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ABSTRACT 
 
 

This Thesis investigates the two main limitations of high temperature gas 

chromatography (HTGC) in the analysis of heavy n-alkanes:  pyrolysis inside the GC 

column and incomplete elution. 

The former is studied by developing and reducing a radical pyrolysis model (7055 

reactions) into a molecular pyrolysis model (127 reactions) capable of predicting low 

conversions of (nC14H30-nC80H162) at temperatures up to 430°C.  Validation of predicted 

conversion with literature data for nC14H30, nC16H34 and nC25H52 yielded an error lower 

than 5.4%. 

The latter is addressed by developing an analytical model which solves recursively the 

diffusion and convection phenomena separately. The model is capable of predicting the 

position and molar distribution of components, using as main input the analytes’ 

distribution factors and yielded an error lower than 4.4% in the prediction of retention 

times.  

 

This thesis provides an extension of the data set of distribution factors of (nC12H26–

nC98H198) in a SGE HT5 GC capillary column, based on isothermal GC measurements 

at both constant inlet pressure and flow rate.   

Finally, the above two models were coupled, yielding a maximum mass lost of 1.3 % in 

the case of nC80H162 due to pyrolysis and complete elution up to nC70H142, in a 12 m 

HT5 column.  
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CHAPTER 1 – INTRODUCTION 

Gas chromatography (GC) is a separation technique for compounds, which also 

provides information regarding their concentrations in a mixture.  The components are 

required to be sufficiently volatile and thermally stable in order to perform a reliable 

Gas Chromatography analysis. 

 

Reservoir fluid characterization by Gas Chromatography has an impressive capability 

of detection and quantification of a wide range of Single Carbon Number (SCN) groups 

in oil analyses. However, some researchers prefer to report analyses to C20+ only, with 

estimation of the Cn+ fraction distribution obtained using various correlations.  

Conversely, other researchers prefer to extend GC analysis to the highest possible SCN 

group by using High Temperature Gas Chromatography (HTGC), with programming to 

c.a. 370-430 °C.  However, the reliability of extended GC analyses to high carbon 

number fractions is questioned because of a possible over-estimation of light and 

intermediate fractions in the original oils caused by thermal decomposition products.  

 

The thermal stability of heavy hydrocarbons at temperatures above 370 °C is a major 

concern in the practice of Gas Chromatography [1-3]  based on the results of Thermal 

Gravimetric Analysis (TGA) published by Schwartz et al. (1987) [4]. These results 

indicated a maximum in the curve of mass lost due to thermal cracking at 430 °C, and 

therefore the practice of Gas Chromatography at oven temperatures up to 450 °C, was 

questioned. 

 

In spite of the above publication, little or no evidence of cracking has been observed 

according to the relative publications [5-7] at ≥400 °C.  However, sample thermal 

decomposition is not only a function of temperature, but is also dependent on pressure, 

sample composition and the residence time at high temperature [8-9].  

 

It is therefore very important to be able to model the thermal cracking of heavy n-

alkanes at HTGC conditions, in order to verify these findings requiring as input data: 

carrier gas pressure, temperature and concentration of every component through the GC 

column. This aspect is treated in CHAPTER 2 –, analyzing a range of concentrations 

rather than a specific concentration.  
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Therefore, computer simulation of gas chromatography becomes necessary to 

complete the study of HTGC limits by predicting the precise concentration of every 

component inside the GC column which can then serve as input to the Pyrolysis model.  

 

Gas Chromatography modelling also provides an insight into the migration/separation 

of the sample at each point of the column, for both isothermal and temperature 

programmed GC analysis, and thus potentially to optimize the partitioning process. 

 

 CHAPTER 3 – is focused on GC modelling. Two GC models have been developed: 

one for solving the diffusion-convection equation [11] using finite elements solved by 

COMSOL [12], which enables the concentration profile to be obtained; and another, 

solving a simplified iterative convection equation[13] using MATLAB, which allows 

the retention times to be obtained more quickly.  

 

The retention times obtained with the two models have been compared with the 

experimental results. Due to the superior results of the convection model (which 

highlighted the superior performance), it has been used for optimizing the calculation 

time of the convection-diffusion model.  

 

The main input used in the GC modelling is the database of distribution factors (K), 

derived from isothermal GC analyses. The HT5 capillary column (SGE) is widely used 

for HTGC analysis of heavy oil hydrocarbons, thus an HT5 GC column has been chosen 

in this thesis, for all determinations of the HTGC limits.   

 

 In the analysis of  CHAPTER 3 –, the distributions factors for the n-alkanes 

(nC12H26–nC62H126) [14] on an HT5 capillary column have been used as input for the 

GC model developed. 

 

Based on the developed Gas Chromatography Model, a new approach for determining 

the non/incomplete elution of every component has been proposed in this thesis by 

introducing a new approach: the degree of elution, defined as the amount of component 

which has been eluted in relation to the amount injected. Thus, the degree of elution of 

each of the heavy n-alkanes studied has been calculated for a typical temperature 

programme in CHAPTER 3 –. 
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This thesis focuses mainly on the GC analysis of heavy n-alkanes, and therefore the 

necessity of extending the data set of n-alkane distribution factors (K values) from nC12 

through nC98 in an HT-5 GC column is the main focus of CHAPTER 4 –. Measurement 

procedures and data treatment are explained in detail. 

 

For this purpose, numerous isothermal gas chromatography experiments have been 

carried out, in the temperature range from 80°C to 420°C, at 20°C intervals and at 

430°C. Two modes of HTGC operation were applied and are proposed in this thesis 

work:     

a.) High-Efficiency Mode: 12m column, constant inlet pressure, elution up to nC64  

b.) Low-Efficiency Mode: 5m column, constant flow rate, elution up to nC100.  

 

Knowledge of K values (distribution factors) is of potential use in optimising the 

partitioning process and elucidating information on non/incomplete elution of heavy n-

alkanes.  

 

CHAPTER 5 –, is focused on coupling the two models introduced previously: the 

pyrolysis model (CHAPTER 2 –) and the GC model (CHAPTER 3 –), in order to 

determine the pyrolysis risk inside the GC column, along with the non/incomplete 

elution of heavy n-alkanes, in a common HTGC column (HT5 capillary column) at 

common temperature programmings.  

 

This final model is capable of determining the mass lost due to pyrolysis and the 

degree of elution of every n-alkane studied, as well as determining the HTGC limits in 

the analysis of heavy n-alkanes. 

 

In order to improve the computing performance of the coupled Pyrolysis-GC model, 

the free-radical pyrolysis model (CHAPTER 2 –) has been reduced to a molecular 

pyrolysis model, and the GC model (CHAPTER 3 –) solving the diffusion-convection 

equation has been replaced by an iterative analytical model for predicting the mole 

distributions throughout the GC column.  

 

 

Finally, based on the analysis of the results obtained from the studies carried out in 

this thesis, several conclusions are drawn and summarized in CHAPTER 6 – 
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CHAPTER 2 – LOW CONVERSION THERMAL 

CRACKING MODELING 

2.1.Introduction 

The thermal stability of heavy hydrocarbons at HTGC conditions has been addressed 

by different authors, based on the results of Thermal Gravimetric Analysis (TGA) 

published by Schwartz et al.(1987) [1], who highlighted thermal instability of heavy oils 

from around 370 °C.  In this work, a pyrolysis model spanning the n-alkanes:(nC14H30 - 

nC80H162) at low conversion has been developed and applied to mixtures at GC column 

pressure and oven temperatures up to 450 °C.  

Based on this model, the minimum SCN which could possibly be at risk of thermal 

cracking at some commonly used HTGC temperature programmes, has been obtained 

by comparing the retention time of n-alkanes standards mixtures [nC10H22-nC75H152], 

and the minimal pyrolysis time at the same SCN range of equimolar, heavy and light 

mixtures at different dilutions in helium, and some low iso-conversion pyrolysis curves.  

The developed model can be used to gain an insight into the limitation in the practice 

of GC and introduces a new approach for calculating the minimum SCN which does not 

suffer pyrolysis inside a particular GC column.  

 

2.2.Pyrolysis risk inside a Gas Chromatography column 

Capillary gas-liquid chromatography (GC) is a separation technique based on the 

partitioning of an initial mixture by means of reaching an ideal rapid equilibrium 

between the mobile (gas) and stationary (liquid) phase while the net motion of the 

carrier gas induces the migration of sample through the column. Figure 2-1 explains gas 

chromatographic separation in more detail, based on a time-step numerical approach for 

temperature-programmed gas chromatography, introduced by Snijders et al. [2], where a 

mixture was initially injected, comprising three components: solvent, light component, 

and heavy component. 

 

However, when there are unexpected chemical reactions occurring within the column, 

unquantifiable and random products will generate a very different eluent mixture from 
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the originally injected sample, and therefore, the gas chromatographic analysis is no 

longer reliable.   

 

 

Figure 2-1. Partitioning and migration in a Gas Chromatography Column. 
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Figure 2-2 shows the continuation of the partitioning detailed in Figure 2-1 where, 

once the thermal cracking temperature (T3) of the heavy component is reached (Figure 

2-2.e), the low boiling, thermal decomposition products appear, as a result of bonds 

breaking in the heavy component whilst still retained within the column, and after 

elution of the light component.   

 

The pyrolysis product, being lighter than the light component in Figure 2-2, then 

partitions between the stationary and mobile phases, eluting ahead of the heavy 

component, and after the light component, thus producing elution in non-boiling point 

order(Figure 2-2.h). (Note that whilst co-elution of one or more decomposition products 

and the ‘parent’, heavy component is feasible, it is ignored here for simplification). 

 

As a result of the thermal decomposition, the injected oil mixture now indicates four 

components according to the chromatogram analyzed, whereas the initial mixture 

injected comprised only three.  Hence a gas chromatographic separation under the 

preceding conditions will complicate the determination of the components, and lead to 

ambiguous and unreliable results.  

 

In the case of heavy n-alkanes, low conversion thermal cracking mainly produces a 

whole series of alkenes and alkanes with lower hydrocarbon chain length than the n-

alkane reactant undergoing bond breakages, as will be explained in a later section. The 

resulting complexity of the mixture within the gas chromatographic column, under 

cracking temperatures therefore leads to confusing chromatographic results, which are 

no longer representative or consistent with the originally injected mixture.   
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Figure 2-2. Thermal Cracking Risk in a Gas Chromatography Column. 

(Continuation of Figure 2-1) 
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2.3.Theory of modelling the thermal cracking of n-alkanes at low conversion 

This chapter specifically focuses on low conversion pyrolysis in order to predict the 

temperature which triggers thermal cracking for each of the n-alkanes studied, 

comprising nC14H30, nC16H34, nC20H42, nC25H52, nC30H62, nC35H72, nC40H82, nC45H92, 

nC50H102, nC55H112, nC60H122, nC65H132, nC70H142, nC75H152, nC80H162.  

 

 A free-radical primary mechanism has been developed in which only the initial 

reactant is considered, capable of describing the formation of decomposition products at 

conversion of around 5-10% molar.  However, a secondary mechanism may be 

developed in future work, covering the validation of pyrolysis products.  

 

The mechanism is based on a Rice-Herzfeld [3] chain scheme (Figure 2-3), 

comprising:  

Initiation Reactions involve a mono-molecular homolysis of hydrocarbons forming β 

radicals.  As the bond dissociation energy of C-H is around 100 Kcal/mol compared 

with ~85 Kcal/mol for the C-C bond, only C-C homolysis has been considered for 

temperatures lower than 450 °C.  

 

 

Figure 2-3. Reaction mechanism of thermal cracking of alkanes, for low-

temperature and low conversion.  (Reactant: µH), (radicals: µ•, β•), (alkanes: µH, 

βH ). 

H-transfer reactions involve abstraction of a hydrogen (H) atom from the reactant by 

a radical, forming a new radical and a smaller alkane (lower carbon number) than the 

reactant. 
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Decomposition by ß-scission reactions involves a C-C decomposition of µ radicals 

which yield a β radical and an alkene.  

Isomerisation reactions take account of the most important isomerisation involving µ 

radicals [4], namely 1.5 and 1.4 shift isomerisation of µ radicals. 

 

Termination reactions correspond to all possible combinations of ß and µ radicals. 

 

A completely numerical mechanistic kinetics model [5] has been applied in this 

thesis, running in a modified version of the source code of SENKIN from the 

CHEMKIN II package [6], which enables computation of the evolution time of an 

homogeneous reacting mixture in a batch or tubular reactor, by solving simultaneously 

the entire set of mass balances for each chemical specie.  

 

The program takes as an input file the mechanism-based kinetic model (for every 

n-alkane studied) whose development has involved: the manual construction of the 

reaction mechanism; manual assignment of the kinetic data, for each elementary 

reaction; and manual assignment of the thermochemical data for each molecule or 

radical.  The thermodynamic data have been sourced from tabulated data [7], and the 

kinetic data obtained by using the summary of Arrhenius rate parameters [8] (Table 

2-1).  

 

The kinetic parameters for initiation and termination reactions are average values 

corresponding to the decomposition of a normal C-C bond and the recombination of 

normal primary radicals. The kinetic data calculation of the isomerisation reactions [9] 

has been obtained with the software KINGAS[10] based on the thermochemical 

methods of Benson et al.(1976). [7]  

 

The other reactions are considered as reaction families which have the same kinetic 

constant. Thus, in H-transfer reactions, the reactivity of the type of carbon atom whose 

hydrogen atom is abstracted by a different kind of radical is considered rather than the 

chain length of the reactant hydrocarbon. Regarding the decomposition step, the family 

reactions are classified by the kind of radicals (primary, secondary, or tertiary) formed 

by β-scission (Table 2-1). 
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However, the simulation of large reaction mechanisms can result in excessive 

computational demands/processing time, and consequently it is necessary to reduce the 

reaction mechanisms to an approximately equivalent, smaller computing model, for 

which a chemical concepts based reduction method [11-12] was used.  

 

 

Table 2-1. Compilation of Kinetic Parameters used in the thermal cracking model 

of alkanes. [8] 

2.4.Detailed free radical kinetic mechanism of the pyrolysis of nC14H30 

When developing general detailed, mechanism-based kinetics models, it is necessary 

to account for the Reaction Path Degeneracy (RPD) which represents the number of 

possible paths by which an elementary step could proceed. Thus, in order to obtain a 

specific value of rate constant for every single radical reaction, it is necessary to 

calculate the product of RPD (of the given reaction) and the generic Arrhenius rate 
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constant, k: (Table 2-1), giving as a result a specific frequency factor for each specific 

reaction: RPD*k.  

 

Figure 2-4 illustrates one reaction of every step of the free-radical kinetic mechanism 

for nC14H30, in order to obtain a better understanding of the developed mechanism. 

 

For Initiation Reactions, the C-C bonds which undergo homolytic dissociation to 

form two free radicals will define the RPD.  Therefore, for linear hydrocarbons whose 

chain consists of C-C pairs, there is only one possible path (RPD = 1) for breaking the 

C-C bond, located in the centre of the hydrocarbon chain, and in the case of the other C-

C bonds, they can be obtained in two possible ways (RPD=2), e.g., obtaining the 

radicals: rCH3 and rC13H27-1, can be possible by breaking the two equivalents bonds: 

C1-C2 or C13-C14. 

 

Regarding H-transfer Reactions, the type of carbon atoms (primary, secondary, or 

tertiary) which undergoes the hydrogen abstraction to form a radical µ• will define the 

RPD.  For example, in the formation of a primary radical such as rC14H29-1, there are 

six equivalents ways (RPD=6) to transfer the H atom, as a result of the two primary 

carbons (three C-H bonds) present in the C14H30 molecule, and (RPD = 4) in the case of 

the secondary carbons (two C-H bonds) in a linear chain. 

 

In the case of Decomposition (by β-scission) reactions, the free radical breaks into 

two carbons from the charged carbon, producing an α-olefin and a primary free-radical, 

(RPD = 1).  

 

Finally, regarding Termination Reactions, these represent essentially a recombination 

of all radicals formed, e.g., the termination reactions of the radical rC14H29-1, with all its 

isomers: rC14H29-1, rC14H29-2, rC14H29-3, rC14H29-4, rC14H29-5, rC14H29-6, rC14H29-7. 

(Figure 2-5)  
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Figure 2-4. Some example of every step reactions from the detailed mechanism of 

thermal cracking of n-Tetradecane. 
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Figure 2-5. Scheme of the propagation chain of the pyrolysis of nC14H30. 

2.5.Reduction of the free radical kinetic mechanism of the pyrolysis of nC14H30 

In this thesis two methods of reduction have been used, based on chemical 

considerations [11]: Lumping of chemical species involves grouping all of the isomers 

of a radical, so that the number of species, and consequently the number of reactions, 

strongly decreases. This reduction is based on the fact that isomerisation reactions are 
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much faster than the propagation reaction, and hence the re-partitioning between 

isomers can be calculated independently [11] as depicted in Figure 2-5.  Two 

indistinguishable lumped species are used: “radicals” (formed in the initiation reaction), 

and “alkanes” (formed in the decomposition reactions). 

 

The second type of reduction used is the Lumping of Reactions, where all reactions of 

a given type are lumped together, so that the size of the mechanism is drastically 

reduced, with loss of molecular weight distribution but preservation of distribution 

between the families of products such as alkanes / alkenes. 

 

The rate of lumped reaction needs to be equal to the sum of the rates of every detailed 

reaction in order to maintain equivalence. A summary of lumped rates is compiled in 

Table 2-2. In summary, the entire kinetic reduced mechanism includes 119 reactions 

(Table 2-3). 

 
 

Table 2-2. Summary of lumped rate constant. 

 

Table 2-3.  Summary of detailed and reduced free-radical mechanism of nC14H30 
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2.6.Validation of the Kinetic Mechanisms for nC14H30, nC16H34  and nC25H52 with 

experimental published data. 

In this Section, a comparison of the conversion of nC14H30, nC16H34 and nC25H52 is 

carried out, between the simulated results obtained from the Lumped Kinetic Models 

and the experimental results reported by Song et al. (1994) [13], Jackson et al. (1995) 

[14], and Behar et al.(1996) [15] respectively. In the case of nC14H30, a further 

comparison has been carried out, taking into account the simulated results obtained 

from the Detailed Kinetic Model. 

 

2.6.1. Validation of the Reduced Kinetic Model of n-Tetradecane (nC14H30) 

In order to validate the developed model for the pyrolysis of n-tetradecane at low 

conversion, the results obtained in this chapter are compared with corresponding 

experimental pyrolysis data published by Song et al. (1994) [13].  This experiment was 

conducted at 450 °C for 6-480 min, under an initial pressure of 0.69 MPa of ultra-high-

purity (UHP) N2 in 25 ml of an agitated, batch micro-reactor (micro-autoclave) using a 

5 ml sample.  An initial heating period of 6 minutes was required before the reaction 

temperature was reached, and based on the temperature profile published in the 

literature, the temperature ramp necessary to simulate the whole experiment was 

correlated. 

  

As shown in Figure 2-6, very good agreement was achieved between the detailed, 

developed thermal cracking model of nC14H30 and the experimental data published by 

Song et al. (1994) [13], with an average error of 3.8%.  A conversion of 0.5% of 

nC14H30 at 427°C was obtained at 3.43 minutes with the correlated ramp, and 4.5% 

conversion at 450°C (at 6.03 minutes).  In comparison, the experimental data [13] 

reported a conversion of 3.98% at 450°C (at 6 minutes).  

 

It is important to note that no adjustments of any kind were made to the kinetic 

parameters, and that the simulated results presented have been derived using only the 

kinetic data-set shown in Table 2-1. 

 

It should be recalled that the good agreement between the developed model and the 

experimental data is due to the fact that the former is based on the molecular 

phenomenology of the thermal cracking mechanism.  However, it is important to bear in 
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mind that at this stage the model caters only for the primary mechanism, and requires to 

be further developed to cover the secondary chain reaction mechanism in order to 

reliably represent the whole conversion, and more precisely the evolution of the 

concentration of the decomposition products.  

 

 

Figure 2-6. Comparison of the reduced thermal decomposition model developed 

for nC14H30, and the thermal decomposition experiments of Song et al. (1994) 

[13], until 100% conversion.  

Regarding the reduced model developed for thermal cracking of nC14H30,  very good 

agreement was also found (preserving the physical meaning of the thermal cracking) 

with the experimental data of Song et al. [13], with an average error of 5.4%, compared 

with an average error of 3% for the developed detailed model. (Figure 2-6).  

 

It is important to point out that it is valid to use a lumped mechanistic kinetic model 

for extrapolated predictions in a wide range of temperature, because it is based on 

physico-chemical phenomena and also that this model has been neither optimized nor 

adjusted. 

 

Moreover, the pyrolysis model developed in this thesis, not only yield information on 

the conversion of the reactant, but also give information of the production of pyrolysis 

products, during the thermal cracking of the reactants, which have to be approach very 

carefully, since in this work only a primary mechanism has been developed.  
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Because of the excellent agreement between the developed Reduced and Detailed 

Models, only the Lumped Kinetic Model of n-hexadecane (nC16H34) and n-Pentacosane 

(nC25H52) were developed, without the need to develop corresponding Detailed Models.  

Thus, in the case of nC16H34 and nC25H52 a comparison of its conversion was carried 

out between the Lumped Kinetic Model and the corresponding experimental data from 

Jackson et al. (1995) [14] and Behar and et al.(1996) [15] respectively.  

 

2.6.2. Validation of the Reduced Kinetic Model of n-Hexadecane (nC16H34) 

The directly developed Reduced Kinetic Model of nC16H34 features 152 reactions: 1 

initiation reaction; 1 H-transfer feeding reactions; 14 H-transfer reactions; 105 

decomposition reactions; 1 “µ•+µ•” termination reaction; 15 “µ•+β•” termination 

reactions; and 15 “β•+ β•” termination reactions.  The whole mechanism has 65 

different species: 16 alkanes formed, 14 alkenes formed, 16 intermediate species 

(radicals), 17 final products, and 2 lumped species: “radicals” and “alkane”. 

 

Regarding the validation for nC16H34, results were compared for the reduced model 

with the experimental results published by Jackson et al. (1995) [14], who used a gold 

(Au) bag reaction vessel in their study.  After loading 70 g of hexadecane solution, N2 

was applied initially to remove reactive gases, such as O2, and then pressurized until the 

N2 gas in the headspace was expelled, leaving only the hexadecane solution. 

 

Good agreement was obtained for the conversion of nC16H34 (Figure 2-7) with the two 

isothermal experiments at 370°C and 353°C, with a relative average error of 17.9% and 

17.4% respectively.   
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Figure 2-7. Validation of the reduced thermal decomposition model developed for 

nC16H34, and the thermal decomposition experiments of Jackson et al.(1995) [14]. 

 

Another important aspect of the validation is the lack of information on the accuracy 

of the literature experimental data which entails an important error, highlighting the 

need for developing and undertaking specific experiments which will provide reliable 

data for which the analytical accuracy is known.   

 

2.6.3. Validation of the Reduced Kinetic Model of n-Pentacosane (nC25H52) 

The directly developed Reduced Kinetic Model of n-pentacosane (nC25H52), has 350 

reactions: 1 initiation reaction; 1 H-transfer feeding reaction; 23 H-transfer reactions; 

276 decomposition reactions; 1 “µ•+µ•” termination reaction; 24 “µ•+β•” termination 

reactions; and 24 “β•+ β•” termination reactions.  The whole mechanism has 101 

different species: 25 alkanes formed; 23 alkenes formed; 25 intermediate species 

(radicals), 26 final products, and 2 lumped species: “radicals” and “alkane”. 

 

Lastly, we have validated the results of the reduced developed model for 

n-pentacosane (nC25H52) with the experimental data published by Behar and et al. 

(1996) [15].  In this publication, a gold (Au) reaction tube was used 

(40mm*5mm*0.1mm) under an Argon atmosphere, containing between 50 and 100 mg 

of nC25H52. For the comparisons, an average value of 75 mg of nC25H52 was assumed 

(or 0.96 ml), equivalent to 99.15% nC25 and 0.85%(molar) of Ar.  
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As can be observed in Figure 2-8, very good agreement was obtained between the 

conversion of nC25H52 with the two isothermal experiments at 375 °C and 400 °C, with 

a relative error average of 6.7% and 7.0% respectively compared to the results obtained 

by Behar et al. (1996) [15].   

 

As a global conclusion, the developed Lumped Mechanistic Kinetic Model for every 

hydrocarbon preserves the physical meaning of thermal cracking in a wide range of 

temperatures, as was the case with nC14H30, nC16H34 and nC25H52, without any previous 

optimization or adjustments made. And similarly, very good agreement was achieved in 

the three cases studied, even when using the developed Reduced Model.   

 

Whilst the mechanistic, Kinetic Reduced Model has proved reliable in the case of long 

chain hydrocarbons, such as nC14H30, nC16H34 and nC25H52, it would be interesting, 

nevertheless to undertake validation of longer chain hydrocarbons, such as nC40H82 and 

nC60H122, for which lumped mechanistic kinetic model has been developed in this 

thesis. This subject may therefore be examined in a future work.  

 

Figure 2-8. Validation of the reduced thermal decomposition model developed for 

nC25H52, and the thermal decomposition experiments of Behar et al.(1996) [15]. 
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Table 2-4.  Summary of size of the mechanistic kinetics models developed.  

Finally, a reduced mechanistic kinetic model was developed for each n-alkane 

hydrocarbon in the mixture comprising: nC14H30, nC16H34, nC20H42, nC25H52, nC30H62, 

nC35H72, nC40H82, nC45H92, nC50H102, nC55H112, nC60H122, nC65H132, n C70H142, 

nC75H152, nC80H162.  This model of the final mixture of n-alkanes accounts for: 15 

reactants; 7055 reactions; 336 species; 242 molecules; and 94 radicals (Table 2-4).  

 

2.7.Preliminary modelling of thermal cracking of heavy alkanes at GC (P&T) 

conditions 

This model has been used at specific conditions of temperature, pressure, volume and 

concentration of the heavy hydrocarbon mixture in the carrier gas (He) of a gas 

chromatographic column, in order to obtain a better understanding of its thermal 

cracking behaviour and stability.  

  

As described in the previous sections, thermal cracking decomposition is a function of 

temperature and residence time.  Therefore, in order to obtain a more precise knowledge 

of the behaviour of n-alkane samples (i.e. nC14, nC16, nC25 mixtures) as a function of 

temperature and time, several simulations were made at various isothermal 

temperatures, examining the exposure-time limits, and temperature at which n-alkanes 

start to crack at GC conditions.  

 

Using a column with the following dimensions: length = 30m, internal diameter = 

0.25mm, stationary phase thickness = 0.5µm, the empty column volume is 1.46 cm3, for 

which a system pressure of 2 bars was assumed.  
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2.7.1. Preliminary Modelling of nC40H82 at constant temperatures 

The concentration of n-alkanes sample diluted in helium at the moment of injection in 

the inlet varies with the level of CS2 dilution applied, the flow of carrier gas (helium), 

and the split-ratio used with the capillary column. We have therefore studied the 

conversion of nC40H82 at two concentration levels, of 4% and 46% of sample in helium, 

in order to analyze the influence of the concentration of the sample on the rate of 

thermal decomposition. 

 

 

Figure 2-9 shows that for nC40H82, at a lower concentration of 4% molar in helium, at 

350 °C and 360 °C, the thermal cracking starts at 35 min and 15 min respectively, at a 

very low rate.  However, at 370 °C, 380 °C and 400 °C, the residence times necessary to 

initiate thermal decomposition are only 7.5 min, 3.7 min and 0.9 min respectively, with 

corresponding times of 50 min, 23 min and 6 min respectively for achieving 1% 

conversion.  

 

 

Figure 2-9. Thermal cracking of nC40H82 at 5 constant temperatures. Column: 

(30m*0.25mm*0.5µm).  (Molar concentration: 4% in helium). 
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Figure 2-10. Thermal cracking of nC40H82at 9 constant temperatures. Column: 

(30m*0.25mm*0.5µm).  (Molar concentration: 46% in helium). 

At temperatures of 420°C, 430°C, 440°C and 450°C the residence times required to 

trigger thermal degradation of nC40H82 at 4% molar concentration in helium , fall to less 

than 1 min, namely 16 s, 9 s, 5 s and 3 s respectively.  And after exposure of 5 minutes 

to these temperatures the corresponding levels of thermal degradation increase to 3.5%, 

6.3%, 11%, and 19.5% molar. 
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Table 2-5. Residence times and corresponding % thermal decomposition of nC40 

(Tetracontane) under 9 isothermal temperatures, at 4% & 46% (molar) in helium. 

Figure 2-10 shows the predictions for nC40H82 at 46% molar concentration in helium, 

where the predicted initiation times for thermal degradation are only 23 min at 350°C 

and 12 min at 360°C, but at very low rates.  In the case of 370°C, 380°C and 400°C, the 

necessary residence times are 3.8 min, 2 min and 0.4 min respectively, to trigger 

thermal decomposition of nC40H82, achieving 1% molar degradation at 32 min, 15 min 

and 5 min.  Increasing the temperatures further, to 420°C, 430°C, 440°C and 450°C, 

residence times of less than one minute are sufficient to initiate degradation of nC40H82; 

7 s, 3.8 s, 2 s and 1.2 s respectively, with corresponding thermal degradation levels after 

5 minutes exposure of 6%, 11%, 20%, and 33.5% molar. 

 

Table 2-5 summarizes residence times, and the corresponding percentage of thermal 

decomposition of nC40, for 4% and 46% molar concentrations in helium, for exposure at 

9 isothermal temperatures.  
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2.7.2. Preliminary modelling of heavy n-alkanes mixtures using a temperature 

ramp 

The thermal stability of three long-chain hydrocarbon mixtures (equimolar, light, and 

heavy) at 46% molar dilution in helium, has been modeled at 2 bars and for a 

temperature programmed analysis (Tinitial=10 °C, ramp=15C/min, Tfinal= 425 °C).  

Compositional details of each of the mixtures are shown in Table 2-6. 

 

 

Table 2-6. Molar compositions of synthetic heavy n-alkanes mixtures: (nC14H30 - 

nC40H82) for modeling. 

Initially only the conversion of the heaviest and lightest hydrocarbons; nC40H82 and 

nC14H30 respectively, were studied as a function of exposure time in the above three 

mixtures comprising seven n-alkanes in the range of (nC14H30- nC40H82) at the given 

temperature program described above.  

 

Figure 2-11 shows that the first heavy hydrocarbon to thermally crack is nC40H82, but 

requiring less time to crack in a heavy mixture than in an equimolar and a light mixture, 

and the last hydrocarbon to crack in the same mixtures is nC14H30 , as expected, because 

of the greater number of moles in the heavy mixture. Hence at a given conversion, 

nC40H82 will crack first in the heavy mixture, then in the equimolar mixture and finally 

in the light mixture, since the rate of thermal cracking of the whole mechanism is 

related proportionally to the square root of concentration of reactant by the following 

equation [11]:  

H
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Equation 2-1 
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Conversely, nC14H30 in the heavy mixture is the hydrocarbon which takes longest to 

crack due to having the greatest rate of production by nC40H82, which acts as a buffer to 

the rate of decomposition. 

 

Figure 2-11. Thermal cracking conversion of nC14H30 &  nC40H82 in three heavy n-

alkanes mixtures (light, Equimolar, heavy) dissolved at 46% molar in He.  

Secondly, the effect of the molar concentration of helium in three mixtures composed 

this time of fifteen n-alkanes in the range of: (nC14H30 - nC80H162), is studied as a 

function of the cracking time at 0.1% molar of conversion at the aforementioned 

temperature program. Compositional details of each of the mixtures are shown in Table 

2-7. 

 

Figure 2-12 shows, as expected that the greater the concentration of sample in He, the 

lower is the cracking time required in all of the cases studied.  It should be noted that 

nC14H30 is not shown in this figure, since its rate of decomposition is far exceeded by its 

rate of production from partial decomposition of the heaviest hydrocarbons of the 

mixture: nC80H162.   

 

Thus, in the case of nC16H34 it is evident that the same behavior is occurring; but since 

nC16H34 is also producing nC14H30 its decomposition rate is greater than in the case of 

nC14H30, presenting the longer time to crack among the n-alkanes in the mixture, in all 

the concentration of sample in He.  
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Table 2-7. Molar compositions of synthetic heavy n-alkanes mixtures: (nC14H30 - 

nC80H162) for modelling. 

 

Figure 2-12. Thermal cracking of nC16, nC30 &  nC80 in three heavy n-alkanes 

mixtures (light, Equimolar, heavy) at  46% molar in He.  

On the contrary, in the case of nC80H162 it is possible to discern that the ascending 

order of cracking time is guided by the number of moles in the mixture, as explained 

earlier, so that nC80H162 will crack first in a heavy mixture, then in the equimolar 

mixture; and finally in the light mixture, since no production of the heavier hydrocarbon 

is expected to take place.  
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2.8.Preliminary calculation of the minimum Single Carbon Number (SCN) at 

possible risk of thermal cracking at GC (P&T) conditions 

In order to determine the lightest hydrocarbon at risk to crack inside a GC column, a 

new approach is introduced and proposed in this thesis, based on the calculation of the 

intercept between the retention time curve of n-alkanes standard mixtures [nC10H22-

nC75H152] in an HT5 column and some low iso-conversion (0.1%, 1% and 7%) curves 

describing the minimal time required to trigger the thermal decomposition in the same 

range of SCN. To that end, the developed pyrolysis model was applied to the n-alkanes 

above mentioned in equimolar mixtures at three different dilutions in He, of 4%  and 

95% molar. 

 

According to Figure 2-13, for the whole range of n-alkanes, the greater the 

concentration of sample in Helium, the lower the pyrolysis time required at a given 

conversion, as depicted for all the iso-conversion curves at 95% molar in Helium 

relative to the ones at 4% molar in Helium. 

 

As far as the iso-conversion curves are concerned, the greater the conversion of any of 

the n-alkanes studied, the greater the exposure time required.   Hence, a lower pyrolysis 

time is obtained when the molar conversion of 0.1% is achieved, and a greater residence 

times are required at the molar conversion of 7%, as expected.   

 

The intercept between the pyrolysis iso-conversion and the GC retention time curves 

represents the minimum n-alkane which will thermally crack before eluting from the 

GC column. Therefore, nC50H102 reaches a molar conversion of 0.1% before eluting the 

GC column, in the studied conditions.  

 

Almost at about the same time (with a difference of seconds) all the heavier n-alkanes 

than nC50H102 reach the same pyrolysis conversion at 25 minutes and 380°C(in 

agreement with Schwartz et al.(1987) [1] , but their residence times inside the GC 

column are much longer, allowing them to reach greater pyrolysis conversion before 

eluting, as in the case of nC72H146 whose elution time is 34 minutes, and therefore can 

thermally decompose at 7% of molar conversion before eluting the GC column.   
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Figure 2-13.  Retention time vs Cracking time as a function of single carbon 

number (SCN), for preliminary determination of the minimum SCN at risk to 

thermal crack in a GC column.  

 

As a global conclusion, in the studied case, thermal cracking at 0.1 % of molar 

conversion occurs inside the GC column, at a concentration of 95% of sample in 

Helium for all the heavy n-alkanes greater than nC50H102, and at a concentration of 4% 

of sample in Helium, from nC52H104. 

 

In the case of 1% molar conversion, the thermal cracking occurs from nC55H112 and 

nC57H116 at a concentration of 95% and 4% of sample in Helium respectively, before 

eluting the GC column. 

 

2.9.Conclusions 

This thesis provides a first insight into the limitations in the practice of high 

temperature gas chromatography (HTGC), regarding the dilution in carrier gas, 

residence time and maximal temperature conditions for a given sample, based on a 

developed mechanistic kinetic thermal cracking model, covering the range of n-alkanes 
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hydrocarbons: nC14H30, nC16H34, nC20H42, nC25H52, nC30H62, nC35H72, nC40H82, 

nC45H92, nC50H102, nC55H112, nC60H122, nC65H132, nC70H142, nC75H152, nC80H162.  

 

A new approach for determining the minimum SCN undergoing pyrolysis inside the 

GC column has been introduced, based on the intercept of the thermal cracking and 

residence time curves, showing that for the cases studied in this chapter, the heavy 

hydrocarbons greater than nC50-nC52 will crack before eluting from an HT5 column, in 

a mixture containing up to C80H162 at 0.1% of conversion, and from nC55-nC57 at 1% of 

conversion.   It should be noted that these results have been obtained only for the 

studied conditions presented throughout the chapter, and further studies will be required 

in order to obtain a better understanding on the limitation of HTGC practice in the 

analysis of heavy ends hydrocarbons.  

 

Thus, future work on this subject may focus on the experimental validation of the 

pyrolysis model for heavy n-alkanes greater than nC25H52; the modeling of the Gas 

chromatography migration and separation; and finally a coupled model (Pyrolysis + GC 

migration) and its respective GC validation.  
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CHAPTER 3 – MIGRATION & SEPARATION GAS 

CHROMATOGRAPHY MODELLING 

3.1.Introduction 

Reservoir fluid characterization by high-temperature gas chromatography (HTGC) 

extends the range of single carbon number (SCN) groups in oil analyses by temperature 

programming up to 450°C. However, the reliability of HTGC analyses is questionable 

for two main reasons: possible pyrolysis of the injected oil inside the GC column which 

could induce over-estimation of light and intermediate fractions; and secondly, possible 

incomplete elution of heavy fractions, which in turn would induce under-estimation. 

 

 The former, has been treated in CHAPTER 2 –[1], which focused on predicting the 

pyrolysis temperature of n-alkanes (nC14H30-nC80H162) at GC conditions. The latter is 

the focus of this chapter which introduces a gas chromatography migration and 

separation model for the n-alkane range nC12H26–nC62H126 in an HT5 column, using as 

main input the in-house distribution factors derived from isothermal GC retention time 

measurements.  

 

On the basis of the developed model, the concentration and velocity of the above n-

alkanes were determined at every point and time throughout the GC column, for typical 

temperature-programmed analyses.  

 

Retention times were then predicted, and validated against experimental values, with 

an overall relative error within 2%. This chapter gives an insight into the components’ 

behaviour throughout the GC column, allowing preliminary assessment of elution, by 

proposing a new approach for determining the non/incomplete elution of every 

component by introducing: the degree of elution, defined as the amount of component 

which has been eluted in relation to the amount injected. Thus, the degree of elution of 

each of the heavy n-alkanes studied in this chapter: (nC12H26–nC62H126) has been 

calculated for a typical temperature programmed. 

 

 This new approach can be applied, in order to determine the analytical conditions 

required for ensuring maximum elution of a given component, with the possibility of 

improving the practice of HTGC by optimizing the separation process. 
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3.2.Basic approach and terms in gas chromatography 

Capillary gas chromatography is a well-established technique for separating 

constituent components in a mixture between two phases: a gaseous “mobile phase” 

assumed to behave ideally in most GC applications [2]; and a “stationary phase” 

consisting of a liquid bonded to, and distributed on the interior surface of the open 

tubular column. The mobile phase transports the mixture downstream within the 

column, while each component re-equilibrates between the two phases, after every 

displacement at a given temperature and pressure. The differences in the components’ 

partitioning ratios thus permit their separation. 

 

When the separate analytes elute from the column in combination with the mobile 

phase, the mixture passes through a detector (generally a flame-ionization detector 

(FID)) generating a response which indicates the presence of the solute. The FID 

response to each solute should be ideally proportional to the solute amount or 

concentration, which is normally the case for hydrocarbons. 

 

Ideally the chromatograms (plot of detector signal) should represent each solute as a 

vertical line, but as it migrates along the column it instead occupies a zone (or band) 

whose width gradually increases with time due to the dispersion of the component in the 

mobile and stationary phases.   

 

Blumberg [3] has well explained two important approaches that will be used in the 

next section of this document: the solute zone, which corresponds to the space occupied 

by a solute migrating in a column; and the solute peak, which corresponds to the time 

that the solute zone will take for eluting from the column. 

 

Ideally, using the probability theory, a solute injected very sharply (as a delta 

function), under the action of molecular diffusion, migrates in accordance with the 

random walk model, which states that at every time-step, each particle will travel the 

same space-step, either forward or backward with equal probability.  

 

Then, at the limit of many steps, using the Central Limit Theorem the probable 

location of each particle approaches a normal distribution. Thus, the distribution of 

molecules along the column may be represented by a Gaussian zone (particles/ unit 

length) which elutes from the column as a nearly Gaussian peak (particles/unit time). 
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Therefore, the width of the solute zone and solute peak may be described by its standard 

deviations measured in units of length and time, respectively.  

 

The specific moles profile (particles/unit length) [3-4] for every analyte can be 

obtained from the Gaussian distribution of the analytes through the column [5-6] 

(probability density function [particles/unit length]) and, yielding at (t=0) the Equation 

3-1:  

����� �	
��	�
�	�� = ���, ���
� · √2� exp �− �� − ��� 

2� ! 
Equation 3-1 

 

Here, σ corresponds to the standard deviation (in space units) of the amount of 

component throughout the GC column, x0 corresponds to the centroid of its Gaussian 

distribution and x corresponds to the position of the component’s dispersal around the 

centroid x0. 

 

Since the analytes initially present in the mixture injected into the GC column will not 

only diffuse but travel at the flow velocity of the carrier gas by advection throughout the 

column, the concentration profile of the analytes will vary with time and space 

according to the convection/diffusion conservation of mass equation, explained in the 

following section. 

 

3.3.Mass balance (Diffusion-Convection) Equation in Gas Chromatography 

Zone broadening under time-variant and non-uniform conditions (coordinate dependent: 

such as the density gradient of the carrier gas caused by the pressure drop), which 

change from the inlet to the outlet of the column can be described by a one-dimensional  

convective-diffusion mass-balance equation, after the Taylor [7] reduction of the 

cylindrical co-ordinate, mass-conserving equation for solute migrating in a capillary 

tube. [6] As such, the resulting equation is applicable to either isothermal or temperature 

programmed gas chromatography. 

 

This approach was developed by Golay [4], taking into account the presence of a 

retentive layer, and became the most widely used equation in the theoretical analysis of 

chromatography in a non-uniform time-invariant linear medium. The non-uniformity in 

a chromatographic medium was considered a few years later by Giddings [8-11] by 
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dividing a column into small, equal segments, and assuming that the local conditions 

within each approach uniformity. They are then represented with any required precision 

when the number of segments becomes sufficiently large [9]. The mass balance of the 

solute[2-3] in an infinitely thin slice of column is described by Equation 3-2. 

Here, NG(x,t) and NS(x,t)  correspond to the moles per unit length in the gas phase and 

stationary phase respectively.  

 

∂N$�x, t�∂t = − ∂∂x &N$�x, t� · υ(�x, t�) + ∂∂x �D�x, t� · ∂N$�x, t�∂x ! − ∂N,�x, t�∂t  

                                     Convection                 Diffusion              Absorption 

 

D represent the dispersion coefficient (assumed to be of physical interest only in the 

x-direction [4]) which represents all factors causing dispersion in a zone [12] (See 

Equation 3-7); and vM is the velocity of migration of the carrier gas (see Equation 3-16).  

 

The Absorption term, which describes the change with time of the moles in the 

stationary phase, can be expressed in terms of the moles in the gas phase by using the 

retention factor (ratio of moles of solute in the stationary phase to moles in the mobile 

phase), as follow: 

 

∂N,�x, t�∂t = k ∂N$�x, t�∂t  

Therefore, by substituting the above expression as follow 

 

∂N$�x, t�∂t = − ∂∂x &N$�x, t� · υ(�x, t�) + ∂∂x �D�x, t� · ∂N$�x, t�∂x ! − k ∂N$�x, t�∂t  

 

�1 + k� ∂N$�x, t�∂t = − ∂∂x &N$�x, t� · υ(�x, t�) + ∂∂x �D�x, t� · ∂N$�x, t�∂x ! 
 

By rearranging, we obtain: 

∂N$�x, t�∂t = − ∂∂x �N$�x, t� · υ(�x, t��1 + k�! + ∂∂x � D�x, t��1 + k� · ∂N$�x, t�∂x ! 
 

Where, "1/(1+k)" represents the frontal ratio or fraction of molecules in the mobile 

phase to those in the stationary phase, and  veff and Deff  represent the effective cross-
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sectional average velocity and dispersion coefficient obtained after multiplying the 

original values of vM and D by "1/(1+k)". 

υ/00�x, t� = υ(�x, t��1 + k� 

And  

D/00�x, t� = D�x, t��1 + k� 

 

Finally, by substituting the above expression, we finally obtain :  

 

∂N$�x, t�∂t = − ∂∂x &N$�x, t� · υ/00�x, t�) + ∂∂x �D/00�x, t� · ∂N$�x, t�∂x ! 
Equation 3-2 

 

 

The separation is assumed to be linear, i.e., the diffusivity and velocity of the solute 

are independent of concentration [13]. Another consequence of the linearity assumption 

is the possibility of treating individually, each component of a complex mixture, 

enabling its migration to be studied separately. [13] 

 

Although both the velocity of the analyte and its dispersion at each specific location 

are functions of the coordinate of the location, the distance travelled, x is insufficient for 

prediction purposes as the mass balance will not be conservative. Therefore a general 

theory of chromatography in a non-uniform, time-variant medium has been introduced, 

based on a more general equation of convective diffusion in a one-dimensional medium. 

[5, 13] 

 

The relationship of band broadening to the kinetics of mass transfer in gas 

chromatography, has been described and validated in open tubular columns by Golay 

[4], who expressed the column plate height (H(x,t)) as a spatial rate of dispersion of a 

zone (Equation 3-3), and the apparent diffusivity D, as a representation of the zones’ 

temporal dispersion rate. (Equation 3-4).  

dσ 
dx = H�x, t� 

Equation 3-3 
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dσ 
dt = H�x, t� · υ(�x, t� =  2 · D��, �� 

Equation 3-4 

 

Thus, Golay [4] derived an exact equation to relate the band broadening and the 

kinetics of mass transfer in gas chromatography for open tubular columns with a smooth 

retentive coating, in very good agreement with experimental results.  

 

4��, �� = 2 · �5��, ��65��, ��
+  65��, ��  7�1 + 6 · 9:;���< + 11 · 9�;���� 

24 · &1 + 9:;���<) · �� 
�5��, ��!

+ � 2 · 9:;���<
3 · &1 + 9:;���<) · ? 

�@��, ��!A 

Equation 3-5 

 

Golay [4], compared his chromatographic expression for a column plate height of 

circular cross-section and for coated tubular columns (Equation 3-5), with the van 

Deemter equation of the HETP (Height Equivalent to a Theoretical Plate) of packed 

columns (Equation 3-6).  The Eddy-diffusion term, A which represents the diffusion 

caused by the multiple paths taken by the carrier gas flowing through a packed column 

is eliminated, there being but a single flow-path option in a coated tubular column. 

 

4��, �� = A + B65��, �� +  C · 65��, ��  
Equation 3-6 

 

The first term corresponds to the B term in the van Deemter equation (Equation 3-6), 

which represents the static longitudinal diffusion; the second term related to DM 

(Diffusivity in the mobile phase)is absent in the van Deemter equation (Equation 3-6), 

and represents the dynamic diffusion of the sample; and the last term, related to Ds 

represents the mass transfer, and corresponds to the C term.  

 

Golay [4] called this term the “hysteresis diffusion” of the sample, representing the 

diffusion of the sample between the gas-liquid interface and within the liquid phase. [4] 
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Therefore, by virtue of (Equation 3-4 and Equation 3-5) it is possible to derive the 

local dispersion term (Equation 3-7)which depends on the static longitudinal diffusion, 

the dynamic diffusion and the diffusion by forward mass transfer in the stationary 

phase:  

 

���, �� =  �5��, ��
+  65��, �� 

2  7�1 + 6 · 9:;���< + 11 · 9�;���� 
24 · &1 + 9:;���<) · �� 

�5��, ��!
+ � 2 · 9:;���<

3 · &1 + 9:;���<) · ? 
�@��, ��!A 

Equation 3-7 

 

 In summary, the gas chromatographic migration and separation of a sharply injected 

sample can be described by the diffusion-convection mass balance equation (Equation 

3-2). The variables required are: the effective diffusion and effective velocity of the 

sample, and the column specification.  

 

3.4.Iterative Retention Time Prediction by Convective Migration Only 

The use of discretization methods for calculating the retention times has been 

introduced by Snijders. [14]  In his approach the diffusion effects are considered to be 

negligible in determining the peak position, enabling it to be described only by 

convection. [15]  

 

The convection can be expressed by the effective velocity of the analyte in the carrier 

gas (Equation 3-18), which leads to:  

 

6EFF,G��, �� = H�H� = 65��, �� · �I,5�I,5 + �I,J = 65��, ��
1 + KG:;���<L

 

Equation 3-8 

 

Then, discretization of the velocity into finite time-steps leads to (Equation 3-9) ,which 

can be used to track the average position of the analyte at every time step, and hence 

prediction of the retention time of the analyte, when it reaches the column outlet.[14] 
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�IMN = �I + 65��I, �I�
1 + KI:;��I�<L

· O� 

Equation 3-9 

 

3.5.Time & Coordinate-Dependent Parameters in GC Calculations 

The application and solution of the transient diffusion-convection mass balance 

(Equation 3-2) for temperature-programmed gas chromatography require that all the 

parameters involved previously should be expressed as a function of time and 

coordinate. [16] The calculation of these parameters is treated in the following section.  

 

In all of the simulations carried out, each of the parameters has been related to the two 

main dependent variables, time and x-coordinate.  

 

3.5.1. Coordinate-dependent pressure 

By virtue of Boyle’s Law the average carrier gas flow velocity under steady state 

(constant mass flow of carrier gas through any cross-section of the column at any given 

time interval), can be expressed as:   

 

P�� = 0� · 65�� = 0, �� = P�0� · 65�0, �� = P��� · 65��, �� 

Equation 3-10 

 

The steady-state motion of the carrier gas in capillary gas chromatography is 

described by the differential form of the Hagen–Poiseuille equation (left-hand part of 

(Equation 3-11) [17-18]. It is obtained by relating the carrier gas velocity at any position 

in the column, to the pressure gradient at that point [19] by a proportional constant q. 

Substituting the expression of velocity (vM) from (Equation 3-10) into the left-hand part 

of (Equation 3-11), we obtain the right-hand part of (Equation 3-11) which relates the 

local pressure drop at position x, with the initial value of velocity and pressure:  

HP���H� =  −R · 65��, �� = − R · P�0� · 65�0, ��P���  

Equation 3-11 
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Thus, the Hagen-Poiseuille equation can be applied to a differential element in gas 

chromatography by the assumption of incompressibility of the gas in such an element at 

position x, due to its extremely low pressure drop [18].  

 

By integrating (Equation 3-11), in the inlet and outlet position, with Pin and Pout 

respectively and rearranging we obtain the expression (Equation 3-12) which permits 

calculation of pressure at any position in the column:  

P��� = SPIT − :PIT − P�UV < · �WX
 

Equation 3-12 

 

For the purpose of this thesis, an SGE HT5 column of 12 m has been used (Table 

3-1). The profile of pressure drop with x-coordinate has been calculated assuming the 

outlet pressure to be atmospheric and the inlet pressure has been set to be 119.6 ± 0.5 

kPa, in accordance with gas hold-up time measurements, t0 for methane. 

 

 

 
 

Table 3-1. Column Dimensions of the in-house HTGC 

 

3.5.2. Time-dependent Temperature  

For a temperature programmed analysis, Equation 3-13 describes the temperature 

ramp followed by the GC oven. 

;��� = ;� + ��YZ; · O� 

Equation 3-13 

 

This has been used for the purpose of the simulations presented in this article, e.g. the 

basic temperature program shown in Table 3-2. 

 



 

42 

 

Table 3-2. Temperature Programming 

3.5.3. Viscosity of the carrier gas (ηm) 

The carrier gas viscosity can be assumed to be dependent only on temperature and 

therefore independent of pressure as long as density changes caused by the pressure 

drop are negligible.  

The expression used in the case where the carrier gas is helium, has been introduced 

by Kestin [20] and simplified by Hawkes [21], giving the viscosity in µPa·s. 

 

This algorithm can be applied for temperatures above 104 K (-169 °C), where 

viscosity predictions for the HTGC temperature range show a maximum deviation of 

about 0.5%.   

 

However, a correction can be made when using this equation in  the range of (300-

700) K [21] The derived values from Equation 3-14 may be optimized by multiplying a 

correction factor,{0.995+(T-300)·2.5·10-5}, to match experimental data within 0.1%.  

[21] 

 

[:;���< = 0.7840374 · ;���N · _̀
 

_ = 1 + 3196 · �8 · 10bc�  

d = 13.65299 − W��;∗� 

;∗ = �;����/10.4 

� =  −0.126516 

� = −1.230553 

h = 2.171442 

i = 1 + 14 · ` j−2 · `d + 0.00635209 · d · k −2 · �W��;∗�l − 3 · �W��;∗�m − 4 · hW��;∗�nop 
` = 0.00635209 · d · k1.04 + �W��;∗� + �W��;∗�l + hW��;∗�mo 

Equation 3-14 
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The carrier gas viscosity is a function of temperature, which in turn is a function of 

time when temperature programming is involved (Table 3-2). Figure 3-1 illustrates the 

increase in viscosity of Helium with temperature and therefore with time, using a 

temperature ramp of 15 °C/min. Its viscosity increases from 19.4·10-6 Pa.s at 10 °C (at 

time 0) reaching a maximum of 36.3·10-6 Pa.s at the upper temperature limit of 425 °C 

(27.67 min).  

 

Figure 3-1. Viscosity of Helium as a function of time.  (Temperature programming 

(Table 3-2): (From 10°C to 425°C, ramp of temperature:15C/min). 

 

3.5.4. Velocity of the mobile phase (VM) 

The proportionality constant q of (Equation 3-11) for circular cross-section 

columns[4] is:  

R = 8 · [:;���<��  

Equation 3-15 

 

Then by integrating Equation 3-11 from the inlet to the outlet and using Boyle’s Law 

(Equation 3-10) we obtain an expression describing the velocity profile of the mobile 

phase as a function of temperature, and therefore of time; and also as a function of 

pressure, and therefore of the x-coordinate position. [2, 16-19] 
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65��, �� = �� · :PIT − P�UV <
16 · [:;���< · W · P��� 

Equation 3-16 

 

Based on the data in Table 3-1, the pressure has been calculated as a function of x-

coordinate for the 12 m, HT5 column; and similarly the viscosity has been expressed as 

a function of temperature and hence time, using temperature programming (Table 3-2). 

 

 

 

Figure 3-2. Velocity of Mobile phase as a function of time and x-coordinate 

(Temperature programming (Table 3-2): (From 10°C to 425°C, ramp of 

temperature:15C/min). 

 
In relation to temperature, the maximum velocity of the mobile phase (helium) is 

found at the lowest values, and hence at the earliest times in the temperature program 

since the velocity is inversely proportional to its viscosity, which in turn increases with 

temperature (Equation 3-14).  

 

In relation to the x-coordinate (i.e. distance travelled in the column), maximum 

velocity of the mobile phase is found at the highest value, at the column outlet, i.e., at. x 

= L. This is because velocity is also inversely proportional to the pressure (Equation 
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3-16), and the pressure drop is at maximum at the outlet of the column, at atmospheric 

pressure.  

 

Thus, the velocity may vary from 0.35 m/s at the highest temperature (latest time) and 

the highest pressure (at the GC column inlet, and therefore the highest pressures) to 0.76 

m/s at the lowest temperatures and lowest pressures, approaching the column outlet, as 

shown in Figure 3-3.  

 

Therefore carrier gas velocity at the column inlet decreases as temperature increases 

with analysis time, a consequence of which is that the rate of desorption of the heavier 

components retained at the column inlet reduces as the analysis proceeds. 

 

3.5.5. Diffusion constant, mobile phase (DM) 

The diffusion constant in the mobile phase may be calculated from the empirical 

method of Fuller, Schettler, and Giddings. [22] 

 

�5��, �� = �qr��, �� = 0.00100 · ;���N.cn · S 1�sq + 1�sr
X

P��� · &�∑ uq�N/l + �∑ ur�N/l)  

Equation 3-17 

 

Here, MWA and MWB are the molecular weight of the component in the sample, and 

of the carrier gas respectively, and υA and υB are the special atomic diffusion volumes 

calculated as a sum of all the atomic diffusion volumes increments (reported by Fuller 

et al. [22]) of the atoms involved in the molecule of interest. Thus, the greater the 

number of carbon atoms, the greater is the value of atomic diffusion volume.  

 

The variation of the diffusivity in helium of n-alkanes; nC20H42 and nC60H122, has 

been analyzed under the temperature program described in Table 2-2.  

According to Equation 3-17, the greater the temperature, the greater is the diffusivity 

of n-alkanes in helium; and conversely, the greater the pressure, and the heavier the 

n-alkane, the lower is the diffusivity in helium.  
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Therefore, the highest values of diffusivities apply to the lightest n-alkanes, at the 

highest temperatures (latest elution times) and the lowest pressures (approaching the GC 

column outlet), as shown in Figure 3-4.  

 

Thus, nC20H42 at 425 °C (time>27.67 min) and atmospheric pressure (when 

approaching the GC column outlet) has the highest diffusivity of 6.06·10-5 m2/s; 

whereas nC60H122 has the lowest diffusivity value of 7.85·10-6 m2/s at the lowest 

temperature of 10 °C (initial time) and greatest pressure, at the GC column inlet.  

 

Nevertheless, temperature is the most influential factor in the diffusivity of n-alkanes 

in He, as can be seen in Figure 3-4, where at the lowest temperature of 10 °C there is 

little evidence of variation of diffusivity with pressure and SCN (single carbon number) 

groups, compared with higher temperatures. 

 

 

 

 

Figure 3-3. Diffusivity of n-alkanes (SCN: 20-60) in Helium (Temperature 

programming (Table 3-2): (From 10°C to 425°C, ramp of temperature:15C/min). 
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3.5.6. Diffusion constant, stationary phase (Ds) 

The diffusion constant in the stationary phase is a very important parameter in gas 

chromatography, even although there is no model, to date, providing good accuracy for 

all systems which include a liquid solvent [16]. For that reason an approximate value is 

calculated from its relationship with the diffusion constant in the mobile phase [14] by 

the following expression:  

�J��, �� = �5��, ��5 · 10m  

Equation 3-18 

 

Accordingly, the diffusivity of n-alkanes in the stationary phase is directly 

proportional to their diffusivity in helium, and therefore the same correlations apply 

with temperature, the x-coordinate, and SCN.  

 

The highest value of diffusivity in the stationary phase is 1.21·10-9 m2/s and 

corresponds to nC20H42 at 425 °C (time > 27.67 min), and atmospheric pressure 

(approaching the GC column outlet).  

 

Thus, the lowest value of diffusivity in the stationary phase is 1.57·10-10 m2/s, 

corresponding to nC60H122 at the lowest temperature (at initial time), and greatest 

pressure (approaching the GC column inlet). 

 

3.5.7. Effective Velocity (veff) 

The effective velocity is an average of the fraction of sample which flows in the 

mobile phase, equal to 1/(1+k), and moving at the velocity of the mobile phase vM, and 

the fraction of sample which has been retained by the stationary phase with zero 

velocity, equal to k /(1+k).  

6EFF,G ��, �� = 65��, ��1 + 9I  �;���� 

Equation 3-19 

 

The effective velocities of nC20H42 and nC60H122, have been analyzed under the 

temperature program shown in Table 3-2.  
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Figure 3-4. Effective Velocity of nC20H42 and nC60H122 in (He) in a 12m x 0.53mm 

x 0.15µm HT5 column. (Temperature programming (Table 3-2): (From 10°C to 

425°C, ramp of temperature:15C/min). 

Figure 3-5, clearly shows that the effective velocity has a low dependency on pressure 

and therefore on the x-coordinate. This contrasts with its high dependency on 

temperature, and therefore time, due to the retention factor being a function only of 

temperature (time). Consequently, its values are high compared with the values of 

velocity of mobile phase, which are a function of both pressure and temperature.  
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Thus, temperature is the predominant influential variable on a component’s effective 

velocity in the mobile phase because of its powerful effect on retention factor. 

 

The retention factor of a component determines its effective velocity, since the 

fraction of the component moving at the velocity of the mobile phase is given by the 

former. Therefore, at a given temperature, the greater the retention factor of a 

compound, the more strongly it will be retained in the stationary phase, and therefore 

the lower will be its fractions in mobile phase, making the effective velocity lower.  

 

This explains why nC20H42 achieves a higher effective velocity at a lower temperature 

more quickly than nC60H122, as shown in Figure 3-4. 

 

3.5.8. Effective Diffusivity (Deff) 

In order to obtain the effective diffusivity (Equation 3-20), an analogous averaging 

method is used as in the case previously explained for  Veff. The effective diffusivity 

corresponds to the fraction of sample which is found in the mobile phase, equal to 

1/(1+k), with a local dispersion D. The local dispersion takes into account its static 

longitudinal diffusion, the dynamic diffusion and the diffusion by mass transfer 

forwards the stationary phases according to (Equation 3-7): 

 

�EFF,G��, �� = ���, ��1 + 9I�;���� 

Equation 3-20 

 

The effective diffusivities of two n-alkanes: nC20H42 and nC60H122 have been analyzed 

under the temperature program described in Table 3-2. 

 

As in the case of the effective velocity, Figure 3-6, shows that the effective diffusivity 

exhibits a low dependency on pressure, and therefore on the x-coordinate, compared 

with its high dependency on temperature and therefore time. 

 

Nevertheless, the local dispersion D (Equation 3-7), is not the same for every 

component, as is the case of the effective velocity, where the velocity of the mobile 

phase is independent of the proportion of the components flowing throughout the 
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column.  Rather, local dispersion takes into account the diffusivity of every component 

in both the mobile and stationary phases, resulting in large variations between different 

components, depending on temperature, and hence  retention factor.  

 

Similarly to the effective velocity, the effective dispersion depends on the fraction of 

component which dwells in the mobile phase "1/(1+k)". Since this fraction is greater for 

the lightest components at a given temperature, then the effective dispersion will also be 

greater.  

 

Figure 3-5. Effective Dispersion of nC20H42 and nC60H122 in (He) in a 12m x 

0.53mm x 0.15µm HT5 column.(Temperature programming (Table 3-2): (From 

10°C to 425°C, ramp of temperature:15C/min). 
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Thus, the heavier the component, the lower is the fraction of component which dwells 

in the mobile phase "1/(1+k)" at a given temperature, and the higher is the fractions 

which dwells in the stationary phase " k /(1+k)". Thus, the heavier components are 

longer retained in the stationary phase, until they reach a minimum temperature at 

which they start to be released from the stationary phase. Therefore, the retention times 

of the heavier components are greater than those of the lighter components.  This,  

explains why  nC60H122 takes longer to elute than nC20H42, since a higher temperature is 

required to release it from the stationary phase. 

 

It is interesting to analysis that in spite of the fact that the effective dispersion 

(D(x,t)/1+k)) reaches lower values at a given temperature for the heavier components 

than for lighter components (see Figure 3-5),  the peaks of the heavier components are 

broader than those of the lighter components.  

 

The main reason of this lies in the fact that, the lighter components reach the column 

outlet quicker than the heavier components thanks to its higher effective velocity, 

therefore when nC20H42 reach the GC outlet at 11.2 minutes, its effective dispersion 

reach just a value of 4.41·10-10 m2/s, whereas when nC60H122 reach the GC outlet, at 

about 28.2 minutes, its effective dispersion reach a value of 1.3·10-5 m2/s. 

 

On top of this, the final zone’s variance is calculated as the summation of all the local 

contributions of zone variance (See Equation 5-7 in CHAPTER 5 –) during the time 

interval that each component takes inside the GC column. Therefore, since the heavier 

components spend more time inside the column than the lighter components, the final 

zone’s variance (i.e. the peak width) is likewise greater for the heavier components than 

for the lighter components. 

 

 

The large difference in the effective dispersion between that observed for nC20H42 

compared with nC60H122, simply reflects the fact that nC60H122 is retained longer on the 

stationary phase with significant vaporization not occurring until temperature is close to 

the isothermal maximum temperature (Table 3-2).  
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As a result, smoother changes in diffusivity are evident.  Conversely, large changes 

occur in greater measure in the case of nC20H42, where the temperature at which the 

stationary phase starts to release the component is achieved during the temperature 

ramping period.  

 

3.5.9. Retention and Distribution Factor 

Knowledge of how the distribution factor varies with temperature is an essential 

requirement in gas chromatography when temperature-programming is the most 

common practice in order to accelerate analysis of solutes with a wide range of boiling 

points.  

 

Application of a time-dependent function of distribution factor enables calculation of 

retention factors, and hence prediction of retention times [23] (Equation 3-9).  It also 

permits simulation of the concentration profile inside the column by solving (Equation 

3-2), and therefore optimization of the separation of complex mixtures.  

 

3.5.10. Thermodynamic equilibrium of the solvation in GC 

The solvation of a solute in the solvent [10] can be expressed at thermodynamic 

equilibrium by the logarithm of the solute molecule’s numerical density ratio in both 

phases [24-25]:  

 

W� � vqw
vqx ! = W� K = − ∆z�;�{ · ;  

Equation 3-21 

 

The distribution coefficient K involves the ideal behaviour of the gas phase at infinite 

dilution, with assumptions of negligible interaction between solute-solute and solute-

carrier gas, with the main interaction occurring between the solute and stationary phase. 

In addition, interfacial and extra-column effects on the mass transfer, which lead to non-

equilibrium conditions, are expected to be negligible. [26] 

 

Under the above conditions, the isothermal retention times can be expressed by 

Equation 3-22, where the distribution factor has been replaced by the first two terms of 
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the Taylor series expansion which has been treated in terms of thermodynamic 

properties by Castells et al. [27] yielding a semi-empirical model. [17, 28] 

 

Here, ∆H and ∆S, represent the changes in enthalpy, and entropy associated with the 

transfer of solute from the stationary phase to the mobile phase at a given temperature 

(T). 

�|,I = �5 · �1 + KI�;�L ! = �5 + �5L · }�~ + �N · 1;���� 

�~ = O��;�{ ;        �N = − �O4�;�{ � 

         Equation 3-22 

 

Aldaeus [15] has proposed two retention mechanisms  according to the nature of the 

separation hold between the analyte and the stationary phase, based on the semi-

empirical values of the thermodynamic properties of Equation 3-22.  

 

The entropy-driven mechanism (e.g. size exclusion chromatography), is dominated by 

the loss of the molecules’ translational, rotational, and vibrational degrees of freedom, 

being retained in the absence of proper interaction by the stationary phase. However, the 

enthalpy-driven mechanism (e.g. partition chromatography) is dominated by the 

difference between the dissolution energies of the analyte in the mobile phase and 

stationary phase.  

 

The GC modelling implemented in this chapter, uses as main input the distribution 

factors K, for the n-alkanes in the range of nC12H26–nC64H130,  reported in CHAPTER 4 

– [23], (Figure 3-6). The distribution factors have been obtained by linear fitting of 

numerous isothermal measurements carried out at temperatures up to 430°C in an HT5 

GC column, corresponding to Equation 3-22. 
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Figure 3-6. Distribution factors in a HT5 capillary column, based on the 

retentions times of every compound and hold-up time for every constant 

temperature in the range of  temperature 80-430 °C, using Ln((tr/tm-1)·β) = Ln 

(K(T)). 

 

3.6.Validation of the predicted retention times.  

A model in MATLAB R2010bSP1 has been developed for predicting retention times, 

(Equation 3-9) which contains the distribution coefficients of every compound [23] and 

the corresponding equations for the calculations of viscosity, pressure, and velocity 

through the GC column, as explained in the previous sections.  

 

It is important to note that all GC analyses have been carried out using constant flow 

mode for the column carrier gas supply, and therefore the algorithm used calculated the 

variation of the inlet pressure required for maintaining the flow constant at reference 

conditions, while the temperature increased, and carrier-gas viscosity did likewise. 

 

Validation of this model has been carried out using both literature solvation 

thermodynamic properties of a series of n-alkanes from C12H26-C40H42, and PAH’s from 
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C10H24-C22H46 in a DB-1 and a DB-5 column [17], and the thermodynamic properties 

obtained with the in-house experimental data (Figure 3-6),  for an HT-5 capillary 

column [23] for C12H26 to nC62H126 n-alkanes. 

 

For the DB-1 column, average deviations of 1.9% for n-alkanes and 2.0% for PAH’s 

were obtained between the published [17] measured retention and the retention times 

predicted with the developed model (Figure 3-7). 

 

Figure 3-7. Validation of the retention times predicted with the in-house model 

developed, compared with literature data (Aldaeus [17]) in a DB-1 column for 

PAH’s (from C10H24-C22H46) and n-alkanes (from C12H26-C40H42), using their 

retention factors. 

 

In the case of the DB-5 column, the average deviations in retention times [17] with 

the in-house model predictions were 2.2% for n-alkanes and 2.6% for PAH’s; and for 

the predicted retention times published [17], the corresponding errors were 0.8% for n-

alkanes  and  0.3% for  PAH’s (Figure 3-8). 

 

Figure 3-10 shows a comparison of the retention times predicted by the in-house 

model and the in-house experimental values obtained with an HT5 column, based on the 
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temperature program shown in (Table 3-2), but also applying ramp rates of 10°C/min 

and 20°C/min.. 

 

 

Figure 3-8. Validation of the retention times predicted with the in-house model 

developed, compared with literature data (Aldaeus [17]) in a DB-5 column for 

PAH’s(from C10H24-C22H46) and n-alkanes (from C12H26-C40H42), using their 

retention factors. 

 

The average deviations with the in-house model, were 1.3%, 1.1% and 2.2% for a 

temperature ramp of 10°C/min, 15°C/min and 20°C/min respectively. 

 

As seen in Figure 3-9, for the data relating to the lowest ramp rate(10°C/min) the five 

highest retention times are over-predicted; and secondly, for the highest ramp 

rate(20°C/min) virtually all measured retention times are greater than predicted. Two 

distinct reasons are suggested for these observations.  

 

In the case of the over-predicted retention times at the lowest ramp rate, the measured 

hold-up times in the region of the upper temperature limit are subject to higher 
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deviations as temperatures increased, affecting both the back calculated inlet pressure 

and the calculated distributions factors for the associated alkanes.  

 

And in the case of the under-predicted retention times for the highest ramp rate of 

20°C/min, it is certain that the true column temperature is lagging  behind the apparent 

ramp set-point value. (As such, the effect could be confirmed by applying a higher ramp 

rate of say 25°C/min, in which case even larger deviations would be evident).   

 

 

 

Figure 3-9. Validation of the model developed with in-house experimental data 

for Alkanes in a HT5 column, using three ramps of temperatures 10, 15 & 

20 °C/min in the range of 10-430 °C. 

 

However, means exist for correcting for such temperature differentials, and can be 

applied retrospectively and for future work. 

 

Finally, accurate retention time predictions have been obtained for the three 

temperature ramps, which started from 10 °C up to 430 °C, even when the temperature 
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range for which the distribution factors have been derived, related to isothermal 

measurements in the range 80 °C to 430 °C. 

 

3.7.Measurement of n-Alkane Isothermal Retention Times (RT) 

In isothermal gas chromatography, components of a homologous chemical family 

exhibit a rapid increase in retention time and peak width with increasing boiling point, 

in a generally linear plot of log(RT) vs Carbon Number. As a consequence, only a 

limited number of alkanes’ isothermal RTs can be reliably measured from a single 

injection at a given temperature (because of peak broadening and no-realistic retention 

time).    

 

Another constraint is that single alkanes above nC40 are not readily commercially 

available with adequate purity with the exception of nC44, nC50 and nC60 and Polywaxes 

are generally utilized for retention time measurements to generate boiling-point/RT 

calibration plots for HTGC analyses.   

 

However, the latter are mixtures comprising polyethylene oligomers of even carbon 

number intervals, and are qualitative mixtures only.  Hence the weight fraction of each 

oligomer in a particular Polywax distribution is not readily known, although accurate 

estimation is possible if the complete distribution can be chromatographed and total 

elution of the sample  can be demonstrated, e.g., by spiking.   

 

Whilst qualitative alkane or Polywax mixtures or a combination of the two are 

suitably adequate for both isothermal and temperature programmed retention time 

measurements, gravimetric dilutions in CS2 of the ASTM D5442 Linearity Standard 

[29] were also used in this chapter, covering the alkanes nC12-nC14-nC16-nC18-nC20-

nC22-nC24-nC26-nC28-nC30-nC32-nC36-nC40-nC44-nC50-nC60.  

 

 In such cases, fairly accurate calculations are possible of the molar quantities of each 

alkane injected in a given volume.  However, this is not the case when a gravimetric 

blend of this standard is made with a Polywax solution in CS2 except for those alkanes 

which elute before the lightest oligomers present in the Polywax range. 
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The injection technique used was FVI (Flash Vaporization Injection), in order to have 

the same conditions in all isothermal injections at the GC column inlet. 

 

3.8.Degree of Elution  

The degree of elution is defined as the amount of component which has been eluted in 

relation to the amount injected. Its calculation is based on the retention factors of every 

component, ‘i’ which represent the ratio of moles of “i” in the stationary phase to the 

moles of “i” in the mobile phase for a given temperature. 

In order to determine the degree of elution of every component, their retention factors 

have been analyzed during a GC analysis using the temperature-program of Table 3-2.  

(Tmax 425°C).  

 

During the migration of a component, two periods have been defined: the period of 

movement and the period of elution.  

 

Initially, when the components first establish equilibrium with the stationary and the 

gas phase, the components are trapped in the stationary phase, until a minimum 

temperature is reached. At this temperature equilibrium is re-established, increasing the 

amount of moles available in the gas phase and therefore increasing its effective 

velocity, for them to start moving through the GC column.  

 

The period of movement has been defined as the time elapsing from the moment at 

which a component starts to travel through the GC column, until the time when the 

component is completely eluted as it reaches the column outlet and achieves 100% 

elution. (Equation 3-24) 

 

The minimum effective velocity at which a component starts to move has been set 

here at 0.25 mm/sec, corresponding to 1 mm/°C if using a ramp of 15°C/min of 

temperature programming. 

 

During the period of movement depicted in Figure 3-10 to Figure 3-11, each 

component “i” travels through the GC column, increasing the number of moles in the 

gas phase by re-establishing their equilibrium with the increasing temperature (lower 
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retentions factors) and changing their effective velocity with the decreasing pressure, 

until all the components are eluted, reaching the GC column outlet.  

 

Secondly, the period of elution is defined as the time elapsing from the first moment 

where some molecules of a given component pass the GC outlet, to the time when all 

the molecules of the given component has entirely eluted.   

 

Figure 3-10 depicts the period of movement of n-alkanes in the range nC12H26 through 

nC62H126 as each travels through the GC column, with the rose colored band depicting 

their retention factors during that interval. The band shows that the round average, 

minimum retention factor to initiate movement for the n-alkanes studied is 2000 [moles 

“i” in the stationary phase per moles “i” in the gas phase]. 

 

The round average elution retention factor is 2 over the nC12H26- nC62H126 range, 

being lower for the heaviest component since they elute at higher temperatures, and 

therefore their solubility in the stationary phase is lower at elution.  

 

Nevertheless, it is important to note that the elution temperature of these components 

is lower than the maximum temperature (Tmax, 425 °C) reached in the GC column. This 

means that components heavier than nC62H126 which elute at Tmax will re-establish 

equilibrium until total elution occurs during the final isothermal period and therefore 

with a constant retention factor. Conversely, during the temperature ramping period the 

greater the temperature the lower is the retention factor.  

 

Making use of retention factor during the moving period of a component inside the 

GC column until elution, the mole fraction remaining in the gas phase relative to the 

total amount of moles injected, can be determined by Equation 3-23. 

 

��I� = 11 + 9I  �;���� = � �Y���
 "	"�5
�Y���
 "	"�JM5! 

Equation 3-23 

Figure 3-11 depicts (in green) the fraction of each component in the gas phase during 

its moving period until elution; and (in black), the fraction of component in the gas 

phase during its elution period.  
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Figure 3-10. Retention Factor vs Temperature (blue), Interval of Retention 

Factors, which allows movement to every analyte until its elution, reaching the 

GC outlet (* pink ) for the n-alkanes from nC12H26- nC62H126 in a HT5 capillary 

GC column, under a temperature-programmed 15 °C/min in the range of 10-

425 °C. 

 

 

Figure 3-11.  Fraction of  moles of “i” in mobile phase to the total moles of “i” 

vs. temperature (blue) covers all the range of temperature, (green) covers the 
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temperature up to elution temperature of every component “i”. The component 

“i”, corresponding the n-alkanes with Single Carbon Number (SCN) from 

nC12H26 to nC62H126 

 

The average initial elution fraction of the studied n-alkanes, relative to the 

corresponding amount injected is 0.3 moles in the gas phase at elution per total moles 

injected. The lowest values occur with the most volatile components since they elute at 

lower temperature, where solubility in the stationary phase is still considerable, in 

relation to those eluting at higher temperatures, but below the maximum for the 

analysis.  

 

Therefore from Figure 3-11 only a fraction of respectively 0.24 at 110 °C and 0.35 at 

420 °C of injected moles of nC12 and nC62 are in the gas phase available to elute 

initially, and only the percentage which passes the GC outlet, will elute at that 

temperature.  

 

Thus, the number of moles remaining inside the column can be re-calculated, being 

the difference between moles injected and moles eluted at the given temperature. 

(However, it should be recalled that estimated concentrations have been applied here for 

the alkanes which are not present in the ASTM D5442 linearity standard, as these 

components derive from a qualitative Polywax standard, or a blended mixture of one 

with the ASTM standard). 

 

At the next time step, (1 °C higher from the initial elution temperature), the retention 

factor of each component decreases (lower retention in the stationary phase), and the 

fraction in the gas phase increases in relation to the amount of moles remaining in the 

column. 

 

Again, only a percentage of the moles available will pass the GC outlet, and the total 

amount of component remaining can again be recalculated, as before.  

 

Thus, the equilibrium is re-established at every time step (i.e., per °C from initial 

elution) and the amount of moles inside the column is re-calculated, until total elution 

for each component. The degree of elution can then be calculated at every time step 

using Equation 3-24. 
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Equation 3-24 

 

Figure 3-12 depicts the degree of elution of every component studied, using the 

temperature program of Table 3-2, as a function of time, showing that all components 

from nC12 to nC62 completely elute from the GC column, reaching 100% of degree of 

elution before the end of the GC analysis time.  

 

It is important to note, that the degree of elution increases sharply once the elution 

starts, producing sharp peaks during the temperature programmed used. 

 

 

Figure 3-12. Degree of Elution vs time of each component “i” :n-alkanes in the 

range of nC12H26 to nC62H126.  Degree of Elution= Moles of “i” inside the GC 

column at time (t) /Moles injected of “i”. 

Knowing the retention factors of components heavier than nC62, whose elution is very 

difficult to identify in a chromatogram, will allow the determination of their degree of 

elution, as well as the extent of non-elution of the components which are unable to elute 
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completely. This subject is treated in CHAPTER 5 –, covering an analysis extended to 

much heavier n-alkanes. 

 

3.9.Concentration & Temperature Profiles  

By solving Equation 3-1 and Equation 3-2, it is possible to determine the distribution 

(assumed to be normal Gaussian), of moles of each component during the GC analysis, 

taking account the temperature increase the pressure decrease and movement of the 

component through the column. In this way the dispersion and movement of the 

components at every moment can be described by their standard deviations and 

centroid, respectively.  

 

Figure 3-13, shows the position of the centroid of every component with the variation 

of temperature, using the temperature-program of Table 3-2.  It is noticeable that every 

component remains at the column inlet until it reaches a minimum temperature at which 

the stationary phase starts to release it.  

 

Figure 3-13. Centroid Position of every component “i” vs Temperature up to 

elution from the GC column, using the temperature programmed of Table 3-2. 

The minimum temperatures can be seen clearly in this figure. For nC12H26, the 

movement starts from the beginning of the analysis at 10 °C, and for nC64H130 it starts is 

about 330 °C.  It is evident as expected that the heavier the component, the higher its 

elution temperature, and the higher the minimum temperature to initiate the movement 

inside the GC column.   
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In order to calculate the total moles of gas phase (carrier gas + component “i”) which 

occupies a volume covering 95% of the component in the gas, ideal gas behaviour is 

assumed and the percentile equivalence of normal Gaussian distributions, which states 

that 95% of a distribution occupies (4·σ(T(t))). Thus, the volume where 95% of 

molecules of component “i” are located, mixed with carried gas, can be calculated, 

multiplying the cross sectional area of the tube (ignoring the retentive layer) by four 

times the standard deviation at the given temperature. 

 

The gas molar fraction of “i” and the distribution of moles of component “i” inside 

the GC column are depicted in Figure 3-14 and Figure 3-15 respectively.  

 

Therefore, the molar fraction of component “i” available in the gas phase relative to 

the total number of moles of gas phase(carrier gas + component “i”) depicted in Figure 

3-14, has been determined, based on the total amount of moles of ideal gas in the  

corresponding volume, equal to 4·σ(T(t))·Free Transverse Area, and calculating the 

amount of moles of component “i” in the gas phase at the given temperature as: Moles 

Injected·(1/(1+k(T))). 

 

 

 

Figure 3-14. Molar fraction of component “i” in the gas phase vs centroid 

position of the moving component “i”, using the temperature programmed of 

Table 3-2. The period depicted correspond at the time before elution. 
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The higher molar fraction is found before the beginning of the interval of elution of 

every component, as the molecules of the component have not started to be released 

from the column outlet. Hence the higher the temperature, the greater the fraction of 

component available in the gas phase relative to the moles injected, as explained 

previously by Equation 3-23 and Figure 3-11. 

 

Thus, nC20H42 shows the higher value of c.a. 1.8·10-5 moles in the gas phase per total 

moles of gas, and a lower corresponding value is seen for nC64H130 of ca. 0.18·10-5 

moles. These proportions correspond to those of their injected values according to Table 

3-3. This confirms that their elution fractions retain the same proportion as when 

injected. 

 

Finally, Figure 3-15, depicts the distribution of moles [mol/m], with time and position 

throughout the GC column, showing that nC12H26 starts to move from the beginning of 

the analysis, and elutes at about 6 minutes, when nC20H420 has barely started to move 

and elute after about 12 min; while nC30H62 has just started to move at this time and 

elute at about 17 min. Movement starts for nC44H90 at about16 min and elution at about 

23 min.  nC50H102 starts to move at about 19 min, when nC44H90 is located at about 1m 

from the GC inlet; and at 24 min,  nC64H130 is 1 m away from the GC inlet, when 

nC50H102 starts to elute. Finally, nC64H130 starts to elute at about 27 min. 

 

It is important to note that every component travels individually, and there is no 

mixing of components through the GC column, since they travel the same distance, and 

pass through the same positions but at different times, and hence do not meet each other 

during their journey. In this way good separation of the components occurs during the 

analysis.  

 

It may be seen that the amount of moles per unit length of column increases in the 

case of nC12H26, nC20H42, and nC30H62, but decreases in the case of nC44H90, nC50H102 

and nC64H130, which corresponds to the expected behaviour, retaining the same 

proportion as the corresponding amount injected, as described in Table 3-3. 
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Figure 3-15. Distribution of moles of component “i” per unit of length regarding 

the position inside the GC column, and the analysis time until elution, using the 

temperature programmed of Table 3-2. 
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Table 3-3. Composition of injected n-alkanes (Mixture of ASTM 54179 and 

Polywax, assumed values for calculation purposes only) in 0.3µL. 

As expected, the standard deviations of every component, and therefore their 

dispersion, increase with time, and therefore temperature through the column, from the 

inlet to the outlet.  The sharper the eluting peak, the lower the dispersion. 

 

3.10. Conclusions 

This chapter provides further insight into the limits of high temperature gas 

chromatography (HTGC), proposing a new approach for determining the 

non/incomplete elution of every component by introducing: the degree of elution, 

defined as the amount of component which has been eluted in relation to the amount 

injected.   

 

The degree of elution of the n-alkane hydrocarbons in the range, nC12H28 to nC62H126 

has been calculated based on the continuous equilibrium re-established during the 

interval of elution for every component, using their corresponding retention factors, and 

assuming no cracking inside the GC column.   

 

This new approach is applied in CHAPTER 5 –, for n-alkanes heavier than nC62H126 

in order to determine the analytical conditions required for ensuring maximum elution 
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of a given component, allowing the possibility of improving the practice of HTGC by 

optimizing the separation process. 

 

The chapter introduces a preliminary method of calculating, at each moment during a 

temperature-programmed analysis, the molar fraction of the components in the gas 

phase, in accordance with the standard deviations of their Gaussian distribution at the 

point where 95% of the molecules are travelling through the column. 

 

The pyrolysis model developed in the previous CHAPTER 2 – [45] and the gas 

chromatography migration and separation model developed in this chapter, are 

combined in CHAPTER 5 –, in order to complete the analysis of the cracking risk of 

heavy n-alkanes. 

 

This chapter also provides a deeper understanding of the separation of components in 

a gas chromatographic column, and provides a basis for further analysis of non-elution 

of components heavier than nC62H126, which will be treated in a later publication.  
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CHAPTER 4 – DETERMINATION OF DISTRIBUTION 

FACTORS (nC12-nC98) IN AN HT5 GC COLUMN 

4.1.Introduction 

This chapter is focused on extending the data set of n-alkane distribution factors (K 

values) from nC12H26 through nC98H198 in an SGE HT-5 GC column. The measurement 

procedures and data treatment are explained in detail in this chapter. 

 

For this purpose, numerous isothermal gas chromatography injections have been 

carried out in the temperature range from 80°C to 420°C, at 20°C intervals and 430°C. 

 

In this chapter, two complementary HTGC methods have been applied, both using 

wide-bore HT5 columns (SGE UK, Ltd) of 0.53mm ID fused silica tubing, with 

aluminium coating.  Both are rated to 460°C for isothermal analyses, or 480°C for 

temperature programmed use, but were constrained to 435°C in the study by the 450°C 

limit of the flame ionization detector, which require a temperature differential of 15°C-

20°C to the maximum column operating temperature.  Two modes of HTGC operation 

were applied:- 

 

High-Efficiency Mode, with dimensions and flow parameters as follows:- 

• HT5 Column: 12.0m x 0.53mm ID x 0.15mic film 

• retention gap: 1.8m x 0.53mm ID of deactivated, uncoated, aluminium-clad 

fused silica.  

• carrier gas (helium) flow: 6ml/min 

• flow-control mode: constant inlet pressure 

• n-alkanes elution range: to nC64   

 

SimDist(Low-Efficiency) Mode, with dimensions and flow parameters in accordance 

with ASTM D7169-11 [1], for low-resolution operation, reduced retention times, and 

extended elution of heavy alkanes:- 

• HT5 Column: 5.0m x 0.53mm ID x 0.15mic film 

• retention gap: None  

• carrier gas (helium) flow: 20ml/min 

• flow-control mode: constant flow rate 
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• n-alkanes elution range: to nC100   

 

In this chapter, the 5 m HT5 GC column was used to generate a database of 

isothermal retention times of n-alkanes for the range, and spanning the Single Carbon 

Number (SCN) group equivalent to nC12 through nC98. 

 

Based on the isothermal data, distribution factors for the n-alkanes have been 

determined and used as input data for the prediction of their corresponding retention 

times in Temperature Programmed Gas Chromatography (TPGC).  

 

The in-house developed analytical model (CHAPTER 3 –) [2-3] was then used to 

predict retention times for HT5 analyses under three different ramps of temperature, for 

comparison with experimental retention times obtained from both modes of HTGC 

operation mentioned above. 

 

This thesis reports values of the thermodynamic properties (distribution factors) for 

the n-alkanes in the range of nC12H26–nC64H130 under constant inlet pressure GC 

conditions; and in the range nC12H26–nC98H198 when constant flow rate mode was 

applied. For this purpose a linear fit of numerous isothermal measurements was carried 

out from 80-420°C, at 20°C intervals and at 430°C, with an HT5 column.  

 

The retention times predicted for three different temperature ramps at constant flow 

rate yielded an average error of 4.4% when the data set of distribution factors obtained 

at constant flow rate were used. In the same way, the retention times predicted at 

constant inlet pressure yielded an average error of 1.5% when the data set of distribution 

factors obtained at constant inlet pressure were used. 

 

Simulating a constant flow rate GC measurement as a constant inlet pressure 

measurement (with an average inlet pressure through the temperature program), has 

been shown to improve the accuracy of the predicted retention times, with a reduction in 

the deviation from 4.4% to 2.4%. 

 

Knowledge of how the distribution factor varies with temperature is an essential 

requirement when temperature programming is conventionally applied to accelerate 

elution and reduce analysis time of samples with wide solute boiling point range.  This 
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work is focused on the heavy ends hydrocarbons, covering the alkanes, nC12H26- 

nC98H198, which can be separated and detected using an HT5 column. 

 

4.2.Distribution Factor Theory 

Application of a time-dependent function of distribution factor enables calculation of 

retention factors, and hence prediction of retention times [4] (Figure 4-1).  It also 

permits simulation of the concentration profile inside the column (CHAPTER 3 –) [2-

3], and therefore optimization of the separation of complex mixtures.  

 

4.2.1. Thermodynamic equilibrium of the solvation in GC 

The solvation of a solute in the bulk [5] solvent can be expressed at thermodynamic 

equilibrium by the logarithm of the solute molecule’s numeral density ratio in both 

phases [6-7]:  

W� ��Iw
�Ix! = W� K =  − O z�;�{ · ;  

Equation 4-1 

Here Ci 
L and Ci 

G are the molar concentration of the solute in the stationary phase and 

mobile phase. The ratio of the molar concentration in the two phases is equal to the 

distribution coefficient K, representing the solvation thermodynamically.   ∆G in the 

right hand side of (Equation 4-1) is the average Gibbs free energy related to the transfer 

of one solute molecule from the mobile phase (ideal gas) into a fixed position in the 

stationary phase (the bulk liquid solution).   

 

The distribution coefficient, K involves the ideal behaviour of the gas phase at infinite 

dilution, with assumptions of negligible interaction between solute-solute and solute-

carrier gas. It is assumed that the main interaction occurring is between the solute and 

the stationary phase. In addition, interfacial and extra-column effects on the mass 

transfer, which lead to non-equilibrium conditions, are expected to be negligible. [8] 

 

Under the above conditions, the isothermal retention times can be expressed by,  
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�| = �5 �1 + K�;�L ! 
Equation 4-2 

Where, tr, tm, and K correspond to retention time of the solute, hold-up time, 

distribution factor, and β is the phase ratio of the column. β may be calculated by 

Equation 4-3, with ro the inner radius of the column, and w the film thickness of the 

stationary phase. 

L =  �2�� − 2?� 
2�� − �2�� − 2?�  

Equation 4-3 

Consequently, inserting Equation 4-1 in Equation 4-2,  yield to (Equation 4-4) an 

expression for the retention time as a function of the hold-up time, tm (time required for 

traversing the column without permeating the stationary phase) and its solvation time, 

thermodynamically expressed by the Gibbs free energy at a given temperature:  

 

�| = �5 k1 + 1L exp }− ∆z�;�{ ;  �o 

Equation 4-4 

Replacing the Free Gibbs Energy in terms of ∆H and ∆S, which represent the changes 

in enthalpy and entropy associated with the transfer of solute from the stationary phase 

to the mobile phase at a given temperature T, leads to Equation 4-5 which corresponds 

to a semi-empirical model[9-10] developed by Castells et al [11] 

 

�|,I = �5 �1 + KI�;�L ! = �5 + �5L exp }�~ + �N 1;���� 

�~ = O��;�{ ;        �N = − �O4�;�{ � 

Equation 4-5 

Finally, by solving Equation 4-5 for the distribution factor(K) we obtain Equation 4-6, 

which leads to a temperature-dependent expression for K, which requires the calculation 

of β (Equation 4-3), andlinear fitting using a set of data for tm, tr, T from isothermal gas 

chromatographic measurements 
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K:;���< = L k �| �5 − 1o = exp k�~ + �N 1;���o 
Equation 4-6 

Aldaeus [12] has proposed two retention mechanisms according to the nature of the 

separation hold between the analyte and the stationary phase, based on the semi-

empirical values of the thermodynamic properties of Equation 4-5.  

 

The entropy-driven mechanism (e.g. size exclusion chromatography), is dominated by 

the loss of the molecules’ translational, rotational, and vibrational degrees of freedom, 

being retained in the absence of proper interaction by the stationary phase. However, the 

enthalpy-driven mechanism (e.g. partition chromatography, i.e: GC) is dominated by 

the difference between the dissolution energies of the analyte in the mobile phase and 

stationary phase.  

 

Based on Equation 4-6 and isothermal experiments, it is possible to derive a 

temperature-dependent function of distribution factor which has been applied to a series 

of n-alkanes spanning (nC12-nC98) in this chapter, and is presented in the following 

sub-sections.  

 

4.3.Iterative method for retention time prediction 

The use of discretization methods for calculating the retention times has been 

introduced by Snijders. [13]  This method considers the diffusion effects to be 

negligible in the determination of the peak position, which therefore may be described 

only by convection. [12] 

 

The convection can be expressed by the effective velocity veff of the analyte in the 

carrier gas (Equation 4-7), which can be discretize into finite time-steps, allowing 

tracking of the position of the analyte until the time step when the peak reaches the 

column outlet [3, 12], as explained in            Figure 4-1. 
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           Figure 4-1. Calculation of Retention times – Algorithm 

 
In Equation 4-7, K and β correspond to the distribution factor and phase ratio of the 

column, and vm corresponds to the velocity of the mobile phase.  
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6EFF,G ��, �� = 65��, ��
1 + KI�;�L

 

Equation 4-7 

vm can be calculated by integration through the length of the column of the differential 

form of the Hagen-Poiseuille fluid mechanics equations [9, 14], which relate the carrier 

gas velocity at any position in the column, to the pressure gradient at that point [15] by 

a proportional constant for a column of circular cross-section [16], yielding:  

 

65��, �� = �� ·  :PIT − P�UV  <
16  · [:;���<  · W ·  P��� 

Equation 4-8 

Here, η(T(t)) is the viscosity of the carrier gas (He in the study case), using the 

equation introduced by Kestin [17] and simplified by Hawkes [18]. (See the 

summarized equations in CHAPTER 3 –) [2-3]. Pin and Pout correspond to the inlet and 

outlet pressure of the GC column, respectively. P(x) corresponds to the pressure at 

position x, which can be calculated with Equation 4-9, and ro is the inner radius of the 

column.  

 

4.4.Calculation of the coordinate-dependent pressure 

By integrating the Hagen-Poiseuille equation between the inlet and outlet position,  of 

a differential element and assuming incompressibility of the gas in each element at 

position x (due to the extremely low pressure drop in gas chromatography [14]), the 

following expression is obtained (Equation 4-9) which allows the calculation of 

pressure at any position in the column:  

 

P��� = SPIT − :PIT − P�UV < �WX
 

Equation 4-9 

Different column configurations can be used in Gas Chromatography, such as 

inserting a retention gap of deactivated fused silica tubing before the main GC column, 

to prevent non-volatile residues being deposited in the stationary phase at the column 

inlet.  In the case of GC-1 an uncoated retention gap was used, with dimensions shown 
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in Table 4-1. Its presence was taken into account in the GC calculations as its effect can 

be significant depending on the chosen experimental method.  

 

It is therefore necessary to calculate the internal pressure at each capillary union, such 

as the retention gap to column inlet (as in this case), or for the connection between the 

GC column outlet and a length of capillary restrictor before the detector (FID) inlet. 

 

Table 4-1. Column configuration & dimensions of the two in-house HTGC used. 

As gas chromatography measurements can be carried out either using constant flow 

rate measured at ambient conditions, or using constant inlet pressure throughout the 

temperature program used. In both cases the GC calculation requires to be done by steps 

as explained in the next subsections.  

 

4.4.1. Pressure at point x, using constant flow rate and a Retention Gap 

In this case, two variables are known: the outlet pressure of the GC column (Ambient 

Pressure), and the flow rate (constant throughout the temperature program). However, 

both the GC column inlet pressure and the inlet pressure of the retention gap are 

unknown.  

 

Therefore, the inlet pressure of the GC column has been calculated first, knowing the 

flow rate; and the outlet pressure by using Equation 4-8, transformed to flow rate. The 

inlet pressure of the retention gap is then calculated, knowing its outlet pressure, which 

equals the inlet pressure of the GC column; and knowing the flow rate by using 

Equation 4-8 transformed to flow rate. 

 

4.4.2. Pressure at point x, using constant Inlet Pressure and Retention Gap 

In this case, two variables are known: the outlet pressure of the GC column (Ambient 

Pressure), and inlet pressure of the retention gap (constant throughout the temperature 
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program) and two variables are unknown, the GC column inlet pressure and the flow 

rate, which will decrease with the increasing temperature according to Equation 4-8, 

transformed to flow rate. 

 

Therefore, an average flow rate is calculated first, according to the average radius 

between the GC main column (which contains stationary phase) and the uncoated 

retention gap. The inlet pressure of the column is then calculated (which is the outlet 

pressure of the retention gap), knowing the flow rate and the outlet pressure of the GC 

column, by using Equation 4-8 transformed to flow rate. 

 

4.5.Experimental procedure (measurement of n-Alkane isothermal retention 

times) 

Two, SGE HT5 GC Capillary Columns [19] were employed in this chapter, with 

dimensions described in Table 4-1.  Two methods have been used: (a) using 

conventional HTGC set-up conditions (long GC columns and low flow rates) eluting 

n-alkanes spanning the range of (nC12H26–nC64H130), under constant inlet pressure 

measurements conditions; and (b) using ASTM D7169-11[1] for extended SimDist 

analysis up to ~nC100 using a short column with a high flow rate, in ‘constant flow’ 

mode. (i.e for elution of alkanes spanning the range nC12H26–nC98H198. 

 

In both columns, at least 3 isothermal GC measurements have been carried out at 

intervals of 20°C, from 80 to 420°C and at 430°C, using standard samples (ASTM 

D5442) containing n-alkanes (nC12H26-nC60H122) + Polywax 655, Polywax 850, 

Polywax 1000 as described in the next section. 

 

4.5.1. Sample preparation  

For various reasons it is not practicable to use a single, multi-component mixture of 

alkanes, with a wide carbon number range, for measurement of isothermal GC retention 

times: 

i) retention increases rapidly with boiling point, in a generally linear plot of log(RT) 

vs Carbon Number. 

ii) as a consequence of (i), only a limited number of alkanes’ isothermal RTs can be 

obtained from a single injection at a given temperature. 
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As single alkanes above nC40H82 are not readily commercially available with adequate 

purity —with the exception of nC44H90, nC50H102 and nC60H122 — Polywaxes are 

generally utilized for retention time measurements to generate boiling-point/RT 

calibration plots for HTGC analyses.   

 

However, the latter are mixtures comprising polyethylene oligomers of even carbon 

number intervals, and are qualitative mixtures only.  Hence the weight fraction of each 

oligomer in a particular Polywax distribution is not readily known, although accurate 

estimation is possible if the complete distribution can be chromatographed and total 

elution can be demonstrated, e.g. by spiking.   

 

Whilst qualitative alkane or Polywax mixtures – or a combination of the two -- are 

suitably adequate for both isothermal and temperature programmed retention time 

measurements, gravimetric dilutions in CS2 of the ASTM D5442 Linearity Standard 

were also used in this chapter, covering the alkanes nC12-nC14-nC16-nC18-nC20-nC22-

nC24-nC26-nC28-nC30-nC32-nC36-nC40-nC44-nC50-nC60.  

 

In such cases, fairly accurate calculations are possible of the molar quantities of each 

alkane injected in a given volume.  However, this is not the case where a gravimetric 

blend of this standard is made with a Polywax solution in CS2 except for those alkanes 

which elute before the lightest oligomers present in the Polywax range. 

 

Four main samples were prepared for the isothermal gas chromatography runs, one 

containing 25mg of nC12H26-nC60H122 (ASTM D5442) in 20ml of CS2, and three others 

as suggested by ASTM D7169-11; 25 mg of Polywax, 10mg paraffin and 20ml CS2. 

  

Three different Polywax mixtures were used, with average molecular weights of 655, 

850 and 1000, and for peak identification purposes three n-alkane blends in CS2 dilution 

were prepared: nC28, nC32, nC34, nC36, nC40;  nC16, nC20, nC24;  and  nC44- nC50- nC60. 
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4.6.Experimental determination of constant inlet pressure using isothermal 

retention time measurements 

The hold-up time can be calculated by integrating the inverse of the velocity of 

mobile phase (Equation 4-8), according to the coordinate x through the length of the 

column [9, 20]: 

 

�5 = � H�65��, ��
w

~
= 32 [:;���< W 

3 �� · :PITl − P�UVl<
:PIT + P�UV <  

Equation 4-10 

 

        Table 4-2. Inlet Pressure calculation for HT5 column 

Thus, in order to obtain the most accurate constant inlet pressure value for use in the 

in-house GC modelling (CHAPTER 3 –) [2-3], Equation 4-10 is solved simultaneously 

for every corresponding temperature in the range of (80-430)°C as shown in (        Table 

4-2), assuming an ambient outlet pressure: 101.325 kPa, the dimensions of Column 

1(see Table 4-1), and calculating the viscosity of the carrier gas (He in the study case), 
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using the equation introduced by Kestin [17] and simplified by Hawkes [18]. (See the 

summarized equations in CHAPTER 3 –) [2-3]. 

 

Whilst the indicated gauge inlet pressure for GC-2 was 20kPa, the calculated value 

using this approach is 18.3kPa, as shown in (        Table 4-2), providing better precision 

for modelling purposes, and yielding an inlet pressure of 119.6kPa.   

 

This approach has been described by Gonzalez [20] as insufficiently accurate for the 

determination of the hold-up time, tm “due to the intrinsic errors of measurement in the 

average internal column diameter, the carrier gas viscosity, or the flow-rate”.[20] 

Nevertheless, since the objective is to obtain a more accurate inlet pressure than the 

integral GC gauge indication, for use as an average through the entire temperature range 

applied, this approach can be used, although introducing a tolerable error, as shown in 

Figure 4-2.  

 

Figure 4-2. Comparison of Hold-up time(tm) experimental and calculated. (HT5 

column) 

The largest deviations are found at temperatures greater than 300°C, with an average 

relative error of 2.9% as indicated in         Table 4-2.  The higher the temperature, the 

higher is the viscosity of carrier gas (Helium), and therefore the lower is its velocity 

because of the increased resistance to flow within the column.  These considerable 

discrepancies have been studied by Castello et al. [21] 
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Nevertheless the method does permit a more accurate input value to be obtained for 

the inlet pressure to be used analytically in the calculations of velocity of carrier gas, the 

effective velocity of each one of the analytes, and finally in the prediction of retention 

times, as will be shown in section 8, of this chapter.  

 

4.7.Determination of distribution factors for an HT5 capillary column using in-

house experimental data 

On completion of the isothermal retention time measurements, all data were reviewed 

in order to identify any that were unreliable and which did not conform to expected 

behaviour. Suspect data could then be excluded, eliminating their potential to introduce 

a global error to the overall determination of the distributions factors.   

 

This screening was important due to the large amount of data acquired, and it enabled 

identification of random errors such as misidentification of peaks, especially for the late 

eluting Polywax components, whose carbon numbers were greater than the highest 

available, heavy alkane, nC60H122, which served as a marker. 

 

Two approaches were applied in assessing out-of-trend experimental data for deletion. 

The first was to plot log(tr-tm) vs SCN, which corresponds to a linear curve[22-24]. This 

graph has been plotted for each isothermal run, spanning 80°C-430°C with outliers of 

the regression line with a coefficient of correlation (r2) of 0.999, excluded.  

  

The second method of assessment was to plot Ln((tr-tm)/tm)*Beta vs 1/T, which is 

based on Equation 4-2, relating K with tr and tm, and which behaviour is expected to be 

linear according to (Equation 4-1). [6-7] . 

 

Plots of the screened retention data, after smoothing by reference to the linearity of 

the log(tr-tm) vs SCN relationship (Coefficient of correlation (r2) of 0.999)  are shown in 

Figure 4-3 for GC-1(12m column), for constant inlet pressure. Similarly smoothed data 

for GC-2(5m column) are shown in Figure 4-4, where constant flow rate conditions 

applied. 
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Figure 4-3.  Log (tr-tm) vs SCN at 19 isothermal experiments in gas 

chromatography using constant inlet pressure of 18.3 kPa (gauge pressure), in 

GC-1 (Table 4-1). 

 

Figure 4-4. Log (tr-tm) vs SCN at 20 isothermal experiments in gas 

chromatography using constant flow rate of 20ml/min, in GC-2 (Table 4-1). 
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Plots of the screened retention data, after smoothing by reference to the linearity of 

the Ln(K(t)) as function of tr and tm (Equation 4-6)  vs 1/T, are shown in Figure 4-5 for 

GC-1 (12m column), for constant inlet pressure; and similarly smoothed data for GC-2 

(5m column) are shown in Figure 4-6(upper) for nC12H26 – nC54H110, and Figure 

4-6(lower) for nC54 – nC98, where constant flow rate conditions applied for both.   

 

 

Figure 4-5. (Ln (K(t)) = Ln((tr/tm-1)*β)) vs SCN, for n-alkanes (nC12H26 – nC54H110) 

at 20 isothermal chromatographic runs (80-430)°C using constant inlet pressure 

of 18.3 kPa (gauge pressure), in GC-1 (Table 4-1). 

 
Following the above data smoothing procedures, the reliable data were fitted to 

Equation 4-6 in order to obtain coefficients a0, and a1, which correspond to the 

thermodynamic values ∆S(T)/R and ∆H(T)/R respectively, according to Equation 4-5.  

 

The values are temperature dependent, and are valid in the temperature range 10°C - 

430°C, as the validation section will explain subsequently.  
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Figure 4-6. (Ln (K(t)) = Ln((tr/tm-1)*β)) vs SCN, for n-alkanes (nC12H26-nC98H198) 

at 20 isothermal chromatographic runs (80-430)°C using constant flow rate of 

20ml.min-1, in GC-2 (Table 4-1) 

Data obtained for the 12m column (GC-1) using constant inlet pressure of 119.6 kPa, 

are summarized in Table 4-3 for the nC12H26-nC64H130 range of alkanes, with a 

coefficient of correlation (r2) of 0.999.   
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Table 4-3.  Thermodynamic properties of n-alkanes (nC12H26-nC64H130) determined 

in the range of (80-430)°C using constant inlet pressure (gauge pressure=18.3 

kPa) in GC-1 (Table 4-1). 

 
Similarly, the corresponding data for the 5m column (GC-2), with a constant flow rate 

of 20ml.min-1, are summarized in Table 4-4 for the nC12H26-nC98H198 range. 

 

It is important to note that with the high efficiency mode of HTGC column 

configuration of long column operated at low flow rate, the range of n-alkanes detected 

and suitable for determination of distribution factors, extended only to nC64H130. The 

range was limited by the greater retention times associated with the low flow-rate, 

which increased resolution but resulted in a lower cut-off for the heavy alkanes which 

elute at a given temperature.    
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Also, as every component has to be identified at least 3 isothermal gas 

chromatography runs were carried out in order to fit Equation 4-6, fewer alkanes could 

be validated by screening.  For that reason it was necessary to adopt a short HT5 

column configuration, operated at high flow rate for true SimDist conditions, based on 

ASTM D7169-11 [1], in order to increase the range of eluting n-alkanes for which 

distribution factors could then be determined. 

 

 

Table 4-4. Thermodynamic properties of n-alkanes (nC12-nC98), determined in the 

range of (80-430)°C using constant flow rate of 6ml/min, in GC-2 (Table 4-1). 

As distribution factors are a function of the phase ratio, β (Equation 4-6)  but 

independent of column length, it was necessary that the 5m HT5 column for SimDist 

operating conditions should also have a film thickness of 0.15 microns*. (GC-2, Table 

4-1). (*A matching phase ratio can be assumed because of the tight manufacturing 

specifications achievable in modern capillary column manufacturing processes).  In this 

way, the range of eluting alkanes was extended to nC100H202, enabling distribution 
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factors up to nC98H198 to be obtained, consistent with the earlier data derived from the 

12m HT5 column (GC-1). 

 

Both sets of data of K, have been applied to either mode of flow control, with 

tolerable errors as will be shown in the following section.  

 

4.8.Validation of the predicted retention times (RTs) 

The retention time prediction model, developed in MATLAB R2010bSP1, was 

described in CHAPTER 3 –[2-3]. It is based on Equation 4-7, and contains the 

corresponding equations for calculation of viscosity, pressure, and velocity through the 

GC column, for which the main input data requirement is the distribution coefficients of 

every compound, as explained earlier. (See Section 4.7). 

 

The model has been validated using distribution coefficients obtained in this chapter 

for nC12-nC64 (Table 4-3) and for nC12-nC98 (Table 4-4), which were applied to analyses 

conducted under both modes of flow control --- constant inlet pressure, and constant 

flow rate. These analyses were conducted on both the 12m (GC-1), and the 5m HT5 

column (GC-2), with 3 different temperature ramps applied as described in           Table 

4-5.   Validation of the model led to some interesting conclusions, which are discussed 

in the following sections. 

 

          Table 4-5. Temperature Programming 

 

4.8.1. Validation of the model for predicted RTs at constant inlet pressure 

Validation of this model has been carried out experimentally, using temperature 

ramps of 10°, 15°, and 20°C.min-1 (Table 4-5) for the analysis of a solution of Polywax 

850 + nC12H26-nC60H122, described above.  All analyses involved the 12m HT5 column 

(GC-1), operated under constant inlet pressure conditions, at an indicated 20kPa gauge 
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pressure, and producing a set of retention times for each ramp for the nC12H26-nC60H122 

alkane range. 

 

The experimental values obtained have been compared with the two data sets of 

distribution factors obtained using isothermal GC measurements at constant flow rate 

(Table 4-4), and at constant inlet pressure (Table 4-3).  The calculated input value of 

18.3kPa used in the model for the constant inlet gauge pressure has been obtained 

according to the experimental procedures explained above, as shown in Table 4-2. 

 

Figure 4-7. Validation of the model developed with in-house experimental data 

for Alkanes, using the temperature programming (Table 4-5), for n-alkanes 

(nC12H26-nC98H198) at constant inlet pressure (Gauge pressure=18.3 kPa), in GC-

1 (Table 4-1), using K** (Table 4-4) and K* (Table 4-3). 

Figure 4-7 shows the improved match of the model prediction with the experimental 

data, using the data set of distribution factors K*  (obtained with isothermal GC 

measurements under constant inlet pressure (Table 4-3), with an average deviation of 

1.5% relative error. This finding was as expected, as the isothermal experiments and the 

3 ramps of temperature were carried out using the same column configuration (Table 

4-1) and same constant inlet pressure.  
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The deviations resulting from the data set of distribution factors K**  (obtained with 

isothermal GC measurements under constant flow rate) are shown in Table 4-4, with a 

higher average relative error of 4.8%.  This also is to be expected due to the different 

conditions at which the distribution factors were obtained (constant flow rate), 

compared with those which applied to analyses involving the three different temperature 

ramps, where constant inlet pressure flow mode was applied.  

 

4.8.2. Validation of the model for predicted RTs at constant flow rate 

For the validation at constant flow rate, the same three ramps of temperature were 

applied for analyses of the solution of Polywax 850 + nC12H26-nC60H122 , but using the 

5 m HT5 column(GC2) at constant flow rate of 20 ml.min-1 as specified in ASTM 

D7169-11 [1].   A set of retention times for each ramp was thus obtained for the 

nC12H26-nC98H198 alkane range. 

 

The experimental values have been compared with the same two data sets of 

distribution factors used in the case of constant inlet pressure, summarized in Table 4-3, 

obtained at constant inlet pressure, and in Table 4-4, at constant flow rate conditions.  

 

The developed in-house model allows a choice between constant inlet pressure, and 

constant flow rate for intended calculations.  When using the latter, the model calculates 

the variation of the inlet pressure required for maintaining the flow constant at reference 

conditions, as temperature increases and carrier-gas viscosity does likewise. 

 

A third model was therefore used for predicting experimental retention times, by 

using the distribution factors obtained at constant flow rate, but using an average 

constant inlet pressure derived by algorithm, rather than recalculating the inlet pressure 

required to maintain constant flow.  

 

The average inlet pressure used has been calculated as the average between the range 

of pressure required to maintain constant flow throughout the temperature program 

used. The lowest pressure required is at 10 °C, namely 115.5kPa; and the highest 

pressure required is at 430C: 133.9kPa (with an average value throughout the 

programming temperature of 124.7 kPa).  
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This model takes into account the average response of the flow controller during the 

temperature program, since no model exists for estimating the effect on inlet pressure of 

the lag in temperature between column and oven.  

 

Figure 4-8 shows that at constant flow rate, and using the data set of distribution 

factors K**  obtained at the same condition, and using the same column configuration as 

the 3 ramps of temperature, the model predictions produce an average relative error of 

4.4%.  

 

Figure 4-8. Validation of the model developed with in-house experimental data 

for Alkanes, using temperature programming (          Table 4-5), for n-alkanes 

(nC12-nC98) at constant flow rate of 20ml.min-1, in GC-2 (Table 4-1), using K** 

(Table 4-4) and K* (Table 4-3) and at constant inlet pressure (mean pressure = 

P*= 124.7kPa) using K** (Table 4-4). 

Figure 4-8 may reflect use of an ideal model, which produces an immediate change in 

the inlet pressure in response to the temperature program set-point, rather than the true 

column temperature. Therefore a model taking account of both the lag in temperature 

changes, and the lag in the response of the flow controller for changing the inlet 

pressure, would be required in order to improve the predictions, such as the one 

suggested by Conder [25]. 
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The model providing the best match in Figure 4-8, with the experimental data is the 

third model (K**,P* ) which used the data set of distribution factors obtained from the 

5m HT5 column (GC-2), operated under the same conditions as the three ramps of 

temperatures, with constant flow rate of 20ml.min-1, but using the model at constant 

inlet pressure with an average value of 124.7kPa, which yielded an average relative 

error of 2.4%.  

 

This outcome is as expected since an average value of the inlet pressure will represent 

an average change by the flow controller to the inlet pressure during the temperature 

changes, even with a lag in response.  

 

The model producing the highest deviation is, as expected the one using the data set 

of distribution factors (K** ) obtained at different conditions from the one used for the 

three ramps of temperatures, as occurs with the validation at constant inlet pressure, 

described previously. Figure 4-8 depicts an average relative error of 9.2% when using 

the thermodynamic data obtained at constant inlet pressure, since the 3 ramps of 

temperature were carried out a constant flow rate. 

 

Finally, it is notable that accurate retention time predictions have been obtained for 

the three temperature ramps which initiated from 10°C up to 430°C, even when the 

temperature range for which the distribution factors have been derived, related to 

isothermal measurements in the range 80°C to 430°C. 

 

4.9.Conclusions 

This chapter provides an extension of the data set of distribution factors for n-alkanes 

up to nC98H198 over the temperature range 10°C-430°C, based on isothermal gas 

chromatography measurements carried out at both constant inlet pressure and constant 

flow rate. 

 

 The former used the common HTGC configuration of a long column with low flow 

rate providing a data set of distribution factors for the n-alkane range spanning nC12H26-

nC64H130.   
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As the purpose of this thesis is to analyze the GC limits for heavy n-alkanes, and since 

the extrapolation of the above distribution factors yielded poor predictions, this work 

proposed extension of the data set of K values(distribution factors) for nC12H26- 

nC98H198, by using a true SimDist configuration with a short HTGC column operated at 

high flow rate. 

 

The distribution factors obtained in this chapter were used as the main input for the 

GC developed model for the prediction of retention times, which was introduced in 

CHAPTER 3 –.  Its validation has been carried out using distribution factors obtained at 

both constant flow rate and constant inlet pressure operating conditions.   

 

Two conventional HTGC configurations were applied: for efficient resolution with a 

long column operated at low flow rate; and true SimDist HTGC with a short column 

operated at high flow rate for inefficient resolution. 

 

When the distribution factors used in the modelling have been obtained at the same 

conditions as the experimental data with which they are being compared, an average 

relative error of 1.5% was found for constant inlet pressure mode; and of 4.4% for 

constant flow rate mode.   

 

Nevertheless, when the distribution factors used were obtained at different conditions, 

an average relative error of 4.8% was found (e.g. when distribution factors at constant 

flow mode were applied to measurements to be validated at constant inlet pressure).  

The average relative error increased to 9.2% when distribution factors obtained at 

constant inlet pressure were applied to experiments conducted at constant flow.  

 

Finally, a model running at constant inlet pressure, using the average value through 

the temperature programming was used in order to improve the predictions when the 

experiments were carried out at constant flow rate, giving an average relative error of 

2.35%.  

 

This chapter also provides a basis for extending the analysis of non-elution using 

HTGC configurations (introduced in CHAPTER 3 –) for n-alkanes heavier than 

nC62H126, which will be treated in CHAPTER 5 –.   
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CHAPTER 5 – COUPLED PYROLYSIS-GC MODEL, 

DETERMINATION OF PYROLYSIS RISK INSIDE THE 

GC COLUMN AND INCOMPLETE ELUTION 

 

5.1. Introduction 

The objective of this chapter is to provide an in-depth analysis of the two main 

HTGC limitations for the analysis of heavy oil hydrocarbons. First, the pyrolysis risk 

inside the GC column; and secondly, the non/incomplete elution of heavy n-alkanes 

spanning the range from nC14H30 to nC80H162. 

 

The large amount of species of the reduced free-radical pyrolysis model developed 

and explained in CHAPTER 2 –, has imposed the need to develop a reduced molecular 

pyrolysis model, comprising 11 n-alkanes (nC14H30, nC16H32, nC20H42, nC25H52, 

nC30H62, nC35H72, nC40H82, nC50H102, nC60H122, nC70H142, and nC80H162).   

 

Similarly, the excessive computing time of the GC model developed in (COMSOL-

MATLAB) and explained in detail in CHAPTER 3 –, for predicting the zone’s 

variances while every component is migrating and partitioning between the stationary 

and the gas phases, has imposed the need to develop an analytical and more efficient 

GC model.   

 

Thus, using these two efficient models, a Pyrolysis-GC coupled model has been 

developed in MATLAB, running at constant time-step, which enables isothermal 

conditions to be assumed at every time-step calculation. This model is capable of 

calculating the cumulative pyrolysis conversion and the degree of elution in order to 

determine the maximum single carbon number (SCN) which can be reliably quantified 

using HTGC analysis. 

 

5.2. Reduction of the pyrolysis model 

Simulation of large reaction mechanisms can result in excessive computational 

demands / processing time.  Consequently it is necessary to reduce the size of the 
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reaction mechanisms to an almost equivalent, smaller computing model, several of 

which exist, mostly based on mathematical rather than chemical concepts. [1-2] 

 

In CHAPTER 2 – [3] a reduced free radical primary pyrolysis mechanism has been 

developed for the n-alkanes, comprising nC12H30, nC16H34, nC20H42, nC25H52, nC30H62, 

nC35H72, nC40H82, nC45H92, nC50H102, nC55H112, nC60H122, nC65H132,nC70H142, nC75H152 

and nC80H162. This model accounts for 15 reactants, 7055 reactions, 336 species, 242 

molecules, and 94 radicals (Table 5-1).  

 

Table 5-1. Summary of size of the mechanistic kinetics model developed. (See the 

free radical mechanism in CHAPTER 2 –) 
 

Nevertheless, the large size of this model still represents a computing time constraint, 

when coupled to a GC migration/separation model, which is the ultimate purpose of this 

work. 

 

 A further reduction is therefore required of the free-radical pyrolysis model, when 

developing it into a molecular pyrolysis model. This new reduction process is based on 

knowledge of the thermal reactions’ networks and the rates of the different pathways[4], 

and will be explained as follows.  

 

The validation is based on the comparison of the results of simulations obtained from 

the reduced molecular mechanisms with those derived from the free radical mechanisms 

mixture model developed in CHAPTER 2 –[3], using a closed reactor at 1MPa and at 

380 °C and 450 °C, with an initial equimolar composition of 9.09% molar for each of 

the 11-n-alkanes studied in this chapter (nC12H30- nC80H162) .   

 

A generic reaction scheme of the thermal cracking at low conversion is depicted in 

Figure 5-1.  The thermal cracking of an alkane (reactant: µH) is made up of chain 
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reactions leading to two cracking products, an alkane lighter: βH, with lower single 

carbon number (SCN) than µH, and an alkene.   

 

Figure 5-1 Primary Reduced Reaction mechanism of thermal cracking of alkanes, 

for low-temperature and low conversion.  (Reactant: µH), (radicals: µ•, β•), 

(alkanes: µH, βH ). 

The chain scheme uses the standard notation [5-6] to refer to the radicals, µ and β 

which react in a uni-molecular and bi-molecular propagation step, respectively. [7] The 

mechanism presented is based on the work of Bounaceur et al. [8] 

 

The temperature range used in HTGC analysis is considered as low temperature for 

pyrolysis reactions, and therefore the propagation chain reactions control the whole 

pyrolysis mechanism. At these conditions the decomposition reaction is the limiting 

reaction (or limiting step) of the propagation chain [8], and therefore of  the global rate 

of the reaction (for the whole mechanism). This is based on the Quasi-Stationary-State 

Approximation (QSSA) and the Long Chain Approximation (LCA). [8] (See 

CHAPTER 2 –[3]) 

 

5.2.1. Reduction of the radical pyrolysis model to a molecular pyrolysis model 

(stoichiometric lumping) 

The size reduction from a radical mechanism to a stoichiometric mechanism is 

considerable, as will be presented in the next sub-sections. However, the approach 

required for building a molecular reduced mechanism is much less straightforward than 

the approach used for lumping radical reactions mechanism. Additionally the reactions 
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are not of first order but ½ orders, which are the main source of possible errors, and 

hence the technique should be applied to complex mixtures with extreme care.  

 

The free-radical mechanism developed for the mixture spanning the range of alkanes , 

nC14H30- to nC80H162 (CHAPTER 2 –[3]), will be named “Original Mechanism”, the 

reduction of which simplifies all of the radical species, according to the above mention 

simplification. Thus, the whole mechanism is reduced to the propagation chain only, 

which is much more significant than the initiation and termination reactions, due to the 

long chain simplification 

 

In the first reduction step, all the decomposition and H-transfer reactions have been 

simplified into their corresponding molecular reaction (Figure 5-2). Since the rate 

limiting reaction is the decomposition, applying the Quasi-Steady State Approximation, 

its kinetic parameters have been calculated according to Equation 5-1.  The rate constant 

parameters used come from the lumped initiation and termination reactions of all the n-

alkanes considered (µH), considering all kind of µ or β radicals. 

 

r,�� =  r������      ;    r������ = r� = k�& µ •) =  k�S���� �& µH) 
 Equation 5-1 

 
As the required reaction (1/2) order cannot be simulated by means of the software 

CHEMKIN II, it is considered to be a first order reaction, which may have chemical 

sense, since the temperature range used in this work is around 400°C, and according to 

Bounaceur [4] the global order of the reaction for n-alkane cracking at low temperature 

(~ 200°C ) is equal to ½ and at high temperature (above 600 °C) is close to 3/2. 

 

Nevertheless, after comparing the original model and the first step reduced 

mechanism, a slight under-reactivity of the mixture has been observed for temperatures 

around 400°C. Therefore, the pre-exponential factors of all the molecular reactions have 

been multiplied by an arbitrary factor of 10 in order to increase the reactivity and 

reproduce the simulated values obtain with the original mechanism. 

 

Finally, a reduced molecular model representative of the pyrolysis of the Original 

Model has been obtained, composed of 2935 reactions and 161 molecular compounds.  
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In order to reduce further the molecular model, a second step reduction has been 

applied, by lumping some species into the following 14 “classes” : alkene, CH4, C2H6,  

C3-C5, C6-C13, C15H32, C17-C19, C21-C24, C26-C29, C31-C34, C36-C39, C41-C49, C51-C59, C61-

C69, C71-C79, and keeping the 11 n-alkanes as reactants from the original model. 

 

Thus, the class “C21-C24” represents the lumping of n-C21H44, n-C22H46, n-C23H48 and 

n-C24H50, and the class “alkene” represents the sum of all the alkenes included in the 

original model. 

 

The reduction of the reaction and its corresponding kinetic data is required to be 

written step-by -step taking into account all kind of reactions in which the species 

belonging to the new class are included, and finally lumping all the reactions which are 

repeated. 

 

In the case of the class “C3-C5”, the stoichiometric reduction of nC5H12 accounts for 6 

reactions (Figure 5-2.a), which required to be rewritten as described (Figure 5-2.b) and 

then rearranged, in order to obtain the 2 class lumped reactions. 

 

When replacing every molecule by the corresponding class, the resulting mechanism 

comprises many repeated reactions (highlighted in blue and purple (Figure 5-2.b) which 

have been grouped, and their kinetic parameter corresponds to the sum of all the 

repeated reactions, as described in (Figure 5-2.b). 

 

It is important to notice, that the reactions which yield the same “class” have no 

chemical sense, and therefore are eliminated from the mechanism.  

 

This procedure has been applied to the whole molecular mechanism (representing the 

pyrolysis of the 11 n-alkanes studied) and a further reduced mechanism has been 

obtained, comprising 296 reactions and 26 molecular compounds. 

 

 Additional trimming of the number of classes was done in order to further reduce the 

mechanism, whilst still reflecting the reactants, and classes of interest for this study. 
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a)  

b)   

Figure 5-2. Stoichiometric reduction of nC5H12 (a) and reduction by class of “C3-

C5”(b). 

Therefore, a new class has been introduced: “C15 plus” which will represents the 

lumping of nC15H32 with the classes: C17-C19, C21-C24, C26-C29, C31-C34, C36-C39, C41-

C49, C51-C59, C61-C69 and C71-C79.  

 

Thus, the final reduced molecular mechanism, accounts for the 11 original n-alkanes 

(reactants) and the 6 following classes: alkene, CH4, C2H6, C3-C5, C6-C13 and C15 plus.   

In this case, three rearrangements are applied:  

a) Lumping of molecules belonging to the global class “C15 plus” which are 

produced by an n-alkane reactant.  

b) Lumping of n-alkane reactants which produced n-alkane reactants or lighter 

class. 

c) Lumping of global class C15 as reactant. 

 

In case (a), all of the reactions which will yield the class “C15 plus” will be added.  For 

example, in the case of C25H52, the products: C21-C24, C17-C19, and C15H32, belong to the 
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global class “C15 plus”, and therefore the three reactions will be added to represent a 

single reaction, as shown in the Figure 5-3. 

 

Figure 5-3  Reduction of the Mechanism by “class” for the C25H52 yielding class 

“C15plus” 

The kinetic parameters will be calculated with Equation 5-2:  

KAlkane →C15plus ∗ &Alkane) = ¤ KAlkane →classes  >�15 &Alkane) 

 

Equation 5-2 

Then in the case of Figure 5-3, Rs = Ks·[C25H52] = K1·[C25H52] + K2·[C25H52] + 

K3·[C25H52]. Therefore, the pre-exponential parameter will be the sum of the 

corresponding values for the reactions yielding the classes which belong to the global 

class ““C15 plus” ”, and the remaining reactions are highlighted in blue in Figure 5-3. 

 

In the case (b), since there is no lumping, the reactions remain the same, either for the 

n-alkanes lighter than the reactant as well as for the lighter classes C6-C13, C3-C5, C2H6, 

and CH4. 

 

In the case (c), it is necessary to rewrite the equations for every class heavier than 

nC15H32 (shown in Figure 5-4) and to calculate the percentage of the classes heavier 

than nC15H32, which yields the 11 n-alkanes and the classes lighter than nC15H32, using 

Equation 5-3. 

 

%_�
� ��?��H ���h����
=  9	���	h Z���Y���� �_ �ℎ� ���h�	�� ¨	��H	�� �ℎ� ���h����

Y �_ ��� �ℎ� 9	���	h Z���Y����
  

Equation 5-3 
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Thus, it is necessary to know the total kinetic flux that the given classes heavier than 

nC15H32 will produce, which in turn, is the sum of all the kinetic flux producing either 

heavier or lighter classes than nC15H32 and pure alkanes.  

 

The equivalent kinetic data are then calculated using Equation 5-4:   

 

K©Nnª�«¬→ª­�®«¯° = �%_�
�  ±��¬¬²³Nn→´|��UIV� · K±��¬¬²³Nn→´|��UIV 
Equation 5-4 

As (Figure 5-4) illustrates, the reactions highlighted in green will disappear, since 

they do not have chemical sense (C15 plus => C15 plus + alkene).  But for the remainder 

of the reactions, it is necessary to calculate the equivalent flux that generates them, 

using Equation 5-3 and Equation 5-4. 

 

For example, the kinetic parameter for the reaction: “C15 plus”  → alkene+ C70H142, 

comes from the reaction C71-C79 → alkene+ C70H142.  Therefore, the flux of these 

reactions will be using Equation 5-3 and according to Figure 5-4:  

 

%_�
�  ±��¬¬²³Nn→´|��UIV =  3.72 · 10Nc
�∑ K� = 2.61 · 10Nµ = 1.43 · 10b  

and the equivalent kinetic will be using Equation 5-4 and according to Figure 5-4:   

 

K©Nnª�«¬→ª­�®«¯° = �  1.43 · 10b � · � 3.72 · 10Ncebc~n~~¶� � = 5.31 · 10Nn ebc~n~~¶�  
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Figure 5-4.  Reduction of the Mechanism by “class” for the class C71-C79  which 

become class “C15 plus” 

After applying this process to the whole mechanism, the kinetic data for all of the 

repeated reactions is the sum of the individual kinetic data using Equation 5-2. 
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Finally, a “class” molecular mechanism composed of 127 molecular reactions and 

17 molecular compounds has been obtained. 

 
 

5.2.2. Validation of the final class model 

After comparing the conversion of the 11 n-alkanes, either pure or in mixture at 

several temperatures, it was found that the biggest deviation between the original 

reduced radical model, and the molecular reduced model occurred at higher conversions 

for the decomposition products.  This is to be expected since the developed mechanism 

accounts only for a primary mechanism capable of describing complete conversion of 

reactants, but not accurately for the formation of products.   

 

Furthermore, the simplification of the reaction yielding “C15 plus” from “C15 plus”, at 

the end of the class reductions (no chemical sense for this reaction), may have a 

chemical effect in the whole decomposition mechanism of this component, which 

would be interesting to analysis in a future work.  

 

The comparison of the original pyrolysis mechanism and the “class” molecular 

mechanism for all of the 11 n-alkane reactants (nC14, nC16, nC20, nC25, nC30, nC35, nC40, 

nC50, nC60, nC70, nC80), is depicted in Figure 5-5. 

 

After reducing the mechanism from 7055 reactions to 127 reactions, and from 336 

species to 17 species (Table 5-1), good accuracy was obtained at different 

temperatures.  

 

In addition, all the kinetic parameters used have a real chemical meaning since no 

mathematical optimization has been applied for building the “class” reduced mechanism 

introduced above. 

 
   The good agreement achieved between the original model (reduced radical 

mechanism validated up to nC25H52 [3]) and the reduced “class” molecular model, 

demonstrates the validity of the reduced molecular model for heavy n-alkane mixtures. 

The deviation at low conversion is the lowest, as expected, since the primary 

mechanism is capable of accurately predicting the initial production at temperatures 

below 450°C.   
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Figure 5-5. Comparison of free radical model and “class” molecular model for 

heavy n-alkanes mixtures. (simulation of a closed reactor at 1MPa) 
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For the scope of this work, these results are very satisfactory, due to the shorter 

residence time of reactants at high temperatures.  

 

5.3. Gas Chromatography model  

In CHAPTER 3 –[9] a GC model in MATLAB has been developed for the prediction 

of retention times of each solute, using a discretization approach introduced by Snijders. 

[10]. Another GC model in (COMSOL-MATLAB) was then developed to calculate the 

distribution profile of each component at every time step, and hence its concentration 

profile.  

 

But as in the case for the large pyrolysis model, the computing time of the latter 

model represents a constraint when it is coupled to the reduced molecular pyrolysis 

model.  Therefore, the discretization method introduced by Snijders [10]  has been used 

also for the prediction of the peak width of the solute zone, corresponding to the space 

occupied by a solute migrating in a column [11]).  This approach showed superior 

performance in computing time and has been coupled successfully to the reduced 

molecular pyrolysis model introduced in Section 5.2. 

 

Snijders [10] proposed to discretize the simulation in equal time segments in order to 

enable isothermal properties to be applied for every time-step. Also, if the time step 

chosen is sufficiently small a uniform pressure can be assumed in the space segments 

travelled.  

 

Thus, at every time step the local plate height (H) is calculated based on the Golay 

[12] equation for open tubular columns (Equation 5-5).  

4��, �� = 2 · �5��, ��65��, ��
+  65��, ��  7�1 + 6 · 9:;���< + 11 · 9�;���� 

24 · &1 + 9:;���<) · �� 
�5��, ��!

+ � 2 · 9:;���<
3 · &1 + 9:;���<) · ? 

�@��, ��!A 

Equation 5-5 
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Here, k corresponds to the retention factor, which is the ratio (K/ β; K corresponds to 

the distribution factor; and β is the phase ratio of the column.  ro and w correspond 

respectively to the inner radius of the column and the film thickness of the stationary 

phase. Ds, and Dm correspond to the diffusion constant respectively in the stationary and 

mobile phase, and vm corresponds to the velocity of migration of the carrier gas. 

 

 At a given position, x the local zone variance (σx
2, length unit) of a solute from the 

zone centroid, represent the solute’s spreading and can be calculated with Equation 5-6. 

 

�· �O�T� = 4��T, �T� · O�T    

 Equation 5-6 

 

Also, the increment in the zone variance (length unit), is represented by the 

summation of all the local contributions of zone variances, as described in Equation 5-7. 

, where at every time step, the correction is applied for the expansion of the solute zone 

due to the reduction in pressure (P) along the column, as introduced by Giddings [13]. 

 

�· ��T� = ¸¤ �· �O�I�
TbN

I¹N
º · jP��TbN�P��T� p + �· �O�T� 

Equation 5-7 

 

This approach, has been programmed in MATLAB, and has been compared with the 

solution yielded by the COMSOL-MATLAB model developed in CHAPTER 3 – [9], 

which solves the diffusive-convective equation by finite elements.  

 

 

Table 5-2. Column Dimensions of in-house HTGC 
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Table 5-3. Temperature Programming 

A comparison of the two methods is depicted in Figure 5-6, for nC12H26 migrating in 

a 12m HT5 column, for which column dimensions and temperature programming 

details are shown in Table 5-2 and Table 5-3).  Excellent agreement was obtained in 

predictions of the zone’s centroid, with an average relative error of 1.1%, and in the 

case of the zone’s standard deviations, an average relative error of 3% was found, with 

the largest error occurring when the solute approaches the column outlet 

 

However, the lengthy computing time of the method in solving the diffusive-

convective equations prohibits its use for a large number of components, especially if  

coupled with the  chemical reactions model.  

 

Thus, in this study, the analytical method introduced by Snijders [10] has been 

implemented in MATLAB and coupled to the reduced molecular pyrolysis model 

(described previously in Section 2), by calling CHEMKIN at every time step iteration, 

and using feedback between the two models until each component elutes from the GC 

column.  
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Figure 5-6. Comparison of Zone standard deviation and zone centroid of nC12H26, 

predicted using an iterative analytic approach [10] using MATLAB and solving 

the diffusive-convection equation by finite element using COMSOL. (Column 

dimensions Table 5-2 and temperature programming Table 5-3) 

 
 
Based on Equation 5-7, for predicting the zone’s width, and Equation 5-8, for predicting 

the retention times, a synthetic chromatograms has been assessed for 12m GC column.  

 

 

 

Figure 5-7. Synthetic Chromatogram, obtained using the aone standard deviation 

and zone centroid, predicted using an iterative analytic approach [10] using 

MATLAB (Column dimensions Table 5-2 and temperature programming Table 

5-3) 

 

5.4. Pyrolysis-Gas Chromatography model (Coupled Model) 

Both the reduced molecular pyrolysis model (see Section 5.2.1) and the analytic 

iterative GC model (introduced previously in Section 5.3) are indivdually efficient, in 

terms of time computing, for coupling as a single, efficient physic-chemical model. 

 

The latter is capable of predicting at every time-step, the zone’s centroid, standard 

deviation and pyrolysis decomposition (if it occurs at the given temperature and delta 

time step), of every solute studied, either as a mixture or as a single component.  
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In order to maintain a constant temperature at every time-step, a constant time-step 

has been implemented, permitting an increment of 1°C every 4 seconds (due to the ramp 

of 15°C/min, used in the temperature programming Table 5-3). 

 

Initially, for every component studied, the position of the zone’s centroid in the next 

time step (xi+1), is calculated, using Snijders[10] approach (Equation 5-8) (see 

CHAPTER 3 –[9]), the distribution factor (K), and the phase ratio (β). 

 

�IMN = �I + 65��I, �I�
1 + KI:;��I�<L

· O� 

Equation 5-8 

Figure 5-8, shows the algorithm explaining the global calculation carried out by the 

coupled model, using the above models as explained previously.   

 

The properties (K, η, vm, Ds, Dm, ) of each component are then calculated at the 

temperature of  the next time step T(t(j+1)), and the local pressure at the zone’s centroid 

position (P(x(j+1)).  

 

Then, the local plate height at the next time-step, H(j+1) is calculated using Equation 

5-5, with the zone’s variance, σx
2(j+1) derived using Equation 5-7.  

 

At this point, the degree of elution at the time-step t(j) is calculated in order to 

determine the fraction of the zone’s distribution which traverses the column outlet, 

enabling calculation of the number of moles which elute and the quantity which remain 

inside the GC column.  The summation of these partial elutions, represents the degree of 

elution at every time step (see CHAPTER 3 –[9]). 

 

For the scope of this study, the pyrolysis risk is calculated only for the gas phase 

(further extension of the pyrolysis model to liquid phase will be treated in subsequent 

studies).  Therefore, only the moles in gas phase are taken into account as input for the 

pyrolysis model.  
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The zone’s distribution of every component serves at this point to calculate their 

dispersion, and therefore to determine whether the component is dispersed only in the 

carrier gas (in our case in He), or dispersed also in other components.   

 

For this purpose, the space occupied by every component in the gas phase, has been 

assumed to be 3*σx  on both sides of the zone’s centroid (σx= standard deviation), 

covering 99.7% of the total moles in gas phase. The components inside a reactor are 

then determined, by calculating if the space occupied by one component is intersected 

by the space occupied by another component, and so on and so forth, i.e. by determining 

if their dispersions intersect. 

 

By way of example, analysis of a 4-component mixture after injection can be 

considered, at a given time–step, t(j) when the lightest component is located almost at 

the column outlet, and an intermediate component is located at the mid-point.  

 

After every partial elution the equilibrium is unbalanced, and therefore a re-

equilibrium is required at the temperature of the time-step “j” T(t(j)) in order to 

calculate the amount of moles, which will remain in the stationary phase and in the gas 

phase,  before pyrolysis calculations. 

 

However, the two heaviest components are still near the column inlet and not yet 

totally separated, since each has a dispersed mole fraction occupying the same space, 

i.e. their zones are intersected. Therefore, at time–step t(j), three reactors are calculated: 

one reactor containing the lightest component, and a second reactor containing the 

intermediate component, both of which are dispersed only in carrier gas; and a third 

reactor containing the two heaviest components which are not yet totally separated or 

resolved.   
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Figure 5-8. Algorithm of the Pyrolysis-GC coupled model. 
 

 

At each time-step, the pyrolysis risk is calculated for every reactor, and the amount of 

moles of each component in the reactor is calculated after pyrolysis at the temperature 

T(t(j)), and pressure P(x(j)) with a residence time equal to the delta time-step (in our 

case 4 seconds, for isothermal conditions).  

 



 

117 

In the same way as for elution, after pyrolysis take place, the equilibrium is 

unbalanced, and a re-equilibrium is required, this time at the temperature of the next 

time-step T(t(j+1).   

 

Finally, the loop continues until each component has totally eluted (Degree of 

elution=1), or until the total time of the temperature programme is reached.  Thus, the 

degree of elution of every component is calculated, and incomplete elution can be 

determined. In the same way, the amount of moles decomposed by pyrolysis of every 

component is calculated, and the percentage of mass lost due to thermal cracking is 

determined.  

 

5.5. Modelling of the pyrolysis and degree of elution of heavy n-alkanes at GC 

(P&T) conditions  

The coupled model has been applied to one of the most common temperature 

programme (Table 5-3) used for HTGC analysis of heavy-oil hydrocarbons.    

 

Table 5-4. Thermodynamic properties of n-alkanes (nC14-nC80) [14] 
 
 

This model accounts for 11 n-alkanes (nC14, nC16, nC20, nC25, nC30, nC35, nC40, nC50, 

nC60, nC70, nC80) travelling throughout the GC column, and 17 species taken into 

account by the pyrolysis model (11 n-alkanes, and 6 “class” pyrolysis products: Alkene, 

CH4, C2-C6, C3-C5, C6-C13, “C15 plus” ).  

 



 

118 

 

Table 5-5. Injected moles of n-alkanes in 0.3µL (Mixture of ASTM 54179 and 

Polywax, assumed values for calculation purposes only), for Pyrolysis-GC 

calculations. 

 

The distribution factors for the 11 n-alkanes have been obtained from the CHAPTER 

4 –[14] and are summarize in (Table 5-4).  The injected moles of each of the 11 n-

alkanes, are summarized in (Table 5-5), where values are for calculation purpose only, 

since the real mixture injected is composed of n-alkanes nC14H30-nC60H122 and 

Polywaxes, whose individual concentrations are unknown (i.e. for the Polywax 

constituents).  (see CHAPTER 4 –[14]) 

 

5.5.1. Determination of components in each reactor (mixture of n-alkanes or 

single component) 

As explained in section 5.4, a reactor is considered to be the space where one or more 

components are dispersed.   

 

The space occupied by 99.7% of every component in the gas phase, has been 

assumed to be within three standard deviations (3*σx)  of either side of the zone’s 

centroid.  Hence, if the spaces occupied by two or more components intersect, they 

belong to the same reactor.   

 

Figure 5-9 depicts the cumulative mass lost due to thermal cracking for the 11 

n-alkanes studied. The colours red(1st), orange ochre(2nd), orange(3rd), yellow ochre(4th) 
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and yellow fluorescent(5th) represent the reactors respectively, at the temperature of 

every time-step T(t(j)).   

 

Therefore, at the beginning of the GC analysis, the temperature is 10°C, and all the 

components are present in a single reactor, represented in red; at 29°C, nC14 is separated 

from the rest of the components, and two reactors are found, with one containing nC14 

and the second containing the 10 n-alkanes remaining.  At 38°C, three reactors appear: 

one containing nC14H30, the second one containing nC16H34, and the third one, 

containing the remaining 9 n-alkanes.  

 

At 83°C, four reactors appear, each containing separately nC14H30, nC16H34 nC20H42 

and (nC25H52-nC80H162); and similarly, five reactors appear at 120°C, after separation of 

nC25, from the mixture containing (nC25H52-nC80H162) in the previous time-step. But at 

122°C, nC14H304 elutes from the GC column and therefore one reactor disappears, and 

four reactors remain in the next time-step.  

 

Figure 5-9. Accumulative mass lost due to thermal cracking for n-alkanes (nC14, 

nC16, nC20, nC25, nC30, nC35, nC40, nC50, nC60, nC70, nC80) at a common HTGC 

temperature programming (Table 3-2) in a HT5 column with dimension 

summarized in (Table 5-2). 
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In the same way, as one component separates from the mixture, one new reactor 

appears; and as one component elutes another reactor disappears, until every component 

is totally separated.  

 

At 424°C, nC60H122 elutes completely from the column, and only two reactors 

remain, containing separately nC70H142 and nC80H162. Thus, after 28.87 minutes, about 

52 seconds into the  isothermal “final hold” period of the temperature programme at 

430°C, nC70H142 starts to elute (i.e. is located at the column outlet), while nC80H162  is 

located at 3.5m from the GC inlet. Therefore, there are 2 well separated reactors at these 

conditions.  

 

Finally, after 3.46 minutes at 430°C, nC70H142 elutes completely from the column, 

while nC80H162 is located 7.83 m away from the column inlet, and therefore all the 

following calculations relate to one reactor, containing only nC80H162. 

 

Then, nC80H162 starts to elute at 33.9 minutes (after ~5.9 minutes at 430°C), and 

99.99 % of the injected moles elute at 40.9 minutes (or after 12.9 minutes in the final 

isothermal hold period). nC80H162 takes about 7 minutes to elute which is as expected, 

since its elution takes place entirely in isothermal conditions where the distribution 

factors remain constant.  

 

Conversely, in the case of components eluting during the ramp of temperature, there 

is an acceleration of elution due to the increase of temperature, which reduces 

distribution factors by increasing the proportion of each component in the gas phase 

with respect to the stationary phase.  Further conclusions on incomplete elution will be 

treated in section 5.6. 

 

5.5.2. Determination of pyrolysis risk during HTGC analysis of heavy n-alkanes 

The cumulative conversion due to pyrolysis of the 11 n-alkanes studied in this 

chapter is depicted in Figure 5-10, in order to analyse their pyrolysis risk. The figure for 

each component is calculated as the ratio of the cumulative mass lost due to thermal 

cracking, compared to the mass injected.  
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As Figure 5-10 depicts, absolutely no pyrolysis reaction takes place in the case of 

nC14H30 and nC16H34 during the temperature programming (Table 5-3) of the HTGC 

analysis, hence their absence in the figure).  In the case of nC20H42 to nC40H82, 

insignificant conversion occurs and in the case of nC50H102 the maximum conversion 

achieved before elution is 0.003% of mass thermally decomposed/mass injected.  

 

For the heaviest n-alkanes studied in this chapter: nC60H122,  nC70H142  and nC80H162, a 

low but detectable mass loss occurs.   The heavy alkane, nC60 starts to accumulate a 

mass loss due to pyrolysis of 5.83.10-14g related to the 5.77·10-9g injected, equivalent to 

a 0.001% cumulative mass conversion at 373.5°C.  It is important to notice that from 

the total amount of mass of nC60H1220 injected only 2.43·10-12g is released in the gas 

phase, whereas the rest is trapped in the stationary phase.  

 

Therefore, the combination of the physical separation phenomena (partitioning) and 

the chemical reaction (pyrolysis) which is only simulated in the gas phase, limits the 

thermal cracking to the amount of component present in the gas phase, which is the 

scope of this thesis.  However, it would be very interesting to investigate the pyrolysis 

reactions occurring in the stationary phase, as a future work. 

 

In the case of nC70H142, a cumulative conversion of 0.001% is reached at 385.4 °C, 

where 2.32·10-10g of nC70H142 is present in the gas phase, whereas the rest of the mass 

injected is trapped in the stationary phase.  

 

It is important to note that the temperature for attaining a cumulative conversion of 

0.001% is higher for nC70H142 (385.4°C) than that required for nC60H122 (373.5 °C), due 

to the fact that nC70 is trapped in the stationary phase longer than nC60H1220. Hence the 

mass available for thermal cracking in the gas phase at a given temperature is lower in 

the case of nC70H142 than nC60H122.  

 

nC70H142 reaches a maximum cumulative conversion of 0.66 % of the cumulative 

mass lost due to thermal cracking/mass injected, at 430°C. Thus, 4.45·10-11g of 

nC70H142 has thermally decomposed, relative to the 6.73·10-9g injected. 
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Finally, in the case of nC80H162, a cumulative pyrolysis conversion of 0.001% is 

triggered at 395.4°C, where only 1.15·10-10g is present in the gas phase, and a 

cumulative mass loss of 7.86·10-14g is achieved relative to 7.69 ·10-9g injected.  

 

 

 

Figure 5-10.  Accumulative conversion due to thermal cracking for n-alkanes 

(nC14, nC16, nC20, nC25, nC30, nC35, nC40, nC50, nC60, nC70, nC80) at a common 

HTGC temperature programming (Table 3-2) in a HT5 column with dimension 

summarized in (Table 5-2) 

The maximum cumulative pyrolysis conversion reached by nC80H162 is 0.92% of the 

cumulative mass lost due to pyrolysis/mass injected, at 430 °C, i.e. 7.04·10-11g of 

nC80H162 is thermally decomposed during the temperature programme of (Table 5-3), 

before elution, when 7.69 ·10-9g has been initially injected.  

 

HTGC analysis of heavy n-alkanes is carried out using an FID detector for which the 

limit of detection is in the order of 1·10-12g, i.e. the order of magnitude of the mass lost 

due to thermal cracking presented above, is theoretically detectable. 
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When, nC60H122 starts to decompose, the degree of elution of nC50H102 is of 99.9 %, 

therefore, the pyrolysis products formed by the thermal cracking of nC60H122, will have 

insufficient time to reach and deteriorate the peak of nC50H102.   

 

Therefore the pyrolysis products which arise from the thermal cracking of nC60H122, 

should be released step by step until nC60H122 elute, probably increasing the baseline 

signal.  

 

nC70H142 starts to decompose when located 1.02m away from the GC inlet, and 0.68 

minutes after nC60H122 has reached a degree of elution of 99.99%. Therefore, the 

pyrolysis products formed by the thermal cracking of nC70H142, could not deteriorate the 

peak and resolution of nC60H122.   

 

Finally, when nC80H162 starts to decompose it is located at 0.41m from the column 

inlet, whereas nC70H142 is located 1.64m from the inlet.  Further, when nC70H142 reaches 

a degree of elution of 99.99%, it is located at 7.83m from the column inlet, and its 

cumulative conversion is 0.52 % of the cumulative mass lost due to pyrolysis/mass 

injected.  

 

It is therefore possible to conclude that 3.97.10-11g of nC80 is converted into pyrolysis 

products and co-elutes with nC70H142.  That is to say that the peak of nC70H142  

represents not only the mass injected of nC70H142, but also 0.52% of the amount of mass 

injected of nC80H162, converted into pyrolysis products, and therefore the analysis of 

nC70H142 is no longer reliable.   

 

5.6.Determination of non/incomplete elution during HTGC analysis of heavy n-

alkanes.  

For the determination of non/incomplete elution of heavy n-alkanes, the data set of 

distribution factors of the n-alkanes spanning the range from nC12H26 to nC98H198, (as 

obtained in this thesis -- see CHAPTER 4 – has been used as main input for the 

calculation of the degree of elution of each of the n-alkanes studied. 

 

Using the values of injected moles summarized in Table 5-5, the degree of elution 

has been calculated for the 11 n-alkanes studied in this chapter: nC14H30, nC16H32, 
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nC20H42, nC25H52, nC30H62, nC35H72, nC40H82, nC50H102, nC60H122, nC70H142, and 

nC80H162, and is depicted in Figure 5-11 

 

The degree of elution has been introduced in order to determine the non/incomplete 

elution of heavy n-alkanes (as explained in, CHAPTER 3 –, section 3.8). 
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It should be noted that alkanes heavier than nC60 elute during the isothermal plateau 

of the temperature programme ( i.e. 430°C).  Thus, the re-establishment of equilibrium 

after each elution is carried out at the same temperature, and therefore using the same 

values of distribution factors, i.e. the ratio of moles in the stationary phase to moles in 

the gas phase.  

 

Isothermal partitioning in GC analysis leads to an increase in the peak broadening.  

Conversely, using a ramp of temperature the peak broadening is reduced. This occurs 

due to the acceleration of elution with the increase in temperature, and therefore the 

increase in the number of solute moles released into the gas phase, i.e the decrease in 

distribution factors. 

 

Figure 5-11 shows the expected elution time trend with increase in carbon number. 

nC70H142 starts to elute at 29 minutes, and attains a degree of elution of 99.99% at 31.3 

minutes, and 100% at 31.5 minutes. That is to say, that nC70H142 takes 2.5 minutes 

eluting, and its peak broadening increase.  

 

nC80H162 starts to elute at 33.8 minutes, reaching a degree of elution of 99.99 % at 

40.9 minutes and 100 % after 42.3 minutes.  Therefore, nC80H162 takes 7.1 minutes to 

elute, increasing the peak broadening, and decreasing its resolution.  

 

Finally, it is possible to conclude that the peaks eluting during the isothermal plateau, 

at the maximum temperature of the temperature programming (Table 5-3), will have a 

decrease in resolution, due to the increase in peak broadening at isothermal conditions.  

 

In the case studied in this chapter, from nC70H142 the components will elute much 

more slowly than the lightest components, and therefore an analysis of the resolution of 

the peak in the chromatogram would be required, when deciding to take into account the 

peak area of the n-alkanes heavier than nC70H142.  
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It is interesting to note that 99.99% of nC80H162 elute 12.9 minutes in the isothermal 

conditions at the maximum temperature (430°C) of the analysis.. Therefore, this 

component is not normally taken into account in the GC calculations, due to the shorter 

period of time that a HTGC column is normally left at high temperature (430 °C), in 

order to avoid stationary phase bleeding.  

 

 

Figure 5-11. Degree of Elution vs time of each component “i” :n-alkanes in the 

range of C14H30 to nC80H162.  Degree of Elution= Moles of “i” inside the GC 

column at time (t) /Moles injected of “i”. 

 

5.7. Conclusions 

This chapter provides an in-depth analysis of the two main HTGC limitations for the 

analysis of heavy oil hydrocarbons: first, the pyrolysis risk inside the GC column; and 

secondly, the non/incomplete elution of heavy n-alkanes spanning the range from 

nC14H30 to nC80H162. 

 

The large amount of species of the reduced free-radical pyrolysis model developed in 

CHAPTER 2 – has imposed a need to develop a reduced molecular pyrolysis model, 

comprising 11 n-alkanes (nC14H30, nC16H32, nC20H42, nC25H52, nC30H62, nC35H72, 

nC40H82, nC50H102, nC60H122, nC70H142, and nC80H162).  The number of reactions has 
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been reduced from 7055 to 127, and the number of species from 336 to 17, whilst still 

yielding very good accuracy.   

 

For similar reason,  the excessive computing time of the GC model developed in 

COMSOL-MATLAB as explained in CHAPTER 3,has imposed a need to develop an 

analytical and more efficient GC model.  The comparison between predictions of zones’ 

centroids and variances has been found to be less than 1.1% and 3% of average relative 

error.  

 

Thus, using these two models, a Pyrolysis-GC coupled model has been developed in 

MATLAB, running at constant time-step, enabling isothermal conditions to be assumed 

at every time-step calculation.  In this model, a series of physic-chemical phenomena 

occurs in a loop, at every time-step until each component has totally eluted: partition, 

degree of elution calculation, re-equilibrium if partial elution takes place, pyrolysis 

calculations, and finally re-equilibrium if pyrolysis occurs.  

 

Finally, two conclusions have been made from the results obtained using the 

Pyrolysis-GC model.  First, the cumulative pyrolysis conversion of the 11 n-alkanes 

studied in the chapter, suggests that 0.52% of the mass injected of nC80H162, thermally 

decomposed before nC70H142 has eluted. Therefore, co-elution of nC70H142 and the 

pyrolysis product of nC80 (comprising 0.52% of its injected mass injected) is possible, 

making the GC analysis of nC70H142 and heavier n-alkanes no longer reliable. 

 

Secondly, the degree of elution of the 11 n-alkanes studied in the chapter has been 

calculated, confirming that alkanes heavier than nC70H142 take progressively longer to 

elute completely from the column, i.e. nC70H142 takes 2.3 minutes and nC80H162 takes 

7.1 minutes using the stated column configuration and temperature programme. The 

resolution of the peaks is therefore compromised as a result.  

 

Moreover, nC80H162 takes 12.9 minutes to completely elute during the isothermal 

plateau, implying that no distinct peak will be observable. Rather, the eluting 

component will be masked by the FID plateau signal, in combination with column bleed 

products, but too diffuse to be distinguishable. The nC80H162 peak will therefore be 

overlooked under these HTGC conditions. 
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CHAPTER 6 – CONCLUSIONS & FUTURE WORK 

High Temperature Gas chromatography (HTGC) is the industry standard separation 

technique for compositional characterization of heavy oil hydrocarbons, capable of 

separating, detecting and quantifying a wide range of n-alkanes distribution, with Single 

Carbon Number (SCN) up to nC100H202.  

 

 However, the reliability of HTGC analyses is questioned and limited by two main 

factors: the possible incomplete elution of some heavy n-alkanes; and the high 

temperatures required (up to 430°C), which may induce thermal decomposition and 

thereby cause possible over-estimation of light and intermediate fractions in the 

analysed composition of the oil. 

 

Therefore, this thesis was carried out as shown in Figure 6-1, in order to address the two 

main GC limitations:  the pyrolysis risk inside the GC column, and the non/incomplete 

elution of heavy n-alkanes, by developing a pyrolysis model and a GC model spanning 

respectively the range of n-alkanes of (nC14H30- nC80H162)  and  (nC12H26- nC98H198)  . 

Finally, these two models were coupled in order to calculate the pyrolysis risk and the 

non/incomplete elution of heavy n-alkanes.  

 

Therefore, in the first step, this thesis provides a first insight into the limitations in the 

practice of high temperature gas chromatography (HTGC), regarding the residence time 

and maximal temperature conditions for a given sample, based on a developed reduced 

mechanistic free-radical kinetic thermal cracking model, covering the range of n-alkane 

hydrocarbons: nC14H30, nC16H34, nC20H42, nC25H52, nC30H62, nC35H72, nC40H82, 

nC45H92, nC50H102, nC55H112, nC60H122, nC65H132, nC70H142, nC75H152, nC80H162.  

 

This model has been validated with very good agreement, for nC14H30 , nC16H34 and 

nC25H52 yielding respectively an average relative error of 5.4%, 17.4 % and 7% when 

compared with literature data.   This model preserves the physical meaning of thermal 

cracking in a wide range of temperatures, without any previous optimization or 

adjustments made.  
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It would be interesting to undertake validation of longer chain hydrocarbons, such as 

nC40H82 and nC60H122, for which a lumped mechanistic kinetic model has been 

developed in this thesis. This subject may therefore be examined in a future work. 

 

Coupled Pyrolysis – GC Model

(CHAPTER 5)

(nC14H30, nC16H32, nC20H42, nC25H52, 

nC30H62, nC35H72, nC40H82, nC50H102, 

nC60H122, nC70H142, nC80H162)

*Pyrolysis conversion

*Degree of Elution

Experimental 

Distribution Factors 

(CHAPTER 4)

(nC12H26-nC98H198)

Gas Chromatography 

Modelling

(CHAPTER 3)

Non-elution calculation

* Degree of Elution

Pyrolysis Modelling 

(CHAPTER 2)

(nC14H30-nC80H162)

* Preliminary minimum 

SCN at pyrolysis risk 

GC Limits in the analysis of heavy n-alkanes

Maximum SCN for 

reliable quantitative 

GC analysis

 

Figure 6-1. Flow diagram of the objectives reached during the PhD thesis 
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A new approach was introduced in the first stage of this thesis for determining the 

minimum SCN which undergoes pyrolysis inside the GC column, based on the intercept 

of the thermal cracking and residence time curves. The new approach demonstrated that 

for the cases studied in a mixture containing up to C80H162, heavy hydrocarbons greater 

than nC50H102-nC52H106 will crack before eluting from an HT5 column, at 0.1% of 

conversion, and from nC55H112-nC57H116 at 1% of conversion.   

 

However, these preliminary results were obtained without taking into account the 

partitioning process that each component undertakes during its migration throughout the 

GC column.  The GC separation process accounts for continuous migration and re-

equilibrium in the stationary and gas phases. Thus, the number of moles in the gas phase 

migrating changes continuously during the HTGC analysis and therefore the effects of 

the pyrolysis risk would require to take into account theses variations. 

 

Therefore, in the second step of this thesis, a Gas Chromatography migration and 

separation model in MATLAB has been developed in order to predict the retention 

times of each solute, based on a discretization approach. Also a GC model in 

COMSOL-MATLAB has been developed to calculate the distribution profile of each 

component at every time step, and thereby determining its concentration profile.  

 

The predicted retention times using the in-house GC model were validated with 

literature data: first, for a DB-1 column where relative average deviations were obtained 

of 1.9% for n-alkanes, and 2.0% for PAH’s; and secondly, for a DB-5 column, where 

relative average deviations of 2.2% for n-alkanes and 2.6% for PAH’s were found. 

 

Also, validation of predicted retention times was carried out for in-house measured 

values obtained on an HT5 column, yielding respectively average relative errors of  

1.3%, 1.1%  and 2.2% for analyses involving temperature ramps of 10°C/min,15°C/min 

and 20°C/min. 

 

At this stage, this thesis proposed a new approach for determining the non/incomplete 

elution of every component by introducing the term degree of elution, defined as the 

amount of component which has been eluted in relation to the amount injected.   
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The degree of elution of the n-alkane hydrocarbons in the range, nC12H28 to nC62H126 

has been calculated based on the continuous equilibrium re-established during the 

interval of elution for every component, using their corresponding retention factors, and 

assuming no cracking inside the GC column.   

 

The thesis introduced a preliminary method of calculating, at each moment during a 

temperature-programmed analysis, the molar fraction of the components in the gas 

phase, in accordance with the standard deviations of their Gaussian distribution at the 

point where 95% of the molecules are travelling through the column. 

 

A deeper understanding of the separation of components in a gas chromatographic 

column is provided in this thesis, along with a basis for analysis of non/incomplete 

elution of heavy n-alkanes. 

 

The main input used in the GC modelling is the database of distribution factors (K), 

derived from isothermal GC analyses, and as HT5 capillary columns are widely used for 

HTGC analysis of heavy oil hydrocarbons, such a column was selected for determining 

the limits of the technique.   

 

For this purpose, in the third step, this thesis provided an extension of the data set of 

distribution factors for n-alkanes up to nC98H198 over the temperature range 10°C-

430°C, based on isothermal gas chromatography measurements carried out at both 

constant inlet pressure and constant flow rate. 

 

Two conventional HTGC configurations were applied: for efficient resolution with a 

long column operated at low flow rate; and true SimDist HTGC with a short column 

operated at high flow rate for inefficient resolution. 

 

 Using the common, high-efficiency HTGC configuration of a long column with low 

flow rate, a data set of distribution factors was generated for the n-alkane range 

spanning nC12H26-nC64H130.  But, as the purpose of this thesis is to determine the GC 

limits for heavy n-alkanes, and since the extrapolation of the above distribution factors 

yielded poor predictions, this thesis proposed the extension of the data set of K values 
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(distribution factors), covering the nC12H26-nC98H198 range, by use of a true SimDist 

configuration with a short HTGC column operated at high flow rate. 

 

When the distribution factors used in the modelling have been obtained at the same 

conditions as the experimental data with which they were being compared, an average 

relative error of 1.5% was found for constant inlet pressure mode; and of 4.4% for 

constant flow rate mode.   

 

Nevertheless, when the distribution factors used were obtained at different 

conditions, an average relative error of 4.8% was found (e.g. when distribution factors 

at constant flow mode were applied to measurements to be validated at constant inlet 

pressure).  The average relative error increased to 9.2% when distribution factors 

obtained at constant inlet pressure were applied to experiments conducted at constant 

flow.  

 

A model running at constant inlet pressure, utilizing the average value applied 

through the temperature programming was used in order to improve the predictions 

when the experiments were carried out at constant flow rate, giving an average relative 

error of 2.35%.  

 

Finally, this thesis provides an in-depth analysis of the two main limitations in 

HTGC analysis of heavy oil hydrocarbons: first, the pyrolysis risk inside the GC 

column; and secondly, the non/incomplete elution of heavy n-alkanes spanning the 

range from nC14H30 to nC80H162. 

 

In the four steps of this thesis, the large number of species of the reduced free-radical 

pyrolysis model initially developed for heavy n-alkane mixtures up to nC80H162 has 

imposed development of a reduced molecular pyrolysis model, comprising 11 n-alkanes 

(nC14H30, nC16H32, nC20H42, nC25H52, nC30H62, nC35H72, nC40H82, nC50H102, nC60H122, 

nC70H142, nC80H162).  As a result, the number of reactions has been reduced from 7055 

to 127, and the number of species from 336 to 17, whilst still yielding very good 

accuracy.   

 

In the same way, the excessive computing time of the GC model initially developed 

in COMSOL-MATLAB for predicting the zones’ variances while every component is 
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migrating and partitioning between the stationary and the gas phase, has imposed 

development of an analytical and more efficient GC model.  The comparison between 

predictions of each zone’s centroid and variance has been found to be lower than 1.1% 

and 3% of average relative error, respectively.  

 

Thus, using these two efficient models, a Pyrolysis-GC coupled model has been 

developed in MATLAB in the four stages of this thesis.  In this model, a series of 

processes is evaluated in a loop, at every time-step until each component has totally 

eluted: partitioning, degree of elution calculation, re-equilibrium if partial elution takes 

place, pyrolysis calculations, and finally re-equilibrium if pyrolysis occurs.  

 

Finally, two conclusions have been deduced from the results obtained using the 

Pyrolysis-GC model in a 12m*0.53mm*0.15µm HT5 column, at the most common 

temperature programming (10 °C, 15 °C/min, 430 °C, 10 min hold).   

 

First, the cumulative pyrolysis conversion of the 11 n-alkanes (nC14H30, nC16H32, 

nC20H42, nC25H52, nC30H62, nC35H72, nC40H82, nC50H102, nC60H122, nC70H142, nC80H162), 

suggests that 0.5% of the mass injected of nC80H162, thermally decomposed before 

nC70H142 eluted. Therefore, some co-elution of nC70H142 and the pyrolysis products of 

nC80H162 (comprising 0.5% of its injected mass) is suggested, making the GC analysis of 

nC70H142 and heavier n-alkanes no longer reliable. 

 

Secondly, the degree of elution of the 11 n-alkanes (nC14H30, nC16H32, nC20H42, 

nC25H52, nC30H62, nC35H72, nC40H82, nC50H102, nC60H122, nC70H142, nC80H162) has been 

calculated, suggesting that the n-alkanes heavier than nC70H142 will require extended 

intervals for complete elution from the GC column: e.g. nC70H142 takes 2.5 minutes and 

nC80H162 takes 7.1 minutes. Therefore the resolution of the peaks is compromised due to 

the excessive peak (or band) widths corresponding to these long elution times.  

 

Moreover, nC80H162 takes 12.9 minutes to completely elute during the isothermal 

plateau at the maximum temperature of 430°C, which means that nC80H162 is not 

normally seen in the HTGC analysis at the conditions studied, where the “hold” time at 

the maximum temperature is minimized in order to avoid stationary phase bleeding.  
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As suggested guidelines for future work on the optimization of the HTGC practice in 

the analysis of heavy oils, it would be very interesting to explore the required 

compromise between GC column length and carrier gas velocity, since based on the 

modelling obtained in CHAPTER 3 –, the use of high velocities and short length GC 

columns, permit the elution of heavy components up to nC98H198, with the inconvenient 

of low peak resolutions,  whereas, the use of low velocities and long length GC 

columns, permit the elution of heavy component only up to nC60H122, with very good 

resolutions. Therefore, a compromise between GC column length and carrier gas 

velocity would be very interesting in order to obtain an extended elution of heavy 

components with good peak resolution, and avoiding reaching the maximum 

temperature of 430° C, at which the components are prompt to pyrolysis risk.  

 

The use of a series of ramps and isothermal programming temperature may improve 

the residence times at which a given component will elute, permitting to elute before 

430°C, therefore an optimization on the programming temperature would be also a very 

interesting approach to undertake.  

 

 


