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19 

Pair production can be triggered by high intensity lasers via the Breit-Wheeler process. However, the 20 

straightforward laser-laser colliding for copious numbers of pair creation requires light intensities 21 

several orders of magnitude higher than possible with the ongoing laser facilities. Despite the 22 

numerous proposed approaches, creating high-energy-density pair plasmas in laboratories is still 23 

challenging. Here we present an all-optical scheme for overdense pair production by two 24 

counter-propagating lasers irradiating near-critical-density plasmas at only ~10
22

W cm
-2

. In this 25 

scheme, bright Ȗ-rays are generated by radiation-trapped electrons oscillating in the laser fields. The 26 

dense Ȗ-photons then collide with the focused counter-propagating lasers to initiate the multi-photon 27 

Breit-Wheeler process. Particle-in-cell simulations indicate that one may generate a high-yield 28 

(1.05×10
11

) overdense (4×10
22 

cm
-3

) GeV positron beam using 10 PW scale lasers. Such a bright pair 29 

source has many practical applications and could be basis for future compact high luminosity 30 

electron-positron colliders. 31 
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Pair production is one of the fundamental quantum electrodynamics (QED) effects, which is potentially 32 

interesting for a variety of applications1-3, such as fundamental nuclear and particle physics, laboratory 33 

astrophysics and plasma physics, radiography for material science and medical applications. For example, 34 

GeV and even TeV positron beams are required for studying highly energetic astrophysical phenomena in 35 

laboratories and realizing electron-positron (e-e+) collider for high energy particle physics3, 4. Schwinger has 36 

predicted the critical electric field5 ܧ௦ ൎ ͳǤ͵ʹ ൈ ͳͲଵ଼	V	mିଵ  for spontaneous creation of pairs out of 37 

vacuum by a laser beam. This field corresponds to a light intensity roughly 1029 W cm-2, which is seven 38 

orders of magnitude higher than attainable in current laboratories4. It has also predicted that pairs can be 39 

produced via the Trident and Bethe-Heitler (BH) processes6, 7 from lasers interaction with high-Z targets. So 40 

far, the major way of producing positrons with lasers in experiments relies upon the BH process, which is 41 

based on the decay of bremsstrahlung -rays from electrons in high-Z targets. It is shown that energetic 42 

positrons could be obtained by direct laser-solid interactions8-10 or by laser-driven electrons colliding with 43 

solid targets11-14. However, the positrons obtained have a low density of ~1016-17 cm-3 with a laser energy 44 

conversion efficiency to positrons around ̱ͲǤͲʹΨ only15, 16. There is a need to significantly enhance the 45 

positron yield, density, and energy, as well as the laser energy conversion for the aforementioned 46 

applications.  47 

Under extremely high laser intensities, the laser-matter interaction enters the near-QED regime and the 48 

following two critical processes are involved: (1) high energy photons emission by relativistic electrons 49 

quivering in ultra-intense laser fields17 (݁ି ൅ ௟௔௦௘௥ߛ݊ ՜ ௣௛௢௧௢௡ߛ ൅ ݁ି , where ߛ௟௔௦௘௥  represents a laser 50 

photon); and (2) pairs creation by real photon-photon annihilation, i.e., the multi-photon Breit-Wheeler (BW) 51 

process18 (ߛ௣௛௢௧௢௡ ൅݉ߛ௟௔௦௘௥ ՜ ݁ି ൅ ݁ା). The first process is essentially the nonlinear Compton scattering 52 

of laser photons by relativistic electrons, while the second generally occurs under extreme laser conditions 53 

by photons colliding with the electromagnetic waves, e.g., the laser fields. The first such an experiment was 54 

carried out by using the conventional paradigm at SLAC19. It is demonstrated that a 46 GeV linac-accelerated 55 

electron beam colliding with a 1018 W cm-2 laser is able to produce a few pairs (106±14), which shows a 56 

relatively weak QED effect.  57 

State-of-art laser systems20 are capable of delivering a laser pulse with intensity up to 2×1022 W cm-2. 58 
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The next-generation multi-PW lasers (e.g., the XCELS and ELI facilities21) are expected to reach ~1024 W 59 

cm-2 and beyond. This opens the door for studying light-matter interactions as well as QED effects in 60 

unexplored domains1, 4, 22, 23. Diverse schemes have been proposed for energetic e-e+ pairs production via the 61 

BW process using ultra-relativistic lasers24-32. It is shown that using multiple colliding lasers26 for pair 62 

cascades in vacuum can reduce the required laser intensity down to ~1026 W cm-2. This intensity is 63 

significantly smaller than the Schwinger value. An alternative scheme27, 28 relies on the energetic electrons 64 

from a laser-driven gas jet or thin solid target by using either two counter-propagating lasers or a single laser. 65 

The positron beam produced is very bright and energetic. However, the required laser intensity is as high as 66 

~1024 W cm-2, still two orders of magnitude higher than that of the available lasers. Another challenge is the 67 

target transparence28 to the incident super intense lasers, which leads to the low efficiency of the BW process. 68 

By comparison, the laser-hohlraum scheme29 invokes the single-photon BW process with a much lower laser 69 

intensity but achieves a positron yield at the 105 level only. More recently, it is proposed to combine the laser 70 

wakefield acceleration (LWFA33) with the positron generation by colliding the accelerated electron beam 71 

with a counter-propagating laser pulse30, 31. The resulting positron yield can be up to ~109 (predicted by 72 

Blackburn et al.30), with a maximum density less than 1020 cm-3 (simulations by Lobet et al.31). This 73 

configuration allows for a compact linac, while the extraction and application of the produced positrons 74 

depend on additional laser and beam facilities, which is of significant importance for particle physics 75 

experiments, e.g., a linear e-e+ collider. To date, an all-optical collider based on laser-plasma interactions for 76 

high energy physics has yet to be realized. 77 

For prolific pair creation via the BW process, high energy and density photons are essential. The latter 78 

can be obtained by nonlinear Compton scattering34, 35, bremsstrahlung radiation of electrons in a solid target29 79 

or synchrotron radiation of electrons in a laser beam reflected from a thick foil28. Instead of using a solid or 80 

gas plasmas, here we present an efficient non-conventional scheme to generate extremely dense photons 81 

and copious numbers of e-e+ pairs by focusing two counter-propagating lasers at currently affordable laser 82 

intensity ~1022 W cm-2 onto two near-critical-density (NCD) plasmas. The proposed scheme requires two 83 

steps. First, bright photons are produced by radiation reaction trapped electrons in both NCD plasmas; 84 

second, the dense photons emitted from one NCD plasma collide with the focused counter-propagating 85 
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probabilities of -photon emission and positron creation are determined by two relativistic and gauge 104 

invariant parameters36 (see Methods): ߟ ൌ ௘ȁ۳ୄߛ ൅ ઺ ൈ ܿ۰ȁȀܧ௦ and ߯ ൌ ሺ԰߱Ȁʹ݉௘ܿଶሻห۳ୄ ൅ መܓ ൈ ܿ۰หȀܧ௦, 105 

where ۳ୄ  is the local electric field perpendicular to the electron velocity ઺ ௦ܧ , ൌ ݉௘ଶܿଷȀ݁԰  is the 106 

Schwinger electric field, and 	԰݇ሺ԰߱ሻ is the emitted photon momentum (energy). When a laser propagates 107 

parallel with an electron beam, it leads to ߟ ؆ Ͳ, which is undesirable for high energy photon emission 108 

and positron production; If the laser counter-propagates with the energetic electron beam, there is ߟ ؆ ͳ, 109 

which has been extensively investigated in past years19, 27, 30, 31. Here we propose to use two lasers and two 110 

electron beams in an all-optical configuration realized simply by a pair of counter-propagating laser pulses in 111 

NCD plasmas. This enables one to have two sets of laser-electron beam colliding with ߟଵ ؆ ͳ and	ߟଶ ؆ ͳ 112 

simultaneously (equivalent to a real ߟ larger than 1), which could significantly enhance the photon 113 

emission and the pair production via the BW process. 114 

Radiation reaction effect and radiation trapping of electrons. In extreme laser fields, the radiation 115 

damping force37-39 exerting on electrons could be expressed as ܎ௗ ൌ െሺʹ݁ସȀ͵݉௘ଶܿସሻߛ௘ଶߚሼሺ۳ ൅ ઺ ൈ ۰ሻଶ െ116  ሺ۳ ή ઺ሻଶሽ, where e is the charge unit, me is the electron mass, and ߚ is the normalized electron velocity by 117 

the light speed in vacuum c, ۰ and ۳ are the magnetic and electric fields. Here, we keep only the main 118 

term proportional to ߛ௘ଶ in the strong relativistic case. It is shown that the damping force ܎ௗ becomes 119 

significant enough to compensate for the Lorenz force ܎௅ ൌ ሺ۳ݍ ൅ ઺ ൈ ۰ሻ, under laser intensity >1022 W 120 

cm-2, and it has to be taken into account in modeling laser-plasma interaction. As a result, the electron motion 121 

is profoundly altered. Instead of being scattered off transversely, electrons are trapped inside the laser field 122 

and perform extreme oscillations in the laser polarization direction. This is the radiation trapping effect40, 41, 123 

which could lead to efficient synchrotron-like  ray emission. However, the simple test electron model40 124 

suggests a threshold laser amplitude required to enter this regime, i.e., 125 

ܽ௧௛ᇱ 	̱	ට ଷଶగమ ఒబ௥೐ ଴యݎ
,                                     (1) 126 

where ݎ଴ is the laser focal spot radius normalized by the wavelength ߣ଴ and ݎ௘ ൌ ݁ଶȀ݉௘ܿଶ is the classical 127 

electron radius. It is shown that the threshold is dependent on the laser focal size. In order to excite the 128 

multi-photon BW process with synchrotron-like rays, the threshold laser amplitude should meet ܽ௧௛ᇱ ̱	͸ͷͲ, 129 



6 
 

which is currently inaccessible. Therefore, in our scheme we first employ two cone-targets to focus the lasers. 130 

Instead of using a gas plasma or solid, we choose NCD plasmas filled inside the cones to increase the laser 131 

energy absorption and conversion so that more background electrons are provided and accelerated to enhance 132 

the  rays emission and positrons production. 133 

The scheme takes advantage of the radiation damping and trapping effect in the near-QED regime40, 41. 134 

Figure 1 presents the schematic drawing of our basic configuration, where two counter-propagating laser 135 

pulses interact with the NCD plasmas inside a double cone-targets. In this scheme, high-energy-density 136 

photons are emitted by the trapped energetic electrons in the NCD plasmas at the laser axis, which are 137 

accelerated by the intense laser fields. When the Ȗ-photons collide with the focused counter-propagating laser 138 

waves from another direction, e-e+ pairs are efficiently produced via the multi-photon BW process. A 139 

positron beam produced in one NCD plasma can interact with the electron beam accelerated in the other 140 

NCD plasma, behaving like a microscopic e-e+ collider.  141 

Here we demonstrate the feasibility of the scheme by using full 3D PIC code EPOCH with QED effects 142 

incorporated (see Methods). To benchmark the simulation results, we also perform a series of reference 143 

simulations using the QED-PIC code Virtual Laser-Plasma Lab. (VLPL38, 42), which can reproduce the main 144 

results presented below. 145 

3D PIC simulation results. Figure 2 illustrates the simulation results at t=36T0 (T0 ≈ 3.3fs is the laser cycle), 146 

when both lasers overlap in the double-cone junction. It is shown that the laser intensity can be greatly 147 

boosted due to the coupling effect of nonlinear plasma effects and tightly focusing of the laser pulse in the 148 

cone43-45. The strengthened laser ponderomotive force accelerates the electrons both radially and forward 149 

with considerable radiation emitted. When the radiation damping effect is taken into account, electrons 150 

undergo a strong backward damping force. This force increases with the time and becomes comparable to the 151 

laser ponderomotive force. As a consequence, a large number of electrons are kicked back to the laser fields 152 

radially and accumulate near the laser axis, forming a dense electron bunch as shown in Fig. 2a. These 153 

electrons are ultra-relativistic with a cut-off energy of ~5 GeV (see Fig. 3a) and are well collimated around 154 

the laser axis with a peak density up to 40nc (݊௖ ൌ ݉௘߱଴ଶȀͶ݁ߨଶ  is the critical density). Additional 155 

simulations without the NCD plasmas and cone, respectively, indicate that the reduction of the laser 156 
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spectra of electrons (a), -photons (b), and positrons (c) at t=34T0, 36T0 and 40T0. (d) The laser energy conversion to 190 

the trapped electrons ߩ௘(%), -photons ߩఊ(%), and positrons ߩ௘శ(0.01%), defined as the energy conversion efficiency 191   as a function of the interaction time t.  192 ,ߩ

These photons are distributed mainly around the laser axis with a cone angle ߠఊ̱ͳȀߛ௘ ൏ ͳmrad with 193 

respect to the cone axis in both cones. Later they collide with the focused counter-propagating laser waves 194 

from the opposite directions, initiating the multi-photon BW process. Here, the BH process is intrinsically 195 

inefficient because of the low-Z NCD plasmas and the thin Al cone thickness8-14. Therefore, this process can 196 

be reasonably ignored in our simulations. Figure 2c presents the positron density distribution at t=36T0. A 197 

maximum positron density of ~4×1022 cm-3 can be obtained with energies up to 1.6 GeV (see Fig. 3c). This 198 

peak density is much higher than that reported in the both BW and BH experiments as well as relevant 199 

simulations8-16, 19, 28-32. The total positron yield is as high as 1.05×1011, which is more than an order of 200 

magnitude larger than that in laser foil interactions28, though our laser intensity is lower by more than an 201 

order of magnitude. As compared with the recent LWFA-aided scheme30, 31, both the positron yield and 202 

density are two orders of magnitude higher.  203 

Figure 3d presents the evolution of the laser energy conversion efficiency to the trapped electrons, 204 

photons, and positrons left in the simulation box. As the laser energy is soaked up and the electron energy 205 

grows, the damping process attenuates the laser wave and the laser energy is transferred to electrons and 206 

photons, and finally to positrons. At t=38T0, the positron energy approaches a maximum and then decreases 207 

by emitting photons in a similar way to electrons in the laser fields. The laser energy conversion efficiencies 208 

to the photons and positrons are peaked at 14.9% and 0.14%, respectively. With the same laser parameters, 209 

the efficiency of the positron production in our scheme is much higher than that of the LWFA-aided 210 

scheme30, 31, making it very competitive as a compact positron source. 211 

Parametric influences and robustness of the scheme. The robustness of the scheme is further 212 

demonstrated by using different laser intensities and NCD plasmas, as summarized in Fig. 4. Here the laser 213 

duration is changed to 8T0 to save time, while other parameters are kept the same except for ܽ଴ and ݊௘. As 214 

expected, both the photon emission and positrons creation are enhanced with the increase of the laser 215 

intensity. In the following, we compare our simulation results with theoretical predictions.  216 
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The quantum corrected instantaneous radiation power by an electron is given by53 ௥ܲ௔ௗ ൌ ሺͶ݉ߨ௘ܿଷȀ217  ሻߟଶgሺߟߙ஼ሻߣ͵ ൌ ஼ܲgሺߟሻ, where ߣ஼ is the Compton wavelength, ߙ ൌ ݁ଶȀ԰ܿ ൌ ͳȀͳ͵͹ is the fine-structure 218 

constant, ஼ܲ ൌ ሺͶ݉ߨ௘ܿଷȀ͵ߣ஼ሻߟߙଶ  is the classical power, and gሺߟሻ ൌ ൫͵ξ͵Ȁʹߟߨଶ൯ ׬ ǡߟሺܨ߯݀ ߯ሻஶ଴  with 219  ǡߟሺܨ ߯ሻ being the quantum-corrected synchrotron spectrum function as given by Erber36. Figure 4a shows 220 

the evolution of the radiation power. For comparison, we also give in Fig. 4a the simulation result calculated 221 

by collecting all  photons� energy and then dividing this by the total number of trapped electrons. The 222 

radiation time is estimated to be of order of several laser cycles. We see that our simulation results agree well 223 

with the theoretical predictions, considering the fact that we neglect the low energy photons (<1 MeV) in the 224 

simulations. The numerical scaling of the laser energy conversion efficiency to the  photons with different 225 

laser intensities and NCD plasmas is shown in Fig. 4b. By increasing the laser intensity, the laser energy 226 

conversion to the -photons increases at first and then saturates when the laser field amplitude ܽ଴ ൐ ͺͲͲ. 227 

This can be attributed to the rapid annihilation of the high energy  -photons via the BW process. Note that 228 

the -photon emission is significantly limited by the number and energy of the trapped electrons. 229 

In the simulations, we also observe a linear increase of the laser energy conversion to the positrons� 230 

kinetic energy, as illustrated in Fig. 4c. This tendency is valid for all considered NCD densities and laser 231 

intensities with ܽ଴ ൐ ͳͲͲ. Qualitatively, the energy conversion efficiency can be approximately written as  232 

௘శߩ 	̱	݂ሺܽ଴ǡ ݊௘ሻሾܽ଴ሺݐሻ െ ܽ௧௛ሿ,                           (2) 233 

where ݂ሺܽ଴ǡ ݊௘ሻ is a factor dependent on the laser and NCD plasmas, and is a constant under a given initial 234 

condition, ܽ଴ሺݐሻ ൌ ܽ଴݃ሺݐሻ, and ݃ሺݐሻ is the temporal profile of the laser pulse. This implies there exists a 235 

threshold laser intensity or field amplitude, i.e., ܽ௧௛̱ͳʹͲ, for efficient pair creation in our configuration 236 

(see Fig. 4c). We can understand the underlying physics simply in this way: when such a laser pulse is 237 

focused in the NCD plasmas filled cone-target, its electric field amplitude can be increased by more than 238 

three times (depending on its focusing location in the cone), which has been confirmed by additional 239 

simulations using the same cone configuration as above. As a result, one obtains an enhanced laser amplitude, 240 

which approximates the equivalent theoretical laser threshold for the electron trapping in our 241 

cone-target,	ܽ௧௛ᇱ ඥݎ଴ᇱȀݎ଴య ̱͸ͷͲξͲǤ͵య
, assuming a focusing spot radius of ݎ଴ᇱ ൎ ͲǤ͵ݎ଴.  242 
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which is plotted in Fig. 4d. It is shown that our simulation results validate these theoretical estimations, 259 

especially for higher laser intensities. This further demonstrates the robustness of our scheme and validation 260 

of the simulations. If we scale our results to the upcoming lasers such as the XCELS21, we can estimate the 261 

positron yield approaching ~1014 with peak density of ~1025 cm-3 and energy of tens GeV. 262 

Schematic of a possible experimental arrangement. A possible experimental arrangement of the scheme 263 

with two 10 PW ELI-NP laser beams is illustrated in Fig. 5. Instead of using a double cone-targets, we can 264 

focus the two laser beams on two gas, foam or cluster jets to produce NCD plasmas55, 56. 265 

Carbon-Nano-Tube foams57 can be also used for NCD plasma generation, which has been extensively 266 

applied in laser-plasma interactions. One can vary the gap between the two jets to optimize the -photon 267 

emission and pair production. The focusing mirrors have small holes on the interaction axis in order to 268 

separate the electrons, -photons, and positrons, and to diagnose their interaction dynamics on axis. The 269 

background radiation can be reduced by burying the gamma detectors into the electron beam-dump24, which 270 

is positioned on the axis of the two laser interaction, as schematically shown in Fig. 5.  271 

The femtosecond synchronization58 of the two femtosecond laser pulses can be obtained because both 272 

pulses are split from the same pulse in our configuration (after the laser oscillator), travel nearly identical 273 

optical paths (in the laser amplifier chains) and the small temporal differences are compensated at the end. 274 

Indeed synchronization of +/-50 fs has already been demonstrated experimentally with the two 0.5 PW laser 275 

beams of the Astra-Gemini Laser at STFC in the UK58 and the method described can be further improved. 276 

Because of the copious numbers of positrons and electrons expected, the measurement of the number and 277 

spectrum of electron-positron pairs and of -photons can be done in a single-laser-shot12, 24, i.e., there is no 278 

need to accumulate many shots as is typical in particle and nuclear physics experiments. The detectors 279 

could also be gated to the picosecond time-window of the laser shot in order to further increase the 280 

Signal-to-Noise ratio. Various interesting physics processes are likely to occur at the interaction area, 281 

including nonlinear Compton scattering, multi-photon BW process, e-e+ collider and ȖȖ collider as 282 

discussed below. 283 
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with the other Ȗ-photons from the second NCD plasma, which is a second ȖȖ collider52 (see Supplementary 309 

Fig. 1 and Supplementary Note 1), an add-on to the e-e+ collider. Compared with the conventional linear 310 

colliders3, these new conceptual colliders based on laser-plasma interactions have many advantages, such as 311 

pure e-e+ collisions, low expense, compact size, and high luminosity, which may enable investigations in 312 

far-ranging scientific domains4, 22, 59 in future, e.g., testing nonlinear phenomena such as mass-shift, 313 

spin-dependent effects, quantum gravity, etc. 314 

In summary, we have presented a scheme on the generation of extremely dense e-e+ pairs via the 315 

multi-photon BW process at affordable laser intensity ~1022 W cm-2 with the upcoming 10s PW lasers. In 316 

this scheme, bright Ȗ rays are first produced by radiation-reaction trapped energetic electrons in the NCD 317 

plasmas. The photons then collide with the focused counter-propagating lasers to initiate the multi-photon 318 

BW process. A high-yield (1.05×1011) overdense (4×1022 cm-3) GeV positron beam is thus produced with a 319 

laser energy conversion efficiency as high as 0.14%. This highly energetic system may serve as a test bed 320 

for a variety of nonlinear QED physics and may be applied as a compact electron-position collider.  321 

Methods 322 

Two critical parameters in strong electromagnetic fields. The probability of photon emission and pair 323 

production can be written in terms of a differential optical depth36, 324  ݀߬ఊȀ݀ݐ ൌ ൫ξ͵ߟܿߙ൯Ȁሺߣ஼ߛ௘ሻ ׬ ǡߟሺܨ߯݀ ߯ሻȀ߯ఎȀଶ଴  and ݀߬േȀ݀ݐ ൌ ሺʹܿߙߨȀߣ஼ሻሺ݉௘ܿଶȀ԰߱ሻ߯ േܶሺ߯ሻ , 325 

respectively. Here, ߟ	  controls the photon emissivity via the quantum-corrected synchrotron function 326  ǡߟሺܨ ߯ሻ, and ߯ determines pair creation via the function േܶሺ߯ሻ ൎ ͲǤͳ͸ܭଵȀଷଶ ሺʹȀ͵߯ሻȀ߯. In our case, the two 327 

key parameters equals ߛʹ̱ߟ௘ȁ۳ୄȁȀܧ௦ and 	̱߯ሺ԰߱Ȁ݉௘ܿଶሻȁ۳ୄȁȀܧ௦, since the terms ઺ ൈ ܿ۰ and ܓመ ൈ ܿ۰ 328 

are parallel to the transverse laser field ۳ୄ. The Lorentz factor for electrons in the cone is assumed to be 329  ҧ௘̱ܽ௙ߛ ൌ ௙ܧ ௙Ȁ݉௘ܿ߱଴, where ԰߱଴ is the laser photon energy andܧ݁  is the focused laser transverse 330 

electric field. Then, we obtain ߟ௙ 	̱	ʹሺ԰߱଴Ȁ݉௘ܿଶሻሺܧ௙ଶȀܧ଴ଶሻ, where ܧ଴ ൌ ݉௘ܿ߱଴Ȁ݁. The characteristic 331 

photon energy can be described classically using the theory of synchrotron radiation as27 332  ԰߱	̱	ͲǤͶͶߟ௙ߛҧ௘݉௘ܿଶ. Thus the parameter ߯ is rewritten as ߯௙ 	̱	ͲǤʹʹߟ௙ଶǤ It is shown that, as ߟ ذ ͳ 333 

and	߯ ذ ͳ, the BW process dominates the positron production and quantum effects intervene significantly. 334 
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Considering only	߯ ذ ͲǤͳ in the photon-photon annihilation, the BW process also occurs, though it is 335 

relatively inefficient. 336 

Numerical modeling. The open-source PIC code EPOCH28, 60 is used to perform the 3D simulations. The 337 

code has been equipped with the synchrotron radiation module, the radiation-reaction module, and the pair 338 

creation module (BW process), allowing self-consistent modeling of laser-plasmas interactions in the 339 

near-QED regime. In the code, the BW process is modeled by a probabilistic Monte Carlo algorithm53, 60, 340 

which has been extensively applied recently. For simplicity, the e-e+ annihilation is ignored in the code.  341 

In the simulations, two counter-propagating linearly-polarized laser pulses are incident from the left 342 

and right boundaries of the box simultaneously, which have the same temporal-spatial profiles, i.e., a 343 

transversely Gaussian distribution with ܽ ൌ ܽ଴exp	ሺെݎଶȀݎ଴ଶሻ and a square temporal profile with a duration 344 

of ߬௅ ൌ ͳʹ ଴ܶ. Here the laser parameters are, respectively, ܽ଴ ൌ ͳͷͲ, ݎ଴ ൌ ͷߣ଴, ଴ܶ ൌ ͵Ǥ͵fs, ݎଶ ൌ ଶݕ ൅345  ଴ߣ ଶ, andݖ ൌ ͳߤm, which indicates a laser peak intensity of ܫ଴ ൎ ͵ ൈ ͳͲଶଶ	Wcmିଶ. Exposed in such a 346 

strong laser field, both electrons and protons can be pushed forward. The simulation box size is ݔ ൈ y ൈ347  ݖ ൌ ͸Ͳߣ଴ ൈ ͳ͸ߣ଴ ൈ ͳ͸ߣ଴, sampled by cells of ͵ͲͲͲ ൈ ʹͶͲ ൈ ʹͶͲ with 27 macro-particles per cell. For 348 

simplicity, two symmetric aluminum cones are used to focus the incident laser pulses, both of which have a 349 

length of ͷͲߣ଴	and a plasma density of ݊଴ ൌ ͵ͻͲ݊௖. The left and right radius of each cone mouth are 350  ܴ ൌ ͸ߤm	and ݎ ൌ ͳǤͷߤm, respectively. In order to enhance the laser energy absorption, the double 351 

cone-targets are filled with NCD hydrogen plasmas, which has an initial density of ݊௘ ൌ ͵݊௖. These 352 

parameters are tunable in simulations. For reference, we also compared the simulation results to the case 353 

with a Gaussian temporal pulse profile, which shows a comparable positron yield and density (see 354 

Supplementary Fig. 4, Supplementary Fig. 5 and Supplementary Note 3). Note that we only count the 355 

photons with energy >1 MeV in above simulations. 356 

Data availability. The data that support the findings of this study are available from the corresponding 357 

authors upon request.  358 
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 500 

Figures: 501 

Figure 1 | Extremely dense electron-positron pair production from near-critical-density plasmas. Two 502 

counter-propagating ultra-intense laser pulses are focused from two directions onto the near-critical-density (NCD) 503 

plasmas filled inside two cones (purple). The quivering electrons in the ultra-intense laser fields experience large 504 

radiation reaction forces by emitting photons so that a large number of electrons are trapped in the laser fields. These 505 

trapped electrons perform extreme oscillations in the transverse direction and emit bright rays (red- and blue-yellow) 506 

around the laser axis. Finally, copious numbers of e-e+
 pairs are created via the multi-photon Breit-Wheeler process. 507 

Figure 2 | Three-dimensional particle-in-cell simulation results. Density distribution of electrons (a),  photons (b), 508 

and positrons (c) at t=36T0. Both lasers enter the simulation box at t=0T0 and arrive at the open mouths of the double 509 

cone-target at t=5T0. Two dense electron bunches are formed around the laser axis in the double-cone due to the 510 

radiation trapping effect, with a high energy (~5 GeV) and density (~40 nc). 511 

Figure 3 | Evolution of the particle energy spectrum and the laser energy conversion efficiency. The energy 512 

spectra of electrons (a), -photons (b), and positrons (c) at t=34T0, 36T0 and 40T0. (d) The laser energy conversion to 513 

the trapped electrons ߩ௘ (%), -photons ߩఊ (%), and positrons ߩ௘శ (0.01%), defined as the energy conversion 514 

efficiency ߩ, as a function of the interaction time t.  515 

Figure 4 | Results of theoretical predictions and numerical simulations. (a) The electron radiation power (red line) 516 

and the function gሺߟሻ (black dashed line) as a function of the parameter ߟ in our scheme. The red asterisks represent 517 

the simulation results. The laser energy conversion efficiency to (b) the -photons and (c) positrons with different laser 518 

intensities and plasma densities. Here, the green dashed line in (b) shows the fitted results. Note that there exists a 519 

laser threshold intensity (c), ܽ௧௛̱ͳʹͲ, for efficient positron production in our configuration. (d) The positron yield as 520 

a function of the laser intensity, based on the equation (3) and PIC simulations. 521 

Figure 5 | Schematic diagram of a possible experimental arrangement with strong lasers. Two 522 

counter-propagating 10 PW laser beams are focused by off axis parabolic mirrors on two gas or foam or cluster jets 523 

with near critical density, generating electron beams (EB), positron beams (PB), and -ray beams (GB). The focusing 524 

mirrors have small holes in the center in order to extract the electrons (e-
), positrons (e+

), and -rays (), and to 525 

observe their interactions on axis. 526 
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