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Abstract 

Coherent pulse synthesis takes as its objective the piecewise assembly of a sequence of 

identical broadband pulses from two or more mutually-coherent sequences of 

narrowband pulses.  The requirements for pulse synthesis are that the parent pulses 

share the same repetition frequency, are phase coherent and have low mutual timing 

jitter over the required observation time. 

The work carried out in this thesis explored the requirements for broadband coherent 

pulse synthesis between the multiple visible outputs of a synchronously pumped 

femtosecond optical parametric oscillator.  A femtosecond Ti:sapphire laser was 

characterised and used to pump a PPKTP-based OPO that produced a number of 

second-harmonic and sum-frequency mixing outputs across the visible region.  Using a 

novel lock-to-zero CEO stabilisation technique, broadband phase coherence was 

established between all the pulses on the optical bench, producing the broadest zero-

offset frequency comb to date.  Employing a common optical path for all the pulses 

provided common-mode rejection of noise, ensuring less than 150 attoseconds of timing 

jitter between the pulses over a 1 second observation window.  The parent pulses were 

compressed and their relative delays altered in a quasi-common path prism delay line, 

allowing pulse synthesis at a desired reference plane. 
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Chapter 1 - Introduction 

1.1  Aim 

To date, attosecond pulse generation has relied on high-harmonic generation (HHG) in 

noble gases to produce either trains of attosecond pulses [1] or, more recently, isolated 

pulses [2] in the XUV / soft-X-ray region.  Attosecond science is therefore confined to 

the ionisation (non-perturbative) regime due to the high photon energy of the probe 

pulses.  Generation of optical attosecond pulses is an appealing prospect, allowing 

perturbative measurements on atomic timescales and also enabling the use of 

comparatively cheaper optical components.  Optical attosecond pulses can be generated 

by coherently combining femtosecond pulses across a suitable bandwidth in the UV to 

near-IR region [3].  In contrast to HHG methods, an all-solid-state approach promises 

high-efficiency pulse generation at high repetition rates using accessible femtosecond 

laser technology to create attosecond pulses removed from the XUV / soft-X-ray region 

and which can therefore propagate freely in air. 

The proposed technical approach that will be examined in this thesis is to construct 

visible attosecond pulses by coherent pulse synthesis from sequences of distinct parent 

pulses.  This method requires four critical prerequisites to be satisfied.  First, the parent 

pulses must have matching repetition frequencies; second, phase coherence must be 

established across the entire bandwidth of the parent pulses; third, the timing jitter 

between the pulses must be controlled to attosecond precision; finally, the group delay 

dispersion must be corrected for each pulse and between different pulses. 

The work reported in this thesis will address each of these prerequisites in turn in order 

to determine the viability of generating optical attosecond pulses through coherent pulse 

synthesis.  
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1.2 Coherent pulse synthesis 

Coherent pulse synthesis aims to combine two or more sequences of phase coherent 

narrowband pulses in order to create a new sequence of identical broadband pulses.  

Coherently synthesised pulses have been generated using a number of complementary 

methods which are discussed below. 

1.2.1 Coherent synthesis through Raman resonances 

Few-cycle and single-cycle pulses have been created [4–11] by using an adiabatically-

driven Raman resonance [12] to produce monochromatic sidebands that are linearly 

spaced in frequency and whose phases can be manipulated using a standard Fourier-

domain modulator [13].  This approach, first implemented by Sokolov, Yavuz and 

Harris, required high-energy nanosecond pulses and resulted in a train of around 

100,000 synthesised pulses that lasted for the duration of the pump pulses.  A typical 

experimental schematic for producing such a pulse train is shown in Figure 1.1 (a).  

Two nanosecond fields of frequencies ω1 and ω2 drive a Raman transition of frequency 

ωab at a detuning of δ.  The generated collinear Raman sidebands are compressed in a 

pulse shaper in order to synthesise a train of transform-limited subfemtosecond pulses 

with repetition rate ωab. 

 

Figure 1.1.  (a) A typical experimental schematic for producing few-cycle pulses by 
molecular modulation; (b) multiple collinear Raman sidebands spanning the UV to 
near-infrared.  Upper image taken from  [14]; lower image taken from  [4]. 
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1.2.2 Coherent synthesis from mode-locked lasers and amplifiers 

Coherent synthesis can also be achieved by combining the pulse sequences from two 

distinct laser oscillators.  This was demonstrated by Shelton et al. in 2001 [15,16], 

where the authors synchronised the phases and repetition rates of two mode-locked 

Ti:sapphire lasers operating at different centre wavelengths.  The experimental layout 

from [15] is shown in Figure 1.2.  Two phase-locked loops working at different time 

resolutions were used to synchronise the repetition rates of the lasers.  Heterodyne 

beating between the two lasers at an avalanche photodiode provided the difference in 

their carrier-envelope offset (CEO) frequencies.  A third feedback loop was used to 

control the CEO frequency of one oscillator, phase locking the lasers.  Autocorrelation 

measurements were performed on the combined beam from the two lasers; when the 

lasers were synchronised and phase locked the resulting autocorrelation was narrowed 

compared to the unlocked, unsynchronised measurement, showing that a shorter pulse 

had been synthesised. 

Further work from the same group reduced the timing jitter between the lasers to  

sub-femtosecond durations, paving the way for attosecond pulse synthesis [17,18].  In 

complementary work a single Erbium-doped fiber laser was used to seed two EDFAs 

which generated phase-coherent supercontinua that were combined to synthesise a 

single-cycle pulse in the near-infrared [19].  Synthesis has also been demonstrated 

between lasers with different gain media, including Ti:sapphire and Cr:forsterite 

lasers [20–22], and a Ti:sapphire and an Erbium-doped fiber laser [23].  Few-cycle 

waveforms have been synthesised in work carried out by [24] and [25].  Coherent 

synthesis has been demonstrated by combining a number of different optical parametric 

amplifiers [26–28] for application in strong-field physics experiments. 
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Figure 1.2.  Experimental schematic of the first demonstration of coherent pulse 
synthesis between two independent mode-locked lasers.  Taken from supplemental 
material from [15]. 

1.2.3 Coherent synthesis between a laser and an optical parametric oscillator 

In work previously carried out by the Reid group, a Ti:sapphire-pumped synchronous 

optical parametric oscillator (OPO) based on a cascaded-grating MgO:PPLN 

crystal [29] was used to demonstrate pulse synthesis between the depleted pump pulses 

an intracavity-doubled-signal pulses from the OPO [30–32].  The CEO frequencies of 

both the pump and doubled signal pulses were locked to the same value.  A power 

spectral density measurement of the CEO frequency stability and an optical cross-

correlation measurement between the pump and doubled signal pulses showed that they 

remained coherent over 1.4 ms with a mutual timing jitter of 30 as in 20 ms.  The CEO 

frequency locking techniques used in this work limited the number of synthesis parent 

pulses to two, motivating the work carried out in this thesis. 

1.2.4 Attosecond pulse synthesis from an optical parametric oscillator 

In order to synthesise pulses with attosecond durations an equivalent frequency 

bandwidth must be spanned.  This bandwidth is not achievable directly from any laser 

oscillator; however it is within the transparency window of several nonlinear crystals.  



5 
 

An OPO is an ideal way to exploit this bandwidth, as multiple sum-frequency-mixing 

and second-harmonic-generation outputs can be simultaneously generated in the OPO 

crystal, as listed in Table 1.1.  Provided that the prerequisites given above can be met 

for a set of sufficiently short parent pulses, coherently synthesised attosecond pulses in 

the visible region could be achievable, as shown in Figure 1.3.  Combining the pulses 

listed in Table 1 would produce a high-contrast 700 as field transient, provided the 

parent pulses were each of 15 fs duration and were transform limited.  

Table 1.1.  Fundamental, SFM and SHG mixing outputs available from an OPO 
crystal with a transparency band from the UV to the mid-IR.   

Wavelength (µm) 0.200 0.400 0.456 0.530 0.642 0.800 1.060 3.262 

Origin 4ωp 2ωp ωp+ ωs 2ωs ωp+ ωi ωp ωs ωi 

 

 

Figure 1.3.  Electric field profile of a pulse synthesised from the parent pulses listed in 
Table 1. 
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1.3 Thesis outline  

In this thesis the results from the design and characterisation of a femtosecond OPO for 

broadband coherent pulse synthesis are presented.  The carrier-envelope-offset 

frequencies of the pump, signal, idler and various frequency-mixing outputs of the OPO 

were stabilised and the relative timing jitter between the pulses was calculated.  Three 

pulses were selected as candidate parent pulses for pulse synthesis. 

Chapter 2 reviews a number of important concepts in nonlinear optics, including 

phasematching, parametric generation, ultrashort pulse dynamics and pulse 

characterisation techniques. 

Chapter 3 describes the characterisation of a Ti:sapphire laser used to synchronously 

pump a femtosecond OPO.  The design, construction and characterisation of two OPOs 

were considered, and relevant results are presented. 

Chapter 4 discusses the carrier-envelope-offset (CEO) frequency and various methods 

for its stabilisation.  CEO frequencies from both the pump and OPO were detected using 

a nonlinear interferometer; zero-offset CEO locking was established through a pair of 

feedback loops and confirmed through temporal interferometry. 

Chapter 5 presents a number of noise analyses from the pump and OPO, including 

relative intensity noise, CEO-locking phase noise and relative timing jitter between the 

pulses. 

Chapter 6 describes the requirement to compress the parent pulses used for coherent 

synthesis, as well as controlling their relative group delays.  A prism delay line was 

constructed in order to compress the pulses and subsequent pulse duration results are 

presented.  A liquid-crystal spatial light modulator was characterised and is presented as 

an alternative to the prism delay line. 

Chapter 7 outlines the main conclusions from the work presented in this thesis and 

establishes whether broadband coherent synthesis from an OPO is a viable path to 

achieving visible attosecond pulses.  Improvements to the work carried out are 

presented and future experiments are suggested. 
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Chapter 2 - Fundamentals of optical parametric oscillators and 

ultrashort pulse dynamics 

2.1 Introduction 

Nonlinear interactions in bulk crystals and dielectric media are fundamental to the 

generation and propagation of ultrashort pulses.  An understanding of the spatial and 

temporal evolution of such pulses in a resonant cavity, and as they propagate through 

optical material, is crucial for the fine dispersion control necessary to achieve ultrashort 

pulse durations.  In this chapter the reader is introduced to the basic principles of 

nonlinear optics, including the fundamental concepts of phasematching and dispersion, 

as well as a mathematical description of a laser pulse.  Consideration is then given to 

some of the methods of characterizing ultrashort pulses, including autocorrelation, 

FROG, SPIDER and the powerful MIIPS technique.  

2.2 Fundamental nonlinear properties and concepts 

This section of the chapter describes the interactions that take place in a nonlinear 

material when subject to an intense electromagnetic field.  Discussion is given to (2)χ  

processes through which ultrashort pulses are generated in a nonlinear medium, with 

emphasis on phasematched parametric processes found in an optical parametric 

oscillator. 

2.2.1 Nonlinear susceptibility 

When light propagates through a material the electrons and atoms within it react to the 

electromagnetic fields of the wave, producing a change in the spatial and temporal 

distribution of electrical charges.  The field causes small displacements of the valence 

electrons from their normal orbits, perturbations which create electric dipoles that are 

manifested as the electric polarization of the medium.  For small field strengths (such as 

an unfocused, low energy laser beam) this electric polarization ( )P ω  is proportional to 

the electric field strength ( )E ω , expressed as 

 (1)
0( ) ( )P Eω ε χ ω=    (2.1) 

where 0ε  is the vacuum permittivity and (1)χ  is the first-order or linear susceptibility, a 

measure of the sensitivity of the electric polarization to the applied field [1].  For intense 
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electric fields a nonlinear polarization of the medium takes place, described as a power 

series expansion of Equation (2.1) and often written as 

 (1) (2) 2 (3) 3
0 0 0( ) ( ) ( ) ( ) ...P E E Eω ε χ ω ε χ ω ε χ ω= + + + , (2.2) 

where (2)χ  and (3)χ  are the second-order and third-order nonlinear susceptibilities 

respectively. 

2.2.2 Properties of the χ(2) nonlinear susceptibility 

Optical field interactions involving the (2)χ  nonlinearity are phase-only, with no photon 

energy being absorbed into the medium.  This makes (2)χ  nonlinear processes 

appealing as they require no cooling and can be highly efficient.  While all transparent 

materials display first- and third-order nonlinear susceptibility, second-order effects are 

only observed in non-centrosymmetric crystals.  Such nonlinear crystals can be used in 

power-scalable processes that are limited only by the material properties of the crystal, 

such as the damage threshold, hygroscopicity and photorefraction. 

2.2.3 Nonlinear optical processes 

The second-order nonlinear susceptibility can be exploited to produce a number of 

nonlinear interactions.  A formal derivation of these processes will be given in  

Sub-section 2.2.4; however a more general outline will be given first here.  The most 

common application of the (2)χ  nonlinearity is to facilitate frequency mixing between 

two electromagnetic waves to produce an interfering field E, given by 

 ( ) ( )1 21 2cos cosE E Et tω ω= + .  (2.3) 

The field E will generate a polarisation response in the material as defined by the first 

two terms of Equation (2.2), given by 

 

( ) ( ) ( )
( ) ( )

( ) ( )

(1)
0 1 21 2 1 2

(2)
0 1 2 1 2

2 2 2 2
1 21 2

cos cos,

2 cos cos

cos cos

P E Et t

E E t t

E Et t

ε χω ω ω ω

ε χ ω ω

ω ω

= +  
+ 

+ + 

. (2.4) 
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Using the trigonometric identities 
cos( ) cos( )cos( ) cos( )

2
A B A BA B − + +

=  and

2 1 cos(2 )cos ( )
2

AA +
= , Equation (2.4) can be expanded into six independent terms 

which describe the nonlinear interactions between the two fields, given by 

 ( ) ( )(1)
0 1 11 2cos cosP E Et tε χ ω ω= +    (INT) (2.5) 

 [ ]( )
(2)

0 1 2
1 2cos

2
E E tε χ

ω ω + −   (DFG) (2.6) 

 [ ]( )
(2)

0 1 2
1 2cos

2
E E tε χ

ω ω + +   (SFG) (2.7) 

 ( )
(2) 2

0 1
1cos 2

2
E tε χ

ω+     (SHG) (2.8) 

 ( )
(2) 2

0 2
2cos 2

2
E tε χ ω+     (SHG) (2.9) 

 
(2)

0 2 2
1 22

E E
ε χ

+  +   (EOR). (2.10) 

Equation (2.5) describes the interference field (INT) between the incident waves, 

manifested as the linear polarisation response of the medium.  Equations (2.6) and (2.7) 

respectively describe difference-frequency generation (DFG) and sum-frequency 

generation (SFG) between the two waves.  Equations (2.8) and (2.9) correspond to 

second harmonic generation (SHG) for each of the incident frequencies ω1 and ω2 

respectively.  The final term, Equation (2.10), describes the DC polarization component 

known as electro-optic rectification (EOR), a process exploited in the field of terahertz 

generation. 

2.2.4 The coupled wave equations 

The previous sub-section introduced the nonlinear polarization response of a medium to 

an intense electric field and how this interaction creates new frequencies.  In order to 

fully describe how these new frequencies are generated and their relation to the 

frequencies of the incident frequency fields we must extend the standard wave equation 

using Maxwell’s equations, expressed as 
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2 2

2
2 2 2 2

0

1 1E PE
c t c tε

∂ ∂
∇ − =

∂ ∂
. (2.11) 

This equation can be simplified by considering that the incident waves only travel in 

one propagation direction, commonly chosen as z, and by limiting the interaction to 

three frequencies 1ω , 2ω  and 3ω , where convention dictates that 

 1 2 3ω ω ω≤ ≤ . (2.12) 

The simplified equation has a solution that produces three coupled wave equations that 

describe any second-order frequency mixing process, given by 

 

( )

( )

( )

*1 1
3 2

1
*

*2 2
1 3

2

3 3
1 2

3

' ,

' ,

' ,

i i kz
ijk j k

k i kz
kij i j

j i kz
jik i k

dE i d E E e
dz cn

dE i d E E e
dz cn

dE i d E E e
dz cn

ω

ω

ω

− ∆

+ ∆

+ ∆

= −

=

= −

and (2.13) 

where i, j and k refer to Cartesian coordinates and can take on values x and y, and where

ijkd  is the tensor element describing the nonlinear coupling between the fields, with a 

value of half the susceptibility tensor  [2].  Δk is the wave-vector mismatch, given by 

 3 2 1k k k k∆ = − −  (2.14) 

where 

 ( )2 m
m

m

n
k

π λ
λ

= . (2.15) 

Efficient generation of new frequencies is only possible if 0k∆ = , a condition that is 

achieved through careful choice of propagation directions through the medium and 

consideration of its material properties.  Satisfying this condition is known as 

phasematching.  The traditional method to achieve phasematching is through use of the 

birefringence of a nonlinear crystal such as lithium niobate (LiNbO3), and is commonly 

referred to as birefringent phasematching. 
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2.2.5 Birefringent phasematching 

For interactions between three waves there are two possible birefringent phasematching 

conditions.  In Type I phasematching the two longer wavelengths have the same 

polarization, perpendicular to that of the shorter generated wavelength, such as 

 
oo e
ee o

→
→

. (2.16) 

This phasematching is common in second harmonic generation.  Using Equations (2.14) 

and (2.15) it can be seen that the phasematching condition for Type I SHG is given by 

 
( ) ( ) ( )

2

2

2 0
o e e o e on n nk ω ω ω

ω ω ω

π
λ λ λ

 
− −∆ = = 

 
. (2.17) 

This is only possible in materials where ( ) ( )
2 2o e e on nω ω= , a condition that can be met in 

many crystals but is highly limited by the exact dispersion relation of the material, as 

shown in Figure 2.1.  Fortunately some degree of tunability in the phasematching 

condition can be achieved by adjusting the angle of the crystal relative to the 

propagation direction.  Light polarized in the plane containing the optic axis and the 

direction of propagation will experience an angle-dependent refractive index that varies 

between en  and on .  The correct angle necessary for satisfying Equation (2.17) can be 

found by adjusting the crystal angle from normal incidence or by cutting the crystal so 

that the new normal interface becomes the phasematching angle. 
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Figure 2.1.  Type I birefringent phasematching solutions for SHG in lithium niobate 
at 25°C.  The horizontal lines indicate those interactions which simultaneously satisfy 
the phasematching and energy conservation conditions of Equation (2.17).  Solutions 
are obtained for SHG of 0.54 µm from 1.08 µm and 1.87 µm from 3.74 µm.  Adapted 
from  [3]. 

Angle tuning introduces walk-off in the Poynting vector of the generated wave which 

propagates at an angle to the optic axis.  Walk-off reduces the spatial overlap between 

the interacting waves, lowering efficiency.  Another downside to angle tuning is that Δk 

varies rapidly with angle, constraining the acceptance angle for phasematching.  An 

alternative to angle tuning is to utilize the temperature dependence of the refractive 

indices.  In many optical crystals the rate of change of refractive index temperature is 

different for the ordinary and extraordinary indices, allowing for tuning of the 

birefringence, however the temperatures required to meet the desired phasematching 

conditions may be inconvenient. 

In Type II phasematching the two longer wavelength waves have perpendicular 

polarisations, with the shorter generated wavelength having either polarization, the 

orientation of which depends on the nonlinear crystal properties.  Notation is given by 

 
oe e
oe o

→
→

. (2.18) 

Satisfying Equation (2.14) for Type II phasematching follows the same methodology as 

for Type I phasematching, but will not be discussed further here.  
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2.2.6 Quasi-phasematching 

An alternative approach to achieving efficient frequency generation in a second-order 

nonlinear interaction is the case where 0k∆ ≠ , known as quasi-phasematching  [3].  

This process takes advantage of the fact that all (2)χ  materials are dispersive, a concept 

discussed in Sub-section 2.3.2.  Again considering the case of three interacting 

electromagnetic waves, the relative phase between them after some propagation 

distance will accumulate to π, given as 

 3 2 1φ φ φ φ π∆ = − − = . (2.19) 

The conversion efficiency builds to a maximum over this propagation distance which is 

known as the coherence length, given by 

 cL
k
π

=
∆

. (2.20) 

After the waves propagate beyond the coherence length the converted intensity 

decreases as the phasematching condition has changed.  In fact the condition is such that 

energy is converted from the generated frequencies back into the fundamental 

frequency, a process known as back conversion.  To prevent back conversion and 

increase the efficiency of the forward conversion, a phase step of π  is added to the 

interacting fields, returning to the phasematching condition.  Physically this phase step 

is added by periodically flipping the polarity of the nonlinear coefficient tensor ijkd  by 

the quasi-phasematching or grating period gΛ , given by 

 
2

g k
π

Λ =
∆

. (2.21) 

The quasi-phasematching condition, a modified version of Equation (2.14), is therefore 

given by 

 3 2 1
2 0qpm

g

k k k k π
∆ = − − − =

Λ
. (2.22) 

Satisfying this condition can be achieved by varying the length of the grating period, 

under the condition that 
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( ) ( ) ( ) 1

3 2 2

3 2 1
g

n n nλ λ λ
λ λ λ

−
 

Λ = − − 
 

. (2.23) 

Periodic inversion of the nonlinear polarity of a material is achieved through the 

periodic poling technique.  Ferroelectric crystals such as KTiOPO4 are exposed to an 

intense electric field which alters the position of the ions inside the unit cell.  

Manufacturers can extend this technique across a crystal by using a patterned electrode 

to create alternating poled domains with few-micron-scale grating periods over a crystal 

length of several centimetres.  The QPM process allows for efficient frequency 

conversion in nonlinear materials where phasematching is not possible.  The relative 

efficiencies for SHG are shown in Figure 2.2 as an example. 

 

Figure 2.2.  Quasi-phasematching allows efficient frequency conversion in non-
phasematched crystals by introducing a π phase shift whenever the phase mismatch 
accrues to π. 

2.2.7 Second harmonic generation 

Solving the coupled wave equations is a non-trivial process, and often requires 

simplification before an analytical solution can be found.  In the case of second 

harmonic generation it is assumed that the conversion efficiency is low with no 

depletion of the interacting waves, giving 1 2 0dE dE
dz dz

≈ ≈ .  This leaves only one 

equation to be solved, 
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 ( )3 3
1 2

3

'j i kz
jik

dE i d E E e
dz cn

ω + ∆= − , (2.24) 

with 

 ( )
3

i kzE ae b+ ∆= + , (2.25) 

and second harmonic generation constraining the frequencies to 3
1 2 2

ωω ω= = .  Setting 

the derivative of Equation (2.25) with Equation (2.24) we can find the constant a, given 

by 

 3 1 2

3

' jikd E E
a

cn k
ω

= −
∆

. (2.26) 

The analytical expression can be further simplified by noting that no coupling takes 

place until the waves meet the nonlinear medium, and so 3( 0) 0E z = = .  This allows b 

to be written as 

 3 1 2

3

' jikd E E
b a

cn k
ω

= − =
∆

, (2.27) 

giving a final generated electric field of  

 ( )[ ]1,2 1 2
3

3

2 '
1

jik i kz
d E E

E i kecn k
ω

+ ∆= − ∆∆
. (2.28) 

The intensity of the second harmonic output is obtained by multiplying the field by its 

complex conjugate, that is  

 
*

0 3 3
3 2

nc E EI ε
= , (2.29) 

which provides a final expression 

 
1,2

2 2 2 2
1,2 2

2 3
1 2 3 0

8 '
( ) sinc

2
jikd I z kzI z

c n n n
ω

ω

ω
ε

∆ =   
. (2.30) 

It can be seen from Equation (2.30) that the maximum second harmonic output is 

generated when 0k∆ = , as determined by Equation (2.14), and increases with both 
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incident intensity and propagation distance.  For quasi-phasematched processes the 

second harmonic intensity follows a sinc2 function with maximum conversion over one 

coherence length.   

2.2.8 Sum- and difference-frequency generation 

As with second harmonic frequency generation, the coupled-wave equations for sum- 

and difference-frequency generations are complicated to solve without simplification.  

The assumption is made that pump depletion is negligible and that perfect 

phasematching conditions are present.  Following the convention established in 

Equation (2.12), sum-frequency mixing between waves ω1 and ω2 generates a new 

wave  

 3 1 2ω ω ω= + , (2.31) 

where 3 2 1ω ω ω> ≥ .  When considering nonlinear interactions with three different 

frequencies, the exchange of energy between input waves 1ω  and 2ω  and output wave 

3ω  must be taken into account.  This energy is transferred backward and forward as the 

waves propagate through the crystal with a complex gain and coupling relationship, a 

full derivation of which can be found in a number of nonlinear optics textbooks.  A 

simpler summary is now given for nonlinear interactions with no wavevector mismatch 

and for the case where one of the applied fields (at frequency ω2) is strong and the other 

field (at frequency ω1) is weak.  This example illustrates the sum-frequency mixing 

process that occurs between the intense pump field and the weak idler field in a signal-

resonant OPO, as discussed in Sub-section 2.2.9. 

As the amplitude E2 of frequency ω2 is much larger than E1, it is assumed that it remains 

unaffected by the interaction.  The coupled wave equations (2.13) then reduce to 

 1
1 3

i kzdE K E e
dz

− ∆=  (2.32) 

 3
3 1

i kzdE K E e
dz

+ ∆=  (2.33) 

where 1 2 3k k k k∆ = + −  and the quantities K1,3 are introduced, where 
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 1
2

2
*

1 2
1

2 ijki d
K E

k c
ω

=  (2.34) 

and 

 3

2

3 22
3

2 ijki d
K E

k c
ω

= . (2.35) 

As no wavevector mismatch is assumed, Δk = 0.  By manipulating Equations (2.32) and 

(2.33), an equation involving only E1 can be obtained, written as 

 
2

21
12

d E E
dz

κ= −  (2.36) 

where κ2 is the positive coupling coefficient, given by 

 
22 2

1 3 22
1 3 4

1 3

4 ijkd E
K K

k k c
ω ω

κ = − = . (2.37) 

The general solution to Equation (2.36) is given as 

 1( ) cos( ) sin( )E z B z C zκ κ= +  (2.38) 

 and can be combined with Equation (2.32) to get a general equation for E3, given as 

 3
1 1

( ) sin( ) cos( )B CE z z z
K K
κ κκ κ−

= + . (2.39) 

A solution can now be found for the appropriate boundary conditions.  It is assumed 

that the field ω3 is not present at the input to the nonlinear crystal, and so E1(0) = 0.  The 

solutions for the weak ω1 field and the generated ω3 field are therefore given by 

 1 1( ) (0)cos( )E z E zκ=  (2.40) 

and 

 3 1
1

( ) (0) sin( )E z E z
K
κ κ= −  (2.41) 

respectively.  With some thought this can be reduced to give 

 21 3
3 1

3 1

( ) (0)sin( ) inE z i E z e
n

φω κ
ω

=  (2.42) 
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where 2φ is the phase of E2. 

For difference-frequency generation the same method of solution applies, with the 

convention that ω3 is the pump wave and ω1 is the mixing wave.  The solutions for the 

weak field ω1 and generated field ω2 are given by 

 1 1( ) (0)cosh( )E z E zκ=  (2.43) 

and 

 
1

*1 2 3
2

2 1 3

( ) (0)sinh( )
n EE z i E z
n E
ω

κ
ω

 
=  

 
. (2.44) 

An important result of these equations is that both the mixing wave and generated wave 

increase in intensity as they propagate through the nonlinear crystal, depleting the pump 

wave 3ω .  This is important for the realisation of parametric frequency generation. 

2.2.9 Optical parametric generation 

The result described in the previous sub-section indicates that amplification via the (2)χ  

nonlinearity is possible.  This is achieved through the implementation of a resonant 

cavity known as an optical parametric oscillator (OPO) that enhances the parametric 

optical amplification, illustrated in Figure 2.3.  The three frequencies of the three 

interacting waves 3 2 1ω ω ω> ≥  are denoted as the pump ( )pω , signal ( )sω  and idler 

( )iω  respectively.  When the cavity mirrors are coated such that they are highly 

reflective at the signal or idler frequency then the cavity is said to be singly-resonant.  If 

the high reflectivity regions extend to both the signal and idler waves then the cavity is 

said to be doubly-resonant.  For the special case where the resonant signal and idler 

frequencies overlap at half the pump frequency, the OPO is said to be degenerate.  
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Figure 2.3.  A simple illustration of a singly-resonant optical parametric oscillator.  
The pump wave is coupled into the nonlinear medium through a dichroic cavity 
mirror.  The pump wave is converted into a non-resonant idler wave and a resonant 
signal wave.  The signal wave can be coupled out of the resonator with a standard 
partially-reflective cavity mirror. 

As with the case of difference-frequency generation, both the signal and idler waves 

increase in intensity as they propagate through the nonlinear crystal.  

Optical parametric oscillators are widely used as a highly tunable source, limited by the 

phasematching conditions of the nonlinear crystal and the reflective coating of the 

resonator mirrors.  OPOs can be operated both intra-and extra-cavity; in CW-mode or in 

a pulsed regime; with pulse durations ranging from nanoseconds to femtoseconds; all 

depending on the phasematching conditions and cavity geometry.  

An extra requirement must be satisfied for pulsed operation.  The OPO must be 

synchronously pumped, so that the cavity length of the OPO matches the repetition rate 

of the pump laser.  This requirement arises due to the lack of absorption and gain 

storage in an OPO; the nonlinear gain process is instantaneous and so the generated 

electric fields only build up if a generated pulse coherently overlaps after one roundtrip 

with the next incident pump pulse inside the crystal [4].  Synchronously pumped OPOs 

can also be constructed where the OPO cavity length is a unit fraction [5] or improper 

fraction [6] of the pump cavity length.  Both cases generate high repetition rate OPO 

pulses, but with a decrease in efficiency.  
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2.3 Ultrashort pulse dynamics 

This section of the chapter describes in formal terms the propagation and mathematical 

description of ultrashort pulses.  The dispersive spectral and temporal evolution of a 

propagating pulse is considered, as well as methods for its control. 

2.3.1 Description of an ultrafast pulse 

A pulse with centre frequency 0ω  can be represented by a time-dependent complex 

envelope function with a real electric field given by 

 ( )0( ) Re ( ) i tE t A t e ω ∝    (2.45) 

where ( )A t  is the amplitude of the normalized electric field, shown in Figure 2.4  [7].  

The spectral amplitude can be obtained through a Fourier transform of the temporal 

field and is given by 

 ( )1( ) ( )
2

i tA A t e dtωω
π

∞
−

−∞
= ∫ . (2.46) 

The instantaneous optical power and power spectrum are given by 2( )A t and 2( )A ω  

respectively. 

 

Figure 2.4.  The real component of the electric field representing a Gaussian pulse 
with 10 fs duration at λ0 = 0.8 µm.  The dashed line represents the envelope function 
that is modulated by the underlying carrier wave, shown in red. 
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A pulse is characterised by its duration pτ∆  and its spectral bandwidth pν∆ , with a 

fixed relationship known as the time-bandwidth product, p pτ ν∆ ∆ .  The temporal and 

spectral widths are measured at the full-width half-maximum (FWHM) point, as shown 

in Figure 2.5.  In ultrafast science there are two important field envelope profiles; the 

Gaussian shape 
2

2
2ln 2

p

t

e τ

 −
  ∆ 

 
 
 

 with a minimum time-bandwidth product of 0.441; and the 

hyperbolic secant shape 
21.763

sech
p

t
τ

  
   ∆  

 with a minimum time-bandwidth product of 

0.315 [8].  These two time-bandwidth values correspond to a pulse that has accrued no 

positive or negative chirp, a process that increases the minimum time-bandwidth 

product.  Such a chirp-free pulse is often described as transform-limited.  

 

Figure 2.5.  The temporal and spectral intensity profiles of a 10 fs Gaussian pulse 
centred at 0.800 µm.  The FWHM bandwidths are shown for each domain.  The time-
bandwidth product is 0.441. 

2.3.2 Dispersion 

Dispersion arises from that fact that, excluding a vacuum, the refractive index of a 

medium is frequency dependent.  Different spectral components of the pulse will travel 

at different velocities, introducing a frequency-dependent phase delay and causing the 

pulse to change its shape.  This can by visualised by imagining a long pulse composed 

of several smaller wavepackets.  The lower frequency side of the spectrum has a 

frequency ( )0 yω −  while the higher frequency side has frequency ( )0 yω + .  The 
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leading edge is therefore moving with a phase velocity which is 2y  greater than the 

trailing edge, causing the pulse to broaden. 

The spectral phase of a pulse is the phase of the electric field in the frequency domain, 

and is commonly defined as a Taylor expansion with respect to the mean frequency of 

the pulse 0ω , 

 

( )

( )

( )

( )

0

0

22
0 2

33
0 3

( )

1
2

1 ...
6

o

o

o

ω

ω

ω

ϕ ω ϕ ω

ϕω ω
ω

ϕω ω
ω

ϕω ω
ω

=

∂ + −  ∂ 

 ∂+ −  ∂ 

 ∂+ − + ∂ 

. (2.47) 

The first line in Equation (2.47) is the absolute phase, a measure of the phase 

accumulated at reference frequency 0ω , and has no effect on the pulse shape.  The 

second line contains a first-order differential term which describes the linear change of 

the phase with frequency, corresponding to a time-domain delay or group-delay, gτ .  

The third line contains a term describing the rate at which the group delay changes with 

frequency, known as the group-delay dispersion (GDD), with units of fs2 [9]. 

The final line in Equation (2.47) contains two important terms in the evolution of the 

pulse shape.  The term ( )3
0ω ω− describes cubic spectral phase variations associated 

with pulse break-up, a result of steepening of one edge of the pulse and stretching of the 

other.  The differential term is known as the third-order dispersion (TOD), with units of 

fs3, and is the first of the higher-order spectral phase terms.  Figure 2.6 illustrates the 

effect of dispersion upon an initially transform-limited pulse. 
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Figure 2.6.  A 10 fs pulse (a) before and (b) after positive dispersive broadening.  
Longer blue frequencies are delayed relative to the shorter red frequencies. 

Control of the intracavity dispersion is necessary for the generation of few-cycle 

ultrashort pulses.  The GDD, TOD and higher-order spectral phase terms associated 

with one cavity roundtrip must be negligible (‘flat’) across the spectral bandwidth of the 

pulse.  The net dispersion accumulated during one roundtrip can come from a number of 

sources. 

2.3.3 Material dispersion and associated dispersion compensation methods 

Material dispersion arises from the wavelength-dependent refractive index, ( )n λ , of all 

dielectric media, such as optical glasses, gain media and nonlinear crystals [10].  For 

many materials ( )n λ  is described through the Sellmeier equation, from which the 

material dispersion can be derived.  For practicality, it is useful to describe the GDD in 

terms of refractive index and wavelength, where 

 
3 2

2 22
L d nGDD
c d

λ
π λ

= . (2.48) 

A summary of important phase and frequency relationships is given in Table 2.1. 
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Table 2.1.  Higher-order dispersion terms.  Adapted from [11]. 

Dispersion term Angular frequency notation Refractive index notation 

Phase velocity p
n

v
k
ω

=  c
n

 

Group velocity g
n

dv
dk
ω

=  
1dnc n

d
λ

λ

−
 − 
 

 

1st order dispersion 
(group delay) g

d
d
ϕτ
ω

=  
L dnn
c d

λ
λ

 − 
 

 

2nd order dispersion 
(GDD) 

2

2
gd d

d d
τ ϕ
ω ω

=  
3 2

2 22
L d n
c d

λ
π λ

 

3rd order dispersion 
(TOD) 

3

3

d
d
ϕ
ω

 
4 2 3

2 3 2 33
4

L d n d n
c d d

λ
λ

π λ λ
−  

+ 
 

 

 

2.3.3.1 Dispersion compensation through a prism pair 

Material dispersion arises from the wavelength-dependent refractive index of dielectric 

media.  In contrast, geometric dispersion arises from the wavelength-dependent path 

lengths associated with optical systems that exhibit angular dispersion, such as 

diffraction gratings or prisms.  Inserting carefully chosen angularly dispersive elements 

in a cavity allows for control of the net GDD and TOD, subject to well defined 

geometric constraints [12]. 

The use of a prism pair for both intracavity and extracavity dispersion compensation has 

been well documented, and a full analysis available in many optics textbooks  [13–18].  

With a prism apex separation l and angular beam deviation β, the negative second- and 

third-order dispersion due to the optical geometry illustrated in Figure 2.7 is given by 

 
2 3 2

2 2 22
d d P
d c d
ϕ λ
ω π λ

=  (2.49) 

 
3 4 2 3

3 2 3 2 33
4

d d P d P
d c d d
ϕ λ

λ
ω π λ λ

 = − + 
 

 (2.50) 

where 
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222 2

2 2 3

14 sin 8 cos2
d P dnd n dnl lnd dd n d

β β
λ λλ λ

     = −+ −          
 (2.51) 

and 
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3 23
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2 33
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   = −−   
   

    + + − +    
    +
  + +−  

  

. (2.52) 

This negative geometric dispersion, when coupled with the positive material dispersion 

of the prisms, allows for fine control over the net dispersion experienced by pulses as 

they propagate through the prism sequence.  The net dispersion can be tuned by sliding 

the prisms along an axis normal to their base, varying the positive material dispersion 

contribution while keeping the negative geometrical dispersion constant. 

 

Figure 2.7.  Schematic of a double-pass prism compressor for dispersion 
compensation, with apex separation l and beam deviation β. 

2.3.3.2 Chirped Mirrors 

A dielectric mirror coating consists of multiple thin layers of transparent optical 

materials with alternating low-high refractive indices.  Such mirrors routinely offer 

99.9% reflectivity over a desired bandwidth and so are commonly used in laser 

resonators.  Mirror dispersion can be understood as arising due to longer wavelengths 

penetrating deeper into the mirror layers until they are reflected, introducing a 

wavelength-dependent delay.  Alteration of the mirror structure and coating properties 

allows their use as dispersion control optics, as discussed below. 
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A progressive increase in the thickness of the alternating mirror layers allows short 

wavelength components to be reflected before longer wavelength components [19,20], 

as illustrated in Figure 2.8.  The group delay of the reflected beams increases with 

wavelength, giving negative GDD.  Such mirrors are said to be chirped, and for an 

appropriate design the GDD can be approximately constant over a selected bandwidth, 

giving zero TOD. In practice chirped mirrors are often implemented in pairs with 

complementary coatings to remove modulations around the desired GDD value [21–23]. 

 

Figure 2.8.  Exaggerated diagram of the structure of a chirped mirror. 

2.3.3.3 GTI mirrors 

A Gires-Tournois interferometer (GTI) mirror contains an etalon-like structure, the 

monolithic equivalent of an optical standing-wave resonator [24,25].  While they offer 

substantially greater negative GDD than a chirped mirror pair, the reflectivity 

bandwidth is narrower. 

Both mirror types provide fixed GDD values, and so are often considered for coarse 

compensation of pulse dispersion.  For finer control, a prism pair can be implemented as 

well. 

2.3.4 Self-phase modulation 

The optical Kerr effect is caused by a time- and intensity-dependent refractive index 

variation, described by 

 0 2 ( )n n n I t= + , (2.53) 
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where 2n  is the nonlinear refractive index of the medium [7].  The time-dependent 

intensity profile of a pulse introduces a higher refractive index change at the peak of the 

profile, causing the more intense part of the pulse to experience a greater phase shift 

than weaker pulse components.  This broadening of the spectrum is known as self-phase 

modulation (SPM), and the resulting instantaneous frequency shift is given by 

 2( ) ( )SPMd t n L dI t
dt c dt

φ ωω∆ = − = − . (2.54) 

SPM is a (3)χ  process similar to TOD, where the leading edge of an intense pulse is  

red-shifted while the trailing edge is blue-shifted.  In the pulse centre there is an 

approximately linear positive chirp.  SPM is commonly used to spectrally broaden 

pulses, for example in a length of highly nonlinear optical fibre.  Subsequent 

compression of the broadened pulse through dispersion compensation allows for very 

short pulses to be realised, often shorter than the minimum duration achievable through 

intracavity dispersion management.  
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2.4 Pulse characterisation techniques 

Section 2.3 described the propagation and evolution of an ultrashort pulse.  This section 

will discuss the complex task of characterising the intensity and phase profiles of such 

pulses, but first a question must be asked: how you measure an event without comparing 

it to something shorter?  For an ultrashort pulse this is usually not possible, as there is 

no faster event to compare it against.  This section will detail some of the most common 

techniques that have been developed to measure the temporal properties of ultrashort 

pulses, including some that also retrieve their phase profile, a critical element in the 

work carried out in this thesis. 

2.4.1 Autocorrelation 

Autocorrelation (or more precisely SHG-autocorrelation) was one of the earliest 

techniques used to measure the temporal features of ultrashort pulses [26].  It does not 

directly recover any phase information, but is still commonly used to estimate pulse 

duration due to its simple optical arrangement and data recovery. 

2.4.1.1 Interferometric autocorrelation 

 

Figure 2.9.  A simple optical arrangement for an SHG autocorrelator. 
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A Michelson interferometer (Figure 2.9) is constructed, where the test pulse is split into 

two copies which travel down separate arms.  A relative delay τ  between the two 

replicas is introduced by moving one arm parallel to the incoming beam, before the 

pulses are recombined upon exiting the interferometer.  The pulses are spatially 

overlapped within a nonlinear crystal chosen for efficient second harmonic generation.  

The intensity within the crystal is given by 

 [ ]
22( ) ( ) ( )G dtE t E tτ τ

∞

−∞

= + +∫ , (2.55) 

A filter is used to block the fundamental frequencies, and a photomultiplier tube or 

photodiode is used to detect the second harmonic signal, given by 

 
[ ]

22

2
4

( ) ( )
( )

2 ( )

dtE t E t
g

dtE t

τ
τ

∞

−∞
∞

−∞

+ +
=
∫

∫
. (2.56) 

This signal is a fringe pattern known as an interferometric autocorrelation.  For a 

transform-limited pulse the maximum and minimum value of each fringe half-period is 

given by a delay change of 

 
0

πτ
ω

∆ = ± . (2.57) 

This produces upper ( )ug  and lower ( )lg  envelope functions for the fringe pattern, 

given by 
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4
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2 ( )
u

dtE t E t
g

dtE t

τ
τ

∞
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+ −
=
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∫
 (2.58) 

and 
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4
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dtE t E t
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∫
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respectively.  From Equations (2.58) and (2.59) it can be shown that the maximum 

value corresponds to a delay of zero ( 0)τ =  and where the delay becomes increasingly 

large ( )τ → ±∞ .  Equation (2.56) then becomes 

 
4

2 4

2 ( ) 16( ) 8
22 ( )

dtE t
g

dtE t
τ = = =∫

∫
 (2.60) 

in the first instance and 

 
4 4

2 4

( ) ( )
( ) 1

2 ( )

dt dtE t E t
g

dtE t
τ

+
= =∫ ∫

∫
 (2.61) 

in the second instance.  An interferometric autocorrelation will therefore have a contrast 

ratio of 8:1, as shown in Figure 2.10. 

 

Figure 2.10.  An interferometric trace of a transform-limited 10 fs Gaussian pulse 
centred at 0.800 µm.  g2 is the black line, gu is the red line and gl is the blue line. 

A chirped pulse will produce a distorted interferogram as the two electric fields will 

most strongly interfere when the delay is zero.  This changes the shape of the upper and 

lower envelopes, allowing a quick visual inspection to show if the pulse is chirped  An 

interferometric autocorrelation therefore contains some amount of phase information, 

however as Figure 2.11 demonstrates the trace only records the magnitude of the chirp 

added to the pulse.  The envelope distortions created by the presence of chirp can lead 
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to experimental errors when determining the pulse duration from the FWHM point [27].  

This technique does not recover the absolute phase across the pulse. 

 

Figure 2.11.  Interferometric autocorrelation traces of a chirped 10 fs Gaussian pulse 
centred at 0.800 µm.  The addition of (a) 150fs2 and (b) -150fs2 of GDD produces 
identical traces, and the envelope becomes distorted. 

2.4.1.2 Intensity autocorrelation 

A complementary technique to interferometric autocorrelation is intensity 

autocorrelation.  When the signal rise time of the detector is slower than the time taken 

to scan through one fringe then the fringes cannot be resolved and an intensity profile is 

recorded instead.  The intensity autocorrelation trace is time averaged, with all phase 

information being lost, and is given by 

 2
2

2 ( ) ( )
( ) 1

( )

I t I t dt
g

I t dt

τ
τ

∞

−∞
∞

−∞

−
= +

∫

∫
. (2.62) 

When 0τ =  and τ = ±∞ , Equation (2.62) simplifies to 3 and 1 respectively, giving a 

contrast ratio of 3:1, as shown in Figure 2.12. 
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Figure 2.12.  Intensity autocorrelation of a 10 fs Gaussian pulse centred at 0.800 µm. 

An intensity autocorrelation will broaden in the presence of additional chirp, allowing 

for accurate pulse duration measurements to be performed when the pulse shape is 

known with certainty.  As with an interferometric autocorrelation, the trace cannot be 

used to differentiate between positive and negative dispersion, as shown in Figure 2.13. 

 

Figure 2.13.  Intensity autocorrelation traces of a chirped 10 fs Gaussian pulse centred 
at 0.800 µm.  The addition of (a) 150fs2 and (b) -150fs2 of GDD produces identical 
traces, and the envelope remains undistorted. 
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2.4.1.3 Pulse duration retrieval 

The pulse duration is calculated directly from the resulting autocorrelation trace.  The 

FWHM of the autocorrelation trace t∆  is related to the actual pulse duration pτ∆  by a 

conversion factor k  in the expression 

 p
t

k
τ ∆

∆ = . (2.63) 

The value of k  depends on the pulse shape and the type of autocorrelation used.  A 

summary of the values of k  for two ultrashort pulse profiles is given in Table 2.2. 

Table 2.2.  Interferometric and intensity autocorrelation conversion factors for 
Gaussian and sech2 pulses. 

 Conversion factor k 

Pulse profile Intensity Interferometric 

Gaussian 1.414 1.697 

sech2 1.543 1.897 
 

While the autocorrelation technique can retrieve the duration of a pulse, it is ill-suited 

for recovering information about its phase.  As pulse durations become shorter the 

phase across the spectral profile of the pulse becomes more important.  There are 

several techniques that have been developed over the past few decades that allow the 

intensity and phase profiles of a pulse to be characterised in a single experiment.  

Frequency-resolved optical gating (FROG) was the first of these to be introduced, and 

works in the time-frequency domain.  Spectral-phase interferometry for direct electric-

field reconstruction (SPIDER) was pioneered several years later, and is an 

interferometric technique.  More recently, and of some importance to the work carried 

out in this thesis, the multiphoton intrapulse interference phase scan (MIIPS) method 

was created to both characterise and shape a pulse simultaneously.  These techniques 

and some of their variants will now be discussed. 

2.4.2 Frequency-resolved optical gating (FROG) and its variants 

Experiments to measure the pulse spectrum or autocorrelation are intrinsically 

constrained to the frequency or time domain respectively.  A FROG measurement takes 

place in both regimes simultaneously in what is known as the time-frequency domain.  
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While this may be non-intuitive to visualise, it is most familiar to people in the form of 

a music score (Figure 2.14).  The frequency of the note depends on the vertical position 

in the scale (y-axis), and the time at which the note is played is given by its horizontal 

position (x-axis).  The volume or intensity of the note is also indicated in the score. 

 

Figure 2.14.  A musical score, a common example of the time-frequency domain. 

A musical score is an example of a spectrogram, a visual representation of the time-

frequency domain where the frequency is recorded as a function of time, thus indicating 

which frequencies arrive first.  This is known as time-gating, and an optical spectrogram 

is given by 

 
2

( , ) ( ) ( ) i tSP E t G t e dtωω τ τ
∞

−

−∞

= −∫ . (2.64) 

( )G t τ−  is known as the time gating function, producing a set of spectra of gated 

sections of ( )E t  as the delay τ  is varied.  FROG was the first technique to 

experimentally record a pulse spectrogram, where the signal beam produced by a 

frequency-mixing autocorrelation is spectrally resolved [28–31]. 

2.4.2.1 Second harmonic generation FROG (SHG-FROG) 

SHG-FROG is the most commonly used FROG variant, and requires the same optical 

arrangement as an SHG autocorrelator  [30,32–35].  Instead of recording the second 

harmonic output on a photodiode however, a spectrometer is used to spectrally resolve 

the output as a function of delay.  A prism or grating is often used to spatially separate 

the second harmonic from the fundamental frequency.  Alternatively a non-collinear 

geometry can be employed so that the generated signal exits the nonlinear crystal at a 

different angle from the input, however an optical filter would also suffice as material 

dispersion introduced after the doubling crystal does not affect the measurement.  The 

SHG-FROG trace is mathematically described by 

 
2

( , ) ( ) ( )SHG i t
FROGI E t E t e dtωω τ τ

∞
−

−∞

= −∫ . (2.65) 
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Comparing Equation (2.65) with Equation (2.64), it can be seen that gating pulse is 

identical to the test pulse, as expected from an SHG process.  SHG-FROG traces for a 

negatively-chirped, chirp-free and positively-chirped pulse are shown in Figure 2.15. 

 

Figure 2.15.  SHG-FROG traces for an unchirped pulse (centre column), a negatively 
chirped pulse (left column) and a positively chirped pulse (right column).  In the 
chirped cases the pulse has visibly broadened in time while the spectrum remains 
unaltered.  A comparison between traces for positive and negative chirp show the time 
direction ambiguity associated with SHG-FROG.  

The SHG-FROG technique has many practical advantages that make it preferable over 

other FROG variants.  The optical arrangement introduces little material dispersion into 

the beam path and so is suitable for characterising very short pulses; material dispersion 

introduced after the nonlinear crystal does not alter the measurement as it does not 
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affect the spectral domain.  As SHG is a (2)χ  process the measurement is also very 

sensitive. 

One issue with this technique is the introduction of ambiguities in the time domain.  The 

pulse ( )E t  and its time reversed conjugate *( )E t−  both produce the same SHG-FROG 

trace.  The trace is therefore symmetrical with respect to delay, and as a result the sign 

of the higher order phase terms cannot be determined, as illustrated in Figure 2.15. 

2.4.2.2 Cross FROG (XFROG) 

XFROG differs from the standard FROG technique in that instead of the same pulse 

acting as the gate and the test, two distinctly different pulses are used [36,37], such as 

two spectrally separate pulses or a two spectrally identical pulses with different amounts 

of chirp.  These two pulses interact in the nonlinear crystal as either SFG or 

DFG [38,39], with the resulting spectrum resolved to recover the XFROG trace, as 

shown in Figure 2.16.  This technique allows the characterisation of pulses that cannot 

be frequency-doubled, such as those in the UV spectral region.  With use of the right 

retrieval algorithm, both the test and gate pulse can be characterised with this technique. 

 

Figure 2.16.  A trace from a simulated XFROG experiment operating in SFG mode.  
A 10 fs pulse centred at 0.800 µm is used to gate a 50 fs pulse centred at 0.480 µm 
(upper trace) and a 100 fs pulse centred at 0.650 µm.  The resulting output 
wavelengths are 0.288 µm and 0.359 µm respectively.  
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2.4.2.3 Data retrieval from a FROG trace 

While the general shape of a FROG trace will offer some indication of the level of chirp 

of the pulse(s), a more thorough analysis is necessary for an accurate characterisation.  

The retrieval of information from a FROG trace is non-trivial, however one algorithm 

has become the standard technique due to its robustness and fast computational speed.  

This technique is referred to as Principal Component Generalised Projections (PCGP), 

and is the method used to analyse the FROG traces acquired throughout this 

thesis [40,41]. 

The retrieval algorithm is used to find the form of the complex amplitude of the signal 

field ( , )sigE t τ , which must satisfy two constraints.  The intensity constraint specifies 

that the Fourier transform of ( , )sigE t τ  must have an intensity equal to the 

experimentally measured trace, given by 

 
2

( )( , ) ( , ) i t
FROG sigI E t e dtωω τ τ

∞
−

−∞

= ∫ . (2.66) 

The physical constraint is the mathematical form of the signal field produced when two 

pulses are combined in a nonlinear medium, given by 

 ( , ) ( ) ( )sigE t E t G tτ τ= −  (2.67) 

where ( )E t  is the test pulse and ( )G t τ−  is the gate function.  The exact form of the 

gate function depends on the FROG geometry used.  Combining Equations (2.66) and 

(2.67) provides the following expression that needs to be solved 

 ( )( , ) ( ) ( ) i t
FROGI E t G t e dtωω τ τ

∞
−

−∞

= −∫ . (2.68) 

The measured trace ( , )FROGI ω τ  is a real quantity and so contains no phase information.  

The algorithm aims to determine this phase by minimising the difference between the 

measured FROG trace and the FROG trace calculated from the modelled pulse.  Most 

algorithms follow the outline shown in Figure 2.17. 
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Figure 2.17.  The generalised technique for FROG retrieval algorithms 

The iterative process works as follows.  An initial guess of ( )E t  is made with 

reasonable values for ω∆  and pτ∆ , and the resulting guess value of ( , )sigE t τ  is 

calculated.  This function is Fourier transformed to obtain the calculated FROG 

amplitude ( , ) ( , )calc calcI ω τ φ ω τ .  The square root of the measured FROG trace 

( )( , )FROGI ω τ  is then substituted for the calculated intensity.  Reversing this process 

by using the PCGP technique a new estimate for ( )E t  is obtained from 

( , ) ( , )FROG calcI ω τ φ ω τ .  The algorithm minimises the difference between ( , )calcI ω τ  and 

( , )FROGI ω τ  by using identical test and gate pulses for SHG-FROG, and unconstrained 

test and gate pulses for XFROG. 

2.4.2.4 Principal component generalised projections (PCGP) 

The PCGP technique makes no special assumption of any connection between the test 

and gate pulses, generally not the case for many FROG techniques.  Retrieval using this 

method is known as blind-deconvolution, and the blind-FROG trace ( , )FROGI ω τ  is 

given by Equation (2.65). 

At any given time delay τ , the blind-FROG trace is the intensity spectrum resulting 

from the product of the test pulse and gate pulse.  By sampling the intensity spectrum at 
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different values of t  with constant spacing t∆ , the gate pulse and test pulse can be 

written in vector form as 

 , ,... ,1 2 1
2 2 2 2test
N N N NE E t E t E t E t  −   −            = ∆ ∆ ∆ ∆− − −                              

 (2.69) 

 , ,... ,1 2 1
2 2 2 2gate
N N N NE G t G t G t G t  −   −            = ∆ ∆ ∆ ∆− − −                              

 (2.70) 

where N  is the length of the vector.  These equations can be simplified to 

 [ ]1 2 1, ..... ,test N NE E E E E−=  (2.71) 

 [ ]1 2 1, ..... ,gate N NE G G G G−= . (2.72) 

An outer product ( )O  matrix can be created from these two vectors which consists of all 

possible products of the gate and test pulses, written as 
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The FROG trace in the time domain can be formed by simple matrix manipulation.  

Shifting each row by one place in incremental steps forms a new matrix, where the 

columns are made up from the gate pulse and test pulse products that have equal 

temporal delay, written as 

 

1 1 1 2 1 3 1 1 1

2 2 2 3 2 4 2 2 1

3 3 3 4 3 5 3 1 3 2

1 1 1 1 1 1 3 1 2
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N
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. (2.74) 

The rows are shifted until the resulting temporal delay varies incrementally from 

negative to positive, providing a matrix form of ( , )sigE t τ .  Taking the modulus squared 
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of the Fourier transform of this matrix produces the generated FROG trace.  The 

magnitude of this trace is then replaced with the square root of the magnitude of the 

experimental FROG trace.  The entire procedure is then reversed to recover a pseudo 

outer product pO  from which values of the gate and test pulse can be extracted.  This 

can easily be achieved by using matrix-vector products, where the next guesses for the 

pulses are obtained by multiplying the previous guesses by the pseudo outer product 

matrix and its transpose.  This is the formal PGCP step, and is written as 

 '
new old p pE E O O=  (2.75) 

and 

 '
new old p pG G O O= . (2.76) 

The new values newE  and newG  are used to create a new outer product matrix and the 

whole process is repeated until the computed FROG trace matches well with the 

experimentally retrieved trace.  For the case of SHG-FROG, in which the test and gate 

pulses are identical, an additional constraint can be applied to the guess pulse that 

reflects this.  The entire PCGP algorithm is outlined in Figure 2.18. 
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Figure 2.18.  Schematic of the PCGP retrieval algorithm 

While the FROG technique is extremely useful for determining the duration of a pulse it 

is less suited for recovery of its spectral phase.  This drawback, combined with the lack 

of the ability to perform a single-shot measurement, led to the development of SPIDER, 

a complementary interferometric technique that allows for the full characterisation of an 

ultrashort pulse. 

2.4.3 Spectral-phase interferometry for direct electric-field reconstruction 

(SPIDER) 

SPIDER recovers the spectral phase of a pulse through spectral shearing interferometry, 

where the interference pattern between two pulses separated in time is recorded [42–

44].  The pulses are identical in duration and intensity, however they have a different 
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centre frequency and so are said to be spectrally sheared.  The interferogram generated 

by these two pulses is given by 

 [ ]( ) ( ) ( ) 2 ( ) ( ) cos ( ) ( )S I I I Iω ω ω ω ω φ ω φ ω ωτ= +Ω + + +Ω +Ω − + , (2.77) 

where ( )I ω  is the pulse spectrum, Ω  is the difference between the centre frequencies 

of the two pulses (spectral shear), ( )φ ω  is the spectral phase of the pulse and τ  is the 

delay between the two pulses. 

 

Figure 2.19.  Schematic of a SPIDER experimental set-up.  A heavily chirped pulse is 
mixed in a nonlinear crystal with an identical pulse pair separated by delay τ.  The 
delay is sufficiently small (or the chirp sufficiently large) that the identical pulses 
interact with different frequency components of the chirped pulse. 

Experimentally, the spectral shearing of the pulses is obtained by mixing two well-

conditioned beams in a nonlinear crystal, as illustrated in Figure 2.19.  The first beam 

consists of a pair of identical pulses separated by a known delay τ .  The second beam 

consists of a highly chirped pulse that must satisfy two conditions.  Firstly, the duration 

of the chirped pulse must be longer than the known delay τ .  Secondly, the chirp must 

be sufficiently large to ensure that when the chirped pulse mixes with the delayed pair 

of pulses, each pulse mixes with a different frequency within the chirped pulse.  When 

both these conditions are met and the experiment is correctly configured, each mixing 

pulse produced in the crystal will have a different centre frequency and so will be 

spectrally sheared.  The SPIDER interferogram is obtained by measuring the output 

from the nonlinear crystal on a spectrometer. 
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2.4.4 Multi-photon intrapulse interference phase scan (MIIPS) 

The newest common technique for pulse measurement combines spectral phase 

characterisation with pulse shaping in a single set-up to produce transform-limited 

pulses.  While numerous attempts have been made to combine pulse characterisation 

with shaping [45], MIIPS is the first method that analytically retrieves the phase of the 

pulse across the whole spectrum and compensates for phase distortions [23].  The 

process is iterative, with increasing accuracy with subsequent iterations, and can be 

tailored to suit almost any test pulse.  The technique can also distinguish between 

positive and negative chirp (unlike FROG) and is a single-line measurement with no 

spatial and temporal overlap requirements and no moving parts (unlike both FROG and 

SPIDER). 

A simple experimental arrangement for a MIIPS measurement is shown in Figure 2.21.  

The output from an ultrafast laser is directed into a pulse shaper containing a spatial 

light modulator (SLM) before being frequency doubled in a nonlinear crystal.  The SHG 

spectrum is recorded on a spectrometer with the intensity of the spectrum proportional 

to the chirp of the laser, as discussed in Sub-section 2.4.4.1.  The chirp is retrieved (as 

detailed in Sub-section 2.4.4.2) and the inverse phase applied to the pulses using the 

SLM.  This process is iterated to produce a near-transform-limited pulse at the plane of 

the SHG crystal.  This procedure is outlined in Figure 2.20. 
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Figure 2.20.  Outline of the MIIPS phase retrieval and compensation procedure. 

There are several important considerations that must be made when selecting 

components for a MIIPS measurement.  The shaper geometry may be transmissive or 

reflective; however the SLM must be able to introduce sufficient phase modulation at 

the desired wavelength, a minimum of 2π.  The phase-frequency response of the SLM 

must be properly characterised in order to produce accurate spectral phase 

modulation [46,47].  The additional dispersion introduced by the prisms or gratings in a 

standard pulse shaper configuration may require additional compensation as the upper 

phase response of an SLM is finite.  The phasematching bandwidth of the SHG crystal 

must be sufficient to allow for conversion of the entire pulse spectrum, and the 

spectrometer must have sufficient resolution to detect variations in the intensity of the 
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SHG spectrum.  As with a FROG measurement, any optical elements located after the 

nonlinear crystal do not affect the measurement. 

 

Figure 2.21.  Experimental MIIPS setup. 

2.4.4.1 The effect of phase on the SHG process 

MIIPS exploits the fact that the efficiency of a two-photon process (such as SHG or 

two-photon absorption) is influenced by the phase relationship between different 

frequency components within the input pulse.  Linear chirp has been shown to reduce 

the signal intensity of two-photon microscopy [48,49], while quadratic, cubic and 

higher order chirp has long been understood as a large contributing factor to the 

efficiency of nonlinear frequency mixing processes [50]. 

The SHG intensity at frequency 2ω  is proportional to an integral over the spectral 

amplitude ( )E ω  and spectral phase ( )ϕ ω  of the pulse, written as 

 [ ] 2( ) ( )(2) (2 )     ( ) ( ) iS e dE E ϕ ω ϕ ωω ω ω +Ω + −Ω∝ Ω+Ω −Ω∫ . (2.78) 

From Equation (2.78) it can be seen that transform-limited pulses (where 0ϕ = ) 

generate the maximum SHG intensity.  A Taylor expansion of the sum of the spectral 

phases around ω  produces the expression 
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To a first approximation and excluding higher-order even terms, the SHG intensity has 

a local maximum when ( ) ( ) 0ϕ ω ϕ ω+Ω + −Ω = , which is the case when 

2

2
''( ) 0d

d
ϕ ϕ ω
ω

  = = 
 

. 

2.4.4.2 The formal MIIPS method 

Phase retrieval through MIIPS involves the introduction of a reference phase function 

( )f ω  which locally reduces or cancels phase distortions in the spectral phase of the 

input pulse [51,52], resulting in a maximum SHG signal with the minimisation of  

 ( ) ( ) ( )fϕ ω φ ω ω= + . (2.80) 

From the Taylor expansion described in Equation (2.79), this maximum occurs when 

 ''( ) ''( ) ''( ) 0fϕ ω φ ω ω= + = . (2.81) 

For a well-known reference phase function ( )f ω  the second derivative ''( )f ω  is also 

known, allowing both the unknown parameters ''( )φ ω  and ( )φ ω  to be determined.  

This reference function typically takes the form 

 ( )( ) sinf ω α γω δ= − , (2.82) 

where 1.5α π=  and pγ τ= , the pulse duration.  The phase shift δ  is scanned over 

from 0 to 4π.  It should be noted that the MIIPS technique is not limited to periodic 

functions, however they are useful in constraining the maximum and minimum values 

of ( )f ω .  The SHG spectrum is acquired for each step in the phase shift, producing a 

2D plot of phase against frequency (or more commonly wavelength).  The value of 

( )δ ω  for each frequency is found and used to calculate the second derivative of the 

unknown phase, given by 

 2
max''( ) ''( ) sin ( )nfφ ω ω αγ γω δ ω= − =  −  . (2.83) 

Equation (2.83) has n solutions, and so the search area over which the maximum of the 

SHG spectrum is found must be predefined.  As the goal of a MIIPS measurement is to 

create transform-limited pulses, the case of ''( ) 0φ ω =  is considered, providing the 

solution 
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 max 0( ) ( )n nδ ω γ ω ω π= − + , (2.84) 

where 0, 1, 2...n = ± ± , 0
0

2 cπω
λ

=  (the carrier frequency) and 0λ  is the centre wavelength 

of the spectrum.  Transform-limited pulses therefore produce a MIIPS trace where the 

SHG signal is greatest on a periodic basis, forming parallel lines separated by π.  The 

search area for max ( )δ ω when measuring non-transform-limited pulses is therefore 

limited to parallel areas separated by π, shown as dashed red lines in Figure 2.22.  

Simulated MIIPS traces for a transform-limited pulse and a chirped pulse are also 

shown in this figure. 

 

Figure 2.22.  Simulated MIIPS traces for a 10 fs pulse centred at 810 nm.   
(a) A transform-limited pulse.  (b) A pulse with GDD = -200 fs2 and TOD = 1000 fs3.  
The dashed red lines are used to define the regions for searching for δmax(ω).  Fitted 
curves of δmax(ω) are shown in white. 

Analysis of a MIIPS trace takes place in two neighbouring regions.  A mask is created 

to remove the data from all but one region, leaving a single SHG intensity trace.  The 

phase corresponding to the maximum intensity for each frequency ( )max ( )nδ ω is recorded 

and a polynomial fitted to the data.  This polynomial is used to calculate the second 

derivative of the unknown phase over two regions, written as 

 ( )2 1 2
max max

1''( ) sin sin( ) ( )
2

φ ω αγ γω δ ω γω δ ω= +   − −    . (2.85) 
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The unknown phase ( )Iφ ω is recovered by double integration of ''( )φ ω .  This phase 

distortion is compensated for by the addition of ( )Iφ ω− using the pulse shaper.  The 

process is then repeated and the second iteration phase ( )IIφ ω measured.  The correction 

function written by the shaper now becomes ( ) ( )I IIφ ω φ ω−  +  .  Convergence to an 

accurate result is fast, with increasing absolute accuracy as the magnitude of the phase 

distortions is reduced [53].  A properly calibrated MIIPS setup can converge to a near-

transform-limited pulse within five iterations, with the first iteration giving a good 

approximation over most of the spectrum.  Finally, the unknown phase function is given 

by the sum of the determined compensation functions, ...I II N
measuredφ φ φ φ= + + + .  Note 

that in almost every case the compensated absolute phase ( )φ ω will be a ramp, and so it 

is more instructive to observe the variation of the group delay ' )φ ω(  over the bandwidth 

of the pulse.  An example of the MIIPS phase retrieval and compensation process for a 

chirped pulse is shown in Figure 2.23. 

2.5 Conclusions 

This chapter introduced the reader to the fundamentals of nonlinear interactions and 

pulse dynamics, as well providing a review of the most common techniques for 

ultrashort pulse characterisation.  Phasematching and optical parametric generation will 

be used in Chapter 3 to construct a synchronously-pumped femtosecond OPO, the 

outputs of which will be characterised using XFROG.  The visible outputs from the 

OPO will be simultaneously compressed and characterised in Chapter 6. 
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Figure 2.23.  Simulation of the MIIPS iterative phase retrieval process.  Left panels 
show the recovered MIIPS traces at each iteration.  Centre panels show the retrieved 
second-order phase.  Right panels show the calculated group delay over the 
wavelength region of the input spectrum.  After only one phase retrieval and 
compensation loop the group delay has dropped by a factor of five, and after five 
iterations the retrieved group delay varies by less than 3 fs over the spectral 
bandwidth.  The lower row of panels shows the retrieved results for a transform-
limited pulse. 

 

 



53 
 

2.6 References 

1.  A. Yariv, Quantum Electronics, Third edition (Wiley, 1988). 

2.  J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, "Interactions 
between light waves in a nonlinear dielectric," Phys. Rev. 127, 1918–1939 
(1962). 

3.  L. E. Myers, "Periodically Poled Materials for Nonlinear Optics," in Proceedings 
of SUSSP 52 - Advances in Lasers and Applications, First edition (Institute of 
Physics Publishing, 1999), pp. 141–180. 

4.  G. J. Hall, M. Ebrahimzadeh, A. Robertson, G. P. A. Malcolm, and A. I. 
Ferguson, "Synchronously pumped optical parametric oscillators using all-solid-
state pump lasers," J. Opt. Soc. Am. B 10, 2168–79 (1993). 

5.  J. Jiang and T. Hasama, "Harmonic repetition-rate femtosecond optical 
parametric oscillator," Appl. Phys. B Lasers Opt. 74, 313–317 (2002). 

6.  O. Kokabee, A. Esteban-Martin, and M. Ebrahim-Zadeh, "Extended-cavity, 
tunable, GHz-repetition-rate femtosecond optical parametric oscillator pumped at 
76 MHz," Opt. Express 17, 15635–15640 (2009). 

7.  A. E. Siegman, Lasers, First edition (University Science Books, 1986). 

8.  H. A. Haus, J. G. Fujimoto, and E. P. Ippen, "Structures for additive pulse mode 
locking," J. Opt. Soc. Am. B 8, 2068–76 (1991). 

9.  I. Walmsley, L. Waxer, and C. Dorrer, "The role of dispersion in ultrafast optics," 
Rev. Sci. Instrum. 72, 1–29 (2001). 

10.  E. Hecht, Optics (International Edition), Fourth edition (Pearson, 2002). 

11.  U. Keller, "Ultrashort Pulse Generation," in Proceedings of SUSSP 52 - Advances 
in Lasers and Applications, First edition (Institute of Physics Publishing, 1999), 
pp. 83–115. 

12.  B. E. Lemoff and C. P. Barty, "Cubic-phase-free dispersion compensation in 
solid-state ultrashort-pulse lasers," Opt. Lett. 18, 57–9 (1993). 

13.  R. L. Fork, O. E. Martinez, and J. P. Gordon, "Negative dispersion using pairs of 
prisms," Opt. Lett. 9, 150–2 (1984). 

14.  O. E. Martinez, J. P. Gordon, and R. L. Fork, "Negative group-velocity 
dispersion using refraction," J. Opt. A Pure Appl. Opt. 1, 1003–06 (1984). 

15.  R. Zhang, D. Pang, J. Sun, Q. Wang, S. Zhang, and G. Wen, "Analytical 
expressions of group-delay dispersion and cubic phase for four-prism sequence 
used at other than Brewster’s angle," Opt. Laser Technol. 31, 373–9 (1999). 



54 
 

16.  S. Yang, K. Lee, Z. Xu, X. Zhang, and X. Xu, "An accurate method to calculate 
the negative dispersion generated by prism pairs," Opt. Lasers Eng. 36, 381–7 
(2001). 

17.  F. J. Duarte, "Generalized multiple-prism dispersion theory for laser pulse 
compression: higher order phase derivatives," Appl. Phys. B 96, 809–814 (2009). 

18.  R. E. Sherriff, "Analytic expressions for group-delay dispersion and cubic 
dispersion in arbitrary prism sequences," J. Opt. Soc. Am. B 15, 1224–1230 
(1998). 

19.  R. Szipocs, K. Ferencz, C. Spielmann, and F. Krausz, "Chirped multilayer 
coatings for broadband dispersion control in femtosecond lasers," Opt. Lett. 19, 
201–3 (1994). 

20.  M. Yamashita, M. Ishikawa, K. Torizuka, and T. Sato, "Femtosecond-pulse laser 
chirp compensated by cavity-mirror dispersion," Opt. Lett. 11, 504–6 (1986). 

21.  F. X. Kärtner, N. Matuschek, T. Schibli, U. Keller, H. A. Haus, C. Heine, R. 
Morf, V. Scheuer, M. Tilsch, and T. Tschudi, "Design and fabrication of double-
chirped mirrors," Opt. Lett. 22, 831–3 (1997). 

22.  N. Matuschek, F. X. Kartner, and U. Keller, "Analytical design of double-chirped 
mirrors with custom-tailored dispersion characteristics," IEEE J. Quantum 
Electron. 35, 129–137 (1999). 

23.  G. Steinmeyer, "Femtosecond dispersion compensation with multilayer coatings: 
toward the optical octave," Appl. Opt. 45, 1484–1490 (2006). 

24.  F. Gires and P. Tournois, "Interferometre utilisable pour la compression 
d’impulsions lumineuses modulees en frequence (An interferometer useful for 
the compression of a frequency modulated light pulse)," C. R. Acad. Sci. Paris 
258, 6112–15 (1964). 

25.  R. Szipöcs, A. Köhazi-Kis, S. Lako, P. Apai, A. P. Kovacs, G. DeBell, I. Mott, 
A. W. Louderback, A. V Tikhonravov, and M. K. Trubetskov, "Negative 
dispersion mirrors for dispersion control in femtosecond lasers : chirped 
dielectric mirrors and multi-cavity Gires – Tournois interferometers," Appl. Phys. 
B 70, S51–S57 (2000). 

26.  J. A. Armstrong, "Measurement of picosecond laser pulse widths," Appl. Phys. 
Lett. 10, 16–18 (1967). 

27.  A. M. Weiner, "Effect of group velocity mismatch on the measurement of 
ultrashort optical pulses via second harmonic generation," IEEE J. Quantum 
Electron. 19, 1276–1283 (1983). 

28.  R. Trebino and D. J. Kane, "Using phase retrieval to measure the intensity and 
phase of ultrashort pulses: frequency-resolved optical gating," J. Opt. Soc. Am. A 
10, 1101–11 (1993). 



55 
 

29.  D. J. Kane and R. Trebino, "Single-shot measurement of the intensity and phase 
of an arbitrary ultrashort pulse by using frequency-resolved optical gating," Opt. 
Lett. 18, 823–5 (1993). 

30.  D. J. Kane and R. Trebino, "Characterization of arbitrary femtosecond pulses 
using frequency-resolved optical gating," IEEE J. Quantum Electron. 29, 571–9 
(1993). 

31.  R. Trebino, K. W. DeLong, D. N. Fittinghoff, J. N. Sweetser, M. A. Krumbügel, 
B. A. Richman, and D. J. Kane, "Measuring ultrashort laser pulses in the time-
frequency domain using frequency-resolved optical gating," Rev. Sci. Instrum. 
68, 3277–95 (1997). 

32.  G. Taft, A. Rundquist, M. M. Murnane, H. C. Kapteyn, K. W. Delong, R. 
Trebino, and I. P. Christov, "Ultrashort optical waveform measurements using 
frequency-resolved optical gating," Opt. Lett. 20, 743–5 (1995). 

33.  K. W. DeLong, R. Trebino, J. Hunter, and W. E. White, "Frequency-resolved 
optical gating with the use of second-harmonic generation," J. Opt. Soc. Am. B 
11, 2206–2215 (1994). 

34.  A. Baltuska, M. S. Pshenichnikov, and D. A. Wiersma, "Second-harmonic 
generation frequency-resolved optical gating in the single-cycle regime," IEEE J. 
Quantum Electron. 35, 459–478 (1999). 

35.  Z. E. Penman, T. Schittkowski, W. Sleat, D. T. Reid, and W. Sibbett, 
"Experimental comparison of conventional pulse characterisation techniques and 
second-harmonic-generation frequency-resolved optical gating," Opt. Commun. 
155, 297–300 (1998). 

36.  S. Linden, H. Giessen, and J. Kuhl, "XFROG - A new method for amplitude and 
phase characterization of weak ultrashort pulses," Phys. Status Solidi B - Basic 
Res. 206, 119–124 (1998). 

37.  D. T. Reid, P. Loza-Alvarez, C. T. Brown, T. Beddard, and W. Sibbett, 
"Amplitude and phase measurement of mid-infrared femtosecond pulses by using 
cross-correlation frequency-resolved optical gating," Opt. Lett. 25, 1478–80 
(2000). 

38.  K. W. DeLong, R. Trebino, and W. E. White, "Simultaneous recovery of two 
ultrashort laser pulses from a single spectrogram," J. Opt. Soc. Am. B 12, 2463–
66 (1995). 

39.  S. Linden, J. Kuhl, and H. Giessen, "Amplitude and phase characterization of 
weak blue ultrashort pulses by downconversion," Opt. Lett. 24, 569–71 (1999). 

40.  D. J. Kane, "Real-time measurement of ultrashort laser pulses using principal 
component generalized projections," IEEE J. Sel. Top. Quantum Electron. 4, 
278–284 (1998). 



56 
 

41.  D. J. Kane, G. Rodriguez, A. J. Taylor, and T. S. Clement, "Simultaneous 
measurement of two ultrashort laser pulses from a single spectrogram in a single 
shot," J. Opt. Soc. Am. B 14, 935–43 (1997). 

42.  C. Iaconis and I. A. Walmsley, "Spectral phase interferometry for direct electric-
field reconstruction of ultrashort optical pulses," Opt. Lett. 23, 792–4 (1998). 

43.  C. Iaconis and I. A. Walmsley, "Self-referencing spectral interferometry for 
measuring ultrashort optical pulses," IEEE J. Quantum Electron. 35, 501–509 
(1999). 

44.  L. Gallmann, G. Steinmeyer, D. H. Sutter, T. Rupp, C. Iaconis, I. A. Walmsley, 
and U. Keller, "Spatially resolved amplitude and phase characterization of 
femtosecond optical pulses," Opt. Lett. 26, 96–8 (2001). 

45.  T. Binhammer, E. Rittweger, R. Ell, F. X. Kärtner, S. Member, and U. Morgner, 
"Prism-based pulse shaper for octave spanning spectra," IEEE J. Quantum 
Electron. 41, 1552–57 (2005). 

46.  A. M. Weiner, "Ultrafast optical pulse shaping: A tutorial review," Opt. 
Commun. 284, 3669–3692 (2011). 

47.  J. W. Wilson, P. Schlup, and R. A. Bartels, "Ultrafast phase and amplitude pulse 
shaping with a single, one-dimensional, high-resolution phase mask," Opt. 
Express 15, 8979–87 (2007). 

48.  B. Broers, H. B. v. Linden v. d. Heuvell, and L. D. Noordam, "Large interference 
effects of small chirp observed in two-photon absorption," Opt. Commun. 91, 
57–61 (1992). 

49.  I. Pastirk, J. M. Dela Cruz, K. A. Walowicz, and V. V Lozovoy, "Selective two-
photon microscopy with shaped femtosecond pulses," Opt. Express 11, 1695–
1701 (2003). 

50.  M. Hacker, R. Netz, M. Roth, G. Stobrawa, T. Feurer, and R. Sauerbrey, 
"Frequency doubling of phase-modulated, ultrashort laser pulses," Appl. Phys. B 
277, 273–7 (2001). 

51.  V. V Lozovoy, I. Pastirk, and M. Dantus, "Multiphoton intrapulse interference. 
IV. Ultrashort laser pulse spectral phase characterization and compensation," 
Opt. Lett. 29, 775–7 (2004). 

52.  V. V Lozovoy, I. Pastirk, K. A. Walowicz, and M. Dantus, "Multiphoton 
intrapulse interference. II. Control of two- and three-photon laser induced 
fluorescence with shaped pulses," J. Chem. Phys. 118, 3187–3196 (2003). 

53.  B. Xu, J. M. Gunn, J. M. Dela Cruz, V. V. Lozovoy, and M. Dantus, 
"Quantitative investigation of the multiphoton intrapulse interference phase scan 
method for simultaneous phase measurement and compensation of femtosecond 
laser pulses," J. Opt. Soc. Am. B 23, 750–9 (2006).  

 



57 
 

Chapter 3 - Design and characterisation of a Ti:sapphire-pumped 

optical parametric oscillator 

3.1 Introduction 

The cornerstone of the few-cycle pulse synthesis project was the synchronously-

pumped optical parametric oscillator (OPO), a resonant cavity capable of producing 

femtosecond pulses at multiple wavelengths across the visible and infrared spectral 

regions.  This chapter briefly discusses the properties of the Ti:sapphire pump laser and 

its suitability for ultrashort pulse generation.  The design, construction and 

characterisation of two OPO cavities for the generation of visible light pulses are 

detailed, and a comparison of the two cavities is considered. 

3.2 The Ti:sapphire laser 

The mode-locked Ti:sapphire laser became synonymous with ultrashort pulse 

generation after the discovery in 1991 of self-mode-locking through the optical Kerr 

effect [1–3], yielding a 60 fs pulse.  A decade of intense research followed, reducing the 

pulse duration directly from the laser oscillator to less than 6 fs through careful control 

of the intracavity dispersion, either through the use of prisms and double-chirped 

mirrors  [4] or through the addition of semiconductor saturable-absorber mirrors 

(SESAMs) [5].  Commercially available Ti:sapphire lasers are now routinely capable of 

producing mode-locked bandwidths that support 10 fs pulses, however external 

management of the pulse duration through dispersion compensation is non-trivial.  This 

section will outline the theory of mode-locked lasers, and discuss Kerr-lens mode-

locking and its application towards femtosecond pulse generation.  A detailed analysis 

of these concepts is available in many standard laser textbooks [6,7]. 

3.2.1 Ultrashort pulse generation 

In an inhomogeneously broadened laser, the longitudinal modes that will oscillate are 

those that experience a greater net gain than loss during a cavity round trip.  These  

modes have no fixed phase relationship, producing a continuous-wave (CW) or  

noise-like output.  When the modes are fixed in their relative phase the laser is said to 

be mode-locked, and interference between these resonant cavity modes produces a 

pulsed output, as illustrated in Figure 3.1.  The repetition frequency of the pulses is 

determined by the cavity length, given by 
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2REP

eff

cf
L

=   (3.1) 

where effL  is the effective cavity length, taking into account different refractive indices 

within the cavity. 

 

Figure 3.1.  Illustration of the concept of mode-locking.  Several longitudinal modes 
that are in phase can interfere to form a pulsed output [8]. 

Under normal operating conditions a laser will produce a CW output; a phase or 

amplitude modulation must be applied within the cavity to achieve mode-locking.  This 

modulation can either be introduced through an external source (active mode-locking) 

or through use of a nonlinear intracavity element (passive mode-locking).  Alternatively 

the laser can be mode-locked the use of additional components (self-mode-locking). 

3.2.1.1 Active mode-locking 

In active mode-locking a phase or amplitude modulation is applied to the laser, with a 

modulation frequency equal to a multiple of the cavity repetition rate, given by 

Equation (3.1).  A pulse that makes one round trip of the cavity at this frequency will 

encounter the modulating device when its gain or transmission is at a maximum, 
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ensuring that only multiples of this fundamental mode can propagate within the cavity 

without significant loss.  Examples include amplitude or frequency modulation with an 

intracavity acousto-optic or electro-optic modulator [9], and synchronous pumping with 

an external pump laser [10].  Due to the frequency bandwidth limitations of the active 

device, the mode-locked output is typically narrow in spectrum and long in pulse 

duration. 

3.2.1.2 Passive mode-locking 

Passive mode-locking relies on nonlinear effects to create modulations in the laser 

output, most commonly through use of a saturable absorber.  A saturable absorber is a 

material that introduces intracavity loss at low light intensities but becomes transparent 

at high intensities.  Types of saturable absorber include organic dyes and 

SESAMs [11,12], and more recently carbon nanotubes and graphene [13,14].  

3.2.1.3 Self-mode-locking 

In Chapter 2 the optical Kerr effect was introduced, a phenomenon that arises when an 

intense electric field passes through an isotropic dielectric medium.  Equation 2.53 

showed that a laser beam of sufficient intensity causes a change in the refractive index, 

and is given here again for clarity 

 0 2 ( )n n n I t= + . (3.2) 

The phase velocity cv
n

 = 
 

 of the pulse is directly proportional to the pulse intensity, 

so the Kerr effect causes the outer wavefronts of the pulse to have different speeds than 

those nearer the central, more intense part of the pulse.  This creates a virtual lens within 

the medium leading to self-focusing, which is illustrated in Figure 3.2. 

The optical Kerr effect can be exploited to produce a self-focusing within the gain 

medium of a laser, and was first demonstrated in Ti:sapphire [1].  Introducing a large 

noise spike to a laser cavity causes self-focusing, which can be exploited to favour 

pulsed operation by modifying the cavity so that the noise spike experiences less loss 

the resonant CW mode.  Cavity modification takes the form of an aperture; a hard 

aperture physically constrains the mode size to favour pulsed operation, while a soft 

aperture alters the cavity alignment so that pulsed operation experiences greater overlap 

with the pump source than CW operation.  Both cases lead to larger gain for pulsed 
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operation, causing the laser to remain mode-locked.  This technique is often called Kerr-

lens mode-locking (KLM). 

 

Figure 3.2.  Graphical representation of self-focusing. 

KLM has the added benefit of generating self-phase modulation in the gain medium 

(see Subsection 2.3.4), spectrally broadening the pulse and allowing for shorter pulse 

durations.  Ti:sapphire has the largest gain bandwidth of any laser gain material and can 

therefore support the shortest pulses, provided the intracavity dispersion is carefully 

managed. 

3.2.2 The KM Labs Griffin I pump laser 

The Ti:sapphire (Ti:Al2O3) laser used throughout this project was a custom-built Griffin 

I model supplied by KM Labs.  The pump source for the Ti:sapphire laser was a Verdi 

V10 manufactured by Coherent, a diode-pumped, frequency-doubled Nd3+:YVO4 laser 

producing up to 10 W of single-mode CW power at 0.532 µm. 

A schematic of the Ti:sapphire laser is shown in Figure 3.3.  The cavity was designed 

around a 4.75 mm Titanium-doped sapphire crystal and a pair of dispersion-

compensating fused silica prisms.  Each prism can be controlled by a stepper-motor 

allowing for fine tuning of the intra cavity dispersion.  The end mirror was affixed to a 

pair of piezoelectric actuators which were used for locking of the carrier-envelope offset 

frequency, as detailed in Section 4.2.  The output coupler in mirror M6 was 20% 

transmitting at 0.820 µm. 
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Figure 3.3.  Schematic of the Ti:sapphire pump laser. 

The design of the Ti:sapphire laser allowed for the beam exiting the cavity to be parallel 

to the holes on the optical bench.  For reasons of stability the two steerable end mirror 

mounts (M4 and M6) were replaced with sturdier Newport mounts.  For added thermal 

control the breadboard to which the Ti:sapphire optomechanics were fixed was 

temperature controlled.  It was very important that the steering provided by the 

periscope assembly is fixed and stable, as the beam pointing of the Verdi pump laser 

affected the performance of the Ti:sapphire oscillator.  For this reason, as well as one of 

environmental control, the periscope assembly was boxed.  The entire assembly of 

Verdi pump, periscope and Ti:sapphire oscillator were encased in a second box to 

further remove environmental fluctuations.   

3.2.3 Characterisation 

The Ti:sapphire laser was pumped with 8.8 W from the Verdi laser.  The average CW 

power was 1.5 W, with 1.4 W mode-locked output.  A typical mode-locked spectrum is 

shown in Figure 3.4.  The full-width half-maximum (FWHM) bandwidth was 0.042 µm 

with a centre wavelength of 0.802 µm.  From Section 2.3.1, this bandwidth supports 

pulse durations of 16.1 (22.5) fs for sech2 (Gaussian) pulse shapes.  The pulse repetition 

frequency was measured as 98.7 MHz, equating to an effective cavity length of 1.52 m.  
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Figure 3.4.  Typical output spectrum from the Griffin I Ti:sapphire pump laser.  The 
small notch in the spectrum was due to a defect in the spectrometer. 

The centre wavelength, FWHM bandwidth and output power of the laser could be tuned 

by altering the insertion length of the dispersion-compensating prism pair.  The position 

of each prism could be altered independently, allowing for fine control of the pump 

characteristics.  A ‘map’ of laser performance as a function of prism position is shown 

in Figure 3.5.  The broadest bandwidths (i.e. those capable of supporting the shortest 

pulse durations) were achieved by inserting more glass into the beam path with prism 1 

and removing glass with prism 2.  Figure 3.5 also shows however that an increase in 

stable mode-locked bandwidth (where no CW breakthrough occurs) resulted in a 

decrease in average power.  This was a balance that must be maintained in order to 

generate sub-25 fs pulses with a reasonably high average power, and is probably the 

main reason that commercial lasers are not available with these specifications.  Over a 

period of many months the laser performance would alter and the prism map would drift 

in the direction indicated by the white arrows in Figure 3.5.  This was primarily caused 

by a change in the pointing of the Verdi pump laser, a consequence of using a periscope 

to steer the beam into the Ti:sapphire laser box.  A complete realignment of the 

Ti:sapphire laser cavity was therefore necessary on occasion to bring the laser back up 

to specification. 
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Figure 3.5.  ‘Maps’ of the Ti:sapphire laser performance as a function of prism 
position.  The upper figure shows an increase in laser bandwidth as more of prism 1 is 
inserted into the beam path and prism 2 is withdrawn.  The lower figure shows a 
decrease in average power for the same prism movements.  Blue areas show where no 
data were recorded, which was selected as the point where CW breakthrough 
occurred.  No resolution was available for the stepper motors; the stepper position is 
provided by the computer interface of the prisms. 

As the pump pulses were output coupled from the cavity they acquired a small amount 

of chirp from the 6.3 mm of substrate they passed through.  In order to measure the 

pulse duration a small portion of the pump power was reflected from the front surface of 

a microscope slide and steered into a Timewarp autocorrelator [15].  The resultant 

autocorrelation is shown in Figure 3.7.   

As discussed in Chapter 2, Sub-section 2.4.1, the pulse duration can be recovered from 

an autocorrelation by dividing the FWHM of the trace by a factor that is dependent on 

the assumed pulse shape.  The FWHM of the trace in Figure 3.7 is 65 fs; assuming a 

sech2 pulse shape, this corresponds to a calculated pulse duration of 34 fs.  The  
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time-bandwidth-limited pulse duration can be calculated from the FWHM of the 

spectral intensity using the equation 

 
2
0

p
k
c
λτ
λ

∆ =
∆

 (3.3) 

where k is the time-bandwidth product for a given pulse shape, 0λ  is the centre 

wavelength of the spectrum and λ∆  is the FWHM bandwidth.  Using 0.315 as the  

time-bandwidth product for a sech2 pulse, the minimum pulse duration over this 

bandwidth is 16.5 fs (see inset of Figure 3.7).  

The broadening of a Gaussian pulse of known duration due to propagation over distance 

z through a material with second-order dispersion 
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 can be calculated by [16] 
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This expression can be used to calculate the additional second-order dispersion that was 

added to the pulse as it passed through the output coupler of the oscillator.  The standard 

thickness of a 1-inch laser optic is 6.3 mm; the two most common substrates for visible-

near-IR transmission are fused silica and BK7.  Using these parameters the additional 

chirp can be calculated as 220 fs2, with BK7 providing the largest broadening factor of 

1.54.  The second-order dispersion calculated above is only valid for certain 

assumptions, primarily that the pulse shape is Gaussian.  While an autocorrelation trace 

cannot be used to directly recover the chirp of a pulse, with some work it can be used to 

find the chirp to a good approximation.  The method is outlined in Figure 3.6.  A 

synthetic pulse is generated in the time domain, again with an assumed pulse shape, 

with a duration that matches that calculated using the spectral intensity.  The synthetic 

pulse is then Fourier transformed into the frequency domain where its spectrum is 

replaced with the measured spectrum.  The pulse is inverse Fourier transformed to the 

time domain and a simulated autocorrelation carried out.  The synthetic autocorrelation 

is then compared with the measured autocorrelation.  By adding additional second-order 

phase (and third-order phase if necessary) to the synthetic pulse in the frequency 

domain, the shape of the resulting autocorrelation can be varied.  This process is iterated 

until the synthetic trace is in good agreement with the measured trace.  Viewing 
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overlapping interferometric traces can be difficult, and so the upper and lower bounds of 

the synthetic autocorrelation can be used for clarity.  Some ambiguity exists however in 

where the synthetic envelope should sit relative to the interferometric trace. 

 

Figure 3.6.  Procedure for phase estimation from an interferometric autocorrelation 
trace. 

Using this second method autocorrelation trace envelopes were calculated for 450 fs2, 

and are shown as red lines in Figure 3.7.  Both methods are inexact, however the second 

method was preferable as it allowed for the pulse shape to be varied and for additional 

phase terms to be added to the simulated pulse.  It also accounted for spectra that are 

plainly neither sech2 nor Gaussian in profile. 



66 
 

 

Figure 3.7.  Interferometric autocorrelation trace of the Ti:sapphire pump pulses 
directly after the oscillator.  The trace is shown as a black line and the inset shows the 
corresponding spectrum.  The red line indicates the autocorrelation envelopes for a 
pulse chirped with 450 fs2 of positive dispersion. 

External compression of the chirped pump pulses was achieved through use of a chirped 

mirror pair provided by Layertec.  Each pair of bounces added -150 fs2 of group delay 

dispersion over the region of 0.7 – 0.9 µm.  The number of bounce pairs was increased 

and the autocorrelation recorded until a minimum of second-order dispersion was 

observed.  Three pairs of bounces providing -450 fs2 of GDD were necessary to achieve 

the shortest pulse duration; the corresponding autocorrelation is shown in Figure 3.8.  

This is in good agreement with the positive GDD value calculated from the 

autocorrelation trace. 
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Figure 3.8.  Autocorrelation trace after 3 pairs of chirped mirror bounces.  The pulse 
is almost transform-limited. 

  



68 
 

3.3 First generation PPKTP optical parametric oscillator 

Once the characterization of the Ti:sapphire pump laser was complete, construction 

began on a synchronously-pumped femtosecond OPO for broadband pulse generation in 

the visible region.  The OPO was constructed in two main configurations, a linear cavity 

and a ring cavity.  This section will discuss the design and characterisation of the first 

generation OPO, a linear cavity.  Section 3.4 will detail the motivations for switching to 

the second generation OPO, a ring cavity design, and will discuss the challenges 

associated with its construction.  A comparison between the two cavities will be made, 

with the pros and cons of each design considered.  In both cases the design parameters 

were relatively straightforward; the OPO must produce broadband visible pulses of 

sufficient power for coherent pulse synthesis.  

3.3.1 Crystal design & selection 

The design of an ultrafast OPO has three main stages.  First the wavelength outputs 

must be chosen for the purpose of the experiment: is the aim is to achieve broadband 

mid-IR pulses for gas spectroscopy, or to generate tunable visible pulses for biological 

imaging?  The potential wavelength outputs will be constrained by the pump 

wavelength and the phasematching properties of the nonlinear crystal.  The choice of 

crystal material will depend on the desired centre wavelength and bandwidth(s) of the 

resonant pulse(s), as well as the type of phasematching employed.  The thickness of the 

crystal will impact the gain of the signal/idler pulses and will also affect the intracavity 

dispersion of the OPO.  Finally the optomechanical design of the cavity will play an 

important role in the stability and efficiency of the parametric process.  Each of these 

stages must be considered when designing and constructing an OPO. 

3.3.1.1 Choice of resonant signal wavelength 

For a given pump wavelength there is a finite number of signal and idler wavelengths 

that can be generated in a parametric process.  The sum of the signal and idler 

frequencies must always equal the pump frequency, such that 

 p s iω ω ω= +  (3.5) 

or 

 1 1 1

p s iλ λ λ
= + . (3.6) 
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This allows the possible signal and idler wavelengths to be determined for a particular 

pump wavelength.  As the aim of this project is the coherent synthesis of ultrashort 

pulses in the visible, the important wavelengths that must be extracted from the OPO 

are not the signal or idler but rather the various sum-frequency and second-harmonic 

visible outputs that will be generated between the pump, signal and idler in the 

nonlinear crystal.  With this in mind, the various visible outputs that would be generated 

between a 0.800 µm pump source and the signal and idler waves were calculated, with 

the resultant plot shown in Figure 3.9.  

 

Figure 3.9.  Possible sum-frequency and second-harmonic visible outputs between a 
0.8 µm pump and increasing signal wavelength.  Red line, pump + idler frequency 
mixing; blue line, pump + signal frequency mixing; green line, signal second-harmonic 
frequency generation.  For details of the shaded areas, see text. 

As the signal wavelength is increased in Figure 3.9 three points of intersection are 

noted.  Intersection (a) represents one extreme of the OPO, the case where 

p sω ω= .  Intersection (b) shows subharmonic signal and idler frequencies, where 

3 2p s iω ω ω= = , as utilised by Kobayashi et al. for carrier-envelope phase control of an 

OPO [17].  As this project is concerned with coherent synthesis between different 

visible frequencies from an OPO, the region indicated by (b) is not of interest as two of 
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the visible frequencies overlap.  Intersection (c) indicates degenerate operation of an 

OPO, where 2 p s iω ω ω= = , and represents the other bound on possible signal 

wavelengths.  The region near (c) is not desirable as the visible frequencies from the 

OPO either overlap with each other or with the pump itself.  This case was used by Sun 

et al. to coherently synthesize pulses between a Ti:sapphire oscillator and the second-

harmonic signal pulses from a broadband near-degenerate OPO [18], as discussed in 

Chapter 1. 

Using sections (a) and (c) as the possible extremes of signal wavelength choice and 

eliminating (b), two regions present themselves as likely possibilities.  Both (d) and (e) 

would provide a range of visible wavelengths, however the lower wavelengths available 

in region (d) allow a wider frequency bandwidth to be accessed for coherent pulse 

synthesis.  For this reason the desired signal wavelength range was chosen to be 0.95 – 

1.2 µm. 

3.3.1.2 Nonlinear crystal selection 

Once a signal wavelength range has been selected, the next step is to select a nonlinear 

crystal that will allow efficient signal generation over that range.  As the Ti:sapphire 

pump source is broadband and the aim is to produce broadband visible outputs, the 

resonant signal must also be broadband.  This limits the phasematching possibilities as 

efficient Type I or Type II birefringent phasematching will be limited by bandwidth of 

the pulses.  A common solution is to use Type-0 quasi-phasematching (QPM) to 

increase the phasematching bandwidth without sacrificing gain.  The two common 

periodically-poled nonlinear crystals used for parametric generation from a Ti:sapphire 

laser are lithium niobate (LiNbO3, PPLN) and potassium titanyl phosphate (KTiOPO4, 

PPKTP).  Both will be considered before a selection is made.  Table 3.1 lists relevant 

material properties of both crystals. 

Table 3.1.  Material properties of PPLN and PPKTP  [19–24]. 

Property PPLN PPKTP 
Transmission range (µm) 0.33 – 5.50 0.35 – 4.50 

d33 coefficient (pm/V) 25.0 13.7 
GDD at 0.5 µm (fs2/mm) 4673 (o)  3750 (e) 1550 
GDD at 0.8 µm (fs2/mm) 478.8 (o)  383.1 (e) 151.6 
GDD at 1.1 µm (fs2/mm) 74.5 (o)  58.5 (e) 22.1 

Requires heating? Y N 
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The transmission range of both crystals is sufficiently broad to allow generation of both 

the resonant signal wavelength in the near-IR and the doubled pump at 0.4 µm.  The d33 

coefficient of PPLN is almost double that of PPKTP; gain is proportional to 33
3

d
n

however, and so both crystals provide similar gain.  PPLN produces significantly more 

second-order dispersion in the near-IR and visible than PPKTP, and also requires 

heating to work effectively as PPLN easily suffers from the photorefractive effect.  The 

photorefractive effect is caused by coherent beams of light illuminating a material to 

produce an interference pattern of dark and light fringes.  Electrons within the light 

fringes are excited into the conduction band of the material, where they flow towards 

the dark fringes.  This leads to an absence of electrons in the light fringes, creating an 

electric field that in turn causes a change in the refractive index of the material in 

regions where the field is strongest.  A refractive index grating is formed that follows 

the pattern of the interference fringes, causing the incident light to diffract.  

Photorefractive effects in PPLN can be alleviated by heating the crystal; PPKTP is 

much less susceptible to photorefractive effects and so can operate at room temperature. 

As both the signal and visible pulses are desired to be broadband (ideally  

sub-40 fs in duration), the material dispersion of the crystal will have to be compensated 

intracavity.  This limits the length of the crystal to roughly 1 mm for a number of 

reasons.  A longer crystal will have an increased gain and produce more intracavity 

signal power, however the group delay walk-off between the pump, signal and idler will 

increase leading to less efficient frequency mixing.  Visible frequency mixing is limited 

to last-coherence-length and fortunate phasematching in the crystal and so a longer 

crystal will not equate to higher power visible outputs.  Longer crystals in a linear 

cavity will also produce more back conversion into the pump wavelength, reducing the 

overall efficiency of the visible frequency mixing. 

Type-0 quasi-phasematching is the method employed for periodically-poled crystals.  

Simple phasematching calculations for both PPLN and PPKTP were carried out in order 

to determine the optimal grating period for a given pump wavelength.  A crystal length 

of 5 mm was chosen in order to quickly visualise the grating periods that would allow 

phasematching (Figure 3.10, upper panels).  The optimal grating period for 

phasematching to achieve the desired signal output was 27 µm for PPKTP and 18.5 µm 

for PPLN. 
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Two considerations must be made when analysing these phasematching diagrams.  

Firstly, the crystal length will determine the number of grating domains that will 

generate gain.  For PPKTP this number is 18.5 and for PPLN it is 27, both taken over 

5 mm.  Taking the relative number of grating domains and the relative d33 coefficients 

of each crystal into account, a rough calculation suggests an 8:3 signal gain ratio in 

favour of PPLN.  Secondly, and of more importance to this project, the phasematched 

output for a broadband input pulse must be determined.  The lower panels of Figure 

3.10 indicate the possible phasematched output for a single grating in a 0.5 mm crystal 

for a Ti:sapphire pulse centred at 0.8 µm with a 0.040 µm bandwidth.  While PPLN will 

produce a large gain it can only phasematch to generate a signal with a 0.035 µm 

bandwidth.  With PPKTP a signal pulse with a 0.060 µm bandwidth can be generated, 

with a potential transform-limited sech2 duration of 20 fs.  The phasematching 

bandwidth available with PPKTP outweighs the gain available from PPLN, and so 

PPKTP is the OPO crystal used throughout the work presented in this thesis. 
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Figure 3.10.  Phasematching diagrams for PPKTP (left) and PPLN (right).  Upper 
figures show phasematching curves for a 5 mm crystal length and multiple grating 
periods.  Lower figures show a single grating period that provides broadband 
phasematching at 0.8 µm for a 0.5 mm crystal. 

The design of each PPKTP crystal used is shown in Figure 3.11.  Each crystal was 

grown as a multi-grating, allowing the signal wavelength to be tuned by moving the 

crystal in the vertical direction.  A number of different crystal lengths were purchased 

and a variety of high-reflective (HR) and anti-reflective (AR) coatings applied.  

Unfortunately the thinnest crystals (0.3 mm) were damaged during the coating process.  

These would have minimised the intracavity dispersion while providing sufficient gain 

to produce parametric oscillation.  The next-thinnest crystal size (0.5 mm) was used in 

all OPO designs in this project. 
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Figure 3.11.  Illustration of the PPKTP crystal multi-grating architecture.   
Each crystal contains nine grating periods allowing for phasematching tunability. 

3.3.1.3 Cavity design 

The first generation OPO was designed as a linear semi-monolithic cavity, shown in 

Figure 3.12.  The 0.5 mm PPKTP crystal was coated on the input facet with an AR 

coating from 0.7 – 0.9 µm to reduce pump losses, and with an HR coating from 1.05 –

 1.20 µm.  The output facet was coated with a broadband visible-near-IR AR coating.  

These coatings allowed the crystal to act as a cavity end mirror, increasing mechanical 

stability and reducing the dispersive broadening of the incident pump pulses by 

removing the need to focus through an intracavity optic. 
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Figure 3.12.  Schematic of the first generation OPO.  The cavity is a simple dogleg 
configuration based on a semi-monolithic PPKTP crystal.  The crystal is offset from 
90° to the pump beam to prevent optical feedback.  

An initial attempt was made to use a curved focusing mirror to focus into the crystal, 

producing a tight focal spot without broadening the pump pulses by propagating 

through a focusing lens.  This proved unsuccessful as the HR coating became damaged 

under intense focusing.  The near-transform-limited pulses from the pump laser had 

peak powers of almost 0.5 MW, causing irreparable damage to the input surface of the 

crystal when focused to a spot radius of less than 40 µm.  The peak power of the pump 

pulses is much less than the damage threshold of PPKTP, and so it is more likely that 

the coating was damaged.  In order to find a compromise between pump focal spot and 

damage considerations the curved focusing mirror was replaced with a lens.  The 

additional chirp introduced by the lens reduced the peak power to a safer level while 

also allowing for more flexibility in the size of the focal spot. 

The intracavity spot size of the resonant signal beam was determined using LCAV, a 

software package that uses an ABCD matrix algorithm to evaluate the radius of a beam 

as it propagates through a cavity.  LCAV was also used to determine the optimal 

distance between the output facet of the PPKTP crystal and the curved mirror.  A 

diagram of focal spot size against curved mirror position is shown in Figure 3.13, and is 

analogous to a stability diagram.  The OPO cavity will run most effectively when the 

curved mirror is placed 50.60 mm after the PPKTP crystal.  The intracavity beam 

profile is shown in Figure 3.14, and the corresponding LCAV program is shown in 

Table 3.2 for reference. 
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Table 3.2.  LCAV program used to determine the optimal spot size and beam profile 
of the first generation OPO.  All length units are in mm. 

wavelength = 0.0011; 

planemirror; 
rod(0.5,1.8);              % 0.5mm plane-plane crystal with n=1.8 
space(50.60); 
sphermirror(100,3);  % -100mm curvature with 3° folding angle 
space(1467); 
planemirror; 

 

 

Figure 3.13.  LCAV diagram of focal spot size as a function of the curved mirror 
position for the first generation OPO cavity.  The optimal position was 50.60 mm 
which produced a focal spot of 17.5 µm in the PPKTP crystal.  As the cavity will not 
resonate when the distance between the curved mirror and the crystal is less than 
49.79 mm or more than 51.38 mm, this plot can be viewed as a stability diagram. 
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Figure 3.14.  Beam profile of the first generation OPO for (a) the full cavity and (b) 
the crystal focal region. 

The PPKTP crystal was glued into a ‘Pac-Man’ mount, a design that allows for 

maximum beam clearance on one side of the crystal (Figure 3.15 - right).  This design 

exploits the fact that PPKTP does not require heating and so there is no need to 

maximise thermal contact with an additional metal plate (Figure 3.15 – left).  The 

crystal mount was located in a lockable Newport 1-inch optical mount that was secured 

to a vertical translation stage, allowing the grating period to be tuned, and a horizontal 

translation stage, allowing the crystal to be withdrawn from cavity while maintaining its 

position relative to the lens and mirror M1.  Both the curved mirror M1 and the end 

mirror M2 were placed in high-stability mirror mounts with differential micrometers 

(Newport, SL25.4BD).  These allowed the cavity to be aligned and optimised with high 

precision, which is especially important when dealing with a synchronously-pumped 

cavity.  The end mirror mount was attached to a linear motor actuator (Newport, 

NSA12) allowing the cavity length to be smoothly altered over an 11.6 mm travel range 

with a 0.1 µm step size. 
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Figure 3.15.  Two standard crystal mounts.  The design on the left is for PPLN, and 
includes a resistor to heat the crystal.  The design on the right is for PPKTP.  The 
‘Pac-Man’ design allows the beam to be steered through the open space without 
clipping the mount. 

3.3.1.4 Cavity alignment procedure 

Alignment of the first generation OPO cavity was carried out in a series of rigorous 

steps that were easily transferable to any OPO cavity design.  Having used LCAV to 

determine the distance between the crystal and mirror M1, and having determined the 

position of mirror M2 to match the pump cavity length, the alignment procedure itself 

could now proceed.  

As with any alignment procedure it is good practice to ensure the input beam is 

travelling parallel to the surface of the optical table at a convenient height (here 

110 mm), and is also travelling along a set of holes in the table which act as a 

convenient reference line.  This was carried out using a pair of steering mirrors.  It is 

also good practice to attenuate the pump beam to reduce the potential for damaging the 

optics as they are inserted into the beam line. 

The first step was to position the curved mirror M1, which was mounted on a translation 

stage that moved along the direction of the pump beam.  The height of the mirror mount 

was adjusted so that pump beam was incident with the centre of ½-inch mirror optic.  

The mirror mount assembly was then secure to the optical bench, leaving sufficient 

room for the crystal mount and pump lens assembly.  A piece of white card was placed 

over mirror M1 and marked with a cross, so that the pump beam fell on the centre of the 

cross.  A pinhole was placed in the pump beam, reducing the spot on the white card but 

keeping the beam centred on the cross.  This fixed reference was used to monitor how 

the pump beam deviated as each additional element was added to the beam path. 
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The second step was to bring the PPKTP crystal into the correct position relative to the 

pump mirror.  The crystal was oriented so that the two end-faces were as normal as 

possible to the pump beam.  The degree of parallelism of the crystal faces will vary for 

every individual crystal.  Using an IR viewer, the angle of the crystal was altered until 

the pump reflections from the crystal surfaces straddled the pinhole in the pump beam.  

The translation stage of mirror M1 was then moved until the distance between that 

mirror and the second crystal surface was 50.60 mm.  This was achieved by cutting a 

piece of card to the correct length and tapering the ends to produce a measurement tool.  

Gently placing the card against the surface of the crystal, mirror M1 was slowly brought 

into place until it too touched the card. 

The third step was to position the pump focusing lens.  The lens had a focal length of 

80 mm, was AR coated from 0.7 – 0.9 µm, and was located on a translation stage.  The 

pump beam was blocked while the lens assembly was secured to the optical bench, and 

the crystal was withdrawn from the beam line to prevent damage during alignment.  The 

pump beam was then unblocked, producing a large spot on the piece of card attached to 

mirror M1.  If the lens was correctly positioned in the horizontal and vertical direction 

relative to the pump beam then this large spot was centred on the cross on the white 

card.  The angular alignment of the lens was not critical; however it is good practice to 

align it normal to the pump beam to reduce losses and astigmatism.  The pump beam 

was blocked once more as the PPKTP crystal was brought back into the beam line.  

When the pump was unblocked, visible frequency doubling of the pump (0.8 µm) to its 

second harmonic (0.4 µm) was observed.  The intensity of the second harmonic beam 

was increased by moving the focusing lens translation stage, and provided a good visual 

approximation of the position of the focal spot within the crystal. 

The final step was to place the cavity end mirror M2 the correct distance away from 

mirror M1.  LCAV had determined that the correct distance required to match the pump 

cavity length was 1467 mm.  The white card was removed from mirror M1 and the blue 

SHG beam steered past the crystal and the edge of the focusing lens and through a pair 

of pinholes.  The distance between mirrors M1 and M2 was measured using a tape 

measure; M2 was placed on a motor-controlled translation stage, and so exact 

positioning was not necessary for the initial cavity alignment.  The blue beam formed a 

loose waist on mirror M2, and was steered back through the pair of alignment pinholes.  

The HR coating for the OPO mirrors and crystal input surface was sufficiently reflective 

at 0.4 µm that the generated SHG was visible for two round trips of the cavity.  By 
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walking the beam with mirrors M1 and M2 the blue beam was overlapped with itself.  

At this point the attenuation was removed from the pump beam and all pinholes were 

removed from beam line, noticeably increasing the SHG brightness.  

The cavity length could now be altered until oscillation occurred.  This was monitored 

by placing pieces of white card behind mirrors M1 and M2 to monitor the beams that 

passed through these mirrors.  The lab was darkened and the motor-control translation 

stage attached to M2 slowly scanned.  At the point of cavity length synchronicity a flash 

of colour could be observed on the white cards, a result of various second harmonics 

and frequency mixing outputs between the pump, idler and resonant signal beams.  If 

the cavity length was scanned too quickly then this flash could be missed; this is why a 

motorised stage is preferable to a manual version.  Once the correct cavity length was 

established and the visible colours generated, the cavity alignment was optimised by 

walking the beam using mirrors M1 and M2.  Optimisation was performed to maximise 

the brightness of the generated visible frequencies.  The operating threshold for this 

cavity was 750 mW. 

3.3.1.5 Feedback issues and damage considerations 

Several practical issues influenced the design and operation of the first generation OPO, 

and impacted on its optimal performance.  The foremost issue, one that also applied to 

the second generation OPO, was optical feedback.  Small back reflections of the pump 

beam that were propagated back into the laser oscillator would introduce a phase 

instability, ceasing mode-locked operation.  Such back reflections were common from 

optics that were oriented normal to the input beam; anti-reflection coatings would 

generally not alleviate the issue, as only a small fraction of the average pump power 

would be sufficient to break the mode-locking.  For lasers operating with longer pulses 

(more than 100 fs) a practical solution is to use an optical isolator, often composed of a 

Faraday rotator, a crystal that, when exposed to a strong magnetic field, will rotate the 

polarisation direction of a beam passing through it.  In the near-IR wavelength range the 

most common Faraday rotator materials are terbium doped borosilicate glass and 

terbium gallium garnet (TGG) crystal.  These materials are highly dispersive, 

introducing a GDD of 183.5 fs2  per mm at 0.8 µm, compared to 36.1 fs2 per mm for 

fused silica.  Second-order dispersion curves for 1 mm of TGG and fused silica are 

shown in Figure 3.16.  The TGG crystal within the available optical isolator (LINOS 

Photonics, FI-810-5 SV) was 28 mm long, equivalent to 5138 fs2 of GDD at 0.8 µm.  

http://en.wikipedia.org/w/index.php?title=Terbium_doped_borosilicate&action=edit&redlink=1
http://en.wikipedia.org/w/index.php?title=Terbium_gallium_garnet&action=edit&redlink=1
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Using Equation (3.4), and assuming that Gaussian pulses entering the isolator are 

22.9 fs as measured in Sub-section 3.2.3, the pulse duration after the isolator would be 

stretched to 570.4 fs.  This amount of GDD is very challenging to remove with mirrors 

or a prism pair, and so a different approach to removing feedback was implemented. 

 

Figure 3.16.  Second-order dispersion curves for 1 mm of (a) fused silica and (b) 
terbium gallium garnet (TGG), highlighting the large GDD produced by the optical 
isolator. 

The alignment procedure described in Sub-section 3.3.1.4 calls for the crystal to be 

aligned normal to the incoming pump beam.  In reality a small horizontal offset was 

necessary to prevent a reflection of the focused pump beam from returning to the laser 

oscillator.  This reduced the performance of the OPO, an effect that could be observed 

by increasing the offset and noting a drop in maximum power.  The offset was therefore 

kept to the minimum angle required.  This was determined by monitoring the  

mode-locked pump spectrum as the offset angle was decreased.  As the angle was 

reduced, a number of CW spikes would appear in the spectrum, increasing in bandwidth 

and intensity until mode-locked operation ceased.  The offset angle was adjusted until 

no distortion was visible in the mode-locked spectrum. 
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A second practical issue was one of laser-induced damage to the input surface of the 

crystal.  As was discussed in Sub-section 3.3.1.3, the input facet sustained a small 

amount of damage when a transform-limited pump beam was directly focused onto the 

surface using a curved mirror.  This problem was mitigated by switching to a focusing 

lens geometry instead, however it was not removed entirely.  If the now slightly-chirped 

pump beam was focused too tightly onto the high-reflective coating then damage would 

again occur.  The minimum focal length that did not induce damage was found 

empirically to be 80 mm.  Further damage was later caused when the intense, focused 

pump beam was incident on dust particles on the crystal surface.  A small spark would 

appear, occasionally accompanied by a worrying sizzling sound, and the HR coating on 

the crystal surface would become discoloured and damaged at the focal point.  Blocking 

the input beam, cleaning the crystal surface and moving the crystal so that a clear 

aperture was available at the focal point allowed OPO operation to continue.  Both of 

these damage issues stem from the thickness of the HR/AR coating on the input face of 

the crystal. 

3.3.2 Characterisation 

Several measurements were carried out in order to characterise the performance of the 

first generation OPO, including temporal and spectral characterisations of the resonant 

signal pulses, and spectral analysis of the visible mixing pulses as a function of OPO 

cavity length.  At the time of construction no method of measuring the duration of the 

visible pulses was available; the first temporal characterisation of the visible outputs 

was carried out for the second generation OPO. 

3.3.2.1 Wavelength tuning 

Two primary methods were used to tune the wavelength outputs of the OPO; cavity 

length tuning of the resonant signal pulses was the most direct way of altering the 

wavelengths of the visible mixing pulses; moving the crystal to select a different grating 

period provided a much coarser adjustment method.  Much of the discussion in this 

section will deal with cavity length tuning. 

The centre frequency of a synchronously-pumped OPO will tune with cavity 

length [25], and a short derivation of this behaviour will now be given.  The 

synchronous nature of the OPO constrains its operation such that the cavity round trip 

time (or group delay) is fixed, expressed as 
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This equation describes the gross tuning behaviour of a synchronously-pumped OPO.  

The centre frequency of an OPO cavity with low GDD will tune quickly with cavity 

length.  Conversely, an OPO with high dispersion (such a cavity with a long nonlinear 

crystal [26]) will tune slowly with cavity length, making it a good candidate for 

wavelength stability. 

An 8% output coupler was placed in mirror M2 in order to measure the spectrum of the 

resonant signal; as the signal was not of direct interest to this project it was not routine 

to have an output coupler in the cavity.  Sufficient visible light was reflected from 

folding mirror M1 and transmitted through the output coupler to measure the visible 

spectra.  The signal pulses were measured using a Heraeus Noblelight E200 laser 

spectrum analyser that covered wavelengths from 0.8 – 1.5 µm.  The visible spectra 

were measured using two Ocean Optics USB4000 spectrometers; one covered the 

spectral range from 0.42 – 0.73 µm while one covered 0.66 – 0.93 µm and was used in 

the second order to measure the SHG pump spectrum at 0.4 µm.  Spectra were recorded 

with each spectrometer as the end mirror was moved by computer controlled stepper 

motor.  The net cavity GDD was calculated as 85 fs2 at 1.1 µm; such low intracavity 

dispersion constrained the operating range to only a few tens of microns, making it 

impractical to change the cavity length by hand.  Profiles of output spectra as a function 
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of increasing cavity length are shown in Figure 3.17 for two different crystal grating 

periods. 

The signal tuned to longer wavelengths with increasing cavity length, as expected from 

an OPO cavity with positive net GDD and Equation 3.10.  Longer grating periods also 

produced longer signal wavelengths.  The signal wavelength was tunable from 1.0 – 

1.2 µm, with both lower and upper limits constrained by the mirror reflectivity curves.  

A number of visible wavelengths were produced as a result of SHG and SFM within the 

PPKTP crystal, some the result of last-coherence-length phasematching and others due 

to fortuitous high-order phasematching conditions for a given grating period.  The 

various output wavelengths of the OPO are given in Table 3.3 for a number of resonant 

signal wavelengths. 

Table 3.3.  Mixing wavelengths generated by the OPO.  The total discontinuous visible 
frequency bandwidth decreases with increasing signal wavelength. 

Primary 
wavelengths (µm) Mixing wavelengths (µm) Visible frequency 

bandwidth (PHz) 

p s i 2p p + s 2s p + i Δf 

0.80 1.00 4.00 0.40 0.44 0.50 0.67 0.29 

0.80 1.06 3.26 0.40 0.45 0.53 0.64 0.27 

0.80 1.10 2.93 0.40 0.46 0.55 0.63 0.26 

0.80 1.14 2.68 0.40 0.47 0.57 0.62 0.25 

0.80 1.20 2.40 0.40 0.48 0.60 0.60 0.24 
 

The upper image in Figure 3.17 shows that broader signal bandwidths are achievable for 

longer grating periods, however the OPO ran more stably at lower wavelengths and so a 

shorter grating period of 26.50 µm was used for the remainder of the work carried out in 

this thesis.  The centre wavelength of the signal for this grating was 1.06 µm, and the 

visible pulses produced are listed in Table 3.3.  The FWHM of the signal at this centre 

wavelength and grating period was 0.060 µm. 
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Figure 3.17.  Cavity length tuning profiles of the first generation OPO for two 
separate grating periods.  Longer grating periods produced longer signal wavelengths, 
however the OPO stability was better for shorter grating periods.  

3.3.2.2 Dispersion compensation 

In order to increase the signal bandwidth, generate shorter signal pulses and hopefully 

broader bandwidth visible pulses, the intracavity dispersion of the OPO must be 

minimised, and ideally for stability it should be made very slightly negative.  No 

chirped mirrors or GTI mirrors were available for GDD compensation over 1.0 – 

1.2 µm, and so a pair of intracavity prisms was employed, as shown in Figure 3.18.  A 
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pair of SF10 prisms was placed 360 mm apart and the insertion length of each prism 

varied to try and optimise the signal bandwidth. 

 

Figure 3.18.  Schematic of the first generation OPO with a pair of intracavity SF10 
prism for dispersion compensation.  

As the OPO cavity must be synchronous in length with pump laser to oscillate, aligning 

the prisms was not a simple task.  The original design was aligned using the second 

harmonic of the pump light as a beam guide, however the 0.4 µm SHG beam was 

refracted by a significantly larger angle than the resonant 1.1 µm signal beam, and so a 

different approach was taken to align the cavity. 

The OPO was set to run without prisms in the configuration shown in Figure 3.12.  The 

tip of the first prism was inserted into the cavity to pick off a small fraction of the beam 

line.  The prism was oriented until it reached Brewster’s angle for the signal 

wavelength.  This was determined by observing the refracted signal beam from the 

prism in the far field.  As the prism was turned the wavelengths in the pick off beam 

would move in one direction before stopping and moving in the other direction.  The 

angle at which any wavelength stopped moving was Brewster’s angle for that 

wavelength.  Once Brewster’s angle had been determined the second prism was placed 

360 mm away at a point where it captured the refracted signal beam.  This second prism 

was also oriented at Brewster’s angle but with an extra 180° displacement, sending the 

signal light along a path that was parallel to the original OPO arm.  A second high-

reflector mirror (M3) was placed after the second prism at a distance that matched the 

second arm to the pump cavity length and was secured to a motor-controlled stage. 
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At this point the first prism was fully inserted into the OPO beam line so that oscillation 

in the first arm ceased.  Inserting this prism caused the 0.4 µm SHG light to be 

refracted, along with any remaining pump light that was not transmitted through mirror 

M1.  The second prism was moved perpendicular to its base so that it intersected the 

refracted pump beam, sending it towards mirror M3 along a parallel path to the original 

picked off signal beam.  A pinhole was placed in the pump beam between mirror M1 

and the first prism, and mirror M3 an angled so that the pump beam returned through 

this pinhole. 

Glass from the first prism was withdrawn until no signal was detected when a power 

meter was placed between the first prism and mirror M2.  Glass was also withdrawn 

from the second prism until the pump beam missed the optic.  The motor-controlled 

stage attached to mirror M3 was moved until oscillation occurred.  The cavity alignment 

was then optimised using mirrors M1 and M3, a process that was more sensitive than 

for the uncompensated cavity due to small beam deviations introduced by the prism 

pair.   

By altering the insertion length of the prisms the net dispersion in the cavity could be 

altered.  Each movement of the prism was accompanied by a corresponding change in 

position of mirror M3, as the cavity length would also be altered.  The high reflector in 

mirror M3 was replaced by an 8% output coupler in order to measure the signal 

bandwidth.  No noticeable improvement in bandwidth was measured as the prism 

insertion or separation was changed, suggesting that the cavity was operating near zero 

dispersion to begin with.  The GDD curves of the high reflecting mirrors may have been 

slightly negative near 1.06 µm, compensating for the material dispersion of the crystal; 

GDD data for the mirror coating was not available from the supplier. 

3.3.2.3 Visible light extraction 

As the purpose of the project was to coherently combine the visible pulses generated in 

the OPO it was important to efficiently extract them from the cavity.  This was achieved 

by using different methods for the uncompensated and prism-based cavity designs.  In 

the uncompensated cavity the majority of the visible light exited the cavity through 

curved mirror M1 due to the transmission properties of the HR infrared coating.  A lens 

was placed immediately after the curved mirror to collimate the visible light into a 

single white light beam along with the depleted pump.  This method was inefficient as 

much of the visible light was reflected by mirror M1 and exited the cavity via mirror 
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M2.  The large mount holding mirror M1 was chosen for its stability and the differential 

tuning knobs that allowed for fine control of the cavity alignment, however the size of 

the mount limited the distance at which the collimating lens could be placed.  This 

limitation produced a visible beam with a diameter of several millimetres, a size which 

can be cumbersome to work with further down the optical line. 

A different approach became available when the prism pair was inserted into the cavity.  

The material dispersion introduced by the first prism caused the visible and infrared 

beams to travel along different paths, with only the signal beam being collected by the 

second prism.  An achromatic lens was placed one focal length away from the first 

prism, creating a line focus at the back focal plane of the lens.  A silver mirror was 

placed at this line focus to reflect the visible pulses back through the lens and prism at a 

slightly lower height.  A silver pick-off mirror (M5) was then used to steer the visible 

beam further down the optical line.  This is illustrated in Figure 3.19. 

The dielectric mirror M1 was replaced with a silver mirror of the same curvature in 

order to steer all the visible light towards the prism pair.  The silver mirror could only 

be employed in the prism-based cavity because the first prism prevented the pump from 

returning along the beam line.  When a silver mirror was placed in the uncompensated 

cavity sufficient pump power was reflected by mirror M2 to break the mode-locking in 

the pump laser. 

The measured visible powers for each method are shown in Table 3.4 for the most often 

used wavelength configuration.  More power was available using the line focus method 

as no light was lost through mirror M1, however in both cases the pump + idler power 

at 0.64 µm was not measureable. 

The CEO frequencies of the pump and OPO were locked using the first output coupling 

method, detailed in Chapter 4, and the cavity was folded in order to box it for additional 

stability.  An attempt was also made to characterise the visible pulse durations using 

XFROG, however it was unsuccessful due to the low average powers available using 

this output coupling method.  The OPO was reconfigured to the prism-based cavity in 

order output couple more visible light, however at this point the damage to the input 

surface of the PPKTP crystal was substantial and oscillation of the OPO was sporadic at 

best.  The decision was made to change the crystal, however as no further HR/AR 

coated crystals were available the cavity would have to be completely redesigned. 
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Table 3.4.  Visible output powers from the first generation OPO for each method of 
light collection.  In method 1 a lens was placed after mirror M1 to 
collimate the visible light.  In method 2 mirror M1 was replaced by a silver 
mirror and the visible light was extracted through the prism arrangement 
shown in Figure 3.19. 

Wavelength (µm) Method 1 power (mW) Method 2 power (mW) 

400 not measureable 3 

450 3 8 

530 20  45 

640 not measureable not measureable 

 

 

 

Figure 3.19.  Line focus apparatus used to create a collimated beam of visible light 
from the OPO. 
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3.4 Second generation PPKTP optical parametric oscillator 

As no HR/AR coated crystals were available, the semi-monolithic design used in the 

first generation cavity could not be repeated.  Several AR/AR coated crystals with the 

same length and grating periods were available, and so it was possible to replace the 

semi-monolithic cavity with a standard X-cavity design.  A number of intermediate 

OPO cavities were constructed with different configurations in an attempt to maximise 

the visible output power.  Visible light was generated in both propagation directions in 

all linear configurations, reducing the output power available in the primary beam line.  

A ring cavity offers several advantages over a linear cavity for the purpose of visible 

frequency generation.  As the signal pulses only propagate in one direction, all SHG and 

SFM processes occur in a single pass; in the linear configuration visible light was seen 

to exit the cavity through the input surface of the crystal and pass through the input lens.  

The intracavity dispersion in this configuration is reduced to 45 fs2 as the result of only 

a single pass through the crystal.  Disadvantages in the design are also evident.  

Operating close to zero dispersion reduces the operational cavity length.  Placing prisms 

into a ring cavity is no simple task, and was not attempted due to time constraints.  The 

cavity length required for synchronous operation at 100 MHz is 3 metres, making it 

difficult to fold and box in a compact way. 

The potential gains from a ring cavity outweighed the immediately identifiable 

problems, and so construction went ahead. 

3.4.1 Cavity Design 

The relevant details of the PPKTP grating periods, AR coating and cavity mirror 

coatings were given in Sub-section 3.3.1, and as they remain the same here they will not 

be repeated.  The cavity design before folding and boxing is shown in Figure 3.20.  As 

two curved mirrors were now in place the focusing geometry was altered and the pump 

beam was focused through mirror M4 using a 60 mm focal length lens.  As with the first 

generation OPO the cavity stability and beam size were modelled in LCAV, details of 

which are given in Table 3.5, Figure 3.21 and Figure 3.22. 



91 
 

 

Figure 3.20.  Schematic of the second generation OPO in a ring configuration. 

 

Table 3.5.  LCAV program used to determine the optimal spot size and beam profile 
of the second generation ring OPO.  All length units are in mm. 

wavelength = 0.0011; 
type            = ring;   

 
sphermirror(100,3);  % -100mm curvature with 3° folding angle 
space(50.97);  
rod(0.5,1.8);              % 0.5mm plane-plane crystal with n=1.8 
space(50.50); 
sphermirror(100,3);  % -100mm curvature with 3° folding angle 
space(770);  
space(1423);             % Spaces reflect X-geometry of ring cavity 
space(770); 
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Figure 3.21.  LCAV diagram of focal spot size as a function of the curved mirror 
position for the second generation ring OPO.  The optimal position was 50.97 mm 
which produced a focal spot of 17.4 µm in the PPKTP crystal. 

 

Figure 3.22.  Beam profile of the second generation ring OPO for (a) the full cavity 
and (b) the crystal focal region. 
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Looking at Figure 3.21 and Figure 3.22 in combination with Table 3.5 it is evident that 

for the crystal to be situated at the focal point of the intracavity beam, the distance 

between the crystal faces and each of the curved mirrors should not be equal, which is 

not the case for a linear cavity.  The AR/AR coated crystal was mounted in a similar 

‘Pac-man’ style mount as the HR/AR coated crystal as it provided good clearance for 

beam steering.  The crystal mount was secured in a lockable Newport 1-inch optical 

mount attached to an XYZ translation stage.  Mirror M4 was a ½-inch diameter,  

-100 mm radius of curvature high reflector held in a ½-inch Newport mirror mount that 

provided a clear edge for beam clearance.  Mirror M1 was an identical optic, however it 

was held in a 1-inch adaptor and secured in a lockable 1-inch Newport mount with a 

clear edge for beam clearance.  This allowed the dielectric mirror to be replaced by a 

silver mirror for visible light collimation in the manner of the first generation OPO; the 

cavity was aligned using only dielectric mirrors to keep intracavity losses to a 

minimum.  Mirrors M2 and M3 were mounted in high-stability mirror mounts with 

differential micrometers to allow the beam to be walked with accuracy, with the mount 

of mirror M2 attached to a motor controlled stage for cavity length adjustment.   

3.4.2 Cavity alignment procedure 

The alignment procedure for a ring OPO is different to that of a semi-monolithic design, 

however many principles are the same.  The distances between the crystal faces and the 

curved mirrors must be determined beforehand, as must the total cavity length necessary 

to achieve synchronous operation. 

The first step was to attenuate the pump beam and align it so that it travelled parallel to 

set of holes in the optical bench.  The mount for curved mirror M4 was then secured to 

the bench, leaving enough room for the pump lens on a translation stage behind the 

optic.  The position of this mirror mount remained fixed, with the crystal and curved 

mirror M1 positioned relative to the front surface of mirror M4.  After checking that the 

pump beam passed clearly through mirror M4 without clipping, the optic was removed. 

Mirror M1, secured to a translation stage, was then placed roughly 100 mm away from 

the position of mirror M4.  The height of mirror M1 was adjusted so that the attenuated 

pump beam was incident on the centre of the optic.  A piece of white card with a cross 

on it was attached to the mirror so that the pump beam fell on the centre of the cross.  A 

pinhole was placed in the pump beam to ensure that the pump spot on the white card hit 

the exact centre of the cross. 
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The PPKTP crystal was then placed into the path of the pump beam, ensuring that the 

XYZ stage had sufficient travel to remove the crystal from the beam path, travel the full 

vertical height of the crystal and move through a region that included a distance roughly 

50 mm away from mirrors M1 and M4.  The crystal was oriented until the pump 

reflections from the front and back surfaces of the crystal straddled the pinhole in the 

pump beam. 

The next stage was to insert the focusing lens assembly into the beam.  The pump beam 

was blocked and the crystal moved out of the beam path.  The 60 mm focal length lens 

was placed in a 1-inch Newport mount that provided a clear aperture on one edge for 

beam clearance.  The lens mount was placed roughly 10 mm behind the mount for 

mirror M4 and attached to a translation stage to optimise the focal position.  The pump 

beam was unblocked, producing a large spot on the cross attached to mirror M1.  The 

horizontal and vertical positions of the lens were adjusted until the large spot was 

centred on the cross, at which point mirror M4 could be reinserted into its mount.  

Mirror 4 was angled slightly so that the beam expected to come from mirror M3 would 

be returned towards mirror M1.  This angle introduces a horizontal deviation in the path 

of the pump beam as it is focused through the mirror, causing the spot on the card to 

shift to one side.  If the pump beam is travelling parallel to the surface of the optical 

table and passes through the centre of the lens and mirror M4, no vertical displacement 

should be observed.  

With the optical head of the OPO in place, the distances between the crystal faces and 

the two curved mirror could now be set.  Two thin strips of card were cut to lengths of 

50.97 mm and 50.50 mm and their ends tapered to a point.  The pump beam was 

blocked, the crystal brought back into the beam line and the white card on mirror M1 

removed.  The 50.97 mm length piece of card was placed against the front surface of 

mirror M4 and the position of the crystal adjusted until its input face touched the other 

end of the card.  The 50.50 mm length of card was then placed against the output 

surface of the crystal and the position of mirror M1 adjusted until it touched the other 

end of the card.  This procedure placed the crystal at the centre of the intracavity beam.  

The pump beam was unblocked and the pinhole was removed.  Second harmonic 

generation at 0.4 µm was immediately visible from the crystal.  The position of the 

focusing lens was altered until maximum SHG was observed. 
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The blue SHG beam was steered with mirror M4 so that it passed mirror M1 and the 

focusing lens without clipping the edge of either optic.  Mirror M2 was attached to a 

motorised translation stage and was placed 770 mm away from mirror M1.  Mirror M2 

was angled to steer the beam parallel to the pump beam.  Mirror M3 was positioned 

1423 mm from mirror M2, placing it 770 mm away from mirror M4.  This symmetric 

cavity configuration kept the folding angles M1-M2 and M3-M4 equal.  The blue beam 

was steered with mirror M3 to place it on the centre of mirror M4. 

Once the cavity optics were positioned the beam alignment procedure could begin.  As 

with the first generation OPO, feedback was observed when pump light was reflected 

from the surface of the crystal and so the crystal needed to be angled.  A brief 

discussion will first be given to aligning a ring OPO for a cavity where feedback is not 

an issue, and then a full description of the alignment procedure for a ring OPO with an 

angled crystal will be given. 

For a crystal angled normal to the pump beam, cavity alignment is a simple matter.  

SHG light generated in the crystal is aligned in the forward direction to return to the 

crystal.  SHG light is also observed in the backwards direction, reflected from the 

output face of the crystal.  The beam can be walked in forwards direction with mirrors 

M1 and M2 and in the backwards direction with mirror M3 and M4.  The two beams are 

walked until they overlap at various points in the cavity, typically at pinholes places in 

the 770 mm length arms.  Care must be taken to ensure that the overlapping beams 

come from the front surface reflections of each cavity mirror.  The cavity length can 

then be adjusted until oscillation is observed. 

For a crystal oriented at an angle to prevent optical feedback the alignment is more 

difficult.  The SHG light that is reflected off the output face of the crystal does not 

return along the input path of the pump beam and so does not follow a path that would 

allow the generated signal pulses overlap.  As no beam is available for overlap in the 

backwards propagating direction, the forwards direction only must be used.  The blue 

SHG light is passed once round the cavity until it is returned to the crystal.  The light is 

then looked for again on mirrors M1 and M2, appearing as a very dim spot near the 

bright SHG light from the first trip through the crystal.  It is often necessary to turn off 

all bright lights in the lab to see this second spot.  The second spot must be overlapped 

with the beam from the first crystal pass, and is steered using mirrors M3 and M4.  As 

the second pass beam is walked to overlap with first pass one, dim spots of SHG light 
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may by observed on mirrors M3 and M4.  The beam is walked until no secondary 

reflections can be observed, at which point the SHG light from each crystal pass is 

overlapped.  Finally, the cavity length can be altered using the motorised translation 

stage until oscillation occurs.  While it is true that changing the position of mirror M2 

will alter the position of the SHG beam on all subsequent optics, for small movements 

the change in beam overlap is minimal.  Once oscillation occurs the alignment can be 

optimised by walking the beam with mirror M2 and M3. 

3.4.3 Characterisation 

In a ring configuration the OPO cavity length was a little over 3 metres, with the largest 

mirror separation almost 1.5 metres.  This large footprint led to instability due to cavity 

length drift and air currents, and so it was necessary to fold and box the OPO.  An 

image of the folded OPO is shown in Figure 3.23.  The folding procedure was simple 

and efficient provided the folding angles were kept small and enough SHG pump light 

was visible after several mirror bounces to allow the cavity to be aligned.  The folded 

cavity contained eight plane mirrors, reducing the footprint to the size of an A3 sheet of 

paper.  Six of the mirrors were secured in Newport VIZIX single-axis lockable mirror 

mounts.  These compact mounts only provide beam steering in the vertical direction, 

with horizontal steering achieved by rotating the mount and post assembly.  The mounts 

also provide large clearance apertures for beam steering, making them ideal for use in a 

compact folding geometry.  The remaining two mirror mounts were the same high-

stability Newport mounts with differential micrometers that were previously used in the 

first generation OPO.  It was necessary to place these mounts at different ends of the 

cavity instead of in sequence, as this provided more sensitivity when walking the beam.  

The threshold of the ring OPO was 750 mW, the same as the semi-monolithic design.  

While the ring cavity should offer a decrease in operating threshold compared to the 

semi-monolithic design, the increased number of bounces in the folded configuration 

leads to higher intracavity loss. 
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Figure 3.23.  Picture of the second generation OPO in a folded configuration.  The 
primary output coupler for the pump and visible light was mirror M2.  Mirror M4 
was attached to a piezoelectric transducer for CEO control. 

3.4.3.1 Pump depletion 

Most of the pump light exited the cavity through mirror M2 where it could be redirected 

for use in further experiments.  The depleted pump spectrum is shown in Figure 3.24. 

 

Figure 3.24.  Undepleted (blue) and depleted (green) pump spectrum. 
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3.4.3.2 Cavity length tuning 

The visible spectra were recorded as the cavity length was tuned.  The low intracavity 

dispersion yielded a short and rapid tuning range, with high sensitivity to alignment and 

pump cavity length changes.  A map of the visible outputs as a function of cavity length 

is shown in Figure 3.25. 

 

Figure 3.25.  Visible spectral outputs from the second generation ring OPO as the 
cavity length was increased.  Recording the weak pump + idler beam required a 
longer integration time, producing a poorer signal-to-noise ratio.  

3.4.3.3 Visible power performance 

The primary motivation for switching to a ring cavity was the potential for an increase 

in the SHG and SFG efficiencies within the PPKTP crystal.  The visible light was 

output coupled through mirror M2 where it could be characterised and used in further 

experiments.  The power levels of each of the visible pulses were measured after they 

were spatially dispersed with an SF10 prism.  The results are shown in Table 3.6 along 

with the power levels recorded for the first generation linear cavity. 
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Table 3.6.  Comparison of the visible output power levels from the OPO in a ring and 
linear configuration. 

Wavelength (µm) 
Ring cavity  

power (mW) 

Linear cavity  

power (mW) 

400 10 3 

450 30 8 

530 100 45 

650 4 not measureable 

 

The single-pass constraint of the ring cavity allowed for efficient frequency mixing 

between the pump, signal and idler waves, reducing back conversion and confining the 

visible mixing pulses into a single beam.  Most of the visible power was extracted as 

leakage light through mirror M2, however sufficient power was reflected and output 

coupled through mirror M3 to be used for CEO locking, as discussed in Chapter 4.  



100 
 

3.5 Visible pulse characterisation using XFROG 

Characterisation of the visible pulses was non-trivial as the wavelengths involved 

precluded a single- or two-photon autocorrelation measurement.  With help from our 

collaborators at Oxford University an SFG-XFROG experiment was designed to 

measure the visible pulse durations. 

3.5.1 Design 

The FROG experiment was centred on a 30 µm BBO crystal cut at 45.6° for Type II 

SFG between the 0.8 µm pump and the visible pulses.  Both the pump and visible 

beams were horizontally polarized, however Type I phasematching was not possible 

over such wide frequency bandwidths.  A schematic and photograph of the FROG  

set-up are shown in Figure 3.26.  The pump beam acted as the gating arm and was 

separated from the visible pulses using a visible-NIR beam splitter.  The visible pulses 

were recombined with the pump pulses using a polarizing beam cube after their 

polarization was rotated to vertical.  The two beams were overlapped so that they were 

collinear and then focused into the BBO crystal using an off-axis parabolic mirror.  A 

curved aluminium mirror was placed off-focus after the crystal to allow the generated 

UV light to be focused and steered into an Ocean Optics UV spectrometer that covered 

the spectral range 0.227 – 0.450 µm.  A UV-pass filter was placed before the 

spectrometer to block the pump and visible wavelengths.  
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Figure 3.26.  Schematic (top) and photograph (bottom) of the XFROG experiment.  

3.5.2 Alignment 

It was critical that pump and visible beams were perfectly collinear to maximise the 

SFG signal.  Checking for spatial overlap by eye was found to be insufficient, and so a 

webcam was used to check for overlap in the focal plane of the off-axis parabolic mirror 

and in the far field.  A variable ND filter was placed in the beam path before the FROG 

breadboard to reduce the power incident on the webcam.  When the webcam was placed 

in the focal plane of the parabolic mirror two spots were visible, shown in the left hand 

image of Figure 3.27.  The spot from the pump beam was assumed to be fixed; the 

pump steering mirrors attached to the motor control stage were aligned to send the 
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outgoing beam back parallel to the incoming beam.  The visible beam was steered until 

the focal spots overlapped.  The webcam was then moved to a point between the off-

focus collimating mirror and the spectrometer and the beam overlap checked again, as 

shown in the right hand image of Figure 3.27.  If the beams were not overlapped the 

visible beam was walked until far field overlap was achieved.  This whole process was 

repeated until the beams overlapped in both positions. 

 

Figure 3.27.  Webcam images of the pump and visible beams in the focal plane of the 
parabolic mirror (left) and the far field (right).  The visible beam was walked until it 
overlapped with the pump beam in both positions. 

Once collinearity had been established, the SFG crystal was located in the focal plane of 

the parabolic mirror.  This was located by first placing a near-infrared pass filter after 

the polarizing beam splitter cube to remove the visible light and allow through the 

strong pump beam.  By rotating the crystal around the axis normal to the input beam the 

phasematching condition was changed from Type II SFG to Type I SHG for a 0.8 µm 

input.  The crystal was positioned by maximising the SHG signal before rotating the 

crystal once more to minimise the SHG.  This crystal angle was optimal for SFG 

between the pump and visible beams.  The SFG beam was focused into the Ocean 

Optics spectrometer using plane and curved mirrors with an aluminium coating with 
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extended reflectivity in the UV region.  A UV bandpass filter was placed before the 

spectrometer to remove the intense pump and visible light, providing 80% transmission 

from 0.24 – 0.395 µm.   

3.5.3 Pulse measurement and retrieval 

The collinear pump and visible beams were steered into the FROG apparatus.  A  

half-wave plate with a centre wavelength of 0.5 µm was placed in the path of the visible 

beam to rotate its polarization to vertical.  Scanning the gate arm over a 1 mm travel 

range allowed the XFROG traces between the pump and the visible OPO outputs to be 

recorded simultaneously, as shown in Figure 3.28.  This trace allowed the delay 

between the visible pulses to be clearly observed. 

 

Figure 3.28.  Simultaneous XFROG traces between the pump and visible OPO 
outputs.  The two smaller traces evident for the pump-idler pulses arise from the 
spectral shape of this pulse. 

Data retrieval was carried out using the techniques discussed in Chapter 2, Subsection 

2.5.2 of this thesis.  As the simultaneous recovery of several pulses is non-trivial 

however, several steps will be discussed in detail. 

Firstly the interacting pulses were simulated to produce an ideal FROG trace with no 

relative delay between the pulses.  Each pulse was assumed to be transform-limited with 

duration of 25 fs, as shown in the top panel of Figure 3.29.  XFROG traces for these 
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ideal pulses were modelled and are shown in the lower panel of Figure 3.29.  The 

0.4 µm pulse and its corresponding XFROG trace are shown for completeness; however 

its XFROG trace was not measured experimentally due to the limiting bandwidth of the 

UV bandpass filter. 

 

Figure 3.29.  Upper figure: spectral bandwidths supporting 25 fs pulses for the 
simulated pump and visible pulses.  Lower figure: simulated XFROG traces for the 
pump and visible pulses. 

A starting guess for the FROG retrieval algorithm was calculated by using the spectral 

bandwidth of the simulated XFROG trace.  A synthetic broadband pulse was generated 

and a duplicate made.  XFROG was carried out between these two pulses, and the initial 

pulse bandwidth modified until the bandwidth of its XFROG trace exceeded that of the 

trace shown in Figure 3.29.  The synthetic guess pulse and the corresponding XFROG 

trace are shown in Figure 3.30. 
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Figure 3.30.  Upper image:  frequency bandwidth of the synthesised guess pulse.  
Lower image: XFROG trace between the synthesised pulse and an identical copy. 

The experimental data had to be processed in several ways before the FROG retrieval 

algorithm could be used.  Individual background traces from both the test and gate arms 

were recorded and subtracted from the full trace.  This was particularly important when 

measuring FROG traces near 0.4 µm as residual Type I SHG from the pump beam 

raised the noise floor of the spectrometer.  The experimental data was then interpreted 

in time and frequency onto a 4096 x 4096 Fourier grid.  The FROG retrieval algorithm 

was processed for 10 iterations, with the algorithm converging to a result that closely 

matched the measured trace after 6 iterations.  The calculated XFROG traces are shown 

for 2, 4 and 6 iterations in Figure 3.31.  The standard PCGP algorithm is robust enough 

to account for the relative delay between the different pulses, which it treats as separate 

spectral components of the same pulse. 

The pump and visible pulse durations were calculated from the retrieved FROG trace 

after 40 iterations of the PCGP algorithm.  To improve and constrain the retrieved 

results the calculated pump spectrum was replaced with the experimental pump 

spectrum before each iteration.  The final retrieved FROG trace is compared alongside 
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the experimental FROG trace in Figure 3.32.  The retrieved visible spectra are shown 

beside the experimentally measured spectra in Figure 3.33, along with their calculated 

pulse durations.  Both images show good agreement between the experimental and 

calculated data, indicating that the FROG algorithm is suited to retrieve information on 

multiple pulses at once.   

 

Figure 3.31.  Calculated XFROG traces for i=2, 4 and 6 iterations of the FROG 
retrieval algorithm.  After 6 iterations the algorithm has correctly retrieved the 
relative delay between the SFG pulses.  

The quality of the experimental trace obviously affects the retrieved results; the 

intensity of the generated UV pulses depends strongly on alignment and crystal 

phasematching.  Slight spatial walk-off between the visible pulses meant that, in a 

collinear configuration, it was not possible to ensure simultaneous overlap between the 

pump beam and each visible beam, and so a compromise was made.  Additionally, 
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while the 30 µm BBO crystal allows for broadband phasematching, the phasematching 

efficiency will not be the same for each SFG interaction.  Spatially separating the 

visible pulses to allow their relative delays to be controlled would improve their spatial 

overlap in the FROG apparatus; this is discussed in Chapter 6. 

 

Figure 3.32.  Top: experimental FROG trace.  Bottom: calculated FROG trace using 
the PCGP retrieval algorithm. 
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Figure 3.33.  Top: Experimentally measured visible spectra.  The relative intensities of 
the measured spectra have been adjusted for ease of comparison.  Bottom: Calculated 
visible spectra.  The pulse durations were calculated from the retrieved FROG data. 

The calculated durations of the p+i, 2s and p+s pulses were 179 fs, 227 fs and 236 fs 

respectively.  These pulse durations were not unexpected; the spectral bandwidths of the 

individual pulses support shorter pulse durations, however the pulses were chirped as 

they were output coupled from the cavity.  The FROG apparatus also introduces some 

intrinsic chirp in the form of a beam splitter, polarising beam cube and half-wave plate.  

Pulse compression is further discussed in Chapter 6. 

3.6 Conclusions 

A 20-fs-femtosecond Ti:sapphire laser was characterised and used to synchronously-

pump a PPKTP-based femtosecond OPO.  Two OPOs were designed, constructed and 

characterised, with a ring cavity proving more efficient for visible pulse generation than 

a linear cavity.  An XFROG apparatus was constructed to measure the duration of the 

visible pulses. 
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Chapter 4 - Locking the CEO frequencies of all pulses in a 

synchronously-pumped femtosecond optical parametric 

oscillator to zero Hz 

4.1  Introduction 

This chapter describes the development and implementation of a formal approach 

concerning how to lock to zero the carrier-envelope offset (CEO) frequencies of a pump 

laser and a synchronously-pumped femtosecond optical parametric oscillator (OPO).  

The concept of the CEO frequency is introduced, and some discussion is given to its 

detection and multiple methods for its control.  Next, the electronic locking scheme 

necessary for CEO frequency control is outlined.  The final part of this chapter 

discusses the motivation for, requirements and realization of a broadband zero-offset 

frequency comb, a critical prerequisite for broadband coherent pulse synthesis. 

4.1.1 The carrier-envelope offset frequency 

A pulse generated by a mode-locked laser can generally be described as a time-

dependent electric field composed of a slowly varying envelope and a faster underlying 

carrier wave.  In many areas of optics the carrier-envelope phase can be ignored, 

however for laser sources producing mode-locked bandwidths that can support few-

cycle pulses [1,2] the relative phase between the carrier and the envelope becomes 

important.  As the pulse makes one round trip through a dispersive laser cavity the 

relative position between the peak of the envelope and the carrier wave changes due to 

the difference in the group and phase velocities of the pulse.  This carrier-envelope 

phase change is denoted by CEPϕ∆ .  In the time domain this is referred to as the carrier-

envelope phase slip (CEPS), and is illustrated in Figure 4.1 (a). 

If the pulses from a mode-locked laser are considered in the frequency domain then the 

output spectrum can be viewed as a comb of frequencies each separated from their 

nearest neighbour by the pulse repetition frequency.  Each comb line is not necessarily 

an integer multiple of the repetition frequency; generally, each comb frequency has an 

offset fCEO, again due to the intracavity difference in the phase and group velocities.  

This offset is the frequency-domain equivalent of the CEPS, known as the carrier-

envelope offset (CEO frequency) and is given by 
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2
CEP

CEO REPf fϕ
π

= . (4.1) 

This concept is illustrated in Figure 4.1 (b). 

 

Figure 4.1.  Illustration of the evolution of the carrier-envelope phase of a pulse train 
in the time and frequency domains. 

4.1.2 Detecting the CEO frequency 

In order to control the CEO frequency of an oscillator it is first necessary to measure it.  

The standard method of detecting this frequency is known as f-to-2f self-

referencing  [3].  This technique requires the frequency bandwidth of the pulses exiting 

the oscillator to be octave spanning; that is, the oscillator must produce frequencies f 

and 2f which have the same CEO frequency.  An octave spanning bandwidth can be 

achieved from a laser source with sufficient gain bandwidth, such as a Ti:sapphire 

oscillator  [1], or by external spectral broadening in a nonlinear medium, typically a 
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hollow-core or photonic-crystal fiber (PCF), which often leads to supercontinuum 

generation.  When employing the second method it is important to maintain the phase 

relationship between the lower and higher frequencies generated during broadening.  

Limiting the supercontinuum to lower-order soliton generation ensures a fixed phase-

relationship, which maintains the integrity of the CEO frequency at both ends of the 

spectrum  [4]. 

The principle behind f-to-2f self-referencing is illustrated in Figure 4.2 and is detailed 

here.  Frequencies 1ν  at the low-frequency (red) end and 2ν  at the high-frequency 

(blue) end of an octave-spanning bandwidth are given by 

 1 CEO REPf nfν = +  (4.2) 

and 2 2CEO REPf nfν = +  (4.3) 

respectively, where n is an integer.  If 1ν  is frequency-doubled though second-harmonic 

generation in a nonlinear crystal then the resultant frequency will be 

 12 2 2CEO REPf nfν = + . (4.4) 

Two frequencies now exist at 2 REPnf  with different CEO frequencies.  Heterodyne 

mixing between these two frequencies on an avalanche photodiode (APD) or fast silicon 

photodiode will yield a beat frequency at CEOf .  In practice many thousands of modes 

are frequency-doubled, leading to a beat note at 

 BEAT CEO REPf f pf= +  (4.5) 

where p is a positive integer.  Frequency bandwidth filtering and the bandwidth of the 

photodiode limit how big p can be, and will alter the signal-to-noise level of the beat 

note.  The detected CEOf  beat will lie in the RF domain and will have a value 

somewhere between 0 Hz and 
2
REPf

.  An example can be seen in Figure 4.4. 
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Figure 4.2.  Schematic of the f-to-2f referencing technique using an octave-spanning 
coherent supercontinuum. 

The f-to-2f interferometer is not the only method by which the CEO frequency of a laser 

can be detected.  Other self-referencing schemes such as 2f-to-3f can be employed if the 

laser pulses lack sufficient peak power to generate an octave-spanning 

supercontinuum  [5].  In the case of the femtosecond OPO one can exploit the fact that 

such OPOs typically generate multiple visible wavelengths through non-phasematched 

second harmonic generation (SHG) and sum-frequency mixing (SFM) processes in the 

OPO crystal  [6].  These visible OPO outputs can then be heterodyned against visible 

wavelengths generated from a pump supercontinuum source to obtain a CEO beat 

frequency, as discussed in Section 4.2. 

4.1.3 Methods of controlling the CEO frequency 

Once the CEO frequency of the laser oscillator has been detected, a number of methods 

exist that can be employed to control and lock it.  These methods will now be discussed.  

The electronics required to convert the detected beat frequency into a signal that can be 

used for locking will be discussed in Sub-section 4.1.4.   

For many years the traditional method of controlling the CEO frequency of a laser 

source relied on the manipulation of the intracavity laser power through modulation of 

the pump power  [7–9].  An acousto-optic modulator (AOM) placed in the beam of a 



115 
 

laser pump source (such as the 0.532 µm pump source of a Ti:sapphire oscillator) was 

used to alter the phase of the oscillator pulses through changes in the non-linear 

refractive index of the laser gain medium.  This technique maintains the pulse duration 

and beam quality of the laser, but is limited to DPSS-pumped systems.  Pump power is 

also lost due to diffraction effects in the AOM.  In the case of a laser directly pumped 

by a diode source the feedback signal can instead be used to modulate the driving 

current of the diode  [10].  This enables CEO frequency control of diode-pumped, 

SESAM mode-locked systems. 

A relatively new method known as feed-forward uses an AOM to change the CEO 

frequency of the laser downstream of the resonator itself  [11–13].  This technique first 

requires the CEO frequency to be measured, often by using a technique similar to that 

described in Sub-section 4.1.2.  This signal is then amplified and used to drive an AOM.  

The AOM is aligned for Bragg diffraction at the -1st order, and so the emerging laser 

pulses have a CEO frequency of 0 Hz.  This method is robust as it requires no feedback 

loop or locking electronics and can be used with any laser source.  Typical diffraction 

efficiencies are 60-70%, with the remaining zero-order output used for CEO frequency 

detection.  The frequency-shifted pulses are both spatially and temporally chirped.  

The two methods discussed require high-bandwidth frequency modulation of the laser 

beam, however both can be intrinsically inefficient as laser power is lost due to 

diffraction effects.  Another approach is to manipulate the intracavity dispersion, 

directly controlling the CEO frequency of the emerging mode-locked pulses.  Two 

relevant examples are discussed below. 

By definition the carrier-envelope offset phase arises from a difference between the 

intracavity group velocity and phase velocity.  Modulation of the intracavity dispersion 

allows control of this CEO phase  [14].  A common example is a resonator with an 

intracavity prism pair for dispersion compensation, as described in Chapter 2.  After the 

beam passes through the prism pair it is spatially dispersed across the face of a mirror 

before being reflected back.  Detection of the CEO frequency occurs as described in 

Sub-section 4.1.2, and the resulting error signal is used to modulate the pointing of the 

mirror through the use of a piezoelectric transducer (PZT)  [15]. The tilt of the end 

mirror must be kept small compared to the end mirror angular aperture in order to 

prevent intracavity power fluctuations.  Mirror excursions are therefore kept to the 

microradian range.  This method allows for maximum efficiency over a control 
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bandwidth comparable to that of an acousto-optic method, provided that mirror inertia is 

taken into account when selecting the PZT and mirror.  There are two drawbacks 

however; this technique cannot be applied to a mirror-dispersion-compensated oscillator 

as the intracavity dispersion is essentially ‘fixed’ by the mirror coatings and is 

insensitive to beam pointing.  The use of intracavity prisms also leads to a faster-

varying CEO frequency than would be measured from a mirror-based system, as minute 

changes in the intracavity pointing produce a large phase change due to the higher 

refractive index of the prisms  [16–19]. 

A second dispersion-based approach to CEO frequency control exists in the case of 

synchronously-pumped OPOs.  The intracavity pulses in a femtosecond OPO have 

lower peak powers than in a laser oscillator, and so the contribution to the nonlinear 

dispersion of the crystal is much lower in an OPO.  A much larger pump power 

modulation would be required to alter the CEO frequency of an femtosecond OPO than 

is needed for a Ti:sapphire laser, which is typically of the order of 10-3, and so pump 

power modulation is not a viable option.  For OPOs that produce multiple outputs from 

SHG and SFM processes, an AOM-based feed-forward approach is also unsuitable as 

each output has its own unique CEO frequency, as discussed in Sub-section 4.2.1, and 

so a dispersion-modulation approach must be employed instead. 

In Chapter 3 the cavity length tuning behaviour of an OPO was examined.  The same 

derivation will now be carried out for the CEO phase of the OPO.  In terms of the 

absolute phase of an OPO pulse, the CEO phase is given by 

 ( )( )CEO
φ ωφ φ ω ω
ω

∂
= −

∂
. (4.6) 

The change in CEO phase with frequency is therefore given by 
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which can be compared with Equation (3.9) to give 
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This equation can be rearranged to provide 
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which in turn can be rearranged to show that 
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Comparing Equations (3.10) and (4.9) it can be shown that the OPO CEO phase will 

tune much quicker with cavity length than the centre frequency.  This allows the CEO 

phase to be controlled by making small changes to the cavity length without affecting 

the centre frequency of the resonant pulse.  Equation (4.10) shows that a cavity round-

trip change of λ  will provide a CEPS change of 2π.  Cavity length changes of this 

magnitude can easily be achieved by mounting a cavity mirror on a piezoelectric 

actuator, which can be controlled through a feedback loop for signal or idler CEO phase 

control  [20–23]. 

4.1.4  An electronic feedback loop for CEO frequency control 

The feedback circuitry required to successfully control the CEO frequency of a laser is 

non-trivial, and contains a number of key components which will be described below.  

For the purposes of this discussion it will be assumed that the system used for CEO 

frequency detection is an APD in some form of nonlinear interferometer, as previously 

discussed in Sub-section 4.1.2.  The general outline of the electronic feedback loop is 

shown in Figure 4.3. 

4.1.4.1 CEO frequency detection and amplification 

The APDs employed during the course of this work were Hamamatsu C5331-11s, 

which have peak sensitivity at visible wavelengths and a high-band cut-off frequency of 

100 MHz, making them ideal for the experiments described in Section 4.2.  An APD is 

necessary due to its ability to detect and amplify extremely weak light signals.  The 

output from the APD (Figure 4.4 (a)) is an analogue RF signal containing strong 

frequencies at REPf  and REP CEOf f± .  The absolute strength of the CEO signal is 

typically less than -35 dBm and so requires amplification; a minimum of -20 dBm 

signal strength is required for locking, with at least a 30-dB signal-to-noise ratio, 

typically 45-dB.  An amplifier (Mini-Circuits, model ZFL-500LN+) was used to supply 
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a minimum of 25-dB gain.  A 50-MHz low-pass filter was used to attenuate the strong 

REPf  signal and prevent damage to the amplifier (Figure 4.4 (b) and (c)).  A final 32-

MHz low-pass filter was placed after the amplifier to provide a clean CEO signal 

(Figure 4.4 (d)).  The desired cut-off frequency of the low-pass filter depends on the 

frequency to which the CEO frequency will be referenced. 

 

Figure 4.3.  Outline of an electronic feedback loop for CEO frequency control. 

The low-pass RF signal is passed into a comparator (Pulse Research Lab, PRL-350TTL) 

to generate a low-noise TTL signal (Figure 4.5).  The output voltage from the 

comparator is either 0 or 2.7 V.  The TTL CEO signal, along with a similarly formatted 

reference signal, was passed into a digital phase-frequency detector to generate an error 

signal for CEO frequency locking.  
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Figure 4.4.  CEO beat signals at different stages of formatting.  (a) The raw beat 
signal as detected by the APD; (b) after a 50 MHz low-pass filter; (c) after 
amplification; (d) after a 32 MHz low-pass filter.  Figures (c) and (d) were recorded 
with 10 dB attenuation to protect the RF spectrum analyser. 

 

Figure 4.5.  (a) Amplified, filtered 24 MHz signal from the APD; (b) TTL output from 
the comparator. 
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4.1.4.2  Phase-frequency detector 

A digital phase-frequency detector (PFD) compares two TTL input signals and provides 

the phase/frequency difference between them  [24].  The first input is the formatted 

CEO frequency signal, while the second input is the reference signal to which the CEO 

frequency is to be locked.  There are two standard choices for a reference signal.  The 

first is a fixed reference such as a stabilized 10-MHz Rubidium clock or the output from 

an RF signal generator.  The second choice of reference source is a subharmonic of the 

pulse repetition rate, such as / 4REPf , as used in this work.  

 

Figure 4.6.  Block diagram of the digital phase-frequency detector used in the 
experiments carried out in this thesis.  Adapted from [24]. 

A block diagram of the PFD used in this thesis is shown in Figure 4.6, and the circuit 

diagram of the PFD is shown in Figure 4.7.  The TTL frequency input from the beat 

(reference) signal is passed to D-type flip-flop A (B), then divided down in 4-bit 

synchronous UP (DOWN) counter C (D).  The two inputs are added together by 4-bit 

adder E. If the frequency of the UP input is slightly faster (slower) than the DOWN 

input then the UP counter will count faster (slower) than the DOWN counter, resulting 

in an output at the adder that is slowly incrementing (decrementing).  When the adder 

reaches 15 or 0 the output becomes saturated, causing additional logic components (F) 

to stop the appropriate flip-flop circuit from triggering.  When the UP and DOWN 

inputs have the same frequency but different phases the adder output is constant and 

reflects the phase difference between the signals.  The phase difference is converted to 

an analogue signal using a simple D-to-A converter (G). 
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The circuits used in these experiments had a linear range of ±32π, about ±100 radians.  

The reference frequency input range is determined by the D-to-A converter, and is 

limited in our case to 5-32 MHz.  The analogue output from the PFD is used as the input 

to a proportional-integral amplifier for CEO control.  The DC offset of the output 

voltage could be adjusted to ensure that two identical frequency inputs would produce 

an output of 0 V. 

 

Figure 4.7.  Circuit diagram of the digital PFD used in this thesis.  See text for a full 
description.  Adapted from  [24]. 

4.1.4.3 Proportional-integral amplifier 

The analogue signal from the PFD is sent to a proportional-integral (PI) amplifier to 

form a stable locking loop.  For locking schemes employing a PZT stack in the laser 

cavity the stack can normally be driven directly by the PI amplifier.  For schemes using 

an AOM to modulate the laser pump power, the PI amplifier output is used to modulate 

the driving signal of the AOM driver.  Correct adjustment of the PI amplifier is one of 

the most important and difficult sections of the locking system.  For the purposes of this 

discussion the PI amplifier is assumed to be the New Focus LB1005 Servo Controller 

shown in Figure 4.8, the same model used throughout this work.  



122 
 

 

Figure 4.8.  Front panel of the New Focus LB1005 PI amplifier.  1, input ports; 2, 
input offset control; 3, PI corner frequency control; 4, proportional gain control; 5, 
gain regime control; 6, output port; 7, low frequency gain control; 8, output offset 
control. 

The PI amplifier must be calibrated before use, particularly if it will be used to drive a 

PZT.  While monitoring the output voltage (6) with no input (1), the output offset 

control (8) is turned to its minimum setting and a fine control on the rear of the device 

adjusted to set the minimum voltage to 0 V.  Similarly the output control is adjusted to 

its maximum setting and the voltage set to 10 V.  These voltage rail settings will 

provide the PZT with sufficient drive to capture and lock the CEO frequency, but will 

also prevent the PZT from becoming damaged by being driven with a negative voltage.  

After calibration, the output from the PFD can be connected to input A of the PI 

amplifier.  A 20-dBm attenuator is placed before the PI amplifier input to reduce the 

voltage level from the PFD, providing greater sensitivity for the locking loop.  The 

output port is connected to either a PZT or an AOM driver.  The input offset (2) of the 

PI amplifier should be turned to 5.0, a setting corresponding to zero offset.  The acquire 

switch (5) should be set to LFGL (low-frequency gain limit) for initial locking; this 

limits the DC gain and prevents integral gain domination at lower frequencies, making 

it easier to acquire a lock.  Once locking is achieved the switch can be set to Lock On 

for longer-term locking stability. 

While monitoring the CEO frequency on an RF spectrum analyser, voltage should be 

applied to a course CEO adjustment method (often a long-travel PZT in the laser cavity) 

to bring the CEO frequency into the capture range of the locking system.  With an initial 

corner frequency (3) setting of 3 kHz, a proportional gain (4) of 4.0 and a low-

frequency gain limit of 50 dB it should be possible to achieve coarse locking.  If the 



123 
 

CEO frequency does not stabilize but instead jumps over the target frequency then the 

input polarity must be changed by switching to the other input port, or by sweeping the 

CEO beat signal with the course adjustment until it approaches the locking frequency 

from the other direction. 

Increasing the proportional gain should improve the locking stability, which can be 

measured by monitoring the bandwidth of the locked CEO frequency on a high-

resolution RF spectrum analyser.  The output from the PFD can also be monitored, 

moving from a noisy signal to a smooth line as the locking is stabilised.  If the 

proportional gain or the corner frequency is too high then the output from the PFD will 

oscillate.  This signal will be fed back into the locking PZT, causing the locking signal 

on the RF spectrum analyser to broaden significantly.  Careful optimisation of the gain 

parameters will increase the stability of the locking signal.  Over time the CEO 

frequency will drift out of the range of the locking PZT.  It can be brought back into 

locking range by adjusting the coarse PZT. 
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4.2 Zero-offset CEO frequency stabilisation of a Ti:sapphire laser and a 

femtosecond OPO 

The optical and electronic techniques described in Section 4.1 were used to detect and 

stabilize the CEO frequencies of the pump and OPO described in Chapter 3 to 0 Hz, a 

process known as zero-offset locking.  The layout of the locking scheme and relevant 

results will now be discussed. 

4.2.1 Zero-offset locking 

As described in Chapter 1, the fundamental prerequisites for coherent pulse synthesis 

between two or more pulses are that the pulses share (i) a common repetition frequency 

and (ii) a common carrier-envelope offset frequency.  The synchronous nature of the 

femtosecond OPO immediately satisfies condition (i), providing intrinsic low-timing-

jitter synchronisation between the OPO and its pump source.  The multiple nonlinear 

mixing frequencies generated in the OPO, as well as their parent pump, signal and idler 

pulses, all share the same repetition rate, providing an opportunity for coherent 

synthesis between the individual pulses. 

The second prerequisite for pulse synthesis is simple to satisfy when the combined 

pulses share a common frequency, however when combining multiple pulses of 

different frequencies, a common CEO frequency is unlikely to be shared by more than 

two pulses.  In general terms the OPO produces pump (p), signal (s) and idler (i) 

frequency combs which can be described by 

 p
p REP CEOf kf f= +  (4.11) 

 s
s REP CEOf lf f= +  (4.12) 

 i
i REP CEOf mf f= + , (4.13) 

where k, l and m are integers.  Each nonlinear frequency-mixing output is in itself a new 

comb, which can be generally expressed as 

 p s
NL REP CEO CEOf nf qf rf= + +  (4.14) 

where n, q and r are integers.  The idler CEO frequency does not appear explicitly in 

this equation as it can always be eliminated using the relation 
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 p s i
CEO CEO CEOf f f= + . (4.15) 

Synthesizing a new pulse sequence from two or more nonlinear mixing outputs requires 

that the participating frequency combs share a common CEO frequency, implying that 

 ' ' '' ''p s p s p s
CEO CEO CEO CEO CEO CEOqf rf q f r f q f r f+ = + = +  etc, (4.16) 

which is only generally possible when 

 0p s i
CEO CEO CEOf f f= = = . (4.17) 

For this reason it is necessary to lock the CEO frequencies of the pump and either the 

signal or idler to 0 Hz, the other automatically locking to 0 Hz as a result of  

Equation (4.15).  In terms of synthesis, zero-offset locking gives identical electric field 

structure from pulse to pulse. 

The electronic referencing techniques discussed in Sub-section 4.1.4 describe two main 

references to which the CEO frequency can be locked.  The first, an external reference, 

is of no use when locking to 0 Hz as there is obviously no reference signal that can be 

generated with this frequency.  The second standard reference is a fractional harmonic 

of the source repetition frequency; however it is insufficient for us to lock both the 

pump and idler CEO frequencies to this value, as Equation (4.14) shows that each SHG 

and SFM output will have a different CEO frequency.  

Locking to 0 Hz without using a feed-forward mechanism can be achieved by 

introducing a known frequency into one arm of the nonlinear interferometer used for 

CEO frequency detection.  If we take the case of a standard f-to-2f interferometer, it was 

shown in Sub-section 4.1.2 that the CEO frequency can be detected from the equation 

 ( ) ( )22 2 2 2n n REP CEO REP CEO CEOnf f nf f fν ν− = + − + = . (4.18) 

If we introduce a known RF frequency, shiftf , into one arm of the interferometer, say the 

one containing the fundamental frequency 2nv , then the detected beat signal becomes 

 ( ) ( )2 22 2 2 REP CEO shiftn n REP CEO CEO shiftnf f fnf f f fν ν + +− = + − = + . (4.19) 

If we then choose shiftf− as our locking frequency then the CEO frequency will be 

locked to zero through 
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 22 0n n CEO shift shift shiftf f f fν ν− = + = − + = . (4.20) 

In practice frequency shifting is achieved by placing an AOM in one arm of the 

interferometer and driving it at shiftf , such that the first-order diffracted beam from the 

AOM carries the additional frequency shift.  This diffracted beam is then interfered in 

the nonlinear interferometer in the standard way.  By detecting and locking two CEO 

frequencies from the pump and OPO in this manner it is possible to achieve broadband 

zero-offset CEO locking.  

4.2.2 A nonlinear interferometer for zero-offset CEO locking 

Sub-section 4.1.2 described a number of methods of detecting the CEO frequency of a 

mode-locked laser using an octave-spanning supercontinuum, however in this work it is 

necessary to detect two independent CEO frequencies that relate to the pump and OPO, 

and also frequency-shift one arm of the interferometer to achieve zero-offset locking.  

Two primary nonlinear interferometer configurations for zero-offset locking will now 

be discussed. 

4.2.2.1 Interferometer 1 - an f-to-2f variant 

The schematic for the first interferometer design is shown in Figure 4.9, and is based 

around a traditional f-to-2f interferometer.  150 mW of pump power was launched into a 

30 cm length of PCF (NKT Photonics NL-2.0-750) in order to generate an octave 

spanning supercontinuum.  A cold mirror reflected the visible wavelengths of the 

supercontinuum while transmitting the infrared solitons.  Infrared light at 1.060 µm was 

frequency doubled in a 5-mm-long KDP crystal, with the resultant 0.530 µm light 

transmitted through a polarising beam cube.  The fundamental 0.530 µm light was 

frequency shifted using an AOM (IntraAction ASM-803B47) driven at 3 / 4REPf .  The 

reasoning behind this frequency choice will be discussed in Sub-section 4.2.3.   

The first-order frequency shifted 0.532 µm beam was sent through a variable-delay arm 

before being recombined with the second-harmonic 0.530 µm beam after a polarising 

beam cube.  The spatial overlap between the two beams was confirmed over a long 

distance before the beams were passed through a 0.530 µm interference filter with a  

10-nm bandwidth and focused onto an APD.  An angled polariser was placed before the 

lens to balance the power between the two arms of the interferometer and to resolve a 

common polarisation, as required for observing interference. 



127 
 

 

Figure 4.9.  Schematic of interferometer 1 – see text for a detailed description.  AOM, 
acousto-optic modulator; APD, avalanche photodiode; CM, cold mirror; IF; 
interference filter; OC, output coupler; PBS, polarising beam splitter; PCF, photonic 
crystal fiber; PL, polariser; WP, wave plate. 

The output from the APD was monitored on an RF spectrum analyser while the 

variable-delay arm was scanned through a region of zero path difference.  When the 

path lengths were equal a weak CEO beat of 25 dBm signal-to-noise was observed.  

While the signal strength was poor, it was believed that this could be improved by 

altering the beam overlap and by adjusting the alignment into the PCF.  

This variation on the f-to-2f interferometer would allow the pump CEO frequency to be 

locked to zero, however it was also necessary to detect a second CEO frequency that 

related to the OPO.  This second CEO beat signal must also be frequency-shifted, and 

so residual light from the first-order 0.530 µm beam that passed through the polarizing 

beam cube was interfered with 0.530 µm SHG signal light from the OPO.  The path 

difference between the pump and OPO beam were measured from the 10% output 

coupler in Figure 4.9.  Fortuitously the path lengths could be made equal after only a 

small addition to the OPO beam path.  As with the f-to-2f interferometer described 

above, the two beams were overlapped spatially, passed through a 0.530 µm 

interference filter and polariser, and then focused onto an APD.  Unfortunately the 



128 
 

signal strength from this second nonlinear interferometer was poorer than the first, 

primarily a result of using the residual light from the frequency shifted pump beam.  

This design would allow the pump and OPO CEO frequencies to be measured 

independently, however in practice there was insufficient power in the frequency shifted 

0.530 µm light to achieve strong beat signals on the APDs.  With this in mind a new 

design was implemented. 

4.2.2.2 Interferometer 2 – independent pump supercontinua 

The second nonlinear interferometer design is shown in Figure 4.10.  200 mW of pump 

light was compressed using a GTI and used to pump a pair of independent pump 

supercontinua, one with strong wavelength components in the green and the other with 

strong components in the red.  In this configuration the AOM was used to frequency 

shift the visible outputs of the OPO.  The pump supercontinuum with the strong green 

component was interfered with the first-order frequency shifted 0.532 µm light from the 

OPO using the same interference filter and polariser set up as described above, however 

there was sufficient power in both arms that a focusing lens before the APD was not 

required.  Similarly, the supercontinuum with the strong red component was interfered 

with frequency-shifted 0.633 µm light from the OPO, generated by p i+  SFM in the 

OPO crystal. 

The signal-to-noise of the CEO frequencies from both the red and green nonlinear 

interferometers was over 40 dB, a marked improvement to the first design.  By 

employing two separate supercontinua it was possible to adjust the alignment into each 

PCF independently.  A mechanically simpler configuration using only one 

supercontinuum and a beamsplitter to divide the green and red spectra components is 

possible, however it lacks flexibility in the ability to tune the output wavelengths of the 

PCF.  A small change in alignment to increase the power at 0.532 µm would often lead 

to a decrease in power at 0.633 µm, making optimisation of that design a challenge.  

The use of two PCFs also allows for their output wavelengths to be independently 

optimised to match almost any combination of SHG and SFM wavelengths, which is 

advantageous when you consider the tuning range of a broadband femtosecond OPO. 
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Figure 4.10.  Schematic of interferometer 2 – see text for a detailed description.  
AOM, acousto-optic modulator; APD, avalanche photodiode; IF; interference filter; 
OC, output coupler; PBS, polarising beam splitter; PCF, photonic crystal fiber; PL, 
polariser; WP, wave plate. 

4.2.3 Zero-offset locking results 

As discussed above, zero-offset locking was achieved by frequency-shifting the p i+  

and 2s OPO pulses before they entered the nonlinear interferometers by using an AOM 

driven at 3 / 4shift REPf f=  (75 MHz).  A fast photodiode located in the Ti:sapphire 

cavity was used to detect the repetition rate; the output from the photodiode was 

internally processed in the laser control box into a TTL signal.  This TTL signal was 

split into two, and the first signal passed to a divide-by-n frequency divider and used to 

obtain a frequency of / 4REPf .  The second REPf  signal was combined with the divided 

signal in an RF mixer to generate an output frequency of 3 / 4REPf .  This signal was 

used as the input to an RF amplifier that drove the AOM.  It was not possible to directly 

drive the AOM at / 4REPf (25 MHz) because of its limited radio-frequency acceptance 

bandwidth.  The AOM can be considered to red-shift the p i+  and 2s modes by 
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/ 4REPf− , and for this reason the detected CEO beat frequencies were referenced to 

/ 4REPf . 

Detecting a heterodyne beat between a pump supercontinuum and the AOM-shifted 

SFM and SHG OPO outputs requires that the first-order diffracted beam be used for 

detection.  This beam carries less power than the zero-order beam, and the diffraction 

efficiency of the AOM can only be optimised across a limited range of wavelengths.  

For this reason a component of the pump-idler SFM light closest in wavelength to the 

signal SHG output was chosen for overlap with the pump supercontinuum with the 

strong red component, as illustrated in Figure 4.11.  

 

Figure 4.11.  Spectral overlap regions between the visible OPO outputs (grey) and the 
two pump supercontinua (green and red).  The 0.532 µm SHG signal beam was 
overlapped with the supercontinuum with a strong green component, while the 
0.633 µm SFM pump + idler beam was overlapped with the supercontinuum with a 
strong red component.  The dashed lines indicate the bandpass interference filter 
regions used to detect a heterodyne beat. 

Heterodyne beating at APD1 between the red pump supercontinuum and the p i+  OPO 

pulses produced an idler CEO beat.  Similar beating between the green pump 

supercontinuum and the SHG signal pulses at APD2 produced a CEO beat containing 

information about both the pump and OPO CEO frequencies.  If the first CEO beat 

signal has been locked then the second signal will track with the pump CEO frequency.  
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The locking scheme was implemented as discussed in Sub-section 4.1.4, with the 

detected CEO frequencies being referenced against the derived / 4REPf  signal using a 

pair of PFD circuits.  The output from the PFD referenced against APD1 was sent to a 

PI amplifier that supplied voltage to a PZT attached to a folding mirror in the OPO 

cavity (Thorlabs AE0203D04F; 261 kHz unloaded resonance frequency; 4.6 µm 

maximum displacement, 150 V maximum drive voltage).  The corner frequency was 

10 kHz, the LF gain limit was 50 dB and the proportional gain was 5.1.  This feedback 

loop was used to lock the idler CEO frequency.  Similarly the output from the PFD 

referenced against APD2 was sent to a PI amplifier that drove a PZT in the Ti:sapphire 

pump laser (>500 kHz unloaded resonance frequency) which was mounted on the cavity 

end-mirror which received spatially dispersed light from the intracavity dispersion-

compensating prism pair.  The PI amplifier corner frequency was 10 kHz, the LF gain 

limit was 50 dB and the proportional gain was 7.3.  This feedback loop was used to lock 

the pump CEO frequency. 

 

Figure 4.12.  RF spectra of the locked CEO frequencies for (a) the idler CEO 
frequency used to lock the OPO, and (b) the p + 2s CEO frequency used to lock the 
pump.  The span is 100 kHz with a resolution of 300Hz. 
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As the CEO beat detected at APD2 was a product of CEO frequencies from the pump 

and OPO it was characteristically unstable, moving at tens of MHz per second.  In 

contrast the idler CEO frequency detected at APD1 moved less than five MHz per 

second.  In order to lock the CEO beat frequency from APD2 it was first necessary to 

lock the idler CEO frequency.  This increased the stability of the beat signal at APD2, 

allowing the PI amplifier controlling the pump CEO frequency to acquire a lock.  The 

CEO beat signals for both locking loops are shown in Figure 4.12 for the case where 

both loops are locked.  The bandwidth of the idler CEO signal was 3 kHz at the -3 dB 

point.  The 2p s+ CEO signal was noisier with a 5 kHz bandwidth which is likely due 

to noise in the idler locking loop feeding into the 2p s+ locking loop.  Characterisation 

of the locking stability will be discussed in Chapter 5. 
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4.3 Confirming lock-to-zero 

Section 4.2 detailed the mechanism used to implement zero-offset locking of both the 

pump and OPO, achieving broadband phase coherence across all pulses on the optical 

bench.  However, locking the CEO frequencies alone is not sufficient to truly ensure 

zero-offset locking, as it is necessary to check for phase coherence between the pulses.  

The requirement to confirm phase coherence will now be discussed, along with relevant 

results. 

4.3.1 The need for an all-optical confirmation of coherence 

When the system is locked, optical heterodyning at the APD in each nonlinear 

interferometer produces a frequency at REPf  with sidebands at / 4REPf± , shown in 

Figure 4.13.  Supplying voltage to a long-travel PZT located in each cavity allows the 

monitored CEO frequency to be shifted by multiples of 2π radians.  Consequently, 

either beat frequency can be locked to / 4REPf  or 3 / 4REPf , with no electronic means 

of distinguishing between the two scenarios.  This gives a total of four possible locking 

combinations, only one of which achieves the desired condition of 

0p s i
CEO CEO CEOf f f= = = Hz.  Because of the inherent ambiguity of purely electronic 

detection, confirming lock-to-zero (and therefore broadband phase coherence) requires 

optical confirmation through either a spectral or temporal interferometric measurement.   
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Figure 4.13.  Raw RF signal from by APD1.  The detected CEO frequency has been 
locked to fREP/4, and so sidebands are detected at both fREP/4 and 3fREP/4. 

4.3.2 Confirmation by time-domain interferometry 

An interferometer was constructed in which light from the pump supercontinuum 

containing a strong 0.530 µm component and a weaker 0.633 µm component was 

interfered with visible SFM and SHG light exiting an OPO folding mirror (Figure 4.14).  

A temporal interferometry experiment was implemented in which the OPO beam path 

was modulated using a PZT stage with a frequency of 1.4 Hz and a displacement of 

400 µm.  The beams were combined and passed through an appropriate interference 

filter before being detected on a silicon photodiode (Thorlabs DET10A/M).  A temporal 

approach was preferred over a spectral approach due to the poor spatial overlap of the 

interfering beams and low measurement resolution of the spectrometer. 
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Figure 4.14.  Schematic of the measurement interferometer used to confirm zero-offset 
locking of the pump and OPO.  IF, interference filter; PD, silicon photodiode; PL, 
polariser; WP, wave plate. 

4.3.3 Results 

With the CEO frequencies of the pump and OPO correctly locked, fringes were 

observed between the pump supercontinuum pulses and the p i+  and 2s pulses (Figure 

4.15, blue lines), indicating strong coherence over the 100 ms acquisition time of the 

interferogram.  When either CEO frequency was unlocked, or locked to a different beat 

frequency, no fringes were observed, indicating a lack of coherence between the pulses 

(Figure 4.15, red and green lines).  In practice it was possible to cycle between all four 

locking combinations through the application of a DC offset PZT located in each laser 

cavity.  Approximately 30 V would shift the CEO frequency of either system by 

/ 2REPf , allowing each source to be locked to the correct locking frequency without 

realignment of the interferometers. 
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Figure 4.15.  Interferograms between a pump supercontinuum and (a) p + i  and (b) 2s 
leakage light from the OPO.  Interference fringes (blue) were observed when the CEO 
frequencies of the pump and OPO were locked in the correct configuration.  Any 
other locking configuration resulted in no interference fringes (red, green). 

Observing interference simultaneously at two distinct wavelengths demonstrated that all 

the CEO frequencies from the pump and OPO were locked to 0 Hz, confirming phase 

coherence across all the pulses on the optical bench.  This coherent bandwidth extends 

from 0.4 µm to 3.2 µm and comprises of an ensemble of pulses sharing a common zero-

offset frequency comb, the broadest zero-offset comb demonstrated to date.  

4.4 Conclusions 

The concept of the carrier-envelope offset frequency of an ultrafast laser was 

introduced, and various methods relating to its detection and control discussed.  A 

formal approach for locking the CEO frequencies of a Ti:sapphire laser and a 

synchronously pumped OPO was presented, along with a discussion of the electronic 

feedback loops necessary to achieve a lock.  By shifting the detected CEO frequencies 

by a known reference and then locking to that same reference, a zero-offset frequency 

comb has been established.  A full schematic of the locking mechanism employed is 

shown in Figure 4.16.  The presented results show that such a frequency comb can be 

achieved without the use of f-2f self-referencing, instead using two separate nonlinear 

interferometers to detect two independent beat frequencies between the pump and OPO.  
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Figure 4.16.  Full schematic of the locking mechanism employed to achieve a 
broadband zero-offset frequency comb.  See Figures 4.3, 4.10 and 4.15 for details. 
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Chapter 5 - Practical considerations for coherent synthesis: 

noise characterisation of phase coherent pulses 

5.1  Introduction 

In Chapter 4 it was shown that phase coherence could be established across a broadband 

family of pulses from a synchronously-pumped femtosecond OPO using lock-to-zero 

CEO control.  Establishing phase coherence is one of the key prerequisites for coherent 

pulse synthesis from multi-coloured pulses, as discussed in Chapter 1.  A second and 

equally important prerequisite is that the phase coherent parent pulses have sufficiently 

low timing jitter between them so as to be suitable for synthesising daughter pulses 

which are stable over a practical time period.  In this chapter the noise characteristics of 

the pump and OPO will be examined, with the key concepts of relative intensity noise, 

phase noise and timing jitter introduced and discussed in detail. 

Three parent pulses were chosen from the available pump and OPO outputs as 

candidates for coherent synthesis.  The pump (0.800 µm), doubled-signal (0.530 µm) 

and pump-signal (0.456 µm) pulses were preferred over other pulses for a number of 

reasons.  The first criterion for pulse selection was average power; the power levels of 

these pulses were higher than those of the doubled-pump (0.400 µm) and pump-idler 

(0.642 µm) pulses.  The second criterion was the frequency bandwidth supported by the 

parent pulses; the three chosen pulses spanned a 0.28 PHz bandwidth, capable of 

supporting a 3.6 fs pulse.  The addition of the doubled-pump pulses would increase the 

bandwidth to 0.37 PHz (2.7 fs), but with an increased cost in the complexity of the 

optical system.  Adding the pump-idler pulses would not increase the total frequency 

bandwidth.  The final criterion was one of practicality.  The prism-based pulse 

compression method discussed in Chapter 6 was sufficiently complex with only three 

input wavelengths.  The sum-frequency mixing crystal employed in the XFROG and 

cross-correlation apparatus, discussed in Chapter 3 and Sub-section 5.4.1 respectively, 

did not efficiently phasematch between the pump and doubled-pump wavelengths, and 

so that pulse could not have been characterised.  With these considerations in mind the 

relative intensity noise of the three parent pulses mentioned above was characterised, 

along with their relative timing jitter. 



141 
 

5.2 Relative intensity noise 

The output of a laser can be described as a time-varying intensity, fluctuations of which 

are known as the relative intensity noise (RIN).  For a mode-locked laser this can be 

thought of as the pulse-to-pulse intensity variation, as illustrated in Figure 5.1.  These 

intensity variations arise due to a number of factors including beam pointing, optical 

stability and electrical noise. 

5.2.1 Power spectral density 

Noise can be represented by a power spectral density (PSD) plot, which describes the 

noise power per unit frequency interval relative to the mean signal.  The general 

equation for PSD can be obtained using the method described below [1].  The Fourier 

transform equations for a time dependent function ( )h t  can be written as 

 ( ) ( ) i tH h t e dtωω
∞

−∞

= ∫  (5.1) 

 1( ) ( )
2

i th t H e dωω ω
π

∞
−

−∞

= ∫ . (5.2) 

 

 

Figure 5.1.  Simple illustration of pulse-to-pulse intensity fluctuations from a laser. 



142 
 

We can rewrite the frequency term as 2 fω π= to get 

 2( ) ( ) iftH f h t e dtπ
∞

−∞

= ∫  (5.3) 

 2( ) ( ) ifth t H f e dfπ
∞

−

−∞

= ∫ . (5.4) 

The expression for total power can be given by Parseval’s theorem, which states that the 

energy contained in a signal is equal in both the time and frequency domains [1], 

written formally as 

 2 2( ) ( )TOTE dt dfh t H f
∞ ∞

−∞ −∞

= =∫ ∫ . (5.5) 

The power spectral density, or power in a frequency interval, can therefore be described 

by the combined power of positive and negative frequencies, written as 

 2 2( ) ( ) ( )hP f H f H f= + −  (5.6) 

for 0 f≤ ≤ ∞ .   

The analysis of the results presented in this thesis used discrete Fourier transforms as 

the noise measurements taken contained a finite number of points.  The discrete Fourier 

transform of a quantity hj containing N points is given by 

 
1 2

0

jnN i
N

k j
j

H h e
π−

=

≡∑ . (5.7) 

The PSD can be normalised using the mean-squared-amplitude.  The integral of the 

PSD over the range of 0 to the Nyquist frequency [1] is equal to half the mean-squared-

amplitude, and this is used to normalise the PSD for each frequency.  The normalised 

PSD can be integrated over the frequency range to give the cumulative noise, written as 

 
1/2

0
2 ( )Nyquistf

CUM hh P f df ∆ =
 ∫  (5.8) 

where ( )hP f is the normalised PSD and Nyquistf is the Nyquist frequency. 
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The mathematical methods described above were used to analyse the relative intensity 

noise, CEO frequency phase noise and timing jitter noise described in this chapter.  The 

latter two measurements will be described in later sections. 

5.2.2 Relative intensity noise in the pump and OPO outputs 

The relative intensity noise of a signal is its relative fluctuation in a 1 Hz bandwidth, 

and can be defined as the mean-squared noise power divided by the square of the 

average power [2].  RIN measurements were carried out for the Verdi pump source, the 

Ti:sapphire laser and the visible doubled-signal and pump-signal OPO outputs.  The 

outputs from each laser source were monitored on individual silicon photodiodes and 

amplified before the data were collected using a 12-bit data acquisition card.  The 

amplifier was used to fill the dynamic range of the data acquisition card and also to 

record and remove the average signal from each data point, ensuring the recorded data 

were a fluctuation around zero.  This is illustrated in Figure 5.2.  The data were 

processed as described above with the PSD calculated relative to the mean signal.  The 

resultant plot has units of dBc2/Hz, where c is the carrier voltage.  The PSD was plotted 

on a dB scale, a standard method of displaying RIN measurements [1].  The cumulative 

standard deviation was calculated as a percentage relative to the carrier.   
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Figure 5.2.  Relative intensity noise (RIN) signal at different stages of formatting.  (a) 
The raw signal detected directly by the photodiode, here modelled as a 1 V carrier 
signal with a 10 mV noise level; (b) the signal after having the DC carrier signal 
removed; (c) the amplified signal sent to the data acquisition card. 

RIN for the Verdi pump source is shown in Figure 5.3.  The cumulative standard 

deviation was 0.05%, the majority of which is contributed frequencies below 100 Hz 

and most likely arising from acoustic vibrations and thermal effects.  The single-

longitudinal-mode operation of the Verdi makes it characteristically quiet at higher 

frequencies, unlike multi-longitudinal-mode pump sources that suffer from mode 

competition and beating effects. 



145 
 

 

Figure 5.3.  Relative intensity noise from the Verdi pump source.  The single-mode 
operation of the laser is characteristically quiet at higher frequencies. 

Results of the RIN measurements for the Ti:sapphire  pump laser are shown in Figure 

5.4 for cases where the CEO frequencies of both the pump and OPO were unlocked and 

locked.  The cumulative standard deviation for both measurements is approximately 

0.04%, however the frequency noise contributions from the measurements are quite 

different.  When the CEO frequencies of both lasers were unlocked the RIN from the 

pump laser showed significant contributions at frequencies from 1 kHz to 1 MHz.  

Noise contributions from these frequencies were suppressed when the CEO frequencies 

were locked, with environmental noise dominating the RIN.  
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Figure 5.4.  Relative intensity noise from the Ti:sapphire pump laser when the CEO 
frequencies of the pump and OPO were (a) unlocked and (b) locked. 

RIN measurements from two OPO outputs, the doubled-signal at 0.530 µm and the 

pump-signal SFM at 0.456 µm, are shown in Figure 5.5 and Figure 5.6 respectively.  

Both sets of RIN measurements are very similar in terms of the frequency components 

that contribute to the overall cumulative standard deviation.  When the CEO frequencies 

of the pump and OPO are unlocked the RIN is dominated by frequencies below 2 kHz.  

These frequencies arise from acoustic noise, thermal variations across the optical bench 

and small air currents within the boxed OPO cavity.   
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Figure 5.5.  Relative intensity noise from the doubled- signal output of the OPO when 
the CEO frequencies of the pump and OPO were (a) unlocked and (b) locked. 

The intracavity dispersion of the OPO is near-zero, with the crystal providing the only 

significant contribution to the net-positive GDD.  Equation 4.9 in Chapter 4 showed that 

the gross tuning behaviour of a synchronously-pumped OPO is determined by the 

intracavity dispersion, and that the centre frequency of a cavity with low GDD will tune 

quickly with cavity length.  As a result of this the centre frequency of the signal pulses 

in this OPO is not stable, but rather fluctuates as environmental effects cause the cavity 

length to change on the nanometre level.  This has important consequences for the OPO 

visible mixing outputs which are a product of coincidental phasematching within the 

crystal.  As the centre frequency of the signal shifts the efficiency of the phasematching 

will change, causing fluctuations in the intensity of the visible mixing pulses.  These 

fluctuations were measured as cumulative standard deviations of roughly 0.08% for the 

case of unlocked CEO frequencies.  
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Figure 5.6.  Relative intensity noise from the pump-signal SFM output of the OPO 
when the CEO frequencies of the pump and OPO were (a) unlocked and (b) locked. 

When one of the CEO frequencies of the OPO is locked the cavity length is well 

controlled, effectively locking the centre frequency of the signal pulses, as discussed in 

Chapter 4, Sub-section 4.1.3.  Provided environmental noise is kept to a minimum, for 

example by floating the optical bench and boxing the OPO cavity, then frequencies 

below 2 kHz are no longer dominant.  Higher-order frequencies above 10 kHz provide 

the majority of the noise, arising due to amplitude fluctuations in the Ti:sapphire laser 

coupling into the OPO as both amplitude and phase noise.  The latter of these will affect 

the stability of the OPO CEO frequency lock, again causing small drifts in the centre 

frequency of the signal pulses and introducing further relative intensity noise.  Together, 

these effects explain why the OPO RIN was lower when the CEO frequencies of the 

OPO pulses were locked. 
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5.3 Phase noise 

An ideal monochromatic laser has an electric field that can be described by 

 ( )0
0( ) Re i tE t A e ω φ+ ∝    (5.9) 

where the phase ϕ is constant.  A true laser output is not ideal as phase and amplitude 

fluctuations lead to a finite linewidth, with the electric field instead described by 

 ( )0 ( )
0( ) Re i t tE t E e ω φ+ =    (5.10) 

where ( )tφ  is a slowly varying phase.  Locking the CEO frequency of a laser attempts 

to minimise fluctuations in the phase of the electric field of the laser pulses.  In a 

method similar to relative intensity noise, phase noise can be described as a fluctuation 

in radians over 1 Hz bandwidth.  The cumulative phase noise is determined by summing 

the noise across the recorded frequency range, and is equal to the RMS noise for that 

frequency [3]. 

5.3.1 Phase noise in the CEO locking loops 

In-loop phase noise PSD and cumulative phase noise measurements were made for both 

CEO frequency locking loops.  Part of the output from the PFD circuit was amplified 

and sent to a 12-bit data acquisition card in a method similar to that for recording 

relative intensity noise.  Calibration of the PFD phase response was necessary to 

calculate the phase error between the locked CEO frequencies and the reference signal.  

In order to calibrate the voltage from the PFD as a phase change, two frequency sources 

with a common reference were set to 10 MHz were used as the input to the PFD.  One 

frequency source was offset by 1 Hz causing the PFD output to move from its minimum 

to its maximum voltage.  In one second the accumulated phase slip is (by definition) 2π, 

therefore the time and voltage range of this transition yields a slope in V/rad, allowing 

the voltage recorded in the noise measurements to be converted into a phase in radians. 

It is not immediately intuitive what the noise measured at the output of the PFD circuit 

represents; the signal is clearly a phase change, however it is useful to attach this phase 

change to a physical mechanism.  Recall that (from Sub-section 4.1.1) the CEO 

frequency is related to the carrier-envelope phase slip (CEPS) by 

 
2
CEPS

CEO REPf fϕ
π

= . (5.11) 
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If we assume that the CEPS changes by a small amount per pulse then we have 

 
2

CEPS
CEO REPf fϕ

π
∆

∆ = . (5.12) 

Small changes in the CEO frequency are observed as a phase change over the 

observation time, and so we write 

 CEO
CEPS REP

OBS

f
t
φ ϕ∆

=  (5.13) 

which can be rearranged to find the accumulated optical CEP slip, given by 

 ( )CEO CEPS REP OBSf tφ ϕ∆ =  (5.14) 

where CEPϕ  is the phase slip per pulse and ( )REP OBSf t  is the number of pulses in the 

observation time.  Therefore the change in CEO frequency, as measured at the output of 

the PFD circuit, tells us directly about the total accumulated CEPS in the observation 

time. 

The results of the phase noise measurements are shown in Figure 5.7.  The cumulative 

phase noise was integrated up to 1 MHz, giving an error of 0.18 rad for the 2p s+

(pump) locking loop and 0.11 rad for the idler (OPO) locking loop.  These results 

compare well with previous results published within the group [4,5], and some 

conclusions can be drawn from the data.  The increased noise in the locking loop used 

to control the pump CEO frequency could be attributed to a number of factors.  The 

CEO behaviour of laser cavities that employ dispersive prisms has been shown to be 

significantly noisier than those without [6,7] due to the extra optical elements in the 

cavity.  The mirror attached to the PZT in the pump cavity is larger than that attached to 

the PZT in the OPO, and the increased mirror inertia may affect the frequency response.  

The CEO frequency derived in the pump locking loop is also determined by two 

separate CEO frequencies, one from the pump and the other from the doubled-signal.  

This is in contrast with the CEO frequency used in the OPO locking loop which is 

purely from the idler.  Small changes in either the pump or OPO CEO frequencies will 

therefore couple into the pump locking loop, which is not the case for the OPO locking 

loop as the pump CEO frequency is rejected at the APD.  
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Figure 5.7.  In-loop measurements of the phase noise PSD of the pump and OPO CEO 
frequencies for CEO frequencies locked.  Phase noise PSD (blue) and cumulative 
phase noise (red) for (a) the idler and (b) the p + 2s CEO frequency.  The cumulative 
phase noise integrated up to 1 MHz is (a) 0.11 rad and (b) 0.18 rad over a 1 second 
observation time. 

With this reasoning the cumulative phase noise from the OPO locking loop should be 

significantly lower than that of the pump, however the two are comparable.  This can be 

attributed to intensity fluctuations in the pump coupling into the OPO as both amplitude 

and phase noise.  Finally, neither the Ti:sapphire laser nor the OPO were repetition rate 

stabilised.  Frequency comb breathing due to repetition rate changes would create 

additional noise that could be suppressed with an additional feedback loop in the 

Ti:sapphire cavity.  

In physical terms the cumulative phase noise describes the RMS variation of the CEO 

frequency over the observation window.  It is worth noting that this is only true for the 

case of lock-to-zero CEO stabilisation; when the CEO frequency is locked to another 
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value then the cumulative phase noise describes the RMS variation in the carrier-

envelope phase-slip.  As the CEO frequencies are locked to zero, the peak of the carrier 

of the electric field sits under the peak of the envelope.  The RMS CEO frequency 

variation describes the excursion of the CEO frequency from this central position.  As 

the RMS variation is given in radians, it is sensible to restate this variation as a fraction 

of the carrier period.  This is particularly important when discussing timing jitter as it 

will be a determining factor in the observation window for phase coherence.  The RMS 

for both the pump and CEO locking loops was less than 0.18 radians in a 1 second 

observation window, less than 3% of an optical cycle, and so the position of the CEO 

frequency has slipped by 3% relative to the reference frequency. 
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5.4  Timing jitter  

To establish phase coherence among a set of pulses, either from independent lasers or 

from a synchronously-pumped source, it is essential to achieve sufficient 

synchronisation such that the mutual remaining timing jitter between the pulses is less 

than the oscillation period of the optical carrier, given by 

 0
c c

λτ =  (5.15) 

where 0λ  is the centre wavelength of the pulse.  The oscillation periods for relevant 

pulses are shown in Table 5.1. 

Table 5.1.  Oscillation period of the optical carrier for a pulse with a given centre 
wavelength. 

Pulse origin Centre wavelength (µm) Oscillation period (fs) 
p 0.800 2.67 

p+i 0.642 2.14 
2s 0.530 1.76 

p + s 0.456 1.50 
2p 0.400 1.33 

 

For viable pulse synthesis between the pump and visible OPO pulses it is therefore 

necessary that the mutual timing jitter between the parent pulses be much less than 1 fs, 

ideally less than 100 as, over a given observation window, a length of time dependent 

on the specific experiment that requires a synthesised pulse. 

5.4.1 Timing jitter between the pump and visible OPO pulses 

Timing jitter arises from two primary phenomena, vibrations and group delay dispersion 

(Figure 5.8).  Consider two laser sources with the same centre wavelength.  Each laser 

will experience its own acoustic vibrations as they are constructed from separate 

optomechanics.  A small vibration on a mirror in the cavity for the first laser will not be 

present in the second laser.  This leads to the pulses from each laser having slightly 

different timing characteristics, both from minute repetition rate differences and extra-

cavity mirror vibrations, and so in a jitter-sensitive experiment great care must be taken 

to stabilise the pulse trains from both lasers [8–11].   
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The principal approach for controlling the jitter between two pulse trains that have 

intrinsic jitter, e.g. two independent mode-locked lasers, is to employ a balanced cross-

correlator  [12–14].  The cross-correlator yields a photodiode signal that depends on the 

relative arrival time of the pulse from the independent lasers.  This photodiode signal 

can be used as the input to a feedback loop that controls the repetition rate of one of the 

lasers, allowing them to be locked together with attosecond timing jitter. 

 

Figure 5.8.  Jitter is accrued through mirror vibrations and group delay dispersion. 

This work circumvents the problem in two ways.  Using a Ti:sapphire pump laser and a 

synchronously-pumped femtosecond OPO ensures that both sources have the same 

repetition rate.  Keeping the synthesis parent pulses on a common path ensures 

common-mode rejection of mirror vibrations.  In these experiments the only non-

common path occurs after the beam splitter in Figure 5.9. 

The other primary source of timing jitter is from group delay dispersion, but for ease of 

explanation it is instructive to use the simpler terminology of chromatic dispersion.  As 

different wavelengths propagate through a medium they travel at different group 

velocities as they experience wavelength-dependent refractive indices.  This will give 

rise to a group delay difference between pulses of two different wavelengths.  Consider 

the example shown below in Table 5.2 for the pump, doubled-signal and pump-signal 

wavelengths as the pulses propagate through 6.3 mm of BK7, a standard mirror 

thickness and substrate.  The doubled-signal pulses are now delayed by 105 fs relative 

to the pump pulses, with the pump-signal pulses further delayed.  
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Table 5.2.  Group delay differences between the pump and two visible OPO outputs 
after propagating through 6.3 mm of BK7. 

Pulse origin 
Centre 

wavelength 
(µm) 

Refractive 
index 

Group delay 
(ps) 

Group delay 
difference from 

pump (fs) 
p 0.800 1.5108 31.415 - 
2s 0.530 1.5196 31.310 105 

p + s 0.456 1.5253 31.187 228 
 

The common-path approach employed in these experiments minimises variations in the 

group delay dispersion between the pulses.  This is only true however if the centre 

wavelength of each pulse remains constant.  If the centre wavelength of the pump or 

signal (and therefore the double-signal or pump-signal) pulses shifts by a small amount 

then the group delay dispersion between the pulses will shift also.  As an example, take 

the case of a 1 nm decrease in the centre wavelength of the pump pulses propagating 

through a BK7 substrate as above.  The difference in group delay at the pump 

wavelength is 5 as, however the difference at the new pump-signal wavelength of 

0.4555 µm is 1 fs, almost an entire optical cycle.  It is extremely important to try and 

stabilise the wavelengths of the pulses so that the mutual timing jitter can be kept to a 

minimum. 

As has been discussed in previous sections and chapters, locking a CEO frequency of 

the OPO is the same as locking its centre wavelength.  Additional GDD introduced by 

changes in the signal wavelength will therefore be extremely small as there will only be 

small deviations from the mean wavelength.  Locking the CEO frequency of the pump 

laser does not introduce the same wavelength stability however; the PZT used in the 

CEO feedback loop is placed behind a mirror after dispersing prism pair, and it would 

require extremely large angular deviations of this mirror to change the centre 

wavelength in this way. Rather, small changes in the pump wavelength are not observed 

by the OPO when the OPO CEO frequency is controlled.  The phasematching 

bandwidth of the PPKTP crystal OPO is very broad (see Chapter 3, Figure 3.10), and 

therefore a pump spectrum with a slightly different centre wavelength will still 

phasematch efficiently.  Moreover the OPO CEO locking loop will accommodate pump 

wavelength changes by adjusting the cavity length accordingly to produce the same 

signal output. 
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5.4.1.1  Method 

A balanced cross-correlator was constructed to measure the mutual timing jitter between 

the pump and two visible pulses from the OPO.  A schematic of the cross-correlator is 

shown in Figure 5.9.  The collinear beams were split using a visible-NIR beam splitter, 

with the two arms travelling separate delay paths before being recombined using a 

polarising beam splitter cube.  As all beams were horizontally polarised a half-wave 

plate was placed in the visible arm to produce vertically polarised light.  The two 

orthogonal beams were focused into a 30-µm-thick BBO crystal and the resulting UV 

SFM mixing light focused onto a silicon photodiode after suitable filtering.  A more 

detailed description of this apparatus was given in Chapter 3 while discussing XFROG 

measurements of the pump and OPO pulses.  The balanced cross-correlator is simply 

the XFROG apparatus with the delay stage kept at a fixed position. 

 

Figure 5.9.  Schematic of the balanced cross correlator used to measure the mutual 
timing jitter between the pump and OPO pulses.  This set-up was also used to measure 
the RIN of the pulses by blocking the unwanted beams, removing the crystal and 
replacing the UV pass filter with a suitable narrowband interference filter. 

As the position of the delay stage was scanned the photodiode voltage increased and 

decreased as SFM light was generated.  This scan was recorded using MATLAB and 

the signal processed by removing the background, as shown in Figure 5.10 (a) and (b).  

An area with a linear time-voltage relationship was identified and a mathematical fit 

performed.  The coefficients of this fit were used to determine a linear relationship 
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between RMS voltage error and timing jitter, as shown in Figure 5.10 (c) and (d).  The 

delay stage was moved to the linear time-voltage position identified and its position 

fixed.  The voltage level of the photodiode was recorded on a 12-bit acquisition card in 

the same manner as the relative intensity noise measurements described in Sub-section 

5.2.2.  Excursions from the mean voltage were then converted into time fluctuations to 

provide a measure of the total timing jitter between the pump and visible OPO pulses.  

The term total timing jitter will be elaborated upon in Sub-section 5.4.2.  Timing jitter 

results are presented in a similar manner to both RIN and phase noise, however the PSD 

scale is now calibrated in as2/Hz, while integrating the PSD provides the cumulative 

mutual timing jitter between the two pulses, calculated in attoseconds.  

 

Figure 5.10.  Outline of the calibration method used to measure the timing jitter 
between the pump and OPO pulses.  (a) Raw photodiode signal; (b) background-free 
signal; (c) region of linear time-voltage relationship (blue) with fit (red); (d) 
fluctuations in voltage correspond to a fluctuation in timing jitter. 

5.4.1.2  Results 

The results of the mutual timing jitter measurement between the pump and doubled-

signal pulses are shown in Figure 5.11 (a) and (b), for both CEO loops unlocked and 

locked respectively.  When the CEO loops were unlocked the relative timing jitter was 

poor and measured at almost 950 as over a one-second observation period.  In this case 

the centre wavelength of the OPO was not controlled and therefore would fluctuate due 
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to environmental noise.  The delay accrued due to the GDD of various lenses and mirror 

substrates leads to the large timing jitter.  

 

Figure 5.11.  Mutual timing jitter between the pump and doubled-signal pulses for 
both CEO locking loops (a) unlocked and (b) locked.  When both CEO loops are 
locked the total cumulative mutual timing jitter is 132 as. 

When the CEO frequencies of both systems were locked the total cumulative timing 

jitter was 132 as over a one-second observation period.  There was a substantial 

decrease in noise below 10 kHz, with the largest jitter contributions coming at low 

environmental frequencies.  This is most likely due to the common path approach that 

ensures common-mode rejection of acoustic and vibrational noise up to the beam 

splitter in the cross correlator.  The excellent timing stability between the pump and 

synchronous OPO, coupled with the wavelength stability of the locked OPO and 

common optical path approach, ensured that the envelopes of the pump and doubled-

signal pulses drifted by only 132 as in the observation time of one second. 
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Similar timing jitter measurements between the pump and pump-signal SFM pulses are 

shown in Figure 5.12.  When the CEO frequencies were not stabilised the cumulative 

mutual timing jitter between the pulses was almost 1.1 fs, but when the CEO 

frequencies were locked the jitter was reduced to 137 as over the 1 second observation 

period.  As with the pump and doubled-signal result the jitter is dominated by lower 

frequency environmental noise. 

 

Figure 5.12.  Mutual timing jitter between the pump and pump-signal pulses for both 
CEO locking loops (a) unlocked and (b) locked.  When both CEO loops are locked the 
total cumulative mutual timing jitter is 137 as. 

The results presented in this sub-section are critical for the establishing the potential of 

zero-offset CEO locking for broadband coherent pulse synthesis.  The timing jitter 

between three pulses has been shown to be less than 140 as, indicating a high degree of 

timing stability.  Table 5.1 listed the carrier periods of the candidate parent pulses, with 

carrier period decreasing linearly with wavelength. The timing jitter is much less than 
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the carrier period of the parent pulses, with the largest jitter of 137 attoseconds 

corresponding to just 9% of the carrier period of the pump-signal pulses.  If the 

observation time is reduced to 1 ms then the jitter is reduced to 60 as, or 4% of the 

carrier period.  These results show that even over an observation time of one second the 

timing jitter does not compromise coherent synthesis.   

5.4.2 Contribution of RIN to timing jitter 

From the results presented in the previous sub-section it is clear that the timing jitter 

between the candidate parent pulses for synthesis is sufficiently low to provide a train of 

phase coherent pulses.  The timing jitter results shown are not a measurement of true 

timing jitter however, as the cross-correlation measurement technique is sensitive to 

contributions from both timing and intensity instabilities.  It is therefore important to try 

and separate the true timing jitter from the intensity jitter. 

The measured timing jitter measured as a cross-correlation measτ is composed of the true 

timing jitter jitterτ  and the RIN contribution to jitter RINτ .  The two jitter components are 

a measure of the noise in the arrival time of the pulses, and so are added in quadrature to 

find the measured jitter in the form 

 2 2 2
meas jitter RINτ τ τ= + . (5.16) 

This allows the true timing jitter to be separated from the measured timing jitter. 

RIN measurements were carried out for the three interfering pulses by blocking each 

arm of the interferometer individually and placing an appropriate bandpass filter in front 

of the photodiode.  The RIN could then be recorded using the same method as 

previously outlined in Sub-section 5.2.2.  Once data were recorded the voltage 

excursions due to relative intensity noise were rescaled so that the mean photodiode 

voltage matched that of the total timing jitter measurements.  The voltage fluctuations 

could then be rescaled to establish the RIN contribution to timing jitter using the 

voltage-time conversion factor already established.  

5.4.2.1 Results 

The results of the RIN contribution to timing jitter for the pump, doubled-signal and 

pump-signal pulse are shown in Figure 5.13, Figure 5.14 and Figure 5.15 respectively.  
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A discussion of the frequency sources that contribute to the RIN of these pulses has 

already been made in Sub-section 5.2.2, and will not be repeated here.  

When CEO locking was turned off the RIN contribution to the cumulative timing jitter 

was of the order of 50 as.  When the CEO frequencies of both the pump and OPO were 

locked the timing jitter contribution dropped to 12 as for the OPO pulses (8 as for the 

pump). 

Two primary conclusions can be drawn from these results.  Firstly, the contribution of 

intensity fluctuations to the timing jitter is small, with the primary contribution arising 

from temporal drifts in the overlapping envelopes rather than intensity variations.  

Secondly, locking the CEO frequencies of the pump and OPO to establish both phase 

and wavelength stability remains the primary factor that determines the mutual timing 

jitter between the overlapping pulses. 

Values for the true timing jitter can be calculated using Equation (5.16), yielding jitterτ  

values of 131 as and 136 as between the pump and doubled-signal and the pump and 

pump-signal pulses respectively, showing that almost all the measured jitter is from true 

timing jitter. 
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Figure 5.13.  Contribution from the pump RIN to the mutual timing jitter for the 
CEO locking loops (a) unlocked and (b) locked. 
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Figure 5.14.  Contribution from the doubled-signal RIN to the mutual timing jitter for 
the CEO locking loops (a) unlocked and (b) locked. 
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Figure 5.15.  Contribution from the pump-signal RIN to the mutual timing jitter for 
the CEO locking loops (a) unlocked and (b) locked. 

5.5  Conclusions 

The concepts of relative intensity noise, phase noise and timing jitter were introduced in 
order to characterise the noise performance of the broadband, zero-offset frequency 
comb achieved in Chapter 4.  Locking the CEO frequencies of both the pump and OPO 
was shown to greatly improve the overall stability of the system, and reduce the mutual 
timing jitter between the pump, doubled-signal and pump-signal pulses to less than 
140 as.  This result satisfies one of the critical prerequisites for coherent pulse synthesis.    
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Chapter 6 - Practical considerations for coherent synthesis:  

pulse compression and group delay compensation 

6.1  Introduction 

In Chapter 5 the noise characteristics of the locking system were examined, showing 

that the mutual timing jitter between the selected parent pulses was sufficiently low to 

allow coherent pulse synthesis.  To synthesise the shortest possible pulses it is necessary 

to compress the parent pulses and to control their temporal overlap so that they arrive at 

the target synthesis location at the same time.  In this chapter, two methods of 

compressing the pulses and controlling their relative delay are introduced and results 

obtained from these systems evaluated and discussed, in the context of coherent 

synthesis. 

6.2  Pulse compression using a quasi-common-path prism delay line 

As discussed in Chapter 5, the selected parent pulses for synthesis were the pump 

(0.800 µm), doubled-signal (0.530 µm) and pump-signal (0.456 µm) pulses, all of 

which were chirped as they exited the OPO through a cavity folding mirror.  Such chirp 

can affect the shape of the synthesised pulses dramatically, as illustrated in Figure 6.1.  

The upper panel in Figure 6.1 shows the intensity of a synthesised pulse composed of 

three parent pulses centred at the wavelengths mentioned above, assuming they are 

transform limited with 15-fs durations.  The FWHM duration of the synthesised pulse is 

2.14 fs, close to the single-cycle limit for a pulse generated over this bandwidth.  The 

lower panel in Figure 6.1 shows the synthesis result when each of the parent pulses has 

acquired 150 fs2 of group delay dispersion.  While the frequency bandwidths of both the 

parent and daughter pulses are the same, the synthesised pulse has a much longer 

duration and also shows signs of pulse break-up. 

It is clear from this example that the parent pulses must be compressed as much as 

possible before the shortest synthesised pulses can be generated, however a problem 

presents itself when implementing such compression.  The wide bandwidth spanned by 

the parent pulses precludes the use of chirped mirrors or GTIs, and so a prism or 

diffraction grating approach is necessary.  The power level of pump-signal pulses was 

lower than 30 mW and so a diffraction grating approach was not favourable due to the 

associated losses.  Finally, the requirement of low mutual timing jitter between the 

pulses indicates that a common-path approach is needed for increased stability.  Using 
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these criteria, a quasi-common-path prism delay line was constructed to both compress 

the pulses and compensate for their relative timing delay. 

 

Figure 6.1.  Modelled pulse synthesis results from 15-fs parent pulses centred at 0.800, 
0.530 and 0.456 µm.  Image (a) shows the resulting pulse intensity for chirp-free 
pulses.  Image (b) shows the result when the parent pulses are chirped. 

The prism delay line is shown in Figure 6.2.  The collinear pump, doubled-signal and 

pump-signal beams exiting the OPO were steered into a fused silica prism with a  

10-mm base.  Each of the three beams was separately collected by a second fused silica 

prism with a 25-mm base.  A mirror was placed after each prism pair to form a folded 4f 

system for each pulse.  The folding mirrors were mounted on translation stages to 

compensate for the temporal walk-off between the pulses, which is discussed in  

Sub-section 6.2.2.  The pulses were vertically displaced in order to be picked off and 

steered into the XFROG apparatus which was detailed in Chapter 3. 
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Figure 6.2.  Schematic of the prism-based method for compressing the pump and 
visible OPO pulses.  The folding mirror after each prism pair is mounted on a 
variable delay stage, as discussed in Sub-section 6.2.2. 

6.2.1 Pulse compression results 

The results from the quasi-common-path prism compressor are discussed in this  

sub-section.  Each pulse was characterised individually in the XFROG apparatus, with 

the pump pulses employed as the XFROG gating pulse being compressed first.  This 

ensured that the XFROG results for the doubled-signal and pump-signal pulses would 

not be skewed by the use of a chirped gating pulse. 

6.2.1.1  Pump compression 

The pump light exiting the OPO was steered directly into the XFROG apparatus in 

order to determine the initial level of chirp across the pulses.  The results are shown in 

Figure 6.3.  The interference fringes present in panel (a) were due to Type I 

phasematching in the XFROG BBO crystal which generated 0.400 µm second harmonic 

background light.  The results of the XFROG retrieval algorithm, discussed in Chapters 

2 and 3, are shown in panels (b) – (d).  The FHWM bandwidth of the retrieved pulses 

was 297 fs, indicating that they are highly chirped. 
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Figure 6.3.  XFROG retrieval of the chirped pump pulses.  (a) Raw trace; (b) 
retrieved trace; (c) temporal pulse profile; (d) spectral pulse profile. 

The pump beam was then steered into the prism compressor with an initial prism 

separation of 38 cm, with the returning beam steered back into the XFROG apparatus.  

The measured XFROG trace was analysed and the prism separation increased until the 

minimum pulse duration was achieved.  A simple metric was used to determine the 

pulse duration without the need to retrieve the XFROG trace.  Summing the FROG 

trace over the frequency range of the spectrometer produced an intensity profile over 

time – an intensity autocorrelation.  The FHWM span was calculated from intensity 

autocorrelation and a graph plotted of the resulting span against prism separation, 

shown in Figure 6.4.  Fitting a quadratic to this data produced a curve allowed the 

optimal prism separation to be determined, however it was also evident by eye as to 

which separation yielded the shortest pulses.  This method was repeated for the 

doubled-signal and pump-signal pulses, however the results are omitted here. 
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Figure 6.4.  FHWM duration of the pump pulses as the prism separation was 
increased.  A fit was used for a rough guide, with the pump pulses being compressed 
to 38 fs at 200 cm separation.  

The results showed that the minimum pump pulse duration was achieved with a prism 

separation of 208 cm.  The results from the XFROG trace with 208 cm prism separation 

are shown in Figure 6.5.  An unconstrained XFROG retrieval algorithm was used to 

recover the pulse duration rather than a standard FROG retrieval.  The standard 

algorithm assumes that the apparatus is balanced in terms of dispersion and spectral 

profile; however in these experiments the dichroic beam splitter used to separate the 

pump and visible wavelengths only reflects as small portion of the pump beam for 

testing.  Different mirror coatings are also used in each arm of the interferometer, and so 

an XFROG algorithm is more suited for retrieval of the pump pulses, leading to an 

asymmetry in the trace shown in Figure 6.5. 

The pump pulse duration was compressed to 38 fs; while this result is not transform-

limited (the spectral bandwidth supports pulse durations of approximately 20 fs) it is the 

best that could be achieved with the experimental design.  A prism separation of 2 

metres presented its own problems as the returned beam had diffracted sufficiently as to 

double in diameter; however the aperture of the common-path prism was wide enough 

to ensure that the prism compressor was more than 90% efficient. 
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Figure 6.5.  Retrieval results from the XFROG measurement on the compressed pump 
pulses.  (a) Raw trace; (b) retrieved trace; (c) temporal pulse profile; (d) spectral pulse 
profile. 
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6.2.1.2  Doubled-signal compression 

The doubled-signal pulses were compressed in an identical manner to the pump pulses.  

The prism separation was increased until the minimum pulse duration was obtained.  

The optimal separation was found to be 150 cm, and the XFROG results are shown in 

Figure 6.6.  The pulses were compressed to 100 fs, slightly longer than the 80 fs 

transform limited duration.  

 

 

Figure 6.6.  Retrieval results from the XFROG measurement on the compressed SHG 
signal pulses.  (a) Raw trace; (b) retrieved trace; (c) temporal pulse profile; (d) 
spectral pulse profile. 
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6.2.1.3  Pump-signal compression 

The pump-signal pulses were compressed in the same manner detailed above.  The 

prism separation was increased until the minimum pulse duration was obtained.  The 

optimal separation was found to be 120 cm, and the XFROG results are shown in Figure 

6.6.  The pulses were compressed to 115 fs, indicating that they were still slightly 

chirped. 

 

 

Figure 6.7.  Retrieval results from the XFROG measurement on the compressed 
pump-signal pulses.  (a) Raw trace; (b) retrieved trace; (c) temporal pulse profile; (d) 
spectral pulse profile. 
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6.2.2 Relative delay manipulation 

Once the pulses had been compressed it was then necessary to compensate for walk off 

due to the group delay dispersion of each pulse.  As the pulses propagate through 

different optical materials they experience a frequency-dependent group delay.  Over 

short distances this group delay dispersion gives rise to timing jitter, but over longer 

distances the pulses walk away from each other and ultimately lose their temporal 

overlap.  The temporal walk off between the pulses was compensated for by adjusting 

the distance between each second prism and the folding mirror in each prism 

compressor, as illustrated in Figure 6.8.  This adjustment was used to bring the pulses 

back into overlap in the crystal of the XFROG apparatus; this is an ideal candidate 

position for pulse synthesis as temporal overlap can be confirmed before removing the 

BBO crystal and using the same focal plane for future experiments.  

 

Figure 6.8.  Illustration of how XFROG can be used to obtain temporal overlap.  The 
position of the prism folding mirror can be adjusted to bring the pulses into temporal 
alignment.  
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6.2.2.1  Relative delay adjustment results 

The group delay dispersion between the pulses was roughly compensated for by 

correctly positioning the folding mirrors after each second prism.  The path lengths 

between the first prism and the folding mirror were made equal for each parent pulse.  

As the prism separation in the pump prism compressor was over 2 metres, the distance 

between the second prism and the folding mirror was quite large for both the doubled-

signal and pump-signal delay lines.  After a rough delay adjustment had been made all 

three pulses were steered into the XFROG apparatus for measurement, with the results 

shown in Figure 6.9. 

 

Figure 6.9.  XFROG retrieval results from the pulses when they are temporally 
dispersed.  (a) Raw trace; (b) retrieved trace; (c) temporal pulse profile; (d) spectral 
pulse profile. 

As was demonstrated in Chapter 3, the XFROG retrieval algorithm is robust enough to 

recover the relative delays between the pulses.  The leading and trailing pulses are 
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delayed by approximately 1.5 ps, roughly 0.5 mm propagation distance in air, which 

shows that even the most accurate of path length measurements will still contain some 

error due to refractive index differences.  

 

Figure 6.10.  XFROG retrieval results from the pulses after delay compensation.  (a) 
Raw trace; (b) retrieved trace; (c) temporal pulse profile; (d) spectral pulse profile. 

The position of the doubled-signal and pump-signal folding mirrors in the prism 

compressor were adjusted in order to temporally align the pulses.  This was achieved 

practically by moving one mirror and acquiring an XFROG trace, a laborious process 

that could possibly be improved by monitoring the UV spectrometer in real time.  An 

XFROG measurement showing the pulses temporally aligned is shown in Figure 6.10.  

The XFROG retrieval algorithm has successfully retrieved multiple, spectrally distinct 

pulses.  The retrieved temporal pulse profile shown in panel (c) shows temporal 

interference fringes, indicating that, as far as the algorithm is concerned, the pulses are 

indeed temporally overlapped.  The FHWM duration of the temporal pulse is 39 fs. 
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6.2.2.2  Comparison of results with model 

The group delay between the pulses, shown in Figure 6.10 (d) in green, is derived from 

the absolute phase differences between the pulses retrieved by the XFROG algorithm.  

The XFROG trace, however, is invariant to the absolute phase, or the phase between the 

individual pulses, and so a true understanding of how the pulses will interfere in time 

cannot be determined from the XFROG trace alone.  It is possible however to isolate the 

retrieved information for the individual pulses and predict the optimal synthesis result 

using a minimisation function. 

Using MATLAB, the relative delays between the pulses were adjusted by small 

amounts and the amplitudes of their electric fields weighted relative to the pump pulse.  

Both of these factors can be adjusted experimentally using a pulse shaper capable of 

shaping both amplitude and phase, such as the liquid-crystal spatial light modulator 

discussed in the next section.  It is important to note that both the delay and amplitude 

of a pulse can be altered without changing the pulse shape or duration.  The relative 

delays and amplitudes of the doubled-signal and pump-signal pulses were used as the 

input variables of a minimisation function in order to improve the contrast of the pulses 

produced by coherent synthesis.  The result of the minimisation function is shown in 

Figure 6.11 (c). 

Improving the temporal overlap and appropriately weighting the amplitudes of the 

pulses has resulted a train of five high-contrast synthesised pulses with durations of 

2.15 fs, close to the single-cycle limit of the highest-frequency parent pulse (pump-

signal, 1.5 fs).  This result shows that, with appropriate delay adjustment and amplitude 

shaping, coherent synthesis is possible using the parent pulses measured in the previous 

sub-section. 

It is instructive to determine the effect of timing jitter and CEO phase noise on the 

synthesised pulse; if the timing jitter is significant then the synthesised pulse will be 

washed out after only a short observation time.  From Chapter 5, the largest timing jitter 

measured between the parent pulses over a 1 second observation window was 137 as; 

this includes contributions from relative intensity noise.  Similarly, the largest CEO 

phase noise was 0.18 radians.  Both timing jitter and phase can be added or subtracted 

to each pulse as a delay term.  Calculating the contribution to noise as a fraction of an 

optical cycle, it is clear that the timing jitter is the largest contributor to the noise at 0.1 

cycles, while the phase noise contribution is 0.02 cycles.  Adding 150 as of delay to one 
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visible pulse and subtracting the same from the other is a worse-case scenario, and will 

determine how synthesis is affected by the noise measured previously. 

 

Figure 6.11.  Results of the minimisation function used to determine the optimal 
coherently synthesised pulse that can be produced from the three parent pulses.  (a) 
Spectra of the three pulses; (b) their overlapping individual fields; (c) optimal 
synthesis result, showing a train of 5 synthesised pulse of 2.15 fs duration; (d) 
synthesis result with added timing jitter of 150 as. 

The result is shown in Figure 6.11 (d).  The change in delay has reduced the fringe 

contrast, however the durations of the synthesised few-cycle pulses remains unaffected.  

This shows that the synthesised pulses remain coherent and experimentally accessible 

over a 1 second observation time, an important result in the practical application of 

synthesised pulses. 
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6.3  A spatial light modulator for a common-path approach to pulse compression 

The quasi-common-path prism delay line was successful in both compressing the 

chosen parent pulses and compensating for their temporal walk-off; however there are 

still areas in which improvements could be made.  The quasi-common-path approach 

introduces additional timing jitter that would be rejected in a truly common-path 

compressor.  Precise positional control of the folding mirrors would be required to 

improve the temporal overlap, most likely through the use of long-travel piezoelectric 

transducers attached to the positioning stages.  More crucially however the pulses 

cannot be compressed to their transform-limited durations without additional dispersion 

compensating optics.  

An approach that would address all these problems would be to use an ultrafast pulse 

shaper to control the spectral phase of the pulses.  Ultrafast pulse shapers have been 

used for many years to enable the generation of spectral and temporal profiles tailored 

to the need of specific experiments  [1].  Examples include liquid-crystal spatial light 

modulators (LC-SLMs)  [2,3], acousto-optic programmable dispersive filters 

(AOPDFs)  [4], and deformable mirrors  [5], which have been used to shape pulses for 

coherent control  [6], ultraviolet to mid-infrared spectroscopy [7,8] and Raman 

frequency-comb compression  [9]. 

A suitably characterised broadband, high-resolution LC-SLM can be used to manage 

the group delay dispersion of the parent pulses in a way that maximises their mutual 

temporal overlap, while simultaneously compressing each pulse to its transform-limited 

duration. 

In this section the development of a new technique for characterising the broadband 

phase and voltage characteristics of an LC-SLM is described, in preparation for its 

deployment in a pulse-shaping experiment.  Due to a failure in the LC-SLM firmware, it 

was not possible ultimately to test the LC-SLM in a true phase-shaping mode, however 

the data obtained can be used to estimate the range of shaping outcomes achievable.  

6.3.1 Liquid-crystal spatial light modulators 

An LC-SLM is composed of a thin layer of liquid-crystal sandwiched between two 

layers of glass.  The inside surface of each piece of glass is coated with a thin, 

transparent, electrically conducting film.  Once piece of film is patterned into a number 

of separate electrodes which act as pixels; the film on the other glass surface is 
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unpatterned, serving as a ground plane.  This is illustrated in Figure 6.12 (a).  The pixel 

size and number varies between LC-SLM designs, however in all cases the distance 

between pixels is kept to the few-µm level to prevent unwanted diffraction effects.  LC-

SLMs can operate in reflective or transmissive geometries with appropriate anti- or 

high-reflectivity coatings applied to the glass layers. 

The liquid-crystals within a spatial light modulator are typically uniaxial-nematic; they 

are rod shaped and possess long-range directional order with the preferred direction of 

alignment being with their long axes roughly parallel.  The liquid-crystals can be easily 

aligned by an external electric field, with the long axes aligning parallel to the applied 

field, as shown in Figure 6.12 (b). 

 

Figure 6.12.  Side view of a liquid-crystal pixel with (a) no applied electric field, and 
(b) an electric field applied in the longitudinal direction.  Adapted from  [10].  
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LC-SLMs are of particular interest to ultrafast pulse shaping as the liquid-crystals are 

birefringent.  As an electric field is applied across the pixel the orientation of the 

crystals will change; incoming light of the correct polarisation will observe a changing 

refractive index as the crystals rotates and will undergo a corresponding phase shift.  In 

the case of ultrafast pulse shaping this voltage-dependent phase change can be exploited 

to compensate for phase differences across the bandwidth of the pulse, using the LC-

SLM as a compressor.  An attainable phase change of at least 2π across the bandwidth 

of the incoming pulse is required for complete phase control, which determines the 

minimum thickness of the liquid-crystal layer. 

6.3.2 Characterisation of a broadband linear LC-SLM 

While the chosen set of parent pulses for coherent synthesis is composed of only three 

pulses, future opportunities may present themselves that will allow the pump and all 

four visible OPO outputs to be parent pulses.  Implementing programmable phase 

control over such a wide frequency bandwidth presents specific challenges associated 

with calibrating the phase response of the LC-SLM, which is characteristically 

nonlinear with both and phase and applied voltage.  The pulse shaper used in the work 

carried out in this thesis was a folded 4f system (Figure 6.13) in which the incident and 

returning beams were coupled in and out of the system by a prism, with a small relative 

vertical offset to allow the shaped pulses to be isolated and analysed.  The collinear 

pump and visible beams from the OPO were angularly dispersed with a fused silica 

prism placed at the front focal plane of an achromatic doublet [11].  A prism-based 

shaper was preferred over a design using a diffraction grating because it offers greater 

double-pass efficiency, considerably lower wavelength-dependent loss, and avoids 

problems with overlapping diffraction orders when the bandwidth approaches an octave.  

The material dispersion introduced by the prism can be compensated for either before or 

after the shaper, or by choosing a prism with low intrinsic material dispersion such as 

the fused silica prism used here. 
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Figure 6.13.  Schematic of the LC-SLM characterisation apparatus.  The optics in the 
dashed box were used for the voltage-to-phase calibration only. 

A 12,288-pixel reflective liquid-crystal-on-silicon LC-SLM (12.288 Linear Series, 

Boulder Nonlinear Systems) was situated at the back focal plane of the lens.  The LC-

SLM had an array size of 19.66 mm with a 1.6-µm pixel pitch, comprising a 1.0-µm 

electrode and a 06-µm gap.  A custom dielectric high-reflectivity coating was applied to 

the backplane of the LC-SLM, with the reflectivity optimised to cover the spectral 

regions occupied by the doubled-pump, pump-signal, doubled-signal and pump-idler 

wavelengths.  The dielectric coating prevented diffraction from the inter-pixel regions 

of the backplane and increased the optical efficiency of the device.  

Notably, the LC-SLM used in this work had a much higher pixel density than many of 

the devices commonly used for ultrafast pulse shaping, which typically possess 640 

pixels or less.  Normally LC-SLMs require the spectral focus to match the pixel period, 

in order to maximise the spectral resolution.  By contrast the high pixel density of the 

LC-SLM used here meant that each spectral focus included a large number of pixels, 

providing the capability for high-resolution phase and amplitude control.  The spectral 

foci at 0.400 µm and 0.800 µm were 170 µm and 340 µm respectively, and therefore 

covered at least 100 pixels.  
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The purpose of the LC-SLM calibration is to produce a function that can provide the 

optical phase written by the shaper as a function of both wavelength and applied 

voltage.  This procedure requires separate functional maps of frequency-to-pixel 

number and voltage-to-phase. 

6.3.2.1  Spatial calibration – frequency-to-pixel number 

The spatial distribution of the frequencies across the surface of the LC-SLM is not 

linear, but is determined by the material dispersion of the fused silica prism.  The prism 

was oriented for minimum deviation in the focal plane of the LC-SLM.  The broad 

bandwidth of the dispersed spectrum provides a slightly different minimum-deviation 

angle for every wavelength; however each angle produces a similar focal pattern on the 

LC-SLM surface and so the exact prism angle is not critical.  The wavelength map 

across the device was revealed by writing a phase step about a given pixel.  As each 

wavelength is focused onto more than one pixel (as determined by the resolution of the 

prism “spectrometer”) this phase step produces a discontinuity at the corresponding 

wavelength in the reflected spectrum.  Using MATLAB control of the LC-SLM the 

phase step was scanned across the array of pixels, with the reflected visible spectra 

measured on each occasion with a spectrometer (USB4000, Ocean Optics).  Fitting a 

quadratic curve to these data points provided the pixel-to-frequency relationship, shown 

in Figure 6.14 as a black dashed line.  The relationship agreed well with the theoretical 

behaviour calculated from the Sellmeier equation for fused silica  [12], shown in Figure 

6.14 as a red line. 



185 
 

 

Figure 6.14.  Spatial dispersion of the pump and visible OPO frequencies over the  
LC-SLM.  The solid red curve indicates the calculated pixel-to-frequency mapping 
obtained from the fused silica Sellmeier equation.  The measured values are given by 
the black circles, while the dashed black line is the fitted curve. 

6.3.2.2  Phase calibration – voltage-to-phase 

A phase calibration as a function of applied voltage was supplied by Boulder Nonlinear 

Systems for one optical frequency, providing a smooth phase change over 2π radians as 

the applied voltage was varied from its minimum to maximum value.  If this calibration 

function were applied to every pixel it would provide an incorrect phase response at 

every other frequency.  As a result of this, operation of the pulse shaper across a broad 

bandwidth requires a separate calibration of the voltage-to-phase relationship for every 

incident frequency.  Combining this with the frequency-to-pixel number relationship 

determined in Sub-section 6.3.2.1 would enable deterministic phase shaping of pulses 

across the entire ensemble of pump and visible OPO pulses. 

The phase change was calculated using an inline common-path spectral interferometry 

technique [13].  The horizontally polarised light exiting the OPO was rotated to 45° and 

double-passed through a quartz crystal whose optic axis was horizontal (parallel to the 

optical bench).  The birefringence of the quartz crystal splits an input pulse into two 

time delayed replicas with orthogonal polarisations.  Only the phase of the horizontally 

polarised light is affected by the orientation of the liquid-crystals in the LC-SLM, 

leaving the vertically polarised light as a common-mode reference.  After the shaper the 

two polarisations were resolved with a polariser oriented at 45° and the resulting fringes 
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observed on a spectrometer.  The voltage applied to the LC-SLM pixels was increased 

from zero to their maximum value in 256 linear steps and the changing interference 

pattern recorded. 

Previous characterisations of pulse shapers which were operated in an open-loop 

configuration [14] used a Fourier-sideband filtering algorithm [15] to calculate the 

imparted phase.  Due to the broadband nature of the individual pulses used in the  

LC-SLM characterisation, the number of fringes required to achieve distinct Fourier 

sidebands would require the pulse to pass through several cm of quartz, introducing 

significant dispersion.  Instead, an alternative approach was adopted, in which the 

interference pattern was simulated in MATLAB, and a minimisation function used to 

determine the change in phase.  An exact pulse characterisation was not necessary in 

order to determine the interference spectrum as the important information was encoded 

only in the change of the interference fringes with voltage. 

The simulation proceeded as follows.  A linearly sampled Gaussian pulse was 

constructed with a FWHM bandwidth and centre wavelength matching those of the 

experimental pulses.  The simulated pulse was then Fourier transformed into the 

frequency domain where a replica was created.  Next, a known phase was added to the 

replica, and the interference spectrum of the combined pulses was calculated.  The 

phase added to the replica pulse consisted of two distinct components.  The first 

corresponded to the group delay and group delay dispersion added by the quartz crystal, 

which produced the fringe pattern observed on the spectrometer.  The second 

component was the voltage-dependent phase written onto the test pulse by the LC-SLM, 

which was modelled as a 4-point cubic spline.  The simulated spectral intensity 

variation with wavelength and voltage formed a 2-D dataset, and the RMS error 

between this and the experimental data was used as the basis for a multi-dimensional 

minimisation.  The minimisation function determined the values of group delay, group 

delay dispersion, bandwidth and the spline knots that produced the minimum RMS 

error. 

The results of the phase retrieval model for pulses centred at 0.470 µm are shown in 

Figure 6.15.  Arbitrary starting values were selected for the group delay, GDD and pulse 

bandwidth, resulting in a ~3π phase change as the drive voltage is increased, as shown 

in panel (a).  The minimisation function was carried out using the experimental data as a 

reference, shown in panel (b).  The results are shown in Figure 6.15 (c); the total 
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modelled phase change is approximately 5π, which matches well with the experimental 

data.  

 

Figure 6.15.  Phase change model results for pump-signal pulses centred at 0.47 µm.  
The minimisation function was given an arbitrary starting condition (a) and the 
experimental data (b), resulting in the modelled phase change shown in (c). 

Comparing the spectral profiles shown in Figure 6.15 (b) and (c), it is clear that the 

experimental data contains large intensity variations which are not reflected in the 

model, potentially affecting the results of the minimisation function.  By replacing the 

spectral intensity of the modelled pulse with that of the experimental data, the measured 

intensity profiles can be accommodated by the model.  The results of the spectral 
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intensity replacement are shown in Figure 6.16.  The results of the new model are 

shown in panel (b), and produce results that are extremely close to that of the original 

model.  The extracted curve of voltage-to-phase is almost identical for both models, and 

so for simplicity the original model was used for all phase retrieval calculations.  

 

Figure 6.16.  Result of the phase change model for pump-signal pulses centred at 
0.47 µm.  (a) Experimental spectrum; (b) model result with intensity replacement;  
(c) model result without intensity replacement.  

Six wavelength regions were selected for voltage-to-phase calibration of the LC-SLM, 

spanning the doubled-pump at 0.400 µm to the lower wavelength edge of the pump at 

0.770 µm.  The HR coating applied to the backplane of the LC-SLM was not effective 
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at 0.800 µm, an unfortunate consequence of being highly reflective over such a wide 

frequency range.  To protect the LC-SLM from damage it was necessary to block 

wavelengths higher than 0.780 µm with a knife edge placed after the achromatic 

doublet. 

 

Figure 6.17.  Phase change model results for six pulses spanning the 0.400 – 0.770 µm 
range.  (a) Doubled-pump; (b) pump-signal; (c) doubled-signal; (d) doubled-signal 
after OPO cavity length change; (e) pump-idler; (f) lower wavelength range of pump.  

The results of the phase change model for each of the test wavelengths is shown in 

Figure 6.17.  For each wavelength the simulated interference spectrum after the 

minimisation function had converged (upper panels) was compared with the 

experimental data (lower panels).  In each case the model produced accurate spectral 

fringe patterns which matched those recorded by the spectrometer.  A curve of phase 

change as a function of drive voltage was extracted from each trace, with the results 

shown in red in Figure 6.18.  The maximum possible phase change for each wavelength 

correctly fits the design specifications provided by Boulder Nonlinear Systems. 

The phase change ϕ∆  observed experimentally arises from the difference in the optical 

paths between the test and reference pulses as a voltage is applied to the liquid crystal 

array.  This path difference is a result of the birefringence of the liquid-crystal cells, 
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which is reduced as the drive voltage is increased.  The individual liquid-crystals are 

positively uniaxial, and at V = 0 the birefringence is at a maximum ( )e on n> , therefore 

the horizontally polarised test pulses travel a longer optical path than those in the 

reference arm.  The drive voltage is increased until maxV V= , at which point e on n≈ .  

This change in refractive index can be approximated by 
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, (6.1) 

where L is twice the thickness of the liquid crystal cell.  At lower voltages the cos2 term 

dominates and the phase change is small.  As the voltage is increased the equilibrium of 

the equation shifts until the sin2 term dominates.  Equation (6.1) was used to determine 

the refractive index and liquid-crystal cell length for each individual wavelength.  Each 

fit provided a liquid-crystal cell length of 5.1±0.05 µm.  Each phase curve was then 

fitted simultaneously in order to determine a dispersion equation [16] for the two  

liquid-crystal optical axes of the form 

 2 4
, , , ,( )e o e o e o e on A B Cλ λ λ− −= + + . (6.2) 

 

Figure 6.18.  Extracted phase changes as a function of voltage applied to the LC-SLM 
(red) and the phase changes calculated from the fitted dispersion equation (blue). 
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6.3.2.3  Discussion 

The phase change modelled by the best-fit dispersion equation is shown in Figure 6.18 

(blue lines) and was compared against the phase response obtained experimentally (red 

lines).  Good agreement was obtained at higher voltages, however at lower voltages the 

error was larger as Equation (6.1) does not account for forces not associated with the 

applied field (e.g. Van der Waals) which also act on the liquid-crystals.  Experimentally 

the decrease in birefringence observed is slightly less sinusoidal than assumed, and at 

maximum drive voltage e on n≠ .  A plot of the dispersion equations calculated from 

Equation (6.2) is shown in Figure 6.19.  Although details of the exact liquid-crystal used 

in the LC-SLM were not available from the manufacturer, the birefringence and 

dispersion of the refractive indices are consistent with documented liquid-crystal 

data [16]. 

 

Figure 6.19.  Refractive indices of the unknown liquid-crystal material from the 
modelled phase changes (circles) and best fit to Equation (6.2) for no (red) and ne 
(blue). 

This approach for characterising an LC-SLM over a broad bandwidth has produced a 

deterministic map of the LC-SLM phase response as a function of wavelength and 

voltage, providing the necessary information to apply the device to the compression and 

shaping of femtosecond pulses in the visible region.  Unfortunately at this point a 
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software issue rendered the LC-SLM unusable for several months, and so compression 

and delay adjustment of the pump and OPO pulses could not be attempted. 

6.4 Conclusions 

Two methods for compressing the parent pulse for coherent synthesis were introduced 

and considered.  The prism-based approach showed that individual control of the GDD 

and group delay of the parent pulses is possible but without fine control.  The LC-SLM 

approach is the most promising candidate for a broadband common-path pulse 

compressor for coherent synthesis.  The optimal result for synthesis between the three 

parent pulses was modelled, and showed that the synthesised pulses would remain 

usable over a 1 second observation window. 
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Chapter 7 - Conclusions and future developments 

This chapter summarises the experimental work carried out in this thesis and the 

conclusions that can be drawn from these results.  Discussion is then given to the 

viability of broadband coherent pulse synthesis from an OPO, confirming that pulse 

synthesis has been successfully achieved, and future opportunities for improving the 

results that have been presented in earlier chapters. 

7.1  Technical summary and conclusions- 

In Chapter 3 the design and construction of a synchronously-pumped femtosecond 

optical parametric oscillator was presented.  A mode-locked Ti:sapphire pump laser 

producing sub-20-fs pulses at an average power of 1.4 W, repetition frequency of 

100 MHz and a centre wavelength of 0.800 µm was used to pump a PPKTP-based OPO 

with a wide range of tunable visible outputs.  Both linear and ring cavity designs were 

built and evaluated for the OPO, with the ring OPO able to produce higher power 

visible sum-frequency mixing and second-harmonic generation pulses. 

In Chapter 4 the carrier-envelope-offset frequencies of the pump, signal, idler and 

multiple visible outputs from the OPO were locked to 0 Hz.  Light from the pump was 

launched into two photonic crystal fibers to generate independent supercontinua, which 

were heterodyned against separate visible wavelength components from the OPO to 

produce two CEO beat frequencies.  These CEO frequencies were controlled through a 

pair of electronic feedback loops.  Locking all CEO frequencies to 0 Hz ensured 

broadband phase coherence from 0.4 – 3.2 µm, the broadest zero-offset frequency comb 

produced to date.  Establishing broadband phase coherence was the first requirement for 

coherent pulse synthesis. 

Chapter 5 discussed the noise characteristics of the pump and OPO.  RIN measurements 

were carried out, and locking the CEO frequencies of the pump and OPO was found to 

greatly improve the cumulative standard deviation of the visible OPO outputs due to the 

increased frequency stability the locking loops introduce.  Phase noise PSD data were 

recorded for both CEO locking loops, with the largest cumulative standard deviation 

being 0.18 radians over a 1 second acquisition time.  A balanced cross-correlator was 

used to measure the relative timing jitter between the pump, doubled-signal and pump-

signal pulses.  With both locking loops enabled the timing jitter was less than 140 as 

over a 1 second observation window, indicating that the pulse trains had excellent 
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timing stability, sufficient for coherent synthesis, and fulfilling the second requirement 

for coherent pulse synthesis. 

In Chapter 6 two complementary methods for compressing and controlling the relative 

delay of the pump and OPO pulses were discussed.  A quasi-common-path prism delay 

line was built to compress the pump, doubled-signal and pump-signal pulses, with the 

pulse durations calculated using XFROG.  Adequate adjustment of the relative delays 

between the pulses was shown to be possible.  An alternative approach was introduced 

in which a liquid-crystal spatial light modulator formed the basis of a broadband pulse 

shaper.  The LC-SLM was characterised in order to provide a functional map of 

frequency-to-pixel number and voltage-to-phase, allowing the device to be used to both 

compress the pulses and alter their relative delays in a truly common-path approach.  

Unfortunately, firmware issues prevented further experiments with the device.  The 

successful demonstration of pulse compression and delay compensation with the prism 

delay line fulfilled the final requirement for coherent pulse synthesis. 

7.2  Future developments for broadband coherent synthesis from an OPO 

7.2.1 The viability of multi-colour pulse synthesis from an OPO 

An important question arises from the summaries given above – what is the viability of 

multi-colour coherent pulse synthesis from a femtosecond OPO?  Chapter 1 laid out the 

experimental milestones that needed to be achieved before synthesis could be attempted.  

The requirements were 

• Matching repetition frequencies for all the parent pulses.  This was achieved by 

constructing using a synchronously-pumped femtosecond OPO as the 

source of the parent pulses, as detailed in Chapter 3. 

• Broadband phase coherence across the entire bandwidth of pulses generated by 

the pump and OPO.  This was achieved through zero-offset CEO locking and 

is discussed in Chapter 4. 

• Control of the timing jitter between the pulses to attosecond precision.  This was 

achieved and is discussed in Chapter 5. 

• To correct for group delay dispersion for each pulse and between different 

pulses.  This was achieved using a prism-delay line and the technique can be 

refined using a spatial light modulator, as detailed in Chapter 6. 
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Using these criteria and the results presented in previous chapters it is clear that  

multi-colour pulse synthesis from an OPO is not only viable but can be extended 

beyond the three-parent-pulse scenario presented in this thesis to include all pulses from 

the OPO. 

A question of more specific interest to this thesis also arises – were daughter pulses 

synthesised from the considered parent pulses?  This question is harder to answer than 

the first.  Clearly the criteria for pulse synthesis have all been met, but knowing the 

exact synthesis outcome is challenging.  In Chapter 6 the parent pulses were 

compressed and their relative delays adjusted so that the pulses arrived at the 

measurement plane (the XFROG crystal) at the same time.  The retrieved XFROG trace 

indicated that the pulses were overlapped in time, while a measurement interferometer 

confirmed that the pulses were phase coherent, as discussed in Chapter 4.  An ambiguity 

exists in the XFROG results however; the XFROG algorithm is unable to recover the 

relative phases between the pulses over spectral gaps.  Confirming phase coherence at 

the measurement plane would definitively establish whether pulse synthesis had taken 

place.  This measurement must take place at a chosen measurement plane where the 

pulses have no delay offset; downstream of the measurement plane the different spectral 

components of the synthetic pulse will propagate at different group velocities, 

separating into the original parent pulses. 

The concluding analysis in Chapter 6 addresses the synthesis outcomes which could be 

achieved in the case of optimally chosen relative phases between the parent pulses.  

Confirming phase coherence between the pulses at the measurement plane is not 

possible using established pulse retrieval techniques and the current experimental 

apparatus.  A novel approach has been suggested by our collaborators from Oxford, Ian 

Walmsley, Adam Wyatt and Ilaria Gianani.  An ancilla pulse is required to span the 

spectral gap between the parent pulses.  If this broadband ancilla is used as the gating 

pulse in an XFROG measurement then there will be sufficient information in the 

resulting trace to establish phase coherence.  The simplest approach would be use a 

small piece of PCF to generate self-phase modulation in the pump beam such that its 

bandwidth spanned the largest frequency gap between the parent pulses.  This spectrally 

chirped pulse would be temporally compressed and used in an XFROG measurement, as 

has already been demonstrated in Chapter 6.  The results of such an XFROG 

measurement are simulated in Figure 7.1.  The phase retrieval algorithm would have 
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sufficient information to span the spectral gaps between the test pulses, providing the 

phase relationship between them and confirming phase coherence. 

 

Figure 7.1.  Simulation of a suggested method for confirming phase coherence 
between the pulses.  The addition of a spectrally-broadened pump beam would bridge 
the spectral gap observed in the FROG trace, allowing retrieval of the relative phase 
information between the pulses. 

The result of the spectral confirmation of phase coherence described above would fully 

determine whether the requirements for pulse synthesis had been met, providing 

information on phase coherence, pulse compression and temporal overlap at the 

measurement plane.  Several attempts to generate a correct amount of SPM in the pump 
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pulses were made, however none were wholly successful.  The high average power and 

high peak powers of the compressed pump pulses led to supercontinuum generation 

when launched into even millimetre lengths of the PCF available; launching chirped 

pump pulses into the PCF was also considered, however it is much more challenging to 

remove this additional chirp from the pulses after the PCF.  Sourcing PCF of the correct 

length and dispersion characteristics would make this measurement much more viable. 

7.2.2 Technical improvements and future work proposals 

The project goal of coherently combining multiple visible outputs from an OPO has 

been achieved; however there are a number of alterations that can be made to the system 

that would greatly improve the synthesis result.  

7.2.2.1 Producing sub-30-fs visible pulses from the OPO 

The shortest pulse durations that can be coherently synthesised are produced by 

combining pulses that are themselves short in duration.  Combining transform-limited 

pulses centred at 0.800, 0.530 and 0.456 µm with durations of 100 fs will produce an 

ideal synthesised pulse of 86 fs duration; if the parent pulses are 15 fs in duration then 

the synthesised pulse will be 2.2 fs duration. 

The visible pulse durations available from the OPOs described in this thesis were 

limited by the phasematching conditions of the PPKTP crystal.  SFM and SHG 

processes were not optimally phasematched and so the generated pulses were typically 

narrowband with low average powers; the higher powers available from the doubled-

signal and pump-signal  beams was due to the high intracavity signal power. 

A novel approach to improving SFM and SHG efficiency would be to use a grating-

engineered quasi-phasematched nonlinear crystal in the OPO.  In previous work 

demonstrated by the Reid group [1–7] the poling period of the nonlinear crystal was 

chirped to compensate for the temporal walk-off between the pump and signal pulses in 

the crystal.  This technique can be further extended to produce a cascaded crystal 

(Figure 7.2) with different grating lengths that will produce well-phasematched regions 

of overlap for the pump and signal, allowing the generation of broadband visible pulses.  

A crystal of this design was grown for testing in the OPO; however the crystal was cut 

with a large wedge, making alignment difficult and as a result oscillation was not 

achieved. 
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Figure 7.2.  Schematic of the cascaded crystal design for efficient SFM and SHG 
phasematching.  Section 1, parametric generation with grating periods increasing 
from A to I; section 2,  signal SHG; section 3, pump-signal SFM; section 4,  
doubled-pump SHG.  The top and bottom 1 mm of the crystal are unpoled. 

7.2.2.2 Wavelength-independent CEO frequency locking of an OPO 

The CEO frequency locking approach described in Chapter 4 was successful in 

generating two CEO frequencies without the need for an f-2f interferometer.  A 

drawback of the chosen design is that CEO frequencies can only be detected at selected 

wavelengths determined by both the visible wavelengths from the OPO and by the 

narrowband interference filters placed before the APDs.  It would be beneficial to 

enable the OPO to be tuned to produce different wavelengths and still have the 

capability to lock the pump and OPO CEO frequencies.    

The first possible solution would be to use a diffraction grating in place of the 

interference filter to spatially disperse the overlapped beams from a pump 

supercontinuum and the OPO.  The position of the overlapped wavelengths of interest 

are determined by the angle of the diffraction grating; to acquire a CEO frequency with 

a different OPO wavelength would simply require the repositioning of the APD or 
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rotation of the diffraction grating.  These processes could in theory be automated, so 

that a CEO frequency could constantly be detected as the OPO wavelength is tuned.  

A second solution would be to use an external cavity diode laser (ECDL) referenced to 

an atomic transition in a gas cell.  A well-referenced and stabilised ECDL will produce 

an extremely stable and well-defined frequency output; this frequency can be 

heterodyned against a frequency comb to produce a CEO beat frequency.  An ECDL 

referenced to a hyperfine transition in a Rubidium gas cell at ~0.78024 µm would allow 

such a CEO frequency to be detected directly from the broadband Ti:sapphire laser.  

The signal pulses in the OPO can be externally broadened in a length of PCF to produce 

light at 1.56 µm, which can then be frequency doubled and heterodyned against the 

ECDL beam to produce a second CEO frequency.  With sufficient broadening in the 

PCF the OPO can be tuned with the CEO locking frequency remaining detected. 

7.2.2.3 Simultaneous pulse compression and synthesis 

The pulse compression methods discussed in Chapter 6 utilised the XFROG apparatus 

to determine the pulse duration at the measurement plane.  Compressing each pulse 

requires an iterative process that is time-dependent on the acquisition and retrieval of 

the XFROG trace.  A more efficient approach, and one that is suited to the use of a well-

characterised LC-SLM, is to use MIIPS to both compress and characterise the pulse in 

the reference plane.  With a sufficiently broadband SHG crystal (or several thin crystal 

stacked together) it would be possible to compress each visible pulse simultaneously 

using a modified MIIPS algorithm, providing transform-limited and delay-compensated 

pulses in a single plane for pulse synthesis.  More details on MIIPS can be found in 

Chapter 2. 

7.2.2.4 Future proposals for multi-colour pulse synthesis from an OPO 

Building on the successful results presented in this thesis, it is clear that multi-colour 

pulses synthesis from an OPO is both achievable and can be scaled up to include more 

than three parent pulses.  With an appropriate choice of LC-SLM it is feasible to both 

compress and temporally combine the visible outputs listed in Table 7.1, a bandwidth 

capable of supporting sech2 pulses with duration of 1.12 fs.  Coherent synthesis between 

pulses of these wavelengths with technically-challenging durations of 20 fs would 

produce a 2.4 fs pulse. 
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Table 7.1.  Mixing wavelengths generated in the OPO crystal for a given pump and 
signal wavelength. 

Primary 
wavelengths (µm) Mixing wavelengths (µm) Visible frequency 

bandwidth (PHz) 

p s i 2p p + s 2s p + i Δf 

0.80 1.06 3.26 0.40 0.45 0.53 0.64 0.27 
 

Introduction of the fourth-harmonic of the pump at 0.2 µm would increase the 

frequency bandwidth to over 1 PHz, capable of supporting pulse durations of ~300 as.  

Generating 0.2 µm is in itself a challenge, as is being able to compress and control a 

pulse at that wavelength, and so achieving visible attosecond pulse synthesis will 

require a great deal of further investigation. 

The techniques developed in previous chapters can be utilised in a range of scientific 

fields, but there are many immediate opportunities in the field of spectroscopy.  The 

wavelength stability demonstrated from the CEO-locked OPO can be used for 

measurements that require a long exposure time with high pump wavelength stability, 

while the broadband phase coherence of the frequency comb can be exploited for phase 

coherent pump-probe spectroscopy. 
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