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ABSTRACT 

Functional, smart fibres and fibres with different morphologies have been produced 

from different materials using different spinning methods. The effect of processing 

parameters on different nano fibre morphologies was studied by SEM. The spinning 

solution properties such as viscosity, surface tension, conductivity, UV-visible spectra 

were studied. The fibres were characterised by DSC, FTIR, XRD, strength test. 

Antibacterial, hygroscopic, humectant Manuka honey (MH) functional nanofibres have 

been produced successfully by single needle electrospinning (SNE) using polyethylene 

oxide (PEO) as matrix. Electrospinning parameters such as higher feed rate, higher 

proportion of MH, lower applied voltage, lower needle to collector distance produced 

merged, thicker, flat 15% (wt/wt) MHPEO nanofibres and vice versa. 15%MHPEO 

fibres of diameters from 0.198µm to 0.924µm were produced using different 

parameters. The 50% and 65% (wt) MHPEO mats showed antibacterial property. DSC 

result showed reduction in melting temperature as the MH proportion increased. FTIR 

results showed respective peaks for MH and PEO. MHPEO nanofibres can be used for 

medical end use such as wound healing. 

Ethyl cellulose (EC) nanofibres have been successfully electrospun using different 

combination of toluene and ethanol (0:100, 40:60, 50:50, 60:40,100:0) as solvent by 

SNE. Round and elongated bead on string to smooth bead-less 15% (wt/wt)EC fibres 

produced as proportion of toluene increased in the solvent mixture. Thin, bead-less 

fibres were obtained by 60:40 (toluene: ethanol) with average fibre diameters ranging 

from 0.483µm to 0.631µm. EC nanofibres have been also produced by high output 

bubble electrospinning (BE) method. EC fibres of diameters from 0.188µm to 0.41µm 

were produced by BE. Comparison between effect of electorspinning parameters on fibre 

revealed that the fibre morphologies followed different trends in SNE and BE. The beaded 

structure can be used for loading drugs in advanced medical textiles and smooth bead-

less fibrous mat can be used for application such as filtration. 

In order to develop thermochromic (smart) nanofibres by meltelectrospinning, 

thermochromic polypropylene fibres have been developed by meltspinning. The pure 

polypropylene and thermochromic. DSC and FTIR results showed separate peaks for 

the thermochromic effect and for the polypropylene. SEM images verified the presence 

of thermochromic pigments. Thermochromic filaments can be used in garment fashion, 

or as sensors in yarn or fabric form. 
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LIST OF DEFINATIONS 

1. Resilience an occurrence of rebounding or springing back  

2. Malleable Able to be hammered or pressed permanently out of 

shape without breaking or cracking 

3. Anitinflammatory refers to the property of a substance or treatment that 

reduces inflammation 

4. Antimutagenic An agent that inhibits mutations. Mutagens are any 

agents (physical or environmental) that can induce a genetic mutation or can 

increase the rate of mutation. 

5. Ductility      It is a solid material's ability to deform 

under tensile stress; this is often characterized by the material's ability to be 

stretched into a wire. 
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Chapter 1  :  Materials and Its Processing at Macro to Nano 

Dimensions  

1.1 Introduction 

Materials play a very important role in the progress of the human race. In different 

areas, progress is identified by the dominant materials used in that period , starting from 

the stone age, the bronze age, the iron age to the present silicon age [1, 2]. Even today 

the demand for new materials is growing [3]. Materials are converted in to various 

products after the selection of low cost / cheap materials with required properties. The 

materials are converted into appropriate shape and dimensions to meet technical 

performance required [4, 5].  

1.2 Material Science and Engineering 

Material science and engineering encourages a wide spectrum of material types, their 

manufacturing and processing techniques [6, 7]. Materials can be classified according to 

their properties. Materials can be broadly categorised in to several groups as: metals, 

polymers, elastomers, ceramics, glasses, hybrids, composites, natural organic materials 

etc. [8-12]. Product design, selection of material and technological process are 

interconnected to meet the end uses and cost [6]. Engineering product design is 

connected with the determination of the product shape and the selection of materials 

from which they are to be made, and the selection of the relevant technological 

processes. The designed product has to meet the parameters pertaining fully to its 

functionality and the requirements connected with its shape and dimensional tolerances 

[6]. Engineering product design involves 3 elements: structural design, material design 

and technical design [6]. Material selection is one of the most important tasks for 

product designers. Factors such as material properties (chemical, biological [13], 

electrical, magnetic, optical etc.), material processability and economical aspects are 

taken into account before selecting material [3]. 

 Structural design involves deciding shape, geometry and cost to meet function of the 

product.   

 Material design involves material selection by considering the composition, 

constituent phases and microstructure to meet the enduse application [6].  

 The technical properties of materials (physical, chemical, biological) are considered 

with availability to meet the functionality and expected life considering cost. 
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 Technological design ensures assembling elements, their geometrical features and 

properties, automation and productivity at lowest cost possible [6].  

Definitions of some of the materials are as given below.  

1.2.1 Smart Materials  

The word “Smart” describes a system which has capability of sensing, processing, 

actuating, self-changing and self-recovering. Smart materials change / improve their 

property in the presence of external stimuli such as temperature, pH, electric charge, 

magnetic field etc. The smart properties of smart materials can be used for energy 

saving/ harvesting, increase human comfort, increase product life span, waste reduction, 

self-repair, improve efficiency etc. 

1.2.2 Structural Materials and Functional Materials  

In past, more research was done on the development of the structural materials which 

were designed / engineered for improved load bearing capacity, mechanical and 

structural properties. Recently, research is diverted towards the development of the 

functional materials. Functional materials are different from structural materials. The 

physical, chemical, biological properties of functional materials are sensitive to the 

change in environment/external stimuli. The external stimuli can be temperature, 

pressure, electric field, magnetic field, optical wavelength, adsorbed gas molecules, pH, 

electromagnetic waves etc.. Functional materials cover a broad range of materials 

including smart materials and also materials with some special functionality, e.g. 

Ferroelectric, antibacterial, conductive polymers etc. [14, 15]. 

1.2.3 Composites 

The electrical, mechanical, magnetic, strength and other properties of the polymers can 

be enhanced by engineering composites with adding appropriate constituents [16]. 

Polymers are ductile and light weight compared to metals which are stronger. Polymer 

properties can be improved by adding inclusions such as fibre, plastics, particles. 

Scientists have developed techniques for micro sized inclusions. Recent developments 

have allowed nano level inclusions. “Composites are engineered materials made from 

two or more constituents, each offering different properties which can be combined 

synergistically” [17] 

1.2.4 Polymers 

The word polymer comes from Greek word “poly” means many. Polymer has many 

numbers of identical repeating single basic chemical structural units called “monomer”.  
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The unit of repeating unit depends upon the number of repeating units or “mers” present 

in polymer chain. Polymers are used in various forms such as plastics, elastomers, 

coatings, adhesives, fibres etc. Polymers can be natural or synthetic [18]. The regularity 

of polymer structure and the relative intermolecular secondary valence bonds decides 

fibres, plastics or elastomers [19].  

1.3 Textile Materials 

Textile materials form a unique branch of natural and synthetic polymeric material [18, 

20-23]. Textiles are made up of specially engineered selected materials, which can 

deliver essential properties such as flexibility, strength, feel, high length to strength ratio 

etc. [24, 25]. Depending on the end use either natural or synthetic textile materials are 

used [26]. Natural fibres were used for centuries. Disadvantage of natural fibres is that, 

their inherent physical properties such as diameter, length are dependent on natural 

factors such as atmosphere. These natural factors are beyond the control of humans. 

These limitations have been overcome, with the invention of manmade fibres. New 

textile materials are used for high end applications such as industrial textiles, 

geotextiles, construction, agricultural, biomedical, fashion, defence and many more. 

Textiles are used from as simple as wipes to high end defence applications such as 

bullet proof Kevlar jackets. Textiles are produced from different forms such as fibre, 

yarn, fabrics (woven, knitted, nonwoven). Fibres such as cotton, jute, silk, wool etc. are 

based on natural fibres.  Polyester, nylon, acrylic, viscose rayon are manmade /synthetic 

fibres. Manmade fibres are formed from various polymers. Long-chain molecules with 

repeating units are formed by chemical reaction in textile polymers. The length of 

repeating unit depends on the type of raw material. Man-made fibres offer flexibility in 

terms of functionalization or engineering. Manmade fibres account about 65% of all 

fibres used in textile applications. Technical fibres are a very important area in today’s 

textile sector. Manmade fibres are manufactured by processes such as wet spinning/dry 

spinning/melt spinning or combination of them [22]. Fibre spinning techniques such as 

melt, wet and dry spinning are described briefly by various authors and [22, 27, 28] are 

summarised further in the present chapter. 

 In all the above methods, textile polymers are melted or dissolved in solvents to make 

polymer solution with required viscoelastic properties for spinning. The polymer 

solution is forced by the extrusion process through spinneret. The strand of fibre 

solution coming out of spinneret is dried/coagulated/cross-linked to get solidified fibres 

depending on the type of process.  



Chapter 1  :  Materials and Its Processing at Macro to Nano Dimensions 

4 

The spinneret decides shape, size and number of filaments. After spinning, some post 

spinning operations such as drawing, texturing, chopping are carried out to produce 

suitable for the next process or application. 

1.3.1 Melt spinning:  

Melt spinning (Figure 1:1) is used for thermoplastic polymers such as polyester, nylon, 

polypropylene, polyethylene etc. In melt spinning, the polymer chips are fed, heated and 

melted. 

The molten viscous polymer solution is pumped through spinning head. The molten 

polymer passes through cooling zone.  The cooling agent can be air or solvent. The 

polymer jet solidifies by the certain cooling medium and forms fibre. The filaments are 

collected on winding unit. The resultant fibres are drawn to improve its mechanical 

strength. 

Melt Spinning setup in the experiment 

In the present study, polypropylene and thermochromic polypropylene filaments were 

produced on a bench top screw extruder; ESL, U.K. as shown in the diagram (Figure 

1:2), the bench top extruders has a single screw pump (F), a metering pump and die 

head system (B), water cooling bath (C), winding unit (D) and a control panel (A). The 

Cooling air 

Figure 1:1 Principle of melt spinning 

Polymer chips 

Spinning head 

Cooling Winding unit 
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temperature are controlled and regulated in the 3 extruder zones, pump and in the two 

die head zones. Polymer granules are fed through the hopper (E). 

 The molten polymer is forced through a single hole spinneret as a jet. The speed is 

adjusted by the metering pump. All the speeds and temperatures can be controlled via 

the control panel (A). The extruded hot polymer jet can be cooled into a water bath and 

passed through guiding rollers to the lesona winding unit.  

1.3.2 Dry spinning: 

Dry spinning (Figure 1:3) is used for nylon, cellulose acetate, Acrylonitrile. In dry 

spinning the polymer is dissolved in a suitable solvent. The polymer solution is 

extruded through a spinneret. The hot air evaporates the solvent. Fibre becomes dry and 

solidifies due to inert gas or air. The solidified fibres are wound on the bobbins. The 

filaments are then stretched / drawn to improve mechanical strength.  

 

 

Figure 1:2 Schematic diagram of bench top meltspinning 
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1.3.3 Wet spinning: 

Polymers which cannot be melted or dissolved in volatile solvent can be spun by wet 

spinning. Polymer solution is obtained by chemical reaction. The polymer solution is 

extruded into the coagulation bath. Polymer solution strand solidifies by coagulation. 

Drying 

air 

Figure 1:3 Dry spinning 

Polymer solution 

Spinning head 

Drying zone 

Winding unit 
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Fibres such as viscose rayon, casein, poly vinyl alcohol are spun by wet spinning 

(Figure 1:4).   

All above methods can generate fibre diameters up to the micrometre range and 

used for normal textile applications. If fibre diameter can be reduced to nanometre, the 

fibres have unique properties added by the reduced dimension. Nano fibres have more 

surface area compared to micro or macro fibres of the same materials. Nano fibrous 

nonwoven mats have smaller pores. Nano fibrous filters are used for high efficiency 

filters, tissue scaffolds, and drug delivery or as an active surface. Nano is a Greek word 

meaning “dwarf” [35]. Nano is one billionth i.e. 10
-9

 of a meter [36, 37]. 

1.4 Journey from Macro to Micro 

“In essence, the nanoscale of dimensions is the transition zone between the macro level 

and the molecular level” [47]. Changing materials from macro scale to nanoscale can 

change material’s physico-chemical properties (e.g. Electrical, chemical, biological, 

magnetic, optical etc.) as shown in Table 1:1 [33]. Properties of nano materials are 

controlled by their reduced transverse dimension and ultimately depend upon the 

Spinneret 

Figure 1:4 Principle of wet spinnning 

Polymer solution 

Spinning 

Coagulation 

bath 

Winding unit 



Chapter 1  :  Materials and Its Processing at Macro to Nano Dimensions 

8 

quantum effects of atoms/molecules of the material [33, 41]. The properties of the nano 

materials are unique to the nano dimension. The physico-chemical properties changes at 

nano scale compared to a macro scale of the same material. Nanotechnology gives 

opportunity to tailor the material at nano scale/atom level. With the use of 

nanotechnology, new family of materials and devices can be generated. 

 

As particle dimensions are reduced to nano size, more atoms are exposed on surface i.e. 

increased surface area per volume. Surface molecules are the mostly active part in 

chemical or biological systems. For a given mass of material, nanoparticles prove to be 

more reactive than the same mass of large particles [42]. ‘The surface to volume ratio 

determines the potential number or reactive groups’ [33]. The effect of nano dimension 

on material property can be positive (i.e., increased strength, increased reactivity etc.) or 

negative (i.e. increased toxicity, increased instability etc.) [33]. Table 1:2 [30, 51] is the 

summary of unique features noted by various authors. Carbon nano tube (CNT) 

nanotubes are reported for their 100time more tensile strength and 5 time the Young’s 

modules of steel, in spite of its 1/6
th

 of the standard weight. CNTs are also stronger than 

diamond [52]. Increased surface area and quantum effects distinguish nano materials 

form others. A greater proportion of atoms can be found at the surface compared to the 

inside [42]. Optical UV reflective properties of titanium dioxide particles depend on 

size and particle aggregation [43]. Increased surface area can be beneficial (for eg drug 

delivery, conductance etc.)  

 Some of the examples quoted by various authors to describe these dimension in terms 

of scales are as below. In terms of dimensions a few examples are given below [29, 35, 

38]. 

A nano meter is approx. 1/80000
th

 of human hair 

Blood cell is approx. 7000nm 

Ratio of human head to nanometre is nearly same as ratio of earth to human head. 

DNA is about 2.5nm long while sodium atom is about 0.2nm. 

Table 1:1 Unique features of the nanomaterial 

High surface to mass ratio [33] 

High strength , conductivity, Increased resiliency , solubility, durability, 

reactivity [33]  

Higher catalytic effect for reactions [33] 

Ability to cross cellular and sub-cellular membranes [33] 
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Globular proteins are approximately 6 nm in diameter. 

The oxide layers in metal oxide semiconductor devices are integrated electrons of 2 nm. 

Quantum dots are approximately 1-2 nm diameters. 

  

1.5 Nanoscience, Nanotechnology and Nanomaterial 

The capacity to control, synthesise and design materials in the nanometric scale (10
−9

m) 

features one of the main progress directions to use those materials for the development 

of their new applications [31]. “These are all manufacturable dimensions today [29]”. 

Nanoscience and nanotechnology are defined as below [33, 39-42].  

 “Nano science is the study of phenomenon and manipulation of materials at atomic, 

molecular and supra-molecular scales, where the properties significantly differ from 

those at a larger scale” [39, 43]. “Nanotechnologies are the design, characterisation, 

production and application of structural devices and systems by controlling shape and 

size at the nanometre scale” [39, 43, 44]. Norio Taniguchi in 1974 used word 

‘nanotechnology’ to refer the ability of engineering materials precisely at the nanometre 

level [42, 45]. In 1959, Richard Feynman in 1959 [46] discussed about possibility of 

rearranging the atoms, in his lecture ‘There’s plenty of room at the bottom’. Feynman in 

1959 [46] said that we can hardly doubt that when we have some control of the 

arrangement of things on a small scale we will get an enormously greater range of 

possible properties that substances can have and of different things that can we do. 

Table 1:2 Property of different  materials at macro and nano scale 

Substance [30, 

51] 

Property at macro 

scale [30, 51] 

Property at Nano scale [30, 

51] 

Glass Shatters Flexible such as spaghetti  

Steel Hard Malleable such as cheese  

Diamond Extremely hard Rubbery, Spongy  

Platinum and 

gold 

Metal, Inert, 

Unreactive 

Chemical catalyst   

Silver Metal Bioactive  

Aluminium  Combust, can be fuel  

Carbon Soft, malleable Stronger then steel 
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Nano science is interdisciplinary science between physics, chemistry, biology, 

engineering. The “nanotechnology tree” in reference number [47] demonstrates the 

interdisciplinary nature of nano science. 

1.6 Nanomaterials  

“There is a diversity of definitions. The US definition is that “at least one dimension of 

a nanoparticle or the relevant length scale of an exploited phenomenon must lie between 

1 and 100 nanometres (nm)” [29, 30] British thinkers defines “the nanotechnological 

ranges between 0.2 and 100 nm”[29]. In the ISO standard “nano materials are split into 

“nano-objects” (having any external dimension on the nano scale) and “nanostructured 

materials” (having internal structure or surface structure on the nano scale)” [31]. 

Nanomaterial [32] is the ‘building blocks’ of nanotechnology [33]. Nano fibres, 

nanotubes/rods, nanoparticles etc. are examples of nano structuring. Considering 

dimensions, nano materials can be divided as below [13]: 

Nanoparticles (3 dimensional particulates- spherical, granular, crystalline) 

Nanotubes (2 nano dimensions and 3
rd

 higher dimension – nanotubes etc.) 

Nano layers (one dimensional – nano layers. sheets/flake etc.) 

The reasons for the superior performance of nano sized fillers are high volume ratio, 

lower or fewer impurities (so more purity) [13]. Particles with smaller dimensions can 

disperse more homogeneously in to polymer matrix [34]. Nanoparticles can associate 

into extended structures which dominate the rheological, viscoelastic and mechanical 

properties of the nano composites. 

1.6.1 Engineered Nanomaterial 

Nanotechnology gives ability to engineer/tailor materials, structures, devices, systems 

of desired, altered functionalities at molecular/supra-molecular level compared to the 

same material at non-nano form [43]. Evolving definitions of ENMs are [48] as below:  

“Materials meeting the following criteria are ENMs: 

 Consist of particles, with one or more external dimensions in the size range 

1nm-100nm, for more than 1% of their number size distribution. 

 Have internal or surface structures of one or more dimensions in the size range 1 

nm-100 nm [49, 50]. 

 Has a specific surface area by volume ratio greater than 60 m
2
/cm

3
, excluding 

particles with a size lower than 1 nm [48]. 

Som et al (2011)[49] discussed use of ENM for enhancing textile properties. 
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1.6.2 Composites and Nano Composites 

In composite materials “one or more distinctive components dispersed in a continuous 

matrix”. The size of the reinforcement in composite material is reduced from macro, 

meso, micro to nano dimension over a period of time [56]. The use of nano 

reinforcement in polymer composites improves mechanical properties in some cases up 

to 1000% [16]. “Nano structured composites can produce and or enhance 

multifunctionality in ways that conventional composites could not” [16]. "Nano 

composite" is defined as a composite in which the distinctive component, or Gibbsian 

solid phase, is in the nanometre range. Nano composites are formed by blending nano 

fillers of different materials with different dimensions and shapes (nanotubes, flakes, 

clays, spherical etc.) with the material/polymer matrix. [53]. Nano composites are the 

composite with at least one nano dimensional fillers. Gibson et al (2010)[16] gave a few 

examples in his review article and stated that nano structured composites can enhance 

multifunctionality of material properties compared to conventional composites. Gibson 

[16] also commented that tensile strength increased with decrease in particle sizes in 

both micron and nano ranges as long as agglomeration is avoided ‘and even mechanical 

performance of nano sizes reinforcement is superior to its micronized counterpart’.[55]. 

The accepted length for the nano phase is less than 100 nm in at least one dimension. 

The continuous matrices can be ceramic, metallic or organic materials, either in bulk 

form or as thin films [54][57]. Addition of nanoparticles in nano composite enhanced / 

changed various properties such as glass transition temperature, crystallization time, 

stiffness, electrical conductivity, UV adsorption, strength, antimicrobial property, 

abrasion property [58]. The morphology of nanoparticles (i.e. specific geometrical 

dimensions, aspect ratios) influences final nanocomposite properties. The morphology 

of nanofiller can be layered, spherical, circular [53]. Hybrid composite materials are 

formed using nano sized fillers as well as conventional micro scale fibre or particle 

reinforcements [16]. 

 The main filler characterization are given by  

 Chemical composition 

 Shape (often characterise by aspect ratios-spherical, rods, fillers etc. 

 Mean particle diameter, size distribution, largest diameter, hardness, density 

 Particle surface properties (surface area, surface energy) 
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1.7 How to Manufacture Nano Materials 

Nano materials/ nano structures manufacturing process can be broadly categorized into 

two approaches “top up” and “bottom up” with different quality, productivity and cost 

involves (Figure 1:5).  

In the bottom up approach, the material is built from molecule to macro form. The 

material is made atom by atom or molecule by molecule. Bottom up approach is broadly 

splitted into 3 categories: chemical synthesis, self-assembly and positional assembly 

[42]. 

 

 In chemical synthesis, molecules, particulates are produced. These raw materials are 

used to make products in their bulk disordered form or ordered form. 

 In self-assembly, atoms or molecules are arranged in order themselves by physical 

or chemical interaction between units. (e.g. Salt, crystals, snowflakes)[43]. Bottom 

Bottom Up 

Figure 1:5 Principle of Top-down and Bottom-up approach 

Top-down 
Bulk 

Material 

Lithography, 

Cutting, Etching, 

Grinding 

Nano 
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molecules 
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Positional assembly 
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up methods such as self-assembly can be used to build up composite material of 

desired properties [59] 

 In positional assembly, atoms and molecules are manipulated and rearranged one by 

one.  

In a top down approach, the material is reduced to nano scale by process such as 

etching, milling/machinery with lithography, sieving, heat treatments(eg flame spray 

hydrolysis, chemical reactions (e.g. extension of micronisation), precision engineering 

such as milling [43]. 

1.7.1 The Electrospinning Process 

Electrospinning is top-down approach to form nano fibres. Electrospinning is divided in 

to two manufacturing approaches (needle electrospinning and needle-less 

electrospinning).  

Needle electrospinning 

The electrospinning apparatus and process has been described by many researchers in 

various research articles [26, 31–34]. A similar set up has been used in this research, a 

sketch of which is depicted in Figure 1:6. 

 

Electrospinning consist of a pipette or a syringe (3) to hold the polymer solution, a 

target collector (1) and a high voltage supply (7). A syringe pump / gravitational forces / 

pressurized gas are typically used to force the solution.  The solution is forced as per the 

desired feed rate through a small diameter capillary spinneret. The solution forms a 

round shaped droplet at the end of the tip of a needle (spinneret) due to surface tension. 

The solution and collector are connected to a high voltage supply. either one (solution 

Figure 1:6 Schematic diagram of the electrospinning Process 
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or collector) is connected to positive or negative supply. The other (collector or 

solution) is connected to opposing supply or neutral / earth to create an electric field.  

Direct current (DC) power supply is usually used for electrospinning although the use of 

Alternating current (AC) potential is also feasible [33, 35]. The solution in droplets 

becomes charged as the voltage is increased. The same charge generates Coulombic 

repulsions among the solution ions. The higher voltage causes the droplet to elongate, 

due to same charges. As the applied voltage increases, the droplet shape changes from 

round to elongated shape. This shape is called “Taylor cone”. As the applied voltage 

increased, the electrical forces oppose the surface tension. At a critical voltage Vc, the 

applied voltage overcomes the surface tension. At Vc, due to Coulombic repulsions the 

solution jet emerges from the droplet. The jet travels towards the collector in the 

influence of Coulombic force and electrical force between solution and collector. The 

jet splits and stretches due to Coulombic and electrical forces. The jet travels towards 

the collector in a chaotic and zigzag motion due to high voltage, the jet become thinner 

in its path towards the collector. The solution jet either dries out or remains semi wet 

before it reaches the Collector, the jet forms electropun nano fibres on the collector.  

Bubble electrospinning 

 

In BE electrospinning,(Figure 1:7)a compressor (B)(B100SEC, Charles Austen Pumps 

Ltd.) was used to generate compressed air (0.7 ) bar pressure).  

The compressed air was passed through a 15% EC solution reservoir (C) by a 0.8mm 

inner diameter tube. A high voltage supply (Glassman, MK35P2.0-22, U.S.A.) was 

 
 Figure 1:7 Principle of bubble electrospinning 

A 

B 

C 

D 

HV supply 

HV supply 
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connected to 15% EC solution. The potential difference between bubble and collector 

generated multiple fibre forming jets, which are collected on the collector (A).  

1.8 Limitations in Nanotechnology 

Nanotechnology/science and nano materials are still at emerging stage and their positive 

effects and negative effects are still under investigation [60].  

 Knowledge about the effect of ENMs on environment and human health is still 

unknown [61]. 

 Material rules at macro and micro level are not always the same and valid for nano 

domain as well in all circumstances [62].   

 Probably there is a need to develop specific methods to study ENMs, which may be 

different at macro and micro materials [63]. 

 Theoretical hypotheses are needed to be developed for predicting material 

behaviour, property, and characteristics at nano scale.  

 Data about material performance, hazards [64] are still not well established so effect 

of size, shape, surface functionality are relatively unknown at the nano scale [65]. 

 There are several ways of nanoparticle entry into human / animal bodies:-inhalation, 

ingestion, absorbance through skin, injection. Effect of nanoparticles by any of this 

method of entry in to human body needs further studies [66]. The mechanisms of 

nanoparticles on health outcome are still not well known [52, 67]. 

 Direct or indirect and short term as well as long term impact on environment, needs 

study in detail [68]  Effect of nanoparticles on mass pollution [69], nanoparticle 

release rate and reaction rate with air, water.  

 The boundaries/definitions of macro, micro, nano are not very clear. 

 There are not enough data to make effective models/theoretical schemes to predict 

nano material behaviour. 

1.9 Characterization of Nano Materials 

Nanomaterial characterization is very important as nanomaterial properties can change 

with change in size, surface or structure of the material. These parameters not only 

affect functionality and property of the material but also the hazardous effects of them. 

It is very important to make nano materials with desired functional property with 

low/negligible hazard effect.  

Nanoparticle size (i.e. diameter, length, width etc.) can affect various parameters such 

as change in melting temperature and glass transition temperature, toxicity for e.g. 2 
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(nanometer) nm gold particles melt at 650K and 6nm melts at 1150K. Toxicity of TiO2 

depends on particle size [64, 70].   

Material properties depends on surface characteristics such as surface chemistry, surface 

charge, morphology, functionality, roughness, contamination for e.g. greater surface 

area with same surface chemistry will be more reactive [64, 70].  

Material structural properties such as shape (fibre, tubes, spheres, cubes, cylinders, 

horns, rings etc), porosity, chemical composition, crystal structure, aggregation can 

affect nanoparticle properties for e.g. the cytotoxicity and bioactivity of carbon 

materials (carbon nanotubes, fluorescence, graphene, graphite etc.) depends on their 

geometry [64]. 

1.10 Thesis Aims and Objectives 

The main aim of the thesis is to develop functional, structural and smart materials by 

different spinning methods and to characterise the material properties. The aims and 

objectives are divided in to 4 points as below. 

1) To develop functional nanofibres by needle electrospinning 

A) Specifically to investigate nano fibre formation from manuka honey by needle 

electrospinning. Manuka honey is a natural material and it is mainly consumed as 

food, medicine or beauty care product. Honey is consumed as liquid or powder. So, 

the fibrous form will widen the usage of manuka honey. 

B) To study effect of different electrospinning parameters on the manuka honey 

fibre morphologies. 

C) To study effect of different solution parameters on the manuka honey fibre 

morphologies. 

D) To characterise the manuka honey electrospun mat. 

E) To study the antibacterial property of manuka honey electrospun mat. 

Manuka honey electrospun fibres can be used for different area such as medical, 

packaging, cosmetics.  

2) To develop different electrospun fibrous morphologies by needle electrospinning.  

A) Specifically to understand formation of ethylcellulose fibrous morphologies by 

needle electrospinning. Ethylcellulose is widely used in pharmaceutical industries.  

B) To study effect of solvent combinations and proportions on the formation of 

ethylcellulose fibres. In the above study 1, effect of solution and electrospinning 

parameters on the fibre morphology is going to be studied. In study 2, the effect of 

solvent system on the electrospun fibre morphology will be studied. Fibre 
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functionality not only depends on chemical structure but it also depends on its 

shape. The enduse of the fibre is decided by its size and shape (morphology). 

C) To characterise the ethylcellulose electrospun mat 

Ethylcellulose nano fibres can be used for various applications in pharmaceuticals, for 

drug release, for food applications. 

3) To develop different fibre morphologies by bubble electrospinning 

A) To understand formation of different ethylcellulose fibrous morphologies by 

bubble electrospinning. In previous two studies, nano fibres will be produced by 

needle electrospinning. But needle electrospinning has drawbacks such as low 

productivity, needle clogging, limited width, uniform fibre density per cross 

section across the fabric width. Recently, needle-less electrospinning methods 

such as bubble electrospinning were developed to overcome above problems. It 

is important to develop different morphology of electrospun fibres by changing 

different bubble electrospinning parameters.   

B) To study effect of different parameters on the morphology of bubble electrospun 

ethyl cellulose fibres 

C) To characterise bubble electrospun ethylcellulose fibres 

D) To compare morphologies of bubble electrospun and needle electrospun ethyl 

cellulose fibres. 

4) To produce smart fibres by melt spinning process in order to understand 

processability by melt electrospinning. 

A) To develop thermo sensitive polypropylene by melt extrusion. In order to 

develop smart thermochromic fibres by meltelectrospinning, thermochromic 

polypropylene filaments will be developed by meltspinning. It is very important to 

study processability of thermochromic material by melt spinning. Thermochromic 

material is very sensitive to heat and shear, so there are chances of damage to the 

thermochromic materials while melt processing. The same melt spinning process 

parameters can be used for melt electrospinning, if thermochromic fibres can be 

successfully melt spun. 

B) To evaluate the thermochromic effect of the filament 

C) To characterise thermochromic filament 

Thermochromic filament can be used as sensor, fashion and design material.  

The research objectives, findings, conclusions are presented in nine chapters as 

described below.  
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1.11 Thesis Layout, 

Chapter 1. Materials and Its Processing at Macro to Nano Dimensions 

The introduction and literature reviews were covered partly in chapter 1 and chapter 2. 

In chapter 1, fibre spinning methods are described with schematic diagrams.  

Chapter 2. Nanofibres and Principles of Electrospinning  

In chapter 2, the main emphasis was on electrospinning. The effect of various 

parameters on electrospun fibre morphology and advances in electrospinning are also 

discussed in chapter 2.  

Chapter 3. Experimental and Testing Techniques in Details 

Chapter 3 is focused on the description of the instruments used to manufacture, 

characterise spinning solutions and fibres. Principles of viscosity meter, conductivity 

meter, surface tension meter, ATR-Fourier transform infrared spectroscopy (ATR-

FTIR) and ultra violet-visible spectroscopy is also described in details. Fibre 

characterisation methods such as scanning electron microscopy (SEM), X-ray 

diffraction (XRD), ATR-FTIR, tensile testing machine are also described in chapter 3.  

Chapter 4. Investigation, Formation and Characterisation of Manuka Honey 

Nano Fibres and its Antibacterial Properties for Wound Healing 

Manuka honey (MH) is well known due to its unique antibacterial property called 

unique Manuka factor (UMF).Higher the UMF better is the antibacterial property. 

Honey is utilised mainly in liquid or dry powder form. Honey is applied on wound in its 

liquid form. It would be more beneficial, if honey can be converted to nano fibrous 

form. Honey fibres can be applied directly on wound without need of gauge. Not only 

that fibrous material with honey can be used for packaging as well as cosmetics.  

100% MH cannot be electrospun due to its viscoelastic properties. The objective of the 

present work was to electrospin Manuka honey in to nanofibres and maintains its 

antibacterial properties. MH has been successfully electrospun from aqueous solution 

by blending with poly ethylene oxide (PEO). PEO was used as matrix to form fibres 

from MH in the present study. PEO is non-toxic and biocompatible polymer. Different 

properties of Manuka honey (MH) – PEO (MHPEO) solution properties such as surface 

tension, viscosity, electrical conductivity and Ultra Violet-visible spectroscopy were 

measured. Effect of various parameters such as MH concentration, applied voltage, 

needle to collector distance (NTCD), feed rate on MHPEO fibre morphology was 

studied. The interaction between Manuka honey and PEO has been established by FTIR 
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and DSC. The morphological properties of the electrospun fibre mats have further 

shown that smooth, thicker and merged fibres were obtained with higher MH proportion 

and high feed rate. Thin, less merged fibres were obtained with long NTCD and high 

applied voltage. The antibacterial property of the Manuka honey-PEO has been studied. 

50% and 65% MHPEO with 100% MH showed antibacterial property. 

Chapter 5. Investigating the Electrospinning of Ethylcellulose  

The fibre morphology is important for its enduse. The size and the shape of the fibres 

decide its enduse i.e. adds functionality to final fibres. The fibre morphologies are 

affected by various parameters in electrospinning. The objective of the work in this 

chapter was to investigate the formation of different fibre morphologies using different 

solvent system on the electrospun fibre morphology. The selection of desirable solvent 

or solvent system for a particular polymer is very important for the optimisation of 

electrospinning. Ethylcellulose is used as polymer in the present work. Ethyl cellulose 

(EC) is a cellulosic polymer and it is widely used in the drug industry. In the present 

work, 15% (wt./wt.) EC was electrospun with the solvent systems of toluene and 

ethanol in different ratios (100:0, 60:40, 50:50, 40:60, 0:100). The viscosity and surface 

tension showed major effects on the EC fibre morphology and formation of beads. 

Electrospinning was carried at different voltages and NTCD. The effects of different 

solvent ratios (ethanol: toluene) on morphology and/or size of the electrospun fibres 

were investigated by scanning electron microscopy (SEM). Electrospinning of 15% w/w 

EC solutions in 100% ethanol produced round shaped irregular beaded fibres. The shape 

of bead changed from elongated irregular shape to elongated shaped smooth bead as 

ethanol proportion reduced from 60% to 50% in solvent. 15% EC in toluene: ethanol 

(60:40) toluene: ethanol produced smoother and almost bead-less fibres. The 15% EC in 

toluene produced thick, smooth and bead-less fibres. Different properties of the EC 

mats were tested by DSC, FTIR etc.  

Chapter 6. The Case of Bubble Electrospinning of Ultrafine Fibres 

In chapter 4 and 5 production of Manuka honey and ethylcellulose nanofibres was done 

by single needle electrospinning method. Needle electrospinnning systems (single or 

multiple) are not suitable for industrial scale production due to their limitations such as 

needle clogging. Bubble electrospinning (BE) is one of the new needle-less concepts 

developed for industrial scale production. Much more work is done on parameter 

optimisation in case of needle electrospun fibre, but needle-less electrospinning 

methods still lacks optimization of parameters [71]. In the present study EC fibres were 
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produced by bubble electrospinning. We studied the effect of applied voltage and 

solution surface to collector distance on the electrospun fibre morphology. In case of 

SNE, we can control feed rate, but in BE feed rate entirely depends on number and size 

of bubbles produced, which is unpredictable and entirely depends on various parameters 

such as compressed air force, hose pipe diameter, and hose pipe depth in reservoir etc. 

We found an increase in fibre diameter with an increase in distance. In BE, as applied 

voltage increased initially, the fibre diameter decreased but then started increasing with 

increasing applied voltage. The reasons for this behaviour are explained. 

Chapter 7. Development and Characterisation of Thermochromic Polypropylene 

Filament Yarn 

In chapter 4, 5 and 6 electrospinning methods used were based on solution by solvent 

system. Certain polymers and materials degrade or are not easily dissolved in common 

solvents, e.g. Thermochromic pigments can be damaged in most solvent systems. So it 

is very important to find out an alternative method to produce thermochromic nano 

fibres. In that case melt-electrospinning is another method, which could be used for the 

production of thermoplastic polymers. In order to develop mel-telectrospinning, it is 

very important to study processing of thermochromic polypropylene by meltspinning.  

In the present work, thermochromic polypropylene mono filaments were melt spun 

using a Lab spin Screw Extruder with water cooling. It is very important to use screw 

extruder to blend polypropylene and thermochromic pigment. Similar feeding 

mechanism can be used for melt-electrospinning. Hence, it is very important to 

understand effect of different parameters (temperature, shear stress, pressure etc) on 

fibre morphology.  

In the present work, pure polypropylene filament and thermochromic polypropylene 

filament were produced with the same parameters. Both the filaments were studied and 

compared at various properties. Visual observation suggests uniform distribution of 

pigments in the polypropylene matrix. The colour change was gradual from blue to 

colourless above approximately 37
o
C. When cooled, the colour reversed back again to 

the original colour.  SEM images suggest smoother surface for polypropylene compared 

to thermochromic polypropylene. The thermochromic pigments contributed in the 

formulation of rougher thermochromic filament surface. The maximum load value was 

found higher in polypropylene, and the elongation value was found higher in the 

thermochromic filament. The low strength of thermochromic filament is due to size, 

shape and distribution of the thermochromic pigment in the polypropylene. The DSC 
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results showed two endothermic peaks for the thermochromic bead. The lower 

endothermic peak suggests activation temperature. The thermochromic filament showed 

three endothermic peaks, the third endothermic peak is due to polypropylene. The XRD 

results have found all peaks of polypropylene and also the peak of the thermochromic 

pigment.  

Chapter 8. End uses and Future Work   

This chapter deals with the possible scope of the extension of the present work. The 

chapter also states the possible end use of the developed fibres in the present work. 

Chapter 9. Conclusion 

This chapter deals with the summary of the work and conclusion of the present work. 
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Chapter 2  :  Nano Fibres and Principles of Electrospinning 

2.1 Introduction  

The prefix ‘Nano’ is a Greek word meaning ‘dwarf’ and in the scientific content denotes 

the one billionth part  910  of an entity[1, 2]. Nanotechnology is an emerging 

interdisciplinary technology. The fundamental of nanotechnology lie in the fact that 

properties of substances changes when their size is reduced to nanometer range [3]. The 

combination of high specific surface area, flexibility and superior directional strength 

makes nano fibres of different types suitable for a wide ranging applications from clothing 

to reinforcement in aerospace structures [4], filters [5], [6], membranes, tissue 

engineering[7],wound healing, transportation and drug release[8], also in areas of materials 

science, mechanics, electronics, optics, medicine, plastics, energy, and electronics[7, 9].  

2.2 Methods of Producing Nanofibres 

It is impracticable to spin nanofibres by conventional polymer spinning methods such as 

melt, wet, dry or gel spinning. A number of processing techniques such as drawing, 

template synthesis, phase separation, self-assembly, electrospinning[10] , centrifugal 

spinning[11] (Force spinning 
TM

)[12, 13] have been used to produce nanofibres in recent 

years. Electrospinning has attracted much attention recently due to the versatility [10, 14] 

and ease with which nanometer diameter fibres can be produced from natural and synthetic 

polymers [14, 15], ceramics[16–22] or composites[10, 22, 23]. The most important 

methods of producing nano fibres are discussed briefly in Table 2:1 [13], [24–30]. 
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Table 2:1 Comparison of processing techniques for obtaining nano fibres 

Process Technical 

advantages 

Can the 

process 

be 

scaled? R
ep

ea
ta

b
il

it
y

 Convenient 

to process? 

Control on 

fibre 

dimensions? 

Advantages Disadvantages 

Drawing Laboratory x √ √ x Minimum equipment 

requirement, vast material 

selection, simple method 

Discontinuous 

process, low 

productivity 

Template 

synthesis 

Laboratory x √ √  √ Fibres of different diameters 

can be easily achieved by using 

different templates 

Limitation on fibre 

dimensions and 

arrangements 

Phase 

separation 

Laboratory x √ √ x Minimum equipment 

requirement. Process can 

directly fabricate a nanofibre 

matrix. Batch to batch 

consistency achieved easily. 

Mechanical property of the 

matrix can be tailored by 

adjusting polymer 

concentration. 

Limited to specific 

polymer, lack of 

control on fibre 

orientation and 

arrangement 
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Self-

assembly 

Laboratory x √ x x Good for obtaining smaller 

nanofibres 

Complex process, 

lack of control on 

fibre orientation and 

arrangement 

Electrospin

ning 

Laboratory (with 

potential for 

industrial 

processing) 

√ √ √ √ Cost effective, long continuous 

nanofibres can be produced, 

easy setup, vast materials can 

be spun, versatile 

Jet instability, use of 

high voltage, often 

toxic solvents are 

used 

Centrifugal 

spinning 

Laboratory (with 

potential for 
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2.2.1 Drawing 

In drawing, nano fibres are produced by drawing polymer solutions [30]. A micro 

pipette with a few micrometres in diameter was dipped into a droplet (Figure 2:1). The 

micro pipette then moved from the liquid at a speed of 1 x 10 
-4

 ms
-1

, resulting in a nano 

fibre being pulled. “Drawing a fibre requires a viscoelastic material that can undergo 

strong deformations while being cohesive enough to support the stresses developed 

during pulling. The drawing process can be considered as dry spinning at molecular 

level” [24]. 

2.2.2 Template Synthesis 

In template synthesis polymer solution is extruded by applying pressure on the polymer 

solution. The solution is extruded from template membrane with nanometer sized pores. 

The polymer solution is forced to extrude through these pores. The extruded solution is 

exposed to solidifying into nano sized fibres [24] (Figure 2:2). 

Polymer 

Solution 

Water 

Extruded 

nanofibres 

Aluminium Oxide 

membrane 

Pressured 

water 

Solidification 

solution 

Figure 2:2 Principles of nanofibres by template synthesis 
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pipette 
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Figure 2:1 Principles of nanofibres by drawing 
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2.2.3 Self-Assembly 

Self-assembly of nano fibres refer to the build-up of nano scale fibres using smaller 

molecules as basic building blocks. Self-assembly is a process in which individual, pre-

existing components organize themselves into an ordered structure required for specific 

functions without human intervention. The key challenge in self-assembly is to design 

molecular building blocks that can undergo spontaneous organization into a well-

defined pattern that mimic complex biological systems. Self-assembly takes place by 

non-covalent bonding, which typically includes hydrogen bonding, ionic bonding, 

water-mediated hydrogen bonding, hydrophilic interaction, and van der Waals 

interaction. Although each of these forces is rather weak, their collective interactions 

could produce very stable structure that could closely match the structural features of 

biological systems through self-assembly [24].  

2.2.4 Phase Separation 

In phase separation a polymer is firstly mixed with a solvent before undergoing 

gelation. The main mechanism is the separation of phase due to physical 

incompatibility. The solvent is then extracted, and the other remaining phase is left 

behind (Figure 2:3). 

In phase separation 5 steps are involved. Raw material dissolution, gelation and phase 

separation at low freezing temperature, solvent extraction / exchange by immersing in 

water, freezing, and freeze drying. It takes prolonged time to convert polymer in to 

nano-fibrous structure. 3D nanostructures without using any sophisticated equipment 

Figure 2:3 Principles of phase separation 
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can be produced by this method. The scaffold porosity and mechanical properties can be 

controlled.  It is very difficult and perhaps not feasible to maintain fiber orientation 

[24][30] in phase separation. 

2.3 History of Electrospinning 

Electrospinning is an old technique. Electric force is an important element of 

electrospinning, the electric force can accelerate the electrified solution [36]. It was first 

observed in 1897 by Rayleigh [37], studied in detail by Zeleny (1914) [38, 39] and Sir 

Taylor in (1964) [37, 40, 41] on electrospraying. Electrospraying and electrospinning 

are based on the same principle. The solution is charged between the feed mechanism 

and collector, so the solution is ejected. If the solution has not enough viscoelastic 

property and chain entanglement, it will be converted into droplets.  A jet of low 

molecular weight breaks up into small droplets, which is a phenomenon termed 

‘electrospraying’ [42-44].  If the solution has enough chain entanglement and 

viscoelastic properties, it will form a continuous jet. Polymer solution with sufficient 

chain overlap and entanglements undergoes various instabilities between the capillary 

tip and the grounded target, which results in thinning of the jet and formation of the 

submicron scale fibres [45]. This process is known as electrospinning, as already 

discussed. Critical polymer concentration ’cov’ can dictate the behavior of 

electrospraying /electrospinning. This critical concentration is different for each type of 

polymer – solution. The critical concentration represents the critical chain overlap 

concentration, where entanglement begins to occur. The polymer concentration ‘c’ must 

be chosen such that a threshold ratio c/cov is overcome to produce fibres [41]. The 

process of electrospinning was patented by J.F Cooley [46] in February 1902 and by J. 

Morton in July 1902 [47]. Further developments toward commercialization were made 

by Anton Formhals, and described in a sequence of patents from 1934 [48] to 1944[48] 

for the fabrication of textile yarns. Electrospinning from a melt rather than a solution 

was patented by C.L Norton in 1936 (U.S. Patent 2,048,651) using an air-blast to assist 

fibre formation. Sir Geoffrey Ingram Taylor produced the theoretical underpinning of 

electrospinning; i.e. Taylor Cone [50]. 

2.4 Theories of The Electrospinning process  

The properties of electrospun fibres are due to complex interaction of parameters such 

as solution rheology, electrical charges, atmospheric parameters and spinning process 

set up parameters [51]. To understand it properly the process is divided into three 

stages. Different authors gave different names. e.g. Wang et. al. [52] (2006).   
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 jet initiation,  

 jet elongation with or without branching and/or splitting  

 Solidification of jet into nano fibers[53]. 

Some authors divide it into four stages: [54]  

 Base region  (the jet emerges)  

 Jet region (jet travels ) 

 Splaying region  / Jet thinning region  ( jet divides in to many jets) 

 Collection region  

2.4.1 Jet Initiation / Base Region / Taylor Cone Region 

The polymer solution/melt always has positive and negative ions. All the ions are in 

equilibrium, so polymer solutions are electrically natural. Due to applied voltage (either 

positive or negative) excessive electrical ions are created (positive or negative 

depending on applied charge). Once the voltage is applied the ions move between 

voltage supply and solution. If a negative voltage is applied to the solution, the negative 

ions will move into solution and a positive charge will move towards voltage supply. In 

this process excess negative ions will be gathered on the droplet, and the highest charge 

density will occur at the top of the cone. The Coulombic repulsion among same charged 

ions increases with higher voltage [51]. With increase in voltage, at a critical voltage Vc 

the Coulombic repulsions will overcome the surface tension and jet flow initiates. 

Figure 2:4helps to explain the charges in the droplet shape with increase of applied 

voltage. When the voltage (v) is zero, the solution droplet has a circular shape under the 

influence of surface tension. The surface tension favours a spherical shape with a 

smaller surface area. As the voltage is increased, the Coulombic repulsions among 

solution ions act against surface tension and will charge and change the circular shape 

of the droplet to a conical shape. The conical shape of the droplet is called “Taylor 

cone”. Taylor showed that a conical shaped surface, referred to as the Taylor cone, is 

formed with an angle of 49.3°[50] when a critical potential is reached to disturb the 

equilibrium of the droplet at the tip of the capillary, that is initiating surface [31] see 

Figure 2:4. Due to the application of the electric field, a charge is induced on the surface 

of the droplet. This charge offsets the forces of surface tension and the droplet changes 

shape from spherical to conical. When the intensity of the electric field (V) attains a 

certain critical value (
cV ), the electrostatic forces overcome the surface tension of the 

polymer solution and force the ejection of the liquid jet from the tip of the Taylor cone. 
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The highest charge density is present at the tip of the cone from where the jet is 

initiated. Taylor showed that 
cV  (in kilovolts) is given by  

 

Vc
2
 = 4 (H

2
 / L

2
) (ln (2L/R) – 1.5)(0.117 π R h)     

                                Equation 2:1 

Where,  

H is the air-gap distance,  

L is the length of the capillary tube,  

R is the radius of the tube (units: H, L, and R in centimetres) and  

h is the surface tension of the fluid (dyne/cm).  

 

 

As can be seen in (Figure 2:4), Taylor predicted the angle of droplet 49.3
o
, when the jet 

initiation occurs. There are controversies about the angle of Taylor's cone. As 

summarized by Teo et al [49] (2011), two independent studies reported 33.5 and 50 

degree as the Taylor cone’s angle. Taylor has proposed a spheroidal shape for initiating 

droplet, while Yarin et al (2001) suggested hyperboloid shape for non-self-similar 

solutions and reported a sharper Taylor Cone for jet initiation. Immediately, after 

leaving the Taylor cone, the jet follows a straight path, and the jet diameter decreases 

with distance from tip [51, 53].  

Taylor cone can precede the initiation of the jet. The jet follows a path that began with a 

straight segment. The diameter of the jet, in the straight segment, decreased 

monotonically with distance from the tip [51]. 

2.4.2 Jet Thinning / Jet Region and Splaying Region 

In this region beyond the base region, the electrical force accelerates and stretches the 

jet. In this region the jet diameter decreases and its length increases rapidly as it travels 

down. The jet comes under the influence of bending instability after the straight 

Figure 2:4 Changes in the polymer droplet with applied potential
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segment of the jet. The jet follows a spiral, zigzag path in a region called the envelope 

cone after the base region.  The apex of the envelop cone starts at the end of the straight 

segment [51]. In this region the amount of mass per unit time passing at any point on 

the axis remains constant [31]. The electric charge moves as ions with the jet. The jet 

travels and stretches in the direction of the electric field towards Collector. The solution 

viscoelastic force of the solution opposes jet stretch. Deitzel at al [55] (2006) explained 

the relation of jet radius with the following equation, assuming electric jet as a 

cylindrical geometry.  

 

RV

A 2
                                                                                 Equation 2:2 

Where 

A is the surface area of the cylindrical volume element,  

V is the volume and  

R is the radius of the jet.  

 

Bigger jet radius will result in lower surface area with the associated specific volume 

element. The jet radius decays very rapidly if the flow rate is slow. Considering that the 

polymer solution density and the surface charge density the constant, the charge to mass 

ratio decreases with increase in jet radius.  

 











m

q
Ea                                                                             Equation 2:3 

Where  

a is acceleration,  

E is the electric field strength,  

q is the available charge for the given volume element and  

m is the mass of a given volume element.  

 

It should be noted that this simplified model of a cylinder was only meant to provide a 

generalized illustration of the interaction between the solution feed rate, electrospinning 

voltage, and the charge to mass ratio.  
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Consequently, as the jet radius increases, the acceleration of the fluid decreases. The 

polymer acceleration is affected by the viscoelastic properties of the jet. The 

viscoelastic properties of jet are affected by the occurrence of solvent evaporation.  

2.4.3 Jet Instabilities  

As the jet accelerates towards the collector, the jet diameter is reduced. The jet thinning 

can be due to solvent evaporation, splaying and/or stretching of the jet. The jet carries 

electrical charges with it as it travels. The same electrical charges in the jet generate 

Coulombic repulsion among solution atoms. The higher applied voltage (Coulombic 

force i.e. radial force) overcomes surface tension (cohesive forces) in the jet. The 

Coulombic repulsions act against cohesive forces and solution atoms to go away in the 

radial directions and stretch the jet in the axial direction. As Coulombic repulsion 

increases, the jet starts splitting in to same diameter multiple jets with similar electrical 

charges in multiple directions. This process of splitting is called splaying [56, 57]. 

Splaying occurs several times until the jet becomes dried into fibre form. After each 

splitting, the charge redistribution occurs into new size/shape. The jets after splitting 

carry same charge, so they move away from each other [53]. Due to these repulsions 

they follow a chaotic path. The jet becomes thinner due to splaying. It is not that only 

splaying is responsible for jet thinning, since stretching is also responsible for it. The 

splaying and splitting can occur simultaneously or independently [54]. 

The jet stretching occurs due to instabilities. The instabilities can cause bending and 

hence further stretching of the jet. The instabilities can be divided into two main parts 

varicose and whipping instability. In varicose instability “the centre line remains 

straight but the jet radius is modulated”.  

In whipping instability “the jet radius remains constant but the centre line is modulated” 

[31, 58]. The varicose instability is known as axisymmetric and whipping instability is 

known as non-axisymmetric instability. The varicose instability can be divided further 

into Rayleigh instability and the electric field induced conducting mode axisymmetric 

instability. Hohman et al. (2001) and Shin et al. (2001) investigated the stability of 

electrospinning PEO jet and concluded that the possibility for three types of instabilities 

(Figure 2:5, Figure 2:6, [51]) [31, 32].  

 Classic Rayleigh instability (axisymmetric)  

 Electric field induced axisymmetric “conducting mode” instability 

 Whipping instability (Nonaxisymmetric instability)  
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The Rayleigh instability occurs due to two opposing forces: Coulombic repulsion and 

surface tension. The surface tension minimized the total surface area of jet while 

Coulombic repulsion expands the surface area. The jet with lower viscoelastic 

properties and with lack of long chain molecules breaks up into droplets with applied 

voltage. The electrical force breaks the jet. Surface tension creates round shaped 

droplets. If viscosity of solution is higher with sufficient chain entanglements, the jet 

will be formed.  

Instabilities 

Varicose Instability 
(Axisymmetric)  

Rayleigh mode 
instability 

Conducting mode  

Conducting mode 
whipping instability  
(Nonaxisymmetric) 

Whipping mode 

Figure 2:5 Instabilities 
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Figure 2:6 Onset development of bending instabilities 
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2.4.4 Jet Solidification / Collection Region 

As the solution jet moves towards collector, it becomes more thin and elongated. 

Solvent evaporation rate, atmospheric parameters, polymer solution proportion, needle 

to collector distance etc. affect the process of solidification. The solution jet either gets 

dried or reaches semi dry. Partially wet fibres get attached at some point with other 

fibres [51, 53]. This is important for overall mat strength [51]. More wet fibres merge 

easily and may become flat. Dry fibres do not merge. The solidification rate varies 

according to solvent.  

As the rapidly ‘whipping’ jet moved towards the target maintained at an attractive 

potential, it continued to expand in to a spiralling and looping path. This continued until 

the jet became fairly thin and was intercepted by target. As explained earlier the longer 

the jet travels, the smaller is its diameter. The solidification of the jet results in the 

deposition of a dry nano fibre on the collector. The solidification rate varies with the 

polymer concentration, electrostatic field, and gap distance. Yarin et al. (2008) used a 

quasi-one-dimensional equation to describe the mass decrease and volume variation of 

the fluid jet due to evaporation and solidification, by assuming that there is no branching 

or splitting from the primary jet. Conglutination is the process by which partially 

solidified jets can produce fibres that are attached at points of contact. Strong 

attachments at crossing points stiffen the mat. This is an important factor in determining 

the mechanical properties of the nonwoven structure. After the onset of bending 

instability, the jet may follow a very complicated path and successive loops of coil may 

touch in flight and form permanent connections [53]. Garlands are nano fibre networks 

formed when loops of an electrospinning jet conglutinate in flight [51].  

2.5 Electrospinning Parameters and Properties of Electrospun Nanofibres  

Nano fibre has unique features and properties gifted by its dimension. Nano fibre has 

more surface area to length ratio, cellular dimensions and hence able to create 

extracellular type structures, ease of functionalizing them; wide range of morphologies.  

The diameter of a fiber produced by electrospinning primarily depends on the spinning 

parameters, solution concentration. It has been found that the morphology such as fibre 

diameter and its uniformity of the electrospun polymer fibres are dependent upon 

various parameters listed below. The ideal targets for electrospinning are morphology 

controllable fibres and mass production. These targets are not easily achievable. Hence, 

more deeply parametric studies are required. Some of the parameters affecting process / 
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electospinnability, productivity, quality, fibre deposition pattern, electrospun mat 

construction, structure and fibre morphology are as below.   

Solution properties: - Solution concentration & viscosity[3, 30, 31, 36, 37, 59–64]; 

Electrical property of solution[3, 31, 37, 60], Elasticity of solution[60, 65], Surface 

tension[3, 37, 60, 63],pH[66],Volatility of solvent[3, 31],Evaporation of solvent [67],  

Solution preparation parameter /method[68, 69], Type of solvent/ Solvent quality [68, 

70–73],  multicomponent solvent [37, 74–77], additives in solvents[3, 78, 79]  

Polymer properties: - Molecular weight of polymer [3, 37, 60, 64, 72, 80–82]; Nature 

of polymer [83]/ Blend of polymers [84] 

Processing conditions:- Applied voltage[3, 31, 36, 37, 60, 64], Distance from needle to 

collector [3, 31, 37, 60, 64], Volume feed rate [31], Needle / extrusion / capillary tip 

diameter[37, 60, 69, 85–89] , Spinneret design[3], AC / DC Supply[35, 90], Multi 

needle/nozzles[3, 91–98], net charge density[63, 99]; Effect of polarity [100–102] 

Atmospheric conditions:-Temperature [3, 60, 103–105] , Humidity[3, 31, 60, 67, 85, 

104, 106, 107], Air velocity[31, 108]/ Gases / Surrounding air /Vacuum condition[31], 

Vapour concentration of solvent [67]  

External Forces: - vibration [99, 109], Electrical field distribution / Supplementary 

Electrode / Insulator [31, 99, 110, 111], Magnetic field [31, 99], Gas-assisted effect [99] 

 Other parameters:-Time of spinning [112], Method of collection [14, 99, 113] , Speed 

of collector[3, 114–118] , Collector geometry /pattern / arrangement[3, 14, 37, 119–

121] combination of some other process with electrospinning (air blowing system) 

[120–123]. 

2.5.1 Solution Concentration & Viscosity 

Solution concentration and viscosity are related. Viscosity is directly proportional to the 

concentration [124]. Solution concentration decides the limiting boundaries for the 

formation of electrospun fibres due to variations in the viscosity and surface tension 

[31]. As the solution concentrations increases from very low to high, the morphology 

changes from beads to beads on string to thick and smooth fibres. Lower viscosity 

solution just spins droplets, while for high viscosity will block the needle and the 

solution will not be spinnable. Hence, optimum concentration/viscosity is required to 

electrospin. Lower viscosity solution gives beaded, short and branched thin fibres while 

higher viscosity solution gives smooth (bead-less) longer and un-branched thick fibres. 

Lower concentration solution can stretch easily also, if has more tendency of creating 

multi-jets by splitting compared to higher concentration solution. So, 
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concentration/viscosity affects fibre morphology. The voltage required to spin viscous 

solution is higher than at a lower concentration solution [3, 30, 31, 36, 37, 59–64]. 

2.5.2 Electrical Property/Conductivity of Solution 

Doshi and Reneker (1995) [125] defined Vstart as the voltage required for jet initiation 

(i.e. voltage required to start a jet from the Taylor cone). They reported that higher 

voltage is needed by the increased concentration of the solution, which shows that 

higher force is needed to electrospin as the solution concentration is increased. A few 

researches have also established the relationship between polymer concentration and 

viscosity required to electrospin fibres. Koski et al [80] (2004) reported that polyvinyl 

alcohol (PVA) can be electrospun, if a solution with higher concentration as found with 

smaller deposition area. Increased concentration resists bending instability. Less 

bending instability results in less flight path and less spreading, which gives thicker 

fibre in a smaller deposition area. Viscosity has no direct effect on concentration on 

fibre formation [24]. Polymer solutions are mostly conductive. The dissolved polymer 

ions in solvent act as charged ions, when electric force is applied to polymeric solution. 

During electrospinning these charged ions flow in the polymer solution under the 

influence of electric force and render the jet to travel towards the collector. Having 

same charges of charged ions in the polymeric solution, they create Coulombic 

repulsion, which in turn helps breaking the Taylor cone to initiate the jet as well as 

splitting the jet further into smaller fibres. Increased conductivity is mainly associated 

with more stretching of fibre to submicron dimension and also to the splitting of the jet, 

which also contributes in further thinning of fibres to submicron dimension. Increased 

conductivity favours mostly bead-less fibres as the beaded jet is stretched to form fibres. 

Hence, controversies also exists, increased conductivity may attract more solution, if 

feed rate is higher. In that case, it will favour thicker fibres and may further depend 

upon the viscoelastic property of the solution which can also favour beaded fibres as [3, 

37, 60, 124, 126]. 

2.5.3 Surface Tension 

The polymer solution initially forms droplets at the end of the needle and gets stretched 

under the influence of electrical force and splits under Coulombic forces. The surface 

tension holds water as droplets, when the Coulombic force exceed surface tension, a jet 

emerges and electrospinning starts. Surface tension holds the solution molecules 

together and has a tendency to reduce the surface area per unit mass of the solution. 
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Increase in surface tension favours bead formation. A solution with higher surface 

tension needs more electrical force to initiate electrospinning [24].  

2.5.4 pH 

The PVA solution conductivity is pH dependent. Increase in pH value gave straighter 

and finer PVA fibres. It is difficult to electrospin PVA in acidic condition [66].  

2.5.5 Volatility of Solvent  

The evaporation rate and the drying time depend on solvent vapour pressure. Solvent 

volatility influenced the phase separation process. Highly volatile solvents create pores 

along the fibre [3, 31]. 

2.5.6 Evaporation of Solvent 

Fibre diameter became smaller when evaporation and solidification happened more 

slowly because of the higher vapour concentration of solvent [67]. 

2.5.7 Solution Preparation Parameter /Method 

When the fully hydrolysed PVA is dissolved at high temperature to ensure embryonic 

crystallites, defect free fibres can be electrospun. PVA/water electrospun fibre 

morphology is affected by temperature. Chain entanglements of the solution are a 

function of the dissolution temperatures. At lower temperatures chain entanglement is 

absent.  Solution preparation time is an important parameter for such systems. Longer 

cooling time results in higher viscosity. The dissolution temperatures and the elapsed 

time influences fibre morphology [68]. “Decreasing PAN concentration and / or 

increasing solution temperature result in progressive reduction of fibre diameter” [69]. 

2.5.8 Type of Solvent / Solvent Quality  

The fibre formation mechanism depends on solvent type, inferior solvent fibre 

formation depends on chain entanglements. The type of solvent plays a vital role in 

determining chain entanglements. A good solvent will generate enough chain 

entanglement for spinning and inferior solvent will form no entanglements [68, 70–73]. 

2.5.9 Multi-component Solvent 

Highly porous PLLA fibres were produced by electrospinning using a ternary solvent 

system of BuOH/DCM/PLLA. Porous fibres were formed with more volatile solvent 

than with less volatile solvent in the spinning solution. Increasing the ratio of non-

solvent/solvent closer to 40/60 generated highly porous electrospun fibres [76]. The 

small fibres are generated from PCL solutions in a mixture of DCM and DMF than in 
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the PCL solution in DCM alone [77]. In case of multi component solvent, higher 

proportion of non-solvent decreases viscosity, so thinner fibres are produced [37, 74–

77]. 

2.5.10 Additives in Solvents 

Salt addition makes the solution more conductive because of higher salt ions. Increased 

salt ions create more self-repulsion of the excess charges on the jet [79]. By the salt 

addition, fibres with uniform diameter and fewer beads were obtained from PEO, 

polyacrylic acid (PAA), polyamide, poly-DL-lactic acid (PDLA) and PS solutions. A 

decrease in PVA fibre diameter is also reported with the higher concentration of NaCl. 

Finer fibres are reported with smaller ionic additive radii. Larger ions produced coarser 

fibres. The mobility of smaller radii ions is higher, which resulted in finer fibres due to 

increased elongation forces [3]. In some cases, higher conductivity due to salt, 

generated thicker jets under the attraction of the electrical force. After addition of 

additive salt, coarser fibres are also reported [3, 78, 79]. 

2.5.11 Molecular Weight of Polymer 

Gupta et al. [127] (2005) determined the critical chain overlap concentration (C*) for 

different Mw PMMA. They reported a decrease in C* with an increase in molecular 

weight. They found reduction in the number of beads and droplets as the molecular 

weight increased. Uniform fibres at concentration greater than C* were obtained. 

Generally the solution viscosity is higher for the higher molecular weight solution. 

Polymer molecular weight represents the length of the polymer chain. In other words 

molecular weight determines entanglement of the polymer chain in solvent [24]. 

Generally higher molecular weight polymers produce thicker and bead-less fibres. 

Molecular weight also affects the fibre cross-sectional shape, fibre diameter, uniformity, 

physical properties of fibres and fibre diameter distribution [3, 37, 60, 64, 72, 80–82, 

124]. 

2.5.12 Applied Voltage  

Applied voltage is responsible for many phenomena such as initiation of jet, instabilities 

in jet etc. Electrospinning is known for its spinning process based on electrostatic 

forces. Applied voltage determines the field strength between collector and solution. Jet 

initiation occurs when the Coulombic repulsive forces generated in the solution drop let 

by applied voltage overcomes surface tension. The speed of jet flight and the jet 

instability are determined by applied voltage. The effect of applied voltage affects fibre 
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morphology further dependent on feed rate and solution properties. Higher applied 

voltage creates more Coulombic repulsions in the bead, so multiple jets are generated at 

a given feed rate which in turn produces thin fibres. As the jet travels, the charge is also 

transported along with it. This electrified jet travels in a chaotic motion and in a circular 

instable path. Coulombic forces split the jet into more jets with higher applied voltage. 

As a result, fibre becomes thinner. Higher applied voltage with relative higher feed rate 

will increase the flow of material in the jet, which generates thicker fibres. As 

discussed, applied voltage not only affects fibre size but also to bead formation. 

Depending on solution properties and other parameters, the beads get larger or smaller 

with increase in applied voltage. Solution with negligible chain entanglement and 

higher surface tension generates droplets (i.e. only beads) called electrospraying. 

A solution with higher surface tension and chain entanglement will create bead on string 

structures. In this case as applied voltage increases bead shapes change from round to 

spindle type and more flatter. It is also reported that increase in applied voltage may 

generate beads and may reduce beads by elongating the solution with higher 

entanglement to a flatter fibre shape. Various researchers used external rings or ring 

electrodes to apply external electric fields. This external electric field created the 

attraction and repulsion on the jet resulting in changes in the jet path. This technique 

can be used in controlling the deposition of fibres [3, 31, 36, 37, 60, 64]. 

2.5.13  Needle to Collector Distance (NTCD)  

The electrospun fibre structure and morphology is affected by NTCD, as NTCD affects 

the deposition time, evaporation rate, electric field strength and whipping or instability 

interval. Usually less NTCD favours wet and beaded fibres [3]. As NTCD is increased, 

fibres are elongated due to increase in flight time. An increased distance provides more 

time for stretching of the beads, which generates less beaded fibre. As fibre travels more 

they become thinner and expose more surfaces to air, so it also becomes drier too. This 

is not the case always, in spinning of PVA, gelatine and chitosan for example there is no 

significant changes in fibre size is observed with increase in NTCD. Some researchers 

noted increase in fibre diameter with increased NTCD, the reason reported is because of 

the reduction in the electric field per unit distance. As NTCD increases, electric field per 

unit distance reduces, less stretching and splitting occurs, which generates thicker fibres 

[3, 31, 37, 60, 64]. 
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2.5.14 Volume Feed Rate / Polymer Flow Rate 

The feed rate of the polymer from the syringe influences the jet velocity and the 

material feed rate. Generally fibre diameter increases with an increased feed rate. 

Increased feed rate also creates more beaded morphologies as they do not get enough 

time to dry before reaching the collector [3]. Low feed rate may block the needle 

depending on solution properties due to fast evaporation of solution [31]. 

2.5.15 Needle / Extrusion / Capillary Tip Diameter 

Various conclusions can be derived by varying needle size. As needle size increased, 

the average fibre diameter is either increased, decreased or has no effect. As needle size 

increases, the material throughput increases. Hence, thicker fibres can be achieved 

depending on solution property and applied voltage. As fibre diameter increases, the 

tendency of splitting increases more. In that case smaller diameter fibres are obtained 

after certain increase in diameters. Few researchers noted no significant changes in 

average fibre diameters [37, 60, 69, 85–89]. 

2.5.16 Spinneret Design  

Various spinnerets were designed to produce core and sheath, hollow fibres [3]. 

2.5.17 AC / DC Supply 

Polyethylene oxide (PEO) electrospinning has been carried out using both DC and AC 

driving potentials has been carried out. The AC potential reduced the fibre ‘whipping’ 

and produced mats with higher degree of fibre alignment [35, 90]. 

2.5.18 Multi Needles / Nozzles 

Multiple needle tips were also used to increase productivity, blends and blend ratios [3, 

91–98]. 

2.5.19 Net Charge Density 

The solution charge density on the electropun jet is due to the jet becoming highly 

unstable in case of high voltage. The solution drips in case of low charge density. Thus, 

there is an optimum voltage for stable spinning where the electric field and the surface 

charges on the jet cause jet acceleration towards the collector. Higher charge density on 

the jet causes greater instability, because the same charges repulsion destabilizes the jet, 

while tangential stress acting parallel to the flow tends to stabilize it. At a high charge 

density, the self-repulsion exceeds the stabilizing tangential stress resulting in bending 

instability [63, 99].  
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2.5.20 Effect of Polarity  

Change of polarity means using negative or positive charge on the collector with the 

negative opposing charge on the solution droplet. Negative polarity gave larger fibres 

than positive ions. The cross sections of polyamide 6 fibres are found flat under 

negative polarity and are found round under positive polarity. When the syringe is 

positively charged, the time take to spin is less than the time required to spin the same 

amount of the solution compared to when the syringe is negatively charged. [100–102]. 

2.5.21 Temperature 

When the temperature is increased polyamide 6, cellulose acetate fibres with decreased 

fibre diameter are produced. 

This reduction in diameter is due to the decrease in solution viscosity at higher 

temperatures [3, 60, 103, 104, 105]. 

2.5.22  Humidity 

Acrylic fibers spun in relative humidity more than 60% did not dry properly.  

Casper et al [106] (2004)studied the effect of different humidity ranges (<25%,31-38%, 

40-45%,50-59%, 60-72%) on polystyrene fibre morphology by keeping the temperature 

constant at 24°C.The results are as shown below in Table 2:2: 

Polyethylene oxide (PEO) in water produced fibres with smaller diameter decreased 

with increased RH%. Beaded fibres were formed in the case of thin jet diameter [3, 31, 

60, 67, 85, 104, 106, 107].  

2.5.23 Air Velocity /Gases / Surrounding Air /Vacuum Condition 

The breakdown voltage of the atmospheric gases is said to influence the charge  

Table 2:1 Effect of humidity on fibre morphology 

Humidity Fibre morphology 

<25% Smooth and pore less 

31-38% Reduced number of uniform and random circular pores 

40-45% Pore shape remained same but they populated heavily 

50-59% Abundant number of pores found surface, leaving little spaces between 

pores. Pores are not circular in shape but has non-uniform shapes due 

to merging of pores 

60-72% Larger and non-uniform pores than 50-59% 
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retaining capacity of the fibres . Pore formation by evaporative cooling is called 

“breathe figures.” Breathe figures occur on the fiber surfaces due to the imprints of 

condensed moisture droplets caused by the evaporative cooling of moisture in the air 

surrounding the spinneret [31].  

2.5.24 Vapour Concentration of Solvent / Solvent Evaporation 

Evaporation and solidification affects fibre diameter and morphology. Reduction on 

fibre diameter is reported, when slower evaporation and solidification were performed 

[67]. 

2.5.25 Vibration 

It has been suggested that the application of vibration technology would lower the 

viscosity and thus improve electrospinning  [99, 109]. 

2.5.26 Electrical Field Distribution / Supplementary Electrode / Insulator  

The polarity and strength of the applied voltage can be altered by auxiliary electrodes. 

Auxiliary electrodes are used to control the deposition location and area of the 

electrospun fibre, aligning nano fibres and forming simple patterns [31, 99, 110, 111]. 

2.5.27 Gas-Assisted Effect  

Highly viscous solutions or solutions with high surface tension require higher forces to 

electrospin. Blow of the jet is used to stretch the fibres along with the electric force. It 

can be improved further by using heated gases or high temperature air, which in turn 

reduces solution viscosity. By using flow of air/gas, fibre deposition can also be 

controlled and finer fibre diameters can also be obtained [99]. 

2.5.28 Time of Spinning  

Aligned PVA fibres were obtained between two collectors for a short time. As the 

deposition time is increased, fibres start forming bundles binding fibres and forming 

fibre tows.[112]. 

2.5.29  Method of Collection 

The method of collection can play and control the deposition of fibres. Various 

collectors have been reported such as knife edge disks, grids, charged needle etc. [99] 

foil, rotating drums, parallel electrodes etc. try to collect fibre assemblies, which is 

explained in detail by Teo and Ramakrishna [14, 99, 113].  
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2.5.30 Speed of Collector 

The take up can be stationary or rotating. A rotating take up system has an effect on the 

molecular structure and on the degree of fibre alignment. Higher speed generates more 

aligned fibres and thinner fibres [3, 114–118]. 

2.5.31 Combination of Other Process with Electrospinning (Air Blowing System)  

In melt blown electrospinning, combining melt blown with electrospinning is used to 

produce higher airflow rate at the nozzle which produces smaller diameter fibres [48].  

This new process offers the following advantages over the conventional electrospinning 

process. (1) The air blow assists the electric field to pull the solution; (2) A decrease in 

the solution viscosity of the jet is achieved by elevating the air temperature and (3) 

Faster evaporation rate [120–123]. 

2.6 Electrospinnability 

Based on the above parameters electrospinnability [128] is defined. “The amount of 

fibres collected on the collector was evaluated within a specified time frame at various 

fluid and process conditions via image analysis and defined as ‘‘electrospinnability’’, or 

in short, spinnability”. The higher spinnability implies a greater chance of the polymer 

solution being spinnable and thus a higher amount of fibre produced within the same 

period of time.  

2.6.1 Advances in Electrospinning  

Electrospinning is a versatile and relatively high productivity method among the 

available methods for nano fibre production. The conventional single needle 

electrospinnning process has low productivity and is not suitable for the industrial scale 

production. Problems such as needle blocking, limited width of fabric, non-uniform 

fibre distribution also limits the use of single needle  electrospinnnig for industrial scale. 

Researchers tried multiple needle spinneret to increase productivity. Problems such as 

lower productivity and limited fabric width were solved to a certain extent by multiple 

needle electrospinning. Problems such as needle blocking still exist. Fabric thickness 

variation along the fabric width is difficult to control in multiple needle electrospinning. 

The distance between needle has to be adjusted every time a parameter, polymer or 

solvent is changed because the interaction between the jets gets altered. Apart from that 

the multiple needle electrospinning has its own inherent problems such as the 

Coulombic repulsions among the jets. The electrical interferences between the jet due to 

Coulombic repulsions limits the number of nozzles to be used per unit area. All above 
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problems diverted research interest towards needle-less electrospinning, with various 

approaches reported. In needle-less electrospinning researchers tried open bath surface 

methods. 

Researchers generated spikes in a solution bath with a magnetic field by attracting the 

magnetic solution underneath the polymer solution. The generated spikes act as taylor 

cones to electrospin the solution into fibres. Researchers also tried rotating spiked 

Table 2:2 Comparison between needle electrospinning and needle-less 

electrospinning 

Needle Electrospinning Need-less Elecrospinng 

Needle blocking can stop process No problems related to needle 

Electrical interference between jets Jets can self-adjust minimum electrical 

interference 

Difficult to maintain cleanliness of 

needles 

No problems related to needle 

Difficulty of adjusting space between 

needle whenever there is change in ay 

parameters to minimize electrical 

interference between jets 

No problems related to needle 

Easy to interpret data as number of jets 

are known 

Not possible to count the jets so hard to 

interpret jet behaviour/ 

Solution properties remain same Solution property may change in case of 

highly evaporating solvent. Solvent may 

evaporate from free surface leaving thick 

solution 

Collector can be placed almost in any 

direction 

Mostly collector has to be above the 

solution 

Core sheath, hollow, multicomponent 

fibres can be fabricated easily 

Not possible or with very difficulties 

 Increased mechanical activities or noise 

level due to rotating parts or air bubbles 

Difficult to maintain same feed rate 

through each nozzle 

 

 More influence of atmospheric 

conditions 
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rollers disks to generate multiple Taylor cones on spikes. Some researchers also used 

bubbles by introducing air into a bath to create multiple Taylor cones. The rotating 

drum concept is industrially accepted for the production of bulk nano fibres for 

commercial use.  

Elmarco designed machine on this principle. Disadvantages of needle blockage, 

uniformity on the fabric width are overcome by needle-less electrospinning. Jets self-

adjust spacing between them to minimize electrical interference from adjacent jets. 

Table 2:3 represents advantages and disadvantages of needle and needle-less 

electrospinning. 
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Chapter 3  :  Experimental and Testing Techniques in Detail 

The following instruments were used during experimental work and testing. Their 

principles and methods of operation are described in detail in this chapter. 

3.1 Solution Preparation 

3.1.1 Ultrasonic Bath 

An ultrasonic bath uses ultrasonic energy to dissolve ingredients.  Its principle and 

mechanism are explained below: the ultrasonic waves pass through the solution and 

create tiny bubbles. This physical process is known as “cavitation”. The produced 

bubbles are compressed due to cavitation. These bubbles act as micro reactors. They 

grow, oscillate, split and break due to temperature and pressure generated by cavitation. 

The collapses of bubbles generate shock waves in the solution and improve mixing. 

This cavitation process ruptures particles, causes mechanical erosion. It also generates 

chemical radicals in solutions. The ultrasonic effect depends on different parameters 

such as sonication time, ultrasonic energy frequency, bath temperature, particle site and 

the position of sample container (vertical/horizontal) in the bath [1]. The ultrasonic 

effect creates mechanical effect and increases solvent penetration into the sample 

matrix. The contact surface area between solid and liquid phase increases due to 

cavitation and bubble collapse [2]. 

 

In the present work, the ultrasonic bath by Decon ultrasonics limited (Figure 3:1) 

(Model – F5 Minor) was used to dissolve polymers and for making homogenous 

polymer solutions for electrospinning. 

   

Figure 3:1 Ultrasonic bath (Decon Ultrasonic – F5 minor) 
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3.2 Solution Testing 

3.2.1 Viscosity 

Viscosity is an important parameter of any solution, because it affects spinnability as 

well as fibre morphology in electrospinning. If the viscosity is too low then fibre cannot 

be formed and only droplets will be formed. If the viscosity is too high then the solution 

will block the needle, hence; spinning will not be possible. 

  

 

Generally, lower viscosity spins beaded fibre and high viscosity produces round solid 

fibres [3],  

 

Figure 3:2 Brookfield DV II Pro Viscosimeter 

Viscometer 

Spindle insertion 

screw 

(a)         (b)         (c) 

(a) Box of different size spindles 

(b) Spindle “S63” and “S64” (Left to right) 

(c) Spindle “S64” 

 
Figure 3:3 Viscosimeter spindles (Brookfield DV II Pro viscosimeter) 



Chapter 3  :  Experimental and Testing Techniques in Detail 

64 

 “Viscosity is a measure of the resistance of a fluid which is being deformed by either 

shear or tensile stress. In everyday terms (and for fluids only), viscosity is "thickness" or 

"internal friction". Thus, water is "thin", having a lower viscosity, while honey is 

"thick", having a higher viscosity. To put it simply, the less viscous the fluid is, the 

greater its ease of movement (fluidity)” [4]. 

A viscometer (also called viscosimeter) is an instrument used to measure the viscosity 

of a fluid. “Viscosity can be determined by measuring a drop between fluid and surface 

due to relative motion between them the fluid remains stationary and an object moves 

through it, or the object is stationary and the fluid moves past it ” [4]. 

In the present work, viscosities of polymer solutions were measured with a Brookfield 

DV-II Pro (Figure 3:2) rotational viscometer. In a rotational viscometer, the spindle is 

rotated in the solution. The torque required to turn the spindle in the solution is 

converted into viscosity of that 0solution. Solution samples were placed in beaker. 

Different spindles are used to measure viscosity of different solutions. All spindles have 

spindle numbers on them for ease of identification. The change in viscosity and shear 

stress with change in shear rate is measured. All samples were placed in the same 

beaker, to get the viscosity of the solutions, spindles “S63” and “S64” (Figure 3:3) were 

used. Factors such as beaker size, spindle size, spindle RPM/shear rate, temperature, 

time, pressure, previous history, solution composition and additives also need to be 

determined. [4]. 

3.2.2 Surface Tension 

Surface Tension is an important solution property, affecting electro-spinnability as well 

as fibre morphology. Surface tension is a property of the surface of a liquid that allows 

it to resist external forces, for example, as in floating of some insects on the surface of 

water (e.g. water striders). “This property is caused by cohesion of similar molecules, 

and is responsible for many of the behaviours of liquids” [7].  “Interactions occur 

between the molecules of a liquid and those of any liquid or gaseous substance which is 

not soluble in the liquid; these result in the formation of an interface. Energy is required 

to change the form of this interface or surface. The work required to change the shape of 

a given surface is known as the interfacial or surface tension” [7]. 

To electrospin fibres from solution droplet at the tip of the needle, critical voltage Vc is 

required. The solution forms round droplet at the end of needle/spinneret due to surface 

tension. As the voltage is applied and increased between droplet and collector, the 

droplet shape changes from round to conical. This elongated form of droplet is called 
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“Taylor cone” [5]. The charges generated between the atoms of the solution due to 

electric charge generate repulsions between them. The droplet becomes elongated. 

When the applied voltage overcomes the surface tension of the solution at a critical 

voltage (Vc), a the jet emerges from the droplet [6]. Surface tension holds the solution 

into a round shape during spinning. A solution with low viscoelastic force and high 

surface tension will form beads [6]. 

In the present work, the Kruss K6 surface tension meter (Figure 3:6) was used. It 

follows the ring method. In the ring method, the ring is dipped in the solution. The 

solution is raised as the ring (Figure 3:5, Table 3:1) is raised from the solution. The ring 

forms a film with the solution sample. The solution is then lowered until the liquid film 

(Figure 3:4) is stretched. As the film is stretched the force is recorded. At only a precise 

maximum force the film will be broken. The reading of this maximum force is recorded. 

At the maximum, the force vector is exactly parallel to the direction of motion and the 

contact angle Ɵ is 0˚. 

          

The maximum force is only determined precisely on the return movement of the ring 

and used to calculate the tension. 

 The calculation is made according to the following equation:  

  
       

      
 

θ (Contact angle) 

Force 

Liquid 

surface 

Ring (Platinum-Iridium) 

Figure 3:4 Schematic diagram of the 

ring methods 

(a) 

(b) 

(a) Solution beaker 

(b) Platinum Ring 

Figure 3:5 Surface tension 

meter accessories 
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 ( =surface or interfacial tension;     =maximum force;   =weight of volume of 

liquid lifted;  =wetted length,  =contact angle)  

 The contact angle θ decreases, with increased extension. The θ has 0° value at the point 

of maximum force, so, cosθ will be 1[7]. 

 Surface tension has the dimension of force per unit length or energy per unit area. 

 

 

 

3.2.3 Conductivity of Solution 

In the electrospinning process, the electric charge is transferred from the electrode to the 

spinning droplet at the needle tip. Solvent conductivity is very important for the transfer 

of electric field to the solution. Solutions with zero conductivity cannot be electrospun. 

Generally, the solution conductivity is found higher compared to solvents, due to free 

Table 3:1 Specifications of ring (Kruss K6) 

Ring material Platinum-Iridium 

Wetted length 119.95mm 

Circumference 59.97mm 

Ring radius 9.545mm 

Wire radius 0.185mm 

R/r 51.6 

 

 

Figure 3:6  Kruss surface tension meter 

Sample Stand 

Dial 
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ions of solutes (polymer and impurities). The polymer itself has ionic functionalities as 

with polyelectrolyte. The electrical conductivity of a solution is due to free ions 

available and ionic mobility. Higher polymer concentration in a solution may reduce 

electrical conductivity due to restricting ionic movements, due to many ions. 

  

Conductivity is the ability of a material to conduct electric current. “The conductivity 

(or specific conductance) of an electrolyte solution is a measure of its ability to conduct 

electricity. Conductivity is traditionally determined by measuring the AC resistance of 

the solution between two electrodes” [8]. 

The basic principle of conductivity measurement is simple. Two electrode plates are 

placed in the sample to apply electric potential, and the current is then measured 

according to: 

                                ( 3.1 ) 

Where G = Conductivity, R = Resistivity, I = Current, E= Voltage 

The basic unit of conductivity is the Siemens (S), formerly called the mho. The 

standardized measurements are expressed in Siemens/cm (S/cm) to compensate with 

any electrode dimension variations.  

               ( 3.2 ) 

Where, C = Specific conductivity; G = measured conductivity and L/A = electrode cell 

constant, where L is the length of the column of liquid between the electrode and A is 

 

Figure 3:7 Oakton CON 110 conductivity meter 
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the area of the electrodes. .Most conductivity meters have a two-electrode cell  with the 

electrode surface made up of platinum, titanium, gold-plated nickel, or graphite.   
 

We used Oakton hand held CON 110 conductivity meter to measure solution 

conductivity (Figure 3:7). Con 110 is microprocessor based conductivity meter with 

LCD display. The meter has a conductivity electrode (ECCONSEN91, electro constant 

=1) with built in temperature sensor. The temperature sensor used for auto temperature 

compensate ion because, the conductivity meter is affected by temperature. The 

conductivity meter is calibrated with calibration solution and then the electrode is 

immersed in the solution to measure the conductivity[9]. 

3.2.4 Ultra Violet-Visible Spectroscopy (UV-vis) 

The visible range of electromagnetic waves is restricted part of the total spectrum. The 

ultra violet (UV) region starts at the violet colour visible range. With any further 

decrease in wavelength from violet the electromagnetic waves fall in the UV region. 

The visible spectrum is considered between 380-770nm and the ultra violet region is 

normally considered from 200-380nm. A wavelength is the distance between adjacent 

peaks (or trough) and can be measured in meters, cm or nanometres. 

The UV or visible light wave passes through a compound. The wave promotes the 

energy level of the electron from a ground level to a higher energy excited level in the 

compound molecules. The electron absorbs energy, when it is promoted to higher 

energy level. For a smaller electron jump less energy will be required compared to a big 

jump. Depending on the required energy, the electron will absorb the light wave. These 

energies can be measured. Wavelength of maximum absorption and absorption intensity 

 

Figure 3:8 Perkin Elmer lambda 2 Ultra Violet-visible spectrometer 

Sample cabin 
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depends on molecular structure. UV-Visible regions are not specific enough to identify 

unknown samples. This data can be useful to confirm sample details. In UV-Visible 

absorption spectrum, the vertical axis shows absorbance (amount of light at a particular 

wavelength that light is absorbed more). In the present study, absorption peak of all the 

solutions were studied in UV-visible range using Perkin Elmer lambda 2 UV-visible 

spectrometer (Figure 3:8). Different amount of light is absorbed at each wavelength. 

Each spectrum can be used to identify chemicals.  

3.3 Polymer and Nano Fibre and Mat Testing 

3.3.1 Cold Field Emission Scanning Electron Microscope 

Principle of Electron Microscope 

The electron microscope uses a beam of electrons to illuminate the specimen and 

produces a magnified image. The ordinary non confocal light microscope can magnify 

an image up to 2000x and is limited by diffraction to about 200nm resolution. An 

Electron microscope uses electrons, which have 1,00,000 times shorter wavelength 

compared to visible light (photons). SEM can achieve resolution up to 50pm 

(picometer) and magnification up to 10,00,000x [10].  

The ordinary light microscope magnifies images by glass lenses to focus light on or 

through the specimen. In electron microscope (EM) electrostatic and electromagnetic 

controls act as lense to focus an electron beam on the image. The electron beam is 

initially diffracted in transmission. Then the electron beam is refocused by the EM. The 

magnified image (from hundreds to many hundred thousands) of the focused area can 

be seen on a screen or film [10].  

The electron microscope uses electrostatic and electromagnetic "lenses" to control the 

electron beam and focus it to form an image. These lenses are analogous to, but 

different from the glass lenses of an optical microscope that forms a magnified image by 

focusing light on or through the specimen. In transmission, the electron beam is first 

diffracted by the specimen, and then, the electron microscope “lenses" re-focus the 

beam into a Fourier-transformed image of the diffraction pattern for the selected area of 

investigation. The real image thus formed is magnified by a factor ranging from a few 

hundred to many hundred thousand times, and can be viewed on a detecting screen or 
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recorded using photographic film or plates or with a digital camera [10]. 

Scanning Electron microscope 

In scanning electron microscope (SEM) the images of sample are scanned with a high-

energy beam of electrons in a raster scan pattern. The electrons interact with the atoms 

of the sample and generate signals containing sample surface topography information. 

The SEM uses secondary electrons, back-scattered electrons (BSE), characteristic X-

rays, light (cathodoluminescence), specimen current and transmitted electrons to create 

images.  

A wide range of magnifications is possible, from about 10 times (about equivalent to 

that of a powerful hand-lense) to more than 500,000 times, about 250 times the 

magnification limit of the best light microscopes. Back-scattered electrons (BSE) are 

reflected beam electrons from the sample by elastic scattering. BSE are based on the 

  

Figure 3:9 Cold Field Emission Scanning microscope Hitachi S-4300 

Sample cabin 
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characteristic X-ray spectra. The BSE signal intensity is strongly related to the spectrum 

atomic number (Z). BSE images can provide different sample element distribution. The 

emitted characteristic X-rays are used to identify the composition and measure the 

abundance of elements in the sample [11]. 

FE-SEM (Field Emission Scanning Electron Microscope) 

The FESEM are high vacuum instruments (less than 1x10
-7

 Pa in the gun zone). The 

vacuum allows electron movement along the column without scattering and helps 

prevent discharges inside the gun zone. 

The electron gun provides a large and stable current in a small beam. The type of 

emitters (thermionic emitter and field emitter) makes difference between the Scanning 

Electron Microscope (SEM) and the Field Emission Scanning Electron Microscope 

(FESEM). Thermionic emitters in SEM use electrical current to heat up a filament. The 

two most common thermo-emitter filaments are Tungsten (W) and Lanthanum 

Hexaboride (LaB6). Field Emission in FESEM generates electrons and avoids heating. 

A Field Emission Gun (FEG) (cold cathode field emitter) does not heat the filament. 

The emission is initiated by placing the small tip tungsten filament in a huge electrical 

potential gradient. An electric field can be concentrated to very high level due to the 

small tip radius (100nm). FESEM produces a cleaner image, less electrostatic 

distortions and spatial resolution < 2nm (that means 3 or 6 times better than an SEM) 

due to using a field emission gun. 

In the present work, a Hitachi S-4300 CFE-SEM (Figure 3:9) was used to investigate 

fibre morphology. All samples were placed on SEM stubs. Sample images were 

   

Figure 3:10 Polaron (SC7620) Sputter coater 



Chapter 3  :  Experimental and Testing Techniques in Detail 

72 

obtained after coating with gold palladium. Different accelerating voltage (Usually 

1kV), and current of 10µA were used. 

Sample preparation for SEM 

All samples in the present work were coated with gold-palladium for 45 or 60 seconds 

at 18mA. All samples on stub were coated by Polaron Sc7620 (Figure 3:10), Quorum 

technologies Ltd, UK). The coating was performed under an Argon gas environment. 

Due to nonconductive nature of the electrospun fibres, a conductive coating is needed 

for a better image in SEM. The electron beam can interact with the conductive coating, 

which is needed for SEM images. 

3.3.2 X-Ray Diffraction (XRD) 

X-rays are electromagnetic radiation with wavelengths between about 0.02 Å and 100 Å 

(1Å = 10
-10

 meters). Our eyes are sensitive to the different wavelengths of visible light 

in the electromagnetic spectrum which appear to us as different colours. X-ray 

wavelengths are similar to atoms size and they are useful to explore crystals. 

X-rays have smaller wavelength than visible, which is higher in energy. X-rays with 

high energy can penetrate in to the matter more easily than visible light.   

X-ray Diffraction and Bragg's Law 

X-ray diffraction (XRD) is a non-destructive tool to analyse all kinds of matter ranging 

from fluids, to powders and crystals. XRD is used in research, production and 

engineering for material characterization and quality control. X-ray crystallography is 

the study of crystal structures through X-ray diffraction techniques. X-ray 

crystallography leads to understand the material and their molecular structure of the 

substance. The x-ray beam on a crystalline lattice in a given orientation is scattered in a 

definite manner depending on the atomic structure of the lattice. Solid matter can have 

distinct states according to molecular/atomic arrangements: crystalline and amorphous. 

Crystalline: The atoms are arranged in a regular pattern, and there is the smallest 

volume element that by repetition in three dimensions describes the crystal. 

Amorphous: the atoms are arranged in a random way similar to the disorder we find in a 

liquid. [12]“....every crystalline substance gives a pattern; the same substance always 

gives the same pattern; and in a mixture of substances each produces its pattern 

independently of the others.” [13]  
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When X-ray hits a solid atom, each atom acts as a source of radiation. The electron 

gains energy and starts oscillating at the same frequency as the incoming X-ray energy 

field. If the atoms in the crystals are arranged in a regular pattern, the energy leaving the 

solid will be in constructive interference in few directions. If the atoms are not arranged 

in a pattern, destructive interference will occur. The energy leaving the atom will reduce 

or there will be no energy. The constructive interference and destructive interference 

provide a diffraction pattern. 

If troughs and crests of the waves are in phase with each other (i.e.; trough facing trough 

and crest facing crest), their amplitude will be added. The resultant wave will have 

higher amplitude compared to the incident wave, this is called constructive interference. 

If the troughs and crests are not in phase with each other (i.e. displaced and not facing 

each other), their resultant amplitude will decrease, this is called destructive 

interference. When troughs and crests are out of phase with each other (i.e., troughs 

facing crests and crests facing troughs) their resultant amplitude will be zero. The 

resultant wave will be completely destroyed. Figure 3:11 shows two parallel X-rays 

(Ray 1 and Ray 2) heating two planes. The distance between the planes is d. Ray 1 is 

reflected back from the upper atomic plane and Ray 2 is reflected back from the bottom 

atomic plane at an angle “θ”. Ray 2 has to Travel “2a “distance more than Ray 1. 

Where 

a = dsinθ 

2a = 2dsinθ 

θ θ 

a a 

d 

d 

Figure 3:11 Bragg’s Law 
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Now if “nl” represents wavelength number then: 

2a = nl 

nl = 2dsinθ 

2a ≠ integral number: Ray 1 and Ray 2 are not in phase. That will lead to destructive 

interference 

2a = integral number: Ray 1 and Ray 2 are in phase. That will lead to constructive 

interference 

This is referred to as Bragg's Law for X-ray diffraction. 

From the X-ray wavelength (l) angle (q) can be measured and the spacing (d) between 

the atomic planes.   

                

By reorienting crystals, the atomic plane will be exposed to X-rays. The d-spacing 

between all atomic planes in a crystal can be measured. Hence, the crystal structure and 

the size of a unit cell can be determined. XRD peaks (Figure 3:12) are very 

important/unique for every substance. The peak position, peak width and peak intensity 

are important and unique parameters for every substance [14] 

The X-ray Powder Method 

In order to determine d spacing for all atomic planes, it would be time consuming to 

reorient the crystal to measure the angle q. A powder method is used in XRD. The 

substance in powder form will have number of randomly oriented atomic planes. At the 

angle of incident q from 0˚ to 90˚, almost all the angles of diffraction can be recorded 

hence different atomic spacing can be detected. An electronic detector detects X-rays 

from the sample on the opposite side on the X-ray tube at different angles between 0˚ to 

90˚.  

 

Figure 3:12 Typical X-Ray diffraction graph 
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The instrument called goniometer, which rotates both X-ray tube and detector. It keeps 

track of the angle q (Figure 3:13). A computer keeps record of angle q and the X-ray 

intensity is detected. The Graph of X-ray intensity against 2q is plotted and d-spacing is 

also calculated using Bragg’s equation [14, 15]. 

The XRD can be used for various analytical studies. The end uses are as below: 

1. Identification of material: By matching peaks with a database or by comparing 

diffraction patterns with the chemical structure. 

2. Polymer crystalinity: Higher crystalinity causes brittleness of polymers. So it is 

important to know the crystallinity. The crystalline part of a polymer gives a 

sharp narrow peak and an amorphous region gives very broad (halo) peak.  

3. Residual stress: Any process such as mechanical, chemical or thermal generates 

a residual stress. So, by measuring the d spacing, the stress distribution can be 

determined. 

4. Texture analysis: The preferred orientation of the crystallites in polycrystalline 

aggregates. 

In the present study, X-ray diffraction patterns were obtained using a Bruker-AXS 

D8Discover transmission (Figure 3:14) X-ray diffractometer under a scanning range 

3 to 85 2theta and step size of 0.202 which means 4061 steps at 5 seconds/step. The 

total scan time is 35 mins 16 secs; Using a Cu kAlpha source, Lamba 1.5406 

angstroms; and scanned at 40kV, 40mA. 

Sample Powder 

Figure 3:13 Schematic diagram of XRD 
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3.3.3 Differential Scanning Calorimetry 

DSC measures the overall heat flow and temperature associated with phase transition as 

the function of the time and temperature of a solution. DSC is a thermo analytical 

technique to characterize the melting behavior, crystallization, solid-solid transitions, 

solid-liquid transition, chemical reaction of a solution [16]. With the help of DSC, 

different phase changes can be studied, which are not visible to the eye. Every material 

changes its state when heated or cooled for e.g. water becomes ice, when cooled and 

vapor when heated. The molecules gain energy as a material is heated. Hence, when 

liquid heated to vapor, the molecules get enough energy to escape from a rigid liquid 

structure to less restricted vapor structure. Here the material gains energy, hence, it is 

endothermic transition. The energy/ unit mass is called latent heat. Here the energy 

supplied does not change or changes very little until a phase change is completed. 

 

Figure 3:14 Bruker-AXS D8Discover transmission X-ray diffractometer 
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As a material is heated, it shows different thermal phenomena as a DSC curve. Glass 

transition (Tg) occurs in an amorphous material at Tg the heat capacity of the material is 

increased with more mobility of molecules.  

rystallization occurs, when a material is heated beyond Tg. Here the material becomes 

more ordered. The crystallization process is exothermic; hence, the thermal energy is 

released. Material releases energy, while changing from amorphous to a crystalline 

state. A melting peak Tm occurs when the material melts. A material cannot melt unless 

it is in a crystalline form. Melting is an endothermic process as the material absorbs 

energy to melt.  

  

In DSC the difference in the amount of heat required to increase the temperature of a 

sample compared to reference is measured as a function of temperature. Usually an 

empty pan is used for reference. The sample and reference are kept at the same 

temperature during the whole experiment. 

 The temperature program maintains the ΔT/Δt (heating rate) constant, but the heat flow 

(ΔQ/Δt) changes. The pan with sample in it heat up at different temperature than the 

empty pan, in spite of the same heat rate applied to both. Because the heat capacity of 

any material is different than air, so in order to maintain the same heat, higher/less heat 

flow will need to be supplied at the same heat rate. A computer keeps record of the 

temperature, heat rate and heat flow. The heat flow can be measured as an endothermic 

or exothermic peak. Heat flowing to the sample depends on whether the process is 

exothermic or endothermic. 

 

 

Figure 3:15 Schematic DSC curve 
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Some measurements can be done from the DSC data, are as given below. A typical 

DSC curve is shown in Figure 3:15.  

 Glass Transitions 

 Melting and Boiling Points 

 Crystallisation time and temperature 

 Percent Crystallinity 

 Heats of Fusion and Reactions 

 Specific Heat and Heat Capacity 

 Oxidative Stability 

 Rate and Degree of Cure 

 Reaction Kinetics 

 Percent Purity 

 Thermal Stability 

 

Sample Preparation 

Thermal analyses of samples were done by a METTLER-TA instrument DSC12E 

(Figure 3:16). TOLEDO-TA89 E software was used to obtain DSC curves. 

Samples are kept in an aluminium pans with lid. The lid is fixed in the DSC sampler, 

and 4-5 grams of sample is weighed into an aluminium pan (Figure 3:17). A small hole 

is created on the top of the lid to allow air or any gas medium to enter in to aluminium 

 

Figure 3:16  METLER-TA instrument DSC12E 

Sample cabin 
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pan. The aluminium pan with the sample in it is kept in to DSC together with the empty 

aluminium pan. Factors such as scan rate, pan type, gas type, heating rate, sample 

weight can affect DSC results.  

 

3.3.4 Fourier Transform Infrared (FTIR) Spectrometry  

IR radiation excites molecules into higher energy state. As IR is passed through a 

sample, some of the IR is absorbed by the sample and some passes through it. As a 

result, the IR patterns of molecular absorption and transmission unique to the tested 

sample are generated. IR is like a fingerprint for every particular type of material. The 

chemical bonds oscillations can be in any of the forms such as vibration, stretching, 

bonding, rocking, wagging. The vibration occurs at a specific frequency according to 

bonds present between atoms. According to the molecular structure, the IR radiation 

wavelength is absorbed. The wavelength absorbed by a particular molecule is decided 

by the energy difference between rest and excited vibrational states. 

The absorption wavelength is proportional to initiate intra molecular oscillations. There 

are different regions allotted to IR waves.14000cm
-1 

to 4000cm
-1

 for near infrared 

(NIR), 4000cm
-1

 to 400cm
-1

 for mid infrared (MIR) and 400cm
-1

 to 10cm
-1

 for far 

infrared (FIR). FTIR is the data processing technique for infrared raw data converted to 

understandable data/graphs. FTIR is useful for identifying any organic or inorganic 

chemicals in solid, liquid or gas form. It is useful to identify functional groups in 

chemical bonds [17, 18]. 

The molecular motions can be associated with functional group oscillations, which are 

always at the same location of the IR spectra irrespective of the substance. Any IR 

 

Figure 3:17 DSC Sampler 
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absorption pattern can be easily differentiated for each compounds and can be used as a 

fingerprint for that specific substance [18, 19]. 

Higher to lower energy electromagnetic waves in the visible range appears as different 

colours. 

 

On the lower end of the visible range the infrared zone starts. Infrared waves have lower 

frequency and longer wavelength compared to visible range electromagnetic waves. 

IR spectra can be used for compound specific detection and identification. According to 

Beer’s law, the IR spectra can also be used for quantitative analysis. The intensity or the 

amplitude of the absorbance (i.e. peak height) is proportional to the concentration of 

compounds [19].  

 

A = a.b.c  

Where, A =absorbance, a = absorbance, b = path length, c= sample concentration 

 

The FTIR is an analytical technique for IR spectroscopy and it converts IR data into 

useful quantitative as well as qualitative form. The mathematical technique called 

Fourier transformation and it is used to decode IR data. 

The FTIR spectrometer plots a graph of absorbance (or % transmittance) vs energy in 

the form of wave number cm
-1

. The IR wavenumber range depends upon the detector 

 

Figure 3:18 ATR-FTIR Perkin-Elmer Spectrum 100 FT-IR 

Sample table 

Plunger  
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but usually the 500-4000cm
-1

 range is studied. The FTIR spectrometer can be devided 

into two regions. 1600-4000cm
-1

 is called “functional group region” and 500-1600cm
-1

 

is called “fingerprint region”.  The functional group region shows peaks related to 

stretching motions of the functional groups. The peaks are easily identifiable for groups 

such as alcohols, amines, aromatics, amides, aliphatic, alkenes, acids, esters and 

acrylonitrile. In the fingerprint region the peaks are complex and overlap with each 

other. The pattern of peak in this region is very important; it can be used as fingerprint 

for a particular compound [19]. 

 Sample Preparation 

Sample preparation is a very important part of conventional FTIR. In conventional 

FTIR the solid sample has to be in a thin film form. It is not possible to convert all 

chemical components in thin films on their own. Few substances such as KBr, BaF2, 

AgCl. have no peaks or minimum identifiable impact on IR spectra. Such substances 

can be used as matrices to form thin films of the chemical compounds for IR study. The 

matrix material should be chosen such that it should not react with the chemical 

compound. The process of making film is time consuming. A new technique called 

“Attenuated total Reflection” with nil or very small sample proportion is now used. In 

ATR, the IR beam is passed through an optically dense crystal with higher reflective 

index at a certain angle. The fraction of the incident beam reflected and the wave 

extends beyond the crystal surface into sample held on the crystal. The wave only 

penetrates 0.5µ to 5µ beyond the crystal into the sample. So, the sample and crystal 

must be in good contact. The ATR method is a versatile method for any shape, 

configuration, thickness, liquids, solids and powders can be analysed [19]. 

There are a number of crystal materials available. Zinc selenide (ZnSe) and Germanium 

crystal are widely used.  

Infrared spectra were obtained on the Perkin-Elmer Spectrum 100 FT-IR (Figure 3:18). 

The universal ATR sampling accessory, deposited neatly onto a diamond/ZnSe plate. 

The scans were carried out between 650 and 4000cm
-1

 at the resolution of 4cm
-1

. 

3.3.5 Tensile Test 

In the present study tensile tests were done to characterize and compare the mechanical 

properties of samples. The Instron tensile strength tester used is working on constant 

rate of extension principle. 

The CRE machine has two clamps. One is stationary and the other is moved at a 

constant speed throughout the test. For yarn and electrospun mat tensile testing, 
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specimens of specific dimensions were taken and extended at a constant rate until they 

broke. The maximum force and elongation at maximum force were recorded. The 

tensile tests were carried out on an Instron tester (Model 3345) (Figure 3:19). 

 

3.3.6 Antibacterial Test 

Gram-positive Staphylococcus aureus and Gram-negative Pseudomonas aeruginosa 

bacteria were used to study the antibacterial properties of electrospun Manuka honey 

mats. The micro-organisms (cultured from NCTC ) were purchased from TCS 

biosciences ltd., U.K.  The micro-organisms were received in 1mm solid domed freeze 

dried pellets forms in small vials. The discs were removed from the vials by sterile 

forceps. Oxoid nutrient broth prepared media in bijoux without salt and with 7.5% salt 

were purchased from fisher scientific, UK. The freeze dried discs were placed in the 

nutrient broth between two flames to maintain sterile atmosphere. The Staphylococcus 

aureus and the Pseudomonas aeruginosa discs were placed in nutrient broth. The freeze 

dried discs were readily soluble in nutrient broth. The broth solutions were gently 

shaken to dissolve the discs completely. The broth bottles were kept in an incubator at 

 

Figure 3:19 Instron Tensile tester (Model 3345) 
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37
o
C for 24 hours. The broth solutions turned turbid due to growth of micro-organisms, 

and were spread on nutrient agar plates with “L shaped” sterile spreader between 

flames. Ready prepared Oxoid nutrient agar plates (90mm) were purchased from Fisher 

scientific, UK. The electrospun mats (15PEO, 50MHPEO, 65MHPEO) were cut into 

round discs, the15PEO and 100% MH solutions were placed on 6mm filter disc. All 

samples were placed on nutrient agar plates and subsequently in an incubator at 37˚C 

for 24 hours. All nutrient agar plates were investigated for antibacterial activities.   
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Chapter 4  :  Investigating, Formation and Characterisation of 

Manuka Honey Nanofibres and its Antibacterial Properties for 

Wound Healing  

4.1 Introduction 

Honey is a wound healing remedy that was used by ancient civilizations [1, 2]. It is 

mentioned as a healing substance in the Bible, the Koran, and the Torah [3, 4]. Honey is 

most commonly consumed in its unpreserved state, i.e. liquid, crystallized or in the 

comb. It is eaten as a food, used as a flavouring agent, food preservative[5, 6], 

sweetener[7], humectant[8, 9], in skin care and beauty therapy products[10, 11] also in 

wound care products, in various cosmetics such as hand lotions and moisturizers to soap 

bars and bubble baths, cleansers, creams, shampoos and conditioners. It is also used as 

medicine (i.e. for wound treatment, ulcers, burns etc.) either by ingestion or by topical 

application [3]. Honey has long been known to possess a broad spectrum of activity 

against a wide range of bacteria such as pathogenic as well food-spoiling aerobes and 

anaerobes, gram-positives and gram-negatives of around 60 species [2, 4, 7, 12-15] 

including MRSA [16]. Other benefits of honey include antioxidant, anti-tumour, 

antiinflammatory, antimutagenic and antiviral properties [6]. The predominant acid 

found in honey is gluconic acid. Some of the components (carbohydrates, water, and 

traces of organic acids, enzymes, amino acids, pigments, pollen and wax) are due to 

maturation of the honey, some are added by the bees and some of them are derived from 

the plants[17].  

The definition of honey depends upon who defines it. Most people think of honey as a 

food, but some others consider it as an elixir, and still some as medicine[15]. The 

factors responsible for the bactericidal activity of this honey are the high sugar 

concentration, H2O2, the 1,2-dicarbonyl compound methylglyoxal (MGO), the cationic 

antimicrobial peptide bee defensin-1 and the low pH[12, 18], high osmolality[16, 19] 

and some physical properties such as high viscosity, acidic pH (3.2 to 4.5) [20] is said to 

be inhibitory to many animal pathogens. 

Active Manuka honey is regarded as a special honey derived from the Manuka tree 

(Leptospermum scoparium) [21] often exhibits antibacterial activity called the unique 

Manuka factor (UMF) [5, 21, 22] that is unrelated to the content of hydrogen peroxide, 

which is responsible for the antibacterial activity of other honeys. This unique activity 
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of Manuka honey is due to the presence of methyl glyoxal [22]. Although very low 

levels of MGO are found in most honey, the high level of MGO in Manuka honey is 

unique. The UMF is rated from 0 (low efficacy) to 20 (high efficacy) and over, with the 

higher rating indicating higher antibacterial potency. UMF rating is based on a well 

diffusion assay where the area of exclusion of bacterial growth that the honey causes 

relative to the phenol control is measured [28]. For example, a UMF rating of 10 has 

equivalent antimicrobial potency to a 10% phenol solution [6]. Active Manuka honey, 

with its non-peroxide, antibacterial activity, is more effective than honey with hydrogen 

peroxide against some types of bacteria [23]. 

Electrospinning is a fibre-forming technology that uses electrostatic force to draw a 

polymer solution into fine jets, producing fibres with a diameter ranging from tens of 

nanometers to several micrometres. These ultrathin fibres have been explored for use in 

applications such as drug delivery, high-performance filters, wound dressing, artificial 

tissue, and protective clothing and as food-related additions as for example in aiding 

digestion.  

4.1.1 Electrospinning Of Manuka Honey 

Electrospinning of various Manuka honey aqueous solutions with concentrations 

ranging from 10 to 60 w/w % were investigated in preliminary research. It was observed 

that droplets fell down from the spinneret and no continuous jets formed, because the 

Manuka honey solutions did not have sufficient viscoelasticity to form a continuous 

stream in the spinning process.  In order to electrospin and enhance the potential 

biocompatibility of the electrospun Mauka honey fibres, all-aqueous process for 

electrospinning of Manuka honey is done in combination with PEO. PEO is well-

documented as a biocompatible polymer and has been successfully blended with 

collagen in electrospinning[24]. A few groups of researchers claimed that biopolymers, 

including collagen, silk, casein, chitosan did not electrospin from aqueous solutions, but 

can be successfully electrospun by blending with PEO [25, 26].  The principles of 

electrospinning are explained in chapter 1, Fig 1:6. The fibre morphology depends on 

various parameters such as solution property, process parameters, atmospheric 

conditions. The present study was conducted to electrospin MHPEO fibres and to study 

the effect of various parameters on fibre properties. Various studies such as DSC, 

mechanical strength, antibacterial property were also investigated. 
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4.2 Material and Methods 

4.2.1 Materials 

Polyethylene oxide (PEO) with an average molecular weight 3,00,000 was purchased 

from Sigma Aldrich, UK. Manuka honey (MH) (UMF 25+) was purchased from 

Holland and Barrat, U.K. All solutions were stored at room temperature and used 

without further purification.  

4.2.2 Solution Preparation 

15% (w/w) PEO solution was prepared in deionised-sterile water. Polyethylene oxide 

powder was added to water at room temperature and dissolved by a mechanical stirrer 

for 2 days. In order to make Manuka honey solution in PEO (MHPEO), Manuka honey 

was added and stirred well for 3 hours to mix well with PEO. Two solutions with MH to 

PEO solution ratio of 10% (w/w) (10MHPEO) and 15 %( w/w) (15MHPEO) were 

prepared. 

4.2.3 Solvent and Solution Properties (Viscosity, Surface Tension and 

Conductivity) 

The viscosities of all solutions were measured with a Brookfield DV-II Pro using an 

S63 spindle. Surface Tension was measured by a Kruss surface tension meter (model 

K6). Conductivity was measured with an Oakton con 110 handheld conductivity meter. 

4.2.4 Ultra Violet - Visible Spectoscopy 

Absorption peak of all the solutions were studied in UV-visible range using a Perkin 

Elmer lambda 2 UV-Visible spectrometer. A different amount of light is absorbed at 

each wavelength, so each spectrum can be used to identify different chemical 

compositions. 

4.2.5 Visual Observation 

Photos were taken to see changes in miscibility of MH in PEO by Fuji film finepix 

A805 camera. 

4.2.6 Electrospinning 

The homogeneous PEO and MHPEO solutions were delivered from a 5 mL syringe. 

The solution was fed to a vertically orientated (16 gauge) blunt ended metal needle via 

Teflon tubing. The volume feed rate was digitally controlled by a positive displacement 
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microprocessor syringe pump (M22 PHD 2000, Harvard Apparatus, Eden bridge Kent, 

United Kingdom). The needle was connected to one electrode of a high voltage direct-

current power supply (MK35P2.0-22, Glassman, New Jersey, USA), and the collector 

was connected to earth, to create an electric field between needle and collector. 

4.2.7 Scanning Electron Microscopic (SEM) Studies 

The surface morphology of electrospun mats were recorded with cold field emission 

Hitachi Scanning Electron Microscope (Model: S-4300, Japan). Samples were mounted 

on aluminium stubs by using double-sided adhesive tape, then placed in a sputter coater 

unit (Polaron SC7620) with gold-palladium coating for 60 seconds. Finally, the stubs 

were placed into the SEM for observation at 1 kV accelerating voltage and 10µamps 

current. 

4.2.8 Differential Scanning Calorimetry (DSC) Studies 

Thermal analysis was performed using Mettler DSC 12 E. All 5gms samples were 

weighed and placed in to aluminium pans. The lids of all the pans were pierced for air 

circulation. The samples were heated at a scanning rate of 10
◦
C/min. All samples were 

heated with an empty aluminium pan in atmospheric air.. 

4.2.9 Fourier Transform Infrared Red Spectroscopy (FTIR) 

A Perkin Elmer Spectrum 100 ATR-FTIR Spectrophotometer was used to study the 

FTIR spectrum. 

4.2.10 Antibacterial Test 

In the present study, Gram-positive Staphylococcus aureus and Gram-negative 

Pseudomonas aeruginosa bacteria were used to study the antibacterial properties of 

electrospun mats. The method is explained in chapter 3, topic 3.3.6 

4.3 Results and Discussion 

4.3.1 Viscosity, Surface Tension and Conductivity 

As can be seen in Figure 4:1, the viscosity of the solution decreased with the addition of 

MH from 15PEO to 5MHPEO, 10MHPEO, 15MHPEO and 50MHPEO.  
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The reason is the increase in water content with addition of MH, addition of honey 

increased overall the water content. Honey is hygroscopic and humectant by nature [7, 

28-31]. 

 

Considering sugar and other molecules of the solution, water in honey increased the 

distance between all molecules. Higher water content in honey, generated hydrogen 

with MH molecules. The bonds between MH molecules weakened [32] as referred to 

[33]. The above two reasons contributed in reducing MHPEO viscosity with higher MH 

content.  

 

Figure 4:1 Viscosity of all solutions 

 

Figure 4:2 Conductivity (µS) and surface tension (mN/M) of all the solutions 
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The conductivity (Figure 4:2) increased from 15PEO, 5MHPEO to 10MHPEO. 

Conductivity is reduced with any further increase in MH content from 15MHPEO to 

50MHPEO (Table 4:1). 

The conductivity of the solution depends on ionic concentration and ionic mobility. 

Initially with addition of MH from 15PEO, 5MHPEO to 10MHPEO; the conductivity 

increased due to increase in MH ions. However, with further increase in MH content, 

from 10MHPEO upwards the ionic mobility was reduced due to higher MH 

concentration. So conductivity was reduced from 10MHPEO to 15MHPEO and then 

50MHPEO.  

A similar result was reported by Aquarone et al (2007) with pure honey [34]. The 

surface tension of all solutions was reduced from 15PEO to 5MHPEO, 10MHPEO, 

15MHPEO and 50MHPEO proportionally (Figure 4:2) and (Table 4:1). 

4.3.2 Photographs of Honey  

Photographs of the PEO solution and (10 and 15) MHPEO solutions are shown in 

Figure 4:5.  

 

 

Figure 4:3 Electrospun mat 15MHPEO 
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As can be seen MH is mixed with PEO and also as the concentration of honey increases 

from 10% to 15%, the solution colour becomes more honey-like. 

 
Figure 4:4 SEM stubs of electrospun mats of (Left) 15PEO and 15MHPEO 

(Right) 

 
Figure 4:5 Solutions of 15PEO, 10MHPEO, 15MHPEO (Left to right) 
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A white electrospun mat of PEO on an SEM stub can be seen in Figure 4:4 and honey-

like colour electrospun mat of MH-PEO can be seen in Figure 4:3 .  

4.3.3 Ultra Violet-Visible Spectroscopy (Uv-visible spectra) 

As can be seen in Figure 4:6,Table 4:1, the Uv-visible spectra of 15PEO did not show 

any peak but it showed a slope.  

 

The absorption peak of all MHPEO solutions is shifted towards a higher value with the 

addition of MH. 100% MH showed very broad peak between 310nm and 350nm which 

disappears in solutions at lower MH content  

In this work, PEO and MHPEO solutions were electrospun into micro-nano fibres. 

Manuka honey concentration had a measurable effect on the final fibre morphology.  

Table 4:1 Conductivity (micro Siemens), surface tension (mN/m) and UV-

visible absorption peak (nm) 

Solution Conductivity (micro 

Siemens) 

Surface  Tension 

(mN/m) 

UV- Visible Absorption 

spectra (nm) 

15PEO 700 57 No Peak 

5MHPEO 1511 56.5 251 

10MHPEO 1610 56 261 

15MHPEO 1507 56 561 

50MHPEO 825 53 275 

 

 

Figure 4:6 UV-Visible spectra 
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4.3.4 Influence of MH:PEO Ratio on Fibre Properties 

As discussed earlier, the effect of addition of MH in PEO was measurable..   

All MHPEO solution viscosities and surface tensions decreased and the conductivity 

increased with the increase of the proportion of MH compared to PEO solution (Table 

4:1,Figure 4:1, Figure 4:2). In electrospinning, higher viscosity favours the formation of 

thicker fibres without beads [35, 36] but higher surface tension and lower conductivity 

favours bead formation [37, 38]  

 

In the present work, all the processing parameters were maintained at the same level 

(Applied voltage =13 kV, Feed rate= 1.5 ml/hr, needle diameter= 16G and NTCD = 

30cm) , only the MH proportion was changed in the solutions. Fibres obtained from 

15PEO were almost circular, less-merged and thinner compared to any MHPEO fibres 

(Figure 4:7, Figure 4:8). With increasing the MH concentration, the fibre became flatter, 

thicker and sticky (merged).  

The MHPEO produced fibres were wet compared to 15PEO fibres. MH is hygroscopic 

and humectant by nature, so the MHPEO jet does not dry fully. Therefore, when it 

  
15PEO 5MHPEO 

  

10MHPEO 15MHPEO 

 

Figure 4:7 Effect of MH proportion on fibre morphology 
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strikes the collector fast, the fibres became flatter. The stickiness could be due to 

residual water content in the MHPEO blend, so fibres became merged at their contact 

points. The average 15PEO diameter was 0.139µm. The fibre diameters for 5MHPEO, 

10MHPEO, 15MHPEO were 0.198 µm, 0.237 µm and 0.34 µm respectively.  

 

4.3.5 Influence of Applied Voltage on Fibre Properties 

Zong et al (2005) [36] reported increased solution flow rate with increase in electrical 

force. The effect of applied voltage varies depending on the solution and process 

parameters. Generally, an increase in applied voltage generates thinner fibres. Increased 

voltage increases coulombic repulsions and electrical force, so, fibres get stretched and 

split in to more fibres. As a result, thinner fibres are generated [39]. 

In order to study the effect of applied voltage on fibre morphology, only the applied 

voltage was changed and all other parameters were kept same. As voltage is increased, 

the 15MHPEO fibre diameter is reduced (Figure 4:9, Figure 4:10). As discussed 

previously, higher applied voltage generated more coulombic repulsions into solution 

molecules; so the solution jets started splitting. Higher applied voltage generated more 

electrical force, stretching the fibres more. Overall, thinner fibres generated with higher 

voltage, and dried faster, so fibres at higher voltage dried faster.  

Dry fibres have low residual solvent content, so they merge less compared to wet fibres. 

Hence, 15MHPEO fibres at higher voltage were less merged, less flat shaped and 

thinner compared to fibres generated at lower applied voltage. The fibre diameter was 

reduced from 0.582 µm, 0.34 µm, 0.293 µm, 0.216 µm at 9kV, 13kV, 21kV and 25kV, 

respectively. 

 

Figure 4:8 Effect of MH proportion on fibre diameters 
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9kV 13kV 

  

21kV 25kV 

 
Figure 4:9 Effect of applied voltage on fibre morphology 

 

Figure 4:10 Effect of applied voltage on fibre diameters 
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4.3.6 Influence of Needle to Collector Distance (NTCD) on Fibre Properties 

 

 

In the present study, the average 15MHPEO fibre diameter decreased from 0.562µm, 

0.489 µm, 0.34 µm, 0.208 µm with increase in NTCD from 10cm, 20cm, 30cm, and 

40cm respectively (Figure 4:11, Figure 4:12). 15MHPEO fibres were flatter, thicker and 

merged at lower NTCD compared to higher NTCD. 

  

10cm 20cm 

  
30cm 40cm 

 
Figure 4:11 Effect of NTCD on fibre morphology 

Figure 4:12 Effect of NTCD on fibre diameters 
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  This could be because the longer the distance offers longer flight time for the solution 

to stretch and split [39]. As NTCD increased the fibres became drier. Dry fibres do not 

merge and consequently do not get flat as they hit the target collector compared to wet 

fibres.   

4.3.7 Influence of Feed Rate on Fibre Property 

 The amount of solution for electrospinning is controlled by its feed rate using a feed 

control pump mechanism. As the feed rate increased, more solution is present for 

electrospinning. Generally, with higher feed rate, thicker fibres are generated, so 

establishing an optimum feed rate is desirable. As higher feed rate can generate droplets 

and lower feed rate can block the needle for highly volatile solvents.  

 

In the present study, all the parameters were kept the same except  for the feed rate. The 

feed rate varied to study the effect of feed rate on 15MHPEO fibre. The 15MHPEO 

fibre diameter increased with higher feed rate. Thicker fibres did not dry well and wet 

fibres became merged and flat, on reaching the collector. 15MHPEO fibres became 

flatter, thicker and merged with higher the feed rate (Figure 4:13, Figure 4:14). The 

  
0.15 ml/hr 1.5 ml/hr 

  

5 ml/hr 10 ml/hr 

 

Figure 4:13 Effect of feed rate on fibre morphology 
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fibre diameter increased from 0.203µm, 0.34 µm, 0.706 µm to 0.924 µm with respect of 

feed rates 0.15ml/hr, 1.5 ml/hr, 5 ml/hr and 10 ml/hr.  

 

4.3.8 Differential Scanning Calorimetry 

 

DSC thermograms provide information on phase change of the material with applied 

temperature.  In the present study, DSC thermograms (Figure 4:15) were taken to study 

the thermal behaviour of 15PEO and all MHPEO mats.  

 
Figure 4:14 Effect of feed rate on fibre diameters 

 

Figure 4:15 DSC curves of electrospun mats 
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 The 15PEO mat showed an endothermic melting peak at 67.4
o
C. All MHPEO mats also 

showed a sharp endothermic peak. The endothermic peak in all MHPEO mixtures is due 

to PEO. As the MH content increased the endothermic peak shifted towards a lower 

temperature. The area under the melting peak was reduced as the MH content increased. 

The area under the peak is known as melting enthalpy. The reduction in melting 

temperature and melting enthalpy suggests reduction in the crystalinity of MHPEO mats 

with higher MH content. The melting temperature was reduced from 64.3
o
C, 63.3

o
C, 

and 61.1
o
C for 5MHPEO, 10MHPEO and 15MHPEO respectively.  

4.3.9  FTIR 

The FTIR spectrum of pure polyethylene oxide (PEO) is shown in Figure 4:16. The 

characteristic peaks of PEO can be seen at 2879.70cm
-1

, (CH stretching mode), 

1466.51cm
-1

 (CH2 scissoring mode), 1094.08 cm
-1

 (C-O-C stretching mode), 960.76 cm
-

1
 (CH2 twisting mode) and the characteristic band at 840.99 cm

-1
. The band assignments 

of pure PEO are in agreement with other researchers [40-43]. 

 In the FTIR spectrum of honey (Figure 4:16), the peak at 915.80cm
-1

 is due to C-H 

bending of carbohydrate, whereas the peak observed at 1049.99cm
-1

 and 1249.65cm
-1

 

corresponds to C-O stretch in the C-OH group as well as the C-C stretch in the 

carbohydrate structure. The small shoulder peak at around   1100cm
-1

 could be related 

to stretching of the C-O band of C-O-C linkage. The C-O-C is present in the sucrose as 

a glycoside bond. The peak present around 1342.17cm
-1

 is due to O-H bending of C-O-

 

Figure 4:16 FTIR of electrospun mats 
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H group and the band at 1417.28 cm
-1

is a combination of O–H bending of the C–OH 

group and C–H bending of the alkenes. The broad band at 3269.93cm
-1

 can be due to O-

H group. The band at 2935.39 cm
-1

 could denote the C–H stretching of carboxylic acids 

and NH3
+
 stretching band of free amino acids, which are present in honey at low 

concentrations. Similar results were observed by T. Gallardo-Veldzquez et al (2009)[44] 

and Tewari et al(2005) [45]. 

The presence of PEO can be confirmed from the FTIR diagram (Figure 4:16). In PEO-

Manuka honey blend is observed by the triplet peak of C-O-C stretching vibration at 

1150.02cm
-1

, 1091.95cm
-1

 and the small shoulder peak at around 1053cm-1. 

Corresponding peaks  in PEO can be seen in Figure 4:16 at 1047.24cm
-1

,1143.63cm
-

1
,1094.08cm

-1
 and 1059.32cm

-1
 with a maximum at 1094.08cm

-1
. Tonin et al (2007)[40] 

observed similar peak in PEO at 1150.02cm
-1

, 1091.95cm
-1

 and a shoulder peak around 

1059cm
-1

. A  peak at 1047.24cm
-1

, 1028.09cm
-1

, 2936.79cm
-1

, 3249.23cm
-1

 etc. in PEO 

Manuka honey blend corresponds to the peak at 1049.99cm
-1

 and 1028.09cm
-1

, 

2935.39cm
-1

 and 3269.93cm
-1

 in Manuka honey, shown in Figure 4:16. All observation 

clearly demonstrates a mix of PEO and Manuka honey. 

4.3.10 Antibacterial Activity 

In this work, antimicrobial activity of the100% MH, 15 PEO solution, 15PEO mat 50,65 

MHPEO mats were tested for Staphylococcus aureus and Pseudomonas aeruginosa. 

Initial tests showed that the 15MHPEO mat do not possess any antibacterial activity and 

was supressed by PEO in 15MHPEO. Fibres with higher MH concentration, such as 

50MHPEO and 65MHPEO mats were produced to increase MH proportion. It can be 

seen in Figure 4:17, the 100% MH, 50MHPEO and 65MHPEO showed antibacterial 

activity against both species. The zone of inhibition is visible in both cases. The 15PEO 

solution and 15PEO mat did not show any antibacterial activity. It can be concluded that 

at higher MH concentration the MHPEO mats exhibit antibacterial activity. 
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4.4 Conclusion 

Electrospinning of Manuka honey has been investigated and successfully produced.  

Manuka honey alone cannot be electrospun from aqueous solution. The processability 

of Manuka honey can be improved by blending with PEO. Changes in solution 

properties, FTIR and photographic observation show interactions between Manuka 

honey and PEO. It is found that various parameters affected MHPEO fibre morphology. 

Higher feed rate, higher MH content produced thicker, merged and flatter MHPEO 

fibres. By varying the MH proportion from 5MHPEO to 15MHPEO fibres with 

diameter 0.198µm to 0.34 µm were obtained. Changing feed rate from 0.15ml/hr to 

10ml/hr produced fibres from 0.203 µm to 0.924 µm respectively. Longer NTCD and 

higher applied voltage produced thinner less merged and more round shaped fibres. 

0.562 µm to 0.208 µm diameter fibres were obtained by varying NTCD from 10cm to 

40cm respectively. Lower voltage at 9kV generated 0.582 µm and higher voltage at 

25kV generated 0.216 µm diameter fibre. DSC curves suggested that the crystalinity of 

MHPEO fibres is less than the crystalinity of 15PEO fibres. The higher the MH 

  

(a) Staphylococcus  aureus (b) Pseudomonas aeruginosa 

1) 15PEO mat     

2) 50MHPEO 

3) 100%MH 

4) 15PEO solution 

5) 65MHPEO 

 

Figure 4:17 Antibacterial activity 
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proportion the less is the melting temperature for MHPEO mats. The FTIR results of 

50MHPEO showed relevant peaks of both PEO and MH. Antibacterial tests suggested 

that MHPEO fibres are effective at higher MH proportion (in our case 50MHPEO and 

more). 
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Chapter 5  :  Investigating the Electrospinning of Ethylcellulose  

5.1 Introduction 

Cellulose is the most abundant and widely used organic material [1]. A number of 

environmentally friendly and biocompatible products can be produced from cellulose 

[2]. 

 

Cellulose can be converted or functionalised to a range of derivatives by various 

processes (for e.g. etherification, esterification etc.) [3, 4]. Different types of cellulosic 

ethers can be obtained by etherification [5] for e.g. carboxymethylcellulose (CMC), 

cyanoethylcellulose (CEC), ethylcellulose (EC), methylcellulose (MC), 

hydroxyethylcellulose (HEC), hydroxypropylcellulose (HPC), and mixed ethers such as 

hydroxy-propylmethylcellulose (HPMC), carboxymethyl- hydroxyethylcellulose 

(CMHEC), and hydroxyl- methylcellulose (HEMC). EC (Figure 5:1) is degradable but 

not biodegradable or biocompatible [6-8] but it is nevertheless widely used in 

pharmaceuticals, food, personal /beauty care, ceramics, pastes, printing inks, coatings 

etc [2, 9]. EC can function as a binder; a tough/ flexible film former; a time-release 

agent, water barrier, and rheology modifier, to name a few. In food EC is used for 

binding as a gelling agent (organogelator) [10, 11], film former and flavour fixatives, 

[12].  EC is colourless, odourless, tasteless, and noncaloric, thermoplastic and film 

forming [2]. EC is the most widely used water-insoluble polymer for controlled release 

in pharmaceuticals [13] and being semi synthetic it degrades to nontoxic and readily 

 

Figure 5:1 Chemical structure of Ethylcellulose 
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excreted products [14], it is also widely used in oral and topical formulation[15]. The 

structure of EC is shown in Figure 5:1.  

Electrospinning is a versatile method for producing nano fibres from cellulose and its 

derivatives. There are few research articles  reporting on fibre from cellulose and its 

derivatives produced by the electrospinning method for e.g. electrospinning of cellulose 

acetate [16-27]; ethyl cellulose [28-31]. Cellulose [32-34] and hydroxyethyl 

cellulose[35]. Various authors mentioned the principle of electrospinning [36-38]. The 

principle of electrospinning is described in details in chapter 1, Fig 1:6. 

The abundance and biodegradability of cellulose make cellulose fibre useful in a wide 

range of areas such as filtration, biomedical applications and protective clothing, as 

already stated. Electrospun mats have larger specific surface areas and smaller pore size 

compared to commercially non-woven fabrics. Cellulosic nanofibres are of interest in a 

wide variety of applications including semipermeable membranes, nano composites, 

filters, protection clothing and biomedical applications such as wound dressings, tissue 

engineering scaffolds and drug delivery systems [39, 40].  

In this work, we have systematically evaluated the effects of different solvent systems 

not previously investigated. The main objective of the present work was to widen the 

selection of the solvent systems that could be used to electrospun EC fibres. This will 

allow some applications such as carriers for drug delivery to wider selection of the 

solvent system so that the electrospinnable spinning solutions of EC is optimised 

(compatible) with the active ingredient(s) of the end use. 

5.2 Materials and Experimental Methods 

5.2.1 Materials 

Ethanol was purchased from Fisher scientific, Toluene from Rathburn and EC (Ethoxyl 

content 48%, 45cP of 5% EC in 60:40 toluene: ethanol at 25
o
 C) was purchased from 

Aldrich. All the chemicals were used without further purification.  

5.2.2 Solution Preparation  

15% (w/w) EC solution was prepared by dissolving EC powder in different proportion 

of ethanol and toluene mixtures (0:100, 40:60, 50:50, 60:40, 100:0). All solutions were 

kept in air tight bottles in ultrasonic bath for 1day to properly dissolve the EC. The 15% 

(w/w) EC in 100% toluene is referred as 15EC100To, the 15%EC (w/w) in 60:40 

ethanol: toluene) is referred as 15EC60Et and the 15 %( w/w) in 60:40 (Toluene: 
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Ethanol) is referred as 15EC60, further in the study.  All solutions were kept at room 

temperature before being filled in a 5ml syringe and spun into nano fibres.  

5.2.3 Electrospinning Setup 

The homogeneous EC solutions were fed from a 5 ml syringe to a vertically orientated 

(15 gauge) blunt ended metal needle ‘spinneret’ via Teflon tubing. The volume feed rate 

was digitally controlled by a positive displacement microprocessor syringe pump (M22 

PHD 2000, Harvard Apparatus, Eden bridge Kent, United Kingdom). The needle was 

connected to one electrode of a high voltage direct-current power supply (MK35P2.0-

22, Glassman, New Jersey, USA). The effects of different processing parameters on 

fibre property were studied. The processing parameters such as solvent ratios (ethanol: 

toluene), applied voltage and needle to collector distance (NTCD) were studied.  A 

grounded stationary rectangular metal collector covered by a piece of aluminium foil 

was used as target for the nanofibre deposition. The complete electrospinning apparatus 

was enclosed in a glass box and the electrospinning was carried out at room 

temperature. 

5.2.4 Solvent and Solution Properties (Viscosity, Surface Tension and Conductivity) 

The viscosities of all solutions were measured by a Brookfield DV-II Pro viscometer 

with a S63 spindle and the surface tension was measured by a Kruss surface tension 

meter model K6. Conductivity was measured by Oakton con 110 handheld conductivity 

meter. 

5.2.5 Visual Observation 

Photos were taken to see changes in turbidity of EC solutions in different solvent 

mixtures by a Fuji film finepix A805 camera. 

5.2.6 Scanning Electron Microscopic (SEM) Studies 

The surface morphologies were recorded with a Hitachi Scanning Electron Microscope 

(Model: S-4300, Japan). The electrospun webs were mounted on an aluminium stub 

using a double-sided adhesive tape. Fibrous mats on stubs were coated in a sputter 

coater unit (Polaron SC7620) with gold-palladium coating for 60 seconds. Prepared 

samples were finally placed into the SEM and observed at accelerating voltage of 1 kV 

and 10µAmps current. 
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5.2.7 FTIR (Fourier Transform Infrared Spectroscopy) 

A Perkin Elmer Spectrum 100 ATR-FTIR Spectrophotometer was used to get the FTIR 

spectra. The IR spectra were taken from 650cm
-1

 to 4000cm
-1

 using a ZnSe diamond 

ATR device, the ATR device was set to base value with air.  

5.2.8 Differential Scanning Calorimetry (DSC) Studies 

Thermal analysis was performed using Mettler DSC 12 E. All samples were kept in 

aluminium pans with pierced lids. The reference sample was kept in empty aluminium 

pan with pierced lid. The samples were heated at a scanning rate of 10
o
C/min in 

atmospheric air and all samples were weighed up to 5mg.  

5.3 Results and Discussions 

5.3.1 Solvent and Viscosity  

Polymer-solvent interaction plays very important role in solution viscosity [41]. The 

polymer-solvent and polymer-polymer interactions were also investigated by other 

researchers [38, 42]. Generally, a good solvent gives higher viscosity whilst a poor 

solvent low viscosity. Polymer molecules interact with each other strongly then with the 

solvent if in poor state.  

 

Polymer molecules squeeze out the solvent between them in the case of a poor solvent, 

furthermore the polymer chains collapse and adopt curled configurations in the poor 

solvent. In case of good solvent, the polymer-solvent interaction increases. The long 

 

Figure 5:2 Viscosities of 15EC solutions in different solvent systems 
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chain polymer molecules are surrounded by solvent molecules and reduce polymer-

polymer interaction. So, the polymer will adopt an uncurled configuration. The intrinsic 

viscosity of a polymer solution with good solvent is higher compared to a poor solvent. 

A good solvent allows higher concentration, along with maintaining a stable fluid form, 

while a poor solvent will lead to gelation with more polymer addition due to more 

polymer-polymer interactions. 

Figure 5:2 shows the viscosity of 15EC solutions in different solvent systems. Viscosity 

of 15EC100Et was the lowest. The viscosity increased as the proportion of toluene 

increased in solution. The 15EC100To had highest viscosity.  

Arwidsson et al. (1951)[43] correlated a good solvent with steep rise in viscosity at high 

polymer concentrations compared to a poor solvent.  

 Hence, increased viscosity of EC in toluene compared to ethanol proves that toluene is 

a good solvent compared to ethanol for the EC.  

5.3.2 Conductivity and Surface Tension 

Surface tension and solution conductivity are important parameters affecting fibre 

morphology [38]. 

 

In the present work, (Figure 5:4 and Table 5:1), the conductivity of solvent decreased as 

the ratio of toluene/ethanol increased (from 0% to 100%) and vice versa.   

 The conductivity of 100% toluene was found to be zero. Similar trends were seen in 

corresponding solutions with conductivity decreasing from 15EC100Et to 15EC100To 

with increase in toluene proportion of the conductivity of 15EC100To was found to be 

zero. It can be seen that the solution conductivity is much higher compared to solvent 

conductivity in case of ethanol as one part of the solvent. This can be explained by the 

fact that addition of EC in solvent increased the overall solution conductivity due to EC 

Table 5:1 Conductivity of EC solvents 

No Solvent  Solution 

 Ethanol: Toluene Conductivity (µS)  Conductivity (µS) 

1 100:0 0 15EC100Et 0 

2 60:40 0 15EC60Et 0.69 

3 50:50 1.77 15EC50Et 29.2 

4 40:60 2.95 15EC60To 72.6 

5 0:100 3.30 15EC100To 119.2 
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ions. In case of 100% toluene this was not the case. Solvent (toluene) and 15EC100To 

both showed zero conductivity.  

 

 

 

Surface tensions of ethyl cellulose solutions are given in Figure 5:3. The result shows 

rise in surface tension from 15EC100Et to 15EC100To as the toluene proportion 

increased.   

 

Figure 5:3 Surface tension (mN/m) 

 

 Figure 5:4 Conductivity (µS)  
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5.3.3 Visual Observation 

Photographs of EC solutions are shown in Figure 5:5. The turbidity of 15EC solutions 

increased as the ethanol proportion increased with the highest turbidity of 15EC 100Et. 

As discussed earlier the viscosity also decreased with higher proportion of ethanol. 

Jullander et al.(1955)[44]  reported viscosity and turbidity as important physical 

characteristics of solutions. They assumed decreased viscosity and increased turbidity as 

decreased “solubility”, i.e. a smaller portion of the material mass molecularly 

dispersed.[44]. 

Similar trends were observed in the present work. The solution of 15EC100Et had more 

turbidity and less viscosity. The reason might be because EC is partially/ not soluble in 

Ethanol compared to toluene.  

 

Films were casted (Figure 5:6) at room temperature by drying EC solutions on glasses. 

Film made from 15EC100Et was found brittle and fragile. As the toluene/ethanol ratio 

increased, the films became more flexible (Table 5:2). 

 

Solutions in different solvents 

Bottle 1- 15% EC in 100% Ethanol 

Bottle 2- 15% EC in Ethanol/toluene (50/50)  

Bottle 3-15%EC in toluene 

Figure 5:5 Comparison of Ethyl cellulose solutions  
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The 15EC100To film had highest flexibility. This characteristic of EC films lies in the 

polymer-solvent interaction. Toluene is a more nonpolar solvent compared to ethanol, 

which is more polar. According to literature [43, 45, 46], the mechanical properties of 

film were dependant on the solvent used for casting. Hass et al. (1952) [45] also noted 

that films of cellulose derivatives were more brittle when casted from polar solvents; 

this was resulted from a larger degree of crystallinity. The Hercules Powder Co. (2002) 

[46] brochure on ethyl cellulose recognized that flexible films of maximum strength 

were obtained when nonpolar solvents which had little or no affinity for water 

constituted a major portion of the solvent. Arwidssons et al. (1991) [43] noted that 

water presence at low concentrations in (e.g. ethanol), should be avoided in solvents for 

Table 5:2 Ethyl cellulose solution and film visual property 

 No. Film detail Solution appearance Film appearance Film Flexibility 

1 15EC100Et  More cloudy (Not 

transparent) 

Film with more 

white dots 

Fragile & rigid 

2 15EC50Et Less cloudy (Semi-

transparent) 

Film with less 

white dots 

semi fragile & 

rigid 

3 15EC100To  Clear (transparent) Clear film Pliable & 

flexible 

 

 

EC films in different solvents (Left to right) 

Left: - 15% EC in ethanol 

Middle:-15% EC in ethanol/toluene (50/50)  

Right:-15%EC in toluene 

 
Figure 5:6 Comparison of Ethyl cellulose films from different solvent systems 
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EC. The water accumulates in the solution during evaporation. The resulting film had a 

spongy structure and poor mechanical properties.  

5.3.4 Effect of Solvent on Ethylcellulose Electrospinning 

Electrospun fibres may consist of beads, beaded-fibres, or fibres, depending on the 

solution properties or process conditions. Lee et al (2005)[47] reported viscosity, 

surface tension and solution conductivity as the main factors for bead formation. 

Surface tension, conductivity and viscosity plays major role in deciding the final fibre 

property [48]. Eda et al (2007)[49] reported that the rheological property of the solution 

affects bead to fibre morphology. Liu et al (2002)[50] noticed that surface tension is 

affected by solvent composition and viscosity is affected by polymer concentration.  

Park et al. (2007) [28] reported surface tension as one of the parameters affecting bead 

formation and fibre length. Higher surface tension creates beads [51] . Beads disappear 

with reduction in surface tension [52].  

Fong et al (1999)[52] noticed bead formation increases with distance between beads, 

and spherical to spindle like shape change of the bead with increased solution viscosity 

[51]. The solution viscosity is directly correlated to polymer molecular weight, solution 

concentration, polymer structure, polymer-solvent interaction [51, 53]. The average 

distance between the beads increases with higher viscosity [51]. With higher viscosity 

more uniform fibre are formed and very high solution viscosity blocks the needle from 

spinning and very low viscosity produces only droplets due to lack of entanglement [53-

55].   

Entanglement analysis shows that solution viscosity plays a very important role in 

making bead-fibre structure [56]. At least one entanglement per polymer chain is 

needed to form a fibre [49]. Viscosity and electrical conductivity affects jet elongation 

and fibre diameter [28]. Beads became smaller and spindle shaped with increased 

electric charge. Beads disappear and smaller fibres are formed with higher conductivity 

[51].  

As can be seen from the SEM images (Figure 5:7), there is a large effect of the solvents 

used on fibre morphology. All the 15EC solutions in different ethanol: toluene mixtures 

were spun at the same electrospinning parameters. The feed rate was kept at 1.5 ml/hr. 

The applied voltage was 21kV, the NTCD was 20cm and needle gauge was 16.G 

15EC100Et produced beads on strings in the structure. 15EC100Et produced fibres with 

irregular and round shaped beads. The boiling point of Et is low (approx. 78ºC). Ethanol 

evaporation dried the fibre surface faster, followed by the evaporation of the solvent 
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inside the bead. The faster evaporation of the solvent bead generated an uneven surface, 

also the EC100Et has round shaped bead in the fibre structure.  

 

The viscosity of EC100Et is lower than any other EC solutions in the present study. 

Lower viscosity means, the EC100Et solution has not enough chain entanglement to 

generate bead-less fibres. So, the jet started producing droplets at some intervals. 

Surface tension of EC100Et produced round shaped beads. In case of EC100Et the 

surface tension is lower compared to any other EC solutions. Theoretically, lower 

surface tension should favour fewer beads. The effect of surface tension overcomes the 

  

(100:0)Ethanol: Toluene (60:40)Ethanol: Toluene 

  

(50:50)Ethanol: Toluene (40:60)Ethanol: Toluene 

 

 

(0:100)Ethanol: Toluene 
 

Figure 5:7 Effect of solvent proportion on fibre morphology 
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effect of viscosity and higher conductivity for producing beaded fibres. The surface 

tension was high enough to generate round shaped beads.  

 The EC100Et viscosity is not too low and hence it did not produce only beads but it 

produced beads on fibre due to some chain entanglements in the solutions. 

Addition of toluene into EC reduced solution conductivity and increased solution 

viscosity as well as surface tension.  

As discussed earlier, higher solution viscosity favours bead-less fibres, but higher 

surface tension and lower conductivity favours beaded fibres. In case of 15EC60Et, 

beads on string structure were produced (Table 5:3). The beads were more elongated 

than the beads of 15EC100Et. Viscosity and surface tension increased from 15EC100Et 

to 15EC60Et. Surface tension created beads in the fibre, but increased viscosity resisted 

the formation of beads. Bead became more elongated. Again due to a higher proportion 

of ethanol, the solvent evaporation was faster. Collapsed and irregular shaped beads 

were formed. With further increase in toluene, the beads became more elongated and 

solid. In 15EC50Et, fibres were produced with beads.  

 

The beads were not collapsed but were more solid. Bead formation was due to surface 

tension, but increasing the viscosity of 15Ec50Et resisted the formation of full beads 

(round shaped). Hence, elongated beads were formed. The evaporation of the solvent 

Table 5:3 Effect of solvent on ethyl cellulose electrospinning 

Solvents 

(Ethanol: 

Toluene) 

ratio 

Shape Remark 

100:0 

 

Irregular / collapsed round bead 

on string 

60:40  Irregular / collapsed elongated 

bead on string 

50:50  Regular / solid elongated bead 

on string 

40:60  Fibres 

0:100  Thick fibres 
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was not as fast as in the case of 15EC100Et and 15EC60Et. Toluene has higher boiling 

point (approx. 110ºC), so it evaporates slowly and allow to dry fibres slowly, which 

generated solid beads. With further increase in toluene proportion in solvent, the 

solution viscosity increased further. Higher viscosity overcomes surface tension at this 

stage, and no beads were formed, only fibres were formed in the case of 15EC60To. 

The average fibre diameters were 0.568 µm. 

As discussed earlier, with the addition of toluene in ethanol (40, 50, 60) % wt., smooth 

and nearly bead-less fibres are produced. This might be due to increased viscosity with 

the addition of toluene into ethanol. 15EC100To produced thicker, bead-less fibres. The 

measured conductivity of 15EC100To was zero, but in spite of zero conductivity, 

stretch was observed on the 15EC100To solution droplets at higher voltage. This means 

still negligible conductivity existed in the 15EC100To solution, which was not 

measured by the conductivity meter. Unlike in the use of 15EC100Et, the 15EC100To 

spinning created larger droplets before spinning. Supaphol et al (2004) [57] observed 

similar increase in the fibre diameter with increasing m-cresol content. M-cresol 

increased the viscosity of the PA-6 solution and decreasing spinning conductivity. The 

increased viscoelastic force with reduction in coulombic repulsive force and in pulling 

electrical force, the fibre diameter increased. Previously reported work [51] also showed 

that high solution viscosity favoured the formation of thicker fibres without beads. 

Electrospinning using a concentrated nylon-4.6 solution produced smooth bead free 

nanofibres with thicker diameters. Although the surface tension, which was one of the 

main factors that influenced the formation of beaded fibres increased as the nylon 

concentration increased in the electrospinning solution, the viscosity increased more 

rapidly and was the main factor influencing the character of electrospun nanofibres. 

Similar effects can be seen in the present study. An addition of Toluene in the EC 

solutions increased with viscosity and surface tension. The effect of viscosity was found 

dominant and EC100To produced thicker bead-less fibres in spite of the increased 

surface tension. 

5.3.5 Effect of Applied Voltage on Fibre Morphology 

In electrospinning, the electrical potential applied to the polymer solution plays very 

important role in determining the size and shape of the fibre. The effect of field strength 

or applied voltage is one of the most studied parameters among the process variables of 

electrospinning [56-60]. Electrical forces are important in electrospinning. 
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 Electrospinning starts, when coulombic repulsions and the electrical force overcome 

solution surface tension [37].  

 Higher applied voltage means higher coulombic repulsions and higher electrical force 

between needle and collector. Coulombic forces in the jet encourages splitting of jet and 

electrical forces encourages stretching of jets. Higher electrical force generally produces 

finer fibres. It varies depending upon the polymer-solution property, and the processing 

parameters. Higher electrical force pulls more solution, which generates a thicker jet. 

Higher applied voltage accelerates the jet giving less time for stretching / splitting of jet, 

hence coarser fibres are generated [38]. In electrospinning, the electrical charge is 

transported with the flow of the polymer jet. The change in the spinning current changes 

the shape of the jet initiating point, and hence it affects the properties of the electrospun 

fibres. Megelski et al.(2006) found reduced average fibre diameter with increase in 

voltage of 5kV to 12kV[51].  

 In the present work, 15EC60To fibres spun at the feed rate of 1.5ml/hr, at 20cm NTCD 

using 16G needle.  In order to study the effect of applied voltage on fibre properties, the 

electrospinning is done at different voltages from 12kV, 16kV, 21kV and 25kV. All 

samples were observed in CFE-SEM. The average diameters were calculated by 

randomly selecting fibres from different areas of the SEM sample images. As can be 

  
12kV 16kV 

  
21kV 26kV 

 
Figure 5:8 Effect of applied voltage on 15EC60To fibre morphology 
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seen in (Figure 5:8,Figure 5:9) the average fibre diameter is reduced from 0.617microns 

to 0.596 microns, 0.568microns and 0.556microns for increase in voltage from 12kV, 

16kV, 21kV to 25kV, respectively.  

 

5.3.6 Effect of Needle to Collector Distance on Fibre Morphology 

NTCD affects the structure and morphology of the electrospun fibres. The change in 

NTCD affects the deposition time, evaporation rate, and whipping or instability interval 

[51]. The higher NTCD means more time for jet to travel, so more stretching and 

splitting during spinning, so, thinner fibres can be generated. Thinner fibres have more 

surface exposed for drying, at the same time the jet gets more flight time in higher 

NTCD. Generally drier and thinner fibres are generated at higher NTCD. In some cases 

increase in diameter of the fibres were also reported at higher NTCD [61], the reason for 

this was due to a reduced voltage per unit distance at higher NTCD. As NTCD 

increased the distribution of electric field per unit distance weakens, so, the stretching 

electrical force and splitting coulombic repulsions are being reduced, this in turn 

generates thicker fibres at higher NTCD.  

In the case of 15EC60To the NTCD changed keeping other parameters the same at 

applied voltage-21kV, feed rate-1.5ml/hr and 16G needle. The NTCD changed from 

10cm, 20cm to 30cm for studying the effect of NTCD on the morphology and shape of 

the fibre.  

 

Figure 5:9 Effect of applied voltage on 15EC60To fibre diameter 
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The fibre diameter is reduced with higher NTCD, the average diameter of the fibres 

reduced from 0.631microns to 0.568microns and 0.483microns at 10cm, 20cm and 

30cm NTCD respectively (Figure 5:10, Figure 5:11).  

  
10cm 20cm 
 

 

 

30cm 
 

Figure 5:10 Effect of NTCD on 15EC60To fibre morphology 

Figure 5:11 Effect of NTCD on 15EC60To fibre diameter 
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5.3.7 FTIR (Fourier Transform Infrared Spectroscopy) 

The FTIR spectrum of  EC solutions with different solvent ratios are shown in (Figure 

5:12, Figure 5:13, Figure 5:14).  

  

 

A band at 3,476 cm
−1

 was attributed to -OH stretching vibration in the EC powder 

present on the closed ring structure of the polymer repeating units. The spectrum of EC 

shows characteristic absorption bands for –C–O–C– stretching vibration at 1052.21 cm
–

1
 and C–H stretching bands at 2871.36 cm

–1
 and 2973.29 cm

–1
.  

 

 Figure 5:12 FTIR of solvents 

 

Figure 5:13 FTIR of solvents and EC solutions 
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The absorption at 1374.54 cm
–1

 corresponds to C–H bending. Toluene FTIR shows, ( 

the =C–H stretches of aromatics (3087.22, 3062.88, 3027.49) and the –C–H stretches of 

the alkyl (methyl) group (2920.13). The carbon-carbon stretches in the aromatic ring 

(1604.54, 1495.45, 1459.48), the in-plane C–H bending (108214, 1030.07), and the C–

H oop (725.43).  

 

Ethanol FTIR shows, O-H band at 3325.09 cm
-1

, C-H band at ( 2973.59 

,2924.94,2879.54) cm
-1

, C=C band at 1648.14 cm
-1

 , CH2 band at  (1453.75, 1417.34, 

1379.81, 1328.67, 1274.89) cm
-1

 , C-O band at (1087.70,1045.41) cm
-1 

FTIR of all ethyl cellulose solutions have shown the effect of ethyl cellulose and 

relevant solvent systems on the corresponding bands in the FTIR chart. For example, as 

can be seen wide –O-H stretch at 3325.09 cm
-1

 in ethanol appears at 3331.54 cm
-1

 in the 

ethyl cellulose solution with 100% ethanol, it gets smaller in the 50:50 mixture of 

ethanol: toluene at 3350.34 cm
-1

and it disappears in ethyl cellulose solution with 100% 

toluene. 

FTIR in all films made from all solvent systems after drying, showed identical charts as 

in the case of the ethyl cellulose powder. After solvent evaporation, there are not many 

changes in the ethyl cellulose structure. 

 

Figure 5:14 FTIR of EC mats 
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5.3.8 Differential Scanning Calorimetry  

The DSC thermograms for EC powder and EC fibres prepared from different mixture of 

ethanol:toluene ratios. EC100Et, EC50Et50To and EC100To mats were cut into 5mg of 

samples (Figure 5:15). The DSC curve of the EC powder showed an exothermic 

transition peak at temperature of 69.7
o
 C and a sharp endothermic melting peak at 

203.6
o
 C, the DSC curve for EC100Et showed an exothermic transition at 56.1

o
 C and 

endotherm at 206
o
C.  

The EC100To DSC curve showed exothermic transition at 63.3
o
 C and endotherm at 

211.5
o
C and the EC50Et50To DSC curve showed exothermic transition at 53.1

o
 C and 

endotherm at 208.9
o
C. The melting temperature, crystalinity depends on the solvent and 

polymer interaction [62, 63]. 

5.4 Conclusion 

EC was successfully electrospun with different solvent systems from bead on string 

structure to smooth, bead-less, fibrous film structure. Characterization of the 

electrospun nanofibres shows that solution viscosity, net charge density carried by the 

electrospinning jet and by the surface tension of the solution is the main factors 

influencing fibre morphology. Beaded fibres were formed due to low viscosity of the 

solution of ethylcellulose in ethanol. As discussed, low viscosity favours beaded fibres. 

In the case of ethanol: toluene (50:50), due to higher viscosity. Smooth bead-less fibres 

were formed compared to ethanol in which higher surface tension and lower 

conductivity beaded fibres were formed. In case of toluene as a solvent, in spite of 

higher surface tension and negligible conductivity (which favours beaded fibres), 

 

Figure 5:15 Differential scanning calorimetry 
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smooth and coarse fibres were formed due to higher viscosity compared to the other two 

cases. Therefore in EC, viscosity plays a much significant effect more than the surface 

tension and the conductivity of the solution. As viscosity depends on solution 

concentration and on the type of solvent system.   Although all ethyl cellulose solutions 

were prepared with the same concentration, their viscosities were different due to 

different solvent systems. This indicates that the selection of solvent plays very 

important role on fibre morphology of ethyl cellulose. This finding can aid in the 

optimisation of the formation of EC fibres and their effective functionality for a variety 

of end uses.  
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Chapter 6  :  The Case of Bubble Electrospinning of Ethylcellulose 

Ultrafine Fibres  

6.1 Introduction 

Ethylcellulose (EC) is one of the most stable cellulose ether [1]. EC is widely used in 

pharmaceuticals, food and plastic industries due to its unique properties such as 

biocompability, hydrophobicity, nontoxicity, non-biodegradability and thermoplasticity. 

EC is colourless, odourless, non-caloric and a tasteless biopolymer [2-6]. EC is 

electrospun by various researchers to make ultrafine micro-nano fibres [7-11] using 

needle electrospinning. Nanofibres have unique properties promoted by its dimension 

compared to its micro/macros. High surface area to volume ratio, cellular dimensions, 

more active surface due to high surface area and hence more active fibres make them 

interest to many researchers [12]. Various methods are available for nanofibre 

production, among them electrospinning is practical and successful. In needle 

electrospinning the polymer solution/melt is stretched / split into fibres by high electric 

field [13, 14]. Polymer solution/melt is pumped to the needle tip. The solution forms 

droplet at needle tip. Opposite voltage is applied on both needle i.e. solution droplet and 

collector. The coulombic repulsions are generated in the solutions due to same applied 

voltage charge on all ions in the droplet. The solution forms circular shaped droplets 

due to surface tension. However, as voltage increases, the repulsions cause ions to move 

apart from each other and the droplet shape changes from circular to conical. This 

conical shaped droplet is known as “Taylor Cone”. At critical voltage (Vc), the repulsive 

force overcomes the surface tension. The Taylor cone splits into jets at a critical voltage. 

The split jet is attracted towards the collector due to the opposing charge in the 

collector. During the flight towards the collector, jet takes various chaotic zigzag paths 

to minimize the effect of all forces. The jet travels a longer path and not at a straight 

path. Sometimes jets also split due to repulsive forces in the jet. The jet undergoes more 

splitting , stretching. Jet becomes thinner, of the micro-nano dimension [12, 15].Various 

parameters affect fibre morphology such as;  feed rate, nozzle to collector distance 

(NTCD), applied voltage, solution viscosity and surface tension, atmospheric conditions 

etc. [12, 16, 17].  

Based on the above principle, single needle eletrospinning (SNE) and/or multiple needle 

electrospinning (MNE) were reported by various researchers [18-20]. SNE is simple 

when only one needle is used. There are negative points/limitations of SNE. 
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Productivity is not viable for industrial scale production due to use of single spinneret. 

Problems such as needle blocking may occur in SNE depending on solvent used. In 

addition, width size of produced mat is limited in SNE. In order to overcome lower 

productivity, researchers tried MNE. In case of MNE though productivity increases, it 

has its own problems. In MNE, apart from needle blocking, problems of jet repulsions 

occur due to like charges in all jets. In MNE, the distance between needle also needed to 

be adjusted to get uniform thickness across the fabric width [18-20]. Productivity is still 

limited and depends on number of needle used compared to needle-less systems 

described later. 

All above negative points increased researchers’ interest towards needle-less systems. 

Needle-less electrospinning offers benefits particularly higher productivity due to 

unlimited jets, unlimited jets offer more grams/unit time. Needle electrospinning can be 

used for productivity at industrial scale.  

A roller based needle-less system, developed by Jirsak, was commercialized by Elmarco 

under the brand name “nano spider” [21]. The different concepts developed for needle-

less electrospinning are as follow: Centrifugal electrospinning system [22, 23]/Rotary 

Jet-Spinning/ Forcespinning [24, 25], roller electrostatic spinner[26, 27], ferromagnetic 

suspension [28], electriferous rotating cone [29], conical wire coil [30], circular and 

tipped surface cylindrical spinneret [31], cylinder with rounded rim, disc and ball were 

used as spinnerets [21] free surface of a spherical liquid layer [32] , Wire Electrode [33] 

and bubble electrospinning (BE) [34-44].  

BE is a needle-less electrospinning method invented in 2007 [37]. In BE, bubbles are 

generated by compressed air /gas. The principle of BE is explained in chapter 1, Figure 

1.7. ‘In contrast to the classical electrospinning, of which the electrospinability mainly 

depends on solution properties, bubble-electrospinning's depends on the geometric sizes 

of the produced bubbles’ [37]. Needle-less electrospinning offers benefits such as more 

productivity due to unlimited jets. Unlimited jets offer more grams/unit time. Needle-

less electrospinning can be used for industrial scale productivity.  

6.2 Materials and Experimental Methods 

6.2.1 Materials 

Ethanol (96%) was purchased from Fisher scientific and Toluene from Rathburn, 

Scotland and used as a solvent. Ethyl cellulose (Ethoxyl content 48%) was purchased 

from Aldrich. All chemicals were used without further purification.   
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6.2.2 Solution Preparation  

Ethylcellulose powder was mixed with Toluene: Ethanol (60:40) and kept in ultrasonic 

bath for 24 hours to prepare a 15% (w/w) EC solution. The 15% EC solution was used 

for BE and SNE. 

6.2.3 Solvent and Solution Properties (Viscosity, Surface Tension and Conductivity) 

The viscosity of the solution was measured by Brookfield DV-II Pro. Surface Tension 

was measured by Kruss surface tension meter and conductivity was measured by 

Oakton con 110 handheld conductivity meter. 

6.2.4 Bubble Electrospinning Setup and Parameters 

In BE electrospinning air bubbles were generated by compressed air (0.7 bar pressure). 

A compressor (B100SEC, Charles Austen Pumps Ltd.) was connected to a15% EC 

solution reservoir by a 0.8mm inner diameter tube. A high voltage supply (Glassman, 

MK35P2.0-22 and U.S.A.) was connected to the 15% EC solution. The potential 

difference between bubble and collector generated multiple jets / fibres formed as 

explained earlier. 

6.2.5 Scanning Electron Microscopic (SEM) Studies 

In order to study fibre morphology, the electrospun fibres were observed under a 

Hitachi CFE-SEM (Model: S-4300, Japan). The gold-palladium sputter coater unit 

(Polaron SC7620) was used to coat fibres to enable samples to be studied at an 

accelerating voltage of 1 kV and current of 10µAmps in SEM. 

6.2.6 FTIR (Fourier Transform Infrared Spectroscopy) 

FTIR is most useful for identifying chemicals that are either organic or inorganic. It can 

be utilized to quantitate some components of the unknown mixture. It can be applied to 

the analysis of solids, liquids, and gasses. Infrared spectra were obtained on a Perkin-

Elmer Spectrum 100 FT-IR Universal ATR Sampling Accessory, deposited neatly to a 

diamond/ZnSe plate. The FTIR was used with 4cm
-1

 resolution to record FTIR spectra 

between the 4000cm
-1

 and 600cm
-1 

6.3 Results and Discussions 

6.3.1 Viscosity  

Solution viscosity (Figure 6:1), surface tension and conductivity affect the electrospun 

fibre morphology [45].  



Chapter 6  :  The Case of Bubble Electrospinning of Ethylcellulose Ultrafine Fibres 

133 

 

‘In contrast to the classical electrospinning, of which the electrospinnability mainly 

depends on solution properties, bubble electrospinning depends geometrically on sizes 

of produced bubbles’ [37].  

The equations shown below explain the surface tension of the solution and the bubble as 

given in [46]. 

σS=Ae
-B/

 
η       

(Equation 6.1)  

Where, σS  is  the  surface  tension of  the polymer solution, A  and  B  are  constants, η 

is the viscosity (η is proportional to Mw
α
, Mw is the molecular weight and α is the  

scaling exponent and value of α lying between 1/3 and 1) .  

 

σB= ¼ r (Pi – P0 )      (Equation 6.2) 

Where, σB  is  the  surface  tension of bubble, Pi is the air pressure inside and  Po is the 

air pressure outside the bubble and r is the radius of the bubble.  

 

‘Generally, the number and size of bubbles depend on the gas pressure and the solution 

property (such as surface tension and viscosity)’ [39], the surface tension of bubbles is 

independent of properties of the solution, such as viscosity’ [47] but depends on its size 

and temperature [46].  

Hence, it is important to know the properties of the solution also. Viscosity of 15% EC 

solution (60:40/toluene: ethanol) can be seen in Figure 6:1, surface tension was 

24mN/m and the conductivity of the solution was 29.5µs.   
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Figure 6:1 Viscosity of 15%EC in toluene: ethanol (60:40) 
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6.3.2 Effect of Solution Surface to Collector Distance on Fibre Property 

In SNE, the effect of NTCD on fibre morphology varies with solution property and 

electric field strength [45].  

NTCD not only affect the flight time but it also affects electric field strength between 

needle and collector. [17, 48]. NTCD affects jet flight distance, which affects time 

available for solvent evaporation and time for fibre / jet stretching and splitting. Instead 

of NTCD in SNE, solution to surface distance (SSCD) can be used as a parameter.  

In the present study, (Figure 6:2, Figure 6:3) the 15% EC fibre diameter increased with 

increase in SSCD. 

  

  
 

a. SSCD=10cm b. SSCD=20cm 

 

 

c. SSCD=30cm  

Figure 6:2 Effect of solution surface to collector distance on fibre 

morphology 
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The diameter for SSCD at 10cm, 20cm, 30cm were 0.241µm, 0.346µm and 0.409µm 

respectively. In bubble electrospinning, jets emerge from bubble, so viscoelastic 

property of solution in the bubble affects fibre morphology. The solution in the bubble 

gets stretched as the applied voltage increased. The jet emerged from the bubbles will 

try to be relaxed from the stresses of the bubble solution. The jet gets relaxed and 

contracted during its flight. As SSCD increased, jet gets more time to get relaxed, which 

creates thicker fibres. At the same time, the solvent is evaporated from the open surface 

solution, which generates thicker jet from viscous solution. Air circulation around the 

jets due to bubble bursting also evaporated more solvent and creating thicker jet with 

increasing of the viscous solution. Increase in the viscosity makes the solution thicker 

and it resists splitting. Overall thicker fibres were generated with increased SSCD.  

6.3.3 Effect of Applied Voltage on Fibre Morphology 

Combinations of various process parameters decide final fibre morphology and 

properties in electrospinning. Applied voltage is one of the important parameters 

responsible for coulombic repulsions, jet initiation, jet instabilities and jet 

stretching/splitting. Applied voltage has not always the same effect on fibre 

morphology. 
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A. Applied voltage= 12kV B. Applied voltage= 21kV 

  

C. Applied voltage= 16kV D. Applied voltage= 26kV 

Figure 6:4 Effect of applied voltage on fibre morphology at 10cm SSCD 

 

Figure 6:5 Effect of applied voltage on average fibre diameter (BE) at 10cm 
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As the applied voltage increases, the coulombic repulsion increases in the Taylor cone. 

Increase in repulsions, repel the solution ions from each other at critical voltage Vc the 

Taylor cone splits into jets. As voltage increases more splitting occurs. Applied voltage 

stretches the jet due to the opposing electric charges on the solution and collector [45]. 

  

 

[ 

 

a.  Applied voltage= 12kV b. Applied voltage= 21kV 

 

 

c. Applied voltage= 26kV  

Figure 6:6 Effect of applied voltage on fibre morphology at 20cm SSCD 

 

Figure 6:7 Effect of applied voltage on average fibre diameter (BE) at 20cm 
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Depending on feed rate and other parameters, increases in fibre diameter are also 

reported with increase in applied voltage. Increased applied voltage attracts more 

solution, which results in increased fibre diameter at 10 cm SSCD (Figure 6:4 and 

Figure 6:5).  

Average fibre diameter is reduced initially from 0.375µm to 0.188µm with increased 

voltage from 12kV to 16kV respectively. Then the fibre diameter increased from 

0.188µm to 0.241µm and 0.263µm with increase in applied voltage from 16kV, 23kV to 

26kV. The same trend was found at 20 cm SSCD (Figure 6:6 and Figure 6:7). Initially 

fibre diameter is reduced from 0.490µm to 0.346µm then increased to 0.396µm with 

increase in applied voltage from 12kV, 16kV to 21kV. In BE, the bubble surface tension 

holds solution in bubble shape. Whilst applied voltage works opposite to bubble surface 

tension, as applied voltage is increased, the solution get stretched into jets, so jet 

initiation interplay between these two forces.  

Here, the bubble surface tension is high enough to hold the solution from 12kV to 16kV 

initially.  

Therefore, jets were stretched and diameter reduced. As the applied voltage increased, 

the electrostatic force overcome the effect of bubble surface tension. Hence, more 

solution was pulled and thicker fibres were generated. It is also noted that all fibre 

diameters at 20cm SSCD were coarser than at 10cm SSCD. This supports the 

phenomenon of increase in SSCD, due to stress reduction solvent evaporation as 

explained earlier.  

6.3.4 FTIR (Fourier Transform Infrared Spectroscopy) 

The FTIR spectrum of  EC powder , EC electrospun fibre and EC solution in 

toluene:ethanol (60:40), are as shown in(Table 6:1,Table 6:2, Table 6:3,  Figure 6:8). 

The EC solution showed the effect of EC and the relevant solvent system on 

corresponding bands in FTIR chart. For example, as can be seen, wide –O-H stretch at 

3325.09 cm
-1 

in ethanol appears at 3331.54 cm
-1 

in EC solution with 100% ethanol and 

gets smaller in 60:40 mixture of ethanol: toluene at 3350.34 cm
-1

.  
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Table 6:1 FTIR bands for Ethanol 

FTIR band at cm-1 Possible assignmets 

3325.09 O-H stretch 

2973.59 ,2924.94,2879.54 C-H  stretch 

1648.14 C=C band 

1453.75, 1417.34, 1379.81, 1328.67, 1274.89 CH2 band 

1087.70,1045.41 C-O  stretch 

 

Table 6:2 FTIR bands for Toluene 

FTIR band at cm-1 Possible assignments 

3087.22, 3062.88, 3027.49 =C–H stretches of aromatics 

2920.13 –C–H stretches of the alkyl (methyl) group 

1604.54, 1495.45, 1459.48  carbon-carbon stretches in the aromatic ring 

1081.24, 1030.07 in-plane C–H bending 

725.43 Out of plane C–H bending 

 

 Figure 6:8 FTIR of electrospun mats 
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FTIR of fibres after drying have showed the same chart as the EC powder. Therefore, 

after solvent evaporation, there are not many changes in ethyl cellulose structure.  

6.4 Comparison between needle electrospinning and bubble electrospinning 

6.4.1 Effect of Feed Rate.  

In EC electrospinning by SNE, the feed rate was controlled by pump. In BE of EC the 

feed rate was not controllable, as it was dependant on number of bubbles.  In case of 

SNE and BE the main difference is feeding mechanism. In order to compare SNE and 

BE results, the EC fibres were produced at different feed rates using SNE and compared 

with BE result(Figure 6:9 , Figure 6:10).  

Table 6:3 FTIR bands of etylcellulose 

FTIR band at cm-1 Possible assignment 

3476 -OH stretching vibration on the closed ring 

structure of the EC repeating units 

1052.21 –C–O–C– stretching vibration 

2871.36 and 2973.29 C–H stretching bands 

1374.54 C–H bending 

 

  

a) 1.5ml/hr b) 5ml/hr 

  

c) 10ml/hr d) Bubble electrospinning  
Figure 6:9 Effect of feed rate on SNE fibre morphology (a,b,c) and comparison 

with BE fibre morphology (d) 
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In SNE, feed rate were changed from 1.5ml/hr, 5ml/hr and 10ml/hr keeping other 

parameters same at 30cm NTCD, 21kV power supply and 16G needle. The average 

fibre diameters were found 0.483μm at 1.5 ml/hr, 1.472μm at 5ml/hr and 1.681μm at 

10ml/hr. The avg. fibre diameter of BE fibres at 30 cm and 21kV was 0.401μm, where 

the suction pump capacity was 0.7bar. The results of the fibre diameters in SNE at 

1.5ml/hr feed rate is comparable with the BE results (suction pump capacity 0.7bar) 

with the other parameters same. It is interesting to know that the fibre morphologies 

were different inspite of comparable fibre diameter values. BE fibres found beaded and 

the SNE fibres were found bead-less. Formation of beads in the BE fibres could be due 

to surface tension of the bubbles. 

6.4.2 Effect of Needle / Solution Surface to Collector Distance on Fibre 

Morphology.  

In SNE (Chapter 5), the effects of different NTCD (10cm, 20cm, and 30cm) on the fibre 

size and shape were investigated by keeping other parameters same at 21kV applied 

voltage, 16G needle diameter, 1.5ml/hr feed rate.  The average fibre diameters were 

reduced with longer NTCD. The avg. fibre diameters reduced from 0.631μm, 

0.568μm,to 0.483μm, when the NTCD increased from 10cms, 20cms to 30cms. Longer 

NTCD gives more time for the jet to be stretched before it reaches the target. At the 

same time the solvent evaporates faster from stretched fibre due to exposure of new 

stretched surface in the air. Smaller diameter fibres are produced with longer NTCD. In 
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case of BE (Figure 6:3, Figure 6:2), the EC fibre diameter increased from 0.241μm for 

10cms SSCD to 0.346μm for 20cm SSCD and to 0.402μm for 30cm SSCD. In BE; the 

bubble properties (shape, size and viscoelasticity) affects fibre morphology. In the SNE, 

the solution properties (surface tension, viscoelasticity) affect the fibre morphologies. In 

the present study, the bubbles and the solution in the bubbles came under stress with 

higher applied voltage. As the bubbles burst the stresses in the jet are relieved as the 

fibre jets contracts. The longer SSCD gave more flight time for the jet relaxation and 

hence thicker fibres are generated. At the same time, the solvent evaporation might also 

have occurred due to continuous compressed air flow in the EC bath. The solution 

became more viscous with the time and produced thicker fibres. Bubbles release the air, 

when they burst. Air circulation around these fibres might also evaporate some solvent 

from the jets causing jet solution to became more viscous and resistant to split or 

stretched. In addition, This may also contributed in quick solvent evaporation. 

6.4.3 Effect of Applied Voltage on Fibre Morphology  

In SNE (Chapter 5) smaller fibres are produced with higher applied voltages at 20cm 

NTCD. The fibre diameters were found 0.617, 0.596, 0.568 to 0.556µm with respect to 

the applied voltages 12kV, 16kV, 21kV to 26kV respectively. 

The effect of applied voltage on BE fibre morphology at 10cm STCD can be seen in 

Figure 6:4, Figure 6:5.The average fibre diameter changed from 0.305μm at 12kV, 

0.188μm at 16kV, 0.241μm at 21kV to 0.263μm at 26kV at 10cm SSCD in BE. At 

20cm SSCD (Figure 6:6, Figure 6:7), the avg. fibre diameter was 0.490μm, 0.346μm 

and 0.396μm at at 12kV; 21kV and 26kV respectively. 

 The jets in BE are influenced by the bubble surface tension (solution holding force) and 

the electrostatic force (solution stretching force). As the voltage increased from 12kV to 

16kV, the bubble surface tension was greater compared to the electrostatic force. 

Therefore, the jet was stretched easily and EC fibre diameter reduced. The higher 

voltage generated more electrostatic force, which generates attraction for the solution. 

More solution produced thicker fibres.  

Fibre diameters at 20cm SSCD became coarser compared to fibre diameters at 10cms at 

all the voltages in the experiment. Therefore, the stress relaxation and solvent 

evaporation at longer SSCD is more, as explained earlier.  

6.5 Conclusion 

Needle electrospinnning systems (single or multiple) are not suitable for industrial scale 

production due to their limitations as explained earlier, such as needle blocking. 
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Therefore, new needle-less systems were developed based on different feeding systems. 

BE is one of new needle-less concepts developed. Much more work is done on design 

of SNE parameters on optimizing electrospun fibre, but needle-less electrospinning 

methods still lack optimization of parameters [21]. In order to understand 

morphological changes in EC electrospun fibres, we studied the effect of applied 

voltage and solution surface to collector SSCD in BE. This increase in diameter can be 

attributed to the solvent evaporation due to airflow as well as bubble bursts and due to 

jet relaxation during flight. In BE as applied voltage increased initially, fibre diameter 

decreased but then started increasing with increase in applied voltage. Initial decrease in 

fibre diameter was due to higher surface tension influence in the jet. With increase in 

applied voltage, the applied voltage supressed the surface tension and pulled more 

solution, which produced thicker fibres. 

Comparisons of the effect of the different process parameters on BE and SNE fibre 

morphologies were done. Main difference between BE and SNE is feed mechanism.  

1.5 ml/hr feed rate is considered as optimum parameter for comparison with BE fibres 

after comparing fibre diameters of both methods. The morphology of fibre 

morphologies was found different by both methods. The average SNE fibre diameters 

become bigger with the higher feed rate. The average fibre diameter reduced in SNE as 

the NTCD increased. The average fibre diameter increased in case of BE with higher 

SSCD. Average fibre size reduced with higher applied voltage in SNE. In BE, the 

average fibre size reduced initially and started increasing as the voltage increased. 
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Chapter 7  :  Development and Characterisation of Thermochromic 

Polypropylene Filament Yarn  

7.1 Introduction 

“Smart materials are intelligent materials with capability to sense and respond to their 

surrounding environment in a predictable and useful manner” [1]. These materials are 

invented by research in various interdisciplinary fields [1]. Since 1930s the 

intelligent/smart metal alloys based on s based on Ni-Ti and on Cu, such as Cu-Zn-Al 

and CuAl-Ni etc. were reported and was commercialised in 1965. In 1975, it was 

discovered that small change in temperature or concentration of solvent caused swelling 

of polymeric gels much more than their original dimension. This led to further research 

in the field of the effect of various external parameters as stimuli on the properties 

(shape, phase, optical, mechanical) of various materials. Temperature, humidity, 

pressure, electromagnetic spectrum, radio waves, microwaves, UV light, electric fields, 

magnetic fields, stress strain etc. are physical parameters which can affect 

material/polymer properties. Fungi, bacteria, algi and viruses are some examples of 

biological parameters, whilst electrolytes, salts and pH are known chemical parameters. 

All the above physical, biological, chemical parameters, which can affect material 

properties, are called external stimuli [2-4]. Many fibrous materials also show stimuli 

sensitive responses [2], such materials can be used in sensing activation, logic and 

control [5]. The materials which change their properties (in most cases optical) in 

response to external stimuli are called chromogenic [5, 6]. Depending on external 

stimuli these materials are known as “Electrophoretic” (changes with electric voltage or 

charge), “Thermochromic” (changes with temperature), “Photochromic” (changes with 

UV radiation) or “Gasochromic” (changes with reducing/oxidizing effect of gases) [6]. 

Properties such as the chromogenic property of the above material can be used for 

fashion, comfort, energy harvesting, energy efficiency, defence, protection etc. [7, 8].  

Materials which change their colour with change in temperature are called 

thermochromic materials [9]. Thermochromism has been defined by several authors 

[10-12]. According to Dawson et al. (2010) thermochromism is an easily noticeable 

reversible colour change in the temperature range limited by the boiling point of the 

solvent in the case of solution or the melting point for solids. [12]. Thermochromic 

materials vary their colour, intensity or transparency either reversibly or irreversibly
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 with change in temperature. Various polymers, polymer blends, gels, inorganic, organic 

compounds show thermochromic behaviour [13-16]. Thermochromic materials can 

mainly be divided into three types; such as conjugated oligomer [17], leuco dye and 

liquid crystal [18]. Usually leuco dyes show a single colour change while liquid crystals 

show several colour changes [19]. The liquid crystal system is well explained in the 

literature [18]. The leuco dye thermochromism is seen as a result of interaction between 

three components; a colour former (the leuco dye), an acid (activator) and a low melting 

point solvent [11, 14, 20]. 

7.2 The Principle of Leuco Dye Based Thermochromism 

The principle of leuco dye thermochromism is well explained in literatures [11, 14, 20]. 

Figure 7:1 [14] shows the reversible colour mechanism. The heat indicator material is 

coloured when the temperature is below the melting point of the solvent.  

The solvent is in solid phase and the components which form the colour (organic acid 

and colorant) are in contact. The colour can be seen due to the electron interactions. If 

the temperature is over the melting point of the solvent or the in the liquid phase, the 

colour-forming components are not in contact and the colour cannot be seen. The 

 

When the solvent is in the solid phase in the microcapsule, the colour can be seen. 

When the solvent is in the liquid phase, the colour cannot be seen  

Figure 7:1 The principle of thermochromism 
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electrons cannot interact. The colour change is reversible because the colour returns, 

when the temperature is decreased. The leuco dye system works on encapsulated tri-

component system- a colour former, an activator and a low melting solvent. The melting 

point of the solvent system decides the final temperature for colour loss. The coloured 

or colourless status can be due to electron interaction between the colour former and the 

colour activator. When the microcapsules are heated above the solvent melting 

temperature, naturally the solvent melts. So, the colour former and the colour developer 

get separated. No electron interaction occurs and the microcapsule becomes colourless. 

When the micro encapsules are cooled, the solvent melting temperature, the colour 

former and colour developers come much closer. As a result, electron interaction 

between colour former and developer provide colour. Activation temperature is the 

temperature where the colour changes, which occurs in a specific temperature interval. 

Although colour developers referred as ‘catalyst’ or ‘electron acceptors’ in most cases, 

they in fact act as ‘protein donors’ by being the hydrogen bonding source with the 

colour forming dye. 

Leuco dye based thermochromic effect can be coloured to colourless or vice versa with 

increase in temperature. The temperature and direction of process can be controlled by 

selecting the solvent and colour developer system. Depending on composition the 

colour change occurs over a 5°C temperature range with some thermal hysteresis [11]. 

Hence while heating colour disappears at a higher temperature than the temperature at 

which the colour appears while cooling [21], sometimes coloured solids remain even 

after the melting temperature is reached and become colourless at higher temperature 

[20]. 

Thermochromic materials have been widely used in plastics, ceramics and textiles 

(coating). Thermochromic materials are available as ink, dye, powder, dispersion with 

many colours and at various activation temperatures. Generally, thermochromic 

materials contain only 2% dye by mass prior to encapsulation and only around 1% in 

the final product. Colour strength of the thermochromic composition remains low. 

Thermochromic micro encapsules are applied to textiles either by coating the textiles 

fibres or printing with thermochromic pigments [14]. These methods require yarn/fabric 

treatment after they are made. They require pastes or binders to be applied along with 

thermochromic pigments, which may affect overall fabric properties and handle. 

Marinkovic et al. (1998) [22] used a thermochromic complex in phase change materials 

for green house agriculture, which acted as auto regulating shading protection from 

overheating with increase in temperature. In summer, thermochromic black pigment 
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textile membranes for building coverings showed reduction by 7.7% in thermal flux 

[23]. 

In the present work, thermochromic polypropylene monofilament was melt spun, whilst 

dope dyeing it with thermochromic pigments. As the pigments are embedded into the 

filament, there is no need of after treatment such as coating/printing to the yarn/fabric. 

The advantage of this method is that it is more efficient and effective because it saves 

cost and time whilst maintaining quality as no change occurs to final filament/fabric 

properties, and as it is dope dyed, it has excellent colour fastness. 

Polyolefin fibres are spun from polymers or copolymers of ethylene and propylene. 

Polypropylene is converted into textiles via various processes such as melt spinning, 

ribbon yarns by film making, spun bonding or melt bonding processes [24]. Properties 

such as excellent chemical resistance, easy processibility [25, 26], sufficient strength 

and low density expand its usage from plastics into textiles. Out of three structures of 

polypropylene- isotactic, atactic and syndiotactic, isotactic is more suitable to be 

converted in to fibre form [25]. Polypropylene is available in monofilament, 

multifilament, staple fibre, non-woven, fibrillated yarn etc. [27]. Polypropylene 

monofilaments are used in fishing nets (which floats on water due to having lower 

density than water), tarpaulins etc. [28]. Polypropylene is also widely used in medical 

textiles, automotive textiles, industrial textiles, geo textiles, carpeting [25]and 

moderately in conventional textiles [24].  

Polypropylene lacks dyeability because of its nonpolar high crystallinity and lack of 

functional groups to hold dye molecules [29] (Figure 7:2). Lack of dyeability is one of 

the main limitations of Polypropylene, which is due to absence of dye site [30]. This 

problem can be overcome if polypropylene is modified by the addition of dyes prior to 

melt spinning (dope dying) or by the use of hydrophobic dyes with accelerators, carriers 

or fibre swelling agents [25, 27]. 

In melt spinning, the polymer melt is extruded through a spinneret to a cooling or 

quench zone, where the filament is solidified. During this process, temperature and 

pressure is applied to melt the polymer in the melting zone, hence spinneret 

configuration, temperature of cooling zone or medium of cooling ( air or any solution or 

gas) parameters affect fibre morphology (as crystalinity orientation) [25]and properties 

(tensile).  
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It is very important to mix and distribute the pigment colours while melt spinning. As it 

not only affects final appearance of filament, but also affects properties (eg. tensile 

properties, drawability etc.). Pigment particles may act as nucleation agents (acts as 

nucleus and lamella grows around it) [25] and affect crystallization behaviour. Pigments 

may interfere in extrusion and cooling as well, so, processing of polymer with other 

additives needs trial and error to optimize parameters [25]. The fibre morphology 

depends on composition, compatibility or miscibility of components [31]. 

7.3 Materials and Methods 

7.3.1 Materials 

Thermochromic pigment UMB Blue 31 C was supplied by New prismatic Enterprises 

Co. Ltd; Taiwan.  

The core components of the dye are leuco colour developer and temperature controller 

(solvent). UMB Blue 31 C contains, 3-(4-Dimethylaminophenyl)-3-(1-ethyl-2, methyl – 

indnl-3yl) phthalide (2-10%) as a leuco dye. Bisphenol A (5-15%) acts as a colour 

developer and methyl stearate (50-80%) as a solvent system. The chemical structure 

 

Figure 7:2 Structure of Polypropylene 

 

Figure 7:3 UMB Blue structure 
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(coloured) of 3-(4-Dimethylaminophenyl)-3-(1-ethyl-2, methyl – indnl-3yl) phthalide 

dye is in Figure 7:3. When temperature rose, colour change occurs between 30ºC to 

35ºC and as the temperature goes higher, it becomes colourless. The colour changes are 

reversible. With reducing the temperature, pigments again become coloured. 

Polypropylene was supplied by Bassell, UK. All materials were used without any 

purification or changes. 

7.3.2 Melt Spinning Setup 

Polypropylene and thermochromic polypropylene filaments were extruded through a 

bench top screw extruder; Extrusion system limited, U.K. The principle and layout of 

the melt spinning is explained in chapter 1, Figure 1:2. For polypropylene filament, 

polypropylene chips were fed. For thermochromic polypropylene both the 

thermochromic pigment (35%) and the polypropylene (65%) chips were fed together. 

The molten polymer is forced through a single hole spinneret as a jet with speed 

adjusted by the metering pump. The extruded hot polymer jet was cooled into a water 

bath and passed through guiding rollers to the Leesona winding unit. Both 

polypropylene and thermochromic polypropylene filaments were spun with the same 

parameters. Initially the thermochromic hot jet from die head was found colourless, but 

it became coloured as it cooled in a water bath. 

 35% of UMB Blue and 65% polypropylene mixed homogeneously by a single screw 

extruder to the metering pump and die head system. The single screw zone was heated 

by three temperature zones T1=201ºC, T2=210ºC and T3=220ºC respectively. The 

melting pump temperature was set as T4 at 230ºC. The two die head zones were set at 

t5=246ºC and T6=240ºC temperatures respectively. All heating zones were electrically 

heated and controlled independently by a panel. The metering pump was initially set to 

6.5 rpm but it was giving higher breakage at the spinneret, so after trial and error 4 rpm 

was found the most suitable with nearly no breakage. The extruder speed was set to 13.2 

rpm. 

7.3.3 Visual Observation 

Photos were taken to see thermochromic effects by a fuji A805 camera. 

7.3.4 Scanning Electron Microscopic (SEM) Studies 

The surface morphology of the film was recorded with a Hitachi Scanning Electron 

Microscope (Model: S-4300, Japan). The samples were mounted on an aluminium stub 

by using a double-sided adhesive tape. Then it was placed in a sputter coater unit 
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(Polaron SC7620) for gold-palladium coating. Then samples were placed into SEM and 

observed at an accelerating voltage of 1 kV and current of 10µAmps. 

7.3.5  Tensile Testing of the Yarns 

The tensile tests of polypropylene and thermochromic polypropylene were carried out 

on an Instron tester (Model 3345) with a 100N load cell. Specimens of 50 mm long by 5 

mm wide were tested with a gage length of 25 mm at an extension rate of 10 mm/min. 5 

specimens were tested for each sample under the following conditions. Gauge length 

25mm, load cell 5000N, transverse speed 1000 mm/min, RH-60% and temperature 

20°C. 

7.3.6 Fourier Transform Infrared Spectroscopy 

FTIR is most useful for identifying chemicals that are either organic or inorganic. It can 

be utilized to quantify some components of an unknown mixture. It can be applied to 

the analysis of solids, liquids, and gasses. Infrared spectra were obtained on the Perkin-

Elmer Spectrum 100 FTIR Universal ATR Sampling Accessory, deposited neatly onto a 

diamond/ZnSe plate. The scans were done between 650 and 4000cm
-1

 at the resolution 

of 4cm
-1

. 

7.3.7 DSC Test: 

Thermal analyses of samples were done by a METLER-TA instrument DSC12E. 

TOLEDO-TA89 E software was used to obtain DSC curves. Samples of up to 5mg 

weight of polypropylene bead, UMB Blue bead, polypropylene filament were measured. 

Thermochromic filaments were placed in sealed aluminium pans, all the aluminium 

pans lids were pierced by a pin to create a hole. All experiments were performed in a 

normal atmospheric air. The samples were heated from 20 ºC to 300 ºC at the rate of 

10ºC/min. The results are plotted in temperature vs heat flow graphs showing 

endothermic and exothermic peaks. The melting points were determined from these 

graphs.  

7.3.8 X-ray Diffraction 

X-ray diffraction patterns of polypropylene and thermochromic polypropylene bead 

were obtained using Bruker-AXS D8Discover transmission X-ray diffractometer; 

scanning range 3 to 85 2theta; step size 0.202 which = 4061 steps @ 5 seconds/step; 

Total scan time is 35mins 16secs; Using a Cu kAlpha source, Lamba 1.5406 angstroms, 

scanned at 40kV, 40mA. 
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7.4 Results and Discussion 

7.4.1 Thermochromic Effect 

Figure 7:4 shows the thermochromic effect by a very simple demonstration. Two hands 

were placed on the filament bobbin (Figure 7:4(A)).    

 

 

After 2 minutes, hand was taken away. From (Figure 7:4(B)), the effect of hand 

temperatures can be seen. Thermochromic polypropylene became colourless due to 

body heat. As this is a reversible thermochromic filament, after 2-3 minutes the yarn 

  

A.  B.  

 
Figure 7:4 Thermochromic effect by body temperature 

 

 
Figure 7:5 Developed thermochromic filament under the temperature of (a) 

17
o
C (b) 25

o
C (c) 32

o
C (d) 38

o
C 
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again became coloured. Furthermore a thermochromic sample was kept in an oven to 

accurately assess the effect of different temperatures on the thermochromic filament. 

The photographs were taken at 17˚C, 25˚C, 32˚C and 38˚, Figure 7:5.  It can be seen 

that the thermochromic filament colour is reduced to colourless with increase in 

temperature.  

7.4.2 Scanning Electron Microscopy Analysis 

In (Figure 7:6C) the SEM images of undrawn polypropylene filament, in (Figure 7:6A) 

SEM image of undrawn thermochromic filament and in (Figure 7:6B) a hand drawn 

thermochromic filaments are shown. Here, all samples were magnified 100 times at 

1kV. The image shows roughness on both drawn and undrawn thermochromic 

polypropylene. Polypropylene filament is smoother compared to thermochromic 

 
  A.  Undrawn thermochromic 

polypropylene 

B.  Hand drawn thermochromic 

Polypropylene filament 

 

 

C.  Undrawn polypropylene filament  

 Figure 7:6 Scanning electron microscopy 
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polypropylene filament images, which shows clusters of thermochromic pigments in 

polypropylene.  

7.4.3 Tensile Properties 

The final properties of melt spun filament depend on the melt spinning process 

parameters. The polymer/filament exhibits changes in temperature, in die zones, cooling 

zone and drawing zone. The polymer/filament also exhibit various stresses/stress 

relaxation during the pressure build up by screw, solidification at the cooling zone and 

the winding process. 

All above parameters affect the final filament property at molecular (polymer 

orientation, degree of crystallinity etc.) and the structural level (diameter, morphology 

etc.) [32, 33]. “When Polypropylene is formed, its crystal formation changes according 

to the heat treatment temperature and the conditions of the cooling process. These 

changes create differences in strength, heat resistance and pressure bonding properties” 

[10]. In spite of using all same parameters for polypropylene and thermochromic 

polypropylene, their count values were different. The count of the polypropylene was 

86tex and the count of the thermochromic polypropylene was 90tex. Tensile testing 

results of neat polypropylene and thermochromic-polypropylene filaments are shown in 

Figure 7:7. Neat polypropylene tenacity was found higher than that of thermochromic 

 

Figure 7:7 Tensile test (Polypropylene and Thermochromic polypropylene) 
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polypropylene. Thermochromic polypropylene has higher elongation compared to neat 

polypropylele. The addition of a thermochromic material has influenced the mechanical 

properties. The reduction in mechanical property of thermochromic filament can be due 

to the size, distribution and morphology of thermochromic pigments, a similar result 

was also observed by Tavanai et al [25] (2005).  

7.4.4 FTIR Characterisation 

The ATIR-FTIR spectra of the neat PP and thermochromic polypropylene are shown in 

Figure 7:8. Polypropylene filament spectra show the absorption peak at 2918.25 cm
-1

, 

which represents the CH2 group vibration in the main PP polymer chain.  

The ATIR-FTIR spectrum of the PP shows four large peaks in the wavenumber range 

3000-2800cm
-1

: the peaks at 2951.27 and 2868.25cm
-1

 can be attributed to CH3 

asymmetric and symmetric stretching vibrations respectively, while the peaks at 

2918.25 and 2833.75cm
-1

 are due to CH2 asymmetric and symmetric stretching 

vibrations respectively. The ATR-FTIR spectrum also shows two intense peaks at 

1455.16 and 1376.38cm
-1

: The peak at 1455.16cm
-1

 is caused by CH3 asymmetric 

deformation vibrations or CH2 scissor vibrations, while the peak at 1376.38cm
-1

 is due 

to CH3 symmetry deformation vibrations. The ATR-FTIR spectrum of the neat PP 

filament also shows numerous small peaks in the 1200-750cm
-1

 wavenumber range. The 

Figure 7:8 FTIR curves 
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peak at 1167.82cm
-1

 can be attributed to C-C asymmetric stretching, CH3 asymmetric 

rocking and C-H wagging vibrations, while the peak at 997.75cm
-1

 can be attributed to 

CH3 asymmetric rocking and C-C asymmetric stretching vibrations, while the peak at 

897.39cm
-1

 is due to CH3 asymmetric rocking and C-C asymmetric and symmetric 

stretching vibrations. The peaks at 841.25 and 806.35cm
-1

 are due to CH2 rocking 

vibrations. Similar peaks were found in polypropylene bead also (with little 

displacement). All above values match those observed by Morent et al also [34] (2008). 

The peaks in UMB blue thermochromic bead were found at 2916.83, 2848.89, 1464.37, 

1377.61, 1167.47, 719.27 cm
-1

. Most UMB blue peaks are coinciding with 

polypropylene bead except peak at the 719.27 cm
-1

. The thermochromic polypropylene 

filament peaks due to polypropylene were found at 2950.92, 2917.59, 2868.31, 2838.55, 

1456.82, 1376.39 and 1167.52 cm
-1

. We did not get full information about the chemical 

constitution of the binder of the thermochromic beads from the manufacturer.. Peak at 

719.76cm
-1

 can be considered due to thermochromic bead in the thermochromic 

filament. This indicates good mixing of UMB blue (thermochromic material) and 

polypropylene. 

7.4.5 DSC Measurement 

Every solid state material when continuously heated will come to a point where it 

changes phase. “As a material is heated, the atoms and/or molecules gain more energy.  

At the solid to liquid transition temperature, the atoms/molecules have enough energy to 

break away from their rigid structure to a less restricted state which is the liquid state. 

The energy supplied simply goes into converting the solid to liquid, that is , the energy 

is spent in breaking down the rigid solid structure into the much less rigid liquid state, 

leading to gain in energy of the material (an endothermic transition)” .[12]. DSC allows 

to measure thermal transition such as melting boiling points as well as other transition 

temperatures such a s glass transition temperature (TG), and crystallization temperature 

(Tc) etc.[12].  

Figure 7:9 shows the DSC thermograms of neat polypropylene and dyed 

(thermochromic) polypropylene fibres. Polypropylene bead showed endothermic 

melting peak at 149.1˚C. The thermochromic UMB Blue bead curve has showed two 

endothermic peaks at 37.5˚C and 109.1˚C. Peak at 37.5˚C is due to the melting of the 

methyl stearate.  
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The melting point range of methyl stearate is 30.5˚C to 39˚C [35]. Another peak at 

109.1˚C is due to an unknown binder, as the supplier did not provide any chemical 

structural information. After melt spinning, the polypropylene curve showed shift of 

endothermic peak from 149.1˚C to 159.2˚C. The thermochromic polypropylene yarn 

curve has shown an endothermic peak at 36.6˚C and has shown another endothermic 

peak at 101.6˚C. A peak at 146.6
o
C is also due to polypropylene and can be seen in the 

 

 

Figure 7:9 D.S.C. curves 

 

 Figure 7:10 X-ray diffraction 
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thermochromic polypropylene. Reduction in melting temperature in the thermochromic 

filament suggests reduced crystalinity.   

7.4.6 X-Ray Diffraction 

Figure 7:10 illustrates the X-Ray diffraction pattern of pure polypropylene bead, 

thermochromic bead and thermochromic filament (undrawn).  

The characteristic diffraction peaks of the polypropylene beads was found at 2θ values 

= 14.1(110), 16.91 (40), 18.57 (130) [36] and 21.16 (111)[37], 25.39, 28.508, 42.46. In 

polypropylene filament diffraction peaks were found at 2θ=13.97, 16.66, 18.39, 21.22, 

23.486, 28.52, 42.46 etc. In thermochromic bead the peaks were at 2θ= 21.66, 23.90, 

25.576, 31.11, 31.824, 33.061, 33.291. In thermochromic polypropylene filament peak 

were found at 2θ=13.994, 16.715, 18.38, 20.813, 21.218, 23.209, 23.698, 30.54, 31.9, 

33, 33.2, 42.52. The diffraction pattern of the thermochromic filament shows peaks of 

the both polypropylene and thermochromic bead also. 

7.5 Conclusion 

In the present work, thermochromic polypropylene mono filament was melt spun using 

a Labspin Screw Extruder with water cooling. Pure polypropylene and thermochromic 

polypropylene filaments were produced with the same parameters. Both the filaments 

were studied and compared at various properties. Visual observation suggests uniform 

distribution of pigments in the polypropylene matrix. The colour change was gradual 

from blue to colourless above approximately 39
o
C. When cooled, the colour reversed 

back again to the original colour.  SEM images suggest smoother surface of 

polypropylene compared to thermochromic polypropylene. The thermochromic 

pigments contributed in the formulation of rougher thermochromic filament surface. 

The maximum load value was found higher in polypropylene, and the elongation value 

was found higher in the thermochromic filament. The results suggest that 

thermochromic filament is poorer than the pure neat polypropylene, due to size, shape 

and distribution of the thermochromic pigment in the polypropylene. The DSC results 

showed two endothermic peaks for the thermochromic bead. The lower endothermic 

peak suggests activation temperature. The thermochromic filament showed three 

endothermic peaks, the third endothermic peak is due to polypropylene. The XRD 

results have found all peaks of polypropylene and also the peak of the thermochromic 

pigment.  
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Chapter 8  :  End Uses and Further Work  

8.1 Introduction  

It is very important to engineer the size, shape and functionality of any product when 

considering end uses, its cost and productivity in today’s material market. After 

selection of the material from a vast range of materials, it is important to choose a 

proper material processing technique(s). Textile grade polymers are processed in to 

different forms such as fibres, yarns or fabric for many industrial, medical and domestic 

end uses.  

Textiles are an inseparable part of modern life of modern human in the form of clothing, 

upholstery, filtration, medical, aerospace and many more. Development of functional, 

smart and structural textiles revolutionized modern human life and comfort [1]. Smart 

textiles are “textiles that are able to sense stimuli from the environment to react to them 

and adapt to them by integration of functionalities in the textile structure. Stimuli and 

response can have an electrical, thermal, chemical, magnetic or other origin” [2].  

 

Smart textiles can be divided into three groups (Figure 8:1), and can be developed by 

incorporating or coating functional or smart material [3, 4] in to textiles. Depending on 

the smart material used, the behaviour of the textile changed. Shape memory materials 

(returns to a preprogramed shape with any stimuli [3]); phase change materials (absorb, 

store and release heat as required in order to keep the wearer at optimum temperature 

[3]), chromatic materials (changes colour with change in external stimuli [3]. are a few 

examples of smart materials.  

Functional clothing includes all the clothing those are specifically engineered to deliver 

predetermined performance of functionality to user over and above its normal functions. 

 
Figure 8:1 Classification of smart textiles 
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They can be classified as protective textiles, sport textiles, medical textiles etc. 

In the present thesis, different polymers were processed using different methods to 

generate functional, smart and structural fibrous morphologies / textiles.  Synthetic 

polymers can be processed into fibre by conventional spinning method such as melt 

spinning, wet spinning or dry spinning. In this work, conventional melt spinning was 

used to produce “smart” thermochromic polypropylene. Melt spinning is mainly used to 

process thermoplastic polymers into textile fibres. Nanofibres cannot be produced by a 

conventional spinning methods such as melt, dry or wet spinning [6]. Electrospinning is 

one of the most versatile and industrially viable methods to produce nanofibres. 

Engineering the nanofibre morphology depends on complex interactions of various 

solutions, atmospheric, polymeric and process parameters during electrospinning. Nano 

dimension adds new properties to the fibres itself. There are several benefits of nano 

dimensions.  

 The nano dimension means large surface area to volume or mass ratio. 

 Nanofibres can be easily functionalized by adding additives for any chemical, 

biological end use. Ease of blending with different materials make it easy to adjust 

the blend of composition. 

 Higher surface area gives more surface(s) for interactions. This may increase the 

processing speed and may reduce the total material requirement by reducing 

wastage of unused material in the fibre body.  

 The nanofibres have very small dimension up to a cellular level, so it can interact 

easily at that dimension.  

 Nano fibre mats can have interconnected pores, smaller pores and higher pore space 

to material ratios. They can be used for hi-end filtration applications.  

 Flexibility of changing various electrospinning parameters to produce different size 

and various nano fibrous morphologies for example beaded or bead-less, porous 

fibres, coiled or uncoiled fibres widens its end use for energy, drug delivery. 

 Besides flexibility of material composition, the flexibility of designing different 

structures/morphologies widens the application of nanofibres [7]. 

 Human tissues are formed from different cells (functional cells, support cells) 

contained in an extracellular matrix (ECM). Electrospinning can form material of 

ECM dimensions. Nanofibres can be used for tissue engineering by developing 

functional tissue engineering products to mimic native ECM [8], which can actively 

integrate with biological systems such as cells, tissues. 
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 Cells are roughly 10-100 µm size. Cell sensing takes place at about 5-10µm. Cells 

are sensitive to chemistry and topography on the macro, micro and nano scale. At 

this length scale material design can be done to help biology [9]. 

The above capabilities allow nanofibres to be used in different high end applications 

such as biomedical, defence and filtration. In the present work, different morphologies 

of Manukahoney(MH) –polyethylene oxide (MHPEO) nanofibres were produced by 

electrospinning. Depending on its end use different MHPEO nanofibre morphologies 

such as more merged or less merged mats can be made. Additionally, MHPEO fibres 

have shown bactericidal activity, and it has been proven that they can be used as 

functional fibres for biomedical enduses.  

Fibres electrospun from Ethylcellulose (EC) with ethanol and toluene combination 

produced a series of different fibre morphologies from beaded to bead-less fibres. It is 

interesting to know that the shape and size of beads can be controlled by changing the 

ethanol: toluene ratio. The MHPEO and EC nanofibres were produced using single 

needle electrospinning. Single needle electrospinning is a low output method and has 

limitations such as needle blocking. In order to overcome limitations of needle 

electrospinning, researchers developed various needleless electrospinning methods. 

Bubble electrospinning is one of the recently invented electrospinning method. Bubble 

electrospinning can produce multiple jets at a time, so it is a high production method. 

Interestingly EC fibres had different morphologies by bubble electrospinning compared 

to single electrospinning with similar parametric variables.  

8.2 MHPEO (Needle) Electrospinning 

Manuka honey (MH) is widely used by ingestion or topically. MH honey is different 

due to its unique bactericidal activity called unique Manuka factor (UMF) indicated by 

numbers. Higher the UMF better is the antibacterial property. Use of MH in its present 

liquid/semisolid form limits its field of end use. MH in fibrous morphology can increase 

the endues.  MH alone cannot be spun on its own due to its viscoelastic properties. 

Polyethylene oxide can be used to spin the MH into nanofibres by electrospinning. 

There was a noticeable effect of the parameters such as MHPEO ratio, NTCD, applied 

voltage, feed rate on the fibre size and morphology. The average fibre diameters were 

produced from 0.198µm to 0.924µm by changing the parameters. Different 

morphologies such as flat, thick, merged fibres to round shaped, thin, unmerged fibres 

were obtained by changing all above parameters. The MHPEO nanofibre showed 

bactericidal activity at 50% (by wt. %) of MH proportion. 
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8.2.1 End Use 

 MHPEO mat can be used as antibacterial and fast healing in wound healing. 

 MHPEO fibres can be used in packaging as biomaterial. 

 MHPEO fibre can be cross-linked to a different degree and can be used for slow 

release or controlled release of MH for medical applications. 

 Cross linked MHPEO can be used for filtration. 

 Apart from antibacterial activities the MHPEO mats maintains moisture and 

stickiness due to hygroscopic nature of the MH. These properties can be used to 

maintain moisture or stickiness. 

 MHPEO fibres can be used as food using food grade PEO as matrix. 

 MHPEO mats can be used in cosmetics to maintain moisture. 

8.2.2 Further Work 

 MHPEO electrospinning can be done with higher molecular weight PEO to 

reduce PEO proportion and to get more MH in the fibre. 

 To control the water percentage of MH or to try dry powder of MH to have 

better control of parameters, as the water content in the MH has a significant 

effect on MHPEO fibre morphologies. 

 To spin MHPEO fibres using wet spinning for conventional textile products. 

8.3 Ethylcellulose (needle) electrospinning 

EC is widely used in the pharmaceutical industry. It is a biocompatible polymer. The 

EC was successfully electrospun into nanofibres using different parameters. In present 

study we used an ethanol: toluene mixture to electrospin nano fibres. It is interesting to 

note that the effect of different solvent ratios of ethanol: toluene created different 

morphologies, from round shaped beads to smooth fibres.  

8.3.1 End Use 

 The beaded fibres can be used for drug loading and drug delivery, while bead-

less fibres can be used for filtration. 

 Not all medicines or additives are compatible with all solvents. The ethanol: 

toluene solvent system can be used to produce EC nanofibres with the any 

additives (for e.g. medicines) compatible with ethanol: toluene system. 

 The ethanol: toluene solvent ratios can be used to design or engineer EC 

films/fibres at nanoscale with given mechanical and thermal properties, by 
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controlling the ethanol: toluene ratio without altering any processing or 

atmospheric parameters.  

8.3.2 Further Work 

 To load the EC fibres with drug/additive and study the effect of different bead 

morphology on loading and release of those drugs/additives 

 To establish a numerical/mathematical relation between the solvent 

proportion/properties to control EC fibre/fabric properties. 

8.4 Ethylcellulose (Bubble) Electrospinning 

In the present study, EC fibres were electrospun into nanofibres by single needle 

electrospinning and bubble electrospinning. It was interesting to note that changing 

electrospinning method affected fibre morphology even for the same parameter values. 

Bubble elctrospinning fibres followed different trend compared to needle 

electrospinning using the same parameters. Ethyl cellulose fibre diameters ranging from 

0.188 µm to 0.396 µm can be obtained by changing different bubble electrospinning 

parameters such as solution surface to collector distance (SSCD) and applied voltage.    

8.4.1 End Use 

EC nanofibres can be used for drug delivery (same previous topic 1.4.1) 

8.4.2 Further Work 

 To study more parameters in bubble electrospinning to better understand the 

effect of parameters on fibre morphology.  

8.5 Thermochromic Polypropylene 

Thermochromic materials change their properties reversibly or irreversibly (usually 

optical) in the presence of heat. Traditionally, thermohromic textiles are produced by 

coating, spraying or printing thermochromic pigments on different forms of textiles 

such as fibres, yarns or fabrics. These methods add extra cost and need extra processing. 

Coating and printing should be fast enough to withstand washing and atmospheric 

parameters. In order to spray, coat or print there is a need of appropriate solvents. 

Thermochromic pigments are very sensitive to most solvents and can be easily 

destroyed. All above reasons limits the use of thermochromic pigments in textiles. Melt 

spinning of thermochromic pigments into filament can overcome all above 

disadvantages. Melt spinning of pigments into filament can be a challenge. As pigments 

may be destroyed due to heating and shear stresses by melt spinning. Uniform pigment 
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distribution is needed to achieve thermochromic filament. In order to do this, 

appropriate temperature profile and speeds/ draw ratio should be carefully established. 

We chose polypropylene as matrix to process thermochromic pigments. 

Polypropylene is a polyolefin fibre. It is widely used in conventional and industrial 

textiles. Polypropylene is easily melt spinnable in textile forms.  

8.5.1 End Use 

 Thermochromic textiles can be used as visual sensor for temperature sensitive 

products and processes. Thermochromic pigments are available and can be 

developed for various temperature ranges using different materials. 

 Thermochromic textiles can be used in textile design by incorporating heating 

element. Thermochromic pigments are available in various colours. Designs 

with different colours at different temperature can be produced or different 

designs can be obtained at different temperatures. 

 Thermochromic textiles can be an added product in the textile fashion industry. 

 Polypropylene can be dope dyed with such smart pigments as added value. 

8.5.2 Further Work: 

Present work can be extended as below: 

 To optimize meltspinning parameters as the thermochromic fibre has more 

uneven surface compared to a neat polypropylene. 

 To texturize thermochromic filament and act as staple fibre, and to study the 

processability in staple spinning.  

 To study the weaving and knitting performance of a thermochromic filament.  

 If the processability is poor in the above process, try to optimise its melt 

spinning parameters by more trial and error and improve its strength and 

evenness for better processiability. 

 To try different polymers such as nylon, polyester in place of polypropylene and 

to study compatibility or phase separation. 

 It is very important to heat the filament to get the thermochromic effect. To 

incorporate a heating element by incorporating conductive additives at the dope 

dyeing stage in the filament stage or twisting with metallic wires at the yarn 

preparation stage. The resistivity of the conductive element can generate heat. 

 To study the effect of different percentage of pigments on the melt 

processiability and study the filament properties. 
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 To model the above processes to predict the effect of processing parameters on 

the thermochromic filament characteristics. 

 To produce nanothermochromic fibres using melt electrospinnning. 
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Chapter 9  :  Conclusions 

Smart, functional and structural ultrafine nano fibres were produced and characterized 

using different spinning methods in the present work. Antibacterial Manuka honey 

nanofibres with different morphologies (merged, unmerged) were produced successfully 

by needle electrospinning. Ethylcellulose nano fibres with different morphologies such 

as beaded fibres (round shaped, elongated shaped) and smooth bead-less fibres were 

produced by needle electrospinning and bubble electrospinning. In order to develop 

melt electrospinning, processing parameters of thermochromic polypropylene using a 

bench top melt extruder were studied.  

Different smart materials were incorporated into different polymer matrix to spin smart 

and functional fibres. It is very important to investigate the optimum concentration, 

distribution and resultant effectiveness of the incorporated materials in the final matrix. 

It is also very important to balance the required properties of these fibres such as 

strength, functionalities/smartness and their processibility. To produce the above 

mentioned smart, functional fibrous structures, effect of different electrospinning 

parameters on the morphologies and sizes of the ethylcellulose and Manuka honey nano 

fibres were studied. The fibre dimension and morphology (structure and shape) also 

adds functionality. For example, beaded fibres can be used for drug loading and smooth 

bead-less fibres can be used for high-end filtration. 

The following is the detailed discussion of the effect of various parameters on the 

properties and morphologies of fibres. 

9.1 Antibacterial Manuka Honey Nano Fibres 

The Manuka honey cannot be electrospun on its own, due to unfavourable Manuka 

honey properties such as viscosity, rheology and surface tension of Manuka honey. In 

the present work, Manuka honey (UMF 25%) nano fibres were successfully spun using 

poly ethylene oxide as a matrix polymer. It was also important to maintain antibacterial 

property of Manuka honey even after addition of polyethylene oxide. Results showed 

that Manuka honey nanofibres maintained its antibacterial property at 50% and higher 

concentration with polyethylene oxide.  

In order to spin nano fibres, different proportions of Manuka honey: polyethylene oxide 

blends were electrospun. The Manuka honey fibres were studied for the thermal 

properties by DSC, blend by FTIR and fibre morphologies by SEM. Manuka honey:  
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Solution properties such as viscosity, surface tension, electrical conductivity and UV-

visible spectra were also measured and compared for all the spinning solutions. The 

viscosity of all the Manuka honey: polyethylene oxide blends were lower compared to 

15% polyethylene oxide aqueous solution. Viscosity of the Manuka honey: 

polyethylene oxide blend reduced as the Manuka honey proportion increased due to the 

increase in water content. The Manuka honey itself has water, apart from that Manuka 

honey is humectant and hygroscopic. Manuka honey attracts more water from the 

surroundings. 

No clear trend was found between Manuka honey fibre morphologies and 

conductivity/surface tension. The fibre diameter increased with higher Manuka honey 

proportion, i.e. reduction in viscosity. Usually fibre diameter reduces as viscosity 

reduces. This reverse trend in Manuka honey is due to the hygroscopic and humectant 

nature of Manuka honey. The Manuka honey fibres become flatter, on reaching the 

collector at high speed due to more water content. At the same time, fibres on the 

collector absorbed water as well as spread more, which produced overall flatter and 

merged fibres due to more water content.  

The Manuka honey fibre became thinner, round shaped and less merged as applied 

voltage and needle to collector distance increased (Figure 9:1). Higher applied voltage 

(in present study  25kV) further stretched Manuka honey fibres. Fibres dried faster as 

they became thinner which caused exposure of more surface area. Dried fibres did not 

merge or merged less at the contact point with each other. Similarly at longer needle to 
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Figure 9:1 Effect of different parameters on Manuka honey electrospinning 
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collector distance fibres were stretched more and hence fibres dried faster as described 

earlier. Fibres reached thinner, dried and less merged at longer needle to collector 

distance (in present study  40cm). Fibres became flatter and merged with the faster 

feed rate. As the feed rate increased, more solution came out of the needle. Therefore, 

Manuka honey fibres became thicker, more merged and flatter with a faster feed rate.  

In the present study, the thinnest fibres (0.198µm) were obtained at 30 cm needle to 

collector distance, 13kV applied voltage and 1.5 ml/hr feed rate using 16 gauge needle 

for 5% Manuka honey: polyethylene oxide solution. The thickest Manuka honey fibres 

(0.924µm) were obtained using 30 cm needle to collector distance, 10 ml/hr feed rate, 

13kV applied voltage and 16 gauge needle for 15% Manuka honey : polyethylene oxide 

solution. The DSC results showed the influence of Manuka honey proportion on the 

melting point of Manuka honey electrospun mat. The melting point decreased compared 

to polyethylene oxide electrospun mat as the Manuka honey proportion increased. The 

melting point of polyethylene oxide mat was 67.4ºC and 15% Manuka honey: 

polyethylene oxide was 61.1ºC. The area under the DSC curve decreased as Manuka 

honey proportion increased, which indicates reduction in crystallization. 

FTIR curves of Manuka honey: polyethylene oxide mat show respective peaks related 

to polyethylene oxide and Manuka honey. The 15% (wt/wt) polyethylene oxide and 

15% (wt/wt) Manuka honey: polyethylene oxide did not show any anti-bacterial 

property. 50% (wt/wt) and 65% (wt/wt) Manuka honey: polyethylene oxide blend and 

100% Manuka honey showed antibacterial activity. It can be concluded that Manuka 

honey fibres with higher proportion (in the present study50% and more) of Manuka 

honey shows antibacterial activity.  

9.2 Beaded and Smooth Ethycellulose Nano Fibres by Needle Electrospinning 

Size and shape (morphology / structure) of the fibres also adds functionality to the 

fibrous structures. Different morphologies can be electrospun from the same polymer 

such as beads, beaded fibres, smooth fibres, porous fibres, coiled fibres, flat fibres. by 

changing different parameters. It is very important to produce such different 

morphologies for different enduses. In present study, different morphologies were 

electrospun successfully from ethylcellulose by changing solvent combination. 

Ethylcellulose fibres were electrospun successfully and characterised by DSC, FTIR 

and SEM. The 15% (wt/wt) ethylcellulose was dissolved into different toluene: ethanol 

mixtures in the ratios of 0:100, 40:60, 50:50, 60:40, and 100:0. The fibres produced by 

different solvent mixtures gave different morphologies from round shaped beaded fibres 
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for 100% ethanol as solvent to  elongated beaded fibres for 40:60 as well as for 50:50 

toluene: ethanol and smooth (bead-less) thin fibres for 60:40 toluene: ethanol and 

smooth (bead-less), thick fibres for 100% toluene as solvents (Table 9:1). 

 

All the parameters were kept same for the above experiment at 21kV applied voltage, 

20cm needle to collector distance, 1.5ml/hr feed rate and 16 gauge needle.  

Ethanol is a poor solvent for ethylcellulose compared to toluene. Ethylcellulose solution 

in ethanol has lower viscosity compared to the toluene as a solvent. 

 

Solvents 

(Ethanol: 

Toluene) ratio 

Shape Comment 

100:0 

 

Irregular / collapsed 

round bead on string 

60:40 
 

Irregular / collapsed 

elongated bead on string 

50:50 
 

Regular / solid elongated 

bead on string 
40:60  Fibres 

0:100  Thick fibres 

 

Table 9:1 Effect of solvent on ethyl cellulose electrospinning 
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 Less solubility of ethycellulose in ethanol is also visible in the photograph (Chapter 5, 

Fig 1:5) showing higher turbidity. Higher solubility of ethylcellulose in toluene is 

visible by clear ethylcellulose solution in toluene. More beaded fibres at a higher 

ethanol proportion is due to low viscosity of the ethylcellulose  solution in ethanol. As 

the toluene proportion is increased up to 100%, the ethylcellulose solution viscosity 

increases. Higher viscosity favours bead-less smooth fibres, so a higher proportion of 

toluene in solvent produces bead-less fibres. It indicates that selection of solvent has a 

measurable effect on electrospun fibre morphology The 60:40 toluene: ethanol as 

solvent gave thin and bead-less fibres, hence we considered this solvent ratio for further 

experiment. In the present study (Figure 9:2), the thinnest average 15% (wt/wt) 

ethylcellulose fibre diameter (0.483µm) and at 30 cm needle to collector distance, 21kV 

voltage, 1.5ml/hr feed rate, 16 gauge needle and 60:40 toluene: ethanol solvent. The 

coarsest 15 % (wt/wt) ethylcellulose diameter (0.631µm) was obtained at 10 cm needle 

to collector distance in case of 60:40 toluene: ethanol as solvent.  

The DSC curve showed increased melting point with increase in toluene proportion as a 

solvent. The melting behaviour, glass transition temperature and crystalinity are 

correlated as the function of solvent chemistry. 

The EC film mechanical properties and appearance were also affected with the change 

in ethanol: toluene ratio (Table 9:2). 

 

9.3 Bubble Electrospinning of Ethylcellulose Eibres 

Ethylcellulose fibres were also electrospun by bubble electrospinning and its results 

were compared with needle electrospinning results. In the bubble electrospinning of 

ethylcellulose (Figure 9:3), the coarsest average ethyl cellulose fibre (0.49µm) produced 

at 12kV applied voltage and 20cm solution surface to collector distance. The thinnest 

average ethylcellulose fibres produced (0.188µm) at 16kV applied voltage and 10 cm 

solution surface to collector distance. 

  No. Film detail Film appearance Film Flexibility 

1 15EC100Et  Film with more white dots Fragile & rigid 

2 15EC50Et Film with less white dots semi fragile & rigid 

3 15EC100To  Clear film Pliable & flexible 

Table 9:2 Ethyl cellulose solution and film visual property 
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9.4 Comparison between Ethylcellulose Needle Electeospinning and Bubble 

Electrospinning 

Comparison was done between the conventional single needle electrospinning with 

bubble electrospinning fibre morphologies at the same parameters to understand the 

effect of single needle and bubble electrospinning on fibre characteristics. Fibres were 

electrospun at 0.7bar pressure by bubble electrospinning and their size and appearance 

was compared with different single needle electrospinning feed rates at 1.5 ml/hr, 

5ml/hr and 10ml/hr. In the case of single needle electrospinning, the feed rate can be 

controlled but in bubble electrospinning feed rate depends entirely on the number and 

size of the bubbles produced, which is unpredictable. The bubble size and numbers 

depend on various process parameters such as the compressed force of the air, hose pipe 

diameter, and hose pipe depth in the bath of the reservoir. Therefore in this study, the 

average fibre diameter produced by both systems was considered as a milestone. 

Different feed rates in single needle electrospinning revealed that fibre diameter at 

1.5ml/hr feed rate is comparable to bubble electrospinning fibre diameter produced by 

compressed air of 0.7bar capacity pump. Hence, 1.5 ml/hr federate was kept constant 

for all single needle electrospinning experiments and the results were compared with the 

bubble electrospinning results. 

After standardization of the feed rate, the effects of needle to collector distance in single 

needle electrospinning and solution surface to collector distance in bubble 

Figure 9:3 Effects of different parameters on Ethyl cellulose (fibre morphology) 

 bubble electrospinning 
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electrospinning on fibre size and appearance were studied. The 10 , 20 and 30 cms 

needle to collector distance / solution surface to collector distance showed different 

results for single needle electrospinning and bubble electrospinning fibre morphology. 

A reduction of fibre diameter in single needle electrospinning with increasing the 

collector distance was found due to fibre stretching resulting by increased distance and 

time for fibre flight to collector.  In bubble electrospinning, the opposite trend was 

found, i.e.; the fibre diameter increased with an increase in distance due to stress 

relaxation, drying and solution thickening by the compressed air flow.  

As the applied voltage initially increased bubble electrospinning fibre diameter 

decreased and then increased with higher applied voltage. This is due to the interplay 

between bubble surface tension and the electrostatic force. In single needle 

electrospinning, fibre diameter decreased with increasing voltage due to the interplay 

between surface tension of the solution and the electrostatic force. 

These changes in fibre morphology of single needle electrospinning and bubble 

electrospinning are due to different process parameters in fibre spinning, specifically the 

viscoelastic property of the solution in the case of single needle electrospinning and the 

viscoelastic force of the bubble in the case of the bubble electrospinning.  

9.5 Thermochromic Polypropylene 

Chromic materials are smart materials. Thermochromic materials change their 

properties (usually colour) as the temperature changes. Incorporating them into fibrous 

structure gives added value and dimension. In order to produce thermochromic 

filaments by melt electrospinning, it was necessary to study the processing of 

thermochromic pigments with polypropylene in melt spinning. For the proper blending 

of polymer matrix and pigments, it was necessary to spin thermochromic filaments by 

screw extruder. Similar feeding mechanism can be used to meltelectrospin the 

thermochromic filaments. The thermochromic pigments can be destroyed and affected 

by the temperature, the shear forces and the duration of exposure to the higher 

temperature. It was also necessary to decide spinnable concentration of thermochromic 

pigment. At the same time, it was also necessary to decide the minimum concentration 

required to maintain its thermochromism. In the present study we incorporated 

thermochromic pigments into polypropylene to produce thermochromic polypropylene 

by melt spinning.  

In the present study, 35% UMB Blue thermochromic pigment and 65% polypropylene 

beads were fully mixed before feeding into bench top single screw extruder. 
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Thermochromic polypropylene filaments were coarser (90 tex) compared to neat 

polypropylene filaments (86 tex) using same processing parameters. The SEM image 

showed rough surface of thermochromic polypropylene compared to neat polypropylene 

due to the distribution of thermochromic pigments. 

The differential scanning calorimetry results showed a distinct melting peak for 

thermochromic material at its activation temperature 37.5°C. The colour change from 

blue to colourless can be obtained by heating at body temperature (37°C), which is 

similar to activation temperature. The same phenomenon was observed, when sample 

was kept in oven and heated at 38ºC. The colour change was reversible, so as the 

sample cooled down below activation temperature it again became coloured. 

The solvent (methyl stearate) in thermochromic pigments is in solid phase at low 

temperature. When the colour forming components (organic acid and colorant) are in 

contact with each other, the colour can be seen. At low temperature, colour forming 

components are in contact, so they form colour. As temperature is raised to 37
o
 C, the 

methyl stearate becomes liquid. The colour forming components lose their contact in 

liquid methyl stearate and colour cannot be seen. 

Again when cooled down, the methyl stearate becomes solid. The colour forming 

components come in contact and form colour. Due to distribution, size and morphology 

of thermochromic pigments, the thermochromic polypropylene filament strength is 

reduced. It is still high enough for processability into textiles.  

The optimum processing parameters were as noted below. The screw was heated by 3 

temperature zones T1=201ºC, T2=210ºC and T3=220ºC. Melting pump temperature 

T4=230ºC. The two die zone temperatures T5=246ºC and T6=240ºC respectively. 

Melting pump rpm=4 and the extruder rpm=13.2. An initial trial and error were 

conducted to have continuous flow of material by changing temperature profiles and 

screw speeds, for eg higher pump speed (6.5 rpm), the neat polypropylene was 

processable. Polypropylene with thermochromic pigment showed phase separation and 

lumps of thermochromic pigments were coming along with the jet. It has very high 

breakage rate. This may be due to higher screw speed; it did not allow the pigment and 

matrix to mix well. At lower speed of 5 rpm, the breakage reduced with more continuity 

of polymer jet. At end 4.0 rpm was found as optimum speed for thermochromic 

polypropylene melt processability with nearly no breakage rate. 

There were nearly no breakages observed in processing thermochromic polypropylene 

using above parameters. At the same time the thermochromic filament maintained its 

thermochromism and minimum required strength using above parameters. 
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The above temperature profile and parameters can be used as guideline for producing 

nano thermochromic polypropylene fibres by melt electrospinning. 


