (x+ t), which embodies the survivorship effect mentioned in

(b) of Section 2.2.3 above. Here we show how to calculate λ (x+ t) and constrain the

average onset rate of BC for survivors at age x + t in the model to be equal to the

population onset rate. Noting that the mean relative risk at age x+ t, RR (x+ t), is

given by:

RR (x+ t) =

∑
g∈G

pg tp
g
xRRg∑

g∈G
pg tp

g
x

, (2.9)

we use the relation

λ (x+ t) =
µBC (x+ t)

RR (x+ t)
, (2.10)

Our distribution of log relative risk implies a mean relative risk of approximately

7.7× 107. Hence the baseline onset rate of BC at the starting age x is,

λ (x+ 0) ≈ µBC (x+ 0)

7.7× 107
. (2.11)

To find λ (x+ t) for t > 0, we solve differential equations for tp
g
x for g ∈ G

d

dt
tp
g
x = −µBCg (x+ t) tp

g
x

= −λ (x+ t) RRg tp
g
x

= −µ
BC (x+ t)

RR (x+ t)
tp
g
xRRg

= −
µBC (x+ t)

∑
h∈G

ph tp
h
x∑

h∈G
ph tphxRRh

tp
g
xRRg . (2.12)

Using the approximate distribution derived in Section 2.2.4, the sums over geno-

types in Equation (2.12) become integrals, i.e.

d

dt
tp̃
r
x ≈ −

µBC (x+ t)
∫∞
−∞ flogRRG

(s) tp̃
s
x ds∫∞

−∞ flogRRG
(s) tp̃

s
x exp(s) ds

tp̃
r
x exp(r). (2.13)

where tp̃
r
x is the probability that a woman free of BC at age x is still free of BC
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Figure 2.1: A model for critical illness insurance policyholder. Transition to ‘Dead’
or ‘Other CI’ states is at rates depending only on age x. The onset rate of OC,
µOCg (x+ t), depends also on the BRCA genotype but is unaffected by polygenotype
part of g, while the onset rate of BC, µBCg (x+ t), depends on both the polygenotype
and BRCA genotype parts of g.

at age x + t given that the logarithm of her relative risk is r, for −∞ < r <

∞, and flogRRG
(s) is the probability density function of logRRG . We calculated

these integrals numerically using Simpson’s Rule (see Appendix A) over the range

[E (logRRG)− 6.25, E (logRRG) + 6.25] with a step size of 2−6.

The simultaneous differential equations were then solved using a fourth order

Runge-Kutta method (see Appendix A) with step size 2−13 and the boundary condi-

tions that 0p̃
r
x = 1 for all r.

2.3 Cost of Family History

2.3.1 Insurance Model

In this section we consider women who develop a family history of BC or OC and the

impact this has on premiums payable for insurance. This allows us to consider the

appropriateness of the use of family history when underwriting in the absence of tests

for either the major genes (MG) — BRCA1 and BRCA2 — or polygenes (PG).

The insurance contract of interest is stand-alone critical illness insurance with

benefits payable on the occurrence of a defined critical illness, but not on earlier

death. This type of product is of interest due to the high proportion of claims that

can be directly attributed to BC. It is also the simplest to model as there is no need

to consider post-onset survival.
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Consistent with previous work (Gui et al., 2006; Macdonald and McIvor, 2006),

we define a family history to be one in which two or more first degree relatives have

been diagnosed with BC or OC before age 50.

We construct a Markov model for the lifetime of an individual female as illustrated

in Figure 2.1. To incorporate the major genes, BRCA1 and BRCA2, we augment

the set of possible genotypes to G∗ = {0, 1, 2} × G. Observed overall genotypes are

thus g = (g0, g1, . . . , g147) where g0 ∈ {0, 1, 2} is the major genotype corresponding to

BRCA0, BRCA1, BRCA2 respectively. For consistency with previous work, transition

intensities from ‘Healthy’ to ‘Dead’ and ‘Other CI’ are taken from Gutiérrez and

Macdonald (2003). Their mortality rates were based on the English Life Tables No.

15, which were constructed based on the mortality experience of England and Wales

over the period 1990–1992. The onset of ‘Other CI’ was calculated by fitting the major

causes of such a claim: stroke, heart attack (both adjusted for lives who do not survive

the 28 days required for a claim in a typical CI contract) and cancer (see Appendix

B). The transition intensity into the ‘Dead’ state was adjusted to remove strokes

and heart attacks that would result in claim since a claim would have already ceased

their policy. The cancer component of ‘Other CI’ includes the onset of all cancers so

onset rates of BC and OC have been removed from them, using transition intensities

from Macdonald et al. (2003a) as these were calculated from the same data (Cancer

Registrations 1990–1992). BC and OC onset rates are those used in Macdonald and

McIvor (2006), calculated from cancer registrations in England and Wales 1983–1987,

for consistency with the adjustments for BRCA mutations estimated by Antoniou

et al. (2002).

2.3.2 Premiums

Premium rates for each relative risk are calculated as continuously payable level net

premiums by solving Thiele’s equations using a Runge-Kutta algorithm with step size

2−11 years and force of interest 0.05 per annum. A summary of these premiums as a

percentage of those chargeable to a life with no BRCA mutation and RRg = RR (x)

is shown in Table 2.2, allowing us to see how deviations from the population average

risk at outset impacts premium rates.

First we examine premium rates for lives with no BRCA1 or BRCA2 mutation.

Premiums for very low risk lives (BRCA0 and logRRg < logRR (x) − 1) approach

a limit of between 70-80% of premiums chargeable to a life with an average level of

risk (BRCA0 and logRRg = logRR (x)) depending on age and term. Premiums for

very low risk lives can be attributed to the amount required to cover costs of ovarian

cancer and other critical illness. However for even slightly elevated risk (BRCA0 and

logRRg = logRR (x) + 1) premiums should be loaded approximately 40%, reaching

uninsurable rates (> 400% of unrated premium) for very high risk lives (BRCA0 and
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logRRg = logRR (x) + 3), although the proportion of lives with such a high risk is

small.
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If we ignore the polygene effect by looking at logRRg = logRR (x), women with

a BRCA mutation are uninsurable at most ages and terms. In our model which

incorporates both a major gene and polygenes, a woman with a BRCA mutation but

low polygenic relative risk becomes insurable. However in most of these low relative

risk cases, the effect of the BRCA gene is still stronger than the decrease in BC risk

from the polygene because the polygene does not change the high risk for ovarian

cancer caused by BRCA mutations.

The ratings due to polygene vary by age and term, the highest ratings for lives

without a BRCA mutation being for 40 year olds with a 10 year term. The reason

for this can be seen in Figure 2.2: BC is a significant proportion of the onset rates

and this proportion reaches a peak between the ages of 40 and 50 so the polygene has

the highest impact on policies with terms that include this age range. The polygene

influence decreases as heart attack and other forms of cancer unaffected by the poly-

gene reduce the weighting of BC in the makeup of premium rates. Hence, for lives

aged 30 years, there is a peak in ratings for those with a high polygene risk with a 20

year term compared to 10 or 30 year terms. Conversely, since the low polygene risk

removes proportionally more of the benefit, there is a dip for lives aged 30 with a low

polygene risk for a 20 year term.

For lives with a BRCA mutation, the highest ratings are earlier than the highest

for lives without a BRCA mutation — 30 year olds with 10 year term compared to

40 year olds with 10 year term respectively — because the major genes have their

strongest impact between ages 30 and 40, although BC is overwhelmingly dominant

at all ages considered.

2.3.3 Simulation of Family Histories

Our aim in this subsection is to model the development of family histories. This will

allow us to find the joint distribution of relative risk and major genotype, conditional

on family history status and current age. Additionally, we will use the results to

calculate family history onset rates in Section 2.5.2.

Recall from Section 2.1.1 that Gui et al. (2006) calculated the probabilities of

developing a family history by summation over the possible events. Due to the large

number of possible genotypes and inheritance possibilities in our model, it is not

tractable to compute onset rates of family history analytically. Instead we simulate

the future lifetimes of a large number of lives and their families.

The simulation model that we use is described fully in Macdonald and McIvor

(2006). We summarise it here, and set out the change to inheritance methodology.

1. A family starts with 2 parents, whose polygenotype and BRCA genotype are

randomly sampled according to the population distributions in Table 2.1.
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Figure 2.2: Stacked onset rates for selected critical illnesses and death of females.
Sources: Gutiérrez and Macdonald (2003); Macdonald and McIvor (2006).
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Table 2.3: Probability mass function of number of daughters in a family conditional
on there being at least one daughter. Source: Macdonald et al. (2003a).

No. of Daughters Probability

1 0.54759802
2 0.33055298
3 0.09749316
4 0.02111590
5 0.00285702
6 0.00035658
7 0.00002634

2. The number of daughters is randomly sampled from a random variable with the

probability mass function given in Table 2.3. We use the distribution estimated

by Macdonald et al. (2003a). This was based on Shaw (1990)’s estimate of the

number of children born to women who were themselves born in England and

Wales in 1940–44, extrapolated according to the proportions of children born to

women who were married in 1961–65 according to the 1971 census.

3. Daughters are the same age and born when the mother, assumed to be healthy,

is age 30.

4. Each daughter inherits polygenes and BRCA genes from their parents indepen-

dently of each other according to Mendel’s laws, acting at each major gene locus

and each polygene locus. The validity of this assumption could be questioned —

it is conceivable that some of the polygene loci might be within close proximity

to another on the same chromosome and exhibit some level of linkage.

5. Per-allele relative risk for locus i, for i = 1, 2, . . . , 147, is sampled from a normal

distribution with standard deviation σi and mean equal to the point estimate

listed in Table 2.1 and held constant for all lives in the simulation. In this way

we include the sampling variance from Pharoah et al. (2008) in our modelling,

as well as the sample variance from our simulation.

6. Full life histories of mother and daughters are simulated using their respective

genotypes and treating each of the decrements in Figure 2.1 as independent

competing risks.

As noted in Macdonald and McIvor (2006), this results in censorship whereby a

life who moves to another critical illness state cannot have a subsequent cancer but

the effect is minimal as only around 6% of lives have made such a move to other

critical illness states by age 50, which is our cut-off age for family history.
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The simulation of a large number of lives (within 15,000,000 families) allows us to

observe the distribution of relative risk at any age x, and how it depends on family

history.

2.3.4 Distribution of Relative Risk by Underwriting Class

In order to calculate the premiums to charge an insured population, we find the

distributions of relative risk and BRCA mutations for lives with and without a family

history.

For each life, at every age x+ t, we know her genotype, whether she is healthy and

which relatives, if any, have so far been diagnosed with BC or OC before age 50. We

categorise this large quantity of data at each age by: BRCA genotype; logRRg ; and

presence of family history. Since logRRg is a continuous quantity we discretise it into

100 ‘bins’ of uniform length 0.125 over the range [logRR (20)−6.25, logRR (20)+6.25].

We choose this range because it is large enough that the probability of a life having

a relative risk outside it, is 1.924× 10−7. For family history categorisation, we define

two underwriting classes

1. ST — Unrated — Females without a family history.

2. FH — Rated — Females who have developed a family history.

Denote the mean and standard deviation of log relative risk at age x in ST by

EST
logRR (x) and σSTlogRR (x) respectively and similarly for FH.

We ran the model 500 times to produce confidence intervals for the estimates of

the means and standard deviations of logRRG . The resulting discretised distributions

for the average of our simulations are shown in Figure 2.3 for ST and FH at ages

x = 30 and 50 for each genotype. (Note that Figure 2.3 includes male lives which we

need in simulations in Section 2.4.)

The distribution of relative risk of BRCA0 lives within each underwriting class,

remains roughly the same at each age despite higher risk lives leaving the class (by

either getting cancer or developing a family history). There is very little difference in

the spread of logRRG in ST and in FH; σFHlogRR(x)/σSTlogRR(x) is close to 1 (see Table

2.5). However, as can be seen from the plots and Table 2.4, there is a significant

difference in the mean of logRRG in each class, with EFH
logRR (x)−EST

logRR (x) between

1.1 and 1.2. This results in average relative risk within FH being approximately 250%

higher than within ST at ages 30, 40 and 50, making it a good proxy for genetic risk.

To check convergence, we compare to estimates based on 100 simulations, shown in

Tables 2.6 and 2.7. As these show little difference at ages of interest, we continue

with the 500 simulations we have performed.

For lives with a BRCA mutation, the differences between the mean of logRRG in

each underwriting class are lower than that of BRCA0 and decreases with age. While
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Table 2.4: Mean of log relative risk for female lives in underwriting classes ST and
FH based on 500 simulations.

BRCA Age (x) ESTlogRR (x) 95% Confidence EFHlogRR (x) 95% Confidence

Interval −ESTlogRR (x) Interval

0 20 17.43 (17.24, 17.64) 0.85 (0.40, 1.35)
30 17.43 (17.24, 17.64) 1.18 (1.05, 1.33)
40 17.43 (17.23, 17.63) 1.24 (1.20, 1.29)
50 17.41 (17.22, 17.61) 1.16 (1.13, 1.19)

1 20 17.43 (17.24, 17.65) 0.46 (−1.29, 2.98)
30 17.43 (17.24, 17.65) 0.89 (−0.29, 2.23)
40 17.32 (17.14, 17.51) 0.86 (0.73, 1.03)
50 17.18 (17.01, 17.36) 0.56 (0.48, 0.65)

2 20 17.43 (17.23, 17.65) 0.81 (−1.00, 2.97)
30 17.43 (17.23, 17.65) 0.99 (−0.23, 2.39)
40 17.34 (17.16, 17.54) 1.01 (0.87, 1.18)
50 17.22 (17.04, 17.39) 0.82 (0.74, 0.93)

there are insufficient lives with a family history at age 30 to draw solid conclusion,

there are significant differences between FH and ST at ages 40 and 50. The spread

of logRRG in FH is slightly smaller than ST for BRCA2 at age 50. However at all

other ages, and for BRCA1, there are no significant differences.

The proportions of lives with a BRCA mutation in each of the underwriting classes

is also significantly different, as can be seen in Table 2.8.

2.3.5 Notation

We introduce notation to be used in this section. Suppose a life aged x has applied

for a policy with term n years.

1. flogRR,G0|x,FH(r, g) is the joint probability density function for logRRG and ma-

jor genotype, G0, conditional on a life aged x having developed a family history

of BC or OC. For succinctness, this is abbreviated to fFHx (r, g). A similar

expression is used for ST .

2. Ar,g,x:n is the expected present value of 1 paid on transition to a state other than

Healthy or Dead for a life with relative risk er and major genotype g currently

aged x.

3. ar,g,x:n is the expected present value of an annuity of 1 paid continuously while in

the Healthy state for a life with relative risk er and major genotype g currently

aged x.
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Figure 2.3: Distributions of relative risk for females and males: (a) BRCA0, age 30;
(b) BRCA0, age 50; (c) BRCA1, age 30; (d) BRCA1, age 50; (e) BRCA2, age 30; and
(f) BRCA2, age 50, averaged over 500 simulations.
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Table 2.5: Standard deviation of log relative risk for female lives in underwriting
classes ST and FH based on 500 simulations.

BRCA Age (x) σSTlogRR(x) σFHlogRR(x)/σSTlogRR(x) 95% Confidence

Interval

0 20 1.203 1.009 (0.767, 1.292)
30 1.202 1.045 (0.963, 1.135)
40 1.199 1.016 (0.991, 1.046)
50 1.188 1.000 (0.984, 1.017)

1 20 1.203 0.336 (0.065, 1.258)
30 1.202 0.677 (0.197, 1.411)
40 1.141 0.946 (0.867, 1.030)
50 1.083 0.976 (0.910, 1.026)

2 20 1.203 0.250 (0.062, 1.478)
30 1.202 0.441 (0.114, 1.472)
40 1.154 0.928 (0.841, 1.027)
50 1.097 0.905 (0.843, 0.972)

Table 2.6: Mean of log relative risk for female lives in underwriting classes ST and
FH based on 100 simulations.

BRCA Age (x) ESTlogRR (x) 95% Confidence EFHlogRR (x) 95% Confidence

Interval −ESTlogRR (x) Interval

0 20 17.43 (17.25, 17.60) 0.874 (0.459, 1.423)
30 17.43 (17.25, 17.59) 1.179 (1.064, 1.347)
40 17.42 (17.25, 17.59) 1.196 (1.157, 1.243)
50 17.40 (17.23, 17.57) 1.112 (1.084, 1.140)

1 20 17.43 (17.25, 17.60) 0.742 (−0.810, 2.676)
30 17.43 (17.25, 17.60) 0.898 (0.000, 2.003)
40 17.31 (17.14, 17.46) 0.874 (0.750, 1.040)
50 17.17 (17.02, 17.31) 0.555 (0.467, 0.651)

2 20 17.43 (17.26, 17.60) 0.560 (−0.241, 2.213)
30 17.43 (17.26, 17.60) 1.065 (0.001, 2.344)
40 17.34 (17.18, 17.49) 1.010 (0.876, 1.190)
50 17.20 (17.06, 17.35) 0.820 (0.729, 0.950)
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Table 2.7: Standard deviation of log relative risk for female lives in underwriting
classes ST and FH based on 100 simulations.

BRCA Age (x) σSTlogRR(x) σFHlogRR(x)/σSTlogRR(x) 95% Confidence

Interval

0 20 1.203 1.025 (0.792, 1.307)
30 1.203 1.047 (0.966, 1.130)
40 1.199 1.011 (0.989, 1.011)
50 1.188 1.004 (0.991, 1.019)

1 20 1.203 0.336 (0.133, 1.085)
30 1.203 0.677 (0.242, 1.448)
40 1.142 0.946 (0.871, 1.023)
50 1.085 0.976 (0.926, 1.032)

2 20 1.202 0.245 (0.086, 0.712)
30 1.202 0.425 (0.175, 1.376)
40 1.154 0.930 (0.830, 1.028)
50 1.098 0.905 (0.847, 0.977)

Table 2.8: Proportions of lives with a BRCA mutation.

ST FH
Age BRCA1 BRCA2 BRCA1 BRCA2

30 0.0020 0.0027 0.0125 0.0112
40 0.0019 0.0025 0.0639 0.0518
50 0.0015 0.0023 0.0400 0.0293
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Table 2.9: Distribution of premium rates charged to lives with a family history as a
percentage of the premium charged to lives without a family history.

Age Term Mean 95% Confidence Standard
(%) Interval (%) Deviation

30
10 192.7 (162.4, 225.2) 0.1661
20 187.3 (162.7, 212.6) 0.1262
30 168.5 (150.4, 186.9) 0.0930

40
10 247.3 (235.4, 259.4) 0.0596
20 202.0 (193.2, 210.3) 0.0419

50 10 158.6 (154.8, 162.5) 0.0204

4. ΠST
x:n is the level premium for a life without a family history.

5. ΠFH
x:n is the level premium for a life with a family history.

2.3.6 Ratings for Presence of Family History

With these distributions of polygene relative risk and of major gene mutations, we

will calculate the level premiums that would cover the cost of CI benefits payable

assuming underwriters may use family history as a factor.

The appropriate level premium for lives that have presented a family history is

calculated as

ΠFH
x:n =

2∑
g=0

[∫ ∞
−∞

fFHx (r, g)Ar,g,x:n dr

]
2∑
g=0

[∫ ∞
−∞

fFHx (r, g)ar,g,x:n dr

] (2.14)

and a similar expression can be written down for ΠST
x:n .

We use the estimated distributions based on each of our 500 simulations to estimate

premium rates for lives with a family history and show how uncertainty may cause

them to vary. Results of this are shown in Table 2.9 and Figure 2.4. They show a

narrow confidence interval for age 50 at entry. However younger ages at entry have a

broader interval, up to 65% of the unrated premium.

The approach taken by Macdonald and McIvor (2006) was to compare weighted

premiums for lives with a family history (as calculated above) to the premiums ap-

propriate for a life with BRCA0 and polygene relative risk RRg = 1. However, the

average polygene risk within the unrated pool will be somewhat higher — they used

a binomial distribution for the log risk, centred at 0 — which increases the average

premium for lives without a family history, offsetting some of the extra payable for the

lives with a family history. In a reconciliation exercise, this was found to be around
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Figure 2.4: Histograms of ratings for presence of family history as a percentage of the
premium charged to lives without a family history.

40%.

Allowing for this change, and comparing our average ratings in Table 2.10, the

results from the two polygene models do show some differences at ages at entry 40

and 50 of 30–40% while age 30 is far greater at all terms by 100–250%. Macdonald

and McIvor ran their model only once and at age 30 they had 91 lives with a family

history, 9 of which had a BRCA mutation as well as polygene relative risk greater

than 1, resulting in large premium ratings. It is therefore possible that the difference

between our results and theirs at age 30 is down to sampling. In either case, the

largest part of rating is attributable to the polygenes.

2.4 Effect of the ‘Test-Achats’ European Court of

Justice Ruling

Recall from Chapter 1 that the European Court of Justice ruled that pricing with

sex as a rating factor would not be permitted from 22nd December 2012. We assume

that insurers’ response will be to charge premiums based on aggregate risk on an

assumed business mix. It is not clear whether this extends to underwriting based on

justifiable biological risk and it is possible that this would need to be tested in court.
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Table 2.10: Level net premiums for females with a family history of BC or OC as a
percentage of those for females without a family history, averaged over simulations.
Also shown are equivalent results from Macdonald and McIvor (2006). Note MG
results use P+MG for experience basis but MG only for pricing basis.

Genetic Age 30 Age 40 Age 50
Study Model 10 yrs 20 yrs 30 yrs 10 yrs 20 yrs 10 yrs

% % % % % %

Ours P+MG 193 187 169 247 202 159
MG 110 108 106 149 133 113

M&M (2006) P+MG 444 341 275 244 207 171
MG 138 132 123 113 109 103

Table 2.11: Probability mass function of the number of children in a family. The
probability that a particular child is born female is 1/2.06. Source Macdonald et al.
(2003a).

Number of Children Probability

0 0.090
1 0.130
2 0.400
3 0.200
4 0.137
5 0.031
6 0.009
7 0.003

For example it is not clear whether or not a man, who has a family history of BC

among his female relatives should be given the same rating his sister would be given.

There are two possibilities:

1. Females receive a rating reflecting the average risk of a female with a family

history and male lives are not rated.

2. Males and females are rated equally for a family history of BC or OC based on

the aggregate risk of their sales mix.

The model described above needs to be adjusted to include male lives. Each family

is randomly assigned a number of children following the distribution of family size and

sex calculated by Macdonald et al. (2003a) (see Table 2.11).

Research by Tai et al. (2007) shows an increased risk of male BC due to BRCA

mutations, particularly BRCA2. However, detailed research is limited, partly due to

the rarity of BC in males. BRCA mutations have also been linked to prostate cancer
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(see Narod et al., 2008) but this is not usually a severe form of cancer and diagnosis

is often missed until later in life. Consequently it would not be particularly helpful

in identifying potential BRCA carriers from family history. We therefore perform

simulations and calculate male premiums ignoring BRCA mutation in males except

for transmission from father to daughter. Transition rates for males are those given

in Gutiérrez and Macdonald (2003) (see Appendix B).

2.4.1 Notation

To distinguish between males and females we introduce further notation

1. fx (r, g) is the joint distribution function for logRRG and and major genotype,

G0.

2. fFH|F (x) and fFH|M(x) are the probabilities that a female and male respectively,

develop a family history of BC or OC by age x.

3. AFx:n and AMx:n are the expected present values of 1 paid to a life aged x in

underwriting class ST immediately on transition to a claim state for females

and males respectively for a term of n years.

4. aFx:n and aMx:n are the expected present values of a continuously payable annuity

at rate 1 per annum while in an insured state, to a life currently aged x and in

underwriting class ST for females and males respectively for a term of n years.

5. AFr,g,x:n and aFr,g,x:n are the female log relative risk and major genotype specific

assurance and annuity functions defined above in Section 2.3.6.

6. Π′FHx:n is the premium when males with a family history are rated with females.

7. We denote the probabilities a newborn is female or male as pf = 1/2.06 and

pm = 1.06/2.06 respectively.

8. P (M) and P (F ) are the proportion of males and females respectively who buy

our insurance contract.

2.4.2 Preliminary Analysis

Table 2.12 gives the premium rates as a percentage of those for a female with logRRg =

logRR (x) and no BRCA mutation.

The percentages of females and males who develop a family history in our simula-

tions are shown in Table 2.13. At each age there is no significant difference between

the percentages of females with a family history of BC or OC and those of males.
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Table 2.12: Premium rates for males as a percentage of premium rates for females
with logRRg = logRRx and no BRCA mutation.

Age 30 Age 40 Age 50
Term 10 Term 20 Term 30 Term 10 Term 20 Term 10

74% 88% 104% 97% 113% 128%

Table 2.13: Percentage of healthy lives with a family history of breast or ovarian
cancer shown by sex and age.

Females Males
Age Mean 95% Confidence Standard Mean 95% Confidence Standard

Interval Deviation Interval Deviation

20 0.0002 (0.0001, 0.0003) 0.00005 0.0002 (0.0001, 0.0003) 0.00005
30 0.0020 (0.0015, 0.0028) 0.00034 0.0020 (0.0015, 0.0028) 0.00032
40 0.0220 (0.0169, 0.0285) 0.00334 0.0226 (0.0170, 0.0294) 0.00356
50 0.0880 (0.0680, 0.1117) 0.01290 0.0940 (0.0717, 0.1202) 0.01407

For calculation of unisex premiums we set an even split between the sexes at

each age of our insured population: P (M) = P (F ) = 0.5. In reality the respective

weightings of each sex will depend on the target market of the insurer.

First we calculate the expected present value of benefits for a female in ST aged

x for term n as

AFx:n =
2∑
g=0

[∫ ∞
−∞

fSTx (r, g)AFr,g,x:n dr

]
, (2.15)

and the expected present value of her continuously payable annuity as

aFx:n =
2∑
g=0

[∫ ∞
−∞

fSTx (r, g) aFr,g,x:n dr

]
, (2.16)

We want to rate lives in FH for only the extra risk they bring to the pool due to

the higher onset rates of BC and OC females in the class will experience. It is then

necessary to consider them as paying the premium ΠST
x:n plus an additional sum. They

are therefore included among the proportion of females when calculating our unisex

premiums for underwriting class, ST , as

ΠST
x:n =

AFx:n P (F ) + AMx:n P (M)

aFx:n P (F ) + aMx:n P (M)
. (2.17)

Note that setting the proportion of males, P (M) = 0 results in the premiums

calculated above in Equation (2.14).
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Table 2.14: Distribution of premium rates charged to female lives with a family history
as a percentage of the unisex premium charged to lives without a family history.

Age Term Mean 95% Confidence Standard
(%) Interval (%) Deviation

30
10 207.6 (172.0, 247.3) 0.1983
20 193.4 (166.6, 222.0) 0.1415
30 167.4 (149.2, 186.3) 0.0961

40
10 250.4 (236.2, 265.7) 0.0741
20 196.0 (186.8, 206.5) 0.0484

50 10 151.5 (147.3, 156.3) 0.0233

Treating females from FH as if they were in ST , who are on average lower risk,

will create a shortfall in income which must then be spread across the rated business.

2.4.3 Females receive a rating, Males do not

The simplest of the two underwriting possibilities recognises that the presence of a

family history of BC or OC does not suggest a high risk for male lives and allows all

males to belong to class ST . Males and females are charged the same unisex premium

for the ‘standard’ risk. Females who have a family history pay an extra premium for

the increased risk they pose. Thus the total premium for FH lives, ΠFH
x:n , is

ΠFH
x:n =

P (F )
2∑
g=0

∫ ∞
−∞

fx (r, g)
(
AFr,g,x:n − ΠST

x:n a
F
r,g,x:n

)
dr

+ P (M)
(
AMx:n − ΠST

x:n a
M
x:n

)
fFH|F (x)P (F )

2∑
g=0

∫ ∞
−∞

fFHx (r, g)aFr,g,x:n dr

+ ΠST
x:n . (2.18)

In comparing Tables 2.9 and 2.14, the effect of unisex premiums is to increase

ratings slightly at younger ages where male CI costs are lower than females — reducing

the premiums that females pay — and to decrease ratings slightly at older ages where

males have high heart attack and stroke rates (see Figure 2.5) — increasing the

premiums that females pay.
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Figure 2.5: Stacked onset rates for selected critical illnesses and death in males.
Source: Gutiérrez and Macdonald (2003). The population average female CI rate
from Figure 2.2 is overlaid for comparison.
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Table 2.15: Distribution of premium rates charged to male and female lives with a
family history as a percentage of the unisex premium charged to lives without a family
history.

Age Term Mean 95% Confidence Standard
(%) Interval (%) Deviation

30
10 153.8 (136.4, 174.0) 0.1010
20 146.5 (133.4, 159.9) 0.0719
30 133.4 (124.3, 142.2) 0.0487

40
10 173.0 (165.9, 179.3) 0.0355
20 146.3 (141.8, 150.7) 0.0227

50 10 124.8 (122.9, 126.9) 0.0106

2.4.4 Females and Males receive a rating

If rating females but not males for a family history of BC or OC is seen as sex

discrimination, the shortfall in unrated premium will be spread over males also, i.e.

males with family history belong to underwriting class FH. Our rated premium

becomes more general:

Π′
FH
x:n =

P (F )
2∑
g=0

∫ ∞
−∞

fx (r, g)
(
AFr,g,x:n − ΠST

x:n a
F
r,g,x:n

)
dr

+ P (M)
(
AMx:n − ΠM

x:n a
M
x:n

)
fFH|F (x)P (F )

2∑
g=0

∫ ∞
−∞

fFHx (r, g)aFr,g,x:n dr + fFH|M(x)P (M) aMx:n

+ ΠST
x:n . (2.19)

Since the extra cost of a high proportion of high-risk female lives in the FH

underwriting class is spread over approximately twice the number of lives than when

only females are rated, it is not surprising that the ratings and standard deviations

in Table 2.15 are approximately half those in Table 2.14.

2.5 Calculating Adverse Selection In An Insurance

Market

With the identification of these seven loci, the possibility of testing for an individual’s

overall BC risk is one step closer. If a life has a pre-symptomatic genetic test, then

under the UK’s moratorium on the use of genetic information in underwriting, the
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life is not required to divulge these test results. This asymmetry of information

presents the life with an opportunity to change their buying behaviour. Lives who

see themselves as low-risk may buy less insurance, while lives who see themselves as

high-risk may buy more insurance. Both are forms of adverse selection.

Recall from Section 1.2 that researchers have found adverse selection in insur-

ance markets where individuals have private information: Brown (1992) in health

insurance; Finkelstein and Poterba (2004) in annuities markets; and Finkelstein and

McGarry (2006) in a market for long-term care. Armstrong et al. (2003) found car-

riers of BRCA1 or BRCA2 were significantly more likely to increase their life cover.

However, Zick et al. (2000) suggest that women who have tested positive for BRCA1

mutations are not more likely to purchase more life cover than untested women. Nei-

ther are women who have tested negative for BRCA1 less likely to purchase life cover

than untested women. They suggest that their follow-up period is too short since

many participants were still dealing with the health impacts of receiving a positive

test result.

A common outcome of positive BRCA mutation tests is the removal of breasts

(mastectomy) and ovaries (salpingo-oophorectomy) as a means to reduce risk. Skytte

et al. (2010) found over a 10-year period, 50% of mutation carriers had a preventative

mastectomy and 75% salpingo-oophorectomy. However, polygenes have not yet got

such a clinical use so a woman who knows she is high risk might not have prophylactic

surgery and instead purchase CI.

In this section we look at the potential cost of adverse selection based on the

results of genetic tests.

We set up a model for an insurance market and parameterise it appropriately. The

likely buying patterns and testing arrangements are uncertain so we investigate how

the cost might change in response to these factors.

2.5.1 Market Model

We expand our insurance model to an insurance market, incorporating buying be-

haviour that may change due to the result of genetic testing. The product of interest

is again stand-alone critical illness. To ensure the model is Markov, the premium is

payable continuously as a current risk premium instead of a level premium. This risk

premium at time t is calculated for each sex as the weighted average cost of expected

claims arising in (t, t + dt), with weights equal to occupancy probabilities in insured

states assuming no adverse selection — all lives purchase insurance at the same stan-

dard rate. To conform to the EU legislation, these gender-specific risk premiums will

have to be averaged across the two sexes with the weights for each being the overall

probability a male and female is insured respectively, calculated assuming adverse

selection to take place.
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Figure 2.6: A model of female insurance states for an insurance market where genetic
testing may be available before and after family history at different rates. The arrows
to Dead and Critical Illness states are omitted but these may be entered from any
other state.

Since the premiums payable assume a lower-than-experienced rate of claim, a loss

will arise. This loss is the cost of adverse selection and is calculated as the difference

between outgo and premium income and expressed as a percentage of premium income

received with adverse selection present, to show how much all premiums must increase

as a result of the insurer not seeing test results.

All lives are assumed to be 20 years old, healthy, untested and uninsured at the

start of our modelling.

The model is illustrated in Figures 2.6 and 2.7.

Different scenarios are modelled to show the effects of uncertain parameters as

follows:

1. The rates of going into a tested state are those used by Macdonald and McIvor

(2009) which they based on Ropka et al. (2006)’s estimate of 59% uptake: High

with rate 0.08916 per annum; Medium with rate 0.04458 per annum; or Low

with rate 0.02972 per annum. All testing is performed on lives between ages 20

and 40.

2. Market size is at two levels represented by the rate at which a standard life

enters the insured state: a Large market with rate 0.05 per annum or Small

market with 0.01 per annum.

3. After receiving test results, a life may change their buying behaviour. Low risk

lives either buy at the same standard rate, half the standard rate or do not buy
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Figure 2.7: A model of male insurance states in an insurance market. Depending on
legislation, lives in state state M6 will belong to either underwriting class ST or FH.

at all. High risk lives, regardless of the size of market, will buy at rate 0.25

per annum which we take to represent a ‘Severe’ level of adverse selection; or

at rate 0.1 per annum which we consider to be ‘Moderate’ adverse selection.

A life is deemed to be high risk if their log relative risk is higher than the log

of the population average relative risk plus the threshold in the scenario (see

below). They are low risk if their risk is lower than the log of the population

average relative risk minus the threshold. Additionally, a life with a mutation in

either BRCA1 or BRCA2 is always deemed high risk, regardless of the polygene

relative risk.

The threshold of relative risk serves to classify lives into three categories of relative

risk. It is varied to show the effect of how different from the population risk a life

needs to see herself as being before she considers herself to be high risk or low risk i.e.

whether the product represents high or low value to her. We limit ourselves to using

high-risk and low-risk thresholds that are symmetric around the log of population

average relative risk. However, in reality, the distance from this average that is needed

to change behaviour may differ for low-risk and high-risk lives. We choose average

relative risk as a central point because the premium charged will be approximately

equal to the appropriate premium for a BRCA0 life with average relative risk. When

tested lives consider whether they are getting a cheap or expensive rate, it will be with

reference to this average premium. However, this will create an imbalance between

the proportions of high and low risk lives (see Table 2.16). Macdonald and McIvor

(2009) used the mode of their distribution as the centre.

This could be enhanced with the use of some decision making methodology e.g.
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Table 2.16: Proportion of lives at age 20 considered Low or High Risk at each threshold
point.

Threshold 0.0 0.5 1.0 1.5 2.0 2.5 3.0

Low Risk (%) 72.8 57.6 41.1 26.0 14.5 7.0 2.9
High Risk (%) 27.2 15.3 7.5 3.2 1.1 0.4 0.1

utility theory or prospect theory (Kahneman and Tversky, 1979; Tversky and Kah-

neman, 1992) to assess whether the product represents good value. Previous work

has aimed to find the potential for adverse selection using utility theory by consid-

ering boundaries for which lives would not buy insurance; they do not consider how

lives would buy at an increased rate because their expected utility framework only

answers the question whether or not to buy. For instance Macdonald and Tapadar

(2010) modelled a multi-factorial gene disorder that interacts with the environment

and found no realistic circumstances where healthy lives would choose not to buy

insurance. Whereas Macdonald and McIvor (2009) found that under two of the four

utility models used (the same as those parameterised in Macdonald and Tapadar

(2010)), lives with a very low risk polygenotype would not buy insurance.

2.5.2 Family History Onset Rate

The market model includes the onset of family history as an event. We define the

onset rate of family history as

Onset Rate =
New family history cases in period

Exposed to risk
, (2.20)

where the exposed to risk is the sum over all lives of the number of years the life is

healthy and has not yet developed a family history in the period. As can be seen in

Figures 2.8, 2.9 and 2.10, the log of the onset rate has a strong linear dependence on

the individual’s log polygene risk. However, there is divergence from the straight line

at each end of the plots, particularly in the BRCA1 and BRCA2 families. This is due

to the very small number of lives with the extremes of relative risk. With a small

value for the denominator in Equation (2.20) for each additional family history there

is a large jump in the calculated onset rate. We therefore omit groups where there

are less than 10 lives contributing to the exposure. There is a large difference where

a parent carries a BRCA mutation so these are considered separately. As there is no

observable difference between sexes, we ignore sex as a factor. Family history cannot

arise after the life is age 50 as the definition is limited to cancer before age 50 and all

lives are assumed to be born at the same time.
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Figure 2.8: Logarithm of family history onset rates for families with no BRCA muta-
tion in either parent. Each circle represents the calculated onset rate for a particular
age, sex and relative risk combination. Groups of size less than 10 are omitted from
the plots.

Based on the linearity of the log of the onset rate, we fit linear models for the log

of the onset rate as the response variable, using simulations from Section 2.4, with log

relative risk and age as explanatory variables and Normal errors. Since the sizes of

the simulated onset rates are small, this is unlikely to be associated with high adverse

selection costs, we will therefore be satisfied with simple predictor functions. We

choose a predictor with quadratic terms for age and log relative risk and interactions

between each, and choose variables to be included in an iterative process by analysing

the fit and removing the least significant term, subject to the deviance not increasing

a significant amount, until we are left with p-values< 5% for each term (Crawley,

2012).

Denote the BRCA0 specific onset rate of family history as µHBRCA0 (r, x) for a life
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Figure 2.9: Logarithm of family history onset rates for families where a parent has
a BRCA1 mutation. Each circle represents the calculated onset rate for a particular
age, sex and relative risk combination. Groups of size less than 10 are omitted from
the plots.
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Figure 2.10: Logarithm of family history onset rates for families where a parent has
a BRCA2 mutation. Each circle represents the calculated onset rate for a particular
age, sex and relative risk combination. Groups of size less than 10 are omitted from
the plots.

57



Chapter 2: Polygenes and Major Genes for Breast Cancer in a Critical Illness Market

aged x with logRRg = r and similarly for BRCA1 and BRCA2.

For BRCA0 this results in the following,

µHBRCA0 (r, x) =

exp(−21− 0.4696x+ 0.0081x2 + 0.0463xr − 0.0006x2r), if x < 50

0, if x ≥ 50.

(2.21)

Since the BRCA mutations are assumed to have an effect only from age 30 onwards,

these rates are fitted in two stages, x ≤ 30 and 30 < x < 50. We pool the lives from

all families where a BRCA mutation is present for x ≤ 30 due to sparse data:

µHBRCA1 (r, x) =


exp(−12.44512− 4.44898x+ 0.2486xr), if x ≤ 30

exp(−37.63246 + 4.34126x− 0.2344xr + 1.5182r), if 30 < x < 50

0, if x ≥ 50

(2.22)

and

µHBRCA2 (r, x) =


exp(−12.44512− 4.44898x+ 0.2486xr), if x ≤ 30

exp(−31.44989 + 0.20735x− 0.011xr + 1.17576r), if 30 < x < 50

0, if x ≥ 50.

(2.23)

2.5.3 Cost of adverse selection

The cost of adverse selection may be expressed as a percentage of premium income

and defined as

E(PV Benefits|Adverse Selection)−E(PV Premium Income|Adverse Selection)

E(PV Premium Income|Adverse Selection)
,

(2.24)

with a risk premium rate calculated assuming no adverse selection occurs. This result

tells us how the premium rates of all lives must increase as a result of adverse selection

being present in the market.

To calculate benefit outgo and premium income, it is necessary first to calculate

the probability of uninsured lives being in insured states at time 0 < t < 40 (or equiv-

alently between ages 20 and 60). We denote these probabilities, with consideration

for genotype, as g
t p
j,k
x , i.e.

g
t p
j,k
x = P (In State k at age x+ t|G∗ = g and in State j at age x). (2.25)

They may be calculated by solving the Kolmogorov forward equations (see Appendix
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A):
d

dt
g
t p
j,k
20 =

∑
l 6=k

(
g
t p
j,l
20µ

l,k
20+t −

g
t p
j,k
20 µ

k,l
20+t

)
. (2.26)

This was done using a 4th order Runge Kutta algorithm with a step size of 2−12 and

boundary conditions: g
0p
F1,F1
20 = 1 and g

0p
Fj,Fk
20 = 0 for (j, k) 6= (1, 1) and similarly for

males.

We introduce notation for the critical illness hazard rate at age x, which is the

same for any state: αFg,x for a female with genotype g and αMg,x for males; and αjx

as the mean critical illness hazard rate for lives in state j with weightings equal to

occupancy probabilities assuming no adverse selection.

The continuously payable risk premium rate at time t may then be found using

a similar technique to that used to calculate the premiums in Equation (2.17), by

calculating the mean critical illness hazard rate for female lives in ST , αF3
x+t, and

including lives in FH when averaging across the sexes:

ΠST (t) =

∑
g∈G∗

pg

[
pfα

F3
20+t

(
g
t p
F1,F3
20 + g

t p
F1,F6
20

)
+ pmα

M3
x+t

(
g
t p
M1,M3
20 + g

t p
M1,M6
20

)]
∑
g∈G∗

pg

[
pf

(
g
t p
F1,F3
20 + g

t p
F1,F6
20

)
+ pm

(
g
t p
M1,M3
20 + g

t p
M1,M6
20

)] .

(2.27)

Lives in states M3 and F3 (see Figures 2.7 and 2.6) belong to the same under-

writing class, ST , due to the requirement of unisex rates. However, the question over

how to treat males with a family history among their female relatives is still present.

Again there are two possible cases:

1. Only females underwritten (lives in M6 are in ST underwriting class)

ΠFH (t) = αF6
20+t − αF3

20+t + ΠST (t) ; (2.28)

2. Males and females are both underwritten (lives in M6 are in the FH under-

writing class)

Π′FH (t) =

∑
g∈G∗

g
t p
F1,F6
20 pg pf

(
αF6

20+t − αF3
20+t

)
∑
g∈G∗

pg

(
g
t p
F1,F6
20 pf + g

t p
M1,M6
20 pm

) + ΠST (t) . (2.29)

While these two possibilities may present difficulty to an insurer’s underwriting

department, the proportion of lives that develop a family history represents only 0.09%

of male lives at its peak at age 50 from Table 2.13, so when testing is available to

all lives, the impact of underwriting is negligible and we give results for only females

59



Chapter 2: Polygenes and Major Genes for Breast Cancer in a Critical Illness Market

being underwritten.

The expected present value of benefits and premiums needed for Equation (2.24)

are then calculated with occupancy probabilities found in the presence of adverse

selection, by numerical integration using Simpson’s formula as follows:

E(PV Benefit|Adv. Sel.) =
∑
g∈G∗

pg

[
pf

∫ 40

0

e−δt
(
g
t p
F1,ST
20 + g

t p
F1,FH
20

)
αFg,20+t dt

+pm

∫ 40

0

(
g
t p
M1,ST
20 + g

t p
M1,FH
20

)
αMg,20+tdt

]
(2.30)

and

E(PV Premium|Adv. Sel.) =
∑
g∈G∗

pg

[
pf

∫ 40

0

e−δt
(
g
t p
F1,ST
20 + g

t p
M1,ST
20

)
ΠST (t) dt

+pm

∫ 40

0

e−δt
(
g
t p
F1,FH
20 + g

t p
M1,FH
20

)
ΠFH (t) dt

]
,

(2.31)

with a step size of 2−11 and force of interest, δ = 0.05.

2.5.4 Results

We choose scenarios which allow us to show the impact of successively adding sources

of adverse selection to analyse where the adverse selection costs can be attributed.

The likely testing arrangements are by no means certain. Testing for BRCA1

or BRCA2 mutations from the National Health Service is available only after it is

apparent there is risk of the woman having a mutation and always requires some

family history2. However, since inheritance of polygene risk does not necessarily

result in the pattern of inheritance where an individual can be assigned a reasonable

probability of having a high risk genotype, a similar testing regime may not be as

effective. As the science develops and more genes are identified, the feasibility and

cost of testing will improve. Pharoah et al. (2008) discusses the use of population

testing as a way of identifying high-risk women in order to target the more expensive

means of detecting breast cancers, e.g. MRI screening, for early diagnosis. They

found that the use of a few susceptibility alleles could be used to distinguish woman

as high risk could improve the efficiency of BC screening programmes.

This is being further investigated in a trial across Greater Manchester by the Pre-

2http://www.nhs.uk/Livewell/Breastcancer/Pages/Breastcancergenes.aspx 4th August,
2013
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dicting Risk Of Cancer At Screening study (PROCAS) (Howell et al., 2012). PROCAS

is using a combination of family history, lifestyle, breast density and genetics to es-

timate breast cancer risk. Women who are deemed to be high risk are then given

advice on how to reduce their risk and offered more frequent monitoring.

If the testing is extended in this way across the country, the potential for adverse

selection increases greatly, with most lives being aware of their risk profile. How well

this information would be interpreted by the average person is debatable — without

genetic counselling, the implications of the results would be unlikely to be properly

understood: high risk lives becoming fearful which could impair the rational decision

making process (Loewenstein, 2000). Early detection will however change the shape

of rate tables and these early cases could be at a stage that is not covered under the

critical illness cover e.g. ductal carcinoma in situ is not considered a critical illness by

many insurers, but left untreated may develop into invasive breast cancer. Where the

prognosis improves such that a claim would not be viable, the inclination to adversely

select would decrease so we include the Moderate adverse selection rate to reflect this

case.

We include scenarios representing an extension of the current National Health

Service policy to include polygene testing after a family history has been observed,

and where testing is available to all women regardless of family history.

The results of these scenarios are shown in Tables 2.17 to 2.21:

1. High risk lives adversely select at a Severe rate after a polygene test (Table

2.17).

2. Low risk lives change behaviour after a polygene test, while high lives risk buy

at the standard rate (Table 2.18).

3. High risk lives adversely select at a Severe rate after tests for polygene and

BRCA — lives with BRCA1 or BRCA2 mutations are considered high risk,

regardless of polygene relative risk (Table 2.19).

4. High risk lives adversely select at a Moderate rate after tests for polygene and

BRCA — lives with BRCA1 or BRCA2 mutations are considered high risk,

regardless of polygene relative risk (Table 2.20).

5. High risk lives adversely select at a Severe rate after tests for polygene and

BRCA — lives with BRCA1 or BRCA2 mutations are considered high risk,

regardless of polygene relative risk. Tests available only to lives with a family

history of breast or ovarian cancer (Table 2.21).
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The costs involved look comparable to those in Macdonald and McIvor (2009).

However our model differs from theirs in a number of ways, key of which is the Euro-

pean Union ruling described in Section 2.4. This spreads the costs over approximately

twice the volume of premium. Thus the costs suggested by our model would need to

be approximately doubled to apply to a regime where sex discrimination is permitted.

Where this is the case, our somewhat moderate costs could become quite substantial

particularly when passed on to the customer.

One observation of note is that a large part of the cost of adverse selection could

come from low risk lives buying at a lower rate after testing. Although the reduction

in the portfolio of insured lives by any individual low risk life increases the average

risk by a smaller amount than the gain of a high risk life, the volume of low risk lives

underbuying compared to high risk lives overbuying causes this high cost relating to

low risk lives. This is somewhat in contrast to Subramanian et al. (1999) who found

that the lapsing of women who test negative for a BRCA mutation was of a much

lower impact than women with a positive test result increasing benefit levels for a life

insurance contract. Their work did not include the polygenic model of BC risk, which

introduces wide heterogeneity within the major gene groupings.

Adding BRCA to the test regime makes only a small impact when already testing

for polygenes. This validates the overall finding of Macdonald and McIvor (2009),

that the bigger part of adverse selection cost is down to the polygene.

As previously stated, very few lives develop a family history. If testing is lim-

ited only to those who have a family history then the cost from adverse selection is

negligible, reaching a peak of 0.003% in a small market with High test rate.

In a small market, under the Moderate adverse selection scenarios there are still

reasonable costs involved, up to 15%. Indeed the change from the Severe rate of

insurance purchase is quite small as this is already a very high rate of insurance

purchase compared to the Standard purchase rate.

2.6 Conclusions

The discovery of a small number of ‘breast cancer polygenes’ has allowed us to take

another look at Macdonald and McIvor (2006)’s work which previously used a hypo-

thetical model in order to assess the findings, and update their results as necessary.

They had suggested the simplifications of that model create a heavy tail that distorts

the costs. We have found that their results for family history ratings, when corrected

to use the standard premium as numeraire, are reasonable. Additionally their con-

clusion that the bigger part of adverse selection risk is attributable to polygenes still

stands in a model based on actual genetic data. However they understate the size of

the adverse selection cost compared to that arising under our actual gene model.
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The change of European law to enforce the use of unisex pricing, while creating

additional concerns for an insurer’s underwriting team and adding a level of risk from

business mix, acts to spread the cost of adverse selection over a wider base whose

behaviour is not subject to change. The premiums chargeable to a female with family

history would be roughly halved if the same rating was applied to a male despite the

lack of additional risk implied for the male.
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Chapter 3

Modelling Long-Term Care

3.1 Introduction

In this chapter we set out models to allow us to assess the costs of adverse selection in

a start-up market for long term care insurance (LTC) and assess the relative impact

of different sources of adverse selection in this market. LTC provides the policyholder

with a benefit to cover the cost of payments to a carer or care home. In Chapter 4

we will apply this modelling to a U.K. setting.

Previous actuarial models of genetic adverse selection (including our work in Chap-

ter 2) have assumed an established insurance market. In such markets, premiums

have already absorbed the cost from an increased proportion of high-risk lives, and

we merely find by what factor they are larger than if there was no adverse selection.

Since we are considering a start-up market, we will assume that insurers initially have

insufficient experience to set premiums appropriately. As they gain experience, they

will compare actual cashflows with what was expected, and respond to differences by

changing premiums chargeable to new business. In this way, we make the premium

rates dynamic. As the premiums adjust, so will the costs of adverse selection and

our model will be able to chart these costs over time. This methodology, where we

explicitly model the emergence of information and its relation to adverse selection

costs, could also be applied to an established market where a new source of adverse

selection is being introduced.

There are two main reasons for requiring care: reduced functional ability and

reduced cognitive function (dementia). We will start by describing these causes, then

review previous models of long-term care.

LTC is a product to pay for old-age care, so our modelling will commence with

detailing a model for old-age health in Section 3.2. This will involve estimating

transition intensities between states in a Markov model. We will also introduce and

parameterise an intermediate state for dementia, where the life has noticed the initial

signs of the disease but a lack of clinical diagnosis creates an information asymmetry
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and hence an opportunity for adverse selection.

Under a LTC contract, benefit payments may depend on path taken by the insured

through the health model. In order to approximately calculate the expected present

values of future benefits at the start of each calendar year of a policy’s existence, in

Section 3.3 we specify a model to simulate future lifetimes and the resulting LTC

cashflows.

In Section 3.4 we will set out a model for a start-up insurance market. In this

market model, we will describe how we will use the expected present values calculated

from our simulations in order to calculate our dynamic premium rates.

3.1.1 Functional Ability

We measure reduction in functional ability in terms of activities of daily living (ADLs)

e.g. the Barthel and Katz indices (Mahoney and Barthel, 1965; Katz et al., 1970),

and instrumental activities of daily living (IADLs) — these are not as fundamental

as ADLs but still necessary to retain one’s independence — that can no longer be

performed. The ADLs used to trigger an insurance claim are typically needing as-

sistance with at least two of bathing, dressing, toileting, transferring, continence, or

feeding. We use the same language as is used among insurers to describe the level of

disability:

• A person that has problems performing x ADLs is said to have xADLs;

• A person that can perform all ADLs is said to have no ADLs.

Once functional ability has been lost, it is not necessarily permanent and lives can

recover to healthier states. In this way it is similar to income protection insurance

and much like income protection, a desirable feature from an insurer’s perspective

may be a deferred period to prevent the high cost of claims underwriting when the

claimant does not require a long period of care.

3.1.2 Cognitive Function

Dementia is an umbrella term for a group of disorders which impair cognitive function

by affecting thought processes, memory, judgement and personality. Although the

main sufferers are the elderly, some diseases occur at younger ages. It is progressive,

so symptoms gradually worsen but sufferers may show these symptoms inconsistently:

they may have periods of lucidity despite severe progress of the disease. As it pro-

gresses and the sufferer loses the ability to take care of him/herself, informal care

from family members or formal care in a nursing home may be necessary.

Diagnosis is aided by use of a mini-mental state examination (MMSE) (Folstein

et al., 1975) — a series of 30 questions with particular focus on orientation to time
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and place, memory and arithmetic — where lower scores indicate a decreased level

of cognitive ability. However, this test cannot easily distinguish between cause of

dementia (Santacruz and Swagerty, 2001).

We class the causes of reduced cognitive function into two groups: dementia due to

Alzheimer’s Disease (AD) and dementias that are not caused by Alzheimer’s Disease

(Non-AD).

Alzheimer’s Disease

The main type of dementia is AD which is responsible for 65–70% of cases (Berr et al.,

2005). There is a great deal of overlap in the symptoms shown with those of non-AD,

so diagnosis of AD can only be made with certainty at autopsy where the brain may be

properly analysed. Characteristics within the brain include a build-up of proteins on

the outside of neurones (β-amyloid plaques), inside of neurones (hyperphosphorylated

tau protein) and a loss of neurones and synapses.

Its causes are not known but it is thought to have a strong genetic component;

Gatz et al. (2006) estimates that between 60–80% of the risk is genetic.

There are two distinct varieties of AD, named for the timing at which they occur:

early-onset Alzheimer’s disease, which usually affects lives aged less than 60 years old

and late-onset Alzheimer’s disease, the more common form and which affects lives

aged 60 years and older. Early-onset AD should not be confused as merely being the

earlier occurrence of AD as the known causes are different — specifically, the genes

known to cause early-onset AD do not have an impact on late-onset AD (Gerrish

et al., 2012).

Early-onset AD is commonly referred to as Mendelian AD because the pattern

of inheritance it generally follows is Mendelian. The genetics in this variety is well

established (albeit not completely) with strong evidence supporting the main causes

of early-onset AD as being mutations of the genes which code for the amyloid pre-

cursor protein, presenilin 1 and presenilin 2 (Alagiakrishnan et al., 2012). These gene

mutations are rare but result in a very high probability of developing AD. They cause

high production rates of amyloid beta peptides which clump together into the amyloid

plaques of Alzheimer’s disease.

However, the genetics of late-onset AD is not so well understood and the only gene

known to affect its development and that has sufficient epidemiology for modelling

purposes is the apolipoprotein E gene, APOE. In the advent of genome-wide associ-

ation studies, identification of potential susceptibility genes has picked up pace and

there have been many candidates for association with late-onset AD. The progress of

the research is reviewed in Alagiakrishnan et al. (2012): susceptibility genes for which

results have been replicated, giving strong evidence for their association with late-

onset AD, are the phosphatidylinositol-binding clathrin assembly protein (PICALM),
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clusterin (CLU), complement receptor 1 (CR1), B1N1 and GRB2-associated-binding

protein 2 (GAB2) genes. Coon et al. (2007) established APOE as “the major suscep-

tibility gene” for late-onset AD.

There is also a potential role of epigenetics in the risk of developing late-onset

AD. Histone modification is a process which can cause genes to either be expressed

or silenced and “abnormal methylation pathways are detected in the brains of people

afflicted with dementia” (Alagiakrishnan et al., 2012). Environmental factors can also

contribute to epigenetic gene expression for example there is suggestion of interaction

between APOEε4 variant and cholesterol in Chandra and Pandav (1998). Epigenetics

could therefore play a role in altering the risk associated with genetic risk. However,

we do not include this in our modelling as the data required to fit relevant parameters

is unavailable.

Since we are concerned with post-retirement care, we are only interested in late-

onset AD. Therefore, when we refer to AD, this is specifically the late-onset variety.

Non-Alzheimer’s Dementia

The various diseases that cause dementia, other than AD, include but are not limited

to

• Vascular dementia (also known as multi-infarct dementia) — usually caused by

small strokes and is the second most common cause of dementia (Battistin and

Cagnin, 2010);

• Dementia with Lewy bodies — Lewy bodies are aggregates of protein in nerve

cells;

• Parkinson’s disease — usually presents with motor symptoms, caused by degen-

eration of the central nervous system, before dementia develops later;

• Huntington’s disease — a genetic disorder, however symptoms usually show

much earlier than the post-retirement ages we are concerned with so this would

not add to the adverse selection costs in the type of insurance product we are

concerned with.

3.1.3 Previous Models of Long-Term Care

Here we review the methodology and the aims of some of the models of long-term

care in the U.K. The major difference between the methodologies is with regards to

the use of either transition intensities or prevalence rates.

The first studies we consider used a transition intensity based approach. Transition

intensities are a more fundamental quantity than prevalence rates — with transition
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intensities into and out of a state, one can calculate prevalence at any given time.

The benefit of using transition intensities is that they allow greater flexibility in the

modelling — the prevalence of diseases can change overtime and using transition

intensities enables this to happen. However they are more difficult to come by —

whereas prevalence requires only a snapshot of a population at one point, to estimate

transition intensities, we need to understand how the population changes over time.

Ideally, such an exercise would involve revisiting the population at a later time to find

the details of any changes in health, increasing the cost and duration of analysis.

Macdonald and Pritchard (2000) set out a Markov model for the onset of AD

dependent on the APOE variants carried by the life. They had a state for where the

AD had progressed to the stage of requiring care in an institution (residential care

home), but data available to them was limited for their transition intensities post AD

diagnosis. They use this model in Macdonald and Pritchard (2001) in the context

of an established market for LTC to calculate potential adverse selection costs from

high-risk genotypes buying at an increased rate. As a proxy for the onset of a claim,

they consider the trigger for a claim to be the transition into an institution. They

calculated single premiums for each genotype using Norberg (1995)’s equations and

averaged these across genotype with weights equal to the proportion of lives assumed

to buy insurance. Adverse selection cost was calculated as the percentage increase in

premiums after increasing the proportion of lives of high-risk genotypes among those

who buy the contract.

Pritchard (2006) fitted a Markov model for disability with 5 levels of functional

disability to the results of the National Long Term Care Study in the U.S (Manton,

1988). His aim was to estimate the costs of disability claims in a LTC contract. He

calculated the expected present value of the benefits attributable to occupancy of

each state and found that where studies exclude recovery, they could substantially

overstate the cost of benefits.

Akodu (2007)’s Markov model of functional ability and cognitive function was

based on the Cognitive Function and Ageing Studies I (CFAS) data. CFAS collected

their data by conducting interviews with over 13,000 participants in a longitudinal

study MRC CFAS (1998). Akodu (2007) did not consider dementia types separately,

but instead classed any life with MMSE score below a certain point as cognitively

impaired. To perform a sensitivity analysis on how dementia was defined, models

were fitted for MMSE scores below 10, 18, 20 and 21 which were chosen to conform to

classifications given by McNamee (2004), Neale et al. (2001) and Spiers et al. (2005)

respectively. It was not an insurance model therefore its aim was not to measure

adverse selection; instead it was estimating the future demand for long-term care in

the U.K. based on projected population sizes of different states.

We now move onto studies which used a prevalence data based approach. A
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drawback of using such data is that it requires an assumption of static prevalence,

whereas in reality the pattern may change over time.

Similarly, the Personal Social Service Research Unit (PSSRU) of the London

School of Economics and the University of Kent, have performed various modelling

exercises with regards to long-term care demand and expenditure using updated ver-

sions of Wittenberg et al. (1998)’s spreadsheet based model e.g. Hancock et al. (2007);

Wittenberg et al. (2006). They split the population by risk-factors: age, gender, de-

pendency, household type, housing tenure (as a proxy for economic circumstances)

and whether in receipt of informal care. The number of males and females in each age

band were projected forward using the U.K.’s Office for National Statistics’ and Gov-

ernment Actuary’s Department’s projections. These were further split into cells for

the remaining factors and a probability of receiving formal care attached by fitting

functions to the General Household Survey results. A development to Wittenberg

et al. (1998) of note was by Comas-Herrera et al. (2003). This was by amending

the probability of receiving formal care to include services for cognitive impairment

specifically.

Nuttall et al. (1994) used Office of Population Censuses and Surveys prevalence

data to fit a discrete-time multiple state model of disability in the U.K.. The aim was

to project future demand and costs of care and assess the implications on different

sectors’ ability to finance LTC. They used 3 states to represent the health of lives,

with separate models for different levels of disability. To fit their transition intensities

they assumed prevalence of disability was unchanging, although as they point out,

their calculated intensities contradict this assumption.

Rickayzen and Walsh (2002) extended Nuttall et al. (1994)’s model to allow tran-

sition between ADL states, including recovery. Annual probabilities of transition

between states and trends for how these might change over time, were derived from

the General Household Survey, Government Actuary’s Department projections and

Office of Population Censuses and Surveys data. They used this to project the number

of disabled people with no regard to care costs.

We would like to develop a multiple state model, based on elements of Macdonald

and Pritchard (2001)’s and Akodu (2007)’s models, which uses transition intensities

and includes both cognitive and functional disabilities.

3.2 Model of Old Age

In this section we set out our model of old age which will form the basis of our LTC

models in Sections 3.3 and 3.4. We start with a continuous-time Markov model of old

age as illustrated in Figure 3.1 and parameterise the transition intensities between

states.
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Figure 3.1: A Markov model of functional ability and cognitive function. The arrows
to the Dead state are omitted but may be entered from any state.

The Markov framework is an essential assumption for our modelling methodology

and is very common in actuarial modelling of life histories. Intuitively, the transitions

might be expected to contradict such an assumption. However, there is a difficulty

in fitting anything more complex as the data required, such as duration of state

occupancy and the path taken to the current state, are often unavailable. Macdonald

and Pritchard (2000) discusses the Markov nature of the mortality of individuals

with AD. They justify the Markov property by citing studies which have found no

association between duration of AD and increased mortality (Barclay et al., 1985;

Bracco et al., 1994; Burns et al., 1991; Diesfeldt et al., 1986; Heyman et al., 1996;

Sayetta, 1986; Walsh et al., 1990).

In the absence of data to provide a more suitable model, and for mathematical

convenience, we assume all state transitions depend only on the current state, i.e. are

Markov.

For each state ik, we call i its cognitive ability type (the progress of dementia) and

k its functional ability type (the number of IADL or ADLs). Changes in cognitive

ability type are assumed to be independent of functional ability type. Similarly,

changes in functional ability type are assumed to be independent of cognitive ability

type. To express this mathematically, we have µik,ilx+t = µjk,jlx+t and µik,jkx+t = µil,jlx+t.
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McGuire et al. (2006) suggest the latter of these assumptions is not valid. In an

American population, they found those with the lowest level of cognition (as diag-

nosed by telephone interview) had greater odds of ADL disability. Iwasa et al. (2008)

conducted an analysis of how specific areas of cognitive function related to functional

decline among a Japanese community. Their results showed a link between ADLs and

either a decline in information processing speed or orientation to time and place. How-

ever due to different methods in diagnosis of cognitive function and functional ability

among studies, reliable data for the purposes of fitting into our model is scarce. We

therefore continue with this assumption in place and now parameterise the transitions

between states.

Inclusion of recoveries adds complexity of the model. However as mentioned above,

Pritchard (2006) found that excluding recoveries results in overstating the cost of ben-

efits. For this reason, in our model it is possible to recover from functional disabilities.

3.2.1 Notation

We introduce the notation which will be used in this section:

1. As introduced above (and included here for ease of reference), µik,jlx+t is the tran-

sition intensity from state ik to state jl at age x+ t.

2. In the case dementia, where genotype specific intensities are necessary, denote

the transition intensity from state, ik, to state, jl, at age, x + t, for a life with

genotype, g, by µik,jlx+t,g.

3. The relative risk of AD cause by APOE genotype, g, at age, x, is denoted by,

%x,g.

4. Let µ̂ix+t be the ungraduated force of mortality at age x + t from state 0i esti-

mated by Akodu (2007).

5. The graduated relative risk of mortality caused by functional disability type i,

relative to lives with no ADLs, is denoted by ρi; while ungraduated for lives

aged x, is denoted by ρ̂x,i.

6. In common with standard actuarial notation, qx+t and px+t are the one year

probabilities of death and survival respectively, for a life aged x + t. After

applying mortality improvements, these become qxt and p′x,t respectively.

7. The factor by which to reduce the 1-year probability of death, t years after the

date of the underlying mortality table for a life who was aged x at t = 0 is

denoted by RFx+t,t,y. The The associated reduction factor applicable to µ00,4
x+t ,

is denoted by υx,t.
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8. The set of all states in our final Markov model of health is denoted by S.

3.2.2 Functional Ability

We first consider the transition between functional ability types. Transitions between

functional ability types are reversible, e.g. it is possible that a person could go from

Healthy to > 1 ADL and subsequently ‘recover’ to having 1 ADL. Transition intensi-

ties are therefore required in both directions connecting each functional ability type,

for a given cognitive function type.

Functional ability transition intensities are taken to be those derived by Akodu

(2007), who fitted functions to using the penalised least squares method of Pritchard

(2006). This is the only study that calculates age dependent incidence of functional

ability for a U.K. population. It is based on a large body of data (13,004 lives in the

first phase of a two phase, longitudinal study) and is fitted with a Markov model,

consistent with our assumptions.

A limited number of other studies report the incidence of functional disability but

these are usually concerned with predictive factors for its onset and do not include

recovery, e.g. Alexandre et al. (2012) found age dependent incidence by particular

ADLs for a Brazilian population; and Taş et al. (2007) performed a prospective lon-

gitudinal study from the Rotterdam Study (Hofman et al., 1991). Pritchard (2002)

included transitions between various levels of functional disability (defined by number

of ADLs) using the US National Long-Term Care Surveys.

Akodu (2007)’s intensities were fitted using the penalised maximum likelihood

method of Pritchard (2006) and graduated to the following functions depending on

which best fit the shape:

• Makeham: µik,ilx+t = αkl + β exp (γkl (x− 68.5 + t));

• Weibull: µik,ilx+t =
γij
βkl

(
x+t
βij

)γkl−1

; and

• Linear: µik,ilx+t = αkl + βij (x+ t).

Tables 3.1 and 3.2 list where each applies and their corresponding parameters.

3.2.3 Mortality Without Dementia

We next parameterise the mortality for lives who have not developed dementia (i.e

from state 0j). We observe in Akodu (2007) that, apart from lives with 1 ADL, the

mortality rates experienced by lives in functionally disabled states are significantly

higher than the point estimates for lives with no ADLs. Therefore we will need to

fit mortality dependent on functional ability. For simplicity we will use a relative

risk approach, where we have some base mortality rate applicable to lives who have
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Table 3.1: Parameters and functions for transition intensities between functional abil-
ity type states for males. Source: Akodu (2007).

From To Parameter Fitted
Status (k) Status (l) αkl βkl γkl Function

None IADL - 7.3× 101 3.89× 100 Weibull
1-ADL 1.72× 10−2 5.24× 10−3 1.63× 10−1 Makeham
≥ 2 ADLs −1.68× 10−2 2.99× 10−4 - Linear

IADL None 9.51× 10−1 −9.66× 10−3 - Linear
1-ADL 9.6× 10−2 1.01× 10−3 - Linear
≥ 2ADLs −1.13× 10−2 1.26× 10−2 1.21× 10−1 Makeham

1-ADL None 6.54× 10−1 −6.76× 10−3 - Linear
IADL 4.38× 10−2 1.60× 10−5 - Linear
≥ 2ADLs 2.81× 10−1 −1.44× 10−3 - Linear

≥ 2ADLs None −5.58× 10−2 8.65× 10−4 - Linear
IADL 5.74× 10−2 −3.89× 10−4 - Linear
1-ADL −7.12× 10−2 2.30× 10−3 - Linear

Table 3.2: Parameters and functions for transition intensities between functional abil-
ity type states for females. Source: Akodu (2007).

From To Parameter Fitted
Status (k) Status (l) αkl βkl γkl Function

None IADL −4.95× 10−1 8.35× 10−3 - Linear
1-ADL - 7.64× 101 5.22× 100 Weibull
≥ 2ADLs 1.54× 10−2 −1.70× 10−4 - Linear

IADL None 6.17× 10−1 −5.48× 10−3 - Linear
1-ADL −6.28× 10−1 1.09× 10−2 - Linear
≥ 2ADLs 8.53× 10−2 1.78× 10−3 - Linear

1 ADL None 4.89× 10−1 −5.18× 10−3 - Linear
IADL −1.22× 10−1 2.18× 10−3 - Linear
≥ 2ADLs - 6.36× 101 4.52× 100 Weibull

≥ 2ADLs None 2.88× 10−2 −3.19× 10−4 - Linear
IADL 2.83× 10−2 −2.96× 10−4 - Linear
1 ADL 5.25× 10−1 −4.87× 10−3 - Linear
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no functional disability and apply some factor to calculate mortality for lives with a

functional disability.

For a level of consistency with Macdonald and Pritchard (2001), we choose as our

base mortality rate for lives with no cognitive disability, the CMI (2009)’s AMC00

and AFC00 assured lives mortality rates for male and female lives respectively (the

previous study used CMI (1990)’s AM80 and AF80, previous versions of assured

mortality). They were calculated from the experience of subscribing U.K. insurance

companies over the period 1999–2002, and they apply to a life attaining age x on the

1st of July, 2000.

In this most recent series of mortality tables, there are mortality rates dependent

on smoker status. Although it is common practice for insurance companies to use

separate tables in their modelling, we use the combined tables. There is evidence

that smoking is a significant factor for increasing the risk of developing AD (Cataldo

et al., 2010). However, if we ignore fraudulent non-disclosure, information of smoker

status is not hidden from the insurer — insurers routinely ask on the application

form — so there is no information asymmetry and consequently no adverse selection.

We therefore feel the choice to use the combined tables is justified in keeping the

complexity of the model to a minimum.

Both sets of mortality data were graduated by the CMI using Gompertz-Makeham

formulae for ages x ≤ 100 and a blending formula to blend the rate from age x = 100,

µ100, to µ120 = 1 with specified curve parameter. For males they use

µ00,4
x =


exp

[
−4.01872 + 5.8902x−70

50
− 1.1515

(
x−70

50

)2
]

+0.00044726 if 17 < x ≤ 100,

0.407367
(

(120−x)1.25

201.25

)
+
(

1− (120−x)1.25

201.25

)
if 100 < x ≤ 120,

and for females they use

µ00,4
x =

0.00014423 + exp
(
−4.389068 + 5.584346x−70

50

)
if 17 < x ≤ 100,

0.354144
(

(120−x)1.25

201.25

)
+
(

1− (120−x)1.25

201.25

)
if 100 < x ≤ 120.

Now we calculate the relative risks of death while functionally disabled using data

from Akodu (2007). Akodu (2007) performed analysis on the CFAS study which

sampled lives from sites around the U.K., over the period 1991–1994. We assume

these relative risks are applicable to our chosen mortality rates.

The ungraduated relative risk of mortality, relative to lives with no ADLs, ρ̂x,i, is

calculated as

ρ̂x,i =
µ̂ix
µ̂0
x

. (3.1)
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Figure 3.2: Forces of mortality in a relative risk model. The force of mortality for lives
with no disability, point estimates and confidence intervals are from Akodu (2007).
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Table 3.3: Relative risk of mortality according to functional ability type, relative to
a life with no ADLs, for males and females.

Functional Male Female
Ability

IADL 5.179 2.770
1-ADL 2.844 1.456
≥ 2ADLs 6.737 8.746

For simplicity, we fit a constant relative risk of mortality for functional disability type

i, as the weighted average over all ages, where the weight for age x is 1/V ar(µ̂ix).

These are shown in Table 3.3. The mortality rate for state ij is given by

µij,4x+t = ρiµ
0j,4
x+t. (3.2)

To check consistency with the CFAS data, we apply these relative risks, relative to

Akodu (2007)’s fitted force of mortality for lives with no ADLs, in Figure 3.2. For each

level of functional disability, the force of mortality is within 95% confidence intervals

at every age, hence there would be no evidence against our constant relative risks.

3.2.4 Mortality Improvements

Recent years have shown substantial improvements in mortality (Office for National

Statistics, 2012b). Willets et al. (2004) suggests that over the past century, the biggest

driver of these improvements was the development of vaccines and antibiotics to treat

infectious disease. They also outline the areas causing mortality change at the start

of this century:

• The ‘cohort effect’ — the phenomenon whereby mortality improvement differs

by year of birth. In particular those born in the U.K. during the period 1925–

1945 have experienced the most rapid improvements in mortality compared to

other generations.

• The ‘ageing of mortality improvement’ — over time, the ages which display the

highest rates of mortality improvement are increasing.

• Increased uncertainty at younger ages.

• Changes in prevalence of cigarette smoking.

• Widening social class differentials — mortality has improved more quickly for

those in higher socio-economic classes.
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Without projecting changes in mortality in a pricing basis, insurance contracts

that extend over a long period could experience have significantly lighter mortality

than what was assumed. For products which provide benefits contingent on survival,

this could mean longer lasting periods of benefit payments than had been priced for,

potentially causing a loss. LTC is one such product — benefits are paid while the

insured is alive in a disabled state. We therefore include allowance for mortality im-

provement in our modelling, but we assume no changes to the relative risks associated

with functional disability calculated above.

To project the mortality improvements, we use CMI (2011)’s mortality projections

model, which combines cohort effects and age effects of mortality improvement. This

model uses a large number of age and birth year dependent assumptions, which are

listed in Appendix C.

Each component is projected independently from the year 2008. The method uses

a cubic formula to blend the most recently observed improvement rate (which we will

refer to as the initial rate) to some long-term average, over an assumed period of

years. The cohort component is assumed to tend to zero in the long-term. For the

age-effect, we choose a long-term average of 1% at all ages, for males and females;

this is consistent with the Government Actuary’s Department’s principle projection1.

The rate of convergence is controlled by a parameter, which we denote by β, for the

level of convergence achieved at the midpoint of the blending period. Let w (β, t, T ),

be the weighting of the most recently observed improvement rate for the projected

mortality improvement at time t, during a convergence period lasting T years. This

is calculated as,

w (β, t, T ) = a

(
t

T

)3

+ b

(
t

T

)2

+
t

T
+ 1, (3.3)

where a = −2 + 8β, b = 5.16β and c = −4 + 8β.

Let ζAge
x,t be the age-effects component of the mortality improvement rate for a

life aged x, at time, t. ζAge
x,0 and ζAge

x,TAge
x

therefore represent the age effect initial and

long-term rates respectively. ζAge
x,t is calculated as,

ζAge
x,t = w

(
β, t, TAge

x

)
ζAge
x,0 +

(
1− w

(
β, t, TAge

x

))
ζAge

x,TAge
x
, (3.4)

where TAge
x is the period of convergence for the age-effects component at age x. The

cohort effect component is calculated similarly.

The projected mortality improvement rate for a life aged x in the year 2008 + t, is

denoted by ζx,t and calculated by combining the age-effect and cohort components:

ζx,t = ζAge
x,t + ζCohort

2008+t−x,t. (3.5)

1http://www.gad.gov.uk/Demography\%20Data/Life\%20Tables/Varmortass.html, retrieved
31/07/2013.
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For non-positive values of t, i.e. for year 2008 and earlier, we use the experienced

mortality improvement rates, which are listed in Appendix C.

The method used by Continuous Mortality Investigation (2011) to apply these

improvement rates to a mortality table, is to first calculate a set of base reduction

factors, using all of the available observed data, i.e. from 1st January, 1990. From

this base reduction factor, they rebase it to the date of the mortality table being used.

The base reduction factors, RF ∗x,t are calculated at integer age x, and time since the

date of our mortality table, t, as,

RF ∗x,t =

RF ∗x,t−1

(
1− ζx,1990−2008+t−1

)
if t ∈ Z+

1 if t = 0.
(3.6)

From these base reduction factors, the reduction factors for a mortality table appli-

cable y years after 1st January, 1990, RFx,t,y are calculated as,

RFx,t,y =
RF ∗x,t+byc

1−(y−byc)RF ∗x,t+byc+1
y−byc

RF ∗x,byc
1−(y−byc)RF ∗x,byc+1

y−byc . (3.7)

where x and t are integers. For non-integer x and t, we calculate RFx,t,y using geo-

metric interpolation: first on age, and secondly on time, as

RFx,t,y =
(
RFbxc,btc,y

1−(x−bxc)RFbxc+1,btc,y
x−bxc

)1−(t−btc)

×
(
RF1+bxc,1+btc,y

1−(x−bxc)RF2+bxc,1+btc,y
x−bxc

)(t−btc)
. (3.8)

This produces factors to reduce qx, the 1-year probability of death, at integer ages

and times: q′x,t = RFx+t,t,y qx+t and p′x,t = 1 − q′x,t. However, we use the force of

mortality, µ00,4
x+t so we need to calculate a consistent factor to improve the force of

mortality.
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Now, RFx,0,y = 1, i.e. qx = q′x,0, therefore
∫ 1

0
µ00,4
x+t dt =

∫ 1

0
υx,t µ

00,4
x+t dt so υx,t = 1

for 0 ≤ t ≤ 1. For t ≥ 1 we have

hp
′
x,t

hp′x,t−1

=
p′x,t+h−1

p′x,t−1

hp
′
x,t =

p′x,t+h−1 hp
′
x,t−1

p′x,t−1

=
1+hp

′
x,t−1

p′x,t−1

exp

(
−
∫ h

0

υx,t+s µ
00,4
x+t+s ds

)
=

p′x+t+h−1 exp
(
−
∫ h

0
υx,t−1+s µ

00,4
x+t−1+s ds

)
p′x,t−1

−
∫ h

0

υx,t+s µ
00,4
x+t+s ds = log

[
p′x,t+h−1

p′x,t−1

exp

(
−
∫ h

0

υx,t−1+s µ
00,4
x+t−1+s ds

)]

υx,t+h µ
00,4
x+t+h = −

d
dh
p′x,t+h−1

p′x,t+h−1

+ υx,t−1+h µ
00,4
x+t−1+h

υx,t+h =
−

d
dh
p′x,t+h−1

p′x,t+h−1
+ υx,t−1+h µ

00,4
x+t−1+h

µ00,4
x+t+h

. (3.9)

For t ≥ 1, to solve Equation (3.9), we approximate the derivative d
dh
p′x,t+h−1 numeri-

cally with a central difference method,

d

dh
p′x,t+h−1 ≈

p′x,t+2h−1 − p′x,t−1

2h
. (3.10)

The mortality intensities from the healthy state are for lives attaining age x on 1st

of July, 2000, while our modelling date is some 12.5 years later, on the 1st of January,

2013. The results of this mortality improvement applied to lives in Healthy are shown

in Figure 3.3. The force of mortality used by Macdonald and Pritchard (2001) is

higher than what we use, particularly for males; while at the oldest ages theirs is lower,

particularly for females. This is driven by the pattern of mortality improvements: as

we have discussed, there are birth year and age effects on mortality improvement,

whereas Macdonald and Pritchard (2001) assumed an average improvement factor

applicable to all lives.

A noticeable feature of the improved mortality intensities is that they are not

continuous functions. The reason is the recursive nature of calculating υx,t. We could

write Equation (3.9) as a system of 2h non-homogeneous recurrence relations, denoted
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start and end points of a 30 year period for lives aged 62.5, 67.5, . . . , 87.5 in 2013.
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by fx,s,n, with 0 < s ≤ 1 and s+ n = t > 1, in the form:

υx,t = fx,s,n = g(x, s+ n) + fx,s,n−1 µ(x+ s+ n), (3.11)

where g(x, s+n) = − d
ds
p′x,s+n−1/(p

′
x,s+n−1µ

00,4
x+s+n), and µ(x+s+n) = µ00,4

x+s+n−1/µ
00,4
x+s+n

and fx,s,0 = 1. To be continuous at t = 1 we need lim
t→1+

υx,t = 1, but at age x = 62.5

for instance, we have

lim
t→1+

υ62.5,t =

− d
ds
p′62.5,s−1|s=1

p′62.5,0
+ µ00,4

62.5

µ00,4
63.5

≈ 0.8607. (3.12)

Hence, υ62.5,t is discontinuous at t = 1, and due to the recurrence relationship, is

then discontinuous at each integer value of t. Since the functions, g(x, s + n) and

µ(x+ s+ n) are continuous at non-integer values of t = s+ n, we have the piece-wise

continuity observed.

3.2.5 Genetics of Alzheimer’s Disease

In this section we describe the impact of the APOE gene in AD onset and parameterise

a genetic component of the disease into our model.

The major genetic risk factor for AD is the APOE gene (Coon et al., 2007), which

codes for a protein that transports lipids around the circulatory system. There are at

least three allele variants, the most common of which are named ε2, ε3 and ε4. This

leads to possible 6 genotypes: ε2ε2, ε2ε3, ε2ε4, ε3ε3, ε3ε4 and ε4ε4. Relative to ε3,

ε4 makes a life more susceptible to developing AD, while ε2 reduces susceptibility.

However, the processes that cause these differences in susceptibility are yet to be

established (Huang and Mucke, 2012).

It is possible to test which variants are present in a life’s genome, indeed this

is among the genes tested by companies offering genetic tests to individuals such as

23andMe2. However it is unlikely to be used predictively by doctors in relation to AD

since there is currently no preventative treatment available and the tests results might

create undue stress to the life. Low et al. (2010) found there was insufficient evidence

to recommend testing to aid in prescribing risk reduction methods for dementia, while

Farrer et al. (1995) recommends against its use for the reason that APOE alone is

insufficient in accurately predicting age of onset.

APOE was considered to be a susceptibility gene for coronary heart disease (CHD)

(Song et al., 2004). However, there is debate as to the validity of the link. In a

large study which controlled for the a variety of known cardiovascular risk factors,

Ward et al. (2009) found no association between APOE and CHD. A recent study

2https://www.23andme.com/health/all/
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by Kofler et al. (2012) analysed the interaction of APOE with body mass index,

age and sex and concluded that the risk of developing CHD due to APOE genotype

was ‘unlikely to be homogeneous’. Nonetheless, while the link and risk factors of

particular genotypes for CHD are still being studied, it remains plausible that testing

for APOE genotype might one day be useful in devising treatment for diseases other

than AD. This broadens the possibility that individuals could learn of their genetic

susceptibility to AD even if that was not the intention. We therefore incorporate

APOE genotypes into our model of health which will allow us to use this as a source

of adverse selection.

In actuarial studies, age dependent relative risks are ideal for fitting genotype

specific transition rates, however this is rarely available from epidemiological studies.

Macdonald and Pritchard (2000) used results from Farrer et al. (1997) to fit age

dependent relative risks. As they noted however, the data for males was sparse,

particularly for older ages. Consequently, the pattern seen at older ages — where

ε2ε4 and ε3ε4 have lower risk relative to ε3ε3 in males — was considered possibly

due to the lack of data since females showed higher risk in all ε4 variants. It is

possible that the biological effect of the ε4 allele on the oldest males is to reduce

relative risk, however Macdonald and Pritchard (2001) made an adjustment to their

previous genetic model, such that ε2ε4, ε3ε4 and ε4ε4 are restricted to be at least

the relative risk of ε3ε3 in males.

Denote the set of APOE genotypes by G. Due to the rarity of ε2ε2 and consistent

with Macdonald and Pritchard (2000) and Macdonald and Pritchard (2001), we group

these together with ε2ε3 and consider them indistinguishable. Therefore we have

G = {ε2ε2, ε2ε4, ε3ε3, ε3ε4, ε4ε4}.
We use the fitted relative risks of Macdonald and Pritchard (2001) because these

are still the most useful available. For a life aged x + t with APOE genotype g ∈ G,

these are of the form,

%x+t,g =

rm [(max (f gx+t, 1)− 1)m+ 1] if male and g ∈ {ε2ε4, ε3ε4}

rm [(f gx+t − 1)m+ 1] otherwise,
(3.13)

where m, is a parameter to reduce the relative risks, allowing for ascertainment bias

and

f gx+t = E exp
[
−F (x+ t− k1)2 −G (x+ t− k2)

]
+H. (3.14)

The fitted parameters are in Table 3.4.
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Table 3.4: Parameters for use with the GM(1, 3) function in Equation 3.14 for the
transition intensities of AD for males and females by genotype. Source: Macdonald
and Pritchard (2001)

Gender Genotype E F G H k1 k2 r1

Female ε4ε4 10.400 0.00504 0 1 60 0 0.88
ε3ε4 3.680 0.00319 0 1 62 0
ε2ε4 4.210 0.01020 0 1 68 0
ε2ε2 0.675 0 0.00692 0 0 60

Male ε4ε4 8.940 0.00656 0 1 60 0 1.12
ε3ε4 1.920 0.00103 0 0 51 0
ε2ε4 1.420 0.00506 0 0 67 0
ε2ε2 0.434 0 0.01600 0 0 60

3.2.6 Onset of Dementias

In this section we will fit transition intensities for non-AD and AD respectively, in

order to apply gene specific relative risks only to AD onset. Our model does not have

separate states for the different types of dementia, so we calculate dementia onset as

the total of these two components.

Launer et al. (1999) pooled 4 population-based prospective studies of onset rates

and risk factors for dementia as a whole and AD in particular by Letenneur et al.

(1994); Copeland et al. (1999); Andersen et al. (1999); Ott et al. (1995). These were

all part of the European Studies of Dementia (EURODEM) Launer (1992). Being part

of the EURODEM network, each of these studies were performed with harmonised

protocols: Participants were either randomly selected or were all of the elderly in

a geographic area. After initial screening where anyone found to have dementia was

excluded, follow-up screening was after approximately 2 years. Each study used Amer-

ican Psychiatric Association (1987) criteria to diagnose mild to severe dementia. In

particular, all patients were given MMSE, the organic section of the Geriatric Mental

State Examination and the Cambridge Examination of Mental Disorders Cognitive

Test. Where the scores of these tests were below a cutoff point, more detailed diag-

nostic testing took place. This standardisation of methodology allows the pooling of

the results.

We choose Launer et al. (1999) because they reported exposures and number of

diagnoses for AD and dementia in 5-year age groups which are shown in Table 3.5,

allowing maximum likelihood estimation of model parameters. Moreover, the largest

contribution to EURODEM, by size of cohort, came from the U.K. study, Copeland

et al. (1999).

For their onset of AD, Macdonald and Pritchard (2001) fitted a Gompertz curve

using a log-linear least squares method to the point estimates of AD incidence by
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Table 3.5: Results from a pooled analysis of studies in the EURODEM network.
Source: Launer et al. (1999).

Non-AD AD
Age Exposure No. of Diagnoses Exposure No. of Diagnoses

eNADx dNADx eADx dADx

65–69 6352 6 6340 7
70–74 7778 17 7755 21
75–79 6529 43 6462 63
80–84 4538 38 4489 97
85–89 2390 39 2341 89
≥ 90 1181 33 1144 75

Jorm and Jolley (1998). Jorm and Jolley (1998) collected the results of 23 studies, 13

of them European. Of these European studies, only 5 included the mild classification

of AD used by Macdonald and Pritchard (2001). Exposure values were not included

so maximum likelihood estimates were not available.

The genetic relative risks for AD in Section 3.2.5 are sex specific and applied to

the aggregate onset rate so we fit the aggregate onset rate here. However, we note

that although results separated by gender were not published, sex was found to be a

significant risk factor for AD by Launer et al. (1999), with female rates 54% higher

than male rates, but no significant difference was observed for non-AD dementia.

Denote the population average onset rate of AD at age x by µADx and the onset

rate of non-AD dementia by µNADx . Due to the small size of the data set, we seek

the simplest relationship between non-AD dementia and AD dementia transition in-

tensities such that µNADx /µADx = κ for some constant κ. We first check heuristically

whether this is a viable option by considering the confidence intervals of these ratios.

For each age x, we use Graham et al. (2003)’s method of constructing lower and upper

confidence limits of the ratio of Poisson rates, denoted φL(x) and φU(x) respectively:

φL(x) =
eADx
eNADx

[
2dADx dNADx + z2

αdx −
√
z2
αdx (4dADx dNADx + z2

αdx)

2dADx
2

]
(3.15)

φU(x) =
eADx
eNADx

[
2dADx dNADx + z2

αdx +
√
z2
αdx (4dADx dNADx + z2

αdx)

2dADx
2

]
, (3.16)

where zα is the inverse of the cumulative distribution function of a standard normal

distribution evaluated at α. The results of this are shown in Table 3.6 for α = 0.025

i.e. a 95% confidence interval.

For values of κ such that sup {φL(x); 65 < x} ≤ κ ≤ inf {φU(x); 65 < x}, the ratio

µNADx /µADx = κ will be within the 95% confidence intervals at every age x. Hence
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Table 3.6: Confidence limits for the ratio of µNAD/µAD.

Age φL φU

65–69 0.302 2.427
70–74 0.430 1.514
75–79 0.460 0.993
80–84 0.267 0.563
85–89 0.295 0.624
≥ 90 0.284 0.640

there will be insufficient evidence to reject a constant ratio of the transition intensities

of AD and non-AD dementias for such values of κ.

Using the method of maximum likelihood, we fit the the Gompertz-Makeham

(GM) family of models to µADx and µNADx . If function f(x) is GM(r, s), then

f(x) =
r∑
i=0

ai x
i−1 + exp

(
s∑
i=0

bi x
i−1

)
, (3.17)

for some values ai, bj, i ≤ r, j ≤ s and a0 = b0 = 0.

With µNADx = κµADx , the likelihood function to be maximised is

L ∝
(
eNADx κµADx

)dNAD
x

dNADx !

(
eADx µADx

)dAD
x

dADx !
exp

(
−eNADx κµADx − eADx µADx

)
. (3.18)

The results of this maximisation are shown in Table 3.7 along with the log of the

likelihood attained and the Akaike information criterion (AIC).

Many of the fitted models are nested — models are said to be nested when one can

be considered to be a more generalised form of another e.g. GM(0,2) and GM(0,3)

are nested. We fit each model independently, so our nesting requires additional pa-

rameters over those implied by Equation (3.17) to allow for difference in param-

eter values. Taking our example, we write a GM(0,2) as a GM(0,3) in the form

µNADx = (κ+κ′) exp[b1 +b′1 +(b2 +b′2)x+b′3x
2], where κ, b1 and b2 are the fitted values

when maximising the likelihood for GM(0,2).

We perform likelihood ratio tests on nested models to test whether the addition

of extra parameters in the alternative model provides a significantly better fit to the

data. In the likelihood ratio test, the null hypothesis is that the additional param-

eters required to express as the generalised form are equal to zero. Under the null

hypothesis, the test statistic D = 2 (la − l0), where la and l0 are the log likelihoods

under the alternative and null models respectively, is approximately distributed with

a χ2-distribution, with degrees of freedom equal to the number of parameters set equal

to zero (Mendenhall, 1986). In our example, we have GM(0,2) as the null model and
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GM(0,3) as the alternative and the null hypothesis is that κ′ = b′1 = b′2 = b′3 = 0,

hence four degrees of freedom. The results of this testing are shown in Table 3.8.

We find that GM(0,3) and GM(1,2) are candidates for the best model and we

choose the one with the smallest AIC which is the GM(0,3).

µNADx = 0.5µADx = 0.5 exp
(
−40.9847 + 0.762795x− 0.00379x2

)
. (3.19)

The overall dementia intensity is therefore,

µ0i,1i
x,g = (0.5 + %x,g) exp

(
−40.9847 + 0.762795x− 0.00379x2

)
. (3.20)

The fitted transition intensities for AD and overall dementia (with AD relative

risk, %x,g = 1) are shown in Figure 3.4 with the confidence intervals around the point

estimates of Launer et al. (1999). The fitted models of Macdonald and Pritchard

(2001) and Akodu (2007) are also shown.

Comparing the AD model of Macdonald and Pritchard (2001) with the data of

Launer et al. (1999), we see that their model produces transition intensities slightly

(but significantly) larger. There is great variability in studies of AD, which Corrada

et al. (1995) found to be partially due to differences in methodology. It is possible

that differences in methodology exist in the various studies used in the meta-analysis

of Jorm and Jolley (1998) and those pooled by Launer et al. (1999), contributing to

the differences observed here.
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Figure 3.4: Onset of AD and overall dementia (different scales).

For overall dementia we compare to the models fitted by Akodu (2007) to the

British CFAS data. The confidence intervals of Launer et al. (1999) are generally

between the fitted models for MMSE scores of 18 and 20, perhaps following a pattern

for an MMSE score of 19.

As with the AD transition intensities, Jorm and Jolley (1998)’s dementia intensi-

ties are significantly greater than those we have used. However, they are very similar

to Akodu (2007)’s MMSE score of 21.

Unlike those being compared to, our model has decreasing transition intensities

among the oldest old (> 100 years old). There is very little data available for such

ages and since any LTC claim would be short (due to the very high mortality at such

ages) there would be little distortion of adverse selection costs, we proceed with the

transition intensities as they have been fitted.

3.2.7 Post-dementia Mortality

In this section we parameterise the force of mortality for lives with dementia, and lives

who have been put into a nursing care facility due to their dementia. We assume the

same relative risks due to functional ability as derived in Section 3.2.3 applies after

diagnosis of dementia and that the transition intensities fitted here apply to lives with

no ADLs.

Several studies have been performed to identify any difference in the survivorship of

Alzheimer’s type dementia and that of vascular dementia. Burns (1993) summarises

the findings of 12 of these studies. While 3 of them (including the largest study)

found vascular dementia to have poorer survivorship, the majority could not find any

significant difference in the prognosis between the two forms of dementia. There is

also a possibility of heterogeneity in the classification: since AD can only be confirmed
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through autopsy, there may have been cases of mis-diagnosis of dementia type. Since

vascular dementia is the most common of the non-AD dementias, we use this as

a proxy for all non-AD types and assume the mortality of lives with any form of

dementia as independent of the type of dementia.

Colgan (2006) found the forces of mortality for lives with AD and for those with

AD in an institution using data from the Consortium to Establish a Registry for

Alzheimer’s Disease (CERAD). CERAD was a case-control study of sufferers of AD

in the U.S., which aimed to observe the progression of the disease, including the

progression into a nursing home, through annual examinations. Confirmation of diag-

noses through autopsy was performed where possible. The analysis covers the period

1986–1995, so we assume the rates are effective for a life attaining age x on the 1st of

January, 1990.

Macdonald and Pritchard (2000) fitted mortality rates to a very small data set

which limited the number of parameters they could fit and chose simple adjustments

to their healthy mortality. We use Colgan (2006)’s work since it uses a larger data

set and is based on the raw data rather than summary statistics (which Macdonald

and Pritchard (2000) used).

The force of mortality after diagnosis but before institutionalisation for males was

found to be significantly different to females, so sex specific rates were calculated. For

males this was,

µ10,4
x = exp (−8.17 + 0.071x) , (3.21)

and for females it was,

µ10,4
x = 0.029 + exp (−22.014 + 0.221x) . (3.22)

The force of mortality after institutionalisation for males was also found to be

significantly different to females, so sex specific rates were calculated. For males it

was,

µ20,4
x = exp (−5.13 + 0.052x) , (3.23)

and for females it was,

µ20,4
x = 0.105 + exp (−16.220 + 0.166x) . (3.24)

We apply the same mortality improvements model to each of these, as we used for

non-demented mortality (see Section 3.2.4). The results of this are shown in Figures

3.5 and 3.6. For comparison, also shown are the forces of mortality used by Macdonald

and Pritchard (2001).

As Colgan (2006) noted, Macdonald and Pritchard (2000)’s pre-institutionalisation

are much lower. The results which the latter used, suggested lighter mortality than
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Figure 3.5: Force of mortality from the ‘Dementia’ state with and without CMI
improvements. Improved mortality shown from 2013 with points representing the
start and end points of a 30 year period for lives aged 62.5, 67.5, . . . , 87.5 in 2013.

that of healthy lives, which they justified as being due to the informal care which

sufferers would be receiving while their symptoms progressed.

For the post-institutionalisation mortality, Colgan (2006) is initially lighter and

higher at older ages. Colgan (2006) suggested it was due to Macdonald and Pritchard

(2000)’s limitation of fitting as a simple function of their baseline mortality, thereby

being restricted in the shape.

3.2.8 Institutionalisation After Dementia

In this section we parameterise the progression after being diagnosed with dementia

to the state where they require care in an institution.

Ballard et al. (2001) found that the major causes of dementia (Alzheimer’s dis-

ease, Vascular dementia and Dementia with Lewy Bodies) had similar progression.

Moreover, although there have been some links between APOEε4 and the rate of de-

cline in AD, most studies have not found any association (Gauthier et al., 2006). We

therefore assume that the cognitive decline is independent of the dementia type, i.e.

an individual who is diagnosed with dementia will reach a stage where they require

nursing care at the same rate regardless of what caused the dementia to occur.

Colgan (2006) fitted a model for transition intensities into an institution after

diagnosis with AD to CERAD data. He found no significant difference between males
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Figure 3.6: Force of mortality from the ‘Institutionalised’ state with and without
CMI improvements. Improved mortality shown from 2013 with points representing
the start and end points of a 30 year period for lives aged 62.5, 67.5, . . . , 87.5 in 2013.

and females so fitted in aggregate. Under our assumption of equal progression, this

is assumed to apply to any dementia, hence,

µ10,20
x = exp (−2.92 + 0.016x) . (3.25)

3.2.9 Undiagnosed Dementia

Since dementia is progressive, it may be noticeable to the life or their family mem-

bers before a clinical diagnosis. Without details of the disease in medical records, the

insurer’s ability to detect it in propositions is limited and thereby giving rise to infor-

mation asymmetry and possible adverse selection in LTC. Introducing to our model

(as shown in Figure 3.7), an intermediate stage of cognitive decline where the individ-

ual shows some of the signs, e.g. memory degrading at an increased rate, will allow

us to use a higher rate of insurance purchase from those lives who have noticed this

greater need for long term care and assess the cost of this source of adverse selection.

We now need to parameterise the transition intensities between the stages of cog-

nitive function. Choosing the Initial Signs state such that the rate of entry to the

state is equal to the rate of exit simplifies the parameterisation to calculating one

transition intensity. This is purely a modelling assumption as a means of introducing

the possibility of such a state into the model. In reality the rates in and out of this
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state could differ — particularly since having suspicions might be expected to cause

the life to go to the doctor for diagnosis. Moreover, our Markov assumption may be

expected to break down.

By further assuming that mortality is unaffected at this early stage of dementia,

all transition intensities are independent of whether the life is healthy or has the initial

signs of dementia. This allows us to reduce the parameterisation to models with only

the cognitive function transitions without any further loss of generality:

• Model A — consider a 2-state model used to represent a life by whether they

have been medically diagnosed. This is shown in Figure 3.8.

• Model B — If we insert a state representing when the life has noticed the initial

signs of dementia but before being medically diagnosed, we will get the 3-state

model depicted in Figure 3.9.

Let αt be transition intensity between Healthy and Diagnosed. This can be ob-

served and estimated from prospective studies. However, our intermediate Initial

Signs (1) state is at some arbitrary stage between Diagnosis (2) and Healthy (0) and

as such, the transition intensities are unavailable. Let βt be this unknown transition

intensity between Healthy and Initial Signs, and between Initial Signs and Diag-

nosed. In terms of our models which include functional disability, µ0i,1i
x,g = αt, and

µ0,4
x,g = µ4,8

x,g = µ1,5
x,g = . . . µ7,11

x,g = βt.

To ensure consistency between both models, we require the probabilities of being

diagnosed under models A and B to be equal. Denote by tA
ij
x , the probability of being

in state j at age x + t conditional on being in state i at age x under model A and

similarly for model B, tB
ij
x . If we assume no lives have developed the initial signs at

age x, our equivalence requirement can be represented by tA
02
x = tB

02
x or alternatively,

tA
00
x = tB

00
x + tB

01
x . (3.26)

Clearly tB
00
x = exp

(
−
∫ t

0
βx+s ds

)
and similarly tA

00
x = exp

(
−
∫ t

0
αx+s ds

)
. For

tB
01
x we have,
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tB
01
x =

∫ t

0
sB

00
x βx+s t−sB

11
x+s ds

=

∫ t

0

exp

(
−
∫ s

0

βx+r dr −
∫ t

s

βx+r dr

)
βx+s ds

= exp

(
−
∫ t

0

βx+r dr

)∫ t

0

βx+s ds

= tB
00
x

∫ t

0

βx+s ds. (3.27)
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Figure 3.8: Model A: a 2-state model of the onset of dementia
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Figure 3.9: Model B: a 3-state model of the onset of dementia

Inserting Equation (3.27) into Equation (3.26) yields a differential equation for βt

in terms of αt:

exp

(
−
∫ t

0

αx+s ds

)
= exp

(
−
∫ t

0

βx+s ds

)(
1 +

∫ t

0

βx+s ds

)

exp

(
−
∫ t

0

(αx+s − βx+s) ds

)
= 1 +

∫ t

0

βx+s ds

−
∫ t

0

(αx+s − βx+s) ds = log

(
1 +

∫ t

0

βx+s ds

)

βx+t − αx+t =
d

dt
log

(
1 +

∫ t

0

βx+s ds

)

=
βx+t

1 +
∫ t

0
βx+s ds

αx+t = βx+t

(
1− 1

1 +
∫ t

0
βx+s ds

)

βx+t = αx+t

(
1 +

∫ t
0
βx+s ds∫ t

0
βx+s ds

)
. (3.28)

To avoid βx+t exploding to infinity at t = 0, for some small time step h, we assume

βx = βx+s, for s ∈ [0, h]. This assumption allows us to calculate βx as

βx = βx+h = αx+h

(
1 + βx+hh

βx+hh

)

=
αx+hh±

√
α2
x+hh

2 + 4αx+hh

2h
. (3.29)
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3.3 Simulating Long-Term Care Insurance Payments

In this section we describe how simulation can be used to estimate the expected

present values of benefits and premiums in a long-term care insurance contract.

3.3.1 Notation

We first define the notation introduced in this section which will be used in later

sections.

1. The force of interest and force of inflation are assumed constant at rates δ per

annum and ν per annum respectively.

2. The set of periods which a policy may go through is denoted by P , and consists

of P — after inception but before any claim; C — after a claim on a functional

disability but before dementia; D — after the first claim involving dementia.

For a life aged x at the simulation start date, of sex ς, with genotype g and insured

at time t, from health state j:

3. The smoothed probability that this life is in period ρ at the start of calendar

year c is denoted by cp
j,ρ
x,ς,g,t.

4. Given this life is in period ρ, the smoothed average present value of future

benefits and premium income are denoted by Aj,ρx,ς,g,t:c and aj,ρx,ς,g,t:c, respectively.

3.3.2 Reason for Simulation Approach

The model of health depicted in Figure 3.7 is Markov — transition intensities depend

on the state currently occupied, not the path to get there. However, LTC payments

could be capped by the insurer with a limit on annual payouts or some total sum

assured, or the government could limit the liability faced by the individual before

state support is paid (a policy currently under discussion in the U.K. which we discuss

further in Chapter 4). In cases such as these, the cashflow at any point in time depends

not only on the current health status, but on the entire history of health statuses.

This disjoint nature between the cashflows and current health status creates a

difficulty in calculating the expected present value of benefits for the purpose of setting

premiums. Consider a contract with all the limits as described above, bought by a

life aged x, when in state i:

• The insurer limits total of payments over the lifetime of the policy to sum

assured, s and the benefits payable within a calendar year to, a.
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• The government pays for care costs once the individual’s care liability (which

may be paid by the insurer) has surpassed, g.

• ‘Hotel’ costs (accommodation cost in a care home) are excluded from the gov-

ernment cap but covered by the insurer, up to its own benefit limits.

• The care and hotel costs for state j, amount to cj and hj, respectively.

• All costs and caps increase over time at the same constant force of inflation, de-

noted by ν. All benefit payments and caps are compared at the same purchasing

power.

Let tI
j
x be an indicator random variable such that,

tI
j
x =

1 if x, is in j at age x+ t

0 otherwise.
(3.30)

Let I (f) be another indicator function such that,

I (f) =

1 if f > 0

0 otherwise.
(3.31)

We denote the random variable representing the care cost if x is in state j, at time t,

as a continuously payable annual rate, by tC
j
x and calculate it as,

tC
j
x = cje

νtI

(
g −

∑
l

∫ t

−x
rI
l
x rC

l
xe
−νr dr

)
. (3.32)

We further denote the random variable representing the insurance benefit payment if

x is in state j, at time t, as a continuously payable annual rate, by tB
j
x, and calculate

it as,

tB
j
x =

(
tC

j
x + hje

νt
)

I

(
s−

∑
l

∫ t
0 rI

l
x rB

l
xe
−νr dr

)

×I
(
a−

∑
l

∫ t
btc rI

l
x rB

l
xe
−νr dr

)
. (3.33)

The expected present value of benefits paid to x can then be calculated as,

E (PV Benefits payable to x) = E

(∑
j

∫ ∞
0

rB
j
x rI

j
xe
−δr dr

)
. (3.34)

Equation (3.34) involves a complicated system of integration which is simplest to

solve approximately using simulation. We perform simulations of future lifetimes and
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the consequent LTC benefit cashflows that occur (by solving Equations 3.32 and 3.33).

Equation (3.34) can then be found by taking the average of the discounted values of

our simulated benefit cashflows. If we assume that no care liability has been faced

prior to purchasing insurance, we avoid the complication of setting premium rates for

a varying degree of potential benefit sizes (as limited by the government cap) and

simplify our pricing problem to simulating from the point of insurance purchase.

3.3.3 Simulation Method

To simulate life histories, represented by transitions between states in our health

model, we first find the time of a transition. By conditioning on the transition oc-

curring at this time, we then find the state the life moves to. Denote the random

variables representing the time of the ith transition by, Ti, and Si, as the state a life

is in after the ith transition. Further, denote the value taken by them as, ti and si,

respectively. We assume a life aged, x, at the start of the simulation is in state, s0,

at time, t0 = t. For a life in state, si−1, at time, ti−1, we simulate the next transition

time using the inverse transform method (Devroye, 1986) solving FTi(ti) = u where u

is an observation from the Uniform [0,1] distribution and

FTi(ti) = 1− exp

(
−
∫ ti

ti−1

∑
j∈S

µ
si−1,j
x+u du

)
, (3.35)

for ti. These integrals are solved using Simpson’s rule with a step size of 2−11 and our

simulation period is 30 years to capture most of a life’s future lifetime.

Given a life makes the ith transition at time ti, the probability that the movement

was to state j is

P (Si = si|Ti = ti) =
µ
si−1,si
x+ti∑

j∈S
µ
si−1,j
x+ti

. (3.36)

Define the conditional cumulative distribution function as

FSi|Ti=ti(si) = P (Si ≤ si|Ti = ti) =

si∑
j=0

µ
si−1,j
x+ti∑

j∈S
µ
si−1,j
x+ti

. (3.37)

We simulate the jump at time ti by applying the inverse transform method on

FSi|Ti=ti(si) = v, where v is an observation from the Uniform [0,1] distribution, solving

for si.

With knowledge of the future lifetime of our simulated life, we can calculate the

present value payments in respect of a long-term care insurance contract bought at

time t0. By averaging over a large number of simulations, we calculate an estimate of
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Equation (3.34). To allow a product design with regular premiums, we also estimate

the expected present value of an annuity in premium paying states, which we refer to

as the premium annuity. The premium annuity and benefit payments are increased

at the same force of inflation, ν per annum. As in our above example, all benefit

payments and caps are compared at the same purchasing power.

A deferred period can be set, such that benefits do not commence payment until the

life has been in benefit paying states for longer than the deferred period. Associated

with the deferred period, we can define a linked claim period, if a life recovers after

the benefit payment has commenced and subsequently enters a claim state within

the linked claim period, the benefit payment will recommence immediately instead

of having to wait until the end of the deferred period. This is a common feature of

products with deferred periods e.g. income protection insurance, to allow for relapses

in illness, however the Markov nature of our model would prevent any true relapse.

We assume that a life cannot buy insurance if it would put them into a claim

immediately. Additionally, since we are primarily concerned with the potential cost

of adverse selection, we do not model the purchase of insurance after dementia has

been diagnosed — this is observable to an insurer so we assume they can underwrite

them appropriately. We call the set of remaining states insurable.

Since we simulate from the point of insurance purchase, we require the EPVs from

each time step at which insurance can be purchased, which we refer to as purchase

time steps. Due to the computing time required, we restrict our purchase time steps

to the 30 year period in steps of 0.015625 years. Simulations are performed for 50,000

lives at each purchase time step, for males and females of each APOE genotype for

each insurable state. Thus we perform 50, 000 × 2 × 5 × 6 = 3, 000, 000 simulations

at each purchase time step.

3.3.4 Information Gained by the Insurer

Integral to adverse selection is the notion of asymmetric information — where the

policyholder knows more about their health than the insurer. Over time, the insurer

can learn about the mix of business it has on its books, based on its claims experience.

By better understanding the mix of lives to whom they have been selling, the insurer

will be better placed to estimate the mix of future business and the premiums to

charge. This will form the basis for the dynamic premium rates of Section 3.4.2.

From details of claims payouts, an insurer could observe 3 key events over the

lifetime of a policy, which will change their knowledge of the mix of business:

• Inception — At the point of inception, the insurer has no information on the

actual mix of business beyond what is implied in the pricing basis.

• A claim for functional disability (unrelated to dementia) — The insurer now
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knows what functional disability state the life is in; transition between states of

functional disability is determined only by current functional disability.

• Claim involving dementia — When the insurer knows the life has dementia (we

assume they also learn of functional disability at this point also), everything

relevant to its future transitions is now known and no more useful information

is gleaned from further claims.

These observations will tell them more about the mix of the policyholders than was

known at underwriting and allow them to more accurately value future cashflows in

the periods following them:

• P — After inception but before any claim.

• C — After the first functional disability claim but before a claim involving

dementia.

• D — After the first claim involving dementia.

The set of these periods can therefore be written as, P = {P,C,D}. We explain

further by use of an example: Assume some benefit is payable to an insured life while

in states {3, 7, 10, 11, 12, 13, 14, 15}. Consider life x, who bought his insurance from

state 5 at time t0. The insurer cannot distinguish him from any other life in states

{0, 1, 2, 4, 5, 6}.

1. x reaches state 7 at time t1, making a claim unrelated to dementia. The insurer

now knows he is in either state 3 or state 7 and can improve its modelling in

respect of this.

2. x recovers to state 6 at time t2.

3. x subsequently claims again in state 7 at time t3. In a large portfolio of business,

this does not tell the insurer anything new because x’s transitions between

functional disability are being modelled appropriately already based on being in

either state 3 or state 7 at time t1 and the Markov nature of the model (recall

that functional ability transitions are assumed to be independent of cognitive

function).

4. x develops dementia and claims from state 11 at time t4. The insurer knows x

is in state 11 and updates its model with this information.

5. x’s claim ceases upon movement to state 8 at time t5.

6. x dies at time t6.
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In this example, period P was from t0 until t1; period C was from t1 until t4; and

period D was from t4 until the policy ended at t6.

To model this information development, at the start of each calendar year of our

simulations, we calculate the probability that a life, who purchased insurance at time

t, is in each period. Additionally, we estimate the expected present value of all future

benefits and of future income (including those cashflows which will occur within a

subsequent period) for lives who are in each of our periods.

3.3.5 Smoothing

The simulated expected present values and probabilities within each calendar year

c are smoothed with respect to insurance purchase time t ≤ c + 1, by fitting cubic

splines using the ALGLIB package for C++ (Bochkanov and Bystritsky, 2013). This

removes the random noise and gives us a means of estimating the expected present

values, Aj,ρx,ς,g,t:c and aj,ρx,ς,g,t:c, and the probability of being in period ρ, cp
j,ρ
x,ς,g,t, for any

insurance purchase date t ≤ c+ 1. Splines are fitted to these independently for every

combination of initial age, sex, genotype, policy period and the health state which

insurance was purchased from.

To explain further what smoothing is performed, in Table 3.9 we present the

simulated present values of benefits for males in period P , with genotype ε2ε2, who

were aged 62.5 at calendar year 0 and buy insurance at time t from state 0. In

each calendar year for which the life has not yet made any claim, all future premium

payments are discounted to the start of the year. Purchases at integer times are

considered to be in force in the year before to provide a knot for fitting the final

section of the year — in the table, when t = 1, there is a value for c = 0. Smoothing

is then performed on each column independently, with respect to t. The results of

smoothing calendar year 3 are shown in Figure 3.10.

3.4 Long-Term Care Insurance Market

In this section we set up a model for the market of LTC by adding states our health

model of Figure 3.7, to represent the presence of insurance. To allow us to set higher

(or lower) rates of insurance purchase from lives who have received a genetic test

(and hence allow this as a source of adverse selection), we also add states representing

whether a genetic test has been received. This market model is depicted in Figure

3.11.

We name each state by reference to its insured status, its test status, ι ∈ B, and
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Table 3.9: Simulated present values of future benefits for males in period P , with
genotype ε2ε2, aged 62.5 at calendar year 0, buying insurance from state 0.

Purchase Calendar year (c)
Time (t) 0 1 2

0.000000 6644.56 6608.76 6458.43
0.015625 6638.55 6579.41 6421.86
0.031250 6616.18 6575.82 6437.73
...
0.953125 6370.83 6431.86 6360.77
0.968750 6302.85 6364.04 6296.52
0.984375 6446.14 6507.69 6436.21
1.000000 6378.06 6441.84 6403.86
1.015625 - 6354.15 6300.15
1.031250 - 6468.30 6418.69
...
1.968750 - 6114.98 6174.80
1.984375 - 6224.97 6287.52
2.000000 - 6134.46 6195.80
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Figure 3.10: Simulated and smoothed present values of future benefits, as at the start
of calendar year 2, for males in period P , with genotype ε2ε2, who were aged 62.5 at
calendar year 0, buying insurance from state 0.
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its health status, i ∈ S, as ιϑi, where B = {0, 1},

ϑ =

0 if the life is untested

1 if the life is tested,
(3.38)

and similarly,

ι =

0 if the life is uninsured

1 if the life is insured.
(3.39)

3.4.1 Notation

We introduce notation for this section:

1. The set of states belonging to underwriting class k is denoted by Uk.

2. Let pix,ς,g be the probability at the start of modelling, that a life aged x is of sex

ς, has genotype g, and is in state i. This will be specific to the market to which

the model is being applied so we calculate it in Chapter 4 (Section 4.2.2), where

we apply our modelling to the U.K. market, but set out how it will be used in

formulae in this section.

3. The conditional probability that a life aged x+ t who purchased insurance into

class k, at time t, was of sex ς, with genotype g, and insured from health state

j, is denoted by η
j|k
ς,g|x,t.

Consider a life aged x at the start of our modelling (1st January, 2013), of sex ς, with

genotype g.

3. The probability this life is in state def at age x+ t, given they were in state abc

at age x, is denoted by tp
abc,def
x,ς,g .

4. µabc,defx,t,ς,g is the transition intensity between state abc and state def , for this life

at time t.

5. Let $k
x,t and ωkx,t denote the regular (paid annually) and single (initial lump

sum) premium respectively, that would be charged to a life aged x + t at time

t, insured into underwriting class k, if there was no adverse selection. We will

refer to this as the base premium.

6. Let ψ
k

x,c and ψkx,c denote the repricing adjustment made in calendar year c, to

the underwriting class k base premium for regular premium and single premium

contracts respectively.

7. The premium charged as a result of repricing activity is denoted by, Π
k

x,t and

Πk
x,t, for regular and single premium respectively.
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9. Let Bk,ρ
x,t:c and Ik,ρx,t:c be stochastic processes representing the present value of

future benefit payments and premium income respectively as at the start of

calendar year c, for a life who bought insurance in underwriting class k, at time

t and is now in period ρ. Their associated filtration is denoted Fc at calendar

year c.

To distinguish between the pricing basis and the experience basis, let the addition of

a tilde to the equivalent pricing basis notation, denote experience basis.

3.4.2 Dynamic Premium Rates

Our prime interest is in how the costs of adverse selection will develop over time after

setting up a new market for insurance. This will be related to information gained

by the insurer, from its claims experience, discussed in Section 3.3.4: In a start-up

market, the insurer has no experience with which to properly set a pricing basis. They

would make assumptions as to their business mix, but this might not be borne out

in their sales if the product appealed more to one group and less to another. Where

the differences between groups are noticeable, underwriters could assign additional

premiums to high risk groups and still have actuarially fair premiums for all. However,

where the details of an individual’s risk is hidden from the insurer at policy inception,

the insurer would not learn of the difference from its assumed mix until some later

time, when it observes a higher than expected volume of claims. As the insurer learns

who is buying the product, they can reassess their assumptions of business mix and

reprice appropriately. In doing so, the can reduce the adverse selection costs which

they face.

Our aim is to model this repricing in such a way as to reflect how an insurance

company would behave. We assume it occurs annually and is not to recover past

losses, but to try to set premiums sufficient to cover the benefits of the lives who are

actually buying the product at that time (recovering past losses might be deemed

to be treating customers unfairly). Additionally, we assume that they treat cohorts

independently. In this way, the pricing of a group of policies that is split into age

groups or underwriting classes, is influenced by its own experience but not that of

any other age group or underwriting class.

We will consider two versions of insurance contract: single premium and regular

premium paid continuously while the policyholder is not being paid benefits. Single

premiums can be large sums of money, particularly for a life living on a pension.

Regular premium could be more marketable if it is affordable. The potential costs

of adverse selection in a regular premium design are larger than in a single premium

— benefit costs in each will be the same however premium income will be lower than

assumed since it is not paid upfront. Formulae will be presented for unisex premiums,
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in accordance with European Court of Justice (2011), but we will also consider a

version with gender specific premiums to analyse the cross-subsidy between the sexes.

In that case, we can calculate sex-specific equivalents for all formulae given below by

setting the purchase rate for the opposite sex to zero. Where unisex premiums are

charged, since the Court’s ruling does not explicitly prohibit asking a life’s sex, we

assume the company asks this on the application form. The unisex premium rates

charged at time, t, therefore reflect the actual mix of sex to which business has been

sold.

The premiums for an underwriting class will be calculated using the equivalence

principle, whereby the expected present values of outgo and of premium income within

an underwriting class are equal. The pricing basis will assume there is no adverse

selection. We do not include any expenses, nor are there any loadings for profit, so

outgo is limited to benefit payments.

These expectations are conditional on a life purchasing insurance at time t. The

conditional probability that a life who purchased insurance at time t was of sex ς,

with genotype g and insured from health state j, η
j|k
ς,g|x,t, is calculated as,

η
j|k
ς,g|x,t =

∑
i∈S,ϑ∈B

pix,ς,g tp
00i,0ϑj
x,ς,g µ0ϑj,1ϑj

x,t,ς,g∑
i∈S,ϑ∈B,l∈Uk,g∈G

(
pix,M,gtp

00i,0ϑl
x,M,g µ

0ϑl,1ϑl
x,t,M,g + pix,F,gtp

0ϑl,1ϑl
x,F,g µ0ϑl,1ϑl

x,t,F,g

) . (3.40)

The probabilities tp
00i,0ϑj
x,ς,g are found by solving the Kolmogorov forward equations:

d

dt
tp

00i,0ϑj
x,ς,g =

∑
(k,l)6=(ϑ,j)

(
tp

00i,0kl
x,ς,g µ0kl,0ϑj

x,t,ς,g − tp
00i,0ϑj
x,ς,g µ0ϑj,0kl

x,t,ς,g

)
− tp

00i,0ϑj
x,ς,g µ0ϑj,1ϑj

x,t,ς,g . (3.41)

This was done using a 4th order Runge Kutta algorithm with a step size of 2−12 and

boundary conditions 0p
00i,jkl
x,ς,g = δ00i,jkl, where δ00i,jkl is the Kronecker delta.

The unisex premium needs to take account of the actual sex mix since this is

known at outset, so we scale the respective expected present values to the size of

business from each sex. The unisex base regular premium for a life aged x at outset

and insured into class k at time t (in calendar year c = btc), is calculated as

$k
x,t =

∑
ς∈{M,F}

 ∑
j∈Uk,g∈G

η̃
j|k
ς,g|x,t∑

j∈Uk,g∈G
η
j|k
ς,g|x,t

∑
j∈Uk,g∈G

η
j|k
ς,g|x,tA

j,P
x,ς,g,t:c


∑

ς∈{M,F}

 ∑
j∈Uk,g∈G

η̃
j|k
ς,g|x,t∑

j∈Uk,g∈G
η
j|k
ς,g|x,t

∑
j∈Uk,g∈G

η
j|k
ς,g|x,ta

j,P
x,ς,g,t:c

 . (3.42)

In the single premium version, the base premium for a life aged x entering an
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insured state in Uk at time t, is calculated as

ωkx,t =
∑

ς∈{M,F}


∑

j∈Uk,g∈G
η̃
j|k
ς,g|x,t∑

j∈Uk,g∈G
η
j|k
ς,g|x,t

∑
j∈Uk,g∈G

η
j|k
ς,g|x,tA

j,P
x,ς,g,t:c

 . (3.43)

The premiums actually charged to policyholders will reflect the insurer’s acquired

knowledge of the mix of lives who have been buying it. The method we use to calculate

the premiums to charge does not change the underlying assumptions in the pricing

basis. Instead, we find a repricing adjustment factor, ψ
k

x,btc, by which to multiply

the base premiums to represent the repricing we have assumed occurs annually. The

regular premium rate charged to lives aged x at the start of our modelling who buy

insurance into class k at time t, is calculated as

Π
k

x,t = ψ
k

x,btc$
k
x,t, (3.44)

and similarly for single premium, Πk
x,t.

We calculate the repricing adjustment by comparing the premium rates charged

to existing customers, with what would be charged to these same customers given

what is now known of their experience, to find how much larger their premium should

have been. This can be expressed as

Premium adjustment =
Actual Benefit Payments + Expected Future Benefits

Actual Premium Income + Expected Future Income
.

(3.45)

The insurance company would be able to observe the actual benefit payments and

premium income up to the point of analysis. Their expectations for the future will

reflect the knowledge of their business mix which they have gained from their claims

experience. In our model, we estimate them by considering the present value of future

benefit and income as stochastic processes, Bk,ρ
x,t:c and Ik,ρx,t:c, respectively. Note that

for single premium,

Ik,ρx,t:c =

Πk
x,t if c = btc and ρ = P

0 if c > btc or ρ 6= P.
(3.46)

The basis for calculation of the expected value of these stochastic processes will reflect

the information gained from the insurance pool’s claims history. Hence the claims

history up to year c forms filtration, Fc. We rewrite the components of Equation
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(3.45) for business sold at time t, in terms of our stochastic processes as,

E
(
Bk,P
x,t:btc|Fc

)
= Actual Benefit Payments + Expected Future Benefits

= E

(
Bk,P
x,t:btc −

∑
ρ∈P

Bk,ρ
x,t:c|Fc

)
+
∑
ρ∈P

E
(
Bk,ρ
x,t:c|Fc

)
(3.47)

E
(
Ik,Px,t:btc|Fc

)
= Actual Premium Income + Expected Future Income

= E

(
Ik,Px,t:btc −

∑
ρ∈P

Ik,ρx,t:c|Fc

)
+
∑
ρ∈P

E
(
Ik,ρx,t:c|Fc

)
(3.48)

We calculate Equations 3.47 and 3.48 by calculating each part in turn, first ‘Actual’

and secondly ‘Expected Future’ using our simulations.

To calculate the ‘Actual’ component, for payments up to calendar year c, we

calculate their expected values on the experience basis. For benefits this is calculated

as,

E

(
Bk,P
x,t:btc−

∑
ρ∈P

Bk,ρ
x,t:c|Fc

)

=
∑

j∈Uk,g∈G,ς∈{M,F}

η̃
j|k
ς,g|x,t

(
Aj,ρx,ς,g,t:btc −

∑
ρ∈P

cp
j,ρ
x,ς,g,tA

j,ρ
x,ς,g,t:ce

(c−btc)(ν−δ)

)
,

(3.49)

Similarly, for regular premium income this is calculated as

E

(
Ik,Px,t:btc−

∑
ρ∈P

Ik,ρx,t:c|Fc

)

= Π
k

x,t

∑
j∈Uk,g∈G,ς∈{M,F}

η̃
j|k
ς,g|x,t

(
aj,ρx,ς,g,t:btc −

∑
ρ∈P

cp
j,ρ
x,ς,g,t a

j,ρ
x,ς,g,t:ce

(c−btc)(ν−δ)

)
.

(3.50)

Next we calculate the expected future benefit payments and regular premium

income on policies in each of the periods in P . We assume the insurer cannot discern

between lives within an underwriting class beyond gender, i.e. when a policy is sold,

they do not know the particular functional disability status, cognitive ability type or

genotype. Each piece of information hidden from the insurer (genotype, functional

ability and cognitive function) relates either to the onset of dementia or functional

disability but not both. At the point of a claim, the insurer will gain information and
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can update their assumptions over the mix of business in the pool.

When a life buys insurance at time t, and until the first claim, the insurer sees it

as any other within the underwriting class it is written. Hence the expected benefits

and premium income from lives in the P period are calculated on the pricing basis,

scaled to the volume of business remaining in this pool. For the benefits, this can be

expressed as

E
(
Bk,P
x,t:c|Fc

)
=

∑
ς∈{M,F}


∑

j∈Uk,g∈G
η̃
j|k
ς,g|x,t cp

j,P
x,ς,g,t∑

j∈Uk,g∈G
η
j|k
ς,g|x,t cp

j,P
x,ς,g,t

∑
j∈Uk,g∈G

η
j|k
ς,g|x,t cp

j,P
x,ς,g,tA

j,P
x,ς,g,t:c

 ,
(3.51)

and for similarly for regular premium income

E
(
Ik,Px,t:c|Fc

)
= Π

k

x,t

∑
ς∈{M,F}


∑

j∈Uk,g∈G
η̃
j|k
ς,g|x,t cp

j,P
x,ς,g,t∑

j∈Uk,g∈G
η
j|k
ς,g|x,t cp

j,P
x,ς,g,t

∑
j∈Uk,g∈G

η
j|k
ς,g|x,t cp

j,P
x,ς,g,ta

j,P
x,ς,g,t:c

 .
(3.52)

At the point of the first claim unrelated to dementia, because no benefit payments

have yet been made and the movement around health states is Markov, the initial

functional disability state becomes unimportant since the insurer knows what func-

tional state the life is in at the time of claim. However, because lives move between

the functional disability states at the same rate regardless of cognitive function, a

claim unrelated to dementia does not tell the insurer anything about cognitive ability

type so the insurer must assume the mix to be as in their pricing assumptions. Denote

the set of states that belong to the same functional disability type as state i which

would be underwritten to class k as Di,k. We calculate the expected future benefit

payments and premium income for each functional disability type at entry on the

expected basis and scale this for the volume of business which is in the C period (i.e

the volume of business which has claimed for functional disability but not dementia).

Let V i,C
x,ς,t:c =

∑
j∈Di,k,g∈G

η
j|k
ς,g|x,t cp

j,C
x,ς,g,t and Ṽ i,C

x,ς,t:c =
∑

j∈Di,k,g∈G
η̃
j|k
ς,g|x,t cp

j,C
x,ς,g,t be the volume

of business at the start of calendar year c of lives aged x in 2013 and insured from

the same functional disability type as state i at time t on the pricing and experience

basis respectively.

E
(
Bk,C
x,t:c|Fc

)
=

∑
ς∈{M,F}

2∑
i=0

 Ṽ i,C
x,ς,t:c

V i,C
x,ς,t:c

∑
j∈Di,k,g∈G

η
j|k
ς,g|x,t cp

j,C
x,ς,g,tA

j,C
x,ς,g,t:c

 , (3.53)
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and

E
(
Ik,Cx,t:c|Fc

)
= Π

k

x,t

∑
ς∈{M,F}

2∑
i=0

 Ṽ i,C
x,ς,t:c

V i,C
x,ς,t:c

∑
j∈Di,k,g∈G

η
j|k
ς,g|x,t cp

j,C
x,ς,g,ta

j,C
x,ς,g,t:c

 , (3.54)

for benefits and regular premiums respectively.

Once a life develops dementia, their genotype or whether they entered the insur-

ance pool after having recognised the signs of dementia are irrelevant to their future

health status. Additionally, we assume that at a dementia claim, the insurer also

learns the life’s current functional disability type, making initial functional disability

type redundant if no previous claim had been made. The insurer will not observe the

life’s transition into a demented state until a claim commences, at which point they

know how much has already been claimed and what state the life is in. The future

value of benefit and premium for lives in the D period can be calculated using the

actual mix of business sold:

E
(
Bk,D
x,t:c|Fc

)
=

∑
j∈Uk,g∈G,ς∈{M,F}

η̃
j|k
ς,g|x,t cp

j,D
x,ς,g,tA

j,D
x,ς,g,t:c, (3.55)

and

E
(
Ik,Dx,t:c|Fc

)
= Π

k

x,t

∑
j∈Uk,g∈G,ς∈{M,F}

η̃
j|k
ς,g|x,t cp

j,D
x,ς,g,ta

j,D
x,ς,g,t:c, (3.56)

for benefits and premiums respectively.

To allow for changing business patterns caused by the highest risks buying early,

in calendar year c, we assign a relevancy factor based on the age of business sold at

time t, θ (c− t). For its sigmoid shape, we choose an adaptation of the Gompertz

function. Reversing the direction of the characteristic ‘s’ shape will allow us to assign

the most recent observations a similar, high relevancy; while policies sold long ago

are assigned lower relevancy:

θ (c− t) = exp [β exp (−γ (c− t))] , (3.57)

where β, γ ≤ 0.

We now have everything required to calculate the regular premium adjustment

factor ψ
k

x,c as,

ψ
k

x,c =

c−1∑
y=0

ψ
k

x,y

∫ y+1

y
θ (c− t)

E
(
Bk,P

x,t:btc|Fc

)
E
(
Ik,P
x,t:btc|Fc

) dt∫ y+1

y
θ (c− t) dt

, (3.58)

and similarly for the single premium factor ψkx,c.

This technique could also be used by regulators to monitor the level of premiums.
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It is important that premiums are sufficient such that the company selling LTC will

not have issues in solvency.

3.5 Discussion

The Markov property allowed us to easily implement a pricing model which used

the development of claims experience to update a pricing basis for adverse selection.

However, this property is a simplifying assumption for mathematical convenience re-

quired due to limited data being available to fit anything more complex. Without this

assumption, the expected present values Aj,ρx,ς,g,t:c and aj,ρx,ς,g,t:c will be dependent upon

the time of the event which the insurer observes. With a simulation based approach

like ours, that would make it necessary to store an inhibitively large quantity of data.

Additionally, the formulae given in Equations (3.53 to 3.56) would be invalidated and

need amending.

Although it is plausible that the Markov property does not reflect reality, our

approach gives a first look at a methodology which could be developed if further data

were available.

3.6 Summary

We have set out a modelling methodology that will allow us to calculate the benefit

outgo and premium income on LTC business, under a set of assumptions about buying

behaviour. This came in two stages, first the simulation of health of insured lives to

calculate occupancy probabilities and expected present values of benefit outgo and

premium income at the start of each calendar year. Secondly, using the results of these

simulations, we calculate the premium rates which would be charged if an insurer

repriced annually to take into account the information it learns about the mix of

existing business from its claims history.

To perform this modelling, we will require additional assumptions over the benefits

related to particular states, and of an initial distribution of lives. These are specific

to the market to which the model is being applied, so have been purposely excluded

from this chapter to retain generality. With such a set of assumptions, the profits

or losses which will ultimately be made on business sold at a particular time can be

calculated as the difference between the EPVs of benefit outgo and premium income,

on the experience basis. The loss which ultimately occurs will represent the cost of

adverse selection, and we can observe how this changes in respect of our dynamic

premium rates. In the next chapter we do exactly this in the U.K. market.
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Long Term Care Costs in the

United Kingdom

In this chapter, we take the LTC models of the previous chapter and run them with

appropriate assumptions for economic parameters and buying behaviour. We aim to

measure the adverse selection risk in starting up a start-up market for LTC. Further-

more we will perform some sensitivity analyses to consider how sensitive profitability

is to our chosen parameters.

4.1 Long-Term Care in the United Kingdom

Although individuals face a risk in their future care costs which might be mitigated by

some form of LTC product (Guillén and Comas-Herrera, 2012 presents a methodology

for measuring how well this is done), there is currently no deferred-needs cover —

where the customer is not currently in need of care — for sale in the U.K. During the

1990s, attempts were made by the U.K. insurance industry to produce and market

such a product, but this sold in very few numbers and companies stopped selling it.

At the end of 2009, there were about 36,000 LTC policies in force among Association

of British Insurers (ABI) members (Commission on Funding of Care and Support,

2010).

In the U.K. there is an expectation among the public, that the state pays for the

care of the elderly — Fletcher (2011) quotes an Ipsos-Mori survey that says 54% of

the public think care is free at point of use — but in England, Northern Ireland and

Wales, personal care is paid for by the individual. However, in these jurisdictions, to

protect the poorest, means-tested support is provided by local authorities for those

with assets worth under £23,250. The value of one’s home can be considered in this

financial assessment if a partner no longer lives there, creating the possibility of having

to sell one’s home to pay for care.

The arrangements in Scotland are quite different. A fixed contribution toward
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the cost of care is paid for by the Scottish Government, regardless of an individual’s

assets. However, the individual is still required to pay ‘hotel’ costs — the cost of

accommodation in a care home — although means-tested support is available for this

also. Where the price charged for care is higher than the government’s contribution,

the liability to pay this is the individual’s.

In July 2010 the Commission on Funding of Care and Support, chaired by Sir

Andrew Dilnot, began reviewing the system for care support in England and published

its findings in 2011. Among the suggestions was a cap on the lifetime care costs of

between £25,000 and £50,000 (Commission on Funding of Care and Support, 2011),

while hotel costs would not be subject to this and would remain uncapped. The

U.K. government has instead proposed to cap care costs at £75,000 in 20171, while

increasing the point at which means-tested support is made available to assets under

£100,000. There has been no mention how inflation will affect the size of the cap

but for the purposes of our modelling we assume it behaves as described in Section

3.3.2 (whereby the cap inflates at the same rate as costs and all comparisons between

costs and caps are made on the same purchasing power). It is worth noting that other

countries have instituted controls over public care provision e.g. in France it is only

available to those above age 65, and in Spain the first two years of disability are not

covered.

Despite the failure of previous attempts at establishing an LTC market in the

U.K., Commission on Funding of Care and Support (2011) outlines a role for insurers

alongside the state. They investigated whether the problem of pooling of risk could

be left solely to the private sector but there was too much uncertainty for affordable

products to be designed. They also considered how a fully social scheme could work

and found it could be unsustainable and sensitive to political pressure — countries

which have adopted such a policy have made cutbacks in response to fiscal pressures

resulting in rising unmet needs. The proposition of a cap reduces the ‘tail risk’ of

an insurance policy as this cap transfers part of the risk of excessively large and long

claims to the government.

A previous commission, established in 1997, had recommended in 1999 that both

personal and nursing care be provided by the state on the basis of need (Royal Com-

mission on Long Term Care, 1999). Moreover, they suggested that private insurance

would be too costly. The Westminster government rejected the recommendation of

personal care provision but accepted that nursing care should be provided to those

who needed it (the Scottish government accepted both recommendations).

Lloyd (2011) suggests various barriers to the success of an LTC market, from

the perspective of both the supply and demand sides. Among the supply barriers

is adverse selection costs (recall from Chapter 1 that there was evidence for adverse

1Hansard HC Deb 11 February 2013, vol 558, cols 592–607.
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selection in LTC products found by Finkelstein and McGarry, 2006; Courbage and

Roudaut, 2008; Oster et al., 2010). In such a small volume of business as the U.K.’s,

the inability to spread the cost of high claims could pose a significant risk to the

insurer. It should be noted that Finkelstein and McGarry (2006)’s adverse selection

did not translate into high claims, possibly due to an incorrect self-assessment of the

survey participants’ health. Other factors he discussed were:

• Limited profitability and market size — weighing the potential costs of entering

the market against the potential profits, it might not be seen worth re-entering

the market.

• Longevity and morbidity risk — there is significant uncertainty over the future

of life expectancies and how trends in disability might be shaped in the future.

• Uncertainty over future claims patterns — changes in availability of informal

care or social care services in response.

• Reputation risk — if benefits do not meet the needs of customers, there could

be an effect on sales for other products so an insurer may need to be generous

in terms of claims underwriting.

• Financial advisors’ resistance — the product history may be tainted in the eyes

of advisors making it difficult to sell through these channels.

• Claims assessments — providers of care may be incentivised to overstate needs

knowing that the cost was being covered by an insurer. Training underwriters to

perform full claims underwriting would be a significant up-front cost. However,

evidence from the health insurance industry in the U.S. suggests the uninsured

would get overcharged since insurers have greater negotiating power (Melnick

and Fonkych, 2008).

• Solvency II — capital requirements with such uncertainty could be inhibitive to

entering the market.

From the demand side he lists reasons why an individual might not buy the product.

The key reasons are:

• Cost — many households would have great difficulty in affording the large single

premiums on a LTC contract, especially in the context of competing expenditure

requirements.

• Alternative strategies — some households keep their savings or plan on using

anticipated inheritance from older relatives or the value of their home in order

to pay for the old age requirements.
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• Ignorance over the need for care arrangements — as mentioned above, many do

not realise the care system is not fully state supported. Additionally, there is

some ignorance as to the in-home care requirements some people will experience

in their old age.

• The complexity of products and a distrust of financial services.

Furthermore, Pauly (1990) makes the case for the rational non-purchase of LTC

based on utility theory and a lack of awareness to the probability that long-term care

services are required. He considers where utility can and cannot be gained from a

bequest and finds that maximising expected utility might mean not purchasing the

insurance, although this is in the specific context of the U.S. Medicare programme.

Additionally, he argues that the purchase of LTC disincentivises the provision of

informal care from children which would allow them to stay in their own home rather

than moving to a care home.

Zhou-Richter et al. (2010) used empirical data to investigate the role of adult

children and their knowledge of care costs in the demand for LTC. They surveyed 1045

adult children in Germany, asking about ownership of LTC by themselves and their

parents and after giving various statistics of the costs and probabilities of requiring

long-term care services, whether they were more or less likely to purchase cover. Their

results suggested that the increased knowledge among adult children about the likely

needs of their elderly parents, leads to increased willingness to buy insurance. To

reinforce this idea, they looked at whether the decision to buy insurance of those

who already had it had been influenced by knowledge of the risk and their results

supported such a link.

4.2 Parameterising the UK LTC Market

In this section we estimate the market specific parameters necessary for the modelling

described in Chapter 3. First we will parameterise the cost of care provision in each

health state and secondly, the initial distribution of lives at 1st January, 2013.

4.2.1 Care Costs

The costs to pay for care varies greatly by region. Region specific costs for care

homes, nursing homes and hourly rate for in-home carers are given in Tables 4.1 and

4.2. The in-home care cost differs for weekend and weekday (as well as by day or

night but for simplicity we assume daytime) and we find the average daytime rate

as Weekday rate × 5/7 + Weekend rate × 2/7. To find the UK average for each, we

calculate the weighted average using the 2010 population size as weights from Office
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Table 4.1: Average annual costs (£) for a residential care home with and without
nursing by UK region in 2011/12. Source: Laing & Buisson, Care of Elderly People
Report 2012/13 via http://www.payingforcare.org

Region Care Home Fees
With Nursing Without Nursing

East Midlands 32,136 26,312
East of England 41,600 29,328
London 42,692 31,096
North East 31,044 24,492
North West 34,476 24,336
Northern Ireland 29,640 24,232
Scotland 35,620 28,860
South East 45,188 30,888
South West 39,728 28,652
Wales 33,800 25,532
West Midlands 36,816 25,740
Yorkshire & Humber 32,448 24,076

for National Statistics (2012a) given in Table 4.3. The costs need to be inflated to

our modelling start date, 1st January 2013. Care home costs are given for the period

2011/2012 so we assume they are as at 1st January, 2012 while in-home care costs

are for the period 2009/2010 so we assume they are as at 1st January, 2010. Office

for National Statistics (2013) gives sector specific weekly earnings up to November,

2012, from which we calculate salary inflation. In-home care costs are inflated using

the experienced inflation rates for health and social workers to 1st January, 2012. An

annualised rate for January, 2012 to November, 2012 is assumed to cover the full year

from 1st January, 2012 to 1st January, 2013 and is applied to inflate all care costs to

this date. Thus the average annual costs for staying in a care home with and without

nursing provision are £27,900 and £38,100 respectively. The average hourly rate for

in-home care is £14.00.

Once the government’s cap has been reached, the individual has no liability for

care costs, but still must pay for staying in a care home, for food and for the utilities

— the so-called hotel costs. This cost is fixed regardless of whether there is any

nursing care provided. Hancock et al. (2007) breaks up the hotel costs from the full

cost of staying in a residential care home without nursing care in 2002 as £7,900 per

annum and £17,000 per annum respectively. They based their estimate of hotel cost

on the Guarantee Credit component of the U.K. Pension Credit benefit. We assume

the proportions remain the same today, i.e. hotel costs are 46% of residential care

home without nursing care, or £12,965.

We consider an institutionalised life without any ADLs or with only an IADL as
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Table 4.2: Average hourly daytime in-home care cost (£) by UK region in 2009/10.
Source: Laing & Buisson, Domiciliary Care UK Market Report 2011 via http://www.

payingforcare.org

Region Weekday Weekend Average Day

East Midlands 12.79 14.66 13.32
East of England 14.02 15.12 14.33
London 13.94 16.41 14.65
North East 13.94 14.88 14.21
North West 12.13 12.48 12.23
Northern Ireland 10.44 10.44 10.44
Scotland 11.42 12.7 11.79
South East 13.61 15.16 14.05
South West 13.98 14.9 14.24
Wales 11.91 13.65 12.41
West Midlands 12.34 13.74 12.74
Yorkshire & Humber 13.23 13.62 13.34

Table 4.3: Population sizes of UK regions in 2010. Source Office for National Statistics
(2012a)

Region Population

East Midlands 4,481,431
East of England 5,831,845
London 7,825,177
North East 2,606,625
North West 6,935,736
Northern Ireland 1,799,392
Scotland 5,222,100
South East 8,523,074
South West 5,273,726
Wales 3,006,430
West Midlands 5,455,179
Yorkshire & Humber 5,301,252
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requiring only residential care. Lives who are in an institution and suffering more

than 1-ADL will need the most care so we assign these lives to a residential care home

with nursing care. Institutionalised lives with 1-ADL might need a bit less attention

but more than lives with no functional disability, so we arbitrarily deem this halfway

between the cost of a residential care home with and without nursing care.

The condition for claiming based on functional ability in the LTC market is com-

monly to suffer from at least 2 ADLs. The costs faced by these lives depends on the

number of hours of in-home care required. Jones (2006) surveyed 28 care providers

(most of which were in a single local authority area) to find the number of hours of

formal in-home care provided. They found an average of 6.5 hours per week (from a

total of 6442 hours weekly). This only measures the formal care; informal care which

might be provided by the life’s spouse, child or a friend is excluded.

Forder and Fernández (2009) found that the local authority’s care provision de-

pended greatly on whether the life lived alone or had access to informal care. They

assumed a need based on what is received by lives eligible under the Department of

Health’s Fair Access to Care framework: 1 ADL (6.8 hours per week); 2 ADLs (7.3

hours per week); 3 ADLs (8.8 hours per week); 4 ADLs (15.6 hours per week); and

5 ADLs (18.7 hours per week). If the life is insured, when they meet the claim re-

quirement, they would be contractually entitled to benefits regardless of their living

arrangements if they chose to get a carer. In this situation, with lives who (wrongly)

think they are being a burden on their family, the number of hours of care could

be substantially more than what the local authority faces. There could however be a

stigma felt by claimants not wanting to be seen by their peers as needing a professional

carer which might curb this increase slightly.

Nuttall et al. (1994)’s model assumed a number of hours per week which differed

by level of disability and classified by need: low need (5 hours per week); moderate

need (15 hours per week); regular need (30 hours per week); and continuous (45 hours

per week). We leave the number of hours a week as a scenario specific parameter and

denote it by H.

For our contract, when a life has been diagnosed with dementia, this will reduce

the functional disability requirement to trigger a functional disability claim to 1-ADL.

Lives with dementia and > 1ADL are given 2H hours of care a week.

Without the existence of the government cap, payments faced by the individual

which don’t meet the claim requirements are irrelevant to the insurer. In our market,

if the individual pays for care which does not meet the insurance company’s claim

underwriting but is included within the government’s cap, this will reduce the insurer’s

expected future liability. To simplify the situation, we assume the government and

insurer have the same criteria regarding claims and set the care costs in states other

than those detailed above to be zero.
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Table 4.4: Annual rates for care and hotel costs for individuals in our insurance
market.

State State Care Hotel
Index Name Cost (£) Cost (£)

0 Healthy 0 0
1 IADL 0 0
2 1-ADL 0 0
3 > 1ADL 5114H 0
4 Initial Signs 0 0
5 IADL(IS) 0 0
6 1-ADL(IS) 0 0
7 > 1ADL(IS) 5114H 0
8 Dementia 0 0
9 IADL(D) 0 0
10 1-ADL(D) 5114H 0
11 > 1ADL(D) 10227H 0
12 Institution 14935 12965
13 IADL(I) 14935 12965
14 1-ADL(I) 20035 12965
15 > 1ADL(I) 25135 12965
16 Dead 0 0

A summary of the care costs dependent on the current state in the model depicted

in Figure 3.7, are given in Table 4.4.

4.2.2 Initial Distribution of Lives

Unlike our model of an established CI market in Chapter 2 where we modelled from

age 30 and assumed all lives started healthy, in our start-up market, we model the

progression of the market from introduction of the product. In such a case there will be

lives of different ages buying the product and influencing the adverse selection costs.

Some lives at each age have already developed some form of cognitive or functional

disability so to model forward from the current time, it is necessary to calculate the

distribution of lives in each state in our model for each sex, genotype and age group

as at 1st January, 2013. To do this, we will first estimate a mix of lives at age 60.

From this mix at age 60, we will calculate the occupancy probabilities for each state

for the elderly population which we will then use to form our insurance market, split

into 5-year age groups in terms of age last birthday: 60–64, 65–69,70–74, 75–79, 80–84

and 85–89.

Denote the probability that a life has genotype g ∈ G at age 60, by PG (g). Further

denote the probability that a life of sex ς, has functional disability type i ∈ {0, 1, 2, 3}
at age 60 by PADL,ς (i).
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Table 4.5: Distribution of APOE genotypes. Source: Farrer et al. (1997).

Genotype Probability, PG (g)

ε2ε2 0.135
ε2ε4 0.026
ε3ε3 0.609
ε3ε4 0.213
ε4ε4 0.018

Since we are concerned with dementias of old-age, we assume that no lives have

any signs of decrease of cognitive function at age 60 and the distribution of genotypes

is that used by Macdonald and Pritchard (2000), and derived by Farrer et al. (1997)

(shown in Table 4.5). Farrer et al. (1997) performed a meta-analysis of 40 studies

of APOE, and provided the genotype frequencies among both lives with AD and the

controls split by ethnicity (the chosen results being Caucasian controls).

The remaining part of the mix of lives at age 60 exactly, is the prevalence of func-

tional ability. We find the prevalences of functional ability at age 60 for males and

females, which when projected forward following the transition intensities (for sim-

plicity, we exclude mortality improvements) in our model of health (see Figure 3.7),

best fits the prevalences observed in the first phase of the CFAS study, as reported by

Akodu (2007) (see Tables 4.6 and 4.7). They list these at age groups in terms of age

last birthday, 65–69,70–74,75–79,80–84,85–89,90+, which we represent by the set of

midpoints (and 92.5 for 90+), denoted X ′, where X ′ = {67.5, 72.5, 77.5, 82.5, 87.5, 92.5}.
By varying the proportions originally in each state at age 60, we use a weighted least

squares method, with weights equal to the number of lives in each age group, as

estimated by Office for National Statistics (2011) for 2010 (shown in Table 4.8), to

minimise the difference between the observed and our calculated prevalences, thereby

extrapolating Tables 4.6 and 4.7 to age 60. The function to minimise is,

∑
x∈X ′

 ∑
j∈{0,1,2,3}

Obsjx −
∑

g∈G,i∈{0,1,2,3},k∈{0,4,8,12}
x−60p

i,j+k
60,ς,gPG (g)PADL,ς (i)∑

g∈G,i∈{0,1,2,3},k∈S\{16}
x−60p

i,k
60,ς,gPG (g)PADL,ς (i)


2
PX ,ς (x) ,

(4.1)

where Obsjx is the observed prevalence of functional ability j, at age x, subject to

the constraints that
∑

i∈{0,1,2,3}
PADL,ς (i) = 1, and PADL,ς (i) ∈ [0, 1]. The occupancy

probabilities, x−60p
i,j+k
60,ς,g, are found by solving the Kolmogorov forward equations,

d

dt
tp
i,j
x,ς,g =

∑
k 6=j

(
tp
i,k
x,ς,g µ

k,j
x,t,ς,g − tp

i,j
x,ς,g µ

j,k
x,t,ς,g

)
. (4.2)
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Table 4.6: Distribution of functional ability in males by age group in terms of age last
birthday. Source: Akodu (2007).

Functional Age group
Ability 65–69 70–74 75–79 80–84 85–89 90+

None 0.8406 0.8112 0.6791 0.5382 0.3545 0.1757
IADL 0.0534 0.0602 0.0756 0.1191 0.1231 0.1081
1-ADL 0.0737 0.0860 0.1556 0.2075 0.3134 0.2568
> 1ADL 0.0323 0.0426 0.0898 0.1352 0.2090 0.4595

Table 4.7: Distribution of functional ability in females by age group in terms of age
last birthday. Source: Akodu (2007).

Functional Age group
Ability 65-69 70-74 75-79 80-84 85-89 90+

No ADLs 0.7759 0.6854 0.5486 0.3483 0.1813 0.0847
IADL 0.1013 0.1194 0.1382 0.1749 0.1827 0.1229
1-ADL 0.0851 0.1515 0.2272 0.302 0.3626 0.2542
> 1ADL 0.0376 0.0436 0.0860 0.1749 0.2734 0.5381

This was done using a 4th order Runge Kutta algorithm with a step size of 2−12 and

boundary conditions 0p
i,j
x,ς,g = δij, where δij is the Kronecker delta. The result of the

minimising Equation (4.1) is shown in Table 4.9, with no lives having any ADLs at

age 60.

Using the assumptions and calculated distributions of lives at age 60, we can find

the distribution of lives who are alive at age x, of sex ς, have genotype g and are in

Table 4.8: U.K. population by sex and age group in terms of age last birthday in
1,000s. Source: Office for National Statistics (2011).

Age Male Female

60–64 1840.08 1923.52
65–69 1412.11 1519.56
70–74 1160.31 1307.44
75–79 893.91 1107.84
80–84 607.09 885.55
85–89 326.08 608.47
90+ 131.89 331.54
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Table 4.9: Proportion of lives of each sex in each functional disability type, at age 60
exactly.

No ADLs IADL 1-ADL > 1 ADL

Male 1 0 0 0
Female 1 0 0 0

state j at 1st January 2013, pjx,ς,g, by calculating,

pjx,ς,g =

3∑
i=0

PADL,ς (i) PG (g) tp
i,j
60,ς,g PSex,x (ς)

∑
ς∈{M,F},g∈G,s∈S

3∑
i=0

PADL,ς (i) PG (g) tp
i,s
60,ς,g PSex,x (ς)

, (4.3)

where PSex,x (ς) is the probability a life aged x is of sex ς based on Table 4.8.

This will not necessarily produce an accurate depiction of the mix of lives of

the U.K. population, however the purpose of such a distribution is to provide an

approximate baseline from which we can illustrate how adverse selection may impact

costs. The aim of our model is not to accurately estimate or project future demand

for services and our results should not be used in this way.

4.3 Distribution of Insured Lives

To provide context for adverse selection costs, we consider the joint distribution of

insurance purchase time, age and sex, conditional on insurance being purchased.

Let T INS, X and Σ be the random variables representing insurance purchase time,

age group and sex respectively. We denote the joint density function for insur-

ance purchase time, sex and age group, conditional on insurance being purchased

by fT INS ,Σ,X|T INS<∞(t, ς, x), and calculate it as,

fT INS ,Σ,X|T INS<∞(t, ς, x) =

∑
g∈G,i,j∈S,ϑ∈B

pix,ς,g tp
00i,0ϑj
x,ς,g µ0ϑj,ϑj

x,t,ς,g∫∞
0

∑
y∈X ,σ∈{M,F},g∈G,i,j∈S,ϑ∈B

piy,σ,g sp
00i,0ϑj
y,σ,g µ0ϑj,ϑj

y,s,σ,g ds
, (4.4)

with the integration calculated numerically using Simpson’s rule and a step size of

2−11. The resulting density functions are shown in Figures 4.1 (males) and 4.2, as-

suming adverse selection is due to lives with the initial signs of dementia or 1-ADL

buying at a rate of 0.25 per annum.

We can see that the majority of business is sold during the first 10 to 15 years;

very few lives buy when x + t is greater than 90 years old. There is an interesting
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feature among both males and females, for x = 62.5, whereby there is a local minimum

followed by a local maximum for the smaller markets at t = 5 and t = 15, respectively

for males and t = 2 and t = 10, respectively for females. These turning points are

due to the changing pattern of health with age: initially the adverse selectors in this

age group are functionally disabled; as dementia onset increases, the adverse selection

comes from lives with the initial signs of dementia.

Since we are concerned with a start-up market, we choose to model for 20 years.

As very few lives purchase insurance after this time (we have not modelled entry to the

market from younger lives), the implication of this is limited. Moreover, this is longer

than the previous attempt at selling the product in the U.K. lasted. If the product is

successful, a large body of claims history might allow a more robust analysis, perhaps

performed by the CMI, to estimate an insured lives morbidity table which insurers

could adjust to suit their own market segment.

4.4 Analysis of Premium Rates

In this section we calculate and analyse the premiums that would be charged to lives

if the insurer knew all relevant information (applicant’s exact health status, sex and

genotype) and was able to underwrite fully i.e. an underwriting class for each sex,

state and genotype combination. This will aid the understanding of the potential

sources of adverse selection.

To do so we run the previous chapter’s models with assumptions as follows:

• The insurance contract indemnifies the life up to a maximum lifetime coverage

of £200,000, with no annual claim limit.

• Care costs, other than hotel costs, are capped at £75,000, adjusted for 4 years

of inflation at a force of inflation of ν = 0.04 per annum.

• The number of hours of in-home care per day for lives with > 1ADL is H = 1.

• There is no deferred period.

• The force of interest is δ = 0.04 per annum.

• The market size i.e. the rate at which lives are assumed to buy insurance, is

0.001 per annum.

The resulting regular premium rates per annum, dependent on purchase time, are

shown in Figures 4.3 to 4.8 (note that scales are not consistent from figure to figure).

Figure 4.3 shows the progression of premium rates for lives who were aged 62.5 at 1st

January, 2013 and purchase their insurance at time t; Figure 4.4 shows the same for

128



Chapter 4: Long Term Care Costs in the United Kingdom

0 5 10 15 20 25 30

0.
00

0
0.

00
5

0.
01

0
0.

01
5

0.
02

0

Purchase Time (t)

D
en

si
ty

Male − Aged 62.5 at 1st January, 2013

Market: 0.001, Adverse: 0.25
Market: 0.01,  Adverse: 0.25
Market: 0.05,  Adverse: 0.25

0 5 10 15 20 25 30

0.
00

0
0.

00
5

0.
01

0
0.

01
5

0.
02

0

Purchase Time (t)

D
en

si
ty

Male − Aged 67.5 at 1st January, 2013

Market: 0.001, Adverse: 0.25
Market: 0.01,  Adverse: 0.25
Market: 0.05,  Adverse: 0.25

0 5 10 15 20 25 30

0.
00

0
0.

00
5

0.
01

0
0.

01
5

0.
02

0

Purchase Time (t)

D
en

si
ty

Male − Aged 72.5 at 1st January, 2013

Market: 0.001, Adverse: 0.25
Market: 0.01,  Adverse: 0.25
Market: 0.05,  Adverse: 0.25

0 5 10 15 20 25 30

0.
00

0
0.

00
5

0.
01

0
0.

01
5

0.
02

0

Purchase Time (t)

D
en

si
ty

Male − Aged 77.5 at 1st January, 2013

Market: 0.001, Adverse: 0.25
Market: 0.01,  Adverse: 0.25
Market: 0.05,  Adverse: 0.25

0 5 10 15 20 25 30

0.
00

0
0.

00
5

0.
01

0
0.

01
5

0.
02

0

Purchase Time (t)

D
en

si
ty

Male − Aged 82.5 at 1st January, 2013

Market: 0.001, Adverse: 0.25
Market: 0.01,  Adverse: 0.25
Market: 0.05,  Adverse: 0.25

0 5 10 15 20 25 30

0.
00

0
0.

00
5

0.
01

0
0.

01
5

0.
02

0

Purchase Time (t)

D
en

si
ty

Male − Aged 87.5 at 1st January, 2013

Market: 0.001, Adverse: 0.25
Market: 0.01,  Adverse: 0.25
Market: 0.05,  Adverse: 0.25

Figure 4.1: Joint density function for insurance purchase time, sex and age group,
conditional on insurance being purchased for males.
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Figure 4.2: Joint density function for insurance purchase time, sex and age group,
conditional on insurance being purchased for females.
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lives who were aged 67.5 at 1st January, 2013 and so on. Overlayed onto each of these

are the premium rates that would be charged if all lives buying insurance were written

into one underwriting class for the age group, without any adverse selection in the

market (what we termed base premium in Section 3.4 and calculated using Equation

(3.42)). The equivalent plots for single premium rates are shown in Appendix D

We can see the biggest difference in premium rates is derived from the initial signs

of dementia. Also, if pricing men and women separately, premiums for women are

larger than those for men, reflecting the higher rate of dementia found in women.

Prior to showing the initial signs of dementia, the premium rates do not differ

hugely by genotype. The effect of moving to an initial signs type state increases the

premium rates more for females than males. Since this is closer to a dementia claim,

the effect of genotype becomes more important and differences between premium rates

for genotypes are apparent.

At around age 80, the fully underwritten premium rates generally start to decrease

and the differences between them lessen. This is due to the increased mortality related

to old-age causing the probability that a life claims to decrease. Additionally, where a

life does claim, high mortality acts to cause the length, and hence the value, of claims

to be lower. An exception to this observation is made for males in the IADL state.

In this case, the proportion of transition rates into > 1ADL is increasing and hence

the probability of a claim is also increasing.

Also at around age 80, the premium rates for genotype ε4ε4 drop below those for

ε3ε3. At these ages the relative risk for AD, relative to ε3ε3, is only slightly greater

than 1 (for males this is fixed as a minimum), while the integral in Equation (3.28)

is greater for ε4ε4 and hence the transition rates between Initial Signs and Dementia

states are greater for ε3ε3.

After age 85, the premium rates charged start to decrease. When this occurs, the

rational behaviour for lives who are not in claim would be to continuously lapse and

re-enter for a cheaper premium. To avoid this problem, contract designs would need

to have some form of advancement of premium payment e.g. by limiting the period

for which premium is payable. The adverse selection cost for such a design would be

somewhere between that of a single premium contract and our regular premium so

we continue without any action to correct or account for this lapse risk.

In terms of perceived cheapness of the premiums that would be charged without

full information (the thick lines in the figures), at younger ages when the majority

of lives have no signs of dementia, premiums are closer to the Healthy rates, so in

1-ADL it appears cheap. For lives with the initial signs of dementia, base premiums

represent as much as half of the premium which they would pay if fully underwritten.

As age increases, the proportion of lives with the initial signs of dementia increases

and premiums become expensive even for lives with 1-ADL. The high unisex premium
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Figure 4.3: Regular premium rates for LTC, assuming the insurer had complete in-
formation about the customer and put lives in each age group, sex, genotype and
health status into separate underwriting classes, for lives aged 62.5 at 1st January,
2013. The same legend is used throughout the plots.
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Figure 4.4: Regular premium rates for LTC, assuming the insurer had complete in-
formation about the customer and put lives in each age group, sex, genotype and
health status into separate underwriting classes, for lives aged 67.5 at 1st January,
2013. The same legend is used throughout the plots.

133



Chapter 4: Long Term Care Costs in the United Kingdom

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●
●

●

0
10

00
20

00
30

00
40

00
50

00

Purchase Time

A
nn

ua
l P

re
m

iu
m

 (
£)

0 5 10 15 20

● ε2ε2
ε3ε3
ε2ε4
ε3ε4
ε4ε4
Charged

Male
Female
Unisex

Premium rates for lives buying insurance from Healthy

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●
●

●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●
●

●
●

●
●

●
●

●
●

●
● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

●
●

●

0
10

00
20

00
30

00
40

00
50

00

Purchase Time

A
nn

ua
l P

re
m

iu
m

 (
£)

0 5 10 15 20

Premium rates for lives buying insurance from Initial Signs

●
● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

●
●

●

●
●

●
●

●
●

●
●

●
● ● ● ● ● ●

●
●

●

●

●

●

●

●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

●

0
10

00
20

00
30

00
40

00
50

00

Purchase Time

A
nn

ua
l P

re
m

iu
m

 (
£)

0 5 10 15 20

Premium rates for lives buying insurance from IADL

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●
●

●
●

●
●

●
●

●
●

●
●

●
● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

0
10

00
20

00
30

00
40

00
50

00

Purchase Time

A
nn

ua
l P

re
m

iu
m

 (
£)

0 5 10 15 20

Premium rates for lives buying insurance from IADL (IS)

●
● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

●
●

●
●

●
●

●
●

● ● ● ● ● ●
●

●
●

●

●

●

●

●

●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●
●

●
●

0
10

00
20

00
30

00
40

00
50

00

Purchase Time

A
nn

ua
l P

re
m

iu
m

 (
£)

0 5 10 15 20

Premium rates for lives buying insurance from 1−ADL

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●
●

●
●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●
●

●
●

●
●

●
●

●
●

●
●

●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●
●

●
●

●
●

0
10

00
20

00
30

00
40

00
50

00

Purchase Time

A
nn

ua
l P

re
m

iu
m

 (
£)

0 5 10 15 20

Premium rates for lives buying insurance from 1−ADL (IS)

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●
●

●
●

●
●

●
●

●
●

●
●

●
● ● ● ● ● ●

●
●

●
●

●

●

●

●

●

●

Figure 4.5: Regular premium rates for LTC, assuming the insurer had complete in-
formation about the customer and put lives in each age group, sex, genotype and
health status into separate underwriting classes, for lives aged 72.5 at 1st January,
2013. The same legend is used throughout the plots.
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Figure 4.6: Regular premium rates for LTC, assuming the insurer had complete in-
formation about the customer and put lives in each age group, sex, genotype and
health status into separate underwriting classes, for lives aged 77.5 at 1st January,
2013. The same legend is used throughout the plots.
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Figure 4.7: Regular premium rates for LTC, assuming the insurer had complete in-
formation about the customer and put lives in each age group, sex, genotype and
health status into separate underwriting classes, for lives aged 82.5 at 1st January,
2013. The same legend is used throughout the plots.
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Figure 4.8: Regular premium rates for LTC, assuming the insurer had complete in-
formation about the customer and put lives in each age group, sex, genotype and
health status into separate underwriting classes, for lives aged 87.5 at 1st January,
2013. The same legend is used throughout the plots.
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caused by female lives’ dementia claims makes the premium seem expensive for males

with APOE genotypes ε2ε2, ε2ε4 and ε3ε4. Where people see the premium as cheap,

we assume they buy the insurance at a higher rate as they are receiving better value

for money and this we see as adverse selection.

Attention should be drawn to the people who these products would be marketed

to: old people who own their own home, but nonetheless are living on a pension.

Premiums between between £1,500 and £2,000 per annum are likely to be seen as a

substantial portion of a tight budget.

4.5 Calculating Adverse Selection

In this section we consider the impact of lives making the rational decision to either

buy LTC insurance at an increased rate when faced with a cheap premium with respect

to what they know about their own risk or at a lower rate when premium is expensive.

This will be calculated in the context of a new market for the product being created at

the modelling date, 1st January, 2013. We will show how the cost of adverse selection,

as defined in Section 2.5.1, will develop over time when the insurance company is able

to respond to the cashflows it observes from in-force business by adjusting premium

rates charged to new business. Each age group is modelled independently of any other

so the repricing adjustments relate only to the claims history of the particular cohort.

Based on the analysis in Section 4.4, we consider the possibility of higher than

expected purchase rates from lives who find they have a high risk variant of the APOE

gene; lives who have observed the initial signs of dementia; and lives in a high risk

ADL state beyond the detection of underwriting capabilities in the scenario. We also

allow lives with a low risk variant of the APOE gene or in the lowest risk state in the

class to buy at a lower rate.

4.5.1 Adverse Selection Sources in Isolation

To demonstrate the relative impact of each source of adverse selection, we model

with buying behaviour changing due to one factor at a time. We use the same set of

assumptions as above and where the buying rate is high, this is at a rate of 0.25 per

annum.

For the purposes of this exercise, we consider high risk variants of APOE to be

ε3ε4 and ε4ε4, while low risk variants are ε2ε2 and ε3ε3 with testing occurring at a

rate of 0.08916 per annum, the High rate from Section 2.5. This is used to exaggerate

the costs in order to illustrate how genetic testing interacts with other scenarios. As

discussed above, testing for APOE variations in relation to AD is unlikely to be done

at the request of physicians, but may be done if an individual uses a personal testing
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service. Figure 4.9 shows the repricing adjustment factors to the base premiums over

time, using Equation (3.58) — these are calculated based on the information the

insurer gains through its claims history. To provide this with context, Figure 4.10

shows the adjustments that would be made to the base premiums, if the insurance

purchase pattern was exactly the same, and the insurer knew everything about the

customer which was relevant to pricing when the policy was sold — this is the factor

by which the base premium should be multiplied to pay for all benefit outgo.

What we can observe from these plots is that lives with the initial signs of dementia

buying at a higher rate should have the biggest effect on premium rates, although this

is overtaken at the oldest ages by lives with 1-ADL. However, the rate at which losses

from this source of adverse selection are recognised is slower than that of lives in the

Healthy state not buying and lives with 1-ADL buying at a high rate. This means the

premiums charged to new business don’t increase enough to cover the benefit costs of

the business, leaving a larger cost of adverse selection.

There is a general downward trend in the adjustments that should be made as the

relative difference between the underlying premium rates decreases. This is caused

by the higher proportions of lives with dementia or functional disability among the

population aligning the base premiums more closely to the adverse selectors.

We can also see that on its own, genetic testing at this test rate should increase

premiums a moderate amount, however the threat posed by this is small relative to

the other potential sources of adverse selection. Overlap between the factors may

cause smaller influence from genetic tests than these would suggest. A limitation of

the methodology used — lives with particular genotype buy at a higher rate for the

remaining period after receiving test results — is that at later ages, the relative risk

model used gives the “high risk” APOEε4 variants, ε2ε4 and ε3ε4 the same relative

risk as ε3ε3 in males.

4.5.2 Multiple Sources of Adverse Selection

In assessing a more complete picture of adverse selection, with more than one source

at a time, we will use the following assumptions:

• The size of the market will be represented by purchase rates of 0.001, 0.01 and

0.05 per annum.

• Lives who buy at an increased rate will do so at either 0.25 or 0.1 per annum

and in the case of the smallest market, at 0.01 per annum also.

• Underwriters will either group all lives into one class or group lives with 1-ADL

in their own class.
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Figure 4.9: Repricing adjustments made to new business regular premiums through
the emerging information from claims history, when a single source of adverse selection
is present: “Healthy” — lives in the Healthy state don’t buy; “Low Gene” — lives
with AOPE genotypes ε2ε2 and ε3ε3 don’t buy; “High Gene” — lives with AOPE
genotypes ε3ε4 and ε4ε4 buy at an increased rate; “Initial Signs” — lives with initial
signs of dementia buy at an increased rate; “1-ADL” — lives with 1-ADL functional
disability type buy at an increased rate.
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Figure 4.10: Adjustments which would be made to new business regular premiums if
the insurer knew everything relevant about the customer at the point of sale, when a
single source of adverse selection is present: “Healthy” — lives in the Healthy state
don’t buy; “Low Gene” — lives with AOPE genotypes ε2ε2 and ε3ε3 don’t buy; “High
Gene” — lives with AOPE genotypes ε3ε4 and ε4ε4 buy at an increased rate; “Initial
Signs” — lives with initial signs of dementia buy at an increased rate; “1-ADL” —
lives with 1-ADL functional disability type buy at an increased rate.
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• Lives receiving in-home care will be given either H = 1 or H = 2 hours of care

per day, corresponding to the results of Jones (2006); Forder and Fernández

(2009) and the assumption in Nuttall et al. (1994)’s moderate needs estimate

respectively. Costs of care are as outlined in Table 4.4.

• Testing will be performed at a rate of 0.08916 per annum.

• The force of inflation will be 0.02 or 0.04 per annum, while the force of interest

is 0.05.

• An individual’s care liability will be capped by the government at £75,000,

adjusted for 4 years’ inflation.

• The insurance contract will indemnify the policyholder up to £200,000 with no

limit on annual payouts.

• The relevancy function in Equation (3.57) will be parameterised using β = −0.01

and γ = −0.25.

• The number of lives of age x and sex ς is as in Table 4.8 and denoted by N(x, ς,).

In our modelling we assume adverse purchase rates for males and females are equal.

However this is not necessarily how it would be borne out in practice as the product

represents a different value to each sex — females may be expected to have a higher

purchase rate as the product represents greater value to them.

We calculate the cost of adverse selection for all business sold in underwriting

class k during calendar year c by realising the future losses the business will incur

when adverse selection is present, and discounting these to start of year c. We assume

the premiums are calculated using the claims history to apply a repricing adjustment

to the base premiums, the latter calculated assuming no adverse selection. By ex-

pressing the loss as a percentage of premium income, we show how much further the

premiums need to be increased, in order to reach the actuarially fair premiums that

were intended. Benefit outgo and premium income arising from business sold to lives

aged x at 1st January, 2013, are weighted by the number of lives in that age group.

This can be expressed as,

Adverse Selection Cost = E(PV Benefits-PV Premium|Adverse Selection)
E(PV Premium|Adverse Selection)

=

∑
x∈X ,ς∈{M,F},g∈G,i∈S,j∈Uk,ϑ∈B

N(x,ς)
∫ c+1
c pix,ς,g tp̃

00i,0ϑj
x,ς,g µ̃0ϑj,1ϑj

x,t,ς,g

(
Aj,P

x,ς,g,t:c−Π
k
x,t a

j,P
x,ς,g,t:c

)
dt

∑
x∈X ,ς∈{M,F},g∈G,i∈S,j∈Uk,ϑ∈B

N(x,ς)
∫ c+1
c pix,ς,g tp̃

00i,0ϑj
x,ς,g µ̃0ϑj,1ϑj

x,t,ς,g Π
k
x,t a

j,P
x,ς,g,t:c dt

, (4.5)

where X = {62.5, 67.5, 72.5, 77.5, 82.5, 87.5} is the set of midpoints of each of our age

groups.
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We start by considering adverse selection costs when lives with the initial signs of

dementia and lives with 1-ADL buy at an increased rate without any underwriting.

The progression of these costs are shown in Figure 4.11 for regular and single premium

on unisex and gender specific bases with H = 1 and ν = 0.04.

The patterns shown are much the same regardless of the premium basis: very high

costs attributable to business sold at the start of the market, while policies sold after

20 years since market set-up have negative costs. These negative costs reflect the

repricing process increasing premiums too much — referring back to Figure 4.10, we

see the premium adjustments which should be made gradually decrease, which is due

to the base premium accommodating a greater proportion of higher risk lives without

adverse selection. Losses are noticed more rapidly when the purchase rate for adverse

selectors is highest, and despite being the highest cost initially, the smallest market

with high adverse purchase rate responds quickest and becomes the most negative.

The regular premium version of the contract has approximately 30% higher costs

initially and these costs become more negative when policies are being charged too

much.

There are a number of uncertain parameters involved in our model. To assess

how the choice of value of these parameters might influence results, we present some

analysis of the sensitivity.

The sensitivity of adverse selection costs over time to the inflation rate parameter

can be seen in Figure 4.12 to be very low — the shape of the emergence over time and

the size are very similar. Since the highest costs are at the start of the market, before

the insurer has been able to adjust their correct their pricing assumptions, when the

inflation rate is higher (and consequently the real discount rate lower) the smaller

cost incurring/profit making business in the latest years is given more weight making

the overall adverse selection cost, as a percentage of premium income, lower.

Figure 4.12 also shows the sensitivity to the number of hours of in-home care

provision, H. Increasing H from 1 to 2 decreases the adverse selection cost. This may

seem counter intuitive since we have lives at risk of claiming in-home care provision

buying at an increased rate. However, as noted above, the biggest part of adverse

selection cost is from lives observing the initial signs of dementia. These lives are

also exposed to the parameter H, pre-institutionalisation but once they have been

institutionalised, their care costs are no longer based on H. Consequently, although

overall benefit costs are higher when H = 2, the increased premium rate offsets some

of the adverse selection costs. Since the shape of the development of the costs does

not change markedly, only the scale, we continue in this section with H = 1.

Now when we include adverse selection from lives who have had a genetic test

(shown in Figure 4.13), the effect is two-fold: initially the costs are lower with genetic

adverse selection due to lives with high-risk genes buying insurance earlier than they
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Figure 4.11: Progression of adverse selection cost when lives with the initial signs of
dementia or 1-ADL buy insurance at an increased rate with H = 1, ν = 0.04.
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Figure 4.12: Sensitivity of adverse selection costs to number of hours of care provision
and the force of inflation when lives with the initial signs of dementia and lives with
1-ADL buy insurance at an increased rate and premiums are charged on a unisex
basis.
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would when they move to a state where the difference between their benefit costs

and premium income is greater; at later purchase times, the adverse selection cost is

higher with genetic adverse selection because losses due to genetic adverse selection

are realised slowly (see Figure 4.9) so premiums have not been changed sufficiently.

In the large market, this creates a local minimum and subsequently a local maximum

for males and where premiums are unisex.

If the market fails to attract lives in the Healthy state but lives with the initial

signs or 1-ADL buy at an increased rate there will be little difference between the

market sizes (see Figure 4.14) since only the relatively small proportion of lives with

an IADL buy at the standard market rate. The effect of genetic testing in this case

is minimal since the only lives in the IADL state will change buying behaviour due

to test results.

The scenarios above have assumed there is a restriction on underwriting. If we

permit insurers to underwrite based on functional ability, as would be the case in

the UK, there would be no reason for lives with 1-ADL to purchase insurance at an

increased rate, merely because of their functional disability.

Since our model is Markov, a life’s health history (beyond its current state) tells

nothing of it’s future health. Therefore when a life has been underwritten into a

high risk class, if the life subsequently recovers they could lapse their policy and buy

another written in a lower risk class with a correspondingly lower premium. This is a

consideration that would be necessary only when charging regular premiums, similar

to the problem mentioned in Section 4.4.

The results of introducing underwriting are shown in Figure 4.15 when lives with

the initial signs of dementia buy insurance at an increased rate and change buying

behaviour after the result of a genetic test. Despite eliminating functional ability

as a source of adverse selection, the costs as a percentage of premium income have

increased when we compare to Figure 4.13, particularly for females and the smaller

market sizes. This should be expected because the biggest part of adverse selection

cost is from the insurer being unable to discern between lives with and without the

initial signs of dementia. This still remains, while lives in the ‘low risk’ underwriting

class pay a smaller premium than without underwriting. Hence, the nominal amount

of loss has decreased, but less than the nominal amount of premium income has.

Additionally, the local maximum observed upon introducing genetic adverse selection

is more pronounced and exists for the other market sizes. Losses due to adverse

selection from 1-ADL are realised relatively rapidly hence increased premiums can be

used to cover losses from high purchase rates from lives with initial signs of dementia

which are realised more slowly.
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Figure 4.13: Progression of adverse selection cost when lives with the initial signs
of dementia or 1-ADL buy insurance at an increased rate and lives change buying
behaviour after having a genetic test, with H = 1, ν = 0.04.
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Figure 4.14: Progression of adverse selection cost when lives with the initial signs of
dementia or 1-ADL buy insurance at an increased rate and lives change buying be-
haviour after having a genetic test, while healthy lives do not buy insurance regardless
of genotype, with H = 1, ν = 0.04.
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Figure 4.15: Progression of adverse selection cost when lives with 1-ADL are written
into a separate class while lives with the initial signs of dementia buy insurance at
an increased rate and lives change buying behaviour after having a genetic test, with
H = 1, ν = 0.04.
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4.5.3 Varying the Caps

We have used a cap on care costs before the government takes on the liability assuming

£75,000 in 2017, as per the Westminster government’s stated intentions. If this does

not get approval of parliament, there will be no cap on the liability faced by the

individual. Moreover, we have not considered the situation in Scotland, where care

costs are, intended to be met by the Scottish government. We examine these extremes

of policy here.

First we consider the Scottish government’s policy and assume that their payment

is sufficient to meet the care costs. The adverse selection costs (shown in Figure 4.16)

as a percentage of premium are substantially larger than those where the insurance

policy also pays for care costs. In this situation, the role of the insurance policy is

to meet the hotel costs, a benefit only associated with dementia. Correspondingly,

benefit sizes are smaller and the probability of reaching a claim is reduced, hence the

premiums are also reduced. This smaller premium base, as we have seen above (in

the scenario with underwriting), creates large adverse selection costs.

Next we look at adverse selection costs if the U.K. government does not implement

their proposed cap. These are shown in Figure 4.17. Comparing these with the

equivalent scenario with the cap, in Figure 4.11, we see very little impact from the

removal of the cap on care costs.

To investigate this further, we amended our simulation model to estimate the

distribution of total care individuals face over their lifetime. For each sex, genotype

and health state, we simulated the future life histories and the associated care costs

of 1,000,000 lives aged x ∈ X . Where the total care costs for lives was non-zero, these

were separated into ‘bins’ of size £1,000 in terms of 1 January, 2013’s purchasing

power. A further bin existed for lives who never had any care expenditure. Summing

the number of lives in each bin over genotypes g ∈ G and states j ∈ S, with weighting

equal to the probability for the initial distribution, pjx,ς,g (calculated in Section 4.2.2),

allows us to estimate a distribution for a discretised care cost, for a particular age

group x and sex ς.

The nature of adverse selection means that in our pool of insurance business,

the mix of lives who buy insurance does not match the mix of lives in the general

population — there will be a higher proportion of lives who require care. As a proxy

for the mix of insured business, we consider the distribution of care costs, conditional

on the care cost being non-zero. Denote the number of lives aged x, of sex ς, with

genotype g, and in state j at 1st January, 2013, whose simulated care costs were

between 1000i and 1000(i+ 1), by bjx,ς,g(i). For lives aged x, of sex ς, we estimate the

probability mass function of care costs, conditional on the cost of care being non-zero,
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Figure 4.16: Progression of adverse selection cost when lives with the initial signs
of dementia or 1-ADL buy insurance at an increased rate with H = 1, ν = 0.04.
Insurance pays for hotel costs only.
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Figure 4.17: Progression of adverse selection cost when lives with the initial signs of
dementia or 1-ADL buy insurance at an increased rate with H = 1, ν = 0.04. The
government does not cap care liability.
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Figure 4.18: Probability density functions of care costs, conditional on the cost of
care being non-zero, separated by age and sex.

as,

P (1000i < Care cost ≤ 1000(i+ 1)|Care cost > 0) =

∑
g∈G,j∈S

pjx,ς,g b
j
x,ς,g(i)∑

g∈G,j∈S,k∈N
pjx,ς,g b

j
x,ς,g(k)

.

(4.6)

For ages 62.5 and 87.5, this is shown in Figure 4.18.

The adverse selection we have considered does not impact upon the duration of

care requirements. We therefore suggest the distribution of care costs would not differ

greatly between what is anticipated in pricing and what is experienced. Since only

a small proportion of lives are affected by the removal of the cap (see Table 4.10),

where a difference in this distribution were to arise, the associated loss would not be

large when spread over a portfolio of business. This explains why the changes in costs

of adverse selection were so small when the government cap was removed.

4.6 Cross-subsidy in Unisex Premiums

As noted in Section 4.4, premiums for females are substantially higher than those for

males when using sex as as a pricing factor. Hence, under a unisex format where

the costs are spread over both sexes, males will be paying more than they otherwise

would.

Define the cross-subsidy to be the excess of premium income from one group (call

this group A) over the benefits paid to them used to cover losses on business from
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Table 4.10: Conditional probabilities of reaching the U.K. government’s proposed care
cap of £75,000, adjusted for 4 years’ inflation, assuming a force of inflation of ν = 0.04
per annum.

Sex Age P (Care costs=0) P (Reach Proposed Cap—Require Care)

Male 62.5 0.5574 0.0516
67.5 0.5338 0.0521
72.5 0.5362 0.0479
77.5 0.5402 0.0474
82.5 0.5446 0.0374
87.5 0.5430 0.0190

Female 62.5 0.3351 0.0617
67.5 0.3109 0.0689
72.5 0.3045 0.0734
77.5 0.2986 0.0786
82.5 0.2961 0.0706
87.5 0.3033 0.0408

another group (call this group B):

Cross subsidy =


Profit from A, if 0 < Profit from A ≤ Loss from B

Loss from B, if 0 < Loss from B < Profit from A

0, otherwise.

(4.7)

For the existence of a cross-subsidy, it is therefore necessary for a simultaneous oc-

currence of both profit from one group of lives and losses from the other.

When the mix of lives matches what is priced for, this will create a cross-subsidy

which is measurable simply by comparing the premium rates in Figures 4.3 to 4.8.

However, in the context of adverse selection, this cross subsidy may disappear if

premium income from males is insufficient to cover the benefits males receive or if

the premium adjustment is such that females’ benefits are fully covered by females’

premiums. In this section we analyse the premium income and benefit payments at

the level of particular sex to quantify the cross-subsidy in the unisex premiums. In

this case group A are the male lives and group B are the female lives.

We can calculate the profit from males aged x in 2013, who purchased insurance

in calendar year c, which we denote by A(x, c) and A(x, c), for regular and single
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premium versions respectively, as

A(x, c)

=
∑

g∈G,i∈S,j∈Uk,ϑ∈B

N(x,M)

∫ c+1

c

pix,M,g tp̃
00i,0ϑj
x,M,g µ̃

0ϑj,1ϑj
x,t,M,g

(
Π
k

x,t a
j,P
x,M,g,t:c − A

j,P
x,M,g,t:c

)
dt,

(4.8)

and

A(x, c) =
∑

g∈G,i∈S,j∈Uk,ϑ∈B

N(x,M)

∫ c+1

c

pix,M,g tp̃
00i,0ϑj
x,M,g µ̃

0ϑj,1ϑj
x,t,M,g

(
Πk
x,t − A

j,P
x,M,g,t:c

)
dt.

(4.9)

Similarly, we calculate the loss from females aged x in 2013, who purchased insurance

in calendar year c, which we denote by B(x, t) and B(x, t), as

B(x, c)

=
∑

g∈G,i∈S,j∈Uk,ϑ∈B

N(x, F )

∫ c+1

c

pix,F,g tp̃
00i,0ϑj
x,F,g µ̃0ϑj,1ϑj

x,t,F,g

(
Aj,Px,F,g,t:c − Π

k

x,t a
j,P
x,F,g,t:c

)
dt,

(4.10)

and

B(x, c) =
∑

g∈G,i∈S,j∈Uk,ϑ∈B

N(x, F )

∫ c+1

c

pix,F,g tp̃
i,j
x,F,gµ̃

j,INS
x,t,F,g

(
Aj,Px,F,g,t:c − Πk

x,t

)
dt,

(4.11)

for regular and single premium versions respectively.

Let the cross-subsidy across all business sold in calendar year c, expressed as a

percentage of male premium, be denoted by χ(c) and χ(c) and calculated as

χ(c) =

min

[
max

(
0,
∑
x∈X

A(x, c)

)
,max

(
0,
∑
x∈X

B(x, c)

)]
∑

x∈X ,g∈G,i∈S,j∈Uk,ϑ∈B
N(x,M)

∫ c+1

c
pix,M,g tp̃

00i,0ϑj
x,M,g µ̃

0ϑj,1ϑj
x,t,M,g Π

k

x,c a
j,P
x,M,g,t:c dt

, (4.12)

and

χ(c) =

min

[
max

(
0,
∑
x∈X

A(x, c)

)
,max

(
0,
∑
x∈X

B(x, c)

)]
∑

x∈X ,g∈G,i∈S,j∈Uk,ϑ∈B
N(x,M)

∫ c+1

c
pix,M,g tp̃

00i,0ϑj
x,M,g µ̃

0ϑj,1ϑj
x,t,M,g Πk

x,c dt
, (4.13)

for regular and single premium versions respectively.

We analyse the cross-subsidies in the the same scenarios as above in Section 4.5.
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Figure 4.19: Progression of the cross-subsidy from males in unisex premiums when
lives with the initial signs of dementia or 1-ADL buy insurance at an increased rate,
with H = 1, ν = 0.04. Black indicates the cross-subsidy is the profit on males, while
red indicates that it is the loss from females.

Figure 4.19 shows the progression of the cross-subsidy when lives with the initial

signs of dementia or 1-ADL buy insurance at an increased rate. There is an inverse

relationship between cost of adverse selection and the cross-subsidy — while adverse

selection cost is high, it is unlikely there is a profit being made from males and

when adverse selection cost is negative, it is possible that there is no loss on female

business. Consequently, the large market has the greatest cross-subsidy and is non-

zero throughout. Smaller market sizes make a loss on both male and female business

initially so have no cross subsidy. This lasts longer under the regular premium product

than the single premium version.

When we introduce genetic testing to this scenario (see Figure 4.20), the shape

shows some distortion in a similar fashion to the adverse selection cost but with local

minima in place of local maxima.

If healthy lives do not buy insurance but lives with the initial signs of dementia

buy insurance at an increased rate and lives alter buying behaviour after a genetic

test (see Figure 4.21) then a loss is made on males in all market sizes, lasting between

7 and 9 years in the regular premium version and 4 and 6 years for the single premium

version. At which point the cross subsidy begins increasing until a total profit is made

and starts to decrease as the loss on females decreases due to the premium adjustment

being made.

In Figure 4.22 we have lives with 1-ADL being underwritten into a separate class

of business. Lives with the initial signs of dementia buy insurance at an increased

rate and lives alter buying behaviour after a genetic test. In this case, a cross subsidy
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Figure 4.20: Progression of the cross-subsidy from males in unisex premiums when
lives with the initial signs of dementia or 1-ADL buy insurance at an increased rate
and lives change buying behaviour after having a genetic test, with H = 1, ν = 0.04.
Black indicates the cross-subsidy is the profit on males, while red indicates that it is
the loss from females.
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Figure 4.21: Progression of the cross-subsidy from males in unisex premiums when
lives with the initial signs of dementia or 1-ADL buy insurance at an increased rate
and healthy lives do not buy insurance and lives change buying behaviour after having
a genetic test, with H = 1, ν = 0.04. Black indicates the cross-subsidy is the profit
on males, while red indicates that it is the loss from females.
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Figure 4.22: Progression of the cross-subsidy from males in unisex premiums when
lives with 1-ADL are written into a separate class while lives with the initial signs of
dementia buy insurance at an increased rate and lives change buying behaviour after
having a genetic test, with H = 1, ν = 0.04. Black indicates the cross-subsidy is the
profit on males, while red indicates that it is the loss from females.

initially exists in the large market but becomes zero around year 15. Other market

sizes see a cross-subsidy once premiums have been adjusted: in the single premium

version, cross-subsidy exists for all cases but is short-lived for all but the lowest rate

of adverse selection in the small market; under a regular premium, cross-subsidy only

exists in the smallest market in the final years, and lasts for a short time in market

with purchase rate 0.01.

4.7 Conclusions

Renewed interest in long-term care from the government, and coverage in the press

highlighting the need for reform, has made the prospect of creating a new LTC market

in the U.K. a possibility. Adverse selection has been suggested as a potential barrier

to the success of such a market. This adverse selection could come from lives who

have had their APOE genotype tested, have the initial signs of dementia, are healthy,

or depending on underwriting practice, have some functional disability.

Our dynamic pricing strategy allows insurers to correct their premiums. We have

seen that losses from dementia are realised slower than losses from functional ability,

but it is dementia where the the greatest adverse selection costs arise.

These costs vary greatly over time. The reason for this is twofold: the insurer

adjusts its premium rates to factor in its experience; and the base premiums assume

increasing proportions of the high risk lives — who are adversely selecting. In the
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early years of the market, where the majority of the modelled lives purchase their

contract, they can reach significantly large levels. In the context of large premiums

on contracts being sold to pensioners on tight budgets, any increase of premiums to

pay for adverse selection would present challenges in marketability.

The adverse selection costs are insensitive to movements of inflation and to the

level of benefits paid for functional disability. While an improvement in the size of

the government’s cap on care liability changes adverse selection costs significantly,

removing the cap made very little impact. We found this was due to there being a

small percentage of lives benefiting from the introduction of such a cap. How well

this meets the needs of citizens is a matter for social policy researchers to consider

and politicians to debate, however actuaries will be interested in the extent that it

removes tail risk, which our results cannot say anything about.

Within unisex premiums for LTC, there is a high degree of cross-subsidy from

males to pay for the higher benefit costs of females. LTC is not unique in such

a cross-subsidy, a common example of a contract with one being motor insurance

(where females subsidise males), but introducing a new product with cross-subsidy

may make selling to men difficult. Whereas our pricing responds immediately to

differences between the genders, an insurer might take somewhat longer.
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Conclusions and Further Work

The work we have done has been to analyse the costs of adverse selection in insurance

markets where there are multiple causes of information asymmetry, including genetic

information. In this chapter we conclude the work and highlight where further work

may be done to explore the ideas covered in this work.

We remind the reader that the models we have presented were parameterised

using data from various periods and populations. Moreover, the uncertainty of the

estimated parameters has not been accounted for. While the compatibility of these

sources and the uncertainty is not a concern for our work, these should be considered

before our models are put to use for other purposes.

5.1 Conclusions

5.1.1 Breast Cancer

Chapter 2 was concerned with a polygenic model of BC, where a large number of

common but low impact genetic variations independently alter the risk of developing

BC. Working from epidemiology of newly discovered polygenes, we parameterised a

model to estimate the distribution of polygene relative risk among women with and

without a family history of breast or ovarian cancer. We found women with a family

history have a significantly higher risk of developing breast cancer, making it a good

proxy for genetic risk in the absence of genetic test results. We used our estimated

relative risk distributions to estimate the distributions for the CI premiums chargeable

to lives with and without family history and found that reasonable terms could be

offered.

In the context of the European Court of Justice’s sex discrimination ruling, we

recalculated these as unisex premiums. We envisaged two potential underwriting

scenarios for a family history of BC or OC among female relatives: only females are

rated; or males and females given an equal rating. Ratings of the former differ slightly
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due to the change in unrated premium from pattern of male claims being lighter than

females at early ages but heavier at older ages. In the latter case, since there were

approximately twice the lives over which the ratings are spread, the ratings were

approximately halved, as was their standard deviations.

We expanded our model of CI into a market for the insurance product, with

purchasing behaviour of individuals potentially changing after a genetic test. We

calculated adverse selection costs under a range of cases, some of which had results

which would be noticeable to an insurance company or a customer. From our sce-

narios, we were able to conclude that the greater part of the adverse selection cost is

due to the polygene component, rather than the major genes, confirming the conclu-

sion of Macdonald and McIvor (2009). Moreover, we found that lives with a low-risk

polygenotype choosing not to buy the contract, could present a reasonable adverse

selection cost.

5.1.2 Long-term Care Insurance

In Chapters 3 and 4 we were interested in a start-up market for LTC and how the

costs of adverse selection varied over time. We first outlined and parameterised a

model for old age health which included states for varying levels of functional ability

and cognitive function. We added and parameterised a hypothetical, intermediate

state of cognitive decline where we assumed the initial symptoms were observable

to the individual but not yet diagnosable and hence, invisible to the insurer. This

information asymmetry gave rise to a possibility of adverse selection from these states

of health.

An insurer could be expected to reprice when it learns that the mix of lives buy-

ing the product differs from what was assumed. We incorporated a novel dynamic

repricing methodology into our model, which adjusts some base premium based on

claims history.

When we applied this model to the U.K. market, we found that the sources of

adverse selection differed in the rate at which losses were realised, and hence, how

fast an insurer was able to adjust premiums to account for the adverse selection

it was experiencing. When adverse selection came from lives with the initial signs

of dementia, the rate premiums were adjusted was slowest compared to the other

potential sources of adverse selection.

On its own and with an exaggerated rate of testing, genetic testing poses a mod-

erate cost which is dwarfed when compared to the other potential sources of adverse

selection. Since a large proportion of lives with the initial signs of dementia progress

to large claims, they were also responsible for the largest adverse selection costs.

When other sources of adverse selection were included, in addition to the initial signs

of dementia, adverse selection costs were decreased because the selection was able to
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occur earlier, when lives were of a slightly lower risk. Moreover, claims from lives with

functional disability adversely selecting, allowed the repricing mechanism to increase

premiums to cover some of the losses to be incurred from the dementia claims.

We investigated the effect of the U.K. government’s proposed cap on an individ-

ual’s care liability. At the level which they are proposing, only a small proportion of

people will face enough care costs to benefit from it. Consequently, it has very little

impact on the costs of adverse selection.

5.2 Further Work

In our BC polygene model, we assumed independence in both inheritance and how the

polygene acts on BC risk. Without evidence to the contrary, this assumption allowed

us to create a simple model which gives good guidance. If the number of polygenes

turns out to be as large as we have assumed, there will likely be numerous loci close

enough together in the genome that they are often inherited together. Moreover,

there could be interactions between loci, such that the effect of particular combinations

differs to what the same combination would cause in our assumption of independence.

Another simplifying assumption was made with regards to our hypothetical state

for the initial signs of cognitive decline, in that we assumed equal transition intensity

into and out of the state. How well this model fits reality would need to be considered

and, when further understanding of the progression of dementia becomes available, a

re-parameterisation of this state would be appropriate.

Our model of an LTC market is dynamic from the perspective of the insurance

company, in that it reflects the repricing activity that could be made based on claims

and income experience. However, we do not make any consideration for where a

buying behaviour might change in response to the relative cheapness of the premium

rates, beyond simple deterministic scenarios. Our CI market model worked in a

similar fashion. These could be improved by applying some form of decision making

methodology, such as utility theory or prospect theory or using an elastic model of

demand with a suitably parameterised price elasticity based on solid empirical data.

Given the high costs from adverse selection and the uncertainty over purchasing

patterns, it is likely that there is a large risk inherent in writing LTC contracts.

To quantify this risk, the LTC simulation model could be amended to calculate the

distributions of benefit payments. From these distributions and a suitable model of

purchases, measures of risk including value at risk could be calculated which would

aid in understanding the risk of the product and how it is influenced by adverse

selection. This would be especially important in the context of a risk-based capital

requirement regime such as Solvency II. Product designs which share the insurance

risk with the policyholder such as with-profits or reviewable premiums could act to
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reduce the capital requirements. How well these types of products meet the needs

of the customer would need further research, in a similar approach to that taken by

Guillén and Comas-Herrera (2012) in Spanish LTC products.

Alternatively, a product which serves as a life annuity, bought out of pensions

savings and also provides LTC benefits, might reduce the adverse selection costs.

Macdonald and Pritchard (2001) considered this mixing of an annuity and LTC and

found the adverse selection costs became much more manageable. However, this is

not a solution for today’s elderly but may help the situation in the future.

A recent case in the Supreme Court of the United States has prevented the patent-

ing of naturally occurring genes1 in the U.S. This will allow increased competition in

the market for genetic tests and potentially increase innovation and bring down the

costs involved. Cheaper testing and future developments in genomic medicine will

make it more likely that gene testing for the purposes of treating or preventing dis-

eases will become routine, although such a scenario is not yet on the horizon. Increased

awareness of risks brings with it a potential for adverse selection if this information is

not shared with an insurance company. Empirical evidence of adverse selection related

to genetic testing is limited and further work is necessary to make solid conclusions.

The direction of genetic research is moving towards analysing the function of

risk genes, to understand how they cause predisposition to particular diseases. Such

improved understanding might in turn lead to the further development of genomic

medicine. Advances in genomic medicine have been slow to surface, but a recent

review by Manolio et al. (2013) is optimistic about its future if more collaboration

were to take place. Moreover, recent results from the second Cognitive Function and

Ageing Study reported by Matthews et al. (2013), showed a significant decrease in

prevalence of dementia. They interpreted this as providing evidence for a cohort

effect in dementia prevalence. Actuaries will need to adapt their modelling in line

with where the epidemiology leads, whether this could mean the use of multi-factorial

models which include the additional factors of e.g. cigarette smoking or weight, or

how developments lead to changing patterns of morbidity over time.

1Association for Molecular Pathology vs. Myriad Genetics, Inc. 569 U.S. 12-398 (2013)
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H. van den Bussche, I. Heuser, J. Kornhuber, J. Wiltfang, M. Dichgans, L. Frölich,
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Appendix A

Numerical Methods

A.1 Kolmogorov Forward Equations

Throughout this thesis we will use Markov multiple state models to represent the

health of our modelled populations. The transition intensity from state i to state j

at age x + t is denoted µijx+t. Denote the probability a life is in state j at age x + t

conditional on being state i at age x is denoted tp
ij
x . The occupancy probabilities in

a Markov model can be found by solving differential equations known as Kolmogorov

forward equations:
d

dt
tp
ij
x =

∑
k 6=j

(
tp
ik
x µ

kj
x+t − tp

ij
x µ

jk
x+t

)
, (A.1)

with boundary conditions 0p
ij
x = δij, where δij is the Kronecker delta.

In a two-state model with no backward transitions, this reduces to solving

d

dt
tp
ii
x = tp

ii
x µ

ij
x+t, (A.2)

so

tp
ii
x = 1− exp

(∫ t

0

µijx+s ds

)
. (A.3)

However, in a more complicated model, there may be no tractable form and the

solution will need to be found numerically.

A.2 Runge-Kutta Method

The simplest method for solving differential equations is Euler’s method which approx-

imates the function based on the derivative at the beginning of each step. However,

the stability and error for a given step size can be improved by using a method that

incorporates an approximate calculation of the derivative at the midpoint of the step.

One such method is the 4th-order Runge-Kutta method.
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To find a function y(t), with derivative of the form y′ = f(t, y) and whose initial

value y(t0) = y0 with the 4th-order Runga-Kutta method and a step size of h, we use

iterations

yn+1 = yn + h1
6

(k1 + 2k2 + 2k3 + k4)

tn+1 = tn + h

for n = 0, 1, 2, 3, . . . , using

k1 = f(tn, yn),

k2 = f(tn + 1
2
h, yn + h1

2
k1),

k3 = f(tn + 1
2
h, yn + h1

2
k2),

k4 = f(tn + h, yn + hk3).

This is repeated over the entire period.

Using a negative value for h, and a terminal condition instead of an initial condi-

tion, we can solve differential equations backwards.

A.3 Simpson’s Rule

We will face functions which need to be integrated but for which the anti-derivative

cannot be written in elementary form. Numerical methods exist to integrate such

functions approximately.

By rewriting an integral in the form of an initial value problem I ′(x) = f(x) with

I(a) = 0, and solving with the 4th-order Runge Kutta method, the method reduces

to the widely used Simpson’s rule:∫ b

a

f(x) dx ≈ b− a
6

[
f(a) + 4f

(
a+ b

2

)
+ f(b)

]
. (A.4)
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Transition Intensities for Other CI

The model of critical illnesses in Chapter 2 has transitions from healthy to BC, OC,

Other CI and Dead. The transition intensities we use for the state Other CI are

based on the onset rates from Gutiérrez and Macdonald (2003), with an adjustment

to remove BC and OC using the onset rates of Macdonald et al. (2003a).

Gutiérrez and Macdonald (2003) fitted models for cancer, heart attack and stroke

for each sex. Heart attacks and strokes often result in death. Stand alone critical

illness insurance commonly does not pay out if there is a death within 28 days of

illness, so they make adjustment for survival after stroke and heart attack (death

from cancer usually occurs more than 28 days after diagnosis). We list their functions

here. Let µcx, µ
b
x, µ

o
x, µ

h
x and µsx, denote the onset rates at age x, of cancer, breast

cancer, ovarian cancer, heart attack and stroke respectively. Further, denote the

probability of survival for 28 days after heart attack and stroke at age x, by phx and

psx, respectively.

Cancer

Onset rates for cancer were estimated using cancer registrations in England and Wales

between 1990 and 1992 from Office for National Statistics (1999).

For males their fitted model was,

µcx =

exp (−11.25 + 0.105x) if x < 51

0.2591585− 0.0124735x+ 0.0001916916x2 − 8.952933× 10−7x3 if x ≥ 60.

(B.1)
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Between the ages 51 and 60 they blend these functions linearly,

µcx+t =
60− x

9
exp (−11.25 + 0.105x)

+
x− 51

9

(
0.2591585− 0.0124735x+ 0.0001916916x2 − 8.952933× 10−7x3

)
.

(B.2)

The fitted model for females is discontinuous due to the impact of the breast cancer

screening programme available to all women over the age of 50:

µcx =

exp (−10.78 + 0.123x− 0.00033x2) if x < 53

−0.01545632 + 0.0003805097x if x ≥ 53
(B.3)

Female breast cancer and ovarian cancer onset rates were fitted to the same cancer

registration data source as above, by Macdonald et al. (2003a). In the case of breast

cancer, this also had a discontinuity at age 53:

µ′BCx =


1

Γ (8.7305)
0.07428.7305 exp (−0.00742x)x7.7305 if x < 53

0.00012 + 0.00018 (x− 35)

− 0.000005 (x− 35)2 + 5.29× 10−8 (x− 35)3 if x ≥ 53

(B.4)

For ovarian cancer, it was,

µ′OCx =

 1
Γ(6.92)

0.0356.92 exp (−0.035x)x5.92 if x < 45

0.0001554 + 0.000029 (x− 45)− 0.00000048 (x− 45)2 if x ≥ 55.
(B.5)

Between ages 45 and 55, these were blended in a similar fashion as above,

µ′OCx =
1

Γ (6.92)
0.0356.92 exp (−0.035x)x5.92 55− x

10

+
[
0.0001554 + 0.000029 (x− 45)− 0.00000048 (x− 45)2] x− 45

10
. (B.6)

Heart Attack

Heart onset rates were estimated using the cases of first-ever heart attack from Mc-

Cormick et al. (1995), data from U.K. general practices in the period 1991–1992. For
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Table B.1: 28-day survival probabilities for males, following a heart attack. Source:
Dinani et al. (2000), via Gutiérrez and Macdonald (2003).

Age (x) phx Age (x) phx

40–42 0.84 60–61 0.78
43–46 0.83 62–64 0.77
47–52 0.82 65–74 0.76
53–56 0.81 75–79 0.75

57 0.80 80+ 0.74

males the fitted rates were,

µhx =

exp (−13.2238 + 0.152568) if x < 44

−0.01245106 + 0.000315605x if x > 49,
(B.7)

with blending between ages 44 and 49:

µhx = exp (−13.2238 + 0.152568)
49− x
49− 44

+ (−0.01245106 + 0.000315605x)
x− 44

49− 44
. (B.8)

The onset rates for females were fitted as,

µhx =
0.598694

Γ (15.6412)
0.1531715.6412 exp (−0.15317x)x14.6412. (B.9)

The 28-day survival probabilities were taken from Dinani et al. (2000). Males

follow the probabilities given in Table B.1 and females phx = 0.79 for all ages x.

Stroke

The onset rates of stroke were fitted to the ungraduated onset rates of Stewart et al.

(1999), a prospective community stroke register of population of 234,533 lives in south

London over 1995–1996. Male onset rates were fitted as,

µsx = exp
(
−16.9524 + 0.294973x− 0.001904x2 + 0.00000159449x3

)
. (B.10)

Female onset rates were fitted as,

µsx = exp (−11.1477 + 0.081076x) (B.11)

The 28-day survival probability after a stroke, taken from Dinani et al. (2000),
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were calculated as

psx =
0.9− 0.002x

0.9
, (B.12)

for males and females.

Total Transition Intensity for Other CI

Gutiérrez and Macdonald (2003) assumed that critical illness claims due to other

diseases amounted to 15% of the claims due to cancer, heart attack and stroke. The

transition intensity from Healthy to Other CI in our model (depicted in Figure 2.1)

can be calculated as,

µCI (x+ t) = 1.15
(
µcx+t + phx+tµ

h
x + psx+tµ

s
x+t

)
− µbx+t − µox+t. (B.13)
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CMI Mortality Improvements

Model 2011 Assumptions

In this appendix we list the assumptions underlying the mortality improvements model

of CMI (2011).

• The experienced mortality improvement rates for the period 1991–2008 are in

Tables C.1 to C.12.

• The age effects component of the 2008 mortality improvements are in Tables

C.13 and C.14.

• The cohort component of the 2008 mortality improvements are in Tables C.15

and C.16.

• The long-term rates of mortality improvement for the age effects component are

the same for males and females and are in Table C.17.

• The number of years taken to reach these long-term age effects component of

improvement are in Table C.18.

• The long-term rate of improvement for the cohort component is zero.

• The number of years taken to reach the long-term rate of improvement for the

cohort component is in Table C.19.
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Table C.1: Experienced mortality improvement for males aged 20–59 in the years
1991–2000 (%). Source: CMI (2011).

Age 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000

20 0.47 0.35 0.25 0.23 0.32 0.51 0.81 1.19 1.66 2.20
21 0.22 0.20 0.17 0.15 0.22 0.40 0.68 1.06 1.50 2.00
22 -0.16 -0.08 -0.01 0.06 0.13 0.29 0.54 0.89 1.33 1.80
23 -0.60 -0.45 -0.30 -0.14 0.02 0.19 0.43 0.75 1.14 1.60
24 -1.04 -0.85 -0.66 -0.44 -0.21 0.04 0.32 0.64 1.00 1.41
25 -1.43 -1.21 -0.99 -0.76 -0.50 -0.21 0.13 0.50 0.88 1.28
26 -1.78 -1.52 -1.26 -1.02 -0.77 -0.48 -0.14 0.27 0.71 1.15
27 -2.06 -1.79 -1.49 -1.21 -0.95 -0.70 -0.39 -0.01 0.44 0.94
28 -2.08 -1.99 -1.69 -1.36 -1.07 -0.81 -0.56 -0.24 0.15 0.63
29 -1.87 -1.97 -1.83 -1.51 -1.18 -0.88 -0.63 -0.39 -0.09 0.32
30 -1.51 -1.74 -1.77 -1.60 -1.28 -0.96 -0.69 -0.46 -0.24 0.05
31 -1.10 -1.37 -1.52 -1.50 -1.33 -1.03 -0.75 -0.51 -0.31 -0.13
32 -0.76 -0.95 -1.14 -1.23 -1.19 -1.04 -0.78 -0.55 -0.35 -0.20
33 -0.50 -0.60 -0.72 -0.84 -0.90 -0.86 -0.74 -0.55 -0.37 -0.22
34 -0.31 -0.32 -0.36 -0.43 -0.51 -0.55 -0.53 -0.46 -0.33 -0.22
35 -0.21 -0.12 -0.08 -0.07 -0.11 -0.18 -0.22 -0.23 -0.21 -0.16
36 -0.22 -0.01 0.12 0.20 0.23 0.20 0.14 0.08 0.03 0.00
37 -0.38 -0.02 0.23 0.38 0.47 0.51 0.48 0.41 0.34 0.26
38 -0.73 -0.19 0.21 0.48 0.63 0.70 0.73 0.70 0.62 0.53
39 -1.18 -0.54 0.04 0.46 0.71 0.82 0.87 0.87 0.83 0.75
40 -1.32 -1.00 -0.31 0.29 0.70 0.92 0.98 0.98 0.95 0.90
41 -1.03 -1.16 -0.80 -0.09 0.53 0.93 1.11 1.12 1.07 1.02
42 -0.29 -0.89 -1.01 -0.63 0.11 0.73 1.12 1.28 1.25 1.17
43 0.81 -0.17 -0.79 -0.90 -0.51 0.25 0.89 1.28 1.44 1.40
44 1.77 0.94 -0.07 -0.70 -0.83 -0.43 0.35 1.01 1.42 1.59
45 2.43 1.91 1.06 0.02 -0.64 -0.78 -0.37 0.43 1.11 1.54
46 2.73 2.54 2.01 1.14 0.08 -0.60 -0.73 -0.32 0.50 1.21
47 2.69 2.78 2.60 2.07 1.20 0.12 -0.57 -0.69 -0.26 0.59
48 2.57 2.71 2.81 2.63 2.10 1.23 0.15 -0.52 -0.64 -0.18
49 2.45 2.58 2.73 2.83 2.65 2.13 1.27 0.20 -0.46 -0.55
50 2.30 2.43 2.58 2.74 2.85 2.68 2.18 1.33 0.29 -0.35
51 2.15 2.26 2.40 2.56 2.74 2.88 2.74 2.26 1.44 0.42
52 2.09 2.10 2.21 2.36 2.54 2.74 2.92 2.81 2.37 1.58
53 2.14 2.04 2.05 2.17 2.34 2.53 2.77 2.97 2.90 2.49
54 2.35 2.12 2.01 2.03 2.16 2.34 2.56 2.82 3.05 3.00
55 2.66 2.33 2.10 2.01 2.04 2.20 2.40 2.64 2.90 3.14
56 2.95 2.65 2.32 2.10 2.02 2.09 2.27 2.49 2.74 3.01
57 3.18 2.93 2.64 2.32 2.12 2.06 2.15 2.35 2.59 2.85
58 3.36 3.17 2.93 2.65 2.35 2.16 2.11 2.21 2.44 2.69
59 3.49 3.36 3.19 2.96 2.69 2.40 2.22 2.18 2.28 2.50
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Table C.2: Experienced mortality improvement for males aged 20–59 in the years
2001–2008 (%). Source: CMI (2011).

Age 2001 2002 2003 2004 2005 2006 2007 2008

20 2.79 3.31 3.72 4.02 4.23 4.39 4.52 4.62
21 2.54 3.10 3.57 3.92 4.14 4.26 4.35 4.41
22 2.31 2.84 3.37 3.79 4.08 4.23 4.27 4.29
23 2.08 2.58 3.09 3.58 3.96 4.20 4.29 4.26
24 1.86 2.33 2.80 3.28 3.74 4.08 4.27 4.32
25 1.69 2.11 2.55 2.99 3.43 3.86 4.17 4.32
26 1.56 1.96 2.34 2.73 3.13 3.55 3.95 4.22
27 1.41 1.83 2.20 2.54 2.88 3.25 3.63 4.00
28 1.17 1.66 2.07 2.42 2.71 3.02 3.34 3.69
29 0.81 1.37 1.87 2.28 2.61 2.87 3.14 3.44
30 0.45 0.96 1.53 2.05 2.46 2.78 3.02 3.27
31 0.15 0.54 1.05 1.64 2.17 2.59 2.92 3.17
32 -0.05 0.20 0.58 1.10 1.71 2.25 2.70 3.06
33 -0.12 -0.01 0.22 0.59 1.12 1.75 2.33 2.81
34 -0.13 -0.07 0.00 0.21 0.59 1.13 1.80 2.40
35 -0.11 -0.07 -0.05 0.00 0.20 0.59 1.16 1.86
36 -0.01 -0.03 -0.03 -0.03 0.00 0.20 0.61 1.21
37 0.18 0.11 0.05 0.01 0.00 0.03 0.24 0.66
38 0.43 0.32 0.21 0.13 0.08 0.07 0.12 0.35
39 0.65 0.55 0.43 0.31 0.23 0.19 0.20 0.28
40 0.82 0.73 0.62 0.51 0.41 0.34 0.34 0.38
41 0.94 0.86 0.77 0.68 0.59 0.51 0.48 0.51
42 1.09 0.99 0.89 0.80 0.72 0.66 0.62 0.63
43 1.30 1.20 1.08 0.95 0.85 0.78 0.74 0.74
44 1.55 1.46 1.34 1.20 1.04 0.92 0.85 0.83
45 1.74 1.73 1.64 1.52 1.35 1.16 1.02 0.95
46 1.67 1.89 1.91 1.84 1.72 1.53 1.31 1.15
47 1.32 1.81 2.06 2.11 2.05 1.93 1.73 1.50
48 0.69 1.45 1.97 2.24 2.30 2.26 2.14 1.95
49 -0.08 0.82 1.59 2.13 2.41 2.49 2.46 2.34
50 -0.43 0.05 0.96 1.75 2.28 2.57 2.65 2.62
51 -0.20 -0.27 0.22 1.13 1.91 2.44 2.71 2.77
52 0.59 -0.02 -0.08 0.41 1.30 2.06 2.57 2.83
53 1.73 0.76 0.17 0.12 0.59 1.47 2.21 2.70
54 2.61 1.87 0.93 0.35 0.29 0.76 1.61 2.33
55 3.10 2.72 1.99 1.06 0.48 0.42 0.88 1.71
56 3.25 3.20 2.82 2.10 1.17 0.60 0.53 0.97
57 3.12 3.35 3.30 2.92 2.20 1.27 0.70 0.62
58 2.95 3.22 3.44 3.39 3.01 2.30 1.39 0.81
59 2.76 3.02 3.29 3.51 3.46 3.10 2.41 1.52
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Table C.3: Experienced mortality improvement for males aged 60–99 in the years
1991–2000 (%). Source: CMI (2011).

Age 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000

60 3.53 3.48 3.38 3.23 3.02 2.76 2.48 2.30 2.25 2.35
61 3.49 3.51 3.49 3.43 3.30 3.12 2.87 2.58 2.39 2.34
62 3.40 3.46 3.50 3.52 3.51 3.42 3.25 3.00 2.71 2.51
63 3.25 3.36 3.44 3.52 3.58 3.62 3.57 3.42 3.17 2.86
64 3.00 3.20 3.33 3.45 3.56 3.67 3.76 3.75 3.61 3.35
65 2.67 2.94 3.16 3.33 3.48 3.63 3.78 3.91 3.91 3.78
66 2.31 2.63 2.91 3.16 3.37 3.57 3.75 3.92 4.05 4.05
67 1.97 2.29 2.61 2.92 3.21 3.47 3.71 3.90 4.06 4.16
68 1.77 1.97 2.29 2.63 2.97 3.30 3.62 3.88 4.08 4.20
69 1.72 1.79 2.00 2.33 2.70 3.07 3.44 3.80 4.07 4.25
70 1.80 1.73 1.81 2.05 2.41 2.80 3.20 3.60 3.98 4.25
71 1.92 1.78 1.74 1.86 2.13 2.53 2.95 3.37 3.77 4.15
72 1.94 1.86 1.75 1.75 1.92 2.24 2.68 3.12 3.55 3.94
73 1.92 1.88 1.81 1.74 1.78 1.99 2.35 2.83 3.30 3.72
74 1.93 1.91 1.87 1.81 1.76 1.84 2.08 2.47 2.98 3.46
75 1.93 1.95 1.95 1.92 1.88 1.83 1.92 2.17 2.58 3.11
76 1.84 1.90 1.98 2.03 2.04 1.99 1.94 2.02 2.26 2.68
77 1.70 1.74 1.86 2.04 2.16 2.20 2.15 2.06 2.10 2.33
78 1.62 1.57 1.64 1.84 2.13 2.33 2.39 2.32 2.16 2.15
79 1.66 1.50 1.45 1.58 1.87 2.27 2.53 2.60 2.48 2.23
80 1.65 1.55 1.38 1.37 1.55 1.93 2.43 2.75 2.81 2.62
81 1.55 1.54 1.43 1.28 1.31 1.55 2.01 2.61 2.97 3.02
82 1.36 1.44 1.43 1.34 1.21 1.27 1.57 2.11 2.79 3.18
83 1.12 1.27 1.36 1.37 1.29 1.17 1.26 1.61 2.21 2.96
84 0.94 1.01 1.19 1.30 1.33 1.26 1.16 1.27 1.66 2.31
85 0.86 0.83 0.93 1.13 1.27 1.31 1.26 1.17 1.30 1.72
86 0.87 0.75 0.75 0.88 1.09 1.24 1.30 1.26 1.19 1.34
87 0.87 0.75 0.69 0.73 0.87 1.08 1.23 1.29 1.26 1.21
88 0.73 0.69 0.66 0.68 0.76 0.90 1.08 1.21 1.28 1.28
89 0.53 0.53 0.56 0.61 0.70 0.80 0.94 1.09 1.21 1.28
90 0.38 0.37 0.41 0.49 0.61 0.73 0.86 0.98 1.10 1.20
91 0.28 0.27 0.30 0.37 0.48 0.63 0.78 0.90 1.00 1.09
92 0.17 0.17 0.21 0.29 0.40 0.53 0.68 0.82 0.93 1.02
93 0.06 0.04 0.09 0.20 0.33 0.47 0.60 0.73 0.85 0.95
94 0.01 -0.07 -0.05 0.05 0.22 0.39 0.54 0.67 0.78 0.87
95 0.01 -0.09 -0.13 -0.07 0.06 0.27 0.45 0.60 0.71 0.80
96 -0.03 -0.09 -0.14 -0.13 -0.05 0.11 0.33 0.51 0.65 0.75
97 -0.11 -0.15 -0.17 -0.16 -0.10 0.01 0.19 0.40 0.58 0.71
98 -0.21 -0.24 -0.25 -0.22 -0.15 -0.05 0.09 0.27 0.48 0.65
99 -0.30 -0.35 -0.36 -0.32 -0.25 -0.13 0.01 0.18 0.36 0.56
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Table C.4: Experienced mortality improvement for males aged 60–99 in the years
2001–2008 (%). Source: CMI (2011).

Age 2001 2002 2003 2004 2005 2006 2007 2008

60 2.56 2.81 3.06 3.33 3.55 3.52 3.17 2.51
61 2.42 2.61 2.84 3.08 3.34 3.56 3.54 3.23
62 2.43 2.49 2.65 2.86 3.08 3.33 3.54 3.53
63 2.63 2.53 2.56 2.70 2.88 3.08 3.29 3.49
64 3.01 2.75 2.62 2.63 2.74 2.89 3.06 3.24
65 3.50 3.13 2.85 2.70 2.68 2.77 2.89 3.03
66 3.91 3.62 3.22 2.91 2.74 2.70 2.78 2.88
67 4.14 3.97 3.66 3.25 2.93 2.74 2.70 2.77
68 4.25 4.18 3.98 3.65 3.23 2.90 2.72 2.67
69 4.32 4.29 4.16 3.93 3.58 3.18 2.86 2.69
70 4.39 4.40 4.29 4.09 3.83 3.49 3.11 2.82
71 4.39 4.49 4.42 4.23 3.98 3.69 3.37 3.03
72 4.29 4.49 4.52 4.39 4.12 3.83 3.53 3.24
73 4.08 4.37 4.52 4.50 4.31 3.99 3.66 3.37
74 3.85 4.17 4.40 4.48 4.41 4.18 3.83 3.50
75 3.58 3.94 4.19 4.34 4.37 4.26 4.02 3.67
76 3.21 3.66 3.98 4.16 4.23 4.19 4.06 3.82
77 2.74 3.27 3.70 3.97 4.09 4.07 3.98 3.83
78 2.35 2.75 3.29 3.71 3.94 3.99 3.89 3.75
79 2.16 2.31 2.71 3.27 3.69 3.90 3.89 3.71
80 2.27 2.10 2.22 2.62 3.22 3.66 3.85 3.80
81 2.74 2.25 1.99 2.07 2.50 3.17 3.65 3.84
82 3.19 2.81 2.17 1.81 1.87 2.35 3.12 3.67
83 3.37 3.32 2.83 2.03 1.57 1.62 2.18 3.09
84 3.11 3.52 3.42 2.81 1.85 1.29 1.34 1.99
85 2.41 3.25 3.65 3.49 2.75 1.63 0.98 1.03
86 1.78 2.51 3.37 3.76 3.53 2.67 1.40 0.66
87 1.39 1.85 2.60 3.47 3.84 3.54 2.58 1.17
88 1.26 1.47 1.94 2.70 3.57 3.90 3.55 2.49
89 1.31 1.34 1.58 2.07 2.82 3.66 3.96 3.55
90 1.29 1.37 1.47 1.75 2.26 2.98 3.77 4.01
91 1.20 1.32 1.46 1.65 1.99 2.50 3.18 3.89
92 1.09 1.21 1.37 1.59 1.87 2.26 2.77 3.39
93 1.03 1.10 1.24 1.46 1.75 2.11 2.54 3.03
94 0.97 1.05 1.14 1.31 1.57 1.92 2.35 2.80
95 0.88 0.98 1.08 1.21 1.42 1.72 2.11 2.57
96 0.81 0.89 1.00 1.14 1.31 1.56 1.89 2.30
97 0.79 0.84 0.92 1.04 1.22 1.44 1.72 2.06
98 0.77 0.85 0.90 0.99 1.13 1.33 1.58 1.87
99 0.72 0.85 0.94 1.00 1.11 1.26 1.47 1.72
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Table C.5: Experienced mortality improvement for males aged 100–120 in the years
1991–2000 (%). Source: CMI (2011).

Age 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000

100 -0.41 -0.45 -0.48 -0.45 -0.38 -0.26 -0.10 0.08 0.26 0.45
101 -0.31 -0.35 -0.38 -0.35 -0.28 -0.16 0.00 0.00 0.16 0.35
102 -0.21 -0.25 -0.28 -0.25 -0.18 -0.06 0.00 0.00 0.06 0.25
103 -0.11 -0.15 -0.18 -0.15 -0.08 0.00 0.00 0.00 0.00 0.15
104 -0.01 -0.05 -0.08 -0.05 0.00 0.00 0.00 0.00 0.00 0.05
105 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
106 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
107 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
108 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
109 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
110 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
111 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
112 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
113 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
114 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
115 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
116 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
117 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
118 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
119 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
120 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
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Table C.6: Experienced mortality improvement for males aged 100–12 in the years
2001–2008 (%). Source: CMI (2011).

Age 2001 2002 2003 2004 2005 2006 2007 2008

100 0.64 0.81 0.95 1.05 1.14 1.26 1.43 1.63
101 0.54 0.71 0.85 0.95 1.04 1.16 1.33 1.53
102 0.44 0.61 0.75 0.85 0.94 1.06 1.23 1.43
103 0.34 0.51 0.65 0.75 0.84 0.96 1.13 1.33
104 0.24 0.41 0.55 0.65 0.74 0.86 1.03 1.23
105 0.14 0.31 0.45 0.55 0.64 0.76 0.93 1.13
106 0.04 0.21 0.35 0.45 0.54 0.66 0.83 1.03
107 0.00 0.11 0.25 0.35 0.44 0.56 0.73 0.93
108 0.00 0.01 0.15 0.25 0.34 0.46 0.63 0.83
109 0.00 0.00 0.05 0.15 0.24 0.36 0.53 0.73
110 0.00 0.00 0.00 0.05 0.14 0.26 0.43 0.63
111 0.00 0.00 0.00 0.00 0.04 0.16 0.33 0.53
112 0.00 0.00 0.00 0.00 0.00 0.06 0.23 0.43
113 0.00 0.00 0.00 0.00 0.00 0.00 0.13 0.33
114 0.00 0.00 0.00 0.00 0.00 0.00 0.03 0.23
115 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.13
116 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.03
117 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
118 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
119 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
120 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
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Table C.7: Experienced mortality improvement for females aged 20–59 in the years
1991–2000 (%). Source: CMI (2011).

Age 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000

20 0.29 0.29 0.34 0.43 0.54 0.69 0.88 1.07 1.28 1.50
21 0.20 0.17 0.19 0.25 0.35 0.48 0.66 0.86 1.07 1.29
22 0.16 0.10 0.08 0.12 0.19 0.30 0.45 0.64 0.86 1.08
23 0.16 0.07 0.03 0.04 0.08 0.17 0.29 0.46 0.65 0.88
24 0.21 0.08 0.02 0.01 0.03 0.09 0.19 0.32 0.49 0.69
25 0.30 0.14 0.04 0.01 0.01 0.05 0.13 0.23 0.37 0.54
26 0.45 0.24 0.10 0.03 0.02 0.05 0.11 0.19 0.31 0.45
27 0.63 0.39 0.21 0.10 0.06 0.07 0.12 0.19 0.29 0.41
28 0.79 0.57 0.36 0.22 0.13 0.11 0.14 0.21 0.29 0.40
29 0.93 0.72 0.53 0.36 0.25 0.19 0.19 0.24 0.32 0.41
30 1.03 0.84 0.66 0.51 0.38 0.30 0.27 0.29 0.35 0.44
31 1.09 0.93 0.77 0.64 0.52 0.43 0.38 0.37 0.40 0.47
32 1.08 0.98 0.85 0.73 0.63 0.55 0.49 0.47 0.48 0.52
33 1.03 0.97 0.89 0.80 0.71 0.65 0.60 0.57 0.57 0.59
34 0.97 0.94 0.90 0.84 0.78 0.72 0.68 0.65 0.64 0.66
35 0.91 0.90 0.89 0.86 0.83 0.79 0.75 0.73 0.71 0.72
36 0.85 0.85 0.86 0.87 0.86 0.85 0.82 0.80 0.79 0.78
37 0.80 0.80 0.83 0.86 0.89 0.90 0.90 0.89 0.87 0.86
38 0.76 0.76 0.78 0.82 0.89 0.94 0.97 0.98 0.97 0.96
39 0.74 0.71 0.72 0.77 0.84 0.93 1.01 1.06 1.08 1.08
40 0.75 0.68 0.67 0.70 0.77 0.88 1.00 1.11 1.18 1.21
41 0.80 0.68 0.63 0.64 0.69 0.79 0.93 1.09 1.22 1.31
42 0.92 0.74 0.63 0.59 0.62 0.70 0.82 0.99 1.19 1.35
43 1.10 0.86 0.69 0.59 0.57 0.62 0.72 0.87 1.07 1.30
44 1.29 1.06 0.83 0.66 0.57 0.57 0.63 0.76 0.93 1.16
45 1.47 1.26 1.04 0.81 0.66 0.58 0.58 0.67 0.81 1.01
46 1.63 1.45 1.25 1.04 0.82 0.67 0.61 0.63 0.73 0.88
47 1.75 1.60 1.44 1.26 1.06 0.86 0.72 0.67 0.70 0.81
48 1.80 1.69 1.57 1.43 1.27 1.09 0.91 0.79 0.75 0.79
49 1.81 1.73 1.64 1.55 1.44 1.31 1.15 0.98 0.87 0.84
50 1.80 1.72 1.66 1.60 1.55 1.47 1.36 1.22 1.06 0.97
51 1.78 1.70 1.65 1.60 1.58 1.55 1.51 1.42 1.30 1.16
52 1.82 1.70 1.63 1.59 1.57 1.57 1.58 1.56 1.49 1.39
53 1.94 1.76 1.64 1.59 1.57 1.57 1.60 1.63 1.63 1.58
54 2.15 1.90 1.72 1.63 1.60 1.59 1.62 1.66 1.71 1.71
55 2.41 2.12 1.88 1.73 1.65 1.65 1.68 1.71 1.76 1.81
56 2.62 2.38 2.10 1.88 1.76 1.71 1.75 1.80 1.84 1.89
57 2.76 2.59 2.36 2.10 1.91 1.81 1.80 1.86 1.93 1.99
58 2.85 2.74 2.57 2.36 2.12 1.95 1.87 1.89 1.98 2.07
59 2.92 2.85 2.73 2.57 2.37 2.15 2.00 1.95 1.98 2.09

195



Chapter C: CMI Mortality Improvements Model 2011 Assumptions

Table C.8: Experienced mortality improvement for females aged 20–59 in the years
2001–2008 (%). Source: CMI (2011).

Age 2001 2002 2003 2004 2005 2006 2007 2008

20 1.72 1.91 2.08 2.21 2.30 2.37 2.41 2.41
21 1.51 1.74 1.93 2.08 2.19 2.27 2.31 2.33
22 1.31 1.53 1.75 1.93 2.07 2.17 2.22 2.25
23 1.11 1.33 1.55 1.76 1.93 2.05 2.13 2.17
24 0.91 1.14 1.36 1.57 1.76 1.92 2.03 2.09
25 0.74 0.96 1.18 1.39 1.59 1.76 1.90 2.00
26 0.62 0.81 1.03 1.24 1.43 1.61 1.77 1.90
27 0.55 0.72 0.90 1.10 1.30 1.48 1.64 1.79
28 0.52 0.67 0.83 1.00 1.19 1.37 1.53 1.68
29 0.52 0.65 0.79 0.95 1.11 1.29 1.45 1.60
30 0.54 0.65 0.78 0.92 1.07 1.23 1.39 1.54
31 0.56 0.67 0.78 0.91 1.05 1.19 1.35 1.51
32 0.60 0.69 0.80 0.91 1.04 1.17 1.32 1.47
33 0.65 0.73 0.82 0.92 1.04 1.16 1.30 1.44
34 0.70 0.76 0.84 0.94 1.05 1.17 1.29 1.43
35 0.74 0.79 0.86 0.95 1.06 1.17 1.29 1.42
36 0.78 0.81 0.87 0.95 1.05 1.17 1.29 1.41
37 0.86 0.86 0.88 0.94 1.03 1.15 1.27 1.40
38 0.95 0.94 0.94 0.96 1.02 1.12 1.25 1.38
39 1.07 1.06 1.04 1.03 1.05 1.11 1.21 1.35
40 1.20 1.19 1.18 1.15 1.13 1.15 1.21 1.32
41 1.34 1.34 1.33 1.30 1.27 1.25 1.26 1.32
42 1.45 1.49 1.49 1.47 1.44 1.41 1.37 1.38
43 1.48 1.60 1.64 1.63 1.61 1.58 1.54 1.51
44 1.41 1.62 1.74 1.79 1.78 1.75 1.72 1.68
45 1.25 1.53 1.75 1.88 1.94 1.92 1.89 1.86
46 1.09 1.35 1.64 1.86 2.01 2.06 2.05 2.02
47 0.97 1.18 1.45 1.74 1.97 2.11 2.17 2.16
48 0.90 1.07 1.28 1.54 1.83 2.05 2.19 2.26
49 0.89 1.00 1.17 1.38 1.63 1.90 2.12 2.25
50 0.94 0.99 1.10 1.26 1.46 1.69 1.95 2.16
51 1.07 1.04 1.09 1.19 1.34 1.52 1.74 1.98
52 1.25 1.16 1.14 1.17 1.27 1.40 1.57 1.77
53 1.48 1.34 1.25 1.22 1.25 1.33 1.45 1.61
54 1.67 1.57 1.43 1.33 1.29 1.31 1.39 1.50
55 1.81 1.76 1.65 1.50 1.39 1.35 1.36 1.43
56 1.92 1.91 1.85 1.73 1.57 1.45 1.40 1.41
57 2.03 2.05 2.02 1.94 1.80 1.63 1.51 1.45
58 2.13 2.16 2.16 2.12 2.03 1.88 1.70 1.57
59 2.18 2.24 2.27 2.26 2.21 2.11 1.96 1.78
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Table C.9: Experienced mortality improvement for females aged 60–99 in the years
1991–2000 (%). Source: CMI (2011).

Age 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000

60 2.95 2.96 2.88 2.75 2.59 2.40 2.20 2.07 2.02 2.07
61 2.92 3.02 3.02 2.92 2.78 2.63 2.45 2.26 2.15 2.11
62 2.78 2.99 3.09 3.08 2.97 2.83 2.67 2.50 2.34 2.23
63 2.51 2.83 3.05 3.16 3.14 3.02 2.88 2.73 2.57 2.41
64 2.16 2.53 2.87 3.10 3.22 3.20 3.09 2.94 2.80 2.64
65 1.79 2.17 2.55 2.91 3.16 3.28 3.27 3.15 3.01 2.86
66 1.44 1.81 2.19 2.59 2.97 3.24 3.36 3.35 3.23 3.07
67 1.13 1.46 1.83 2.23 2.64 3.05 3.34 3.47 3.45 3.31
68 0.92 1.16 1.49 1.87 2.28 2.72 3.15 3.45 3.58 3.55
69 0.84 0.96 1.20 1.54 1.93 2.35 2.80 3.25 3.56 3.69
70 0.87 0.87 1.00 1.24 1.60 2.00 2.43 2.90 3.35 3.66
71 0.98 0.89 0.90 1.04 1.30 1.68 2.09 2.53 2.99 3.44
72 1.05 0.98 0.91 0.93 1.09 1.38 1.77 2.20 2.63 3.07
73 1.08 1.04 0.99 0.93 0.98 1.15 1.46 1.87 2.30 2.72
74 1.10 1.08 1.05 1.01 0.97 1.04 1.23 1.55 1.96 2.38
75 1.13 1.11 1.10 1.08 1.06 1.04 1.13 1.33 1.64 2.04
76 1.14 1.13 1.13 1.14 1.13 1.13 1.14 1.23 1.43 1.73
77 1.14 1.11 1.12 1.16 1.19 1.22 1.23 1.25 1.34 1.54
78 1.15 1.09 1.08 1.12 1.21 1.28 1.33 1.35 1.37 1.46
79 1.17 1.07 1.03 1.05 1.14 1.28 1.40 1.47 1.49 1.50
80 1.16 1.07 0.98 0.97 1.03 1.18 1.38 1.54 1.63 1.65
81 1.12 1.04 0.96 0.89 0.91 1.02 1.23 1.50 1.70 1.80
82 1.08 0.99 0.92 0.85 0.81 0.86 1.02 1.29 1.62 1.86
83 1.06 0.96 0.88 0.81 0.76 0.75 0.84 1.04 1.35 1.74
84 1.06 0.94 0.85 0.78 0.73 0.70 0.72 0.83 1.07 1.43
85 1.05 0.91 0.81 0.74 0.70 0.67 0.67 0.71 0.85 1.12
86 1.04 0.88 0.77 0.70 0.66 0.65 0.66 0.68 0.74 0.90
87 1.03 0.85 0.71 0.62 0.59 0.61 0.64 0.68 0.73 0.80
88 0.96 0.80 0.64 0.53 0.49 0.50 0.58 0.65 0.73 0.81
89 0.88 0.73 0.58 0.45 0.38 0.37 0.44 0.56 0.69 0.80
90 0.82 0.65 0.51 0.38 0.29 0.26 0.30 0.40 0.57 0.73
91 0.77 0.60 0.44 0.32 0.23 0.18 0.19 0.26 0.39 0.58
92 0.70 0.56 0.40 0.27 0.18 0.13 0.12 0.16 0.26 0.41
93 0.59 0.49 0.37 0.24 0.14 0.09 0.07 0.10 0.18 0.30
94 0.46 0.39 0.30 0.21 0.11 0.05 0.03 0.06 0.13 0.23
95 0.32 0.27 0.21 0.14 0.08 0.02 0.00 0.02 0.08 0.18
96 0.18 0.14 0.10 0.06 0.02 -0.01 -0.02 -0.01 0.04 0.13
97 0.05 0.01 -0.02 -0.04 -0.06 -0.07 -0.06 -0.04 0.01 0.09
98 -0.02 -0.08 -0.12 -0.14 -0.15 -0.14 -0.12 -0.08 -0.03 0.05
99 -0.04 -0.12 -0.18 -0.22 -0.23 -0.22 -0.19 -0.14 -0.08 0.00
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Table C.10: Experienced mortality improvement for females aged 60–99 in the years
2001–2008 (%). Source: CMI (2011).

Age 2001 2002 2003 2004 2005 2006 2007 2008

60 2.18 2.27 2.33 2.36 2.35 2.29 2.19 2.04
61 2.15 2.26 2.35 2.40 2.43 2.41 2.35 2.25
62 2.19 2.24 2.33 2.41 2.46 2.48 2.45 2.40
63 2.31 2.28 2.32 2.40 2.47 2.51 2.51 2.48
64 2.49 2.40 2.36 2.39 2.46 2.52 2.54 2.54
65 2.71 2.57 2.47 2.43 2.45 2.52 2.56 2.57
66 2.92 2.77 2.62 2.52 2.48 2.50 2.55 2.59
67 3.14 2.97 2.81 2.66 2.55 2.51 2.52 2.58
68 3.39 3.20 3.02 2.84 2.68 2.57 2.52 2.53
69 3.65 3.46 3.25 3.05 2.87 2.70 2.59 2.53
70 3.79 3.73 3.53 3.30 3.09 2.90 2.73 2.61
71 3.73 3.85 3.78 3.57 3.34 3.13 2.94 2.77
72 3.50 3.78 3.88 3.81 3.60 3.38 3.17 2.99
73 3.14 3.54 3.79 3.88 3.82 3.61 3.40 3.21
74 2.79 3.19 3.55 3.78 3.86 3.80 3.61 3.41
75 2.45 2.84 3.21 3.53 3.75 3.82 3.76 3.59
76 2.12 2.50 2.86 3.20 3.50 3.69 3.76 3.71
77 1.82 2.18 2.54 2.87 3.18 3.45 3.63 3.69
78 1.64 1.91 2.24 2.57 2.88 3.16 3.40 3.55
79 1.57 1.73 1.98 2.30 2.61 2.89 3.13 3.35
80 1.62 1.67 1.80 2.04 2.35 2.64 2.90 3.12
81 1.80 1.73 1.74 1.86 2.08 2.39 2.68 2.92
82 1.96 1.94 1.82 1.79 1.89 2.11 2.42 2.71
83 2.00 2.11 2.05 1.88 1.81 1.88 2.11 2.44
84 1.85 2.13 2.23 2.14 1.91 1.80 1.86 2.10
85 1.50 1.95 2.25 2.33 2.20 1.93 1.78 1.83
86 1.18 1.58 2.05 2.34 2.41 2.25 1.94 1.77
87 0.97 1.26 1.66 2.12 2.41 2.46 2.29 1.95
88 0.90 1.07 1.36 1.75 2.20 2.47 2.51 2.32
89 0.90 1.01 1.19 1.48 1.85 2.27 2.52 2.55
90 0.87 1.00 1.13 1.33 1.60 1.96 2.35 2.58
91 0.77 0.94 1.10 1.26 1.47 1.74 2.09 2.45
92 0.61 0.81 1.00 1.19 1.38 1.60 1.88 2.20
93 0.46 0.66 0.87 1.07 1.27 1.48 1.72 1.99
94 0.37 0.54 0.74 0.94 1.15 1.36 1.58 1.81
95 0.31 0.46 0.64 0.84 1.04 1.24 1.44 1.65
96 0.26 0.40 0.57 0.76 0.96 1.15 1.34 1.52
97 0.21 0.35 0.51 0.68 0.87 1.07 1.26 1.43
98 0.16 0.29 0.45 0.62 0.79 0.98 1.17 1.35
99 0.11 0.23 0.38 0.54 0.71 0.89 1.07 1.25
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Table C.11: Experienced mortality improvement for males aged 100–120 in the years
1991–2000 (%). Source: CMI (2011).

Age 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000

100 -0.06 -0.13 -0.21 -0.26 -0.29 -0.29 -0.26 -0.21 -0.14 -0.05
101 0.00 -0.03 -0.11 -0.16 -0.19 -0.19 -0.16 -0.11 -0.04 0.00
102 0.00 0.00 -0.01 -0.06 -0.09 -0.09 -0.06 -0.01 0.00 0.00
103 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
104 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
105 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
106 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
107 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
108 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
109 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
110 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
111 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
112 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
113 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
114 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
115 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
116 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
117 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
118 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
119 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
120 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
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Table C.12: Experienced mortality improvement for males aged 100–12 in the years
2001–2008 (%). Source: CMI (2011).

Age 2001 2002 2003 2004 2005 2006 2007 2008

100 0.05 0.17 0.31 0.46 0.63 0.80 0.97 1.14
101 0.00 0.07 0.21 0.36 0.53 0.70 0.87 1.04
102 0.00 0.00 0.11 0.26 0.43 0.60 0.77 0.94
103 0.00 0.00 0.01 0.16 0.33 0.50 0.67 0.84
104 0.00 0.00 0.00 0.06 0.23 0.40 0.57 0.74
105 0.00 0.00 0.00 0.00 0.13 0.30 0.47 0.64
106 0.00 0.00 0.00 0.00 0.03 0.20 0.37 0.54
107 0.00 0.00 0.00 0.00 0.00 0.10 0.27 0.44
108 0.00 0.00 0.00 0.00 0.00 0.00 0.17 0.34
109 0.00 0.00 0.00 0.00 0.00 0.00 0.07 0.24
110 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.14
111 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.04
112 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
113 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
114 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
115 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
116 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
117 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
118 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
119 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
120 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
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Table C.13: Age effects component of 2008 mortality improvement for males (%).
Source CMI (2011).

Age Improvement Age Improvement Age Improvement

20 4.62 60 3.01 100 2.08
21 4.41 61 3.04 101 1.96
22 4.29 62 3.05 102 1.83
23 4.26 63 3.06 103 1.70
24 4.32 64 3.05 104 1.57
25 4.32 65 3.05 105 1.45
26 4.22 66 3.05 106 1.32
27 4.00 67 3.05 107 1.19
28 3.69 68 3.06 108 1.06
29 3.44 69 3.08 109 0.94
30 3.29 70 3.10 110 0.81
31 3.22 71 3.12 111 0.68
32 3.18 72 3.13 112 0.55
33 3.08 73 3.14 113 0.42
34 2.89 74 3.13 114 0.30
35 2.61 75 3.11 115 0.17
36 2.26 76 3.08 116 0.04
37 2.01 77 3.04 117 0.00
38 1.92 78 3.01 118 0.00
39 1.99 79 3.00 119 0.00
40 2.16 80 2.98 120 0.00
41 2.31 81 2.96
42 2.42 82 2.92
43 2.49 83 2.85
44 2.53 84 2.77
45 2.56 85 2.69
46 2.61 86 2.63
47 2.68 87 2.60
48 2.76 88 2.59
49 2.78 89 2.58
50 2.77 90 2.56
51 2.77 91 2.53
52 2.81 92 2.48
53 2.87 93 2.42
54 2.91 94 2.35
55 2.90 95 2.29
56 2.86 96 2.23
57 2.86 97 2.17
58 2.90 98 2.13
59 2.96 99 2.10
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Table C.14: Age effects component of 2008 mortality improvement for females (%).
Source CMI (2011).

Age Improvement Age Improvement Age Improvement

20 2.41 60 2.01 100 1.39
21 2.33 61 2.05 101 1.26
22 2.25 62 2.10 102 1.14
23 2.17 63 2.13 103 1.02
24 2.09 64 2.16 104 0.90
25 2.00 65 2.19 105 0.78
26 1.90 66 2.23 106 0.66
27 1.79 67 2.27 107 0.53
28 1.68 68 2.33 108 0.41
29 1.60 69 2.39 109 0.29
30 1.56 70 2.45 110 0.17
31 1.57 71 2.51 111 0.05
32 1.61 72 2.57 112 0.00
33 1.70 73 2.62 113 0.00
34 1.81 74 2.65 114 0.00
35 1.91 75 2.67 115 0.00
36 1.98 76 2.68 116 0.00
37 1.99 77 2.68 117 0.00
38 1.95 78 2.68 118 0.00
39 1.89 79 2.68 119 0.00
40 1.82 80 2.69 120 0.00
41 1.79 81 2.69
42 1.78 82 2.68
43 1.80 83 2.64
44 1.83 84 2.58
45 1.84 85 2.51
46 1.83 86 2.44
47 1.81 87 2.38
48 1.79 88 2.31
49 1.77 89 2.24
50 1.73 90 2.17
51 1.70 91 2.09
52 1.68 92 2.00
53 1.68 93 1.92
54 1.71 94 1.84
55 1.75 95 1.76
56 1.79 96 1.68
57 1.83 97 1.61
58 1.89 98 1.54
59 1.95 99 1.46
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Table C.15: Cohort component of 2008 mortality improvement for males (%). Source
CMI (2011).

Birth Improvement Birth Improvement Birth Improvement
Year Year Year

1988 0.00 1948 -0.50 1908 -0.45
1987 0.00 1947 0.19 1907 -0.42
1986 0.00 1946 0.48 1906 -0.40
1985 0.00 1945 0.43 1905 -0.37
1984 0.00 1944 0.19 1904 -0.34
1983 0.00 1943 -0.02 1903 -0.31
1982 0.00 1942 -0.16 1902 -0.29
1981 0.00 1941 -0.29 1901 -0.26
1980 0.00 1940 -0.39 1900 -0.23
1979 0.00 1939 -0.40 1899 -0.20
1978 -0.02 1938 -0.28 1898 -0.17
1977 -0.05 1937 -0.09 1897 -0.15
1976 -0.13 1936 0.10 1896 -0.12
1975 -0.27 1935 0.23 1895 -0.09
1974 -0.49 1934 0.37 1894 -0.06
1973 -0.75 1933 0.56 1893 -0.04
1972 -1.05 1932 0.75 1892 -0.01
1971 -1.34 1931 0.79 1891 0.00
1970 -1.57 1930 0.73 1890 0.00
1969 -1.71 1929 0.71 1889 0.00
1968 -1.77 1928 0.82 1888 0.00
1967 -1.79 1927 0.88
1966 -1.79 1926 0.75
1965 -1.75 1925 0.24
1964 -1.70 1924 -0.78
1963 -1.61 1923 -1.66
1962 -1.45 1922 -1.97
1961 -1.18 1921 -1.43
1960 -0.81 1920 -0.10
1959 -0.44 1919 0.97
1958 -0.15 1918 1.45
1957 0.01 1917 1.36
1956 0.02 1916 0.91
1955 -0.17 1915 0.61
1954 -0.58 1914 0.45
1953 -1.19 1913 0.29
1952 -1.89 1912 0.07
1951 -2.23 1911 -0.12
1950 -2.09 1910 -0.26
1949 -1.45 1909 -0.38
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Table C.16: Cohort component of 2008 mortality improvement for females (%).
Source CMI (2011).

Birth Improvement Birth Improvement Birth Improvement
Year Year Year

1988 0.00 1948 0.04 1908 -0.25
1987 0.00 1947 0.20 1907 -0.22
1986 0.00 1946 0.30 1906 -0.20
1985 0.00 1945 0.35 1905 -0.18
1984 0.00 1944 0.38 1904 -0.16
1983 0.00 1943 0.38 1903 -0.14
1982 0.00 1942 0.37 1902 -0.12
1981 0.00 1941 0.31 1901 -0.09
1980 0.00 1940 0.21 1900 -0.07
1979 0.00 1939 0.15 1899 -0.05
1978 -0.02 1938 0.16 1898 -0.03
1977 -0.06 1937 0.26 1897 -0.01
1976 -0.14 1936 0.42 1896 0.00
1975 -0.26 1935 0.59 1895 0.00
1974 -0.38 1934 0.76 1894 0.00
1973 -0.49 1933 0.92 1893 0.00
1972 -0.56 1932 1.03 1892 0.00
1971 -0.58 1931 1.02 1891 0.00
1970 -0.57 1930 0.88 1890 0.00
1969 -0.54 1929 0.66 1889 0.00
1968 -0.51 1928 0.43 1888 0.00
1967 -0.47 1927 0.23
1966 -0.40 1926 0.04
1965 -0.30 1925 -0.19
1964 -0.15 1924 -0.49
1963 0.02 1923 -0.68
1962 0.19 1922 -0.68
1961 0.35 1921 -0.42
1960 0.46 1920 0.01
1959 0.49 1919 0.31
1958 0.42 1918 0.42
1957 0.28 1917 0.36
1956 0.10 1916 0.20
1955 -0.08 1915 0.07
1954 -0.21 1914 -0.03
1953 -0.32 1913 -0.11
1952 -0.38 1912 -0.16
1951 -0.39 1911 -0.18
1950 -0.32 1910 -0.19
1949 -0.17 1909 -0.21
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Table C.17: Long-term rate of age effects component of mortality improvement (%).
Source CMI (2011).

Age Improvement Age Improvement Age Improvement

20 1.00 60 1.00 100 0.67
21 1.00 61 1.00 101 0.63
22 1.00 62 1.00 102 0.60
23 1.00 63 1.00 103 0.57
24 1.00 64 1.00 104 0.53
25 1.00 65 1.00 105 0.50
26 1.00 66 1.00 106 0.47
27 1.00 67 1.00 107 0.43
28 1.00 68 1.00 108 0.40
29 1.00 69 1.00 109 0.37
30 1.00 70 1.00 110 0.33
31 1.00 71 1.00 111 0.30
32 1.00 72 1.00 112 0.27
33 1.00 73 1.00 113 0.23
34 1.00 74 1.00 114 0.20
35 1.00 75 1.00 115 0.17
36 1.00 76 1.00 116 0.13
37 1.00 77 1.00 117 0.10
38 1.00 78 1.00 118 0.07
39 1.00 79 1.00 119 0.03
40 1.00 80 1.00 120 0.00
41 1.00 81 1.00
42 1.00 82 1.00
43 1.00 83 1.00
44 1.00 84 1.00
45 1.00 85 1.00
46 1.00 86 1.00
47 1.00 87 1.00
48 1.00 88 1.00
49 1.00 89 1.00
50 1.00 90 1.00
51 1.00 91 0.97
52 1.00 92 0.93
53 1.00 93 0.90
54 1.00 94 0.87
55 1.00 95 0.83
56 1.00 96 0.80
57 1.00 97 0.77
58 1.00 98 0.73
59 1.00 99 0.70
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Table C.18: Number of years to reach long-term improvement rate for age effects
component. Source CMI (2011).

Age Years Age Years Age Years

20 10 60 20 100 5
21 10 61 20 101 5
22 10 62 20 102 5
23 10 63 20 103 5
24 10 64 20 104 5
25 10 65 20 105 5
26 10 66 20 106 5
27 10 67 20 107 5
28 10 68 20 108 5
29 10 69 20 109 5
30 10 70 20 110 5
31 10 71 20 111 5
32 10 72 20 112 5
33 10 73 20 113 5
34 10 74 20 114 5
35 10 75 20 115 5
36 10 76 20 116 5
37 10 77 20 117 5
38 10 78 20 118 5
39 10 79 20 119 5
40 10 80 20 120 5
41 10 81 19
42 10 82 18
43 10 83 17
44 10 84 16
45 10 85 15
46 10 86 14
47 10 87 13
48 10 88 12
49 10 89 11
50 10 90 10
51 11 91 9
52 12 92 8
53 13 93 7
54 14 94 6
55 15 95 5
56 16 96 5
57 17 97 5
58 18 98 5
59 19 99 5
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Table C.19: Number of years to reach long-term improvement rate for cohort compo-
nent. Source CMI (2011).

Birth Years Birth Years Birth Years
Year Year Year

1988 40 1948 40 1908 5
1987 40 1947 39 1907 5
1986 40 1946 38 1906 5
1985 40 1945 37 1905 5
1984 40 1944 36 1904 5
1983 40 1943 35 1903 5
1982 40 1942 34 1902 5
1981 40 1941 33 1901 5
1980 40 1940 32 1900 5
1979 40 1939 31 1899 5
1978 40 1938 30 1898 5
1977 40 1937 29 1897 5
1976 40 1936 28 1896 5
1975 40 1935 27 1895 5
1974 40 1934 26 1894 5
1973 40 1933 25 1893 5
1972 40 1932 24 1892 5
1971 40 1931 23 1891 5
1970 40 1930 22 1890 5
1969 40 1929 21 1889 5
1968 40 1928 20 1888 5
1967 40 1927 19
1966 40 1926 18
1965 40 1925 17
1964 40 1924 16
1963 40 1923 15
1962 40 1922 14
1961 40 1921 13
1960 40 1920 12
1959 40 1919 11
1958 40 1918 10
1957 40 1917 9
1956 40 1916 8
1955 40 1915 7
1954 40 1914 6
1953 40 1913 5
1952 40 1912 5
1951 40 1911 5
1950 40 1910 5
1949 40 1909 5
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Figure D.1: Single premium rates for LTC, assuming the insurer had complete infor-
mation about the customer and put lives in each age group, sex, genotype and health
status into separate underwriting classes, for lives aged 62.5 at 1st January, 2013.
The same legend is used throughout the plots.
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Figure D.2: Single premium rates for LTC, assuming the insurer had complete infor-
mation about the customer and put lives in each age group, sex, genotype and health
status into separate underwriting classes, for lives aged 67.5 at 1st January, 2013.
The same legend is used throughout the plots.
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Figure D.3: Single premium rates for LTC, assuming the insurer had complete infor-
mation about the customer and put lives in each age group, sex, genotype and health
status into separate underwriting classes, for lives aged 72.5 at 1st January, 2013.
The same legend is used throughout the plots.
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Figure D.4: Single premium rates for LTC, assuming the insurer had complete infor-
mation about the customer and put lives in each age group, sex, genotype and health
status into separate underwriting classes, for lives aged 77.5 at 1st January, 2013.
The same legend is used throughout the plots.
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Figure D.5: Single premium rates for LTC, assuming the insurer had complete infor-
mation about the customer and put lives in each age group, sex, genotype and health
status into separate underwriting classes, for lives aged 82.5 at 1st January, 2013.
The same legend is used throughout the plots.
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Figure D.6: Single premium rates for LTC, assuming the insurer had complete infor-
mation about the customer and put lives in each age group, sex, genotype and health
status into separate underwriting classes, for lives aged 87.5 at 1st January, 2013.
The same legend is used throughout the plots.
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