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Abstract 

4D seismic data bears valuable spatial information about production-related changes in 

the reservoir. It is a challenging task though to make simulation models honour it. Strict 

spatial tie of seismic data requires adequate model complexity in order to assimilate 

details of seismic signature. On the other hand, not all the details in the seismic signal 

are critical or even relevant to the flow characteristics of the simulation model so that 

fitting them may compromise the predictive capability of models. So, how complex 

should be a model to take advantage of information from seismic data and what details 

should be matched? This work aims to show how choices of parameterisation affect the 

efficiency of assimilating spatial information from the seismic data. Also, the level of 

details at which the seismic signal carries useful information for the simulation model is 

demonstrated in light of the limited detectability of events on the seismic map and 

modelling errors.  

The problem of the optimal model complexity is investigated in the context of choosing 

model parameterisation which allows effective assimilation of spatial information in the 

seismic map. In this study, a model parameterisation scheme based on deterministic 

objects derived from seismic interpretation creates bias for model predictions which 

results in poor fit of historic data. The key to rectifying the bias was found to be 

increasing the flexibility of parameterisation by either increasing the number of 

parameters or using a scheme that does not impose prior information incompatible with 

data such as pilot points in this case. 

Using the history matching experiments with a combined dataset of production and 

seismic data, a level of match of the seismic maps is identified which results in an 

optimal constraint of the simulation models. Better constrained models were identified 

by quality of their forecasts and closeness of the pressure and saturation state to the 

truth case. The results indicate that a significant amount of details in the seismic maps is 

not contributing to the constructive constraint by the seismic data which is caused by 

two factors. First is that smaller details are a specific response of the system-source of 

observed data, and as such are not relevant to flow characteristics of the model, and 

second is that the resolution of the seismic map itself is limited by the seismic 

bandwidth and noise. The results suggest that the notion of a good match for 4D seismic 

maps commonly equated to the visually close match is not universally applicable. 
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Chapter 1. Introduction 

 

1.1 Background and context to this work: 4D seismic method and its application 

in history matching 

4D seismic method is based on repeated seismic surveys conducted at different times 

during field development which aim to detect changes in a reservoir occurring due to 

hydrocarbon displacement (Yilmaz, 2001). Processes such as water floods, gas or steam 

injection, gas exsolution and significant variation of reservoir pressure cause changes in 

acoustic properties of rocks that may be detectable in seismic data provided conditions 

are favourable. Such conditions include sufficient repeatability of seismic surveys and 

significant magnitude of those dynamic effects. 4D seismic method has a pure 

geophysical nature of course, but the very purpose of shooting 4D seismic surveys is to 

help engineers with reservoir management decisions. Johnston, 2013 described the role 

of 4D seismic method in a company’s business as follows: “Your company is offered a 

tool that can tell you whether a field is performing according to plan and that can help 

you locate undrained hydrocarbons, optimize infill well and workover opportunities, 

manage injection and offtake, and help ensure maximum recovery. The cost is less than 

that of drilling a single well. Would you purchase that tool? Chances are you will.” 

The advantages of using 4D seismic surveys have not always been so clear. The method 

have gone through a few stages of development in the last 30 years before becoming (in 

many cases) an attractive investment opportunity for companies and a tool engineers 

can benefit from. Most often, the application of 4D seismic method is associated with 

repeated 3D surveys (rather than 2D). The 3D seismic acquisition itself has almost a 

half-century long history. The first experimental 3D seismic survey was shot in 1967 by 

Exxon Production Research. The experimental surveys continued until 1973 when the 

first commercial land 3D survey was shot in Lea County NM USA by Geophysical 

services, inc. Same company shot the first marine 3D survey in 1975 in the High Island 

area, Gulf of Mexico. By the end of 1980s, the use of the 3D seismic method has grown 

substantially and accounted for more than a half of seismic surveys in the industry 

(Robertson, 1989). First publications discussing the potential of the 4D seismic for 

monitoring thermal recovery were based on laboratory tests and field pilot projects and 

appeared in 1980s (Nur, 1982; Pullin et al, 1987; Greaves and Fulp, 1987). Subsequent 
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applications of the method in the early 1990s relied on legacy data and surveys not 

specifically designed for 4D analysis – 4D seismic was an emerging technology at that 

time. By the late 1990s, successful applications of the method had proven its economic 

viability so companies started shooting dedicated 4D seismic surveys at that time 

(Lumley, 1994; Jack, 1997; Koster et al, 2000). As a result, repeatability of 4D seismic 

data improved dramatically. The technical advancement of the acquisition process has 

gone as far as installing permanent seabed cables for seismic monitoring, although there 

are questions on cost-effectiveness of current implementation of that technology (Watts, 

2011).  

The state of the art of 4D seismic method is represented by its effective applications in 

reservoir management. Seismic attributes derived from the data can be interpreted in 

terms of areas of bypassed oil, hydrodynamic compartmentalisation, extent of water or 

gas floods, movement of oil-water contact and other production-related effects (Yilmaz, 

2001; Johnston, 2013). This information can be fed into the decision making process on 

the conceptual, qualitative level. For example, to decide on location for infill drilling, or 

to adjust a simulation model guided by visual inspection of seismic attributes. However, 

information from seismic data can be taken beyond the qualitative interpretations if the 

seismic signal is used quantitatively to infer information about pressure and saturation 

changes in reservoir or even about properties of rocks that allowed those changes. This 

is a problem of finding models constrained by a given response (observed data) which is 

known as an inverse problem. Essential for solving it is having the ability to match the 

observed seismic data by model, that is we need to employ methods of seismic 

modelling and knowledge about the rock physics.  

Quantitative inversion of seismic data opens up great opportunities for exploring the 

variety of realisations of a model based on data fit instead of working with a single 

model. Although the inversion process can be organised as estimation of virtually any 

property with the condition of fitting the data, a few paradigms exist that adopt the 

general idea of parameter estimation within the geomodel-to-seismic framework. The 

first proceeds similar to the traditional (of a single survey) seismic inversion by 

estimating elastic properties of rocks, impedance and seismic velocity. While with a 

single survey the inversion results in absolute values of the elastic properties, the results 

of 4D inversion are their time-lapse changes (Sarkar et al, 2003). Another option is to 

invert for pressure and saturation changes (Landrø, 2001). Finally, the third approach is 

taking one step further in complexity of forward modelling by including the flow 
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simulation too. The target for inversion in this case is properties of the simulation model 

that affect fluid flow such as permeability. In this case the whole process includes 

perturbing simulation model properties (e.g. permeability), running flow simulation, 

predicting seismic response based on pressure and saturation calculated by the 

simulation model, and comparing predicted seismic with the observed counterpart. The 

comparison of predicted and observed data itself can be carried out in different domains 

such as seismic attributes, impedance domain, or the observed seismic data can be 

inverted for pressures and saturations for comparison with simulation results (Gosselin 

et al, 2003). 

The last approach mentioned above within the context of inverting 4D seismic data in 

fact represents a bridge between the disciplines of geophysics and reservoir engineering. 

Indeed, we use a complex knowledge of flow characteristics, elastic properties of rocks, 

and seismic modelling methods in order to obtain a response of our simulation model in 

the seismic domain. When a history matching algorithm is employed to iteratively 

update the simulation models guided by a match of data (seismic and production), the 

approach constitutes a history matching loop. From the perspective of history matching 

of simulation models, the approach where modelling goes as far as predicting the 

seismic response essentially adds this new constraint, 4D seismic data, to traditional 

history matching. What does it mean for results of history matching? First of all, with 

more informative data, history matching yields better constrained models in general. 

But when this new data is 4D seismic, the extra information contributes even more 

substantially because it is spatial and covers areas between wells, whereas the 

traditional well production logs are limited to observation of integral properties at well 

locations. The potential of 4D seismic as a new effective constraint for history matching 

of simulation models was recognised by the community and triggered active research in 

this area. Gosselin et al, 2003, Stephen et al, 2006, Roggero et al, 2007 formalised 

matching the seismic data along with production data as an automatic history matching 

loop. Authors point out that adding the new constraint by 4D seismic data resulted in 

better constrained, more reliable models and reduced uncertainty of predictions.  

Although the prospect of improving simulation models by adding 4D seismic data is 

attractive, difficulties await a practitioner who has decided to go down that road. 

Integrating seismic data and flow simulations is a non-trivial task because models in 

seismic and flow simulation domains use different physical laws, assumptions and 

scales of space- and time-discretization. The differences between the domains together 
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with uncertainties in petro-elastic properties of rocks and techniques of petro-elastic and 

seismic modelling make the predicted seismic signal only approximately compatible 

with the observed data. On the other hand, the observed seismic data itself is a quite 

distorted response of the true Earth because it is contaminated with errors from 

acquisition and processing. In other words, errors are contained both in model-predicted 

and observed data. Although these errors have different causes, their adverse effect on 

results of history matching is similar: if a model tries to fit an erroneous component of 

data at the expense of a part it can model, overfitting occurs and the model loses its 

predictive capability (Abu-Mostafa et al, 2012). This machine learning principle appears 

to be particularly applicable when matching 4D seismic data by simulation results. 

Indeed, the extra layer of uncertainties when overcoming the gap between the domains 

only weakens the link between the details of seismic signature and flow characteristics 

of reservoir. As a result, details appear in seismic data that are specific to the process 

that generated the seismic response rather than being relevant to a more general 

characterisation of the flow regime. Most likely, these details will be local and less 

correlated across the entire volume of investigation than the true response of the 

pressure-saturation state of the reservoir which is of interest to us. If this is the case then 

we can take similar approach to the one generally used to prevent fitting noise. That is 

weight data in the objective function so that the level of match of local variations is 

reduced in favour of more general information from the entire dataset. Normally, data 

are weighted by their error estimates which can be obtained from the analysis of 

observed data itself (Gouveia and Scales, 1998; Aanonsen et al, 2003), or we can try to 

estimate the likely distribution of the model error directly where possible (Stephen, 

2007). Although the question of errors in seismic data has been studied in the literature, 

there is no indication of the level of details at which seismic data (such as 4D seismic 

map) constrains reservoir simulations effectively. Moreover, the term ‘good’ match of a 

seismic map has universally become equivalent to the closest match possible. There is 

no question that the close match can be achieved one way or another. The real question 

is will it improve the model?  

Another aspect of integrating 4D seismic data in simulation models is adequate model 

complexity for assimilating useful information from the new constraint. Complexity of 

a model is defined here as a number of parameters that control the model response. How 

complex should our models be for effectively learning from the observed data in order 

to give meaningful predictions? In scientific problem solving, the heuristic preference is 



5 

 

a tendency to simpler, more parsimonious models consistent with observations – a 

principle known as Occam’s razor (The Stanford Encyclopedia of Philosophy), or a 

more cautious formulation by Albert Einstein warning against promoting the simplicity 

above useful heuristic: “Everything should be kept as simple as possible, but no 

simpler”. This principle sometimes is contrasted with Bayesian inference (Gouveia and 

Scales, 1997) where multiple hypotheses of arbitrary complexity are tested instead of a 

single parsimonious solution. So where are we with history matching simulation models 

using 4D seismic data? As far as the complexity of models is concerned, we can see that 

the reservoir models clearly are not getting simpler. Nowadays, they are built on finer 

grids which are capable of accommodating complex geological concepts including 

interpretations of seismic data or other structural ideas of modeller being imposed on 

the model prior to history matching. In order to avoid bias from all this prior complexity, 

we need to use many parameters in history matching. Oliver and Chen, 2011 in their 

comprehensive review of history matching problems in the literature summarize 

findings in support of using many parameters. In particular, the authors point out that 

using a small number of parameters leads to solutions that are too specific to the 

information in the part of the model not varied as parameters, that is in the prior 

structure. As a result, predictions are biased and perception of uncertainty of predictions 

is inadequate (Hunt et al, 2007; Chen et al, 2010; Kravaris et al, 1985; Fienen et al, 

2009). Engineers still choose to work with few parameters sometimes because it is 

computationally easier. Parker (Parker, 1977) describing this tendency in a more 

general context concludes that sometimes too few parameters are used for convenience 

of problem solving rather than for any convincing geological reason. 

Underparameterisation of the problem does not fit to the abovementioned principle of 

parsimony either. Choosing just a few parameters for history matching does not make 

the model simpler, but it only makes it less flexible. With more parameters on the other 

hand, we can still seek the simplest and smoothest (in a mathematical sense, that is 

without extreme values) solution commensurate with data. This may require an extra 

ingredient though which is a regularisation. Indeed, using more parameters will make 

the model more susceptible to learning from data, and the regularisation will avoid 

overfitting and make the solution smoother. Although the pitfalls associated with 

insufficient parameterisation of history matching problems are generally understood, the 

question is not studied in the context of matching 4D seismic data which requires 

different considerations about model complexity because of its spatial constraint. 

Moreover, with the advent of seismic methods, more detailed interpretations of seismic 



6 

 

material are being introduced into the simulation models in a form of geobodies (Martin 

and Macdonald, 2010). These form a structural framework which may produce bias as 

described above if not parameterised properly.  

In the last two paragraphs, questions were raised regarding two aspects of seismic 

history matching: parameterisation of the reservoir model and matching the data. Figure 

1.1 illustrates how these aspects fit into the history matching scheme. The scheme 

shown in this figure describes a history matching formulated as a parameter estimation 

problem. Constituents of such formulation are discussed in more details in Chapter 2 

while here only a brief overview will be given. History matching is a process where 

some of the model parameters are adjusted so that the model response better fits the data. 

Additionally, it can be required that the resulting parameter values do not deviate much 

from a pre-defined prior values. The aim of history matching is calibration of model’s 

response against the historic data intended to improve the predictive capability of the 

model. The process starts with a geological model built using multiple sources of data 

and knowledge (see section 2.2 for more details). In the next step, a decision is made on 

what parameters should be calibrated in the history matching. This is an important and 

difficult part of the process. The number of parameters and their type and scale define 

the model resolution which should be adequate to the constraint of the available 

calibration data. As noted before, choosing too few parameters or insensitive parameters 

will be an obstacle for assimilating the information from the dynamic historic data. The 

key to maximizing the value of information from different sources is the balance 

between the model resolution and the prior knowledge embedded into the model such as 

geological concepts (see ‘parameterisation’ sections of chapters 2 and 3 for more 

discussion on the parameters). This aspect of history matching will be discussed in this 

work in the context of integrating 4D seismic data within the reservoir simulation 

models.  

The following steps of the history matching workflow shown in Figure 1.1 usually are 

encountered in a stochastic multiple model optimization approach (see Chapter 3 for 

discussion on the optimization methods). In such an approach, multiple models (forward 

models) are run for each iteration. An iteration starts with setting values to the 

parameters: initial (often random) values if it is the first iteration or optimized (based on 

minimizing the objective function) values for subsequent iterations. A forward model 

here includes a reservoir simulation and seismic modelling followed by a comparison of 

predicted and observed data numerically defined by the objective function (which may 
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also include a comparison with a prior model, hence the block in Figure 1.1 is called 

data/prior match). For a seismic history matching scenario, the observed data includes 

both production data such as well rates and pressures and also seismic data in a form of 

seismic attributes. In reflection seismology, a seismic attribute is defined as a quantity 

extracted or derived from seismic data that can be analysed in order to enhance 

information that might be more subtle in a traditional seismic image, leading to a better 

geological or geophysical interpretation of the data (Yilmaz, 2001). Therefore, the 

objective function consists of ‘production’ and ‘seismic’ terms. The balance between 

matching production and seismic terms is an important question which is addressed in 

this work. After the objective function is evaluated for each of the models, the resulting 

values are fed into the optimization algorithm which, if the match criteria is not met (or 

a maximum of the number of iterations is not reached), calculates updated values of 

parameters for multiple models of the next iteration thus closing the loop, or ends the 

process otherwise. 

 

Figure 1.1. Scheme of history matching for an iterative parameter estimation formulation using 

multiple-model approach such as a stochastic automatic history matching. Dashed red rectangles 

indicate the parts of the workflow on which the present work focusses. 
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1.2 Objectives and scope of this work 

As mentioned before the problem of integrating 4D seismic data within the process of 

history matching of simulation models is non-trivial and many-sided. It is only by 

collective knowledge based on many case studies from around the world can we assure 

progress in this field. This work aims to make its contribution in the field by analysing 

the questions raised in the previous paragraphs and answering them within the scope of 

a few realistic scenarios constructed as part of this work with the available resources 

including field data and models of the Schiehallion field. This work aims to achieve the 

following main goals: 

1. Study the seismic response of models covering various distributions of 

properties. Investigate to what extent the limited resolution of seismic data and 

associated effects such as tuning and also noise affect the detectability of 

production-related effects in reservoir. What is the impact on history matching? 

2. Study the impact of model complexity and flexibility of parameterisation on the 

results of history matching. What is the impact of deterministic inclusions in 

models such as geobodies from seismic interpretation? 

3. How to achieve a more flexible parameterisation? Is history matching in high-

dimensional parameter spaces a feasible and practical solution for conditioning 

reservoir simulation models? 

4. Investigate differences in constraints by production and seismic data, and the 

impact of those differences on combining the two data types within a single 

dataset. How to judge the quality of constraint by data and why one model is 

better than another? 

5. Identify the level of details at which the seismic map constructively constraints 

flow properties of simulation model. What constitutes a good match? 

Achieving those goals has required solving a number of technical problems mainly 

associated with organising the process of seismic history matching within an automatic 

loop. This loop integrates a number of processes that bridge the gap between geophysics 

and simulations domains: petro-elastic and seismic modelling, calculation of seismic 

attributes, signal processing and seismic inversion. 
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1.3 Outline of the thesis 

The remainder of the thesis is organised as follows: 

Chapter 2. Theory. This chapter provides definitions and the theoretical context to the 

methods applied in this work.  

Chapter 3. Literature review. The aim of this chapter is describing the progress made so 

far in addressing the problems of combining seismic and production data within the 

history matching process. 

Chapter 4. Methodology. Conducting the history matching experiments required 

development of software tools which adopt standard methods and algorithms. The 

work-specific implementations of those are described here. 

Chapter 5. Seismic response study. This chapter focuses on the seismic modelling side 

of the process by studying the relationship between reservoir properties and the seismic 

response (4D seismic map in this case). It explains the choice of seismic attributes for 

history matching. Particular emphasize is put on detectability of production related 

effects as a basis for seismic history matching. 

Chapter 6. Problems of incorporating seismic interpretations in simulation models. This 

chapter studies how including deterministic seismic interpretations such as geobodies in 

simulation models affects their flexibility and impacts results of history matching. The 

question of model complexity is addressed in the context of choosing a parameterisation 

that allows better assimilation of details from the seismic data and reduces bias from the 

imposed prior structure. 

Chapter 7. Integrating data in seismic history matching: scale of constituents. In this 

chapter, scenarios of history matching using a combined dataset of production and 

seismic data are tested to identify the level of details in the seismic map that effectively 

constrain flow properties of the model. The constraints by production and seismic data 

are compared in terms of the result of history matching.  

Chapter 8. Conclusions and recommendations. Most important results of the work are 

summarized and also recommendations are made for using the results and improving 

them. 
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Chapter 2. Overview of theory 

 

2.1 Introduction 

The work of this thesis integrates methods from two disciplines, reservoir simulation 

and geophysics such as history matching, petro-elastic and seismic modelling and 

inversion. It is important therefore to establish a theoretical background for the work 

which is a focus of this chapter. Main definitions and place of the methods in a broader 

context of the subjects are discussed. The chapter starts with an introduction to the 

history matching including parameterisation and optimization methods. In the following 

part, 4D seismic method is introduced by its applications. The central topic in this part 

is the rock physics foundations. These describe the relationships between production-

related pressure and saturation effects occurring in reservoir and petro-elastic properties 

of rocks that are detectable in 4D seismic data. In the final sections of the chapter, 

methods of seismic modelling and inversion are discussed. Seismic modelling is used as 

a part of the forward modelling routine in this work. It facilitates the integration of 4D 

seismic data within the history matching workflow. Seismic modelling also is a part of 

the seismic inversion procedure. The latter is used in this work for deriving data-

specific distributions of properties in models. 

 

2.2 Building of reservoir models 

Reservoir models represent aggregated knowledge about reservoirs in a mathematical 

form. This knowledge comes from field measurements and their interpretations tied 

together with understanding of geology of the reservoir. A geological model of reservoir 

consists of the following components: 

 Structural framework (reservoir geometry and faults) 

 Stratigraphic layering 

 Facies model 

 Petrophysical model  

The geological model serves as a basis for the simulation model which additionally 

includes properties necessary for fluid flow simulation: properties of fluids, aquifers, 

relative permeabilities and capillary pressures of rocks, initial pressure and saturation 

conditions, boundary conditions and well locations and regimes.  
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The dynamic response of a model such as predicted well rates and pressures is defined 

by those model constituents for which reason model errors are the factor that reduces 

the reliability of model predictions. Model error is reduced if some of the model 

parameters are tuned by calibrating the model response against historic data – well rates, 

pressures, and 4D seismic data, in a process called history matching. Not all the model 

parameters can be tuned in history matching as discussed in the parameterisation section 

below. Some part of the model will have to remain intact (fixed) during history 

matching because the historic dynamic data may not provide enough information for 

constraining more parameters and also the history matching with too many parameters 

may not be feasible. Most often the history matching parameters include those directly 

affecting the flow: permeabilities, barrier transmissibilities, relative permeabilities and 

others. The fixed part on the other hand usually is comprised of the structural 

framework: reservoir geometry, fault locations, facies definitions – those parameters for 

which the input from the static geological model is less uncertain. This is where the 

geology is important: any solution for the history matching problem will be found only 

within the bounds set by the geological model realisation.  

These bounds help obtaining geologically plausible models in history matching and also 

make the search in parameter space more efficient by reducing its size. Geological 

description such as the type of depositional environment and the definition of facies 

forms the basis for building a model. For example, seismically derived geobodies in 

Schiehallion field were integrated in the model of the channelized turbidite reservoir 

which provided valuable pressure constraint even before the history matching (Miranda, 

2007, Martin and Macdonald, 2010). In another example, the model of sand lobes 

interbedded with shales in stacked turbidites of the Magnus reservoir allowed obtaining 

an effective permeability model and helped planning the tertiary recovery optimization 

(King et al, 1998, Moulds et al, 2005, Erbas et al, 2014). 

Together with valuable information, the geological realisation brings an element of 

subjectivity too because a geological description is to a great extent uncertain. In this 

situation, considering multiple probable geological realisations helps understating the 

uncertainty and also provides means for screening of the possible outcomes (while 

sticking with a particular realisation and hence not thoroughly exploring the parameter 

space is sometimes called anchoring, see Aggarwal et al, 2012). In some cases 

regeneration of geological realisations can also be included in the history matching itself, 

although this can significantly slow down the process (Maucec et al, 2011).  
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Building a model requires integration of data from different sources. These data have 

different uncertainty as well as different characteristic scales which makes their 

integration challenging. For example, structural framework is built by mapping horizons 

in 3D seismic data with the structural data updated at well locations. This requires tying 

vertically coarse seismic data to the detailed well logs for which reason the synthetic 

seismogram is used (Yilmaz, 2001). Relative permeability can be measured directly on 

core samples in laboratory but upscaling the results to the reservoir scale requires many 

assumptions about the representativeness of the conditions of the experiment and 

overall, the results are non-unique and require further calibration (see for example, Yang 

et al, 1994). There are multiple-scale sources for the absolute permeability too: core 

measurements, mini-permeameter, well test, and even estimates from 4D seismic data 

(Durlofsky, 2002). The most relevant to the present work is reconciling the results of 

reservoir simulator and observed 4D seismic data. Because these data are discretized at 

different scale upscaling and downscaling can be required for integrating 4D seismic 

data within the reservoir model (see Chapter 3 for more details).  

 

 

2.3 History matching  

In the history matching process, parameters of the model affecting its predictions are 

adjusted until the mismatch between the model predictions and observed well rates, 

pressures, seismic attributes is minimized to a certain degree. Adjustments to the 

parameters are made iteratively, and at each iteration, new values of parameters, new 

parameters or a new direction of parameters change, are devised from the current state 

of the model, and whether this state changes as desired. This iterative process may 

include a great deal of repetitive computations and therefore is automated where it is 

possible. Automated history matching algorithms generally require interaction with 

human for heuristic guidance and the process therefore is called assisted history 

matching. If automation of the history matching steps is not applied, the process is 

called manual history matching. Manual history matching relies on good engineering 

judgement and experience for updating simulation models, but can be limited in the 

number of runs and width of exploration of parameters. Although manual history 

matching can follow a structural, well organised approach (Williams et al, 1998), it may 

still result in geologically implausible distributions of properties due to local changes to 
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match individual wells or connections. For these reasons, assisted history matching 

methods represent an improvement over the traditional manual approach.  

In order to formalise the history matching problem and apply mathematical methods to 

it, such as automation of history matching, the problem is usually formulated as an 

inverse problem of parameter estimation. The parameters to be estimated in this case are 

those affecting the dynamic predictions of the model: porosity, permeability, geometric 

factors of the reservoir, and any other parameters that are thought to improve match of 

historic data.  

The formulation of an inverse problem of parameter estimation includes: 

1) Mathematical model (forward model) 

2) Parameterisation 

3) Objective function 

4) Algorithm for minimizing the objective function 

With the above formulation, the history matching process represents a series of 

iterations to minimize the objective function which is a sum of specifically weighted 

residuals of the difference between predicted and observed data. The predictions are 

calculated at each iteration using a mathematical model also called a forward model. 

The optimization algorithm is responsible for updating the parameters with a view to 

minimize the objective function. 

 

2.3.1 Mathematical model 

Prediction of well rates and pressures as well as oil recovery fractions in reservoir 

simulation is carried out using analytical techniques and numerical methods. The former 

include material balance equations, fractional flow methods (1D Buckley-Leverett 

equation), and decline curve analysis. The analytical methods appeared in reservoir 

engineering before the computation-expensive numerical methods became available. At 

present, the analytical techniques are still useful for preliminary assessment of well 

potentials or when data is limited, for example in new developments. However, the 

discrete models of reservoir now contain detailed spatial information about rock and 

fluid properties and multiple wells with changing regimes. The complexity of such 

models implies that it is not possible to obtain an analytical solution for the non-

stationary pressure and saturation within them and it should be found numerically. The 
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mathematical model simulating fluid flow in porous media is based on the following 

fundamental laws (Donnez, 2007): 

1) Mass conservation law 

2) Darcy’s law 

3) Equation of state 

4) Relative permeability and capillary pressure relationships 

5) Wells and/or surface facility models for boundary conditions 

The respective partial differential equations are solved by simulators using a finite-

difference approximation on the simulation grid. The finite-difference simulators are the 

most common tool for reservoir simulation, and such a simulator is used in this work.  

To speed up the simulations, one may opt for an alternative simulator, a streamline 

simulator instead of a conventional finite-difference simulator (Datta-Gupta and King, 

2007). It solves the transport equations along streamlines drawn from the velocity field. 

The streamline simulation method provides faster simulations especially when using 

finer grids and convective-dominated systems: slightly compressible systems, 

principally governed by pressure gradients rather than absolute pressure, such as water 

or gas displacing oil.  

 

2.3.2 Parameterization of the model 

Building a model involves integrating many types of imprecise information about rock 

and fluid properties, every piece of which can potentially be adjusted in order to 

improve flow predictions of a model. The number of parameters in a history matching 

problem therefore can be very large exceeding the number of independent data by many 

orders of magnitude. Such history matching problem will be extremely ill-posed so that 

even though solutions can be found matching the data, they will be so non-unique that 

their usefulness for making predictions will be questionable. One way of tackling the 

non-uniqueness problem is applying a regularisation which would narrow down the 

range of solution to those meeting imposed criteria such as the smoothness (Tikhonov 

and Arsenin, 1977). Pure generic regularisation does not bear any geological knowledge 

though, and also, not all optimization algorithms are capable of working in high 

dimensional spaces. Therefore, we need the parameterisation too. The parameterisation 

reduces the number of parameters to be modified for updating the model. Choosing 
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parameters for history matching is very important as it defines not only the performance 

of the history matching algorithm but also the form of the final solution, that is the 

model and its predictive capability. Generally, parameters are chosen based on their 

impact on the misfit reduction, and also with a view to improving prediction of a 

particular data type. For example, relative permeabilities for correcting phase flows, 

absolute permeability and strength of aquifer for reservoir pressures, areal distribution 

of permeability and flow barriers for desired more complex flow patterns. In the context 

of simulation models, the parameters can be those controlling the model as a whole (or 

big parts of it) such as aquifer strength, oil-water contact depth, petro-elastic constants, 

PVT properties and so on, and those representing properties on the grid such as porosity 

and permeability in cells. It is the latter category that normally requires 

reparameterisation due to the massive amount of potential parameters in it. 

One of the most basic parameterisations is called zonation (Jacquard and Jain, 1965). It 

divides a model into regions of constant properties which are then used as parameters in 

history matching. The scheme leads to very fast initial reduction of misfit, but results in 

a too coarse model. Problems of the method are addressed in the multi-scale adaptive 

approach where the parameterisation is refined at different stages of history matching 

based on reduction of misfit (Yoon et al, 2001; Grimstad et al, 2003). In other schemes, 

solutions are found in the form of smoother property fields in the first place. This is 

achieved by using an interpolation between the locations of parameter updates. Very 

popular example is the pilot points scheme which uses krigging to spread the influence 

of the points at which the property is updated to the adjacent cells in a model (Marsily et 

al, 1984). Other methods may use spline functions for interpolation (Lee et al, 1986). 

Efficient parameterisation of the history matching problem can be achieved by 

calculating eigenvectors of decomposition of either the prior model covariance matrix 

such as Karhunen-Loeve (KL) expansion (also known as the principle component 

analysis (PCA), Gavalas et al, 1976) or that of the data-sensitivity matrix, that is by 

finding the number of parameters determined by data (Rodrigues, 2006).  

A parameterisation scheme can be viewed as a method of applying an update to all 

possible parameters in a model through modification of only a few of them. One way of 

representing the relationship between a high-dimensional vector of the model update 

   (in space  ̂) and a vector of the parameter update in a lower-dimensional space 

(subspace    ̂ )     is the linear combination of basis vectors specific to that 

parameterisation scheme scaled by the components of    (Oliver and Chen, 2011): 
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       (2.1) 

where columns of matrix A are basis vectors in  ̂. These encapsulate the spatial (in  ̂) 

characteristics of a parameterisation such as smoothness of interpolation or radius of 

influence of parameter updates. The spatial characteristics of the parameterisation 

schemes discussed above are illustrated in Figure 2.1 which compares the 

corresponding basis vectors for an example of parameterising a problem of property 

estimation on 100 grid blocks using 2 parameters (after Oliver and Chen, 2011). Blocky 

character of the zonation scheme contrasts with smooth fields of other methods. The 2 

pilot points in Figure 2.1, b are distributed evenly across the model. The two 

eigenvectors of KL-expansion method in Figure 2.1,c are determined by the prior 

covariance matrix only, while the two vectors in Figure 2.1, d result from the data-

sensitivity of parameters, hence distributed unevenly in space. 

 

Figure 2.1. Basis vectors for parameterisation methods: a) zonation, b) pilot points, c) KL 

expansion, d) singular vectors of (regularized) data-sensitivity matrix.  After Oliver and Chen, 2011 

Modelling complex and geologically realistic properties and distributions of facies 

requires parameterizing the models with discrete quantities such as appearance of 

geobodies, placement of channel boundaries, switching facies. History matching can 

handle this kind of variation of properties too for which it is more convenient to convert 
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them into the continuous form. This can be achieved by reparameterising the problem 

using multiple-point statistics. Plurigaussian models are used in the Gradual 

deformation method which works with a series of Gaussian model realisations to find 

the one that minimizes the objective function (Hu et al, 2001). The method preserves 

the spatial variability of the defined stochastic model. Sometimes, additional constraints 

are set to the property trends in stochastic realisations such as to control the average 

spatial proportion of facies (Roggero et al, 2007). In a related probability perturbation 

approach, the probability is updated in the sequential simulations of properties until a 

realisation is found minimizing the objective function (Caers and Hoffman, 2006). 

  

2.3.3 Objective function 

History matching algorithms use the objective function to calculate goodness of a given 

model m which guides them in searching the parameter space   consisting of models m. 

First of all, the objective function measures the misfit of model prediction, g(m), and the 

observed data dobs, by a weighted sum of residuals. The weighting takes into account 

units of different data types and also correlations of residuals which are based on the 

noise statistics. These statistics are encapsulated by the data error covariance matrix CD 

(Tarantola, 1987). The mismatch between predicted and observed quantities can also be 

corrected if predicted data contains errors for which the covariance information is 

available, for example in upscaling studies (Stephen, 2007).  

Underdetermined nature of the parameter estimation problem such as history matching 

requires regularisation to ensure smoothness of its solutions. Regularisation can be 

implemented explicitly in the objective function by adding a term which penalizes 

deviations of solutions from certain prior solution (mprior). That deviation is measured 

by the model covariance matrix, CM, which indicates parameter correlations too. The 

most popular expression for the objective function that has the described characteristics 

is as follows: 

 ( )  ( ( )      )
   

  ( ( )      )

 (        )
 
  
  (        ) 

(2.2) 
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The rationale behind using the squares of the residuals is that the values of the objective 

function, provided the errors are Gaussian, can be used in the Bayes’ formula to 

calculate the probability of models, m: 

 ( |    )       ( 
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(2.3) 

where  ( |    ) is the posterior probability of the model m given the data dobs, a is a 

normalisation constant. 

The above expression is derived from the multiplication of Gaussian probabilities of 

errors of all individual data points. If the ensemble of models is assigned probabilities as 

shown above then the posterior probability distribution, P(m), is defined on   

(provided the distribution of m is known, or   can be resampled with a required 

distribution). Subsequently, known P(m) can be used to calculate Bayesian integrals, 

such as the mean value of the models 

〈  〉  ∫    ( )  
 

  
(2.4) 

and the marginal posterior probability distribution 
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(2.5) 

 

2.3.4 Algorithm for history matching 

Historically, the manual history matching was the main approach for conditioning 

reservoir simulation models to field data. It is still widely used as automation may not 

be possible due to technical or organisational limitations. In the manual history 

matching, properties that are known to have largest impact on the flow are adjusted. 

Although it is recognized that the resulting changes to the model should be realistic 

from the geological point of view, the results of history matching sometimes include 

localised, unrealistic changes to the model properties. This happens because matching 
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data, especially at the well level is a difficult, time-consuming process, and engineers 

have to resort to these easier solutions. A systematic approach to the history matching 

will include (Donnez, 2007): 

1) Matching data at the field level: aquifer strength (size and permeability), 

reservoir pressures (using pressures from build ups and RFTs) 

2) Matching phase rates (WCT, GOR). 

3) Matching bottom hole flowing pressures by adjusting productivity indexes of 

wells. 

When the automation of the history matching process is feasible, different options exist 

for an algorithm of minimization of the objective function. If the objective function is 

believed to be relatively smooth then gradient-based methods (Nocedal and Wright, 

2006) may offer fast convergence with very few iterations and, more importantly, few 

estimations of the objective function. Gauss-Newton method operates with both 

gradient and an approximation to Hessian (2
nd

 order derivative) matrixes for estimation 

of the parameter updates. The method can converge to the solution very rapidly but may 

become impractical for large number of data and parameters due to the size of the 

matrices. An improvement to the Hessian calculation is offered by the Levenberg-

Marquardt algorithm, but the cost of a single iteration remains high. More practical 

gradient-based algorithms use the conjugate-gradient method where the Hessian is not 

used, and the subsequent search directions are estimated as linear combinations of the 

previous directions. 

Gradient methods can handle history matching problems with many parameters and 

offer fast convergence rates but may fail to overcome the non-linearities of the objective 

function in a sense that a solution may be found in a local minimum of it. Also, accurate 

computation of data-sensitivities is computationally expensive. Stochastic algorithms on 

the other hand do not use sensitivities while relying on the random sampling of the 

response surface. For that reason the stochastic algorithms are capable of avoiding local 

minima. The major weakness of these algorithms though is the need for many models to 

explore the parameter space efficiently. This limits the dimensionality of the parameter 

space, that is it reduces the number of parameters that can be used in history matching 

compared to the gradient-based methods.  

Stochastic algorithms are often based on analogy with natural processes of evolution of 

populations. Genetic algorithms use mutations and recombinations of models which are 
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performed randomly but are conditioned on the current value of the misfit (Winter et al, 

1995). Simulated annealing algorithm simulates a controlled cooling of the system 

where the probability of accepting worse solutions (jumps) decreases with temperature 

(Reeves, 1995). The Particle swarm optimization (PSO) algorithm is inspired by social 

behaviour of bird flocking or fish schooling (Kennedy and Eberhart, 1995). Each 

particle in the population moves randomly but is attracted towards the best solution 

found by itself and towards the best solution found by the population as a whole or as a 

group. PSO method is used in this work so the algorithm is described in more details in 

the Methodology chapter. 

Different approach to history matching is represented by the ensemble Kalman filter 

(EnKF) method which results in multiple history matched models (rather than a single 

deterministic model). The resulting ensemble of models gives an estimate of uncertainty 

(although this estimate generally appears to be too low, according to Oliver and Chen, 

2011). The method was only recently brought to the petroleum science (Lorentzen et al, 

2001). EnKF is based on a sequential data assimilating scheme and is capable of 

estimating large numbers of model variables (Aanonsen et al, 2009; Zhang and Oliver, 

2011). Not only the model variables such as porosity and permeability, but also the state 

variables such as pressures and phase saturations are estimated in this method. Both 

model and state variables are combined within a single state vector. The method 

consists of two main steps, forecasting and analysis (data assimilation step). At the 

forecasting step reservoir simulator and a seismic forward model (if any) are used to 

propagate the state vectors forward in time. At the analysis step, each realisation of the 

state vector y is updated according to the data assimilation equation: 

  
    

 
    (      )

  (         
 ) (2.6) 

where j is the index of model realisation, a and f refer to the analysis and forecast steps, 

CD is the data error covariance matrix, d
f
 and dobs are predicted and observed data, Cyd is 

the matrix of covariance between data and model and state variables, and Cdd is data 

covariance matrix.  

The size of the ensemble of models and variation of properties within the ensemble 

define the quality of covariance estimates and ultimately the final parameter estimates. 

Provided the parameters are backed by sufficient variation of properties within the 

ensemble, the method is not sensitive to the number of parameters being estimated 
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which is the reason for its computational efficiency for estimating large numbers of 

parameters. The drawbacks of the method are caused by the abovementioned limitation 

due to the ensemble size and also by the Gaussian and linear assumptions of the analysis 

step. These include unphysical estimates of state variables and limited ability to 

assimilate large volumes of independent data such as 4D seismic data. 

 

2.4 4D seismic method 

4D seismic data, along with production data, forms the basis for constraining simulation 

models in this work. Prediction of 4D seismic data is therefore a part of the forward 

modelling step of the history matching process. This section builds up the theoretical 

background for linking the production-related effects in reservoir with the elastic 

properties of rocks. Fundamental laws of rock physics and empirical relationships are 

given here explaining their assumptions and a broader context, whereas the 

methodology chapter details the exact workflow for predicting seismic properties. 

4D seismic method is based on repeated (most often 3D) seismic surveys. 3D seismic 

acquisition is a geophysical technique that has undergone a significant growth in the last 

45 years and has largely replaced 2D seismic acquisition in the seismic industry (Eaton 

et al, 1997, Biondi, 2006). 3D seismic data has superior resolution compared to 2D 

seismic data because of the reduced spacing of the seismic grid (25 or less metres for 

3D compared to a kilometre for 2D) and improved positioning of reflections by the 

application of 3D sampling and migration algorithms. As high resolution data, 3D 

seismic data represents a critical component for reservoir description as it bears 

information about the inter-well space not available from wells. Typical applications of 

the 3D seismic method include (Jourdan and Ekern, 1996):  

 Structural analysis and identification of top of reservoir: mapping of horizons 

and faults. 

 Stratigraphic and sedimentological analysis: sequence stratigraphic analysis, the 

analysis of reservoir architecture, bounding surfaces and reservoir 

heterogeneities. At this level, the high-resolution seismic data is integrated with 

the geological concepts. 
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 Estimation of petrophysical parameters and rock properties. Estimation of 

porosity and net to gross 3D properties by calibrating seismic attributes at well 

locations, or deriving trends of properties rather than their values. 

 Fluid detection. Analysis of seismic attributes for direct hydrocarbon indicators 

(bright spots, flat spots) or detection of hydrocarbon bearing reservoirs from the 

amplitude versus offset (AVO) analysis. 

As follows from the list of applications, 3D seismic method provides necessary input 

for the static geological model. 4D seismic data on the other hand is a reservoir 

management tool which provides information about the dynamic characteristic of the 

reservoir and as such can be used to constrain the response of the simulation model. 4D 

seismic method has evolved from an academic research topic into a practical tool for 

reservoir management during the last 20 years due to the advances in acquisition and 

processing techniques and the advent of new technologies such as repeated marine 

streamers. First publications on the applicability of the 4D method were related to the 

thermal recovery monitoring (Nur, 1982). Early 4D studies used legacy seismic data to 

detect production related changes, mainly associated with water flooding, before the 

companies started shooting specifically designed 4D surveys (Koster et al, 2000). 

Today, the 4D seismic effects are well understood, mostly for monitoring of thermal 

recovery, CO2 enhanced recovery, water flooding, pressuring up and compacting 

reservoirs. 

Applications of the 4D seismic method are summarized below: 

1) Monitoring the spatial extent of the steam front following in-situ combustion or 

steam injection used for thermal recovery 

2) Monitoring the spatial extent of the injected water front used for secondary 

recovery 

3) Imaging bypassed oil 

4) Determining flow properties of sealing or leaking faults, identifying 

compartmentalisation 

5) Detecting changes in oil-water contact 

6) Monitoring CO2 enhanced recovery or CO2 sequestration in order to minimize 

CO2 loss and recycling 

7) Monitoring compaction or over-pressuring of reservoirs 
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The state of the art of 4D seismic method is quantitative use of 4D seismic attributes as 

discussed in Chapter 1. These require more information available from 4D seismic data 

which means better data quality ensured by higher repeatability and lower noise. 

Several strategies exist today that improve on these parameters (Johnston, 2013). First 

of all, dedicated 4D seismic surveys provide far better repeatability than those using 

legacy data. The dedicated surveys can be acquired using either towed streamers or 

using permanent installations such as ocean bottom cables (OBC) or ocean bottom 

sensors/nodes (OBS/N). For the towed-streamer surveys the following strategies 

improve the repeatability:  

 Using the same line orientation and direction 

 Matching the source positions 

 Overlapping streamers 

 Matching streamer feathering 

 Using non-standard dual vessel geometries 

 Shooting infill lines on the basis of repeatability criteria 

 Designing baseline survey to be easy to repeat 

 Tightening survey specifications 

 Considering alternative acquisition methods under facilities 

Although the permanent monitoring systems (OBC and OBS) benefit from better 

repeatability parameters, their market penetration remains low. The main reason is that 

the economic benefit of the technology is difficult to prove in the life of field scale. 

Figure 2.2 illustrates the cost difference between the towed-streamer and permanent 

systems for a scenario where the surveys are shot twice a year. The difference increases 

however if one survey a year is assumed. 

The majority of 4D seismic surveys have been acquired offshore. The land application 

of 4D seismic method is limited by the land seismic data quality issues and also by the 

economic factor: 4D survey offshore is easier to justify due to the high cost of facilities. 
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Figure 2.2. Comparison of costs of 4D acquisition types: towed-streamer and permanent 

installation. After Johnston, 2013 

The time lapse (4D) seismic method works with seismic images of same subsurface 

target taken at different times to reveal production-related effects in them. Production of 

hydrocarbons, injection of water, steam or gases change pressure and saturation of the 

reservoir, cause reservoir compaction or pressuring up, may also change the temperature 

field resulting in changes of the elastic properties of the subsurface rocks (Figure 2.3). 

These changes can be detected on the differences of seismic surveys taken at different 

stages of production. Ideally, the first survey is pre-production and is called a baseline 

survey, and the subsequent surveys are called monitor surveys.  

 

Figure 2.3. 4D signal associated with water injection (negative anomalies): a) Block 6 of Marlim Sul 

field, b) 4D signal associated with gas anomalies (positive values), Block 4 of Marlim Sul field. After 

Thedy et al, 2007. 

Taking the difference of the two seismic volumes aims to amplify the production-

related effects while attenuating signal due to lithology variations. This can only be 

achieved if the two surveys are as identical as possible everywhere except for the 
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production affected areas. The similarity among the baseline and monitor surveys is 

called repeatability. Repeatability is a critical factor for a 4D study which determines 

how much information can ultimately be extracted from the 4D seismic data. Similarity 

of the geometries of surveys is a prerequisite of good repeatability (Figure 2.4), but 

repeatability also depends on many other factors. Usually the repeatability is measured 

by the normalized RMS difference of the surveys (NRMS): 

     
        (     )

   (  )     (  )
 

(2.7) 

where at and bt are seismic traces of the two surveys, RMS is root mean square taken 

within a time window. The repeatability of 4D seismic surveys has improved in the 

recent decade because of technological advances and improved design of surveys. If in 

early 2000s the typical NRMS values for the North Sea region were greater than 30%, 

the later surveys see values as low as 10-20%. The operators of Schiehallion field report 

repeatability noise to be as low as 7% (Staples et al, 2006). 

 

Figure 2.4. Demonstration of the link between acquisition repeatability (steamer data) and 4D noise. 

After Staples, 2006. 

Another factor controlling the success of the 4D study is detectability of the production 

related effects. It is a function of the magnitude of pressure and saturation changes, 

sensitivity of seismic signal to those changes, and timing of surveys. Sensitivity of 
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seismic signal to certain changes of pressure and saturation and also on the rock types is 

determined by the rock physics as described in the next section. Studying the expected 

magnitude of 4D signal in a given field for the planned development strategies 

constitutes 4D seismic feasibility study which helps establishing the economics of the 

4D project.  

 

2.4.1 Rock physics foundation of the 4D seismic method 

This section gives an overview of rock physics equations required for modelling 4D 

seismic effects while the values of the petro-elastic properties used in this work are 

given in sections 4.5 and 5.3. 

Pressure and saturation changes due to production of hydrocarbons induce changes to 

the elastic properties of rocks that we are trying to detect using the 4D seismic method. 

The 4D signal is caused by changes in the reflectivity of rocks and changes in the 

seismic wave arrival times, that is time-shifts, which we will express in terms of 

velocities of seismic waves. The compressional and shear seismic wave velocities in 

homogeneous, isotropic, elastic media are given by 
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(2.8) 

where Vp is the P-wave velocity, Vs is the S-wave velocity, ρ is the density, K is the bulk 

modulus, µ is the shear modulus. The bulk modulus K is defined as the ratio of the 

hydrostatic stress to the volumetric strain and measures the incompressibility of the 

media (liquid, gas or solid). The shear modulus, µ, is defined as the ratio of shear stress 

to shear strain. 

Reflection of seismic waves occurs at boundaries formed by impedance contrasts. The 

impedance, I, of an elastic medium is the ratio of the stress to the particle velocity. At a 

plane interface between two thick, homogeneous, isotropic, elastic layers, the normal 

incidence reflectivity for waves traveling from medium 1 to medium 2 is the ratio of the 

displacement amplitude, Ar, of the reflected wave to that of the incident wave, Ai, and is 

given by (Mavko et al, 2009) 
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where subscripts 1 and 2 signify media 1 and 2 respectively. 

Saturation substitution 

4D seismic effect associated with saturation change, or fluid substitution, is caused by 

differences in the rock bulk moduli saturated by different fluids, whereas shear modulus 

is insensitive to fluids. This effect is encountered in such cases as water or gas injection, 

gas coming out of solution, or condensate dropping. However, the problem of fluid 

substitution originates not in 4D seismic, but arises as a more general problem of 

estimating seismic velocities of saturated rock using measurements on rocks saturated 

with different fluids in the rock physics analysis of cores, logs and seismic data. A 

common solution to the saturation substitution problem is given by the low-frequency 

Gassmann-Biot (Gassmann, 1951; Biot, 1956) theory. The Gassmann’s equation 

predicts the bulk modulus of saturated rock through the values of bulk moduli of dry 

rock and the fluid:  
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(2.10) 

where Kdry is the effective bulk modulus of dry rock, Ksat is the effective bulk modulus 

of the rock with pore fluid, K0 is the bulk modulus of mineral material making up rock, 

Kf is the effective bulk modulus of pore fluid, φ is the porosity, µdry is the effective shear 

modulus of dry rock, and µsat is the effective shear modulus of rock with pore fluid. 

Gassmann’s equation is valid under the following assumptions (Mavko et al, 2009): 

1) Frequencies of waves passing through the media are assumed low so that pore 

pressures are equilibrated throughout the pore space, i.e., there is sufficient time 

for the pore fluid to flow and eliminate wave-induced pore-pressure gradients. 

Seismic frequencies (10-100 Hz) generally are acceptable, while ultrasonic 

laboratory conditions will generally not be described well with Gassmann 

equation. Sonic-logging frequencies may or may not be within the range of 

validity, depending on the rock type and the fluid viscosity, 

2) The rock is isotropic, 

3) All minerals making up the rock have the same bulk and shear moduli 

(homogeneous mineral modulus), 
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4) Fluid-bearing rock is completely saturated with a fluid of constant bulk modulus. 

Since the above equation assumes a single fluid saturating the rock, we will have to 

calculate an effective modulus for a mixture in general case. For the homogeneous 

mixing of fluids in the pore space, the bulk modulus of the mixture can be described by 

Reuss average (Wood’s average, Wood, 1955) of bulk moduli of constituents: 

 

  
 
  
  
 
  
  
 
  
  
  

(2.11) 

where Kf is bulk modulus of mixture of fluids, Sw, So, and Sg are saturations of water, oil 

and gas respectively, Kw, Ko, and Kg are bulk moduli of water, oil and gas respectively. 

MacBeth and Stephen, 2008 note that better representation of this equation is possible 

where statistics of fine scale properties are known, but for the coarse model used here 

the above equation is accurate. 

The density of the fluids mixture is calculated as a saturation-weighted average of 

individual densities: 

                  (2.12) 

Figure 2.5 demonstrates application of Gassman’s equation for prediction of the 

velocity of rock saturated with different fluids. Notably, for gas-water system, only a 

small amount of gas in the mixture results in dramatic decrease of velocity of rock. For 

normal oil-water systems, velocity increases with water saturation, and for heavy oils, 

velocity is almost insensitive to the water saturation change. 

 

Figure 2.5. Functions of P-velocity of saturated rock on water saturation for different mixtures of 

saturation fluids. After Johnston, 2013. 
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Acoustic properties of fluids 

Seismic velocity and density of fluids are functions of pressure and temperature which 

are most commonly described by empirical relationships based on laboratory 

measurements. According to Johnston, 2013, the most popular empirical functions were 

derived by Batzle and Wang, 1992, Han and Batzle, 2000, and Han et al, 2008. Figure 

2.6 and Figure 2.7 show the functions of velocity and density of oil and gas on pressure.  

 

Figure 2.6. Functions of gas acoustic velocity (a) and density (b) on pressure for different 

temperatures. After Han and Batzle, 2000 as shown in Johnston, 2013. 

 

Figure 2.7. Functions of oil acoustic velocity (a) and density (b) on pressure and temperature for 

different solution GORs. After Han and Batzle, 2000 as shown in Johnston, 2013. 

While the character of gas functions is straightforward, the functions of oil are 

conditioned on the presence of dissolved gas as shown by the dissolved GOR factor on 

the plots. After the pressure is decreased below the bubble point, the velocity of oil 

rapidly increases as gas leaves the solution. Figure 2.8 shows the dependence of brine 

velocity and density on pressure, temperature and salinity. Pressure and salinity increase 
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the brine’ velocity and density, but the temperature acts differently – velocity increases 

with temperature and density decreases. 

 

Figure 2.8. Functions of brine velocity (a) and density (b) on pressure and temperature respectively 

for different salinity. After Han and Batzle, 2000 as shown in Johnston, 2013. 

 

Effect of lithology and porosity 

The stiffer, more consolidated the rocks are, the less sensitive they are to the fluid 

saturation changes. Generally carbonates have stiffer rock frameworks and are less 

sensitive to saturation change than clastics, elastic properties of which are better 

understood Johnston, 2013.  

Figure 2.9 demonstrates 

dependence of P-velocity on 

porosity for different values of the 

volume of shale. For clean sands 

(blue points), velocity decreases 

with increasing porosity, while for 

high Vshale values (red points), 

porosity variation is limited.  For 

this particular case, the clay 

content (indirectly indicated by 

Vshale) makes the velocity 

decrease. 

 

Figure 2.9. Cross-plot of P-velocity and porosity well-

log estimates of a North Sea reservoir. Colour scale is 

the volume of shale parameter. After Johnston, 2013. 
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Pressure dependence of reservoir rocks 

Seismic velocities increase with increasing differential pressure. The differential 

pressure is defined as a difference between overburden (confining) pressure and pore 

pressure. Figure 2.10 shows results of different laboratory measurements of P-velocity 

of rock under varying differential pressure (Johnston, 2013) which demonstrate similar 

exponential character. It suggests different sensitivity of velocity depending on the 

direction of pressure change: it is more sensitive to an increase of pore pressure 

(differential pressure decrease) than to a pore pressure depletion. Also, overpressured 

reservoir will demonstrate high pressure sensitivity. A variant of an exponential rock 

bulk modulus function on pressure is used in this work. 

 

Figure 2.10. Function of P-velocity of dry, unconsolidated sands on differential pressure from 

different experiments. After Johnston, 2013. 

 

2.5 Seismic modelling 

Continuing the discussion of 4D seismic data for constraining simulation models, this 

section gives a brief overview of practical methods of seismic modelling. These 

methods were developed with the purpose of modelling single surveys rather than 4D 

differences of course, but today’s view at predicting 4D signal is based on differencing 

modelled data of individual surveys as it happens with the observed data: surveys are 

acquired independently (different logic applies in seismic inversion though where 

individual surveys can be treated as parts of a response of the same system – the 

reservoir, and processed simultaneously therefore).  
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The objective of seismic modelling is to predict a seismogram that can be compared to 

the recorded seismic data in order to infer properties of the subsurface rocks. In the 

context of 4D seismic, the assumed changes in pressure and saturation will perturb our 

initial modelled seismogram which can be validated by comparing the synthetics to the 

observed data. Different methods of seismic modelling can be classified as direct 

methods, integral-equation methods and ray-tracing methods. For a detailed review of 

seismic modelling methods see Carcione et al, 2002; Margrave and Manning, 2004; 

and Krebes, 2004. 

In the direct methods, the wave field is simulated directly by solving the wave equations 

on a grid covering the full geological model. For this reason, these methods are also 

called full wave equation methods. The solution for the wave field can be very accurate 

at the expense of computation time which can be a very significant factor. Examples of 

direct methods, in order of increasing accuracy, are finite-difference, pseudospectral, 

and finite-element methods. The drawback of the finite-difference method is that the 

solution is distorted by the numerical dispersion on the grid. In the pseudospectral 

method the problem is partly alleviated by using optimum number of samples per 

wavelength due to working in the wavenumber domain. In the finite-element method, 

the wave equation is solved exactly (rather than using finite-difference derivative 

approximations) in a number of finite regions. 

The integral-equation methods originate from integral representation of wave field and 

are based on Huygens principle which states that the wave field can be represented as a 

superposition of wave fields from volume point sources or boundary point sources. 

These two representations are addressed by volume integral equations and boundary 

integral equations methods. These methods are more restrictive than the direct methods 

but perform well on models with small inclusions, cracks or fractures in them. 

The ray-tracing, or asymptotic, methods do not model the full wave field and therefore 

greatly benefit from the resulting modelling speed up. Such methods are based on 

representation of a seismogram as a superposition of reflection events having different 

arrival times and different amplitudes which is achieved by using an approximate 

solution to the wave equation. The method is capable of modelling any style of 

geological sections and produces accurate results for arrival times. The drawbacks of 

the ray tracing method are that it is not accurate near critical offsets and near caustic 

zones (where rays converge or focus), does not resolve thin beds well because the 
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method is a high frequency approximation assuming that the medium properties change 

slowly within dominant wavelength. This leads to difficulties in modelling diffractions 

and subsequent migration of the traces. 

It is also possible to model the target reservoir or other area of interest more accurately 

while leaving the rest of the model, e.g. the overburden, for the faster methods. This is 

called hybrid modelling which can combine finite-difference method with faster 

algorithms such as ray tracing (Lecomte, 1996; Hokstad et al, 1998; Gjøystdal et al, 

2002). 

When calculation of the seismogram requires many iterations not only to cover the 

volume of the geological model but also to generate many realisations of such seismic 

cubes, the speed of seismic modelling may become the main factor. For example, in 

seismic inversion, many realisations of seismic traces are generated during the fitting to 

the observed data. A particular case of a more general inverse problem is seismic 

history matching of simulation models which involves frequent rebuilding of the 

seismic predictions. In these situation, a popular method for seismic modelling is the 

simplest 1D convolution method. This has been used for calculating synthetic 

seismograms since the 1950s mainly to tie synthetic seismogram in the well to the 

observed seismic using the density and sonic logs.  

The method is based on a convolutional model which is derived from the Green’s 

theorem stating that the seismogram is a convolution of a source waveform with the 

impulse response of Earth. The convolutional model is given by (Yilmaz, 2001): 

 ( )   ( )   ( )   ( )  (2.13) 

where x(t) is the recorded seismogram, w(t) is the basic seismic wavelet, r(t) is the 

Earth’s impulse response, n(t) is the random ambient noise,   denotes convolution 

operator. The random noise in the equation originates from instrumental errors of the 

recorders, poor geophone coupling, environmental noises. A convolutional model of a 

seismogram with noise is illustrated in Figure 2.11. 

1D convolution method assumes that that the earth is horizontally layered locally, and 

does not include multiples, converted waves, and attenuation effects, although, it offers 

excellent level of details in z direction (Margrave and Manning, 2004). This is why 

direct comparisons between 1D convolution and more precise methods such as finite-

difference method indicate that the former lacks lateral coherency and horizontal 
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resolution but provides good amplitude 

information (Figure 2.12, Figure 2.13). 

At the same time, modelling of the 

waterfloods shows that the internal 

multiples in the flooded zones partially 

subtract out making them less 

significant for the monitoring projects 

than for reservoir characterisation 

(Shahin et el, 2011). 1D convolution 

modelling has been widely used for 

conditioning simulation models (see 

for example Landa and Kumar, 2011), 

predicting time-lapse seismic effects 

from CO2 sequestration (Arts et al, 

2007; Li et al, 2013), monitoring steam 

chamber growth (Lerat et al, 2010), 

and so far, is the most popular seismic 

forward modelling method in closed-

loop reservoir model updating 

workflows. 

 

Figure 2.12. Comparison between observed seismic (a), synthetic by 1D convolution method (b), 2D 

elastic modelling and processing (c) for the Sleipner CO2 injection project. 4D seismic monitoring 

aims to image CO2 plume at it migrates in the reservoir. Observed data shows a prominent multi-

tier signature, comprising a number of bright sub-horizontal reflections, growing with time, 

interpreted as arising from up to nine discrete layers of high saturation CO2, each up to a few 

metres thick. Modelled 4D images show good agreement with the observed data on the main target 

features. After Arts et al, 2007. 

 

Figure 2.11. Convolutional model of a 

seismogram. Asterisks denotes convolution 

operator. After Yilmaz, 2001. 
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Figure 2.13. Comparison between real seismic data (A), synthetic by 1D convolution method (B) 

and by full wave equation (C) for Shuaiba reservoir, Bu Hasa carbonate field. 4D feasibility study 

of this carbonate reservoir shows applicability of the method for monitoring injection in this 

reservoir. Results of 1D convolution and full wave equation modelling mostly agree except for some 

details related to the peripheral water injection areas. After Marvillet et al, 2007. 

 

2.6 Seismic inversion 

This section provides an explanation for the inversion concept and gives a brief 

overview of different types of the method. Inversion is used in this work for obtaining 

properties of synthetic models based on data only, thus minimizing input of 

deterministic information. In particular, history matched models have their NTG 

properties obtained by inversion rather than copied from the reference (a model 

providing ‘observed’ seismic response) model. Also, the seismic attribute used for 

comparing predicted and observed data is a product of the coloured inversion also 

described in this section. 

The objective of seismic inversion in general is estimation of rock properties in the 

Earth’s model from seismic data in conjunction with other data types, mainly sonic and 

density well logs. In the traditional problem setting the estimated properties can be 

relative impedance, acoustic impedance, or compressional and shear velocities and 

density of rocks, but in general any model property can be varied while fitting the 

seismic data. Traditionally, the concept of seismic inversion includes different types of 
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the process in terms of the algorithm and data used. For a classification and review of 

inversion methods see Cooke and Cant, 2010 and Curia, 2009. Inversion can be pre-

stack or post-stack depending on the input seismic data. Inversion algorithms that yield 

a single solution are called deterministic, while the ones searching through many 

realisations of the input model are called stochastic. Stochastic inversion algorithms that 

also compute probabilities of the models are called probabilistic. Geostatistical 

stochastic inversion methods impose variograms on the input models to ensure the 

desired spatial patterns and statistics in the solutions. Most of the inversion algorithms 

use seismic forward modelling (usually the convolutional model) in order to compare 

the model’s seismic response with the observed seismic data and determine the 

goodness of the model. Such inversion algorithms therefore are called model-based, as 

opposed to the algorithms that calculate the output directly from the seismic trace, such 

as integration of seismic traces (recursive method) or coloured inversion. If an inversion 

algorithm finds the solution in the form of absolute properties then the inversion is 

called broad-band, whereas in the band-limited inversion the solution is relative 

properties (for example, relative impedance). Different inversion approaches are briefly 

described below. 

 

2.6.1 Trace integration, or recursive, method 

The simplest method of inverting seismic data for an estimate of acoustic impedance is 

based on a recursive calculation as shown below (Lindseth, 1979): 

   
       
       

           
    
    

         ∏
    
    

   

   

   

 
(2.14) 

where ri is the reflection coefficient at the i-th interface with P-Impdance Ii.  

This method assumes that the reflection coefficient can be expressed with the formula 

for the wave normal incidence as above, and that the seismic trace is given by a 

convolutional model (given in the seismic modelling section above), so the reflection 

coefficients can be obtained from the seismic trace by deconvolution. This calculation 

yields only a band-limited version of impedance because only band-limited version of 

the reflectivities r is available in the seismic trace. The low frequency component 

should be extracted from well logs and added to the inversion results. An example of 

the recursive inversion is shown in Figure 2.14 where it is compared with an inversion 
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results by the model-based algorithm. 

A notable difference is that the 

model-based inversion results are 

blockier, with finer details. At the 

same time, the low impedance gas 

sand zone is resolved in both sections 

(marked by black rectangles in 

Figure 2.14). 

 

2.6.2 Coloured inversion 

Another band-limited method is 

called ‘coloured’ inversion by 

(Lancaster and Whitcombe, 2000). It 

is based on mapping of the seismic 

average spectrum to that of the 

acoustic impedance logs and performing a -90° constant phase shift. This is achieved by 

convolving all the traces in the input seismic cube with a specifically designed 

(antisymmetric) filter. Because the method is based on a simple convolution, it is robust, 

straightforward to implement, and computationally fast.  

Walden and Hosken (1985) (as stated in Lancaster and Whitcombe, 2000) found that the 

amplitude spectrum, r(f), of reflectivity coefficients can be described as a function of 

the frequency f as r(f)=f
β
, with a parameter β. The authors found that the parameter β is 

very stable over a given field or even many fields. Lancaster and Whitcombe. 2000 

observed that the amplitude spectrum of the acoustic impedance shows similar 

behaviour which can be described as an equivalent function:  I(f)=f
α
, where α now is 

negative. The parameter α gives a slope of the function in semi-log coordinates (Figure 

2.15) which is found by analysing well logs of a given field (the resulting α very often 

will be around -0.85). The next step is designing a filter which, on applying to the input 

seismic, will map the average spectrum of seismic to the one with a slope α in semi-log 

coordinates. Moreover, the filter has to perform a -90° constant phase shift which is 

achieved by making the filter antisymmetric. Results of coloured inversion demonstrate 

a reasonable match to the results of a more elaborate sparse-spike inversion as shown in 

 

Figure 2.14. Comparison of inversion results by the 

recursive method (a) and by the model-based 

method (b), a seismic section from Alberta. After 

Russel and Hampson, 2006 
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Figure 2.16. The method can be used as an approximate method for obtaining fast-track 

estimates of relative impedance (Curia, 2009).  

 

Figure 2.15. Acoustic impedance amplitude 

spectra from four logs for a North Sea field. 

Frequency axis is logarithmic in order to fit the 

points with a line. After Lancaster and 

Whitcombe. 2000 

 

Figure 2.16. Comparison of results of sparse-

spike inversion (left) and coloured inversion 

(right) on a North Sea field. After Lancaster and 

Whitcombe. 2000 

 

2.6.3 Deterministic inversion 

One of the most popular deterministic methods is the sparse spike inversion. In this 

method, a solution for the inverse problem is found as an Earth’s model displaying 

minimum of structural variation. Such a model would pick up only the major features in 

the acoustic impedance structure. This concept was formulated by Oldenburgh et al, 

1983 as a linear-programming problem which minimizes the objective function 

  ∑|  | 

   

   

 
(2.15) 

subject to inequality constraints on analytical expression of real and imaginary parts of 

the spectrum of reflectivities ri with added noise, and constraints on the impedance 

values. The concept of the inversion for the smoothest possible model consistent with 

the data corresponds to the Occam’s inversion which relies only on the information 

available from the data itself (Gouveia and Scales, 1997). This contrasts with other 

model-based inversion methods where the solution is found in one of the defined forms 

such as blocky impedance. The latter imposes information that is not supported by the 

(seismic) data being inverted but reflects our prior knowledge. 
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The sparse-spike method will not reproduce finer details in a model as follows from its 

formulation, but it will produce unbiased estimate of the band-limited (relative) 

impedance. Unbiased means that no subjective model is used, and the band-limited 

aspect is in that it lacks the low frequency component which should be added separately 

from the well logs. The high frequency component is present in the inverted data though, 

it comes from the form in which the solution is found – a series of spikes or 

equivalently, blocky impedance. 

The blocky impedance is the usual model for the model-based inversion methods which 

is based on our assumption of the Earth’s layered structure. To clarify, this is not an 

assumption that the geology is “blocky” but rather an assumption that discontinuities 

are part of it with the blocky structure (piecewise constant function) being the simplest 

model. An example of an alternative form of impedance distribution is shown in Figure 

2.17. Specific form of the impedance solution (blocky, controlled by local trends, 

smooth, etc.) is the information that we supply to the inversion algorithm to 

complement the solution in the high frequency part of the spectrum which is not 

covered by the seismic data. It means that the two impedance models in Figure 2.17 

may have the same seismic response as they are only different in the high frequencies. 

But even if the blocky structure assumption is correct (which is true in most cases), the 

absence of high frequencies in the seismic data leads to infinite number of different 

solutions for impedance/thickness of thin layers as shown in Figure 2.18 – two different 

impedance models have similar seismic response with the same RMS amplitude value.  

     

Figure 2.17. Two representations of the 

impedance model: a) non-blocky, b) blocky. 

After Cooke and Cant, 2010. 

Figure 2.18. Two different impedance models 

in (a) produce similar seismic response (b). 

After Cooke and Cant, 2010. 
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Another popular method of deterministic inversion is the generalised linear inversion 

(Cooke and Schneider, 1983). It is used to invert both pre- and post-stack data. With an 

input impedance model as a first guess, the algorithm performs a number of refinements 

to finally match the data. The impedance model for the inversion is divided into a 

number of layers, where the impedance and thickness values of each layer are the 

parameters of the inverse problem. The updates to the parameters at each iteration are 

calculated from the truncated Taylor series expansion of the forward model.   

 

2.6.4 Stochastic inversion 

The stochastic inversion algorithms search through many realisations of the input 

models and keep those that (through the forward modelling) match the observed data. 

The input distributions of Vp, Vs and ρ (although the last two can be set as functions of 

Vp) are built by analysing well data where average Vp trend and its standard deviation 

are defined. A technique like the Markov Chain Monte Carlo (MCMC) sampling can be 

employed to ensure adequate sampling of the input distributions of the models. The 

realisations are assigned probabilities using the Bayes’ theorem (Pendrel, 2006). 

Figure 2.19 compares the results of the deterministic and probabilistic inversions. The 

arrows indicate gas reservoirs. For the upper reservoir, the results of the inversions are 

very similar while the lower reservoir is resolved differently by the two inversions. This 

difference in the results can be attributed to the different treatment of the low frequency 

input (Cooke and Cant, 2010): the deterministic inversion uses a trend of impedance 

from the wells, while the probabilistic inversion is fed by distributions of input 

properties without explicitly specifying the low frequency trend. Another source of the 

differences is the number of layers – the stochastic inversion uses finer parameterisation. 
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Figure 2.19. Comparison of P-impedance estimates using the deterministic inversion and P50, P10, 

P90 solutions of the probabilistic method. After Cooke and Cant, 2010. 
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Chapter 3. Using 4D seismic data to constrain reservoir models: a 

literature review 

 

3.1 Introduction 

The main goal of this chapter is to review the applications of 4D seismic data to 

constraining simulation models in history matching. Specifically, how choices of 

optimization algorithm, parameterisation, and data types affect the process itself and the 

quality of resulting models. This review does not aim to embrace the variety of methods 

and case studies but rather aims to give a higher level image of the notable views on the 

process of integrating 4D seismic data in the literature. The definition of the 4D seismic 

method itself, physics that cause 4D effects, and constituents of the history matching 

mechanism are described in the theory chapter.  

 

3.2 4D seismic method as a reservoir management tool 

4D seismic method has been an efficient reservoir management tool because of its extra 

spatial resolution compared to the well measurements. The better understanding of flow 

patterns in the inter-well space has given the operators confidence in business decisions:  

drilling new wells (Norne field, El Ouair et al, 2005), optimising infill wells placement 

(Heidrun field, Kolsto et al, 2008), repositioning planned wells (Marlim field, Oliveira 

2008), revising the water injection strategy, converting producer into injector, drilling 

new appraisal wells (Draugen field, Mikkelsen et al, 2008).  

Generally, the additional spatial information provided by 4D seismic data helps better 

constraining the reservoir models which then produce more reliable predictions of well 

rates and recoveries reducing uncertainties in field’s economic forecasts. The 

constraining of reservoir models is implemented at different levels: constraining 

geological models, constraining predictions of simulation models, qualitatively and 

quantitatively. Andersen et al, 2006 present an example of constraining the geological 

model realisations to the combined 3D and 4D seismic and well data. The model 

represents fluvial reservoirs of the Oseberg field (North Sea). Ip and Vp/Vs (inverted) 

properties from 3D seismic data were used to define regions of different confidence of 

sand (Figure 3.1, a). 4D variation of the same (inverted) properties was used to 

distinguish pressure and saturation effects (Figure 3.1, b). From that, highest probability 
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of sand was assigned to the gas flooding areas. Combining interpretations of 3D and 4D 

attributes led to a sand probability cube – basis for geostatistical realisations of the 

geological model (Figure 3.1, c).  

Another level of integration of 4D seismic is constraining predictions of simulation 

models, also referred to as seismic history matching. This is of primary interest in our 

study. 4D seismic data in history matching can be used qualitatively and quantitatively. 

Qualitative use of 4D seismic data is demonstrated by Seldal et al, 2009 in a history 

matching study of Snorre field. The Snorre reservoir consists of highly heterogeneous 

and faulted stratified fluvial deposits, and is depleted using the water alternating gas 

scheme. These factors result in complex drainage patterns. Volumetric geobodies are 

extracted from 4D seismic data which represent two types of seismic signal: hardening 

mainly due to the water saturation increase (dimming effect), and softening mainly due 

to the gas saturation increase (brightening effect).  

 

Figure 3.1. Identification of sands based on combined interpretation of 3D and 4D seismic data: a) 

probability of sand based on Ip and Vp/Vs attributes of 3D seismic, b) classification of production 

effects based on (inverted) 4D seismic attributes where gas flood areas are more sandy, and c) the 

sand probability cube combining the previous two interpretations. After Andersen et al, 2006. 

Figure 3.2 illustrates how 4D seismic attributes were used in the history matching 

workflow in one of the regions of the model. In this example, information is gained 
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from the extent of water encroachment zone shown as a blue geobody in Figure 3.2, a. 

Its interpretation led to placing the fault A and adjusting transmissibilities of the faults 

around the two producers which resulted in a good match of water cut in well P-8 

(Figure 3.2, b). 

 

Figure 3.2. Constraining the simulation model of Snorre field by 4D seismic attributes: a) 4D 

volumetric attribute (blue geobody) showing water encroachment, b) well P-8 water cut match. 

After Seldal et al, 2009. 

The above example shows a typical qualitative use of 4D seismic attributes. In such 

cases, indications by the 4D seismic attributes add to the conceptual understanding of 

flow patterns, and the simulation model is adjusted accordingly. In the rest of the 

chapter, we will discuss the quantitative use of 4D seismic data within history matching 

workflows. Using 4D seismic data quantitatively means reading not only the presence 

and the extent of seismic attributes but also the strength of the signal. It allows 

calibrating reservoir models to the observed seismic data via seismic modelling which 

puts results of reservoir simulation to the common domain with seismic data. Also, 

when comparison of predicted and observed data is formalised in an objective function, 

we can employ various optimization algorithms in order to automate the process of 

history matching.  

 

3.3 Seismic history matching workflow 

Qualitative use of 4D seismic data usually is associated with manual history matching. 

Although it is possible to use quantitative readings of 4D attributes match quality to 

perform manual adjustments to the simulation model, the quantitative use of seismic 
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data most often is a part of an iterative process of updating the simulation model, 

automated to different extents. An example of such history matching loop is illustrated 

in Figure 3.3. The definitions of different parts of the workflow are given in the theory 

chapter, while in this review, we will study examples of applications in the published 

case studies. 

 

Figure 3.3. History matching workflow. After Stephen et al, 2006 

 

3.3.1 Optimization algorithm 

The decision on updating the model parameters can be based purely on human 

judgement of goodness of a model which is the manual history matching as discussed 

before. An alternative approach is the automatic (assisted) history matching in which an 

optimization algorithm is employed to search for parameter values minimizing the 

objective function. The algorithms can be divided into two categories: deterministic and 

stochastic.  

Deterministic algorithms 

Deterministic, mostly gradient, algorithms have been used since the first publications on 

seismic history matching (Landa and Horne, 1997; Waggoner et al, 2002; Gosselin et 

al, 2003; El Ouair et al, 2005; Dadashpour et al, 2007; Dong and Oliver, 2008; Brito 

et al, 2010; Tillier et al, 2011). The choice of these algorithms is dictated by faster 

convergence rates compared to the stochastic algorithms when minimizing the objective 

function in the history matching problems. Waggoner et al, 2002 applied the 

(deterministic) greedy algorithm in history matching of the Grand Isle field model with 
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the retrograde gas reservoir. 1728 parameters were estimated which were values of 

porosity and permeability in each column of grid cells.  

Gradient methods are suitable for minimizing non-linear objective functions occurring 

in history matching problems and differ in the rates of convergence and memory 

requirements. Gauss-Newton method is characterised by very fast convergence 

requiring only few iterations. At the same time, memory requirements of the method 

make it impractical for problems with large amounts of data and many parameters 

which is usually the case. Landa and Horne, 1997 used Gauss-Newton algorithm for 

their synthetic history matching problem where 4D seismic data was included in the 

form of water saturation maps. The choice of the algorithm is explained by the need to 

obtain data sensitivities explicitly. Synthetic studies by Dadashpour et al, 2007 and 

Dickstein et al, 2010 also used the Gauss-Newton algorithm for history matching with 

4D seismic data. In both cases, simple models were used. The Levenberg-Marquardt 

algorithm improves on the previous method by better approximation of the Hessian 

which leads to faster convergence. In the work by Gosselin et al, 2003, the objective 

function including inverted 4D seismic attributes was minimized using the Levenberg-

Marquardt algorithm. The demonstration cases included Oseberg Amelia fields, where 

the parameters were pore volume and transmissibility multipliers (63 and 55 parameters 

in the two cases respectively). Quasi-Newton methods such as the conjugate-gradient 

method do not calculate or store the second order derivate matrix (the Hessian) but only 

use the gradient. This leads to slower convergence rates but opens up possibilities for 

using the method for large history matching problems. Zhang and Reynolds, 2002 

compared several optimization algorithms on history matching problems and concluded 

that the quasi-Newton methods were the most suitable of all gradient methods for 

history matching problems with big volumes of data and detailed parameterisations. 

Due to the better memory handling, the quasi-Newton algorithm allowed Dong and 

Oliver, 2005 to incorporate 4D seismic data in the objective function which as the 

authors point out would not be possible with Gauss-Newton.  

Although the gradient algorithms can be considered as methods of finding local minima 

by definition, Zhang et al, 2003 and Oliver and Chen, 2011 argue that this may not be a 

problem for their applicability in real world history matching problems. Finite steps 

calculated by an algorithm such as the Levenberg-Marquardt algorithm often pass local 

minima especially those located in narrow valleys as shown in Figure 3.4 so that the 

algorithm converges to an acceptable minimum near the global minimum. In other 
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words, the algorithm in practice demonstrates the characteristic of a ‘broader’ search as 

opposed to the “deep” search as specified by the definition of the gradient algorithms.  

 

Figure 3.4. Objective function for a problem of history matching with moving channel. After Zhang 

et al, 2003  

Oliver and Chen, 2011 demonstrate an experiment where an objective function with a 

highly complex shape is minimized with the Levenberg-Marquardt algorithm and the 

initial guess of parameters is generated randomly for each realisation of the history 

matched model. The outcome of the experiment is that 50% of solutions were found 

around the global minimum, while for the other 50%, it is clear that they have to be 

discarded (Figure 3.5). The author explains such a good performance by the rapid 

convergence and the fact that local minima are connected in higher dimensional space. 

 

Figure 3.5. Frequency distribution of values of the objective function for history matched models 

with different initial guess of parameters. Values around zero correspond to the global minimum, 

cluster of large values are incorrect local minima. After Oliver and Chen, 2011 

Calculation of sensitivities 

Methods discussed so far require calculating data sensitivities which can be a significant 

addition to the complexity of the entire history matching problem because of its 
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computational expense. The sensitivities represent partial derivatives of simulated data 

with respect to model variables. Several methods exist for calculating sensitivities. In 

the most basic finite-difference method, one function evaluation (forward model) is 

required per model parameter to explicitly calculate the partial derivatives. This can 

only be practical for problems with very few parameters. Calculation of sensitivities is 

faster in the sensitivity equation (or gradient simulator) method (Anterion et al, 1989 – 

first in petroleum engineering; Bissell, 1994; Rodrigues, 2006; Oliver et al, 2008). In 

this method, a preliminary solution is obtained for the state variables of the model by 

solving a non-linear equation once. With this solution, the system of equations for 

sensitivity coefficients becomes linear. It has to be solved as many times as there are 

variables, but the cost of solution to another variable is small.  

Far more efficient for calculating the sensitivities is the adjoint (or optimal control) 

method in which the sensitivities are derived directly from the finite-difference 

equations of the forward model (Chen et al, 1974, Chavent et al, 1975). In this method, 

the number of linear system solutions is independent of the number of model variables. 

For this reason the method is suitable for history matching problems with large numbers 

of parameters. Wu et al, 1999 applied the adjoint method to conditioning the 

geostatistical realisations of permeabilities and porosities to well water-cut and pressure 

data for a two-phase flow problem using the Gauss-Newton algorithm. Eydinov et al, 

2008 applied the method for history matching using their in-house compositional 

reservoir simulator and showed applicability of the method for the cases with 

anisotropic permeability fields, multipoint flux approximation, and arbitrary fluid 

compositions.  

Another approach to calculating sensitivities uses the streamline simulator which allows 

obtaining the sensitivities analytically with only one forward simulation instead of 

multiple adjoint solutions. Vasco et al, 2003 applied the streamline simulation in history 

matching of 4D amplitudes in a synthetic model and also in a model of Bay Marchand 

field (GoM). An analytical form of sensitivities was derived connecting amplitude 

changes with variation of porosity and permeability using an expression for travel time 

of water front along a streamline, an approach borrowed from the high frequency 

approximation in seismic wave theory. The resolution of the method was limited though 

to the area along the streamline trajectory and also to the features covered by the water 

front. It is a critical requirement of the streamline sensitivity formulation that the 

geometry of streamlines do not vary significantly over 4D seismic survey intervals. This 
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imposes a considerable limitation on the applicability of the method as the flow regime 

normally changes between the surveys due to the varying well operations as well as 

changing pressure-saturation state. In a more recent work by Rey et al, 2012, this 

limitation is circumvented by using a recursive formulation of 4D seismic attribute 

sensitivity to the values of geological property (permeability field). The application of 

the method includes the synthetic Brugge example as well as Norne field model where 

more plausible distributions of water saturation were achieved. The saturation-only 

formulation of sensitivities in the work by Rey et al, 2012 was extended to include the 

pressure effect in another work by Watanabe et al, 2013. The pressure effect is 

calculated by distributing the viscous pressure drop along each streamline using the 

pressure field and the flowing bottom-hole pressure of the well in which the streamline 

terminates. 

Stochastic algorithms 

Stochastic algorithms operate with random variables in their search process. The 

randomness added to the model parameters helps overcome noise in the observed data. 

It also helps to minimize the effect of modelling error (Hoos and Stützle, 2004). By their 

design, stochastic algorithms are capable of avoiding local minima and finding the 

global minimum. Direct comparisons of stochastic and deterministic algorithms are 

scarce in the literature. Liberti and Kucherenko, 2005 compared the deterministic and 

stochastic approaches using an extensive suite of general-purpose tests and concluded 

that in general, the stochastic algorithm was more efficient in finding the global 

minimum but in some cases the deterministic algorithm was faster which was related to 

the structure of the problem. Similar conclusion was drawn in an analysis by Wetter and 

Wright, 2004. In an optimization problem in the field of building design, they compared 

gradient and stochastic (PSO and others) algorithms and found that the stochastic 

algorithms better suited the problems with non-smooth objective functions. The 

drawback of the stochastic algorithms though is slower convergence rates compared to 

the gradient algorithms. Stochastic algorithms generate multiple random model 

realisations to evaluate the shape of the objective function and identify its minimum. 

Such sampling becomes less efficient with increasing dimensionality of the problem so 

more simulations are needed. Therefore, the number of model parameters estimated by 

stochastic algorithms usually is smaller than in the gradient-based optimization. Slow 

convergence rate of the stochastic algorithms was among the reasons why gradient 

methods prevailed historically in automatic history matching studies in petroleum 
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engineering. However, growing popularity of geostatistical models since 1990s (Oliver 

and Chen, 2011) and using new data types such as 4D seismic data led to the problems 

with more complex objective functions for which the stochastic algorithms can be more 

suitable. Also, the stochastic algorithms better adapt the “black box” notion for the 

forward model which can include very ill-posed functions while the deterministic 

algorithms usually assume at least some analytical properties of the objective function 

(Liberti and Kucherenko, 2005). On the other hand, the efficiency of the gradient 

methods is limited when the adjoint method for calculating gradients can not be applied. 

This is the case when the adjoint calculation is not included in the commercial reservoir 

simulators on which the industry depend, or when the adjoint system can not be easily 

derived from the forward model equations. 

These factors most likely affected the growing interest for the stochastic methods within 

history matching studies in petroleum engineering in the last 20 years. Genetic and 

evolutionary algorithms were among the first examples to be used in this capacity 

(Romero and Carter, 2001). These algorithms were noted to have slower convergence 

rates (Schulze-Riegert et al, 2002). Kjelstadli et al, 2005 applied the genetic algorithm 

in history matching study of a rather unusual for its compaction effects Valhall field. 60 

parameters such as porosity and permeability were estimated by matching production 

and 4D seismic data. Roggero et al, 2007, although using the gradient-based methods 

for matching the production data, point out that applying a method based on response 

surface would be difficult because of large number of data points in 4D seismic data. 

The authors also mention the risk of being trapped in a local minimum with a gradient-

based algorithm. As a result, they used a variant of the global adaptive learning 

algorithm for fitting the seismic part of the data. Stephen et al, 2006 estimated 

permeability values at pilot-point locations and faults transmissibilities in the 

Schiehallion field (North Sea) case. They used the Neighbourhood algorithm (NA) 

which also produces output conveniently suitable for calculation of Bayesian integrals 

and uncertainty estimation. NA is a stochastic algorithm which approximates the 

objective function on the entire parameter space by interpolating its values at random 

locations. The interpolator is based on the Voronoi cells in which the values are 

constant. The algorithm searches for the minimum by iteratively resampling best 

Voronoi cells (Sambridge, 1999). Edris et al, 2008 and Kazemi et al, 2010 applied the 

neighbourhood algorithm for updating realisations of simulation models of North Sea 

reservoirs conditioned to production and 4D seismic data simultaneously. While these 
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studies demonstrate good results with NA algorithm using a few parameters, other 

algorithms perform better when the number of parameters is higher (typically, more 

than 20). Hajizadeh et al, 2010 compare the performance of three algorithms that have 

been applied recently to the history matching problems: ant colony optimization (ACO), 

differential evolution (DE) and the neighbourhood algorithm. The ACO is a 

probabilistic technique for solving optimization problems based on finding good paths 

through graphs (Dorigo, 1992). DE is an optimization algorithm in which the 

population of models is updated by creating new models by combining pairs of existing 

randomly chosen models (Storn and Price, 1997). In the comparative study of 

Hajizadeh et al, 2010 the three algorithms are applied in history matching of the PUNQ-

S3 reservoir model using the production data from six wells. 45 porosity values were 

estimated in five layers of the model. The results of the comparison showed better 

performance of ACO and DE algorithms over the NA in terms of convergence rate and 

values of misfits (Figure 3.6). 

 

Figure 3.6. Comparison of misfit functions of stochastic algorithms. DE-Rand is the differential 

evolution algorithm where base vectors are selected randomly, DE-Best is DE where best solutions 

are chosen as base vectors, ACO is the ant colony algorithm, NA-1 is the neighbourhood algorithms 

with extreme-exploration settings, NA-2 is NA with less explorative settings. After Hajizadeh et al, 

2010. 

Jin et al, 2011 compare three stochastic algorithms, very fast simulated annealing 

(VFSA), particle swarm optimization (PSO) and neighbourhood algorithm (NA), in a 

joint history matching approach using production and 4D seismic data. The study uses a 
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synthetic layered model with uncertain fault throw and permeability of layers (Imperial 

College Fault Model, Tavassoli et al, 2004) and a model of a West African offshore 

field reservoir. VFSA is based on the simulated annealing (SA) algorithm (SA and PSO 

are defined in the Theory chapter, section Algorithm for history matching). The results 

of the objective function minimization in these experiments are shown in Figure 3.7. 

Compared to the previous comparison study, these do not show as big a difference 

which probably is because the number of parameters here is small: 9 parameters for the 

synthetic case and 18 for the real field case. The authors note however, that PSO 

achieved best results in the misfit reduction in the synthetic case where the objective 

function is very complex. On the other hand, the West African reservoir case is less 

complex so VFSA achieves lower misfit there. VFSA, as an algorithm based on a single 

model rather than a population, also benefits from less computational resources required 

per iteration than PSO or NA. 

 

Figure 3.7. Comparison of misfit functions of stochastic algorithms applied to the cases: a) imperial 

college fault model, b) West Africa offshore field. After Jin et al, 2011. 

When considering a history matching problem within the context of Bayesian inversion, 

Markov chain Monte-Carlo (McMC) methods can be an efficient tool for generating 

samples from the posterior probability density distribution (pdf) of model parameters. In 

practice though, their applicability becomes limited when a cost of a single forward 

model is high as many samples are needed for adequately characterising the posterior 

pdf. This is particularly the case in probabilistic inversions of dynamic data in reservoir 

engineering, well production and 4D seismic data, for which running many simulations 

can be impractical. Landa and Kumar, 2011 present a method of probabilistic joint 

inversion of production and 4D seismic data in which the cost of a forward model is 

reduced significantly by using proxy models for reservoir simulation and seismic 
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modelling. Faster simulations allowed the authors to adapt the Monte-Carlo sampling 

for obtaining multiple history matched models. 

Another probabilistic approach presented by Castro et al, 2006 allows constructing 

realistic realisations of the geological model constrained to any geological input, 3D 

seismic data and also the dynamic data, such as well production logs and 4D seismic. 

Different sources of information are integrated through conditional probabilities of 

occurrence of certain facies given observations in the forms of training images, seismic 

and production data mismatches. Updating of the model is performed using the 

probability perturbation method which generates realisations minimizing data mismatch. 

Different approach for conditioning models to the available dynamic data represents the 

Ensemble Kalman filter (EnKF) method. As defined in the theory chapter (section 

Algorithm for history matching), EnKF differs from the traditional methods by 

sequential assimilation of data and estimation of model and state (pressure and 

saturation) variables. Also, it is potentially capable of estimating large numbers of 

parameters if the ensemble of models provides sufficient variation. However, the 

ensemble size, its variability and Gaussian and linear assumptions in the analysis step of 

the method limit its ability to assimilate large volumes of independent data making 

integration of 4D seismic data problematic. In order to alleviate these problems, 

Skjervheim et al, 2007 applied subspace inversion and Zhang and Oliver, 2011 used 

covariance localisation functions. Another problem of the method is associated with 

different parameterisation schemes. Discrete properties such as facies and geobodies 

can not be readily incorporated due to the Gaussian assumption in the analysis step. 

Modification to the parameterisation is required therefore which accommodates 

truncated pluri-Gaussian or mixture Gaussian models (Aanonsen et al, 2009).  

 

3.3.2 Parameterization 

Most important approaches to parameterizing the history matching problems were 

defined in the Theory chapter (section Parameterization of the model). The purpose of 

this section is the discussion of their applications reported in the literature.  

Formalized parameterisation schemes normally are designed for updating grid property 

fields where the number of history matching parameters usually needs to be reduced. 

However, simulation models in real history matching problems always have parameters 
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such as fault multipliers, aquifer strength and others that should be estimated 

individually. Choice of such parameters is based on their data sensitivity which can be 

either estimated or just known from engineering experience. In a history matching study 

of the Valhall field, Kjelstadli et al, 2005 chose more than 60 history matching 

parameters based on experience from previous studies with this field, which included 

porosity and permeability multipliers, compaction trends, aquifer strength, skin factors. 

Similarly, the parameters for the history matching of the Norne model were chosen 

manually in the work by El Ouair et al, 2005. Those were fault properties and carbonate 

barriers. However, assimilation of spatial details such as those imaged by 4D seismic 

data requires updating 3D properties of the model for which using a parameterisation 

will most likely be needed. 

The zonation method defines regions of constant property change so the resulting model 

update is a piecewise constant function. Although discontinuities at the boundaries of 

the zones create bias in the estimated property field, the method allows for rapid initial 

misfit reduction in history matching. Defining zone is the critical part of the method. 

Bissell et al, 1994 calculated data sensitivity of transmissibilities in grid cells then 

analysed the interpolated values. Regions of high sensitivity formed the basis for the 

parameterisation. Gosselin et al, 2003 applied similar technique to find sensitive 

parameters out of gridcell-based pore-volume and transmissibility multipliers. This 

made the parameter choice dependent on the data type. For the 4D impedance data, the 

technique identified 34 transmissibility multipliers as pore volume multipliers were not 

so sensitive. However, when trying to parameterize the same problem for the Poisson’s 

ratio data, the gradzone analysis showed too many zones with no apparent correlation to 

group cells in them. This was found to be due to noise in the data. 

When the zones are defined prior to the history matching, the final misfit value limited 

from below by the error of spatial coarsening by the zonation. This of course prevents 

the model from assimilating spatial details in the data. Grimstad et al, 2004 address this 

problem by allowing the parameterisation to be refined during the history matching and 

wherever more details are warranted by the data. They called this approach Adaptive 

Multiscale Estimation (AME). Figure 3.8 shows a field scale synthetic example from 

this study where a series of history matching trials is performed with the aim to restore a 

permeability field of a reference model. The sequence shows gradual refinement of the 

zones leading to the concentration of the zones around major reference heterogeneities. 
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Figure 3.8. Permeability distribution in history the matched model during different stages of 

refinement: a)-d) permeability fields parameterized with 2 to 28 value, e) reference permeability. 

After Grimstad et al, 2004. 

Smoother property fields result from parameterisation by the pilot points. Similar to the 

previous method, defining the locations of pilot points is critical for the final solution. 

Usual practice for locating the pilot points is following the areas of highest sensitivity of 

data. In the first publication on the pilot points, Marsily et al, 1984 determined the 

locations based on the data sensitivity. Wen et al, 2006 applied the pilot method within a 

geostatistical inversion of production and 4D seismic data. Locations of the pilot points 

were determined using the genetic algorithm which did not require calculating 

sensitivities. Stephen et al, 2006 used the pilot points along with other parameters for 

history matching of production and 4D seismic data in the Schiehallion model. The 

points were located according the observed 4D anomalies for highest anticipated 

sensitivity of the permeability updates via the pilot points (Figure 3.9). The number of 

points was further adjusted after trial history matching runs indicating that only the 

points around well I3 (in addition to some of the fault multipliers and petro-elastic 

constants) were sensitive to the data.  
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Figure 3.9. Permeability distributions: a) before history matching, b) after history matching with 

pilot points. Squares indicate pilot points used in history matching, circles – inactive pilot points 

with multipliers fixed to 1. After Stephen et al, 2006 

Kazemi and Stephen, 2010 investigated the question of optimal locations for the pilot 

points in an example of history matching with the model of Nelson field (North Sea). 

Two approached were identified where the placement of pilot points would reflect the 

importance of model update in respective localities. The first is to allow the points 

control the major flow paths identified by the streamline analysis and the second is to 

try to address the mismatch in well directly by placing the points around the wells with 

highest mismatches. Location of pilot points according the two approaches in shown in 

Figure 3.10. Results of history matching showed the first approach achieves twice as 

good an improvement of the data match. 

 

Figure 3.10. Location of pilot points in the model of Nelson field (saturation is shown, blue-water, 

yellow-oil): a) pilot points located according to flow paths from streamline analysis, b) pilot points 

located around wells with high data mismatch (locations are shown by squares). After Kazemi and 

Stephen, 2010 
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Jin et al, 2007 used VFSA for inverting 4D seismic data for the porosity field with 

different numbers of pilot points. The results show that the amount of details in the 

estimated property is proportional to the number of pilot points (Figure 3.11). The fact 

that the resolution keeps increasing with the number of points (20 to 50) signify that 4D 

seismic signal provides the required spatial information. 

 

Figure 3.11. Porosity fields estimated with different numbers of pilot points: a) reference porosity, 

b) porosity estimated with 20 pilot points, c) with 30 points, d) with 50 points. After Jin et al, 2007 

In the methods discussed so far, the efficiency of parameterisation is achieved by 

accounting for data sensitivities of the chosen parameters for which either special 

analysis of the sensitivity matrix were applied or the performance of history matching 

was assessed empirically. However, when the history matching is geared towards data 

fit only, the model starts to lose the geological realism in the distribution of properties, 

especially if the model updates are strongly localised. When the geological prior 

information is believed to be reliable, it can be incorporated through the 

parameterisation in which case the history matching would search through geologically 

plausible realisations. The Karhunen-Loeve expansion, also known as the Principle 

Component Analysis (PCA), is an effective parameterisation approach based on the 

spectral decomposition of the prior model covariance matrix. In this method, the 

eigenvectors of the covariance matrix form a basis and their coefficients are 

independent parameters. Only a few vectors usually are retained for the basis according 

to the largest eigenvalues. In the earliest application of the method in petroleum 
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engineering by Gavalas et al, 1976, pressure data from multiple wells were matched 

using simple synthetic reservoir models. The authors found that including the prior 

information reduced the error in the estimates of porosity and permeability and also 

improved the convergence. In a more recent work, Floricich et al, 2005 applied the 

PCA to reduce the dimensionality of the problem of determining pressure and saturation 

changes in the reservoir from multiple 4D seismic attributes. Sarma et al, 2006 applied 

the KL-parameterisation for a problem of optimization of net present value (NPV) in the 

case of water-flooded reservoirs using synthetic models. Although the KL-

parameterisation can provide accurate characterisation of complex geological models, 

the computational cost of its application in history matching is too high making it 

impractical for some large-scale problems. This problem of the standard KL method is 

alleviated in its extension, called a kernel principle component analysis (KPCA). Sarma 

et al, 2007 demonstrate applications of KPCA for history matching of synthetic and real 

field models. The authors note that the method is capable of representing geological 

models characterised by complex multi-point statistics and that the computation is 

highly efficient. 

Because the KL-expansion methods are based on the prior covariance matrix, bias can 

be introduced when the prior information is erroneous. Khaninezhad and Jafarpour, 

2014 proposed a hybrid parameterisation scheme which aims to balance the effect of 

prior with information specific to the calibration data. The scheme combines basis 

vectors from the KL expansion with some prior-independent basis functions such as the 

discrete cosine transform (DCT) basis. The DCT scheme itself was earlier applied by 

Jafarpour and McLaughlin, 2009 for history matching and showed high efficiency. 

DCT originates in the field of image compression (part of JPEG standard), it can 

describe a dataset of arbitrary structure with a set of basis vectors and their coefficients. 

Another approach which combines the information from prior model with the 

information about the data resolution is presented in the work by Bhark et al, 2012. In 

this work, a two-stage history matching is demonstrated which aims to update the 

geological model at a range of scales from coarse to fine. The first stage employs the 

spectral representation of the prior model as basis for parameterisation. The algorithm 

performs history matching initially with a small number of parameters (frequency 

modes) to adjust the coarsest spatial details of the model first. This step is then repeated 

several times, each time increasing the number of parameters which corresponds to 

matching finer spatial details of the model. The process is stopped when adding finer 
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details does not improve the match quality. The authors note that this process yields a 

model commensurate with the data resolution. The second stage of history matching is 

using the streamlines generated on the final model of the first step to perform the 

generalized travel-time inversion. This stage results in conditioning the fine scale local 

heterogeneities to calibration data and thus further improving the data match. 

The gradual deformation method (GDM) provides a suitable framework for modelling 

complex geological realisations. Roggero et al, 2007 applied the method in history 

matching of the Girassol field model in which both production and 4D seismic data 

were assimilated. The authors note that in order to assimilate the significant amount of 

spatial information from 4D seismic data, a flexible parameterisation was required for 

which the GDM method well suited. Model flexibility was further enhanced by 

extending the GDM with so called facies proportion calibration method in which facies 

proportions and variograms, usually constant inputs for the GDM, also become variable. 

Figure 3.12 demonstrates how model updates by different methods minimize the 

objective function. Reduction of the misfit throughout the steps of history matching 

indicate the increase in degrees of freedom that the model gained by combining the 

facies proportion method with GDM. 

 

Figure 3.12. Objective function minimization using different parameter. After Roggero et al, 2007 

Ding and Roggero, 2009 extended the GDM method to allow continuous change of 

geostatistical realisations without being bounded to the grid-block based domains of the 
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usual gradual deformation method. The parameterisation also is capable of varying the 

geometrical sizes of the deformation domains. 

Choosing a parameterisation consistent with data resolution 

Too many potential parameters exist in a simulation model so that the amount of 

observed data is not enough for calibrating all of them. As a result, practical history 

matching problems are ill-posed which means that many realisations of the model exist 

that fit the data. If a solution (a model estimated by history matching) is highly non-

unique, its future predictions are unreliable. Parameterisations aim to reduce the 

dimensionality of the problem and to narrow down the range of solutions. At this point, 

the prior assumptions that accompany a chosen parameterisation become important as 

these will form a part of the solution determining future model predictions. If a 

parameterisation leaves too few parameters for calibration and fixes the rest of the 

model to some prior values, then the chance of obtaining a unique solution is high but 

the solution will be mostly defined by the fixed part of the model which will induce 

prediction errors (Hunt et al, 2007). Moore and Doherty, 2006 and Hunt et al, 2007 

argue that the simplifications required to obtain that uniqueness create a form of a 

“structural noise” (Cooley, 2004; Cooley and Christensen, 2006) which is in most cases 

higher than the measurement noise. Another problem with such a model is not so much 

the error of its forecast but the uniqueness of it which creates overly confidence in 

parameter estimates (Oliver and Chen, 2011). An alternative approach to reducing the 

non-uniqueness of solutions is to leave many parameters for calibration but apply some 

kind of a regularisation which will narrow down the range of solutions to smoother and 

simpler ones (Hunt et al, 2007, Oliver and Chen, 2011). It can also be argued that using 

many parameters with regularisation better agrees with the principle of model 

parsimony (Occam’s razor) than the case with too few parameters. Indeed, regularised 

solutions with many parameters are simpler and smoother which means that sparse data 

constrain only low frequency property trends rather than a highly detailed geological 

model. On the other hand, the solutions with too few parameters are not simpler, their 

fixed parts will most likely produce discontinuities (as in zonation) or other form of 

structural noise.  

The regularisation can be explicit such as the prior term in the objective function, or it 

can also be implicit. Le Ravalec-Dupin and Hu, 2007 did not use the prior term in their 

objective function as they believed that the combined pilot point-gradual deformation 



61 

 

parameterisation provided the necessary regularisation by restricting the solution space. 

In another example by Dickstein et al, 2010, strong regularisation effect is reported 

when adding 4D seismic data to the dataset. The solution space is now restricted by the 

data itself which is more useful. 

An alternative perspective but with similar meaning is presented by Jafarpour and 

McLaughlin, 2009 and Khaninezhad and Jafarpour, 2014. They discuss 

parameterisations consistent with data resolution in terms of the balance between the 

prior-dependent (such as from PCA) and prior-independent (such as from DCT) basis 

functions in a parameterisation scheme. The hybrid scheme proposed in the latter work 

aims to reduce the influence of errors in prior when it is uncertain. 

 

 

3.4 Problems of history matching specific to the integration of 4D seismic data 

This section describes the differences in the history matching workflow, considerations 

and problems occurring when adding 4D seismic data. The major reason for concerns 

when reconciling reservoir simulations and 4D seismic data is that they belong to 

different domains in terms of the physics that cause these responses (and hence 

modelling approaches), scale of models, and errors in data. The coverage of history 

matching studies given here reflects the major questions discussed in publications. This 

means that there are of course questions that can be important but not included here as 

they are not widely discussed. 

 

3.4.1 Objective function 

In an early work on history matching with 4D seismic data, Waggoner et al, 2002 used 

a correlation function as a measure of match between the model-predicted and observed 

seismic data. However, the least-squares formulation of the objective function (eq. 2.2 

in Theory chapter) remains the most popular amongst the history matching studies. 

Members of 4D seismic and production datasets are characterised by their own noise 

statistics as described by the corresponding covariance matrices. These weight the 

importance of pieces of data in the objective function. It is therefore convenient to 
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consider the following form of the objective function with seismic and production data 

in separate terms (a version without the prior term is given, after Aanonsen et al, 2003): 

 ( )  ( ( )    )
   

  ( ( )    )  ( ( )    )
 
  
  ( ( )    )  

(3.1) 

where s(m) and p(m) are seismic and production data predicted by model m, ds and dp 

are observed seismic and production data, Cs and Cp are seismic and production 

covariance matrices. Aanonsen et al, 2003 discuss the importance of properly 

characterising the correlations in data to avoid wrong solutions in history matching. 

They propose a method for estimating the covariance matrix for seismic data based on 

fine scale variations in the data. This includes calculating the covariance function on the 

data after subtracting larger scale trends and normalisation. Also, authors note that 

production data probably will not be correlated if sampled at intervals exceeding 10-20 

days, for example, monthly. In another study of joint history matching to production 

and 4D seismic data by Stephen et al, 2006, the signal and noise in both seismic and 

production data were separated in frequency domain using the Weiner filter. Also, the 

correlations in seismic data were estimated along the directions of inlines and crosslines. 

In the context of seismic inversion, Sambridge, 1999, following the method described in 

Gouveia and Scales, 1998, estimated the covariance matrix using realisations of noise 

receiver function. 

In addition to the noise in observed data, modelling errors obscure comparison of model 

predicted and observed data. In a history matching study by Stephen et al, 2006, 

modelling errors were associated with approximate predictions by the streamline 

simulator which was used for faster history matching. For a subset of representative 

models, simulation was repeated with the finite difference simulator, and the difference 

in predictions gave the modelling error estimates. Similar modelling error issue is 

described by Stephen et al, 2007 where approximation of predictions was caused by 

upscaling. Again, difference between predictions of fine and coarse scale models gave 

the error estimate.  

If we were able to perfectly calculate the parameters of noise in data and modelling 

errors, then the seismic and production terms in the objective function could be 

balanced based on this information. However, estimation of noise statistics is difficult 

because data contains noise of different origins, inherited from different stages of data 

acquisition process and also added during the processing stage. We cannot estimate all 
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modelling errors either, some of them are simply not known and for some, there are no 

means for calibration. It is for that reason that the important question of balancing the 

seismic and production terms remains open. Johnston, 2013 (p.167) observe that at best, 

the balancing is currently done empirically. 

An alternative approach to combining different terms in the objective function (different 

objectives) is offered by the multi-objective optimization (Ching-Lai and Md Masud 

Abu, 1979). Instead of combining different, often conflicting, terms, the optimization 

aims to find a variety of solutions which balance them. The terms are now called 

different objectives. The objectives are said to be balanced when no improvement in an 

objective is possible without a degradation of another objective. The final set of 

balancing solutions form a Pareto front in the space of the objective values. The 

optimization is performed using the principles of dominance of solutions and crowding 

distance. The first forces the algorithm to choose solutions with improved objectives 

(and thus tending to the Pareto front), and the second preserves the diversity of solutions 

by preferring less ‘crowded’ (in the solution space) solutions. Park et al, 2013 applied 

the multi-objective optimization evolutionary algorithm to synthetic and real field 

problems where production and 4D seismic data were integrated. The results show that 

it is easier to obtain more diverse solutions with the multi-objective optimization 

approach than by using a single objective function with weighted terms because of 

supposedly more efficient exploration of the solution space in the former case. In a 

more performance-oriented work by Christie et al, 2013, the application of the multi-

objective particle swarm optimization algorithm resulted not only in the better explored 

parameter space, but also on a gain in history matching speed.  

The results of studies described above suggest that the multi-objective optimization is 

an efficient tool for obtaining diverse sets of solutions better describing the reservoir 

dynamics. The fundamental principle of the multi-objective optimization is the one of 

the equality of solutions on the Pareto front (given equal crowding). What the present 

work investigates however is how different levels of match of different data types (4D 

seismic and production data in particular) affect the quality of the resulting models, that 

is here the solutions are said to be non-equal (different levels of match of production 

and seismic data are discussed in Chapter 7). 
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3.4.2 Parameters for matching 4D seismic data 

Adding 4D seismic data naturally affects the choice of model parameters. With the new 

data constraint, we are now able to better estimate such parameters as location and 

extent of faults, baffles, other flow pattern controls, so these can make the new 

parameter set. At the same time, in addition to the simulation model parameters, there 

are now parameters that control prediction of seismic data itself, such as constants of the 

petro-elastic transform and parameters of time-depth conversion. These clearly do not 

affect the predictive capability of a simulation model but still can be included in the 

parameter set to improve the match of seismic data. In other words, changes to the 

parameter set reflect both the benefit and the cost. 

In the work by Stephen et al, 2006, the initial set of parameters included both simulation 

model parameters such as permeabilities and fault transmissibilities and petro-elastic 

model parameters. Analysis of sensitivities reduced the number of parameters leaving 

parameters from both categories which stressed the importance of parameters in both 

categories (as well as the dependence of simulation model estimates on the uncertainty 

of a petro-elastic model). In general, there are numerous examples of using 4D seismic 

data to condition the spatial, grid-based distribution of the transmissibility (via grid-

based permeability, transmissibility multipliers, etc.). The work by Bhark et al, 2012 is 

one of the examples where a multiplier field at the grid-cell resolution was updated 

using the grid connectivity transform (GCT) to reduce the dimensionality of the 

problem. The size of the subspace of parameters in turn was iteratively adjusted to 

account for the spatial resolution of 4D seismic data. 

The application of 3D seismic data traditionally is constraining the static descriptions of 

reservoir such as structural data, calibrated distributions of properties or property trends 

such as porosity and net to gross ratio, and lithology and fluid indicators (Ødegaard and 

Avseth, 2004). At the same time, useful applications can be found when 3D and 4D 

seismic attributes are combined for interpretation. Andersen et al, 2006 integrated 

information from 3D and 4D seismic cubes to derive the information on probability of 

occurrence of sands. This was related to areas of gas- and water floods in the Oseberg 

field. Johnston, 2013, p. 163 describes a situation where 4D seismic signal bears 

information about the occurrence of sands unavailable from 3D seismic data alone. As a 

result of saturation change, reservoir sands become detectable on 4D seismic data as the 
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relationship between the impedance of reservoir and surrounding rocks changes. For 

this reason they are sometimes called ‘4D sands’.  

 

3.4.3 4D seismic data in different domains 

Although there is a clear causal relationship between changes of reservoir pressure and 

saturation on one hand and 4D seismic signature on the other, these data reflect different 

physical quantities and belong to different domains from the modelling perspective. 

Petro-elastic modelling and seismic forward modelling are required to predict seismic 

data from simulation results. For this reason, predicted and observed data in seismic 

history matching cannot be directly compared but rather need to be transformed to some 

common domain. Gosselin et al, 2003 described the options available for seismic 

history matching as comparison of data in the seismic domain, petro-elastic domain and 

the pressure and saturation domain. In order to compare in the seismic domain, seismic 

data need to be predicted for each realisation of the simulation model. For comparison 

in petro-elastic domain, observed seismic need to be converted to petro-elastic 

properties. Similarly, in pressure and saturation domain, observed seismic need to be 

converted to these properties.  

The domain of petro-elastic properties has been the most popular option amongst 

publications on seismic history matching (Waggoner et al, 2002; Gosselin et al, 2003; 

Aanonsen et al, 2003; Mezghani et al, 2004; El Ouair et al, 2005; Stephen et al, 2006; 

Roggero et al, 2007; Dong and Oliver, 2008; de Brito et al, 2010). Gosselin et al, 2003 

point out that using the data in the elastic domain avoids the inclusion of seismic 

forward modelling in the history matching loop which saves the CPU time. It also 

avoids the inversion to pressures and saturations which can introduce errors due to 

pressure-saturation ambiguity in 4D seismic signal, and moreover, the results of this 

inversion are not independent of the reservoir model used for the inversion. Landa and 

Kumar, 2011 and Tillier et al, 2011 compared data in time domain in their history 

matching studies. The authors argue that comparison in time domain is preferable 

because there is no need for time consuming and error-prone inversions which means 

that the data is available for history matching earlier after acquisition. In an earlier 

history matching example applied to the Bay Marchand (Gulf of Mexico) field, Vasco et 

al, 2003 used 4D amplitude change peaks (21 points in total) as observed data. In 

another study by Landa and Kumar, 2011 the differences of seismic traces together with 
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production data are used in a joint probabilistic inversion. The authors note that for their 

synthetic case, comparing observed and predicted seismic data in traces is simple, 

whereas in practical applications, one might rather consider 4D seismic attributes 

because of the noise in data and errors of seismic modelling. Data in pressure and 

saturation domain were compared in a synthetic study by Davolio et al, 2011 for which 

4D P- and S-impedance data were inverted for pressures and saturations.  

In a work on assisted history matching of production and 4D seismic data by Walker et 

al, 2006, observed and predicted seismic data are compared using different physical 

quantities (different domains). The subject of study, Harding reservoir, demonstrated 

strong saturation dominated 4D effect while the influence of pressure was minimal. For 

this reason the authors chose to compare the simulated saturation change map directly to 

the observed impedance change map (Figure 3.13) using a correlation function as 

measure of match. 

 

Figure 3.13. Example of matching simulated water saturation change (ΔSw) to the observed 4D 

impedance change (ΔAI) for Harding reservoir. After Walker et al, 2006  

The study focused on the relationship between the quality of history data match and the 

quality of future forecasts. In particular, the results show that a subset of models history 

matched to production data only show unsatisfactory forecast quality (Figure 3.14, a, 

called “prediction quality” in figure annotation). On the other hand, adding 4D seismic 

constraint fully excluded the models with bad predictive capability (Figure 3.14, b). 

Noteworthy is that the constraint by 4D seismic data has been effective despite the 

difference between the domains of the compared (observed versus predicted) seismic 

data. This suggests that the data error (difference between the domains of water 

saturation map and impedance map) is of lower order of importance here compared to 

the information common to the two domains – spatial 4D signature. 
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Figure 3.14. Cross-plots of production forecast quality versus history match quality: a) matching 

well production data, b) matching 4D seismic data. After Walker et al, 2006 

Overall, the experience of published history matching studies suggests that 4D seismic 

data need to be transformed to some attribute which makes it a more robust source of 

information as errors will be minimized. On the other hand, inversion to pressures and 

saturations seems to be an error-prone process due to the ambiguity in inferring these 

two properties. Although the domain of petro-elastic properties is also accessible 

through inversion, no significant problems are reported regarding the change of 

information content of seismic data due to the inversion itself. The most likely reason 

for this is that other factors affect the information content much more. For example, 

using a single seismic attribute versus a combination of attributes, or using a map- or 

volume-based attributes. These factors are discussed in the following section. Most 

likely, seismic attributes including those in the petro-elastic domain were chosen in the 

majority of studies for their robustness, intuitive interpretability, and the availability o f 

certain seismic attributes for their studies. Also, the last example demonstrates the 

spatial 4D signature can be more important than the difference between the domains. 

 

3.4.4 4D seismic attributes 

Often, not a single elastic property but a combination of attributes is used as observed 

data for history matching. Gosselin et al, 2003 used inverted acoustic impedance and 

Poisson’s ratio, Roggero et al, 2007 used the acoustic impedance with added ∆Vp/Vp 
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attribute serving as a low frequency 4D component. Using several data types 

undoubtedly provides a better constraint for the model parameters. In the context of 4D 

seismic though, we can be more specific about this aspect. If P-impedance data is 

complemented with S-impedance (or any derivatives like the Poisson’s ratio), the 

dataset will be more sensitive to different production related effects as this combination 

(Ip-Is) is used as a basis for pressure and saturation discrimination (Cole et al, 2002; 

Andersen et al, 2006, also see Figure 3.1, b). As for the time strain, ∆Vp/Vp, or time shift 

attributes, their addition partly restores the low frequency component of the 4D signal. 

As noted by Johnston, 2013, the results of the 4D inversion seem to be more limited in 

the low frequency part than the 3D seismic data. Therefore, the addition of these 

attributes provides a constraint in the low frequency part.  

Where the structure and stratigraphy of the reservoir is simple, map-based attributes can 

provide sufficient level of details for adequate interpretations (Johnston, 2013). In these 

reservoirs, the signal is not obscured by interference from other layers, the reservoir is 

relatively thin, and also, if there is a reservoir compaction, the overburden effects will 

be small. 

An example of a map-based 4D seismic interpretation is monitoring the water sweep at 

Hoover field (Figure 3.15). The seismic response of the reservoir in this field is a single 

cycle, tuning to subtuning thickness, trough-peak event with a strong hydrocarbon leg 

response (Helgerud et al, 2011). The actual 4D seismic map in Figure 3.15 shows 

hardening of the reservoir due to water displacing oil (shown in blue). The circled area 

over the actual 4D seismic map indicates an area above the OWC that is unswept, 

suggesting that there may be a baffle. Including the baffle in the simulation model 

improved the predicted 4D seismic map, leaving only a question about its 

transmissibility which was subsequently answered by well pressure analysis. 
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Figure 3.15. Maps of observed and predicted 4D signal showing different scenarios of the baffle 

transmissibility. After Helgerud et al, 2011. 

Another example of using seismic maps is found in a work by Stephen et al, 2006. This 

time, 4D seismic data is used quantitatively, within an automatic history matching 

workflow (with NA algorithm) applied to the UKCS Schiehallion field. The maps of 

predicted acoustic impedance are compared to the observed seismic attributes (sum of 

negatives of coloured inversion) using two time-lapse differences: after one year of 

production, and after another year of production (Figure 3.16).  

 

Figure 3.16. Comparison of observed and predicted 4D attribute maps: a) observed time-lapse 

difference map after one year of production, b) observed map after another year of production, c)-

d) same as (a)-(b), but predicted maps. After Stephen et al, 2006. 

Strong 4D signal is observed around the injector well I3 which is attributed to building 

up the pressure. There are more signals over the map but those were interpreted as noise 

or, if they were above the horizontal red line representing a sealing fault, not modelled. 

12 faults, 10 pilot points, and 6 parameter of the petro-elastic model were adjusted in 
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the assisted history matching resulting in good predictions of the 4D signals as shown in 

Figure 3.16, c and d. 

In stacked and thick reservoirs 

however, interpretation of maps only 

can be ambiguous due to complex 

seismic response from multiple layers. 

An example of stacked reservoirs is a 

thick, complex, multi-cycle Miocene 

channel-levee system comprising a 

West African field (Figure 3.17). The 

production here is maintained by 

several depletion mechanisms: 

solution-gas drive with limited 

aquifer support, gas injection for 

storage, and water injection for 

pressure maintenance. Tracking the 

respective 4D effects can be 

ambiguous on a map due to vertical 

overlap and thickness. Figure 3.18 

illustrates the problem. Figure 3.18, a 

and b show maps of amplitude of 

quadrature (-90° phase shift) time-

lapse difference. Red area in the northern part of the field (Figure 3.18, a) corresponds 

to gas injection and critical gas saturation, while the red signal in the southern part is 

misleading as there is no gas injection there. Similar situation is shown in Figure 3.18, b. 

Water is injected in the southern part only, so the map in the north is inconsistent with 

production data. The ambiguity is resolved as shown in Figure 3.18, c where volumetric 

geobodies are derived by applying cut offs on the quadrature difference data. Blue and 

red geobodies are shown as clearly separated in space. 

 

Figure 3.17. Seismic cross-sections for a West 

African field: a) pre-production baseline survey, b) 

monitor survey, c) time-lapse difference. After 

Johnston, 2013 
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Figure 3.18. Comparison of map-based and volumetric attributes: a) reservoir interval map of 

maximum negative amplitude of quadrature (-90° phase shift) difference indicating softening of 

rocks by red, b) map of maximum positive amplitude of quadrature difference indicating 

hardening of rocks, c) volumetric geobodies from cut-offs on quadrature difference data showing 

water saturation increase in blue and gas saturation increase in red. After Johnston, 2013 

Another example of using the volumetric attributes is given in Roggero et al, 2007. The 

Girassol field has very similar reservoir architecture to the previous example being 

composed of Oligocene channel-levee complexes, stacked elementary channels and 

associated levees. In this history matching study predicted and observed data were 

compared using volumes of P-impedance time-lapse differences. Comparison of 

volumes was needed in order to use the high (compared to well data) spatial resolution 

of 4D seismic data. The model itself was made more flexible by parameterization (see 

the parameterisation section) which allowed the authors to reproduce volumetric details 

of the 4D signal (Figure 3.19). 
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Figure 3.19. Comparison of observed (left) and predicted (right) 3D geobodies visualising highly 

negative values of 4D P-impedance differences. After Roggero et al, 2007. 

Although the volumetric attributes provide finer details for reservoir characterisation, 

care should be taken fitting them as they have more chances to be noise than coarser, 

but sometimes more robust, map attributes. Authors in Roggero et al, 2007 note that 

errors of the final model prediction can be due to fitting the data in 3D pixel by pixel 

while a better representation of uncertainties might be required. 

Even more informative, quantitative characterisation of rock properties such as 

compressional and shear velocity and density is possible by employing the full 

waveform inversion (Tarantola, 1986). This is a method of seismic depth imaging 

which yields velocity models of high resolution. Full azimuth multi-component seismic 

data from seabed seismic sensors (such as ocean-bottom cables or, even better, ocean-

bottom sensors, see Beaudoin and Ross, 2007) particularly suits as input for full 

waveform inversion because of its high quality. In the work by Andorsen et al, 2013, 

the method allowed improving the velocity model significantly which subsequently led 

to improved 4D images of the water front as part of the water flood monitoring program 

in Valhall. Figure 3.20 demonstrates the change in the 4D seismic map (specifically 

around injector G18) achieved due to applying the inversion.  
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Figure 3.20. Time laps acoustic impedance difference in Valhall field: a) 4D map with ray 

tomography based velocity model, b) 4D map with full waveform inversion velocity model 

In another work on Valhall by Yang et al, 2013, the inversion directly to the time-lapse 

changes of properties is discussed. The authors compare two approaches to the time-

lapse full waveform inversion. In the first, the inversion is applied on baseline and 

monitor surveys separately, while in the second they are inverted jointly. The results of 

the second method appeared to be cleaner and more localised which lead to the 

conclusion of superiority of the second approach. The last example by Queißer and 

Singh, 2010 does not use the data from seabed sensors but still demonstrates a 

successful application of the inversion for monitoring of CO2 sequestration. 

Compressional velocity models resulting from the inversion allowed the authors to 

calculate CO2 saturations in the Sleipner aquifer leading to a conclusion that the method 

is suitable for quantification of free gas during the CO2 sequestration. 

 

3.4.5 Scale of model and data 

There is a scale difference between the results of reservoir simulation and observed 

seismic data. Areally, simulation model grid is discretized with about 100x100m cells, 

whereas the seismic bin size is 12.5 m. Vertically, the seismic resolution is coarser but 

smaller scale heterogeneities may still affect seismic predictions as described by 

Sengupta et al, 2003. The authors found that replacing smooth saturation outputs of the 

simulator with a more realistic patchy distribution leads to predictions of petro-elastic 

properties quantitatively comparable to the observations. The authors suggest that the 

simulation results should be downscaled to a finer grid for which the petro-elastic 

transform is more suitable. These considerations were applied in history matching 
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works by Enchery et al, 2007, Roggero et al, 2007, and Tillier et al, 2011. An 

alternative approach for reconciling observed 4D seismic data and simulator’s output is 

upscaling 4D seismic data to the simulation grid (Stephen et al, 2006) which seems to 

be a more robust solution because of the inherent ambiguity of the downscaling process. 

Scale is an important consideration when combining different data types and the model 

responses too. Because of the inherent uncertainty and difference in scale of data 

sources, coupling them provides more robust description of reservoir processes 

compared to using a single data type. An example of coupling different data types for 

reducing the uncertainty in planning the development strategy is given by the Magnus 

field study (Erbas et al, 2014). Magnus field is in production since 1983, the high 

productive plateau period ended in 1995, and now is developed using tertiary recovery – 

water alternating gas (WAG). The main reservoir unit, Magnus Sandstone Member 

(MSM), is formed by stacked turbidite sandstones (sand lobes, 2-7 m thick) which are 

separated by shales of varying thickness and lateral extent (MacGregor et al, 2005, 

Moulds et al, 2005). The shales represent barriers to areal and vertical sweep and have 

been a source of uncertainty for the development planning since the earliest stages of 

production (Atkinson, 1985). Unswept oil lenses of 5-10 metres were found behind the 

water flood front adjacent to the fully swept sands (King et al, 1998). Gas injection 

started in 2002 particularly aimed at the remaining oil after the secondary water flood. 

Despite the efficiency of WAG scheme, it required optimization due to suboptimal areal 

and vertical sweep (Erbas et al, 2014). The MSM reservoir, initially assumed a single 

unit for WAG scheme, was required further vertical separation into MSM-G, MSM-E 

and MSM-E lobes and their subunits. By analysing primarily the PLT (production log 

tool), 4D seismic data, and material balance in combination, the development strategy 

was adjusted by redirecting the flows in the reservoir. In particular, the units MSM-G, 

MSM-E and MSM-E were seen separated, MSM-E was found to be unaffected by gas 

injection, MSM-A was found to have low WAG efficiency. Figure 3.21 shows injected 

gas extent in reservoir units. 4D image of the unit MSM-E shows absence of gas while 

PLT indicated otherwise and would be misleading if interpreted individually. Gas 

balance calculations were in agreement with 4D seismic though which means gas finds 

its way out of MSM-E in proximity of the well. This example demonstrates that coupled 

analysis of data allowed tacking the uncertainty caused by ‘invisible’ shale barriers. 

Although the barriers cannot be mapped using the seismic data (due to low thickness of 

the lobes), 4D signal gives information which helps to handle their effect. 
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Figure 3.21. Gas injection monitoring using 4D seismic and PLT data: a) map of Sum of Negatives 

attribute of 4D amplitude change along MSG lobe, b) cross-sections along lines AA’ and BB’ 

showing 4D inverted impedance change where red means reservoir softening and blue - hardening, 

c) PLT logs showing relative injection and production to(from) reservoir units. After Erbas et al, 

2014 

 

Illustration of scale relationship in the template Schiehallion reservoir 

The template Schiehallion reservoir and the corresponding model used in this work are 

described in Chapters 5 and 6, while here only the necessary parameters are given for 

calculations. In the following, scales of the model are related to the timing of 4D 

surveys in order to illustrate the expected information content in 4D seismic data. 

Following the actual 4D survey timing in Schiehallion field, 4 years interval between 

the baseline survey and the monitor is considered in this work. Given the water 

saturation change is the main 4D seismic effect, the area affected by the water-flood is 

where 4D seismic data will effectively provide information about the reservoir. 

Therefore, the advance of the water front by the time the monitor survey is shot is 

equivalent to the depth of investigation of the 4D seismic method. One of the simplest 

methods to estimate the position of the water front is by using the Buckley-Leverett 

frontal advance equation (Buckley and Leverett, 1942): 

   
  

  
(
   
   

)
 

    (           ) 
(3.2) 
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where Q is flow rate, t is time, A is cross-sectional area, ϕ is porosity, Sw is water 

saturation and Fw is water fractional flow given by 

   
 

  
   
  

  
   

   
(3.3) 

in which kr is relative permeability, subscripts o and w signify oil and water respectively. 

The quantity 
   

   
 in equation 3.2 can be estimated for a particular value of water 

saturation using the fractional flow curve in turn obtained from relative permeabilities 

as shown in Figure 3.22. In this case, the value of water saturation of 0.56 is used 

because it is shown (see section 5.3) to give at least 3% of 4D impedance change which 

is on lower margin of detectability (Johnston, 2013). 

 

Figure 3.22. Calculation of dFw/dSw for Buckley-Leverett front advance formula. 

Table 3.1 summarizes parameters used for calculation of the position of the water front, 

xf. The resulting value of the front position (2700 ft) is illustrated in Figure 3.23 

together with the simulated water saturation distribution. As expected, the simulated 

water saturation extends further due to the reservoir heterogeneity while the Buckley-

Leverett calculation assumes none. The figure shows that the 4 years interval between 

the seismic surveys allows the water front to cover the most of the inter-well space so 

that the information on that area should be reflected in the seismic data. The wells on 

the other hand will not be reached within the first 3 years of production given the 

shortest distance between the producer and the injector being 2000 ft (calculated using 

the equation 3.2). This lowers the information content of the well data regarding the 
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water flood pattern. Although not directly seeing water, the wells will still have 

information about the pressure change. The pressure wave from the injector will reach a 

producer within 15 days according to the transient pressure wave travel time given by 

(see for example, Stewart, 2011, p. 41): 

   
     

 

  
       (           ) 

(3.4) 

where μ is fluid viscosity, ct is total compressibility, r is radius of pressure wave front, k 

is permeability. This can be used for absolute permeability calibration, however, this 

work focuses on the spatial patterns of property change so the pressures are not used 

here. 

Table 3.1. Parameters of the template Schiehallion reservoir used for calculation of Buckley-

Leverett front progression and pressure wave propagation distance 

Parameter Symbol Unit Value 

Porosity ϕ fraction 0.28 

Net to gross ntg fraction 0.49 

Permeability k mD 490 

Viscosity μ cp 3.06 

Total compressibility ct 1/psi 1.32E-05 

Liquid rate Q bbl/day 17000 

Time between 4D seismic surveys tss years 4 

Well spacing  xw ft 4000 

Reservoir cross-sectional area A ft
2
 817320 

    

Buckley-Leverett front advance for 

tss xf ft 2660 

Time for the front to reach wells tw years 3 

Pressure wave travel time from 

injector to producer tp days 15 
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Figure 3.23. Scheme of well placement with characteristic distances shown on the map of average 

water saturation for the template Schiehallion reservoir (T31a only, see Chapter 6 for more details). 

The simulation time is 4 years. 

 

 

3.5 Summary 

It is commonly recognized that the addition of 4D seismic data in the integrated 

reservoir characterisation studies improves the quality of the final models. It happens so 

because the spatial information from 4D seismic attributes complements the production 

data from wells. 4D seismic data has been a tool helping in reservoir management 

decisions by indicating the extents of water movement, pressure compartments, and 

bypassed hydrocarbon areas. In the last 15 years however this information has also been 

used to build better reservoir models.  

In the context of history matching, 4D seismic interpretations and quantitative measures 

are combined with engineering judgement to improve reservoir models manually or 

within automatic (assisted) history matching workflows. Usually, seismic attributes 

such as maps and volumetric attributes derived from either seismic traces or inverted 

impedances or velocities are used as observed data. Map-based attributes provide 

averaged views on seismic effects and as such are more robust, whereas volumetric 

attributes can resolve more details and are better suited for stacked reservoirs. Using 

multiple seismic attributes improves the information content significantly. There is no 

definite understanding though on how to balance the seismic and production terms in an 
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objective function. Weights are assigned to pieces of data based on calculated error 

statistics but these are uncertain. 

The choice of optimization algorithm depends on the complexity of the problem, more 

specifically, on the smoothness of the objective function. Combined dataset of 

production and 4D seismic data usually produces more complex shapes of the objective 

function for which stochastic, rather than deterministic algorithms, can be more suitable. 

Stochastic algorithms are designed for global search avoiding local minima. They also 

better handle the forward problem treating it as a “black-box”, that is no assumptions 

are made about the structure of the objective function and its differentiability. Particle 

swarm optimization stochastic method has been shown to work effectively on history 

matching problems including those with 4D seismic data. The deterministic, most often 

gradient-based, algorithms on the other hand converge faster. In cases where efficient 

calculation of sensitivities such as by the adjoint method is possible, the gradient 

algorithms can be used with large numbers of parameters. Ensemble Kalman filter is an 

effective method for history matching, especially with production data. Research is 

undergoing for improving its applicability for 4D seismic history matching. 

The parameterisation is another important consideration in a history matching problem. 

The best strategy here is to find a right balance between the parameters exposed to 

calibration by the dynamic data, and the imposed prior knowledge. Using too few 

parameters can results in unique models bearing a significant bias from the structural 

noise. Using more parameters is preferable if there are means of regularizing the 

solutions. It was shown that the regularising effect occurs when the solution space is 

restricted by adding 4D seismic data. 
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Chapter 4. Methodology 

 

4.1 Introduction 

In this chapter we will discuss the realization of the seismic history matching workflow. 

As discussed in Theory chapter, history matching is an iterative process where model 

predictions are calculated at every iteration via forward modelling such as reservoir 

simulation and seismic modelling. These are compared to the observed data in the 

domains of production data and seismic attributes. The comparison evaluates the 

goodness of current models and the updated models are suggested by the optimization 

algorithm. The process repeats until acceptable models (that is fitting data within 

predefined error level, and also meeting certain conditions on the parameter values such 

as deviation from prior) are found. These steps are schematically illustrated in Figure 

4.1. The focus of the present work is optimizing the integration of 4D seismic data into 

the history matching process which requires customizing this workflow. In particular, 

forward modelling of seismic attributes includes calculating of seismic attributes which 

in this case are represented by the ‘coloured inversion’ procedure. Both construction of 

models and preparation of observed seismic dataset require applying the model based 

inversion which is also implemented here. The process of the automatic history 

matching is driven by an optimization algorithm which in this case is the particle swarm 

optimization (PSO) algorithm. Implementation of these processes will be discussed in 

the subsequent sections.  

 

Figure 4.1. History matching workflow. After Stephen et al, 2006 
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4.2 Particle swarm optimization 

Both the model based inversion and the history matching workflows are implemented in 

this work using the particle swarm optimization (PSO) algorithm. PSO is a versatile 

stochastic algorithm that it is easy to implement and control with only a few parameters. 

Case studies discussed in the literature review suggest that stochastic algorithms better 

suit optimization problems where the objective function is more complex as in cases 

where 4D seismic is combined with production data in history matching. Stochastic 

algorithms are also capable of global search thus avoiding local minima. The PSO 

algorithm has many similarities with other population-based techniques such as the 

Genetic algorithms. However, PSO has demonstrated higher efficiency in many cases 

when applied to the problems of history matching and seismic inversion (see the 

literature review). In the following sections, we will discuss the implementation details 

specific to the present work, illustrating them with examples of application. 

 

4.2.1 The algorithm 

The task of history matching (as a process) is finding values of parameters that 

minimize the objective function. Particular set of values of n parameters can be viewed 

as a point in n-dimensional space (model space). To describe the PSO algorithm, we 

will call such point a particle p which stochastically moves in the model space with 

tendency to the best regions. The goodness of a region in the model space is determined 

by the value of the objective function (J) in it – the lower the value, the better the region. 

The algorithm operates with a population, or a swarm, of such particles. Throughout the 

life of the swarm, each particle visits a series of locations and always remembers the 

best visited so far. This quantity is called a local best and is denoted xpbest. The best 

position out of best positions of this particle and of all of its neighbours is called a 

global best and denoted xgbest. Neighbours for any given particle are defined by the 

topology as described later. 

The algorithm starts with initialisation of the swarm by distributing particles randomly 

in the model space. Subsequently, at each iteration i positions of particles xp are updated 

according to their velocities vp: 

  [ ]    [   ]    [ ]  (4.1) 
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where a velocity vp is determined by the random function of the distances of the particle 

from the global best point xgbest and the local best point xpbest: 

  [ ]    [   ]      (      [   ]    [   ])

     (      [   ]    [   ]) 

(4.2) 

In the above two equations, i is the current iteration, i-1 is the previous iteration, c1 and 

c2 are constants controlling traction to the local best and the global best points, φ1 and φ2 

are realisations drawn from the uniform distribution of random numbers from 0.0 to 1.0. 

Iteration is defined as a single update of velocities and positions of all particles. It is the 

philosophy of the PSO algorithm that the particles are being driven at the same time by 

the intelligence of individual particles (local best) and the population (global best). The 

former force facilitates exploitation, while the latter – exploration. The balance between 

exploitation and exploration in the behaviour of the particles is controlled by the 

parameters c1 and c2 in the above velocity equation. Typical values for the parameters 

are 2 and 2. Higher c1 will make the algorithm search different places more thoroughly 

(particles are more independent), while higher c2 will result in faster convergence. 

Values of these constants do not depend on the range of x (which is, in turn, problem 

specific) because they express fractions of change of that same x.  

The above formulation of the velocity equation allows the particle swarm to explode 

with time as the velocities grow and the oscillations become wider. Different techniques 

are applied therefore for damping the velocities and keeping the swarm in the “box” 

such as limiting the maximum velocity or “stopping” at the model space boundaries 

(X=Xmax, V=0 when a particle tries to fly beyond a boundary). The velocity calculation 

may also be modified. Shi et al, 1998 proposed using inertia to control the influence of 

the previous velocity by multiplying it by a time variant constant w. The resulting 

velocity equation becomes:  

  [ ]    [   ] [ ]      (      [   ]    [   ])

     (      [   ]    [   ]) 

(4.3) 

The multiplier w linearly decreases with iterations (usually from 0.9 to 0.4). Decreasing 

w makes the search more exploitative and thus prevents the swarm from exploding. 

Another method for controlling the level of oscillations is using the constriction 

coefficient (Clerc and Kennedi, 2002). Usually it is a multiplier (0.7-0.8) applied to the 
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final value of the velocity which may improve the social behaviour of the particles. In 

this work, both the inertia and stopping at boundaries are used. 

As mentioned before, topologies are used to assign neighbours for each particle p in the 

swarm. A global best xgbest for each p is then found by querying its neighbours for their 

local bests and choosing the best of them. In this way, different p in general will have 

different xgbest as different p have different neighbours, but since particles are connected, 

the information about the best of xgbest will eventually spread across the swarm. 

Neighbours are assigned prior to the run and do not change. Different topologies used in 

PSO are shown in Figure 4.2. In the circle topology (Figure 4.2, a) any given particle is 

connected to all other particles but through its two (or more) neighbours. This way the 

information is transmitted at a slow rate. The information is transmitted fast in the star 

topology (Figure 4.2, b) which also is called the global best topology. In this case for 

any given particles, the rest of the swarm will be its neighbours. Too many connections 

in the star topology may reduce the exploitative ability of the swarm, while too few 

connections in the circle topology may result in a slow convergence (but usually a better 

chance of finding the global minimum). The random neighbour topology (Figure 4.2, c) 

may offer a compromise in terms of the rate of information transmission.  For each 

particle p, its neighbours are assigned randomly. The probability of any other particle to 

become a neighbour of p depends on the desired approximate number of neighbours Nn 

(chosen by experimenting based on the algorithm performance) and is given by:  

    (  
 

  
)
  

  
(4.4) 

where Np is the number of particles in the swarm. 

 

Figure 4.2. Neighbourhood topologies used in PSO: a) circle, b) star, c) random neighbours 

 



84 

 

4.2.2 Benchmark case 

The following example will demonstrate how the choice of parameters for the PSO 

algorithm affects its performance. For this example, we will take a typical function 

which is among others used for benchmarking optimization algorithms, the Griewank 

function given by: 

  ( )  (  ∏   (
   

√ 
)
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(4.5) 

where m is a scaling factor which can be adjusted so that the function’s argument spans 

the representative range of values while keeping x in the interval from -1 to 1. Here m 

equals 40. The function has multiple local minima modelled by the cosine elementary 

functions in the first term and a global minimum at x=0. The 2-dimensional Griewank 

function is visualised in Figure 4.3. 

In the first test, we will examine how the 

balance between the exploration and 

exploitation affects the performance of the 

algorithm. We will use the Griewank function 

in 2-dimensions (Figure 4.3) to be able to 

visualise the resulting response surface. 

Exploration inclined behaviour is modelled by 

increasing the parameter c2 relative to c1 so that 

a traction to the global best point prevails. The 

exploitive behaviour on contrary is caused by a 

larger c1 so that the particles are mostly guided by their own experience rather than 

taking knowledge from the rest of the swarm. Figure 4.4 demonstrates the effect of 

shifting balance between exploration and exploitation. The parameters c1 and c2 are 

assigned as follows: (a) c1=0.5, c2=2.0; (b) c1=2.0, c2=0.5; (c) c1=2.0, c2=2.0. Star 

topology is used in all three cases. Number of particles is 50, number of iterations is 100 

(the number of iterations is defined by the convergence of the slowest scenario as 

discussed below). The values of the misfit function from the resulting ensembles of 

particles of the three cases, sorted in descending order, are plotted in Figure 4.5. The 

results in Figure 4.4 and Figure 4.5 are representative examples of the many runs 

 

Figure 4.3. Griewank function in 2 

dimensions. 
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performed in each experiment to make sure the results are not biased by a single 

stochastic realisation. 

 

Figure 4.4. PSO swarms used to find minima of the 2-dimensional Griewank function. A) 

Exploration inclined, b) exploitation inclined, c) balanced. The coloured map on the background of 

the particles is built by interpolating values of the misfit function read from the particles 

themselves, so it represents a response surface. The global minimum is at (0,0). 

In the exploration inclined case the 

ensemble of particles converged 

very quickly to one of the minima 

minimizing the presence of 

particles around the map (Figure 

4.4, a). The convergence is fast in 

this case, but not the best solution 

is found (Figure 4.5). In the next 

case the particles preferred to 

follow their own best points, so the 

swarm could find much more 

details of the function around the map as shown in Figure 4.4, b, but the convergence 

rate was too low (Figure 4.5). Balancing the two forces in the third case allowed finding 

the best solution although more iterations was required than in the explorative case. 

The next test demonstrates the importance of the particles’ neighbourhood topology in 

the PSO algorithm. For this test the 40-dimensional Griewank function was chosen 

because the algorithm demonstrates more stable convergence rates for different 

topologies in this more complex case. Here we compare the results for the three 

topologies: star, circle, and random. In each of these runs, the number of particles is 100, 

the number of iterations is 100, c1=c2=2.0. In the star topology the number of 

neighbours equals to the number of particles, in both the circle and random, the number 

 

Figure 4.5. Convergence of the PSO algorithm for the 

three scenarios shown in Figure 4.4. 
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of neighbours is 20. For the circle 

topology this number of 

neighbours gave the best result in 

this case, so the number is used 

here. In general, the best number 

of neighbours is problem specific. 

The values of the objective 

function were again sorted and 

plotted for the three cases as 

shown in Figure 4.6. As mentioned 

earlier, in the star topology the 

information about the global best 

point is transmitted immediately to 

all the points which adds to the explorative character of the swarm’s behaviour. As a 

result, it converges faster in the beginning, but fails to find the best solution (Figure 4.6, 

black curve). The circle topology shows the best result here being able to find a solution 

very close to the global minimum (the values of the objective function are higher in 

40D). The random topology shows the result in the middle. 

 

4.3 Reservoir simulation 

Reservoir simulation was carried out using ECLIPSE100 black oil simulator. The scope 

of modelling included 3 phase flow in the model reservoir, no surface network 

constraints were modelled. 

 

4.4 Parameterisation of history matching problem 

Two types of parameterisation are used in history matching experiments of this work. 

The first type is based on transmissibility regions formed by geobodies and the second 

is a method similar to the pilot points method (Marsily et al, 1984). The two very 

different parameterisation schemes are chosen intentionally. As discussed in Chapter 6, 

the ‘geobody’ bears a significant amount of prior information which is encapsulated in 

the shapes of the deterministic objects (geobodies) while the pilot points offer an 

unbiased modification to the permeability field which relies on the calibration data only 

 

Figure 4.6. Convergence of the PSO algorithm 

minimizing the 40-dimensional Griewank function 

using three topologies: star, circle and random. 
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(see also section 3.3.2 for a discussion of the balance between the prior information and 

that from the calibration data). 

In the parameterisation based on transmissibility regions, transmissibility multipliers are 

applied to the transmissibility field either inside the regions or between them. This 

parameterisation is inspired by using geobodies derived from seismic data as a major 

heterogeneities controlling the flow in the reservoir (Martin and Macdonald, 2010). 

Such framework of geobodies can 

incorporate a significant amount of 

prior information for history 

matching the simulation models. An 

example of geobodies distribution is 

shown in Figure 4.7. When the 

transmissibility multipliers are 

applied within the regions, such 

parameterisation becomes similar to 

the trivial zonation approach 

(Literature review, section 

Parameterization). However, 

multipliers applied between the 

regions can effectively model any 

structural or stratigraphic flow barriers such as faults or shale baffles.  

The second parameterisation scheme aims to modify the permeability field of the model 

directly. In order to reduce the number of parameters, the property updates are applied 

at sparse points from which they are interpolated in the volume of reservoir. This 

method is similar to the well-known pilot point method (Marsily et al, 1984). The 

classical pilot points however use kriging for interpolation while in this work the 

interpolator is based on the exponential smoothing function because no prior 

assumptions are made about the statistics of the resulting permeability fields. Because 

of the obvious similarity of the methods and intuitive perception of the pilot point 

method, the parameterisation in this work will be called the pilot points throughout the 

rest of the thesis. 

The interpolating function has the following form: 

 

Figure 4.7. Example of geobodies that serve as 

transmissibility regions in history matching 

parameterisation. The colours of the regions signify 

different indices. 
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(4.6) 

where k(r) is permeability at a location in space given by the two-component vector 

r=[x,y], same value of k is then applied for the whole thickness of the specified interval 

(reservoir layers are thin in the examples of this work, so the vertical variation of 

permeability is modelled by using a separate set of points for, say, lower reservoir), Npp 

is the total number of pilot points, Pi is an individual pilot point located at ri, a is the 

radius of influence of pilot points, and d is decay power controlling smoothness of 

interpolation.  

 

4.5 Petro-elastic modelling 

The sequence of rock physics calculations aims to convert the time-lapse changes in 

pressure and saturation resulting from the reservoir simulation into the changes in 

seismic velocity and density of rocks. The modelled impedance values can be compared 

with the results of the seismic inversion in a seismic history matching workflow. 

Modelling the impedance and seismic velocities of rocks also is a part of the seismic 

forward modelling process as the variation of the elastic properties defines the reflection 

coefficients for the seismic waves. The fundamental equations of rock physics used to 

model the elastic properties are discussed in Theory chapter (section Rock physics 

foundation of the 4D seismic method). Here we will discuss the computational sequence 

of modelling the petro-elastic properties in the context of the synthetic seismic 

modelling. The sequence of rock physics calculations implemented here follows the 

algorithm presented in Mavko et al, 1998 and Mavko et al, 2009. The choice of this 

algorithm was inspired by its successful application in works of Stephen et al, 2006, 

Edris et al, 2008 and Kazemi et al, 2010.  

The reservoir rocks are composed of different lithologies, permeable and impermeable, 

and different fluids saturating them. Modelling elastic properties of such composite 

media requires rules for calculating their effective properties as the compositions are 

very complex. In our case, the effective modulus of a combination of different rock 

types is calculated using the Backus average, the effective bulk modulus of a mixture of 

fluids by Wood’s law, and finally, the effective bulk modulus of the saturated rock is 

calculated using the Gassmann’s equation.  
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The sequence of the petro-elastic modelling steps as it is implemented in the present 

work is the following: 

1. Calculate the bulk modulus and density of pore fluids 

Bulk modulus of a fluid mixture Kf is given by the Reuss average (Woods law) (eq. 2.11 

in Theory chapter): 

 

  
 
  
  
 
  
  
 
  
  
  

(4.7) 

where Kw, Ko, and Kg are bulk moduli of water, oil and gas respectively and Sw, So, and 

Sg are saturations of these fluids. Density of the fluid mixture ρf is a saturation-weighted 

average of densities of its constituents (eq. 2.12 in Theory chapter): 

                   (4.8) 

where ρw, ρo, and ρg are densities of water, oil and gas respectively. The calculation of 

Kw, ρw, Ko, ρo, Kg, ρg follows the sequence given in Mavko et al, 2009, pages 340-343. 

The formulae were taken from the source without modifications and therefore are not 

repeated here. 

2. Calculate the pressure effect on bulk and shear moduli of rock frame. 

Various laboratory measurements indicate the exponential relationship between the 

rock’s moduli and the differential pressure (Theory chapter, section Pressure 

dependence of reservoir rocks). In this work the following expression for the bulk and 

shear moduli of rocks is used after MacBeth, 2004 as shown in Stephen et al, 2006: 

       
          

       
         ⁄

  (4.9) 

where mdry,r is bulk or shear modulus of dry rock r. mdry,r,inf is bulk or shear modulus of 

dry rock r at standard temperature and pressure, Ev,r and Pv,r are the excess compliance 

present in the rock r as a result of geological or mechanical processes and the stress 

sensitivity respectively (index v means these are different for bulk and shear moduli), 

Peff is the differential pressure. 

3. Calculate the saturated sand bulk modulus using Gassmann’s formula. 
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With the values of fluid’s bulk modulus Kf and dry sand (permeable rock) bulk modulus 

Kdry calculated as shown above, the bulk modulus of saturated sand Ksat is obtained 

using the Gassmann’s equation (eq. 2.10 in Theory chapter): 

          
(  
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(4.10) 

where φ is porosity and K0 is bulk modulus of mineral grains of sand. 

4. Calculate the effective modulus of the composition of saturated sand and shale. 

For a thin (compared to the seismic wavelength) laminated layer of rock consisting of 

sand and shale and the seismic wave propagating normal to the layer, the effective 

modulus Meff is given by the Backus average (Backus, 1962): 

 

    
 
   

     
 
     

      
  

(4.11) 

where NTG is net to gross ratio calculated in an element of volume, Msand and Mshale are 

moduli of sand and shale (permeable and impermeable rocks), defined by  

      
 

 
   

(4.12) 

with r denoting sand or shale. In the last expression, Kr and μr bear the effect of pressure 

calculated in step 2, and Ksand also accounts for the saturation effect from step 3. 

5. Finally, calculate the effective density, velocity and impedance of the composite rocks. 

The effective density ρeff of a composite rock consisting of saturated sand with porosity 

φ and shale in ratio given by NTG is calculated as a weighted average: 

        (           )  (     )        (4.13) 

where ρ0,sand is density of mineral grains of sand, ρshale is density of shale, ρf is density of 

fluid mixture calculated as shown in step 1. 

The compressional velocity Vp of seismic waves in effective medium with modulus Meff 

and density ρeff is given by: 
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(4.14) 

from which the P-impedance is calculated as: 

          (4.15) 

The values of petro-elastic parameters used in this work are given in Table 4.1.  

Table 4.1. Values of petro-elastic parameters (after Stephen et al, 2006 and operator’s dataset) 

Parameter Value 

   37 GPa 

Oil gravity 25 API 

Brine salinity 0.018 

Temperature 58° 

   1.17 GPa 

   2.58 GPa 

   0.04 GPa 

              7.17 GPa 

              4.51 GPa 

               18.09 GPa 

               5.16 GPa 

        1.0 

        4.0 MPa 

         1.0 

         4.0 MPa 

 

  

4.6 Seismic modelling 

The seismic modelling is used in this work to predict the seismic response of the 

reservoir simulation models. The result of seismic modelling is interpretable seismic 

attributes which are then related to the effects of lithology variation and also the 

dynamic effects of the pressure and saturation change. AVO (amplitude versus offset, 

see Yilmaz, 2001) effects are not modelled in this work because a) the modelling of 
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AVO adds complexity to the workflow which requires closer reference to the field data, 

and b) an extra uncertain modelling step will only add unknowns to the relationship 

between the simulation model details and those in seismic attributes which is the subject 

of this study (studying such seismic-related effects is an interesting topic on its own and 

is seen as one of the ways of extending this work). 

The seismic forward modelling is based on 1D convolution model (more details in 

Theory chapter). The Earth’s impulse response is viewed as a sequence of reflection 

coefficients r(t) which is convolved with the seismic wavelet w(t) to obtain the seismic 

response x(t): 

 ( )   ( )   ( ) (4.16) 

The time series r(t) represents a sparse sequence of spikes Ri,i+1 separated by zeros. 

Each spike has a magnitude of a reflection coefficient calculated at the boundary of 

media i and i+1 with contrasting impedance. In an assumption of normal incidence of 

the seismic wave, the reflection coefficient is given by: 

       
       
       

  
(4.17) 

where Ii and Ii+1 – P-impedances of 

media i and i+1. The distributions of P-

impedance and P-velocity are calculated 

using the petro-elastic model as shown 

in the previous section. The positions of 

spikes on a reflectivity series r(t) 

correspond to points where a normal 

incidence seismic ray intersects cell 

boundaries of the simulation grid as 

shown in Figure 4.8. The term seismic 

ray is an abstraction for illustrating how 

a point belonging to a spherical front of 

the seismic wave travels through the 

Earth. All seismograms of a seismic 

survey are modelled as being recorded 

by zero offset receivers, i.e. as if the 

 

Figure 4.8. Rays of normal incidence crossing the 

simulation grid. Coordinates of reflectivity spikes 

on the rays are given by blue points of 

intersection. 
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source and the receiver for each trace were located at the same point. The subsequent 

modelling steps are illustrated in Figure 4.9. Using the points of intersection from the 

previous step, values of impedance and velocity are read from the simulation grid. 

These are used to calculate the reflection coefficients and position them onto the trace 

r(t) according to the two way time (TWT) coordinate of each point, given by 

     ∑
     
  

 

   

  
(4.18) 

where TWTi is the TWT coordinate of the ith simulation layer with TWT0 being the 

coordinate of top of the grid defined by ∆z0 – depth of the grid top, and V0 – velocity in 

overburden, ∆zi is the distance between two vertical points in the grid. The resulting 

trace r(t) finally is convolved with the seismic source wavelet w(t). In this work the 

wavelet is modelled by the Ricker formula which gives an approximation to the 

explosive seismic source (Yilmaz, 2001):  

 ( )  (         )   
       (4.19) 

where f denotes seismic dominant frequency which is taken as 30 Hz here.  

 

Figure 4.9. Sequence of steps for seismic forward modelling based on 1D convolution model. 

We should not forget that it is important to ensure fine enough time step between the 

samples in r(t). The problem is that the distance between the spikes in r(t) is measured 

in discrete samples while they are in fact separated by time intervals of continuous 

length. If the time distance between the two successive spikes is less than the sample 

time step, the two (or more) spikes will fall onto the same sample. Because the spikes 

are recorded sequentially, only the last one will survive. The net result will be losing 

spikes as illustrated in Figure 4.10, a. The reflections in this section are rather chaotic 

because the spikes are lost regardless of their magnitude – large spikes can be as well 
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‘eaten’ by even the tiniest ones if they happen to follow them. The problem is resolved 

when finer sampling is used as shown in Figure 4.10, b. 

 

Figure 4.10. Two seismic sections modelled with different time resolutions of r(t): a) 1.0 ms, b) 0.1 

ms. 

After the r(t) trace is convolved with the seismic wavelet, it can be downsampled back 

to typical sampling rates of seismograms recorded in the field (1-2 ms) as shown in 

Figure 4.9. 

 

4.7 Seismic inversion 

The seismic inversion is used to estimate elastic properties of rocks such as, in simpler 

cases, acoustic impedance or relative impedance. These can be compared to predictions 

of impedance change by simulation and petro-elastic models in the course of history 

matching which is a focus of the current work. Different options exist for the seismic 

inversion as described in Theory chapter. Here, we will use the coloured inversion 

algorithm and a model-based stochastic inversion driven by the particle swarm 

optimization algorithm. 
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4.7.1 Coloured inversion 

The coloured inversion procedure results in shaping the spectrum of seismic data to 

match that of the impedance logs, and also in a constant phase shift of -90° (Theory 

chapter). This can be achieved by convolving the seismic traces with a specifically 

designed filter h(t). The first step is calculating the amplitude spectrum of the filter, H(f). 

The multiplication of H(f) with the spectrum of seismic traces, X(f), should give the 

shape of spectrum of impedance logs, I(f). This is equivalent to multiplying a 

normalised spectrum of seismic data by the spectrum of impedance logs. X(f) can be 

normalised by the average spectrum of all traces in the survey,  ( )̅̅ ̅̅ ̅̅  . This will result in 

an estimate of the ‘coloured inverted’ seismic spectrum XCI(f) of the following form: 

   ( )  
 ( )

 ( )̅̅ ̅̅ ̅̅
  ( )  

(4.20) 

from which the spectrum of the filter H(f) is: 

 ( )  
 ( )

 ( )̅̅ ̅̅ ̅̅  
(4.21) 

The amplitude spectrum of impedance logs can be characterised by a single parameter α 

from the approximate relationship I(f)=f
α
 (Lancaster and Whitcombe, 2000). This 

parameter characterizes the impedance distribution of rocks in a particular field and 

should be estimated from the analysis of well logs. An example of estimation of the 

parameter α is illustrated in Figure 4.11. Three impedance logs were taken at arbitrary 

locations in a synthetic impedance model (Figure 4.11, a), and their spectra were plotted 

on log scale (Figure 4.11, b). The slope of a best fitting line gives the parameter α. 

With the above power law approximation of the impedance spectrum, the spectrum of 

the filter finally reads: 

 ( )  
  

 ( )̅̅ ̅̅ ̅̅   
(4.22) 
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Figure 4.11. Estimation of parameter α from values of spectrum of impedance logs: a) impedance 

distribution in synthetic model, b) spectra of three (marked by red, green and blue dots for 

distinction) impedance logs from arbitrary locations in synthetic model. db indicates attenuation in 

decibel (db=20lg(A), where A is displayed quantity). 

The simplest option for the implementation of our filter h(t) with the required frequency 

response H(f) will be designing a finite impulse response filter (finite duration, no 

feedback) by the window method (Parks and Burrus, 1987; Ifeachor and Jervis, 2002). 

The main steps of the method are following: 

1. Define the desired frequency response HD(ω) 

2. Calculate the ideal infinite impulse response hD(t) 

3. Multiplying it by a window function to get a finite impulse response coefficients 

h(t). 

4. Verify if the frequency response of h(t) satisfies the requirements. 

The notation D in the above means desired or ideal which will differ from the actual 

outcome as further explained.  

Following the steps of the method, we will set HD(ω) to the spectrum we need (the last 

expression for H(f)). In order for our filter to be real valued, its spectra must be 

conjugate symmetric. In particular, the positive and negative parts of the imaginary part 

of the spectrum must be antisymmetric. We also want our filter to give -90° phase shift 

which means it has to be a filter of type 4 – even number of samples, antisymmetric 

(Parks and Burrus, 1987). The second step is the analytical calculation of the infinite 

(defined on -∞<t<∞) impulse response of HD(ω). In cases like ours, the analytical 

expression for hD(t) can not be obtained because HD(ω) is of arbitrary form. In such 
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cases we have to use an approximate calculation using the inverse discrete Fourier 

transform (IDFT) (Ifeachor and Jervis, 2002). The third step is the essence of the 

window method. If we just took the infinite signal hD(t) and truncated it (or just took the 

output of IDFT), we certainly would get a finite version of the filter but that would have 

had very bad frequency response. The reason for it is the Gibbs’s phenomenon which 

we will demonstrate by calculating the frequency response of the truncated filter.  

Truncating the infinite signal is equivalent to multiplying it by a rectangular window 

with ones inside the window and zeros outside, so that the finite impulse response 

becomes: 

 ( )    ( ) ( )  (4.23) 

where w(t) is a window function. If we now calculate a frequency response of h(t), we 

get the following expression in the frequency domain: 

 ( )    ( )   ( )  (4.24) 

because multiplication in the time domain is convolution in the frequency domain. This 

shows why the notation D was used: the desired ideal response HD(ω) is different from 

H(ω) as the former is inevitably convolved with W(ω) – frequency response of the 

window making the filter finite. W(ω) for the rectangular window is known to be the 

classic sinc function. Convolving the sinc function with the HD(ω) adds ripples to the 

latter as illustred in Figure 4.12. 

 

Figure 4.12. Illustration of the Gibbs phenomenon: a) frequency response of ideal low pass filter, b) 

frequency response of rectangular window function, c) frequency response of finite (truncated by 

the rectangular window) low pass filter. After Ifeachor and Jervis, 2002 

The idea of the window method is to replace the rectangular window by a window 

without sharp edges at its ends. Kaiser window (Kaiser, 1966) is an example which has 

tapered ends with a shape controlled by a single parameter β (Figure 4.13). Tapered 

ends of the window reduce side lobes of its frequency response which reduces the 

ripples at the expense of the width of the transition zone though. This is illustrated in 

Figure 4.14 – the frequency response of a 10-80 Hz band pass filter has ripples when it 
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is truncated by a rectangular window (Figure 4.14, a). These are removed when it is 

multiplied by the Kaiser window instead of the 

truncation (Figure 4.14, b), and the resulting 

response is slightly wider. The Kaiser window 

is chosen because it provides a parameter (β) 

for balancing the amount of ripples (side lobes 

level of its frequency response) and width of 

the transition zone (main lobe level). 

The filter coefficients h(t) were calculated by 

applying the IDFT on HD(ω) and multiplying 

the result by the Kaiser window. h(t) is shown 

in Figure 4.15, a and its frequency response in Figure 4.15, b. The frequency plot shows 

that the actual spectrum of the resulting filter (shown in green) is very close to the one 

we requested (blue), that is the one given by H(f) above. 

 

Figure 4.14. Frequency response of finite 10-80 Hz band-pass filter: a) filter truncated in time by a 

rectangular window, b) Kaiser (β=8) window used instead of the rectangular. db indicates 

attenuation in decibel. 

 

Figure 4.13. Kaiser windows with 

different β 
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Figure 4.15. ‘Coloured inversion’ operator: a) filter h(t) in time domain, b) frequency response of 

h(t) in green and the desired frequency response HD(ω) in blue. db indicates attenuation in decibel. 

As follows from the filter specifications, its application leads to -90° constant phase 

shift and shaping the spectrum of seismic data to match the impedance spectrum. This 

does not alter the frequency content of data but it does change its visual appearance 

making the section easier to interpret by human. Coloured inversion and a quadrature 

amplitude (-90° constant phase shift only) attributes has been useful in reservoir 

characterisation and interpreting 4D seismic data (Johnston, 2013). Figure 4.16 

compares the seismic section (a) calculated with the impedance model from Figure 4.11 

with the band-limited version of that impedance (b) and the coloured inversion (c). The 

band-limited impedance is calculated by applying 10-80 Hz filter with frequency 

response shown in Figure 4.14, b. The purpose of this comparison is to illustrate the 

effect of applying the coloured inversion by operating with the following terms: section 

(a) is the observed seismic data, (b) is the ideal or reference solution for impedance 

against which the coloured inversion results (c) are compared; (c) is calculated from (a); 

(b) is not calculated from (a) but rather (b) is a source for (a). In a real situation, the 

section (b) obviously is not available as we do not know the precise impedance. It is the 

goal of seismic inversion to get an estimate of it. As the results show, although the 

coloured inversion technically does not calculate the impedance values, it does enhance 

the look of the seismic section so that it can be used as an estimate of the band-limited 

impedance for fast track interpretations. 
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Figure 4.16. Comparison of (a) seismic section, (b) band-limited impedance, and (c) coloured 

inversion calculated using the impedance in Figure 4.11. The lines trace boundaries of formations 

which in the model (in depth) correspond, from top to bottom, to formations T35/T34, T31a, and 

T31b of the Schiehallion field which is described in Chapter 5. 

 

4.7.2 Model-based inversion 

Model based inversion performs search through models of a certain type to find those 

fitting the data. The models reflect our assumptions about the reservoir architecture such 

as blocky layers of impedance or minimal structure modelled by sparse spikes (see 

Theory chapter, section Seismic inversion for more details). In any case, the aim of 

introducing models to the model-based seismic inversion process is reconciling the 

band-limited information from the seismic data with components from other sources of 

information and a priori knowledge. The results of the inversion are impedance models 

which can be compared to the simulation model predictions in the seismic history 

matching workflow. Also, by inverting the baseline survey, we can infer the NTG 

distribution. These are the reasons for implementing the inversion in this work. 
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The target of the inversion in this work is distribution of NTG or 4D impedance change 

models consistent with data. We will use a stochastic algorithm because it is a better 

choice for finding different realisations of models fitting the noisy data. One common 

way of parameterizing the inversion is dividing the model into a number of layers, so 

that the inversion parameters are P- and S- velocities, density and time thickness of each 

layer (Cooke and Cant, 2010). This approach has drawbacks for using in our problem as 

further explained. If several steps are taken in the inversion, such as inverting for 

velocity and density properties in time and then rescaling them onto the simulation grid, 

then errors are introduced due to the finite discretization of the latter. Here, an 

alternative scheme is used therefore. The seismic data are inverted for the NTG property 

(NTG inversion) or impedance and P-velocity properties (4D impedance inversion) on 

the simulation grid directly. This takes away the need for a time to depth transform in 

the future. The result is a model of NTG or impedance and P-velocity in depth which 

fits the data as much as possible. S-velocity inversion is not performed as shear velocity 

usually is noisy and poorly constrained by the seismic data (Johnston, 2013), moreover, 

excluding it from the process simplifies the calculations (Cooke and Cant, 2010). 

The parameters of the inversion (values of NTG or 4D impedance depending on the 

inversion type) cannot be just assigned to all of the simulation layers because different 

regions of the model require different number of parameters if any at all. Therefore, the 

parameters are assigned according to a layering which is defined (for example 

interactively) as an integer property of the simulation grid and used as an input for the 

inversion algorithm. This way, any deterministic information can be incorporated into 

the model such as impermeable streaks, pinch outs, different numbers of layers per 

parameter, etc. 

Two types of inversion are used in this work: inversion for NTG and inversion for 4D 

impedance change (∆I) in each layer. These take different approaches: 

In the case of NTG inversion, NTG values are parameters. They are assigned to the grid 

cells according to the parameter index property described above. Then petro-elastic and 

seismic models are run to determine the data fit. 

In the case of 4D impedance inversion, density is taken as being a linear function of 

velocity. Gardner et al, 1974 demonstrated a linear relationship between these 

quantities which is often used in inversions because the density itself is poorly 

constrained by the seismic data (Cooke and Cant, 2010). Using the values of impedance 
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update (4D impedance change) ∆I, velocity at base survey, V0, and the proportionality 

constant linking the density and velocity, k, a velocity update ∆V is obtained by: 

     
 

   
 

(4.25) 

In the derivation of the above expression, the second order velocity change is neglected. 

The calculated updates of impedance and velocity are added to the base survey’s 

impedance and velocity (which are calculated with inverted NTG) to obtain the values 

of these properties at the monitor survey time. Finally, the seismic forward models are 

calculated from both surveys and differenced to obtain the 4D seismic difference cube. 

The 4D difference traces are compared with observed data to obtain the misfit value to 

proceed to the next iteration with a new update ∆I. The algorithm used for the inversion 

is the particle swarm optimization algorithm (discussed in more details in the next 

section). This way the inversion essentially is looking for suitable updates for the 

existing (base survey) impedance rather than an independent solution. It is not 

independent because the seismic difference depends not only on ∆I but also on the 

underlying geology. However, we will examine how sensitive it is to NTG later. 

 

4.7.3 Effect of the prior term 

The effect will be demonstrated on an underdetermined inversion where 32 parameters 

are estimated from a 40 ms seismic signal. Figure 4.17 compares the results of the 

inversion without prior term (panels a and b) and with prior term (panels c and d). The 

panels a and c show how far the inverted solution is from the true impedance, and the 

panels b and d show how the final models’ predictions fit the data. The prior term is the 

square of the difference between the current solution and the prior solution. The latter is 

constant 0, that is no 4D impedance change.  
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Figure 4.17. Comparison of inversion without prior (panels a and b) and with prior (panels c and d). 

Panels (a) and (c): true ∆Imp in red and inverted ∆Imp in blue. Panels (c) and (d): observed 4D 

seismic trace in red and predicted by the inversion final model 4D seismic trace in blue. 

Clearly, the prior term has improved 

the solution as shown in Figure 4.17, 

c. It has done so by forcing the 

algorithm to choose the minimal and 

smoothest solution out of many fitting 

the data. Should we wish to go further 

with smoothing the solution, at some 

point, we will have to sacrifice the 

data fit as shown in Figure 4.18. 

When fitting the real noisy data 

though, the remaining misfit is 

determined by the level of noise, 

which means in practice we will opt 

for a smoother solution and imprecise 

data fit to avoid fitting the noise.  

 

 

 

 

Figure 4.18. Results of inversion with more weight 

given to the prior term. Notations are same as in 

Figure 4.17. 
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4.7.4 The common in coloured inversion and model-based inversion 

In the previous example, the need for strong regularisation was caused by the large 

number of parameters which could not be independently resolved from 4D seismic data 

alone due to their scale. Then how complex a model should be in order to take 

advantage of the information from seismic data? The answer depends on the target 

model. If we want our model to obey certain geostatistical laws, flow simulation 

constraints, or to end up in any other desirable form then the complexity of the model 

(number of parameters estimated in the inversion) most likely will be determined by 

other factors than the seismic resolution. On the other hand, if the target of the inversion 

is an interpretable impedance model on its own then we would choose fewer layers in 

that model, e.g. 10-20 ms per layer. 

In either case, we would like to 

illustrate the scale of the impedance 

changes which is determined by the 

seismic data which can be done by 

filtering the impedance in the 

seismic bandwidth as shown in 

Figure 4.19. Panel (a) shows the full 

bandwidth true and inverted 

impedances, and panel (b) shows 

the band-limited versions of these 

(red and blue curves). In addition, 

the coloured inversion curve is 

shown for comparison. It is easier to 

see this way that the differences 

between true and inverted 

impedances in panel (a) are only in 

high frequencies, whereas the band-limited versions of them agree very well (Figure 

4.19, b). Another observation is that the coloured inversion provides an adequate 

estimate of the band-limited impedance without the complications of the model-based 

inversion process. 

 

 

 

Figure 4.19. Full bandwidth impedances (a) and band 

limited impedance estimates (b). A) true ∆Imp in red 

and inverted ∆Imp in blue, b) band-limited versions of 

true ∆Imp in red and inverted ∆Imp in blue, result of 

coloured inversion in green. 
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4.8 Parallel computation 

It is the characteristic of stochastic algorithms that many evaluations of the objective 

function may be required in order to find an acceptable solution. Each function 

evaluation is a forward modelling run such as reservoir simulation and seismic 

modelling in history matching or just modelling of a seismic trace in seismic inversion. 

Whether a single function evaluation is costly (in terms of the computation time) or not, 

parallelizing the computations on the entire ensemble of models can provide a 

significant gain in efficiency. 

In a problem where a stochastic optimization algorithm is used, the parallelization can 

be adopted at different levels, of which we will discuss two used in the present work. 

The first is parallel computation of the individual models during the history matching. 

In the context of the PSO, each particle evaluates the function at every new location as 

it stochastically moves in the model space, so the ensemble of such particles can be 

divided between the computational units of a parallel system. Within one iteration of the 

PSO algorithm, the particles are fully independent. They need to exchange information 

when moving to the next iteration though – the value of the global best point is needed 

to update the velocities. Here, we have two options. The first is to synchronize at the 

end of each iteration so that the global best is calculated over the entire ensemble and 

communicated to all the computational units. The second option is for the 

computational units to proceed with global best available so far without waiting for the 

slower units to complete their iteration. This option may provide a speed gain but at a 

cost of added complexity of the implementation and imprecise global best, which is 

why the first option was chosen in this work.  

The second level for parallelization is used for the model-based seismic inversion 

problem in this work. Because the inversion algorithm used here operates on a single 

seismic trace at a time, the inversion of all the traces in a seismic cube can easily be 

parallelized. This way the PSO algorithm is applied on each trace and all the particles 

are calculated by a single computation unit within a reasonable time as the forward 

modelling of one seismic trace is not expensive using the 1D convolution method. 

There is no need to communicate the results of inversions between the units, so they can 

be stored on the disk and combined in the end of the process. 

Parallelization of computations is implemented using the Message Passing Interface 

(MPI) because it provides the ability to operate with distributed memory systems which 
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is convenient for parallelization on the level of entire models such as simulations of 

seismic forward models. MPICH2 (on Windows PC) and OpenMPI (on Linux cluster) 

implementations of MPI were used. The libraries are linked to the main program using 

the C++ header “mpi.h”. 

The MPI functions facilitate communication between processes which in turn need to be 

physically created and run in parallel to achieve the goals of parallelisation. This part 

was implemented by using a multi-core processor (on Windows PC) or a cluster of 

processors (Linux cluster). In the latter case, a cluster of 40 processors was available for 

this study. As described above, the particles of the PSO algorithm were spread across 

the available processors for individual computation in the case of history matching. In 

the case of seismic inversion, each processor performed a complete PSO run on 

designated seismic traces. 

 

 

 

 

  



107 

 

Chapter 5. Seismic response study 

 

5.1 Introduction 

Seismic modelling creates a link between reservoir simulation studies and 4D seismic 

data analysis. As such it is used in predicting 4D seismic effects in 4D feasibility studies 

before the survey, as well as in interpretation of the results of those surveys. Model-

based interpretation of the 4D seismic signature is based on our understanding of the 

geology, rock physics and the underlying processes in the reservoir. Therefore, 

regardless of the application of the seismic modelling, we should understand the 

resolution limits of the seismic attributes controlling whether or not the production 

related effects that we study are detectable on the seismic data. For this purpose, a range 

of models and scenarios of pressure and saturation changes with their seismic responses 

are studied in this chapter. The outcomes of this study will be used in the forthcoming 

chapters for interpreting the results of seismic history matching.  

The method used for this study is similar to that applied in 4D feasibility studies. These 

aim to predict the chances of success of 4D surveys based on the expected magnitudes 

of changes of the petro-elastic properties and the resulting 4D signatures. The usual 

input for such seismic modelling studies is rock physics data, properties of fluids, 

production data and seismic survey parameters (e.g. timings). In this work these data are 

borrowed from the Schiehallion field dataset used here as a template field. Using data 

from the template field dataset will create a modelling framework facilitating a feasible 

problem set up to model a variety of scenarios of hydrocarbon displacement. 

 

5.2 Schiehallion field overview 

The Schiehallion field is a deepwater offshore field situated on the Atlantic margin of 

UKCS, approximately 175 km to the west of the Shetland Islands in the North Atlantic 

Ocean (Figure 5.1). It was discovered in 1993, and oil production commenced in July 

1998. The peak production achieved at 190 mb/day. The water injection scheme has 

operated from the start of development. Total recoverable reserves of the Schiehallion 

field together with the Loyal satellite are 350-500 million barrels. 

Net sand distribution in the reservoir was mapped using the amplitude attributes and 

inversion products of the 3D seismic data. First 3D seismic survey was acquired in 1993 
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which was followed by a second higher specification survey acquired in 1996. 4D 

monitor surveys were shot in 1998, 2000, 2002, 2004, 2006, and 2008. 4 years interval 

between the baseline survey and the first monitor (1998-2002, the pair processed 

together) allows the water front to progress and be effectively detectable as discussed in 

section 3.4.5. 

 

Figure 5.1. Location of the Schiehallion field. 

Hydrocarbon reserves are associated with a Palaeocene deep marine complex of 

channelized sands T25/T28, T31, T34, and T35 (in age) with the unit T31a accounting 

for 60% of hydrocarbon volume. The reservoir sands are mostly noncemented, fine to 

medium grained with high porosity (23-32%) and permeability (600-1600 mD). The 

reservoir is compartmentalised and heterogeneous consisting of stacked turbidite 

channel sands 10-50 m thick (Figure 5.2). The reservoir depth is 5905-6772 ft. The 

geometry of channels varies across the field with smaller, more confined channels with 

poorer connectivity situated in the eastern part, broad channels in the middle, and sheets 

of sands in the western part. Poorer than expected connectivity of the reservoir and 

limited aquifer support made the injection levels insufficient to support the reservoir 

pressure in early stages of the development. The resulting pressure depletion caused gas 

liberation from the oil with the bubble point pressure close to the initial pressure. The 

period 1998-2003 of production therefore is marked by high GOR values, and also, the 

4D seismic data bear clear signature of gas effects. 
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Figure 5.2. Conceptual geological model of turbidite sands of the Schiehallion reservoir (a), and 

facies map of the T31a sand above the oil-water contact (b). After Leach et al, 1999, Govan et al, 

2006. 

The bubble point pressure is close to the initial reservoir pressure of 2907 psi at datum 

depth of 1940 m TDVSS. The oil is medium oil with gravities of 22-26 API, viscosities 

in the range of 1.5-4.5 cP due to high wax content, and gas oil ratios of 340-380 scf/bbl 

(Leach et al, 1999; Richardson et 1997; Govan et al, 2006, Dijksman et al, 2007). 

Geological and simulation models built by the field’s operator benefited from the good 

quality of seismic data well imaging the shallow (2000 m) reservoir sands. These 

models together with the additionally available PVT data and rock physics 

measurements were used in the present work as templates for studying the seismic 

response for a range of development scenarios and geological settings.  

 

5.3 Petro-physical model 

Using the template data of the Schiehallion field we will study the magnitudes of 4D 

seismic effects occurring in hydrocarbon production scenarios. The approach we will 

take is similar to that of 4D feasibility studies where the time-lapse seismic response to 

changes in rock and fluid properties is forward modelled using the rock physics 

equations. The sequence of rock physics calculations is described in Methodology 

chapter (section Petro-elastic modelling). The parameters of the hydrocarbon 

displacement scenarios and corresponding changes in elastic properties and seismic 

amplitudes are listed in Table 5.1. These calculations use rock and fluid properties from 
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the Schiehallion dataset, and the results are in agreement with the published results of 

the rock physics studies (Meadows et al, 2005). 

Table 5.1. Estimation of time-lapse changes in impedance, reflectivity and travel time for different 

development scenarios. 

 

Figure 5.3 illustrates time-lapse changes in elastic properties for the production 

scenarios of Table 5.1: oil displacement during the water flooding (a), oil displacement 

by gas or gas exsolution (b) and variations of reservoir pressure (c). In the case of water 

displacing oil both seismic velocity and density of saturated rock increase with 

increasing water saturation which causes impedance change of around 5% and the 

amplitude change of around 30% for the full displacement (for water saturation change 

from 0.17 to 0.83, see Table 5.1). This is above the usual rule of thumb threshold for 4D 

seismic detectability of 3-4% of impedance change (Johnston, 2013) which means that 

the effect of water saturation change can be a basis for 4D seismic interpretation in this 

field. A different character of the impedance change is observed in the process of gas 

displacing oil or gas exsolution as a result of pore pressure depletion (Figure 5.3, b). A 

small amount of gas in the oil-gas mixture causes a rapid drop in seismic velocity and 

impedance of the saturated rock. After the initial drop, the velocity starts to increase 

with gas saturation which is a consequence of the relationship between the velocity, 

modulus and density, with density being in the denominator: 

Sw So Sg

P-

velocity 

(km/s)

Density 

(g/cc)

P-

wave 

impe-

dance 

(km/s*

g/cc)

P 

initial 

(psi)

P final 

(psi)

Impe-

dance 

change 

(%)

Reflec-

tivity 

change 

(%)

Travel 

time 

change 

(ms)

Preproduction 0.17 0.83 0 2.62 2.46 6.44 2907 2907 0.0 0.0 0.0

Water swept 0.83 0.17 0 2.73 2.49 6.79 2907 2907 5.4 -31.8 -1.1

Gas swept 0.17 0 0.83 2.47 2.33 5.76 2907 2907 -10.5 65.9 1.6

Pressure up 0.17 0.83 0 2.45 2.47 6.04 2907 5500 -6.2 38.0 1.9

Pressure down 0.17 0.83 0 2.61 2.45 6.39 1500 2907 -0.7 4.1 0.1

Overburden 3.35 2.27 7.60

Underburden 3.35 2.27 7.60

Reference parameters

Porosity 0.28

NTG 0.85

Rs, Mscf/stb 0.36

Average reservoir thickness, m 35
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(5.1) 

In terms of the 4D seismic signature it means that the appearance of gas in oil will cause 

a strong 4D anomaly but further increase of gas saturation will see much weaker 

variations of 4D amplitude. While this effect is a good indicator of the presence of gas, 

it may shadow pressure and water saturation effects which will be demonstrated later.  

 

Figure 5.3. Time-lapse changes of density, P-velocity, and P-impedance of reservoir rocks as a 

result of changes in: a) water saturation, b) gas saturation, and c) pressure. 

A strong pressure effect, up to 6% of impedance change and 38% of amplitude change, 

can be observed in high pore pressures (Figure 5.3, c). This is a result of the exponential 

relationship between the rock frame’s modulus and pore pressure as discussed in 

Theory chapter (section Pressure dependence of reservoir rocks). A good example of the 

pressuring up effect is 4D signal around injectors which may suggest insufficient 

communication across the reservoir. Pressure drop below the initial pressure of 2907 psi 
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causes less than 1% of impedance change and can not be normally detected by the 4D 

seismic method unless the pressure depletion results in gas coming out of solution. In 

fact, the evolution of free gas and its strong 4D signature can be used to interpret 

pressure depletion in compartmentalized reservoirs as shown in reservoir management 

studies on the Schiehallion field (Govan et al, 2006). The small decrease in impedance 

of saturated rock with pressure depletion (Figure 5.3, c) is caused by the fluids 

compressibility. Due to the insufficient thickness of the reservoir the time shifts are 

small (1-1.5 ms, Table 5.1) to be confidently detected in the presence of tuning effects. 

Figure 5.4 shows the same scenarios modelled with varying NTG. Notably, the 

saturation effects strongly depend on the NTG while the pressure effect is almost 

unchanged for different NTG levels. Shaly reservoirs with low NTG contain less fluid 

(shale is assumed impermeable in this model) so the effect of saturation change is 

diminished in them. The pressure effect on the other hand is dominated by variations in 

rock’s modulus regardless of saturation. The figure shows that the detectable changes of 

saturation are higher in shaly reservoirs which reduces their detectability using the 4D 

seismic data. 
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Figure 5.4. Time-lapse changes of P-impedance of reservoir rocks with different NTG ratios as a 

result of changes in: a) water saturation, b) gas saturation, and c) pressure. 

 

5.4 Model-based interpretation of 4D seismic effects 

In this section we will use the simulation model of the Schiehallion field (Segment 1 of 

it) in order to study the 4D seismic responses to pressure and saturation changes 

occurring in realistic scenarios of field development using the seismic forward 

modelling. This will help to understand the variety of the 4D signals and the ability of 

seismic attributes to image certain production-related effects. Throughout the study of 

the 4D seismic effects, we will use different seismic attributes including the cross-

sections through the modelled seismic cubes and maps. By their definition (see 

Introduction), seismic attributes are chosen with a view to emphasizing certain 

information in the data such as the signal energy on a map to track the effective 

properties of the reservoir, or the waveforms to understand the heterogeneity of a cross-

section. In that sense, an important seismic transformation is the ‘coloured inversion’ 
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(CI) which can enhance the appearance of the target objects on the seismic data as 

discussed in Theory and Methodology chapters (in both, section Coloured inversion). 

This will be further examined here using the seismic attributes based on the CI data. 

The applicability of map- and volume- based attributes for the history matching purpose 

will be discussed in the next chapter. 

Imaging of the seismic cross-sections can be improved if the underlying properties are 

shown on the background of the seismic traces. To achieve it, the properties of the 

simulation grid are mapped into the time coordinate. This is done by using the virtual 

seismic traces intersecting the simulation grid as described in Methodology chapter 

(section Seismic modelling), with the velocity model resulting from the rock physics 

modelling. The examples shown in this section will be accompanied by the combined 

cross-sections produced in this way. 

The first example in our study demonstrates the seismic response to the conflicting 

effects of water and gas saturation increases. According to the rock physics analysis of 

the previous section, appearance of a small amount of gas in oil causes acoustic 

softening of the rock, while the water saturation increase causes an increase of 

impedance which alone can result in up to 30% variation of the seismic amplitude. 

However the combined effect of appearance of gas in the reservoir and water influx is a 

destruction of the 4D seismic amplitude. Figure 5.5 shows the seismic response to the 

changes in the reservoir saturation and pressure after 4 years of production (base survey 

at 0
th
 year and the monitor at 4

th
 year). The map of the seismic attribute (Figure 5.5, a) is 

dominated by the effects of gas saturation increase due to massive gas exsolution in the 

period of pressure depletion as discussed in the field overview section. The area marked 

by the red rectangle in the attribute map lacks any signal though. The absence of signal 

is not easy to interpret: it can be that there is no change in the reservoir, or there can be 

no reservoir (Johnston, 2013). In our case, examining the time-lapse impedance and 

water saturation properties in the cross-sections (Figure 5.5, b and c) helps explain the 

effect. A thin layer of rock softening at the top of the reservoir indicated by the 

impedance decrease (Figure 5.5, b) is the free gas cap. At the same time, a massive 

water influx is observed the lower part of the reservoir (Figure 5.5, c). The two effects 

cause opposite 4D seismic amplitudes which cancel preventing us from seeing them. An 

important point is that we are missing the chance of observing a significant water influx 

from the injector I16 because of the presence of small amount of gas on top of the 

reservoir.  
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Figure 5.5. Combined effect of water and gas saturation change. A) map of seismic attribute 

(average amplitude on CI), b) cross-section along the line AA’ showing differenced CI traces and 

the time-lapse impedance difference on the background, c) same as (b) but the background is water 

saturation change. The time-lapse differences are at 4 years of production. Red rectangle shows 

where gas and water responses interfere. 

The next figure, Figure 5.6, shows the same properties and the attribute map after 

another year of production (base survey at 0
th
 year and the monitor at 5

th
 year). This 

time, the gradual increase of water saturation and decrease in gas saturation compared to 

the previous year makes the water effect more visible, but the signal may be obscured 

by the non-repeatability noise which makes the water influx hard to detect in this area. 
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Figure 5.6. Same as Figure 5.5, but the time-lapse differences are at 5 years of production. 

Stronger 4D anomaly is observed in the northern part of the model as shown in Figure 

5.7. This is related to the water saturation increase as a result of the water injection by 

the wells I15 and I3. This shows the true water saturation effect as it is observed in the 

4D seismic data for our template dataset. An interesting effect can be observed in the 

same Figure 5.7. In the bottom of the reservoir, the impedance decreases (Figure 5.7, b). 

Usually, we would relate this to e.g. pressuring up since it is not at the top to be a gas 

effect. This time however, the water saturation cross-section shows (Figure 5.7, c) that 

the water saturation in the original water leg decreases which is a result of oil being 

pushed down in the water zone.  
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Figure 5.7. Effects of variation of water saturation. Annotations are the same as in Figure 5.5. The 

time-lapse differences are at 4 years of production. Red rectangle shows the decrease of water 

saturation. 

The next example demonstrates the combined effect of pressuring up and water 

saturation increase occurring around the injector I11 (Figure 5.8). The volume of water 

injected in this well at the start of the injection period causes increase in pore pressure 

up to 5000 psi due the limited connectivity of the reservoir. At the same time, the oil is 

substituted by water around this injector. We showed in the rock physics section (Table 

5.1), the pressuring up above 4500 psi and the water sweep cause 4D effects of similar 

magnitude but in opposite directions. Similar to the previous example, the conflict of 

the two effects in this case causes reduction in their detectability as illustrated in Figure 

5.8. The anomalies falling into the lines AA’ and BB’ are very weak and are of opposite 
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signs. By comparing the water saturation and pressure changes in Figure 5.8 we can see 

the different signs of the 4D signal are caused by the dominance of the pressure effect in 

the cross-section BB’ and stronger effect of water sweep in AA’.  

 

Figure 5.8. Combined effect of pressuring up and water saturation increase. A) 4D seismic attribute 

(average amplitude on CI) map, b) cross-section along AA’: CI traces and the time-lapse water 

saturation in the background, c) as (b) but with the time-lapse pressure in the background, d) and e) 

as (b) and (c) but along the line BB’. Time-lapse differences are at 1 year of production. 

In the examples shown so far, we used maps of the seismic attribute to interpret the 4D 

effects. We assumed that changes of the impedance within the reservoir can be traced 

using the seismic attribute. However, due to the limited vertical resolution of seismic 

data, it can be difficult to localise seismic signals caused by the reservoir properties in a 

particular interval. The reflections from different layers interfere which may lead to 

ambiguous interpretations of the maps. Indeed, the tuning thickness (assuming velocity 

of 3000 m/s and 30 Hz wavelet) is 25 m which means that at this separation from the 
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underlying and overlying intervals there is maximum interference of reflections. We 

should expect this interference from the reflectors in the underlying and overlying 

interval T31b and T35 respectively which at times have only minimal separation from 

T31a.  

An example of such limitation of the map attribute was given in Literature review 

chapter (see Figures 3.15 and 3.16) where volumetric attributes were preferred as a 

result. The conflicting 4D effects that we observed in this section can also be better 

resolved using the cross-sections (see Figure 5.7 for example). However, in order to 

assess how well the impedance changes are traced by the seismic attribute map, we will 

compare the maps of the impedance change with the maps of 4D seismic attributes 

(Figure 5.9).  

 

Figure 5.9. Comparison of maps of impedance change in the reservoir T31a and 4D seismic 

attributes. A) map of impedance change (depth average impedance), b) 4D seismic attribute 

(average amplitude on CI) map, c) cross-plot of sample from the maps in (a) and (b), d)-e) same as 

(b)-(c) but for a model without pressure and saturation change outside of reservoir. Time-lapse 

differences are at 5 years of production. 
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Let us compare the average map of the impedance change (panel a) with the map of 4D 

seismic attribute (panel b). The principal features of the impedance change can be easily 

traced on the seismic attribute map. However, the area around well P1 shows 

discrepancy between the maps. This is where the reservoir T31a is overlaid by the 

producing reservoir T35. It is the 4D response to the production changes in the 

overlying (T35) and the underlying (T31b) reservoirs that interfere with the useful 

signal distorting it. To verify that, let us set all the impedance changes outside of the 

reservoir T31a to zero and recalculate the seismic response. The resulting seismic 

attribute map is shown in Figure 5.9, d. Notably, the artefacts around the producer P1 

are largely removed and the correlation between the attribute and the impedance change 

improved as indicated by the cross-plot in Figure 5.9, e, although some of the scatter 

remains. This is associated with the factors other than just the signals foreign to the 

reservoir which includes the reservoir geometry and the tuning effects (constructive and 

destructive interference of amplitudes). In the following section, these factors will be 

investigated using the specifically designed models and scenarios of pressure and 

saturation change. 

 

5.5 Seismic response and factors affecting it: a detailed study 

The examples we studied using the Schiehallion model demonstrated a range of 4D 

seismic anomalies occurring in the course of the field development. It was shown that 

the detectability of the pressure and saturation changes is limited by the resolution of 

the seismic data. The interference of the signals from the different stratigraphic layers 

prevents us from getting a pure seismic signal related to the properties of interest. In this 

section, we will study the variety of seismic responses together with the factors 

affecting them using the tailored synthetic models. We will start our discussion with a 

generic tuning effect, then consider the seismic response to the variations of static and 

dynamic parameters in turn. 

 

5.5.1 Tuning effect 

The tuning effect (Yilmaz, 2001) is usually visualised using the classical wedge model 

(Widess, 1973) similar to that shown in Figure 5.10. The wedge-shaped reservoir in that 

figure has lower impedance than the surrounding rocks (6.1 km/s∙g/cc and 7.6 km/s∙g/cc 
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respectively), so the upper boundary of the reservoir is marked by the negative 

amplitude and the lower boundary by the positive amplitude. At the thick end of the 

model, both the reservoir top and base can be separated by the seismic amplitude picks. 

As the reservoir pinches out, the seismic reflections start to interfere with the resulting 

amplitude being a sum of the two reflections. Depending on the thickness of the wedge, 

the combined amplitude increases if the wavelets interfere constructively and decreases 

if destructively. The variation of the amplitude with the reservoir thickness is called the 

tuning effect and is illustrated in Figure 5.11. The thickness of (in this case) the 

maximum amplitude is called the tuning thickness which is determined by a quarter of 

wavelength of the seismic wavelet. As shown in the Figure 5.11, the tuning occurs not 

only in the base and monitor surveys but also in their 4D difference. 

 

Figure 5.10. The seismic amplitudes are subject to the tuning effect due to variation of the reservoir 

thickness: a) base survey amplitudes, b) monitor survey amplitudes, c) time-lapse seismic difference. 
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Figure 5.11. Variation of the seismic amplitude with the thickness of the reservoir (assuming 

seismic velocity of 6562 ft/s or 2000 m/s and 30 Hz seismic wavelet). Maximum of amplitude is 

observed at the layer thickness corresponding to the quarter of seismic wavelength λ. 

 

5.5.2 Grid for the synthetic model 

In the following discussion we will study the seismic response to variation of static and 

dynamic properties in the model. In order to optimize the calculation time which for the 

dynamic properties includes reservoir simulations, a subgrid was extracted from the 

Schiehallion simulation grid as shown in Figure 5.12. The subgrid presented in this 

figure will be a basis for the synthetic models used in this chapter and in some examples 

of the following chapter. As shown in Figure 5.12, b and Figure 5.13, a, the subgrid 

includes the same stratigraphic layers as the original grid: T35/34, T31a and T31b. The 

interval T31a will constitute the producing reservoir for the synthetic model. The map-

based seismic attributes will be calculated over the interval T31a. The area for the 

subgrid is chosen with a view to include the varying thickness of the reservoir as shown 

in Figure 5.13. The number of cells in the original Schiehallion grid is 106x41x42. The 

subgrid is regridded to produce a coarse and a fine versions of it with dimensions 

24x34x42 cells in the first, and 48x68x168 in the second. We will apply the fine version 

of the grid to model different NTG distributions to create a reference seismic response. 

The coarse version will be applied in the cases requiring reservoir simulations. Also, in 

the following discussion of the seismic responses to variation of static and dynamic 

properties, a flattened version of the grid will be used (for example see Figure 5.15). 
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This is done to isolate the effects of the properties variation from the effects of the 

reservoir geometry. 

 

 

Figure 5.12. Extracting a subgrid from the Schiehallion (Segment 1) simulation grid for synthetic 

modelling. A) 3D view of the grids: Schiehallion grid in blue and the subgrid in red, b) cross-section 

along AA’ showing the stratigraphic layers in the model, the red rectangle shows the extent of the 

subgrid. 

 

Figure 5.13. A) 3D view of the subgrid with the stratigraphic intervals, b) thickness map of the 

interval T31a. 
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5.5.3 Variation of static properties: NTG 

The function of the reflectivity on 

the impedance of a layer is non-

linear generally but has an 

extensive linear part which allows 

us to think of the amplitude as 

being proportional to the 

impedance. Figure 5.14 illustrates 

the relationship between the 

reflectivity of the reservoir layer 

and a range impedance values 

corresponding to changing water 

saturation in a water sweep. 

However, the relationship between 

the average impedance of the layer and the amplitude of the seismic response can be 

more complex as more reflections than just the top and base of the reservoir appear in 

the sequence. In the following model realisations we will attempt to model different 

reflection sequences.  

The first test investigates the effect of reflections within the target reservoir and in the 

enclosing rocks, overburden and underburden. The impedance contrasts can be 

modelled by varying the NTG ratio of the rocks as shown in Figure 5.15. Three models 

are shown in the figure: a) a model with high NTG of the enclosing rocks, b) a model 

with NTG of enclosing rocks reduced by a factor of 0.3, and c) a model with constant 

zero NTG of enclosing rocks. The first case models a situation where the reservoir is 

not contrasting with the enclosing rocks by its impedance which occurs when the 

reservoir is a part of a stack of sands but is isolated hydrodynamically. Normally, we 

would expect the reservoir to have contrast with the surrounding layers to be able to 

delineate it in seismic by tracing its reflection. But even in that case, sands from 

underlying or overlying reservoirs may appear somewhere immediately below or above 

the horizon obscuring the interpretation. An example of the stacked reservoir was given 

by the Schiehallion case where along the main reservoir T31a, we encountered patches 

of reservoirs T31b and T34/T35 immediately below or above it. The second model in 

Figure 5.15 is a more conventional scenario where the reservoir is softer than the 

surrounding rocks, e.g. sand reservoir in shales. The third case is similar to the second 

 

Figure 5.14. Function of reflection coefficient on 

impedance. Impedance of overburden and 

underburden is 7.6 g/cc∙km/s 
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but the impedances of the overburden and underburden are constants (equal to that of 

shales) in order to isolate the effect of seismic interference with those layers. The three 

scenarios are compared in terms of their seismic response (Figure 5.16), similarity of 

the RMS attribute maps to the map of average impedance (Figure 5.17 a, b, and c 

compared to d), and the correlations of those maps (Figure 5.18). 

 

Figure 5.15. Models of NTG distribution with different level of NTG in the enclosing rocks: high 

NTG (a), NTG reduced by a factor of 0.3 (b) and NTG is constant zero (c). 

 

Figure 5.16. Cross-sections of impedance models imaged in time together with their seismic 

responses. The models a, b, and c are the same as in Figure 5.15.  

 

Figure 5.17. RMS attribute maps for the three models (a, b, and c) shown in Figure 5.15 and the 

map of average impedance over the producing interval (d).  
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Figure 5.18. Cross-plots of samples from the maps of average impedance and RMS attribute 

calculated for the three cases (a, b, and c) shown in Figure 5.15.  

High NTG of the enclosing rocks in the first model causes a complex seismic waveform 

within the producing interval from which it is difficult to derive the impedance of this 

interval uniquely (Figure 5.16, a). As a result, the RMS attribute map calculated from 

these seismic traces over the producing interval has little in common with the map of 

average impedance (Figure 5.17, a and d). Low levels of NTG in overburden and 

underburden of the other two models (Figure 5.15, b and c) reduce the variation of the 

signals in the surrounding rocks and the seismic amplitude is controlled predominantly 

by the impedance of the producing interval. This naturally increases the correlation 

between seismic attributes calculated over the producing interval and the average 

impedance of that interval as shown in Figure 5.17, b and c and Figure 5.18, b and c. 

The major features such as the areas of high and low impedance correlate very well with 

the true impedance on these maps (the correlation of the map in Figure 5.17, b is 

somewhat weaker due to the remaining signal from the overburden and underburden) 

However, the correlation of both maps Figure 5.17, b and c is distorted by some higher 

frequency noise. This originates from the more abrupt nature of the RMS attribute map 

compared to the map of (first order) average impedance as a result of amplification of 

large values by the second order RMS operator.  

The other attribute that we consider here, sum of negatives (SoN), is equivalent to a first 

order average operator which results in smoother maps than the RMS attribute. But as 

the name of the attribute suggests, the seismic amplitude should be negative over the 

reservoir interval, that is we can not apply it on the seismic section for the model in 

Figure 5.15, a.  Figure 5.19 shows the map of SoN comparing it with the RMS attribute. 

It turns out that the correlation of the SoN attribute with the average impedance is even 

weaker than that of the RMS attribute (Figure 5.19, c). The reason for it is the way the 

seismic attribute is used. In case of the SoN attribute only the negative half of the 
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seismic wavelet is used (see Figure 5.16, c), while the entire wavelet bears more 

information. Hence, the SoN map has wider areas of low signal (blue, in Figure 5.19, b). 

 

Figure 5.19. Maps of seismic attributes and their correlation with the average impedance for the 

model with NTG(enclosing rocks)=0. A) Map of RMS attribute, b) map of SoN attribute, c) cross-

plot of average impedance against RMS attribute (red dots) and SoN attribute (black dots). 

This is where a -90° constant phase shift (sometimes referred to as quadrature-phase) 

transformation is useful as it turns the negative amplitude at the reservoir top and the 

positive amplitude at the reservoir base into a wavelet of a single polarity (negative in 

this case) within the reservoir with energy concentrated inside the reservoir rather than 

on its borders. The ‘coloured inversion’ (CI) is an example of such transformation as 

discussed in Theory and Methodology chapters. The seismic traces before and after the 

CI transformation are compared in Figure 5.20 using the same model with constant zero 

NTG of the overburden and underburden. In this case, the amplitude has constant 

polarity so the entire interval of the seismic trace can be used for the SoN calculation. 

 

Figure 5.20. Cross-section of the impedance model with NTG(enclosing rocks)=0, together with (a) 

seismic traces and (b) seismic traces after coloured inversion. 
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The SoN attribute map calculated on the seismic traces after the CI transformation is 

compared with the average impedance map in Figure 5.21. The two maps look very 

similar and their cross-plot shows that they are nearly proportional. This shows that the 

area below the CI curve is proportional to the average impedance of the interval for this 

reservoir (characterised by its thickness and the impedance contrast). 

 

Figure 5.21. Correlation of the SoN attribute calculated on the seismic traces after the ‘coloured 

inversion’ (CI) with the average impedance. A) average impedance map, b) SoN on CI, c) cross-plot 

of the samples from the two maps. 

We showed that the SoN attribute together with CI transformation can be a good 

estimate of the average impedance for a single reservoir. In the case when the 

impedance of the overburden and underburden is not constant (model with NTG of 

enclosing rocks reduced by a factor 0.3) there will be interference with the reflections 

from outside of the reservoir as discussed before. Calculating the SoN attribute on CI 

transformed seismic data still provides better correlation with the average impedance 

than the RMS attribute on the raw seismic traces as shown in Figure 5.22. 

The seismic response is defined by the reflections created by impedance contrasts which 

occur due to the heterogeneities of rocks such as different lithology or different 

saturation. We will further study the effect of such heterogeneities on calculation of the 

seismic attributes by generating a model as shown in Figure 5.23. In this model, the 

vertical correlation length of the NTG distribution is significantly smaller than in the 

previous model which creates more impedance contrasts along the seismic ray path. 

Again, we will only consider a model where the reservoir contrasts from the enclosing 

rocks (Figure 5.23, b).  
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Figure 5.22. Correlation of RMS and SoN seismic attributes with the average impedance for the 

model with NTG of enclosing rocks reduced by a factor 0.3. A) Map of RMS attribute, b) map of 

SoN on CI, c) cross-plot of average impedance against RMS attribute (black dots) and SoN on CI 

attribute (red dots). 

 

Figure 5.23. Model of NTG distribution with reduced vertical correlation length. A) original model, 

b) same model but with NTG of enclosing rocks reduced by factor 0.3. 

The same maps of seismic attributes as in the previous case were generated for this 

model and compared to the map of the average impedance (Figure 5.24). Unlike the 

previous case, the difference between the seismic attributes is beyond the minor high 

frequency signals but spans the major features as well. Overall, the similarity of the 

RMS attribute with the average impedance map is very low while the SoN on CI 

reproduces the average impedance quite well which is also demonstrated by the cross-

plots in Figure 5.25. To understand the reasons for these differences, we will investigate 

the seismic response to the impedance variation in the model. Red rectangle in Figure 

5.24 shows the area where the signal is reversed in the RMS attribute compared to the 

impedance map. The cross-section along the line AA’ (Figure 5.26) shows that a lens of 

shale (low NTG, high impedance) is a situation within this interval which creates a 
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strong impedance contrast. This leads to high seismic amplitude with high RMS values 

as shown in the RMS attribute. The average impedance on the other hand is not that 

high since the sand thickness is smaller in this interval, hence the discrepancy between 

the attributes. The RMS attribute is first of all a measure of impedance contrast which 

for the thinner reservoir correlates with the impedance of reservoir. In this case however, 

the SoN on CI attribute has better correlation with the average impedance in the interval.  

 

Figure 5.24. Maps of seismic attributes compared to the average impedance map: a) map of RMS 

attribute, b) map SoN on CI, c) average impedance map. Red rectangle shows the area of difference. 

Cross-section AA’ is shown in Figure 5.26. 

 

Figure 5.25. Cross-plots of samples from the maps of (a) RMS attribute, and (b) SoN on CI against 

the average impedance. 
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Figure 5.26. Cross-sections along AA’ (see Figure 5.24) of the impedance model, together with (a) 

seismic traces and (b) seismic traces after coloured inversion. Red rectangle shows where the maps 

of RMS and SoN on CI differ. 

The grid sector used so far for the models was obtained by flattening the surfaces of the 

Schiehallion grid as described earlier. Here, we will return to the original geometry of 

the Schiehallion grid in order to assess the impact of the varying thicknesses of layers 

on the seismic response. The fragment of the Schiehallion grid with the original 

geometry is shown in Figure 5.27, a. The distribution of the NTG property is the same 

as for the model in Figure 5.23 where the NTG of overburden and underburden rocks is 

reduced by a factor 0.3 (high contrast reservoir).  

 

Figure 5.27. A) NTG model on the part of Schiehallion grid without flattening, b) cross-plot of 

samples from the maps of SoN on CI against the average impedance. 
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SoN on CI seismic attributed was calculated over the producing interval and compared 

to the average impedance as shown in Figure 5.27, b. The cross-plot shows that 

variation of thickness of the layers did not change the character of the relationship 

between the impedance and the seismic attribute maps. 

 

5.6 Seismic response to pressure and saturation changes 

In the previous section we studied the seismic response to variation of the elastic 

properties of rocks modelled by different distributions of the NTG property. The basis 

for the 4D seismic method though is changes of pressure and saturation in the reservoir 

accompanying the processes of hydrocarbon displacement or gas injection for storage. 

In this section we will study how these effects are resolved in the seismic attributes. 

In section 5.4, examples of simulated pressure and saturation changes were studied in 

connection with the corresponding 4D seismic response of the models. These illustrated 

what production effects can be expected in a reservoir setting (reservoir geometry, rock 

and fluid properties and petro-elastic model) such as the one found in Schiehallion field. 

The aim of this section is to study the seismic responses to a range of pressure and 

saturation effects for which a fast method for generating them is required. The fastest 

way of modelling the variety of pressure and saturation realisations is assigning the 

values of the pressure and saturation directly to the grid cells of a simulation model 

rather than obtaining them via simulations. We took similar approach when modelled 

distributions of NTG in the previous section. However, the 4D seismic signal is caused 

by time-lapse changes in pressure and saturation (∆Pr,∆Sat) rather than their instant 

values (Pr,Sat). One way of modelling it is directly assigning the changes of pressure 

and saturation (∆Pr,∆Sat) to the grid cells and calculating the 4D seismic response from 

them. This would require a linear relationship between ∆Pr,∆Sat  values and 4D seismic 

signal. The linearity of this relationship is invalid in general, so making such 

assumption would harm the modelling results. Therefore, instead of modelling random 

Pr,Sat or random scalar ∆Pr,∆Sat, we will model random initial values of Pr,Sat, and 

random vectors of ∆Pr,∆Sat defined by a direction in Pr,Sat space and a magnitude. In 

other words, we will model realisations of evolutions of pressure and saturation. To get 

the time lapse seismic response for the variety of pressure and saturation changes, we 

can calculate the base survey with the grid cells at their initial values of Pr,Sat and the 

monitor with the final values given by Pr+∆Pr,Sat+∆Sat. Moreover, we can define any 
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intermediate Pr,Sat state by adding only a fraction of ∆Pr, ∆Sat to the initial pressure 

and saturation. This can be viewed as moving along the ∆Pr, ∆Sat trajectory and 

parameterized with just one parameter – the fraction value between 0 and 1. Overall, the 

advantages of this approach compared to studying pressure and saturation distributions 

from a simulator are in the following. Firstly, simulations are slower. Secondly, and this 

is the most important reason for choosing the trajectories approach, is the ability to 

model the full range of possible pressure and saturation evolutions. Reservoir simulator 

does not provide this ability, at least with a reasonable effort, because of the way 

pressures and saturations are constrained: we can only control the input parameters for 

the simulator while the output is a narrow set of pressure and saturation realisations 

which is difficult to vary in a controllable manner.  

As long as our aim is to get a seismic response (a seismic trace) for each value of 

∆Pr,∆Sat, one value of ∆Pr,∆Sat should be assigned per column of cells (one trace is 

assumed to penetrate a single column of cells) within one reservoir, rather than to each 

cell or in any other way. Therefore, we will use the term trajectory to name a single 

∆Pr,∆Sat per column of cells within one reservoir, while there can be more than one 

reservoir. An example of ∆Pr,∆Sat realisation is given in Figure 5.28 for which the 

trajectories are depicted in the Pr,Sat space as shown in Figure 5.29. The modelling 

approach used here does not include any interaction or dependence between the 

columns of cells, so they can be viewed as independent 1D models of pressure and 

saturation change. However, these will be shown in 3D grids for the following reasons. 

Firstly, the grid used in this section was established before from the Schiehallion model, 

it has known geometry so the transition from the previous section with NTG variation to 

the current section is natural. Secondly, it is easier to model and interpret cases such as 

gradual rise of oil-water contact (see Figure 5.32) when the realisations are on a single 

grid rather than on separate columns. And thirdly, the whole reason for taking the 

trajectories approach was optimizing the process of generating realisations of seismic 

responses in terms of the (modelling process) performance. Performing calculations on 

a 3D grid facilitates achieving this goal.  
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Figure 5.28. Realisation of random ∆Pr (a) and ∆Sat (b) in a model of one reservoir. 

 

Figure 5.29. Random trajectories of pressure and saturation change in (a) pressure-water 

saturation and (b) pressure-gas saturation coordinates. Only 80 trajectories are shown out of 816 

defined on the grid of the model. Lines begin with dots indicating the start of the trajectory. 

Different colours are used for the lines to improve the visibility. Numbers on the contours are 

impedance values in km/sg/cc. 

The plots show that the trajectories start at random locations and have random 

directions and magnitudes. However, since these represent changes in pressure and 

saturation occurring in natural displacement processes, some constraints need to be 

imposed on them. The following constraints were applied in this case. The first 

eliminates the appearance of gas when the reservoir pressure is above 3000 psi (slightly 

above the bubble point pressure from the Schiehallion example), and sets the volume of 

gas in a column of cells to be proportional to pressure drop below the bubble point. This 

assumes the process of gas exsolution with pressure decrease widely observed in the 

Schiehallion example. Although changes in gas saturation generally are not limited to 

this case (e.g. gas injection can lead to pressure increase), here we will model just this 

effect for clarity without losing the range of variation of seismic responses (whether we 

lost the range of the variation can be checked by simply removing this constraint). 
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Another constraint is applied to the way water and gas are distributed vertically. 

Because of their densities they tend to occupy lower and higher cells respectively (effect 

of buoyancy). This is modelled by filling the cells from bottom (top) with values of 

water (gas) until they reach Swmax (Sgmax), and moving to the next cell when the 

saturation of the previous is above critical. Swmax=0.74 and Sgmax=0.5 in this case to 

match observations from the Schiehallion model. An example of distributions of water 

and gas constrained this way are shown in Figure 5.30. Hydrostatic pressure variation is 

small and ignored here. An important 

remark should be made about the way 

the pressure and saturation 

distributions are modelled with the 

constraints. Here, we do not have to 

model accurate states of the three 

phase fluid saturation and pressure. 

The aim is to span the range of the 

combinations of their values to study 

the corresponding range of seismic 

responses. This assumes that feasible 

combinations of the pressure and 

saturation changes are included in the 

modelled range. In the subsequent 

sections we will see that the 

conclusions about the seismic 

responses are not affected by this 

factor. The conclusions hold true even 

without using the constraints 

mentioned here so they can be viewed 

as only improving the presentation of 

pressure and saturation changes.  

Similar to the previous section, we will study the seismic response by calculating the 

maps of the seismic attributes over the reservoir interval. The maps themselves will not 

be visualised here because, with the random trajectories in the adjacent cells, no 

information can be gained from their visual inspection. Instead, the values from the 

maps will be used in cross-plots. 

 

Figure 5.30. Distributions of (a) pressure, (b) water 

saturation, and (c) gas saturation corresponding to 

the initial pressure and saturation state of the 

reservoir. Cross-sections of the model grid are 

shown. 
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5.6.1 Correlation of 4D seismic attribute with impedance change subject to NTG 

variation 

In this subsection we will investigate the effect of the interference of the seismic signals 

from different layers within the reservoir and in the surrounding rocks. In particular, we 

will check if different vertical sequences of NTG property will affect the relationship 

between the values of impedance change and the 4D seismic attribute. 

In the previous section it was shown that the interference of the signals from different 

layers makes the relationship between the average impedance of the reservoir and 

seismic attributes more complex. The correlation between the impedance and the 

seismic attributes was reduced when the impedance contrast of the reservoir (compared 

to the enclosing rocks) was weaker. Similar test for the 4D seismic attribute is done in 

this section using the cross-plot of the impedance change between the base and monitor 

surveys versus the 4D seismic attribute given by a difference of base and monitor 

seismic responses. 

Again, we will choose two models of NTG distribution, with high NTG of overburden 

and underburden (low contrast reservoir) and reduced NTG of the enclosing rocks (high 

contrast reservoir) as shown in Figure 5.31.  

 

Figure 5.31. Models of NTG distribution used for modelling the 4D seismic response: a) NTG of 

enclosing rocks is as high as in the reservoir (low contrast reservoir), b) NTG of enclosing rocks is 

reduced by a factor of 0.3. 

First of all, using the model in Figure 5.31, b, we will check how different seismic 

attributes compare with the impedance change. For this purpose a simple scenario of 

Pr,Sat change is chosen in which the water saturation increases systematically in the 

reservoir as in a bottom water drive (Figure 5.32). Figure 5.33 shows corresponding ∆Pr, 
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∆Sat trajectories – a line in the Pr,Sw coordinates and only a point in the Pr,Sg 

coordinates indicating no change of pressure and gas saturation. In this and the 

subsequent experiments, modelling the Pr,Sat change (moving along the red line in 

Figure 5.33) is done is 10 steps by adding one tenth of the ∆Pr, ∆Sat to the current 

Pr,Sat state. At each step, the seismic data are predicted from the current model from 

which the maps of the seismic attributes are compared. In this case, each column of 

cells in the 3D grid gives one point on the attribute map. The value of the attribute at 

this point changes with time (in 10 steps). This way, we get 816 (number of points on 

the map 24 x 34 = 816) time-variables for each map of seismic attributes or impedance. 

The correlation between the variables on different maps can be studied by cross-plotting 

them. Figure 5.34 shows cross-plots of the variables from different seismic attributes 

versus ones from the impedance map. Each cross-plot contains 816 curves, with each 

curve showing the change of a seismic attribute with the change of impedance. 

 

Figure 5.32. Modelling of increasing water saturation as a bottom water drive: a) initial water 

saturation (Sw=0), b) intermediate level of oil-water contact, c) water swept reservoir (Sw=0.75). 

Only the producing reservoir interval shown. Slight variation of the oil-water contact depth in (b) is 

due to the way Sw is distributed accounting for the NTG variation. This variation (of Sw) does not 

affect any of the results presented here. 

 

Figure 5.33. Trajectories of pressure and saturation change in a) pressure-water saturation and b) 

pressure-gas saturation coordinates. The format of the figure is the same as in Figure 5.29.  
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Figure 5.34. Cross-plots of different 4D seismic attributes versus impedance change: a) (1
st
 order) 

average of difference of CI-transformed seismic, b) difference of maps of average of CI-

transformed seismic traces, c) as (a) but RMS instead of first order average, d) as b but each map is 

RMS of seismic traces. 

Since in our model, the average water saturation changes similarly in each column of 

cells, the differences between the curves of any cross-plot in Figure 5.34 are due to the 

NTG distribution (the grid is flat, so no geometry effect in this case). In this figure, we 

compare 1
st
 and 2

nd
 order average attributes and also maps of differences and 

differences of maps. The 1
st
 order average attribute is defined as a sum of amplitude 

samples from the specified interval divided by the number of samples. The 2
nd

 order 

average attribute (RMS attribute) is defined as a square root of a sum of squares 

amplitude samples divided by the number of samples (    √
 

 
∑   
 
   , where A is 

amplitude, and n is the number of samples). In general, the choice of attributes is 

dictated by the need to highlight certain geological information from the raw seismic 

data. In our case, the choice is based on the correlation of the seismic attribute with the 

underlying impedance changes. In particular, using the 1
st
 order average here is inspired 

by the results of the previous section where the SoN attribute (first order average) had 

better correlation with the impedance change. We replace the SoN by the simple 

average because we are dealing with differenced seismic traces which have varying 
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polarity. The SoN attribute can still be used for individual (base and monitor) surveys, 

and then the maps differenced. The SoN attribute used this way will be compared with 

the average attribute in the later discussion.  

Figure 5.34 shows that in case of the first order attributes, they track the impedance 

change very well (panels a and b). Also, the two attributes, the difference of the maps 

and the map of difference show similar agreement with the impedance. In the case of 

RMS, taking the attribute of the differenced seismic trace seems preferable, but due to 

the amplification of the higher values, we can see that the curves depend on NTG more 

strongly and are nonlinear. Overall, the first order attributes look preferable because 

they are less affected by the NTG variation. 

Since we have defined the preferable attributes, we can study the issue of the low 

contrast of the reservoir – when the NTG of enclosing rocks is as high as that of the 

reservoir (Figure 5.31, a). In the previous section, we found that such a case of low 

contrast reservoir was devastating for the seismic attributes because the seismic 

amplitude is proportional to the impedance contrast. Lack of contrast caused poor 

detectability of the reservoir sands (see Figure 5.17, a). Here, a similar test was 

conducted comparing the time-lapse impedance change with the change of the seismic 

attribute (average of differenced seismic traces) for the models with low (Figure 5.35, a) 

and high (Figure 5.35Figure 5.31, b) contrast reservoir. The percentage of the 

impedance and the seismic attribute change are in agreement with the data from our 

rock physics analysis presented in Table 5.1. The high percentage of 4D attribute in 

Figure 5.35, a is due to the effect of low base – the amplitude of the base survey (the 

denominator) is low due to the low contrast. 

The result shown for the 4D attribute in Figure 5.35 suggests that it is not the contrast of 

the reservoir that determines the 4D signal but the pressure and saturation change. In 

other words, the effect of NTG variation is largely swept away by the differencing. We 

should stress however, that the effect of NTG here means the effect on the relationship 

between the impedance and the seismic attribute. Of course, the NTG variation still 

affects the impedance change itself (more on this in the later discussion). 
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Figure 5.35. Cross-plots of 4D seismic attribute (average of seismic difference) versus impedance 

change for the case of systematic increase in water saturation. A) model with high NTG outside of 

reservoir b) model with low NTG outside of reservoir. 

In the next test, we will compare the models with high and low reservoir contrasts when 

not just the water saturation changes in the reservoir but the full spectrum of possible 

changes of pressure and saturation occur. This is modelled using the random trajectories 

as discussed before. Figure 5.29 visualises a subset of trajectories which illustrates the 

concept. Similar to the previous test, each step (out of 10) of moving along the 

trajectories gives a map of time-lapse impedance change and the 4D seismic attribute 

for the current state of the reservoir. These are then cross-plotted as shown in Figure 

5.36. The result confirms the findings of the previous test where only water saturation 

changed. Again, the presence of the high NTG overburden and underburden did not 

affect much the relationship between the time-lapse impedance and 4D attribute.  

 

Figure 5.36. Cross-plots of 4D seismic attribute versus impedance change for the case of random 

trajectories. A) model with high NTG outside of reservoir b) model with low NTG outside of 

reservoir. 
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5.6.2 Interference of the 4D signals in the stacked reservoirs 

The effect of the NTG was reduced in the differenced seismic data because it mostly the 

static part of the signal. On the other hand, if the signal outside of the reservoir is also a 

time-lapse, then we should expect a greater interference. This is studied in the following 

test where we use a model with two reservoirs as shown in Figure 5.37, a. The seismic 

attribute is calculated over the upper target reservoir while the underlying reservoir is a 

source of the interfering signal. Similar to the last test, the trajectories of pressure and 

saturation change are random both in upper and lower reservoirs, but are independent of 

each other in the two reservoirs. The rest of the experiment set up is the same as in the 

previous tests with the result presented in a form of a cross-plot (Figure 5.37, b). This 

time we can see that the curves representing the seismic responses of separate columns 

of cells are different functions, not lines of a (nearly) same slope as in the previous tests. 

This result tells us that a strong interference occurs if the underlying reservoir is also 

producing. In particular, this illustrates the weakness of the map based attribute in 

application to the stacked reservoirs, also discussed in Literature review chapter (section 

4D seismic attributes). 

 

Figure 5.37. A) model with two reservoirs, target reservoir I and the underlying reservoir II, b) 

cross-plots of the 4D seismic attribute and the average impedance change calculated over the target 

reservoir. 

 

5.6.3 Effect of the reservoir geometry on the seismic response 

The time-lapse seismic responses modelled so far using the flattened grid showed good 

correlation with the impedance changes provided there are no pressure and saturation 

changes in the surrounding rocks (outside of the seismic attribute time window). In this 
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we will return to the original geometry of the grid to assess the effect of the thickness 

variation (Figure 5.38, a). Only the systematic change of water saturation (trajectories 

are shown in Figure 5.33 and the evolution of the water saturation in Figure 5.32) is 

modelled to ease the examination of the resulting cross-plot. The rest of the experiment 

is the same as in the previous cases with a single high contrast reservoir. The resulting 

cross-plots of the seismic attribute (1
st
 order average of CI amplitudes) change versus 

the impedance change for all 816 points on the map are shown in Figure 5.38, b. 

Notably, the curves are still nearly linear, similar to the ones shown in Figure 5.35. At 

the same time, their slopes are different and the difference depends on the thickness of 

the reservoir layer: the amplitude is higher in thinner parts and lower in thicker due to 

the tuning effect (constructive interference of the amplitudes). 

 

Figure 5.38. A) NTG model on the part of Schiehallion grid without flattening, b) cross-plot of 4D 

seismic attribute (1
st
 order average on CI) versus impedance change. Line colours correspond to 

reservoir thickness.  

We have shown that the seismic attribute detects the impedance changes well, but the 

character of the relationship is still conditioned to the layer thickness. The practical 

implication of this conclusion is that the quantity of interest, which is impedance in this 

case, is better determined by the observed data and affected less by the secondary 

factors such as distributions of static properties or nonlinearities. These factors cannot 

be fully captured by our imprecise models so their reduced role is advantageous. The 

thickness of layer is easier to model though. 

5.6.4 Variation of 4D seismic response due to the ‘wrong’ NTG model 

In the previous sections we studied how well the seismic attributes estimate the average 

impedance of the reservoir interval. At the same time, the interpretation of the 4D 
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seismic data aims to reveal the pressure and saturation changes behind the 4D anomalies, 

not the impedance by itself. In this context, another type of question can be posed. How 

would the ‘static’ factors (e.g. NTG distribution) affect the seismic response if we get 

them wrong? After the analysis made in the previous sections, we know that the 

relationship between the impedance change and the 4D seismic response isn’t affected 

much by the NTG distribution, however, the 4D impedance values themselves certainly 

will be different for a different NTG model (see Figure 5.4 in the Petro-physical model 

section above). As a result, a different NTG model will give a different 4D seismic 

response. Again the reason for the difference lies in the rock physics model now, not in 

the seismic domain, nevertheless this constitutes the effect of wrong NTG in our model 

on the seismic response. The effect is illustrated in Figure 5.39, where a simple 

experiment, similar to the one in subsection 1 with the systematic increase in water 

saturation, was conducted with two different NTG models. The time-lapse seismic 

responses for the two models are then compared in a cross-plot (Figure 5.39, c). These 

seismic responses are obtained with the same dynamic parameters (∆Sw) but different 

static parameters (NTG). The cross-plot shows the expected difference between the 

seismic responses due to the NTG substitution. 

 

Figure 5.39. Comparison of seismic responses from two different NTG models. A) first NTG model, 

b) second NTG model, c) cross-plot of seismic responses. Different colours of the lines correspond 

to indexes of cell columns and applied to ease distinguishing the lines. 

The spread of the curves (lines) in the cross-plot above shows the error we would get if 

we tried to invert the observed seismic data for the water saturation changes using the 

wrong NTG model. However, this applies to inversion of the individual points only. In 

other words, if the number of constraints (or observations in this case) is small then the 

external factors such as the wrong static properties can cause arbitrarily large errors. In 

reality, when we are inverting seismic data for the reservoir parameters, there are at 

least two factors that stabilise our solution: using more seismic data (and other data 
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types in general, but here just more points of the seismic attribute will do) and choosing 

the solution out of a predefined solution set. The first point is demonstrated in the 

following test (Figure 5.40) where the maps of the seismic attributes are still generated 

on each step (out of 10), but instead of using all 816 points from the maps, they are 

randomly grouped by 24 cells giving 34 curves for the cross-plot (Figure 5.40, c). The 

cross-plot shows that the grouped seismic attributes change similarly for the two NTG 

distributions. This result is expected. Different points of the attribute map (before 

grouping) had the same value of the dynamic property (∆Sw) at each step but different 

values of NTG. So, grouping several observations allowed to us to filter out the variable 

part and determine the property of interest – ∆Sw. 

 

Figure 5.40. Comparison of seismic responses from the models shown in Figure 5.39, calculated in 

groups of 20 cells. A) first NTG model, b) second NTG model, c) cross-plot of seismic responses. 

Top views of producing intervals are shown for the NTG models, 3D views are given in Figure 5.39. 

The black rectangle shows groups of 20 cells within which the seismic response is calculated and 

averaged. 

The second point in stabilising the inversion results is discussed in more details in the 

following chapters. Briefly, the predefined set of solutions determines the form of the 

final solution, and as such is a way of incorporating our requests of a desired result and 

a limiting factor at the same time. For example, the inversion for impedance on a 

simulation grid as described in the Methodology section, limits the results to the 

piecewise-constant (blocky) distributions. We will never get, say, a smoothed vertical 

impedance distribution (not that we would usually need them) but we are guaranteed to 

stay within a class of impedance distributions on the grid of which we will find the one 

giving the best data fit. Another example is the inversion for pressure and saturation 

changes versus the seismic history matching (inversion for parameters affecting the 

flow – e. g. permeability). Clearly, the history matching case is more restrictive than the 
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inversion for Pr,Sat in terms of the resulting distribution of Pr,Sat because in history 

matching, we will only get distributions that the simulation model can generate. Again 

this ensures that the distributions will probably be spatially smoother in the history 

matching case and also that they are feasible given the current model. At the same time, 

this can be a limitation or an example of overly restrictive prior because the limits 

imposed by the simulation model are as correct as the model is. The uncertainty of the 

resulting Pr,Sat distribution will be underestimated in that case. 

 

 

5.7 Conclusions 

We studied 4D seismic signatures occurring as a result of a range of production-related 

changes in the reservoir. According to the rock physics analysis the effects of water 

sweep, gas coming out of solution, pressuring up are confidently detectable using 4D 

seismic attributes for the chosen template dataset of the Schiehallion field. We can use 

corresponding 4D anomalies to constrain the simulation models in seismic history 

matching studies of the following chapters. 

Map-based seismic attributes are affected by interference of the seismic signals and 

difficulties in localising the signature of target properties. Superposition of the 

reflections leads to constructive and destructive summation of the amplitudes and 

accounts for the amplitude cancellation and nonlinearities in the seismic response. 

These factors reduce the detectability of the pressure and saturation changes. In a high 

contrast reservoir however, the variation of reservoir impedance is detectable by the 

seismic attributes. It was shown that the first order average of amplitudes correlates well 

with the impedance. 

Effect of NTG on the relationship between the average impedance and the seismic 

attribute is largely reduced after 4D differencing. However, the interference occurs if 

the underlying or the overlying reservoir is producing. This is the reason why the 

volumetric attributes can be preferred in stacked reservoirs. 
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Chapter 6. Problems of incorporating seismic interpretations in 

simulation models  

 

6.1 Introduction 

Increased computer power and advances in data acquisition and processing techniques 

result in more complex geological models available today. For example, integrated 

analysis of seismic and other data types allow us interpreting channels, inter-reservoir 

shales, and other sophisticated details of the sediments bedding and reservoir 

architecture which are then represented in reservoir models as distributions of facies, 

NTG, porosity and permeability properties. Miranda, 2007 and Martin and Macdonald, 

2010 present studies on building models of the Schiehallion reservoirs using 

interpretations of high resolution seismic data. In the latter study, a framework of 

geobodies was extracted from the 3D seismic images which was then incorporated into 

the simulation model to define transmissibility regions. This allowed the authors to 

achieve good pressure matches on the wells. However, the main question regarding the 

deterministic objects incorporated in a simulation model is whether it is compatible with 

the dynamic data and what bias it will produce. If such inclusions result in areas of fixed 

properties in the simulation model then this becomes a particular case in a class of 

underparameterized problems. Hunt et al, 2007 and Oliver and Chen, 2011 point out 

that insufficient parameterisation leads to more unique but also more biased models. 

The bias from the fixed part of the model (not varied in history matching) is recognised 

as “structural noise”. As discussed in Literature review chapter (section Choosing a 

parameterisation consistent with data resolution), Jafarpour and McLaughlin, 2009 and 

Khaninezhad and Jafarpour, 2014 stress the importance of balance between the 

controlling factor of the prior information incorporated though the parameterisation and 

the ability of the model to assimilate the information from the dynamic calibration data 

(observed data in history matching).  

In this chapter, the problems associated with integrating the deterministic interpretations 

such as geobodies into simulation models are discussed. The examples chosen here are 

largely influenced by the Schiehallion model (described in Chapter 5) and its 

parameterisation with the seismically derived geobodies.  
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6.2 Unrealised variability in a controlled experiment 

We started our discussion in this chapter by naming some problems of insufficient 

parameterization such as the bias of the deterministic part of the model and associated 

difficulty in studying the range of model responses. A good example where we may 

face these problems is when conducting a history matching experiment in which a 

model is fitted to the known synthetic truth. The synthetic truth is a simulation model 

with certain distribution of properties and giving some response – well rates, BHPs, 4D 

seismic images. The response of the truth, or of the reference model, is then taken as 

observed data which is to be matched by another, variable model under investigation. 

After the ‘observed’ data for the experiment is found, the next step is building a model 

that would match the reference response through a history matching process. In this 

situation, it seems logical and is in fact straightforward to re-use the reference model 

instead of creating a new one, with only a part of it made variable by designating 

parameters. However, depending on the purpose of the history matching study, this 

approach is not without pitfalls. In particular, the fixed part of the model gives 

constructive bias to the model response in that it is of course fixed to the true values. If 

the purpose of history matching is studying how the variable parameters are resolved by 

the data then incorrect estimates can result from such a study because it is not known a 

priori what the balance between the variable and fixed parts of the model is in defining 

the model response. We may find that the variable parameters converge to their true 

values in history matching too easily even though they are not fully resolved by the data. 

Continuing this reasoning, two pieces of data with different information content (e.g. of 

different type or quality) are likely to lead to similar values of the variable parameters in 

that experiment if the response is already mostly defined by the fixed part of the model 

leaving us with no clue on the difference between those data pieces. The consequence of 

using an inflexible model from this perspective is the excessive confidence in the 

estimated parameters not warranted by the data. 

In the following sections, we will run history matching experiments comparing the 

models with different levels of flexibility to demonstrate the scope of the problem of the 

reduced variability of predictions in the overly fixed settings. Our approach will be 

based on generating multiple realisations of history matched models as opposed to using 

a single best model as it does not give an insight into the sensitivity of parameters. 

Generally speaking, once the history matching algorithm has converged to the best 

model, we declare that a solution to the parameter estimation problem is found. The 
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solution alone, especially if it coincides with the true values (in a synthetic setting, of 

course), does not tell how hard it was to find it, whether the objective function in the 

vicinity of it was steep or flat, in other words, how well the solution is determined by 

the data or what is the uncertainty of the solution being correct from the data 

perspective. Although methods exist that quantify the uncertainty of parameter 

estimates, e.g. those based on sampling the response surface or analysing the sensitivity 

matrix, calculating the associated probabilities involves many assumptions about the 

measurement and model errors. This is why dealing with any numerical estimates of 

uncertainty is avoided here in favour of direct comparison of the ranges of predictions 

(production forecasts) in the counter-cases – the fixed models and more flexible models. 

The following two sections compare two scenarios: over-determined models and less 

determined models. In the first, too few parameters are used for calibrating the models 

to the dynamic data. As a result, the variance of the resulting realisations of history 

matched models is mostly determined by the prior knowledge embedded in the 

parameterisation itself rather than information in the data. In the second scenario, the 

parameterisation (pilot points) is not so restrictive (more flexible). This allows the data 

to determine the variability of model estimates. 

 

6.2.1 Over-determined models 

In the first experiment, we will model a situation where the prior knowledge about 

spatial distribution of heterogeneities is incorporated in the parameterisation 

(connection of prior information and parameterisations is discussed in the literature 

review, section Parameterization). Zonation is known to bear such spatial information 

when the extent of the zones is fixed prior to history matching. Closest adaptation of 

zonation to seismic history matching is a parameterisation where transmissibilities of 

seismically-derived geobodies are varied. In either case the volume of reservoir is 

divided into regions to control the flow pattern in a reservoir with a reduced number of 

parameters. In this section, the regions will be referred to as deterministic channels to 

stress that their geometry is defined prior to history matching. Figure 6.1 shows the 

channels used here. Transmissibilities of those channels on the other hand will 

constitute the history matching parameters. In line with the spirit of over-determined 

models, the reference and the variable models (reference and variable models are 

defined in the beginning of 6.2) share all the properties including the geometries of the 
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channels, and only the transmissibility multipliers are not known in the variable models 

so these will be estimated through history matching.  

For the history matching experiments the models are used with the grid described 

previously in the Chapter 5 (section Grid for the synthetic model). Only the interval 

called the producing interval in Chapter 5 is used here because at the moment, we are 

not interested in the effect of impedance variation in the overburden and the 

underburden rocks on the seismic response, that is the seismic map calculated within the 

reservoir interval. The active part of the grid has 24x34x8 cells with approximate sizes 

of 160x160x20 ft. Two history matching scenarios are considered here which are called 

“Model 1” and “Model 2” cases. The differences between the cases are the different 

well placements and slightly different channel geometry as shown in Figure 6.1 and 

Figure 6.2 and also different values of transmissibilities in their reference models. 

Transmissibilities in the models are set using 7 parameters – transmissibility multipliers 

applied within and between the regions (channels). The location of the parameters is 

shown in Figure 6.1 and Figure 6.2. 

 

Figure 6.1. Model 1 case: a) NTG distribution, b) distribution of deterministic channels that act as 

transmissibility multipliers. Different colours of regions signify different indices of the regions. 

Numbers in boxes are numbers of history matching parameters. Inter-region multipliers are in 

grey shaded boxes, and within-region multipliers are without shading. 
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Figure 6.2. Same as Figure 6.1 but for Model 2 case. 

As discussed before, historic data in these experiments are obtained from reference 

models. Reference models for cases Model 1 and Model 2 are defined by setting 

particular values for the transmissibility values described above. Table 6.1 summarises 

the values of parameters set in reference models (‘true’ values) and also the parameter 

ranges set for the subsequent history matching experiments. Prior to any adjustments to 

the transmissibility field by transmissibility multipliers or permeability modifications 

via pilot points, the permeability of all the models, including the reference one is 

constant, equal to 1000 mD. This is the case in this (6.2.1) and in the following (6.2.2) 

sections. Moreover, models with the constant permeability are considered base case (or 

starting) models for history matching scenarios. Predictions of the base case models are 

compared with predictions of the history matched models in order to highlight the effect 

of tuning the parameters in each of the history matching scenarios. 

Table 6.1. ‘True’ values of history matching parameters for Models 1 and 2. 

parameter 

number 

Model1 Model2 

'true' 

value 
minimum maximum 

'true' 

value 
minimum maximum 

1 0.05 0.005 2 1 0.2 2 

2 0.01 0.005 2 0.2 0.005 2 

3 0.5 0.005 2 0.05 0.005 2 

4 0.7 0.2 2 0.7 0.005 2 

5 1 0.005 2 0.05 0.005 2 

6 0.01 0.005 2 0.1 0.005 2 

7 0.05 0.005 2 1 0.2 2 
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Setting the parameters to the ‘true’ values listed in Table 6.1 results in distributions of 

pressure and saturation in the reference models as shown Figure 6.3 and Figure 6.4. 

These distributions are obtained after simulating two years of production (Aug 1998-

Aug 2000). Seismic responses corresponding to these states of pressure and saturation 

are shown in Figure 6.5. For characterising 4D seismic response, mean of coloured 

inversion attribute was chosen as discussed in Chapter 5 (section Seismic response to 

pressure and saturation changes) where the procedure for calculating the attributes is 

described too. Parameters of added noise shown in Figure 6.5, b and Figure 6.5, d will 

be explained later.  

The reference 4D seismic maps show 4D effects of water displacing oil in the areas 

around injectors I01, I02, and I03 and also the effect of gas exsolution near the 

producers P01 and P02. As shown in Figure 6.1 and Figure 6.2, producing wells P01 

and P02 are located in distinct geobodies with limited connection with the neighbouring 

geobodies and ultimately with the injectors from which the pressure is supported. The 

resulting pressure depletion causes gas liberation – analogous to the effects observed in 

the Schiehallion case (Chapter 5, section Model-based interpretation of 4D seismic 

effects).  

 

Figure 6.3. Average maps of reference pressure and saturation for Model 1 for Aug 2000 (after 2 

years of production): a) water saturation, b) gas saturation, c) pressure. Averages calculated over 

the reservoir thickness. 
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Figure 6.4. Same as Figure 6.3, but for Model 2. 

 

Figure 6.5. Reference 4D seismic response used as observed data in history matching experiments: 

a) seismic response of Model 1, b) as (a) but with added correlated noise, c)-d) as (a) and (b) but for 

Model 2. Noise in (b) and (d) is the same. 
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4D seismic maps presented above (specifically, the noisy versions) are used as observed 

data for the history matching experiments conducted here. Moreover, the observed 

dataset consists of those seismic maps only, no production data are used for model 

calibration because no water cut is observed in wells within the 2 years of production. 

Although it is shown in Chapter 7 that it is difficult to constrain production forecasts 

effectively by history matching to seismic maps only, in this rather synthetic case with 

only few parameters, this constraint can be effective enough provided a map has enough 

information. In particular, the map for Model 2 has more constraining information than 

that of Model 1 because the water front progressed further in Model 2 due to the 

specific parameter values (both models simulated 2 years though). Different information 

content in Model 1 and Model 2 is intentional and is required for comparison of 

parameterisations as discussed before (beginning of section 6.2). 

Adding noise to the observed data as shown in Figure 6.5, b and Figure 6.5, d is 

important for this synthetic case. Indeed, when the number of parameters is not large, 

there is a chance for the history matching algorithm to converge to the true values 

exactly. This would nullify our attempts of studying the range of forecasts resulting 

from multiple realisations of calibrated models. Adding noise on the other hand will 

move the solutions somewhat away from the true values allowing more equiprobable 

solutions. The next question about adding the noise is what type should be used. As 

described in Theory chapter, different types of noise exist in field measured seismic data 

such as multiples or strong coherent ground-roll with the random incoherent noises 

usually suppressed during the seismic processing. In this case, correlated noise with the 

following characteristics is chosen: strength of 40% of maximum amplitude of the 

seismic data, correlation length of 500 ft along the flow (NS) and much longer than the 

model dimensions across it (EW). The noise is chosen to be correlated in the direction 

across the flow to ensure it does not interfere with the parameter estimation with the 

channels (parameters) oriented along NS direction in the first scenario (section 6.2.1). 

On the other hand, it can interfere with the useful signal in the second scenario (section 

6.2.2) with pilot points which is in line with the increased flexibility of the 

parameterisation there.  

History matching was carried out using the PSO algorithm with 40 particles and 25 to 

30 iterations. The sorted values of the objective function for history matching of Model 

1 and Model 2 cases are shown in Figure 6.6. The objective function contains data 

errors without correlations, with error level set to a constant. The absolute value does 
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not matter here because all the cases uses similar seismic attribute so are perfectly 

comparable. 

 

Figure 6.6. Misfit reduction with the number of models for four history matching runs for a) Model 

1 and b) Model 2. The function is obtained by sorting the misfit functions of individual particles in 

descending order. Some of the initial misfits (b) were truncated. 

The observed dataset consisted of seismic maps shown in Figure 6.5, b and Figure 6.5, d 

only. The added noise in these data allowed solutions to be obtained that are slightly 

different from the true case for different realisations. Predicted data were the same 

seismic attributes as observed data. Figure 6.7 and Figure 6.8 show, out of the ensemble 

of realisations, predictions of 2 history matched models for each of Model 1 and Model 

2. The figures compare the predictions of history matched models with the original 

predictions of the reference models shown without added noise for clarity although the 

noisy versions were used in history matching. Also, the seismic prediction of the base 

case model is shown for comparison (plot (b) of each figure). The base case model is 

the one without transmissibility barriers, that is all transmissibility multipliers are set to 

1. As expected, the historic maps were well repeated by the predictions of the history 

matched models. Because these models fit the data equally good, they can be treated as 

equiprobable realisations of history matched models given the data (only data fit defines 

probability here as there is no preference in terms of values of parameters). The 

variability of these realisations will be studied using their production forecasts as shown 

below. 
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Figure 6.7. Results of history matching using the seismic maps as data and the deterministic 

channels as parameters: a) noise-free seismic prediction from the reference model, b) prediction of 

the base case model, c)-d) predictions of two (picked randomly) realisations of the history matched 

model. Model 1 case. 
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Figure 6.8. Same as Figure 6.7 but for Model 2 case. 

Figure 6.9 shows water and oil forecasts of wells P01 and P02 for realisations of history 

matched models Model 1 and Model 2 (4 realisation of each). It can be seen that the 

variance of predictions among realisations is very small – they predict almost similar 

data in both cases, Model 1 and Model 2. In particular, Model 1 case (Figure 6.9, a) 

does not show greater spread of predictions compared to the Model 2 case (Figure 6.9, a) 

despite the information content in data used to constrain Model 1 is lower. This means 

that other information apart from that in the data also contributed to finding these close 

realisations. This information is the prior knowledge embedded in the parameterisation 

itself – we knew the geometry of channel prior to history matching, so finding their 

transmissibilities was an easy part. This could be done even with such poorly 

constraining data as in Model 1. In the next section (6.2.2), we will not use that prior 

knowledge about the channel geometry (as we are switching to pilot points) to 

demonstrate the constraining power of the data itself. 
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Figure 6.9. Forecasts of water (blue curves) and oil (green curves) rates in wells P01 and P02 by 

history matched models in case of: a) Model 1, and b) Model 2. Green arrow indicates the history 

matching period (only seismic data used for history matching), and red arrow – forecasting period. 

Four realisations of each model are shown. 

 

6.2.2 Less determined models and the role of information in the data 

The goal in this section is obtaining realisations of history matched models constrained 

by the data only. In particular, the constraining effect of any prior knowledge embedded 

in the model such as geometry of heterogeneities (as in the previous case, section 6.2.1) 

should be minimized. For this reason, the pilot point parameterisation is chosen this 

time (see Methodology chapter for particular implementation of pilot points in this 

work). The distribution of points used in the present case is shown in Figure 6.10 

together with the deterministic channels from the previous case for comparison. Total 

number of points is 25. The radius of influence for all points, 500 ft, is chosen based on 

the distance between the points, 600-800 ft. The power of influence decay is 4. Pilot 

points control the permeability. The permeability values in the range 10-2000 mD, 

sampled on the logarithm scale are assigned to the points and interpolated during the 

history matching. In this setting, no information about the channels is present in the 

models being history matched (except for the rose coloured non-reservoir area below 

wells P01 and P02 which is assumed known to be non-reservoir and does not affect the 

flow anyway), and the flow pattern is formed by the permeability point only. The 

observed data in this case are the seismic responses of the same reference models (same 

observed data as in the previous case). This means that we will try to match flow 

patterns created by deterministic channels (in reference models) by those in models with 

smooth permeability fields.  
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Figure 6.10. Parameterisations: a) by deterministic channels (section 6.2.1), and b) by pilot points 

(this section). 

The history matching runs were repeated with the new parameterisation method. Since 

there are more parameters here (25) compared to the previous case (7), more particles 

are needed for effective search by PSO. In this case 80 particles were used through 45 

iterations. The sorted values of the objective function for history matching of Model 1 

and Model 2 cases are shown in Figure 6.11. The final value of misfit in Figure 6.11 is 

determined by two factors: noise in the observed seismic and the fact that it is not 

possible to replicate the reference transmissibility field exactly using sparse pilot points 

(although the match is still good as shown in the following figures). 

 

Figure 6.11. Misfit reduction with the number of models for four history matching runs for a) 

Model 1 and b) Model 2. The function is obtained by sorting the misfit functions of individual 

particles in descending order. Misfits of the initial models are several orders of magnitude higher, 

so truncated. 
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Seismic responses of two (out of 4 realisations) history matched models are compared 

to the prediction of the reference models and the base case model in Figure 6.12 and 

Figure 6.13. The maps of the reference and the base case models are the same as in the 

previous section (6.2.1). 

 

Figure 6.12. Results of history matching using the seismic maps as data and the pilot points as 

parameters: a) noise-free seismic prediction from the reference model, b) prediction of the base 

case model, c)-d) predictions of two (picked randomly) realisations of the history matched model. 

Model 1 case. 
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Figure 6.13. Same as Figure 6.12 but for the case of model2. 

By comparing the results of history matching with the responses of the reference models 

and with that of the base case model, we can see that quality of the match is good and 

that the models improved compared to the base case model. Unlike the previous case 

with fixed channels, the boundaries of the channel are smoother here, especially in 

Figure 6.13. This is understandable given the limited resolution of a smooth 

permeability field constructed with sparse pilot points. In this case again having the 

models which fit the data allows us to study the variation of underlying properties and 

associated predictions of non-calibration data (production forecasts) to understand the 

data-sensitivity of the parameters. Figure 6.14 shows the forecasts of water and oil rates 

produced by the history matched models for Model 1 and Model 2 cases. 



161 

 

 

Figure 6.14. Forecasts of water (blue curves) and oil (green curves) rates in wells P01 and P02 by 

history matched models in case of: a) Model 1, and b) Model 2. Green arrow indicates the history 

matching period (only seismic data used for history matching), and red arrow – forecasting period. 

Four realisations of each model are shown. 

Two important observations can be made from Figure 6.14: 1) there is now a spread of 

predictions in Figure 6.14, a, and 2) the spread greatly reduces in Figure 6.14, b. Given 

that all the models in the ensemble of history matched models reproduce the calibration 

data (seismic maps) well, we can say that the constraint provided by the calibration data 

is not enough to uniquely determine the values of all the history matching parameters in 

Model 1, while the parameters in Model 2 are better determined by the calibration data. 

This concludes the comparison of two parameterisation cases: 1) deterministic channels 

with unsupported by data, overly constraining prior information about geometry of 

heterogeneities in the reservoir and 2) neutral pilot points which do not make any 

assumptions about the underlying reservoir and as such fully depend on the data. It is 

important to stress that the goal of this comparison by no means is comparison of the 

parameterizations themselves, but it is a demonstration of the effect of whatever prior 

information is embedded (and fixed) in the model. This prior knowledge masked the 

information deficit in the observed data of Model 1 and contributed to easily finding 

good models in the history matching. In a real situation though, deterministic inclusions 

of this kind will act as strong but their contribution will not be as constructive since 

such prior knowledge is imprecise. In the following section, we will investigate the 

effect of using the deterministic parts in the variable models in history matching. 

Geological features interpreted in the seismic data are the example of such elements. 

Before moving on to the next section, let us analyse permeability distributions resulting 

from history matching with the pilot points. The following figures (Figure 6.15 and 
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Figure 6.16) are interesting because they demonstrate the variety of permeability fields 

occurring as a result of fitting the response of the reference model. To remind the reader, 

the reference model is parameterized with deterministic channels, so it is impossible to 

obtain exactly the same transmissibility field by varying permeability via sparse pilot 

points. What we get instead is a range of models that are equally good in terms of fitting 

the calibration data (seismic maps in this case). To illustrate the fact that the 

transmissibility field of the reference model is unreachable by the pilot point models, 

equivalent permeability fields were generated (for illustration purposes only) for the 

reference models Model 1 and Model 2 (Figure 6.15, a and Figure 6.16, a) using the 

following procedure. The initial permeability value of 1000 mD was multiplied by 

whatever regional transmissibility multipliers existed at any given location. If 

multipliers were applied between the regions (channels) then barriers were set at the 

boundaries and coloured accordingly (note the extra grey scaled legend in Figure 6.15, 

a). Finally, we can say that Figure 6.15, a and Figure 6.16, a show the reference 

permeability distributions. It is now clear that in no circumstances can these be found by 

history matching a model parameterised with pilot points. This illustration is also 

important for subsequent analysis in the rest of this thesis where all the history matching 

cases will match responses of reference models with unreachable properties. This 

setting is useful as it emulates the real history matching framework: the real object 

under investigation (a reservoir) can never be accurately described with approximate 

discrete models. 

Also, two conclusions can be made from observations made in Figure 6.15 and Figure 

6.16. Firstly, since models in plots (b)-(d) are different in terms of permeability but 

similar in terms of data match, the objective function is multimodal, so the solutions in 

individual (local) minima are important. The second conclusion relates to Figure 6.16, 

that is the case of Model 2. Here the permeability distributions are again different, but 

the production forecasts from those models are similar (Figure 6.14, b). This suggests 

that models in general cannot be effectively compared in terms of their permeability 

because it is too difficult to relate a permeability pattern to the actual performance of a 

model, especially if the permeability in question is one of realisations remotely 

approximating the truth case. 
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Figure 6.15. Comparison of a) (equivalent) permeability in the reference model, and b-d) 

permeability distributions estimated from the data by history matching in a series of realisations. 

Model 1 case. The extra grey scaled legend reflects the transmissibility multipliers applied to the 

barriers in (a). 
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Figure 6.16. Same as Figure 6.15, but Model 2 case. 

 

 

6.3 Including seismic interpretations in the simulation model 

In the previous section we dealt with a model where the problem of parameter 

estimation was made over-determined by fixing a massive part of the model. As a result 

a unique history matched model was obtained. This uniqueness was not supported by 

the data though which was demonstrated be a counter-example with pilot points. In this 

section, we will continue discussing the bias from the fixed part of the model, and the 

fixed part will not be perfect this time. The bias will originate from deterministic 

inclusions in the model – geobodies interpreted from seismic data. We will also relate 

the bias to the complexity of model represented by its parameters. 
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6.3.1 Models for history matching 

In this section, a new more realistic and detailed reference model is introduced which 

will also be used throughout the rest of the thesis. Using a more sophisticated model 

will facilitate better understanding of the questions of combining production and 

seismic data and learning from the complexity of the model responses depending on the 

model representation. Using the details of the Schiehallion model built from the field 

data will ensure that we are not missing the critical details for the useful 

conceptualisation of the parameter estimation aspects. And again, this history matching 

study requires thousands of simulation runs for which the only feasible option given the 

resources constraint is using smaller models with significantly reduced run times. 

Extracting a part of the Schiehallion model preserving the original horizontal wells and 

properties therefore seems to be a reasonable compromise between the details and 

usability. Shown in Figure 6.17 is the place of our submodel in the bigger Schiehallion 

Segment 1 model. The submodel dimensions are 9740x4846x330 ft and 30x15x42 cells. 

The area covered by the submodel is substantial, including the producer wells P1, P6, 

P7 and P9. Out of the wells active in the period 1998-2002 (the history matching 

period), only the producers P5 and P2 are not included. Also included are the injectors 

I13, I15 and I17 providing the pressure support in the area. The southern boundary of 

the submodel coincides with the major, mostly sealing fault dividing the eastern part of 

the Segment 1 into two regions. No flow is allowed through the boundaries of the 

submodel, but the material balance in the volume of reservoir is maintained through the 

production and injection levels. Overall, the submodel realistically represents the range 

of (characteristic to fewer wells) responses of the bigger model because of its multi-well 

pattern, two-layers producing interval T31 (T31a and T31b), combination of water and 

gas saturation -induced 4D seismic effects. For the rest of our discussion, the submodel 

will be the subject of our study, so we will simply call it the model, and the bigger, 

original Schiehallion model will be called the original model when a reference needs to 

be made to it.  
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Figure 6.17. Extracting the subgrid from the Schiehallion (Segment 1) simulation model. A) 3D 

view of the grids: Schiehallion grid in blue and the subgrid in red, b) cross-section along AA’ 

showing the stratigraphic layers in the model, the red rectangle shows the extent of the subgrid. 

As shown in Figure 6.17, the model consists of the following stratigraphic layers: 

T35/T34, T31a and T31b. No wells are completed within the interval T35/T34 and it is 

mostly isolated from the underlying interval T31. Also, the pore volume in T35/T34 is 

small due to the large non-reservoir areas as shown in Figure 6.18. It is for these reasons 

that it was made hydraulically isolated from the rest of the model and made inactive at 

the simulation stage to save some simulation time, but used again when calculating the 

seismic response. The division of the layer T31 into T31a and T31b is rather nominal 

because the two sublayers amalgamate in places where the thin shaly layer between 

them pinches out, particularly in the eastern end of the model (Figure 6.18, b). As 

described in the previous chapter, the reservoir of the Schiehallion field is comprised of 

stacked channels of varying width. This is illustrated by the maps of the NTG property 

in Figure 6.19 where we can see a significant lateral variation of reservoir quality 

characteristic for the heterogeneous turbidite settings.  
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Figure 6.18. NTG distribution in the model. A) 3D view, b) cross-section along AA’ line.  

 

Figure 6.19. Map of average NTG property within the interval: a) T31a, b) T31b. 

In the highly heterogeneous channelized Schiehallion reservoir the connectivity has 

been a major uncertainty for the field development (see Chapter 5). Limited 

connectivity is associated with the compartmentalisation created by the channel stacks. 

Therefore, realisations of the transmissibility model can conveniently be created if the 

reservoir volume is divided into regions coinciding with the distinct geological bodies. 

This was done by the operator in the original Schiehallion simulation model based on 

seismic interpretation. The transmissibility regions, together with other properties of the 

original model, are copied over to our model as shown in Figure 6.20. 
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Figure 6.20. Transmissibility regions derived from seismic amplitudes: a) 3D view (T31 only), b) 

cross-section along the line AA’. 

The initial state of the reservoir is characterised by the initial pressure of 2907 psi at the 

datum depth of 6365 ft TDVSS. OWC depth is 6772 ft so the model initially contains a 

water zone (Figure 6.21) but no gas cap. The water injection is maintained through the 

wells I13, I15 and I17 located downdip in the off-channel area (I13 and 15) and in the 

‘snake’ channel (I17).  

 

Figure 6.21. Initial saturation distribution in the model: a) 3D view, b) cross-section along the line 

AA’. Green signifies oil, blue-water. OWC depth is 6771.7 ft. No free gas is present initially in the 

reservoir.  
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The intended use of the reference model is of course calculating its response to be used 

as the historic data to condition other models in history matching. The model response 

in our case consists of well rates (Figure 6.22) and a 4D seismic attribute map (Figure 

6.23). Similarly to the previous section, the seismic attribute is mean of coloured 

inversion calculated over the interval T31a only (calculation of seismic attributes is 

discussed in Chapter 5). Wells are made to produce at constant liquid rates: P1 20000 

stb/d, P6 8000 stb/day, P7 4000 stb/day, P9 4000 stb/day. These levels correspond to 

the actual rates of the wells in the period between 1998 and 2002. The actual well rates 

could as well have been used as historic data, but this seems to have no advantage in the 

context of our controlled experiment, that is where the ‘truth’ is known precisely but is 

not necessarily achievable by the variable model. In other words, we are borrowing well 

regimes from the actual data in the form of approximate levels rather than the variable 

rates which are controlled by the well and surface network that is out of our modelling 

scope anyway.  

 

 

Figure 6.22. Production profile of the reference model. 
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Figure 6.23. Map of 4D seismic attribute calculated with the reference model: ‘historic’ seismic 

data. Red indicates (acoustic) softening of rocks, and blue indicates hardening.  

With the well liquid rates set to the constant values, we still have control on whether we 

will see the water cutting in wells, gas break outs and how the fluid displacement front 

is distributed in the reservoir. These effects are related to the information content in the 

predicted data (which will be the ‘observed’ data for other models). Therefore, an 

attempt was made to include the effects normally observed during the development of 

the Schiehallion field in this area. Some of this behaviour is described in the previous 

chapter and consists of interpretable movements of the water front and 4D seismic 

anomalies due to the gas exsolution. Observable on the production profile in Figure 6.22 

is that all the wells except for P6 have seen the water cut, and that the production from 

well P1 begins with high GOR values. 4D seismic anomalies (Figure 6.23) are well 

understood when examined together with the maps of pressure and saturation change 

shown in Figure 6.24. The blue areas in the seismic map are associated with water 

invasion, the red area around the producer P1 is the gas break out.  



171 

 

 

Figure 6.24. Maps of pressure and saturation differences between the values on 01/08/2002 and on 

01/08/1998: a) water saturation difference in T31a, b) pressure difference in T31a, c) gas saturation 

difference in T31a, d-f) same as (a)-(c) but for T31b.  

 

Summary of Schiehallion field data used in this work 

From geological and simulation models: 

 Structural surfaces 

 NTG, porosity, permeability distributions 

 Distribution of geobodies 

 Initial pressure, OWC, GOC, relative permeability functions, compressibility, 

PVT properties of fluids 

 Well trajectories, completion intervals 

From operator’s dataset: 

 Observed well rates (although only relative levels of well rates were taken) 

Data that could potentially be used: 
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 Actual well rates. These data were not used but relative production and injection 

levels were used instead as the variability of the actual rates would not affect the 

concept of matching areal saturation distribution. 

 Bottom-hole pressures. These data produce extra constraint, particularly on the 

absolute permeability levels. Although these were not necessary to illustrate the 

concepts of this work, including these data in the experiment is seen as a future 

work recommendation. 

 Field seismic data. Using field seismic data is highly advantageous in general as 

these contain a significant amount of details belonging both to the response of 

complex geology and to the acquisition and processing artefacts. Therefore, 

seismic history matching will have to take into account these specifics which 

should be carefully studied separately from the conceptual study of this work. 

For this reason, testing the result of this work using the field seismic data is seen 

as a future work recommendation. 

 

6.3.2 Model parameterisation based on seismic interpretation 

The reference model prepared as described above supplies the ‘historic’ data for our 

history matching experiment in which it will be matched by the predictions of another, 

variable model. Similar to the previous section, the variable (that is updated in history 

matching) model is derived from the reference model but the transmissibility 

distribution will be left free to vary. This is because the transmissibility distribution (not 

necessarily tied to the regions) has major influence on the process of hydrocarbon 

displacement and, consequently, on the quantities comprising what we call the model 

response – oil, water and gas rates and 4D seismic signal. Other model parameters such 

as the reservoir geometry and fluid properties affect the model response too but we will 

limit our analysis to just some of the parameters in order to maintain focus on the 

objectives of our study. The reason for choosing the transmissibility lies in the support 

of different parameters by field data: reservoir geometry and fluid properties are well 

conditioned usually by the seismic and well data, as well as laboratory measurements, 

while the transmissibility of the reservoir on a larger scale is the major uncertainty in a 

field development. 

The 4D seismic data interpretation that is included in the simulation model in our case 

defines the transmissibility regions. These are the geological objects that cause distinct 
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seismic anomalies, and mainly are traced by the discontinuities of the signal. Often, the 

discontinuities are associated with the flow boundaries in which case the corresponding 

geological objects form compartments in the pore space with different level of 

connectivity. For example, fluvial and turbidite settings combine highly permeable 

channel sands with marginal and over bank deposits of low permeability. Martin and 

Macdonald, 2010 improved the pressure prediction of the Schiehallion field simulation 

model by incorporating geobodies interpreted from 3D seismic data. In general though, 

if the distribution of the objects is confidently derived from high resolution seismic data 

then the connectivity of the regions is what usually remains uncertain. The geological 

objects can be modelled by using the transmissibility multipliers which reduces the 

problem of estimation of the transmissibility field to ‘connecting’ the regions. The 

history matching problem can be parameterised accordingly so that the transmissibility 

multipliers between the regions are varied.  

In the following discussion, we will demonstrate the effect of the bias created by such 

deterministic inclusions in the simulation model on its predictions. In the first 

experiment, the transmissibility regions are copied from the reference model and the 

history matching algorithm is employed to estimate the transmissibility multipliers. This 

set up does not produce any destructive bias of course, but the purpose is to show that 

the history matching problem is feasible and we can match the ideal case before moving 

on to the approximate models. In the subsequent runs, the ideal regions will be replaced 

with the ones derived from the seismic data. Also, similar to the previous section, a 

comparison will be made with the parameterisation by the permeability points. 

 

Using transmissibility regions from the reference model 

In this history matching run, the transmissibility regions are copied from the reference 

model and the multipliers between the regions are estimated. Because such a model is 

error-free in its fixed part, we can expect that matching the seismic data will lead to an 

improved match of production data even if the latter is not in the objective function, or 

at least we can say that the solution where both data types are matched exists. History 

matching has been completed therefore using only the seismic map as the observed data. 

All possible contacts between the geobodies shown in Figure 6.20 (the exhaustive list of 

contacts is obtained by an automated search) are taken to be the parameters (38 in total). 
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PSO algorithm was used as before with the following parameters: 80 particles and 65 

iterations. The sorted values of the objective function are shown in Figure 6.25. 

 

Figure 6.25. Misfit reduction with the number of models. The function is obtained by sorting the 

misfit functions of individual particles in descending order. Initial misfits are too high, so truncated. 

Figure 6.26 compares predictions of the history matched model with observed data (the 

production data are shown only for comparison, it was not used to constrain the 

solution). It is easy to see that the history matched model reproduces both seismic and 

production data very well. The slight mismatch that is still present is caused by the 

unreachable lower limits of some of the parameters – lower limit of 0.001 is used for the 

parameters of history matching while some of the reference multipliers are exact zeroes, 

and the multipliers are varied in the logarithmic scale. Overall, this small perturbation to 

the problem input (due to not including zeroes) did not prevent the algorithm from 

confidently converging to a model matching also the production data. This is exactly the 

required result. The main purpose of this demonstration was establishing a benchmark 

case, that is where we are sure of the problem statement including the data, the 

parameters and the algorithm. This will make it easier to understand the errors in 

matching the data caused by certain ad-hoc parameterisations discussed in the following 

sections. 
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Figure 6.26. Results of history matching of the model with transmissibility regions copied from the 

reference model: a) historic map of the seismic attribute, b) predicted map of the seismic attribute, 

c) field production rates for the reference model (labelled as ‘history’), base model and the history 

matched model (labelled as ‘best model’). Only seismic data are used in history matching in this 

case, production data are only given for comparison. 

 

Using transmissibility regions from the data, based on seismic interpretation 

One may consider different options for extracting the spatial geological objects 

(geobodies) from the seismic data including amplitude thresholding, extracting 

volumetric attributes, delineation of the objects in the maps, or inverting the seismic 

data into a rock property to use for dividing the reservoir volume into regions. The 

common in all of these approaches is that we are looking for spatial discontinuities in 

the signal to relate them to the boundaries of regions. Importantly, certain approach is 

chosen to fit the specific purpose. The purpose in our case is to get approximate 

transmissibility regions supported by the data rather than copying them from the 

reference model. In this situation, we are not seeking any excessive details because 

building a model more complex than the reference model will negate the effect of the 

bias (from the fixed part of the model) – the model will always be too flexible. The 
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optimal solution is regions of the same scale as in the reference model or larger, and 

then the approximation will be in their spatial distribution and extent. Therefore, maps 

will provide adequate level of details, but the maps of the rock property rather than 

seismic maps are preferred because of the stacked nature of the Schiehallion reservoir 

where the signal is affected by interference effects. As discussed in Theory chapter 

(section Seismic inversion), inverting for the NTG property resolves the compound 

signal, although in favour of a particular model as the inversion process is inherently 

non-unique. Again this satisfies our needs in a certain interpretation that fits the data 

(albeit one of many that are possible). Finally, the procedure followed here consists of 

inverting the seismic traces for the NTG property, calculating average maps of NTG for 

T31a and T31b, tracing the regions of high NTG and transferring them into the 3D grid 

as a new discrete property.  

The methodology of the seismic inversion is detailed in Chapter 4. This is based on a 

simple idea. We try different distributions of NTG until the seismic prediction fits the 

observed data. The process is organised as an optimization loop using the PSO 

algorithm. It was shown in Chapter 4 that using a prior term in the objective function 

stabilises the solution. In this case, a piecewise constant prior is used which used 

vertically average NTG values in the intervals T31 and T35/T34 as shown in Figure 

6.27, a. Another component of the problem statement is the parameters for the inversion 

distributed in space (Figure 6.27, b). In the non-producing interval T35/34 two to four 

simulation grid layers make up one parameter layer while in the main reservoir T31a a 

value of NTG is estimated in each simulation cell, and in T31b again the simulation 

layers are grouped by two. This results in 23 parameters in total which is more than 

uniquely determined from the seismic traces due to the thickness of layers, but a 

principle of regularised inversion is followed here – many parameters ensure flexibility 

in terms of the positioning effects (layer thicknesses are fixed) and the regularisation 

(the prior term) prevents the excessive oscillation of the solution. According to the 

prescribed workflow, 3D NTG property was estimated by the seismic inversion and the 

NTG maps were calculated from it. The resulting inverted NTG property is shown in 

Figure 6.28. The average map of the inverted NTG closely matches the reference NTG 

map as shown in Figure 6.29 (although the match of NTG is not necessary for the 

successful inversion as it is the solution not the data).  
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Figure 6.27. Constituents of the input for seismic inversion: a) prior NTG model and b) distribution 

of the inversion parameters. 

 

Figure 6.28. Inverted NTG property: a) 3D view, b) cross-section along AA’. 
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Figure 6.29. NTG maps over T31a interval: a) reference model, b) inverted model. 

Being a product of seismic inversion, the NTG property is free from the seismic 

interference artefacts, so we can treat it as the true earth model representation and 

delineate the regions directly on the maps as shown in Figure 6.30, a and b. The 

boundaries of the interpreted regions then are converted into the discrete 3D property in 

the simulation model (Figure 6.30, c and d). Figure 6.31 compares the resulting 

interpreted regions with the regions in the reference model. This shows that interpreting 

the seismic data resulted in approximate regions in terms of their spatial extent as 

required in our problem. 
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Figure 6.30. Identifying transmissibility regions in the maps of inverted NTG: a) and b) the 

distinctive anomalies outlined as potential regions in T31a and T31b respectively; c) and d) the 

outlined boundaries are used to implement a discrete property of regions in the simulation model, 

T31a and T31b respectively. 

 

Figure 6.31. Interpreted transmissibility regions compared to the ones from the reference model: a) 

and b) regions in the reference model, intervals T31a and T31b respectively, c) and d) interpreted 

regions, intervals T31a and T31b respectively. Different colours indicate indexes of regions. 
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Parameterisation bias 

In this section four cases with different parameterisations will be compared in terms of 

their ability to match 4D seismic data. In all four cases, history matching is performed 

using only the 4D seismic map as observed data. The cases are: approximate regions 

(Case 1), reduced approximate regions with indifferent fixed part (Case 2), reduced 

approximate regions with production matched fixed part (Case 3), and the pilot points 

(Case 4). Meaning of the cases will be explained in the following discussion. 

We will start our discussion with the approximate regions case (Case 1) which uses the 

interpreted regions as described in the previous sections (see Figure 6.30). These 

regions and the transmissibility multipliers between them comprise the parameterisation 

in this case. Similar to the previous case, here all the possible contacts between the 

geobodies are found and made the parameters. The total number of parameters in this 

case is 45. History matching was conducted using 4D seismic map from the reference 

model as observed data. The resulting match of 4D seismic maps is shown in Figure 

6.32 (the misfit function will be shown later). 
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Figure 6.32. Results of history matching using parameterisation based on approximate regions. 4D 

seismic maps are compared for a) reference model, b) base model, and c) history matched model. 

The results show that compared to the base model the match improved significantly. 

However, by comparing these results with the ideal case in Figure 6.26, we can 

conclude that replacing the ideal regions with the interpreted regions introduced an error 

due to the parameterisation. But we do not call this the parameterisation bias yet. It is 

not an attempt to attach some terminology labels here but it is that so far we are seeing 

an effect of different level than our ‘target’ bias. When we say that the fixed (to some 

erroneous values) part of the model creates a bias, we mean that it can be removed or 

significantly reduced when more parameters are added or the parameterisation is 

improved. However, it is difficult to do better than this result because the model that we 

are using is already even more complex than the reference model (45 parameters versus 

38) and at the same time, the approximate regions are not far from their reference 

counterparts, at least we would not get better precision delineating regions when 

interpreting the real seismic data. In other words, this is the error that we got when we 

added a small perturbation to the regions, therefore, it is called irreducible in our case.  

The situation here is that the history matched model is more complex than the reference 

model. The reality is known to be the opposite though: models should be simpler than 
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the real objects they represent. To achieve it, we can change either the reference model 

or the variable model. There are advantages of the latter, that is making the variable 

model simpler in terms of number of variables. Firstly, we do not want to lose the 

current state where the match is achievable (even though not perfect) so when moving 

down in complexity we will know what simplification caused the bias. Secondly, the 

coarse scale reference model is limited in the ways of making it more complex.  

One way of simplifying the variable model with interpreted regions (Case 1 model) is 

fixing a part of its 45 parameters. The rationale for this in the context of transmissibility 

multipliers is modelling an equivalent of lesser regions without redrawing them – as if 

we missed some of the objects during the interpretation. It is also equivalent to 

imposing some deterministic knowledge (because we are setting particular parameters 

to particular values) on the final model estimates. And finally, we may often opt for a 

history matching problem set up with fewer parameters due to the resource constraints, 

so here we show the implications. How to choose parameters for fixing and what values 

to assign to them? For consistency with the pilot points case (which will be explained 

later), it was decided to fix 17 parameters and leave the remaining 28 as parameters for 

history matching. Parameters to be fixed were selected randomly in order to avoid an 

extra selection bias. Next, for the values to be assigned to those 17 fixed parameters 

there are 2 options. The first is to assign some indifferent constant value, for example 

the midpoint value of the parameter range (in the case of log-scale it is 0.032). The 

second option is to try to compensate for the ad-hoc character of the fixed part and give 

it some reasonable values. For example, take the values for those 17 fixed parameters 

from the history matched version of Case 1 model. However, we cannot use the Case 1 

history matched to 4D seismic map because it would be a pointless 28D version of Case 

1, so we better borrow the values from Case 1 history matched to production data 

(assuming that solutions by matching seismic and production data are in many cases 

different as shown in Chapter 7). These two options describe the way the cases Case 2 

and Case 3 were obtained. Because only 28 out of 45 parameters are left for history 

matching in those cases, they are called the reduced approximate regions cases here. 

Finally, what is left for the full characterisation of Case 3 is obtaining a version of Case 

1 model history matched to production data. This was completed and the results are 

presented in Figure 6.33. 
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Figure 6.33. Results of history matching of Case 1 model to production data: a) misfit reduction 

with the number of models sorted in the descending order, b) oil and water rates for the reference 

(red curve=history), base (black curve), and history matched (green curves for oil and blue curves 

for water) models. 

The two cases, Case 2 and Case 3, are expected to show the bias from their fixed parts, 

that is deterministic inclusions not supported by calibration data (sometimes called 

“structural noise”, Hunt et al, 2007). In order to show that the bias comes exactly from 

fixing the parameters wrongly rather than reducing dimensionality (45D to 28D), we 

will consider the last case of the same dimensionality (28D), Case 4, based on pilot 

points. 28 pilot points are evenly distributed across the layers T31a and T31b as shown 

in Figure 6.34 (the distance between the points is approximately the production well 

spacing, hence the number 28 as mentioned before).  

 

Figure 6.34. Distribution of pilot points shown on top of NTG maps of the reference model: a) in 

reservoir T31a, b) in reservoir T31b. 
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All the cases have so far been described so we are moving on to results of history 

matching using 4D seismic data. PSO algorithm was used here with the following 

parameters: 80 particles and 50 iterations. Figure 6.35 shows the misfit functions for the 

four cases. The objective functions in all cases use 4D seismic maps as data, and the 

error is set to a constant values (40% of amplitude of the reference seismic map), equal 

in all the cases which makes their misfits comparable. It is clear from the Figure 6.35 

that for Cases 2 and 3 the misfit cannot be reduced below a certain level (higher than for 

other cases). This is the effect of the structural noise as mentioned before. Another 28-

dimensional case, Case 4, uses pilot points that appear to be flexible enough to 

assimilate the details of the observed seismic map and result in a misfit as low as in the 

initial 45-dimensional Case 1. Another observation (although not as important here) 

from comparing the misfit functions is that the function for Case 1 falls faster than for 

Case 4 but then the reduction rate slows down and it levels with the one of Case 4. This 

behaviour (rapid initial decline followed by levelling) is characteristic for zonation-type 

method to which the parameterisation of Case 1 (regional transmissibilities) belongs. 

 

Figure 6.35. Misfit reduction with the number of models for Cases 1-4. The function is obtained by 

sorting the misfit functions of individual particles in descending order. Some of the initial misfits 

were truncated. 

Finally, Figure 6.36 compares 4D seismic maps of the history matched models for 

Cases 1-4 with those of the reference and base cases. The misfit functions use consistent 

error values, so the misfit figures shown on top of the maps are comparable. Figure 6.36 

demonstrates that the bias in Cases 2 and 3 prevents the models from reproducing the 

details of the observed data (misfits values above 150k). The match of Case 4 on the 

other hand is as good as the one of Case 1 despite the number of parameters is lower 
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(both have misfit values around 80k). Improvement of cases 1 and 4 compared to 2 and 

3 is approximately the same as of cases 2 and 3 compared to the base case (misfit value 

around 350k), that is a factor of 2 reduction of misfit values. 

 

Figure 6.36. Maps of 4D seismic attributed for a) reference model, b) base case model, and c-f) 

history matched models for Cases 1-4. The misfit figures shown are seismic misfits calculated with 

the same error value so are comparable. 

Figure 6.37 demonstrates the permeability solution obtained with pilot points (Case 4). 

This is just a generic model that happens to fit the data. An important remark needs to 

be made in connection with it. The comparison shown above by no means suggests 

superiority of the pilot points method over other parameterisations – too much valuable 

information is incorporated into those deterministic interpretations to be easily negated 

by a simplistic interpolation. However it shows that the specifics of the interpretations 

being incorporated into the simulation model can be incompatible with dynamic 
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simulation data or be a reason for biased predictions. In that case, measures need to be 

taken to increase the flexibility of the parameterisation such as increasing the number of 

parameters or considering an alternative. As discussed in Literature review chapter 

(section Choosing a parameterisation consistent with data resolution), right balance 

between the prior information incorporated into the parameterisation and the flexibility 

of it to accept the details of calibration data maximizes the benefit of using these 

information sources. 

 

Figure 6.37. Permeability distribution – solution for the history matching problem parameterized 

with the permeability points. Location of the permeability points is shown by the blue dots. The two 

panels show intervals T31a (a) and T31b (b). 
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6.4 Conclusions 

In this chapter, realistic scenarios of seismic history matching were considered in order 

to emphasize the problems of incorporating the deterministic distributions of properties 

into simulation models. The first example (section 6.2) was parameterized with 

deterministic channels of known geometry of which the transmissibilities were left to be 

estimated in history matching. However, the prior information that was supplied by 

means of distributing the channels in the model appeared to be defining enough for its 

predictive capability which in turn was not affected by history matching. Regardless of 

information density of the dynamic calibration data, the history matching resulted in the 

unique model. Replacing the parameterisation with pilot points removed that strong 

controlling effect of the prior knowledge and the real scale of dynamic constraint was 

now felt – we could not obtain a unique model by history matching anymore.  

The second example (section 6.3) demonstrated an effect of so called structural noise on 

the history matching performance. Deterministic inclusions in the simulation model 

required more parameters to compensate for any incompatibilities with the dynamic 

data. Indeed, cases 2 and 3 can be viewed as models where certain assumptions were 

made about their fixed parts and the history matching was performed on a reduced 

parameter set (28 parameters). These assumptions (inaccurate prior knowledge) 

introduced a bias limiting the ability of models to match the dynamic data. Compared to 

those two cases (2 and 3), cases 1 and 4 performed better in history matching. In the 

former, the number of parameters was higher (45) while in the latter, the number of 

parameters was the same (28) but the structural noise was removed by replacing the 

deterministic regions with generic pilot points. This does not suggest a universal 

superiority of the pilot points, but stresses the importance of balance between the prior 

knowledge in a parameterisation and its flexibility to calibration with dynamic data. 
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Chapter 7. Integrating data in seismic history matching: scale of 

constituents 

 

7.1 Introduction 

Using 4D seismic data in history matching of reservoir simulation models along with 

the traditional constraints that is the production data should result in better constrained 

model predictions because it provides extra information about the spatial distribution of 

pressure and saturation. The success of combining production and seismic data is 

reported in publications studying history matching with 4D seismic data as discussed in 

Literature review chapter. The extra spatial constrain of 4D seismic data definitely leads 

to more determined, more unique model estimates. However, 4D seismic data is not a 

direct simulation outcome, and moreover, the seismic modelling process often is 

controlled by uncertain parameters. This raises questions about the quality of constraint 

by 4D seismic data. In particular, what scale of details should be matched in the seismic 

data in order to maximize the benefit from this extra constraint? In this chapter, a series 

of history matching experiments is performed where the seismic signal (in 4D seismic 

map) is matched to different extents to understand the effective scale of seismic details 

providing the useful constraint for the simulation model. The resulting models are 

compared in terms of their pressure and saturation state and also by their forecasts. 

It was shown in the previous chapter, that more flexible parameterisation reduces the 

bias from prior uncertainties in the final model estimates. In this chapter, we will 

continue using the 28-parameter pilot point scheme, and will also use a scheme with 

higher resolution, 77-parameter pilot points. These will be compared in terms of the 

parameter resolution required for fitting the seismic data. Also, it will be shown how 

much of this resolution is actually utilised when finding solutions effectively 

constrained by seismic and production data simultaneously. The effective resolution of 

the parameterisation is naturally determined by the scale of the signal in data that the 

model is trying to capture. 
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7.2 The history matching method 

7.2.1 The experiment set up: model, data and parameters 

In this chapter we will follow the same approach as in previous chapters for inferring 

the internal characteristics of models from their responses and use predictions of a 

known reference model as observed data. This provides a fully controllable environment 

for the study and reduces the requirements for computational resources. Limitations 

associated with the synthetic nature of this approach do not reduce the practical value of 

the outcomes of the study because of its particular place among the studies of reservoir 

models. In particular, we focus on general concepts and decisions affecting the history 

matching results which is a necessary step and should precede case specific studies 

focused on real data. It is essential however that any models being used in a synthetic 

study are tied to the real geology and processes in order for the results to have practical 

meaning. In this study this is ensured by using models built from the real data 

(Schiehallion model). The background of the Schiehallion field and the analysis of 

modelled seismic effects are given in Chapter 5. The simulation model derived from the 

Schiehallion field model for the purposes of history matching experiments is described 

in Chapter 6 (section 6.3.1. Models for history matching). The image of the model grid 

with NTG property is repeated here in Figure 7.1 for clarity of the presentation. 

 

Figure 7.1. NTG distribution in the model derived from the Schiehallion model for history 

matching experiments of the present study: a) 3D view, b) cross-section along AA’ line.  
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The model contains a reasonable balance between the grid size and associated 

computational requirements on one hand and abundance of geological details and 

variety of seismic signals on the other. As such this submodel is an optimal way of 

utilising the Schiehallion simulation model for a history matching study which involves 

many thousands of model runs.  

The model includes 7 wells of which 4 are producers and 3 are injectors. These are 

active during 8 years of production history which includes periods of increased GOR 

and water cuts in some of the wells. The interpretable 4D seismic signal consists of gas 

breakouts and saturation substitutions due to the water front move. These are also 

slightly affected by the multiple layer interference which creates an extra amount of 

ambiguity in interpretation (see Chapter 6, section 6.3.1). In the Schiehallion field, 

reservoir T31a is the most significant in terms of the volume of hydrocarbons. It is 

penetrated by 3 of 4 producers, while the underlying T31b is penetrated by a single 

producer, P7. The upper layer, T35/34 is not producing in this model but is included for 

its effect on the seismic response. 

The state of the reference model at which the historic data is generated is the same as in 

Chapter 6. This is set using the transmissibility regions as model parameters. The 

historic data includes oil and water rates in the wells, seismic maps, cube of seismic 

traces and inverted impedance property. Figure 7.2 and Figure 7.3 repeat the illustration 

from the previous chapter and shows the response of the reference model. Maps of 

pressure and saturation are repeated on Figure 7.4. Visualisation of seismic traces and of 

the inverted impedance is not given here as it does not add to the model description. 

These will be discussed later as they are used.  
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Figure 7.2. Production profile of the reference model. Only the history matching period is shown. 

 

Figure 7.3. Map of 4D seismic attribute (mean of coloured inversion, see Chapter 5, section 5.5.3) 

calculated for time difference Aug 2002-Aug 1998 with the reference model: ‘historic’ seismic data. 

Red indicates (acoustic) softening of rocks, and blue indicates hardening. 
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Figure 7.4. Average maps of pressure and saturation differences between the values on 01/08/2002 

and on 01/08/1998 for the reference model: a) water saturation difference in T31a, b) pressure 

difference in T31a, c) gas saturation difference in T31a, d-f) same as (a)-(c) but for T31b. 

In this chapter, the parameterisation of the history matching problem is based on the 

pilot points distributed evenly across the reservoir. The pilot points modify the 

permeability field. This parameterisation is chosen here because it is neutral with 

respect to any geological realisations of the permeability distribution unlike, for 

example, the parameterisation based on geobodies as shown in Chapter 6. This is 

important for the study of this chapter because here we are focusing on information 

purely from the calibration data (historic data: well rates and 4D seismic attributes) so 

any effect of prior information and parameterisation bias should be minimized (prior-

dependent and prior-independent parameterisation methods are also discussed in 

Literature review chapter, section Choosing a parameterisation consistent with data 

resolution). However, some bias is produces by the pilot points too which is related to 

the sparseness of their distribution. This can be viewed as a limited resolution of the 

parameterisation, but are there sufficient amount of details in data to feel the resolution 

limit? In order to address this question, two levels of model resolution are considered 

here: 28-point and 77-point schemes. The layout of pilot points for these schemes is 

shown in Figure 7.5. The points are distributed approximately evenly across the layers 

T31a and T31b. The two schemes share the layout in T31b but differ in the number of 

points in T31a. As seen from the figure, the lower layer, T31b, is covered with fewer 
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points as it is not the target reservoir for calculating the seismic map and also it 

contributes less to the oil production. Permeability values are updated at pilot point 

locations and then interpolated across the reservoir. Vertically, the permeability is 

constant within each of the layers T31a and T31b which means that the only variation of 

vertical heterogeneity within each of the layers is caused by varying NTG (see Figure 

7.1). 

 

Figure 7.5. Layout of permeability points shown on top of NTG maps of layers T31a and T31b: a) 

points of 28-point scheme in T31a, b) points of 77-point scheme in T31a, c) points used by both 

schemes in T31b. 

It is important to note that similar to the history matching setting of the previous chapter, 

here the reference model and the models being history matched are parameterised 

differently. The response of the reference model (observed data for history matching) 

was generated by setting the transmissibility multipliers of geobodies (on top of the 

constant permeability, 600 mD across the reservoir) while predictions of the history 

matched models are controlled by varying the permeability via pilot points as described 

above. This in particular means that no such values of history matching parameters exist 
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that would cause a history matched model to generate exactly the same prediction as the 

reference model. History matched models will always approximate the historic data. 

 

7.2.2 Feasibility of history matching with permeability points of low and high 

densities 

In this section, we will examine the feasibility of solving the history matching problem 

using the two sets of points described above as parameters. The task consists of 

matching well rates and seismic response of the reference model as observed data in 

each case. The goal in this section is to demonstrate that the algorithm is set up correctly 

to be able to fit the data while the solutions themselves will be discussed in the 

following sections. We already demonstrated that the history matching problem using 

the 28-point scheme can be solved for 4D seismic maps (see Chapter 6, section 6.3). For 

the 77-point scheme, we expect to achieve lower misfits because of the increased model 

resolution. 

In each history matching example that will follow in this chapter, multiple history 

matched models are considered (that is the history matching loop is re-run several times 

with exactly the same input in each experiment) in order to a) study the variability of 

solutions where necessary and b) avoid outliers which may occur because of the 

stochastic nature of the optimization process (using the PSO algorithm). 

In the first experiment only the production data is matched. The data consists of oil and 

water rates for the wells P1, P6, P7 and P9. During the history matching, models are run 

under the historic liquid control which is read from the output of the reference model. In 

the same way the historic rates are maintained in the injectors. The history matching 

period is 01/08/1998-01/08/2002. The objective function consists of misfits of water 

and oil rates which accounts for the GOR dynamic (in particular in well P1) as well. 

Analogous to the previous chapter, errors are assumed uncorrelated. Due to the different 

levels of liquid rates in the four producers (see Figure 7.2) the misfit terms for different 

wells receive different actual weights. One way round this issue is forcefully balancing 

the terms but this is not done here for sake of ensuring the total field rates are matched 

as a priority. PSO algorithm is used for history matching with the following parameters: 

80 particles and 70 iterations in the case of 28-point scheme, and 80 particles and 85 

iterations in the case of 77-point scheme. Figure 7.6 shows the misfit functions for 5 
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best (with lowest misfit) history matching cases for each of the two schemes. These 

functions are obtained by sorting the misfits from all particles in the descending order.  

 

Figure 7.6. Misfit reduction with the number of models for a) 28-point scheme, b) 77-point scheme. 

Each plot shows 5 misfit functions. Models history matched to production data only. Some of the 

initial misfits were truncated. Misfit values from all the particles were sorted in the descending 

order. 

Figure 7.7 shows results of history matching using the production data including the 

predictions of 5 history matched models using the 28-point scheme (green and blue 

lines), same for 77-point scheme (green and blue lines), prediction of the starting (base) 

model (black lines), and predictions of the reference model as observed data (red lines). 

The starting model here is a copy of the reference model with all information regarding 

the variation of permeability erased, that is it has constant permeability (600 mD) across 

the entire reservoir and no other modifiers of transmissibility. The results of history 

matching (Figure 7.7) show that the two schemes allowed us to match the rates of the 

reference model equally well – their predictions mostly coincide with each other and 

with history. Notably, the match quality is worse (although remains good) in wells P7 

and P9. This is caused by the low proportion of production from these wells in the 



196 

 

overall produced volume which stresses lesser significance of these wells and causes 

lower weights in the objective function.  

 

 

Figure 7.7. Results of history matching to production data: oil and water rates predicted from the 

history matched models using 28-points and 77 points (green and blue lines for oil and water rates 

respectively), predictions of the starting (base) model (black lines) and predictions of the reference 

model (‘observed’ data, red lines). For each of the two schemes, predictions of 5 history matched 

models are shown. In this case, they mostly coincide with each other and with history. 
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Another difference between the wells is the nature of produced fluids which makes a 

difference for the history matching process. Mainly it is the absence of water cut in well 

P6 which means that this wells lack any production data control. Maps of time-lapse 

pressure and saturation differences for one realisation of the history matched model (not 

called ‘best’ because the models within the 5 chosen are close in match quality) are 

shown in Figure 7.8. 

 

Figure 7.8. Average maps of pressure and saturation differences between the values on 01/08/2002 

and on 01/08/1998 for a model history matched to production data using 28-point scheme: a) water 

saturation difference in T31a, b) pressure difference in T31a, c) gas saturation difference in T31a, 

d-f) same as (a)-(c) but for T31b.  

In the second experiment, we will compare the ability of the models parameterised with 

the 28- and 77-point schemes to match the 4D seismic map. PSO algorithm is used for 

history matching with the following parameters: 80 particles and 75 iterations in the 

case of 28-point scheme, and 80 particles and 90 iterations in the case of 77-point 

scheme. Figure 7.9 shows the misfit functions for 5 best (with lowest misfit) history 

matching cases for each of the two schemes. These functions are obtained by sorting the 

misfits from all particles in the descending order. 
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Figure 7.9. Misfit reduction with the number of models for a) 28-point scheme, b) 77-point scheme. 

Each plot shows 5 misfit functions. Models history matched to seismic data only. Some of the initial 

misfits were truncated. Misfit values from all the particles were sorted in the descending order. 

Figure 7.10 compares 4D seismic maps of the best 2 history matched models using the 

28- and 77-point schemes with the predictions of the reference and base models. The 

base case model is the same as the one used in the previous chapter. It has a uniform 

permeability across the reservoir equal to 600 mD hence its 4D seismic signal is 

conditioned mostly by NTG variation rather than a more complex flow pattern. 

Comparison of predictions of the best models with the base case and the reference 

predictions suggests that the history marching achieved its goals of fitting the reference 

seismic response with all its major features as well as the signal discontinuities 

replicated by model predictions. Higher resolution of the 77-point scheme allowed 

incorporating smaller details of the data and resulted in the lower misfit values as 

expected. Pressure and saturation time-lapse difference maps are shown in Figure 7.11. 

These indicate different state of pressure and saturation from the one in the production 

matched model. The different solutions by matching seismic and production data are 

discussed in the following sections. 
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Figure 7.10. Results of history matching to seismic data. Seismic predictions of two history matched 

models and the starting model are compared with ‘observed’ seismic map. 28- and 77-point 

schemes are used for history matching.  

 

Figure 7.11. Average maps of pressure and saturation differences between the values on 01/08/2002 

and on 01/08/1998 for a model history matched to seismic data (seismic map) using 28-point scheme: 

a) water saturation difference in T31a, b) pressure difference in T31a, c) gas saturation difference 

in T31a, d-f) same as (a)-(c) but for T31b.  
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Finally, Figure 7.12 compares permeability fields obtained as a result of history 

matching to production and seismic data using the two parameterisation schemes. The 

figure shows a model per parameterisation scheme (28- and 77- point) and per data type 

(the variety of solutions will be shown and discussed in the following sections). It is in 

the domain of permeabilities (input to simulation) where the different scales of the 28- 

and 77-point schemes can be directly observed, while in the domain of predicted data 

these are blended with the resolution of the rest of the model and simply result in 

different realisations rather than scales (for example, compare Figure 7.10c and Figure 

7.10d). Another difference is in solutions for matching different data types (production 

and seismic): pairs (a)-(c) and (b)-(d) of Figure 7.12. This difference is caused by the 

different nature of constraint by production and seismic data which is discussed in more 

details in the following section. 

 

Figure 7.12. Permeability distributions in layer T31a resulting from matching production and 

seismic data using 28- and 77-point parameterisation schemes. 
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7.3 Different nature of constraint by production and seismic data 

In this section, models history matched to production and seismic data will be compared 

in order to illustrate the difference of the constraint by these data types. In general, 

simulation models can be compared by their properties, such as permeability, and also 

by simulation results such as pressure and saturation distributions or specific predictions 

such as well rates and seismic responses. Comparison of models in these three domains 

provides different information about the simulation model. For example, the 

permeabilities are estimated in history matching in our case and therefore represent 

solutions for the history matching problem. For an ensemble of such solutions, we can 

study their variability by examining the permeability fields. The variability of solutions 

will indicate the strength of data constraint. The variability will also be different 

depending on how detailed the permeability solution itself is which is a function of the 

resolution of parameterisation. However, the goodness (goodness in terms of observed 

data match and predictive capability) of models cannot be assessed by examining the 

permeabilities only. The reason for it is that the permeabilities themselves are only 

(arbitrarily chosen) means for approximating a given model response. There are no 

‘reference’ or ‘true’ values for permeabilities, we only have a reference model response. 

Moreover, there is no direct equivalent to the estimated (via pilot points) permeabilities 

in the reference model which was intentionally parameterised with transmissibility 

regions (this point was also discussed in Chapter 6, end of section 6.2.2). In a real 

history matching case, solutions can be examined for compliance to some prior 

information (although it is generally more difficult to construct a prior for permeability 

than, for example, NTG because the connectivity in reservoir is always an uncertainty, 

see for example Govan et al, 2006). In our case however, no prior assumptions about 

the permeability are made in order to concentrate on the data constraint alone.  

In the first part of this section, we will study the variability of realisations of models 

history matched to seismic and production data and their predictions, and in the second 

part we will compare the models in terms of their pressure and saturation states.  

 

7.3.1 Variety of solutions for the problem of history matching production and 

seismic data 

In the previous section devoted to feasibility of history matching experiments two 

scenarios were created matching production and seismic data. Here we will discuss the 
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realisations of history matched models in those two scenarios in more details. The first 

scenario is matching production data only. 10 history matched models were considered 

in the previous section: 5 using the 28-point scheme, and 5 using the 77-point scheme. 

The misfit functions are shown in Figure 7.6, comparison of well rates of all 10 history 

matched models with the observed data and the base case are shown in Figure 7.7 (all 

10 predictions look indistinguishable here because they were all able to match the 

observed data), pressure and saturation maps of a single model realisation are shown in 

Figure 7.8. The solutions themselves – permeability distributions constrained by the 

well rates are shown in Figure 7.13. Figure 7.14 shows seismic maps predicted from 

these 10 (constrained by well rates) models. These seismic maps are given here in order 

to analyse the resulting models and were not used in any way during the history 

matching. The second scenario considered in the previous chapter was matching seismic 

maps. 10 history matched models are considered in this scenario too. The misfit 

functions are shown in Figure 7.9, and the pressure and saturation maps for a single 

model realisation are shown in Figure 7.11. Figure 7.15 shows seismic predictions of 

the 10 history matched models. In this case, these are the primary predictions used in 

history matching, hence they show good agreement with the observed map (see also 

Figure 7.3 for comparison). Figure 7.16 shows the range of solutions obtained in this 

scenario (matching seismic maps), corresponding to the predictions in the previous 

figure. Finally, Figure 7.17 shows predictions of well rates for best models matched to 

seismic maps using 28- and 77- point schemes (again, these predictions were not used in 

history matching as it is a seismic-only match in this scenario). 

Analysis of permeability solutions in Figure 7.13 suggests lack of spatial constraint by 

the production data. Specifically, one can note that the pattern of the permeability 

distribution (vividly presented in the 28-points case) changes significantly across the 

solutions. This is not the case for the models constrained by the seismic data (Figure 

7.16) where a stable pattern can be traced across the solutions. This suggests that the 

solutions constrained to production data rather have a common integral characteristic 

which defines mostly the time of water arrival and phase flows but does not make any 

distinction between the flow paths themselves. Consequently, we may expect to get a 

match of production data with a wider range of spatial distributions of properties than a 

seismic map would allow. Being able to match data and at the same time freedom in 

choosing the internal structure of the model is a reminder of the ‘black box’ notion in 

connection with simulation models. This stresses the importance of adequate 
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appreciation of what we can deduce based solely on data fit so that it does not trigger 

overly confidence in particular interpretations. 

Another observation is that we are finding 2 essentially different sets of solutions by 

matching production and seismic data: seismic maps from the first set of models 

(matched to production data, Figure 7.14) show similar with each other but different 

from the ones of the second set (matched to seismic data, Figure 7.15) predictions 

which is attributed to essentially different state of pressure and saturation distribution. 

For this reason, matching to seismic maps in the second experiment did not lead to any 

good (unconstrained) prediction of well rates (Figure 7.17). Permeability distributions 

are also different between the two sets of solutions as seen from Figure 7.13 and Figure 

7.16. These results illustrate the difference in constraints by seismic and production data 

as they essentially control different sides of model dynamics as mentioned in the 

beginning of this chapter. These differences, together with the approximate nature of 

models are prerequisites for difficulties in matching both data types at the same time. 

Experiments with combined datasets will be considered in the following sections. In our 

case what makes the model approximate is its parameterisation with which we can not 

reproduce what the reference model could predict despite the fact that the data are 

noise-free and the models are using exactly the same physics and assumptions. By 

changing the parameterisation methods, we effectively replaced the predictor itself – 

without needing to model any noise in data or even changing the model 

properties/realisations, the sets of possible realisations of pressure and saturation 

calculated by the reference and the variable models are different for any values of 

parameters.  
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Figure 7.13. Permeability distributions in layer T31a resulting from history matching production 

data using 28- and 77-point schemes.  
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Figure 7.14. 4D seismic attribute maps predicted by models corresponding to solutions in Figure 

7.13. Misfit figures shown on top the maps indicate their deviation from the reference seismic map. 

These are for monitoring purposes only and were not used in history matching in any way. 
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Figure 7.15. 4D seismic attribute maps predicted by models which were history matched to seismic 

data using 28- and 77-point schemes. 
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Figure 7.16. Permeability distributions in layer T31a resulting from history matching seismic data 

using 28- and 77-point schemes.  
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Figure 7.17. Comparison of well rates of base case model, reference model and best models history 

matched to seismic maps using 28- and 77-point schemes. 
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7.3.2 Constraints of data of different types 

The results of the two history matching scenarios above suggest that by matching to 

seismic and production data we had arrived at different states of pressure and saturation 

distribution because of different constraints by these data types. Let us now examine 

how these final states compare with the one of the reference model, that is how close we 

are getting to the reference solution by matching different data types. In this analysis, it 

is important to distinguish between the limitations of data (limited information content) 

and limitations of the history matching itself (the parameterisation makes the state of 

reference model unreachable). We will therefore consider an extra history matching 

scenarios where data have much greater information content. Such data is volumetric 

attributes. The remainder of this section is divided into two subsections. In the first 

subsection, several auxiliary history matching scenarios will be described using 

volumetric seismic attributes. In the second subsection, the resulting history matched 

models will be compared in terms of their pressure-saturation states.  

History matching scenarios with different data types  

In order to compare the constraints of different data types we will consider the 

following history matching scenarios: 1) matching production data, 2) matching seismic 

maps, 3) matching seismic traces, 4) matching predicted 4D impedance to the inverted 

one, and 5) matching predicted 4D impedance to the reference 4D impedance. Scenarios 

1 and 2 have already described so far, so here we will just use the best history matched 

models from the previous section. Matching the seismic traces in scenario 3 is a 

situation where the seismic data are compared in the domain of seismic traces (different 

domains for seismic data comparison are discussed in Literature review chapter, section 

3.4.3). This scenario provides more information for constraining the simulation model 

because the seismic traces cover the entire reservoir volume and therefore have greater 

resolution than the map-based attribute. The history matching with the seismic traces 

was carried out using the following PSO parameters: 80 particles and 75 iterations in 

the case of 28-point scheme, and 80 particles and 110 iterations in the case of 77-point 

scheme. Figure 7.18 shows the misfit functions for 5 best (with lowest misfit) history 

matching cases for each of the two schemes. These functions are obtained by sorting the 

misfits from all particles in the descending order. The values of misfit in scenario 3 

were scaled so that the minimum misfit is at the same level as the minimum misfit in 

scenario 2 where the seismic maps are matched. 
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Figure 7.18. Misfit reduction with the number of models for a) 28-point scheme, b) 77-point scheme. 

Each plot shows 5 misfit functions. Models history matched to seismic traces. Some of the initial 

misfits were truncated. Misfit values from all the particles were sorted in the descending order. 

History matching in scenario 4 uses 4D impedances as data. This is an example of 

situations where the seismic data are compared in the domain of petro-elastic properties, 

using a volumetric attribute. In this case, the observed data such as (4D) seismic traces 

are inverted for the (4D) impedance property which is then used as observed data in 

history matching. On the other hand, the predicted data in history matching are (4D) 

impedance properties predicted by each of the history matched models.  

In such a problem setting, the first step is obtaining the observed data which is the 

inversion process. The inversion is carried out following the same procedure as in the 

case of NTG inversion described in the section 6.3.2.2 of the previous chapter but using 

the 4D impedance as parameters (see also Methodology chapter, section 4.7.2) which 

were distributed in the model according to the index property shown in Figure 7.19. 
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Figure 7.19. Parameter index property. Different colours indicate parameter indices. 

The result of the inversion is an estimate of 4D impedance property which will be 

hereafter called the inverted 4D impedance. Figure 7.20 compares the inverted 4D 

impedance with the 4D impedance of the reference model. The two are compared here 

because it is the goal of an inversion to obtain an estimate of the ‘true’ impedance (in 

our case, the ‘true’ impedance is the one of the reference model). The comparison 

shows that the inverted impedance estimate is noisy and differs from the reference one 

in smaller details, but at the same time, the ‘events’ are repeated globally which means 

that they agree well on a level of lower frequency information. This is a result of narrow 

frequency band of the observed seismic data which does not bear information about 

those finer scale details, so they are left unconstrained. However, we will see further 

that the fine scale noise in the inverted impedance does not interfere with solutions of 

history matching. 

 

Figure 7.20. 4D impedance property: a) reference model, 3D view, b) cross-section along AA’ in (a), 

c) inverted from seismic response of the reference model, d) ross-section along AA’ in (c). 
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Finally, the scenario 5 is analogous to the scenario 4 in that the data are compared in the 

impedance domain. However, the scenario 5 is impossible in real history matching – it 

uses the reference (‘true’) impedance as observed data. The scenario is included here as 

a reference case of history matching using ideal data, that is the data of maximum 

resolution because it is a volumetric, and also not smoothed as the seismic traces and 

not distorted by the inversion noise as the inverted impedance. 

History matching in scenarios 4 and 5 was carried out using the same PSO settings as in 

scenario 3. The best models for these scenarios history matched using the 28- and 77-

point schemes are shown in Figure 7.21 and Figure 7.22. Visual inspection reveals 

minor differences between the predicted impedances and the reference one in Figure 

7.20a, especially for the case of 28-point scheme. The analysis in the following section 

will show that the differences are small and that they are due to the parameterisation 

itself rather than due to any data errors. 

 

Figure 7.21. 4D impedance property predicted by the history matched model: a) using 28-point 

scheme, 3D view, b) cross-section along AA’ in (a), c) using 77-point scheme, d) ross-section along 

AA’ in (c). History matching uses inverted impedance as observed data. 
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Figure 7.22. 4D impedance property predicted by the history matched model: a) using 28-point 

scheme, 3D view, b) cross-section along AA’ in (a), c) using 77-point scheme, d) ross-section along 

AA’ in (c). History matching uses reference impedance as observed data. 

Pressure-saturation states of models constrained by different data types 

In order to compare the pressure-saturation states of models (the pressure-saturation 

state here means the time-lapse (4D) change of pressure and saturation), one can 

consider calculating a misfit between pressures and saturations of the models. This leads 

to 3 misfits: water saturation, gas saturation and pressure misfits. In order to make the 

analysis more convenient, the three properties can be combined into a single property 

which would effectively characterise the pressure-saturation state. Given the 

specialisation of this work, the most relevant candidate is the 4D impedance which is 

controlled by changes in pressure and saturation. In general, combining three properties 

into a single property leads to loss of information, but in our case, this effect is 

negligible because realisations of simulated pressure and saturation changes are 

distinguished by spatial distributions of the changes rather than by magnitudes (in other 

words, it is highly unlikely that two simulation results would produce exactly the same 

distribution of impedance in the entire reservoir volume, but will be different in the 

underlying pressure and saturation values).  

The best models from the five history matching scenarios described above will be 

compared here with the reference model in terms of their pressure-saturation states as 

described above. In particular, the pressure-saturation states of the models will be 

represented by the 4D impedance property. The difference between the states of history 
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matched models and the state of the reference model is called here a misfit of state and 

is calculated as: 

                ∑(   
     

 ) 
 

   

 

(7.1) 

where N is the number of cells in 3D grid of the simulation model, ∆I
m
 is the 4D 

impedance of the history matched model, ∆I
r
 is the 4D impedance of the reference 

model, symbol ∆ in the last two quantities signifies that 4D impedance itself is 

calculated as a difference between pre-production (August 1998) and post-production 

(August 2002) impedances. 

As a reminder, the five history matching scenarios we are considering are: 1) matching 

production data, 2) matching seismic maps, 3) matching seismic traces, 4) matching 

inverted impedance, and 5) matching reference impedance. We could just consider the 

misfits of states for only the final models from these scenarios which would tell us 

which model comes closer to the reference one. It will be more informative though to 

calculate the misfits of states not only for the final history matched models but also for 

the entire ensemble of models that were generated by the PSO algorithm in the course 

of history matching in each scenario. This will give us 5 ensembles of misfits of states 

as shown in Figure 7.23 (only 77-point cases are shown).  
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Figure 7.23. Misfits of states of pressure and saturation represented by the states of 4D impedance 

for the ensembles of models generated during the history matching in 5 scenarios (indicated by 

numbers in boxes): 1) production match, 2) seismic map match, 3) seismic traces match, 4) inverted 

impedance match and 5) reference impedance match. The order of points corresponds to the 

descending order of the objective function values. Less points in the scenario 1 is caused by less 

runs required to match the production data in that scenario.  

The order of points in Figure 7.23 is determined by the order of models in the 5 

ensembles (for 5 scenarios) after ranking (sorting by data misfits, that is by the misfits 

used in history matching such as production data misfit, seismic map misfit and so on 

depending on scenario). As a result, the scatter plots in the figure illustrate how much 

closer the pressure-saturation state of the model gets to the state of the reference model 

as a model’s data misfit reduces. Another way of studying the correlation between the 

data misfits and the state misfits would be to cross-plot the two quantities for different 

scenarios. However, the plot in Figure 7.23 is a better solution because there are no 

data-specific misfits with all associated subjectivity in choosing the weights in it 

whatsoever. That is in all the scenarios we are dealing with the same quantity, misfit of 

state, so different scenarios are perfectly comparable. 

We can see in Figure 7.23 that the reduction of data misfit (that is going right along the 

x-axis) when matching production data in scenario 1 does not necessarily lead to the 
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reduction of the state misfit. As discussed before, the match of production data is 

possible at a wider range of spatial distributions of pressure and saturation because the 

production data does not place a significant spatial constraint (this also explains bad 

seismic predictions by the models matched to production data only, see Figure 7.14). As 

a result, the plot in the case 1 is scattered (production misfit and state misfits are less 

correlated) and converges to the highest value of the state misfit among all the scenarios. 

Next follows the plot for the case 2 where the models are matched to the seismic maps. 

We can see a significant difference with the case 1 in terms of the reduced scatter and 

lower final state misfit value. This is in line with the stronger spatial tie of the seismic 

constraint as discussed before (section 7.3.1). We can say that matching the seismic 

map does actually bring the pressure-saturation state of the model closer to the one of 

the reference model.  

However, the best convergence to the pressure-saturation state of the reference model is 

observed in scenarios 3-5 where the volumetric attributes are matched. This is explained 

by the fact that the volumetric attributes are the data effectively representing the 

pressure-saturation state itself. In scenario 5 they are even equal – the history matching 

is performed matching 4D impedance of the reference model which represents the state 

at the same time (in scenario 5, the state misfit equals the data misfit and the latter is 

sorted, therefore there is no scatter in the plot). In other words, in cases 3-5, we are 

matching ‘almost’ the pressure-saturation state itself, therefore the data misfits and the 

state misfits are correlated so well (low scatter, low final level). So if the data is perfect 

in the case 5, why do we not get a zero state misfit? The reason for this in our case is 

parameterisation. As discussed before, sparse pilot points cannot possibly reproduce the 

transmissibility field created in the reference model using the regions, therefore the 

pressure-saturation state of the reference model is unreachable (however, the pilot 

points did a good job in approximating it which makes our problem set up practical). In 

Figure 7.23, the level of the state misfit in the case 5 is called the parameterisation error. 

However, the same error causes the differences between the states in all the cases. 

Indeed, in an error-free model (synthetic situation), matching these data individually 

would lead to much more similar models as shown in Chapter 6 (section 6.3.2.1) where 

a close match of production data was achieved by matching the seismic maps given the 

parameters were the same as in the reference model. Therefore the spread of levels of 

the state misfits is a function of the parameterisation error.  
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One of the consequences of the difference between the state misfits in cases 2 and 3-5 is 

that matching the seismic map as close as possible leads to a pressure-saturation state 

different from the reference state. As long as the differences in the states are caused by 

the parameterisation as discussed above, we can say that the pressure-saturation state at 

which the model arrives when matched to the seismic map is optimal for minimizing the 

seismic map misfit rather than the state misfit. Let us now look at this point from the 

opposite side. What would the seismic maps look like for a pressure-saturation state that 

is actually close to the reference one, such as the state in the case 3? To answer this 

question, 4D seismic maps were generated for the best models history matched to 

seismic traces. These are shown in Figure 7.24 (all 10 history matched models (for both 

28- and 77-point schemes) are shown in this figure to stress the consistency in the 

seismic maps errors). The misfit figures shown on top of the maps are much higher than 

those for the case of matching the seismic map itself (see Figure 7.15).  
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Figure 7.24. 4D seismic attribute maps predicted by models which were history matched to seismic 

traces using 28- and 77-point schemes. 

Another conclusion can be drawn from the analysis of misfits of states in Figure 7.24 in 

the context of the question of the domain of seismic data comparison (see section 3.4.3 

in Literature review chapter). By comparing the misfits of states for the scenarios 3-5, 

we can say that these are very close which suggests that similar models are obtained by 

matching the seismic traces, the inverted impedance, and the reference impedance. This 

means that neither the scattered noise in the inverted impedance (see Figure 7.20, b) nor 

the band-limited nature (smoothing effect) of the seismic traces prevented the history 



219 

 

matching from finding the right realisation of the pressure and saturation distribution – 

almost the same realisation that is found by matching the error-free 4D impedance 

property (proxy for pressure-saturation state) itself. This suggests that in our case the 

controlling factor for finding the right pressure-saturation state in history matching has 

been the spatial distribution of 4D changes in the entire reservoir volume rather than 

local variation of 4D seismic signal. This in particular means that the history matching 

easily withstands scattered noise in the data as long as the low frequency component of 

the signal is right. On the other hand, the differences of states are significant in cases 1 

and 2. We attributed these to the parameterisation error which means that it is a stronger 

factor affecting the results of history matching than for example the scattered data error 

in the inverted impedance although the latter appears significant visually (see Figure 

7.20, b). This observation is in line with findings of Moore and Doherty, 2006 and Hunt 

et al, 2007 about the role of so called structural noise occurring due to the 

simplifications made to the model via its parameterisation (see Literature review chapter, 

section Choosing a parameterisation consistent with data resolution).  

Although the volumetric attributes were shown to constrain the simulation model 

efficiently, these will not be considered in the future sections in combination with the 

production data. The reason is that there are limitations of the volumetric attributes that 

have not been studies here. In particular, these can be sensitive to the spatial alignment 

of the predicted and observed data as discussed in Literature review (section 3.4.4). 

Studying these uncertainties is out of scope of this work. 

To sum up, in this section we demonstrated that well rates and seismic maps condition 

the simulation models at different levels. Production data is demanding for accurate 

phase rates but allows for different ways of achieving them in terms of spatial 

distribution of properties. As a result we may end up with distributions far from those 

found in the reference model. For the seismic map, it was shown that the close match of 

this attribute does not bring us closer to the reference pressure and saturation state. This 

is a prerequisite for potential overfitting effects when matching the details of the seismic 

map too closely.  

 

7.4 Integrating production and seismic data in history matching 

Combining seismic and production data into a single dataset for history matching aims 

to improve the predictive capability and hence utility and reliability of the resulting 
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models compared to the case with only the production data. With this goal in mind we 

are investigating better ways of incorporating seismic data into the models. 

Appropriately weighting the seismic term in the objective function is one of the most 

important considerations on this route, and this to date has not been systematically 

studied in publications in the context of seismic history matching, in particular there is 

no universal answer on how to balance the seismic and production terms in the 

objective function (as discussed in Literature review chapter, section 3.4.1). In general, 

error estimates serve as measures of importance of data but it is difficult to describe the 

errors accurately enough to assure the right balance between the production and seismic 

terms. For this reason, the seismic and production terms usually are balanced 

empirically by combining the two terms with certain weights which leads to a 

compromise in match quality of these two terms (match quality of both terms usually 

worsens when combined compared to matching them separately as discussed in the 

following sections). The relative weight figures can be varied to shift the accent to 

either seismic or production term. If for example, bigger weight is given to the 

production data then some of the details of the seismic map will not be matched. The 

weighting effect which leads to different quality of match of either seismic or 

production data as described above will be the basis for the analysis in the following 

chapters. Different weight values will allow us to match different levels of details in the 

seismic map. This variation is needed to understand at which level the details of the 

seismic data are important for constraining the flow characteristics of the simulation 

model. The resulting history matched models will be assessed in terms of the production 

forecasts. This analysis will also be related to the findings of the previous section where 

a limited efficiency of the constraint by the seismic maps was demonstrated.  

 

Important note regarding the misfits reported in the rest of the chapter. In the rest 

of this chapter, we will consider cases where seismic and production misfit terms are 

combined in the objective function. These are combined with certain weights so that the 

history matching results in a better match of either of the terms. However, absolutely 

every misfit value that will appear in the following text (including those appearing in 

figures, captions and everywhere else and no matter in what context) is calculated 

separately, without those extra balancing weights. That is it uses the same error-based 

weights as in the cases of matching production or seismic data separately discussed in 
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the previous sections. For this reason, all the misfit values reported in this chapter (and 

also in Chapter 6 since section 6.3) are comparable. 

  

7.4.1 Results of history matching with combined production and seismic data 

In this section, we will consider cases of (relatively) weaker and stronger seismic match 

in a combined dataset of well rates and seismic maps. The seismic and production terms 

are combined as follows. In the scenarios of matching the production data and seismic 

maps separately (section 7.3.1) we obtained models which characterise the best possible 

fits to these data types given our problem set up (algorithm and parameterisation). 

Based on the error figures of 100 bbl/day for the well rates and 40% of maximum 

amplitude of the seismic attribute, the misfits for production and seismic data were 

obtained at the following levels: around 1000 for the production data and around 60000 

(for 77-point scheme) for the seismic data. If the two terms are combined, then these 

levels cannot be achieved at the same time because generally different parameter values 

minimize the production and seismic misfits as discussed in the previous section. If the 

two terms are combined, then we have to choose which term should be matched better. 

It was observed that if the production misfit is increased to a value not exceeding 3000, 

then there is no visible distortion to the production match. On the other hand, if the 

seismic match is a priority, then weighting the terms such that the production match is 

at a level around 20000 allows achieving the level of seismic match similar to one in 

scenario 2 of the previous section (matching seismic maps only). At this level of seismic 

match, production match worsens (especially GOR), but remains reasonable in terms 

the water-cuts. As a result, we have two cases where match of either production or 

seismic data is prioritised. The first will be called a weak seismic match. In this case, 

the production data is matched stronger and the production misfit does not exceed the 

value of 3000 while the seismic match is unbounded. The second case is called a strong 

seismic match. In this case the level of seismic match is the same as in the case of 

matching seismic data only (misfit value around 60000 for 77-point scheme) while the 

production misfit is at a level of around 20000 (misfit in the final model, not affected by 

extra weighting). One extra case will be considered which is combining the seismic 

traces and the production data. In this case, the weights are adjusted as follows. The two 

terms, seismic traces misfit and production misfit are combined with such weights that 
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the production misfit is at the same level as in the strong seismic match case described 

above, that is at the level of around 3000.  

Figure 7.25 illustrates the relationship between the production and seismic misfits in the 

final models resulting from the two scenarios of matching production data and seismic 

maps described above (as in all previous cases, multiple runs were made, and 5 best 

models were selected for 28- and 77- point schemes, PSO parameters are following: 80 

particles and 90 iterations). Notably higher seismic misfits in the strong seismic case 

with 28-point scheme compared to those with 77-point scheme are explained by the 

lower flexibility of the 28-point scheme which prevents it from matching the seismic 

map better. This is in line with the results presented in Figure 7.15 where only seismic 

maps were matched: 28-point scheme resulted in higher misfits there.  

 

Figure 7.25. Production and seismic misfits for ‘weak seismic’ and ‘strong seismic’ history 

matching scenarios (see text for details) using 28- and 77-point schemes. Misfit figures are 

unaffected by any weighting. 

Figure 7.25 is a Pareto-type plot showing models that match production and seismic 

data at the same time to the maximum extent for any given balance between the terms. 

Based on the data fit only, we could say that all these models are equally good. 

However, we have seen in the previous section that matching different data types leads 

to different pressure-saturation states. This allows us to assume that the models will 
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perform differently in the forecasting period. In the following sections, these models 

will be compared in terms of their forecasts. 

 

Well rates + seismic maps: weak seismic match 

In this case the seismic and production terms are combined in such a way that the 

production misfit is at the level around 3000 while the seismic misfit is unbounded. The 

results of history matching to a combined dataset are shown in Figure 7.26 and Figure 

7.27. The black vertical line in the plots of Figure 7.26 indicates the end of the history 

matching period (August 2002). Figure 7.26 shows predictions of water and oil rates for 

wells P1 and P6. These two wells were chosen for the analysis due to their importance 

in terms of the volume of liquid they produce. Well P6 does not have useful information 

for constraining phase flows (water specifically) so its forecast relies on the seismic 

constraint only. This in fact can be seen in the results in Figure 7.26 and suggests that 

the seismic data cannot condition the rates to the same accuracy as the actual historic 

rates. Also, we can see that the forecasts of P6 are different between the two 

parameterisation schemes. In the 28-point case, the deviations of water rates in terms of 

the values and the shape of the curve are stronger than in 77-point case. This is in line 

with the argument made before about the roughness of the parameterisation function 

with fewer parameters, while 77-point point function is more responsive to shaping by 

the data control.  

Figure 7.27 shows the seismic maps predicted from the history matched models in this 

case. It is notable that these maps fail to match the reference map compared to the ones 

obtained by matching seismic data only (see Figure 7.15). The misfit figures shown on 

top of the maps are all higher (above 100k) than those in Figure 7.15 (60-80k depending 

on the scheme). The observed mismatch is due to the elements of seismic signal mostly 

of smaller scale. However, the high level 4D pattern is captured because the maps 

represent a significant improvement compared to the ones from the production-only 

case (see Figure 7.14).  
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Figure 7.26. Results of history matching using a combined dataset of well rates and seismic map 

with low weight of the seismic term. Shown are oil and water rates predicted from the history 

matched models (green and blue) and from the reference model (red). Vertical black line indicates 

the end of history matching period (01/08/2002). Wells P1 and P6 and 28- and 77-point schemes are 

shown. 
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Figure 7.27. 4D seismic attribute maps predicted from the same history matched models as in 

Figure 7.26. Misfit figures shown on top of each map represent deviations of those maps from the 

observed map – these are not the misfits driving the history matching. 
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Well rates + seismic maps: strong seismic match 

In this case the seismic map is matched as a priority in a combined dataset. The results 

of history matching are shown in Figure 7.28 and Figure 7.29. The black vertical line in 

plots of Figure 7.28 indicates the end of the history matching period (August 2002). The 

results show that the quality of seismic match is close to that achieved by matching 

seismic maps only (see Figure 7.15). The match of production data was maintained so 

that the water rate is matched while the match of GOR is somewhat relaxed which can 

be noted on the oil rate of P1 at the early stage of production (Figure 7.28). As 

discussed before, in this case the production misfit is around 20000. Recalling the 

analysis of different constraints by seismic and production data, we can conclude that 

this relatively uncompromised match of production data together with the maximum 

match of seismic maps (as good as when matching seismic only) has been possible 

because well rates can be matched with many possible spatial distributions of 

permeability, including those matching seismic maps (although they may be not optimal 

for the production-only match). Another observation is that at this level of seismic 

match we are able to see the difference between the 28- and 77-point schemes: 77-point 

final seismic maps have consistently lower misfit than the 28-point ones as 77-point 

function is easier to adjust to the data control. The difference did not show in the 

previous case (Figure 7.27) because the algorithm was not pursuing the level of details 

resolvable by the 77-point scheme. On the forecasts side, we can see that they became 

worse in the well P1 (Figure 7.28). The plots show that the water rate started to reflect 

the small, hard to reproduce details of the seismic map while following closely the 

observed data in the history period. 
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Figure 7.28. Same as Figure 7.26, but for matching a combined dataset of well rates and seismic 

map with high weight of the seismic term.  
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Figure 7.29. Same as Figure 7.27 but with high weight of the seismic term. 
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Well rates + seismic traces 

The seismic data in this case consists of cubes of seismic traces rather than seismic 

maps. The seismic cube actually is a cube of differenced traces because it is calculated 

by differencing the base- (August 1998) and monitor-survey (August 2002) seismic 

cubes. Because it is a volumetric attribute, we expect greater information content in the 

data and more effective constraint for simulation models. Moreover, as discussed before 

(section 7.3.2), this volumetric attribute effectively represents the pressure-saturation 

state of the model for which reason matching this attribute improves the similarity of 

model with the reference one. 

Figure 7.30 shows results of history matching using a combined dataset of well rates 

and seismic traces. The black vertical line in the figure indicates the end of the history 

matching period (August 2002). The well rates demonstrate good agreement with the 

reference model in the forecasting period for well P1. Also, the agreement is good for 

well P6 – a result we could not achieve by matching seismic maps (together with well 

rates) so far. These circumstances indicate an effective constraint by a combination of 

seismic data and well rates which resulted in good forecasts. However, the results will 

not be used to make conclusions about the volumetric attributes in the context of our 

study of useful scale of seismic signal, but will be applied differently. Specifically, 

since the resulting history matched models represent such good solutions (to the history 

matching problem) with that particular parameterisation, it is interesting to see what 

seismic response (in terms of seismic maps) is of a ‘good’ solution. Figure 7.31 shows 

seismic maps predicted by models which were history matched to a combined dataset of 

well rates and seismic traces. One can note that these match observed data only to a 

degree where it slightly matches the pattern of the observed map. From that we can 

conclude that the details in which these maps are different from the observed map 

measure the effect of our parameterisation error.  
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Figure 7.30. Same as Figure 7.26, but for matching a combined dataset of well rates and seismic 

traces. 
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Figure 7.31. Same as Figure 7.27, but for matching a combined dataset of well rates and seismic 

traces. 
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7.4.2 Honouring seismic data: what scale? 

In the previous section it was shown that matching both seismic and production data is 

limited by the approximate character of the simulation model, and in particular, its 

parameterisation. Theoretically, we can keep increasing the complexity of the model 

(resolution of the parameterisation in this case) to try to improve the match. 

Experiments so far have shown that it will be a more challenging task to improve the 

match of the seismic map out of the two data types. For example the results in Figure 

7.15 where the seismic map alone was matched show that we were able to match the 

major features and discontinuities, but there is a certain and quite prominent level of 

detail that is left unmatched. That is for that particular model with its parameters, we 

reached the limit in matching the seismic maps. Whereas the results of matching 

production data alone (Figure 7.7) does not seem to require any improvement. As it has 

been shown, this is because the constraint of the seismic map is much more spatial in 

nature than that of production data, so the mismatch is difficult to address with the pilot 

points at fixed locations. We may ask whether the better match of the seismic map 

needed at all, however? The key to answering this question is understanding the 

effective scale of the seismic signal carrying useful information for simulation model, 

with all the smaller details being specific to the source of that data (history matched 

model on one hand and the reference model or the real Earth on the other hand). If due 

to the incompatibility of such sources of data a special effort is required to fit the 

seismic map better, then we have a reason to assume that this special effort may even 

harm the predictive capability of the estimated model due to overfitting.  

Figure 7.32 and Figure 7.33 use the results of previous sections to illustrate the point. 

The black vertical lines in these figures indicate the end of the history matching period 

(August 2002). Starting with models matched to production data only in sections (a) of 

both figures, we are increasing the amount of seismic information being incorporated 

into the simulation model as we go down to (b) and (c). Sections (a) and (c) show 

(relative) extremes in matching individual data types. Looking at the forecasts of water 

rates by well P1 we can conclude that too much of either data type reduces their quality 

because when data are overfitted the resulting parameter estimates become too specific 

to the calibration dataset (that is the model estimates loose generality). Case (b) on the 

other hand demonstrates the best forecasts as it is constrained by well rates and only the 

high level seismic signal. The role of seismic data at the scale utilised in case (b) clearly 
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rules out realisations of the permeability field that are too data-specific, mainly those 

obtained by matching production data only (see Figure 7.13).  

Our priority was to match production and seismic data in order to obtain plausible 

forecasts. In particular, case (b) can be viewed as matched to production data, with only 

a ‘touch’ of seismic information expressed in a high level match of the seismic map 

pattern. The result gives an answer to the question about the role of seismic details in 

describing fluid flow in reservoir. The seismic map contributes constructively by 

compensating for too liberal spatial constraint of well rates (well rates in fact do not 

care much about spatial distributions), but no more. Specifically, we should not attempt 

to reproduce the seismic map as it looks by means of redirecting flows in the model 

because both the model and the seismic map are imperfect. Imperfection of the model in 

our case is caused by the chosen parameterisation which makes the model predictions 

generally not compatible with those of the reference model as discussed before. The 

imperfection of the 4D seismic map is caused by the complex relationship between the 

values of this seismic attribute and the underlying changes in reservoir impedance as 

discussed in Chapter 5. As a result, 4D seismic map attribute has limited ability to track 

the pressure and saturation state of the reservoir as shown in the previous section (7.3.2). 

And vice versa, whenever the pressure-saturation state was constrained by the 

volumetric attributes, the corresponding predictions of the 4D seismic map attribute did 

not match the reference map (see Figure 7.24 and Figure 7.31) which suggests that the 

‘best by seismic map’ model and the ‘best constrained by the pressure-saturation state’ 

model in general are different. 

Regarding the resolution of parameterisation, we can say that with 28- and 77-point 

schemes, the production data were matched equally well. As long as the seismic data is 

more demanding for the spatial resolution of the model, 77-point scheme demonstrated 

a clear advantage in matching the seismic maps with lower misfits (see Figure 7.15). At 

the same time, in the scenarios where the seismic data are matched together with 

production data (‘weak seismic’ and seismic traces+production – good forecast 

scenarios), the resulting seismic maps show similar level of match for both schemes 

(see Figure 7.27 and Figure 7.31). This suggests that the extra resolution of the 77-point 

scheme is not utilised in those cases where the pressure-saturation states satisfy the 

common constraint of the production data and the high level pattern of the seismic data. 
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Figure 7.32. Predicted and observed seismic maps and well rates for the following history matching 

scenarios: a) matching production data only, b) matching combined dataset of well rates and 

seismic map with low weight of seismic data, c) as (b) but with high weight of seismic data. Liquid 

rate plots show predictions of oil and water rates of well P1 for a series of history matched models 

in each scenario, annotations are the same as in Figure 7.26. History matching uses 28-point scheme. 
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Figure 7.33. Same as Figure 7.32 but using 77-point scheme. 
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7.5 Conclusions 

The focus of this chapter is integration of 4D seismic data into the history matching 

process so that it improves the forecasts of the simulation model. The integration of 4D 

seismic is complicated by difficulties in matching seismic and production data at the 

same time: we have to compromise the overall quality of match in order to honour both 

pieces of data. This is related to the limitations of the model itself, as well as the noise 

in data. In the example considered in this work, the major limiting factor was caused by 

the parameterisation which was specifically chosen to prevent the history matched 

models to match the response of the reference model precisely. In these conditions, we 

were able to reveal the limited ability of the 4D seismic map attribute to track the 

pressure-saturation state of the reservoir in the context of history matching. The smaller 

details in the seismic maps were found to be too specific to the process that generated 

that map. As a result, fitting the seismic map in details does not provide a constructive 

constraint for the simulation model.  

These results have important implications both for the process of history matching and 

for sourcing 4D seismic data intended solely for seismic history matching. An engineer 

needs to be aware that the amount of details in the seismic data is dictated by the 

limiting factor of the models themselves. The characteristic scale of seismic anomalies 

matched in the experiment of this work suggests that the controlling effect of the 

seismic data was achieved rather at the field-level pattern. This raises questions about 

usefulness of models wholly conditioned by a single smaller anomaly of 4D seismic 

data: no matter how good the match is, it can well fall within a definition of modelling 

artefacts. On the other hand, a close replica of observed seismic map presented as a 

result of history matching may indicate excessive match and higher chance of overfitted 

models.  

It was shown that the resolution of the 77-point scheme is not utilised fully when the 

model is matched to seismic and production data simultaneously because a common 

solution for these two constraints does not include the smaller details of the seismic map.  

It was also shown that uncorrelated noise present in the inverted impedance does not 

affect the history matching because the realisations of the pressure and saturation state 

produced by the simulation model are constrained by low frequency 4D signal, that is 

by high level (larger scale) pattern, rather than by local variations of the signal. Similar 

history matching results were achieved by matching the seismic traces and also by 
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matching the precise impedance. This suggests that the characteristic scale of the 

seismic signal that constrains the simulation realisations was larger than the resolution 

of the seismic traces in our case. 
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Chapter 8. Conclusions and recommendations 

 

This work is devoted to the integration of 4D seismic data within the history matching 

studies. In particular, the focus is on the relationship between the scale of seismic 

details, model resolution and complexity and flexibility of model parameterisation.  

The next section summarizes the main conclusions of this work. These are based on the 

following studies as described in this thesis. The seismic response study of Chapter 5 is 

carried out on a number of models with varying geometry and distributions of properties, 

static and dynamic. Also, scenarios of hydrocarbon displacement were considered using 

the template models of the Schiehallion reservoir. The study resulted in the conclusions 

about the relationship between the seismic attributes and the underlying changes in the 

reservoir which ultimately define the detectability of the production-related effects in 

4D seismic data. Chapter 6 is devoted to the parameterisation of the history matched 

models. The study is based on history matching experiments with the template models 

parameterised using the geobodies and the pilot points. By testing the schemes with 

different types and numbers of parameters, the conclusions about the effect of the 

parameterisation bias were made. The study of Chapter 7 utilises history matching 

experiments where the production and seismic data are combined. The central idea 

pursued in this study is understanding the balance between the production and seismic 

terms. The models obtained by varying this balance were compared by their predicting 

capability. The study also allowed making conclusions about the scale of the seismic 

details informative of the flow regime based on the results of history matching using 

different seismic attributes. Comparing the results in the domains of solutions 

(permeability), pressure-saturation states and the predictions resulted in the conclusions 

about the relative importance of the parameterisation bias and the noise in data. 

 

 

8.1 Main conclusions and recommendations 

1. The relationship between the values of the map-based 4D seismic attributes and 

the underlying changes in impedance is complex. It is affected by the 

interference between the signals from different reflectors within the target 

reservoir interval as well as outside of it. Constructive and destructive 
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interference effects distort the signal and reduce the detectability of pressure and 

saturation changes. The first order average of seismic amplitude (after coloured 

inversion) correlates best with impedance for the cases studied in this work. 

2. Estimates of the relative impedance which result from the coloured inversion 

process agree very well with the band-limited version of the true impedance 

which makes them a useful measure of the relative impedance. On the other 

hand, the inverted impedance obtained using the model-based inversion is not 

constrained in frequencies outside of the seismic frequency band (10-80 Hz). In 

the absence of any informative prior, the information in this part of the spectrum 

(especially the high frequency component) is noisy. Despite this fact, it was 

found that high frequency variations of the impedance (when used as history 

data) do not affect the results of history matching which in turn are constrained 

by the larger scale signal. This explains another finding that the model estimates 

obtained by matching the inverted impedance are similar to those obtained by 

another volumetric attribute, seismic traces. This also indicates that only the 

information common for the data in these two domains (seismic domain and 

impedance domain) is important for history matching. In other words, localized 

data errors (resulting from the inversion) do not affect the results of history 

matching when the data is matched on a larger scale spatial pattern. Similar 

history matching results obtained by matching the precise 4D impedance (proxy 

for pressure and saturation state) finally suggest that the information actually 

constraining the simulation models (within the scope of the studied examples) 

has a scale equal to or larger than the seismic resolution. Importance of smaller 

details in seismic data is also reduced when solutions to history matching are 

found by fitting both seismic and production data at the same time which is 

further explained in the following clauses. The practical implication is that we 

should aim to constrain larger scale patterns such as water floods with 4D signal 

rather than individual smaller anomalies which may well be artefacts of data. 

Also, any special processing aimed at restoring smaller details in the seismic 

data such as the inversion may not provide a benefit for the history matching as 

explained above.  

3. In the solution domain (that is in the domain of permeabilities), the permeability 

fields estimated by matching production data demonstrate high spatial variability 

whereas the permeability fields constrained by the seismic data are more 

spatially correlated with each other. Stronger spatial tie of the seismic data is 
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explained by the fact that the seismic response is controlled by the spatial 

distribution of pressure and saturation rather than by their evolution directly. 

The production data on the other hand is controlled by an integral characteristic 

of the reservoir which ensures correct phase flows but does not make any 

preference in terms of which path the flow will take. This difference in 

constraints in particular means that the production match (of phase flow rates) is 

possible with a wider range of spatial permeability distributions than the seismic 

match. The implication of this conclusion is that models estimated purely on 

production data constraint should be treated as realisations of well predictors 

rather than estimates of spatial distribution of permeability (production data do 

not constrain the latter).  

4. In the domain of pressure-saturation states, matching to production data, seismic 

maps and volumetric attributes result in different states (different models) (see 

Figure 7.23 in Chapter 7). In particular, matching volumetric attributes leads to 

the states closest to the reference ones (parameterisation did not allow for a 

closer match as explained in the following clauses). On the other hand, matching 

to production data does not bring the state of the model close to the reference 

one which suggests that the production data is the poorest (among the studied 

data types) indicator of the pressure-saturation state. Although matching to 

seismic maps does bring the state of the model closer to the reference state, the 

result is worse than when matching the volumetric types. This is an important 

observation which has implications on joint history matching to production and 

seismic map as explained below. 

5. It was found that combining the seismic map and production data in a way 

where only the high level details of the seismic map are matched provides the 

best constraint for the simulation model in terms of its future forecasts. In 

contrast, matching smaller details of the seismic map harms the predictive 

capability of the simulation model because in that case the solution becomes too 

specific to those details. This finding questions the notion of the good match of 

4D seismic data in seismic history matching studies often equated to the best 

match possible. Optimal combinations of production and seismic match were 

found with a significant level of details unmatched which would seem 

unacceptable if judged only visually. 

6. 77-point parameterisation demonstrates (within the scope of the studied 

examples) clearly higher flexibility in matching the seismic data (production 
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data do not require high flexibility) which is expressed by lower misfits. 

However, the extra resolution of the 77-point scheme (compared to the 28-point 

scheme) is not utilised when matching seismic (only high level pattern, without 

details) and production data simultaneously. This is explained by the fact that 

the pressure-saturation state that is common for production and seismic 

constraints is characterised by larger scale (lower frequency) signal which does 

not require too much of model flexibility. This finding suggests that the choice 

of parameterisation should not be made with the aim of matching smaller details 

of the seismic data but only the larger scale pattern.  

7. Although the previous clause suggested that too high resolution of the 

parameterisation can be superfluous, using too few parameters is also a bad 

option as it may lead to a significant bias in parameter estimates. It was shown 

that too few parameters lead to over-determined models where the uniqueness is 

not supported by data constraint but rather is a result of imposing some prior 

information. This prior information in general is not compatible with the 

calibration data but is fixed in history matching for which reason it produces 

bias. The bias is a function of not only the number of parameters but also of the 

parameterisation itself. For example, two parameterisations, pilot points and 

geobodies, both with 28 parameters (as it was shown) result in different amount 

of bias. In particular, the bias from the pilot points is weaker because the 

parameterisation itself is more neutral in terms of the prior information, whereas 

the geobodies-based parameterisation creates structural noise due to the 

information (prior structure) about the geometry of the geobodies. It is therefore 

recommended to use generally more parameters to minimize the bias from the 

fixed prior information.  

8. Closeness of the history matching results for the data types different only in 

local variation (noise in data, see clause 2) and non-achievable state of the 

reference model due to the parameterisation suggest that the structural noise 

(that is our choices in parameterisation) affect the results of history matching 

stronger than noise in data. 

9. The PSO algorithm is easy to implement and control. However, the convergence 

is found to be very sensitive to the values of its two parameters (c1 and c2) so 

testing of the algorithm with a problem specific objective function is 

recommended prior to the actual history matching. Best results in terms of the 

final misfit value were achieved with the ‘circle’ topology of PSO. In the case of 
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matching production data, the objective function is of simpler shape and the 

convergence is faster. When matching the seismic maps, convergence is slower 

as the case is more difficult. The most difficult case is matching production and 

seismic data simultaneously where the convergence is slowest. 

 

In the introduction to this thesis, a scheme of history matching was presented (see 

Figure 1.1) which illustrates the standard approach to history matching (in an automatic 

stochastic implementation), and the areas of interest for this research were defined. 

Figure 8.1 below shows an updated version of the scheme where answers are given 

within the limited scope of this work to the questions of parameterisation and balancing 

the production and seismic terms when integrating 4D seismic data within the reservoir 

models. In the part of parameterisation, the correct balance between the prior structure 

(part of the model defined deterministically based on knowledge from sources other 

than the calibration data, for example, the geobodies) and the flexibility of the model 

(number and scale of parameters) which defines the effective parameterisation 

resolution was found to be the key to the optimal assimilation of the information from 

the calibration data. In the context of matching 4D seismic data, the requirement for the 

spatial resolution of the parameterisation is stricter due to the spatial nature of the 

seismic constraint. In particular, the prior structure imposed by any deterministic 

inclusions (implementing geological concepts), although dense in valuable information, 

requires thorough compensation in the part of parameterisation resolution. In what 

concerns the comparison of predicted and observed data and balancing the production 

and seismic terms, the seismic constraint was found to be effective on the large scale 

pattern level. This in particular accounts for seismic modelling errors and those of the 

entire model (prior structure!) which have strong effect on local signal variation, but as 

mentioned, taking the signal globally allows extracting the common part which 

effectively constrains the flow. 
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Figure 8.1. Scheme of history matching for an iterative parameter estimation formulation using 

multiple-model approach such as a stochastic automatic history matching. Dashed red rectangles 

indicate the parts of the workflow on which the present work focusses, contributions of this work 

are placed in the black blocks.  

The analysis leads to many new questions which require both studying the subject of the 

seismic history matching further and testing the conclusions of this work on a wider 

range of scenarios. If the seismic signal is found to constrain the flow on a certain scale, 

then to what situations in terms of the reservoir size, data noise level is it applicable? In 

which cases do pressure-saturation distributions actually define economically 

significant forecasts, or when does the pressure-saturation state have control on model 

prediction? Is there anomaly dominance in the constraining ability of the seismic 

attributes (that is when a certain anomaly defines much of the reservoir simulation 

outcome – unfavourable situation because the anomaly-scale seismic signal was shown 
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to be more susceptible to noise than the larger pattern scale signal)? What is the 

constraining ability of volumetric seismic attributes in a real situation with noisy data? 

 

 

8.2 Limitations and future work recommendations 

1. History data used in this work were generated from the synthetic reference 

models. As discussed before this provided a controllable environment for the 

experiments but at the same time it is a limitation for the scope of this study. In 

order to demonstrate the repeatability of the results, similar studies need to be 

conducted with a wider range of models including the input parameters such as 

the petro-elastic properties. Also, the results need to be tested in the context of 

real data uncertainties using the models constrained by the real observed data. 

2. Mostly the particular case of the previous clause, but an important consideration 

about the rock physics properties assumed in the study. In this case them 

template was the Schiehallion field where the bubble point was high which gave 

plenty of gas effects in the 4D signature. Also, the water in oil was highly 

detectable which allowed us constraining the future model forecasts based on 

water flood monitoring. However, the conclusions about the constraining ability 

of the 4D seismic attributes may change when different petro-physical input is 

used. 

3. Seismic modelling is based on 1D convolutional model which is known to be an 

approximate method. This did not cause any problems in this study because the 

observed data were generated with exactly the same methods. However, the 

modelling error due to the seismic modelling method needs to be tested with real 

data. 

4. Flexibility of parameterisations was tested using only two parameterisations, 28 

and 77 pilot points. Other parameterisation options need to be tested in order to 

understand how prior-dependent and prior-independent parameterisations affect 

the predictive capability of the history matched models. 
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