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Abstract

This thesis is dedicated to femtosecond combs as a tool for optical frequency metrology

and as an integral part of an optical clock. After an overview of optical frequency

measurement techniques, the design of two frequency combs based on mode-locked

femtosecond lasers as they were at the beginning of my project is described. The first

comb is based on an Er:fibre laser operating at a central wavelength of 1550 nm with

a repetition rate of 100 MHz. The second is a Ti:sapphire-laser-based comb operating

at a central wavelength of 810 nm with a repetition rate of 87 MHz.

Improvements to the original design of the Ti:sapphire comb are detailed in the next

chapter. A novel f -to-2f self-referencing scheme based on a pair of Wollaston prisms

and employing a PPKTP crystal for SHG results in up to 20 dB enhancement of the

signal to noise ratio in the carrier-envelope offset frequency beat signal f0 and in up to

15 dB lower phase noise in the f0 beat signal compared to a Michelson interferometer

based system.

Next, the factors influencing the stability and accuracy of the microwave reference sig-

nal and the performance of two synthesisers used for the stabilisation of the frequency

combs were investigated. It is shown that stability of the maser reference signal is

reduced by the distribution system by factor of 1.5. A fractional frequency change

of 4.1(0.7) × 10−16 (K/h)−1 was measured for the better of the two synthesisers

(an IFR 2023A) indicating that for accurate frequency measurements the synthesiser

signal should be monitored to enable systematic frequency corrections to be made.

Finally, an absolute frequency measurement of the electric quadrupole clock transition

in a frequency standard based on a single 171Yb+ trapped ion is described. The result

f = 688 358 979 309 310 ± 9 Hz agrees with an independent measurement made by

the PTB group within the uncertainty of the measurements.
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Chapter 1

Introduction

In the modern world the accurate measurement of time and frequency is vital to

the success of many fields of science and technology. In order to compare results

obtained at different times and locations, a common basis for frequency measurements

is needed. This is provided by frequency standards, which are capable of producing

particular frequencies with a given accuracy and form an important component of

clocks. The current primary time and frequency standard is based on the ground

state hyperfine transition in the 133Cs atom, which occurs at a microwave frequency

of approximately 9.2 GHz.

The stability and accuracy of an atomic frequency standard are related to the ratio of

the reference transition frequency to its linewidth. Optical frequencies are five orders

of magnitude higher than microwave frequencies, while linewidth-limiting processes in

the two domains are similar. Frequency standards based on transitions in the optical

spectral region therefore have the potential to achieve stability and accuracy much

higher than microwave standards. State-of-the-art optical frequency standards based

on narrow transitions in cold atoms and ions show good accuracy, reproducibility

and frequency stability at the level of a few parts in 1015/
√
τ [1, 2, 3]. At present,

the accuracy of absolute frequency measurements of optical standards is limited to

a few parts in 1016 by the accuracy of caesium primary frequency standards but
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reproducibilities of 10−18 could be achieved [4].

The use of optical frequency standards until recently was complicated by the diffi-

culties of measuring high frequencies, because an absolute measurement of frequency

must be based on the microwave primary frequency standard and therefore required

a complex clockwork to connect optical frequencies to those in the microwave region.

Now the femtosecond frequency comb produces an optical spectrum a few hundred

terahertz wide consisting of distinct lines with well-defined separation of the order of

hundreds of megahertz. This comb of frequencies can be used as a precise frequency

ruler for measurements of an arbitrary optical frequency by heterodyning the optical

frequency with the nearest comb line. The resulting beat signal is in the radio fre-

quency (RF) spectral region, and so can easily be compared to the primary frequency

standard.

There are many examples of the application of optical frequency standards and clocks

in fundamental physics, atomic spectroscopy, astronomy and other areas of modern

science [5, 6, 7, 8]. In metrology, apart from applications in clocks and maintenance

of time scales, frequency standards are vital in establishing standards for a number

of other physical quantities. Since frequency is the quantity which can be measured

with the highest degree of accuracy, other physical quantities can often be determined

with improved precision if they can be traced back to a frequency measurement. For

example, the unit of length is derived from the distance that an electromagnetic wave

travels in vacuum during a specified period of time [9]. Furthermore, there are many

more ordinary applications of accurate clocks such as satellite-based navigation, man-

agement of electric power networks and telecommunication networks, which require

synchronization of local timing sources with accepted national or international stan-

dards.

The quest for more precise time keeping and a potential redefinition of the second [2]

is ongoing. A frequency comb is the enabling mechanism, the clockwork for the next

generation of clocks – optical clocks. In line with continuous improvements to the
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accuracy of optical frequency standards, it is vital to ensure that the contribution of

the frequency combs to the inaccuracy of the measured frequency remains negligible.

This thesis is dedicated to the frequency combs as an integral part of an optical clock

and an ultimate tool for optical frequency metrology.

The history of optical frequency measurement techniques and the principles of opera-

tion of femtosecond mode-locked laser-based frequency combs are given in Chapter 2,

followed by a discussion of various comb designs and one of the applications of fre-

quency combs – optical clocks.

In Chapter 3 the design of the two NPL frequency combs used for the research pre-

sented in this thesis – the low repetition rate Ti:Sapphire comb and the transportable

fibre comb – as they were at the beginning of my project is described in detail.

Improvements made to the original design of the low repetition rate Ti:Sapphire laser

based comb, mainly focused on the f -to-2f self referencing system, are detailed in

Chapter 4. Initially, the theory of second harmonic generation in two types of non

linear crystals is given and it is shown that the conversion efficiency is higher for one

of these types, which could give better signal to noise ratio in a beat signal generated

from the second harmonic. This is then demonstrated experimentally. A novel design

of self-referencing scheme is then described and its performance is compared to the

performance of a more conventional self-referencing scheme. The new system [10] is

based on a common-path interferometer for group velocity dispersion compensation,

using the difference in the group velocities of orthogonally polarised light in a Wollas-

ton prism. The main advantage of the common-path interferometer over commonly

used interferometers such as Mach-Zehnder or Michelson interferometers, is that all

spectral components travel along the same optical path, resulting in common-mode

acoustic noise rejection. It is experimentally demonstrated that the use of the Wol-

laston prism based interferometer provides up to 15 dB lower phase noise compared

to a Michelson interferometer. Furthermore, a compact setup based on a single Wol-

laston prism and a concave mirror is also described, which reduces the size of the
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self-referencing system and brings further improvement to the signal to noise ratio

(SNR) in the beat signal.

In Chapter 5 one of the sources of systematic uncertainties and instabilities (the

microwave reference frequency) affecting the results of frequency measurements per-

formed with the frequency combs is described. Firstly, various sources of microwave

frequency signal are described and the limitations to the stability and accuracy of

the reference signal provided by these sources are analysed. Next, the degradation

of the signal from a hydrogen maser delivered into the combs laboratory is analysed,

considering the effects of distribution amplifiers as well as the quality of the signal

produced by two types of synthesisers referenced to the maser signal from the last

distribution amplifier. Finally, the impact of temperature variations on the accuracy

of the frequency signal produced by maser-referenced synthesisers is analysed.

Chapter 6 describes an absolute frequency measurement of the electric quadrupole

clock transition at 436 nm in a frequency standard based on a single 171Yb+ trapped

ion, performed using the transportable fibre laser-based comb [11]. Initially, a de-

scription of the 171Yb+ optical frequency standard is given followed by a description

of the arrangement of the experiment. Next, the data processing is detailed including

the analysis of the measured frequency of the clock transition and the calibration

of the reference signal used during the measurements. Finally, the frequency of the

clock transition is calculated including an estimate of its uncertainty, and this result

is compared to that obtained for the same transition measured by another group [12]

showing good agreement within the uncertainty of the measurements.

Results of the work described in this thesis and proposed future work are summarised

in Chapter 7. Some of these improvements have been already implemented at NPL

during the time passed since the work described in this thesis was finished, and have

demonstrated that the comb’s contribution to the total uncertainty of the measured

frequency of an optical frequency standard is negligible compared to the uncertainty

due to the systematic frequency shifts of the transition frequency itself.
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Chapter 2

Introduction to frequency combs

This chapter gives an overview of the background material referred to in subsequent

chapters of this thesis. Firstly, the definition of the SI unit of time, timescales and

timekeeping, and the concept of a frequency standard as part of an atomic clock

are discussed. Next, a historical overview of optical frequency measurement tech-

niques is presented and a modern method employing femtosecond frequency combs

is described. The principles of operation and basic design concepts of a femtosec-

ond combs are presented, together with an overview of various laser sources used

for comb generation. Finally, optical clocks as one of the applications of frequency

combs are reviewed. The concept of an atomic frequency standard, the methods of

characterising clock performance and various atomic references and examples of the

best performance achieved are described. Lastly, the comparison of frequency combs

is presented, showing that the performance of the optical clock is not limited by the

frequency comb performance.
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2.1 Time, frequency and clocks

2.1.1 Definition of time and frequency

The unit of time interval, the second, is one of the base units of the International

System of Units (SI). In 1967 the 13th General Conference for Weights and Measures

(CGPM) defined the second as follows: “The second is the duration of 9 192 631 770

periods of the radiation corresponding to the transition between the two hyperfine

levels of the ground state of the caesium 133 atom” [13]. Based on this definition

the unit of frequency, the hertz, representing the number of cycles in one second is

defined.

2.1.2 Timescales and time keeping

The oldest function of clocks is timekeeping. One of the applications of precise time-

keeping is celestial navigation, which requires accurate knowledge of the Earth’s rota-

tion angle or mean solar time. One of the time scales currently used is Universal Time

(UT1) – an astronomical time scale based on the mean solar day, which is defined to

consist of 86400 seconds [14]. However, due to irregularities in the Earth’s rotation,

UT1 is not uniform.

The present definition of the SI second allows an atomic time scale to be formed –

International Atomic Time (TAI). The International Bureau of Weights and Mea-

sures (BIPM) calculate International Atomic Time (TAI) retrospectively from data

provided by about 69 national timing laboratories around the world. Each laboratory

reports the time differences between each of its clocks and its local timescale, des-

ignated UTC(lab). To make it possible to compare data from different laboratories,

each laboratory also provides the time differences between UTC(lab) and GPS time,

measured using an algorithm defined by the BIPM and at times specified in the BIPM

tracking schedules. BIPM calculates the weighted average of these data to derive the
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free atomic timescale (EAL). The duration of the scale interval of EAL calculated in

this way is compared to the data from caesium primary frequency standards and if

necessary corrected to bring it as close as possible to the SI second realised by these

primary standards. The resulting steered timescale is TAI.

Unfortunately the length of the day defined as 86400 TAI seconds is shorter than

astronomical day defined using UT1. Given that astronomical navigation as well as

everyday life is regulated by the rotation of the Earth, another atomic time scale

called Universal Coordinated Time (UTC) was introduced in 1972. The scale interval

of UTC is the same as that of TAI and the difference between UTC and astronomical

time is removed by the occasional insertion of leap seconds into UTC. These leap

seconds are inserted in such a way that the absolute magnitude of the difference

between UTC and UT1 is always less than 0.9 s.

The deviation of local time scales UTC(lab) from UTC is calculated by BIPM from

the data supplied by each laboratory and distributed in a monthly bulletin called

“Circular T”. The data in “Circular T” can be used for subsequent corrections of the

local time scale used in real time during frequency measurements.

2.1.3 Clocks and frequency standards

Every clock consists of two principal components: an oscillator which produces the

“ticks” of the clock and a clockwork used to generate a usable signal for reading

and displaying this readout. In an atomic clock the clock “ticks” are provided by a

frequency standard, comprised of an oscillator providing a periodic signal of a given

frequency and an atomic resonance which is used to control the frequency of the

oscillator. In an optical clock, a frequency comb based on a femtosecond mode-locked

laser is used as the clockwork to facilitate translation of the frequency signal provided

by a precision optical oscillator into the microwave frequency domain.

Frequency standards can be divided into two groups: active and passive [15]. Active

7



frequency standards are based on a collection of excited oscillators producing a signal

at a frequency specified by the properties of the atoms. Usually a fraction of the

emitted signal is used to stimulate the emission of other excited atoms leading to a

highly coherent output signal, for example in gas lasers or hydrogen masers (discussed

in Section 5.1.2).

In contrast to active standards, passive standards are based on devices or materials

sensitive to particular frequencies. Such references can be based on macroscopic de-

vices such as resonators or microscopic systems such as atoms. The interrogation of

an atomic reference by an oscillator produces an absorption line with a minimum at

the resonance frequency ν0. A servo signal generated from the absorption signal is

fed back to the oscillator to tune its frequency as close as possible to the frequency

ν0 of the reference. When the servo loop is closed, the oscillator frequency is locked

to the reference frequency ν0 and the system can be used as a frequency standard.

Amongst all frequency standards, primary frequency standards based on Cs atoms

have a special place because they are used to realise the SI second. There are several

configurations of Cs atomic clocks, but the most accurate primary frequency standards

are realised using laser cooled atoms in a fountain configuration as discussed in detail

in Section 5.1.1. The frequency of other frequency standards must be traceable back

to a primary frequency standard.

2.2 Historical overview of optical frequency mea-

surement techniques

High accuracy frequency measurement is straightforward at low (RF or microwave)

frequencies, where counters and synthesisers are readily available. The heterodyne

technique, which produces an easily measurable frequency difference between known

and unknown frequencies, can further extend the limit of measurable frequency. This
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technique allows microwave frequencies up to few hundred gigahertz to be measured.

The problem of measuring optical frequencies lies in the availability of accurately

known frequencies to beat an unknown frequency with. The first aspect of this prob-

lem is that only a few known frequencies exist in the optical region, and consequently

the nearest one could be a few terahertz away from the unknown frequency to be

determined. The second aspect is the difficulty of establishing the known frequency,

which requires a complicated “clockwork” to connect optical to microwave frequen-

cies, since as discussed in the previous section an absolute measurement of frequency

must be based on the SI second.

Different techniques for optical frequency measurements such as frequency chains and

various frequency division methods were developed over the last 45 years [16, 17, 18,

19, 20]. However, after the invention of femtosecond frequency combs, which provide

the ultimate solution to the problem of measuring an arbitrary optical frequency

and which were recognised by the Nobel Prize in 2005 [21, 22], all other methods of

optical frequency measurements became history. Sections 2.2.1 and 2.2.2 present brief

descriptions of these historical techniques.

2.2.1 Frequency multiplication using harmonic frequency

chains

Optical frequencies can be measured with the aid of frequency multiplication chains

[23]. The idea of such a chain is to start from a low frequency and to generate higher

harmonics of this frequency using different non-linear devices. A harmonic of the

precisely known low frequency is generated and used to determine an unknown higher

frequency by measuring their beat frequency. Afterwards a harmonic of this higher

frequency can be used for measurements at even higher frequency and so on until the

required optical frequency is determined.

The first measurement of laser frequency (rather than of wavelength) was done in
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1967 when the frequencies of single mode emission of the NCH laser at 890 GHz

and 964 GHz (337 µm and 311 µm) were measured to within a few parts in 107 by

mixing the laser frequencies with high order harmonics of a microwave signal in a

silicon diode [24]. In 1972 the frequency measurements were extended to 88 THz

(3.39 µm) when the frequency of a CH4-stabilised He-Ne laser was measured using

harmonic mixing [25]. In 1973 the same frequency was measured using one of the first

harmonic frequency chains connecting the Cs primary standard to the CH4-stabilised

He-Ne laser [26] with an uncertainty of 6 parts in 1010 compared to 5 parts in 107

reported before [25]. In 1979 the first frequency measurement of visible radiation

(520 THz) was reported [27]. The accuracy of frequency measurements continued to

improve during the following years. This can be illustrated by the improvement of

the HeNe/CH4 laser frequency measurement uncertainty to 8.3 × 10−13 reported in

1993 [28]. Another example is the iodine-stabilised He-Ne laser (473 THz) frequency

measurement precision. In 1983 the frequency was measured with an uncertainty of

1.6 parts in 1010 [29], while ten years later, in 1993, ten times better uncertainty was

reported [30].

Frequency measurements can be based either on a primary Cs standard or on a

secondary standard, which is linked to a Cs clock in separate measurements. The

secondary standards themselves contribute to the uncertainty of the measured fre-

quency value. In order to avoid additional uncertainties, phase-coherent frequency

measurements should link the unknown frequency to the primary Cs standard. Abso-

lute phase-coherent frequency measurements were first performed in the near infrared

region [31]. Frequency measurements in the visible region were based on secondary

standards until 1996, when the first fully phase-coherent frequency chain connecting

the Cs primary standard of time and frequency to a Ca optical frequency standard

(456 THz) was reported [32].

The development of frequency chains made accurate frequency metrology possible.

This resulted in significantly improved uncertainty for the value of the speed of light

in a vacuum [33, 25], leading to the redefinition of the metre in 1983 [9]. Although

10



significant progress in frequency metrology was achieved, bridging large frequency

gaps remained a very demanding task. The conventional method of optical frequency

synthesis from the microwave is a complicated procedure involving a variety of differ-

ent oscillators needed after each step, so a harmonic frequency chain covering a large

frequency span becomes a highly complex, large-scale and expensive system, which

involves significant efforts to build and operate. Furthermore, each frequency chain

targets only one specific optical frequency.

2.2.2 Frequency division techniques

The alternative approach to optical frequency measurements is frequency division.

The idea of this method is to divide a large frequency gap into smaller measurable

frequency intervals with a known relationship to the original, so that by measuring

the small frequency differences the original frequency interval can be established.

One of the techniques providing optical to radio frequency division is frequency in-

terval bisection [34]. One bisection stage of such a system generates the arithmetic

average of two laser frequencies f1 and f2 by phase locking a second harmonic of a

third laser at frequency f3 to the sum frequency of f1 and f2. Cascading of n stages

will provide frequency division by 2n.

The use of optical parametric oscillators (OPOs) for frequency division was proposed

in [35]. This scheme converts an input signal into two coherent subharmonic outputs

with tunable frequencies and linewidths limited by the input pump linewidth. The

OPO’s input pump or output frequencies can be precisely determined by phase locking

the difference frequency between the outputs to a microwave standard. The proposed

divider can operate in parallel or in series to provide multistep frequency division.

However, the difficulty of finding nonlinear crystals suitable for OPO operation in

different spectral regions prevented this system from practical realisation [19].

A method of optical frequency measurement in the near infrared based on sum and
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difference frequency generation using non-linear optics was proposed in [36]. The

sum of two frequencies can be compared with a visible frequency standard, while the

difference frequency can be compared to a standard in the far-infrared.

Four-wave mixing in laser diodes can be used for difference frequency generation [37].

In this configuration two external cavity laser diodes (ECLD) with frequencies f1

and f2 separated by 1 − 2 THz are optically injected into a third ECLD. When the

frequency of a third ECLD (f3) is tuned near to the centre of the interval between f1

and f2, f3 locks to the four-wave mixing product f1 + f2 − f3, leading to the interval

bisection condition f3 = (f1 + f2)/2. Phase matching in the mixing diode limits the

bandwidth to a few THz.

Another technique for difference frequency synthesis is to generate a comb of frequen-

cies by placing an electro-optic modulator (EOM) inside a Fabry-Perot (FP) cavity

which is resonant with both the carrier frequency and all generated sidebands [38].

When the modulation frequency is equal to an integer multiple of the free spectral

range of the FP cavity, the sidebands generated from the carrier pass back through the

EOM and generate secondary sidebands, which also generate further sidebands. This

optical frequency comb generator (OFCG) produces a wide comb of modes spaced

exactly by the modulation frequency.

The maximum detectable beat frequency between the comb modes and the source

of unknown frequency is theoretically restricted by the power of the sidebands. The

power in a particular high order sideband increases as either the finesse of the FP

cavity or the modulation index increases. This type of OFCG bridges frequency

gaps on the order of 10 THz. However, even with higher modulation index and

finesse of the FP cavity the comb width is still limited to about 5% of the carrier

frequency. Further increase of the span is limited by chromatic dispersion of the

crystal [39], mirror reflection bandwidth and incident microwave power limitation (to

prevent damage to the EOM) [40]. Additional bandwidth increase can be achieved

using self-phase modulation in an optical fibre; in this way increase of the comb width
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up to 30 THz has been reported [40].

2.3 Femtosecond optical frequency combs

The other method of producing a frequency comb is to use a mode-locked laser.

Mode-locking is the regime in which a laser emits a number of longitudinal modes

with synchronised phases. If the laser modes have a fixed phase relationship, such

a laser produces a periodic train of short pulses and the spectrum of this emission

corresponds to a comb of distinct equally spaced lines. In order to achieve phase

difference stabilisation a periodic modulation of either the amplitude or phase of the

field in the resonator is used [41]. There are two types of mode-locking: active and

passive. In the first case an amplitude modulator with the modulation frequency tuned

to the frequency difference between the adjacent modes of the laser resonator is placed

inside the laser cavity. Passive mode-locking is realised via a saturable absorber, an

element whose optical absorption is constant at low intensities, but saturates and

decreases to lower values as the incident light intensity increases [42]. In this case a

saturable absorber inside a laser cavity enables self-amplitude modulation of the laser

pulse. To generate femtosecond pulses passive mode-locked lasers are used.

The first use of a mode-locked laser for optical frequency metrology was reported

in 1978 [43], when a synchronously pumped picosecond mode-locked dye laser was

used for Doppler-free two-photon spectroscopy. However, although the concept of

using a mode-locked laser as an optical frequency comb generator was demonstrated,

because of the bandwidth limitation it did not provide a practical tool for optical

frequency measurements. The spectral bandwidth of such a comb is approximately

the inverse of the Fourier-limited pulse duration, which is of the order of terahertz

for a picosecond laser. The discovery of Kerr-lens mode-locked (KLM) Ti:sapphire

lasers capable of producing femtosecond pulses [44, 45] opened a new chapter in

optical frequency metrology. Since the first frequency measurements using a KLM
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Figure 2.1: A pulse train representation in the time domain.

Ti:sapphire laser-based optical frequency comb were reported in 1999 [46, 47] the

design of frequency combs has been significantly improved and they have become a

standard tool in frequency metrology. Section 2.3.1 gives the basic concepts of optical

frequency combs, while Section 2.3.2 describes the types of frequency comb technology

in use in different laboratories worldwide.

2.3.1 Basic concepts

A mode-locked laser produces a train of short pulses each separated by a time interval

0

I(f)

f

frep

f0

fn= nfrep+ f0

Figure 2.2: A pulse train representation in the frequency domain.
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Figure 2.3: Measurements of an optical frequency fl using the frequency comb pro-

duced by a mode-locked laser.

τ =
lc
vg
, (2.1)

where lc is the roundtrip length of the laser cavity and vg is the group velocity

(Fig. 2.1). A pulse is emitted every time a pulse circulating inside the cavity reaches

the output coupler. Due to dispersion inside the cavity the group and phase velocities

are different. This difference leads to a phase shift ∆φ between the carrier wave and

the peak of the envelope for each round trip given by

∆φ =

(

1

vg
− 1

vp

)

lcωcmod(2π), (2.2)

where vp is the intracavity phase velocity and ωc is the carrier frequency [19]. This

pulse-to-pulse shift is shown in Fig. 2.1. The frequency spectrum of the pulse train

with pulse separation τ consists of a comb of frequencies separated by frep = 1/τ

(Fig. 2.2). The frequency of each comb line is given by

fn = f0 + nfrep, (2.3)

where n is an integer comb line number and f0 is the carrier envelope offset frequency

given by
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Figure 2.4: Self-referencing technique for offset frequency measurement.

f0 =
∆φ

2π
frep, (2.4)

as shown in Fig. 2.2.

Figure 2.3 shows how a frequency comb can be used to measure an unknown op-

tical frequency fl. The heterodyne beat ∆f between the laser frequency fl and the

frequency of the nearest comb line fn can easily be measured with standard RF equip-

ment. Consequently, absolute frequency measurements can be made if the repetition

rate and offset frequencies of the comb as well as the mode number n are known.

The repetition frequency can be measured straightforwardly by detecting the pulse

train with a fast photodiode [48]. In the case of direct counting of the detected beat

the accuracy of the measurements would be limited by the resolution of the frequency

counter used. To avoid this limitation, the signal can be down converted by frequency

mixing and the signal at lower frequency can be counted.
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2.3.1.1 Self-referencing technique

The easiest way to determine the offset frequency f0 is the f -to-2f self-referencing

technique [49], which is based on the measurement of a heterodyne beat between a

mode from the high frequency side of the comb and a frequency doubled mode from

the low-frequency side of the comb (Fig. 2.4). For this measurement the frequency

comb should span at least one octave, i.e. the highest frequencies should be larger

than the lowest by a factor of 2. In this case the difference between a low frequency

fn doubled in a non-linear crystal and a high frequency f2n is given by

2fn − f2n = 2(nfrep + f0) − (2nfrep + f0) = f0, (2.5)

which is exactly the offset frequency. Note that self-referencing is the simplest, but

not the only method of offset frequency measurements [48]. It can even be achieved

with a comb spacing less than an octave, but this requires extra steps of non-linear

conversion [18]. A summary of these options can be found in [50].

One of the methods of spectral broadening used to obtain an octave-spanning spec-

trum is based on self-phase modulation, the non-linear effect generating new frequen-

cies and as a result broadening the pulse spectrum. Since the amount of broadening

depends on peak power, mode area and interaction length, an optical fibre is often

used as a non-linear medium providing power confinement in a fibre core. The amount

of broadening in ordinary fibre is limited by group velocity dispersion which leads to

temporal pulse spreading and peak intensity reduction. Although an octave-spanning

spectrum in standard fibre has been demonstrated, it requires high pulse energy [51].

The invention of single mode photonic crystal fibre (PCF) [52], which can have zero

group velocity dispersion within the Ti:sapphire emission spectrum [53] eliminated

this problem, allowing broadband continuum generation with only nanojoule pulse

energies [48].

Photonic crystal fibre used for spectral broadening has a fused silica core surrounded
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Figure 2.5: Standard single mode fibre (a) and silica-core photonic crystal fibre (b)

[picture courtesy of OFS].

by the comb-like array of air holes, as shown in Fig. 2.5. Similarly to conventional

optical fibre, the guiding mechanism of the silica-core PCF is based on the index

of refraction contrast between the core and partially air-filled cladding. However,

the index contrast in PCF is much higher than in conventional single mode fibre,

allowing fibre to be designed with smaller core size. Since the non-linear coefficient

is inversely proportional to the effective area, the non-linear effects are enhanced

by both the higher energy density inside the fibre core and the higher non-linear

coefficient. Furthermore, the chromatic dispersion can also be adjusted by changing

the number and size of the air holes to further increase non-linear induced spectral

broadening. Another result of the high index contrast is that PCF is single mode

for any wavelength [54], hence at the output of the fibre only fundamental mode

is present, which gives an advantage of the efficient second harmonic generation and

strong interference necessary for the operation of the f -to-2f interferometer. Although

octave-spanning Ti:sapphire lasers produced directly by optimising cavity alignment

and dispersion have been reported [55, 56, 57], spectral broadening in microstructure

fibre remains the most popular technique.
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2.3.1.2 Femtosecond comb stabilisation

In order to determine an absolute optical frequency the beat frequency (∆f) be-

tween the unknown frequency and the nearest comb line, the offset frequency (f0) and

the comb line separation (frep) could be simply measured simultaneously (Fig. 2.3).

However, it is usually preferable to actively stabilise them in a feedback loop. The

intermode separation given by

frep =
1

τ
=

vg
lc

(2.6)

is determined by the laser cavity length, which drifts over long timescales due to

thermal effects and varies on short timescales due to acoustic noise. It is possible

to compensate both of these effects by adjusting the cavity length using a mirror

mounted on a piezo-electric actuator controlled by a phase-locked loop that compares

an external clock signal to frep or one of its harmonics.

There are two different techniques for offset frequency control. One of these can

be implemented in lasers which use prisms for dispersion compensation. Since the

spectrum is spatially dispersed on the end mirror of the laser cavity, a small rotation

(swivel) of the mirror produces a linear phase delay with frequency, which is equivalent

to a group velocity delay, and hence adjusts the offset frequency [58]. Another method

of locking f0, which can be implemented in any laser cavity, relies on the pulse-to-

pulse phase shift with a change of the pump power [59]. Electro-optic modulators

[60, 61] or acousto-optic modulators (AOMs) [55, 56] can be used for pump power

modulation in solid state lasers. In fibre combs the pump power can be modulated

via the pump laser current.
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2.3.2 Laser sources for comb generation

The first measurement of an optical frequency with a femtosecond laser based fre-

quency comb was made with a KLM Ti:sapphire laser based comb with 75 MHz

repetition rate [46, 47]. Since that time Ti:sapphire-based combs have become a

widely used tool for optical frequency metrology. There are two types of Ti:sapphire-

based combs used at present: ones where the octave-spanning spectrum required for

the f -to-2f self-referencing is obtained with additional spectral broadening in mi-

crostructure fibre [53] and combs which are capable of producing an octave-spanning

spectrum directly from the laser [62]. The repetition rates of Ti:sapphire-based combs

vary from a few tens of megahertz [49] to 10 GHz [63] depending on the laser design.

For frequency metrology Ti:Sapphire frequency combs have several advantages such

as high repetition rate (which provides increased power per mode and simpler ac-

cess to comb lines), the possibility to generate an octave-spanning spectrum directly

from the laser and low-noise performance. However they also have several drawbacks.

Ti:sapphire based systems need a green pump laser, typically a frequency doubled

Nd:YVO4 solid-state laser, which is an expensive large footprint device, requiring wa-

ter cooling for its operation. The bulk-optic design of these lasers also means that

they require careful alignment. These limitations have inspired a search for alternative

potentially transportable and less expensive laser systems. One of the alternatives is

to use erbium or ytterbium fibre doped lasers, while another is to use diode-pumped

solid-state laser based systems.

An Er-doped fibre laser based comb was demonstrated for the first time in 2004 [64].

These lasers are directly pumped with laser diodes at 980 nm or 1490 nm, which

makes them compact, robust and power efficient. The centre wavelength of 1550 nm

gives the advantage of using robust and low-cost integrated fibre optic components

designed for telecommunications systems, which means that these lasers require less

alignment than bulk solid-state laser systems. Fibre-based combs are less expensive

and more robust than Ti:sapphire based combs and allow for turnkey operation. In
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addition, they are capable of covering both the near infrared region as well as the visi-

ble region by using non-linear frequency conversion. Furthermore, active stabilization

techniques have reduced the close-to-carrier frequency noise to levels similar to those

of Ti:sapphire lasers [65].

Yb-fibre laser based frequency combs have superior power scalability which is critical

for multi-GHz frequency combs involved in nonlinear optical applications such as

wavelength conversion into the visible wavelength range. For example, an Yb-based

frequency comb with 80 W average power has been demonstrated [66], but at low

repetition rate (154 MHz). Even though a fundamentally mode-locked femtosecond

Yb-fibre laser with 3 GHz repetition rate has been demonstrated [67], GHz repetition

rates are not easily accessible in fibre lasers. Furthermore, only two fibre laser-based

fully stabilized frequency combs with 1 GHz repetition rates have been reported up

to date: one Yb laser-based comb [68], and one Er laser based comb [69].

There are several drawbacks of fibre frequency combs such as the need for external

amplification, higher frequency noise and broader optical comb lines associated with

the lower cavity quality factor (Q) and amplified spontaneous emission in the laser

and external fibre amplifier. Although techniques to reduce the broadband phase

noise of Yb-based combs have been reported [70], noise suppression in fibre lasers

remains more challenging than in solid state lasers.

Another alternative to Ti:sapphire based combs is diode-pumped solid-state laser

based systems. The first carrier-envelope offset frequency measurement for this type of

comb was performed in 2001 [71]; the comb was based on a Cr:LiSAF laser operating

at 93 MHz repetition rate. In 2004 a self-referenced frequency comb based on a

Cr:forsterite laser with a repetition rate of 433 MHz was reported [72]. However, the

disadvantages of colquirite laser crystals, such as relatively low thermal conductivity

and non-linearity needed for KLM, switched attention to various Yb-doped hosts.

As femtosecond laser sources, Yb-doped crystals have several advantages: the possi-

bility of direct pumping by common laser diodes, the high efficiency and low power
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requirements which make them suitable for transportable combs and the fact that

reliable femtosecond operation is easily achieved by passive mode locking via KLM or

a semiconductor saturable absorber mirror. In addition, low intrinsic noise and higher

cavity Q, compared to fibre lasers, result in lower phase noise on the frequency comb.

Although a large number of femtosecond laser sources have been demonstrated, only

two fully stabilised combs have been reported to date: an Yb:KYW femtosecond laser

based comb with a repetition rate of 160 MHz and spectral coverage 650 – 1450 nm

in 2008 [73] and a comb based on an Er:Yb:glass laser operating in the 1.5 µm spec-

tral region at a 75 MHz repetition rate in 2011 [74]. The carrier envelope offset

frequency has been detected for an Yb:KGW laser (central wavelength 1.04 µm) with

a repetition rate of 1 GHz [75]; however locking has not yet been demonstrated.

2.4 Optical frequency standards and clocks

In an optical clock, a frequency comb is used to generate a countable frequency from

an optical frequency standard consisting of an atomic reference and a narrow linewidth

probe laser. This section describes the basic principles of optical frequency standards,

measures used to characterise their performance and gives an overview of state of the

art performance of optical frequency standards together with the performance of the

frequency combs.

2.4.1 Optical frequency standards

Figure 2.6 shows a schematic of an optical frequency standard consisting of an atomic

reference providing a narrow optical transition at frequency ν0 and a narrow linewidth

probe laser emiting a frequency ν which can be adjusted to the frequency ν0 using a

servo control loop.

The main requirement for the atomic reference is the presence of both a strong allowed
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Figure 2.6: Schematic diagram of a passive optical frequency standard.

transition suitable for laser cooling and a weak forbidden clock transition, as shown

in Fig. 2.7.

Natural linewidths for optical transitions range from tens of megahertz for strongly

allowed transitions to a few hertz or less for weak forbidden absorptions. There are

two different types of reference transitions: transitions in a single laser-cooled trapped

ion and transitions in cold neutral atoms.

2.4.1.1 Atomic references based on a single trapped ion

A charged particle such as an ion can be confined to a region of space using the

interaction of the ion’s charge with applied electric and magnetic fields. There are

two main techniques used to implement confinement: Penning and Paul traps. In the

Penning trap, a combination of static magnetic and electric fields confines the ion;

however the applied magnetic field strongly perturbs its energy levels. This effect

makes the use of Penning traps for frequency standards impractical.

On the other hand, a trapping field in the Paul trap is purely electrical, close to an

ideal quadrupole potential [76] causing only small perturbations to trapped ions when

they are confined in the centre. The Paul trap uses time-varying voltages between
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Figure 2.7: Schematic diagram of the cooling (strongly allowed) and clock (weak

forbidden) transitions in an atomic frequency reference.

electrodes to create a dynamic pseudopotential well in all three directions. Although

at any given time the force acting on the ion provides confinement only in two direc-

tions, the time averaged force is not zero due to the trapping field inhomogeneneity.

This force averaged over a period of oscillation is directed towards the regions of weak

electric field; thus the appropriate choice of the field amplitude and frequency provides

a time-averaged force directed towards the trap centre as required for confinement.

For a single laser-cooled ion in a Paul trap, such as used for frequency standards, a

precise quadrupole field distribution over the entire trapping region is not required

[77]. Furthermore, easy optical access for laser beams is desirable. Therefore, simpler

variations of the conventional Paul trap providing improved optical access, at the

price of achieving a quadrupole field distribution only over a central region, are used

for trapped ion optical frequency standards. These include Paul-Straubel (ring) traps

[77, 78] consisting of a ring with supporting leads and the endcaps reduced to a pair

of distant compensation plates, a linear trap [79] where an ion is confined on axis by

four rod-electrodes and a pair of endcaps, and an endcap trap composed of only two

pairs of electrodes as endcaps such as the one used for trapping Yb+ ions at NPL
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Figure 2.8: Schematic diagram of an endcap trap. The typical parameters are an RF

frequency Ω/2π of several tens of MHz and an amplitude Vac of several hundred volts;

the DC voltages V1 and V2 are a few volts while the spacing between the inner endcap

electrodes is around 0.5 mm [1].

(Fig. 2.8).

2.4.1.2 Atomic references based on neutral atoms

An advantage of optical frequency standards based on N atoms over single ion based

standards is the potential improvement of stability by a factor of
√
N . Laser cooling

the atoms, for example in a magneto-optical trap (MOT), substantially reduces resid-

ual first-order and second-order Doppler shifts [1]. However, the trapping methods

for neutral atoms perturb the atomic energy levels, which is undesirable for use in

a frequency standard. To avoid the broadening and shifts associated with the trap,

neutral atoms are released from the trap before the clock transition is probed. The

atoms fall from the trap under the influence of gravity and the atom cloud expands

due to the thermal velocities of the atoms. The resulting atomic motion leads to seri-

ous limitations in accuracy and stability that are associated with velocity dependent

frequency shifts [80]. Two of the more undesirable effects are the limited observation
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Figure 2.9: Schematic diagram of the optics required for the Pound-Drever-Hall lock-

ing technique. EOM - electro-optic phase modulator; PBS - polarizing beam-splitter;

ULE cavity - ultra-low expansion cavity; PD - photodetector.

time, and the incomplete cancellation of the first order Doppler shift.

The solution to these problems is to confine atoms in an optical lattice trap as sug-

gested by Katori in 2002 [81]. This arrangement offers the prospect of excellent

stability due to the large atom number, and the tight confinement of the lattice al-

lows for effectively Doppler-free interrogation and long interrogation times [3]. In an

optical lattice clock the atomic energy level perturbations caused by the light fields

used to create the optical lattice are eliminated by tuning the lattice laser to a so-

called ‘magic wavelength’ where the ground and excited states of the clock transition

are shifted by precisely the same amount [81, 4]. The first time clock spectroscopy of

atoms held in an optical lattice at the zero-shift wavelength was demonstrated was in

2003 for 87Sr atoms [82], and since then optical lattice clocks based on various neutral

atoms have been investigated in a number of laboratories.

2.4.1.3 Stable probe laser

The linewidth of the laser used to probe the clock transition needs to be comparable

with the natural linewidth of the optical transition. Since typical clock transition

linewidths are a few hertz or less, to reduce the laser linewidth to this level the

Pound-Drever-Hall technique illustrated in Fig. 2.9 is used [83].
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This technique is based on locking the probe laser to a high finesse ultra-stable optical

cavity. The laser light with carrier frequency fcar is phase modulated at frequency

fm, providing modulation sidebands used for subsequent heterodyne detection. The

frequency fm is chosen in such a way that the modulation sidebands are spectrally

outside the cavity passband, and hence reflected from the cavity input mirror. The

reflected light is directed to the fast photodetector. The carrier component of the

reflected light consists of the beam reflected from the input mirror and the beam

leaking back from the cavity through the input mirror. When the carrier frequency

fcar is close to the cavity resonance frequency fres the phase shift between these beams

is strongly frequency dependent. The phase sensitive detection of the reflected light

relative to the modulation frequency fm gives the error signal used to lock the laser.

This error signal is an antisymmetric function of frequency, which close to resonance

is proportional to the frequency offset from the resonance frequency fres − fcar, hence

it contains information about how far the laser frequency is off resonance as well as

which side of the resonance the laser frequency is.

A high finesse ultra-stable cavity used for clock laser locking consists of two con-

cave mirrors optically contacted onto each end of an ultra-low expansion (ULE) glass

spacer. Typical cavity lengths are about 10 cm and typical cavity resonance linewidths

are 5 – 10 kHz. As the cavity resonance frequency does not match the frequency of

the reference transition, an acousto-optic modulator (AOM) is used to shift it into

resonance.

Given that the resonance frequency depends on the cavity length, the cavity must

be isolated from environmental perturbations. To achieve this the cavity is mounted

on a vibration isolation platform and thermally stabilised to ensure operation at a

temperature where the linear coefficient of thermal expansion of the ULE spacer is

close to zero. Furthermore, a box providing isolation from acoustic noise is usually

built around the laser.

Even with the vibration isolation in place length fluctuations of the ULE cavity can
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still occur due to seismic and acoustic vibrations. There are a number of cavity

geometries designed to reduce vibration sensitivity; the one used for the NPL 171Yb+

ion frequency standard was reported in [84].

2.4.1.4 Laser cooling

The observation of narrow optical transitions requires laser cooling [85] to remove

the Doppler broadening of the clock natural linewidth. The basic principle of laser

cooling is that the average energy of the radiation absorbed by the particle is smaller

than the energy lost by the particle during the subsequent emission. To illustrate this

principle, consider a two-level atom propagating in a vacuum with a known speed. If

the stationary atom is illuminated by a laser with photon energy equal to the energy

between the ground and excited states, the photon can be absorbed and the atom

excited to the upper energy level. However, if the atom is moving towards the laser

light, it will see the laser frequency Doppler-shifted to higher frequencies, compared

to a stationary observer. Therefore, the atom can only absorb the photon if the

laser frequency is lower than the resonant frequency by an amount corresponding

to the Doppler shift. If the photon is absorbed, the momentum of the atom will

be reduced by an amount equal to the photon momentum. A short time later, the

spontaneous emission of a photon will return the atom to the ground state and modify

its momentum again. Although due to the Doppler shift the photon absorption can

only occur in case of counter-propagating atom and laser beams, for the event of

spontaneous emission, the probability of emitting a photon in any direction is equal.

Considering a sufficiently large number of interactions between the atom and the

incoming light, the atom momentum will be reduced by an amount proportional to

the number of absorbed photons.

The absorption and re-emission mechanism is similar for trapped ions providing that

the frequency of oscillation within the trap is significantly lower than the resonance

linewidth. In this case when the difference between the laser frequency and the

28



resonance frequency is bigger than the atomic linewidth, photons can be absorbed

only when the laser is directed against the ion movement. In the case when the laser

frequency is just below the resonance frequency, the probability of absorbing a photon

during the movement towards the laser is higher than in the case when the laser beam

and the ion are moving in the same direction. Therefore, in both cases the interactions

of the ion with the laser light lead to a cooling of the ion.

2.4.1.5 Clock transition detection

Observation of the light absorption by an ion or atom at the frequency corresponding

to a strong allowed transition can easily be realised by detecting the resonance fluores-

cence. However this method cannot be used to probe the weak forbidden transition.

In this case the detection is realised using the electron shelving technique [86, 87]

described below.

Consider an ion with three energy levels as shown in Fig. 2.7: the ground state, a

short-lived exited state and a metastable excited state with a long lifetime. In this

case transitions between the ground state and the short-lived excited state have a

very high probability, compared to the transitions between the ground state and the

metastable state. When laser light with a wavelength corresponding to the transition

between the ground state and the short-lived state is applied to the ion, the ion will

absorb this and subsequently spontaneously re-emit photons. In the absence of other

influences, the ion will cycle between the ground and the short-lived states emitting

one photon per cycle. As a result of the short lifetime of the excited state, fluorescence

corresponding to the photon emission from the short-lived state will be observed.

Now, if in addition a second laser with a wavelength corresponding to the transition

between the ground and metastable states is switched on, there is a probability of the

ion making a transition between these two levels. However, due to the long lifetime of

the metastable state, the probability of this transition is significantly smaller then the

probability of the transition between the ground and the short-lived states. Even so,
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when a transition to the metastable state takes place, transitions between the ground

and the short-lived states can no longer be excited as long as the electron is “shelved”

in the metastable state. This effect is observed as an abrupt end of the fluorescence

produced by the transition between the short-lived and the ground states. Therefore,

observing the presence or the absence of the fluorescent light resulting from the strong

transitions between the ground and the short-lived states, the weak transition between

the ground and the metastable states can be detected with an efficiency close to 100%.

This effect is illustrated in Fig. 2.10.

Figure 2.10: Schematic diagram of electron shelving: fluorescence from a single ion

as a function of time. The abrupt jumps in fluorescence are due to quantum jumps

as the ion is shelved in the metastable state and unable to fluoresce until it returns

to the ground state.

2.4.2 Characterisation of frequency stability

The important properties of a frequency standard are its reproducibility, accuracy

and stability. Reproducibility is the degree to which a standard can be replicated in

time and location. Preferably, reproducibility is provided by an intrinsically stable

property, e.g. the frequency of the transition between the two hyperfine levels of
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the ground state of the Cs atom. Accuracy is the measure of uncertainty associated

with the measurement of the given frequency including random errors and systematic

shifts. Stability is a measure of how constant a frequency produced by the standard

is.

For a device producing a signal

I(t) = I0(t)cos(2πν0t + φ(t)), (2.7)

the normalised time deviation

x(t) =
φ(t)

2πν0
(2.8)

and the instantaneous fractional frequency deviation

y(t) =
dx(t)

dt
=

∆ν(t)

ν0
, (2.9)

where ∆ν(t) is the frequency difference from the nominal absolute frequency of the

device ν0, can give an instantaneous measure of the device accuracy. To obtain the

information about the influence of noise on the stability of a frequency standard and

its performance at different time scales statistical measurements have to be used.

Since noise processes in clocks are far from Gaussian, standard statistical measures

like the mean and the standard deviation cannot be used to describe their stability.

The most commonly used measure is the two-sample or Allan variance (AV). In this

case the Allan deviation – the square root of Allan variance – is analogous to the

standard deviation.

2.4.2.1 Amplitude and phase noise

An ideal sine wave generator produces a voltage that changes in time as
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Figure 2.11: Phasor representation of amplitude and phase noise [picture courtesy of

Dr. Marra].

V (t) = V0sin(ω0t + ϕ0) (2.10)

where V0 is the peak signal amplitude, ω0 is the angular frequency and ϕ0 is a constant

phase shift. However, the sine-wave signal can be perturbed by noise. In this case,

amplitude variations (amplitude noise) or phase variations (phase noise) arise and the

instantaneous signal is described as [88]

V (t) = [V0 + ǫ(t)] sin(ω0t + ϕ0 + δϕ(t)) (2.11)

where ǫ(t) and δϕ(t) represent fluctuations of the signal amplitude and phase respec-

tively. The concept of amplitude and phase noise can also be illustrated using the
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phasor representation as shown in Fig. 2.11.

One method of measuring phase noise is based on the comparison of two signals of

the same frequency. In this case the relative phase between the two signals can be

measured with a double-balanced mixer, which if the two input signals are in phase

quadrature, acts as a phase detector. The output consists of small voltage fluctuations

proportional to the phase fluctuations. The amplitude noise can be measured by

measuring the power fluctuations. A power detector produces a voltage that is linearly

proportional to the power. In order to obtain the power spectral density (PSD) from

the voltage fluctuations a Fast Fourier Transform (FFT) analyser is used. PSD is the

frequency response of a signal, which shows the distribution of power over frequency.

The PSD of fractional frequency fluctuations can be described as a superposition of

five independent noise processes [89]

Sy(f) =
α=2
∑

α=−2

hαf
α, (2.12)

where hα is a constant scale factor and −2 ≤ α ≤ 2 is an integer. On a log-log plot the

contributions to Eq. 2.12 can be identified by their slope and the noise mechanisms

can be distinguished using the value of α as summarised in Table 2.1. PSD plots are

also useful for revealing the origin of frequency noise, e.g. acoustic noise, as discussed

in Section 4.7.1.2.

2.4.2.2 Allan variance

The normalised time deviation x(t) measured in seconds and the dimensionless instan-

taneous fractional frequency deviation y(t) given by Eq. 2.8 and Eq. 2.9 respectively,

can be used to determine the normalised frequency deviation averaged over the time

interval τ as
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yi =
xi+1 − xi

τ
, (2.13)

where xi and xi+1 are the time difference from the clock’s nominal value measured at

the beginning and the end of τ . The change in y from one time interval to the next

∆yi = yi+1 − yi (2.14)

gives a measure of instability, which can be expressed as Allan variance

σ2
y(τ) =

1

2

〈

(∆yi)
2
〉

, (2.15)

where 〈〉 denotes an infinite time average. Since an infinitely long data set is not

possible, an approximation of the Allan variance for a series of N measurements can

be found as [90]

σ2
y(τ) ∼= 1

2(N − 2)

N−2
∑

i=1

(∆y)2 =
1

2(N − 2)τ 2

N−2
∑

i=1

(xi+2 − 2xi+1 + xi)
2. (2.16)

A statistical analysis of this equation shows that five different noise types, char-

acterised by different slopes of the Allan variance, can be identified, as shown in

Fig. 2.12. The origin of these noise types [89, 90] is outlined below and the summary

of the corresponding slopes of the PSD and the Allan variance is given in Table 2.1.

1. White phase noise is broadband noise created during the measurement process by

generator and detectors.

2. Flicker phase noise arises from noisy electronic components such as amplifiers and

frequency multipliers.

3. White frequency noise is the noise in the feedback loop used to lock an oscillator

to a frequency reference arising from the shot noise in the number of atoms that are
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Type of noise Slope of Sy(f) Slope of σ2
y(τ)

White phase noise 2 -2

Flicker phase noise 1 -2

White frequency noise 0 -1

Flicker frequency noise -1 0

Random walk frequency noise -2 1

Table 2.1: Summary of noise types and corresponding slopes of the PSD Sy(f) and

Allan variance σ2
y(τ) on a log-log plot.

interrogated or Johnson noise in the circuit resistors.

4. Flicker frequency noise is typically related to the physical resonance mechanism of

the active oscillator.

5. Random walk frequency noise arises from environmental factors such as mechanical

shock, vibration and temperature fluctuations.

Since the slope of the Allan variance for both white phase noise and flicker phase noise

shows a 1/τ 2 dependency on averaging time it is not possible to distinguish between

these two types of noise using this measure of stability. This problem is addressed by

introducing modified Allan variance (MAV), which replaces the frequencies in Eq. 2.16

with averages over a number of adjacent intervals [89], in which case white phase noise

and flicker phase noise have different slopes, as shown in Fig. 2.12.

2.4.3 Optical frequency standards performance

A number of optical frequency standards based on narrow transitions in trapped

ions and neutral atoms are being investigated in laboratories worldwide. Each of

these standards has its own advantages and disadvantages as a potential optical clock

when intrinsic sensitivity to environmental perturbations, transition parameters and
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Figure 2.12: Schematic of variance as a function of averaging time, illustrating the

gradients of Allan variance (AV) and Modified Allan variance (MAV) corresponding

to different types of noise.

complexity of the experimental arrangement are compared. The laser-cooled atoms

as well as the single ions considered as potential candidates for optical frequency

standards of high stability and accuracy are summarised in table 2.2. Note that the

uncertainties shown in this table represent the current state of development, not the

fundamental limit to the accuracy.

In general, optical frequency standards based on single trapped ions can be divided

into two groups: standards based on ions with alkali-like or quasi-alkali-like atomic

structure (Ca+, Sr+, Yb+ and Hg+) and ions with two valence electrons, which have

an atomic structure similar to that of the alkaline earth elements (27Al+ and 115In+).

In the first group the lowest excited 2D states lie below the lowest 2P states in energy,

therefore the electric quadrupole transition between the metastable 2D state and the

2S1/2 ground state can be used as a clock transition. These transitions have natural

linewidths in the range 0.2–3 Hz. The best accuracy in this group of clocks reported

to date is for the 199Hg+ clock, with an estimated systematic fractional frequency

uncertainty of 1.9 × 10−17 [92]. The latest development of the 88Sr+ clock reduced
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Standard λ, nm ∆νnat, Hz (δν/ν)estimated (δν/ν)freq Reference

27Al+ 276 8 × 10−3 8.6 × 10−18 6.5 × 10−16 [91], [92]

199Hg+ 282 1.8 1.9 × 10−17 6.5 × 10−16 [92], [93]

88Sr+ 674 0.4 2.2 × 10−17 2.0 × 10−15 [94]

171Yb+ 467 ∼ 10−9 7.1 × 10−17 8.0 × 10−16 [95]

171Yb+ 436 3.1 4.4 × 10−16 1.1 × 10−15 [12]

40Ca+ 729 0.14 7.8 × 10−16 2.4 × 10−15 [96], [97]

115In+ 237 0.8 1.8 × 10−13 [98]

87Sr 698 8 × 10−3 1.1 × 10−16 3.1 × 10−16 [99]

171Yb 578 4.4 × 10−3 3.4 × 10−16 1.4 × 10−15 [100]

1H 243 1.3 1.6 × 10−15 4.2 × 10−15 [101]

199Hg 266 ∼ 0.1 5.7 × 10−15 5.7 × 10−15 [102]

40Ca 657 375 6.6 × 10−15 7.5 × 10−15 [103]

201Hg 266 0.1 5 × 10−12 [104]

174Yb 578 field dependent 1.5 × 10−15 1.7 × 10−15 [105]

88Sr 698 field dependent 6.8 × 10−15 7.0 × 10−14 [106]

Table 2.2: Current optical frequency standards performance. λ is the wavelength of

the clock transition and ∆νnat is its natural linewidth, (δν/ν)estimated is the estimated

systematic frequency uncertainty of the standard and (δν/ν)freq is the uncertainty of

the measured absolute frequency of the transition.
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its uncertainty to the similar level (2.2 × 10−17 [94]). These values are lower than

the uncertainty of the best current realisation of the SI second, which at present is

2.1 × 10−16 [107].

The exception from the first group of ions is the 171Yb+ ion, which also has an electric

octupole transition to the ground state from a low-lying 2F7/2 state with a lifetime of

about six years [108]. Although this transition is much harder to drive than the electric

quadrupole transitions, the potential frequency stability is higher than achievable with

the electric quadrupole transition in this ion. To date, the best reported systematic

frequency uncertainty for this transition is 7.1 × 10−17 [95].

The reference transition in the second group of ions is the weakly allowed 1S0–
3P0

transition. The advantage of this group is potentially very low systematic frequency

shifts and a narrow linewidth of 0.8 Hz in 115In+ and 8 mHz in 27Al+. However

they require deep UV laser sources for cooling and probing, leading to experimental

difficulties.

The 27Al+ ion is particularly challenging as there is no available laser source to drive

its cooling transition, so the clock transition can not be detected via the standard

electron shelving technique. Therefore the 27Al+ ion is trapped together with a “logic

ion” (9Be+) that can be cooled [92]. The coupling between their motion via the

Coulomb interaction facilitates sympathetic cooling of the 27Al+ ion and its state

information is mapped onto the 9Be+ ion using quantum logic spectroscopy techniques

[109]. This mapping is performed through the transfer mode shared by both ions, with

an excitation of the motional state being produced only if the clock transition in the

27Al+ ion was internally excited. This is the key element of quantum logic that allows

the clock transition in the 27Al+ ion to be detected.

A number of improvements to the Al-Be clock including replacement of the 9Be+ logic

ion with a 25Mg+ ion whose mass closely matches that of 27Al+, therefore providing

more efficient laser cooling, are reported in [91]. These changes resulted in improve-

ment of clock inaccuracy to 8.6 × 10−18, the lowest inaccuracy of any optical clock
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reported to date.

As described in Section 2.4.1.2, optical frequency standards based on cold neutral

atoms can be studied in a trapped atom cloud and an optical lattice. Another con-

figuration for studying of cold neutral atoms is atomic beams. One of the most inter-

esting atomic beam standards in the optical spectral region is the two-photon 1S–2S

transition in atomic hydrogen, which gives the opportunity of testing fundamental

physical theories such as quantum electrodynamics. The unique property of hydrogen

is the presence of a wide range of reference frequencies with the scaling factor given

by the Rydberg constant which has been measured with an uncertainty of 6.6×10−12

[110]. The frequency of the two-photon 1S–2S transition has been measured with an

uncertainty of 4.2× 10−15 [101]. An example of a trapped atom cloud based standard

is the 1S0–
3P1 transition in 40Ca. The absolute frequency of this clock transition has

been measured with a relative uncertainty of 7.5 × 10−15 [103].

Today the most promising neutral atom based frequency standards are optical lattice

clocks. For clock operation, the biggest advantage is obtained by using the spin-

forbidden 1S0–
3P0 clock transition in alkaline-earth atoms or the alkaline-earth-like

Yb, which have extremely narrow linewidth. A number of alkaline-earth elements

are being studied as possible standards today. The two undergoing the most rapid

developments are Sr and Yb [3].

For bosonic (even) isotopes, the narrow clock transition is completely forbidden so a

small magnetic mixing field must be added in order to use the clock transition. The

advantage of using bosonic isotopes is that the transition linewidth is dependent on

the strength of the applied magnetic field, so the clock performance can in principle

be optimised by choosing the linewidth of the clock transition. However, in practice,

fermionic isotopes have achieved better performance today (see table 2.2). The best

results reported today give a fractional uncertainty of 7.0 × 10−14 for 88Sr [106] and

1.5 × 10−15 for 174Yb [105] bosonic isotopes.

For the fermionic (odd) isotopes, which all have nuclear spin, hyperfine-induced mix-

39



ing leads to the clock transition being weakly allowed. To date, the optical lattice

clock with the lowest reported systematic uncertainty of 1.1 × 10−16 [99] is the 87Sr

clock. The absolute frequency of this clock has been measured simultaneously against

the three independent caesium fountains with a total uncertainty of 3.1×10−16, which

was limited by the Cs fountain clock.

Another potential for the lattice clocks is a clock based on the 1S0–
3P0 transition

in mercury which has relatively low sensitivity to blackbody radiation. The clock

transition frequency in the 199Hg isotope have been determined with a fractional

uncertainty of 5.7 × 10−15 [102].

2.4.4 Frequency comb performance

As described in the previous section, state-of-the-art optical frequency standards

based on laser-cooled ions and atoms demonstrate accuracy at the parts in ×1017

level and have the potential to be further improved. Table 2.2 illustrates that at

present the accuracy of absolute optical frequency measurements is limited by the

current realization of the SI second based on a microwave transition in Cs atoms.

The accuracy of direct measurements of the ratio of optical frequencies, where the

contribution of the microwave reference is eliminated, reaches the level of a few parts

in 1017 [92]. To achieve such results, it is vital to ensure that the contribution of

the frequency combs to the total uncertainty of the measured frequency ratio remains

negligible.

The potential limitations of frequency combs have been evaluated by comparing four

combs constructed at three different institutes [111]. All the combs were Ti:sapphire

laser based; two of them were constructed at the National Institute of Standards

and Technology (NIST) and the other two were transportable combs constructed at

the Bureau International de Poids et Mesures (BIPM) and the East China Normal

University (ECNU) and brought to NIST for measurements. Pairs of frequency combs
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were compared and three techniques – optical heterodyne technique, nonlinear cross

correlation and photodetection – were used to verify that the output modes and

repetition rates have their expected frequencies. The most accurate results were

obtained using the optical heterodyne technique described below.

Two phase-lock-loops were employed to servo-control f0 and frep of the combs relative

to an optical reference signal fL from a cavity-stabilized diode laser at 657 nm. In

this case, frep is given by

frep =
fL − f0 − fb

NL

, (2.17)

where fb is the beat frequency between fL and NL-th mode of the comb. In these

experiments comb modes with the same index N were compared, thus the beat fre-

quency between the comb lines of the two combs was given by

∆f = f 1(N) − f 2(N) = (f 1
0 − f 2

0 ) + N(f 1
rep − f 2

rep) = (f 1
0 − f 2

0 ) + N∆frep. (2.18)

Eqs. 2.17 and 2.18 allow precise values of ∆f and ∆frep to be determined and com-

pared to the measured values. In most cases, the repetition rates of two combs were

equal, allowing the frequency difference signal to be generated from groups of lines

from each of the two combs. In a few cases, when the repetition rates were similar

but not equal, the frequencies of single lines adjacent to the NL-th mode from each of

the two combs were compared. The weighted mean obtained from 10 measurements

was 3.2 × 10−20 with an uncertainty of 7.8 × 10−20. This result shows that the

performance of the optical clock is not limited by the comb performance.
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2.5 Summary

In this chapter the background material necessary to understand the rest of this thesis

was reviewed. Firstly, the definition of the SI units of time and frequency were given

and modern timescales and timekeeping were described, followed by the concept of

a frequency standard as the oscillator for an atomic clock including the distinction

between active and passive frequency standards.

Next, a historical overview of optical frequency measurement techniques such as fre-

quency chains and frequency division methods was given, showing examples of early

optical frequency measurements. In these experiments a number of specific optical

frequencies were measured; however the task of measuring an arbitrary frequency in

the optical spectral region remained extremely challenging. This challenge was re-

solved by the introduction of optical frequency combs, which are described in the

following section.

The concept of frequency combs based on femtosecond mode locked lasers as a tool for

optical frequency measurements together with the origin and necessity of stabilising

the two key parameters of the frequency comb, the repetition rate frep and carrier

envelope offset frequency f0 were discussed. A description of the concept of self-

referencing, the most commonly used technique for measuring f0, and the methods

of controling frep and f0 were also described. This chapter also reviewed various

femtosecond laser sources used for comb generation and their performance reported

to date. The advantages and disadvantages of each one were highlighted allowing

selection of the most suitable type of comb for the particular application.

Finally, optical clocks as one of the applications of frequency combs were reviewed.

Initially the concept of an atomic frequency standard was given including a descrip-

tion of potential atomic references and means of their implementation as well as the

techniques used for detection of the generated frequency. Secondly, methods of char-

acterising clock performance were described, which allow parameters such as repro-
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ducibility, accuracy and stability to be established. Various atomic references studied

as potential candidates for optical clocks were described and their advantages and

disadvantages were compared. The best performance of optical clocks based on each

of these references reported to date was summarised. Lastly, tests of frequency comb

performance were discussed. These show that the relative uncertainty of a femtosec-

ond laser based frequency comb used for optical-to-optical synthesis can be as low

as 8 × 10−20, so the performance of the optical clock is not limited by the comb

performance.
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Chapter 3

Introduction to the NPL combs

This chapter is dedicated to the two NPL frequency combs I worked with dur-

ing my project: the fibre-laser-based comb (fibre comb) and the low-repetition-rate

Ti:Sapphire-laser-based comb (LRR comb). A frequency measurement of the 436 nm

clock transition in 171Yb+ ion performed using the fibre comb is detailed in Chapter 6.

The work involving the LRR comb is described in Chapter 4. Whilst the fibre comb

is based on a Menlo Systems FC1500 optical frequency synthesiser and therefore only

minor changes from the original design have been made, the LRR comb was con-

structed at NPL and has gone through a number of improvements during the last few

years. This chapter describes the design of both combs as they were at the beginning

of my project.

3.1 Fibre-laser-based-comb

The NPL transportable fibre-laser-based frequency comb is based on a Menlo Systems

FC1500 optical frequency synthesiser [112] and is shown in Fig. 3.1. It consists of

a mode-locked femtosecond fibre laser operating at a centre wavelength of about

1550 nm with a repetition rate of 100 MHz. There is a small free-space section in the
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Figure 3.1: Schematic of the NPL fibre-based frequency comb

laser, which is used for the repetition frequency adjustment. The repetition rate can

be tuned over approximately 400 kHz by moving the end mirror, which is mounted

on a translation stage with fine adjustment possible using a PZT. The repetition

frequency is measured using a PIN photodiode in the laser head which detects up to

the 10th harmonic of frep. The output power of the mode-locked laser is split between

three independent branches, where it is amplified by erbium doped fibre amplifiers

(EDFAs) and used to generate three phase coherent optical frequency combs.

The first comb is used for the carrier-envelope offset frequency stabilisation. As ex-

plained in Section 2.3.1.1, in order to implement the f -to-2f self-referencing technique

the spectrum should span at least an octave. The amplified signal is therefore coupled

into a non-linear fibre, which broadens the spectrum to cover the range from approx-

imately 1000 nm to 2100 nm. The f -to-2f interferometer is set up in a collinear

single-arm configuration. A PPLN crystal is used to double the comb modes at

2100 nm and after that an interference filter selects a narrow band around 1050 nm.

The beat frequency between doubled and fundamental light has a typical signal-to-

noise ratio (SNR) of 40-45 dB in a 250 kHz resolution bandwidth. The offset fre-

quency is stabilised by feedback to the pump laser diode current providing the re-
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quired power change.

The other two branches are used for frequency measurements in different spectral

regions. In one of them the output of the EDFA is connected to a second non-linear

fibre to generate an infrared comb extending from 1000 nm to 2100 nm. In the

third branch the laser light is amplified by an EDFA and frequency doubled using a

PPLN crystal. The resulting narrow band frequency comb centred at about 780 nm

is spectrally broadened in microstructure fibre to cover the wavelength range of 530 –

1000 nm. It is possible to expand the spectral range down to 500 nm by changing the

microstructure fibre.

A computer controls the operation of the fibre-laser-based optical frequency comb.

This includes driving the stepper motor for the laser repetition rate control, ad-

justment of the voltages applied to the fibre squeezers that are used to change the

polarisation in the laser cavity and the EDFAs in order to maximise the intensity of

the beat signals, as well as monitoring the output voltages of the locking circuits and

the RF power in the beat signals. Such computer control of the fibre-based comb

operation makes it possible to maintain stable locking for many hours or even days.

The fibre comb is mounted on a wheeled aluminium frame with dimensions

0.95 × 1.72 m and the maximum height of the system is 1.21 m as shown in Fig. 3.2.

The opto-mechanics support breadboards are separated from the aluminium frame by

a 5 mm rubber sheet for vibration isolation. This arrangement allows transportable

operation, which was tested by moving the comb between two laboratories, including

travel out of doors [113]. This test showed that the only adjustments to the fre-

quency comb necessary in order to perform measurements of a laser frequency were

adjustments to the EDFA squeezers to set up the beat with the laser.

In order to trace the optical frequency back to the SI second, the frequency comb is

referenced to a stable source of microwave frequency during the measurements, which

in turn can be calibrated using a Cs atomic clock. Therefore, all the synthesisers

and frequency counters used with the frequency combs are referenced to the same
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Figure 3.2: The layout of NPL fibre-based transportable frequency comb

frequency source. In transportable mode the fibre comb is referenced to the 10 MHz

output signal from a GPS-referenced quartz oscillator providing a reference signal

stable to a few parts in 1012 as described in Section 5.1.3. If a higher degree of

accuracy is required for the frequency measurements, the comb can be referenced

to the 10 MHz signal from a hydrogen maser forming part of the clock ensemble

generating the timescale UTC(NPL) as described in Section 5.1.2. This reference

provides traceability to the SI second with a relative standard uncertainty of better

than 1× 10−14. An example of a frequency measurement performed using the maser-

referenced fibre comb is detailed in Chapter 6.

3.2 Low-repetition-rate Ti:Sapphire comb

The LRR comb is the oldest NPL comb and, naturally, progress in the field during

the last decade, to which NPL has made significant contributions, led to a number
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Figure 3.3: Schematic of the original optical design of the NPL low repetition rate

Ti:Sapphire frequency comb [picture courtesy of Dr. Margolis].

of improvements from the original design. Although the basic concept of this comb

remains the same, some of the functional building blocks have been redesigned as

described in Chapter 4. The state of the LRR comb before the implementation of

these improvements is described in this section.

3.2.1 Optical arrangement

The low repetition rate Ti:Sapphire frequency comb [114], [115] is shown in Fig. 3.3.

This octave-spanning comb is based on a Kerr-lens mode-locked Ti:sapphire laser with

spectral broadening in photonic crystal fibre. The laser has a linear cavity design with

dispersion compensation provided by a pair of intracavity prisms and is pumped with

4.5 W of single frequency light at 532 nm. The pulse repetition rate frep, determined

by the laser cavity length, is around 87 MHz and is fine controlled with a piezo element

mounted cavity fold mirror. The laser produces 10–15 fs pulses with a spectral full

width at half maximum (FWHM) of typically 30–35 nm centred about 810 nm and

the average output power is 600 mW. In order to broaden the comb spectrum up to
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the full octave approximately 20 cm of microstructure fibre is used. A small portion

of the laser output is split off for the repetition frequency detection. The intermode

beat at the ninth harmonic of frep is detected with an avalanche photodiode (APD)

and used for counting and stabilisation of frep.

The carrier envelope offset frequency f0 is determined by the f -to-2f self-referencing

technique [49]. A short-wavelength-pass dichroic beam splitter separates comb lines

at wavelengths longer than approximately 950 nm and light in a bandwidth of a

few nanometers around 1060 nm is frequency doubled in a single pass through a

KTP crystal. After that comb lines in an equivalent bandwidth around 530 nm are

recombined with the frequency-doubled light using a polarizing beam splitter (PBS).

To ensure temporal coincidence of the frequency doubled and short-wavelength pulses

a variable delay line is used in the short-wavelength beam path. The beat frequency

between modes centred at 530 nm and frequency-doubled modes is detected using an

APD after spectral filtering by a diffraction grating, providing a signal at the offset

frequency f0.

The set-up for detection of the beat frequency fb between the optical standard being

measured and the nearest comb mode is similar to the arrangement for f0 detection.

A PBS superimposes the signal from the optical standard with the comb light, a half-

wave plate is used for the beat signal optimisation and fb is detected by an APD after

spectral filtering by a diffraction grating.

3.2.2 Frequency counting and comb stabilisation

To use the frequency comb for absolute frequency measurements the repetition rate

frep, the offset frequency f0 and the beat frequency fb have to be measured simulta-

neously. Also, the repetition rate frep and the offset frequency f0 need to be stabilised

to the radio frequency (RF) reference frequency using a feedback loop.
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3.2.2.1 Repetition rate

Firstly the beat at the ninth harmonic of frep is down-converted by mixing with the

output of an IRF 2023A RF synthesiser at 820 MHz to generate a signal at 9.8 MHz.

Next this signal is mixed with a 9.8 MHz signal from an IFR 2023A RF synthesiser

in an analogue phase comparator to provide a DC error signal, which is used for

driving the piezo element supporting the cavity fold mirror thereby controlling the

cavity length and therefore the comb repetition rate. To measure frep with a precision

greater than can be achieved by direct counting the 9.8 MHz signal is mixed with a

10 MHz signal from a hydrogen maser to obtain a difference signal at 200 kHz. This

signal is used to phase-lock a 200 MHz voltage-controlled oscillator (VCO) using a

GEC Plessey SP8400 frequency divider with a division ratio of 1000. The VCO output

is counted using an Agilent 53132A frequency counter. The repetition frequency frep

is determined from the counted frequency fc and the synthesiser frequency fs as:

frep =
1

9

(

fs − 10 MHz +
fc

1000

)

. (3.1)

The precision of this measurement technique is more than three orders of magnitude

higher compared to direct counting.

3.2.2.2 Offset and beat frequencies

The SNR measured in the f0 and fb beats is typically about 20–25 dB in 100 kHz

bandwidth, which is insufficient for direct counting. A 200 MHz analogue tracking

oscillator for the fb beat and a 30 MHz tracking oscillator for the f0 beat are used to

filter and amplify the beats to provide a countable signal. To set the beat frequency

fb into the tracking oscillator range the pulse repetition rate is adjusted slightly by

changing the synthesiser frequency fs.

To stabilise the offset frequency the signal from the 30 MHz tracking oscillator is
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mixed with a 30 MHz signal from a Stanford Research Systems DS345 synthesiser in

an analogue phase comparator to provide a DC error signal, which is used for driving

the piezoelectric stack adjusting the tilt of the cavity end mirror.

The frequencies f0, fc and fb are counted by Agilent 53132A frequency counters,

which are synchronously gated and read by PC-based software via a GPIB interface.

As for the fibre comb, all the synthesisers and frequency counters are referenced to the

10 MHz signal from a hydrogen maser. If accuracy better than 1 × 10−14 is required

then the hydrogen maser can be referenced to the NPL caesium fountain primary

frequency standard [116].

3.3 Summary

In this chapter the designs of the NPL fibre-laser-based comb and the low-repetition-

rate Ti:Sapphire-laser-based comb as they were at the beginning of my project have

been described.

Firstly, a schematic diagram of the fibre comb was given and the purpose and design

of the three independent branches derived from the mode-locked fibre laser were de-

scribed. Next, the arrangement of the comb allowing for transportable operation was

introduced, and the possibility of using different reference signals, either a signal from

a GPS-referenced quartz oscillator or a signal from a hydrogen maser, which provide

different degrees of accuracy as detailed in Chapter 5, was discussed.

Secondly, the optical arrangement of the KLM Ti:Sapphire laser including the detec-

tion schemes for the frep, f0 and fb frequencies was described. The methods used for

counting and stabilisation of these frequencies were also outlined. The main limita-

tion of the original design was the degradation of SNR in the f0 and fb beat signals

with time, which made it difficult to keep these beats locked for longer than about

an hour. One of the reasons for this SNR degradation was the design of the LRR
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comb, which was was based on a single microstructure fibre for spectral broadening,

and so to obtain the f0 and fb beats, the generated supercontinuum had to be op-

timised in three spectral regions simultaneously. Consequently, the highest obtained

SNR in both beats was limited to about 20–25 dB in a 100 kHz bandwidth. Another

contribution to the low SNR in the f0 beat was the low intensity of the second har-

monic signal generated in the non-linear crystal. To address these limitations, several

improvements were made to the design of the LRR comb, which are described in

following chapter.
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Chapter 4

Improvements to the Ti:Sapphire

low repetition rate comb

The previous chapter describes the design of the low repetition rate (LRR) Ti:Sapphire

comb at the beginning of my project. The main limitation of this design for long

frequency measurements was the necessity of making frequent adjustments to the f0

and fb beat signals as the degradation of signal to noise ratio (SNR) in these beats

with time made it difficult to keep these beats locked for longer than about an hour.

The novel self-referencing scheme described in this chapter improved the SNR in the

f0 beat as well as the long-term stability of the beat signal, which resulted in extension

of the time of continuous operation without any adjustments from less than one hour

to several days.

This chapter gives the details of improvements to the LRR comb design. Firstly,

changes to the spectral broadening and the f0 beat signal stabilisation system im-

plemented by the other members of the group at the beginning of my project are

described. Next, the enhancement of the intensity of the second harmonic signal

generated in non-linear crystals as a result of using different mechanisms of second

harmonic generation is theoretically evaluated. After that, the group velocity disper-
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sion in the self-referencing system is assessed and various methods of compensation

are reviewed. Finally, a novel self-referencing scheme based on Wollaston prisms is

described in detail and the results of the evaluation of the phase-noise performance

of this system reported in [10, 117] are presented.

4.1 Modifications to the spectral broadening scheme

One of the drawbacks of the original Ti:Sapphire comb setup (Fig. 3.3) was the diffi-

culty of obtaining high SNR in both the f0 and the fb beats at the same time. This

was because the octave-spanning comb generated in a single microstructure fibre must

be optimised in three spectral regions simultaneously: around f and 2f to obtain the

f0 beat, and in the region of the measured frequency to get the fb beat. To ease this

constraint, the setup was modified so that the light from the Ti:Sapphire laser was

now split between two branches, each of which contained a microstructure fibre for

spectral broadening as shown in figure 4.1. The first branch was used to create the

octave spanning spectrum for f -to-2f self-referencing, while the second was used for

the beat with the optical standard. This enabled the SNRs of the two beat signals f0

and fb to be optimised independently.

A further improvement to the stability of the f0 and fb beats was made by changing

the type of microstructure fibres used. In the original system the most frequently

required adjustment was the alignment of the laser light into the bare cleaved mi-

crostructure fibre, which had a 1.8 µm core diameter. The alignment typically had to

be optimised every hour. The original microstructure fibre was therefore replaced by

connectorised fibre made by Crystal Fibre, consisting of 20 cm of NL-PM-750 fibre

with collapsed holes at the output end and about 100 µm of single mode fibre (SMF)

spliced to the input end. The 6 µm diameter core of the SMF offers much better

tolerance to misalignment and enables the f0 beat signal to be counted reliably for

many hours as reported in [118]. The new fibre not only reduced the need for read-
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Figure 4.1: Schematic diagram of the LRR comb layout employing two microstructure

fibres and a combination of fast and slow servo loops for f0 stabilisation.

justment, it also reduced the risk of damaging the fibre by high intensity laser light;

furthermore, it made cleaning of the fibre ends possible, eliminating the need for it

to be periodically re-cleaved.

4.2 Carrier envelope offset frequency stabilisation

In the original setup the f0 beat was stabilised by adjusting the tilt of the cavity end

mirror in the Ti:Sapphire laser using a split tubular piezoelectric transducer (PZT).

This had the advantage of being able to compensate for large changes in f0, but

because of the low bandwidth of the actuator (a few kHz), the servo system was

unable to remove high frequency noise. To improve the stabilisation, a fast servo loop

was added (figure 4.1). The fast loop was realised using an acousto-optic modulator

(AOM) inserted into the pump laser beam to control its power [119]. The resulting

modification to the non-linear refractive index of the Ti:Sapphire crystal provided a

means for fast control of f0. Although either of the loops could be used separately, the

combination of the AOM and the PZT enabled both a tight lock and a wide frequency

range to be achieved. Furthermore, cascading two servo loops provided higher gain at
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Figure 4.2: Fractional frequency instability of the stabilized f0 beat at 30 MHz for

the original servo system using only a piezo actuator (red circles) and for the new

servo system, which also uses an AOM (blue squares).

low frequencies. Figure 4.2 shows the resulting improvement of more than four orders

of magnitude in the stability of the f0 beat.

4.3 Improvement to the frequency doubling effi-

ciency in non-linear crystals

As described in Section 2.3.1.1, the f -to-2f self-referencing technique is based on the

measurement of a beat between a fundamental wavelength from the high frequency end

of the comb and the second harmonic of light from the low frequency end. Therefore,

efficient frequency doubling is crucial for the realisation of an f -to-2f self-referencing

interferometer. The original system was built around a 6 mm long KTP crystal

designed for type II phase matching at a fundamental wavelength of 1047 nm.
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This section explains the mechanism of second harmonic generation in non-linear

crystals and demonstrates that the power of the second harmonic can be increased by

replacing the original KTP crystal with a PPKTP crystal, leading to higher SNR in

the f0 beat. The increase of SNR in the f0 beat was calculated and experimentally

verified as shown in Section 4.3.4.

4.3.1 Second harmonic generation in KTP

In this section the key parameters of the second harmonic generation (SHG) for the

original KTP crystal used in the self-referencing setup are presented.

4.3.1.1 Phase-matching

As the fundamental wave propagates through a non-linear crystal, second harmonic

radiation is generated at each point within the crystal [120]. For a useful frequency

doubled output beam it is essential that the light generated at each point interferes

constructively with the existing wave. This means that the phase velocity of the

fundamental and second harmonic waves must be equal, a requirement known as phase

matching. The natural birefringence of anisotropic crystals is used to compensate

dispersion and therefore satisfy the phase matching requirement.

There are two types of phase matching. Type I involves two fundamental waves of

parallel polarisation and the relation between the refractive indices of the fundamental

wave (nω,1 and nω,2) and the second harmonic (n2ω,1 and n2ω,2) is given by

n2ω,1 = nω,2, (4.1)

where 1 and 2 indicates the two possible values of the refractive index in a given

direction of propagation. Type II phase matching involves two orthogonally polarised

fundamental waves and the relation between the refractive indices is
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Figure 4.3: Relation of the polar angles θ and ϕ describing the propagation direction

with respect to orthogonal x, y, z axes.

n2ω,1 =
1

2
(nω,1 + nω,2) , (4.2)

where nω,1 ≤ nω,2.

Since the effective nonlinear coefficient deff of KTP is much bigger for Type II phase

matching than for Type I [121], for efficient interactions Type II SHG was considered.

The refractive indices nω,i and n2ω,i (i = 1, 2) of the fundamental and harmonic

frequencies for an arbitrary incident direction must satisfy the following equations

[122]:

sin2θ cos2ϕ

n−2
ω,i − n−2

x,ω

+
sin2θ sin2ϕ

n−2
ω,i − n−2

y,ω

+
cos2θ

n−2
ω,i − n−2

z,ω

= 0 (4.3)

sin2θ cos2ϕ

n−2
2ω,i − n−2

x,2ω

+
sin2θ sin2ϕ

n−2
2ω,i − n−2

y,2ω

+
cos2θ

n−2
2ω,i − n−2

z,2ω

= 0 (4.4)

where nx,ω, ny,ω, nz,ω, and nx,2ω, ny,2ω, nz,2ω are the principal indices of refraction at

a given temperature. The phase matching directions for type II SHG are the result
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A B C/µm2 D/µm−2

nx 2.16747 0.83733 0.04611 0.01713

ny 2.19229 0.83547 0.04970 0.01621

nz 2.25411 1.06543 0.05486 0.02140

Table 4.1: Sellmeier equation coefficients for KTP, taken from reference [121].

of numerical solution for θ and ϕ, satisfying equations 4.2 – 4.4.

The refractive indices at the desired wavelength were calculated using the Sellmeier

equation

n2 = A +
B

1 − C
λ2

−Dλ2, (4.5)

where λ is expressed in microns and the coefficients are given in table 4.1.

The refractive indices calculated for KTP at the fundamental wavelength of 1047 nm

and its second harmonic are shown in table 4.2. The corresponding phase matching

curve is shown in figure 4.4. This plot shows all possible phase matching directions in

one quadrant for Type II SHG. In order to minimise Poynting vector walk-off it was

logical to choose propagation along a principal crystal axis, where one of the angles θ

or ϕ is either 0◦ or 90◦, so θ = 90◦ was chosen for our crystal.

Fundamental Second Harmonic

nx 1.73862 1.78031

ny 1.74633 1.79120

nz 1.83090 1.89218

Table 4.2: Refractive indices along the x, y and z axes of a KTP crystal at 1047 nm

and 523.5 nm.
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Figure 4.4: Phase matching angles for Type II phase matching in KTP at 1047 nm.

4.3.1.2 Non-linear susceptibility and effective nonlinear coefficient

The non-linear polarisation P (t) is related to the applied electric field E(t) by the

three-dimensional non-linear susceptibility tensor dijk such that,

Pi(t) =
∑

ijk

2dijkǫ0Ej(t)Ek(t). (4.6)

The conversion efficiency of SHG depends on the value of the effective nonlinear

coefficient deff , which is a function of the material nonlinear coefficients dijk and the

E-field polarisation directions. The interaction of two applied fields Ej and Ek induces

a second order polarisation field Pi given by

Pi =
∑

ijk

2ǫ0âidijkâj âkEjEk (4.7)
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where âj and âk are the unit vectors of Ej and Ek. The effective non-linear coeffi-

cient is given by the projection of the polarisation field onto the phasematched SHG

polarisation eigenvector âi,

deff =
∑

ijk

âidijkâj âk. (4.8)

Since exchange of Ej and Ek has no physical meaning, it follows that dijk = dikj, so

jk can be replaced by a single symbol l according to the piezoelectric contraction and

the tensor dijk can be simplified to a two-dimensional 3×6 matrix dil, unique to each

material.

Furthermore, according to Kleinman’s conjecture an additional symmetry condition

for SHG may be operative in materials transparent to the fundamental and second-

harmonic frequencies. If the polarisation is a single-valued function of electric field,

then no physical significance can be attached to the order of the field components Ej

and Ek, El. This condition reduces the number of independent elements of the tensor

dijk, and in some cases requires null values for particular elements.

The effective nonlinear coefficient deff is much smaller for Type I SHG than for Type

II [121], so for efficient interactions Type II SHG is considered; non-zero values of

non-linear coefficients d15 = 3.7 pm/V and d24 = 1.9 pm/V were taken from [123]

for these calculations. For the phase matching angles used in the KTP crystal under

investigation (θ = 90◦, ϕ = 37◦), the value of deff at a wavelength of 1047 nm is

2.56 pm/V.

4.3.1.3 Walk-off mechanism

The propagation directions of the fundamental and the second harmonic differ by the

walk-off angle ρ, which is given by [124]
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θ(◦) ϕ(◦) ρ(◦) deff(II) (pm/V)

90 37 0.425 2.56

73 90 1.6 3.53

Table 4.3: Phase matching parameters for a KTP crystal at a fundamental wavelength

1047 nm.

ρ = tan−1

(

n2
2(2ω)

n2
1(2ω)

tan θ

)

− θ. (4.9)

The second harmonic walk-off reduces the second harmonic conversion efficiency, so

the preferred phase matching direction should have the smallest walk-off provided

that the values of deff are comparable. As shown in figure 4.4, there are two potential

phase matching directions providing propagation along a principal crystal axis; key

parameters are outlined in table 4.3.

Although, deff for the first phase matching direction is smaller than for the second by

a factor of 1.4, the walk-off angle is reduced by almost a factor of 4 making the first

direction more efficient for second harmonic generation.

4.3.1.4 Second harmonic generation bandwidth

Another important parameter for SHG is the optical bandwidth for which the fre-

quency doubling is efficient. The intensity I of the second harmonic light is given

by

I ∝ sinc2
(

∆kL

2

)

(4.10)

where L is the length of the crystal and the phase-mismatch ∆k for Type II phase

matching is given by
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Figure 4.5: Second harmonic (SH) intensity versus wavelength for a KTP crystal of

length 6 mm.

∆k =
2π

λ
(2 n2ω,1 − nω,1 − nω,2) (4.11)

where λ is the wavelength of the fundamental light.

The normalised second harmonic intensity calculated as a function of fundamental

wavelength for the original KTP crystal (L = 6 mm) is shown in figure 4.5. These

calculations show that the full width at half maximum (FWHM) of the acceptance

bandwidth is 0.4 nm for this crystal.

4.3.1.5 Calculations of second harmonic conversion efficiency

In order to calculate the second harmonic power generated when a Gaussian beam

propagates through a non-linear crystal it is necessary to take into account the beam
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divergence and the walk-off. The second harmonic conversion coefficient γSH is given

by [125]

γSH =
2ω2d2effkωL

πn3
ω,2ǫ0c

h(B, ζ) (4.12)

where ω and kω are the angular frequency and wave vector of the fundamental, nω,2 is

the ordinary refractive index at the fundamental wavelength, ǫ0 is the permittivity of

free space, and c is the speed of light in vacuum. The Boyd-Kleinman focusing factor

h(B, ζ) is a function of the walk-off parameter B defined by

B =
1

2
ρ
√

Lkω (4.13)

and the focusing parameter ζ defined by

ζ =
L

b
. (4.14)

Here

b = kωwxwy (4.15)

is the confocal parameter of a beam with 1/e2 spot radii at the beam waist of wx

and wy in the horizontal and vertical planes respectively. The function h(B, ζ) is

determined numerically and plotted as a function of the focusing parameter for several

values of the walk-off parameter (Fig. 2 in Ref. [126]). For the given KTP crystal with

walk-off ρ = 0.425◦, the walk-off parameter is B = 0.9. In the case of optimal focusing

(ζ = 1.9) the value of the function is h(B, ζ) = 0.7 (Fig. 2 in Ref. [126]) and the

second harmonic conversion coefficient, defined by Eq. 4.12, is γSH = 4 × 10−4 W−1.
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4.3.2 Second harmonic generation in periodically poled KTP

Section 4.3.1 described birefringent phase matching in KTP and gave calculations of

a number of parameters of the generated second harmonic light. In this type of phase

matching the refractive indices are matched using the birefringence of an anisotropic

material and in the case of optimum Gaussian focusing the second harmonic intensity

grows linearly with distance in the medium. Another method of enabling continuous

growth of the second harmonic wave along the device, called quasi phase matching,

involves repeated inversion of the relative phase between two waves after an odd

number (normally 1) of coherence lengths. This section gives the basic theory of SHG

in periodically poled crystals and calculations of the main parameters of the second

harmonic light generated in periodically poled KTP (PPKTP).

4.3.2.1 Quasi phase matching and poling period

The phase velocity of the wave travelling through a dispersive medium is determined

by the index of refraction at the specific wavelength, which leads to a difference in

phase velocities between the fundamental and second harmonic waves. Since the sign

of the power flow from one wave to another is determined by the relative phase between

the waves, the continuous phase slip between these waves leads to an alteration in

the direction of the power flow. The distance over which the relative phase of the two

waves changes by π is called the coherence length lc, which is also the half period of

the second harmonic growth and decay cycle given by [127]

lc =
λ

4(n2ω − nω)
, (4.16)

where nw and n2w are the indices of refraction of the fundamental and second har-

monic waves respectively, and λ is the fundamental wavelength. In a PPKTP crys-

tal, repeated inversion of the relative phase between two waves after an odd num-

ber of coherence lengths is achieved by electric-field poling, which forms regions of
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Figure 4.6: Type 0 phase matching geometry for SHG in PPKTP.

periodically-reversed polarisation domains. The greatest conversion efficiency is ob-

tained by changing the sign of the domain every coherence length, which is called

first-order quasi phase matching. The most effective SHG is obtained with Type 0

phase matching (figure 4.6) where the fundamental and the second harmonic light

are both polarised along the z-axis; this configuration uses the largest non-linear

coefficient d33 = 14.9 pm/V [128].

The poling period for first-order quasi phase matching is given by

Λ = 2lc =
λ

2(n2ω − nω)
. (4.17)

The refractive indices nω and n2ω were calculated using Sellmeier equation 4.5 at

λ = 1.064 µm, giving a poling period of 9 µm.

4.3.2.2 Second harmonic generation bandwidth

The intensity of the second harmonic light is given by

66



Wavelength (mm)

N
o
rm

al
is

ed
S

H
in

te
n
si

ty

Wavelength (mm)

N
o
rm

al
is

ed
S

H
in

te
n
si

ty

Figure 4.7: Second harmonic (SH) intensity versus wavelength for a PPKTP crystal

of length 5 mm.

I ∝ sinc2
(

∆kQL

2

)

(4.18)

where L is the length of the crystal and ∆kQ is given by

∆kQ = k2ω − 2kω − 2π

Λ
(4.19)

where kω and k2ω are the wave vectors of the fundamental and second harmonic

waves respectively. The wavelength dependence of the second harmonic intensity was

calculated for a 5 mm long PPKTP crystal with a poling period of 9 µm. The nor-

malised second harmonic intensity as a function of fundamental wavelength is shown

in figure 4.7. This calculation shows that the FWHM of the acceptance bandwidth is

0.2 nm.
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4.3.2.3 Second harmonic conversion efficiency calculations

To calculate the conversion efficiency of the PPKTP crystal, the second harmonic

conversion coefficient γSH given by equation 4.12 can be used. In this case there is

non-critical phase matching and so the walk-off parameter B = 0. For the optimum

focusing (ζ = 2.84) the Boyd-Kleinman focusing factor h(B, ζ) reaches its maximum

value of 1.

The effective nonlinear coefficient for first order quasi phase matching doubling is

given by [127]

deff =
2

π
d33. (4.20)

For the given PPKTP crystal deff = 9.49 pm/V and the second harmonic conversion

coefficient is γSH = 7 × 10−3 W−1.

4.3.3 Comparison of the KTP and PPKTP crystals

Sections 4.3.1 and 4.3.2 described calculations of a number of parameters for the KTP

and the PPKTP crystals used in the experiments reported in this chapter. The 6 mm

long KTP crystal designed for type II phase matching at a fundamental wavelength

of 1047 nm was compared to the 5-mm long uncoated PPKTP crystal phase matched

for Type 0 [e + e → e] frequency doubling at 1064 nm (a poling period of 9 µm).

These calculations are summarised in table 4.4. One can see the advantage of the

quasi phase matching mechanism used in the PPKTP crystal over the birefringent

phase matching in the KTP crystal. The larger effective nonlinear coefficient and zero

walk-off of the PPKTP crystal result in 18 times higher conversion efficiency; however

the acceptance bandwidth of the PPKTP crystal is 2 times smaller than for the KTP

crystal.
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ρ,◦ deff(II), pm/V FWHM, nm γSH

KTP 0.425 2.56 0.4 7 × 10−3

PPKTP 0 9.49 0.2 4 × 10−4

Table 4.4: Comparison between parameters of the KTP and PPKTP crystals used

for second harmonic generation.

4.3.4 Signal to noise ratio calculations

The signal to noise ratio of a beat signal is defined as the ratio of the average electrical

signal power to the total noise power (σ2) in a given bandwidth

SNR =
average signal power

noise power
=

I 2p
σ2

(4.21)

considering the fact that electrical power varies as the square of the electrical current

Ip [129].

A photodetector converts incident optical power Pin into electrical current Ip as

Ip = RPin (4.22)

where R is the responsivity of the photodetector.

The average optical signal power in the beat between the fundamental and frequency

doubled green pulses can be calculated as

Psignal =
∑

m

√

Pm
SHP

m
F , (4.23)

where Pm
SH and Pm

F are the power per comb mode in the second harmonic and the

fundamental green light respectively given by
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Pm
F =

P total
F

NF

(4.24)

and

Pm
SH =

P total
SH

NSH

(4.25)

where P total
F and P total

SH are the total power and NF and NSH are the number of con-

tributing modes in the fundamental green light and the second harmonic respectively.

In both cases the number of contributing modes is given by

N =
|∆f |
frep

= c
|∆λ|
λ2

1

frep
, (4.26)

where ∆f and ∆λ are the signal bandwidths, defined by the FWHM of the interference

filter (∆λ = 3 nm) used for the power measurements in case of the fundamental light

and the acceptance bandwidth of the non-linear crystal (∆λPPKTP = 0.2 nm) in the

case of the second harmonic; λ is the central wavelength (λ = 532 nm). For these

calculations it was assumed that the power per comb mode was uniform throughout

the signal bandwidth for both the fundamental light and the second harmonic.

Since NSH < NF

Psignal =
∑

NSH

√

Pm
SHP

m
F = NSH

√

P total
SH

NSH

P total
F

NF

, (4.27)

or combined with Eq. 4.26

Psignal =

√

|∆λ|SH
|∆λ|F

P total
SH P total

F , (4.28)

Equation 4.22 assumes that the optical-electrical conversion is noise free, but this is

not true even for a perfect photodetector and a constant power of the incident optical
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signal. Two fundamental noise mechanisms, thermal noise and shot noise, produce

fluctuations of the photodetector current.

Thermal noise is generated by random thermal movements of electrons in a resistor

generating fluctuating current even in the absence of an applied voltage [129]. Thermal

noise is independent of the incident optical power and therefore can be neglected in

case of a strong optical signal.

Shot noise has its origins in the time-dependent fluctuations in electrical current

caused by the quantisation of the electron charge and cannot be eliminated by lowering

the temperature. In addition, all photodiodes generate some current, called the dark

current, even in the absence of an optical signal. Therefore the total shot noise is

given by

σ2
s = 2e(I0 + Id)∆fdet, (4.29)

where e is the electron charge, I0 is the signal photocurrent, Id is the dark current

and ∆fdet is the detection bandwidth. The quantity σs is the root mean square value

of the noise current induced by shot noise.

In the case of an avalanche photodiode (APD) the primary photocurrent I0 is amplified

by the avalanche effect, and so the observed signal photocurrent Ip instead of Eq. 4.22

is given by

Ip = M I0 = MRPin = RAPDPin, (4.30)

where M is the avalanche gain and RAPD is the APD responsivity. The primary noise

is also amplified by the avalanche effect (the power gain is M2), so neglecting the dark

current Id, the observed APD noise is

σ2
s = 2e∆fdetM

2I0 = 2e∆fdetMIp. (4.31)
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The optical noise power is given by

Pnoise = P total
SH + P total

F (4.32)

so the APD shot noise is given by

σ2
s = 2eRAPD∆fdetM

(

P total
SH + P total

F

)

(4.33)

and the SNR in the f0 beat can be calculated as

SNR =
I2p
σ2
s

=
RAPD

2e∆fdetM

∆λSH

∆λF

Ptotal
SH Ptotal

F

Ptotal
SH + Ptotal

F

. (4.34)

For the given silicon APD detector used (PerkinElmer C30902E [130]) RAPD = 30 A/W

at 532 nm and M = 150, while ∆fdet = 250 kHz is given by the resolution bandwidth

of the spectum analyser used in this experiment. The total power of the fundamental

green light (PF = 0.7 µW) and the second harmonic generated using the PPKTP

crystal (PPPKTP
SH = 3 µW) were measured immediately in front of the detector, where

the two beams have the same polarisation, and the SNR calculated using Eq. 4.34

was 49.7 dB. Note that the power measurements for these calculations were made for

the current f -to-2f self referencing setup described later in this chapter (Fig. 4.22);

the measured SNR in this configuration was 50 dB in 250 kHz bandwidth. An ex-

perimental comparison of the SNR values in the f0 beat was also performed for the

original f -to-2f self referencing setup based on a Mach-Zehnder interferometer. In

the case where a KTP crystal was used for frequency doubling the measured SNR was

30 dB in 250 kHz bandwidth. After the non-linear crystal was replaced by PPKTP

the SNR was increased to 40 dB. This improvement allowed the tracking oscillator

previously used on the f0 beat to be eliminated.
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4.4 Group velocity dispersion assessment

One of the requirements for detection of the carrier envelope offset frequency beat

f0 is temporal overlap of the fundamental and frequency doubled green pulses at the

detector. There are several sources of group velocity dispersion in the self-referencing

system resulting in a delay between the infrared and green parts of the supercontinuum

which in turn introduces a delay between the fundamental and frequency doubled

green pulses.

One of the contributing elements is lenses, providing a delay to the green spectral

component relative to the infrared. Calculations using manufacturer’s data for BK7

glass [131] give a delay of 0.9 ps per 1 cm of glass. The other sources of group velocity

dispersion are the microstructure fibre and the frequency doubling crystal, which are

described in detail in sections 4.4.1 and 4.4.2 respectively.

4.4.1 Microstructure fibre

To estimate the group delay difference between laser pulses centred at 532 nm and

1064 nm at the output of the microstructure fibre the dispersion curve shown in

figure 4.8 was used. Although the input light has to travel some distance through the

microstructure fibre before the generated supercontinuum contains both 532 nm and

1064 nm wavelength components, in order to estimate the maximum delay between

these wavelengths at the fibre output, it was assumed that both wavelengths were

present at the fibre input. This assumption gives a good estimate as the measurements

of the group delay for this type of fibre reported in [132] suggest that the spectrum

is broadened within the first 1.5 cm of the fibre.

The dispersion curve shown in figure 4.8 was approximated with a cubic function

D(λ)
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Figure 4.8: Typical measured dispersion of NL–PM–750 nonlinear photonic crystal

fibre [Picture taken from Crystal Fibre data sheet].

D(λ) = B0 + B1λ + B2λ
2 + B3λ

3 (4.35)

where the coefficients Bi are given in Table 4.5.

The delay ∆t between laser pulses centred at 1064 nm and 532 nm at the fibre output

is given by

∆t = L

∫ 1064

532

D(λ)dλ (4.36)

where L is the length of the microstructure fibre. For the 20 cm long microstructure

B0 B1 B2 B3

-3.11×103 9.17 -8.83×10−3 2.85×10−6

Table 4.5: Coefficients for the polynomial curve fit D(λ) of the dispersion map shown

in figure 4.8.
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fibre ∆t = −2.4 ps, therefore the pulses centred at 1064 nm appear at the fibre output

2.4 ps sooner than pulses centred at 532 nm. This number represents the maximum

possible relative delay between the infrared and the green parts of the supercontinuum

introduced by the microstructure fibre and is in good agreement with the range of

delays from 0.5 to 2.5 ps reported in [132].

.

4.4.2 Non-linear crystal

For calculations of the maximum relative delay between the infrared and the green

parts of the spectrum introduced by the frequency doubling crystal it was assumed

that the frequency doubling takes place in the middle of the crystal.

The group velocity of the light inside the PPKTP crystal is given by

vg =
c

n− λ0
dn
dλ0

, (4.37)

where the refractive index n is calculated using the Sellmeier equation 4.5 and

dn

dλ0

= −λ0

n

(

B

(λ2
0 − C)2

+ D

)

. (4.38)

The relative delay between the infrared and the green parts of the spectrum can be

calculated as

∆t =
L

v1064g

− L

v532g

, (4.39)

where L is the length traveled by the infrared light before it has been frequency

doubled and v1064g and v532g are the group velocities of light at wavelengths of 1064 nm

and 532 nm respectively.
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Assuming that the frequency doubling occurs in the middle of the crystal, in the case

of the 5 mm long crystal used in the NPL frequency comb, infrared light travels a

distance L = 2.5 mm before frequency doubling, leading to a relative delay between

the fundamental and frequency doubled green light of ∆t = 1.3 ps. Therefore, the

estimate of the total group delay between the light at wavelengths of 1064 nm and

532 nm after passing through approximately 1.5 cm of BK7 glass, microstructure fibre

and the PPKTP crystal is 5 ps.

4.5 Dispersion compensation methods used in self-

referencing schemes

Section 4.4 has given an estimate of the relative delay between the short-wavelength

and the long wavelength parts of the spectrum produced by the different components

of the system. In order to obtain a beat between two pulses they need to be spa-

tially and temporally overlapped, therefore the delay between the fundamental and

the frequency doubled green pulses needs to be compensated before detection. The

measurements of the peak power in the f0 beat as a function of the relative delay

showed that 3 dB power reduction corresponds to a delay of 0.3 ps in one direction

and 0.8 ps in the opposite direction. Similar measurements reported in [132] showed

that detuning of the delay by 0.2 ps resulted in a decrease of the SNR by 3 dB.

This section describes different dispersion compensation methods that have previously

been used in self-referencing schemes and discusses their limitations.

4.5.1 Methods based on spectral separation

The most commonly used arrangement for dispersion compensation in self-referencing

schemes employs a Mach-Zehnder (MZ) interferometer with an adjustable delay line

in one of the arms [49] as shown in figure 4.9a. In this configuration a dichroic beam
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Figure 4.9: Schematic diagram of self-referencing setups based on (a) a Mach-Zehnder

interferometer (b) a Michelson interferometer (c) a prism-based interferometer for

dispersion compensation (MSF – microstructured fibre; SHG – second harmonic gen-

eration; IF – interference filter; P – polariser; APD – avalanche photodiode).
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splitter spectrally separates the comb between the two arms of the interferometer. The

long-wavelength part of the spectrum is frequency doubled in a single pass through a

non-linear crystal and recombined with the short-wavelength part. To ensure temporal

coincidence of the frequency doubled and short-wavelength pulses a variable delay line

is fitted in the short-wavelength beam path. The main disadvantage of this topology

is the long non-common optical path travelled by each beam, as acoustic noise, air

currents and thermal drift induce a random phase shift between the interfering beams

and the phase error of the interferometer is transferred through the stabilization loop

to a change of the carrier envelope phase of the pulses produced by the laser [133].

These problems can be reduced to some extent by using a Michelson interferometer

[56] (figure 4.9b). In this case the group delay between the short-wavelength and

the long-wavelength pulses is compensated at the output of the microstructure fibre.

The output light is launched into the interferometer with one fixed and one variable

length arm. When the light is recombined at the output of the interferometer all

spectral components propagate together through the non-linear crystal, where the

long-wavelength part gets frequency doubled while the rest of the spectrum emerges

unchanged. The length of the variable arm of the interferometer is adjusted to achieve

zero delay between the short-wavelength and the frequency doubled long-wavelength

pulses at the output of the crystal. This configuration provides considerably shorter

non-common paths compared to the MZ arrangement, and therefore provides in-

creased immunity to laboratory noise.

Another way of compensating for the group delay dispersion introduced by the mi-

crostructure fibre and other components as discussed in the previous section, is to use

a prism-based interferometer (figure 4.9c). This scheme uses a pair of prisms to spa-

tially separate the different spectral components, and the infrared and visible parts of

the supercontinuum are separately retroreflected using a split mirror. This configura-

tion was first reported in [134, 135]. A detailed comparison of the noise performance

of a prism-based interferometer and a MZ interferometer was presented by Grebing et

al [136]. The results proved that the system with the shorter non-common path ex-
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hibits increased immunity to acoustic noise and air currents; however the fundamental

problem of noise originating from non-common optics in systems based on separation

of different spectral components of the supercontinuum remains. The solution to this

problem is to use a common-path interferometer.

4.5.2 Dispersion compensation with a common-path interfer-

ometer

The advantage of a common-path interferometer is that the difference in optical path

lengths for different spectral components is achieved using the wavelength dependence

of the group velocity whilst keeping the physical path the same. This is easy to realise

in 1.5 µm fibre-laser based combs [137], where both positive and negative group-delay

dispersion occurs at the wavelengths of interest in different types of fibre. Therefore

the group-delay between the high-frequency and the low-frequency components of the

octave-spanning spectrum can be compensated by selection of appropriate fibre types

and lengths.

This solution is harder to realise for Ti:Sapphire-based combs since such fibres are

not commercially available for non-telecommunication wavelengths. There are several

examples of group velocity dispersion compensation in Ti:sapphire laser based combs

having been realised without spectral separation. A pair of ultrabroadband chirped

mirrors with tailored dispersion was used in a monolithic f0 stabilization scheme as

described in [138, 139]. The Ti:Sapphire lasers used in these works produce an octave-

spanning spectrum without spectral broadening in a microstructure fibre, so a delay

line based on chirped mirrors is sufficient to compensate the group velocity delay

produced by the laser. Furthermore, the delay produced by a pair of chirped mirrors

is not variable.

A polarisation-dependent delay between the fundamental and frequency-doubled green

pulses propagating in a PPKTP crystal with Type I phase matching [o + o → e] was
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used for delay compensation in [140]. However, no explanation as to how the arbi-

trary delay introduced by a microstructure fibre was compensated is offered in the

publication.

A method described in [132] made use of the difference in the group velocities of

orthogonally polarised light in birefringent materials. This scheme was based on

a common-path interferometer with a calcite Babinet-Soleil compensator designed

specially to provide a variable delay between the fundamental and the second harmonic

of the infrared parts of the supercontinuum.

The above method was based on the same idea of using birefringent material as the

NPL all-common-path self-referencing scheme described below and reported in [10].

The two systems were developed independently and in parallel; however the system

constructed at NPL has the advantage that it is made from off-the-shelf optical com-

ponents.

4.6 Wollaston prism-based self referencing setup

This section describes the geometry and principle of operation of a Wollaston prism

together with calculations and the experimental characterisation of the delay between

two output beams used in the novel self-referencing scheme. Finally, a detailed de-

scription of the optical arrangement for the self-referencing scheme is presented.

4.6.1 Wollaston prism principles of operation

A schematic diagram of a Wollaston prism is shown in figure 4.10. A Wollaston prism

consists of two triangular calcite prisms cemented together, with their optical axes

perpendicular to each other and to the direction of propagation of the incident light.

Once the light enters the prism it is refracted into two orthogonally polarised co-

directional rays: the ordinary ray (o-ray) and the extraordinary ray (e-ray). At the

80



Figure 4.10: Schematic diagram of a Wollaston prism and direction of the input and

output beams (a); schematic of polarisations and the propagation direction of ordinary

and extraordinary rays inside a Wollaston prism (b).

boundary surface the extraordinary ray in the first prism becomes an ordinary ray in

the second prism and the ordinary ray becomes an extraordinary ray. In addition, as

a result of the change of the effective refractive index both rays are bent away from

the normal in opposite directions. The beams diverge from the prism with the angle

of divergence determined by the wedge angle (angle α in Fig. 4.10) of the prism and

the wavelength of the light. The relative delay between the two orthogonally polarised

beams, achieved as a consequence of their different optical path lengths within the

prism, depends on the position of the input beam across the aperture of the prism

[141].

4.6.2 Relative delay between the two output beams

A schematic diagram of dispersion compensation using a pair of Wollaston prisms is

shown in figure 4.11. Two orthogonally polarised beams are separated at the point

S1 and recombined at the point S2.

The relative delay between the two orthogonally polarised output beams was calcu-

lated as a function of the distance between the input beam and the prism centre.

Figure 4.12 shows a schematic diagram of the light propagation through the Wollas-

ton prism for the ordinary ray (a) and the extraordinary ray (b) in the first prism.
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Figure 4.11: Schematic diagram of dispersion compensation using a pair of Wollaston

prisms. WP1 and WP2 – Wollaston prisms, L1 and L2 – lenses with the focal length

f, S1 – point of separation of the beams, S2 – point of recombination of the beams.

The total path inside the prism is a sum of the paths in the first prism (L1) and the

second prism (L2) calculated using the prism geometry as

L1 = A

(

1

2
− O

B

)

(4.40)

and

L2 =
A

cosγ

(

O

B
+

1

2

)

. (4.41)

Angle γ was calculated as the sum or difference between angles α and β as shown in

figure 4.13, where

α = sin−1

(

A√
A2 + B2

)

(4.42)

and angle β was calculated using Snell’s law:

n1sinα = n2sinβ (4.43)

where n1 = no and n2 = ne for the ordinary ray in the first prism (fig. 4.13a) and

82

vt
Highlight



Figure 4.12: Schematic diagram of the light propagation through a Wollaston prism.

The ordinary ray in the first prism becomes an extraordinary ray in the second at the

boundary surface (a) and the extraordinary ray in the first prism becomes an ordinary

ray in the second prism (b); A, B and O are the length, the width and the offset from

the centre of the prism respectively.

n1 = ne and n2 = no for the extraordinary ray in the first prism (fig. 4.13b).

The refractive indices were calculated using the Sellmeier equation for calcite

n2 = A +
B

λ2
0 − C

−Dλ2
0. (4.44)

The indexes A, B, C, and D are given in table 4.6 for both ordinary and extraordinary

rays [142]; λ0 is the wavelength in microns.

The light propagates through the Wollaston prism with group velocity (vg) given by

A B C/µm2 D/µm−2

no 2.69705 0.0192064 0.0182 0.0151624

ne 2.18438 0.0087309 0.01018 0.0024411

Table 4.6: Sellmeier equation coefficients for calcite.
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Figure 4.13: Refraction of the light at the boundary surface of the Wollaston prism

for the ordinary ray in the first prism (a) and the extraordinary ray in the first prism

(b).

vg =
c

n− λ0
dn
dλ0

, (4.45)

where

dn

dλ0

= −λ0

n

(

B

(λ2
0 − C)2

+ D

)

. (4.46)

The group velocity inside the Wollaston prism was calculated for ordinary (vog) and

extraordinary (veg) rays separately and the values obtained were then used to calculate

the time taken by the first ray to propagate through the Wollaston prism as

t1 =
L1(O)

vog
+

L2(O)

veg
, (4.47)

and the time taken by the second ray to propagate through the Wollaston prism as

t2 =
L1(O)

veg
+

L2(O)

vog
. (4.48)

Finally, the relative delay between two output beams was calculated as

84



Figure 4.14: Schematic diagram of the setup used to measure the relative delay be-

tween orthogonally polarised pulses introduced by the pair of Wollaston prisms as

a function of the position of the first prism. (Ti:S – Ti:Sapphire laser, MSF – mi-

crostructure fibre, P – polariser, IF – interference filter, WP1 and WP2 – Wollaston

prisms, OS – optical spectrometer, PC – computer).

∆t(O) = t1(O) − t2(O). (4.49)

Experimental characterisation of the delay introduced by the pair of Wollaston prisms

was performed using coherent spectral interferometry [143]. Figure 4.14 shows the

setup used for this experiment.

The output of the mode-locked Ti:Sapphire laser was coupled into a 20-cm long mi-

crostructure fibre to obtain a green spectral component which was selected from the

generated super-continuum using a 10 nm bandwidth interference filter (IF) centred

at 532 nm. The polariser P set to 45◦ from vertical ensured that both vertical and

horizontal polarisation components were present at the input of the first Wollaston

prism. The input light was separated into two orthogonally polarised beams by the

first Wollaston prism and these were recombined by the second. The position of the

first Wollaston prism relative to the input beam was controlled using a micrometer-

driven translation stage. The optical spectrum at the output of the second polariser

P was measured using an Ocean Optics HR 4000 spectrometer and the interference

fringes were recorded using a PC. The fringe spacing corresponding to different po-

sitions of the first Wollaston prism was used to calculate the relative delay between

the two orthogonally polarised output beams (∆t) as
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∆t =
λ2

cD
, (4.50)

where λ is the wavelength, c is the speed of light and D is the fringe spacing.

Figure 4.15 shows examples of interference spectra with fringe spacings of 1 nm (a)

and 0.5 nm (b) corresponding to delays of 0.9 ps and 1.9 ps respectively.

The theoretical values of the relative delay between the two beams obtained from

equation 4.49 and values calculated from the results of the coherent spectral interfer-

ometry using equation 4.50 are plotted in figure 4.16 as a function of the offset from

the centre of the prism along the boundary surface. The estimate of the group-delay

between fundamental and second harmonic green pulses calculated in Section 4.4 was

5 ps, therefore the measured range of delays is sufficient to compensate the expected

delay in our system.

4.6.3 Self-referencing setup description

The optical design of the Wollaston prism based self-referencing setup is shown in

figure 4.17. A polariser at the output of the microstructure fibre ensured a horizontal

polarisation at all wavelengths in the spectrum. A half-wave plate at 1064 nm rotated

the polarisation of the infrared light by 90◦ to meet the phase-matching conditions

of the PPKTP frequency-doubling crystal. An interference filter centred at 532 nm

and with a 3 nm bandwidth was used for spectral filtering. The PPKTP phase

matching geometry was such that the fundamental and frequency doubled light have

the same polarisation, thus the fundamental and frequency-doubled green pulses at

the output of the crystal propagated collinearly but were orthogonally polarised. By

adjusting the positions of the Wollaston prisms WP1 and WP2, the orthogonally-

polarised fundamental and frequency-doubled 532 nm pulses separated by WP1 and

recombined by WP2 can be temporally overlapped at the detector. Note that since

the effective optical point of recombination lies within the first triangular part of the
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Figure 4.15: Examples of optical spectrum of the interference between two polarisation

states corresponding to fringe spacings of 1 nm (a) and 0.5 nm (b).
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Figure 4.16: Relative delay between the two orthogonally polarised beams at the

output of the Wollaston prism. The red line shows the theoretical calculations and

the black squares represent values calculated from the coherent spectral interferometry

measurements.
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Figure 4.17: Schematic of the self-referencing interferometer using a pair of Wollaston

prisms for dispersion compensation. (MSF – microstructure fibre emitting an octave-

spanning super-continuum; P – polariser; λ/2 – 1064 nm half wave plate; IF – 532 nm

interference filter (FWHM = 3 nm); WP1, WP2 – Wollaston prisms; APD – avalanche

photodiode).

Wollaston prism, the translation axis does not coincide with the boundary surface.

The f0 beat frequency was detected using an avalanche photodiode (APD), with a

rotatable polariser in front of the detector being used to optimize the SNR in the

beat.

4.7 Experimental characterisation of novel

self-referencing scheme

In order to assess the noise performance of the new self-referencing system, it was com-

pared to the performance of a Michelson interferometer based self-referencing scheme.

For an objective evaluation of the phase noise performance, an out-of-loop measure-

ment scheme consisting of two independent f -to-2f self-referencing systems, one for

generating the signal for the feedback loop and the second for making independent
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Figure 4.18: Optical arrangement for comparison of the noise performance of Wollas-

ton prism based and Michelson interferometer based f -to-2f self-referencing setups.

(MSF – microstructure fibre; BS – beam splitter; DBS – dichroic BS; λ/2 – half wave

plate at 1064 nm; P – polariser; IF – interference filter (λ = 532 nm; FWHM = 3 nm);

WP – Wollaston prism; FM – flipper mirror; APD – avalanche photodiode).

phase-noise measurements, was used.

4.7.1 Comparison of Wollaston prisms and Michelson inter-

ferometer based schemes

The optical arrangement of the setup used for the characterisation of the phase-noise

performance of the new self-referencing system is shown in figure 4.18. Since the

noise performance of the Wollaston prism based self-referencing scheme was expected

to be superior to that of a Michelson interferometer based system, the setup gener-

ating the error signal used to stabilize f0 (the in-loop interferometer) was based on

Wollaston prisms. The second f -to-2f self-referencing system (the out-of-loop inter-
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ferometer) was specifically built for independent phase-noise measurements. In this

interferometer the group-delay dispersion compensation could be switched between

a Wollaston prism arrangement and a Michelson interferometer using two pairs of

flipper mirrors, while keeping the frequency-doubling and detection parts of the ap-

paratus common. The non-common path length in the Michelson interferometer was

approximately 10 cm. To eliminate noise contributions from the MSF the beams for

the in-loop and out-of-loop interferometers were derived after the MSF by splitting

the super-continuum output using a pellicle beam splitter (BS). Furthermore, in or-

der to ensure that the air current contributions to the noise of the in-loop and the

out-of-loop systems are not common-mode, they were arranged orthogonally. The

measured SNR in the f0 beat was 40 dB in the out-of-loop signal for both methods

of dispersion compensation, while the in-loop setup demonstrated a SNR of 48 dB.

In all measurements a 250-kHz resolution bandwidth was used and f0 was stabilised

to 30 MHz by a combination of fast and slow feedback feedback loops as described in

Section 4.2. The difference in SNR between the f0 signals in the two interferometers

is attributed to the non 50:50 BS and the difference in spectral filtering before the

APD: a diffraction grating followed by an adjustable slit was employed in the in-loop

setup and provided 2 dB higher SNR compared to an interference filter used in the

out-of-loop setup.

Figure 4.19 shows the setup used for the noise sensitivity characterisation. The two

f0 signals generated by the APDs of the in-loop and the out-of-loop interferometers

were each filtered and amplified to a power of 7 dBm and sent to a phase detector

providing an output signal for the measurement system. Two separate sets of noise

measurements were performed: in the time domain the phase error was recorded as a

function of observation time, and in the frequency domain the power spectral density

of the phase fluctuations Sφ was measured.
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Figure 4.19: Schematic diagram of the system used to compare the noise sensitivity

of the two different f -to-2f self-referencing schemes.

4.7.1.1 Phase error measurements

In a first set of measurements the voltage fluctuations at the output of the phase

detector were recorded in the time domain using a precision digital voltmeter and

the corresponding phase error was calculated as a function of observation time. The

voltmeter sampling rate was 100 Hz and a first order low-pass filter at 10 Hz was used

to minimise aliasing. The results of these measurements are shown in figure 4.20.

The Wollaston prism based interferometer demonstrated significantly better short-

term performance, with a root mean square (rms) phase error of 37 mrad measured

for a 5 s observation time, compared with 130 mrad measured for the Michelson

interferometer based scheme. The long-term performance was measured over a total

observation time of 30 minutes, during which a rms phase error of 51 mrad was

demonstrated by the Wollaston prism based interferometer, compared with 207 mrad

error from the Michelson interferometer-based system.
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Figure 4.20: Phase error between the f0 beat signals from the in-loop and out-of-loop

interferometers as a function of observation time. The in-loop system was a Wollaston

prism based interferometer in both cases while the out-of-loop system was switched

between Wollaston prism and Michelson based interferometers.
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Figure 4.21: Comparison of the out-of-loop phase noise Sφ (solid lines) and integrated

phase noise as a function of observation time (dashed lines) measured for the f0 signals

from the Wollaston prism based interferometer and Michelson interferometer.

4.7.1.2 Phase noise measurements

In a second set of measurements the power spectral density of the phase fluctuations

Sφ was derived from the voltage fluctuations at the output of the phase detector using

a Fast Fourier Transform (FFT) analyser. The accumulated phase noise was obtained

by integration of Sφ from the inverse of the observation time to the upper limit of the

FFT analyzer, which was 100 kHz. These results are presented in figure 4.21.

The noise peaks in the region from 40 to 1000 Hz can be attributed to vibrations of

the optics due to acoustic noise in the laboratory. As expected, the common optical

path provided by the Wollaston prism based system achieved substantial common-

mode acoustic noise rejection, which was observed as a phase noise reduction of up

to 15 dB compared with the Michelson interferometer-based system. The difference

in the white phase noise level observed at high frequencies for the two interferometers

can be explained by the different optical power levels incident on the APDs in the two
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cases, which led to different shot noise levels. The sensitivity of the two interferometers

to air currents can be inferred from the phase noise observed at frequencies lower than

a few hertz. In this region, the Wollaston prism based scheme again demonstrated up

to 15 dB improvement over the Michelson interferometer based system.

The enhanced immunity of the Wollaston prism based interferometer to acoustic noise

is also apparent when comparing the integrated phase noise, where the contribution of

each of the noise peaks in the phase noise spectrum can be seen as clear steps. The rms

phase error accumulated in the frequency region 40 to 1000 Hz was only about 1 mrad

for the Wollaston prism-based system compared to about 7 mrad for the Michelson

interferometer-based system. The Michelson interferometer-based system also showed

a much more pronounced increase in integrated phase noise at long observation times,

reflecting its poorer immunity to air currents and thermal drift.

These measurements were obtained on an open optical table with no shielding around

the interferometers. The insensitivity of the Wollaston prism based scheme to air

currents was confirmed by repeating the measurements after fully shielding the appa-

ratus, which for the Michelson interferometer based scheme reduced the phase noise

at low frequencies to a level similar to that observed for the unshielded Wollaston

prism scheme, but which had negligible effect on the Wollaston prism scheme.

4.7.2 Single Wollaston prism compact setup

The symmetry of the two Wollaston prism arrangement shown in figure 4.17 allowed a

further simplification to be made, providing a more compact scheme. The final design

of f -to-2f self-referencing setup implemented on the LRR comb is shown in figure 4.22.

In this arrangement the two beams exiting the Wollaston prism were directed onto a

concave mirror and retro-reflected back through the Wollaston prism. The concave

mirror was tilted so that the recombined output beam emerged slightly below the

incident beam and was then directed onto the APD using a D-shaped mirror. The

95



Figure 4.22: Schematic of the compact self-referencing setup based on a Wollaston

prism for dispersion compensation. MSF – microstructured fibre; λ/2 – half wave

plate at 1064 nm; P – polariser; IF – interference filter (λ = 532 nm; FWHM=3 nm);

D-SM – D-shaped mirror.

SNR in the f0 beat obtained in this configuration was 50 dB in a 250 kHz resolution

bandwidth, 2 dB better than in the system based on a pair of Wollaston prisms.

4.8 Summary

In this chapter improvements to the original design of the LRR Ti:Sapphire laser

based frequency comb have been described. The generation of both f0 and fb beat

signals was improved by using two separate microstructure fibres for spectral broaden-

ing instead of one. This allowed supercontinuum generation conditions to be improved

in different spectral regions independently and hence the SNR in both beats to be

improved. The stability of the beats was further improved by replacing the cleaved

microstructure fibre by connectorised fibre in both branches. An additional improve-

ment to the stability of the f0 beat was gained by the use of a two branch feedback loop

consisting of a fast servo loop acting on an AOM in the pump laser beam in addition

to the previously used slow loop acting on the cavity end mirror in the Ti:Sapphire
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laser.

In section 4.3 the theory of second harmonic generation in two types of non-linear

crystal was reviewed. A number of SHG parameters such as phase matching angles,

effective nonlinear coefficient, walk-off angle, acceptance bandwidth and second har-

monic conversion efficiency were presented for the KTP crystal used in the original

self-referencing scheme. An overview of the principles of quasi phase matching was

given and the acceptance bandwidth and second harmonic conversion efficiency of

a PPKTP crystal calculated. After that the two crystals (KTP and PPKTP) were

compared. It is also shown in this section that the use of a PPKTP crystal instead of

KTP for second harmonic generation improves the measured SNR in the f0 beat by

10 dB due to the higher conversion efficiency.

In section 4.4 group velocity dispersion was assessed separately for the microstructure

fibre, the non-linear crystal and the lenses used in the self-referencing interferometer.

The resulting estimate of the total delay between fundamental and frequency dou-

bled green pulses was 5 ps. After that various methods of dispersion compensation

used in self-referencing systems, including their advantages and disadvantages, were

reviewed. Finally, a new f -to-2f self-referencing scheme based on Wollaston prisms

was described. The relative delay between two beams at the output of a Wollaston

prism was assessed theoretically and experimentally, proving that this is sufficient

for group velocity dispersion compensation. The main advantage of the Wollaston

prism interferometer over commonly used interferometers such as Mach-Zehnder or

Michelson interferometers is that it provides the same optical path for all spectral

components resulting in common-mode acoustic noise rejection. It was experimen-

tally demonstrated that the use of a Wollaston prism based interferometer results

in up to 15 dB lower phase noise compared to a Michelson interferometer. Further-

more, a compact setup based on a single Wollaston prism and a concave mirror was

developed, reducing the size of the self-referencing system.
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Chapter 5

Sources of systematic uncertainty

and instability of frequency combs

In this chapter the sources of systematic uncertainty and instability of frequency

combs originating from the reference signal used for frequency measurements are in-

vestigated. Firstly, the various sources of microwave frequency producing the reference

signal for the frequency combs are described. Next, the stability and accuracy of the

signal produced by three frequency sources, a GPS-disciplined oscillator, a hydrogen

maser and a Cs primary frequency standard, used as a reference for frequency combs

are evaluated. The impact of the frequency distribution system on the stability of

the most commonly used reference source, a hydrogen maser, is also investigated.

Finally, the impact of temperature variations on the accuracy of the frequency signal

produced by maser-referenced synthesisers is analysed.

5.1 Microwave frequency reference sources

A measured optical frequency should be related to the frequency of a caesium primary

frequency standard used to realise the SI second as defined in Section 2.1.1. In order
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to achieve this, the NPL frequency combs are referenced to a 10-MHz signal from a

hydrogen maser frequency standard, which in turn can be calibrated using the local

caesium fountain primary frequency standard NPL-CsF2 for the highest accuracy

measurements. Alternatively, if lower accuracy can be tolerated, the hydrogen maser

frequency can be calibrated against the international timescale UTC using data from

the BIPM publication “Circular T”. An example of this second approach is detailed

in Section 6.2.3.

5.1.1 Caesium primary frequency standards

Due to the definition of the SI unit of time, caesium atomic clocks are very important.

These clocks use the transition between the two hyperfine levels F = 4,mF = 0 and

F = 3,mF = 0 of the ground state of the 133Cs atom as a frequency reference. The

first caesium atomic clock was developed at NPL in the 1950s [144], and since then a

number of different designs with improved stability and accuracy have been developed.

At present, the most accurate caesium standards are realised using laser-cooled atoms

in a fountain configuration (see for example [145, 146, 116]).

5.1.1.1 Principles of operation

A schematic diagram of the NPL-CsF2 caesium fountain is shown in Fig. 5.1. The

setup consists of three main sections: a preparation zone, an interaction zone and

a detection zone. In the preparation zone caesium atoms are collected and laser

cooled to typically about 2 µK, after which they are launched vertically through an

interaction region, slow down due to gravity and fall back. The interaction zone

contains two microwave cavity resonators and a zone for the ballistic flight of the

atoms. The first microwave resonator cavity is used to prepare the population in the

desired hyperfine states in order to avoid frequency shifts caused by effects related

to population in the states other than the two involved in the transition. When
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Figure 5.1: Schematic diagram of the NPL-CsF2 caesium fountain primary frequency

standard described in [116] [picture courtesy of Dr Krzysztof Szymaniec].
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Figure 5.2: Simplified caesium energy level diagram showing the clock transition

(green), and the cycling (blue) and repumper (red) transitions used in the detection

process.

atoms pass through the second microwave resonator on their way up and down they

experience Ramsey excitation where transitions are induced.

Ramsey interrogation or the method of separated oscillatory fields [147] is based on

interrogation of the atomic transition with two phase-coherent microwave pulses of

the same duration separated in time rather than by a single microwave pulse. The

duration of these pulses is much smaller than the interval between them. The resulting

probability of transition function is an interference pattern, called Ramsey fringes,

with the linewidth of the central fringe being inversely proportional to the duration

of the interval between the two microwave pulses. In atomic fountains the microwave

pulses are generated in the second microwave resonator and the ballistic flight up and

down the interaction zone provides the interval between the two microwave pulses

experienced by the atoms.

Atoms in the F = 4 and F = 3 states are detected separately. Figure 5.2 shows a

simplified caesium energy level diagram illustrating the detection process. First, the

falling atoms pass through a standing-wave laser field tuned to the F = 4 → F ′ = 5

101



cycling transition and fluorescence from this transition is detected in the upper de-

tection chamber. The time-integrated detected signal is proportional to the number

of atoms in the F = 4 state. After this the F = 4 atoms are pushed away by radia-

tion pressure preventing them from entering the lower detection zone; hence only the

F = 3 atoms remain. The laser beam tuned to the F = 3 → F ′ = 4 repumper

transition is used to pump these atoms to the F = 4 state and fluorescence induced

by a laser tuned to the F = 4 → F ′ = 5 cycling transition is detected in the

lower detection chamber giving the number of atoms in the F = 3 state.

The 9.2 GHz microwave signal for interrogation of the atomic clock transition is

synthesized by multiplication and mixing of the frequency produced by a dielectric

resonant oscillator (DRO) with the frequency of an RF synthesiser. The DRO is

frequency referenced to a high-stability radio-frequency source (a BVA quartz-crystal

oscillator or a cryogenic sapphire oscillator), which in turn is locked to a hydrogen

maser.

To measure the difference between the frequency of the atomic transition and the

9.2 GHz oscillator, the atoms are probed on either side of the central Ramsey fringe

and the two transition probabilities are subsequently compared. The frequency dif-

ference is calculated from the imbalance of the signals and the values are fed back to

the RF synthesiser in the 9.2 GHz oscillator, which tracks the position of the fringe

centre.

5.1.1.2 Uncertainty budget

The fundamental limit to the accuracy with which frequency measurements can be

made is the accuracy of the frequency standard used as a reference. Both the statistical

(type A) and the systematic (type B) uncertainties must be considered. A good

description of the statistical uncertainty obtained after a measurement time τ is given

by the Allan deviation σy(τ) described in Section 2.4.2.2.
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In a caesium fountain primary frequency standard, four noise contributions have to

be taken into account. The Allan deviation can be written as [148]:

σy(τ) =
1

πQat

√

Tc

τ

(

1

Nat

+
1

Natǫcnph

+
2σ2

δN

N2
at

+ γ

)1/2

, (5.1)

where the terms in brackets represent, in order, the contributions from quantum

projection noise, photon shot noise, electronic detection noise and local oscillator

noise. Here Qat is the atomic quality factor defined as

Qat =
ν0
∆ν

(5.2)

where ν0 is the caesium hyperfine frequency and ∆ν the width of the Ramsey fringe.

Tc is the fountain cycle duration, τ the measurement time and τ > Tc for the

expression to be valid. Nat is the number of detected atoms, nph is the average

number of photons scattered per atom during detection, ǫc is the photon collection

efficiency, σ2
δN is the uncorrelated root mean square fluctuation of the atom number

per detection channel and γ is the contribution of the frequency noise of the local

oscillator. From Eq. (5.1) one can see that a high number of atoms used in the fountain

can reduce the frequency instability to the local oscillator noise limit γ. For a typical

fountain employing a local oscillator locked to the best commercially available quartz

oscillator, the relative frequency instability is of order 10−13(τ)−1/2 [149]. By using a

low noise cryogenic sapphire oscillator as the local oscillator a frequency instability of

4 × 10−14(τ)−1/2 has been achieved [148].

Several physical phenomena related to atomic interactions with external fields, colli-

sions between atoms, and technical details of the construction of the standard sub-

systems such as the microwave cavity [149] lead to systematic shifts of the frequency

of the clock transition. The influence of each effect has to be quantified for a partic-

ular device, after which the frequency of the clock transition can be corrected for the

associated shifts. However, the uncertainty associated with the correction procedure
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limits the accuracy of this correction. As the individual systematic uncertainties are

independent, the resulting total systematic uncertainty is the square root of the sum

of squares of the individual contributions. The overall uncertainty is given by the sum

in quadrature of the statistical uncertainty (uA), which can be reduced by increasing

averaging time, and the systematic uncertainty (uB) specific for the particular clock.

Although the magnitudes of the systematic shifts have to be evaluated for each par-

ticular apparatus, their types are common for all caesium fountain primary frequency

standards. The major sources of systematic uncertainty, and the nature and scale of

these effects are shown in Table 5.1 for the example of the NPL-CsF2 caesium fountain

complete accuracy evaluation reported in [116] with further improvements reported in

[150]. The overall type B uncertainty for this caesium fountain is currently 2.3 × 10−16.

5.1.2 Hydrogen maser

The NPL frequency combs are not referenced directly to the caesium fountain fre-

quency standard. Instead, they are referenced to a hydrogen maser because this is

available all the time. The two hyperfine levels of the ground state of the hydrogen

atom are separated by 1.42 GHz and in a hydrogen maser this frequency is used to

generate a 10-MHz reference signal. There are four hydrogen masers at NPL; HM2 is

the one used as the source of the reference signal for the combs. Figure 5.3 shows the

typical stability of hydrogen maser HM2 measured relative to another NPL hydrogen

maser. Since the noise of each maser contributes to the measured instability, this

result suggests that the stability of maser HM2 is lower than 4 × 10−15 at a timescale

of 103 s.

At present, maser HM2 is the clock used for the UK realization of Coordinated Univer-

sal Time, UTC(NPL), and so, unlike the others, its frequency is periodically steered.

UTC(NPL) is compared with UTC by satellite time and frequency transfer techniques

and the difference is published in “Circular T” (see for example [151]). Thus an op-
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Effect Nature uB/10−16

Second-order Zeeman Applied magnetic field 0.8

Blackbody radiation Blackbody radiation surrounding the

atomic absorbers

1.1

Ac Stark (lasers) Leaking resonant laser light during the

Ramsey interaction

0.1

Microwave spectrum Spurious spectral components in the

vicinity of the clock resonant frequency

0.1

Gravity Change of the frequency of any clock

with gravitational potential

0.5

Cold collisions (Cs-Cs) Collisions among the cold atoms in the

cloud

0.4

Background gas collisions Collisions with residual gas atoms 1.0

Rabi, Ramsey pulling Possible transitions to and between

states of mF 6= 0

0.1

Cavity phase (distributed) Phase variation pattern of the mi-

crowave field in the Ramsey cavity

1.1

Cavity phase (dynamic) Temporal phase changes due to tem-

perature changes of the cavity

0.1

Cavity pulling Maser oscillation of the atoms in the

cavity (radiation damping)

0.2

Microwave leakage Microwaves resonant with the atomic

transition leaking into the flight tube

0.6

Microwave recoil Change in the atom’s kinetic energy

due to the absorption of a microwave

photon

0.3

Second-order Doppler Frequency shift due to the second-order

Doppler effect

0.1

Total (1σ) 2.3

Table 5.1: Systematic effects and their uncertainties (uB) forming the uncertainty

budget for NPL-CsF2 [150].

105



10 100 1000 10000 100000
10-15

10-14

10-13
 

 

A
lla

n 
D

ev
ia

tio
n

Averaging period s

Figure 5.3: The typical stability of the HM2 hydrogen maser measured relative to

another NPL hydrogen maser using a phase comparator.

tical frequency measured relative to the frequency of HM2 can be traced back to the

SI second. The details of this procedure are described in Section 6.2.3, and typically

lead to a relative uncertainty of the maser frequency of 1×10−14. Therefore, absolute

optical frequency measurements referenced to UTC in this way are sufficiently accu-

rate if the systematic uncertainty of the frequency standard is greater than this, for

example the measurements reported in [11] and described in Chapter 6. When higher

accuracy is desired, the frequency combs are referenced to a 10-MHz signal from a

hydrogen maser, which is simultaneously calibrated using the local caesium fountain

primary frequency standard, as in the case of the absolute frequency measurement of

the 171Yb+ trapped ion frequency standard reported in [152].

5.1.3 GPS-disciplined oscillator

Although a hydrogen maser produces a reference signal stable to parts in 1013 at

1s, this level of stability is not always necessary. In cases where the instability and
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Figure 5.4: The normalized frequency deviation of the GPS-disciplined quartz oscil-

lator from the HM2 hydrogen maser. Each data point is an average over 3 hours.

accuracy of the frequency to be measured are orders of magnitude higher than the

instability and accuracy of the reference signal, an alternative source of 10 MHz

signal can be used. For example, the NPL transportable frequency comb described in

Section 3.1 [113] can be referenced to the 10-MHz output signal from a GPS-referenced

quartz oscillator. The reference system comprises three parts: a Rapco 803M quartz

oscillator steered by a Rapco 2804AR unit containing a rubidium reference oscillator

which is disciplined via a single-frequency antenna link to the GPS network. This

reference source has the obvious advantage that the signal may be obtained at almost

any location, and so it is ideal for a transportable system.

Figure 5.4 shows the normalized frequency deviation of the GPS-disciplined quartz

oscillator from the frequency of the hydrogen maser used to generate the UTC(NPL)

timescale, averaged over 3 hour periods. The measurements were performed over a

period of 25 days using a phase comparator with the hydrogen maser as a reference.

It can be seen that the maximum fractional frequency deviation does not exceed

4× 10−12. This measurement therefore gives an estimate of the accuracy of the GPS-

disciplined oscillator.
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Figure 5.5: The Allan deviation of the GPS-disciplined rubidium oscillator (blue

squares), the quartz oscillator locked to the GPS-disciplined rubidium oscillator (red

circles) a GPS-disciplined oscillator from Time and Frequency Solutions (green tri-

angles) and the HM2 hydrogen maser (black diamonds). These values are calculated

from 20 days of measurements.
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Figure 5.6: Frequency measurements of a high-finesse cavity-stabilised Ti:sapphire

laser using a Ti:sapphire laser-based comb (blue squares) and transportable comb

(red circles); the black line shows the drift of the Fabry-Perot cavity. During the

periods marked (1) the transportable comb was referenced to a hydrogen maser; in

the period (2), it was referenced using the GPS-disciplined oscillator.

Figure 5.5 shows the stability of the outputs from the quartz oscillator and the rubid-

ium oscillator measured with the same maser-referenced phase comparator. It can be

seen that the introduction of the quartz oscillator gives an improvement in the mea-

sured stability at the shortest timescales compared to the signal from the rubidium

oscillator. However, the signal from the quartz oscillator is less stable when averaged

over a few minutes than the signal obtained directly from the rubidium oscillator,

even though it is steered by the rubidium oscillator. Also shown is the stability of

a Time and Frequency Solutions 8-channel GPS-disciplined oscillator, which gives

superior stability to the Rapco unit at long time-scales, but inferior stability when

averaged over less than a few hours. These measurements indicate that adjustments

to the time constants of the servos between the Rapco units could potentially lead to

improved stability of the oscillator system.
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Figure 5.6 illustrates the difference in the accuracy of a frequency comb system when

referenced to a hydrogen maser or to the GPS-disciplined oscillator system. Fre-

quency measurements of a laser stabilised to a high-finesse Fabry - Perot cavity were

performed simultaneously using two combs. While the Ti:sapphire comb was refer-

enced to a hydrogen maser all the time, the transportable comb was referenced to the

maser at the beginning and end of the measurement period and to the GPS-disciplined

unit the rest of the time. The frequency measured with each comb agreed to within

the uncertainty of the GPS-disciplined oscillator.

5.2 Stability and accuracy of the 10-MHz refer-

ence signal in the combs laboratory

Since the maser is not located in the same laboratory as the combs, the signal passes

through a distribution system consisting of cables and a number of distribution am-

plifiers. Potential degradation of the stability of the maser signal during the transfer

to the combs laboratory as well as possible systematic frequency shifts introduced by

the distribution amplifiers were therefore investigated.

Figure 5.7 shows the distribution of the 10-MHz maser signal between different lab-

oratories within NPL. The signal from the active hydrogen maser HM2 located in

Lab2 is transferred to a first distribution amplifier situated in Lab1. One of the out-

put signals from this distribution amplifier is used as a reference signal for a Phase

and Frequency Comparator (PFC) situated in the same room, while another is trans-

mitted back into Lab2 where it is amplified by a second distribution amplifier and

then sent to a third distribution amplifier (DS-100) located in the frequency combs

laboratory (Lab3). In the frequency combs laboratory the signal is further ampli-

fied by a FDA-1050 distribution amplifier, which produces reference signals for the

counters and synthesisers used with the frequency combs. The combs laboratory also

has a direct connection to the phase comparator in Lab1, which can be used to send
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Figure 5.7: Distribution of the 10 MHz reference signal from an active hydrogen

maser Datum MHM-2010 (HM2) located in the hydrogen maser laboratory (Lab2)

to the TimeTech Phase and Frequency Comparator (PFC) situated in the Time scale

laboratory (Lab1) and to the combs laboratory (Lab3). The combs laboratory also

has a direct connection to the phase comparator in Lab1.
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back signals from the distribution amplifiers or a synthesiser producing a 10-MHz

signal for comparison against the original 10-MHz signal sent from the maser. To

minimize temperature-dependent phase shifts in the link, coaxial cables (RG-58 and

FSJ1-50A) with low thermal coefficients were used. Measurements on RG-58 type

cable show a net electrical delay variation of about −0.42 ps K−1m−1 between tem-

peratures of −20◦C to +40◦C [153], while the thermal coefficient of FSJ1-50A cable is

0.03 ps K−1m−1 [154]. The corresponding phase shift of the 10-MHz frequency signal

is 2.6×10−5 rad K−1m−1 and 1.9×10−6 rad K−1m−1 for RG-58 and FSJ1-50A cables

respectively.

In this section the results of frequency stability tests as well as an investigation of

possible systematic frequency shifts of the 10-MHz maser reference signal supplied to

the combs laboratory are described.

5.2.1 Influence of distribution system on the 10-MHz signal

stability

In order to measure the excess instability of the 10-MHz signal introduced by the

distribution system the output signal from the DS-100 distribution amplifier was sent

to the phase comparator and compared to the original 10-MHz reference signal from

HM2 for a total of 31 days.

Figure 5.8 shows the calculated Allan deviation as function of averaging time. The

red curve represents the typical behaviour of the Allan deviation which was found

to be independent of the day of the week, suggesting that daytime activities within

the building do not degrade the stability of the distributed maser signal significantly.

The 1/τ dependency for short averaging times τ is consistent with the dominant noise

process being white phase noise as expected for a hydrogen maser. The black curve

represents the average Allan deviation over the 31 day period, with the error bars

showing the spread of values obtained for each averaging time on different days. The
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Figure 5.8: Allan deviation of the 10-MHz signal after the DS-100 distribution am-

plifier compared to the signal from hydrogen maser HM2: average over 31 day period

(black diamonds) with spread shown by the error bars, typical day (red circles) and a

day with anomalously high medium term instability (blue squares). The dashed line

shows the phase comparator measurement noise floor derived from the measurements

of the 10-MHz signal from maser HM2 against itself in Lab1.
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blue curve shows the Allan deviation for a day when the stability of the signal from

the distribution amplifier was worse than normal. The anomalous behaviour of the

blue curve at τ > 320 s was traced to large frequency excursions in the time interval

between 70000 s and 80000 s on this day of measurements. If these data points are

removed the stability demonstrates the typical behaviour.

These results show that the noise introduced by the distribution system (the link from

the Lab1 to the comb laboratory and the DS-100 distribution amplifier) and the link

from the comb laboratory back to the phase comparator in Lab1 produces an excess

instability of the 10-MHz signal from the hydrogen maser. This effect is illustrated in

Fig. 5.8 where the Allan deviation of the signal after the DS-100 distribution amplifier

compared to the original signal from hydrogen maser HM2 is 1.5 times bigger than

the Allan deviation of the 10-MHz signal from maser HM2 measured against itself.

The second distribution amplifier in the combs laboratory (FDA-1050) in Fig. 5.7

produces the 10-MHz reference maser signal used for the synthesisers and frequency

counters in the combs laboratory as well as other optical frequency standards lab-

oratories. The excess instability introduced by the FDA-1050 distribution amplifier

was measured in the same way as for the DS-100 distribution amplifier. Figure 5.9

shows examples of typical, average and bad Allan deviation as a function of averaging

time. Since in practice the comb data obtained on the day when the stability of the

reference signal were lower than average would be rejected, only typical data were

used for further analysis.

A comparison between the results for the DS-100 and FDA-1050 distribution ampli-

fiers shown in Fig. 5.8 and Fig. 5.9 respectively shows that for short averaging times

the FDA-1050 distribution amplifier degrades the stability slightly. For example, the

Allan deviation values for 10 s averaging time are 3.8×10−14 and 4.5×10−14 for the DS-

100 and FDA-1050 distribution amplifiers respectively, which corresponds to a degra-

dation of the stability of the maser signal by a factor of 1.1. However, for longer aver-

aging times no significant difference between the excess instability of the two distribu-
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Figure 5.9: Allan deviation of the 10-MHz signal after the FDA-1050 distribution

amplifier compared to the original reference signal from hydrogen maser HM2: average

over 20 days (black squares) with spread shown by error bars; typical day (red circles)

and one day which showed higher than average medium term instability (blue squares).

The dashed line shows the phase comparator measurement noise floor derived from

the measurements of the 10-MHz signal from maser HM2 against itself.
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tion amplifiers was observed, suggesting that the noise of the FDA-1050 distribution

amplifier does not further degrade the maser signal stability at long timescales.

5.2.2 Accuracy of the 10-MHz signal delivered to the combs

laboratory

In order to investigate possible systematic frequency shifts of the 10-MHz maser ref-

erence signal supplied to the combs laboratory and frequency shifts introduced by the

second distribution amplifier (FDA-1050), the phase comparator data collected using

the setup shown in Fig. 5.7 were analysed. As shown in Section 5.2.1, the Allan de-

viations of both the DS-100 and the FDA-1050 distribution amplifiers start to flatten

out for averaging times greater than 5120 seconds, so this averaging time was used

to investigate the systematic variations of the reference signal delivered to the combs

laboratory during the day.

Figure 5.10 shows the normalised frequency deviation of the 10-MHz signal from the

DS-100 distribution amplifier from the original reference signal from hydrogen maser

HM2 averaged over 5120 seconds as a function of the time of the day. Different points

corresponding to the same time correspond to data taken on separate days and the

error bars show the instability observed on that particular day for the given averaging

time. The day-to-day variations of the normalised frequency deviation result in the

spread of values ± 1.5 × 10−15. One can see that apart from the day-to-day spread

of values, there is a pattern of frequency variation during the day with a period of

half a day. Although the reason for these variations is not known, it can potentially

lead to errors in frequency measurements made using the femtosecond combs if the

reference signal is not monitored.

Similar analysis was performed for the FDA-1050 distribution amplifier. Figure 5.11

shows the normalised frequency deviation of the 10-MHz signal from the FDA-1050

distribution amplifier from the original signal from the hydrogen maser HM2 obtained
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Figure 5.10: Normalised frequency deviation of the 10-MHz signal after the DS-100

distribution amplifier from the original reference signal from hydrogen maser HM2,

averaged over 5120 second periods as a function of the time of day, where t = 0 is

midnight. The data were taken over a period of 25 days and the error bars correspond

to the statistical uncertainty on the individual 5120 s points as determined from the

Allan deviation curve.
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Figure 5.11: Normalised frequency deviation of the 10-MHz signal from the FDA-1050

distribution amplifier from the original signal from the hydrogen maser HM2 averaged

over 5120 second periods as a function of the time of day, where t = 0 is midnight.

The data were taken over a period of 19 days and the error bars correspond to the

statistical uncertainty on the individual 5120s points as determined from the Allan

deviation curve.
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by averaging 19 days of data over 5120 second periods. It can be seen that the spread

of values ± 1.5 × 10−15 is similar to that measured at the output of the DS-100

distribution amplifier. These results prove that the FDA-1050 distribution amplifier

does not further degrade the accuracy of the maser signal obtained from the DS

distribution amplifier.

In summary, the noise introduced by the distribution system including the link from

the combs laboratory back to the phase comparator typically leads to a 1.5 times

increase of the Allan deviation of the signal after the DS-100 distribution amplifier

measured against the original maser signal compared to the Allan deviation of the

maser signal measured against itself. The frequency of the HM2 maser reference

signal delivered to the combs laboratory fluctuates during the day as well as day-to-

day with the spread of the normalised frequency deviation of the DS-100 signal from

the original maser signal being ± 1.5 × 10−15. The noise of the second distribution

amplifier (FDA-1050) neither affects the maser signal stability, providing that the

averaging time is longer than 640 seconds, nor introduces systematic frequency shifts

of the 10-MHz maser signal.

5.3 Stability and accuracy of maser-referenced syn-

thesisers

Since the frequency used to lock the repetition rate of the Ti:Sapphire comb is derived

from a maser-referenced synthesiser, the synthesiser itself can be a source of potential

systematic frequency shifts and degradation of the frequency stability. Additionally,

temperature variations in the laboratory might potentially degrade the accuracy of the

synthesiser signal; therefore the temperature dependency of the synthesiser frequency

was tested. This section describes tests of two different synthesisers (IFR 2023A and

HP 8662A) that could be used for optical frequency measurements.
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5.3.1 Stability

The stability of the reference signal sets a lower limit to the fractional frequency stabil-

ity of the signal generated by a synthesiser. The IFR 2023A (IFR) and the HP 8662A

(HP) synthesisers were tested to check whether these were capable of providing sig-

nals with a fractional frequency stability comparable with the stability of the maser

signal. The synthesiser frequency for the stability test was set to 820 MHz, since this

frequency was close to the one used to lock the repetition rate of the Ti:Sapphire

laser based frequency comb. To obtain a 10-MHz signal of sufficient amplitude for

the phase comparator, the synthesiser signal was frequency divided by 82, as shown

in Fig. 5.7, amplified and filtered.

Figure 5.12 shows the average Allan deviation calculated from the measurement data

for the IFR synthesiser (red), HP synthesiser (blue) and the DS-100 distribution am-

plifier (black) compared to the original reference signal from hydrogen maser HM2.

One can see that even for short averaging times the Allan deviation curve calculated

for the HP synthesiser does not have a 1/τ dependency on the averaging time, sug-

gesting that white phase noise is not the dominant noise process. As a result, the

decrease of the excess instability introduced by the HP synthesiser with averaging

time is slower than that calculated for the DS-100 distribution amplifier, and it can

become a limiting factor for frequency measurements.

In contrast, the IFR synthesiser shows 1/τ behaviour up to 20480 s averaging time.

At shorter averaging times the the excess instability of the IFR synthesiser results in

an Allan deviation of 8.3×10−14 at a 10 second averaging time compared to 3.8×10−14

calculated for the DS-100 distribution amplifier. However, for averaging times longer

than 640 seconds the excess instability of the IFR synthesiser is within the spread

of Allan deviation values obtained for the DS-100 distribution amplifier on different

days, so the IFR synthesiser noise does not further affect the stability of the maser

signal delivered to the combs laboratory at these timescales.
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Figure 5.12: Averaged Allan deviation of the 10-MHz signal after the IFR 2023A syn-

thesiser (red) and the HP 8662A synthesiser (blue) compared to the original reference

signal from hydrogen maser HM2. For comparison, the black curve shows the Allan

deviation of the 10-MHz signal after the DS-100 distribution amplifier averaged over

31 days, the error bars showing the spread of the values obtained for each averaging

time.
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Figure 5.13: Schematic diagram of the setup used for synthesiser temperature sen-

sitivity measurements. FDA-1050 – distribution amplifier; SUT – synthesiser under

test located inside enclosure; temperature sensors: a – attached to the synthesiser

case, b – measuring air temperature, data collected by Temperature Logger; ÷82 –

SP8402 frequency divider; Att – 13 dB attenuator; A – MAN-1LN Mini-Circuits am-

plifier; PhC – phase comparator. The band pass filter consisted of two Mini-Circuits

BPF-10.7 filters in series.

5.3.2 Temperature sensitivity

Figure 5.13 shows a schematic of the setup used for the synthesiser temperature

sensitivity tests. To generate a 10-MHz signal a setup similar to the one described in

Section 5.3.1 was used; however in this case the synthesiser was placed in an enclosure

and its temperature was varied from 22 to 35 degrees Celsius with both positive

and negative rates of change. The temperatures of the synthesiser case and the air

temperature inside the enclosure were simultaneously logged to a computer. Since

the main aim of this test was to establish how the output frequency of the synthesiser

depended on the temperature variations in the laboratory, the air temperature was

used for the analysis.

In the case of the IFR synthesiser the temperature change was realized with a heater

placed inside the enclosure. The heating and cooling cycles were alternated several

times during the day. The HP synthesiser heated up the enclosure significantly itself,

therefore there was no need for a separate heater. The downside was that cooling was

only possible in this case by opening the enclosure, making it difficult to obtain small

negative rates of change of temperature.
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Figure 5.14: IFR synthesiser temperature sensitivity test. Air temperature inside the

enclosure (blue) and normalised frequency deviation of the 10-MHz signal produced

by the IFR synthesiser from the reference signal from hydrogen maser HM2 obtained

from the phase comparator (red) as a function of time.

5.3.2.1 IFR 2023A synthesiser

Figure 5.14 shows the typical temperature variation inside the enclosure and the

normalised frequency deviation of the frequency-divided signal generated by the IFR

synthesiser from the HM2 hydrogen maser obtained from the phase comparator as a

function of time. One can see large spikes in the frequency deviation plot at times

when the sign of the rate of change of temperature was altered. However there is

no visible correlation between continuous temperature changes and the normalised

frequency deviation of the synthesiser signal (i.e. it is less than the noise). These

results suggest that the synthesiser has a built in system for compensation of the

temperature-dependent frequency shifts. The quality of this system can be assessed

via the dependence of the synthesiser output frequency on the rate of temperature

change.
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Figure 5.15: Averaged normalised frequency deviation of the 10-MHz output signal

produced by the IFR synthesiser from the reference signal from the hydrogen maser

HM2 as a function of the rate of temperature change.

In order to calculate the dependence of the synthesiser frequency on the rate of tem-

perature change the temperature data were divided into short periods where the

temperature dependence on time could be approximated with a straight line. This

approximation was used to calculate the rate of temperature change for each period.

The normalised frequency deviation of the synthesiser output signal from the HM2

signal for each time period was analysed to obtain mean values with corresponding

standard errors. The results of this analysis are shown in Fig.5.15.

It can be seen that the dependence of the synthesiser output frequency on the rate

of temperature change in the range −80 K/h to 80 K/h is not linear, however, in

practice, such extreme rates of change of temperature do not occur under normal

laboratory conditions. The temperature in the combs laboratory is typically stable to

within ±0.1◦C, although there were several occasions when the temperature monitor-

ing showed oscillations with a period of several hundred seconds and a maximum rate
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Figure 5.16: A linear fit to the averaged normalised frequency deviation of the 10-

MHz signal produced by the IFR synthesiser from the reference signal from hydrogen

maser HM2 for rates of temperature change from −5 Kh−1 to 5 Kh−1.

of temperature change of 3.5 Kh−1; hence only the central part of the data is taken

into account during the analysis (Fig. 5.16). A linear fit to this part of the data gives

a fractional frequency change of 4.1(0.7) × 10−16 (K/h)−1, which corresponds to a

fractional frequency error of 1.4(0.5) × 10−15 for the rate of temperature change of

3.5 Kh−1. However, as this rate of temperature change was observed for short periods

of temperature oscillations, it will average to zero over longer timescales.

5.3.2.2 HP 8662A synthesiser

Figure 5.17 shows the typical temperature variation inside the enclosure and the nor-

malised frequency deviation of the frequency signal obtained from the HP synthesiser

from the HM2 hydrogen maser acquired from the phase comparator as a function of

time. Unlike the case of the IFR synthesiser, the change of the normalised frequency

deviation of the HP synthesiser signal with temperature can be observed. However,
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Figure 5.17: HP synthesiser temperature sensitivity test. Air temperature inside the

enclosure (blue) and normalised frequency deviation of the 10-MHz signal produced

by the HP synthesiser from the reference signal from hydrogen maser HM2 obtained

from the phase comparator (red) as a function of time.
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Figure 5.18: Averaged normalised frequency deviation of the 10-MHz signal produced

by the HP synthesiser from the reference signal from hydrogen maser HM2 as a

function of the rate of temperature change.

more detailed analysis of the data shows that higher air temperatures can lead to

either an increase or decrease of the normalised frequency deviation depending on the

rate of temperature change. Once again these results indicate the presence of internal

compensation of the temperature-dependent frequency shifts. To assess the quality of

this compensation, the frequency dependence on the rate of temperature change was

investigated.

To find out whether the synthesiser frequencies were correlated with the rate of tem-

perature change, the data were analysed in the same way as for the IFR synthesiser

(Fig. 5.18). Nonlinear behaviour was also observed for the HP synthesiser, but was

much more pronounced than for the IFR synthesiser. Hence only the data corre-

sponding to rates of temperature change from −5 Kh−1 to 5 Kh−1 were once again

taken into account during the analysis (Fig. 5.19). The observed trend was similar to

the one demonstrated by the IFR synthesiser, showing the increase of the averaged
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normalised frequency deviation with the increase of the rate of temperature change,

however the spread of the mean values of the averaged normalised frequency deviation

was more than order of magnitude bigger than the corresponding standard errors.

This effect could be explained by the lack of control over the temperature change

inside the enclosure. Instead of using a separate heater like in the case of the IFR

synthesiser, the HP synthesiser heated up the enclosure itself, hence the only way of

controlling the temperature was by opening the enclosure. As the result, small rates

of change of temperature as well as the intermediate negative rates were difficult to

obtain. Consequently only short sequences of data were available for calculations

of the mean values of the averaged normalised frequency deviation at these rates of

temperature change. This effect is clearly seen in Fig. 5.19, comparing the spread of

values of the averaged normalised frequency deviation for rates of temperature change

from -5 Kh−1 to 2 Kh−1 and from 2 Kh−1 to 5 Kh−1. In order to estimate a fractional

frequency change in the same way as it was done for the IFR synthesiser, the length

of the experiment should be increased significantly to obtain sufficient amount of data

for averaging. Another option would be to redesign the enclosure in the way that the

temperature can be controlled.

5.3.3 Accuracy

To assess the performance of the synthesisers under normal laboratory conditions, the

possible systematic frequency shifts introduced by the maser-referenced synthesiser

were investigated in the same way as in case of the distribution amplifiers described

in Section 5.2.2.

Both synthesisers produced a signal at 820-MHz, which was divided to obtain

a 10-MHz signal for the phase comparator using the setup shown in Fig. 5.7. The

accuracy of the signal produced by the IFR and HP synthesisers was analysed in the

same way as the accuracy of the maser signal after the distribution amplifiers.
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Figure 5.19: Averaged normalised frequency deviation of the 10-MHz signal produced

by the HP synthesiser from the reference signal from hydrogen maser HM2 for rates

of temperature change from from −5 Kh−1 to 5 Kh−1.

Figure 5.20 shows the normalised frequency deviation of the 10-MHz signal produced

by the IFR and HP synthesisers from the original reference signal produced by the

hydrogen maser HM2 averaged over 5120 seconds as a function of time. Both synthe-

sisers were tested over a period of 7 days. One can see that the normalised frequency

deviation of the IFR synthesiser is spread within ±1×10−15 while the HP synthesiser

gives a spread of ±2 × 10−15.

In summary, each type of test performed demonstrated that the IFR synthesiser

was more suitable for accurate frequency measurements than the HP synthesiser.

For averaging times longer than 640 seconds the IFR synthesiser noise did not af-

fect the stability of the maser signal delivered to the combs laboratory, while the

excess instability of the HP synthesiser was higher than that calculated for the

DS-100 distribution amplifier for averaging times up to 20480 s. The temperature-

dependent frequency shift of the IFR synthesiser demonstrated a fractional frequency
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Figure 5.20: Normalised frequency deviation of the 10 MHz signal from the IFR

synthesiser (blue) and the HP synthesiser (red) from the reference signal produced by

hydrogen maser HM2 averaged over 5120 seconds as a function of time.

change of 4.1(0.7) × 10−16 (K/h)−1 corresponding to a fractional frequency error

of 1.4(0.5) × 10−15 for a rate of temperature change of 3.5 Kh−1 compared to

3.3(0.2) × 10−14 (K/h)−1 and 1.16(0.14) × 10−13 for the same rate of temperature

change in the case of the HP synthesiser. Finally, the spread of the normalised fre-

quency deviation of synthesiser signal from the original maser signal measured under

normal laboratory conditions was ±1 × 10−15 for the IFR synthesiser compared to

±2 × 10−15 for the HP synthesiser.

These results show that when an optical frequency is measured relative to a hydrogen

maser calibrated using UTC, as in the case of the measurements reported in [11] and

described in Chapter 6, the fractional frequency error introduced by the temperature-

dependent frequency shift of the IFR synthesiser is lower than the accuracy of the

measurements, therefore there is no need for synthesiser frequency corrections. How-

ever, when a hydrogen maser frequency is calibrated using the caesium fountain as
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in the case of the 171Yb+ trapped ion frequency measurements reported in [152], the

accuracy of the measurements (1.0 × 10−15) is of the same order as the temperature-

dependent frequency error; hence the synthesiser signal should be monitored for cor-

rections to the systematic frequency shift and consequently the measured repetition

rate of the comb.

5.4 Conclusions

In this chapter sources of systematic uncertainty and potential errors in absolute

frequency measurements were described. The uncertainty budget of the NPL-CsF2

caesium fountain was detailed. The systematic uncertainty of 2.3 × 10−16 sets a

limit to the accuracy of absolute optical frequency measurements performed using

a frequency comb referenced to a hydrogen maser that is simultaneously calibrated

using the Cs fountain.

Limitations to the accuracy of frequency measurements made relative to a reference

signal generated by a GPS-disciplined oscillator system were analysed, showing that

the NPL GPS-referenced frequency comb is capable of measuring optical frequencies

to a relative accuracy of 4 × 10−12.

The stability and accuracy of the 10-MHz reference signal from a hydrogen maser

delivered into the combs laboratory was analysed. It was shown that the noise in the

maser signal distribution system and the link from the combs laboratory back to the

phase comparator led to excess instability of the maser signal. Since no significant

difference between the excess instability of the signal after the DS-100 distribution

amplifier measured on week-days and during weekends was observed, as one would

expect in the case of environmental noise, the excess noise was attributed to the

inherent noise of the DS-100 distribution amplifier. The measured Allan deviation

of the signal after the DS-100 distribution amplifier from the original maser signal

was about 1.5 times higher than the Allan deviation of the maser signal measured
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against itself for all averaging times. The fluctuations of the signal frequency observed

during the day were within the spread of the normalised frequency deviation of the

signal after the DS-100 distribution amplifier from the original maser signal. A spread

of ± 1.5 × 10−15 was measured for an observation period of 25 days. The tests of

the FDA-1050 distribution amplifier showed that for averaging times longer than 640

seconds the excess noise of the FDA-1050 distribution amplifier neither contributed

to the fractional frequency instability of the 10-MHz maser signal delivered in the

combs laboratory nor introduced additional systematic frequency shifts.

Finally, the performance of two synthesisers, the IFR 2023A and the HP 8662A, used

for the stabilisation of the frequency comb repetition rate was tested. The results

showed superior performance of the IFR synthesiser for each type of test carried out.

The excess instability of the signal generated by the HP synthesiser was higher than

the excess instability of the maser signal delivered to the combs laboratory, while

the stability of the IFR synthesiser signal was within the day-to-day spread of the

maser signal stability. A fractional frequency change of 4.1(0.7) × 10−16 (K/h)−1 and

3.3(0.2) × 10−14 (K/h)−1 was measured for the IFR and the HP synthesisers respec-

tively. The synthesiser accuracy tests under normal laboratory conditions showed the

spread of the normalised frequency deviation of the IFR synthesiser signal from the

original maser signal measured over a period of 7 days to be ±1 × 10−15, suggesting

that this period was not long enough to observe the spread of ±1.5 × 10−15 mea-

sured for the distribution amplifiers. In contrast, for the HP synthesiser a spread of

±2 × 10−15 was measured indicating that the increase of the observation time might

result in an even higher value.

These results show that the fractional frequency error introduced by the temperature-

dependent frequency shift of the IFR synthesiser is lower than the accuracy of the

measurements in the case of measurement relative to a hydrogen maser calibrated

using UTC, as for the case of the measurements reported in [11] and described in

Chapter 6, therefore there is no need for synthesiser frequency corrections. However,

when a hydrogen maser frequency is calibrated using the caesium fountain as in the
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case of the 171Yb+ trapped ion frequency measurements reported in [152], the accuracy

of the measurements (1.0 × 10−15) is of the same order as the temperature-dependent

frequency error; hence the synthesiser signal should be monitored for corrections to

the systematic frequency shift and consequently the measured repetition rate of the

comb.

133



Chapter 6

Absolute frequency measurement

of the 436 nm clock transition in a

single 171Yb+ ion

In this chapter an absolute frequency measurement of the electric quadrupole clock

transition at 436 nm in a frequency standard based on a single 171Yb+ trapped ion

is described. The emphasis of this chapter is on the measurements of the transition

frequency and the methods used to correct for errors in the reference signal used during

the measurements. These are the parts of the experiment I was involved with. The

running of the ion trap and analysis of the collected data, including the estimates of

the systematic shifts affecting the frequency of the clock transition, were performed by

other members of the group. The full details of this part of the experiment are reported

in [11] and only a brief description necessary for understanding the experiment is given

here.

Firstly, a description of the 171Yb+ optical frequency standard is given. Next, the

preparation of the ion and detection of the clock signal are described. After that,

the frequency measurements and the method of frequency correction using data from
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Figure 6.1: Partial term scheme for 171Yb+ showing the electric quadrupole (E2) and

electric octupole (E3) clock transitions at 436 nm and 467 nm respectively and cooling

and repumper wavelengths.

the BIPM publication Circular T are presented. Finally, the result of the absolute

frequency measurement is given and compared with an independent measurement

made by the PTB group.

6.1 171Yb+ optical frequency standard

Figure 6.1 shows a partial term scheme for the 171Yb+ ion. The transition at 369 nm is

used for Doppler cooling of the ion to a temperature of around a millikelvin, confining

its motion to the bottom of the trapping potential as described in Section 2.4.1.4.

However, the ion can decay from the upper level of the cooling transition to the 2D3/2

level, therefore a repumper laser at 935 nm is used to return the ion to the ground state

via the 3D[3/2]1/2 level. Another repumper transition at 638 nm is used to drive the
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ion out of the 2F7/2 state to the the 1D[5/2]5/2 level from which it subsequently decays

to the ground state. Due to the hyperfine structure of the energy levels involved in

the transitions two different laser frequencies are required for each of the cooling and

repumper transition.

There are two optical clock transitions in the 171Yb+ ion: the electric quadrupole (E2)

transition at 436 nm with a natural linewidth of 3.1 Hz and the electric octupole (E3)

transition at 467 nm. Due to the extremely long upper state lifetime of approximately

6 years [108], the natural linewidth of the E3 transition is of order one nanohertz.

Both clock transitions are being extensively studied at the Physikalisch-Technische

Bundesanstalt (PTB), Germany and NPL, UK. The frequency of the E2 transition

has been measured at PTB with a relative uncertainty of 1.1 × 10−15 [12] and two

frequency standards operating on the E2 transition have been compared with a relative

uncertainty of 4× 10−16 [155]. The frequency of the E3 transition has been measured

with a fractional uncertainty of about 1 × 10−15 [152, 95].

One of the applications of optical clocks is tests of fundamental physical theories.

The presence of two clock transitions makes the 171Yb+ ion particularly attractive

for looking for possible time variations of the fine structure constant α, as it opens

the possibility of comparing two transition frequencies in a single ion [6]. The 2F7/2

state has the largest known sensitivity to changes in α, with the sign opposite to

the dependency of the 2D3/2 state, which results in an effective sensitivity factor

larger than the sensitivity of each state. The limit to the accuracy of the measured

frequency ratio is determined by the systematic uncertainties associated with the two

transitions and under identical environmental conditions the sources of some of these

uncertainties are the same or strongly correlated [6]. Therefore, the uncertainty of the

frequency ratio measured within one ion can be reduced compared to the frequency

ratio of the two independent frequency standards in two different traps.

The first step towards the frequency ratio measurements is an absolute frequency mea-

surement of each of the clock transitions. Historically, the investigation of the 171Yb+
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ion at NPL was focused on the E3 transition [156, 157]. The first absolute frequency

measurement of the E2 electric quadrupole transition at NPL [11] is described in the

following sections.

6.2 Measurements of the absolute frequency of the

E2 clock transition

This section describes an absolute frequency measurement of the electric quadrupole

clock transition at 436 nm in a frequency standard based on a single 171Yb+ trapped

ion. Firstly, a description of the preparation of the 171Yb+ ion and the method used for

detection of the atomic transition are given. Next, the measurements of the frequency

of the clock signal are described and the method of frequency correction using data

from the BIPM publication Circular T is detailed. Finally, the result of the absolute

frequency measurement and an outline of the applied corrections to the systematic

frequency shifts are given and compared with an independent measurement made by

the PTB group.

6.2.1 171Yb+ ion preparation and detection

A single ion is confined in an endcap trap as described in Section 2.4.1.1, and is

Doppler cooled at 369 nm (see Fig. 6.1). The ion is prepared in the 2S1/2(F = 0)

ground state with the repumper light at 935 nm present in both the cooling and the

state preparation phases, after which it is probed with light from the clock laser at

436 nm. Fluorescence from the cooling transition is observed with a photomultiplier

tube and quantum jumps are detected through the absence of this fluorescence as

described in Section 2.4.1.5. The process of recording a potential quantum jump is

divided into four periods: cooling, state preparation, probing and detection as shown

in Fig. 6.2. Since the probability of the ion making the transition to the 2F7/2 level is
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Figure 6.2: Schematic showing the timing sequence for a single quantum jump detec-

tion.

very small, the repumper light at 638 nm was only switched on when this level had

to be depopulated, which happened about once a day.

The experimental arrangement used for absolute frequency measurements of the E2

clock transition in the 171Yb+ ion is shown in Fig. 6.3. The clock laser light at 436 nm

is generated by frequency doubling a diode laser at 871 nm. The frequency of the

diode laser is locked to a mode of a high-finesse, ultra-low-expansion optical cavity

using the Pound-Drever-Hall technique as described in Section 2.4.1.3, and is tuned

by stepping a frequency offset provided by a double-passed acousto optic modulator

(AOM) whilst maintaining the laser lock to the cavity. Therefore, the frequency of

the clock laser light reaching the ion is given by

f436 = 2(fcav + 2foff), (6.1)

where fcav is the frequency of the cavity mode and foff is the drive frequency of

the AOM. To observe the atomic transition, the laser is repeatedly scanned over the

transition and the offset frequency corresponding to individual quantum jumps is

recorded. An example of such data is shown in Fig. 6.4, where the offset frequency

foff corresponding to individual quantum jumps is plotted as a function of time for 10

scans of the clock laser frequency across the 436 nm transition. After removal of the

cavity drift the data were used to generate the atomic absorption spectrum with a

61 Hz full-width at half-maximum (FWHM) of a Lorentzian fit to the data as shown
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Figure 6.3: Schematic diagram of the experimental setup for frequency measurements

of the electric quadrupole clock transition in the 171Yb+ ion. AOM - acousto-optic

modulator; PBS - polarizing beam-splitter; PMT - photomultiplier tube; ×2 - fre-

quency doubling. The blue lines indicate optical paths and the black line indicates

an electrical signal path.

in Fig. 6.5 [11].

6.2.2 Frequency measurements and data analysis

The signal from the clock laser was transmitted to the combs lab via a fibre link

and the frequency of the cavity mode fcav was measured using the fibre-laser-based

frequency comb described in Sec. 3.1 whilst simultaneously recording the AOM offset

frequency corresponding to individual quantum jumps. As can be seen from Fig. 6.6,

the cavity frequency drifts with time at a mean rate of about 0.25 Hz/s. There-

fore, to minimise errors in calculations of the frequency of each quantum jump, it

is vital to ensure that the data-acquisition systems for the ion trap and the optical

frequency comb are synchronised. In this experiment the data collecting computers

were synchronised with an uncertainty of ±1 s. In order to test for the presence of a

quadrupole shift the measurements were performed over a range of magnetic field am-

plitudes and orientations providing 18 independent scans across the clock transition.
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Figure 6.4: The offset frequency foff corresponding to individual quantum jumps as

a function of time for 10 scans of the clock laser frequency.

The measurements were carried out over a period of six days.

The result of measurements of the frequency of the optical cavity mode performed on

one day is shown in Fig. 6.6.

Although the cavity drift appears linear in Fig. 6.6, the residuals of the linear fit

averaged over 100 s show that the cavity demonstrates non-linear behaviour as shown

in Fig. 6.7. In order to select the most appropriate curve fit, different order polynomial

fits were investigated. Figure 6.8 shows the residuals for second, third and fourth order

polynomial fits averaged over 100 s. One can see that going from a second order to a

third order polynomial fit reduces the residuals; however increasing the order of the

polynomial to four does not bring significant further improvement. Therefore, the

measured cavity frequency was fitted with a third order polynomial and the result

was used to calculate the frequency of each quantum jump using equation 6.1.

All synthesisers and counters used in the optical frequency comb and the synthesiser
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Figure 6.5: Atomic absorption spectrum of the E2 clock transition at 436 nm. The

bin width is 20 Hz and the FWHM of a Lorentzian fit to the data is 61 Hz.

generating the AOM offset frequency were referenced to the 10-MHz output of the

hydrogen maser which is used to generate the timescale UTC(NPL).

The result of any absolute frequency measurement must be given in the form

fE2 = kfSI (6.2)

where

fSI ≡ 1Hz (6.3)

is the SI unit of frequency.

In this experiment the frequency of the E2 transition was measured relative to the

hydrogen maser which is used to generate the UTC(NPL) time scale, therefore the

measured frequency is given by
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Figure 6.6: The frequency of the optical cavity mode measured by the optical fre-

quency comb on one day of the measurement period. Each point is a 1 s average.

fmeas = kfUTC(NPL), (6.4)

where fUTC(NPL) is the unit of frequency as realised via the hydrogen maser. In order

to relate the measured frequency to the SI second, a correction for the difference

between fSI and fUTC(NPL) has to be applied.

6.2.3 Frequency correction using Circular T

Typically the correction to the measured frequency is made during the data process-

ing. The difference between UTC and national timescales (including UTC(NPL))

is published by the International Bureau of Weights and Measures (BIPM) in the

monthly “Circular T” bulletin [151] in the form
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Figure 6.7: The residuals of a linear fit to the frequency comb data. Blue circles

represent 1 s averaging time, red diamonds are a moving average over one hundred

1 s data points.

UTC − UTC(NPL) = toffset, (6.5)

with a 5 day interval between data points. The frequency difference can be calculated

as

fUTC − fUTC(NPL) =
n

T
− n

T + toffset2 − toffset1
, (6.6)

where n is the number of oscillations over the period T , while toffset1 and toffset2 are

the time differences between UTC and UTC(NPL) at the beginning and end of the

period T .

Since toffset2−toffset1 << T , using a Taylor series expansion equation 6.6 can be written

as
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Figure 6.8: The residuals of polynomial fits to the frequency comb data. Blue circles

are for a second order polynomial fit, red squares are for a third order polynomial fit

and green diamonds are for a fourth order polynomial fit. Each point corresponds to

an average over one hundred 1 s data points.

fUTC − fUTC(NPL) =
n

T

toffset2 − toffset1
T

= fUTC
∆toffset

T
, (6.7)

or

∆f

fUTC

=
fUTC − fUTC(NPL)

fUTC

=
∆toffset

T
=

dtoffset
dt

. (6.8)

Other data necessary for the frequency corrections is the fractional deviation d of the

scale interval of UTC from the SI second on the geoid. The estimate of d is based on

all available primary frequency standard measurements and is calculated by BIPM for

the period of each Circular T (one month) by comparison of the UTC frequency with

the frequencies of individual primary frequency standards. In the case when d > 0

the frequency of the SI second is greater than the frequency of the UTC second and
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can be calculated as

fSI = fUTC + d fSI (6.9)

or

fSI =
fUTC

1 − d
. (6.10)

Combining Eq. 6.8 and Eq. 6.10

fSI =
1

(1 − d)

fUTC(NPL)

(1 − dtoffset
dt

)
. (6.11)

Therefore, the absolute frequency of the E2 transition is given by

fE2 = fmeas
fSI

fUTC(NPL)

(6.12)

or

fE2 =
fmeas

(1 − d)(1 − ∆f
fUTC

)
. (6.13)

6.2.4 Results and discussion

Figure 6.9 shows the difference between UTC and its local realisation at NPL,

UTC(NPL), as taken from Circular T for the period from 30/12/2007 until 28/01/2010.

In order to keep UTC(NPL) as close as possible to UTC, the frequency of the clock

used for the realisation of UTC(NPL), the hydrogen maser HM2, is periodically

steered. These steers correspond to changes of slope in Fig. 6.9. To estimate the
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Figure 6.9: Computed values of UTC-UTC(NPL) taken from Circular T for the period

from 30/12/2007 until 28/01/2010.

rate of change of the difference UTC-UTC(NPL) for each of the days of measure-

ments the part of the graph corresponding to the period between two steering events

(from 24/12/2008 until 14/03/2009) was fitted with a second order polynomial as

shown in Fig. 6.10.

Figure 6.11 shows the fractional offset of the NPL maser frequency from UTC as a

function of time calculated from a second order polynomial fit to data covering differ-

ent periods. One can see that the calculated frequency offset depends on the data sets

used for the curve fit. The spread of the values gives an estimate of the uncertainty of

the frequency correction to the maser frequency. For these measurements a conserva-

tive estimate of the uncertainty of the maser frequency, also taking into account the

uncertainty of d (1 × 10−15), was 1 × 10−14. The deviations of the maser frequency

from 10 MHz for each day of measurements calculated from a second order polynomial

fit to the period between two steering events (from 24/12/2008 until 14/03/2009) are

given in table 6.1.
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Figure 6.10: Computed values of UTC-UTC(NPL) taken from Circular T for the

period from 24/12/2008 until 14/03/2009, fitted with a second order polynomial.

Apart from the correction to the maser reference frequency, there are several system-

atic frequency shifts that need to be taken into account when the frequency of the E2

transition is calculated from the measurement data.

Although there is no linear Zeeman shift associated with the E2 transition in 171Yb+

ion, the second-order Zeeman shift induced by the applied magnetic field has to be

corrected for. A blackbody Stark shift results from the influence of blackbody radia-

tion arising from the temperature of environments immediately surrounding the ion.

The interaction between the electric quadrupole moments of the atomic states and

any residual electric field gradient present at the position of the trapped ion leads to

an electric quadrupole shift. Since the quadrupole shift depends on the relative ori-

entations of the electric field gradient and the magnetic field, its presence was tested

by repeating the frequency measurements for a range of magnetic field orientations.

For some of these measurements three orthogonal directions of the magnetic field

were used. The analysis of these data shows no significant correlation between the
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Figure 6.11: Normalised frequency deviation of the NPL maser HM2 from UTC

10-MHz, as calculated from a second order polynomial fit to Circular T data for

the periods of: from 24/12/2008 until 28/01/2009 (red), from 02/02/2009 until

14/03/2009 (blue), from 24/12/2008 until 27/02/2009 (green), and from 24/12/2008

until 14/03/2009 (black). The solid lines show the part of the data used for the curve

fit, the dashed lines correspond to the extrapolation.

frequency and magnetic field direction, and so the quadrupole shift is unresolved at

this level of precision.

To estimate the frequency of the E2 transition each point was corrected for the second-

order Zeeman shift, the deviation of the maser reference frequency from 10-MHz as

determined by comparison with UTC and a blackbody Stark shift.

To give a conservative estimate of the uncertainty of the calculated frequency the

maximum quadrupole shift of 3.6 Hz derived from a measurement of the secular

frequencies of the ion motion in the trap was added in quadrature to the error on

the weighted mean of all the data. The statistical uncertainty was calculated as

a standard error on the mean of the fits to the transition frequency data and the
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Day ∆f/fUTC d

11/02/2009 7.48E-15 5.2E-15

12/02/2009 7.59E-15 5.2E-15

17/02/2009 8.12E-15 5.2E-15

18/02/2009 8.23E-15 5.2E-15

19/02/2009 8.33E-15 5.2E-15

20/02/2009 8.44E-15 5.2E-15

Table 6.1: Fractional frequency corrections applied for each day of measurements.

frequency comb data. Systematic uncertainties due to the correction to the maser

reference frequency (6.9 Hz) and the blackbody Stark shift (0.07 Hz) were also added

in quadrature to the statistical error on the weighted mean. Other systematic shifts

do not contribute significantly at this level of precision. The final value obtained for

the frequency of the E2 transition is 688 358 979 309 310 ± 9 Hz, corresponding to a

fractional uncertainty of 1.3 × 10−14. This value is in good agreement with the value

of 688 358 979 309 306.62 ± 0.73 Hz reported by PTB in [12]. The higher uncertainty

of the measurements performed at NPL is attributed to the different method of the

data acquisition where the clock laser is repeatedly scanned over the transition and its

frequency is measured referenced to the hydrogen maser. The fractional uncertainty

of 1.3 × 10−14 can be reduced by locking the clock laser to the clock transition as

described in [158]. Also, calibrating the maser frequency using a caesium fountain

would reduce the uncertainty in the reference frequency corrections.

6.3 Conclusions

In this chapter an absolute frequency measurement of the electric clock quadrupole

transition at 436 nm in a frequency standard based on a single 171Yb+ trapped

ion was described. The absolute frequency of the transition was determined to be
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688 358 979 309 310 ± 9 Hz. This value is in good agreement with the value pre-

viously reported by PTB in [12] within the uncertainty of the measurements. The

main contributions to the measurement uncertainty – the statistical uncertainty and

the uncertainty in the frequency of the hydrogen maser – can be reduced by locking

the clock laser to the atomic transition and direct comparison of the frequency of the

transition to the frequency of the caesium fountain clock via the frequency comb.
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Chapter 7

Conclusions and summary

This chapter summarises the work described in this thesis and discusses its continu-

ation.

7.1 Technical Summary

The work described in this thesis was devoted to the investigation of femtosecond

frequency combs as a tool for precise optical frequency measurements. As described

in Chapter 2, in the past 14 years the frequency comb has become a commonly

used tool to perform absolute frequency measurements in the optical spectral region.

However, work on improvements to comb performance as well as the design of new

types of combs is continuing. Chapter 2 reviews the various femtosecond laser sources

used for comb generation to date from the optical clock perspective and discusses the

performance, advantages and disadvantages of each type of frequency comb.

In chapter 3 the design of two of the three NPL frequency combs as they were at

the start of my research project was described, highlighting their advantages and

disadvantages. While one of these combs, the fibre-laser-based comb, is based on

a commercially available optical frequency synthesiser, the Ti:Sapphire-laser-based
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comb was designed and built from discrete optical components which allowed for

improvements to be made to the overall comb performance via changes to single

building blocks or redesigning of subsystems.

These improvements were described in Chapter 4. Introducing separate spectral

broadening stages for detection of the carrier envelope offset frequency f0 and for

the beat signal between the comb and the measured frequency fb led to improved

SNR in both beats. However, the main emphasis of the work was the design of a

novel system for f0 detection.

Firstly, the KTP non-linear crystal used for SHG in the original f -to-2f self-referencing

scheme was changed for the more efficient PPKTP. The experimental comparison of

the SNR in the f0 beat generated in a Mach-Zehnder interferometer configuration

confirmed the SNR enhancement resulting from this change to be 10 dB.

The next step was the design of a new self-referencing setup with better noise im-

munity. The new system used Wollaston prisms for compensation of the group delay

between the fundamental and the frequency doubled green pulses to provide temporal

overlap at the detector. The common optical path in the Wollaston prism based inter-

ferometer led to significant common-mode noise rejection, which was assessed by com-

parison with a Michelson interferometer based f -to-2f self-referencing setup, showing

significantly better short-term and long-term performance of the Wollaston prism

based interferometer. Phase noise measurements of the f0 beat signal demonstrated

up to 15 dB noise reduction in the acoustic and low-frequency regions by using the

Wollaston prism based interferometer rather than the Michelson interferometer-based

system, illustrating the enhanced immunity of the Wollaston prism based f -to-2f

self-referencing setup to acoustic noise as well as air currents and thermal drifts.

Some of the sources of systematic uncertainty and frequency shifts originating from

the microwave reference signal that can affect frequency measurements performed with

frequency combs were investigated in Chapter 5. The stability and accuracy of the

signal produced by three frequency sources, a GPS-disciplined oscillator, a hydrogen
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maser and a Cs primary frequency standard, used as references for the frequency

combs were evaluated. The total uncertainty for the NPL-CsF2 fountain is currently

2.3 × 10−16, which places a limit on the accuracy of optical frequency measurements.

However, during frequency measurements the NPL combs are referenced to a hydrogen

maser and not directly to the Cs fountain. Since the maser is not located in the same

laboratory as the combs, the signal passes through a distribution system comprising

cables and a number of distribution amplifiers, which can potentially degrade its

stability. The distribution system was shown to degrade the stability of the maser

signal by a factor of 1.5.

As the repetition rate frequency frep is stabilised using a maser-referenced synthesiser,

the synthesiser itself can be a source of frequency error. To evaluate the potential

error, the temperature dependence of the accuracy of two synthesisers, the IFR 2030A

and the HP 8662A, was tested. The results showed that the maximal rate of temper-

ature change observed in the combs laboratory produced fractional frequency errors

of 1.4(0.5) × 10−15 in case of the IFR synthesiser and 1.16(0.14) × 10−13 for the HP

synthesiser. Hence, only the IFR synthesiser is suitable for accurate frequency mea-

surements and its temperature should be stabilised and monitored during frequency

measurements.

An example of an absolute frequency measurement performed with the fibre comb

was described in Chapter 6. The absolute frequency of the electric quadrupole clock

transition at 436 nm in a frequency standard based on a single 171Yb+ trapped ion was

determined to be 688 358 979 309 310 ± 9 Hz [11]. This value is in good agreement

with the value previously reported by PTB in [12] within the uncertainty of the mea-

surements. The main contributions to this uncertainty are the statistical uncertainty

and the uncertainty of the hydrogen maser frequency, and can be reduced by improved

design of the 171Yb+ trapped ion experiment and calibration of the maser frequency

throughout the measurement period using the local caesium fountain primary stan-

dard. Some of these improvements have since been implemented and are described in

detail in [152]. With these improvements, the total relative standard uncertainty of
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the octupole transition frequency in a single 171Yb+ trapped ion was evaluated to be

1.0 × 10−15, an improvement by a factor of 20 compared to the previously published

value for this transition [157]. A similar level of uncertainty reduction can be expected

when the electric quadrupole clock transition in a 171Yb+ trapped ion is remeasured.

7.2 Further Work

A logical continuation of the work described in this thesis could be further improve-

ments to the noise performance of the low repetition rate Ti:sapphire frequency comb.

Below some of these improvements which have been already implemented at NPL

during the time passed since the work described in this thesis was finished are de-

scribed. The results of the work described in Chapter 4 were also used to upgrade

the self-referencing scheme of the third NPL frequency comb (a higher repetition rate

Ti:sapphire comb), where the original Mach-Zehnder interferometer was replaced by

a Wollaston prism based interferometer.

The whole of the low repetition rate Ti:sapphire comb has now been enclosed in a

wooden box lined with acoustic foam. The repetition rate frequency detection is

realised via detection of the harmonic of the repetition rate and mixing this frequency

with another frequency from an RF synthesiser to obtain a low frequency difference

signal. This method allows frep to be measured with a precision greater than can

be achieved by direct counting. The original scheme was designed to detect the

beat at the ninth harmonic of frep (Sec. 3.2.2.1), however using a higher harmonic

of the repetition rate gives better resolution for the frep detection. This change was

implemented on both the low repetition rate Ti:sapphire comb and the fibre comb,

providing a detected signal at approximately 8 GHz, which required new high speed

photodetectors. Also, the counters used for the f0, fb and frep measurements have

been changed to new zero dead-time counters.

The absolute frequency of the octupole transition frequency in a single 171Yb+ trapped
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ion has been measured simultaneously using the low repetition rate Ti:sapphire comb

and the fibre comb which were referenced to a common maser-referenced RF synthe-

siser [152]. The values measured with each of the two combs agreed to the level of

1.0 × 10−17, demonstrating that the combs themselves introduced negligible uncer-

tainty. The total relative standard uncertainty of the octupole transition frequency

in a single 171Yb+ trapped ion was evaluated to be 1.0 × 10−15, an improvement by

a factor of 20 compared to the previously published value for this transition [157]. A

similar level of uncertainty reduction can be expected when the electric quadrupole

clock transition in an 171Yb+ trapped ion is remeasured. However, the uncertainty

introduced by the RF frequency distribution and the uncertainty in the frequency

of the microwave reference signal places a limit on the accuracy of absolute optical

frequency measurements.

Improvements in accuracy and short-term stability can be achieved by direct measure-

ment of the ratio of optical frequencies instead of measuring the absolute frequencies

of two transitions and then taking the ratio. For example, two combs were used to

measure the ratio of the frequencies of the lasers used to probe the quadrupole and oc-

tupole clock transitions in 171Yb+ ion. Initial measurements demonstrated agreement

between two combs at the 2.0 × 10−19 level. This result shows that the frequency

uncertainty of the combs does not limit the accuracy of neither an absolute optical

frequency measurements or the optical frequency ratio measurements.
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Kärtner. Direct frequency comb generation from an octave-spanning, prismless

Ti:sapphire laser. Opt. Lett., 29:1683–1685, 2004.

[56] T. M. Fortier, A. Bartels, and S. A. Diddams. Octave-spanning Ti:sapphire

laser with a repetition rate > 1 GHz for optical frequency measurements and

comparisons. Opt. Lett., 31:1011–1013, 2006.

[57] A. Bartels and H. Kurz. Generation of a broadband continuum by a Ti:sapphire

femtosecond oscillator with a 1-GHz repetition rate. Opt. Lett., 27:1839–1841,

2002.

[58] J. Reichert, R. Holzwarth, T. Udem, and T. W. Hänsch. Measuring the fre-
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