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Abstract 

 

Forecasting reservoir production has a large associated uncertainty, since this is 

the final part of a very complex process, this process is based on sparse and 

indirect data measurements. One the methodologies used in the oil industry to 

predict reservoir production is based on the Baye’s theorem. Baye’s theorem 

applied to reservoir forecasting, samples parameters from a prior understanding of 

the uncertainty to generate reservoir models and updates this prior information by 

comparing reservoir production data with model production response.  

 In automatic history matching it is challenging to generate reservoir models that 

preserve geological realism (obtain reservoir models with geological features that 

have been seen in nature). One way to control the geological realism in reservoir 

models is by controlling the realism of the geological prior information. 

The aim of this thesis is to encapsulate sedimentological information in order to 

build prior information that can control the geological realism of the history-

matched models. This “intelligent” prior information is introduced into the 

automatic history-matching framework rejecting geologically unrealistic reservoir 

models. Machine Learning Techniques (MLT) were used to build realistic 

sedimentological prior information models.  

Another goal of this thesis was to include geological parameters into the automatic 

history-match framework that have an impact on reservoir model performance: 

vertical variation of facies proportions, connectivity of geobodies, and the use of 

multiple training images as a source of realistic sedimentological prior information. 

The main outcome of this thesis is that the use of “intelligent” sedimentological 

prior information guarantees the realism of reservoir models and reduces 

computing time and uncertainty in reservoir production prediction. 
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Chapter 1 

 

Introduction 

 

1.1  Motivation 

Hydrocarbon exploration and production is a very risky business since the 

investment necessary to find and develop economical accumulations easily 

reaches billions of pounds and the uncertainty associated with this business is 

considerable because available data are usually scarce and inexact. Reservoir 

data commonly come from two main sources:  

(1) Geophysical information: This information does not have yet the resolution 

required to completely understand the geometry of the reservoir and it is 

necessary to process this information, e.g. data processing, time-depth 

conversions and attribute analysis, to have this data in a geologically 

interpretable version. 

(2) Well data: Well-log data is measured by physical methods within the well-

bore. These data can be found with different vertical and horizontal resolution. 
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Well information data are punctual and could be separated from other wells by 

hundreds of meters. Other reservoir information coming from wells includes well 

production tests, core-data (core description, petrophysical analysis), side wall 

samples (for petrophysical and lithological analysis) and fluid analysis pressure, 

volume and temperature analysis (PVT). 

Another source of information is the characterization of outcrops related to the 

reservoir being studied. Although outcrop characterization makes easier the 

visualization of the relationships between different reservoir facies, structures 

and petrophysical properties, outcrops are usually from analogous geological 

formations deposited in a different geological age and separated by long 

distances from the studied reservoir. Because of the differences in geological 

age and the geographical separation between outcrops and reservoirs, outcrop 

information introduces uncertainty to the geological interpretation of a reservoir.  

Summarizing, the information used to characterize a reservoir can be obtained 

from direct measurements like well information (e-logs, cores, production data, 

pressure, etc.) and geophysical information (seismic, gravity and magnetic 

methods). Information can be obtained from indirect sources like outcrops and 

modern analogue characterization, or information obtained from analogue 

reservoirs. All this information has different levels of resolution and scale and is 

subject to different levels of uncertainty. 

All the data obtained from a reservoir are used to characterize and understand 

the reservoir in order to quantify the reserves and to predict the production 

behaviour. Nowadays the conventional methodology to characterize and 

understand a reservoir is the generation of reservoir models, which are three-

dimensional representations of the studied reservoir. These models can be 

generated by numerical simulations that consider the geometry of geological 

features and how the reservoir properties (i.e. porosity, permeability, fluid 

saturation, pressure, etc.) are distributed within these geological features.  

Since 1990’s the advances in computing software and hardware have made it 

possible to generate multiple models of a reservoir using a single set of data. 
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Although, the data may be the same, the way they are compiled in the model 

varies depending on the modelling algorithm, assumptions, interpretation, 

processing and targets. Generating multiple reservoir models has been useful in 

analysing the uncertainty associated with the reserves estimation and 

production forecast of a reservoir. 

The conventional methodology used in the hydrocarbon industry to evaluate the 

reliability of a reservoir model is the so called history match process, which is 

based on building a reservoir model that is consistent with the production 

history. History matched models are considered as the models that best 

represent the distribution of geological and physical properties within a reservoir 

given the production data. History matched models are used to predict the 

production behaviour of a reservoir. The forecast of the reservoir production 

defines the reservoir management.  

The history match process is based on changes of reservoir properties within 

the model (e.g. porosity, permeability, Net to Gross), fluid properties, facies 

geometry, reservoir structure, pressure, etc.) until production response of the 

reservoir model is close to the history data (Gavalas, et al. 1976).  History 

matching is a complex non-linear, ill- posed, inverse problem, which can have 

multiple solutions. As any ill-posed problem, using different combinations of 

reservoir model parameters can generate good matching of reservoir production 

data (Hajizadeh et al., 2011). 

Most of the work related to history matching has been focussed on the variation 

of reservoir properties like fluid properties, porosity and mainly permeability 

(Gavalas, et al. 1976; Mattax and Dalton, 1990; Gomez et al, 2001; Milliken et 

al., 2001; Hajizadeh et al., 2011).  Less attention have been paid to the variation 

of geological properties, like sedimentary facies geometry or variation of 

structural and stratigraphic frameworks (Arnold, 2008, Hoffman and Caers, 

2006). This is probably due to the lack of a multidisciplinary approach in the 

process of history matching which has been traditionally performed by reservoir 

engineers. History matching studies related to the variation of geological 
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properties have demonstrated the enormous impact that geology has over the 

reliability of reservoir models (Park et al., 2013, Arnold, 2008; Suzuki and 

Caers, 2008; Suzuki et al., 2008; Hoffman and Caers, 2006). 

Geological features can be introduced into numerical reservoir models by 

geological parameterization (Arnold, 2008). Geological parameterization is 

defined as the methodology used to find the minimum number of characteristics 

(in order to optimize computing time and hardware use)  that can be used to 

effectively describe a geological event (e.g. channel geometry, fault shape and 

throw, facies proportions, etc). These parameters can be quantified and 

introduced into a reservoir model in order to reproduce geological events, like 

sedimentation, faulting, etc.  

The variation of these parameters can produce significant changes in the 

production profile of a reservoir model and generate models that match the 

production history of a field. Controlling the variation of such parameters is 

required to generate reservoir models whose geological characteristics mimic 

geological information observed in outcrops, modern depositional environments 

and geological features observed in high-resolution geophysical data. Reservoir 

models that mimic geological features observed in nature could be considered 

as geologically realistic. Generating geologically realistic reservoir models is a 

very important task within the reservoir characterization process; since 

unrealistic geological models could be history matched but are not reliable 

predictions and mislead the development plans of a particular reservoir 

(Hoffman and Caers, 2006).  

Carter et al. (2006) demonstrated that some history-matched or calibrated 

reservoir models do not have predictive capability. Models with a high degree of 

predictive capability are able to forecast reservoir production that should be 

used in reliable economic analysis.  

Reservoir history matching and forecasting, like many problems in earth 

sciences, has been identified as an inverse, ill-posed problem (Suzuki and 

Caers, 2008). The solutions of these problems require the specification of the a 
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priori component of a solution (prior information model) to constrain the nature 

of the inverse solution (Tarantola, 1987). Prior information comprises all the 

information that is available before the collection of any new data set designed 

to solve a problem (Curtis and Wood, 2004).  

This thesis is based on methodologies that can be included into the history 

match process, framed within a Bayesian context, to control the realism of 

geological features. The emphasis on the use of sedimentological prior 

information (sedimentological concepts, geomorphological descriptions, and 

geophysical studies) aims to maintain the sedimentological realism in reservoir 

models. Sedimentological prior information can be used as a tool to control the 

shape or geometry of sedimentary bodies in reservoir models to contribute to 

the geological realism of a reservoir model. 

In summary, realistic history matched reservoir models should be used in 

predicting the production behaviour of a reservoir. It is very important to control 

the parameters that impact the production response of a model within the 

history matching process, in order to assure that only realistic models are used 

in forecasting the reservoir production. 

 

1.2  Objectives 

The main goal of this thesis is to develop techniques that can control the 

geological realism of facies geometry and distribution in reservoir models, within 

the process of automatic history matching. These techniques should be capable 

of generating geological models with characteristics observed in nature. Figure 

1.1 is a comparison between a geologically realistic and an unrealistic reservoir 

model (fluvial channels that have one meter width and 1000 feet thickness); it is 

possible that both models history match production data but it is not possible 

that the facies geometry of the unrealistic model could represent the actual 

reservoir geometries observed in nature. 
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The specific objectives of this thesis are: 

1) To identify what are the sedimentological parameters that can be used to 

restrict the geometry of sedimentary bodies or facies in reservoir models. 

2) To understand how these sedimentological parameters are related to 

each other and how these relationships can be introduced into the 

automatic history matching workflow. 

3) To control the geometry of the geobodies within a realistic field by the 

use of sedimentological prior information. 

4) To reduce the uncertainty in reservoir production forecasting by using 

sedimentological prior information integrated through machine learning 

techniques. 

5) To identify intrinsic parameters within the process of facies modelling 

(e.g. the use of multiple training images in multiple point statistics and the 

analysis of continuity of facies) that can improve adequate representation 

of uncertainty in reservoir models. 

 

Figure 1.1: Comparing a) unrealistic and b) realistic deep marine channel geometry in facies 

models generated using object based techniques. 

1.3  Thesis overview 

This thesis is dived into eight chapters, which describe the path to introduce the 

techniques that improve the geological realism in reservoir models, within the 

automatic history match framework: 
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Chapter 2 presents a review of the reservoir modelling workflow, going from 

the geological (static) modelling up to the processes of fluid-flow 

(dynamic) modelling, considering deterministic and stochastic 

techniques. This chapter presents the most common commercial 

techniques and some of the techniques that have been developed in the 

most recent years. 

Chapter 3 contains a review of the uncertainty quantification analysis in 

reservoir history matching, highlighting the main differences between 

manual and automated history matching. The most commonly used 

history matching techniques are presented in this chapter, as well as the 

techniques to reduce the uncertainty in production forecast. The 

importance of prior information and more specifically sedimentological 

prior information to control uncertainty in reservoir forecasting is 

emphasised in this chapter.  

Chapter 4 is an introduction to machine learning techniques (MLT). This 

chapter explains in detail the machine learning techniques used in this 

thesis to model and compile sedimentological prior information 

(Multilayer Perceptron - Artificial Neural Networks, Support Vector 

Machines, for regression and classification and finally One-Class Support 

Vector Machine, which is a one class-classification technique). This 

chapter shows as well some of the application of these techniques in 

geosciences, solving multidimensional problems and reducing 

uncertainty. 

Chapter 5 describes the sedimentology of the reservoirs used in this thesis. 

Fluvial meandering channels, deltaic and deep-marine channel deposits 

are analyzed in order to identify the sedimentological and geomorphic 

parameters that control the geometry of the associated deposits. In this 

thesis, three synthetic reservoir examples were used to apply the 

developed methodologies that control the realism in facies models. 
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These synthetic reservoirs represent fluvial meandering, deltaic and 

deep-marine channel deposits. 

Chapter 6 shows how to control the geometry of facies models generated 

with multiple point statistics using machine learning techniques. This 

chapter presents the workflow used in this thesis to build 

sedimentological prior information related to geobody geometry. The 

analysed geobodies were formed in different depositional environments: 

fluvial meandering channels, deep marine channels and deltaic deposits. 

This chapter describes the methodology to introduce the “intelligent” 

sedimentological prior information generated using machine learning 

techniques into the automatic history matching workflow. One of the most 

important points of this chapter is the uncertainty quantification of 

production forecast analysis in reservoirs (synthetic cases), 

demonstrating the advantages of using the intelligent prior models. 

Chapter 7 illustrates how the workflow for automatic history matching 

including “intelligent” sedimentological prior information can be improved 

by adding some routines that deal with sedimentological processes and 

interpretation: (1) Different sedimentary environment interpretations 

within the automatic history match framework, based on multiple training 

images using Multiple Point Statistics. (2) Generate multiple realizations 

in order to avoid rejection of models that could match production data. (3) 

Consider variation of vertical facies proportions as a geo-parameter 

within the automatic history match are the three improvements added to 

the automatic history matching workflow. 

Chapter 8 summarises the results obtained by discussing their applications, 

adding concluding remarks and proposing the next steps in controlling 

and improving geological realism in reservoir models within the process 

of automatic history matching. 
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Chapter 2 

 

Reservoir Modelling Workflow  

 

2.1 Introduction 

The main objective of reservoir characterisation is to estimate the reserves of a 

specific reservoir and to forecast the production behaviour with a high degree of 

certainty.  The methodology used to achieve these goals is to build reservoir 

models that match the data obtained from different sources: well information (e-

logs, cores, cuttings, wellbore wall-plugs, production data, well-tests, PVT 

analysis), geophysical data (seismic and gravity and magnetic methods); 

analogue models from similar reservoirs and/or outcrop characterisation and 

production response. 

Within the oil industry reservoir modelling traditionally has been divided into two 

main tasks (1) geological or static modelling which is focused on the description of 

the physical characterization of the rocks that belong to the reservoir system 

(structural geology, sedimentology and petrophysical distribution properties); and 
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(2) dynamic or fluid modelling, which is related to the behaviour of the fluids in a 

reservoir once the production process begins. Figure 2.1 illustrates the workflow in 

reservoir modelling. 

 

Figure 2.1: Reservoir Modelling Workflow. (Figure built using images from the Stanford VI synthetic 

reservoir. Castro et al., 2005) 

 

The next step in reservoir modelling is the so-called history match process, where 

the production response and pressure of the reservoir model are compared to the 

observed reservoir production and pressure data (Chapter 3). This process places 

reservoir modelling in an inverse loop, where the objective is to find possible 

solutions (reservoir models) that generate responses, which match the data (well 

information, production, and pressure). i.e. we try to model the origin of the data, 

using the data as input (Tarantola, 1987). Tarantola (1987) defined an inverse 

problem as a general framework that is used to convert observed measurements 

into information about a physical object or system. Inverse problems involve 

finding a model for a given output. Inverse problems are ill-posed (Sun, 1994) 
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since: (1) the solution of the problem is not unique; different variation of the 

multiple parameters associated with a reservoir model can offer responses that 

equally match reservoir data and (2) the solution does not continuously depend on 

the data. 

This chapter shows the techniques used to generate reservoir models following 

the workflow commonly used in the petroleum industry.  

1) Analyse the steps of the geological (static) modelling and then going 

throughout the process of the fluid-flow (dynamic) modelling.  

2) Consider the uncertainty associated with each part of the reservoir 

modelling process.  

3) Highlight the parts of the reservoir modelling workflow and the 

methodologies used in this thesis. 

 

2.2 Geological Model 

Reservoir geological (static) models are representations of the distribution and 

geometry of geological features in the subsurface. Smith and Moller (2003) 

present the conventional workflow used in the oil industry to generate geological 

models. These models are built in four main steps, starting with (1) the 

identification of stratigraphic boundaries of different geological units, (2) identifying 

the possible structural framework that characterizes a geological region, (3) 

interpreting the depositional environments that form the reservoir rocks and the 

distribution of the sedimentary facies within these depositional environments and 

(4) describing sedimentological and structural features are associated with 

particular distributions of petrophysical rock  properties like porosity and 

permeability that can determine the capacity of a rock to store fluids or to allow 

fluid to flow. The distribution of these properties should be mapped in three spatial 

dimensions.  
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2.2.1 Stratigraphic Model 

The stratigraphic model involves the identification of key regional geological 

surfaces that can be used to separate geological events (erosional surfaces, 

boundaries between geological formations or lithology and surfaces with a 

particular geological importance, like volcanic ash deposits, flooding surfaces, coal 

seams or palaeosols). The framework of sequence stratigraphy has been used 

within the petroleum industry as a best practice to identify correlative surfaces 

within the geological record that can be used to separated different geological 

events associated with relative sea-level changes. This framework of stratigraphic 

surfaces is built using well logs, core data, outcrop data adjusted to seismic 

reflector continuity and terminations (Catuneanu, 2006). 

The uncertainty related to the identification of stratigraphic surfaces can be 

associated with different aspects: the resolution of the seismic data, the velocity 

model and wavelet used to tie well and seismic data, the ability of the interpreter 

to identify stratigraphic patterns and sequences and the availability and resolution 

of palaeontological data to identify potential correlative surfaces. The uncertainty 

associated with this process has a great impact on the interpretation of the 

stratigraphic units that contains the reservoir rocks and the correlation between 

different geobodies (Lallier et al., 2012). 

 

2.2.2 Structural Modelling 

After deposition, the geometry of the stratigraphic units is controlled by tectonic 

events that deform these units, generating folds, joints and faults. The intensity of 

the deformation of the stratigraphic surfaces is defined not only by the strength of 

the geological stress, that have been governing a geological region, but also by 

the competence of the rock. The characterization of the geometry of these 

geological structures is accomplished basically by using seismic data calibrated 

with well data (Park, 1997). 
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The interpretation of structural regimes (extensional, compressional, wrench 

faults, salt structures, shale structures, etc.) in a geological region allows the 

identification of structures that can work as hydrocarbon traps and possible path-

ways of hydrocarbon migration (Harding and Lowell, 1979). Like in the 

stratigraphic modelling process, the resolution of the seismic data and the 

interpreter opinion are the major factors that introduce uncertainty in this process. 

Uncertainty in the structural model affects the geometry of the reservoir, 

identification of the trap systems and the associated hydrocarbon reserves (Seiler 

et al., 2011, Suzuki, et al., 2008 and Cherpeau, et al., 2012). 

  

2.2.3 Sedimentological Modelling 

The sedimentological model of a reservoir is the interpretation of the depositional 

environments that formed the rocks and the distribution of the sedimentary facies 

through the reservoir. Furthermore, the sedimentological model includes the 

diagenetic and depositional history of the reservoir rocks. Facies distribution 

model identifies the possible spatial distributions of porous-permeable and sealing 

rocks. The sedimentological model is generated by the interpretation and analysis 

of cores and outcrops and their correlation with well logs. There are techniques 

used to identify sedimentary facies using well logs (Bridge and Tye, 2000). The 

extraction of attributes from seismic data is a very useful technique that helps in 

the identification of geobodies, sometimes associated with sedimentological 

features. The technique of identifying sedimentological features in the subsurface 

from seismic data is known as seismic geomorphology (Posamentier, 2005). 

 

2.2.4 Petrophysical Modelling 

Petrophysical properties are the rock properties that control the capacity of a rock 

to store hydrocarbons and to allow fluids to flow (porosity and permeability 

respectively, Wyllie and Rose, 1950). These properties are measured in 
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laboratories from rock samples obtained from cores or outcrops and can be 

estimated from well logs like density, neutron, sonic and nuclear magnetic 

resonance. 

Porosity can be defined as the ratio of voids or pores to the total volume of rock  

 

            
               

                    
                                                               

                                                           

The amount of internal space (voids) in a given volume of rock is a measure of the 

amount of fluid a rock will hold, and is called total porosity. The amount of void 

space that is interconnected and thus able to transmit fluids is called effective 

porosity (Asquith and Krygowski, 2004). 

Permeability is the ability of a rock to transmit fluids. It is related to porosity but not 

always dependent upon it. Permeability is controlled by the size of the connecting 

passages (pore throats) between pores. It is measured in darcys or milidarcys 

(md) and is represented by the symbol K (Asquith and Krygowski, 2004).  

The distribution of the petrophysical properties is always associated with the 

distribution of the sedimentary facies, the diagenetic history of the reservoir rocks 

and to the structural features in a reservoir (such as joints, faults or folds). As an 

example, Svirsky et al. (2004) identified hydraulic flow units (HFU) within a deltaic 

reservoir in order to solve productions problems like different oil water contacts in 

the reservoir and compartmentalization. These HFU’s were defined by different 

petrophysical properties which are associated with the sedimentary facies 

distribution. 

Another important reservoir property that has to be analysed is the water 

saturation. Asquith and Krygowski (2004) define it as the amount of pore volume 

in a rock that is occupied by formation water. It is presented as a decimal fraction 

or as a percentage and has the symbol Sw. 
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Although, the hydrocarbon saturation is the property of interest, water saturation is 

usually, estimated as it is easier to calculate through well-log analysis from 

Archie’s (1942) equation: 

   (
  

  
)

 
 
                                                                                                               

where:  Ro is resistivity of water filled formation; Rt is the formation resistivity and n 

is the saturation exponent ( see Archie, 1942 for more detail). 

Then Hydrocarbon Saturation (Sh) is commonly calculated as: 

 

                                                                                                                        

 

2.3 Cell-based Geological Modelling 

Cell-based geological modelling can be defined as the 3D representation of a 

geological region. This representation is actually a 3D grid composed by a number 

of 3D cells or small blocks. Each cell has a value related to a geological or 

reservoir property (facies, porosity, water saturation, pressure, etc.) (Anderson, 

1997, North, 1996). The 3D distribution of these properties must have a realistic 

geological meaning. Within the petroleum industry geo-cellular models are 

commonly referred to the 3-D representation of the geology of a reservoir, built 

using cells or 3-D blocks. The subsurface data used to build these models are well 

and seismic data. As mentioned in Chapter 1 these data have a large associated 

uncertainty. Geo-cellular modelling is a very dynamic tool in reservoir 
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characterization, since the model evolves during the reservoir being exploited. The 

quantity and quality of reservoir data increase with time and the model should be 

updated. There are a number of techniques that can be used to populate these 3D 

grids with geological properties, these techniques are mentioned below. 

 

2.3.1 Process based models 

Process based models try to reproduce the physics that originated the geological 

deposits and their alteration or the rock deformations. These models are very 

realistic and consider a large number of variables. Commonly they are 

computationally very expensive and applicable only to a very narrow range of 

geological settings (low generalization). Process based models can be considered 

as deterministic (Gross and Small.1998) or stochastic (Karssenberg et al., 2001). 

Figure 2.2 is a representation of fluvial facies distributions obtained from a process 

based model. 

 

Figure 2.2: Evolution of conditioned process based model of fluvial channel belt migration. From 

(Krassenberg et al., 2001). 
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Process-based models are hard to use in reservoir modelling since these models 

are based on a high resolution framework considering many details of the physics 

of the geological process. Very often the scale of the reservoir models does not 

allow the reproduction of detailed geological process. It is very hard to fully apply 

process based models on reservoir data since within the geological record there is 

a large uncertainty, which limits precise determination of the underlying physics 

that generated the geological deposits. Other facts that make difficult the 

application of process based models in reservoir are the lack of generalization and 

the difficulty in conditioning these models to a large amount well and seismic, 

data.  

 

2.3.2 Geostatistical models 

Matheron (1971) defines geostatistics as the application of regionalized variable 

theory to the estimation of mineral deposits. Matheron (1971) states that a 

phenomenon is regionalized when it spreads in space and exhibits a spatial 

structure. Then in earth sciences a regionalized variable can be defined as   the 

value of a geological property f(x) (e.g. porosity) at a point x. Regionalized 

variables can be divided as random (marked irregularity and unpredictable value 

from one point to another) and structured (reflecting the structural characteristics 

of the regionalized phenomenon) (Matheron, 1971). More recently, Caers (2005) 

defined geostatistics as a branch of statistical sciences that studies 

spatial/temporal phenomena and capitalizes on spatial relationships to model 

possible values of variable(s) at unobserved, unsampled locations. Geostatistics is 

concerned with a variety of techniques for spatial/temporal data analysis, 

estimation, and decision making. Some of the most common geostatistical 

techniques used in reservoir modelling are described in this section. 

Modelling continuous variables 

A common problem in earth sciences is to create a map of a regionalized variable 

from limited sample data. This problem was initially addressed by hand-
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contouring, which provides insight into trends and empirical relations in the data. 

Early contouring algorithms evolved from principles of hand-contouring, creating 

smooth maps that reveal geological trends (Deutsch, 2002).  

With advances in hardware and software the application of geostatistical 

algorithms were used within geoscientific problems, because of their versatility 

and robustness in finding and describing spatial relationships of geological 

variables. 

 

Kriging 

Daniel Krige, a South African mining engineer, was interested in correcting biased 

maps in order to solve problems in predicting mine grades. George Matheron 

(1963) developed an interpolation method named kriging after the pioneering work 

of Krige in the 1950’s. Kriging is the workhorse of traditional geostatistical 

mapping applications and an essential component of many geostatistical 

stochastic simulation methods. 

Kriging provides a solution to the spatial estimation problem based on a 

continuous model of stochastic spatial variation. It makes the best use of existing 

knowledge by taking account of the way that a property varies in space through 

the variogram model. The aim of kriging is to estimate the value of a random 

variable, Z, at one or more unsampled points or over larger blocks.  

Kriging is considered as a linear geostatistical model (eq. 2.5) that uses local 

weighted averaging of neighbourhood measurements in order to make spatial 

predictions.  

In a linear model the unknown value is estimated as a linear combination of the 

measurement data with weights () (Matheron, 1963): 

            ∑   

 

   

 [           ]                                                     
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Where       is the estimate at an unsampled location u, m(u) is the prior mean 

value at unsampled location u,    witn = 1,…, n are weights,       with = 1,…, 

n are the data values,      , = 1,…, n are prior mean values at the data 

locations and n are the number of data points. 

There are many types of kriging models, all of them are derived from Simple 

kriging (SK) (eq. 2.5). The Simple kriging model assumes that the mean value of 

the stationary random function (or prior value at the unsampled location) is 

constant and known.  

In order to calculate the kriging estimate it is necessary to obtain the weight values 

  , for each value      . It is required then to estimate the spatial variance of 

the variable which can be estimated using a variogram. 

Following Matheron’s (1963) definition, a variogram is a function representing the 

degree of continuity of a variable. Plotting lag distance in the abscissa (x-axis) and 

the square of the difference between two samples in the ordinate (y-axis) picked 

at a distance h. In general variogram is an increasing function of the distance 

between points: the more separated two samples are one from the other, the more 

the values Z are different. Thus, variogram is defined as a 2-point statistical 

moment: 

       {[           ] }                                                                         

Where:    is the variogram, h is the lag distance or distance between two samples, 

Y(u) is the residual of the property value z at location u minus the constant prior 

mean m(u):                  

 

Sequential Gaussian Simulation (SGS) 

Sequential Gaussian Simulation (SGS) is adopted to generate maps of continuous 

variables in the petroleum industry like porosity or permeability in petroleum 

reservoirs., the most common approach adopted is sequential Gaussian 

simulation, because of its simplicity, flexibility and efficiency.  
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SGS uses the simple kriging estimator and the covariance between the kriging 

estimate and one of the data value to estimate the statistics of the random 

variable distribution. This covariance is calculated and fixed when the variance is 

too small by proceeding sequentially (i.e. using previously predicted values in 

subsequent prediction. 

Deutsch (2002) describes the SGS algorithm as follows: 

1) Transform the original Z data to a standard normal distribution Y (all work 

will be done in normal space). 

 

2) Go to a location u and perform kriging to obtain kriging estimate and the 

corresponding kriging variance: 

      ∑     (  )

 

   

                                                                                     

   
       ∑          

 

   

                                                                        

3) Draw a random residual R(u) that follows a normal distribution with a mean 

of 0.0 and a variance 2
sk(u). 

 

4) Add the kriged estimate and residual to get simulated value:  

                                                                                                    

 

 

5) Previously simulated values are added to the conditioning data to achieve 

the joint posterior (pdf) of the regionalized variable. Add Ys(u) to the set of 

data to ensure that the covariance with this value and all future predictions 

are correct. As stated above, this is the key idea of sequential simulation, 
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that is, to consider previously simulated values as data so that we 

reproduce he covariance between all the simulated values. 

 

6) Visit all grid locations in a random order, to populate the entire grid. 

 

7) Back transform all data values from normal space to the original Z variable 

distribution and simulated values when the model is populated. 

 

8) Create any number of realizations by repeating with different random 

number seeds. A different seed leads to a different random numbers and 

as a consequence, a different random path and a different residual for each 

simulated node, each realization has the same probability of being correct. 

The realisations describe inherent uncertainty of the Gaussian random field 

model representation.  

 

Facies Modelling  

Modelling facies distribution in a reservoir is one of the most important steps in 

reservoir modelling. Sedimentary facies distribution will define the geometry of the 

reservoir rocks and the distribution of their related petrophysical properties 

(porosity and permeability). The physical and chemical conditions that generated a 

specific facies would affect the petrophysical properties associated with that facies 

(e.g. in a fluvial environment reservoir rocks are associated with coarse grained 

channel deposits and flow barriers or rock seals are associated with fine grain 

deposits typically found in floodplain or channel plug deposits).  

This section will present some descriptions of the most common variogram based 

techniques to model facies in a cell-based approach. 

 Sequential Indicator Simulations (SIS) 

The concepts of sequential simulation, described in the context of Gaussian 

(SGS) distribution can be extended to the indicator-based model of uncertainty. 



Chapter 2. Reservoir Modelling Workflow 

22 

 

The key idea for indicator formalism is to code all the data in a common format, 

that is, as probability values (Journel, 1983). 

Figure 2.3 illustrates the sequence followed by SIS to populate a grid with facies 

distribution. The indicator approach for continuous variables requires significant 

additional effort versus Gaussian techniques. The indicator formalism applied to 

categorical data has seen wide application to facies modelling. This approach 

estimates a distribution (pdf) to describe probability of facies  at each unsampled 

location. 

The probability distribution consists of estimated probability for each category:  

p*(k), k=1, … , K.  The probability values are estimated by first conditioning the 

data as indicators or probability values: 

 

                           
                                  

                                    (eq. 2.10) 

 

i(u;zk) = Prob {facies k being present}      

The expected value of this indicator variable is the stationary prior probability of 

facies k, that is p(k).  

 

Kriging (2.7) of the residual data at sampled locations (eq. 2.11) is used to derive 

the probability of each facies k=1, .. K at an unsampled location. Once again a 

variogram measure of correlation is required for each facies k=1, …, K. (Journel, 

1983). Modelled variogram (2.6) is then used to estimate the correlation between 

two locations considering direction and separation between them. 

Residual data are calculated as follow: 

 

Y(uzk) = i(uk)-p(k),   = 1, …,n,  k = 1,…,K                                 (eq. 2.11) 
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Where: Y(uzk) is the residual,  i(uk)is the indicator are data points and k the 

type of facies. 

 

 

Figure 2.3: In the SIS process cells are visited in a random sequence. In each step the simulated 

facies is selected randomly from the local PDF. This illustration is a sand/shale simulation, where 

well data (blue sticks) is honoured (Modified from Doyen et al., 1994) 

 

In order to generate multiple realizations, grid nodes are visited sequentially in a 

random path and at each grid node: 

1) Search for nearby data and previously simulated values. 

2) Perform indicator kriging to build a distribution of uncertainty. 

3) Draw a simulated value from the distribution of uncertainty. 
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4) Add the simulated value to the data pool. 

Multiple realizations are then generated by repeating the entire process with a 

different random number seed. Figure 2.4 shows a picture of a facies model 

obtained using SIS. 

 

Figure 2.4: A 4-facies braided fluvial model developed using SIS. Where FC is “Fluvial Channel”; 

SF is “sheetflood” and OTP is “Other than Pay”. (From Seifert and Jensen, 1999) 

 

Truncated Gaussian Simulation (TGS) 

The key idea of Truncated Gaussian simulation is to generate realizations of a 

continuous Gaussian variable and then truncate it at a series of thresholds to 

create categorical facies realizations (Beucher et al., 1993). This technique was 

designed to apply the concepts of simulating continuous variables (sequential 

Gaussian simulation) to categorical variables like facies (Beucher et al., 1993). 

Figure 2.5 shows how TGS works in a 1-D example. The categorical simulation, 

shown in the lower axis, is derived from a continuous Gaussian simulation shown 
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by the black curve. The threshold for truncating the Gaussian variable need not be 

constant across the reservoir grid. 

TGS is faster than SIS as only one Gaussian distribution is calculated for the 

entire model, but at the same time the fact that TGS has only one Gaussian 

distribution it is harder to impose different correlation structures on different facies 

than using SIS. Note, that the sequence of facies is always the same in TGS 

following the threshold order, while it can be arbitrary in SIS. 

 

Figure 2.5 Schematic illustration of how TGS works: a continuous Gaussian simulation is truncated 

at a series of thresholds to create a categorical variable realization. (From Deutsch, 2002). 

 

Object-based models (Boolean models) 

Object-based models are built using predefined objects that are distributed over 

the reservoir model grid. The object shapes reproduce the geometry of geobodies 

(sinuous channel-like bodies, ellipsoids, cylinders, parallelepipeds, etc, or of 

another specific ’s   design. 

These objects can be modified in size, orientation and proportions in order to 

honour the input data used in the model (well data, seismic interpretation or 

information coming from analogue reservoirs or outcrops). 
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Models built with object-based techniques are visually more attractive than models 

built using variogram-based techniques, because the resulting facies mimic 

idealized geometries interpreted from outcrops and modern analogues better than 

the models built using two-point statistics techniques. The facies geometries 

obtained from object-based techniques are sharp and follow regular 

deterministically defined shapes (that at some degree could be considered as 

geologically unrealistic. 

Deutsch (2002) explains that the basic algorithm underlying object-based facies 

modelling is the Boolean placement object. The objects may accumulate from the 

stratigraphic base. Alternatively objects may be embedded within a matrix facies 

according to some stochastic process and erosional rules imposed afterwards. 

Unconditional simulation is straightforward; objects are placed randomly until the 

global proportions of the facies are reproduced. Reproduction of dense well and 

seismic data conditioning was considered difficult, but many algorithms have been 

developed to address this challenge, modifying the size and shape of the objects 

to honour local conditioning data (Hauge et al., 2006; Viseur et al., 2001). Figure 

2.6 is an example of a facies model developed using object based-modelling. 

 

2.3.3 Multiple Point Statistics (MPS) 

Although, multiple point statistics is considered as a geostatistical technique used 

to simulate facies or discrete variables, it is described in a separated section since 

MPS is the core algorithm used in this thesis for modelling facies. MPS is 

generally better in representing the geological realism of the facies models 

(Strebelle, 2002). than other cell-based stochastic algorithms (SIS, TGS)The 

advantages of using MPS instead of any of the technique mentioned before are 

expressed in the following paragraphs. Geostatistical 2-point statistics techniques 

mentioned before present some problems that were highlighted in Section 2.3.2.  

Journel and Alabert (1989), Guardiano and Srivastava (1993), Strebelle and 

Journel (2001) and Strebelle (2002) have worked on a technique named Multiple-
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Point Statistics (MPS) that can generate realistic facies geometries and facies 

distribution that are easily conditioned to well and seismic data.  

 

Figure 2.6 Fluvial Channels simulated using Object-Based Technique (A) is a vertical cross section 

and (B) the Plan view of the model. Geobodies are more realistic than the ones simulated using 

SIS. See Figure 2.4 (Viseur, et al., 2001). 

 

Multiple point statistics is a technique that expresses joint variability in more than 

two locations at a time and cannot be inferred by typical sparse well data but could 

be extracted from training images that represent the subsurface heterogeneities. 

A training image does not need any local information of the reservoir, training 

images can be considered as concepts of geological property distribution in the 

reservoir. The statistics inferred from the training image can be exported to a 

reservoir where they are anchored to well data using pixel-based sequential 

simulations. Figure 2.7 explains how multiple-point statistics works.  
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Strebelle and Journel (2001) proposed an algorithm named Sequential Normal 

Equations Simulation (snesim) to implement multiple point statistics. Snesim 

avoids repetitive scanning of a training image as proposed in Guardiano and 

Srivastava (1993) by storing all the conditional probability distribution functions 

(cpdf’s), obtained while scanning the training image with a particular arrangement 

of cells (template n, see Fig. 2.7), in a dynamic data structure called “search tree” 

allowing fast retrieval as the simulation proceeds.  

 

 

Figure 2.7 How MPS works. MPS is based on a training image (TI), a selected template and well 

data. TI is canned with a template and the patterns found within this template are statistically 

analysed indentifying the probabilities of a facies to occur in a grid cell, then this pattern is 

constrained to the simulated and well data cells, finally the selected pattern is reproduced in the 

simulation grid (From Caers, 2005). 

 

Such algorithm performs in six steps: 

1) Scan the training image(s) to construct the search tree using the data 

template n (associated with the data search neighbourhood defined by the 

user. Only the data event that actually occur over the training image are 

stored in that search tree. 
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2) Assign the well (conditioning) data to the closest grid nodes. Define a 

random path visiting only once each unsampled node. 

3) At each unsampled location u, retain the conditioning data actually present 

within the template n centred on u. Let n’ be the number of those 

conditioning data and dn’ the corresponding data event. Retrieve from the 

search tree the proportions of type 1 corresponding to the data event dn’. If 

not enough replicates of dn’ are found on the training image, the furthest 

away conditioning datum is dropped reducing the number of conditioning 

data to (n’-1): the proportion conditions to this lesser data event dn’-1 are 

retrieved again from the search tree and so on. If the number of data drops 

to n’=1 and not enough replicas of dn’ can be found yet, the condition 

probability p(u:sk|dn’) is replaced by the marginal probability pk. 

4) Draw a simulated value for a node u from the previous conditional 

probability. That simulated value is then added to the s-data to be used for 

conditioning the simulation at all subsequent nodes (sequential nature of 

the algorithms). 

5) Move to next node along the random path and repeat steps 3 and 4. 

6) Loop until all grid nodes are simulated. One stochastic image has been 

generated. Reiterate the entire process from step 2 from a different random 

path to generate another realization. 

 

In Figure 2.8 there is an example of a facies model generated using MPS, where it 

is possible to observe that MPS reproduces the geometry of sedimentary facies 

and easily adapts the geobodies to well data, solving the problems presented by 

techniques like SIS, TGS or Object-Based. 

 

2.3.4 Other Techniques 

The techniques mentioned before have been used within the oil and gas industry 

in most of the commercial available software. In research groups or in academia 
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many other facies modelling techniques have been developed showing important 

improvement in preserving geological realism, facies continuity and honouring 

input data (well and seismic data).  

 

 

Figure 2.8 Facies Realization of a fluvial system based on a Training image. MPS is a 

pixel based sequential simulation able to reproduce realistic geological features (From Liu 

et al., 2004) 

 

Alapetite et al. (2005) presented a technique called YACS (Yet Another Channel 

Simulator). This technique was developed to model fluvial reservoirs, based on 

the association of a fairway or river bed with the channel to be simulated. A 

potential field is defined within the fairway. A residual component is stochastically 

added to the potential field creating sinuosity and meandering channel geometry. 

This algorithm is based on sequential algorithms guaranteeing convergence and 

speed. This method honours well data and facies proportions.  

Demyanov et al. (2008) used Support vector regression (SVR) a machine learning 

technique to simulate fluvial reservoirs (Figure 2.9). SVR generates a geomanifold 

based on unlabelled data from seismic information and labelled data from well 

information. SVR is able to establish spatial relationship between data taking into 

account the prior information from similar depositional environments and the data 
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points. Petrophysical properties are the distributed into the grid without generating 

a facies model. 

 

Figure 2.9: Modelling porosity distribution in a fluvial reservoir based on Semi-supervised-

SVR, geo-manifold built with seismic information and constrained to well data (From 

Demyanov et al., 2008). 

 

2.4 Dynamic Model (Reservoir Simulation) 

Peaceman (1977) defines reservoir simulation as the process of inferring the 

behaviour of a real reservoir from the performance of a model of that reservoir. 

The model may be physical (scaled laboratory model) or mathematical (models 

presented in this thesis are mathematical model). 

In order to estimate the production behaviour of a specific reservoir, reservoir 

engineers have developed three techniques:  

(1) Decline curve analysis, within one of the first techniques used to estimate 

reserves and predict production in a hydrocarbon reservoir (Arps, 1944). 

Figure 2.10 is an example of a decline curve analysis. This technique is 
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based on the observation of the production behaviour of a reservoir through 

time and fits a curve (harmonic, hyperbolic or exponential) to the production 

data, in order to estimate what will be the last production point where the 

reservoir is economically exploitable. The last day of the production plateau 

is considered as the start point of the decline curves; the production rate is 

plotted on the y axis and time in the x. This technique only considers the 

production associated with the existing wells, any production associated 

with new injection or producing wells; is not going to be predicted by the 

decline curve analysis (Arps, 1944). This technique does not consider the 

petrophysical property distribution nor the pressure changes in the 

reservoir, which makes the production predictions obtained with this 

technique highly inaccurate.  

(2) Material Balance. This methodology is based on the material balance 

equation presented by Schilthuis in 1936. The equation is derived as a 

volume balance which equates the cumulative observed production, 

expressed as an underground withdrawal, to the expansions of the fluids in 

the reservoir resulting from a finite pressure drop. Figure 2.11 illustrates the 

changes in volume when the pressure is reduced by a P, allowing the 

volume to expand in the reservoir. 

 

Figure 2.10 Decline curve analysis from Prudhoe Bay and Thistle Fields (From Höök et 

al., 2002). 
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The Volume balance can be evaluated in reservoir barrels (rb) as: 

 

                                                                        

 

Where: 

UW: Underground withdrawal, Oil exp: Expansion of oil 

ODG : Originally dissolved gas, GC exp: Gascap gas expansion 

HCPV red: Reduction in HCPV due to connate water expansion. 

 

(3) Reservoir Simulation is a mathematical model which parameterizes the 

reservoir into grid-cells, each cell has different reservoir properties (facies, 

porosity, permeability, water saturation, pressure, etc.) that condition the 

fluid flow. Reservoir properties of each cell, like porosity and permeability 

are obtained from the geological model. The reservoir model is used then 

to estimate a mathematical approximation of the field fluid flow, by 

calculating flows between adjacent cells of the model. 

 

 

Figure 2.11 Volume changes in a reservoir associated with a finite pressure drop P; (a) volumes 

at initial pressure, (b) volumes at the reduced pressure (From Dake, 2002). 
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This thesis will consider only the third approach since reservoir simulation 

contemplates the geological heterogeneities of a reservoir, modelled using the 

techniques mentioned in Section 2.3. More detail about reservoir simulation is 

given in the following sub-section. 

For most petroleum companies, reservoir simulation is the next step in the 

reservoir characterization process observed in Figure 2.1 

 

2.4.1  Upscaling 

One of the first steps in reservoir simulations is to identify the number of cells 

necessary to generate the grid. Since the reservoir property distribution comes 

from the geological model it is necessary to preserve the geological heterogeneity 

in the reservoir model, but it is computationally expensive to use the same number 

of cells in the flow simulation model as that in the geological model. A balance 

between the grid resolution (number of cells) and the time consumed by the flow 

simulation is necessary. The resolution of the grid will be dictated by the 

objectives of the simulation. 

In general, for reservoir simulation it is necessary to provide a grid with cell-

dimension that retain the geological heterogeneity of the reservoir and not being 

computational expensive. It is possible to use a detailed geological grid in a 

reservoir simulation if the number of cells is not too large (Christie, 1996) or to 

average the physical properties of the grid to capture the fine scale effects in a 

coarse grid. This averaging process is call upscaling.  

Christie and Blunt (2001) presented a worthy discussion about upscaling. The 

most used techniques of upscaling are averaging methods, over the reservoir 

properties obtained in the static model (porosity, permeability). Porosity and initial 

water saturation are averaged using arithmetic average; permeability is averaged 

using a combination of methods that depends on the permeability tensor.  
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The geological features presented in this thesis are considered to have 

dimensions in the order of tens of meters. The grid resolution (less than 500.000 

cells) used in the geological models of this thesis can be used in flow simulation, 

there was no need to apply any upscaling to the geological reservoir models.  

 

2.4.2 Mathematical Methods for Reservoir Simulation 

After upscaling the static properties from the geological grid to the simulation grid 

it is necessary to use some mathematical techniques in order to simulate the fluid 

movements inside the reservoir (grid cells). The mathematical methods must 

consider the physical properties of the fluids (viscosity, gravity and capillary).  

Peaceman (1977) defines a mathematical model of a reservoir as a model of a 

physical system composed by a set of differential equations, with a set of 

boundary equations, which describe the significant physical processes taking 

place in that system. The processes occurring in a reservoir are basically fluid flow 

and mass transfer. 

Since reservoirs contain oil, gas and water the flow equations must consider 

necessary to include the interaction of these three phases within the reservoir 

simulation. The interaction between water and oil is described by relative 

permeability curves, which reduce the permeability of a fluid in the presence of 

another. Peaceman (1977) states that the differential equations are obtained by 

combining Darcy’s law for each facies with a simple differential material balance 

for each phase. 

The 1-D description of a single phase fluid flow through a porous medium in a 

horizontal system is described by the Darcy equation which uses the permeability 

value to calculate volumetric flow rate q by the equation: 
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where: k is a homogeneous permeability and P the pressure differential over 

distance L,  the fluid viscosity and A the cross-sectional area through which the 

flow is passing. 

For flow in three dimensions, say axes x, y and z, the Darcy equation can be 

written as: 
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where: D is depth,  is the density of the fluid and g is the acceleration due to 

gravity. 

Fluids within hydrocarbon reservoirs are usually gas, oil and water, so the 

interactions between these three phases must be integrated with the flow 

equations.  

Relative permeability is the property that quantifies the permeability of a fluid 

within a porous medium, when this fluid is in the presence of another fluid in the 

same porous medium, and both fluids are immiscible.  Curves that illustrate the 

relationship between relative permeability and the saturation of a fluid (relative 

permeability curves) are included into the flow simulator to mimic the production of 

oil, gas and water when these phases are together in the reservoir. 

The fluid-flow simulator solves a set of phase and mass balance calculations as 

well as 3-dimensional group of flow Darcy equations for every grid-cell in the 

model. 
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More recently, a technique called streamline simulation appeared as an alternative 

to the fluid-flow simulator.  This methodology is based on the estimation of the 

pressure field of a reservoir. Once the pressure field is mapped then the 

streamlines are traced perpendicular to the pressure contours, these lines form 

the so-called velocity field (Thiele, et al., 2010). Flow model in streamline 

simulation goes through the velocity lines instead of from one grid-cell to another 

like finite difference simulators do. One of the advantages of using streamlines 

simulation is the use of grids with a very complex geology without the need of 

upscaling and losing resolution (Datta-Gupta, 2000). Streamline simulation is less 

accurate than conventional simulation schemes, since the pressure field is 

updated at a reduced number of time steps to the contrast to conventional 

simulations where the pressure field is updated almost constantly (Datta-Gupta, 

2000). 

 

2.5  Summary 

A brief explanation of the reservoir simulation workflow has been presented in this 

chapter (Figure 2.1). The most common techniques used in reservoir 

characterization were introduced here: Geological and petrophysical models make 

representations of the distribution of the geological parameters that have influence 

on the reservoir performance. Then this understating of the geological and 

petrophysical properties distribution of a reservoir is placed into a 3-dimensional 

grid by using geostatistics. A brief description of geostatistical techniques  used in 

this thesis, like multiple point statistics, was presented. The geological models 

generated using geostatistics are upscaled, if it’s necessary, and then the fluid 

flow is simulated through the reservoir static model. 
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Chapter 3 

     

Reservoir Model History Matching and 

Forecast Uncertainty Analysis  

 

3.1 Introduction 

Reservoir management has been considered by engineers as an optimization 

problem, due to the number of variables involved in the production behaviour of a 

reservoir (oil prices, production costs, field facilities, reservoir depth and pressure, 

hydrocarbon saturation, porosity-permeability distribution, etc.) and because of the 

uncertainty associated with these variables.  

The best practice for managing a reservoir is assessing the uncertainty associated 

with the reservoir properties by having different reservoir scenarios. One way of 

obtaining different reservoir scenarios is by generating multiple reservoir models 

that honour reservoir data. In the previous chapter, different approaches were 
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reviewed on how to build reservoir models that consider geological and 

petrophysical properties’ distribution and fluid saturations, as well as models that 

consider the numerical simulation of the fluid flow through the porous media within 

a reservoir. 

We have seen that multiple reservoir models can be generated based on well, 

seismic, and production data. The next step is to select some of these reservoir 

models for assessing the uncertainty associated with the production behaviour of 

a reservoir. This thesis is focused on the generation of multiple geologically 

realistic reservoir models that match reservoir production information. Realistic 

reservoir models (Chapter 4) that match production history can be used to 

evaluate the future of a reservoir/field. 

Most of the methodologies used to analyse the uncertainty in reservoir production 

and to select the models that better honour the production reservoir data (history 

matching) and production forecasting are indicated in this chapter.  Special 

consideration is granted to the importance of preserving sedimentological realism 

of reservoir models within the automated history match process. The methodology 

used for history matching and production forecasting, used in this thesis is also 

explained in this chapter. 

 

3.2 Reservoir Model Uncertainties 

Prediction of reservoir performance is associated with uncertainties arising from 

the lack of accurate and reliable knowledge about the reservoir rock and reservoir 

fluid properties (Gavalas et al., 1976).   

Reservoir modelling is a process that deals with sparse (or remote sensing) data 

since the source of information (reservoir rocks and fluids) is physically impossible 

to reach, because it is in the subsurface. Only few wells can reach the actual 
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reservoir, and the data is available only after drilling them. The data obtained are 

direct (cores, cuttings, sidewall-cores) or indirect (well-logs, seismic data) 

measurements, these data are used to identify or estimate, reservoir properties 

like: lithology, porosity, permeability, fluid saturation and other physical properties. 

Once a well has been drilled it is possible to perform reservoir pressure and fluid 

analysis like formation testers (RFT), PVT samples, dynamic analysis like well-

tests and downhole pressure. But it is important to remember that not all these 

analyses are performed in each well and, in some wells, none of these analyses 

are performed due to the costs involved. 

The main task of a geologist is to analyse the geological properties of a reservoir 

based on the sparse data obtained from wells, seismic data and prior knowledge. 

Geological interpretations in reservoir modelling are commonly based on 

geological prior knowledge obtained from previous work, expert knowledge, 

outcrop description, or analogue field analysis. All these processes are subject to 

the associated uncertainty, which makes reservoir prediction modelling process a 

task of an enormous challenge. 

Uncertainty is widespread all along all the steps of the reservoir modelling 

process. Modellers, as it has been previously mentioned, deal with reservoir 

uncertainty in many different aspects: number of variables, data measurements, 

interpretations, modelling algorithms and hardware, physical description of fluid 

flow, etc. 

Challenor and Tokmakian (2011) present a good discussion about the anatomy of 

uncertainty in climate modelling; their analysis of uncertainty can be applicable to 

most of the simulation problems related to nature. They divided the model 

uncertainty in to two classes: Aleatoric and Epistemic uncertainty. 

1. Aleatoric uncertainty, which refers to random irreducible uncertainty (Challenor 

and Tokmakian, 2011), an example in hydrocarbon exploration is the prediction of 

the depth of fluid contacts. Once a structural trap is identified in seismic data, it is 
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impossible to precisely detect the depth of the fluid contact, because of many 

reasons: complexity of the geological history of the reservoir, seismic processing 

and resolution, time-depth conversion. 

2. Epistemic uncertainty is related to the lack of knowledge and can be subdivided 

into structural and input uncertainty. Structural uncertainty arises because one 

would never know the exact form of the models, so the structural uncertainty will 

be reflected by differences between the model and reality. Input uncertainty is 

associated with the initial conditions, parameters and boundary conditions 

(Challenor and Tokmakian, 2011). 

Data measurement errors and simulation errors make contribution to uncertainty 

in reservoir modelling (Christie et al., 2005). Data measurement errors are intrinsic 

of the data measurement process. Measurement error can be caused by humans 

and by the measurement device during the act of data acquisition as well as by 

calibration errors. These kinds of errors are reduced by improvement in 

technology and quality control. Simulation errors were analysed by Christie et al. 

(2005), who classified modelling errors into three types: 

- Input error: related to poor quality of the measurement to be introduced into 

the model and errors in data entry. 

- Physical error: caused by the inability of the modeller or the algorithm to 

describe the physics of the problem (physics of the process that generated 

the deposits in a particular depositional environment). 

- Solution error: can be defined as difference between the exact 

mathematical solution of the governing equation for the model and the 

approximate solution of the equations obtained with the numerical 

algorithms used in the simulation. 

Massonnat (2000) points out that in reservoir modelling it is essential to assess 

the method of sampling the uncertainty since there is a risk of underestimating 
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uncertainty by using a single modelling technique. Using only one sampling 

technique does not identify the levels of uncertainty present in reservoir modelling. 

Figure 3.1 illustrates the six levels of geological uncertainty described by 

Massonnat (2000). Starting from (1) data acquisition:  this level of uncertainty is 

associated with the amount of data, tools used to obtain data and their resolution. 

(2) Data interpretation, this will depend on the interpreter’s expertise, the 

methodology and concepts used during the interpretation, an error in this level 

could mislead the entire geological modelling; data interpretation is associated 

with structural interpretation, stratigraphic evolution and depositional environments 

in a reservoir. (3) Elaboration of a geological concept: at this stage the interpreter 

(geologist) is able to deliver a good idea of the reservoir geology (sedimentary 

environments, stratigraphy, facies, structural stiles and framework). (4) Scenario 

for distributing geological features: at this level the geologist should understand 

the geological property distribution in the reservoir (3D geometry of the facies, 

geobodies, and structural features). Level (5) is related to the reproduction of the 

distribution of the geological features described in level (4) into stochastic models 

(see Section 2.3) and the level (5) described by Massonnat (2000) is associated 

with the number of realization a geo-modeller has to produce in order to generate 

a set of models that would represent the uncertainty associated with in a reservoir 

model.  

In this thesis, the geological uncertainty is levels considered at levels  3, 4, 5 and 

6 in all the case studies presented here (Chapters 6, 7 and Appendix E). The data 

acquisition and interpretation methodology are considered as already established.  

 

3.3 History Matching 

History matching is the process used in reservoir modelling to select those models 

whose simulated production response matches the historical production data of a 
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reservoir in order to calibrate them to data, to evaluate the uncertainty associated 

with the reservoir modelling process and predict the reservoir production under 

uncertainty. History matching to production data is performed by varying a number 

of reservoir variables/descriptions in a reservoir model, until the reservoir 

production data are matched by the simulated production response. Production 

data may include production rates and pressure measurements, tracer data and 

time-lapse seismic data. 

 

 

 

Figure 3.1: Levels of Geological Uncertainty in Reservoir Modelling (from Massonnat, 2000) 

 

History matched reservoir models are used for reservoir production prediction and 

assessment of different development scenarios for a specific field or reservoir. In 
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this section, a review of the history matching processes is presented with an 

emphasis on the automatic history matching framework. This explains the 

methodology used in this thesis for incorporating geological realism into the 

automatic history matching workflow. 

History match process has been considered as an inverse problem (Suzuki et al., 

2006; Christie, 2011; Park et al., 2012; Arnold et al., 2012) since the goal is to find 

a model that reproduces the production history of a reservoir. I.e. the production 

history of a reservoir is the output of a reservoir,  but in reservoir modelling the 

production history is used as well to infer the actual internal properties of a 

reservoir. 

Tarantola (1987; 2005) explained that the inverse problem consists of using the 

actual results of some measurement to infer the parameter values of a physical 

system. Tarantola (2005) stated that while a forward problem has a unique 

solution, an inverse problem could have multiple solutions. As an example, Arnold 

(2008) generated facies models of a channelized reservoir using different objects 

(“pacmans”, hammers and channelized geobodies) and found the models, based 

on each of these three types of geobody shapes, that matched the production 

data.  This is the reason why it is important to use any explicit available prior 

information in order to ensure geological realism in tackling inverse problems. 

Tarantola (2005) explains that to solve an inverse problem within the Bayesian 

framework, it is necessary to present  a priori information as a probability 

distribution over the model space. This prior probability distribution is then 

transformed into a posterior probability distribution by relating model parameters 

to some observable parameters and incorporating the actual results of the 

observations (with their uncertainties). 

Finally, the solution of an inverse problem is not a model but a collection of 

models that are consistent with both the data and the prior information (Tarantola, 

2005). 
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3.3.1 Manual History Matching 

History matching started  as a manual approach, this means that the reservoir 

parameters were manually changed or adjusted in order to obtain production 

responses that matched the reservoir production data. Such trial and error 

process is time consuming and, in most of the cases, only one history-matched 

model can be found and used for reservoir forecasting. 

Williams and Keating (1998) presented a methodology to manually history match 

reservoir models. This methodology highlights the hierarchical steps in which a 

history match process should be performed. Figure 3.2 is an illustration of the 

history matching stratigraphic method proposed by Williams and Keating (1998). 

They proposed a 7 step method: (1) Gathering the data; (2) Preparing analysis 

tools; (3) Identifying key wells; (4) Interpret reservoir behaviour from observed 

data; (5) Run the reservoir model; (6) Compare model results to observed data 

(pressure and historic production data), go to step 4 if the model results are 

different from observed data; (7) If the history data is considered good then adjust 

model parameters (permeability, rock compressibility, fluid properties, fault 

sealing, etc.) and run the model again (step 5) after adjusting parameters and then 

the model will be history matched. 

 

 

Figure 3.2: History-matching process using the Stratigraphic Method (redrawn from Williams and 

Keating, 1998) 
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Using a single history matched reservoir model could bring more problems to the 

reservoir characterization than solutions: 

- A single history matched reservoir model could be unrealistic (very high 

permeability or negative permeability/porosities, unrealistic sandbody 

geometry). Unrealistic models have no predictive power. 

- Using a single solution does not consider uncertainty, which a very 

important issue in reservoir modelling (Section 3.2). 

Arnold (2008) stated that identifying the true values of reservoir model parameters 

is an under constrained problem as there could be many equally good possible 

solutions. Tavassoli et al. (2004) demonstrated that history matching is an ill-

posed problem (opposed to well-posed problem) and good history match model 

may fail to predict.  

In Tavassoli et al. (2004) a model was history-matched several times, producing 

many models that match the production history. These models produced different 

reservoir production forecasts, demonstrating that it is practically impossible that a 

single model could define the uncertainty associated with the reservoir production 

behaviour. 

 

3.3.2 Automatic History Matching 

The development of optimization algorithms has improved the history matching 

process. Automatic history matching has reduced the amount of manual work that 

engineers and reservoir modellers used to perform to obtain reservoir models 

consistent with production data (Thomas et al., 1972; Mohamed, et al., 2010; 

Hajizadeh, et al., 2011). 

Automatic history matching is based on determining the uncertain reservoir 

parameters linked to the problem of calibrating a reservoir model with observation 

data. This problem can be tackled by an optimization approach, which tunes the 
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reservoir parameters and reduces the difference between observation data and 

simulation outputs. 

A measurement of the discrepancy between observed data and simulated 

production response can be well-defined, e.g. by weighted summation of least 

squares (least square norm). 

 

  ∑
          

 

   
                                                                                                                 

 

   

 

Where Obs and Sim are referred to the observed and simulated values of 

production data respectively, e.g. fluids production rates, bottom hole pressure, 

water cut, etc. is the variance of the observed data. 

A least square definition assumes that data errors are Gaussian and independent 

and does not take into account the modelling errors which require more complex 

misfit definition (O´Sullivan and Christie (2005)). 

 

Automatic History-Matching Algorithms 

The first optimization methods used in assisted or automated history matching 

were Gradient-based methods (Slater and Durrer, 1972, Thomas et al., 1972 and 

Anterion et al., 1989). These methods are based on calculating the derivative of 

the objective function with respect to the model parameters. These are known as 

gradients. 

These gradients are obtained by changing each parameter individually and 

running the simulation in order to see how a specific parameter affects the change 

in the objective function. 

The conventional optimization methods used later for gradient-based methods are 

Gauss-Newton, Levenberg-Marquart with the goal of minimize the objective 

function. These methods are very efficient in converging to a local minimum in the 
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objective function, but there is no guarantee that this is the global minimum. 

Gradient based methods are limited for uncertainty quantification because they 

are able to quantify uncertainty inly in respect to a single local minimum. 

Gomez et al. (2001) applied a method called “tunnelling” which includes a global 

optimization method in conjunction with a gradient-based technique. The idea is to 

escape from all local minima by tunnelling a valley of the objective function to 

another valley, by sampling far away from the local minima found. Figure 3.3 

explains the position of all local minima and a global minimum for a parameter, 

and how the tunnelling method escapes from a local minimum. 

 

 

Figure 3.3: Global minimum and two local minima from the objective function, it is possible to 

observe the tunnelling method. The local minimum at each valley is avoided by tunnelling 

(sampling far from the local minimum) (from Gomez et al., 2001). 

 

A more popular used approach in sampling algorithms for history-matching is the 

use of adaptive stochastic optimisation methods, which randomly explore the 

parameter space, with the following aims: 
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- Generate evolutionary sequences of sampling parameters that improves 

the history match process. 

- Escape from local minima in order to find global minima. 

Some of the most common stochastic optimization algorithms used in the oil 

industry are:  

Simulated Annealing (SA) (Press, et al., 1998) the name came from the 

annealing process in metallurgy, where, after heating a material, a controlled 

cooling is applied in order to manage the growth of the material crystals, avoiding 

the generation of metastable states. Simulated annealing is a numerical method, 

inspired from metallurgy, for the solving of global optimisation problems by trying 

to find the global optimum of a given function in a large parameter space. With 

high temperature values, the molecules of a liquid have a free movement towards 

one another. When the temperature decreases slowly, the thermal mobility 

vanishes. If cooling is very fast, the final state can be metastable, where the 

energy is fairly higher than the energy of the crystallised state. The energy can be 

translated as the objective function with the temperature as a control parameter. 

Starting from a point in parameter space, a random update is accepted or rejected 

according to the energy difference. Hence, the state is accepted if it has improved 

the objective function. With this method, it is possible that the system state gets 

out of a local minimum for a global optimum (Press, et al., 1998). 

Evolutionary population-based algorithms like: Genetic Algorithm and 

Neighbourhood Algorithm among others, have brought more attention in the oil 

industry, because of the ability of these algorithms of generating a population of 

solutions at each step and then the fitness of each member of the population is 

ranked (Mohamed, et al., 2010). 

Genetic Algorithm (GA) (Holland, 1975) is based on the probability of 

evolutionary changes of biological species inspired by Charles Darwin’s work. Like 

any evolutionary algorithm , this technique begins with a population of solutions 

that changes (evolves) based on the objective function values. The evolutionary 
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process has three operators: reproduction, crossover and mutation. They are able 

to drive the dynamics of a complex system search. This process is repeated until 

an acceptable solution (global minimum) is found. The principle feature of GA is 

the chromosome representation – a type of coding of the model state. 

Neighbourhood Algorithm (NA), was developed by Sambridge et al. (2009a) to 

be used in seismic inversion. The aim of this algorithm is to find an ensemble of 

acceptable models rather than seeking for a single solution. NA is a technique that 

uses Voronoi cells in a high-dimensional space in order to identify ensemble of 

parameters that reduce the misfit of the objective function. Erbas and Christie 

(2007) use NA to find multiple history-match models (Erbas and Christie, 2007). 

Gradual Deformation was presented by Roggero and Hu (1998). This technique 

is based on the inverse theory and composed by an algorithm that gradually 

deforms continuous geostatistical reservoir models, preserving the overall 

statistical characteristics of the models. The deformation process is combined with 

an optimization algorithm developing automatic history matching capability. The 

inversion of several model parameters and the gradual selection of a new 

constrained realization can be performed simultaneously. The analytical gradient 

methods as well as approximated gradients are used to improve the convergence 

rate of the procedure (Roggero and Hu, 1998). Probability perturbation method 

was proposed for HM by Caers (ref) as a further extension of gradual deformation 

approach. 

This methodology has been used by Hu et al. (1999) in order to reduce 

uncertainty in reservoir forecasting by gradually deforming the top structure of a 

reservoir.  Hu (2000) presented some variations of gradual deformation and their 

applications in reservoir history matching and forecasting. 

Pilot Points method introduced by de Marsily et al. (1984) is based on reservoir 

parameters that have been estimated in a limited number of points (pilot points) 

and the remaining values in the other locations of the grid are estimated using 
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kriging or with another estimator. By adjusting the values on the pilot points the 

whole realization is affected when the grid is being populated using kriging. 

Hamiltonian Monte Carlo (HMC) is a Markov Chain Monte Carlo (MCMC) 

method for sampling distributions introduced in 1987 by Duane et al. HMC is 

designed to solve some of the problems presented by MCMC algorithms, like slow 

exploration of the probability distribution if the step size is too small or from 

excessive rejection of proposed locations if the step size is too high (Christie, 

2011). Unlike the above evolutionary algorithms, HMC samples for the posterior 

rather than from the prior. This allows inferring the uncertainty directly. 

Ensemble Kalman Filter (EnKF) (Evensen, 2007) is a data assimilation method 

which calibrates a number of estimates of model parameters sequentially to points 

on time-series of observed data. Liu and Oliver (2005) used EnKF to update the 

facies location in a reservoir model within the automatic history-match process. 

EnKF has been widely used as reservoir characterisation and history-matching 

tool (Aanonsen, et al., 2009). A basic feature of EnKF is in gradual assimilation of 

the initial ensemble of the system state to the observations, which are exhibited to 

ensemble in a stepwise way. Principle assumptions of EnKF are the linearity of 

the gradual change and Gaussianity of the perturbation errors. 

 

In this thesis, Particle Swarm Optimization Algorithm (PSO) was used for 

sampling sedimentological parameters within the automatic history matching 

framework. PSO is considered a swarm intelligence (SI) algorithm because it was 

inspired on simulation of the social behaviour of a flock of birds. SI algorithms try 

to find optimal regions of complex parameter spaces through the communications 

of individuals in a swarm of particles (Clerc, 2006). PSO is easy to implement and 

computationally efficient (Mohamed, 2011). 

Mohamed (2011) explained how PSO behaves: The PSO algorithm starts with the 

random initialisation of a swarm of particles in the search space. Each particle is 
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considered as a candidate solution to a problem in d-dimensional space, with the 

position of particle i represented by xi. Each particle maintains a memory of its 

previous best position, pbesti, and a velocity along each dimension, represented by 

vi.  

The pbest vector of the particle with the best fitness in the neighbourhood is 

designated gbest. The importance of these two positions, gbest and the pbesti, is 

weighted by two factors known as the cognitive and social scaling factor 

parameters at each iteration (Shi and Eberhart, 1998). These two elements 

govern the swarm behaviour and algorithm efficiency (Suganthan, 1999).  

Velocity Update  

In the basic PSO algorithm, at each iteration k, particle i’s velocity   
  is updated 

using eq. 3.2.  

 

  
      

      (      
    

 )      (     
    

 )                                                        

                   

in which   
  refers to the current position of a particle i at iteration k. c1 and c2 are 

user-defined non-negative constant real parameters which weight the particle's 

attraction towards its own best known position       
  and the global best known 

position of the entire swarm        up to iteration k, respectively. r1, and r2 are two 

random vectors with each component corresponding to a uniform random number 

between 0 and 1. Introduction of such random elements into the optimisation is 

intended to simulate the slightly stochastic unpredictable component of a natural 

swarm behaviour. In addition to this, the user also chooses the swarm size N.  

The velocity update in eq. 3.2 has three major components (Engelbrecht, 2005).  

1. Inertia, component (v1) that models the tendency of the particle to continue in 

the same direction.  
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2. Memory, it is a linear attraction towards the best position (gbest) ever found by 

the particle.  

3. Social knowledge, this is a linear attraction towards the best position (pbest) 

found by any particle.  

Position Update  

The particle’s position is added to the particle’s velocity once the velocity has been 

calculated to determine the new position of the particle.  

The update equation of the personal best position pbesti is presented in (eq. 3.3), 

assuming a minimisation problem where f denotes the objective function that is 

being minimised and k is the iteration (generation) number.  

      
    {

      
            

             
  

  
              

             
  

                                                (eq. 3.3) 

 

Mohamed (2011) highlighted the main computational PSO workflow in the 

following steps:  

1) Initialise the swarm of ninit models by assigning at locations randomly 

generated in parameter space. Each particle is also assigned a plausible 

random velocity.  

2) For each model (particle) the forward problem is solved and the relevant 

objective function value is obtained.  

3) For each particle, update the position and value of pbest – the best solution 

the particle has seen. If the current objective function value of one particle 

is better than its pbest value, then its pbest value and the corresponding 

position are replaced by the current objective function value and position, 

respectively as in  eq. 3.3  

4) Find the global best objective function value and the corresponding best 

position gbest across the whole swarm's pbest and update if appropriate.  



Chapter 3. Reservoir Uncertainty Analysis 

54 
 

5) Update the velocities and positions of all the particles using eq. 3.2 where c1 

is a weighting factor, termed the cognition component which represents the 

acceleration constant which changes the velocity of the particle towards 

pbesti. c2 is a weighting factor, termed the social component which 

represents the acceleration constant which changes the velocity of the 

particle towards gbest 
k.  

6) Repeat steps 2–5 until a stopping criterion is met (e.g. the maximum 

number of iterations is reached or a sufficiently good objective function 

value).  

In this thesis PSO was set up using the parameters mentioned in Table 3.1. 

Mohamed et al. (2010) indicated that PSO is able to obtain good history matched 

models in less number of iterations than Neighbourhood Algorithm (NA). And that 

PSO tends to concentrate more sampling in low misfit regions than NA.  

These results have implication in reducing the number of simulated models and 

reducing computing cost. Therefore, PSO was  selected as the sampling algorithm 

for history matching in this thesis. 

 

3.4 Probability in Reservoir Uncertainty Quantification (Bayes 

Theorem) 

As discussed in section 3.2, reservoir modelling is a task with large uncertainties, 

due to the scarcity of information and the cost associated with its acquisition. The 

most common way to quantify the uncertainty of a problem in a statistical way is 

by assigning a probability distribution to the uncertain parameters related to the 

specific problem.  
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Table 3.1: Parameters used to set up the Particle Swarm Optimization Algorithm (PSO).  

*Flexible PSO allows the swarm to move more freely through the search space allowing fine tuning 

in local search (Kathrada, 2009). 

 

Christie et al. (2005) stated that, the use of a Bayesian approach for statistical 

inference provides a systematic procedure to update current knowledge of a 

system based on available data. In this thesis, a Bayesian framework was used to 

quantify the uncertainties associated with geological models. This involves a 

systematic procedure to update the current knowledge of a system based on 

newly obtained data (Christie et al., 2005). Bayesian inference is based on the 

Bayes’ theorem (after Thomas Bayes), and used to perform inferences about the 

value of some parameters based on prior and newly observed information. 

Bayes’ theorem is usually written as: 
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Where M is considered as the space of the reservoir model, m is a  vector of 

model parameters that compose an arbitrary reservoir model from the space M, O 

is a vector of the observed (production and pressure data from every well), p(m) is 

the prior probability distribution, p(O|m) is the likelihood of the data (a measure of 

the quality of the fit of model m  predictions to the observed data and p(m|O) is the 

posterior probability (PPD) representing our updated knowledge about the model 

m based on observations O. 

Prior probability distribution p(m) as mentioned in Section 3.3 is a very important 

input used in solving inverse problems. The use of prior information reduces the 

number of models used in inverse problem solutions (Tarantola, 2005). In this 

thesis, sediemntological prior information is modelled and included into the 

automatic-history-matching process, in order to control the realism of reservoir 

facies models. In Section 3.4.4 there is a discussion about the geological prior 

information and its importance in solving geoscientific problems. 

 

3.4.1 Likelihood Estimation  

Likelihood of a reservoir model can be defined as the probability that reservoir 

observation data is equal to simulation responses based on a specific reservoir 

model. In this thesis, likelihood will be calculated using the misfit based on the 

production data of the reservoir (Obs) and the production response obtained from 

the model (Sim). Assuming that measurement errors are independent in each time 

step and normally distributed, in order to include the information from all well data 

(gas, oil and water production/injection and pressure changes) likelihood is  

calculated as the product of the probabilities of individual measurements at all 

time steps (t). 
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3.4.2 Posterior Probability Distribution 

As explained before the Posterior Probability Distribution (PPD) or p(m|O) in eq. 3.4 

represents our updated knowledge about the model m based on the observations 

O and the prior knowledge of the model. 

Christie (2011) points out that the sampling algorithms used in automatic history 

matching generates multiple models, but the sampling is not uniform, and there is 

no guarantee that the samples are samples from the posterior probability 

distribution (PPD). Sambridge (1999b) deals with this problem by using the so-

called Neighbourhood Algorithm-Bayes (NA-Bayes). 

NA-Bayes 

Figure 3.4 shows how to obtain multiple history-matched reservoir models based 

on a Bayesian framework. From this ensemble of reservoir models it is possible to 

generate a posterior probability distribution (PPD). 

Erbas (2007) identified three methodologies for estimating PPD: (i) Categorisation 

of PDD around the Maximum Likelihood; (ii) Using a subset of the ensemble of 

history-matched reservoir models and (iii) sampling from the complete ensemble 

of history-matched reservoir models. 

As explained by Liu et al. (2001) and Arnold (2008) the most robust methodology 

is the one, such as the Markov Chain Monte Carlo, that considers the complete 

ensemble of history-matched models. The results obtained in this thesis are based 

on the PPD estimated using a Markov Chain Monte Carlo (MCMC) technique 

called Bayes-Neighbourhood Algorithm (NAB) (Sambridge, 1999b). This 

methodology includes the optimization process.  
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Figure 3.4 Bayesian framework for generating multiple history-matched models: Multiple models 

are generated after sampling from a prior distribution, the production responses of these model are 

compared to the actual reservoir production, then the evaluation of misfit allows us to update the 

probability distribution (PPD) and generate a production forecast with a range of uncertainty (error 

bar). From Christie et al., 2006. 

 

NAB uses Voronoi cells to interpolate values of misfit away from the known 

sampled points (models in the parameter space), for which the likelihood is 

computed exactly. In Figure 3.5 it is shown how NAB uses Voronoi’s cells and the 

Gibbs sampler to estimate PPD. The resulting ensemble of the model with their 

posterior probabilities is then used to estimate the P10 – P50 – P90 confidence 

interval (CI to describe the uncertainty envelopes for reservoir performance. 

Sambridge (1999b) describes how Neighbourhood Algorithm-Bayes (NAB) 

proceeds using a Gibbs sampler  following the steps: 

(i) Choose an initial start point (B) ( typically maximum likelihood model) 

(ii) Take a series of random steps from B, along each parameter axis 

(iii) For each axis an interval is defined that covers the entire parameter 

range (li to ui) a conditional probability distribution function is created 

(PDF) for this interval by calculating the intersection points of the 
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interval with the ensemble’s Voronoi cells. Producing a PDF like the 

PNA(xi|x-i) shown in Figure 3.4. 

(iv) Each random step is proposed by a random deviation from the uniform 

distribution along the interval. 

(v) The step xp is accepted or rejected by the equation  

  
      

 
|    

      
   |    

  where       
   |     is the Maximum value of 

the conditional along the interval and r is a second random deviate 

between 0 and 1. 

(vi) If the step is rejected then the process is repeated until a step is 

accepted. 

NAB is be used in this thesis for approximating the PPD, following NAB 

application for  estimating PPD in  Erbas and Christie (2007), Demyanov et al. 

(2004), Demyanov et al. (2008),  Mohamed et al. (2010), Hajizadeh et al. (2009). 

Park et al. (2013) used a technique to estimate the PPD based on a rejection-

sampling sequence. First, they modelled the probability of a reservoir model 

given the production data in an attempt to reject models with low probability 

without history matching , and then they used the probability perturbation method 

(Caers and Hoffman, 2006) for generating model distribution constrained to 

production data. 

 

3.4.3 Geological Prior Information  

Prior information can be defined in probabilistic analysis as the available 

knowledge about the probability of parameters having a specific value, before 

having any further information (Swan and Sandilands, 1998). Prior information can 

be set based on previous knowledge of the problem (expert knowledge) or based 
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on quantitative data obtained from reliable sources (scientific publications, 

reports).  

 

Figure 3.5 Random walk of the Gibbs sampler in NAB (from Sambridge,1999) 

Prior information plays an important role in Bayesian analysis; thus, in equation 

3.2 we can observe the relevance of this information where the use of prior 

information will improve the posterior estimation. To highlight the relevance of 

prior information Jaynes (1968) stated that, once the sampled distribution, the loss 

function and sample are specified, the only remaining basis for a choice among 

different admissible decisions lies in the prior probabilities. Jaynes (1968) 

identified that there is a problem in using prior information based on arbitrariness 

(“subjectiveness”). It is necessary to identify a realistic distribution of prior 

information in order to avoid misleading when estimating the posterior distribution.  
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Gelman (2002) identified three groups of prior distribution: 

(1) Non-informative prior distributions. These distributions are usually set as 

uniform distributions of one or many specific uncertain parameters. This 

type of distribution assigns the same probability to occur at all the values in 

the proposed range. This type of priors is named “ignorant”; however, 

establishing a range of possible responses is an indication of the 

knowledge of the process that is been analysed.  

(2) Highly Informative Priors. This type is used when fairly information about 

the possible values of a parameter in the model is available. In some cases 

a normal distribution is given for this type of priors defined by the mean and 

the standard deviation. 

(3) Moderately Informative Hierarchical Prior Distribution. This type of prior 

distribution is used when information about on the parameter is limited. The 

prior distribution will make the parameter vary by a specific factor (a) 

between each model and  constraining the range of the parameter by a 

factor (b) that could be 10 or 100 times of the mean, factors a and b are 

going to depend on the available parameter scientific data. 

Another problem identified in setting uniform priors is the so-called Curse of 

Dimensionality (Lee and Verleysen, 2007). As an example, if we consider a 

uniform prior distribution of a single parameter (one-dimensional parameter space) 

80% of the uniform samples fall into one standard deviation. If we consider two 

parameters, the number of samples that fall into one standard deviation of both 

parameters is 64%. The number of samples that fall into one standard deviation 

will reduce exponentially with the increase of the number of parameters (Lee and 

Verleysen, 2007). The curse of dimensionality is explained in Section 4.4.1. 

In the case of analysing uncertainty in geoscience problems, geological prior 

information was defined by Wood and Curtis (2004) as the geological information 

provided as an a priori component of the solution (i.e. information that existed 

before the solution was formed and which is incorporated into the solution). The 
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key to the successful solution of geoscientific problems is to use geological 

information obtained from sources related to the studied problem or from 

interpretations based on similar problems. 

The use of geological prior information may be subjected to qualitative expert 

opinion as well as quantitative sources, such as measured data from outcrops, 

cores, seismic and previous reservoir models of the field under study or analogous 

fields.  

Geological prior information has been used, as a key part of the solution of 

geological problems by many authors. Wijns et al. (2004) generated a 

stratigraphic model using a set of 9 geological parameters related to the 

hydrodynamics of a depositional system. The nine parameters were changing 

during the modelling process in order to find a model that fits the target distribution 

of sedimentological facies. Wijns et al. (2004) used flat or non-informative priors 

given ranges to the 9 hydrodynamic parameters. 

Hodgetts et al. (2004) used a set of outcrop digital data where it was possible to 

identify the geometry and facies relationships of deep-marine fan deposits, to 

generate geological models of the reservoir developed in the Tanqua Karoo 

depocentre, South Africa. In their work the prior information related to the 

geometry of the deep-marine deposits was obtained from the outcrop digital data. 

Other examples of geological prior Information applied in uncertainty quantification 

have used uniform distributions (Erbas and Christie, 2007, Demyanov et al., 

2004).  

Some examples of informative priors used in geosciences are presented here: 

Arnold (2008) introduces a technique of modelling prior information of fluvial 

channel geometry based on published equations that relate channel width and 

thickness, and generating a 2D region that encapsulates a realistic combination of 

channel width and thickness. This region was used then within the automatic 
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history match framework and used for rejecting models that were going to use 

unrealistic combination of channel width and thickness. 

Suzuki et al. (2007) developed a set of geological structural models and used 

them as prior information that covered the structural uncertainty of the reservoir. 

History matched models were generated then by varying the structures based on 

the structural prior information framework, that was previously accommodated in a 

parameter space using a “similarity distance”. 

A similar example was developed by Park et al. (2013), where a set of training 

images related to the facies geometry and distribution of a deep marine reservoir 

was used as prior information. The realizations obtained from these training 

images were flow simulated and the results compared in a Multidimensional Scale 

plot to the actual production data of the reservoir. The selected realizations, 

whose production data was close to the actual reservoir production data, were 

history matched. This work showed how to use multiple geological interpretations 

as prior information, and  to select a geological interpretation to generated history 

matched models. This work showed as well an improvement in saving computing 

time by reducing the number of models to history match. 

 

3.5 Summary 

The importance of history matching in reservoir modelling has been highlighted in 

this chapter. Automatic history-matching based on stochastic optimization 

methods allows the reservoir modeller to select models of a reservoir that match 

production data, and use them to assess the development plan of a field based on 

a probabilistic outcome within the Bayesian framework. This allows presenting a 

range of possible models instead of a single solution (model), which considers the 

uncertainty associated with the reservoir modelling process. 
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This methodology is a reliable process to plan for investment and estimate 

reserves, under uncertain environment like hydrocarbon production. Fast 

optimization algorithms have been applied to this problem in recent years, saving 

computing time and avoiding getting trapped in local minima.  

In this chapter, it was shown that most of the attention in the probabilistic history-

match approach has been paid to find faster and more reliable algorithms for 

sampling and optimization. Other works have been focussed on varying the 

petrophysical model properties. It is only in recent years that some research has 

been done on the impact of geological properties (geological parameterization) on 

the process of history matching. Less research has been done on how to preserve 

the geological realism in reservoir models, if the history match process is 

automatic. Arnold (2008) and Park et al. (2013) demonstrated that the use 

informative geological prior information have the potential of preserving geological 

realism in reservoir models developed within the framework of automatic history 

match. 

The importance of geological prior information in automatic history matching was 

presented in section 3.4.3. The use of informative geological prior information to 

preserve the geological realism in reservoir models is presented in the following 

chapters. 
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Chapter 4     

 

Machine Learning Techniques: a Tool for 

Modelling Geological Prior Information  

 

4.1 Introduction 

The use of geological prior information in geoscientific problems was analysed in 

Section 3.4.3, including a description of the classification of prior information used 

in reservoir facies modelling. The impact that the prior information has over the 

posterior distribution was explained.  

A new approach for compiling and modelling the interdependencies of the 

parameters of the geological prior information is proposed in this chapter. The 

main idea is to generate informative geological prior information based on the 

intrinsic relationships that exist between the geological parameters that are 

genetically related (e.g. channel depth and thickness); then use this information 

prior to control the geological realism of the reservoir facies models in automatic 

history-match framework.  
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In this thesis the advantages of Machine Learning Techniques (MLT) were used to 

model the geological prior. Due to the characteristics of these techniques, it is 

possible to compile high dimensional interdependencies between geological 

parameters in a non-linear and non-parametric way. A justification to the use of 

MLT as the tools for modelling geological priors is presented here. 

The sources of geological prior information used in this thesis, as well as the types 

of geological priors used in geological modelling and automatic history matching 

are described in this chapter.  

Finally, the theoretical basis of the Machine Learning Techniques used in this 

thesis is explained. Four machine learning techniques have been used here to 

model geological prior information: Multilayer Perceptron (MLP), which is an 

Artificial Neural Network (ANN), Support Vector Machine (SVM) for classification, 

One-Class SVM, which is an extension of SVM, used for novelty detection or 

sample rejection and Support Vector Regression (SVR) for regression. 

 

4.2 Sources of Geological Prior Information 

As mentioned in Section 3.4.4 geological prior information was defined by Wood 

and Curtis (2004) as the geological information provided as an a priori component 

of the solution to a geoscientific problem (i.e. information that existed before the 

solution was formed and which is incorporated into the solution). 

The determination of the geometry of the sedimentary geobodies preserved in the 

geological record is one of the most important geoscientific problems faced in 

reservoir modelling. Verwer et al. (2004) and Massonnat (2000) pointed out that 

one of the major problems in geology is the determination of anatomy of 

sedimentary geobodies and their related stratigraphic surfaces. It is clear that 

most of the works in sedimentary geology have been focused on the interpretation 

of depositional systems rather than on the geobody dimensions of depositional 

environments. In recent years, many research institutions have acquired an 
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enormous quantity of data in recent years, considering the dimensions of different 

geobodies.  

The problem of identifying the dimensions and geometry of sedimentary deposits 

preserved in the geological record has a huge impact in the determination of 

reserves in the subsurface (minerals, hydrocarbons, groundwater, etc.) and some 

works have been published on the estimation of the geometry of such deposits. 

Understanding the dimensions of sedimentary systems is the second step within 

the sedimentological model process (Section 2.2.3). First, it is necessary to 

understand what type of process generated the geobody under study 

(sedimentary environment). Second, it is necessary to estimate the dimensions 

and geometry of such geological body and so gain a better idea of the extension 

of a particular facies or facies association (Massonnat, 2000). 

Massonnat (2000) stated that this problem has a high level of uncertainty and the 

use of reliable geological prior information could reduce the associated 

uncertainty. Geological prior information related to geobody geometry can be 

obtained from published data related to geometrical description of  geobodies or 

from measurements taken from outcrops, modern depositional environments or 

high resolution geophysical data. 

Leeder (1973) published one of the first works trying to extrapolate information 

obtained from modern rivers to fluvial deposits preserved in the geological record, 

proposing some equations that can be used to predict the width of a palaeo-fluvial 

channel based on the thickness of their deposits. 

Allen (1964) describes the geometry of meandering fluvial channels deposits from 

the Old-Red Sandstone in the Welsh Borders. Allen’s 1983 work has been widely 

used as prior information to generate facies models of reservoirs deposited in 

meandering fluvial systems (Robinson and McCabe, 1997 and Clemente and 

Perez-Arlucea, 1993). Fisk et al. (1954) described the facies distribution within the 

Mississippi river delta and this work has been the base of many further 
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depositional models of deltaic reservoirs (Le Blanc, 1972 and Curtis and Picou, 

1980). 

Jones et al. (2004) used digital techniques and fuzzy logic algorithms to generate 

geological maps. They compared their results with maps generated by paper-

based methods, which do not consider uncertainty in the interpolation methods. 

The geological prior information used by Jones et al. (2004) to build the digital 

maps was obtained from outcrops and modern depositional environments. The 

compilation of the maps obtained from digital techniques gives quantifiable ranges 

of uncertainty of the geological maps obtained. The paper based map does not 

offer these ranges of uncertainty. 

Jones et al. (2004) highlighted the types of geological prior information stating that 

geological prior information can be divided into: field data, expert knowledge and 

previous information; and they explained how these three types of priors are 

related. 

Posamentier (2005) described geomorphological features from seismic data 

(seismic geomorphology). The geometry of the geobodies described by 

Posamentier (2005) has been used as the prior information for modelling the 

facies geometry of various depositional environments (Rasmussen et al., 2007 

and Moscariello, 2005) 

In this thesis, the prior information was modelled using published data. These data 

came from field observations and a more detailed explanation of the origin and 

type of data used to model our prior information can be found in chapter 6 and 

Appendix E. 

 

4.2.1 Geological Prior Information Models 

As mentioned in the previous section, the geological prior information used to 

model geobody geometry is based on published data, existing knowledge and 
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information obtained directly from outcrops, modern depositional environments 

and high resolution geophysical data.  

In this thesis, published information related to geobody geometry was used to 

model the interrelationships between the geometrical variables that characterize 

sedimentary bodies. These models are then used as prior information to generate 

geological interpretation of the subsurface. 

A description of the types of prior information was shown in section 3.4.4. Figure 

4.1 illustrates some examples of prior information models that have been used in 

modelling facies distribution and uncertainty analysis. 

The use of geological prior information related to geobody geometry depends as 

well on the modelling technique used. Most commercial software for geomodelling 

that have object-based techniques among their modelling algorithms (e.g. Petrel 

from Schlumbeger or RMS from ROXAR) use as input (prior information) a range 

of values of specific geological parameters. In the case of modelling channels it is 

necessary to put a range of channel parameters, like channel width and thickness 

and meander amplitude and wavelength (Figure 4.1(a)), these ranges can be 

considered as uninformative priors. Uninformative priors do not have the capacity 

to describe complex multivariate relations between geological parameters (e.g. 

relationship between channel depth and channel thickness), or it is possible as 

well to introduce distribution in a parametric or non-parametric way as informative 

priors. Prior distribution bounds the space for selecting combinations of geological 

parameters that are seen in nature (realistic) (Figure 4.1 (b)). The space outside 

the prior distribution refers to unrealistic combinations of the parameters and 

increases exponentially with the dimensionality of the problem (curse of 

dimensionality, see Section 4.4.1).  Although, most of the geomodelling 

commercial softwares have different options to identify the relationships between 

geomorphic variables some geomodellers use linear relationships (Leeder, 1973 

and Williams, 1986) as informative priors (Figure 4.1 (b)). These linear 

relationships are very restrictive and lead to underestimation of uncertainty. Since 

linear relationships only include the combination of parameters that are on the 
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regression line, excluding data that were taken from nature. Figure 4.1(d) 

illustrates how Arnold (2008) solved this problem by generating a region of 

realistic combinations of fluvial channel width and thickness, where it is possible to 

sample and generate multiple realistic models. This region uses some of the linear 

regression equations as boundaries proposed by (Leeder, 1973, Crane, 1983, 

Bridge and Mackey, 1993 and Williams, 1986).  

Lange et al. (2011) proposed a methodology called the Frequency Matched 

Method (FMM) in a reservoir model built using multiple-point statistics with a 

training image (prior information). FMM generates multiple training images by 

randomly changing the original training image but keeping the same facies 

proportions as the original training image. This method allows the generation and 

use of multiple training images (prior information) in the reservoir modelling 

process. 

More recently Park et al. (2013) used a series of training images as geological 

prior information to model facies distribution of deep-marine channel reservoirs, 

using multiple point statistics (Figure 4.1(e)). 

 

4.3 Why modelling priors using Machine Learning Techniques? 

In Section 4.2, it was shown that it is possible to generate geological prior 

information for reservoir modelling by understanding and modelling the 

relationships among geological variables (Leeder, 1973 and Arnold, 2008). The 

main problems found in modelling geological prior information are described as 

well in section 4.2. It was clear that, modelling geological relationships (facies 

geometry, sediment grain-size, bed thickness, fossil age, etc.) is a non-linear, 

multivariate problem applied to data coming from multiple sources (outcrops, 

seismic interpretations, modern depositional environments, well data, and 

analogous oil fields, etc). Some of the most common modelling approaches used 

to generate geological prior information are statistical techniques and process 
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based models, which cannot cope efficiently with the characteristics of 

geoscientific data: 

 

Figure 4.1: Examples of geological prior information that have been used in modelling facies for 

reservoir characterization: (a) Prior information used in modelling channels using object modelling 

in Petrel®. Note, that one can use uniform, normal and triangular prior distributions. (b) Empirical 

linear regressions that relate fluvial channel depth and width, data was obtained from Williams 

(1986) and Leeder (1973). (c) Plots of the relationships defined by Fielding and Crane (1987) 

relating channel depth with channel belt width and sandbody thickness with channel belt width. (d) 

Arnold (2008) used hydrological data for restricting width and depth (channel thickness). The prior 

range (red dashed line) has a significantly larger area than even the extremities of the hydrological 

data suggests. The four curves, Leeder, Crane, Williams and Bridge and Mackey represent a 

range of values produced from possible palaeohydrological models for channel dimensions. (e) 

Park et al. (2013) use these three training images (geological concepts) as geological prior 

information to generate reservoir models.  
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- The number of observations is commonly low, if it is compared to the 

whole universe of possible combination of geological parameters. 

Geologists commonly work with a reduced number of data (well data, 

outcrops, field samples) or low resolution data (seismic) to generate 

models of a geological event.  

- Geological information is often high-dimensional since many processes 

and factors are involved in the generation of a specific rock (sediment 

grain-size, available sediment, temperature, energy, tectonics, etc.) or the 

distribution of a property within a rock-volume (porosity, chemical 

composition, and fossil distribution).  

- Statistical relationships between the geological variables are non-linear 

and are not known with a sufficient precision. Although many authors try to 

use linear relationships in order to explain in a simple way the interaction 

between some geological parameters (e.g. Leeder, 1997, Bridge and 

Mackey, 1993, Crane, 1983). 

- All the data obtained from geological sources are noisy because the 

sampling process, preparation and analysis introduce noise to the result. A 

technique that can cope with the presence of noise in the data is needed. 

Kanevski et al. (2009) described Machine Leaning Techniques (MLT) as modelling 

tools that are universal, adaptive to nonlinear data, robust and efficient. MLT can 

find acceptable solutions for classification, regression and probability, density 

modelling problem in high-dimensional spaces. 

MLT is specially designed to handle finite datasets, embedded in high-dimensional 

spaces considering noisy data and non-linear relationships between variables 

(Vapnik, 1995). 

MLT have been used in different scientific and engineering disciplines with 

excellent results. The use of MLT in geosciences is relatively new; some of the 

work based on MLT has been oriented to environmental analysis, remote sensing, 

phenomena prediction and uncertainty quantification in geosciences: 
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In soil science, authors like Shang et al. (2004), Kanevski (1999), Kanevski et al. 

(1997) and Buszewski and Kowalkowski (2006) among others used artificial 

neural networks to map soil contamination and to distinguish the degree of 

contamination. In other branches of geosciences Bastidas et al. (2008) used 

artificial neural networks to identify the type of deposits within a deltaic system, 

using a classification arrangement of neural networks. Rogers et al. (1992) 

created a program to identify lithology from well-logs responses based on artificial 

neural networks. Machine learning algorithms have been used as well in mineral 

prospecting (Brown et al., 2000) and analysis and classification of landslides 

(Yesilnacara and Topal, 2005 and Ehsani and Quiel, 2008). These publications 

are a small sample of the application of MLT in geosciences demonstrating that 

these techniques can handle multidimensional problems, using noisy data in a 

non-parametric and non-linear way.  

Modelling geological prior information related to reservoir models is a potentially 

attractive application for MLT. The next sections of this chapter will describe the 

characteristics of the MLT used in this thesis for modelling geological prior 

information. 

 

4.4 Learning from Data 

Learning from data can be defined as a process of learning complex and hidden 

statistical dependencies from examples, in other words, obtaining results from a 

system based on observation of  processes that connect the conditions, where the 

observed event happens (input space), and the observed event or its outcomes 

(output space). This concept can be considered a definition of Machine Learning 

(Kanevski et al., 2009). Another property of Machine Learning Algorithms is that 

they can control automatically or semi-automatically the learning process. 

There are various algorithms in machine learning, adopting many methods from 

non-parametric statistics, artificial intelligence and computer science. In this 

thesis, two of the most widely applied algorithms in geosciences were used: 
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Artificial Neural Networks (ANN) (Bishop, 1995; Haykin, 1999) and Support Vector 

Machines (SVM) (Vapnik, 1995; Platt, 1999; Cherkassky and Mulier, 2007; 

Kanevski et al., 2009). 

In the process of learning from data usually a set of data is use to understand the 

hidden relationships among data points this is called training data set. Then 

another set of data points is used to test the relationships found with the training 

data set. 

 

4.4.1 Curse of Dimensionality 

The dimensionality D of an input vector x and the number of data instances N 

strongly affect the ability of an algorithm to learn input-output data dependencies. 

This is due to the curse of dimensionality (Lee and Verleysen, 2007), which is 

defined as the emptiness in space for increasing dimensions. More formally, the 

number of data samples N, required to estimate a function with sufficient 

accuracy, increases exponentially with the number of dimensions (see Figure 4.2 

a). 

The curse of dimensionality affects data analysis and modelling using statistics, 

e.g. the behaviour of volume as dimensionality increases, the ratio between the 

volume of a hypersphere and its circumscribed hypercube tends to 0 with 

increasing dimensionality (Lee and Verleysen, 2007). 

 

      
          

        
                                                                                                                                                                            

 

where R is the radius of the sphere, D is the number of dimensions and V is the 

volume.  
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This means that the hypercube becomes spiky and the spherical shape of the 

hypersphere vanishes in high-dimensional space (see Figure 4.2 b), this causes a 

problem when evaluating the probability density function (p.d.f.) 

 

 

Some of the problems presented when dealing with high dimensional data are: 

- Makes harder for any algorithm to learn dependencies from the data. 

- The number of data needed to describe the whole input space grows 

exponentially with its dimension.  

- It is more likely to obtain overfitting in high dimensional space, since the 

training data covers less parameter space when dimensionality increases. 

- Testing samples are equally far from the training samples in the data 

space. So distance-based similarities learned from the training data are not 

reliable. 

- Thus, the predictions are harder to make. 

- The parameter space remains poorly sampled. 

Figure 4.2: Visualization of the 
curse of dimensionality. (a) Moving 
from a 2-dimensional space to a 3-
dimensional space the number of 
half unit cubes rises from 4 to 8, 
which is proportional to 2

D
. (b) The 

body of the D-sphere vanishes 
compare to the body of its 
circumscription D-cube as D 
increases (from Foresti, 2011).  
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4.4.2 Unsupervised Learning 

Unsupervised learning consists of learning by using inputs only, since no data on 

the outputs are available. Unsupervised learning is used to find patterns, clusters 

and structures in a set of N input data samples {  }   
              where   is the 

input domain                     with a dimensionality D. 

Figure 4.3 illustrates how unsupervised neural networks can be used to classify 

lithology and depositional facies from well-logs. 

 

Figure 4.3: Facies Classification from well-log data, using unsupervised artificial neural networks. 

(a) Data from logs (Resistivity, Neutron-Porosity and Density) cluster in different classes (facies), 

(b) using ANN it was possible to classify the data and identify sedimentary facies. From Saggaf et 

al. (2000). 

 

Unsupervised learning algorithms are commonly used to find some groups 

(clusters) of input vectors. Dimensionality reduction is another task where 

unsupervised learning is useful. The main idea is to find a simpler, low 

dimensional representation which preserves some geometrical or topological 

properties of the original space.  

(a) 
(b) 
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4.4.3 Supervised Learning  

If the outputs are known for the corresponding limited number of inputs, the 

learning problem is called supervised; this means that the examples that illustrate 

the input-output dependence are available to “supervise” the modelling process. 

As an example, let’s consider a one-dimensional categorical output,   

{         } in a multi-class classification problem, as every observed input   is 

known to belong to some class  . The idea is to use the available examples, to 

build a classification model (i.e. to generate a rule that assigns a class label to any 

previously unseen input vector). Figure 4.4 shows an example of classification 

problem in supervised learning. 

 

 

Figure 4.4: Supervised learning in a classification problem. Consider each (x1,x2) samples of soils 

with y characteristics. The classification algorithm identified three classes and separated them in 

the x1-x2 space (from Kanevski et al., 2009). 

 

Qi et al. (2007) used supervised neural network to predict oolitic facies in uncored 

wells from image logs. Figure 4.5 demonstrates how they applied supervised 

neural networks to predict oolitic facies. 
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Figure 4.5 Predicting oolitic facies from core data to uncored wells based on image logs using 

supervised neural networks. Neural networks were trained using data from cored wells (A); Neural 

networks were used to predict oolitic facies in uncored wells using image logs as input (from Qi et 

al., 2007). 

 

Figure 4.6 is an example of solving a regression problem using supervised 

learning. This problem is solved by drawing a line through a cloud of points. 

Regression problems can have a one-dimensional continuous output (modelling 
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the conditional mean). If the problem has high-dimensional outputs then it is called 

a multivariate problem.  

 

Figure 4.6: Supervised learning. Regression problem (from Kanevski et al., 2009). 

 

4.4.4 Semi-supervised Learning 

Real-life data analysis does not often offer a complete set of inputs and outputs, 

which makes these types of problem more interesting. It is common to observe 

data sets with a small proportion of labelled data (outputs are known) 

accompanied with a large set of unlabelled data (inputs with unknown outputs). 

This setting is known as semi-supervised learning. The information obtained from 

the unlabelled part of the dataset mainly concerns the geometrical properties or 

the structure of the input space. Figure 4.7 presents two solutions of a 

classification problem (a) without unlabelled data and (b) with unlabelled data, we 

can observe that the differences in the classification boundary geometry are ruled 

by the structure given by the unlabelled data. Although, unlabelled data do not 

have output values, these data can identify the structure that relates samples from 

different populations. 
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Figure 4.7: Semi-Supervised learning. (a) Classification problem solved without (a) and with (b) 

unlabelled data. Unlabeled data give the information about the geometry or structure of the 

boundary between classes (from Belkin et al., 2006). 

 

Demyanov et al. (2008) used semi-supervised Laplacian Support Vector 

Regression (after Belkin et al., 2006), based on porosity and permeability data 

from wells and unlabelled data from seismic in order to generate permeability 

distribution maps in a fluvial reservoir (Figure 4.8). 

 

4.4.5 Learning from data - Summary 

Machine Learning algorithms have a wide field of applications since the problems 

that can be tackled with these types of algorithm are very broad and it is possible 

to work with one of the types of problem mentioned above (unsupervised, 

supervised or semi-supervised) covering most of the statistical problems and 

datasets present in real-life. Multidimensional classification and regression 

problems can be solved using Machine Learning Techniques (MLT) which select 

the best function from a set of available functions, given sets of training and 

testing data and a loss function to compute training and testing errors (Kanevski, 

et al., 2009). 
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Figure 4.8: Porosity distribution maps using semi-supervised vector regression. Note that 

unlabeled data points are obtained from the geobody extraction of seismic data. Labelled data 

come from well data. Unlabelled data points give the structural information of the geobody (geo-

manifold) this geo-manifold is populated with the data obtained from wells (from Demyanov et al., 

2008). 

 

4.5 Artificial Neural Networks (Multilayer Perceptron) 

Models developed using artificial neural networks (ANN) are now used in many 

scientific and engineering fields. Artificial Neural network models overlap heavily 

with statistics, especially nonparametric statistics (Kanevski et al., 2009). Artificial 

neural networks consist of numerous connected simple process units called 

“neurons” (motivated by biological neurons) that one can program for some 

desired computation. One can train or program a neural network to store, 

recognise and retrieve patterns; to filter noise from measurement data and to 

control ill-defined problems. Unlike statistical estimators, ANNs can estimate a 

dependent function without an explicit mathematical model of how outputs depend 

on inputs (Kanevski et al., 2009; Bishop, 1995; Govindaraju, 2000a). 
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In this thesis, I used a traditional model of multilayer perceptron (MLP), considered 

as a network with no feedbacks and no lateral connections (Kanevski et al., 2009) 

where the information flows in only one direction from the input to the output 

(Figure 4.9). Multilayer perceptron is a fully connected network of neurons 

organised in several layers. A MLP can learn with a supervised learning rule using 

the backpropagation algorithm (Kanevski et al., 2009). The backpropagation 

algorithm gave rise to the iterative gradient algorithm designed to minimize the 

error measure between the actual output of the neural network and the desired 

output using a pre-computed error on the forward pass of information through the 

network (Kanevski et al., 2009).  

 

Figure 4.9 MLP with 2 inputs, 2 hidden layers with 5 “neurons” (process units) each and one 

output. wi are the weights given to each connection. The input data go into the input neurons, this 

information is processed by two interconnected layers of 5 neurons each, and influenced by bias 

(bhi), after processing the information one output is obtained. From Kanevski et al. (2009). 

 

Tuning MLP 

A conventional practise is to use training and testing data to achieve the optimal 

balance between goodness of training data fit and prediction accuracy on 

validation data. The way used to achieve this balance is to measure and compare 

errors obtained from training and testing data. Training Error can be defined as the 

difference between the outputs (t) obtained using training data inputs and the ideal 
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value of the output variable (i) in training data. The network is then tested against 

a set of testing data; the difference between the testing data values and the 

outputs obtained from the MLP using the testing data inputs is named Testing 

Error. 

In this thesis, training and testing errors are calculated using the mean square 

error equation (eq. 4.2)   (Kanevski et al., 2009): 

      
       

         
           

 

 
                                                                

n is the number of outputs. 

The combination of neurons that generates the lowest testing and training errors is 

considered as the optimal neural network which gives good predictions without 

overfitting data (Kanevski et al., 2009). 

A trained neural network as a computational model can be represented with a 

formula for computing predictions based on learned/tuned weights and the inputs, 

i.e. for a two-layer perceptron (Haykin, 1999): 

               

     {∑      
     

  

    

   [ ∑       

   

  

    

   (∑     

   

 

   

     )     
]     

}                

where: 

      

   
    

 is the weight of the link from the neuron hp of the previous layer to neuron 

hq in the layer H. 

m is the index of an output, 

H1,H2 are the number of hidden units (neurons) in the first and second layers,  

K is the number of inputs,  

bk, bh1 and bh2 are the biases of the layers. 
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    are the transfer function for the hidden layers and      the transfer function for 

the output layer. 

The choice of the number of hidden neurons can be consider as a common 

problem in the use of ANN, as there is not a straightforward unique solution. This 

is tackled by generating different ANN structures changing the number of layers 

and the number of neurons in order to find a solution avoiding generalization and 

overfitting. 

 

4.6 Support Vector Machines 

This section presents a brief introduction to the Statistical Learning Theory and 

then will show how this concept is applied to develop the support vector machines 

for classification, regression (SVR) and novelty detection One-Class SVM (OC-

SVM). Statistical Learning Theory was formulated a generalisation theory for a 

wide range of learning based algorithms: ANNs, SVMs, etc. 

 

4.6.1 Statistical Learning Theory 

Vapnik (1995) developed a statistical learning framework in order to generate 

highly generalized, statistical, predictive models. In statistical learning theory the 

term “learning” means the process of estimation of some function y =f(x) where x 


N and, depending on the problem, y for regression, y[1,2, ... M] for M-class 

pattern recognition or y{-1,1} for binary pattern recognition. 

Kanevski et al., (2009) stated that the process of learning is considered as follows: 

A learning machine must choose from a given set of function F = {f(x,), } one 

of which best approximates the unknown dependency.  is an abstract set of 

parameters, chosen beforehand. This choice is actually an optimization problem in 

the parameter space of . 
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Learning algorithm. To generate a learning algorithm it is necessary to define a 

learning problem with an associated loss function, then an induction principle and 

a set of decision functions. Kanevski et al. (2009) defined the  induction principle 

as a routine that provides a method for generalizing some particular observations 

into a general rule, i.e. it allows one to construct a decision rule that can classify 

every point in the space given only a finite number of examples (points) from the 

space (the training set). 

Loss functions and risk minimization. A loss function as defined by Vapnik 

(1998) is a measure of the discrepancy between the estimate and the actual value 

of a parameter. Learning was defined previously as the estimation of the function 

f(x) from the set of functions F = {f(x, )} defined a priori, which provides the 

minimum value of the risk function (Vapnik, 1998): 

     ∫ (        )                                                                                                   

Where             is the loss function, i.e. a measure of the discrepancy 

between the estimate and the actual value y given by the unknown function at a 

point x and p(x,y) is the joint probability distribution.  

The goal here is to minimize the risk function, which means that the objective is to 

minimize the expected average loss (chosen loss function) for a given problem. 

For classification problems the loss function is: 

 

        {
              
                

                                                                                                        

 

For regression: 

        (      )
 
                                                                                                                  

 



Chapter 4. Machine Learning Techniques a Tool for Modelling Geological Prior Information 

86 

 

Empirical risk minimization principle. It is necessary to minimize the risk 

function (eqs. 4.5; 4.6) by using a function that provides the minimum deviation. In 

order to approximate the risk function with training data, Kanevski et al. (2009) use 

the so called empirical risk function: 

      
 

 
∑              

 

   
                                                                                                   

Then, a function f  that gives the minimum value to empirical risk is chosen as an 

optimal decision function. This induction principle is called empirical risk 

minimization (ERM). 

Vapnik-Chervonenkis dimension. The VC-dimension is a useful method to 

characterize the complexity of a model. VC-dimension is used to calculate the 

complexity of nonlinear models in the parameter space (Kanevski et al., 2009). 

Christie et al. (2011) pointed out the importance of complexity in modelling. 

Incorporating more detail into a model may allow a more accurate description, but 

over-complex models tend to lose generality, and thus, lead to poor predictions, 

while a poorly identified model does not describe well the data. It is necessary 

then to strike the right balance between too much simplicity and too much 

complexity (Christie et al., 2011). 

In classification VC-dimension can be considered as a number of possible 

separations of the data samples with the function from this set. As illustrated in 

Figure 4.10 there is a classification problem on a 2D plane where, with a linear 

decision function one can classify three samples, whatever labels have been 

assigned to them. However, there exists a labelling for 4 samples so they cannot 

be classified by a linear function in other words the linear decision function is not 

powerful enough (or complex) to perform this task. The VC-dimension of the linear 

decision functions in          , N is the number of dimensions,    is the N-

dimensional feature space. 

Generalization is considered as the ability to describe the actual underlying 

functional dependency from finite empirical data. Choosing a set of functions, 

which can perform many possible separations, will achieve a low empirical risk but 
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could give a poor generalization. The phenomenon of choosing a false (too 

complex) structure is called overfitting. On the other hand, choosing a weaker set 

of functions can result in better generalization, but a too weak set of functions 

would not describe the actual dependencies in the data. 

 

 

Figure 4.10 Three samples in 2D can be separated with a linear decision function. However, there 

is a combination of 4 samples which cannot be separated by a linear function. (from Foresti, 2011). 

 

Figure 4.11 illustrates the overfitting and the generalized phenomena. In this case, 

a data set and a regression function is used to describe the phenomenon. First, it 

is necessary to select the set of functions   {      } that can describe the data. 

One set (Figure 4.11 (b)) are linear decision functions     {   }       and 

the other set (Figure 4.11 (c)) are sine functions     {   }            .  The first 

set only describes linear dependencies while the second set can describe any 

dependency with high frequency sine curve, but with a very low generalization. 

Linear and sine functions sets have the same number of parameters,   and  , but 

different generalization properties. VC-dimension of the sine function is infinite, 

since    can be high enough to fit any data set. 

A learning machine needs to fit the data (minimize empirical error) while keeping 

the complexity of the machine low (rise of generalization). 
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Considering a problem of classification where the bound on the expected risk 

holds with the probability      (Vapnik, 1998): 

 

             
√ (   (

  
 

)   )     
 
 

 
                                                                   

 

 

Figure 4.11: Tackling a regression problem: a) Data set for regression problem. b) Linear 

regression is not powerful enough to fit the data. c) Sine function fits the data, but the 

generalization ability is very low (From Kanevski, et al., 2009). 

 

The parameter   is the VC-dimension of the set of decision functions 

parameterized by  . Knowing the exact value of   and choosing a sufficient small 

value for  , allow to calculate the best choice for   (the best function to select from 

the set of decision functions). 

The ERM principle, which minimizes the first term, gives a small value of expected 

risk when 
 

 
 is large (the ratio of the number of training samples to the VC-

dimension of the functions set). In order to minimize over both terms of eq. 4.8, it is 

necessary to set the VC-dimension as a controlling variable and not just used a 
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priori. Generalization ability is then controlled by choosing the VC-dimension or 

some other related embodiment of capacity in the set of functions. 

Structural risk minimization (SRM) principle. The aim is to minimize both the 

empirical risk and the confidence interval (in eq. 4.8). If we have a structure: 

                                                                                                                                      

Using the set of decision functions F whose VC-dimension satisfy 

                                                                                                                                   

and the chosen Sopt of the structure to minimize the bound  (eq. 4.8). Thus, the 

SRM principle defines a trade-off between the accuracy (empirical risk or training 

error) and the complexity of the approximation by minimizing over both terms in eq. 

4.8. 

 

4.6.2 SVM Classification 

Support vector machines (SVMs) are constructive learning algorithms based on 

the statistical learning theory (Vapnik, 1995). SVM implements the set of decision 

functions and uses the SRM principle. SVM uses the VC-dimension to build a set 

of functions whose detailed description does not depend on the dimensionality of 

the input space. This is possible by generating a special loss function (margin) to 

have control on the complexity (VC-dimension). The margin is known as the 

distance between two labelled classes. 

The simplest approach to the classification problem is to separate two classes 

with a linear decision surface (a line in 2D, a plane in 3D or a hyper-plane in 

higher dimensions). Data separable without misclassification can be called linearly 

separable. Large margin classifier is an algorithm that can find the optimal 

decision hyperplane for linearly separable data. Ssoft margin classifiers are 

algorithms that allow for training errors and find linear decision hyperplane for data 

that is not linearly separable (real data). This problem is avoided by using the 
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kernel trick, which generates a nonlinear classifier known as Support Vector 

Machine (SVM), the kernel trick will be explained later in this section. 

Considering the following basic set of linear functions: 

                                                                                                      (eq. 4.11) 

Where   is a vector in    to be optimized. For classification the sign of the 

function      is considered as the output of the classifier. As mentioned before, 

the VC-dimension is    , this condition is fixed and cannot be controlled by the 

choice of parameters. In order to use SRM it is necessary to overcome this 

inconsistency by introducing the large margin idea. 

Large margin classifiers 

Considering the following decision function: 

 

 {
                   

                      
                                                                                                     

In this case, the decision is taken considering the position of the sample with 

respect to a margin along the hyper-plane defined by   and b. Then if the training 

set of vectors in    belongs to the sphere with a radius , the VC-dimension   of 

the set           is bounded with: 

      [  ‖ ‖ ]                                                                                                              

The separating constrains of the classes can be defined as:   
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The scaling of w and b is arbitrary and fixed as above, such that the value of the 

decision function equals one for the samples closest to the boundary (eq. 4.14) can 

be written as a single constraint: 

                                                                                                                                      

Figure 4.12 illustrates how to calculate the margin between samples of different 

classes. Where the margin   can be estimated as the distance between hyper-

planes        and          

      
 

‖ ‖
                                                                                                                                     

 

Figure 4.12: Calculating the margins from samples of different classes, using Support Vectors. 

This Figure explains graphically the formulation of the margin as a linear separating hyperplane. 

Support vectors are the only points which contribute to define the separating hyperplane (from 

Kanevski, et al. (2009)). 
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SVM not only separates two classes but also maximizes the margin between the 

two classes by minimizing ‖ ‖ (eq. 4.16). The main idea is that a large margin 

should be more resistant to noise and should have better generalization than a 

small margin. 

It is necessary then to optimize the SVM algorithm, by maximizing the margin (eq. 

4.16) within the constrains (eq. 4.15). This is possible by minimizing the squared 

norm ‖ ‖ .  The optimization problem has been addressed using Lagrangian 

formulation. Lagrange multipliers    are used for the constraints, then the 

Langrange functional Lp is minimized with respect to w and b and maximized with 

respect to   : 

     
 

 
‖ ‖  ∑   

 
              ∑   

 
                                                                     

subject to the constrains  

                                                                                                                              

Having:  

          

  
   

          

  
                                                                                     

Provides: 

 ∑                ∑          
                                                                                        

 

   
 

Replacing them in the Lagrangian (eq. 4.17) will give a dual formulation: 

   ∑   
 

 
∑  

 

   

∑             
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∑             

 

   

                                                                                                            

 

If the solution of the optimization problem depends only on the dot product of the 

data with non-zero weights/coefficients, the decision function becomes: 

     ∑          

 

   

                                                                                                              

 

Following the Kuhn-Tucker theorem explained by Schölkopf and Smola (2002) if 

     then              and for      the equality holds:             . 

These two possibilities      and      give the name of the Support Vector 

method. Samples from the training data corresponding to      will fall on the 

hyper-planes     {   }      or     {   }     of the decision surface. They 

are called the Support Vectors. If the SVM is trained using all the training data 

set except the support vectors (SVs) or if the SVM is trained using only the SVs 

the same decision boundary would be obtained.  

Soft Margin Classifiers 

It is possible to apply the classification theory described above to non-separable 

data sets by adding slack variables      to the constraints (eq. 4.15). This 

application was proposed by Cortes and Vapnik (1995), who called these 

classifiers soft margin classifiers: 
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Now the aim is to minimize the function: 

       
 

 
‖ ‖   ∑  

 

   

                                                                                                       

where the first term corresponds to minimizing the VC-dimension (complexity) and 

the second term corresponds to minimizing the number of misclassified points of 

the training set.  

Soft margin classifiers are used to moderate the hard margin SVM in order to 

admit some misclassification of data (Figure 4.13). 

 

Figure 4.13: In soft margin classifiers the slack variables  allows noisy samples to lie inside the 

margin or on the other side of the decision hyper-plane (from Lampert 2009). 

 

C-Regularization term 

The positive regulirisation constant C weights the second criterion 

(misclassification) with respect to the first criterion (complexity) in eq. 4.25. The 
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trade-off constant C becomes an upper bound for the weights in the dual 

formulation, resulting in the constraints                  . 

“Kernel Trick” 

Kernel Methods (Scholkopf et al., 1999) are designed  for mapping data into a 

high-dimensional feature space, transforming the data into a set of points in 

a Euclidean space. In that space, multiple methods can be used to find 

relationships among the data-points. Support vector machines can be considered 

as a natural field to apply kernels. Given a training set {                        } 

of L samples, kernel methods typically model SVMs with this hypothesis: 

     ∑            

 

   

                                                                                                          

where         is a kernel function and    and b are the parameters to be 

optimized.  

Figure 4.14 shows how the so called kernel trick is used to solve a 2D 

classification problem that is not possible to solve by a linear decision function, but 

can be solved by transforming the data into a higher-dimensional space (3D), 

where the data can be classified with a linear hyper-plane. 
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Figure 4.14. Use of the kernel trick to discriminate between two classes: (a) it is not possible to 

discriminate them in 2D with a linear function; (b) but mapping these classes in 3D solves the 

problem with a hyper-plane. This linear hyper-plane in the feature space corresponds to a non-

linear decision in the input space. (Pictures obtained from the website www.stackoverflow.com) 

The kernel trick is justified by considering a continuous symmetrical function 

       :       where an input space is denoted as X. if for any function 

        where C is a compact subset of X, then the function          is: 

 

∬       
                                                                                                           

 

   

 

Then it can be expanded in converging series 

         ∑           
   

 

   

                                                                                                

 

where        and       is the eigensystem of the corresponding integral operator 

with a kernel        .  
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The expansion of eq. 4.28 can be considered as a scalar product: 

∑           
   〈√        √        〉

 

   

 〈          〉                                    

That means that for every         exists a feature space, where it acts as a dot 

product. If it is necessary to use a feature space, the kernel function would be just 

a dot product in this feature space. Given a kernel function and some learning 

algorithm formulated in terms of the dot products between input samples, it is easy 

to obtain a nonlinear form of the algorithm by substituting the dot product for 

kernels: 

                                                                                                                                           

If the kernel trick is applied to the decision function (eq.4.23), the formulation of the 

support vector machine classifier will be written as: 

   ∑   
 

 

 

   

∑                 

 

   

                                                                                  

∑           

 

   

                                                                                                        

And for the decision function:  

     ∑              

 

   

                                                                                                      

Kernel Parameters 

It is important to choose from different kernel functions, because kernel functions 

define the feature space and the capacity of the model. 
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 Gaussian RBF Kernel:          
 

       

          ,  

 Polynomial kernel                       

  is called the bandwidth or width of the Gaussian RBF, and this parameter 

defines the width of the “bell”. The order P of the polynomial kernel defines the 

smoothness of the functions. 

Probabilistic outputs 

SVM classifiers do not include any probabilistic interpretation of the outputs 

(Kanevski et. al, 2009). This interpretation can be obtained by modelling the class 

densities. 

In some applications it is required to produce a continuous indicator of the class 

membership and to estimate the uncertainty of the prediction. This is possible to 

produce by using some post-processing of the decision function.  

The samples beyond the margin are the most uncertain, the decision function 

inside the margin is such that          , equals +1 or -1 at the boundaries 

(and correspondingly the support vectors), and |    |    for normal samples that 

are correctly classified. Thus, the value of the decision function can be used as a 

class membership indicator.  

To obtain a probability of class membership it is common to scale it to the interval 

of (0,1) using the sigmoid transform: 

 (   |    )  
 

               
                                                                                 

Constants A and B need to be tuned from data using some appropriated criterion. 

Figure 4.15 illustrates the use of the sigmoid transformation of the SVM decision 

function, proposed by Platt (1999), where A and B are derived to maximize the 

likelihood (or to minimize the negative log-likelihood to simplify the optimization) 
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on the testing data set, because the use of training samples only may lead to 

overfitted biased estimate. 

 

Figure 4.15. Representation of the use of the sigmoid function to estimate the SVM outputs 

probabilities, taking the sigmoid from the linear decision function (from Kanevski et al., 2009). 

4.6.3 One-Class Support Vector Machine (OC-SVM) 

One-Class SVM is the SVM extension to one-class classification. This new 

method is very powerful in solving novelty and target detection tasks. 

Schölkopf et al. (2001) defined OC-SVM as an unsupervised kernel-based 

method, which is used to estimate the support of probability density distributions. 

The main application of this technique is to detect novelty, outliers and rare events 

in a high-dimensional feature space. OC-SVM can be applied, as well, for target 

detection by rejecting all points with different statistical distribution from the target 

class. 

This technique is based on the necessity of an algorithm that returns a density 

function, which takes the value +1 in a small region capturing most of the data 

points and -1 elsewhere. The strategy is to map the data into the feature space 

corresponding to the kernel, and to separate them from the origin with maximum 
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margin. For a new point   the value of      is determined by evaluating which side 

of the hyperplane it falls on, in the feature space. 

The following quadratic problem is solved to separate the data from the origin: 

   
            

             
 

 
‖ ‖  

 

   
∑                                                             

subject to                             (       )                                                            

where   is a parameter controlling the factors of support vectors and outliers 

(complexity) and   is an offset. 

When data are mapped in the kernel space by means of a kernel function, the 

data are linearly separated from the origin by maximizing the margin of the 

hyperplane. Outliers are constrained to be close to the origin, while the core of the 

distribution is pushed away with a maximum margin.  

This problem can be solved in a dual way as a two-class SVM problem. 

   
 

 

 
∑                     subject to                 

 

  
 ∑                                    

The decision function for a point x is computed as: 

     ∑  

 

                                                                                                                    

The hyper-parameter   controls the amount of data that is considered as outliers. 

That is, for    , all points are constrained to be part of the support composing 

the underlying probability density function. In this case, all data points including 

the outliers are separated from the origin in the kernel space. Furthermore, when 

   , only the very central part of the distribution is considered as part of it and 

all the other points (outliers) are kept close to the origin in kernel space. Figure 



Chapter 4. Machine Learning Techniques a Tool for Modelling Geological Prior Information 

101 

 

4.16 shows how tuning OC-SVM hyper-parameters affects the results of the 

decision function. 

 

Figure 4.16: One-Class SVM “toy” example: (a), (b) and (c) illustrate the evolution of tuning of the 

One Class-SVM to identify the region in the parameter space that encloses the blue point (points 

from a single class) by modifying the hyperpameters – Kernel type, Cost, and nu factor. In (d) it is 

possible to observe how this One-class previously generated (blue) region can be used to 

separatethe points from a random set of points belong to the modelled (blue) class from points that 

do not (yellow points). Figures were obtained using libsvm from: 

http://www.csie.ntu.edu.tw/~cjlin/libsvm/. 

4.6.4 Support Vector Regression (SVR) 

Regression problems can be solved using a machine learning technique called 

Support Vector Regression (Smola and Schölkopf, 2004; Vapnik, 1998).  Support 

vector regression (SVR) uses support vector machine algorithms, to solve 

regression problems by implementing a set of linear decision functions and using 

http://www.csie.ntu.edu.tw/~cjlin/libsvm/


Chapter 4. Machine Learning Techniques a Tool for Modelling Geological Prior Information 

102 

 

the structural risk minimization (SRM) principle in order to minimize both the 

empirical risk and the confidence interval. Thus, the SRM principle defines a 

trade-off between accuracy (empirical risk or training error) and the complexity of 

the approximation by minimizing over both terms (Kanevski et al., 2009). 

Smola and Schölkopf (2004) stated that the basic idea of SVR is based on the 

computation of a linear regression function f(x) in a high dimensional feature 

space where the input data are mapped via a non-linear transformation (kernel 

trick). The function f(x) must be as flat as possible (finding a small w) and fit the 

data in the best possible way. 

In the case of a linear function   takes the form: 

 

     〈   〉                                                                                                       

where  . ,  .   denotes the dot product. 

 

Flatness in the case of           means that one seeks a small w that means to 

minimize ||w||
2: 

 

minimize: 
1

2
||w||

2
 ;      

Subject to: 

   〈    〉     
〈    〉        

                                                                                                                          

Similar to this conclusion, Vapnik (1995) introduced an error using some slacking 

variables to cope with otherwise infeasible constrains of the optimization 

problem (Somola and Schölkpof, 2004). 
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Minimize: 

 

 
‖ ‖   ∑〈     

 〉

 

   

                  

   〈    〉        
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The constant C > 0 determines the trade-off between the flatness of f and the 

amount up to which the deviations larger than  are tolerated. This corresponds to 

dealing with a so called -insensitive loss function | described by: 

| |  {
                 | |   
| |               

                                                                                                      

The support vector regression model is based on the -insensitive loss function. 

As we have seen, this function measures the discrepancy between the estimate 

and the actual value of y given an x. Figure 4.16 describes graphically this 

situation, where the points outside the shaded region contribute to the cost. 

By introducing Lagrange multipliers we can obtain the following dual formulation of 

the problem: 

 

Maximize: 

 
 

 
∑      
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  ∑      
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Collobert and Bengio (2001) and Smola and Schölkpof (2004) solved this 

quadratic programming problem by deriving (eq. 4.38), and then obtaining the 

prediction as a linear regression function: 

     ∑      
  

 

   

〈    〉                                                                                                     

 

 

The nonlinear support vector regression is easily derived by applying the kernel 

trick to the linear algorithm. The kernel trick allows us to solve problems in a 

dimensional space higher than their actual space by substituting dots products for 

kernels (see Kanevski et al., 2009). The kernel trick allows us to restate the SV 

optimization problem: 

 

 

Figure 4.17: Representation of the soft margin loss settings for SVR (-tube) (modified from 

Foresti, 2011). (a) -insensitive cost function; (b) SVR in a linear problem. Support vectors are 

represented with filled dots; the noisy data inside the -tube (empty dots) are not involved to define 

the prediction function. If the problem is not linear SVR should act in the Kernel space in order to 

find a linear solution, and then go back to the actual problem space. The slack margin ξ allows for 

some amount of noise in the data, which deviate from the regression model. 
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Maximize: 
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subject to   

  ∑      
             

 

   

     
    [   ]                                                                              

The prediction then becomes a kernel expansion: 

     ∑      
  

 

   

 〈    〉                                                                                                 

 

Where  K is subject to the choice of the kernel function used as in eq. 4.33. 

 

4.7  Summary 

This Chapter reviews the importance of geological prior information in modelling 

geoscientific problems and which methodologies have been used to model 

geological prior information. The main problems of modelling geological 

information and use it as prior are: 1) statistical relationships between the 

geological variables are non-linear and unknown; 2) process-based models of the 

relationship between geological parameters have proved to be very accurate, but 

computational expensive and with a very narrow field of applicability or low 

generalization. 
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Based on the characteristics of the geological data (high-dimensional, finite 

number of samples, non-linearly related, etc) machine learning techniques are 

recommended to find and to model the relationships between geological 

parameters. These geological relationships can be used as geological prior 

information, when introducing probabilities and uncertainty analysis to a geological 

problem. Various applications of MLT to modelling geological prior information are 

described in the next chapters. 

At the end of this chapter the Machine Learning Techniques used in this thesis are 

described (Multilayer Perceptron, Support Vector Machines for classification and 

regression and the One-Class SVM novelty detector) in order to understand how 

they work and how they can be applied in the problems presented in this thesis. 
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Chapter 5 

 

Facies and Depositional Environments of 

the Reservoirs Modelled in this Thesis 

       

5.1 Introduction 

In this chapter I describe the sedimentological features of the reservoirs used in 

this thesis. The parameterization of sedimentological features has a big impact on 

reservoir history-matching (Arnold, 2009). Understanding the origin and 

characteristics of the sedimentological parameters makes clearer the 

parameterization process. 

Synthetic reservoirs are datasets that include all the properties that an actual 

reservoir possesses. These synthetic reservoirs are used to test new techniques 

or algorithms for reservoir modelling, characterization or history matching (Castro 

et al., 2005). All the techniques developed in this thesis were applied to synthetic 

reservoirs. These techniques automatically and realistically vary sedimentological 

properties of a reservoir in order to find history matched models. That is the main 

reason for describing the sedimentology of the reservoirs used here.  
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Three synthetic reservoirs representing different depositional environments were 

used in this thesis: (1) The intermediate stratigraphic unit of the Stanford VI 

Reservoir (Castro et al., 2005) which was deposited in a fluvial meandering 

system; (2) a synthetic reservoir formed by deep marine channel deposits 

(DM_Field); this synthetic reservoir was built using the description of the Balliste-

Crécerelle Canyon Fill (Wonham et al., 2000) and (3) a reservoir deposited in a 

fluvial-dominated deltaic system (Mitare_Field), based on the description of a 

modern fluvial-dominated delta (Rivas et al., 1997). 

The next sections of this chapter describe the sedimentological features of the 

reservoirs used in this thesis in order to understand the characteristics of 

sedimentological parameters when varying them during the history match process. 

 

5.2  Fluvial Meandering Channel Deposits  

As mentioned in Chapter 2, one of the most important tasks in reservoir 

exploration and development is determining the geometry of the sandbodies. 

Fluvial sandstone bodies, when preserved in the geological record, are excellent 

reservoirs for oil and gas (Bridge and Tye, 2000). To estimate reserves and 

production performance in this type of reservoir, it is necessary to characterize 

these deposits (i.e. geometry, orientation, spatial and internal physical property 

distributions). These data are used in the process of reservoir modelling, in order 

to maintain the geological realism of the models.  

The main problem in determining the geometry of these deposits is the uncertainty 

associated with the available sparse data (Chapter 3). One of the first stages in 

the study of a reservoir is the identification of the sedimentary environment. This 

process can be done by describing well-cores, high resolution seismic data, using 

analogue outcrops or published information. The main indicators of the 

sedimentary environment in fluvial settings are the absence of marine fossils, the 

presence of palaeobotanic fossils like roots in growing position, coal seams, 

palaeosols or ichnofacies associated with continental environments in addition to 
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erosion-based, generally upwards-fining sandbodies dominated by current-

generated structures (Figure 5.1).  After the identification of the reservoir 

sedimentary environment it is necessary to interpret the dimension of the 

associated geobodies, their spatial locations and the distribution of the reservoir 

petrophysical properties. This thesis is focussed on the variation of the geobody 

geometry as a factor that influences reservoir production profiles. 

 

5.2.1 Description of meandering channels preserved in the 

geological record 

Figure 5.1 illustrates how meandering channels are developed and describes the 

type of sediments that are deposited in the inner part of the channel loops (point-

bars). Point-bars are developed when the fluvial channel migrates laterally, 

eroding the outer part of the channel and depositing mainly sand and gravel in the 

inner part of the channel.  

 

 

Figure 5.1. Point bar 

geometry and sediments. A-

A’ is a cross section of a 

river meander, showing the 

geometry of a point bar, B is 

the typical sequence of 

sediments deposited in a 

point bar and a gamma ray 

response of these deposits 

(from Bridge and Tye, 

2000). 
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Point-bar deposits are characterized by an erosive base with poorly sorted 

conglomeratic deposits over it. These conglomeratic deposits are commonly 

composed of clay intraclasts. The deposits that overlie the erosive base are part of 

a fining upward facies sequence cycle. This sequence of deposits can be 

preserved in the geological record and is used as a key feature in recognising 

meandering channel sedimentological environment (Allen, 1965; Leeder, 1973). 

Many authors have explained how to interpret meandering channel in outcrops. 

This interpretation is extrapolated to well-cores and well-logs (Leeder, 1973; 

Bridge and Tye, 2000; Miall, 2006). The major challenge in this process is to 

interpret the geometry of these deposits. Leeder (1973) proposed a methodology 

based on data from modern rivers, using equations that related the interpreted 

thickness of a meandering channel deposit from cores or well-logs to the width of 

the channels. In the second step Leeder (1973) used the equations proposed by 

Leopold, Wolman and Miller (1964) that related channel width with channel 

wavelength and amplitude, to estimate the channel belt width. Later Lorenz et al. 

(1985) estimated the meander belt width of channels using a similar technique to 

the one proposed by Leeder (1973) but included a degree of uncertainty in the 

dimensions of the sandbody by estimating the average of the dimensions of the 

channels and the standard deviation of the measurements. Their results, 

compared to outcrop data, established a good agreement with the outcrop 

measurements. Fielding and Crane (1987) identified empirical relationships 

between channel width and depth for different type of rivers and related them to 

the sandstone body width and thickness. Bridge (1975), Crane (1983) and Bridge 

and Tye (2000) suggested various empirical equations to estimate the channel 

belt width based on the meander amplitude and wavelength or curvature radius. 

A different way of estimating channel geometry in subsurface deposits was 

published by Doyle and Sweet (1995), who measured the dimension of sand 

bodies from outcrops, close to the producing field and used this information to 

delineate the sand body geometry using well information (channel thickness). 
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Gibling (2006) collected a large dataset of fluvial sandbody dimensions 

considering width and thickness and classifying the sandbodies based on 

geomorphic settings, geometry and internal structure. The work presented by 

Gibling (2006) provided plots of width vs thickness of fluvial sandbodies and 

encapsulated the data points into envelopes that can be used as validity domains 

(see Apendix E.2.2) of width and thickness combinations of different fluvial 

systems. 

A more realistic approach to estimate the geometry of fluvial sandbodies (when 

they are sufficiently thick) is the use of seismic geomorphology (Ethridge and 

Schumm, 2007; Posamentier, 2005), where it is possible to extract the geometry 

of fluvial deposits from high-resolution seismic data (high-resolution seismic data 

of a vertical resolution of about 10 to 20 meters). The disadvantages of this 

technique would be that a high-resolution seismic data is necessary, and the 

seismic volume should cover all the area of interest. Also, seismic data is in time 

domain, which implies that sandbody thickness estimation would be then 

conditioned to the time-depth conversion methodology and many fluvial systems 

consist of sandbodies below the seismic resolution. 

From the works mentioned in Appendix E, it is clear that the geometry of 

meandering deposits depends on the geometry of the fluvial (meandering) 

channels that generated such deposits and their behaviour through time. Single 

channel belt dimensions are related to channel thickness and width and the 

meander amplitude and wavelength (Figure E.7). 

In this section, single channel belts are considered as the sedimentary units that 

built the channel sandbodies. Based on Miall´s (1991) classification, a single 

channel belt can be considered as 5th order sedimentary process, which develops 

a thickness between 10 and 100 m.  
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Fluvial Sequence Stratigraphy  

Over the past 20 years, sequence stratigraphy has become the preferred 

methodology for stratigraphic analysis of sedimentary rocks. The origin of 

sequence stratigraphy was attached to seismic stratigraphy analysis. The seismic 

reflection patterns, their cyclicity through the geological record in combination with 

well and outcrop data made it possible to generate a stratigraphic framework that 

explains the genesis and evolution of depositional patterns. Sequence stratigraphy 

is based on the detection of bounding correlative surfaces that enclose a particular 

sequence of deposits (Sequence Boundaries, Flooding Surfaces, depositional 

hiatus or erosive surfaces). 

Figure 5.2 describes the general framework of sequence stratigraphy following the 

EXXON sequence depositional model (Baum and Vail, 1988), showing surfaces 

that separate different depositional systems or system tracts, and their relation 

with sea-level changes. 

 

 

Figure 5.2: EXXON Depositional Sequences or Systems Tracts: Low Stand System Tract (LST); 

Transgressive System Tract (TST); Highstand System Tract (HST) and Shelf Margin Wedge 

(SMW). These sequences are limited by major bounding surfaces, Sequence Boundaries (SB), 

Maximum flooding surfaces (mfs) and Transgresive Surfaces (TS) (Baum and Vail, 1988). 

 

The Lowstand System Tract (LST) is generated, when the sea-level has dropped 

and part of the platform is eroded. The deposits of this system lie over a major 

erosive surface (Sequence Boundary).  
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Once the sea level begins to rise, the sediments find that the accommodation 

space increases and the deposition occurs over zones that were previously 

eroded. Such depositional system is called the Transgressive System Tract (TST). 

This system ends when the sea level has reached its maximum and a muddy 

marine surface covers all the previous deposits. This mud-prone surface has been 

called a Maximum Flooding Surface (Catuneanu, 2006) 

When the sea level has reached its maximum and remains relatively constant, a 

large accommodation space for the sediments has been created, where 

progradational sequences start filling up this space. This major depositional 

system has been named the Highstand System Tract (HST). 

In the specific case of fluvial deposits, where deposition may be a long way from 

the sea, the sequence stratigraphic framework has been given a special treatment 

by various authors (e.g. Shanley and McCabe, 1994, and Ramon and Cross, 

1997). The key factors controlling the deposition of fluvial sequences are: (1) 

change of the base level (water-table), which would be the equivalent to the sea-

level changes in marine environments; (2) tectonics and (3) sediment supply 

(Shanley and McCabe, 1994, Miall, 1992 and Ramon and Cross, 1997).  

Figure 5.3 illustrates how fluvial deposits change when changes in the base-level 

occur. If the base level (sea-level) drops, erosion occurs in the fluvial basin, 

generating a so-called Incised Valley (Zaitlin et al., 1994). Figure 5.3 helps to 

understand the influence of sea/base-level changes on vertical facies proportions 

in reservoirs developed in fluvial settings.  

Ramon and Cross (1997) stated that, when the base level begins to rise, the 

accommodation space (A) increases; and if the sediment supply (S) is constant, 

then A/S >1, allowing the deposition of single-story channels. Then the base-level 

drops again, reducing A and increasing the proportion of sandy and gravelly 

deposits (multi-story and multi-lateral channels). The base-level could drop until 

generating a sequence boundary, repeating the sedimentary sequence. 
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Changes in the base-level thus produce changes in the facies proportions of 

fluvial systems. These changes in base-level could be associated mainly with 

tectonic and secondly with eustasy (Miall, 1992). In the case of new fields with 

very few wells or poor understanding of the geological history of an ancient fluvial 

basin, modelling base level changes would assess the uncertainty of the vertical 

variation of facies distribution. 

 

Figure 5.3: Schematic cross-section and columnar section of Alluvial Depositional Sequences from 

the Mesozoic of Argentina. (From Shanley and McCabe, 1994). 

 

5.2.2 Meandering Fluvial Facies Description 

The term Facies was first introduced by Nicholas Steno in 1669 to describe the 

aspect of a part of the Earth’s surface during a period of the geological time. Later 

Gressley, in 1883, defined facies as the sum of the paleontological and lithological 

characteristic of a stratigraphic unit (Teichert, 1958). The term facies can be used 
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in both a descriptive and an interpretive sense. Facies can be used to describe 

rocks or sediments aspects detectable in the field: lithology, structures and 

organic content (e.g. Facies “A” is a sedimentary unit composed of medium 

grained sand, with parallel lamination and bioturbated with Ophiomorpha nodosa). 

Also the term facies is used to give an idea of the interpretation of a group of 

rocks. For example, “fluvial facies” or more “fluvial facies association” 

encompasses a set of features including (in the fluvial example) sharp-based 

fining-upward successions with lags at their bases; thin siltstones with root traces, 

abundant trough and planar tabular cross bedding, and the absence of marine 

indicators. It is normally obvious from the context whether the term facies is being 

used in a descriptive or an interpretive sense. 

In this thesis the term facies associations is going to be related to a series of 

deposits genetically related and limited by bounding surfaces of third-fifth order. 

These bounding surfaces represent the beginning and ending of a depositional 

process  (Miall, 1992). 

As mentioned before, the deposits of meandering channels preserved in the 

geological record have been described by many authors, and have been classified 

into a number of facies associations. As explained in Section 5.2.1, meandering 

channel deposits are originated by the dynamics of the channels. Although these 

deposits are genetically related, different processes dominate in the sedimentation 

of each of the facies associations. Some of the facies associations (architectural 

elements) described by Miall (1996) that could be found within meandering fluvial 

systems are channel deposits, point bars, floodplain, crevasse splays and natural 

levees. The origin and description of these facies is explained in Table 5.1.  

In this thesis the facies associations used to model fluvial meandering depositional 

environment will be related to channel, point bar and floodplain deposits.  
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Table 5.1: Description of the architectural elements that can be found in fluvial meandering 

deposits. Compiled from Miall (1996). 

Figure 5.4 illustrates the architectural elements (Miall, 1985) that can be identified 

within meandering channel depositional systems modelled in this thesis. 

 

Figure 5.4: Description of the architectural elements and geomorphic parameters that could be 

found in fluvial meandering deposits (Miall, 1985). CH: Channel, LA: Point Bar, FF: Floodplain, CS: 

Crevasse splay, LV: Levee. In this thesis the Facies used to model fluvial meandering deposits are 

Channels, Point Bars and Floodplain. Geomorphic Parameterized are: Meander Length (L); 

Meander Amplitude (A); Channel Width (w) and Thickness (T). 
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5.3 Deep Marine Channel Deposits 

Figure 5.5 shows a photograph of meandering fluvial channels in Argentina and 

an amplitude extraction map of a seismic horizon of deep-marine sediments in the 

Gulf of Mexico, where it is possible to observe geomorphic similarities between 

these two very different depositional environments. 

Although fluvial meandering channels look very similar to deep-marine channels, 

their origins are very different. The origin of fluvial meandering channel deposits 

has been described in Section 5.2.  Deep Marine channels have been developed 

by different physical processes than fluvial channels, as will be described in this 

section.  

 

 

Figure 5.5: Visual comparison between fluvial meandering and deep-marine channels. A: 

Meandering channel,Chubut river, Argentina (from Foix et al., 2012); B: Deep-marine channel, De 

Soto Canyon, Gulf of Mexico (from Posamentier and Kolla, 2003). 

 

Figure 5.6 illustrates the deep marine settings, ranging from the slope to the basin 

plain as described. The sinuous channels considered in this section are developed 

between the canyon and the basin plain. 
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Figure 5.6: Deep-Marine settings (Posamentier, 2003). 

 

Deep marine channels can be developed from the canyon to the submarine fan. 

They are part of a re-sedimentation process originated by the movement of pre-

existing deposits in continental to shallow marine environments into deep water 

specifically by turbidity currents (Stow et al., 1996). 

Turbidity currents are suspensions of sediment that are sustained by fluid 

turbulence. They are the most important transport mechanism of coarse grained 

sediment into deep water. Within an active turbidity current, the upwards 

components of turbulent fluid motion provide the main grain support mechanism 

and this behaviour can be sustained over long distances through a feedback loop 

called autosuspension (Southard and Mackintosh, 1981). In this dynamic 

equilibrium: (i) turbulence is generated by the flow; (2) flow results in the excess 

density of the suspension; (iii) excess density results from the suspended load; 

and (iv) the suspended load is maintained by turbulence (Pantin, 1979).  

Figure 5.7 is a representation of a turbidity flow and a deposition that illustrates 

the processes associated with transportation and deposition in turbidity currents. 



Chapter 5. Sedimentological Description of the Reservoirs History Matched in this Thesis 

119 
 

Deposition in these systems occurs from deceleration of the flow and occurs most 

commonly from the body and tail. 

 

Figure 5.7: Turbidity current profile, showing its zones and sites of deposition of the Bouma 

intervals. Interval A, lacks depositional lamination and may show grading, A results from of the 

upper part of the upper flow regime. B, parallel lamination, results from plane bed transport in the 

upper flow regime Sequence B to D reflects desacceleration. Interval C, with rippled cross-

lamination reflects a fall out of sand or silt from suspension while lower flow regime ripples were 

moving on the bed. (From Allen,1991). 

 

Deep marine channels’ spatial scale ranges from meters to kilometres. Most 

channels are filled by the coarsest sediments in the system: lag deposits, thick 

bedded sandstones and pebbly sandstones, thin bedded turbidities particularly at 

the channel edges and chaotic deposits (Southard and Mackintosh, 1981).  

Deep marine channel deposits have a high potential to be preserved in the 

geological record due to the physical conditions of the depositional processes: (i) 

deposition occurs deep below sea- level, small changes in sea-level will not affect 

these deposits; (ii) deposition of mud covering channel deposits can be 

considered as constant, protecting channel deposits from erosion; (iii) younger 

channels deposit sediments over older channels instead of eroding them, like in 

the fluvial realm (Posamentier, 2003). 
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5.4  Deltaic Deposits 

Deltas are shoreline protuberances formed where a river meets a large body of 

water (Bhattacharya and Walker, 1992). Deltas are formed by the velocity 

reduction of the fluvial stream produced when the flow abandons the channel and 

is expanded in a body of water (Dabrio-Gonzalez, 1984). This process allows the 

sediments to settle and build up until reaching the surface.  

The concept of a delta was originated by Herodotus (ca. 400 B.C.) who 

recognized that the alluvial plain at the mouth of the Nile River had the form of the 

Greek letter Delta () (Figure 5.8, Whateley and Pickering, 1989 and Bhattacharya 

and Walker, 1992). 

 

 

Figure 5.8: Nile Delta map from Jacotin in 1826 (Sestine, 1989). 

 

Deltas are generated by the interaction of multiple sedimentological processes: 

river currents, waves and tides. The different agents that work on deltaic 

sedimentation control the delta’s shape. 
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In this section, a brief description of deltaic facies models is presented in order to 

set up the environment to describe a case study of a deltaic synthetic reservoir 

(Section 6.4) built to history match its production using realistic geological prior 

information.  

 

5.4.1 Deltaic Facies Description 

The term delta includes the delta plain, delta front and prodelta deposits as shown 

on Figure 5.9, most deltaic deposits come from a particular river (Figure 5.10). A 

delta may be composed of different lobes which stack irregularly or shingle side by 

side as the distributary channels change their positions from time to time. 

Deltas basically consist of a sandy framework fleshed out with finer grained 

deposits. Depending on the dominant process in deltaic sedimentation, the shape 

of the sandy deposits could vary. Deltas dominated by fluvial processes develop 

more elongated sand bodies associated with elongated distributary channels and 

associated mouth-bars perpendicular to the coastline, with fine material deposited 

between distributary channels. With an increasing effect of waves, the sand 

fraction of the delta tends to be reworked alongshore and the fine fraction is swept 

out to sea. The sandbodies generated by these deltas are therefore aligned 

parallel to the coast line (Coleman and Wright, 1975). 

As described by Coleman and Wright (1975) and shown in Figure 5.9, a deltaic 

sequence comprises an upwards-coarsening vertical facies succession from the 

prodelta to the delta front and thence to the delta plain. These facies have 

variations depending on the type of the delta. 

Delta classification 

As mentioned above, deltas can be classified based on the dominant process that 

acts on the coast. Commonly, a tripartite classification of deltas has been used to 

distinguish between them: Fluvial, Tidal or Wave dominated (Coleman and Wright, 

1975). As observed in Figure 5.10 the geometry of a deltaic system depends on 
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the dominant physical process and the sandbodies generated by each deltaic 

system will depend on the geometry of the deltaic system. 

 

Figure 5.9: Conceptual model of a delta lobe. A: Plain view; B: Axis perpendicular cross section; C 

along-axis cross-section. Note the theoretical gamma ray log describing the coarsening upwards 

sequence of a deltaic system (Deveugle et al., 2011). 

 

Figure 5.10: Triangular classification of deltaic systems based on the key depositional processes. 

(From Galloway, 1975). 
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Fluvial dominated (highly constructive) deltas 

In fluvial dominated deltas, prodelta deposits are massive to well stratified muds 

and silts. Delta front facies are mainly composed of sand, which is deposited in 

the mouth bar sub-environment (Figures 5.9 and 5.10). These sands are 

characterised by unidirectional current ripples and cross-bedding or massive 

graded beds (depending on the relation between frictional and inertial processes 

(Martinensen, 1990).  

Figure 5.11 is a representation of the subenvironments associated with fluvial 

dominated deltas. The deltaic plain is composed by distributary channels and 

interdistributary areas. The base of the distributary channel is erosive and their 

sequence is fining upwards or blocky (Miall, 1976). The filling of these channels is 

commonly sand and is reworked by tidal or transgressive processes once the 

channel is abandoned and the distributary channel moves to a new location. 

Areas between distributary channels (interdistributary bay) are filled with overbank 

deposits of fine grain material from the river during flood stages (Miall, 1976). 

 

Figure 5.11: Fluvial dominated delta morphology and stratigraphic column for a Mississippi type 

delta (after Miall, 1976). 



Chapter 5. Sedimentological Description of the Reservoirs History Matched in this Thesis 

124 
 

Tidally influenced deltas 

Figure 5.12 illustrates how the deltaic subenvironments are distributed in deltas 

dominated by tides, as well as the sediment composition in each of these 

subenvironments. Allen (1997) stated that tide-influenced delta fronts have a 

dominant coarsening upward trend, with facies reflecting tidal influence (rythmites, 

herringbone cross-bedding, reactivation surfaces and tidal bundles). Rythmites 

and cyclicity can be developed in the prodelta fine sediments (muds, silts and very 

fine grained sands). Interdistributary areas in tide-influenced deltas can develop 

facies like tidal flats and tidal channels (Allen et al., 1979). 

 

Figure 5.12: Tide dominated deltas, Gulf of Papua Type, morphology and stratigraphic column 

(after (A) Allen, 1997 and (B) Miall, 1976). 

 

Wave Influenced Deltas 

Wave dominated deltas are described in Figure 5.13. This type of deltas 

commonly consists of a series of prograding beach and beach-ridge complexes. 

The delta front is characterized by a continuous coarsening upwards facies 

succession characteristic of a wave dominated shoreface. The prodelta muds in 
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wave-dominated deltas are thinner and sandier than the prodelta muds in fluvial 

dominated deltas (Miall, 1976).  

Interdistributary areas may be completely closed off by barrier/beach complexes in 

wave-dominated deltas, resulting in back barrier lagoons. Deposits in these areas 

tend to be organic-rich. 

 

Figure 5.13 Wave dominated deltas morphology and stratigraphic column. Rhone type Delta (from 

Miall, 1976). 

 

5.5 Summary 

This chapter presented a description of the sedimentological processes that 

generated the sandbodies present within the reservoir case studies used in this 

thesis. As shown in Chapters 6 and 7, the techniques developed in this thesis 

were applied to synthetic reservoirs which feature different depositional 

environments: (1) fluvial meandering settings (Stanford VI Reservoir); (2) deep-

marine channels (DM_Field); and (3) deltaic deposits (Mitare_Field). 

For the Stanford VI reservoir, the facies that are going to be simulated are 

channel, point bars and floodplain deposits. The geometry of the meandering 
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channels is modelled using: meander wavelength, amplitude, channel width and 

thickness. In this chapter the process that generated these deposits were 

described. 

For the deep marine channels a comparison was made between fluvial 

meandering and deep-marine channels, explaining that the processes that 

generated these deep-marine channels were totally different from the process 

associated to fluvial meandering channels. In the DM_Field the deposits 

considered for simulation were channel deposits and deep-marine shale. 

In the case of deltas, the basic processes that generated the three main types of 

deltas are: river current, wave and tide processes. These processes were 

described as well as the geometry of the sandbodies generated by the interaction 

of these processes. 

This chapter has described the geometry of the deposits and sedimentation 

processes of three depositional systems. From this chapter it is possible to select 

the geomorphic parameters of these depositional systems to be used in reservoir 

history matching in the next two chapters. The use of these geomorphic 

parameters in history matching will be described in the following chapters. 
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Chapter 6 

 

Use of Intelligent Sedimentological Prior 

Information in Automatic History Matching of 

Reservoir Models  

 

6.1   Introduction  

The relationships between fluvial channel geomorphic parameters (channel depth 

and width, meander wavelength and amplitude) were modelled using Machine 

Learning Techniques in Appendix E. These models were used as 

sedimentological prior information to control the realism of geobody geometry in 

reservoir models (Appendix E.4 and Rojas et al., 2011). In this Chapter, these 

sedimentological prior models are used to control the geological realism in 

reservoir facies models. These sedimentological prior models were included into 

the automatic history matching process, where the modeller did not have direct 

control on the geobody geometries due to the automation of the process. 

The relationships between different geomorphic parameters, from different 

depositional environments (fluvial meandering, deltaic and deep-marine channel 
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deposits) were modelled using machine learning techniques (MLT). These models 

are used as prior information within the automatic history match workflow (Section 

3.4). The geomorphic parameters are sampled using stochastic sampling (Section 

3.3.2) from the prior models (Section 3.4.4) in the Bayesian framework, and the 

posterior information is updated based on the misfit calculation of the model and 

historic production data of a reservoir. 

The sedimentological prior information was modelled using One-Class SVM, 

which is a classification Machine Learning Technique used to identify a one 

particular class (group of samples with specific characteristics). Therefore, the 

samples that do not belong to such class can be rejected (Section 4.6.3). The idea 

is to model a region composed of realistic combination of geomorphic parameters 

using One-Class SVM. Then, this region acts as a prior to accept  any 

combination of geomorphic parameters that could be considered as geologically 

realistic, assuring then the realism of geometry of the facies in the reservoir 

models. The samples outside the prior region are rejected as unrealistic. 

The reservoir data used in this chapter are synthetic, like the Stanford VI reservoir 

(Castro et al., 2005). The second stratigraphic unit of this reservoir was used as 

the truth case for modelling reservoirs developed in fluvial meandering settings.  

Two other synthetic reservoirs were generated in this thesis to be used as truth 

cases for modelling reservoirs developed in deep-marine (DM_Field) and deltaic 

settings (Mitare_Field). The fluid properties, pressures, relative permeability 

curves and capillary pressures for these two reservoirs were taken from the 

Stanford VI reservoir (Castro et al., 2005). 

 

6.2 Meandering Channel Models (Synthetic case: Stanford VI) 

Meandering channels deposits preserved in the geological record have been 

described by many authors (Allen, 1965, 1983; Bridge and Tye, 2000; Miall, 2006) 

due to the importance they have in prospecting mineral and hydrocarbon 

resources.  
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Rojas et al. (2011) showed examples of modelling the geometry of this type of 

channels using different sets of geomorphic parameters as prior information. 

Rojas et al. (2011) selected combinations of geomorphic parameters that could be 

considered as realistic, based on the compilation of geomorphic information using 

Machine Learning techniques (Appendix E). 

The compilation of geomorphic parameters (channel width and thickness and 

meander wavelength and amplitude) was used in this Section as geological prior 

information within a Bayesian framework for uncertainty quantification and history 

matching in reservoir production and forecasting. 

 

6.2.1 Sedimentological Prior Information 

Sedimentological prior information, for modelling meandering channels, can be 

defined as the knowledge of the natural relationship between channel parameters 

(e.g. channel width and thickness and meander wavelength and amplitude), 

before making a model of meandering channels.  

As observed in Appendix E and in Rojas et al. (2011) Support Vector Regression 

(SVR) is a powerful tool to model the relationships among the channel geomorphic 

parameters. These relationships can be used as prior information for modelling 

channels. 

 

One-Class Support Vector Machine (OC-SVM) 

Another useful technique to identify realistic combination of geomorphic 

parameters is the previously described OC-SVM (Section 4.6.3). OC-SVM is 

capable to identify which combination of geomorphic parameters is realistic and to 

reject any unrealistic combination of parameters. 

OC-SVM has been used not only as a one-class classification technique but is 

also used to distinguish anomalies or novelty detection in new data. 
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Channel geomorphic parameters, channel width and thickness and meander 

wavelength and amplitude, are genetically related (Appendix E) due to the 

hydrodynamics that controls the channel geometry. In order to obtain realistic 

reservoir models, it is necessary to use a realistic combination of all these 

parameters. By using OC-SVM it was possible to generate a four-dimensional 

region that comprises realistic combinations of the channel geomorphic 

parameters. Each of the four geomorphic parameters (channel, width and 

thickness and meander amplitude and wavelength) is a dimension in the 4-D 

space. This region or “cloud” can be used as a prior distribution to sample from 

and generate meandering channel models based on the realistic combination of 

the geomorphic parameters (see Figure 6.1). This yellow “cloud” looks very similar 

to the validity domain obtained using General Regression Neural Networks 

(GRNN) (Appendix E.2.2). The difference between GRNN and OC-SVM is that 

OC-SVM is a classification technique that can identify novelty faster than GRNN 

and can generate probabilistic outputs which is explained in the next sub-section.  

The OC-SVM hyper-parameters used to tune this 4-D “cloud” are shown in Table 

6.1 (page 155). 

One-Class SVM probability output 

The output of a classifier should be a calibrated posterior probability to enable 

post processing. Constructing a classifier to produce a posterior probability is very 

useful in practical recognition situations (Platt, 1999); a posterior probability output 

allows decisions that include uncertainty (Duda and Hart, 1973). One-Class SVM 

does not provide such probabilities. In this thesis, the results of One-Class SVM 

were transformed into a probabilistic form using the methodology proposed by 

Platt (1999). In order to probabilistically generate a “window” that includes part of 

the parameter space that was not included in original One-Class SVM realistic 

“cloud”, this “window” of the parameter space could exist in nature as is part of the 

uncertainty associated to the number of data points used. It is important to clarify 

that the prior information used in this thesis for history matching come from the 

posterior of the SVM classifier as explained above.  
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Figure 6.1: 4D region (cloud) of realistic combination of the channels geomorphic parameters. (a) 

715 data points used to generated the 4D region; (b) In yellow the 4D region or cloud that 

encapsulate the realistic combination of geomorphic parameters; (c) in purple points outside the 

OC-SVM region (Yellow) these purple point are unrealistic combinations of parameters. This 

yellow cloud 

 

Platt (1999) points out that the class-condition densities between the margins in a 

SVM classifier, are apparently exponential. Indicating that Bayes’ rule on two 

exponentials suggests using a parametric form of a sigmoid (eq. 4.32): 

 

     |                   
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Where P(y=1|f)  is the posterior probability (an analytic function of f ) and f  is the 

decision function. This posterior probability obtained from the SVM classifier is 

used to build the intelligent prior information. 

This sigmoid model (eq. 4.32) is equivalent to assuming that the output of an SVM 

is linearization of the posterior probability (Platt, 1999). 

 Figure 6.3 illustrates the methodology used to transform the One-Class SVM 

results into a probabilistic output: 

(1) A series of data points that do not belong to the “one class” was generated 

(purple points) and mixed with the points that belong to the “one class” (points 

inside the yellow region).  

(2) One-Class SVM was used to separate these two classes. The decision values 

generated by SVM were used to be included into the sigmoid function:  

 

                                                                                                                           

 

where: P is the probability, f  are the decision values obtained with the two classes 

SVM classification, parameters A and B were tuned using maximum likelihood 

estimation.  

Decision Value can be defined as the value obtained from the SVM decision 

function (eq. 4.9) in the parameter space, during the SVM classification process. 

(3) The probability used in all the prior models generated in this thesis was 0.1. 

Any point with a probability lower than 0.1 was considered as a point with an 

unrealistic combination of geomorphic parameters.  

The probability of 0.1 is the point where the sigmoid function crosses the decision 

value of 0. It is possible to move this probability “cut-off” in the code in order to 

change the size of the “cloud” of realistic combination of geomorphic parameter. 
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(4) Extend the region of realistic combination of parameters in order to analyse 

uncertainty. 

 

Figure 6.2: Methodology to transform One-Class SVM into probabilistic outputs: (1) Generation of 

a hyper-region of unrealistic and realistic combination of geomorphic parameters; (2) an (3) 

Application of the sigmoid function to the One Class-SVM outputs and (4) obtaining region “cloud” 

of realistic combination of parameters with uncertainty. 

 

6.2.2 Meandering Geometry using Multiple Point Statistics 

As mentioned in Chapter 4, the technique used in this thesis for modelling facies 

is Multiple Point Statistics (MPS).  Chapter 4 demonstrated how the use of MPS  

solves the problems occurring in other techniques. Like object models, Truncated 

Gaussian Simulation (TGS) or Sequential Indicator Simulations (SIS).  In object 

based modelling it is very difficult to adapt the geometry of the objects to the well 

data or to seismic interpretations. While, the models obtained from SIS or TGS 

suffer from the lack of geological realism of the facies geometry (Chapter 2). In 

this thesis the MPS-SNESIM algorithm (Remy et al., 2009) was used to simulate 

the facies distribution within a reservoir grid. As explained in Chapter 2, MPS is 
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based on sampling the facies distributions from a Training Image (TI), and 

populating the model grid considering the facies geometry presented in the TI  and 

conditioned to the well and seismic information.  

In order to generate models with different facies geometries based on a single 

training image, SNESIM has the capability of varying the geometry of the facies in 

the model by modifying the geometry of the training image using the “affinity” 

parameter (Liu, 2006). Figure 6.3 shows the impact of the affinity parameter on 

the MPS realisations. The “affinity” parameter is a combination of three numbers 

(x, y and z), which correspond to each axis of the 3D grid model.   Combination of  

the affinity parameter values, such as (2, 0.5, 1) will generate a model with the 

facies dimensions increased by 2 in the x axis, reduced by 0.5 in the y axis and 

keep the same dimension as the TI in the z axis). 

Figure 6.4 demonstrates that in the case of modelling sinuous channels the 

relationship between the affinity parameter variation and the geometry observed in 

the model is not always a linear relationship. For example, having some sinuous 

channel in a TI, with amplitude of 1000 m and changing the affinity parameter to 2 

in the axis that affect the amplitude will generate a range of amplitudes (1600 - 

2400 m) instead of a single output of 2000 m in amplitude. This is due to the 

template size (small), or the sequential population of the cells.  

The problem in the use of MPS for modelling channelized geometries is in relating 

the physical geometry of the facies in the model, which are measurable 

parameters, to the changes in the affinity parameter, which is the model 

parameter not supported by observation. This problem was solved by designing 

an Multilayer Perceptron (MLP) ANN predictor (Chapter 4) of affinity parameter 

values given the channel geometry based on generated 1500 realizations with 

different  “affinity” parameter based on a single TI, and measuring the variations of 

the channel geometry in them. The obtained results are shown in Figure 6.4.  The 

Multilayer Perceptron (MLP) relates the actual dimensions of the geomorphic 

parameters (channel width and thickness and meander wavelength and 

amplitude) to the SNESIM “affinity” parameter (TI transformation parameter). One 
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of the problems observed in this approach is that, it is very difficult to change 

independently the geomorphic parameters, like channel width and meander 

amplitude (Figure 6.3). However, varying the affinity in the three axes can offer a 

good degree of independency for varying each parameter. A different approach is 

to use multiple training images (Park et al, 2013). Using multiple training images 

with multiple channel geometries allows the selection of the training image that 

better represents the geometry of the reservoir geobodies. 

 

 

Figure 6.3: Variation of channel geometry changing the SNESIM affinity parameter. The variation 

is subject to the effect of the affinity parameter over the Training Image (TI). 

 

Figure 6.5 illustrates the MLP network trained to find the relationship between 

channel geomorphic parameters and variations in the affinity parameter in the x 

axis. The MLP-network has four inputs (geomorphic parameters: channel 

thickness and width and meander wavelength and amplitude) and 3 outputs 

(“affinity” in x, y and z). With this network it is possible to translate the geomorphic 

parameters into affinity parameters and use them as input in MPS to generate 

facies models.  
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Figure 6.4: Different responses of the channel geometry after varying affinity. (a) variation of 

meander amplitude while varying affinity in x; (b), (c) and (d) illustrate the variation of amplitude, 

wavelength and channel width while varying affinity in x and y. Note that the values of the channel 

parameters in the training image are represented in red and in green the values of the parameters 

using affinity 1/1/1. In (b), (c) and (d) the geomorphic parameter is measured in proportions 

referred to the values of the parameter in the training image (i.e. the value of the parameter in the 

model is divided by the value of the parameter in the training image). (e) 4D Plot of the 

combination of geomorphic (channel width and thickness, meander wavelength and amplitude) 

parameters obtained from the perturbed realizations. 
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Figure 6.5: Multilayer Perceptron used to convert geomorphic parameters into affinity parameters, 

this network was built using the data obtained from the simulations varying affinity (Figure 6.2). 

 

6.2.3 Reservoir Modelling and History Matching 

As highlighted in Chapters 2 and 3 and discussed by Arnold (2008), one of the 

main problems faced by geological parameterization in automatic history matching 

is to keep the realism of the facies geometries in reservoir models. 

As discussed in Sections 4.3, authors like Arnold (2008), Rojas et al. (2011) and 

Park et al., (2013) have developed some techniques to use geological prior 

information as a constraint to keep the geological realism of facies geometry in 

reservoir simulations. 

 

 

Table 6.1: Hyper-parameters used in One-Class SVM, after tuning. 

In this chapter, a new approach is proposed: the use of the 4-D region built with 

OC-SVM as prior information that can control realism of the combination of 
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geomorphic parameters. Figure 6.6 shows a workflow illustrating the idea of using 

the realistic 4-D “cloud” to reject combinations of geomorphic parameters that are 

unrealistic, accepting only the combination of parameters that are within the 

“cloud”. The selected realistic combination of parameters is used to generate 

facies models of meandering channel deposits. These facies models are then 

used to generated reservoir and fluid flow models, and history match these 

models in order to select the best match models, to predict the behaviour of the 

reservoir. 

 

 

 

Figure 6.6: Workflow for History matching, illustrating the use of a region of realistic combination of 

geomorphic parameters (yellow region) as the probability density function to sample (Geological 

Priors) and build the reservoir model. Purple points are unrealistic combinations of geomorphic 

parameters. 
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Truth Case 

In order to apply this methodology, a synthetic reservoir, composed of meandering 

channel deposits was used as the reference case (Truth Case). The advantage of 

using a synthetic case is that the internal geometry of the sedimentary facies is 

known as well as the production history. In this example the second stratigraphic 

unit of the Stanford VI synthetic reservoir (Castro et al., 2005) was used as the 

truth case (see Table 6.2 for the reservoir properties). Stanford VI has 29 wells, 11 

injectors and 18 producers. The facies present in this reservoir were channel, 

point bars and floodplain deposits and the petrophysical properties (porosity, 

vertical and horizontal permeability were assigned as constant for each facies 

(Table 6.3) in order to observe only the effect of varying facies geometry on the 

history matching results. Figure 6.7 is a 3D visualization of the Stanford VI 

synthetic reservoir, specifically the second stratigraphic unit. This stratigraphic unit 

was built by process based modelling using the software SBED (Castro et al., 

2005). The characteristics of the channel geomorphic parameters are shown in 

Table 6.4. Synthetic seismic data are available for Stanford VI to generate soft 

conditioning for each facies.  

 

 

Table 6.2: Reservoir Properties of the Stanford VI (Castro et al., 2005). 
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Figure 6.7: 3D representation of the “Truth Case”, the second stratigraphic unit of the Stanford VI 

reservoir (Castro et al., 2005). Reservoir developed in a fluvial meandering system, with three 

facies: Floodplain, Point Bars and Channels. 

 

 

Table 6.3 Petrophysical properties for each sedimentary facies 
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Table 6.4 Channel Geomorphic Parameter Properties (Truth Case). 

 

Automatic history matching: 

In this thesis the software RAVEN developed by Epistemy Ltd. 

(www.epistemy.com) is used for automatic history matching. Table 6.5 presents 

the characteristics to set up the history match process, where the variables to 

measure are field oil production rate (FOPR), field water production  rate (FWPR), 

wells production and pressure, and the sampling algorithm was Particle Swarm 

Optimization PSO (Section 3.3). PSO samples from the parameter ranges shown 

in Table 6.5. The selected combination of the parameter values is compared with 

the OC-SVM prior information model. If the combination of the parameter values is 

not within the “cloud” of the realistic combination, then it is considered as 

unrealistic and its is penalised with a very high value to  avoid its use in the 

forecasting. Thus, unrealistic models are not inferred in forecasting. 

The fluid flow simulator used in this thesis is the black oil simulator Eclipse 100 

from Schlumberger; the production time was set as 2000 time steps (days). Figure 

6.8 is a summary of the Field oil and water production profile of this reservoir 

(Truth Case), within a production interval of 2000 days. 

http://www.epistemy.com/
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Figure 6.9 shows relative permeability and water saturation curves used in the 

fluid flow simulation. These curves were taken from the Stanford VI synthetic 

reservoir (Castro et al,. 2005) and capillary pressure (Pc) was considered 0.00. 

 

 

 

Table 6.5: History Match set up for Meandering Channel Reservoir 
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Figure 6.8: Oil and water production profile of the “Truth Case”. 

 

 

Figure 6.9 Relative Permeability curves. Stanford VI Reservoir (Castro et al., 2005) 

 

An ensemble of 1000 models was generated with PSO for this case with misfit 

calculated using a Least Squares misfit function (equation 3.1). 

As shown in Figure 6.6 the workflow for history matching starts by selecting a 

combination of channel geomorphic parameters (channel width and thickness and 
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meander wavelength and amplitude, the ranges of the geomorphic parameters are 

shown in Table 6.5). This combination is compared to the 4D “cloud” of realistic 

combination of parameters obtained in with OC-SVM. If the selected combination 

of parameters is inside the 4D “cloud” then the model will be geologically realistic 

otherwise the model will be rejected. If the combination of geomorphic parameters 

is considered realistic, then they are used as input in a Multilayer Perceptron 

(MLP) network to generate their equivalent in the MPS-SNESIM “affinity” 

parameter (as explained in Section 6.2.2) and then introduced into the SNESIM 

input parameters. 

MPS simulations are based on a training image, specifications given in Figure 

6.10, well data and seismic conditioning. Then the facies model is populated with 

constant petrophysical properties for each facies as previously described in Table 

6.3. The model is taken to the flow simulator and the results are history matched. 

 

Figure 6.10: Input data for MPS Simulation using SNESIM: (a) Training Image with table specifying 

channel geomorphic parameters; (b) Well Data (Facies); (c) Seismic Data used as soft 

conditioning data. 
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Settings for uncertainty analysis in production forecast 

After history matching, NA-Bayes (Sambridge, 1999b) was used to infer the 

uncertainty for production forecast (Section 3.4.2). The parameters for setting up 

NA-Bayes are described in Table 6.6. 

 

6.2.4 Results 

Figure 6.11 shows the convergence behaviour to a lower misfit during the history 

match process considering misfit and iterations. There were 126 iterations 

rejected as unrealistic, the lowest misfit was reached after 223 iterations and more 

history matches of similar quality were generated thereafter. 

 

Table 6.6: NA-B set up for forecasting and uncertainty quantification. 

 

Figure 6.11: Misfit vs Iteration. In the zoom, it is possible to observe a convergence trend during 

the history match process. 
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Figure 6.12 compares the truth case geomorphic parameters and the parameters 

corresponding to the models with the lowest and the highest misfits, and an 

example model obtained with an unrealistic combination of parameters. 

 

Figure 6.12: Comparison between models and truth case geomorphic parameters: (a) Truth Case; 

(b) Model with the highest misfit and realistic combination of parameters; (c) Model with the lowest 

misfit and realistic combination of parameters. (d) Model rejected because of the unrealistic 

combination of parameters. The misfit associated to models (b) and (c) can be located in the plot 

Misfit vs iteration. The averages of the parameters are shown for every model T: Channel 

thickness; W: Channel Width; Wl: Meander wavelength; A Meander Amplitude. Facies: FF: Flood 

Plain Facies; LA: Point Bar Facies; CH: Channel Facies. The dimensions of geomorphic 

parameters in the models were manually measured, using the measurement distance tool in 

Petrel. 

 

Figure 6.12 shows that the dimensions of the geomorphic parameters of the 

realistic model with the lowest misfit (c) are closer to the dimensions of the 
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parameters of the “truth case” than the other models. In the case of the unrealistic 

model (d) the channel thickness value was considered as unrealistic  given the 

corresponding  channel width, meander amplitude and wavelength. 

Figures 6.13 and 6.14 illustrate the difference of history matching the Stanford VI 

reservoir considering the sedimentological prior information model generated 

using OC-SVM (Section 6.2.2), and the models obtained using flat priors (ranges 

in Table 6.6). 

 

 

Figure 6.13: Comparison between history matching and forecasting models using intelligent 

geological prior information and models generated using flat priors. 

 

From Figure 6.13 (Top) it is possible to observe that, when using intelligent priors, 

there is a trend for convergence of the match quality that is not seen in the case of 

using flat priors. The lowest misfit was reached twice faster in the case of 
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intelligent priors (realistic model #223) than in the case of using flat priors (model 

#586). In the forecasting of Field Oil Production Rate, the range of P10-P90 is 

lower in the case of realistic prior information than in the case of flat prior which 

suggests a reduction in uncertainty when using intelligent prior Information. 

 

 

 

Figure 6.14: Comparison between history matching and forecasting Well Oil Production Rate 

(WOPR) in some wells of the Stanford VI synthetic reservoir, using intelligent sedimentological 

prior information and models generated using flat priors. 
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Figure 6.14 shows the oil production rate history match and forecast of the wells 1, 

5 and 12 from the Stanford VI synthetic reservoir. This is a comparison between 

oil rate production response of the models generated using intelligent 

sedimentological prior information and flat priors. In general, the range P10-P90 of 

the well oil production rates (WOPR) in models generated using intelligent prior 

information is smaller than the range P10-P90 of the models using flat priors. 

Another important aspect is that the P50 curve is closer to the history data of the 

model with intelligent sedimentological priors than the models that used flat prior 

information. 

Time consumed in the processes of history matching and forecasting for models 

using intelligent sedimentological prior information and uninformative prior is 

presented in Table 6.7. The use of intelligent priors reduced the time spent in 

history matching and forecasting. It is clear from Figure 6.13 that the history 

matching process converges faster when using intelligent sedimentological prior 

information.  

 

 

 

Table 6.7: Time consumed in the processes of history matching and forecasting for models 

generated using intelligent sedimentological prior information and models generated using 

uninformative priors, time is measured in hours (hs). 

 

It is important to mention that these experiments were performed in a desktop 

work station of 32 GB RAM and 1T Hard Disk Memory, performing these 

experiments in a cluster will speed-up these processes. 
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The Gibbs sampler (Sambridge 1999b) was used for forecasting, 26 models were 

resampled for the case of uninformative priors and 21 models were resampled for 

the case of using “intelligent” prior information.  

Figure 6.15 shows that the models with geomorphic parameters dimensions closer 

to the “truth case” values were generated using “intelligent” priors. The ranges of 

values for each geomorphic parameter are narrower when using realistic prior 

information than when using uninformative priors. 

Figure 6.16 illustrates in 4-D space the differences in shape of the intelligent prior 

information (yellow) and the region obtained with the 21 models resampled in red 

(posterior) after forecasting. Figure 6.15 suggests that the choice of prior is 

important, since sampling with uninformative prior is not able to find best models.  

 

6.3 Deep Marine Channels (Synthetic Reservoir) 

Deep marine channel deposits preserved in the geological records are excellent 

reservoir rocks (Wonham et al., 2000, Posamentier and Kolla, 2003). As described 

in Section 5.3 the geometry of deep marine channels is very similar to fluvial 

meandering channels (Figure 5.5), although their origins are completely different.  

Sedimentological prior information for deep marine channels was used in order to 

include “intelligent” prior information into the automatic history match process. In 

this section, a model of the prior information related to the geometry of deep 

marine channels was developed and used for generating facies models of a 

reservoir developed in a deep marine environment. 
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Figure 6.15: Geo-parameters of the models using Intelligent and “flat” priors and compared to the 

“truth case” value (Red dashed line). 
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Figure 6.16: Comparison between the shape in 4-D of the Prior information (yellow) and the 

posterior (red). Am= amplitude, Wa= Wavelength, Th=Thickness and Wi= Width. 

 

The truth case for this example is a synthetic reservoir built based on the work of 

Wonham et al. (2000), where the geometry of the channels deposited in a deep 

marine conditions and the relationships among the geomorphic parameters of 

these channels were described. This synthetic reservoir, called DM_Field, is 

composed by sandy channels and deep marine muddy deposits. The reservoir 

rocks are represented by sandy deposits, while the muddy deposits generate seal 

and permeability barriers between channels. 

 

6.3.1 Prior Information 

As observed in Figure 5.5, deep marine channels develop meander like geometry 

but, contrary to most of the fluvial meandering channels the coarse grained 

deposits are related to the channels and not to the point bars. 
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The prior information model built for fluvial meandering channels in Sections 6.2.1 

were based on the geomorphic parameters: channel width and thickness and 

meander wavelength and amplitude. The same set of parameters can be used as 

well to describe the geometry of deep marine channels. As was explained in 

Chapter 5 meandering channels and deep marine channels are formed under very 

different physical conditions and by very different sedimentological processes. 

Therefore, the relationships between the geomorphic parameters vary for different 

depositional environments. 

Figure 6.17 highlights the geomorphic differences when plotting together channel 

geomorphic parameters of meandering fluvial channels and deep-marine 

channels. The dimensions of the geomorphic parameters of fluvial meandering 

channels and deep marine channels overlap in a wide area, whereas, there is a 

clear difference between the geometry of fluvial meandering channels and deep 

marine channels towards the extremes. Prior information models for deep marine 

channels were generated with data from actual deep-marine channel deposits, 

taken from seismic interpretation and outcrops. Appendix B includes all the 675 

data points obtained from the literature that was used to build the prior information 

models for deep marine channels used to build the prior distribution model. 

As was explained in section 4.4, some data sets were incomplete (i.e they have 

missing data-points). This problem was solved by using semi-supervised learning 

(see Section 4.4.1). The geological priors for deep marine channels were 

modelled then using OC-SVM, the same technique used to model the prior 

information for fluvial meandering channels (Section 6.2). The hyper-parameters 

selected after tuning the OC-SVM are shown in Table 6.8 
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Figure 6.17: Channel dimension comparison between fluvial meandering and deep-marine 

channels. In red data points measured in deep marine channels and in blue data from fluvial 

meandering channels. Data collected from publications related to outcrop description and seismic 

analysis (Appendix B). 

 

6.3.2 Reservoir Modelling  

A synthetic reservoir (DM-Field) with facies geometry reflecting the description of 

deep-marine channels of the Balliste-Crécerelle Canyon Fill (Wonham et al., 

2000) was used to demonstrate the application of informative priors in HM). 
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Table 6.8: Hyper-parameters selected to model the geological prior information using One-Class 

SVM. The values of A and B for the use of the sigmoid function to control the probabilities in One-

Class SVM are shown in this table. 

 

A 3D representation of this reservoir is presented in Figure 6.18. The reservoir 

data are presented in Table 6.9.  

 

 

Table 6.9: DM_Field reservoir and “truth case” model properties. 
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The reservoir sedimentary facies in the DM_Field were generated using 

unconditional object modelling with sinuous channels. There are basically three 

facies in this reservoir (1) pre-canyon deep marine pelagic and hemipelagic 

shales, (2) muddy channel levees and canyon fill pelagic shales, and (3) Deep 

marine channel sandy deposits (Figure 6.18).  Table 6.10 shows the dimensions 

of the deep-marine channel geomorphic parameters in the DM_Field. 

 

 

Figure 6.18: 3D representation of the DM_Field and the facies model of the Balliste-Crécerelle 

Canyon fill (Whonham et al. (2000). 
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Table 6.10: Deep-Marine channel geomorphic properties in DM_Field reservoir. 

 

Petrophysical properties for these facies were set constant for each facies to 

analyse the effect of varying facies geometries on history matching processes, 

and avoid a smearing effect possibly introduced by the variation of the 

petrophysical properties. Table 6.11 shows the relationships between sedimentary 

facies and petrophysical properties. 

 

Table 6.11: Petrophysical Properties associated to Deep Marine Facies in DM_Field. 

 

Fluid properties and reservoir properties were taken from the Stanford VI synthetic 

reservoir (Castro et al., 2005), see Table 6.10 for more detail and Figure 6.8 for 
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relative permeability curves. Capillary pressure was set to zero like in the Stanford 

VI case. 

 

6.3.3 History Match and Uncertainty Quantification 

The idea of history matching this reservoir is to evaluate the changes in facies 

geometry within a realistic geology (similar to Section 6.2). The input parameters 

for the facies simulations in MPS are shown in Figure 6.19: a training image 

generated using unconditional object based modelling, 15 wells for hard data 

conditioning and seismic data for soft conditioning. Facies proportions were set as 

pelagic shale canyon fill 65% and deep-marine channel sands 35% as described 

by Wonham et al. (2000) for the Balliste-Crécerelle Canyon facies model. 

 

Figure 6.19: Input Data for modelling Deep-marine facies using MPS: Training Image with their 

characteristics (geomorphic parameters dimensions) and hard and soft conditioning data, well data 

(Facies logs) and seismic information respectively.  
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The history matching setup is presented in Table 6.12, the Misfit was estimated 

using the Least Squares function (equation 3.1). In this case the data to match 

were: oil and water field production rates (FOPR and FWPR) as well as pressure 

and production rates (WBHP, WOPR and WWPR) for injector and producer wells. 

The sigma error of the production data was set to 200 STDBPD. The production 

data are for 600 days. 

 

Table 6.12: Automatic history matching setup for DM_Field. 

 

Uncertainty quantification and production forecast. 

NA-B (Sambridge, 1999) was used to generate the forecast of this reservoir based 

on the history match results (Chapter 3). The setup of NA-B is shown in Table 

6.13. the period for forecasting was of 600 days more than the history matching 

production days, which means a total of 1200 days. 
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Table 6.13: NA-B setup for production forecast and uncertainty quantification in DM_Field. 

 

6.3.4 Results  

Figure 6.20 shows the results of history matching and forecasting DM_Field using 

“intelligent” and uninformative geological prior information. Using the same 

workflow as proposed in Figure 6.6 the “intelligent” prior information rejected the 

models that were going to be built using unrealistic combination of geomorphic 

parameters. In this case 156 out of 1016 models were rejected by the use of 

intelligent prior information.  

 

Figure 6.20: Comparison of the history-match process and forecasting production rate for the 

DM_Field using “intelligent” prior information and uninformative priors.  
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In Figure 6.20 (top) it is possible to observe that the history-match process 

converges faster to the lower misfit values using intelligent priors than using 

uninformative priors, just like it was observed in the case of fluvial meandering 

channels in Section 6.2. It is also possible to observe the reduction of uncertainty 

in the forecasted field oil production rate by using intelligent priors (see Figure 

6.20 bottom). Figure 6.21 shows a comparison between the values of the 

geomorphic parameters obtained using “intelligent” and uninformative prior 

information vs the corresponding model misfit. 

 

Figure 6.21: Comparison of the plots Parameter vs Misfit related to the models generated using 

intelligent and uninformative geological prior information. 
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From Figure 6.21 it is clear that the models with the lowest misfit generated using 

“intelligent” priors have the geomorphic parameter values closer to the truth case 

than the models generated using uninformative priors. 

The duration of the history match and forecasting processes for the models 

generated using intelligent sedimentological prior information and the models 

using uninformative priors are presented in Table 6.14. Although, the duration is 

similar in both cases (intelligent and uninformative priors) it is clear that there is a 

reduction in time when using intelligent prior information. As mentioned before, it 

is important to highlight that these experiments were performed in a desktop work 

station of 32 GB RAM and 1T Hard Disk Memory, performing these experiments in 

a cluster will speed-up these processes. 

 

 

Table 6.14 Time used in the processes of history matching and forecasting for models generated 

using intelligent sedimentological prior information and models generated using uninformative 

priors, time is measured in hours (hs). 

 

Figure 6.22 illustrates the differences of the facies geometry obtained from 

different models with realistic combination of geomorphic parameters and their 

misfits, for the models obtained using flat geological priors compared to the truth 

case. The facies geometry of the model with the lowest misfit obtained using the 

intelligent prior information (Fig. 6.22 a) is very similar to the truth case (Fig. 6.22 

b). In this case one of the models generated using flat priors (Fig. 6.22 d) had the 

lowest misfit, however the combination of its geomorphic parameters was 
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considered as unrealistic. This shows the risk that using uniform priors can 

generate unrealistic models that can, however, still match history. 

 

Figure 6.22: 3D Facies distribution in models of the DM_Field. (a) Model with the largest misfit 

using intelligent Prior Information; (b) Truth Case (c) Model with the lowest misfit using intelligent 

Prior Information and (d) Model with the lowest misfit using uniformative Prior Information. 

6.4 Deltaic Reservoir (Mitare_Field) 

Ancient deltas are economically important because they are commonly associated 

with coal, oil and gas resources (Whateley and Pickering, 1989). That is why 

deltas have been deeply studied (Bhattacharya and Walker, 1992). Many 
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hydrocarbon reservoirs have been developed in ancient deltaic sequences 

preserved in the geological record (Helland-Hansen et al., 1989; Brown and 

Richards, 1989) 

In this section, a synthetic deltaic reservoir is used to history match and forecast 

its production behaviour, varying geomorphic parameters within a realistic domain. 

This synthetic reservoir is called Mitare_Field since the geometry and facies 

distribution was based on the observation of the Mitare river delta, which is a 

relatively small modern delta developed on the western part of Venezuela 

described by Rivas et al., (1997). 

Sedimentological prior information for deltaic deposits was modelled using the 

same technique used to model the sedimentological prior information for fluvial 

meandering channels (Section 6.2) and for deep-marine channel facies (Section 

6.3). These sedimentological prior models were used to keep the realism of the 

facies geometry within the reservoir models produced whilst history matching for 

uncertainty quantification.  

 

6.4.1 Sedimentological Prior Information 

The deltaic geomorphic parameters collected for modelling the prior information to 

control the facies geometry of a deltaic reservoir model, were taken from 210 

observations of modern deltas. The geomorphic information was based on 

measurement of the main deltaic sub-environments: delta plain and delta front. In 

this case, prodelta deposits were considered as composed only by shale and no 

geomorphic measurements were taken from this sub-environment. Table 6.15 

shows the geomorphic parameters used to build geological prior models. 

Appendix C includes all the geomorphic measurements of the delta facies used 

and their sources. 
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Table 6.15: Geomorphic parameters used to model the deltaic sedimentological priors 

 

Figure 6.23 is a compilation of 2D plots showing the relationships between all the 

deltaic geomorphic parameters considered in this thesis to build the geological 

prior models. From these plots one can infer a direct relationship among most of 

the geomorphic parameters, which indicates that the hydrodynamic conditions that 

govern the flow of water and sediments in a deltaic system control as well the 

geometry of the different deltaic sub-environments. This observation allows the 

generation of only one region of realistic combination of geomorphic parameters 

using OC-SVM (Chapter 4). The regions for the realistic prior were created for 

fluvial meandering and deep-marine channels in a similar way as in the previous 

section. In the case of deltaic systems the region of realistic combination of 

geomorphic parameters is within a nine-dimensional space. Each dimension 

corresponds to a geomorphic parameters for one of the sub-environments: (delta 

plain: width, thickness and length; distributary channels: width, thickness, 

sinuosity; mouth bar: width, thickness and length). The values of the One Class 

SVM hyper-parameters to develop the region of realistic combination of 

parameters are shown in Table 6.16. 
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Figure 6.23: 2D Plots of the relationships between delta geomorphic parameters 
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Table 6.16: One-Class SVM hyper-parameters used to model realistic prior information for deltaic 

facies geometry. 

 

 

6.4.2 Delta Geometry using MPS 

Like in previous examples (Sections 6.2 and 6.3) the reservoir facies modelling for 

the deltaic reservoirs was performed using Multiple Point Statistics. One way of 

modelling sedimentary environments composed by facies with different 

geometries using MPS is generating regions inside the modelling grid (Remy et 

al., 2009) and associating these regions to a specific training image. 

Figure 6.24 shows that, in the case of the deltaic facies, the simulation grid was 

separated into 6 regions, regions 1 and 5 are part of the coast surrounding the 

deltaic plain, sediments that come from the river are reworked and deposited by 

shoreline currents and waves along the coast, so a training image of beach ridges 

facies is used for regions 1 and 5. Regions 2, 3 and 4 are part of the deltaic plain 

where the development of distributary channels is the main characteristic. The 

shape of the distributary channels is controlled by a training image with sinuous 

channels. Variation on the affinity parameter (Section 2.3.3) controls the width, 
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thickness and sinuosity of the distributary channels. Region 6 is associated with 

the deposition of the mouth bars in the deltaic front, a training image with oval-

shaped bodies represent the sandy deposits of mouth bars. It is necessary to 

highlight that in a deltaic progradational process, mouthbar sandy deposits will be 

connected, generating a finger-shape sand body for each mouth bar/channel. 

Variation of the geometry of this facies within each region is controlled by the 

intelligent priors modelled using OC-SVM. 

 

Figure 6.24: Grid regions and training images used for facies models of deltas. 

 

As observed in Figure 5.10 the geometry of the delta system depends on the 

sedimentological processes that interact in the area where the delta is developed. 

Varying the shape of the training image in SGeMS (Remy et al., 2009) was the 

way to model automatically the variation of the delta system geometry. Figure 6.25 

illustrates how the variations of the training image geometry can reproduce 

different geometries of deltaic systems. 
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Figure 6.25: Geometry variation of the simulation zones will allow reproduction of different delta 

geometries. If increasing dimensions in X of the grid would generate geometries similar to cuspate 

deltas dominated by waves; increasing dimension in axis Y will generate elongated deltas which 

can be associated to deposits of deltas dominated by rivers. Generating coast-parallel channels 

would be challenging using this methodology, an extra modelling channel geometry code must be 

written to allow channels run parallel to the coast. 

 

6.4.3 Reservoir Modelling and History Matching 

The truth case used in this example was a synthetic reservoir developed in a 

deltaic environment and the model was built based on the geometry of a modern 

delta developed in the western part of Venezuela, the Mitare River Delta (Rivas, et 

al., 1997). The Mitare River delta was originally a cuspate delta (Section 5.4.1) 

which had developed beach ridges associated with the effect of the waves over 

the coast and the river mouth (Rivas et al., 1997). (Section 5.4.1). After changing 

the hydrological conditions on the coast, the Mitare River delta was transformed 
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into a fluvial dominated delta (Section 5.4.1), the distributary channels eroded part 

of the beach ridges deposits and the delta plain prograded (Rivas et al., 1997). 

The geomorphic parameters that vary in the automatic history match process are 

separated in two main steps; the first step is related to the variation of the 

geometry of the main sub-environments: delta plain and delta front and the 

second step is based on the variation of the facies geometry and proportion inside 

every sub-environment. As was shown in Figure 6.23 all the deltaic geomorphic 

parameters used here are genetically related, by using OC-SVM it is possible to 

select only realistic combination of these parameters. 

Tables 6.17 and 6.18 compile the information about the truth case Mitare-Field 

and the settings for the automatic history match process respectively. Figure 6.26 

is an image of the Mitare-Field (Truth Case) showing the Facies distributions and 

the different subenvironments present in this synthetic reservoir, as well as the 

dimensions of the geomorphic parameters of this deltaic system. Fluid and 

reservoir properties are the same used for the Stanford VI synthetic reservoir 

(Castro, et al., 2005).  

 

Settings for uncertainty in production forecast 

The set-up of the production forecasting and uncertainty quantification was very 

similar to the one use in sections 6.2 and 6.3 (Table 6.19). 

 

6.4.4 Results 

In this section facies proportions were included as geological parameters for 

history matching.  Figure 6.27 is a comparison of the history matching results 

obtained in the case of using the 9 geomorphic parameters of deltaic facies and 

the case of including facies proportions within the history-match process.  
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Figure 6.26: Mitare Synthetic Reservoir, with the current location of the Mitare river delta in 

Western Venezuela. Images of Mitare River Delta were taken from Google earth 2012. Beach 

ridges are highlighted in red and mouthbars in yellow on the Mitare satellite image. 

 

We can observe that, when facies proportions are included as parameters, the 

history match process converges slower than in the case of using fixed facies 

proportions. This is due to the increment in the number of dimensions of the 

parameter space. Increasing the dimensions of the parameter space requires 

more models to explore a larger space. It is important to highlight that in both 

cases of this study (fixed and variable facies proportions) the number of models 

rejected by the use of “intelligent” prior information were similar in both cases: 177 

and 187 for fixed and variable facies proportion respectively. 
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Figure 6.27: Effect of including facies proportions as a parameter in the automatic history-match 

process: Plots of Misfit vs Iteration (and zoom in the range of the lowest misfits) in the history 

match process. A) Using fixed facies proportions; B) Including uncertain facies proportions as 

additional geological parameter for history-matching. Within the red rectangle are the models 

rejected by the use of intelligent prior information. History matching with uncertain facies 

proportions (B) converge slower than the when the facies proportions has been fixed (A), since 

including facies proportions increases the dimensions of the parameter space. 
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Table 6.17: Reservoir Properties Mitare Field. 

 

Figure 6.28 is a comparison between the forecasting of the Mitare_Field reservoir, 

considering fixed and variable facies proportions as a geological parameters. It is 

possible to observe that the uncertainty increases when facies proportions are 

included in the history-match process. Increasing the number of parameters to 

sample increases the dimensions of the parameter space. In this case, if 5 

proportion parameters for each facie are included in the history match framework 

(Table 6.18), results in a larger uncertainty in forecasting compared to the case 

that considers the facies proportions being fixed. Reducing the ranges of facies 

proportion by using “intelligent” prior information would make the sampling 

process more efficient.  
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Table 6.18: History Match setup for Mitare Field. 

 

Table 6.19: Forecasting NA-B setup for Mitare Field. 
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Figure: 6.28 Comparison of forecasting and uncertainty quantification between (A) the case of 

fixed facies proportions and (B) the case of varying proportions. It is clear that in the case of the 

Mitare_Field reservoir, P10-P90 ranges were wider than P10-P90 ranges in other cases (DM_field 

and Stanford VI) this is due to the fact that Mitare_Field does not have seismic data to condition 

facies simulation. 

 

Figure 6.29 illustrates some of the parameters associated with the lowest misfit 

models obtained through the process of automatic history-matching for the study 

cases using fixed (blue points) and variable (red points) facies proportions. 

In Figure 6.29 values of delta plain length and mouth bar width seem to be 

trapped in a local minimum away from the truth case value. This is due to the fact 

that the geomorphic parameters like Delta Plain Length and Mouth bar width have 

relatively large dimensions and a high connectivity. These local minima generate 

models whose facies geometry does not produce big changes in the reservoir 

model fluid flow. 

Figure 6.30 (A) compares the geomorphic parameters of the truth case and the 

geomorphic parameters obtained in the models with the lowest misfit, for fixed 

facies proportions (Case A) and variable proportions (Case B). Figure 6.30 (B) 

compares the facies proportions obtained in the models with the lowest misfit and 

the truth case (only for Case B). Figure 6.30 shows that the parameters obtained 

in the models with the lowest misfit are very similar to the parameters in the truth 

case apart from the proportions in Zone 2.  
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Figure 6.29: Plots of geomorphic parameters vs misfit, comparing results obtained with fixed (blue 

points) and variable (red points) facies proportions. Dashed red lines are the truth case values. For 

fixed facies proportions we can observe that the values of the geomorphic parameters try to 

converge towards the truth case value, with the exception of the delta plain. This can be due to the 

fact that in a delta plain with these dimensions (5400 m length) it is possible to develop very similar 

deltaic deposits to the deposits generated in a delta plain with a  length of 4500 m (truth case). In 

the case of variable facies proportions, the values of the geomorphic parameters converge far from 

the truth case value; this can be due to the necessity of more models in order explore the 

parameter space and escape from the local minimum.  
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Figure 6.30: Differences between geological parameters of the truth case and the models with the 

lowest misfit. (A) Geomorphic parameters Case A is for models with fixed facies proportions and 

Case B is for models with variable facies proportions; (B) is only for models with variable facies 

proportions; (C) Models with the lowest misfit: Model 834 of fixed facies proportions and Model 923 

of variable proportions. 

 

6.5  Summary 

In this chapter it was shown how to include the geological prior information on 

different depositional environments within the history matching workflow. The 

depositional environments modelled in this chapter were: meandering fluvial 

channels, deep-marine channels and deltaic deposits. 

There were generated geological prior distribution models for each of these 

environments. The prior models were built using One-Class SVM, a machine 

learning technique that is used to detect novelty and one-class classification. 
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The workflow for automatic history matching begins by selecting a combination of 

model parameter values and these parameters are compared to the “intelligent” 

priors. If the combination of the parameter values is considered as realistic, then 

the model is generated stochastically, flow simulated and history matched. If the 

combination of the parameters is considered as unrealistic, then the model is 

rejected and a penalty misfit value of 1,000,000 is assigned to this model to 

mitigate its impact in the inference for the forecasting.  

The use of intelligent prior models allowed the rejection of models that were going 

to be generated using an unrealistic combination of geological parameters, which 

saved computing time. It was observed that the when using “intelligent” geological 

priors the history match process converges faster than when using uninformative 

priors, since the algorithm tends to sample from the reduced parameter space 

controlled by the realistic combination of geological parameters (Sections 6.2 and 

6.3). 

It was experienced in Section 6.4.4 (Figure 6.28), that adding extra parameters 

(facies proportions) to the history-matching workflow increases the parameter 

space and then the exploration of this space results in the increase of the number 

of iterations to achieve the history-match. 

It is necessary to mention that, the Mitare_Field result showed a good 

improvement in the automatic history match process like: (1) automatically varying 

the geometry of the deltaic system and (2) modelling different facies in the same 

reservoir (channels, mouth bar, shale and beach ridges). However, the geometry 

of some of these facies (e.g. mouth bars) and the spatial relationship between 

facies (distributary channel- beach ridges) should be improved, in order to obtain 

more realistic models. 
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Chapter 7 

 

Improvements in the Workflow for 

Reservoir Facies Modelling in Automatic 

History Matching 

 

7.1   Introduction 

The workflow for automatic reservoir history matching proposed in this thesis 

(Chapter 6) suggested the use of intelligent prior information to control the realism 

of the uncertain geobodies’ geometry in the reservoir models. The use of 

intelligent priors reduced the number of models generated to reach a desired 

production fit quality in history matching process. This reduces the computational 

time and guarantees that all the models obtained during the automatic process of 

history matching feature realistic combination of geomorphic parameters. 

However, some issues in history matching arose from the results obtained in 

Chapter 6. The three main problems observed addressed in this chapter using 

different techniques are: 
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(1) uncertainty of the geological scenario; (2) variation of the facies proportion; 

(3) connectivity variation across stochastic realisations. 

(1) One of the largest uncertainties in reservoir models is the interpretation of 

the sedimentary environment. A mistaken interpretation of a depositional 

environment could mislead the facies and petrophysical distribution in a 

reservoir model. In Multiple Point Statistics approach the conceptual 

geological scenario of a reservoir model is represented by a Training Image 

(Chapter 3). Finding a way to use multiple training images or multiple 

sedimentological interpretations of a model gives the opportunity to 

consider different interpretations and allows the workflow to find the 

interpretation(s) that best matches the production history of a reservoir. 

(2) Another important point is the vertical variation of facies proportions. 

Including the vertical variation of facies proportions within the automatic 

history-matching workflow (Chapter 2) will help in the interpretation of how 

the facies distributions vary vertically within the reservoir. 

(3) History matching individual well production is a challenge; in fact this is one 

of the most common problems found in automatic history matching. In this 

thesis, the main reason for this problem has been associated with the 

connectivity of the facies bodies. In this chapter, a simple technique that 

measures the facies connectivity is proposed. This technique can easily be 

included into the automatic history matching workflow and used to select a 

facies model from multiple realizations, based on a criterion related to the 

expected facies connectivity of a reservoir. 

 

7.2 Multiple training images - an internal parameter in MPS 

One of the major uncertainties in reservoir modelling or more specifically in facies 

modelling is the interpretation of the depositional environment (Chapter 1). The 

interpretation of a reservoir depositional environment has an enormous impact on 

reserves estimation and on estimating the tortuosity of the fluid flow in a reservoir 
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model. A reservoir developed in a fluvial-dominated deltaic environment has a 

different distribution of reservoir facies than a reservoir developed in sandy 

shoreface settings, which implies differences in fluid accumulations and fluid 

production behaviour. 

Availability of the data for depositional environment interpretation always has been 

an issue in reservoir characterization. Lack of reliable data for sedimentological 

interpretation inflates uncertainty of the reservoir description and modelling. 

Depositional environment interpretation of a reservoir based on outcrops 

description is always risky, since sedimentary facies may vary from outcrops to 

the reservoir; thus, one could be generating a facies model very different from the 

actual reservoir facies distribution. If the sedimentological interpretation is based 

on core description the risk of a misinterpretation could be related to the lateral 

extension of the facies. Cores are partially continuous vertical rock samples that 

have a diameter no larger than 6 inches, which gives plenty of space to introduce 

uncertainty within the lateral extension of facies. Based on expert criteria and with 

the use of other data if available, (palaeontology and high resolution seismic 

attributes) the uncertainty in facies interpretation could be reduced.  

As discussed in Chapter 2, MPS is a geostatistical technique based on a training 

image. In facies modelling using MPS, the training image represents a geological 

concept of the facies distribution. Training images could be based on modern 

depositional environments, object based models, high resolution seismic or 

process based simulations (Chapter 2).  

The use of multiple training images in the automatic history matching process 

could give a new insight to the problem of the facies interpretation and modelling. 

Since a training image is a geological concept, if it is possible to consider different 

geological concepts (i.e. sedimentary environment interpretations) to generate a 

facies model and history match it, then it would be possible to validate the 

selection of the training image or the geological concept by matching the historical 

production data of a reservoir. 
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This alternative has been presented by Park et al. (2013), where they compared 

the production profile of a reservoir developed in deep-marine settings with the 

production response of reservoir models obtained using different training images 

(geological concepts).  This comparison is made within the Euclidian space, using 

Multidimensional Scaling (MDS). With this comparison the training images that 

generate models non-consistent with the production data are rejected (without 

history matching). Finally, the training images that lead to the models with 

production profiles very similar to the actual reservoir production data were 

identified. 

In the next section a similar methodology is presented, but here the idea is to use 

the optimization algorithm (Particle Swarm Optimization) described in Chapter 3, 

to select the training images that correspond to the models that best reproduce 

the historical production data of a reservoir. 

 

7.2.1 Sampling from multiple Training Images 

The main problem is to generate a robust and consistent way of sampling from a 

number of training images. The simplest option is to let the algorithm (PSO) 

sample from a discrete succession of training images. However, this methodology 

could bring the problem of identifying the optimal number of training images that 

can be used in the process of training image selection. Also, there would be a 

problem with identifying the metric and establishing the continuity in the sampling 

space. A possible answer to this problem can be found by generating a manifold 

of realizations, where the realizations generated for a specific training image are 

clustered and can be separated from the realizations generated from different 

training images. 

An example of choosing from different training images was presented by Park et 

al. (2013). Figure 7.1 is a 2D plot using Multidimensional Scaling (MDS) extracted 

from the work of Park et al. (2013) relating the production responses of the models 

generated with multiples training images and the actual production data of the 
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field. Park et al. (2013) used MDS to compare different responses of production 

data obtained from different simulations (discretized by the training image that was 

used to generate the models) with the actual production data. This allows 

selection of the training images that generated models whose production 

response is close to the actual production data. 

Multidimesional Scaling (MDS) is considered as a family of methods that construct 

a configuration of points in a target Euclidean space (Leeuw and Heiser, 1982)  

from information about interpoint distances (Lee and Verleysen, 2007). The theory 

of MDS is explained in Appendix D.  

 

Figure 7.1: MDS plot in 2D of the production response of model generated with different training 

images. X is the production history of the reservoir; the coloured circles represent the production 

behaviour of the models generated with different training images: blue production behaviour of 

models generated using TI 1; green production of the models using TI 2 and red production of the 

models using TI 3  (from Park et al., 2012). 

 

In this Section, MDS is used to generate a configuration in the Euclidean space 

(Figure 7.2) in which 150 facies models are generated by three different training 

images. MDS provides a metric to establish the relation between the realisations. 
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These models cluster in three different regions of this Euclidean metric space. The 

models of each cluster were generated with a particular training image. This can 

be observed in Figure 7.2 (a)  where each point represents a model realisation; 

the models are colour coded to the corresponding training image that originated 

the model (i.e. red points are the models generated with training image 2, blue 

points were generated with training image 1 and green points with training image 

3). 

The metric space was defined with the first 8 eigen-vectors (dimensions), which 

are the vectors that explain 99% of the data analysed (Figure 7.2 b).  For 

visualization purposes, the matrix space was illustrated in a two-dimensional plot 

(Figure 7.2 a and c) using the first 2 eigen-vectors. 

 

Figure 7.2: MDS plot comparing the facies models generated using three different training images 

(d). (b) is the representation of the energy of the MDS system described by the 150 eigen-vectors, 

with 8 eigen-vectors it was possible to describe 99% of the energy data. The energy of the system 

is the number of the eigen-vectors that better describe the data (Appendix D.4) (c) SVM 

classification to identify the regions in the eigen space that belong to each of the training images.  
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After generating an eigen-value matrix in an 8-dimensional space, the regions of 

this matrix are classified depending on the number of training images used for 

modelling by using Support Vector Machine (SVM) (Chapter 3). Figure 7.2c is a 

representation of this matrix in 2D, where it is possible to distinguish between the 

models generated with different training images.   

Each training image represents a different geological interpretation. Using this 

methodology it is possible to observe the region in Euclidean space described with 

a specific training image (geological concept). 

Figure 7.2c can be considered as a representation of the geological regions in the 

Euclidian space described by different training images. Training Image “1” is a 

representation of a meandering channel system (this training image was used in 

the reservoir modelling process in Section 6.2); training image “3” is characterized 

by a network of anastomosed channels with development of meanders and point 

bars and training image “2” is a 3D exemplification of straight channels with the 

development of some meanders and point bars. These three training images 

represent three different concepts of facies distributions that could be hard to 

distinguish with a core description. A new training image could be included, by 

plotting the facies models generated with the new training image. A new training 

image could be included as a plausible geological concept if it  describes a region 

not explored by the previous training images, or should be excluded if models 

based on the new training image describe areas in the Euclidean space  that 

already were described by the previous training images. 

 

7.2.2 Application (Meandering Channels) 

The use of multiple training images was implemented within the automatic history 

matching framework proposed in Chapter 6. Figure 7.3 illustrates the arrangement 

of the workflow including multiple training images.  

In this case, a realistic combination of geomorphic parameters for fluvial 

meandering deposits is selected for the MPS mode input. Also, the metric space is 
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then adaptively sampled for a location and the corresponding training image is 

selected according to the classified region in the metric space to generate a 

further MPS realisation for flow simulation. By evaluating the misfit function 

between the model response and the production history (eq. 3.1) the optimization 

algorithm will update the posterior distribution in order to select the training image 

that generates the reservoir model that better reproduce the field production 

history. 

 

 

Figure 7.3: Workflow for history matching including Multiple training images selection: (1) Sample a 

combination of geomorphic parameters from an uniform; (2) Analyze if the combination of 

parameters is realistic; (3) Select a training image using the MDS-SVM technique; (4) Generate a 

geological model; (5) Flow simulation; (6) History Match the model; Begin the cycle again until the 

stop criterion is met (e.g. number of iterations, good history match models). 
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In order to use this workflow, the selected truth case was the second stratigraphic 

unit of the Stanford VI synthetic reservoir (Section 6.2). This stratigraphic unit is 

composed of fluvial meandering deposits. This synthetic reservoir is going to be 

used throughout this chapter to apply the proposed workflow improvements and 

make coherent the comparison of the obtained results.  

 

7.2.3 History Match and Uncertainty quantification 

The properties of the Stanford VI reservoir are the same as shown in section 6.2. 

In this section the eight eigenvalues are included as parameters to sample from 

and select the selected training image. Table 7.1 summarises the history match 

settings for this case. The forecasting using NA-Bayes was setup using the same 

parameters as in the case shown in Section 6.2. 

 

Table 7.1: History Match setup 
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7.2.4 Results 

This methodology differs from the one proposed by Parks et al. (2012) mainly in 

the sense that the MDS-SVM classification plot. In this thesis, identification of the 

geological regions within the Euclidian space corresponding to  each training 

image prevents the use of different training images that do not lead to good history 

match.. Parks et al. (2013) used the MDS plot to compare the production of few 

models with the actual production of a reservoir (pre-history matching any model) 

and select the training images that generate the models with production closest to 

the actual reservoir production. As explained before, the inclusion of multiple 

training images into the automatic history match framework gives the option of 

using different possible geological interpretations (prior information). This provides 

more flexibility in history matching to find better models realisations from different 

geological scenarios. 

Figure 7.4 illustrates the misfits obtained with the reservoir models in the history 

matching process and a compares with the misfit obtained in Section 6.2, when 

modelling the same reservoir but with a single training image. We can observe 

that a lower misfit is reached in the case of multiple training images and that the 

range of misfit (under 3000) is narrower when using multiple training images. 

Figure 7.4 illustrates how the inclusion of multiple training images (b) reduced the 

misfit when compared to history matching models with a single training image. 

From Figure 7.4 it is clear that the lowest misfit has been reduced from 3366 in 

case (a) to 2794 in case (b). This can be associated with the fact that in case (b) 

the models with the lowest misfit were generated with a training image that 

describes the facies distribution of the reservoir better than the models generated 

with the single training image used in case (a). This is only possible by having the 

opportunity to sample from different training images. 
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Figure 7.4: Comparison between the misfit evolution of the case of using a) one training image and 

b) the case of using multiple training images. Note that case b starts better than case a, this is due 

to the randomness in the parameter selection associated with the optimization algorithm, PSO. 

 

Figure 7.5 is a comparison between history match and the forecast of the oil 

production rate (WOPR) of three wells, obtained when using one training image 

and multiple training images. 

The use of multiple training images reduced the uncertainty in wells 12 and 5, but 

in well 1 the uncertainty (range P10-P90) increased. This can be due to local 

effects of the facies distribution close to Well-1. 

Figure 7.6 compares the geomorphic parameters obtained with the models with 

the lowest misfit using multiple or a single training image. The results shown in 

Figure 7.6 are very similar and very close to the truth case. Note, channel 

wavelength and amplitude for the best history matched obtained with multiple 

training images are closer to the ones of the truth case, because the choice 

between multiple training images provides a better control over planar/lateral 

variation of the meander geometry. However, the width and the thickness for the 

best history match with a single training image are closer to the ones of the truth 

case because these parameters are less variable across the multiple training 

images. . 

In Figure 7.7, we can see the eigen-values (red dashed square) of the first and 

second eigenvectors that are converging during the process of history matching 
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and when plotting them within the MDS plot it is possible to observe that the 

training images selected are TI 1 and TI 3, which are the geological concepts that 

best describe the reservoir and are more similar to the truth case (Figure 6.7). 

 

 

Figure 7.5: Comparison between the history matching and forecasting of the oil production rate 

(WOPR) in three wells, considering models using a single training image and using multiple 

training images. 
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Figure 7.6: Comparison of geomorphic parameters with minimum misfit with the models generated 

with one and multiple training images. 

 

Figure 7.7: Convergence of the values for first and second eigenvalues (a) and (b); (c) area (red 

square) with the eigenvalues that generated the models with the lowest misfit. Training mage 

regions were defined using SVM, these regions represent the fields of the Euclidean space 

described by each training image. (d) facies geometry in the training images. 
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Comparing the production forecast of the models using a single training image 

(Figure 7.8) and the models that include multiple training images it is possible to 

observe that there is a reduction in uncertainty when using multiple training 

images. This reduction could be associated to the selection of a different training 

image (TI 3) from the one used in the models with one training image (TI 1). This 

is suggested in Figure 7.7. 

 

Figure 7.8 Forecast of the FOPR for the models generated using one and multiple training images. 

 

7.3 Modelling vertical facies proportions 

In sequence stratigraphy of fluvial environments variations of the base-level 

(Chapter 5) have a great impact on the control of the facies distribution in a fluvial 

system (Shanley and McCabe, 1994; Ramon and Cross, 1997). The relation 

between base-level and facies distribution can be explained by the variations of 

the relationship between Accommodation space and Sediment supply (A/S).  

Ramon and Cross (1997) explained that,  when the accommodation space (A) is 

larger than the sediment supply (S),  there is plenty of space for the channels to 

deposit their sediments, the connectivity between channel sandbodies is low and 

the proportion of channel facies is low compared to the flood plain facies. Contrary 

to this, when (S) is larger than (A), there is no space for the channels to deposit 

their sediments then the channels erode the earlier deposits, including the 

deposits of the previous channels. When this is preserved in the geological record 
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a large multi-storey/multi-lateral geobody channels is generated. This evolution of 

channel deposits was illustrated in Figures 5.15 and 5.17. 

Varying the Accommodation space/Sediment supply relation (A/S) in a fluvial 

system will vary the facies proportions of the fluvial deposits. When modelling 

fluvial reservoirs with few wells or where the geological history of base level 

changes is not clear, it is necessary to consider the uncertainty associated to the 

vertical variation of facies, since this has an important impact production response 

of a reservoir.  

Changes in vertical facies proportions can be modelled by analysing well data, or 

changes in net to gross. The methodology presented in this section is an 

alternative that can be applied in reservoir with low density of wells, where it is 

difficult to interpret vertical proportion curves. 

 

7.3.1 Function that models vertical proportion variation. 

Facies vertical proportion variation is directly related to variation on the net to 

gross ratio in a reservoir (i.e. volume of reservoir facies over the bulk rock volume 

of a geological unit). Vertical proportion variation of facies can be approximated by 

a periodic curve. Demicco (1998) and French (1993) used sine functions in order 

to model the vertical proportions of carbonates and salt marsh sediments. 

Indicating that vertical variation of facies can be modelled as cyclic events. In this 

Section, a sinuous function S (eqs. 7.1; 7.2) was used to reproduce the periodic 

behaviour of vertical facies proportions variation: 
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where A is the continuous value (in radians), of a grid cell in a column of the 

modelling grid,  j is the parameter that controls the wavelength of the sine 

function, k is the parameter that controls the vertical position of the maximum and 

minimum of the sine function within the reservoir; FVP is the facies vertical 

proportion, vp2 and vp1 are maximum and minimum facies proportion values 

respectively. 

This sine function is used to model the changes in the vertical facies proportions. 

Then the variation in the facies proportions can be controlled in the automatic 

history-match process by sampling the parameters of j, k, vp1 and vp2 using PSO 

within the Bayesian framework. Figure 7.9 illustrates the how the vertical 

proportion of facies can be described by a sine function, Figure 7.9 is a vertical 

proportion curve of reservoir facies in the Athabasca Oil Sands, Canada. 

 

 

Figure 7.9: Vertical proportion curve of the reservoir 
facies (in yellow) in one filed of the Athabasca Oil 
Sands in Canada, taken from Bujor et al. (2011). The 
dashed red line is a sine curve that could describe 
the reservoir facies vertical proportion. 
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7.3.2 Application (Meandering Channels) 

In this Section, the fluvial meandering stratigraphic unit of the Stanford VI 

synthetic reservoir (Castro et al., 2005) is used as a “truth case”. In this section, 

the vertical facies proportion varies within the automatic history matching 

workflow. History match and Forecasting setups were the same as used in section 

7.2, but in this case PSO will be sampling s of the parameters j, k, vp1 and vp2 of 

equations 7.1 and 7.2 in addition to multiple Tis and the geomorphic parameter to 

generate different curves of changes in vertical facies proportions. 

The ranges for the geomorphic and vertical proportions parameters used in history 

matching are displayed in Table 7.2. 

 

 

Table 7.2 Parameter used in history matching and their ranges. 

 

Figure 7.10 compares the production forecasts of the models with and without 

varying vertical facies proportions. There is more uncertainty related to changes in 

facies vertical proportions than in keeping the proportions constant. The increase 

in the number of parameters to sample from widens  the uncertainty in production 

forecasting. 

In Figure 7.11 we can observe the values of the parameters of the equations 7.1 

and 7.2, which converge during the process of automatic history matching and a 

comparison of the models vertical facies proportions that have the lowest and 

highest misfits. 
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Figure 7.10: Forecasting of the field oil production rate. (a) no-variation of facies vertical 

proportions and (b) varying vertical proportions. “Intelligent” geological prior information for channel 

geomorphic parameters was used in both cases. 

 

 

Figure 7.11: Convergence trends of the Vertical facies proportion parameters. 
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Figure 7.12 compares the point bar vertical proportion curves estimated using 

equations 7.1 and 7.2 for the best model (Model 500) and the two models with 

high misfit. Note, that the trend of the vertical proportion curve for “Model 500” for 

the point bars follows the vertical proportion variation of the truth case, although 

the values of facies (proportions are not the same). 

With the application of this technique within the framework of automatic history 

matching it is possible to identify which vertical facies distribution can be history-

matched and select the ones that could represent better the actual vertical 

distribution of facies in a reservoir. 

 

Figure 7.12: Comparing point bars vertical proportion curves of best model (Model 500) and 

models with high misfit (Model 4 and Model 2). 3D representations of the models cut half-way 

through from North to south in order to show the vertical distribution of the facies. The sine function 

is not flexible enough to reproduce the dash and dot ideal curve. 

 

7.4 Analysing connectivity in facies models using MPS 

The application of geological parameterization within the automatic history 

matching framework (Arnold, 2008) is based on the generation of multiple 

geomodels varying different geological parameters in order to obtain multiple 

possible models of a reservoir and history match them. In this thesis, it has been 
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shown that the facies geometry of reservoir models can be controlled by the use 

of “realistic” prior information. In consequence all the multiple models obtained by 

varying the geological parameters related to facies geometry, can be considered 

as geologically realistic.  

Figure 7.13 shows that the geobody connectivity may cause problems in history 

matching. Even though the selection of geomorphic parameters can be 

considered realistic, the simulation technique (MPS) could generate discontinuous 

geobodies; this discontinuity affects the production response of a model in specific 

wells. Works like Maucec et al. (2012), Renard et al. (2011) Demyanov et al. 

(2012), Demyanov et al. (2008) and Honarkhah and Caers (2012) raised concerns 

associated with this connectivity problem and present different approaches to deal 

with it. In Figure 7.13 well P1 is isolated in Model 38 while in the Truth case Well 

P1 is part of a point bar belt. 

In this section, this problem was tackled by using one of the advantages of 

geostatistics, where it is possible to generate multiple realizations from the same 

set of parameters, and then choose the model whose geobody connectivity is the 

closest to the connectivity sampled by the optimization algorithm. The chosen 

realization is selected by comparing the facies connectivity from each realization 

and compared to the connectivity (new parameter) sampled from a uniform prior 

distribution. The realization with the facies connectivity most similar to the 

sampled connectivity is selected it’s connectivity measure is the optimised further 

whilst history matching.  

 

7.4.1 Measuring Facies Connectivity in a 3D grid 

Connectivity represents one of the fundamental properties of a reservoir that 

directly affects recovery. Larue and Hovadik (2006) defined two types of 

connectivity used in reservoir modelling. One is reservoir connectivity which is 

associated with the percentage of the reservoir that is connected to wells and the 

other definition is geobody or sandbody connectivity which is defined as the 
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percentage of the reservoir that is connected. Renard and Allard (2011) reviewed 

the most recent techniques used to measure reservoir connectivity. They identified 

two types of connectivity: (1) static connectivity, which is associated with the 

structural parameters of the field (hydraulic conductivity or geological facies); and 

(2) dynamic connectivity, which is related to physical processes such as flow or 

transport. 

 

Figure 7.13: Visual and well oil production rate (WOPR) comparison between Model 38, obtained 

in Section 6.2.4 and the “Truth case”. Wells P1 and P5 are highlighted with a red circle. The facies 

representations are showing layer 21 of the 3D cube. We can observe that production response of 

the Well P1 in Model 38 do not match the history data, due to te lack of facies connectivity. WOPR 

of Well P5 in Model 38 matches better the production history than well P1. There is a better facies 

connectivity surrounding well P5 than well P1. 
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In this section the problem addressed is focussed on the selection of a geomodel 

based on their sandbody connectivity, specifically related to sanbodies generated 

by fluvial meandering channels.  

Facies model connectivity analysis has captured the attention of many authors 

that have proposed different methodologies to measure and analyse this important 

feature in reservoir modelling. Larue and Hovadik (2006) described the 

relationship between net to gross and reservoir connectivity and used this 

relationship to characterize the types of connectivity that can be found in a 

reservoir and the optimal well location in order to drain the reservoir. A different 

approach was shown by Renard et al. (2011) where they stochastically generated 

reservoir and interwell connectivity paths into reservoir facies models; these 

connectivity paths are then sampled and used as hard data during the facies 

modelling process. 

Pardo-Igúzquiza and Dowd (2003) generated a computer program (CONNEC3D) 

that measures the facies connectivity. This program is based on a connectivity 

function (h) for different spatial directions and a number of connectivity statistics. 

Nurafza et al. (2006) presented a statistical approach to model connectivity of all 

sort of body sizes and aspects based on percolation theory. 

In this section, an approach that includes some of the methodologies mentioned 

above is presented. Based on the possibility of stochastically generating multiple 

facies realizations, a code was introduced into the automatic history match 

workflow that measures the geobody connectivity over several facies realizations 

and selects a realization to be used for fluid flow simulation based on the degree 

of geobody connectivity, which would match better the production history. 

In this thesis we used a simple technique that combines: (1) scanning the 3D 

facies realizations to evaluate the connection between cells of the same facies; (2) 

estimating the proportions of the permeable facies within the model which is 

equivalent to estimate the net to gross of the model and (3) counting the number 

of connected geobodies. This is based on the application of the percolation theory, 
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application available in the software SGeMS (Remy et al., 2009).  SGeMS uses a 

method for calculating connected regions ("geobodies") in a hydrocarbon reservoir 

based on an algorithm which visits a cell in a facies model, assigning a geobody 

value and then the algorithm compares this cell with the neighbouring cells 

assigning the same geobody value to the cell that has the same value as the first 

visited cell. The algorithm continues the comparative process cell by cell and 

results in identification of all separated geobodies in the reservoir model grid. 

A connectivity index (CI) is estimated by considering the facies connectivity in 

three axes (equations 7.3, 7.4 and 7.5) that can be used as parameters that 

measures the degree of connectivity of permeable facies. 

Figure 7.14 is an illustration on how this technique measures the number of cells 

connected in the direction of a 2D grid axes (x, y). The code counts the number of 

cells of a sand facies that are in contact in the direction of the axes x, y and z, and 

adds all these number of cells, then the total number of porous facies cells in 

contact is divided by the total number of the grid in that specific direction (x, y or 

z). 

Facies proportions (FP) are estimated dividing the number of grid cells with sand 

facies by the total number of cells of the grid this is equivalent to the net to gross 

(NTG) relationship. Net to gross is a very important geological factor in facies 

connectivity. Allen (1979) comparing outcrop information with well data 

(logs/cores) identify that NTG lower that 50% in well data, will represent a poor 

sand body connectivity within a reservoir. NTG larger than 50% in well-logs will 

increase the probability of sand body connectivity. A reservoir with a net to gross 

higher than 30% has facies connectivity larger than 90% (Larue and Hovadik, 

2006).  Bridge and Tye 2000 found that fluvial deposits with a net to gross larger 

than 70% indicates that all the channel deposits are connected. 

Figure 7.15 highlights the facies proportions of the 2D grids showed in Figure 

7.14. 
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The third factor used to estimate the connectivity index is the number of 

geobodies generated in a model. In geomodelling, a geobody is defined as the 

volume of interconnected cells that belongs to a facies, facies association, 

porosity or permeability groups (Deutsch, 1998). This was done following the 

described above algorithm realised in SGeMS (Remy et al., 2009). This algorithm 

is based on the percolation theory and is very similar to the methodology used by 

CONNECT3D (Pardo-Igúzquiza and Dowd, 2003). Figure 7.16 shows the number 

of geobodies identified by the SGeMS in the 2D grids shown in Figures 7.14 and 

7.15. 

 

 

Figure 7.14: Illustration of how the code for connectivity index estimates the continuity (Cx and Cy) 

of permeable facies (yellow cells) in a 2D grid. We can observe six 2D grids with different 

measurements of continuity of permeable facies. The continuity is measured by adding the number 

of the connected porous facies cell (C(xi), C(yi)) in an axis (x or y) and divided by the total number 

of cells n in an specific axis (x or y). 
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Figure 7.15: Permeable Facies Proportions (FP) of 2D facies models. 

 

Figure 7.16: Number of channel geobodies of 2D facies models. 

The connectivity index (CI) can be measured in the direction of the three axes (x, 

y and z) with the following equations: 

 

    
     

  
                                                                                                     (eq. 7.3) 

    
     

  
                                                                                                     (eq. 7.4) 

    
     

  
                                                                                                     (eq. 7.5) 
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where:  

   is the Connectivity Index,           represent the direction in which the CI was 

measured. 

  is the facies continuity (measurement of how continuous a specific facies is in a 

single direction or axis),            represent the direction in which the facies 

continuity was measured. 

   is the facies proportion in a grid (number of cells of a specific facies divided by 

the total number of cells). 

   is the number of connected geobodies. 

 

Figure 7.16 compares the connectivity indexes estimated using equations 7.3 and 

7.4, for every 2D model. 

 

 

Figure 7.17: Connectivity Indexes calculated for the 2D facies models. 
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7.4.2 Application (Meandering channels)  

The estimation of the connectivity index methodology was tested using the 

meandering fluvial unit from Stanford VI synthetic reservoir (Castro et al., 2005).  

The Connectivity Index (CI) was introduced into the automatic history matching 

framework, as another parameter to optimize with PSO, as illustrated in Figure 

7.18.  

After selecting a realistic combination of geomorphic parameters, a combination of 

connectivity indexes (CIx, CIy and CIz) are sampled, five facies realizations are 

generated and their connectivity indexes measured in direction of the x, y and z 

axes. These connectivity indexes are compared to the CI’s sampled by PSO. 

Then the realization whose CI’s are the closest to the CI’s sampled is chosen for 

flow simulation taken further in history matching.  

The setup for history matching and forecasting is the same as the setup shown in 

sections 7.3 and 7.2. The prior ranges for the connectivity indexes  are given in 

Table 7.3. 

 

 

Table 7.3 Parameter used in history matching and their ranges for connectivity analysis. 

 

Figures 7.19 and 7.20 illustrate a comparison of the forecast for oil production 

obtained with models that used multiple realizations with connectivity analysis and 

the models obtained using a single realization. In Figure 7.19, although, the P10-

P90 range is wider in the forecast using the connectivity analysis than in the 
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forecast without it the P10-P90 range still accommodates the history data when 

using multiple realizations; while in the case of the models that did not use 

connectivity analysis history data is above the P10-P90 range. This means that 

the models obtained using multiple realizations match better the production 

behaviour of the field, which makes these models more reliable than the models 

that did not use multiple realizations. A wider P10/P90 range in the forecast with 

connectivity analysis is considered as more realistic. 

Table 7.4 compares the computational time doing the history matching and 

forecasting of the models generated using connectivity analysis and models using 

a single facies realization. There is an increment in the computational time 

because 5 realizations are generated for each combination of model parameters. 

Also, the dimensionality of the sampled search space has increased by 3 extra 

connectivity parameters.  

In Figure 7.21 we can observe the values of the connectivity indexes converging 

during the history match process. The connectivity indexes values are homing in 

close to the connectivity indexes of the truth case. CI´s converged close to the 

CI´s of the truth case. The largest CI is found in the y axis (North-South) which is 

parallel to the channel trend. There is better connectivity in the direction parallel to 

the channel than in the other directions. These results identify the models whose 

facies connectivity reproduces best the production history of a reservoir.  

 

 

Table 7.4: Comparison of the time consumed by the models using connectivity analysis and 

models with no connectivity analysis. 
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Figure 7.18: Workflow for automatic history matching including multiple facies realizations and 

Connectivity Index (CI) estimation. After sampling sedimentological parameters (channels width 

and thickness and meander wavelength and amplitude), the realism of the combination of these 

parameters is checked, a CI value is sampled as well, multiple realizations are obtained from the 

facies modelling and CI’s are estimated a CI from each of the realizations. Then the CI of each 

realization is compared with the sampled CI, the realization with the CI closest to the sampled is 

chose to perform history matching. 
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Figure 7.19: Comparison of oil production rate per well (WOPR) forecast between models 

generated with connectivity analysis and models generated without connectivity analysis (Section 

6.2). 

 

Figure 7.20: Comparison of Oil production forecast between models generated with connectivity 

analysis and models generated without connectivity analysis (Section 6.2). 
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Figure 7.21: Connectivity Indexes convergences in for each axis (a), (b) and (c). “Truth Case” 3D 

representation highlighting the axes of the grid (d). Dashed red lines are the CI´s of the Truth 

Case. Note that the CI´s converge very close to the truth case CI index vales. 

 

With this methodology, it is possible not only to select among many realizations 

the one with a connectivity index closer to the expected one, but also to identify 

which connectivity index represents best better the facies connectivity in the 

reservoir. 

 

7.5 Facies modelling improvements within the automatic history 

workflow (Fluvial Meandering Channels Reservoir). 

In previous sections of this chapter, some methodologies that improved the 

performance and realism of reservoir facies modelling have been introduced into 
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the history matching workflow. In this section, all the methodologies are applied to 

the history match process. Figure 7.22 is an illustration of the history matching 

workflow with the inclusion of multiple training images, vertical proportions and 

connectivity analysis. Intelligent prior information is used to control the realism in 

the combination of geomorphic parameters used to generate the facies models. 

In order to be consistent with the applications of these improvements, the 

reservoir used is the fluvial meandering channel stratigraphic units of the Stanford 

VI synthetic reservoir (Castro et al., 2005). Table 7.5 indicates the ranges used for 

the 19 uncertain parameters used in this case. History match and forecasting 

setups are the same as used in section 6.2. 

Figure 7.23 is a compilation of the misfit evolution considering all the cases shown 

in this chapter, plus the misfit evolution obtained in Section 6.2: (a) misfit evolution 

using uninformative geological prior information; (b) using “Intelligent” prior 

information; (c) “Intelligent” priors plus Vertical Facies proportions; (d) “Intelligent” 

priors plus selecting multiple training images; (e) “Intelligent” priors plus 

Connectivity analysis and (f) including all the process (full workflow). 

In Figure 7.23 we can observe that, for the cases b), d) and e), the history match 

process converges before the 600th iteration while, for the case f) with the full 

workflow, the convergence appears to be after the 600th iteration. This could be 

associated to the fact that the sampling for vertical proportion of facies is included 

in this case and, as observed in case c), there is not a clear convergence when 

sampling for vertical facies proportions. 

The lowest misfit was obtained in case e), where the connectivity analysis was 

used to select from multiple realizations. 

Figure 7.24 compares the forecasting of the Field Oil Production Rate (FOPR) 

between the different cases presented in this chapter. The results obtained using 

the full workflow case demonstrated a better match with the history data than in 

cases a) and b) and a lower range between P10 and P90 than in cases b) and c). 

We can observe as well that the full workflow has the lowest range P10-P90 (f). 
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Results in case e) are comparable to the results obtained in “d” although the 

history match is better in case e) than in case d) during the first 500 days of 

production data. 

 

 

Figure 7.22 Full workflow for improving geological realism in reservoir facies models within the 

automatic history match framework (CI: Connectivity Index). 
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Table 7.5: Ranges of the 19 parameters used in the full workflow for improving geological realism 

in reservoir facies models within the automatic history match framework. 

 

Figure 7.23 Evolution of the misfit during the history matching process: (a) using uninformative 

geological prior information; (b) using “Intelligent” prior information; (c) “Intelligent” priors plus 

Vertical Facies proportions; (d) “Intelligent” priors plus selecting multiple training images; (e) 

“Intelligent” priors plus Connectivity analysis and (f) including all the process (full workflow). 
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Figure 7.24: Comparing the forecast of the FOPR between the different cases, (a) using only 

“intelligent” geological prior information; (b) including Vertical facies proportions; (c) including 

connectivity analysis; (d) Multiple training images and (e) full workflow case; (f) is a comparison of 

the uncertainty ranges P10-P90 for each case. 

 

In Figure 7.25 we can observe a comparison between the model with the lowest 

misfit obtained in the full-workflow case (Model 846) and the truth case as well as 

a comparison of their geomorphic parameters. It is important to highlight that the 

orientation of the channels in all the cases shown in this chapter where set North-

South. Changes in orientation were not used as a parameter in this thesis since 

Arnold (2008) already had identified orientation as one of the most important 

geological parameters in history matching reservoir production. 
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Figure 7.25: Comparison between the model with the lowest misfit in the full-workflow case and 

the truth case. 

 

Figure 7.26 shows the values of the parameters obtained in the model with the 

lowest misfit in the “full-workflow” case. The training image used was Training 

Image 1, which is a representation of meandering channels. The connectivity 

index with the highest value was the one associated with the y-axis, this is actually 

consistent with the “truth” case, since the channel geobodies are oriented North-

South (parallel to the y-axis). The curve of the vertical proportion of the point bars 

is very similar to the vertical proportions of point bars in the “truth” case although 

the values of point bars proportions is higher in model #846 than in the “truth 

case”. 
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Figure 7.26: Parameters used in Model #846 (Lowest misfit) in the “full-workflow” case. (a) The 

model was built using Training image 1; the highest connectivity index was associated to the y 

axis; in (c) the vertical proportion curve for Point Bars compared to the Vertical proportions of the 

“truth case”. 

 

In Figure 7.27 we can observe the forecasting for 8 individual wells in the case of 

using the full workflow for history-matching. In some of the cases the range of 

P10-P90 is wide, but in most of the cases the forecasting does not show a high 

spread.  

Table 7.6 indicates the time used for history matching and forecasting with 

uncertainty  using the full workflow developed in this thesis.  
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Figure 7.27: Production forecasting of 8 wells using the full workflow for history-matching. 

 

Table 7.6: Comparison of the time consumed by the models using the full workflow analysis and 

models with no connectivity analysis. 
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7.6  Summary 

We have seen in this chapter a series of improvements in the reservoir facies 

modelling process that were applied to the automatic history match workflow. All 

these improvements honour the fact that the geometry of the facies within the 

reservoir model is controlled by “intelligent” geological prior information that 

assures the realism of the facies geometry. 

(1) The first expansion included in the automatic history match framework was 

the use of multiple training images. As mentioned in Section 7.2, training 

images used in Multiple Point Statistics are geological concepts. The 

importance of using multiple training images is that this allows the 

automatic history match process (Chapter 3) to use different geological 

concepts and generate models that are validated against the production 

data of a reservoir.  

In this case, three different training images were used, representing 

deposits generated by meandering, anastomosed and low sinuosity 

channels. The results obtained show that the models with the lowest misfit 

were generated using the training images representing anastomosed and 

meandering channels, which are the concepts that are closer to the truth 

case in describing the geometrical relationships among the facies of 

meandering channels deposits. This methodology can be seen as a way to 

select from different sedimentological interpretations by various 

geoscientists which is a common issue in reservoir characterization. 

(2) In Section 7.3, the inclusion of facies’ vertical proportions in fluvial deposits 

was describes (Section 5.4.1) with a periodic function. In this case, the 

parameters of a sinuous function (equations 7.1 and 7.2) were sampled by 

the adaptive sampling algorithm (PSO) in the automatic history-matching 

workflow (Section 3)  to generate a sinuous curve of the vertical facies 

proportions. In the case of the Stanford VI, the vertical facies proportions do 
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not quite follow the sinuous behaviour, but the models that obtained the 

lowest misfit, have vertical facies proportion sinuous curves that were 

following the trends observed in the “truth” case, although the actual value 

of the facies proportions were not the same.  

(3) The last feature included in the automatic history-match framework was the 

connectivity analysis. In pixel-based geostatistical models the geobody 

connectivity has been a known problem. The use of Multiple point statistics 

(Chapter 2) has improved the connectivity problem to a certain degree 

compared to geomodels based on two-points statistics. One way to tackle 

this problem is to generate multiple facies realizations using the same 

parameters, just varying the “seed”. This is not an efficient methodology 

unless the connectivity can be controlled by MPS parameters and 

optimized by the Connectivity Index. In this case a code that scans the 

facies realization and measures the connectivity of the geobodies by 

analysing the continuity of a geobody along the axes x, y and z, measuring 

the net to gross or facies proportion in a realization and estimating the 

number of geobodies in a facies model realization. A connectivity index was 

estimated then (see equations 7.3, 7.4 and 7.5) using the parameters 

mentioned here.  

In the automatic history match process connectivity indexes (CI’s) in three 

directions (x, y and z) were sampled from uniform distributions. During the 

facies modelling process multiple realizations were obtained and the CI’s 

were estimated for each realization. These connectivity indexes were then 

compared to the CI’s previously sampled and corresponding to the best 

history match. The realization with the connectivity indexes most similar to 

the sampled CI´s was chosen to use in the history match process.  

This methodology allows identifying the connectivity indexes and the 

connectivity anisotropy of a reservoir as well as selecting the realization 

that better honours the connectivity indexes selected. This avoids assigning 

high misfit to plausible models just because the facies model did not 

respect the geobody connectivity. 
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Finally, all these three techniques were used together in the automatic history-

matching workflow, generating models that not only considers the realism of the 

facies geometry of fluvial meandering deposits, but also tests different geological 

concepts or interpretations, varies the vertical facies proportion based on a 

periodic function and analyses the connectivity of geobodies, all these process are 

run automatically and the output models are validated against production data. 
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Chapter 8  

 

Summary and Conclusions 

 

8.1 General view of the thesis 

A summary of the results obtained in this thesis is outlined here, starting from 

the modelled inter-relationships between geomorphic parameters - used as 

intelligent sedimentological prior information in the automatic history-match 

workflow. Several improvements have been developed for facies modelling 

within the automatic history matching workflow. 

In the recent developments of automatic history-matching, most of the attention 

has been paid to improve the sampling and optimization algorithms, as well as 

analysing the impact of the prior information of reservoir engineering parameter. 

Arnold (2008) developed various techniques to parameterize geological 

information and used these geological parameters in the framework of 

automatic history-matching. Arnold’s (2008) work demonstrated the importance 

of considering the integration of geological parameters into the automatic 

history-match process and highlighted the impact of preserving realism of the 

geological models used in history matching. 

This thesis is focused on presenting a methodology to preserve the realism of 

geological models and to introduce this methodology into the automatic history-

matching framework.  
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The main point addressed in this work is related to keeping the realism of facies 

distribution and geometry of three depositional environments (fluvial 

meandering, deep-marine channels and deltaic systems). 

In this thesis, machine learning techniques were used for compiling geomorphic 

parameters associated with each of the three considered sedimentary 

environment. These “intelligent” compilations of parameters were used as 

informative prior information, from which it was possible to sample within the 

Bayesian framework of automatic history matching (Chapter 3). 

 

8.2 Thesis Conclusions 

This Section is divided into two main parts; the first part is dedicated to major 

outcomes obtained from this work and their applications. The second part is 

dedicated to give more detail to the contributions obtained from this thesis. 

 

8.2.1 Major Conclusions 

 

1 A system that controls the geological realism of facies geometry in 

reservoir models was developed and included into the automatic history 

matching framework. The approach ensures that only realistic 

combinations of geomorphic parameters are considered for history 

matching, and therefore reducing computing time and avoiding history 

matching reservoir models with facies geometries not observed in nature. 

2 The control of geological realism was based on generation of “intelligent” 

geological prior information within the inverse modelling loop of reservoir 

history matching. By using “intelligent” geological prior information it was 

possible to control the realism of multiple facies models.  

 

3 Reservoir models developed for different depositional environments -- 

fluvial meandering channels, deltaic deposits and deep-marine channels 

-- can be automatically generated assuring the realism of their facies 
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geometries. Geomorphic parameters from these three depositional 

environments were compiled from an exhaustive review of published 

work. Machine Learning Techniques were used to identify the internal 

relationships between these geomorphic parameters. These 

relationships were used as “intelligent” prior information. 

 
4 A methodology to assess geological interpretations that best match 

production data and reduces the uncertainty was proposed in the thesis. 

The use of multiple training images within the automatic history match 

process introduces the possibility of screening multiple geological 

interpretations/concepts, which is one of the largest uncertainties in 

reservoir modelling. Under the Bayes rule, sampling from multiple 

training images (prior information) provides the selection of the training 

image (geological concept) that generates facies models whose 

production responses matches better the production history, this was 

explained in Section 7.2. 

 
5 The vertical distribution of facies proportions is directly associated with 

the evolution through time of a sedimentary system. The evolution of 

factors like the accommodation space changes and the source of 

sediments would affect the facies distributions, generating different 

stacking patterns. Based on the available reservoir data (cores, well-logs 

and seismic information) it is possible to interpret these sedimentation 

patterns but, as in any interpretation process, it is subject to large 

uncertainty involved. In Section 7.3 the changes in the vertical facies 

proportions were parameterized using a sinuous function and introduced 

into the automatic history matching workflow. Sampling from different 

sedimentary stacking patterns (distribution of vertical facies proportions) 

validated the stratigraphic evolution model with production data. This 

improvement of the automatic history matching workflow allows the use 

of different stratigraphic evolution patterns, which included the 

uncertainty associated with the interpretation of stacking patterns. 
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6 Assessing the connectivity of multiple realizations avoids discarding 

realistic geomodels and allows accounting for stochastic variability. 

Selecting from multiple facies realizations generated with the same 

combination of geomorphic parameters increases the possibility of 

finding a model that matches production history. This feature was 

introduced into the automatic history matching workflow in Section 7.4. 

The criterion to select from multiple realizations was the connectivity of 

geobodies, identified as a Connectivity Index (CI), because different 

realizations generated from a single set of parameters could have 

different degree of connectivity between geobodies’. The CI vector 

represents connectivity in three dimensions. CI components are sampled 

from a uniform distribution and compared to the CI across the multiple 

generated realizations. Then, the realization with the CI more similar to 

the sampled CI, is chosen to perform the history match process.  

 
7 The inclusion of the CI into the automatic history match framework does 

not only reduce the possibility of discarding realistic combination of 

geomorphic parameters, but also allows validating the degree of 

connectivity of a specific facies in a determined sedimentary 

environment.  

 

 

8.2.2 Detailed outcomes 

1 The complex relationships between geomorphic parameters can be 

described by Multilayer Perceptron (MLP) and Support Vector 

Regression (SVR). These powerful tools can be used to identify 

relationships among different geological properties. 

 

2 SVR demonstrated to be a more reliable technique when modelling the 

geomorphic parameters than MLP since the results obtained with MLP 

showed some unrealistic artefacts that were generated in areas with low 

data control. These artefacts were not observed in the results obtained 

with SVR. 
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3 All the geomorphic parameters are directly related as shown in Appendix 

E, with the use of Machine Learning it is possible to observe these 

relationships in a multidimensional space. 

 

4 The use of One-Class SVM as the filter that controls the selection of 

geomorphic parameters for a reservoir model is a better option than 

using SVR since One-Class SVM can directly reject the combination of 

geomorphic parameters that is considered as unrealistic, since this is 

actually a classification problem rather than a regression problem. 

 
 

5 One-Class SVM models as geological prior information for reservoir 

facies modelling reduced the uncertainty related to number of models 

used for history matching, and reduce the uncertainty in forecasting the 

production behaviour of the reservoir (Sections 6.2 and 6.3). 

 

6 Multiple training images are related to multiple geological interpretations. 

This approach can be applied when there is a high degree of uncertainty 

in the sedimentary environment interpretation of a reservoir. Using 

multiple sedimentary environment interpretations (training images) as a 

parameter to sample within the automatic history match workflow allows 

the possibility of using multiple interpretations instead of being fixed to a 

single sedimentological interpretation. This saves time in building 

separate sets of models for every interpretation.  

 
 

7 Plotting the fields where a training image or geological interpretation has 

validity using MDS and SVM, is useful not only for selecting the training 

image to build a reservoir model but for rejecting training images that 

could overlap fields of validity with other training images (Section 7.2). 
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8.3 Data used 

The results obtained in this thesis were based on synthetic reservoirs. These 

results show that the techniques applied here can be applied in real cases 

offering a realistic and adequate representation of uncertainty in reservoir 

production forecast and saving computing time when using geological 

parameters in automatic reservoir history matching. 

The fluid and reservoir engineering properties of the synthetic reservoirs used in 

this thesis were based on the properties of the Stanford VI Reservoir (Castro et 

al., 2005). The three synthetic reservoirs were described in Chapter 6.  

The “intelligent” geological prior information generated for the sedimentary 

environments studied in this thesis, was based in the collection of 

geomorphological data from published work, Appendices A, B and C show 

detailed tables with all the geomorphic parameters compiled.  

The relationships between these geomorphic parameters were identified by 

using machine learning techniques, these relationships were used a the prior 

information controlling the realism of the facies models. 

 

 

8.4 Codes used 

Facies models were performed using the Multiple Point Statistics algorithm 

SNESIM (Strebelle, 2002) from the software of the Stanford University SGeMS 

(Remy et al., 2009). The codes that control the realism of the combination of 

geological parameters and other features that improved the geological realism 

within the automatic history match process were written in R (Gentleman and 

Ihaka, 1997). The codes that connected all the programs involved in this thesis 

(SGEMS (Stanford University), ECLIPSE-100 (Schlumberger), R, Machine 

Learning codes and RAVEN (www.epistemy.com)) were written using Python (Lutz, 

2010). 
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8.5 Future Work 

This thesis is a step forward in controlling the geological realism of facies 

models and assessing geological uncertainty from different sources, within the 

process of automatic history matching. But still further work can be performed in 

order to improve the results obtained here and in other aspects related to 

geological realism in reservoir modelling. 

 

8.5.1 Improvement of the work presented here 

 It is necessary to run the workflow proposed in this thesis for controlling 

the realism of facies models and the application of features that asses 

the uncertainty in geological interpretation (multiple training images, 

vertical facies proportions and facies connectivity) in a real case, 

because working with real data would improve the workflow since coping 

with actual reservoir data usually includes the normal noise associated 

with data and features  real heterogeneities of an actual reservoir. 

 Increase the number of facies in the models presented here like 

crevasse splay deposits, coal seems, intra-channel clay plugs, etc. in 

order to increase the realism of the reservoir geology. 

 Use a more flexible function instead of sine (e.g. kernel based function) 

for modelling vertical proportion distributions, since there is not a good 

match between the vertical facies proportions of the truth case in section 

7.3 and the sinuous curve obtained from the automatic history matching 

process. Although the trends obtained from the models with the lowest 

misfit mimic the trend of the vertical facies proportions of the “truth” case. 

 Generate automatic changes of vertical proportion curves in different 

areas of the reservoir in order to consider the spatial variability of this 

feature. 

 Consider sampling the values of the geomorphic parameters in ranges 

that represent real changes in the facies geometry in order to avoid 

getting trapped in apparent local minima. Figure 8.1 is a representation 
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of a potential local minimum where the algorithm got trapped because of 

the resolution of the sampling. This cannot be controlled by RAVEN yet. 

 

 

Figure 8.1 Apparent local minima (red square). Due to sampling values resolution. 

 

 Optimization of the codes developed in this thesis will save computing 

time, some of the codes look very long and repetitive. 

 

8.5.2 Other aspects related to geological realism 

 Generating intelligent prior information related to petrophysical data, 

using Machine Learning Techniques will relate properties like porosity, 

permeability, grain size, burial depth and facies with diagenetic 

processes which are the factors that controls fluid flow and storage in 

reservoir. 

 Generate intelligent geological prior information based on machine 

learning techniques for other depositional environments, like braided 
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fluvial channels, shore-face, estuarine, carbonates, lacustrine and 

volcanoclastics among others. 

 Finding geological priors for faults throw and dip as well as fractures 

parameters like aperture, frequency and geometry, which should be 

related to the stress field that generated the fault-fracture system in a 

reservoir. 

 Include the realistic geometry of the facies bounding surfaces like 

clinoforms and lateral acretionary surfaces which have a great impact on 

reservoir fluid flow (Deveugle, et al., 2011). 

 Incorporate the methodology applied in this thesis with techniques that 

integrate large datasets like Multiple Kernel Learning (MKL). Backhouse 

et al., (2012) used MKL to integrate reservoir parameters from, well data, 

reservoir data, training images and production data in order to history 

match a reservoir. Intelligent sedimentological prior information can be 

integrated into the workflow presented by Backhouse et al. (2012) in 

order to work only with geologically realistic reservoir models. 
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