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Abstract. A reconfigurable smart surface with multiple equilibria is presented, modelled 

using discrete point masses and linear springs with geometric nonlinearity. An energy-

efficient reconfiguration scheme is then investigated to connect equal-energy unstable 

(but actively controlled) equilibria. In principle zero net energy input is required to 

transition the surface between these unstable states, compared to transitions between 

stable equilibria across a potential barrier. These transitions between equal-energy 

unstable states therefore form heteroclinic connections in the phase space of the problem. 

Moreover, the smart surface model developed can be considered as a unit module for a 

range of applications, including modules which can aggregate together to form larger 

distributed smart surface systems.  
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1. Introduction 

Many structures are designed with multi-stable characteristic for use in adaptive applications, such as 

compliant mechanisms. These structures have a number of advantages compared to conventional 

mechanisms, such as reducing the number of components required [1]. In particular, compliant 

mechanisms can use stored strain energy to enable motion from one stable position to another stable 

position [2]. The nonlinear deformation behaviour of such mechanisms has attracted significant interest 

with supporting experiment results [3]. Moreover, unstable equilibria could also be connected through 

heteroclinic connections in the phase space of the problem. Active control could be used to maintain 

the structure in unstable states, so that a transition between unstable configurations could be in principle 

found [4,5]. Transitions between equal-energy unstable states across a potential well are likely to be 

more efficient than transitions between stable states across a potential barrier. Meanwhile, the 

development of novel smart materials has helped to accelerate the implementation of  practical adaptive 

structures, whose properties are controlled by external stimuli such as moisture, temperature, electric 

or magnetic fields [6,7]. A large number of smart materials with various characteristics, such as shape 

memory alloys (SMAs), temperature-responsive polymers (TMPs) and piezoelectric materials can in 

principle be used to fabricate such smart structures [8–10].  

The increasingly broad application of smart structures can be found in many fields, such as the 

aerospace, energy and marine sectors, particularly for adaptive optics, vibration control and flow control 

[11]. Numerous engineering applications have also been investigated to utilise smart surfaces. For 

example, a reconfigurable reflector for a telecommunication satellite antenna has been investigated, 

providing significant advantages over conventional static antennae [12]. ‘HoverMesh’, a deformable 

structural mesh, has been developed as a spatial user interface. It has a cubical geometry with the upper 

wall designed as a deformable mesh of inflatable cells [13]. ‘Smart skin’ is a flexible, stretchable, and 

multifunctional surface which is fabricated from distributed sensing elements and electrodes. It has been 

applied in robotics and bionics and demonstrates excellent utility [14]. Moreover, some biomimetic 

concepts are derived from natural phenomenon, for example deployable membranes designed from 

folding tree leaves. New fold patterns were developed for applications to engineered structures by 

considering the folding of natural structures [15]. A shape memory alloy (SMA) assembly has also been 

developed as a mesh structure, which is attached to an inflatable boom. The smart mesh structure can 

then be used to control wrinkling and the deformed configuration of the inflatable boom structure [16]. 

A single sheet can be reconfigured to a range of desired shapes through multiple controllers and 

optimised design [17].  

Furthermore, advanced applications have been considered by connecting smart surface units in order to 

enable additional states of the system. A compound surface has developed to investigate higher order 
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multi-stability through numerical simulation and experiment [18]. Others have designed materials that 

can alter their bulk shape through active control by the deformation of compliant elements. Such 

materials are best suited to high-precision applications that benefit from materials that can achieve a 

desired bulk surface profile rapidly and efficiently [19]. Moreover, deformable surfaces have been 

widely investigated in different concepts, such as morphing composites and multifunctional origami.  

Some optimised shape and stacking sequence fiber-reinforced polymer (FRP) shells have been 

developed to enhance their in-plane properties [20]. Meanwhile, the elastic instabilities of shells have 

also been studied to design geometries for modifying and controlling post-buckling behaviour of the 

structure [21]. A new passive honeycomb has been designed as a celluar structure, which is quite 

different to normal honeycomb structures. Based on an in-plane negative Poisson’s ratio behaviour, a 

wing box filled with such a honeycomb has the ability to change the shape of an aerofoil [22]. The 

concept of using Poisson’s ratio has been applied to the design of a Kirigami structure made of 

composite materials. Numerical and experimental results demonstrate such Kirigami cellular structures 

can easily implement shape changing behaviour based on their changeable deformation characteristics 

[23]. Other work is based on a negative Poisson’s ratio, which uses a folded shell to produce Miura-ori 

fold patterns. Based on the kinematics of the folding, the structure can obtain the ability to perform 

planar deformations and bending. These folded shells have then been stacked together as Miura layers 

to produce a more complex 3D deployable structure which can have varying characteristics specific to 

different stacked configurations of the layers [24]. In addition, a double corrugation walled structure 

has been designed to offer an excellent ratio between bending and axial stiffness, which is the capabilty 

of concurrently carrying bending and shear loads for morphing skins [25]. Other smart surface work 

aims to develop a micro-scale system for conveying, sorting and positioning micro-parts. Such a smart 

surface is designed through distributed cells, which contain sensors, processing units and actuators [26]. 

In previous related work, McInnes and Waters investigated a simple smart structure model, which 

comprised a two mass chain with three springs [27].  The model was then approximated to provide a 

simple cubic nonlinearity to investigate its characteristics using dynamical system theory. A set of both 

stable and unstable equilibrium configurations were found, with transitions between the equal-energy 

unstable equilibria identified as heteroclinic connections. This cubic model was considered as a simple 

mechanical system with the ability to change its kinematic configuration between a finite set of unstable 

equilibria. The model was also used to investigate vibrational energy harvesting through the use of 

stochastic resonance [28].  

In principle, such transitions between equal-energy unstable states can be achieved without energy input, 

in the absence of dissipation. Indeed simulation results show that reconfiguration between such unstable 

equilibria can be energetically more efficient compared to transitions between stable configurations, 

which need to cross a potential barrier. Moreover, a novel method has been investigated to plan and 

control such transitions based on a polynomial reference trajectory and an inverse control method. It is 
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envisaged that being computationally efficient, the control strategy could form the basis of real-time 

reconfiguration of smart structures [29]. Then, a more complex and realistic spring-mass model has 

been developed to better represent a more realistic smart structure system [30,31]. Again, a set of 

equilibria can be found which in principle can be connected with heteroclinic paths in the phase space 

of the problem. Strategies have also been considered to deal with energy dissipation using a range of 

control methods. The concept of heteroclinic connections between equal-energy unstable states has also 

been applied to reconfigure a linked bar mechanism [32]. 

In this paper heteroclinic connections are investigated as a means to reconfigure a simple discrete model 

of a smart surface structure, which is similar to the Hencky-type discrete model for pantographic 

structures. However, the work in this paper analyses the vertical deformation and so is quite different 

to the Hencky-type discrete model, which focuses on planar deformation [33]. In Section 2, the surface 

structure is considered as an elastic plane which has a range of both stable and unstable configurations. 

As an approximation, the surface is modelled as a two-dimensional spring-mass array without 

dissipation and with a simplifying cubic nonlinearity to allow an investigation of its characteristics 

using dynamical system theory. Firstly, Section 3 discusses each spring-mass element, considered as a 

cubic nonlinearity between different nodes, and then an adjacency matrix is used to assemble elements 

together. Therefore, a set of both stable and unstable equilibrium configurations can be identified in the 

model, so that the reconfiguration of the smart surface can be considered between the equal-energy 

unstable states, as presented in Section 4.  It is assumed that the simple reconfigurable structure 

possesses embedded sensors and actuators to allow the unstable equilibria to be actively controlled. 

Meanwhile, a feedback control law is proposed that can stabilise the dynamics of the smart surface in 

Section 5. This control strategy can actively maintain the structure in an unstable configuration. Section 

6 presents more complex dynamics of such surface structures, which can be formed from an assembly 

of modules. For example, each surface module can be regarded as a microsystem unit for conveying, 

sorting and positioning micro-parts. 

2. Smart surface model 

The smart surface structure consists of a two-dimensional array of connected springs and masses. 

Consider firstly a simple elastic model, with an array of masses connected as chains by linear springs 

of stiffness ݇ and natural length ܮ. In order to proceed, it is assumed that the masses can only move in 

the vertical (out-of-plane) direction without damping. The out-of-plane displacement of mass ݉ is 

defined by displacement ݔ, while each mass is separated by a fixed distance ݀. Consider a simple spring-

mass element, which is the basic unit of the smart surface model. Based on the previous discussion, it 

is assumed that the masses can only move in the vertical direction as shown in Fig. 1. 
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Figure 1. Spring-mass element. 

To proceed, ܶ is defined as the internal tension in a single spring, so that the tension of the spring can 

be described by 

 
ܶ ൌ ο ή ݇ 

(1) 

where ο is the extension of the spring length beyond its natural length, which can be described by  

 οൌ ඥሺݔ௜ିଵ െ ௜ሻଶݔ ൅ ݀ଶ െ  (2) ܮ

Therefore, the force experience by each node can be written as 

 ௜݂ǡଵ ൌ െο ή ݇ ή ሺݔ௜ିଵ െ ௜ିଵݔ௜ሻඥሺݔ െ ௜ሻଶݔ ൅ ݀ଶ ൌ െ݇൫ݔ௜ିଵǡ െ ௜൯ݔ ቆͳ െ ݈଴ඥሺݔ௜ିଵ െ ௜ሻଶݔ ൅ ݀ଶቇ (3) 

The dynamics of each mass in a 1-dimensional chain are then described by 

ሷ௜ǡଵݔ݉  ൌ െ݇ሺݔ௜ିଵ െ ௜ሻݔ ቆͳ െ ݈଴ඥሺݔ௜ିଵ െ ௜ሻଶݔ ൅ ݀ଶቇ (4) 

The nonlinear term can be expanded by assuming ݔȀ݀ ا ͳ to simplify the full nonlinearity of the 

problem. It can then be shown that  

ሷ௜ݔ݉  ൌ െ݇ ൬݈଴݀ െ ͳ൰ ሺݔ௜ିଵ െ ௜ሻݔ ൅ ݈݇଴ʹ݀ଷ ሺݔ௜ିଵ െ ௜ሻଷݔ ൅  (5) ڮ

Following McInnes and Waters [27] a non-dimensional position coordinate ݍ ൌ ඥ݈଴ ʹ݀ଷΤ -and non ݔ

dimensional time ߬ ൌ ݐ ඥ݉ ݇ΤΤ  can be defined with ߤ ൌ ሺ݈଴ ݀Τ െ ͳሻ so that 

 
ሷ௜ݍ ൌ െߤሺݍ௜ିଵ െ ௜ሻݍ ൅ ሺݍ௜ିଵ െ ௜ሻଷݍ

 
(6) 

In order to illustrate the smart surface model directly, a simple surface is considered as the structure 

shown in Fig. 2. The location of each mass as a row and column can be defined as ݑ and ݒ, respectively. 

Each mass ݉௜ǡ௝ can then be located on the ݅௧௛ row and ݆௧௛ column, which is connected to its neighbours 
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by linear springs. The dynamics of mass ݉௜ǡ௝ are then driven by the displacements 

of ݉௜ିଵǡ௝, ݉௜ାଵǡ௝, ݉௜ǡ௝ିଵ  and ݉௜ǡ௝ାଵ. The dynamics of mass ݉௜ǡ௝ is therefore defined by 

 

ሷ௜ǡ௝ݍ ൌ െߤ൫ݍ௜ିଵǡ௝ െ ௜ǡ௝൯ݍ ൅ ൫ݍ௜ିଵǡ௝ െ ௜ǡ௝൯ଷݍ ൅ ௜ǡ௝ݍ൫ߤ െ ௜ାଵǡ௝൯ݍ െ ൫ݍ௜ǡ௝ െ ௜ାଵǡ௝൯ଷݍ
െ ௜ǡ௝ିଵݍ൫ߤ െ ௜ǡ௝൯ݍ ൅ ൫ݍ௜ǡ௝ିଵ െ ௜ǡ௝൯ଷݍ ൅ ௜ǡ௝ݍ൫ߤ െ ௜ǡ௝ାଵ൯ݍ െ ൫ݍ௜ǡ௝ െ ௜ǡ௝ାଵ൯ଷݍ

 

(7) 

Due to the fixed boundary conditions of the problem, the surface model can be considered as a four 

degree-of-freedom system, which considers only vertical mass displacements. The displacement of the 

boundary nodes can be set to zero, i.e. ݍ଴ǡ଴ ൌ ଴ǡଵݍ ൌ ଴ǡଶݍ ൌ ଴ǡଷݍ ൌ ଵǡ଴ݍ ൌ ଵǡଷݍ ൌ ଶǡ଴ݍ ൌ ଶǡଷݍ ൌ ଷǡ଴ݍ ൌݍଷǡଵ ൌ ଷǡଶݍ ൌ ଷǡଷݍ ൌ Ͳ. There dynamics of the full, coupled system can therefore be written as 
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Figure 2. A simple surface model with fixed boundary condition. 

ێێۏ 
ۑۑےሷଶǡଶݍሷଶǡଵݍሷଵǡଶݍሷଵǡଵݍۍ

ې ൌ ێێۏ
ଵǡଵݍߤͶۍێ െ ଶǡଵݍ൫ߤ ൅ ଵǡଶݍߤଵǡଶ൯Ͷݍ െ ଶǡଶݍ൫ߤ ൅ ଶǡଵݍߤଵǡଵ൯Ͷݍ െ ଵǡଵݍ൫ߤ ൅ ଶǡଶݍߤଶǡଶ൯Ͷݍ െ ଵǡଶݍ൫ߤ ൅ ۑۑےଶǡଵ൯ݍ

ېۑ ൅
ێێۏ
ଵǡଵଷݍʹെۍێێ െ ൫ݍଵǡଵ െ ଶǡଵ൯ଷݍ െ ൫ݍଵǡଵ െ ଵǡଶଷݍʹଵǡଶ൯ଷെݍ െ ൫ݍଵǡଶ െ ଶǡଶ൯ଷݍ ൅ ൫ݍଵǡଵ െ ଶǡଵଷݍʹଵǡଶ൯ଷെݍ ൅ ൫ݍଵǡଵ െ ଶǡଵ൯ଷݍ െ ൫ݍଶǡଵ െ ଶǡଶଷݍʹଶǡଶ൯ଷെݍ ൅ ൫ݍଵǡଶ െ ଶǡଶ൯ଷݍ ൅ ൫ݍଶǡଵ െ ۑۑےଶǡଶ൯ଷݍ

 (8) ېۑۑ

This four degree-of-freedom system is easily formed from the dynamics of the problem through using 

Eq. (7). Moreover, the system is constructed from two parts, a linear destabilising force term and 

nonlinear stabilising force term. It can be expected that the linear and cubic terms will yield families of 

both stable and unstable equilibria. 

3. General methods 

We now consider a general method with an ݊ ൈ ݊ array of masses using the same functional form of 

the nonlinearity above. It is again assumed that the system is considered conservative without 

dissipation. The adjacency matrix of the graph connecting the nodes can now be used to form the 

generalised position of each node. The four degree-of-freedom system above is firstly employed to 
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illustrate this general method. Since the system detailed above is considered conservative without 

dissipation, its behaviour can be described through the use of an effective potential ܸሺࢗǡ  ሻ by theߤ

position set coordinate ࢗ ൌ ൛ݍ௜ǡ௝ൟ ሺ݅ ൌ ͳ െ ݊ǡ ݆ ൌ ͳ െ ݊ሻ such that the momenta  ࢖ ൌ ൛݌௜ǡ௝ൟ ሺ݅ ൌ ͳ െ݊ǡ ݆ ൌ ͳ െ ݊ሻ  can be obtained from ݌ሶ௜ǡ௝ ൌ െ߲ܸሺࢗǡ ሻߤ ௜ǡ௝Τݍ߲ . The effective potential ܸሺࢗǡ  ሻ can thenߤ

be defined as 

 

ܸሺࢗǡ ሻߤ ൌ െݍߤଵǡଵଶ െ ଵǡଶଶݍߤ െ ଶǡଵଶݍߤ െ ଶǡଶଶݍߤ െ ͳʹ ଵǡଵݍ൫ߤ െ ଶǡଵ൯ଶݍ െ ͳʹ ଵǡଵݍ൫ߤ െ ଵǡଶ൯ଶݍ
െ ͳʹ ଵǡଶݍ൫ߤ െ ଶǡଶ൯ଶݍ െ ͳʹ ଶǡଵݍ൫ߤ െ ଶǡଶ൯ଶݍ ൅ ͳʹ ଵǡଵସݍ ൅ ͳʹ ଵǡଶସݍ ൅ ͳʹ ଶǡଵସ൅ݍ ͳʹ ଶǡଶସݍ ൅ ͳͶ ൫ݍଵǡଵ െ ଶǡଵ൯ସݍ ൅ ͳͶ ൫ݍଵǡଵ െ ଵǡଶ൯ସݍ ൅ ͳͶ ൫ݍଶǡଶ െ ଵǡଶ൯ସݍ
൅ ͳͶ ൫ݍଶǡଶ െ ଶǡଵ൯ସݍ

 

(9) 

Equation (9) shows that the potential consists of two parts, one a quadratic term, which again provides 

a destabilising linear force at small displacements and a quartic term, which provides a stabilising, 

nonlinear restoring force at large displacements. It is assumed later that ݍ௜ǡ௝ is a displacement that can 

be sensed and ߤ  is a spring coupling parameter that can be manipulated for active control and 

stabilisation. Therefore, a general method can be considered such that the potential energy can be 

formed from two parts, a quadratic term and a quartic term, which can be defined by 

ଶܯ  ൌ
ێێۏ
଴ǡ଴ݍ൫ۍێێ െ ଴ǡ଴൯ଶݍ ڮ ൫ݍ଴ǡ଴ െ ௜ǡ௝൯ଶݍ ڮ ൫ݍ଴ǡ଴ െ ڭ௡ǡ௡൯ଶݍ ڰ ڭ ڰ ௜ǡ௝ݍ൫ڭ െ ଴ǡ଴൯ଶݍ ڮ ൫ݍ௜ǡ௝ െ ௜ǡ௝൯ଶݍ ڮ ൫ݍ௜ǡ௝ െ ڭ௡ǡ௡൯ଶݍ ڰ ڭ ڰ ௡ǡ௡ݍ൫ڭ െ ଴ǡ଴൯ଶݍ ڮ ൫ݍ௡ǡ௡ െ ௜ǡ௝൯ଶݍ ڮ ൫ݍ௡ǡ௡ െ ۑۑے௡ǡ௡൯ଶݍ

 (10) ېۑۑ

and 

ସܯ  ൌ
ێێۏ
଴ǡ଴ݍ൫ۍێێ െ ଴ǡ଴൯ସݍ ڮ ൫ݍ଴ǡ଴ െ ௜ǡ௝൯ସݍ ڮ ൫ݍ଴ǡ଴ െ ڭ௡ǡ௡൯ସݍ ڰ ڭ ڰ ௜ǡ௝ݍ൫ڭ െ ଴ǡ଴൯ସݍ ڮ ൫ݍ௜ǡ௝ െ ௜ǡ௝൯ସݍ ڮ ൫ݍ௜ǡ௝ െ ڭ௡ǡ௡൯ସݍ ڰ ڭ ڰ ௡ǡ௡ݍ൫ڭ െ ଴ǡ଴൯ସݍ ڮ ൫ݍ௡ǡ௡ െ ௜ǡ௝൯ସݍ ڮ ൫ݍ௡ǡ௡ െ ۑۑے௡ǡ௡൯ସݍ

 (11) ېۑۑ

where M is a ʹ݊ ൈ ʹ݊ matrix, the subscript ‘2’ indicates the quadratic term and the subscript ‘4’ 

indicates the quadratic term.  

Then, an adjacency matrix is defined to form the generalised position of each node, which includes the 

relationship between every node by using an element ‘1’ to define connected nodes and ‘0’ to define 

unconnected nodes. Figure 3 illustrates a simple relationship between 4 nodes which are connected with 

one another sequentially in turn, thus the adjacency matrix can be defined by 



8 

 

ܣ  ൌ ቎Ͳ ͳͳ Ͳ Ͳ Ͳͳ ͲͲ ͳͲ Ͳ Ͳ ͳͳ Ͳ቏ (12) 

with the boundary conditions ݍଵ ൌ ସݍ ൌ Ͳ. 

 

Figure 3. Example of a simple adjacency relationship. 

In addition, a more general configuration can be considered by inserting the coupling parameters ߤ into 

the adjacency matrix, which express the detailed mechanical relationship between each of the nodes. 

The matrix A therefore can be rewritten as  

ܣ  ൌ ێێۏ
ۍ Ͳ ଵǡଶߤ Ͳ Ͳߤଵǡଶ Ͳ ଶǡଷߤ ͲͲ ଶǡଷߤ Ͳ ଷǡସͲߤ Ͳ ଷǡସߤ Ͳ ۑۑے

ې
 (13) 

A generalised, extensive form of the adjacency matrix can now be defined as  

ܣ  ൌ ێێۏ
ۍێ Ͳ ڮ ଴଴ǡ௜ǡ௝ߤ ڮ ڭ଴ǡ଴ǡ௡ǡ௡ߤ ڰ ڭ ڰ ଴଴ǡ௜ǡ௝ߤڭ ڮ Ͳ ڮ ڭ௜ǡ௝ǡ௡ǡ௡ߤ ڰ ڭ ڰ ଴ǡ଴ǡ௡ǡ௡ߤڭ ڮ ௜ǡ௝ǡ௡ǡ௡ߤ ڮ Ͳ ۑۑے

ېۑ
 (14) 

where ߤ௜ǡ௝ǡ௡ǡ௡ defines the coupling relationship between nodes ݍ௜ǡ௝ and ݍ௡ǡ௡. 

Accordingly, the potential energy of the system can be constructed by combining a quadratic-term 

matrix, quartic-term matrix and adjacency matrix. To proceed we define ܴ as 

 
ܴ ൌ ܴଵ ל ܴଶ 

(15) 

where ל denotes the Hadamard product (element-wise product). The Hadamard product is an operation 

such that each element (݆݅) in the matrix is produced from the product of the corresponding location 

elements (݆݅) in another two matrices of the same dimension to generate a new matrix with the same 

dimension of the original two matrices.  It is noted that ܴ has the same dimension as the operands with ܴଵ and ܴଶ. 

Therefore, the total potential energy ܸ can be defined as  



9 

 

 ܸ ൌ െ ͳʹ ଶܯሺ݉ݑݏ ל ଵሻܣ ൅ ͳͶ ସܯ൫݉ݑݏ ל  ఓ൯ (16)ܣ

where ܣଵ and ܣఓ are upper triangular matrixes that can be developed from Eq.(12) and Eq.(14) such 

that 

ଵܣ  ൌ ൥ڰ ͳ ͳͲ ڰ ͳͲ Ͳ  ൩ (17)ڰ

ఓܣ  ൌ ێێۏ
Ͳۍێ ڮ ଴଴ǡ௜ǡ௝ߤ ڮ ڭ଴ǡ଴ǡ௡ǡ௡ߤ ڰ ڭ ڰ Ͳڭ ڮ Ͳ ڮ ڭ௜ǡ௝ǡ௡ǡ௡ߤ ڰ ڭ ڰ Ͳڭ ڮ Ͳ ڮ Ͳ ۑۑے

ېۑ
 (18) 

Since the system is considered conservative without dissipation, the Hamiltonian of the system can then 

be constructed from the kinetic and potential energy as 

 ܶሺ࢖ሻ ൌ ͳʹ ԡ࢖ଶԡ (19) 

 ܸሺࢗሻ ൌ െ ͳʹ ଶܯ൫݉ݑݏ ל ఓ൯ܣ ൅ ͳͶ ସܯሺ݉ݑݏ ל  ଵሻ (20)ܣ

where again the set ࢗ ൌ ൛ݍ௜ǡ௝ൟ ሺ݅ ൌ ͳ െ ݊ǡ ݆ ൌ ͳ െ ݊ሻ  is associated with the set of momenta ࢖ ൌ൛݌௜ǡ௝ൟ ሺ݅ ൌ ͳ െ ݊ǡ ݆ ൌ ͳ െ ݊ሻ. Then the dynamics of the system can be obtained from Hamilton’s 

equations. It is clear that since the kinetic energy is independent of ࢗ, it can be seen that ࢖ሶ ൌ െ׏௤ܸሺࢗሻ 

so that 

 
ሶ௜ǡ௝ݍ ൌ  ௜ǡ௝݌

(21) 

 
௜ǡ௝݌ ൌ െ׏௤ܸሺࢗሻ 

(22) 

The model shown in Fig.2 is now employed as an example to illustrate the detailed process using the 

general methods above. The labelled graph of the simple smart surface structure is shown in Fig. 4. The 

displacement of the boundary nodes can again be set to zero, i.e. ݍ଴ǡ଴ ൌ ଴ǡଵݍ ൌ ଴ǡଶݍ ൌ ଴ǡଷݍ ൌ ଵǡ଴ݍ ൌݍଵǡଷ ൌ ଶǡ଴ݍ ൌ ଶǡଷݍ ൌ ଷǡ଴ݍ ൌ ଷǡଵݍ ൌ ଷǡଶݍ ൌ ଷǡଷݍ ൌ Ͳ. 
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Figure 4. Labelled graph of the simple smart surface structure. 

Therefore, the relevant matrixes can be defined as 

ଶܯ  ൌ
ێێۏ
଴ǡ଴ݍ൫ۍێێ െ ଴ǡ଴൯ଶݍ ڮ ൫ݍ଴ǡ଴ െ ௜ǡ௝൯ଶݍ ڮ ൫ݍ଴ǡ଴ െ ڭଷǡଷ൯ଶݍ ڰ ڭ ڰ ௜ǡ௝ݍ൫ڭ െ ଴ǡ଴൯ଶݍ ڮ ൫ݍ௜ǡ௝ െ ௜ǡ௝൯ଶݍ ڮ ൫ݍ௜ǡ௝ െ ڭଷǡଷ൯ଶݍ ڰ ڭ ڰ ଷǡଷݍ൫ڭ െ ଴ǡ଴൯ଶݍ ڮ ൫ݍଷǡଷ െ ௜ǡ௝൯ଶݍ ڮ ൫ݍଷǡଷ െ ۑۑےଷǡଷ൯ଶݍ

ېۑۑ
ଵ଺ൈଵ଺

 (23) 

ସܯ  ൌ
ێێۏ
଴ǡ଴ݍ൫ۍێێ െ ଴ǡ଴൯ସݍ ڮ ൫ݍ଴ǡ଴ െ ௜ǡ௝൯ସݍ ڮ ൫ݍ଴ǡ଴ െ ڭଷǡଷ൯ସݍ ڰ ڭ ڰ ௜ǡ௝ݍ൫ڭ െ ଴ǡ଴൯ସݍ ڮ ൫ݍ௜ǡ௝ െ ௜ǡ௝൯ସݍ ڮ ൫ݍ௜ǡ௝ െ ڭଷǡଷ൯ସݍ ڰ ڭ ڰ ଷǡଷݍ൫ڭ െ ଴ǡ଴൯ସݍ ڮ ൫ݍଷǡଷ െ ௜ǡ௝൯ସݍ ڮ ൫ݍଷǡଷ െ ۑۑےଷǡଷ൯ସݍ

ېۑۑ
ଵ଺ൈଵ଺

 (24) 

and so it can be shown that 

 

ଵܣ ൌ

ێێۏ
ێێێ
ێێێ
ێێێ
ێێێ
Ͳۍ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ ͲͲ Ͳ Ͳ Ͳ Ͳ ͳ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ ͲͲ Ͳ Ͳ Ͳ Ͳ Ͳ ͳ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ ͲͲ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ ͲͲ Ͳ Ͳ Ͳ Ͳ ͳ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ ͲͲ Ͳ Ͳ Ͳ Ͳ Ͳ ͳ Ͳ Ͳ ͳ Ͳ Ͳ Ͳ Ͳ Ͳ ͲͲ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ ͳ Ͳ Ͳ ͳ Ͳ Ͳ Ͳ Ͳ ͲͲ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ ͲͲ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ ͳ Ͳ Ͳ Ͳ Ͳ Ͳ ͲͲ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ ͳ Ͳ Ͳ ͳ Ͳ ͲͲ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ ͳ Ͳ Ͳ ͳ ͲͲ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ ͲͲ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ ͲͲ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ ͲͲ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ ͲͲ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳۑۑے

ۑۑۑ
ۑۑۑ
ۑۑۑ
ۑۑۑ
ې

ଵ଺ൈଵ଺

 

 

(25) 
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ఓܣ  ൌ ێێۏ
Ͳۍێ ڮ Ͳ ڮ Ͳڭ ڰ ڭ ڰ Ͳڭ ڮ Ͳ ڮ ڭ௜ǡ௝ǡ௡ǡ௡ߤ ڰ ڭ ڰ Ͳڭ ڮ Ͳ ڮ Ͳ ۑۑے

ېۑ
ଵ଺ൈଵ଺

 (26) 

We use two different relationships ߤଵ  and ߤଶ  to construct the matrix ఓܣ  , where ߤଵ  defines the 

relationship between free nodes and boundary nodes and ߤଶ defines the relationship between free nodes 

each other. Equation (25) can be therefore rewritten as 

ଵܣ  ൌ

ێێۏ
ێێێ
ێێێ
ێێێ
ێێێ
Ͳۍ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ ͲͲ Ͳ Ͳ Ͳ Ͳ ଵߤ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ ͲͲ Ͳ Ͳ Ͳ Ͳ Ͳ ଵߤ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ ͲͲ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ ͲͲ Ͳ Ͳ Ͳ Ͳ ଵߤ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ ͲͲ Ͳ Ͳ Ͳ Ͳ Ͳ ଶߤ Ͳ Ͳ ଶߤ Ͳ Ͳ Ͳ Ͳ Ͳ ͲͲ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ ଵߤ Ͳ Ͳ ଶߤ Ͳ Ͳ Ͳ Ͳ ͲͲ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ ͲͲ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ ଵߤ Ͳ Ͳ Ͳ Ͳ Ͳ ͲͲ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ ଶߤ Ͳ Ͳ ଵߤ Ͳ ͲͲ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ ଵߤ Ͳ Ͳ ଵߤ ͲͲ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ ͲͲ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ ͲͲ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ ͲͲ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ ͲͲ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳۑۑے

ۑۑۑ
ۑۑۑ
ۑۑۑ
ۑۑۑ
ې

ଵ଺ൈଵ଺

 (27) 

Through using Eq. (20), the same expression for the potential energy can be found as with Eq. (9). 

Therefore, the equations of motion can be written as  

ێێۏ 
ۑۑےሷଶǡଶݍሷଶǡଵݍሷଵǡଶݍሷଵǡଵݍۍ

ې ൌ ێێۏ
ଵǡଵݍଵߤʹۍێ ൅ ଵǡଵݍʹଶ൫ߤ െ ଶǡଵݍ െ ଵǡଶݍଵߤʹଵǡଶ൯ݍ ൅ ଵǡଶݍʹଶ൫ߤ െ ଶǡଶݍ െ ଶǡଵݍଵߤʹଵǡଵ൯ݍ ൅ ଶǡଵݍʹଶ൫ߤ െ ଵǡଵݍ െ ଶǡଶݍଵߤʹଶǡଶ൯ݍ ൅ ଶǡଶݍʹଶ൫ߤ െ ଵǡଶݍ െ ۑۑےଶǡଵ൯ݍ

ېۑ ൅
ێێۏ
ଵǡଵଷݍʹെۍێێ െ ൫ݍଵǡଵ െ ଶǡଵ൯ଷݍ െ ൫ݍଵǡଵ െ ଵǡଶଷݍʹଵǡଶ൯ଷെݍ െ ൫ݍଵǡଶ െ ଶǡଶ൯ଷݍ ൅ ൫ݍଵǡଵ െ ଶǡଵଷݍʹଵǡଶ൯ଷെݍ ൅ ൫ݍଵǡଵ െ ଶǡଵ൯ଷݍ െ ൫ݍଶǡଵ െ ଶǡଶଷݍʹଶǡଶ൯ଷെݍ ൅ ൫ݍଵǡଶ െ ଶǡଶ൯ଷݍ ൅ ൫ݍଶǡଵ െ ۑۑےଶǡଶ൯ଷݍ

 (28) ېۑۑ

Solving ׏௤ܸሺࢗሻ ൌ Ͳ yields a number of equilibria for different values of  ߤଵ and ߤଶ, as shown in Fig. 

5. Although only ߤଵ ൐ Ͳ is considered in the subsequent analysis, for completeness the number of 

equilibria is shown for െʹ ൏ ଶߤ ൏ ʹ. It can be seen that the total number of equilibria varies with the 

coupling parameter ߤଶ. In addition, the maximum number of equilibria occur when ߤଶ ൌ ଵߤ ൌ ͳ, which 

is found to be 101. It is clear that these equilibria are both stable and unstable and in principle may be 

connected through paths in the phase of the problem. One type of path is the heteroclinic connection 

which connects equal-energy unstable equilibria through their stable and unstable manifolds. Therefore, 

in order to explore all possible equilibrium configurations of the smart surface model the case ߤଶ ൌߤଵ ൌ ͳ  for the coupling parameters is used. The case ߤଶ ൐ ଵߤ is used later to explore possible 

reconfigurations between different unstable states of the structure.  
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Figure 5. Number of equilibria of the smart surface structure with varying coupling parameter ߤଶ with ߤଵ ൌ ͳ. 

The equilibrium configurations of the smart surface model are listed in Table 1. The linear stability 

properties of these equilibria can then be determined through linearisation of Hamilton’s equations in 

the neighbourhood of each equilibrium point by an eigenvalue approach. Through dynamical system 

theory [34], a set of stable equilibria are then associated with conjugate imaginary eigenvalues and a 

set of unstable equilibria are associated with real eigenvalues of opposite sign. The linearisation of 

Hamilton’s equations for some general equilibrium point ൫ݍ෤ଵǡଵǡ ෤ଵǡଶǡݍ ෤ଶǡଵǡݍ ෤ଶǡଶ൯ݍ  of the 4 degree-of-

freedom system can be expressed in matrix form as 

ێێۏ 
ۑۑےሷଶǡଶݍሷଶǡଵݍሷଵǡଶݍሷଵǡଵݍۍ

ې ൌ ሺ۹ ൅ ሻ܀ ێێۏ
ଵǡଵݍۍ െ ଵǡଶݍ෤ଵǡଵݍ െ ଶǡଵݍ෤ଵǡଶݍ െ ଶǡଶݍ෤ଶǡଵݍ െ ۑۑے෤ଶǡଶݍ

ې
 (29) 

 ۹ ൌ ێێێۏ
ɀ෤ଵǡଶଵǡଵۍێ െ ɀ෤ଶǡଵଵǡଵ െ ͸ݍ෤ଵǡଵଶ ɀ෤ଵǡଶଵǡଵ ɀ෤ଶǡଵଵǡଵ Ͳɀ෤ଵǡଶଵǡଵ ɀ෤ଵǡଶଵǡଵ െ ɀ෤ଶǡଶଵǡଶ െ ͸ݍ෤ଵǡଶଶ Ͳ ɀ෤ଶǡଶଵǡଶɀ෤ଶǡଵଵǡଵ Ͳ ɀ෤ଶǡଵଵǡଵ െ ɀ෤ଶǡଶଶǡଵ െ ͸ݍ෤ଶଵଶ ɀ෤ଶǡଶଶǡଵͲ ɀ෤ଶǡଶଵǡଶ ɀ෤ଶǡଶଶǡଵ ɀ෤ଶǡଶଵǡଶ െ ɀ෤ଶǡଶଶǡଵ െ ͸ݍ෤ଶǡଶଶۑۑۑے

ېۑ
 (29a) 

܀  ൌ ൦ʹߤଵ ൅ ଶߤʹ െߤଶ െߤଶ Ͳെߤଶ ଵߤʹ ൅ ଶߤʹ Ͳ െߤଶെߤଶ Ͳ ଵߤʹ ൅ ଶߤʹ െߤଶͲ െߤଶ െߤଶ ଵߤʹ ൅  ଶ൪ (29b)ߤʹ

where ɀ෤௠ǡ௡௜ǡ௝ ൌ ͵൫ݍ෤௜ǡ௝ െ ෤௠ǡ௡൯ଶݍ
. 

The eigenvalues of the linear system can then be found to determine local stability properties.  It can be 

shown that this 4 degree-of-freedom system possesses 29 unstable equilibria and 72 stable equilibria, 

again noted in Table 1. 

Table 1. Stability properties of the equilibria with ߤଵ ൌ ଶߤ ൌ ͳ and the corresponding surface configuration. 
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Configuration 

     

Coordinates (0 0 0 0) (0 0 1 1) 
(-0.6 0.6 0.6 -

0.6) 

(-0.1 0.1 -0.6 

0.6) 
(0 0 0 1) 

Potential 

Energy 
0 -1.5 -1.6 -1.1 -1 

Type Maximum Saddle 

Number 1 28 

Eigenvalues 
േʹ, േʹ,  േξʹ, േξ͸ 

േͳǤ͸, േͲǤͺ,  േʹǤͳ݅, േʹǤ͸݅ േͳǤ͵, േͲǤ͸i,  േʹǤ͵݅, േʹǤͶ݅ േͳǤͶ, േͳǤͻ,  േͲǤͻ݅, േ͵Ǥͳ݅ േͳ, േͳǤͳ,  േʹǤʹ, േ͵ǤͲ݅ 
Configuration 

     

Coordinates (0.1 1 -1 0.1) (1 1 1 1) (0 1 1 1) 
(1.2 0.6 0.6 

1.2) 
(0 1 1 0) 

Potential 

Energy 
-2 

Type Minimum Stable 

Number 72 

Eigenvalues 
േͲ, േͳǤʹi,  േʹǤͺ݅, േ͵Ǥͳ݅ േͲ, േξʹ݅,  േξʹ݅, േʹ݅ േͲ, േξʹ݅,  േʹǤʹ݅, േʹǤ͸݅ േͲ, േͲ,  േʹǤͶ݅, േʹǤͶ݅ േͲ, േξʹ݅,  േʹǤ͵݅, േ͵Ǥʹ݅ 

 

4. Heteroclinic connections 

In order to explore the possible transition of the model smart surface using heteroclinic connections, 

several configurations are selected from the set of equilibrium configurations discussed above to act as 

the initial and final states, respectively. Meanwhile, from Eq. (28) it can be shown that 

 

ሷଵǡଵݍ ൅ ሷଵǡଶݍ ൅ ሷଶǡଵݍ ൅ ሷଶǡଶൌݍ ଵߤଵǡଵ൫ݍʹ െ ଵǡଵଶ൯ݍ ൅ ଵߤଵǡଶ൫ݍʹ െ ଵǡଶଶ൯ݍ ൅ ଵߤଶǡଵ൫ݍʹ െ ଶǡଵଶ൯൅ݍ ଵߤଶǡଶ൫ݍʹ െ  ଶǡଶଶ൯ݍ

(30) 

so that it can be seen immediately that equilibria can be found at ܧ଴ሺͲǡ Ͳǡ Ͳǡ Ͳሻ, ܧଵሺξߤଵǡ ξߤଵǡ ξߤଵǡξߤଵሻ and ܧଶሺെξߤଵǡ െξߤଵǡ െξߤଵǡ െξߤଵሻ, which shows that these equilibria are independent of ߤଶ. 

It can be noted that the stability properties of equilibria ܧଵ and ܧଶ are a function of the ratio between ߤଶ and ߤଵ. It can also be shown that the equilibria ܧଵ and ܧଶ become unstable for ߤଶ ൐ ଶߤ ଶ will be chosen to be unstable withܧ ଵ andܧ ,ଵ. Thereforeߤ ൐  ଵ so that a heteroclinic connection can be foundߤ

between ܧଵ  and ܧଶ  for illustration. The purpose of finding such a transition is that the unstable 

equilibria ܧଵ and ܧଶ lie on the same potential energy surface and so in principle zero net energy input 

is needed to reconfigure the structure between them. Then, dynamical system theory can be employed 

to seek a possible phase space connection between these unstable equilibria. For a conservative system, 

linearisation of Hamilton’s equations in the neighbourhood of each equilibrium point yields pairs of 
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eigenvalues ߣ ൐ Ͳ  and ߣ ൏ Ͳ , respectively. These eigenvalues have corresponding eigenvectors 

associated with the directions ࢛࢙ and ࢛࢛. The eigenvectors ࢛࢙ and ࢛࢛  are known to be tangent to the 

stable manifold Ws and the unstable manifold Wu in the neighbourhood of each equilibria [27]. 

Therefore, the eigenvectors can be mapped to approximate the stable and unstable manifolds by 

integrating forwards or backwards from an unstable equilibrium point ࢋࢠ, defined by   

࢙ࢠ  ൌ ࢋࢠ ൅ ࢛࢙߳
 (31) 

࢛ࢠ  ൌ ࢋࢠ ൅ ࢛࢛߳
 (32) 

for  ߳ ا ͳ . This method can be used find heteroclinic connections between equal-energy unstable 

equilibria so that the structure can be reconfigured between unstable states. Symmetry is always a basic 

property for heteroclinic connections in dynamical systems. Therefore, symmetry can be imposed on 

the problem to search for heteroclinic connections. A two-dimensional space can be obtained by a 

dimensionality reduction with the following transformation 

 ൬ܳଵܳଶ൰ ൌ ቀܽଵ ܽଶ ܽଷ ܽସܾଵ ܾଶ ܾଷ ܾସቁ ൮ݍଵݍଶݍଷݍସ൲ (33) 

where the pre-multiplication matrix is a constant set here to 

 ቀܽଵ ܽଶ ܽଷ ܽସܾଵ ܾଶ ܾଷ ܾସቁ ൌ ቀʹ ʹ ʹ ʹͳ െͳ െͳ ͳቁ (34) 

thus transforming the four-dimensional space to a two-dimensional space, so that the potential defined 

in Eq. (9) can be transformed to  

 
ܸሺܳǡ ሻߤ ൌ ሺʹܳଵ െ ܳଶሻସ െ ଵሺʹܳଵߤʹ ൅ ܳଶሻଶ െ ଵሺʹܳଵߤʹ െ ܳଶሻଶ െ ͺߤଶܳଶଶ ൅ ͳ͸ܳଶସ൅ ሺʹܳଵ ൅ ܳଶሻସ

 
(35) 

In this new coordinate system, the equations of motion can be obtained from ࡼሶ ൌ െ׏௤ܸሺࡽሻ and so the 

dynamics of the new system can then be described by 

 
ሶܳଵ ൌ ଵܲ (36) 

 
ሶܲଵ ൌ ଵሺͺܳଵߤʹ െ Ͷܳଶሻ ൅ ଵሺͺܳଵߤʹ ൅ Ͷܳଶሻ െ ͺሺʹܳଵ െ ܳଶሻଷ െ ͺሺʹܳଵ ൅ ܳଶሻଷ

 (37) 

 
ሶܳଶ ൌ ଶܲ (38) 

 

ሶܲଶ ൌ ͳ͸ߤଶܳଶ െ ଵሺͶܳଵߤʹ െ ʹܳଶሻ ൅ ଵሺͶܳଵߤʹ ൅ ʹܳଶሻ െ ͸ͶQଶଷ െ Ͷሺʹܳଵ ൅ ܳଶሻଷ൅ Ͷሺʹܳଵ െ ܳଶሻଷ
 

(39) 

In these new coordinates, the system is symmetric about the axis ܳଵ ൌ Ͳ. The unstable manifold of ܧଵ 

is therefore simply the reflection of the stable manifold of ܧଶ, which means that the structure can be 

reconfigured from state ܧଵ  to state ܧଶ  in principle without energy input. Therefore, a heteroclinic 



15 

 

connection between ܧଵ  and ܧଶ  is symmetric about the axis  ܳଵ ൌ Ͳ , and so must intersect ܳଵ ൌ Ͳ 

perpendicularly, i.e. ሶܳଶ ൌ Ͳ . The numerical method used to find heteroclinic connection follows 

McInnes and Waters [27]: for ߤଶ ൏ ͳǤʹ  and ଵߤ  ൌ ͳ , ሶܳଶ  is sufficiently small for an approximate 

hetercolinic connection to exist. Then when ߤଶ ൎ ͳǤ͸ͺ͹ and ߤଵ ൌ ͳ, an exact hetercolinic connection 

exists, as is clearly shown in Fig.6. This demonstrates that in principle for an exact value of ߤଵ there 

exist a value of ߤଶ not close to ߤଵ which admits a heteroclinic path. 

 

Figure 6. The value of ሶܳଶ at the first crossing of the unstable manifold with the ܳଶ axis, with the increasing 

parameter ߤଶ (ߤଵ ൌ ͳ).  

The heteroclinic connection will therefore have a mirror image under ܳʹ ՜ െܳʹ, as shown in Fig. 7 and 

Fig. 8. To initiate the heteroclinic connection, a small disturbance (߳ ൌ ͳͲିଷ) is added along the 

unstable manifold of ܧଵ. For a true heteroclinic connection, motion away from an unstable equilibrium 

point and towards a connected unstable equilibrium point is asymptotically slow. In practice the actual 

phase trajectory must shadow the real heteroclinic connection and a controller used to initiate and 

terminate the heteroclinic connection [29, 30]. The corresponding shape of the surface during the 

transition from ܧଵሺͳǡ ͳǡ ͳǡ ͳሻ to ܧଶሺെͳǡ െͳǡ െͳǡ െͳሻ is shown in Fig. 9. 

 

Figure 7. Heteroclinic connection between at ܧଵ (8, 0) and at ܧଶ (-8,0) for ߤଵ ൌ ͳ and ߤଶ ൌ ͳǤ͸ͺ͹ߤଵ. The 

projection of the phase path in the new coordinate space ( ଵܳ െ ܳଶ).  
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Figure 8. New coordinates ( ଵܳ െ ܳଶ) for a heteroclinic connection between at ܧଵ (8, 0) and at ܧଶ (-8, 0) for ߤଵ ൌ ͳ and ߤଶ ൌ ͳǤ͸ͺ͹ߤଵ.  

Numerical experiments demonstrate that it is in general possible to find a heteroclinic connection for 

some choice of coupling parameters ߤଵ and ߤଶ, while again a controller [29] can in principle be used to 

achieve the reconfiguration for a choice of parameters ߤଵ and ߤଶ. Again, in principle for a conservative 

system without internal dissipation, such reconfigurations do not required the input of energy, which is 

efficient compared to conventional strategies with transitions between passively stable configurations 

across a potential barrier. 

5. Structure-preserving stabilisation control 

This section presents a control method to stabilise the unstable equilibrium configurations of the smart 

surface structure. For a Hamiltonian system, there exist hyperbolic equilibria that have stable, unstable 

and center manifolds, with the unstable manifold generating the instability. However, a control law can 

be applied which will establish Lyapunov stability of the relative motion about the equilibrium point 

and stabilise an unstable configuration [35,36]. Assuming active control is actuated by the spring 

coupling parameters (equivalent to modulating their natural length), the dynamics of the controlled 

system can be written as 

ێێۏ 
ۑۑےሷଶǡଶݍሷଶǡଵݍሷଵǡଶݍሷଵǡଵݍۍ

ې ൌ ࡷ ێێۏ
ଵǡଵݍۍ െ ଵǡଶݍ෤ଵǡଵݍ െ ଶǡଵݍ෤ଵǡଶݍ െ ଶǡଶݍ෤ଶǡଵݍ െ ۑۑے෤ଶǡଶݍ

ې ൅ ࡮ ቂߤଵߤଶቃ ൌ ࢗࡷ ൅  (40) ࢛࡮

 ۹ ൌ ێێێۏ
ɀ෤ଵǡଶଵǡଵۍێ െ ɀ෤ଶǡଵଵǡଵ െ ͸ݍ෤ଵǡଵଶ ɀ෤ଵǡଶଵǡଵ ɀ෤ଶǡଵଵǡଵ Ͳɀ෤ଵǡଶଵǡଵ ɀ෤ଵǡଶଵǡଵ െ ɀ෤ଶǡଶଵǡଶ െ ͸ݍ෤ଵǡଶଶ Ͳ ɀ෤ଶǡଶଵǡଶɀ෤ଶǡଵଵǡଵ Ͳ ɀ෤ଶǡଵଵǡଵ െ ɀ෤ଶǡଶଶǡଵ െ ͸ݍ෤ଶଵଶ ɀ෤ଶǡଶଶǡଵͲ ɀ෤ଶǡଶଵǡଶ ɀ෤ଶǡଶଶǡଵ ɀ෤ଶǡଶଵǡଶ െ ɀ෤ଶǡଶଶǡଵ െ ͸ݍ෤ଶǡଶଶۑۑۑے

ېۑ
 (40a) 
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࡮  ൌ ێێۏ
ଵǡଵݍ൫ʹۍێ െ ෤ଵǡଵ൯ݍ ʹ൫ݍଵǡଵ െ ෤ଵǡଵ൯ݍ െ ʹ൫ݍଵǡଶ െ ෤ଵǡଶ൯ݍ െ ʹ൫ݍଶǡଵ െ ଵǡଶݍ෤ଶǡଵ൯ʹ൫ݍ െ ෤ଵǡଶ൯ݍ ʹ൫ݍଵǡଶ െ ෤ଵǡଶ൯ݍ െ ʹ൫ݍଵǡଵ െ ෤ଵǡଵ൯ݍ െ ʹ൫ݍଶǡଶ െ ଶǡଵݍ෤ଶǡଶ൯ʹ൫ݍ െ ෤ଶǡଵ൯ݍ ʹ൫ݍଶǡଵ െ ෤ଶǡଵ൯ݍ െ ʹ൫ݍଵǡଵ െ ෤ଵǡଵ൯ݍ െ ʹ൫ݍଶǡଶ െ ଶǡଶݍ෤ଶǡଶ൯ʹ൫ݍ െ ෤ଶǡଶ൯ݍ ʹ൫ݍଶǡଶ െ ෤ଶǡଶ൯ݍ െ ʹ൫ݍଵǡଶ െ ෤ଵǡଶ൯ݍ െ ʹ൫ݍଶǡଵ െ ۑۑے෤ଶǡଵ൯ݍ

ېۑ
 (40b) 

where ɀ෤௠ǡ௡௜ǡ௝ ൌ ͵൫ݍ෤௜ǡ௝ െ ෤௠ǡ௡൯ଶݍ
. 

 

 

Figure 9. Transition from unstable equilibria ܧଵ (1, 1, 1, 1) at ݐ ൌ Ͳ to unstable equilibria ܧଶ (-1, -1, -1, -1,) at ݐ ൌ ͳͲ for ߤଵ ൌ ͳ and ߤଶ ൌ ͳǤ͸ͺ͹ߤଵ.  

 

The controllability matrix [37] for this third-order system is then given by 

 ࣝ ൌ ሾࡷ ࡷࡰ ࡷଶࡰ  ሿࡷଷࡰ
(41) 

If the equilibria satisfy the conditions ݍ෤ଵǡଵ ് ෤ଵǡଶݍ ് ෤ଶǡଵݍ ് ࣝ ෤ଶǡଶ, we can show that rankݍ ൌ Ͷ, which 

implies that the system is fully controllable. However, for the example discussed above in Section 4, it 
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can be shown that rank ࣝ ൌ ʹ, so that additional actuators are therefore needed to ensure controllability. 

Therefore, the ߤଵ terms (the coupling parameter between each mass and its boundary node) is divided 

into four parts as ଵଵߤ  ଵଶߤ , , ଵଷߤ  and ଵସߤ  , which represent the relationship between corresponding 

individual masses and their fixed boundaries.  

Then the matrix ࡮ can then be expressed as 

࡮  ൌ ێێۏ
ଵǡଵ߷ۍ Ͳ Ͳ Ͳ ߷ଵǡଵ െ ߷ଵǡଶ െ ߷ଶǡଵͲ ߷ଵǡଶ Ͳ Ͳ ߷ଵǡଵ െ ߷ଵǡଶ െ ߷ଶǡଵͲ Ͳ ߷ଶǡଵ Ͳ ߷ଵǡଵ െ ߷ଵǡଶ െ ߷ଶǡଵͲ Ͳ Ͳ ߷ଶǡଶ ߷ଵǡଵ െ ߷ଵǡଶ െ ߷ଶǡଵۑۑے

ې
 (42) 

where ߷௜ǡ௝ ൌ ʹ൫ݍ௜ǡ௝ െ  .෤௜ǡ௝൯ݍ

It can then be shown that the controller is constructed as 

௖ࢀ  ൌ ሼെߪଶሾܩଵ࢛ା࢛ାࢀ ൅ ࢀଶ࢛ି࢛ିܩ ሿ െ ߮ଶܩଷሾ࢛࢛ࢀ ൅ ഥ࢛ഥ࢛ࢀሿሽ (43) 

where ܩଵˈ ܩଶ and ܩଷ are the gain parameters,  ࢛ା and ࢛ି are the stable and unstable manifolds with 

corresponding eigenvalues േߪ, ࢛ and ഥ࢛ are center manifolds with corresponding eigenvalues are േ߮݅. 
A detailed development and proof of the control law can be found elsewhere [35]. This control strategy 

can work effectively through estimating the relative motion and maintaining the Hamiltonian the 

structure of the problem. Through Eq. (43) the controller can now stabilise the smart surface to maintain 

its unstable configuration with the gain parameters  ܩଵ ൌ ͳˈ ܩଶ ൌ ʹ and ܩଷ ൌ ͵, as shown in Fig. 10, 

with the required controls shown in Fig. 11.  

  

Figure 10. Mass displacements under small disturbance around ܧଵ (1, 1, 1, 1) (a) without control (b) with 

control. 
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Figure 11. Control actuators generated through the parameters ߤଵଵ, ߤଵଶ, ߤଵଷand ߤଵସ. 

A structure preserving controller has therefore been developed to stabilise the smart surface in an 

unstable configuration, and verified as effective numerically with suitable controls found. The controller 

is based on computing the local stability characteristics of the motion through the manifolds, which can 

in principle be realised through modulation of embedded smart materials (e.g. shape memory alloys) to 

manipulate the spring coupling parameters. Clearly, for a realistic smart surface energy is expended by 

the controller in maintaining the structure in an unstable equilibrium configuration, between 

reconfigurations using heteroclinic connections. We therefore envisage the reconfiguration 

methodology proposed being used for applications where the structure has to frequently reconfigure 

between different configurations, for example for optical switching. In this way the energy efficiency 

of the heteroclinic connections for reconfiguration can compensate for the energy expenditure by the 

controller while temporarily in an actively controlled unstable state.  

6. Connected smart surface units  

The analysis from the previous section can now be used as the basis for the integration of connected 

smart surface elements. Such integrated systems can be extended to many potential applications which 

need frequent state switching to reduce mean power consumption and waste heat dissipation. One 

important potential application of this integrated smart surface system is that it can be reconfigured 

between two states to provide  motion, for example in a conveyer system, to move an object towards a 

goal position through arranging sufficient numbers of smart surface units.  

It is instructive to consider an analogue model consisting of two smart surfaces to understand the general 

behaviour of smart surface units connected in series. As shown in Fig. 12, the two adjacent smart surface 

units are connected by rigid links, which provides a relationship between each mass of every smart 

surface unit. When a vertical displacement ሺߜଵǡ ଶሻߜ  is applied in unit 1, unit 2 will move with a 

corresponding displacement. The motion of the coupled system can then be described by 
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௨ଵǡଵݍ ൌ ௨ଶǡଵݍ ൌ  ଵߜ

(44) 

 
௨ଵǡଶݍ ൌ ௨ଶǡଶݍ ൌ  ଵߜ

(45) 

ሷଵߜ  ൌ ሷ௨ଵǡଵݍ ൅  ሷ௨ଶǡଵ (46)ݍ

ሷଵߜ  ൌ ሷ௨ଵǡଶݍ ൅  ሷ௨ଶǡଶ (47)ݍ

where ௨ଵǡଵݍ   and ௨ଶǡଵݍ   represent two mass displacements of unit 1 and unit 2, respectively; ݍ௨ଵǡଶ 

and ݍ௨ଶǡଶ represent the other two mass displacements of unit 1 and unit 2, respectively. 

Figure 13 shows the mass displacement of the each unit, which can be considered as a heteroclinic 

connection of the integrated system. It can be seen that the relevant mass displacements between unit 1 

and unit 2 have a rigid relationship, which is shown as the dashed line with the double-headed arrow. 

The parameters of the model used are the same as the model in Section 4. The corresponding shape of 

the connected smart surfaces associated with initial and final configurations are shown in Fig. 14. It can 

be seen that unit 1 is in a saddle configuration initially and then changes to a stable configuration, 

accompanied with unit 2 being reconfigured from a stable equilibrium to a saddle. With this scheme, 

the heteroclinic connection can be used for reconfiguring an integrated smart surface which is 

assembled from distributed smart surface units. 

 

rigid link

Unit 1

Unit 2
į1

į1

į2

į2

 

Figure 12. Schematic diagram of two connected smart surface units.  
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Figure 13. Configuration change during transition from unit 1 to unit 2.  

  

Figure 14. Corresponding shapes of the connected smart surface (a) initial condition (b) final condition.  

In the context of our proposed application, the two simply-connected smart surface units can realise 

reconfigurations as an integrated system. The smart surface unit can transmit motion through 

connections with neighbouring units. This example is provided to demonstrate how the methodology 

develop can be used to perform the reconfiguration of a larger smart surface that would be energy 

efficient compare to traditional approaches with transitions between stable states across a potential 

barrier. 

7. Conclusions  

Surface structures possessing multiple equilibria offer interesting dynamical behaviour with a broad 

range of potential applications. This paper has presented a preliminary study of a simple smart surface 

model composed of connected masses and linear springs. A general method has been provided to build 

the equations of motion of such a smart surface system. The theoretical model of the smart surface is 

nonlinear and complex, but some simple mathematical techniques can be employed to obtain a more 

compact normalized form. The nonlinear characteristics of the model can therefore be found by using 

dynamical system theory, which provides a predictive basis for the subsequent analysis of reconfiguring 

the smart surface and the design of structure-preserving stabilisation control. Then, an active 

reconfiguration scheme has been investigated to connect equal-energy unstable (but actively controlled) 

configurations for the purpose of energy-efficient morphing of the smart surface. The reconfiguration 

of the smart surface between two unstable states does not in principle need additional energy input 

compared to reconfiguration between two stable configurations. In order to demonstrate that the 

structure can be actively controlled in an unstable state, a control strategy has been proposed to stabilise 

the unstable configuration. This control method establishes Lyapunov stability of the relative motion 

about the equilibrium point and stabilises an unstable configuration.  A further development of the smart 

surface is proposed as an integral system, where the smart surface is extended by forming a series of 

connected smart surface units. The investigation into the reconfiguration of  connected smart surface 

units can therefore be developed to design larger smart surfaces composed of many more units, which 

can be used for further applications, such as for conveying, sorting and positioning micro-parts. The 

purpose of the paper has not been specifically to analyse a high fidelity model of a real smart surface, 

Unit 1

Unit 2

Unit 1

Unit 2

a b 
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but more generally to explore a new concept for reconfiguring smart surfaces using heteroclinic 

connections between unstable states.  
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