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Abstract 

The ability to cool and trap atoms has revolutionized atomic and ultra-cold 

physics. Molecular physics is currently undergoing a similar transformation. This thesis 

aims to research a general cooling method that will be applicable to wide range of 

molecular and atomic species and other particles. 

We studied the dynamics of molecules in optical fields, focusing in particular on 

exploring the molecular self-organisation phenomena in optical cavities to cool 

molecular ensembles to sub-mK temperatures.  

Firstly, the general model of cavity cooling from atoms to molecules and the 

dynamics of a particle in a single cavity mode were discussed. We extended the existing 

cooling scheme for two-level atoms to an ensemble of multi-level molecules. Then we 

studied the spatial dynamics of molecules in the new parameter conditions, focusing in 

particular on exploring the molecular self-organisation phenomena in optical cavities to 

cool molecular ensembles to sub-mK temperatures. The scheme complements well with 

our present experimental work on the deceleration and focusing of cold molecules and 

can extend our present capability to simultaneously cool and trap a large cold molecular 

ensemble. 

For simulation of a large ensemble of molecules, we proposed a new statistical 

model based on the Boltzmann equation beside the traditional discrete model and 

studied two solution methods. The comparison of the theory and numerical simulations 

between discrete model and statistical model showed a good agreement, which validated 

this new model. 

We then explored the scaling laws with a view to the self-organization and 

cooling of a large ensemble of species. We studied the cooling of a CN molecular cloud 

of the density 1013/cm3, with an initial temperature at 10 mK in an optical cavity. We 

found that more than a third of the molecules are stably trapped by the intracavity field 

and the final temperature is below 1mK. We discussed the scaling laws in the case when 

a large ensemble of species is involved.  Finally we argue that cavity cooling using a far 
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off-resonant laser source can be a general cooling method that is applicable to any 

particles and studied the probability and conditions.  
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Chapter 1 

General Introduction 

1.1 Introduction 

Recent advances in cooling and trapping atoms has revolutionized atomic and 

ultra-cold physics. The techniques to produce cold and trapped atoms have led to many 

scientific achievements, such as Bose-Einstein condensation [1.1], Fermi degeneracy 

[1.2], superfluidity in atomic vapors [1.3] and nonlinear atom optics [1.4]. Molecular 

physics is currently undergoing a similar development as effective methods for 

manipulating the motion of molecules are being put in place. In principle, all these 

experiments with atoms could be performed with molecules. Moreover, molecules offer 

a vast range of properties not available in atoms. Therefore, pursuing such 

investigations with cold trapped molecules would have more dramatic advances. 

The capability of producing cold and ultra cold molecules may open up exciting 

applications in ultra-high resolution spectroscopy, tests of fundamental theories, 

ultracold photochemistry, dipolar gas, quantum control etc. In section 1.2, we present an 

introduction to these applications. 

Several optical cooling methods have now been established for the creation of 

cold atoms over the last decades. Manipulation using tailored optical fields has proven 

to be an effective scheme, which has demonstrated unprecedented control over the 

external degrees of freedom of atoms and molecules. Besides the direct laser cooling 

schemes, considerable advances have been studied to produce cold molecular species in 

the mK regime. By the photoassociation method, various species of ultracold alkali 

molecules have been directly formed by ultracold atoms. Buffer-gas cooling, the 

collisional cooling method of atoms and molecules trapped in a magnetic potential, has 

been successfully implemented to produce cold paramagnetic molecules [1.104, 1.105]. 
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The Stark deceleration scheme has been demonstrated to slow a beam of metastable CO 

or NH3 molecules by using time-varying electrostatic fields [1.81, 1.106]. While these 

methods are quite general, additional techniques are required to produce large phase 

space densities below the mK regime. The cavity cooling scheme is one of the potential 

methods. In section 1.3, details of these techniques are introduced. 

1.2 Applications of Cold Molecules 

A molecule is broadly defined as a tightly or loosely bound collection of a small 

number of atoms, which is held together by the electromagnetic field of the constituent 

atoms, or even by applied external electromagnetic fields. Comparing with atoms, 

molecules are more interesting for several key differences: 

First, molecules possess multiple rotational and vibrational degrees of freedom 

which are more complicated than atoms. 

Second, unlike atoms, molecules are generally nonspherical. They carry a non-

zero electric dipole moment, magnetic dipole moment and anisotropic short and long 

range electrostatic interaction. Therefore, the orientation of the molecular axis can be 

controlled with an electric or optical field. 

In general, cold molecules are more interesting for many fundamental researches 

in physics compared to cold atoms. For example, simple diatomic molecules possess 

many more properties than atoms. The term “ultracold” generally refers to the 

temperature of molecules at sub-milliKelvin regime. Experiments with cold trapped 

molecules are being carried out by many research groups over the world in various areas 

of physics. 

1.2.1 High resolution spectroscopy and quantum control 

The cooled and trapped molecules provide an ideal platform for high resolution 

molecular spectroscopy. The spectroscopic measurements on molecules usually involve 

a single ro-vibrational state, and its precision is limited by photon-counting statistics. 

Cold molecules have slow moving velocities both in the moving frame and the 

laboratory frame, which allows long interaction times for the necessary measurements. 

On the other side, cold molecules have a narrow Doppler linewidth and a large 

population on the low rotational level which leads measurements with high photon 

counting rates [1.61]. These advantages can significantly increase the measurement’s 
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statistical sensitivity level. A huge amount of accurate atomic and molecular data has 

been reported in the last two decades [1.8-1.12]. N. Vanhaecke et al. accurately studied 

the van der Waals coefficient in Cs2, and constructed the asymptotic ground state 

potential curves from two-color photoassociation (PA) spectroscopy [1.5]; C. Amiot 

presented the atomic radiative lifetime from molecular spectroscopy data [1.6]. 

The novel Feshbach spectroscopy is highly accurate in measuring near-threshold 

bound states in all systems that exhibit Feshbach resonances, which can populate any of 

the near-threshold bound molecular states with elaborate time-dependent magnetic 

fields, including those having high rotational energies [1.13-1.15]. N. R. Claussen et al. 

precisely measured the accurate spectroscopy of a Feshbach resonance in an 85Rb Bose-

Einstein condensate by the induced coherent atom-molecule oscillations [1.7]. Many 

meticulous experiments about Feshbach resonances have been done and more broad 

reviews of this technique and its applications are proposed in ref. [1.16-1.18]. 

High resolution quantum control in molecular systems with efficient population 

transfer among different quantum states or molecular wave packets is a new application 

of cold and ultracold molecules [1.19-1.22]. It will provide opportunities to study 

precisely controlled quantum chemistry. For ultracold molecules the external motional 

degree of freedom is effectively frozen out. By using highly stable optical fields in the 

form of phase-coherent pulse trains, coherent evolutions among different internal 

energy states can be precisely controlled. Molecular quantum wave packets, 

superpositions of quantum states in molecules, can be manipulated with phase-coherent 

femtosecond pulse trains. These ideas represent a new direction in quantum control of 

molecules with strong spectrally broad laser pulses. 

1.2.2 Tests of fundamental physics 

The transitions of cold molecules are only limited by the natural lifetimes of 

relevant molecular energy levels [1.12, 1.23]. It leads to very high precision studies of 

molecular structure and dynamics.The high-resolution capability is very useful for some 

stringent tests of fundamental physical laws and symmetries. Molecules can play a 

powerful role in the tests of the cosmological variation of the hyperfine structure 

constant α and the ratio of electron-to-proton mass me/mp, while atoms generally lack 

transitions that can reveal it [1.24-1.29]. One example is the measurement of the Λ-

doublet transitions of OH ground-state molecules in the microwave range [1.24, 1.30]. 
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Another research area of cold molecules is the measurement of the electric 

dipole moment (EDM) of the electron. A non-zero EDM would imply a T-violation, i.e. 

an asymmetry with respect to time reversal [1.31-1.33]. When an external electric field 

is applied to an atom or molecule, a much larger internal effective electric field is felt by 

the unpaired electron which can be expressed by the product Q×P, where P is degree of 

the atomic or molecular polarizability induced by an external field and Q is a factor 

proportional to Z3, with Z the nuclear charge [1.11]. The EDM measurement requires 

subjecting an electron to the highest electric field possible. The factor P of a typical 

atom is about 10-3 even when a very high external field is applied, while a typical 

diatomic molecule can be nearly completely polarized (P≈1) with a relatively modest 

external field. The internal fields in molecules can be orders of magnitude stronger than 

those in atoms. At the same time, the presence of internal molecular structure can allow 

a substantial reduction of many systematic errors. Therefore a heavy polar molecule is a 

good candidate forsensitive measurement. Enhanced population in low-lying levels and 

the narrow Doppler linewidth of cold molecules also improve detection sensitivity. 

Experiments aiming at determining the electron EDM are underway on PbO [1.34-1.37] 

and YbF [1.38-1.40]. 

1.2.3 Ultracold chemistry and quantum degenerate chemistry 

Research on chemistry at cold and ultralow temperatures has entered into a new 

era. When molecules are cooled to low temperatures, a number of phenomena, such as 

inelastic and reactive collisions, rotational and vibrational state changes, spin 

depolarization, become extremely state-selective. The molecules can be enhanced 

populated on specific ro-vibrational states [1.41-1.46]. This could be used for the 

efficient production of atoms or molecules with inverted populations of internal energy 

levels and potentially the development of new atomic or molecular lasers. When 

molecules are cooled to ultracold temperature, their dynamics are entirely determined 

by quantum effects. It allows the measurements of chemical reaction or collision rates at 

zero temperature, which can provide unique information about the role of tunneling, 

zero-point energy and quantum reflection effects.  

Many research groups currently are trying to produce molecular BEC and 

degenerate Fermi gases since the achievement of a BEC of Feshbach molecules out of a 

degenerate atomic Fermi gas [1.47-1.50]. The region very close to a Feshbach 
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resonance has been investigated both in theory and in experiments. In the limit of weak 

interactions, many-body physics allows for the formation of fermionic pairs identifiable 

with Cooper pairs according to the Bardeen-Cooper-Schrieffer (BCS) theory which 

explains the occurrence of superconductivity and superfluidity [1.51]. BEC of Cooper 

pairs was observed by changing the magnetic field condition in the BCS [1.52-1.53] and 

the pairing energy gap has been detected [1.54-1.56]. Another phenomena of super 

chemistry has been proposed which is a stimulated Raman emission of molecules in a 

chemical reaction based on the dynamics of coupled atomic and molecular BEC [1.57]. 

1.2.4 Dipolar gases 

Dipolar gases are a novel method to exhibit reaction and collision phenomena of 

ultracold particles with permanent electric dipole moments or electric dipole moment 

induced by an external electric field. The dominant atom-atom interaction is via the van 

der Waals potential varying as R-6, with R their mutual distance. The polar molecules 

and other particles with dipole moment interact through long-range dipole-dipole 

interaction varying as R-3, in addition to the van der Waals interaction. Such cold gases 

of ultracold atomic and molecular gases will lead to an entirely new regime of strong 

anisotropy interactions. The interaction between particles could be controlled either by 

external fields, or by using various geometries of the trapping configuration. Many 

research programmes have been proposed [1.58-1.60]. In particular, dipolar gases can 

be chosen to represent systems for many-body physics, and are suitable for modeling 

condensed matter phases. 

1.3 Techniques for Creating Cold Molecules 

Experiments forcreating cold atoms generally involve the following three steps 

[1.1, 1.61-1.63]. First, an ensemble of atoms ispre-cooled to a temperature in the Kelvin 

to milli-Kelvin range. The most common technique for this step is laser cooling. Once 

the temperature is low enough for trapping to be possible, atoms are placed into a trap. 

Finally, evaporative cooling or other schemes is used to bring atoms into the ultracold 

regime. 

Near all currently-proposed methods for creations of ultracold molecules rely on 

the same three steps except photoassociation and Feshbach resonance. However, the 

technique of laser cooling usually is not suitable for molecules. Doppler cooling is a key 
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scheme in laser cooling that makes use of a velocity-dependent dissipative light force 

through the Doppler Effect to cool atoms [1.64]. The number of atomic species that can 

be cooled in this way is limited by the availability of a cycling transition in which many 

absorption and spontaneous emission cycles are required to reduce the momentum 

distribution of atoms in a thermal ensemble. This requirement also makes Doppler 

cooling of molecules generally not feasible because the absence of strict selection rules 

particularly between vibrational states precludes the existence of a single cycling 

transition [1.65]. 

Although proposals for laser cooling of certain molecules exist, and research on 

non-traditional laser cooling methods of molecules is being studied, a general laser 

cooling scheme of molecules is unlikely to become available in the near future [1.61, 

1.66-1.67]. Therefore, an alternative cooling technique is necessary. A range of 

common techniques is introduced in the following sections. 

1.3.1 Photo-association and Feshbach resonances 

Photoassociation (PA) is a way that takes advantage of the success of laser 

cooling in atoms [1.8-1.10, 1.68]. It uses cold atoms as building blocks, and generally 

binds two atoms together to construct moleculeswith cold translational temperatures 

directly. However, the method is limited to the species range of alkali diatoms [1.69-

1.75]. The molecule formed usually has a rather large internuclear distance between the 

bounded atoms, and locates on vibrational excited states just below the dissociation 

limit. With a variety of laser cooling schemes, the molecules can be transferred into 

their rotational-vibrational and electronic ground state.  

The Feshbach resonance method is another way for creating ultracold molecules 

directly from ultracold atoms [1.53, 1.58, 1.76, 1.77]. A Feshbach resonance is a 

resonance of a many-body system in which a bound state is achieved if the coupling 

between an internal degree of freedom and the reaction coordinates which leads to 

dissociation vanishes. When a bound state is not formed, it is a shape resonance as the 

opposite situation [1.107]. This method becomes important in the study of Fermi gases. 

The molecules produced, limited to alkali dimers, have surprisingly long lifetimes, 

which allows formation of molecular BEC [1.78] and, molecular superfluid [1.79].  
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1.3.2 Stark and Zeeman deceleration  

Stark deceleration is a general method which uses time varying inhomogeneous 

electric fields to slow down polar molecules from a room-temperature supersonic 

molecular beam [1.80-1.82]. 

 

 

Figure1.1 Experiment setup and principle of Stark decelerator  

 

A schematic view of their experimental setup is presented in Fig. 1.1 [1.83-1.84]. 

The Stark decelerator consists of an array of electric field stages. Each stage consists of 

two parallel cylindrical metal rods. One of the rods is connected to a positive potential 

and the other to a negative potential switched quickly. When a molecule in a quantum 

state with a positive Stark effect is moving through an electric field and approaching the 

region of maximum field strength, its Stark energy is increasing while its translational 

energy is being correspondingly reduced. To prevent the molecule from regaining the 

translational energy when it leaves the maximum region, the field is quickly switched 

off. The molecule thus ends up in a homogeneous, Filed-free region where its potential 

energy and kinetic energy both remain constant. In the stark decelerator setup, this 

process will repeat when the electric field of the next stage is switched on and the 

molecule keeps losing its kinetic energy. The exit of the experimental setup is normally 

equipped with an electrostatic storage ring or electrostatic quadrupole trap to trap the 
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slowed molecules. The technique is a simple and general way to produce small samples 

of milli-Kelvin-range cold polar molecules. 

The Zeeman decelerator works under the similar principle but it uses the 

magnetic moment instead of electric moment of the molecules [1.84-1.85]. 

 

 

 

Figure 1.2  Zeeman decelerator experiment setup 

1.3.3 Buffer gases cooling and other approaches 

Buffer gas cooling is another general technique that has been developed for use 

in cooling paramagnetic atoms and molecules at ultracold temperatures [1.86-1.88].  

This scheme allows the molecules of interest to be cooled through elastic 

collisions with a cold buffer gas inside a chamber. The buffer gas most commonly used 

in this sort of application is helium. If there are enough collisions between the buffer 

gas and the molecules of interest before the molecules hit the walls of the chamber and 

are gone, the buffer gas will sufficiently cool the ensemble [1.35, 1.61, 1.89-1.91]. 

There are several methods for introducing molecules into the buffer gas: 

1. Laser ablation. As shown schematically in Fig. 1.3(a), an intense laser pulse 

illuminates a solid precursor target and heats up the surface to very high temperatures. 

As the result, the ablation products are ejected from the surface into the buffer gas. The 

unpredictability of its yield is the most important drawback of this method.  

2. Capillary filing. A thin capillary connects the low-temperature buffer gas cell 

with a room-temperature gas supply, as shown in Fig. 1.3(b). The molecules are driven 

into the cell by the supply pressure. Only molecules with high vapour pressure can 

survive the trip along a thin cold channel without condensation or recombining.  
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Figure 1.3Methods of loading molecules into cryogenic buffer gas cell 

 

3. Beam loading. A molecular beam from a room-temperature source is injected 

into a cryogenic buffer gas cell. This is novel loading technique which can overcome 

the limitations of the previous two methods. 

Buffer gas cooling can be applied to virtually any molecule, as long as the 

molecule is capable of surviving multiple collisions with low energy helium atoms, 

which most molecules are capable of doing. The final temperature is about a few 

hundred millikelvin, determined by the equilibrium vapour pressure of the buffer gas. It 

also can produce large number of cold molecule ensemble (5×1013 at 2K). 

Some other methods to produce cold molecules have been proposed in recent 

years, such as Counter-rotating nozzle [1.92-1.93], phase space filtering [1.94], laser 

scoop [1.103], billiard-like collisions [1.95] and Stochastic cooling [1.96-1.97]. 

Stochastic cooling uses a measurement of the momentum followed by a corrective force 

to move small regions of the phase space towards zero momentum. Most of these 

methods are being currently studied to produce substantial numbers of cold molecules. 

1.4 Cavity cooling 

Cooling atoms within an optical cavity is a relatively new method, which was 

first proposed in 1997 by Horak et al. and has recently been demonstrated 

experimentally [1.98-1.102]. This scheme uses a cavity detuned from resonance to 

preferentially scatter blue shifted photons out of the cavity to extract energy from the 

atoms [1.98-1.99]. 
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Figure 1.4 Set up of the cavity cooling 

 

Cavity cooling does not require the particles to have a closed-cycling transition 

necessary for laser cooling. Therefore the method doesn’t depend on the specific 

internal structure of the scattering species and can be applied for cooling any kind of 

polarizable particles including molecules. Since spontaneous emission plays little role in 

the cooling process, the lowest temperature that can be achieved in a cavity is 

determined by the cavity linewidth κ, i.e., CBTk , which can be well below the 

Doppler cooling limit DBTk .  

The original configuration of the setup is a longitudinal pump where a laser is 

pumped through the mirror. In a good cavity, due to the finite response time of the 

cavity, there is a delay of the effect of the intracavity intensity on the particle dynamics 

and the delay will results in a force that cools the particle. Cavity cooling has been 

further studied beyond the single atom case [1.99-1.100] in which collective effects of 

many atoms are considered [1.101]. In 2002, Domokos proposed another configuration 

called transverse pump where the laser shines from the side instead of from the mirror. 

In this configuration on interesting phenomenon was found where a buildup of the 

intracavity intensity is accompanied by the self-organization of the particles in the 

cavity. This has led to the experimental demonstration of cooling cesium atoms to a 

few μK [1.102].  

610

The earlier research focused on the interesting dynamics such as self-

organization from this special configuration and the considered number of particles is 

usually small (only hundreds of particles). Later on people (include us) begin to 

investigate the scaling characteristics of the system in order to cool a larger number of 

particles ( ) which is more likely to be the real situation in experiment. Recently our 1210
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group has begun to use a continuous model which is based on the collisionless 

Boltzmann equation to numerically check the scaling results based on the discrete 

model. This works is an important step which puts forward the cavity cooling of larger 

number of particles toward the experimental realization. 
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Chapter 2 

Cavity Cooling of atoms  

2.1 Introduction 

In this chapter, the theoretical descriptions of the cavity cooling are introduced. 

Cooling atoms with an optical cavity is a relatively new method, which has recently 

been demonstrated experimentally [2.1-2.5]. This scheme uses a cavity detuned from 

resonance to preferentially scatter blue shifted photons out of the cavity to extract 

energy from the atoms. It does not depend on the specific internal structure of the 

scattering species and can be applied to any polarizable particles including molecules.  

In spite of recent prolific activity in the fields of cavity QED and cavity cooling, 

the present understanding of the dynamics of the atom-field interaction in a cavity is 

largely limited to a single atom. When an ensemble is placed in a cavity, different atoms 

are coupled by their interaction with the common intracavity field. This field-mediated 

atom-atom interaction leads to significant modification to the dynamics of a single atom, 

and experimental and theoretical work suggest a nontrivial scaling with the number of 

atoms [2.6]. 

More recent studies have shown that spatial self-organization of atoms in a 

cavity occurs when the detuned pump light is send into the cavity from the side instead 

of directly [2.4, 2.8]. This phenomenon can reduce or eliminate the undesirable atom-

atom correlation [2.9]. It has demonstrated significant enhancement of the cooling 

process through the collective dynamics of many body species. 

In section 2.2, the general cavity cooling model is theoretically discussed. In 

section 2.3, we utilize the classical theory to derive the numerical solution of a single 

two-level atom in a single cavity mode. In section 2.4, the atom-atom interaction in an 
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optical cavity is presented. In section 2.5, the theoretical model of atomic self-

organization is studied.  

2.2 Basic Model of Cavity QED 

Cavity-cooling has so far been studied almost exclusively in the strong atom-

field coupling regime in which the refractive index changes induced by atoms are 

significant. 

The schematic sketch of the basic cavity cooling system is shown in Fig. 2.1, 

according to the work of Peter Domokos and Helmut Ritsch [2.10]. There are N two-

level center-of-mass (CM) atoms with transition frequency ωA, which are able to be 

strongly coupled to M modes of a high-finesse optical cavity with frequencies ωm≈ ωc 

for all modes m =1 ... M. 

 

 

 

Fig. 2.1  Schematic representation of the system composed of many atoms coupled 

to a multimode cavity. 

 

In general, the system is driven by two coherent laser fields. One field is directly 

injected into the cavity through one of its mirrors, yielding an effective pump strength 

ηm for the mth mode. The second driving laser field impinges on the atoms from the side 

with spatially dependent pump strength ηt. There is an efficient scattering of photons 

into the cavity due to the dipole coupling between the pump field and the atoms. For 

simplicity the two pump lasers are set to have the same frequency ωp. The pump-atom 

red detuning is defined as ApA   . 
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There are two dissipation channels to take into account. First, the atoms 

spontaneously emit into free space other than the cavity modes with a rate 2γ. Second, 

cavity photons decay with a rate 2κ via the output coupler mirror of the cavity. 

In addition to the coherent pumping and dissipations, the system is subject to 

incoherent damping that is due to the atom-light coupling. We firstly discuss the 

interaction between atom and optical field. 

2.2.1 Interaction between a two-level atom and single mode optical 

field 

The simplest and most important model of an atom includes only the ground 

(lower) state g  and excited (upper) state e  of an optical transition. This concept of 

“two-level atom” is often used to describe its interaction with the electromagnetic field 

in detail and obtain analytic solutions [2.11]. A two-level atom in an optical field is 

depicted in Fig. 2.2 according to the condition of our general model. 

This dipole interaction has two effects: (1) when the field is off-resonant with 

the atomic transitions, the dominant effect is that the atomic energy levels undergo an 

energy shift; (2) when the field is near-resonant with an atomic transition, the dominant 

effect is transitions between atomic levels [2.2].  

 

 

Fig. 2.2  A two-level atom in an optical field with frequency ωp. The detuning is ΔA 

 

Following standard quantum optics techniques and approximations, the total 

Hamiltonian for the combined system of the optical field and the two-level atom can be 

written as 

H = Hatom+Hfield+Hint       (2.1) 
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where Hatom, Hfield and Hint are respectively the Hamiltonian of the two-level atom, the 

optical field, and the interaction between the atom and the optical field.  

In the optical field, the atom is stimulated from the ground state to the excited 

state by absorbing a photon with frequency ωp, and when in the excited state, it emits a 

photon with the same frequency through the spontaneous process. 

In treating two-level atoms the Pauli atomic raising operator ge  and 

lowering operator eg  are handy for representing these transitions caused by 

interaction energy. They are conveniently written in terms of Pauli Spin Matrices.  

The kinematic velocity of the atom is assumed as v. Due to the Doppler effect, 

the frequency of the emitted photon from the atom in the laboratory frame is 

A( k·v v , where k is the wave vector of the optical field. In typical atom 

physics experiments, |v| , therefore, the relativistic effect can be neglected. The 

atomic Hamiltonian H

1)( 2/122 )/ c

c

atom can be given by 

 Aatom m

p
H (

2

ˆ 2

 k·v )       (2.2) 

where  is the CM momentum of the atom operator, m is the mass. When the light field 

is red detuned, k is less than , the term of k·v can be neglected as well. 

p̂

Ak

The Hamiltonian of a single mode light field with frequency ωp is 

)2/1(  aaH pfield
†        (2.3) 

where  and  are the creation and annihilation operators for a photon in the field with 

energy 

†a a

p , is called the number operator. aa †

The electric dipole approximation is generally adopted to deal the interaction 

Hamiltonian Hint. The dipole approximation assumes the wavelength of the light field is 

much greater than the size of the atom, and the position r of the atomic nucleus is 

concerned rather than the location of the electron. The field is approximated as a 

constant over the dimensions of the atom. 

Hint in the dipole approximation is 

Hint = - d · E(r)        (2.4) 

where 

d = er          (2.5) 
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is the dipole moment operator of the atom. The two-level atom does not have a dipole 

moment when it is in the ground and excited states. The dipole operator which is real 

can be given as 

d = deg*  +deg  = deg(  +  )      (2.6) 

The quantized electric field operator at position r for the plane-wave mode with 

wavevector k, frequency p and linear polarization ε is written as 

E(r,t) =iEε[ itia p  exp( k·r k·r)]   (2.7) itia p  exp() †

where E is electromagnetic field of single photon, as 

n

p

V
E

02



         

(2.8) 

In Eq. (2.8), 0 is the permittivity of free space and is the quantization volume. 

The electromagnetic field is treated classically and so E is considered as a vector of 

complex numbers.  

nV

By replacing E(r) in Eq. (2.4) with the quantized electric field operator and 

making the rotating-wave approximation to remove the explicit time dependence, the 

interaction Halmitonian Hint is read as 

Hint =        (2.9) ))(( †aagi   

where  

g d · ε E /          (2.10) 

is the electric dipole coupling strength, known as the “single-photon Rabi frequency”. It 

corresponds to the frequency at which an atom will spontaneously emit and reabsorb a 

single resonant photon of frequency [2.11]. The single photon Rabi frequency then has 

spatial dependence f(x), the standing wave modes of a cavity, hence the constant 

depends on the position of the atom in the cavity. 

Insert Eq. (2.2), (2.3) and (2.9) into Eq. (2.1), the total Hamiltonian H is 

H = Am

p 
2

ˆ 2

 +   (2.11) )2/1( † aap ))(( †aagi   

By choosing the energy zero of the atom to be half way between the excited and 

ground levels, removing the zero point energy 2/p  of the field and applying the 

unitary transformations and rotating wave approximation, the total Hamiltonian H is 

given by the Jaynes-Cummings Hamiltonian as 
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H = Am

p 
2

ˆ 2

z +     (2.12) aap
† )( †aagi   

In Eq. (2.12), the Pauli operator z is the atomic inversion [2.12-2.14]. The two 

interaction terms a

a

and  correspond to a upward transition in the atom by 

absorption of photon and a downward transition with a photon emission. The other two 

terms  and 

†a


†a   are omitted due to the two corresponding processes rarely happen. 

2.2.2 A two-level atom in a single mode optical cavity 

In the general cavity cooling model, the two-level atoms are inside the cavity 

and interact with the standing wave. The single mode electric field along the cavity axis 

xcan be written as 

E(x,t) =iEε( )cos(kx)       (2.23) †aa 

The electric dipole coupling strength g in Eq. (2.9) to Eq. (2.12) is position-

dependent and can be corrected as 

)(xg (d · ε E / ) cos(kx)       (2.24) 

The state of the two-level atom can be describe by the density matrix, which has 

a representation as the Hermitian square matrix 











ggge

egee





        

(2.13) 

where ee and gg  are real, 

ee + gg =1         (2.14) 

and  

eg =
         

(2.15) *
ge

The equation of motion for the density matrix is given as 

dampt
H

i

dt

d
)(],[







        
(2.16) 

where the dampt
)(




 is the damping or relaxation term. In our model, the cavity decay 

and the atomic spontaneous emission are taken into account, i.e. 

sponcavdamp ttt
)()()(










 

       
(2.17) 
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Based on the quantum theory of damping, the term of the cavity loss can be 

written as 

)2()( ††† aaaaaa
t cav 





      
(2.18) 

where the oscillator is the single mode field interacting with a reservoir, at zero 

temperature. κ is the half linewidth of the cavity [2.7]. 

The excited atom with momentum p decays into its ground state with a shifted 

momentum p  k[2.11]. We can use the momentum translation operator Sp(k)=exp(-

ik·r), with 

e-ik·r | p  = | p k          (2.19)  

Writing k = kAn, where n is a unit direction vector of the spontaneously emitted 

photon. The increase in population in the electronic ground state is given by 

dΓnexp[−ikAn·r]ρeeexp[ikAn·r], where 

dΓn = γN(n)d2n        (2.20) 

is the differential rate of spontaneous emission in the n-direction. N(n) is a directional 

distribution function characteristic of the given atomic transition. The term of N(n)d2n 

is the probability of emission in an solid angle d2n along n. 

Integrating over all directions yields 

gg dΓnexp(−ikAn·r)ρeeexp(ikAn·r)     (2.21) 

Combining Eq. (2.20) with the quantum theory of dampling, the term of 

spontaneous emission by a freely traveling atom is 

2()(






spont
n·r)σ dΓnexp(−ikAn·r)σ-ρexp(ikA + )    

 (2.22) 

2.2.3 Quantum master equation of the general model 

odel of thegeneral model system can be cast in 

the form of a quantum master equation 

According to the result of the Hamiltonian to each two-level atom and single 

mode field, the quantum mechanical m

 LH
i

 ],[ (2.22) 



        

The total Hamiltonianwhich includes pump η and ηt is written as 
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N

a

z
aA

a

m

p
H

1

2

]
2

ˆ
[  nnc aa† 




M

n

N

anannaan axgaxgi †*† )])ˆ()ˆ([ 
a1 1

t
2.23a) HH   (

 
M

nnn aaiH )]([ † 
n 1       

     
(2.23c) 

The Liouville terms read as  

(2.23b) 

])ˆ()ˆ([ *†
aaaat yhyhiH

t
  





M

m
nnnn aaaaL

1

†† )  nnn aa †2( 




N

a 1

2( N(n)d2n Ak iexp( n Aa kix exp(ˆa )  n aaaaaaxu  †††)ˆ  )   (2.23d) 

In the Hamiltonian, †
na  and na  are the field creation and annihilation operators 

for the nth mode field. ax̂ ( aŷ ) and ap̂  are the position and momentum operators of the 

CM motion of the ath atom. M is the mode number of the optical cavity, and N is the 

 of Eq. (2.23a) represents the interaction between the ath 

atom and the nth mode field. The position-dependent coupling constant is given by 

atom number. The third term

)x() fn2/( 0Vnc  , where  is the atomic dipole moment, Vn is the effective 

mode v function whi

The cavity-field detuning is defined as

)( dxgn  d

olume, and fn(x) is the normalized mode ch has a maximum value 1 

[2.10-2.18]. 

cpc   . The external pumps are 

treated as classical fields with pumping strengths 

he dipole moment d and mode volumes. In the model, 

only single-atom terms appear while the direct atom-atom interactions (dipole-dipole or 

2.3 D

η and ηt. )ayh  denotes the Rabi 

frequency of the transverse pump field and can be written  as )ˆ( ayh )cos(kyh . 

The field polarization issue is neglected, and the mode polarization can be 

incorporated into the definition of t

ˆ(

contact interaction) are neglected. 

ynamical Model of Particle in a Single Cavity Mode 

In section 2.2, the full quantum master equation has been derived to describe the 

general model. However, it is complex to investigate the dynamic process of the model. 

The classical theory is often adopted to study the interaction as the induced polarization 

between the classical media and the classical electromagnetic fields. In a simple way, 
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we consider the status of a single particle in a single cavity mode first in this section. In 

this case, the charged particles are subjected to the Lorentz force, and also that the 

electromagnetic field is governed by Maxwell equations [2.11]. The dynamics of this 

ulated based on these results. 

2.3.1 C

ticle moves 

along t n. The coupling 

strength function is g(x

Inside a macros

model can be numerically sim

lassical model 

We consider a particle in a cavity with a weak pump from one side of its mirrors. 

For simplicity, the particle is assumed to be a two-level at primary model which is 

coupled to a single mode of frequency ωc. The frequency of the pump field is ωp and 

the effective amplitude η [2.19-2.20].The spontaneous emission (γ) of the particle and 

the cavity decay (κ) are considered as the two losses in this model. The par

he standing wave and a dipole moment isinducedby the interactio

)=g·f(x), where f(x) is the normalized mode function. 

copic medium, Maxwell equations are given by: 

 D  (2.24a)        

0 B         (2.24b) 

B
t

E



         (2.24c) 

D
t

JH



        (2.24d) 

where D is the effective electric field in a dielectric, ρ is the charge density, B is the 

impose

urrent density. 

In linear materials

related to E and H by: 

d magnetic field, E is the electric field, H is the effective magnetic field in a 

dielectric, and J is the c

, the polarization density P and magnetization density M are 

PED  0         (2.24e) 

MHB  0         (2.24f) 

)( extEEJ  ,                                                 (2.24g) 

where ε0 is the permittivity of free space, μ0 is the permeability of free space and σ is 

 electrical cond he material. In our model, σ is treated as the conductivity 

of the cavity mirrors, the curren

the uctivity of t

t density includes the external pump field Eext and . 0  
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0 are related by 00/1 c , where c  is the speed of light in vacuum. In non-

dispersi 0Mve, isotropic laser media . 

Taking the curl of Eq. (2.24c) and combining Eq. (2

obtain 

.24d) to Eq. (2.24g), we 

P
t

E
tc

EE
t

E ext
202

2

20

1
)()(











  .                             (2.25) 

For the le

2

ft side of the quation, .Since the 

plane wave field vector is cons q. 

can be written as 

above e  EEE 2)()( 

tant along the direction it points, 0 E . E (2.25) 
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where ),(0 E
t

tx



  is the damping term of the field mode. For simplicity we consider 

a quasi-1D situation, where the field is a plane wave propagating in the x d

ich leads to 

irection, 

wh
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 (2.27) 

The electromagnetic fields

d  

 (2.28) 

h ei

 in the cavity can be represented by the scalar electric 

fiel

wit

)cos()(
~

),(
0

xktEtxE n
n

n




       

genfrequencies Lcncknn /   for the two-mirror laser, where )cos( xkn  is 

the mode function of the standing waves, and L denotes the cavity length. 

Inserting Eq. (2.28) into Eq. (2.2

dynamics of the model after some straightforward manipulations 

7), we get the following equation for the 

ext
c EPEEE  ~~1~~~

00

2

0 








 .      (2.29) 

where 


2/

2/
)cos(),(

2
)(

~ L

L
kxtxdxP

L
tP

      
(2.30) 

 analogously for extE
~ , which means the total polarization and the pump are treated as and

the sum of all the positions in the whole cavity. 

The ansatz for the electric fields and the polarization are given as 
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..)()(
~

ccettE ti p    .., )()(
~

ccE tiext p  , ..)()(ettext   ~
ccetPtP ti p   

(2.31) 

where the amplitude terms )(t , (text  vary slowly compared to the rapidly 

oscillating exponential functions, i.e., 

) and )(tP

 p  and analogously for P and εext. Using 

the slowly-varying envelope approximations we can neglect the corresponding terms 

and rewrite Eq. (2.29) as 

extp

p ii  000 2222
    

Comparing the dam ay rate, w

pc P 



22

)
)(

( 


 (2.32) 

ping term with the cavity dec e let 
02

   . In the

near resonant case, cp   , )( cpc    , in which cpc    is the cavity-

aking the classical analog of the rpump detuning. By m otat ximation, i.e., 

49) can be written as 

ing-wave appro

c , the Eq. (2.ppc   2)( 22

extp
c P

i
i 




 
02

)( .      (2.33) 

2.3.2 L

at of

eld at the atomic position xa. The motion 

obeys the Abraham-Lorentz equation 

inear dipole oscillator model of an atom 

The dynamics of the two-level atomic dipole can be simply depicted by the 

classical damped linear dipole oscillator. In this model, an electron cloud is elastically 

bound to a heavy positive nucleus and oscillates about its equilibrium position with the 

center of the nucleus. For small deviation from the equilibrium position, the motion of 

the electron cloud can be described as th  a damped simple harmonic oscillator 

driven by a standing-wave electric fi  ),( txE

),()()(2)( 2 txE
m

e
tytyty aA         (2.34) 

where   )cos()(),( a
ti

a kxccettxE p     according to Eq. (2.29) and Eq. (2.31). The 

displacement in Eq. (2.34) g

  (2.35) 

where Y

e solu (2.34), neglecting the small quantities and solving 

for the steady state , we obtain 

enerally can be assumed as 

ccetYty ti p   )()(       

(t) is the slowly varying complex amplitude [2.11]. 

Inserting th tion to Eq. 

0Y
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      (2.36) 

The polarization density of a particle at position can be defined as  ax

AxxteytxP a /)()(),(          (2.37) 

where A is the cavity cross section. 

Taking relevant equations from Eq. (2.30) to Eq. (2.37) into Eq. (2.33), we find 

)(
)(

)(cos
)(

22

t
iVm

kxe
itP

Ap

a 
 

                                                                             (2.38) 

where V=A·L is the cavity volume, ApA    is the pump-atom detuning and the 

rotating-wave approximation 

AppApAppA  )2/())(()2/()( 22                                        (2.39) 

is made. 

2.3.3 Dynamical equations 

Inserting Eq. (2.38) into Eq. (2.33), and splitting the polarization into a real and 

an imaginary part, we obtain the following equation 

ext
aca txiUixt   )())()(()(      (2.40) 

where 

)(cos)(cos)( 2
0

22
022 aa

a

a
a kxUkxgxU 





    

(2.41a) 

)(cos)(cos)( 2
0

22
022 aa

a
a kxkxgx 







    
(2.41b) 

Here 2
0220 g
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, 2

0220 gU
a
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, and  is a measure of 

the cavity-atom coupling strength. By considering the atomic dipole transitions, the 

coupling strength term  is often replaced by the corresponding term of the 

semiclassical model.  

)2/( 0
22

0 mVeg 

2
0g

The force on the particle is then given by 

)](cos)(
2

[]),(),([)( 22
0

2

a
pk

aaa kxtU
m

e
txEtxyexf

Ak


  
  

(2.42) 

The electric field amplitude   is not easy to compare with some conclusion of 
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semiclassical model which is shown as photon number. This time we use the energy 

density 
2

02

1
s , i.e. the Poynting vector, to do the rescaling. For a single-mode field, 

the standing-wave electric field per photon is related to the running-wave electric field 

per photon by 

rs  2         (2.43) 

In the above analysis, for simplicityonly a part of the mode field is considered as 

the ansatz , therefore the energy density of the total standing wave field 

is 

..cceE ti p   

2

0  . The average photon density in the cavity is 
pmV 




2

0

2

 , where 2 is the 

average photon number in the cavity,  is the cavity mode volume. mV

Eq. (2.40) and Eq. (2.42) can be rewritten in terms of the parameter  , and the 

following set of equations for the atom-cavity dynamics is obtained 

  )](cos)(cos[ 2
0

2
0 kxiUikx c

   (2.44a) 

)2sin()(
2

0 kxkUxfp         
(2.44b) 

mpx / ,        (2.44c) 

where η characterizes the pump laser strength, 2  is related to the average photon 

number in pump beam with 
pV 




2exp
0

2

 . The index a for the atomic position has 

been omitted for convenience. Eq. (2.44 b) can also be written as 

)(cos22

0 kx
x

UUfp



      (2.44d) 

which can depict a periodical potential along the propagating direction of the field. 

The Eq. (2.44) can benormalized as following equations by )()( tkxtxn  , 

 and ktptpn /)()(  ttn   
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(2.45a) 

)2sin(
20
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U
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        (2.45b) 

nn pmhkx  )/(2          (2.45c) 
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where  is the recoil frequency of the atom or particle. These equations 

can be generalized to three dimensions.  

)2/(2 mhkrec 

2.3.4 Dynamics of a particle in the optical cavity 

Eq. (2.45) is a set of ordinary differential equations. It can be numerical 

simulated with high accuracy to study the dynamic of the system. Fig. 2.3 shows the 

physical time evolution of the particle with initial normalized momentum pn=2 being 

cooled down when it moves along a laser standing wave and is trapped in the periodic 

potential, which is described in Eq. (2.44d). The parameters are chosen for an optimized 

cavity cooling force. In this process, any kind of diffusion is not taken into account, and 

the effect of Doppler cooling is very small for the chosen parameters. When the initial 

momentum is set higher, the time needed to trap the particle is longer. However, a real 

cavity with a length limits the maximum initial momentum. 

 

Fig. 2.3  Time evolution of the intracavity field intensity (e), momentum (pn) and 

atomic position (xn) for a single particle. The parameters are Δc=−4κ, U0=−1κ, 

Γ0=0.1κ, and η=2.5. The position is divided by 15 in order to show it with the other 

two in the same scale. 

 

The figure shows two stages in this process, the particle first is slowed down and 

then is keeping to be cooled while it has been trapped. The cooling mechanics can be 

explained from a purely classical viewpoint. The dipole force of the particle within the 
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cavity standing wave, as shown in Eq. (2.44) is strongly dependent on the position of 

the intracavity intensity mode. For certain parameters, the intensity reaches a maximum 

for a particle at a node whereas the potential U(x) is a minimum there. However, when 

the particle is slowly moving along the potential U(x), the maximum field intensity will 

be reached after it has passed the potential minimum due to the finite cavity response 

time, i.e. the atom-field interaction lag time. According to the varying dynamics of the 

field and the position, the particle always experiences a higher field intensity which 

produces a stronger interactive damping force when it goes up in the potential U(x), 

while an anti-damping force when it goes down. On average this leads to a damping 

force, i.e. cooling [2.19]. It could be understood as the friction [2.10]. 

However, this cooling effect may convert to a heating effect according to the the 

pump-cavity detuning  and the atom-pump detuning c a  [2.10]. P. Domokos and H. 

Ritsch studied the relationship of these two detunings under different conditions, as 

shown in Fig. 2.4.  

 

Fig. 2.4  Cooling and heating regions as a function of atom and cavity detunings. Shown 

are contour plots of the friction coefficient β (averaged over an optical wavelength) 

acting along the cavity axis on a laser-driven atom. Left: Bad-cavity regime, g=γ/2, 

κ=10γ; Right: Good cavity regime, g=3γ, κ=γ. Blue contour lines indicate cooling (C, 

β<0), red ones heating (H, β>0) regions. 

 

2.3.5 Enhanced cooling and trapping methods 

Based on the previous discussion of the atom-field dynamics, methods to 

quickly and effectively cool and trap the moving atom can be theoretically considered. 
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As shown in Fig. 2.5, there are two types of far-off resonant (FOR) waves are assumed 

to be added into the cavity.  

 

Fig. 2.5  Schematic representation of adding a standing wave or Gaussian beam 

 

The effects of the FOR Gaussian beam in the transverse direction and the 

standing wave in Fig. 2.5 are different from the two coherent pump fields in Fig. 2.1. 

The interaction between the FOR laser and the particles can be treated conservatively 

and produces an extra dipole potential, which ultimately enhances the location and 

cooling process of the particles [2.21]. 

Now we consider the case of adding a transverse Gaussian beam with an 

intensity distribution given by 

])(exp[)()( 2
0

n

xw

x
tgIxI         (2.46) 

where I0 is the maximum intensity,  is the 1-D waist size, n is the order of the 

Gaussian beam and g(t) is the normalized time-dependent function [2.48]. 

xw

The dipole potential produced by the interaction is written as  
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where p  is the polarizability of the atom or particle and Z0 the impedance of the 

vacuum. For simplicity we consider the Gaussian field is constant by which g(t)=1. 

We assume the maximum depth of the potential is a times the kinetic energy of 

the particle with momentum , i.e., 0p

m

p
aaKEIZUG 24

1 2
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00   .                                                                (2.48) 
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If we take the parameter , the force of this potential on the particle 

is 
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So the second equation in Eq. (2.44) can be modified to 
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which corresponds to the potential 
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Similarly, in the case of adding a standing wave, the potential term read as 
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where ks is the wave number of the standing wave, 
2


 is the added phase. 

In this case, the second equation in Eq. (2.44) is modified to  
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and the potential is 
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The dipole potential produced by the transverse Gaussian beam can keep the 

particles with higher KE within a finite region of the cavity. This enables the particles to 

be continuously cooled down by the interaction between them and the intracavity field.  

In the case where a standing wave is added, the effect of the added dipole 

potential can be shown in Fig. 2.6. The figure depicts the potential distributions along 

the cavity axis when the standing wave is added with a=1,  and φ2/kks  n=π/3. U is 

the dipole potential between the particle and the introcavity field, US is between the 

particle and the added standing wave. For simplicity the potentials are both normalized. 

US gives an extra force which localizes the particle to the high gradient part of 

the dynamic potential produced by the intracavity field. The cooling effect of the 

varying intracavity field is enhanced due to the longer time the particle spends in these 

regions. 
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Fig. 2.6  The normalized distribution of potential 

 

 

Fig. 2.7  Time evolution of the adding standing wave case 

 

Fig. 2.7 shows the simulation results with the above setting. All the parameters 

are same as those in Fig. 2.3. It indicates that this method enhanced the cooling effect 

by comparing the final momentums of the particle of the two cases. 

2.3.6 Cavity trapping and cooling many atoms 

The dynamics of an atom in an optical cavity can be simulated based on the 

theoretical studies. The cooling effect caused by the atom-field interaction has been 

demonstrated experimentally. However, the normal cavity cooling scheme meets some 

limit when many-body atoms are applied. When an ensemble is placed in a cavity, it is 
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quite obvious that the dynamics of different atoms are coupled by interaction with the 

same field modes. The field intensity and phase modification induced by one atom is 

immediately felt by other remote atoms. The dipole-dipole and atom-atom interaction 

will strongly modify the cooling process in cavities yielding nontrivial scaling 

properties [2.6-2.9].  

The classic model of single atom in this section can be expanded to the case of 

many-body atoms by treating the polarization term  in Eq. (2.37) as the sum of 

all the particles in the cavity 
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The dynamic of each particle can be treated as one classical damped linear 

dipole oscillator. With the simple and similar induction, the equations for the field 

amplitude the forces, neglecting noise, are normalized as 
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From the equations, we can find that each of the atoms leads to a frequency shift 

of the cavity mode according to its actual position. For each individual atom, the total 

shift induced by all the atoms hence defines an effective mode frequency. As this 

effective frequency determines the dynamic of the field intensity, one gets an effective 

atom-atom interaction mediated by the cavity mode. It can be concluded that the force 

on an atom depends on the positions of all atoms. 

2.3.7 Dynamics of two particles case 

For simplify, we only discuss the case of two atoms in a field mode. 

Fig. 2.8 shows the time evolution of the field intensity and the momenta of two 

particles. The parameters are same as those in Fig. 2.3. The figure illustrates that the 

atoms are slowed down and trapped in an optical potential well after a short time. 

Subsequently the oscillations are cooled, but only until their motion becomes correlated 

in such a way that they oscillate almost undamped with a phase lag of 90°. We could 
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take the phase correlation of the two moving atoms into Eq. (2.56) and get the equation 

of a linear field equation, which has the effect to keep cooling the atoms. 
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Fig. 2.8  Time evolution of two particles case 

 

The dynamical simulation result for 10 particles is depicted in Fig. 2.9 and 

shows the stronger correlation. The particles can not be slow down and localized. The 

kinetic energy of the system which seems unstable can not be cooled down. 

This type of correlation demonstratedby these examples of evolution is a kind of 

cavity-induced atom-atom interaction. As all particles are coupled to the same cavity 

mode, the modification of the field is related to the position of every particle inside the 

whole ensemble. The cavity cooling mechanism may become inefficient since the 

delicate dynamical correlation between one particle and the field mode could be 

perturbed by the motion of another particle. 
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Fig. 2.9  Time evolution of the intracavity field intensity (e), momenta (pn) and 

atomic positions (xn) for the case of 10 particles with same initial momentums 

pni=2 and uniform position distribution in the space of [-π π]. The parameters are 

Δc=−4κ, U0=−1κ, Γ0=0.1κ, and η=2.5. The field intensity is multiplied by 10 in 

order to show it with the other two in the same scale. A long time evolution of the 

field intensity is shown on the upside. 

 

Furthermore, it also shows that the buildup of correlations can decouple the 

particle and field motion and render the cooling process inefficient even if the Gaussian 

beam or the standing wave is added [2.6]. The dynamics of cooling particles in an 

optical cavity get to be unapproachable with this many-body problem even at a small 

density of the ensemble. 

2.4 Multi Particles Case: Atomic Self-organization 

J. K. Asboth et al. exploit the cavity-mediated atom-atom coupling [2.4, 2.7, 

2.8], and present an extra phenomenon that leads to a dramatically different scaling 

behavior when the standing wave pump with a red atom-pump detuned field is sent into 

the cavity field from the sides instead of directly. For a single atom, this scattering 

pump only yields quantitative changes in driving efficiency, cooling rate and 

temperature, without drastic modifications of the system properties. However, when 

more atoms are put into the mode, a strong cooperative action between atom and atom 
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occurs, which leads to fast and efficient trapping and cooling of the whole ensemble. 

This effect is called “atomic self-organization”. 

 

Fig. 2.10  Model of perpendicular pump case 

 

In this case, photons of the pump light which is perpendicular to the cavity axis 

are coherently scattered by the atoms into the cavity field. The scattering strength of 

certain atoms is generally relative to its position in the cavity and pump fields. For 

example, in a standing-wave field with mode function cos(kx), a maximum scattering 

occurs from atoms close to antinodes while atoms in the nodes do not contribute. The 

phase of the coherent part of the scattered field is position dependent. For an ensemble 

of atoms with aninitially uniform distribution along the cavity axis, atoms are separated 

by half wavelength fields with opposite phase, which have been observed in an 

experiment by Black, Chan, and Vuletić [2.5]. This is also a kind of correlation between 

atoms in a cavity which cause their scattering contributions to cancel. Hence a coherent 

field can not build up for this destructive interference [2.4]. 

Owning to density fluctuations of the atoms, a small scattered field builds up 

with random phase. For a red detuned pump, thefield can create an attractive dipole 

potential for the atoms toward the antinodes of the cavity field. The effect can 

redistribute the atoms and lead to a periodic localization. More atoms usually with 

smaller kinetic energies can be located into this potential and thus enhance the 

scattering field. Therefore the periodic potential is in turn further self deepened. 

With suitable operating conditions, the cavity cooling effect can be available to 

these atoms by the cavity loss dissipating the kinetic energy, which ultimately leads to 

stable trapping. For the counteracted heating processes, such as spontaneous emission 

and cavity intensity fluctuations, the system will reach a stable state at some finite 

atomic position spread. 
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As an attractive development in cavity cooling many-body schemes, atomic self-

organization has been tested and applied experimentally. For the advantage of the cavity 

cooling method, a similar effect may be applied to many-body molecules. However, duo 

to the weak coupling strength and other properties, the possibility of self-organization of 

molecules still needs to be investigated under laboratory conditions. On the other side, 

most of the discussions are based on the steady state. The study of such cooling and 

trapping process simulations will be interesting. The extension from current near-off 

resonant to far-off resonant cavity cooling based on this effect is also attractive. In the 

following chapters, we will discuss these contents in detail. 

2.5 References 

[2.1] P. Horak, G. Hechenblaikner, K. M. Gheri, H. Stecher, and H. Ritsch, Cavity-
Induced Atom Cooling in the Strong Coupling Regime, Physical Review Letters, 
79, 4974-4977 (1997). 

 
[2.2] V. Vuletic and S. Chu, Laser Cooling of Atoms, Ions, or Molecules by Coherent 

Scattering, Physical Review Letters, 84, 3787-3790 (2000). 
 
[2.3] P. Maunz, T. Puppe, I. Schuster, N. Syassen, P. W. H. Pinkse, and G. Rempe, 

Cavity cooling of a single atom, Nature, 428, 50-52 (2004). 
 
[2.4] P. Domokos and H. Ritsch, Collective Cooling and Self-Organization of Atoms 

in a Cavity, Physical Review Letters, 89, 253003-1-4 (2002). 
 
[2.5] H. W. Chan, A. T. Black, and V. Vuletic, Observation of Collective-Emission-

Induced Cooling of Atoms in an Optical Cavity, Physical Review Letters, 90, 
063003-1-4 (2003). 

 
[2.6] J. K. Asboth, P. Domokos, and H. Ritsch, Correlated Motion of Two Atoms 

Trapped in a Single-mode Cavity Field, Physical Review A, 70, 013414-1-11 
(2004). 

 
[2.7] W. Vogel and D. G. Welsch, Quantum Optics, Third, revised and extended 

edition, WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim (2006). 
 
[2.8] J. K. Asboth, P. Domokos, H. Ritsch, and A. Vukics, Self-organization of atoms 

in a cavity field: Threshold, bistability, and scaling laws, Physical Review A, 72, 
053417-1-12 (2005). 

 
[2.9] J. K. Asboth, Interaction between optically trapped particles due to 

optomechanical coupling, PhD Thesis (2008) 
 

42 
 



 

[2.10] P. Domokos and H. Ritsch, Mechanical effects of light in optical resonators, 
Journal of the Optical Society of America B-Optical Physics, 20, 1098-1130 
(2003). 

 
[2.11] P. Meystre and M. Sargent III, Elements of Quantum Optics, Springer Berlin 

Heidelberg, New York (2007). 
 
[2.12] G. Johansson and T. Bauch, Quantized electromagnetic field and the Jaynes-

Cummings Hamiltonian, Lectures in Quantum Informatics. 
 
[2.13] Y. T. Chough, J. B. Kim, and K. W. An, Single Dressed-Atom Laser: Lasing 

Out of a Driven Jaynes-Cummings System, CLEO, 876-877 (1999). 
 
[2.14] R. Tanas, Two-Level atom in a squeezed vacuum, Turkish Journal of Physics, 23, 

861-868 (1999). 
 
[2.15] M. Trupke, J. Goldwin, B. Darquie, G. Dutier, S. Eriksson, J. Ashmore, and E. 

A. Hinds, Atom Detection and Photon Production in a Scalable, Open, Optical 
Microcavity, Physical Review Letters, 99, 063601-1-4 (2007). 

 
[2.16] P. Domokos, P. Horak, and H. Ritsch, Semiclassical theory of cavity-assisted 

atom cooling, Journal of Physics B: Atomic, Molecular and Optical Physics, 34, 
187-198 (2001). 

 
[2.17] C. Maschler, H. Ritsch, Quantum motion of laser-driven atoms in a cavity field, 

Optics Communications, 243, 145-155 (2004). 
 
[2.18] J. Dalibard and C. Cohen-Tannoudji, Atomic motion in laser light: connection 

between semiclassical and quantum descriptions, Journal of Physics B: Atomic, 
Molecular and Optical Physics, 18, 1661-1683 (1985). 

 
[2.19] G. Hechenblaikner, M. Gangl, P. Horak, and H. Ritsch, Cooling an atom in a 

weakly driven high-Q cavity, Physical Review A, 58, 3030-3042 (1998). 
 
[2.20] S. Zippilli, J. Asboth, G. Morigi, and H. Ritsch, Forces and spatial ordering of 

driven atoms in a resonator in the regime of fluorescence suppression, Applied 
Physics B: Lasers and Optics, 79, 969-978 (2004). 

 
[2.21] G. Dong, S. Edvadsson, W. Lu, and P. F. Barker, Super-Gaussian mirror for 

high-field-seeking molecules, Physical Review A, 72, 031605-1-4 (2005). 

43 
 



 

Chapter 3 

Trapping and cooling many molecules 

3.1 Introduction 

The spatial self-organization of atoms in a cavity occurs when a detuned pump is 

sent into the cavity from the direction perpendicular to the cavity axis. This scheme can 

reduce or eliminate the undesirable atom-atom correlations. It has demonstrated 

significant enhancement of the cooling process through the collective dynamics of many 

body species. 

Compared with two-level atoms that are pumped typically at visible to infrared 

wavelengths, with 100 MHz-10 GHz detuning from the resonance transition, the pump 

frequency required for a rotational-vibrational transition of molecules is in the UV and 

VUV regions for most molecules and we have to take into account the limited 

availability of laser sources and high finesse cavity optics in these frequency regions. 

Also the dipole momentum strengths of molecules corresponding to these transitions are 

generally much weaker than those of well-studied atoms such as Rubidium, which will 

lead to significant differences in the operating conditions between the two. The work 

may provide several new and important findings beyond the scope of previous 

investigations on cooling atoms in optical cavities. 

In this chapter we explore how this transverse cavity cooling scheme can be 

extended to diatomic molecules. In section 3.2, we discuss how to extend the cavity 

cooling casefrom atoms to molecules. A semiclassical model for this scheme is 

introduced, which give us a powerful conclusion for the numerically dynamic 

simulation in section 3.3. After that, we discuss the theoretical and experimental 

limitations of conditions in this model in section 3.4. As an example, we study cooling 

of a CN molecular gas in a millimeter-long optical cavity.  
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3.2 From Atoms to Molecules 

When we study cavity cooling scheme for molecules, we should first discuss 

some characteristics specific to molecules. 

3.2.1 Electric dipole moment of molecules 

The electric dipole moment of a molecule in a light field usually includes two 

parts: a permanent dipole moment and an induced dipole moment [3.1-3.2]. The 

molecule whose permanent dipole moment is equal to zero (μ= 0) is of non-polar type. 

The other is a polar molecule. In an electric E, both types of molecules have an induced 

dipole moment given by α·E, where α is a polarizability tensor. For a molecule in an 

optical field, the dipole moment d is equal to μ+α·E. The interaction Hamiltonian 

between the optical field and molecules can be written as 

Hint = - d ·E =μ·E +
2

1
α·EE        (3.1) 

Usually the order of magnitude of the transition dipole moment μ is about 10-30 

C·m in SI units, while the polarizability is about 10-40 C2m2J-1. As to be discussed in the 

following chapters, almost all current discussions of the cavity cooling have two 

limitations, low saturation with a relatively low intracavity field and on effective pump 

in the near off-resonant region rather than a far off-resonant region. The interaction 

magnitude of the induced dipole moment is usually far less than that of the permanent 

dipole moment in this case. However, the far-off resonant cavity cooling will be 

proposed in Chapter 5 to achieve trapping of a huge ensemble of molecules. Therefore, 

we mainly discuss the molecular transition dipole moment first. 

Due to the complex energy structure of molecule, the interaction between the 

molecule and the light field generally involves multiple molecular energy levels. A two-

level model may not be enough to describe all the possible transitions. 

For a spontaneous emission transition of a particle, the Einstein A coefficient, i.e. 

the Einstein transition probability, between specified ro-vibrational states, an upper 

level ( ' , ) and a lower level ('J '' , ) , is given by the expression ''J

3
4

)(
3

64 Jv
Jv

Jv
Jv

Jv
Jv p

h
A 






  

       (3.2) 

where  is the transition frequency and  is the transition probability which are 

the integrals of the ro-vibrational wave functions of the upper and lower states together 
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with the electronic transition moment: 

2

'''''' )()Re()( 
 drrrrp JvJv
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Jv       

 (3.3) 

In this equation, the Born-Oppenheimer approximation is assumed and Re(r) is 

the electronic transition moment [3.3-3.5]. According to the work of Schadee and others, 

the rotational wave functionswhich can be separated from the above convolution and Eq. 

(3.3) can be written as 
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In the expression, the electronic degeneracy is )12)(2( ,   Sge  , where 

2S+1 is the state spin multiplicity, and , =1 for Σ state and 0 for all the others. 

2

''' )()Re()(  drrrr vv is only related to the vibration states and equal to the square of 

the transition dipole moment 
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Another term  is the rotational line strength usually expressed as '
''

J
J

1'2

'
'''
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JJ
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 (3.6) 

and  is the Honl-London rotational intensity factor, i.e. the line strength. J
JS 


3.2.2 Line strength 

The intensity of all possible transitions of a molecule in thermal equilibrium 

usually may be expressed, apart from a constant and from the frequency factor, as a 

product of the lines strength SJ and the Boltzmann distribution factor [3.6]. 

The precise formula for the line strengths of the symmetric top, which are 

independent of whether or not thermal equilibrium applies, were first given by Honl and 

London based on the old quantum theory. They were later derived on the basis of wave 

mechanics by Dennison, Reiche and Rademacher, and other researchers. 

The formula, which is called the Honl-London formulae, can be written in 

different forms according to the status of different transitions. For a transition 

with 0'''  , where   is the quantum number of the angular momentum of the 

molecule, the formulae are 
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'4

)'1')(''(

)1''(4

)''1'')(''2''(

J

JJ

J

JJ
S R

J







  

)1'('4

)1'2)('1')(''(

)1''(''4

)1''2)('''')(''1''(










JJ

JJJ

JJ

JJJ
S Q

J  

)1'(4

)'2')('1'(

''4

)'''')(''1''(








J

JJ

J

JJ
S p

J                                       (3.9) 

Here the superscript R, Q, or P indicates the branch for which the particular expression 

holds ( 1,0,1 J

'

, respectively). Of the two alternative forms given the first is more 

useful for absorption, the second for emission, since the Boltzmann factor contains '  

and , respectively. 

'J

J

For the emission transition, the normalization of Honl-London factor is as 

suggested by Whiting [3.7]: 
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For an absorption transition, the Einstein absorption coefficient is given by 

Schadee [3.5] as 
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and the normalization is as 
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According to the above discussion, we can deal the case of the transition of 

molecules. For simplicity, we only consider all possible rotational transitions of an 

absorption transition from a certain lower level ( '' , ' ). The transition probability, i.e. 

the square of dipole moments can be expressed as a sum of 
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Similarly, the formula of a spontaneous emission transition is written as 
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Eq. (3.13) and (3.14) indicate that the transitions model of molecules can be 

treated as a sum of several two-level models with different weighted factors, as shown 

in Fig. 3.1.  

 

(a)                                                                     (b) 

Fig. 3.1 (a) An absorption transition model of a molecule on lower level l in an 

optical field with frequency ωp. The detuning between pump and the lowest upper 

level u1 is ΔA1. (b) A spontaneous emission transition model of a molecule on upper 

level u. 

 
However, if the molecule is located on a state which possesses either up or down 

transition, the model becomes much more complex and intractable. Therefore some 

consideration about our general cooling model should be discussed. 
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3.2.3 Conditions and limitations 

As discussed in section 3.2.2, the distribution of an ensemble of molecules in 

thermal equilibrium obeys the Boltzmann distribution law as  
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where N0 is the total number densityof molecules in the system, and fB(v, J) is the 

Boltzmann function, ev vvE )
2

1
()(  is the vibrational state energy, )1()(  JBJvEv  

is the rotational state energy, Qelec is theelectronic partition function (Qelec= ge). Qvib 

and Qrot are the sums of the rotational and vibrational partitions calculated numerically. 

In our QED cooling model, we consider stationary cold molecules, which could 

be created by using some schemes, such as optical Stark deceleration and buffer gas 

cooling. For this gas ensemble which could be at a few K or even the hundred mK range, 

only the lowest ro-vibrational energy level is populated according to the Boltzmann 

distribution. 

For example, we assume an ensemble of CN molecules. The vibrational 

frequency e  of the CN molecule is about 2069 cm-1 (X 2Σ+) and 2164 cm-1 (A2Σ+), and 

the rotational constant Be is about 1.9 cm-1 and 1.97 cm-1 accordingly. When the ro-

vibrational temperature of the system is assumed to be equal to the kinetic temperature 

around 10K, 100% of molecules are on the lowest vibration state, in which more than 

99% are on the lowest 4 rotation states X 2Σ+ ( 0'' N  to 3). If the rotational temperature 

is below 1K, more than 98.7% are on the lowest rotation state X 2Σ+ ( ,0'' N 2/1'' J ). 

Under the initial temperature conditions, only the possible absorption transitions need to 

be considered. 

On the other side, the pump frequency ωp is set to be off-resonant from the 

lowest possible transition frequency ωA1. Due to the off-resonant nature of the 

interactions, molecular population transitions are suppressed, or even neglected when 

the detuning is large. And the upper levels are consequently almost unpopulated. More 

details will be introduced in the next section. 
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3.2.4 General model for cavity cooling of molecules 

Based on the above discussion and limitations, the cavity cooling of molecules 

can be dealt with physical model and mathematical analysis according to a similar way 

to that of the atom already derived in Chapter 2. In this section, first we need to obtain 

the quantum master equation of the general model of cavity cooling of molecules. 

Follow the same step in section 2.2, section 3.2.2 and Eq. (2.9), the interaction 

Hamiltonian Hint between a molecule and one single cavity field can be written as 

Hint =       (3.16)   

s
sss aaxgi ))()(( †

where  is the coupling strength of each possible rotational transition: )(xgs

)(xgs (us· ε E / ) cos(kx)       (3.17) 

where us is each transition dipole moment. 

For the general model of cavity cooling molecules, the total Hamiltonian is 

written as 
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The Liouville terms can be written as  
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For simplicity, the photon operator of all the possible transitions with off-

resonant pump is generated in our model. There is no general solution for this master 

equation (3.18), and even a numerical approach seems feasible only for very simple 

examples. In the following we resort to further approximations to render the problem 

into a tractable form for analytic treatment or numerical simulation. 

3.2.5 Dynamical equations for cavity cooling of molecules 

From the discussion in section 3.2.3, the dipole moment of a molecule can be 

treated as a cumulative effect of all the possible electronic transitions which correspond 
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to the electrons harmonically bound to the nuclear with eigen frequencies Ak . Similar 

to Eq. (2.37), the polarization density of a molecule at position can be written as ax

 
k

a
k

AxxteytxPtxP
AkAk

/)()(),(),(       (3.19) 

The oscillator model of a molecule therefore consists of a set of equations of the form 
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Following the same operation, the total polarization of a molecule reads is written as 
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The weight factors 
Ak  should be added into each term when the effect of the 

line strength is considered. 

After a series of similar operations, we can get the same equations as Eq. (2.45), 

while the combined molecular polarization can be written as 
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Eq. (3.22) shows that the interaction between the light field and the molecule 

can be treated as the case of a quasi-atom. 

3.3 The Semiclassical Model of Molecular Self-organization 

An ensemble of atoms in optical cavity can self organiz with a transverse driving 

optical field, which can lead to cavity trapping and cooling. Generally the scattered 

photon numbers involved in this scheme are very high. Therefore, the intracavity field 

modes can be represented as coherent and time-dependent complex amplitudes with 

some fluctuations [3.8]. A semiclassical model for cavity cooling of atoms in this case 

was presented by P. Domokos and H. Ritsch [3.9]. This semicalssical model can be 

extended to the case of molecules. 
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3.3.1 The model of transverse pump 

Based on the discussion in section 2.5, a dipole potential is built up due to the 

interaction between the scattered field and self-organized particles. The motion of one 

particle can be generally approximated by stochastic Brownian motion in a potential, 

which varies following time-dependent conservative forces, dissipation and noise. In 

statistical physics, this motion can be described by a set of Langevin equations as 

mpx /                                                                                                         (3.23a) 

 
m

p
fp                                                                                             (3.23b) 

In the above equations, f is the conservative force,   is the linear friction tensor, 

and   is the noise term which describes the fluctuation. With the Markoff 

approximation, which assumes that this correlation time is extremely short compared to 

evolution time of the system, this white-noise term has zero mean and second order 

correlation function 

)'()'()( ttDtt    

where D is the diffusion coefficient. Eq. (3.23) can be extended to multi-particle case. 

The master equation of the general cavity cooling model for molecules is 

obtained as Eq. (2.22), Eq. (3.18) and Eq. (3. 91). Now we only consider the case of a 

single intracavity mode. In the Heisenberg picture, the internal variables of this system 

obey the following quantum Langevin equations [3.10]: 
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where a  and j  are the Langevin white-noise operators, suffix j is the molecule 

number, and s indicates one of the possible transitions of the molecules. 

When the pump detuning s  or the damping rate γs is large, the population in 

the excited atomic state can be adiabatically eliminated, for example, 
2

1
, z
sj . In the 

case of this low saturation regime, the induced polarization of the particles in steady 

state of Eq. (3.24b) can be approximately written as 
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where  can be treated as the total dimensionless field operator, and only the effect 

on the cavity axis x is considered. In numerical analysis, the fluctuation of the inversion 

population can be set with 

)ˆ(ˆ xEs

1.0
2

1
z

j  for atoms. However, for molecules, a more 

strictly limitation 05.0~01.0
2

1
, 

s

z
sj  should be adopted due to their multi decay 

transitions, as discussed in section 2.3 [3.8, 3.26]. 

The effective Hamiltonian and Liouville operators after adiabatic elimination as 
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The Liouville terms are 
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To represent the particle’s motion and the state of the cavity light field in the 

total phase space, the joint Wigner function  is very well adapted to 

derive semiclassical equations from the quantum model [3.8, 3.11]. The Wigner 

transform of the quantum master equation leads to a partial differential equation, which 

is truncated at second-order derivatives to yield a Fokker–Planck-type equation, which 

can effectively be numerical simulated [3.14]. 
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In this representation, The Wigner function can be defined as 
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where 
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For the operator  on the density matrix, we have the relationship as [3.12] )ˆ(xG
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(3.30) 

The first two terms in Eq. (3.30) show the method to deal with the operator 

which includes the function of position G(x). 

According to the Wigner transform relationships obtained from Eq. (3.28) and 

Eq. (3.30), the quantum master equation can be written as partial differential equations 

of evolution for , and truncated at second-order derivatives to yield a 

Fokker–Planck-type equation with the form 
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where D1 is the linear friction term, D2 is the diffusion term, c1 and c2 represent the set 

of macro variables. This equation describes the time evolution of the probability density 

function of the position of a particle, and can be generalized to other observables as well. 

The Fokker-Planck Equation for the combined molecule-field Wigner function 

reads  
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where 

sjtjjs gyhxfx /)()()(                                                                             (3.33) 

In this equation, the first term is the coherent evolution of the cavity field; the 

second term is the decay and diffusion of the cavity field due to cavity decay and 

scattering of photons out of the cavity by the molecules; the third term is the 

conservative molecular motion; and the forth term is the momentum diffusion due to 

scattering of photons by the molecules. Note that this latter term can become negative, 

which reflects the breakdown of the semiclassical model at very weak intracavity field 

intensities. Additionally, the fifth term gives rise to correlated momentum and cavity 

field noise. 

The approach has several important validity conditions. 

Firstly, the momentum width p  of the Wigner distribution is large compared 

with the photon momentum , i.e. k 1/  pk . This means that a single-photon 

absorption or emission process does not change the momentum distribution 

considerably. At the starting point of a Fokker-Planck treatment of this process, the 

smallness of the elementary steps should be concerned with this assumption [3.13]. The 

powers of the small parameter   can justify the truncation procedure. 
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Secondly, only slow molecules are considered in this model. Compared with the 

optical wavelength  , these particles move a small distance during the transition time 

, i.e. 1 1/ kv . Therefore, the position change of the molecules during this process 

is very small, while the system can be treated quasi-adiabatically and internal variables 

are almost in steady state at any time. 

The other condition concerns the quantized field state. In order to neglect a term 

containing third-order derivatives in momentum and field variables, the second-order 

derivative  is neglected compared with *2 / 
2 . 

For an intracavity field on coherent states, a sufficient condition is that the mean 

photon numbers is higher than one, which makes the model “semiclassical” in the 

description of the cavity field as well [3.11]. This condition can be used to justify 

whether the dipole potential is steadily built up. Therefore, the fluctuations of the 

system due to the cavity decay loss can be taken into account and dealt consistently. 

The resulting Fokker–Planck-type equation Eq. (3.32) for the Wigner function 

can effectively be simulated by stochastic differential equations of the Ito type [3.14], 

given by 
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The diffusion is represented by the noise terms, which obey the second-order 

correlations 
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3.3.2 Dynamical equations 

By means of the above systematic semiclassical approximation and similar 

normalization as section 3.3.1, the 1-D equations for the field amplitude, the forces, and 

the noise, are written as 
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which can be change to 
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where the effective position dependent pumping term proportional to 
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is responsible for the photon creation in the mode. 

The self-organization can be still partly interpreted on the basis of the 

conservative forces. These are quite directly exposed in Eq. (3.35). The first term 

corresponds to the dipole force in the cos2(kx) optical lattice potential, having potential 

wells at kx=nπ with a periodicity of λ/2. The additional force term proportional to cos(kx) 

has opposite sign for positions around kx=2nπ and kx=(2n+1)π. 

The Brownian Noise wasn’t taken into account in the semiclassical model before 

for simplicity and convenient conclusion. The damping processes, i.e. the trapping and 

cooling processes are always accompanied by fluctuations, which imply Langevin-type 

noise terms for the momentum, pm , and the complex field amplitude,   [3.9].  

These are defined by the second-order correlation coefficients, which include 

nontrivial cross correlations between the momentum noise terms pm  and the phase 

component of the field noise. In J. K. Asboth’s simulation the proper random increment 

by decomposing the noise terms is generated from semiclassical model into 

uncorrelated and correlated components,  and  [3.15], 
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where j , , , ,  are random numbers with mean 0 and variance 1. )(a
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Note the equations above are not normalized. Here 2uk  is the mean projection 

of the momentum recoil along the cavity axis due to spontaneous emission [3.15]. 

3.4 The Dynamics of Atomic Self-organization 

In section 2.3.4, we studied the dynamics of single atom in the optical cavity 

pumped along the cavity axis. In section 2.3.7, we discussed the correlation between 

two atoms in the cavity. The noise and diffusion are neglected in those simulations. 

In this chapter, we have discussed the model of the self-organization of 

molecules, which is also available for the two-level atoms with a replacement of eff . In 

section 3.3, the effect of noise has been taken into account. However, the model needs 

to be validated first. We simulate the dynamic process for atoms first according to the 

work of J. K. Asboth et al. with this model. 

3.4.1 Dynamic process 

In the strong-coupling regime (g>κ, γ) and for suitable detunings ΔA and ΔC, the 

cavity field exerts an efficient friction force and the atoms are driven into a near 

stationary distribution. The temperature limit still depends primarily on κ.  

As introduced in section 2.3.4, for a single atom case, a large atomic detuning 

 is assumed to ensure small saturation, then cavity detuning  need to match an 

efficient cooling region in accordance with Fig. 2.4, and finally, a small light-shift effect 

U

a c

0. For the many-particle case, which all couple to the same field mode, we can 

investigate the dynamics by numerically integrating Eq. (3.34). When the frequency 
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shift induced by the particles is of the order of the cavity detuning =-κ, which 

reduces the cooling efficiency and consequently increases the steady-state temperature. 

For even larger particle numbers the cavity is shifted into positive detuning, where the 

friction force changes sign and the particles are accelerated [3.8, 3.28]. Therefore the 

cavity detuning  is assumed. 

c

0)(cos2
0  

j
njc xU

/(2hkrec 

5.207

According to J. K. Asboth’s method, we have done some simulations using the 
85Rubidium atom [3.15]. The atomic massm of 85Rb is 85u, transition light wavelength 

is 780nm, recoilfrequency ≈2πx3.8 kHz. The half linewidth of the 

cavity is assumed as κ≈10

)2m

7Hz. The dipole moment of the 85Rubidium atom is 2.5377×

10-29 C·m [3.25]. We consider a near-resonant pump, therefore the couple constant of 
85Rb g=5κ and the spontaneous linewidth γ=2κ, the parameter in Eq. (3.37) 

. )/( 1
2  cmk 

For each value of N the detuning Δc is rescaled such that the effective mode 

detuning, including the index effect of the atoms, is kept constant provided the atoms 

are exactly in antinodes, for example,  0NU . c

A type of self-organization process and the effect of the remaining momentum 

fluctuations are illustrated in a typical example of trajectories in Fig.3.2.  

 

 

 

 

 

 

 

 

Fig. 3.2  A type of self-organization process of 30 85Rb atoms under the threshold. 

Left: Time evolution of the positions of the atoms. The initial normalized 
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momentum of each atom is pn=1; right up: Time evolution of the intracavity field 

intensity; right down: the snapshot of the momentum of the atoms from 0.99ms to 

1ms. The position kx is divided by 2π. 

 

To contrast with the result of J. K. Asboth, in our simulation, the initial position 

of 30 85Rb atoms were on the kx=2nπ and the initial normalized momentum of each 

atom is pn=1. The pump strength η=400μs-1, which was just near the threshold, and the 

red-detuning ΔA=-1000κ. The figure shows these atoms are only weakly bound and 

show a lot of hopping between different trapping positions at beginning. However, the 

system is getting to unstable with the decreasing of the intracavity field intensity. 

Figure 3.3 shows the result in the case of these atoms with same higher initial 

momentums pn=3. All the others conditions are same as those in Fig. 3.2. After cooling 

and a short self-organization process, the field can not be built up and maintained 

steadily, which causes instabilities. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3.3  A type of self-organization process of 30 85Rb atoms under the threshold 

with higher initial momentums. Left: Time evolution of the positions of the atoms. 

The initial normalized momentum of each atom is pn=3; right up: Time evolution 

of the intracavity field intensity; right down: the snapshot of the momentum of the 

atoms. The position kx is divided by 2π. 
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If the pump power is increased, the stable case appears, as shown in Fig. 3.4 and 

3.5. These results are coincident with those of J. K. Asboth [3.15]. 

As shown in the numerical simulations, 30 atoms starting from a uniform 

distribution breaks the translational invariance and finds a very particular state by self-

organization: the atoms accumulate either all in the even or all in the odd wells, i.e., in 

positions xj ( j=1 ... N) such that cos(kxj) is close to 1 or close to -1 for all. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3.4  A type of self-organization process of 30 85Rb atoms above the threshold. 

The pump strength is η=500μs-1, and other conditions are same as those in Fig. 3.3. 

Left: Time evolution of the positions of the atoms; right up: Time evolution of the 

intracavity field intensity; right down: the snapshot of the momentum of the atoms 

of the atoms from 0.99ms to 1ms. The position kx is divided by 2π. 

 

The self-organization process is relatively fast, on the microsecond time scale. 

Because the field is created by the atoms traps and simultaneously cools in the system, 

the organized pattern can stably remains on a long time scale of 10 ms [3.9, 3.15]. 

There are two parameters, the threshold of the pump light and the minimum 

number of atoms to produce self-organization. J. K. Asboth et al. [3.15] make many 

important conclusions. The simulation shows that for a small number of atoms self-

organization is unlikely to occur, because the maximum number of photons generated in 

an optimally ordered state occupying exactly every second well is too low to trap the 

atoms for long times. On the other hand, for the chosen parameters of 85Rb, no cavity 
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field builds up below η=400μs-1, which can be regarded as the threshold of pump 

strength under these simulation conditions for self-organization. So the deep enough 

potential wells can be created to trap the atoms at the steady-state temperature of the 

atomic ensemble.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 3.5  A stable case after self-organization process of 30 85Rb atoms. The pump 

strength is η=600μs-1, and other conditions are same as those in Fig. 3.3. The 

position kx is divided by 2π. 

3.4.2 Scaling law 

From Eq. (3.34), the atoms oscillate around the antinodes with an average light 

shift proportional to the mean of cos2(kx) less than 1. Hence the more atoms there are in 

the cavity; the further the pumping field is detuned from the actual atom-shifted mode 

resonance. In fact, at high pump laser intensities (above a threshold), constructive 

interference of the scattered light in this final state then gives rise to a quadratic 

dependence of the stationary mode intensity, i.e., the number of cavity photons on the 

atom number N, which can serve as the signature of reaching the self-organized state 

and as unambiguous evidence for the atomic cooperative dynamics.  

According to Eq. (3.34), a type of steady state can be considered, for example, 
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The mean value of the noise term is 0. With the limit of a large atomic detuning, 

 A  (  00 ,cU ) is obtained, and for atoms closely localized at 

antinodes, 22 xk <<1. Then the results of the numerical simulation are well described by 

the simple expression  
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which is obtained as the steady state of Eq. (3.34).                                               

The position uncertainty of a single atom 2x  is a good parameter to evaluate the 

localization of these atoms. Fig. 3.6 shows the correlation between 22 xka   and  
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  with our simulation parameters. When the range of atoms is 

increased, the field intensity decreases. 

 

22Fig. 3.6  The correlation between xka  and  
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  with our 

simulation parameters 

 

According to Eq. (3.34), if more atoms happen to be momentarily in the even 

wells so that 0)cos( 
j

njx , then the cosine potential has wells at kx=2nπ deepening the 

cos2(kx) optical lattice, while it has hills at kx=(2n+1)π that reduce or can even suppress 

the attractive wells in these points. If the populations in the different type of wells are 

unbalanced, the asymmetry between the two wells will be stimulated and increased. In 
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the end of the simulation in this case, all the atoms are in the same class of wells for the 

self-amplifies process. 

In a closely related setup, Vuletic´ and coworkers observed fast and efficient 

sub-Doppler cooling of 106 cesium atoms in a multimode cavity field, accompanied by 

a relatively weak, near-resonant pump [3.16]. 

3.5 A Case Study of Molecular Self-organization 

According to Eq. (3.33), the dynamics of molecules can be simulatedin a similar 

way as that of atoms with different numerical parameters. As introduced in chapter 2, 

deeper depth of a dipole potential that it builds up can trap more random particles with 

less kinetic energy, therefore the coupling strength between the particle and the field 

should be as strong as possible. However, two-level atoms are pumped typically at 

visible to infrared wavelengths, with 100 MHz - 10 GHz detuning from the resonance 

transition. For most molecules, the pump frequency required for a rotational-vibrational 

transition of molecules is in the UV and DUV regions. We have to take into account the 

limited availability of laser sources and high finesse cavity optics in these frequency 

regions. Also the permanent dipole moments of polar molecules of these corresponding 

transitions are generally much weaker than those of well-studied atoms such as 

Rubidium, which will lead to significant differences in the operating conditions between 

the two. The work may provide several new and important findings beyond the scope of 

previous investigations on cooling atoms in optical cavities. 

In this section, we study cooling of a CN molecular gas in a millimeter-long 

optical cavity. 

3.5.1 General model 

We propose a study of the cooling of molecules in optical cavities. We 

investigate the centre-of-mass motion of N molecules in an optical cavity pumped by a 

laser source from the direction that is transverse to the cavity axis, as shown in Fig. 

3.7(a).  

For simplicity, we restrain the model to one-dimension in the cavity axis 

direction. We consider CN molecules in this study because the pump source that is 

required for the transition is in the UV region for which cavity optics are readily 
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available, and stationary cold molecules could be created using optical Stark 

deceleration [3.17]. For this gas at the hundred mK range only the lowest ro-vibrational 

energy level is populated.  

 

Fig. 3.7  Schematic of cooling of molecules in an optical cavity. The insert shows 

the transitions for near and far off resonant interactions 

3.5.2 CN molecule 

The molecular mass of CN is 26u, the transition B 2Σ+  X 2Σ+ with dipole 

decay rate γ=  MHz, dipole moment d4.15 2=2.954×10-60(C2m2) [3.22-3.24]. 

We consider a pump laser source at around 387.6nm, for which there are only 

two allowed transition lines as shown in Fig. 3.7(b).These are the R1 

line:  and the Q)2/1",0",0"()2/3',1',0'( 22   JNvXJNvB

)2/1",0",0"()2/1',1',0'( 22   JNvXJNv

21 

line: . B

The transition light wavelengths are both around 387.5nm, and the frequency 

separation of the two is around 5 GHz. A three-level model is therefore sufficient to 

describe the system, as depicted in Fig. 3.7(c). 

Levels |1> and |3> corresponds to the line and levels|1> and |2> to the Q1R 21 line. 

To reduce diffusive heating, we consider a large pump frequency detuning of 15 GHz 

from the  line and 20 GHz from the  line, for which populations in levels |2> and 

|3> can be neglected. The three-level system can thus be simplified as two two-level 

interactions. 

21Q 1R

The parameters 
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describe the dispersion and absorption of the molecules when both transition lines are 

taken into account, where   is the spontaneous emission linewidth, g
R1

 and g
Q1

 are the 

coupling strengths of the two lines and 11 aRaR   and 2121 aQaQ    are the 

pump-molecule detuning for the two lines. The photon number scattered into the cavity 

by the pump   is , where 2|| eff

22
21

2121

22
1

11
)()(















aQ

aQQ

aR

aRR
eff

igig
,     (3.44) 

which also has two terms for each transition. 

The pump frequency is detuned to be 1521 aQ GHz and 201 aR GHz, 

which are much larger than  . 

Using the well-documented parameters for (B-X), (0, 0) transitions of CN 

molecule, we obtain the coupling strengths, 1.141 Rg MHz, MHz and total 

coupling strength that combines the two lines 

0.1021 Qg

2
21

2
1 QR ggg  = 17.3MHz [3.18]. 

3.5.3 Cavity parameters 

According to Eq. (2.8) and (2.10), for a certain dipole moment, small mode 

volume and high photon energy can improve this parameter g, but are limited by the 

experimental conditions such as cavity parameters and pump source. 

To obtain a strong coupling constantg, the cavity is assumedto have: length 

l=1.5mm, reflectivity r1=r2=0.9999, and beam waist mw 50  .The linewidth of the 

cavity is κ≈20×106 Hz, the finesse is . Consequently the coupling constant of 

CN molecule is g=0.866κ and the recoilfrequency ≈2πx51kHz. 

4101.3 

)rec 2/(2 mhk

The normalization coefficient of momentum is . To get a 

potential U

32/1)/( 1
2  cmk 

MHz6000 as deep as possible, we set a 30   . The effective mode 

detuning Δc is set as similar to the case of atoms, for example,  0NUc . 
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Due to the weak dipole moment strength of molecules, a variable order Adams-

Bashforth-Moulton PECE solver is adopted to numerically simulate the dynamic 

procession. It may be more efficient than other methods at stringent tolerances [3.27]. 

The simulation in Fig. 2.8 in a long time (>1s) shows a highly steady performance and 

accuracy of this method. To check the validity of our model, we firstly study the case of 

Rb atoms and compare the results with those published or verified [3.9, 3.15]. 

3.5.4 Comparison with Rb atom 

We have done some work on the scaling character of CN molecules, which is in 

contrast with that of Rb atoms, as dicussed in section 3.4.2. These simulation results are 

shown in Fig. 3.6, where the X axis is the pump strength η, the Y axis is the variable 

value, and index 
222

0

22

])/(1[1

1

xkNU

xk
b




 . 

 
 
 
 
 
 
 
 
 
 
 
 
 

(b)   
 
 
 
 

(a) 
Fig. 3.6  The contrast simulation results between CN molecule and Rb atom 

 

As shown in Fig. 3.6, some characters of CN molecule are similar with those of 

Rb atom when the pump strength is appropriate. The collective cooling dynamics and 

scaling of molecules in the two-level interaction model has taken place through spatial 

self-organisation in realistic conditions. However, when the pump increases, the k2x2 of 

CN is getting higher, which can cause instability of the optical field. 
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3.5.5 Dynamics study 

We first study the dynamics of the CN gas in the cavity that has an initial 

temperature of 100 mK, which is significantly higher than the cavity cooling 

temperature limit of  = K150  for our system [3.19].  

 

(a) 

 
(b) 

Fig.3.7 (color online) (a) Time evolution of the photon number  in the cavity 

(divided by 10 to fit the figure), the temperature of molecules (in unit of mK) and 

the molecular spreading parameter, 

2||

22 xk . (b) The temperature of the CN gas vs. 

time for different initial molecular numbers in the cavity (from bottom to top: N= 

50, 100, 400, 1000) 
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Fig.3.7 shows the evolution of temperature, intracavity photon number and the 

spatial spreading parameter for 200 CN molecules that are initially placed uniformly in 

the central region of the cavity. The spreading parameter, 22 xk , measures the averaged 

distance of molecules to their nearest antinodes of the intracavity field. When a pump 

intensity of 54 kW/cm2 (η=300κ) is applied to the cavity, the intracavity field rapidly 

builds up through the molecule-mediated scattering. 

Accompanying this process is the dissipation of the kinetic energy of the 

molecules owing to the cavity cooling mechanism. This results in molecules becoming 

trapped in the dipole potential wells produced by the intracavity field. The spatial self-

organization of molecules in the cavity is evident with the decrease of the spreading 

parameter. In this simulation, 120 of the 200 molecules are trapped and rapidly cooled 

to 850  K in around 0.2ms. The remaining molecules are accelerated and eventually 

escape from the cavity. The latter happens because these molecules are out of phase 

with the majority and do not benefit from the cavity induced cooling process. We note 

that the pump intensity is high because a limited number of molecules are simulated for 

computational efficiency.  

According to the 1/N law discussed later in this chapter, the pump intensity is 

reduced to about 1 kW/cm2 to observe similar dynamics for 104 molecules. We have 

carried out many simulation runs with different initial temperatures and molecular 

numbers and show that using the same pump intensity the molecules with initial 

temperature of 300 mK can be cooled to the similar final temperature on the same time 

scale. 

In general, for a given pump intensity the number of trapped molecules is 

reduced on increasing their initial temperatures, while the increase of the pump intensity 

traps and cools more molecules. The number of trapped molecules also increases with 

the increase of the cavity length. We have further found that once the pump intensity is 

set above its threshold for cooling, the cooling time for the trapped molecules remains 

essentially unchanged for different molecular numbers and initial temperatures. 

Fig. 3.7(b) shows the cooling process in time for different initial numbers of 

molecules with same starting temperature. The jumps shown in the curves, which are 

more prominent in the cases of smaller molecular numbers, implies the loss of hot 

molecules from the cavity and consequently the reduction of temperature for molecules 

remaining in the cavity. 
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The cooling time is around 0.2 ms for all cases we simulated. The final 

molecular temperature depends on the operating conditions of the system; a lower 

temperature is obtained when the system operates just above the pump threshold.   

3.5.6 Defect and stable defect particles 

The averaged photon number in the cavity can be well approximated by the 

steady state solution of Eq. (3.34) without the noise terms, which in the limit of large 

molecular detuning  211, aQaR

0UNtrc

, small molecular spreading and the cavity 

detuning condition 

122 xk

  , is given as  

222
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22

2

2
22

])/(1[1

)1(||
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xkNU

xk
N

tr

eff
tr 






  .   (3.42) 

Here the number of trapped molecules in the cavity has replaced the initial molecular 

number N [3.9, 3.15]. 

trN

 

 

 

 

 

 

 

 

 

 

 

Fig. 3.8 (color online) The relationship between photon number and molecular 

number for different initial temperatures for the CN molecular gas. The results for 

Rb atoms are also shown for comparison. 

 

This modification allows us to describe the cases with different initial 

temperatures. As depicted in Fig. 3.8, the curves for initial temperatures of 0.15 mK 

(  ), 90 mK and 300 mK are very close together and all obey the quadratic relation 

70 
 



 

22|| trN  in the parameter window around 100trN , where 22 xk is small and the 

motion of the trapped molecules are well correlated. We also plot the curve for Rb 

atoms for comparisons. Rb atoms behave in a similar way to those of CN for 600trN

trN

, 

beyond which, however, the photon numbers is rapidly reduced on increasing . 

The latter effect is due to the appearance of significant number of stable defect 

molecules [3.15]. The “defect” is defined as the ratio of atoms closer to minority sites 

than majority sites. A uniform distribution of particles gives a defect ratio close to 50%. 

We can use the potential curve to describe this defect parameter. According to 

Eq. (3.36) and discussion in section 2.3.5, the dipole potential can be described as 

)cos(
*)eff g
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)(cos)
2

1
( 220

nj
eff

njdip x
g

ix
U
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   (3.45) 

as shown in Fig. 3.9. 

 

 

 

 

 

 

 

 

Fig. 3.9  (color online) The dipole potential distribution of self-organization. There 

are two type potentials. Left: when the intracavity field is small, the period of the 

potential Udip is 2π; Right: when the intracavity field is increased above a limit, 

even wells appear. 

 

According to the introduction in Fig. 3.9, two type defects exist in the self-

organization process due to the two cases of potential distribution. Fig. 3.10 shows the 

defect value in the cases of different conditions. When the pump is not strong enough, 

the particle with higher momentum has a large localization distribution in the dipole 

potential, which caused the defect. However, if the particle number exceeds a limit, a 

type of stable defect appears. 
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Fig. 3.10  Defect of Rb atom (left) and CN molecule (right) in the stable state of  

self-organization. The parameters of Rb are g=5κ, ΔA=-1000κ, γ=2κ; CN are g=5κ, 

ΔA=-1000κ, γ=0.75κ. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3.11  Stable defect in the self-organization of 300 85Rb atoms. The parameters 

are g=5κ, ΔA=-1000κ, γ=2κ, η=75κ. Left: Time evolution of the positions of the 

atoms; right up: Time evolution of the defect; right down: the snapshot of the 

position of the atoms of the atoms from 1.99ms to 2ms. The position kx is divided 

by 2π. 

  

The stable defect molecules are those trapped in different type of wells from the 

majority and they destroy the intracavity field through destructive interference with the 

rest molecules. A simple theoretical estimation of the threshold for the occurrence of the 

defects is given as 40||/ 0  UNthr   for Rb atoms [3.15]. 
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Our simulations show that noticeable number of defects appears at much higher 

molecular number, around N=200, and their percentage increases on further increasing 

the molecular number in the cavity, at N=600 the defects reach >5% and start to reduce 

the intracavity field. CN molecules have a much larger threshold, at 1200thrN , 

according to the estimation. 

Based on the results of Rb atoms, the same effect for CN molecules due to stable 

defects should appear at around N=104, which is beyond our  simulation range. This 

finding shows that cavity cooling occurs only for a molecular gas whose number does 

not significantly exceed the threshold  for the emergence of stable defects.  This 

restriction will be further discussed later in this chapter. 

thrN

3.5.7 Scaling law 

The observation that the quadratic relation 22|| trN  holds only in a limited 

parameter window is due to the fact that collective dynamics of molecules occurs only 

in a certain parameter region of the system. This is evident by examining the relation of 

molecular spreading 22 xk  with other parameters of the system.  

For example, while an increase of the molecular number deepens the potential 

trap which compresses the molecular spatial size around the antinodes, it also increases 

the noise effects due to the increased intracavity field intensity, which tend to spread the 

molecular clouds and also raise the final molecular temperatures.  

To investigate its functional dependence on the parameters, we consider the 

dipole potential energy produced by the intracavity field intensity. When a molecule is 

cooled in the cavity, the averaged potential energy experienced by the molecule is, from 

the right hand side of Eq. (3.35),  

)}cos())Re()(Im(2)(cos)
2

1
({ 21

22

0 kxkxUU effeff   
 

(3.46) 

where 1  and 2  are the real and imagery parts of  . The averaged potential energy 

variation due to molecular spatial spreading from the antinodes of the field is therefore  

)})cos(1())Re()(Im(2))(cos1({ 21
22

0 kxkxUU effeff  
 

(3.47) 
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Here we have assumed 1|| 2  . In the case of  211, aQaR , 2/|||||| 21   , 

and |||)Im(||)Re(| effeffeff   . Eq. (3.47) can be simplified in the limit of 122 xk  

to 

222

0 }
2

{|| xkUU eff


        (3.48) 

When the molecules reach the steady state, the potential energy difference given by 

Eq.(3.48) equals the kinetic energy. Since all degrees of freedom have the same 

energy , the relation 2/Tk B 2/|| TkU B  gives  

12

0
22 }

2
{

2



 eff

B U
Tk

xk


     (3.49) 

By substituting Eq. (3.46) to Eq. (3.49), we obtain the relation of the molecular 

spatial spreading with the number,  

1
2

2

22 }{  tr

effB N
Tk

xk




      (3.50)  

where we have imposed the restriction  10 trN
U


.  For comparison, we have plotted 

3 curves in the ( 22 xk , N) space in Fig. 3.9, which are obtained by using Eq. (3.49),  

Eq. (3.50) and directly from numerical results of Eq. (3.34). 

 

Fig. 3.9  The spreading parameter vs. molecular number. The square curve is 

generated directly from numerical integration of Eq. (3.34). The triangle curve is 

plotted using Eq. (3.49) with photon numbers and temperatures from numerical 

74 
 



 

simulation. The star curve is from Eq. (3.50). The dot curve is produced using the 

expression from ref. 3.15 for CN parameters for the purpose of comparison. 

 

The curve generated by Eq. (3.49) fits well with the numerical results for 

different molecular numbers except in the small window just above the threshold, where 

collective dynamics has not been fully established and noise effects are relatively strong.  

The deviation of Eq. (3.50) from the numerical results is also mainly in the 

region of small N. This is because of the existence of finite number of defect molecules 

in this region and consequently Eq. (3.45) should be corrected by removing these 

molecules from . We note that Eq. (3.50) does not imply a simple  law 

because the temperature also varies with the molecular numbers and its expression is 

not yet available. Our extensive numerical simulations show that the temperature 

increases monotonically with the molecular number once collective dynamics occurs 

(N>10 in Fig. 3.9) and can be approximated by , where 

. By substituting this relation to Eq. (3.50), we obtain 

trN trN/1

2
tr210 tr NaNaaT 

210 aaa 

trN/aaxk 01
22   for the region of small molecular numbers and  

trNaaxk 21
22   for large molecular numbers. These functional dependences fit 

qualitatively with the curves in the figure.  

The above analysis and simulation show that in cavity cooling, the pump 

intensity should be set in the region close to the threshold, in which the collective 

dynamics of molecules is strong and the final molecular temperature is low. We note 

that a different expression from Eq. (3.49) was obtained in ref. [3.15] using a harmonic 

oscillation model and the 1/N law were suggested for a small window of molecular 

numbers where the changes of cooling temperature with molecular number are 

neglected. 

 For comparison we have plotted this expression (Eq. (31) of Ref. [3.15]) using 

our simulation results of CN molecules. The curve captures the main features for small 

number of molecules but is shifted significantly upward. 

We have further investigated the relation of the pump intensity threshold with 

the molecular numbers. This relation is obtained based on our extensive numerical 

results on CN molecules. We start with a finite number of molecules, N, in uniform 

distribution in space and low initial temperature (= ) . On increasing the pump 
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intensity, the molecules tend to accumulate in either odd or even numbered potential 

wells through the self-organization processing. The pump threshold is defined at the 

point where the statistical difference, N , of the molecules around the odd and even 

wells equals the root square of the molecular number, for example, NN  . Since 

the intracavity field fluctuates significantly in the region of the threshold, the pump 

intensity is determined using extensive numerical runs and statistical analysis. Fig. 3.10 

shows that the effective pump threshold is inversely proportional to the molecular 

number, for example, .  Nthreff /1|| 2
, 

Using Eq. (3.38) and Eq. (3.44), we have  

Ngg QR
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211
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2
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||

      (3.51) 

 211, aQaRwhere we have assumed . Eq. (3.51) can be further simplified in the 

case that the pump frequency detuning is much larger than the frequency difference 

between the two transition lines, for example, aaQaR  211 . We have from 

Eq.(3.51) under this condition 

Ng
a

thr 2

22
2||

 
        (3.52) 

 

 

Fig. 3.10 (color online) Numerical simulations show the 1/N law for the pump 

intensity threshold for CN molecules. 

 

This relation implies that a smaller value of the coupling strength g for a certain 

molecular gas can be compensated by larger molecular number in the cavity to have the 
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same pump intensity threshold for cooling. For example, the transition strength of the 

relevant lines in CN molecules is some two orders of magnitude smaller than that in Rb 

atoms, and consequently a relatively small cavity mode volume was used in our CN 

simulations to boost the coupling strength. In fact, given by the relation Eq. (3.52), we 

can reduce the coupling strength and increase molecular number at the same time to 

achieve effective cooling. We have verified this in simulations. 

 This relation therefore gives the flexibility in cavity configurations for cooling 

molecules. We note that two different scaling laws have been suggested based on the 

mean-field continuous and statistical models in the study of atoms in a cavity field and 

they gave respectively  and N/1 N/1 law to the threshold for the pump intensity 

[3.15].  

While our definition for the pump intensity threshold follows the statistical 

model, and numerical simulations involve a limited number of molecules, we observe 

the 1/N law, as given by Eq. (3.52), which is consistent with the mean-field continuous 

analysis. We further note that there is a noticeable constant shift between the threshold 

values given in Fig. 3.10 and those derived from the mean-field analysis. 

Finally we discuss how the scaling relations given by Eq. (3.45), Eq. (3.50) and 

Eq. (3.52) can be used to extend our results obtained based on the simulations of 

hundreds of molecules to a very large molecular ensemble. 

First, these relations are valid only when the number of molecules to be cooled 

in the cavity does not significantly exceed the threshold value  for the appearance of 

stable defects. Since

thrN

||/ 0UNthr  , the dispersion parameter  must be reduced 

and/or the cavity relaxation rate 

|0|U

  increased to increase .  thrN

For example, for the value of  given earlier, if the pump frequency detuning 

 ( | ) is increased (decreased) by 5 orders of magnitude, a gas of 10a | 0U 9 CN 

molecules can be cooled in the cavity without the occurrence of significant stable 

defects. Thus, in order to cool an ensemble of 109 CN molecules, the pump field must 

be detuned further from the molecular resonance from the near resonant regime (GHz to 

tens of GHz detuning) to far off-resonance (detuning in the order of half of the resonant 

transition frequency). The pump intensity threshold for molecular self-organization and 

cooling, as given by Eq. (3.52), is increased by 4 orders to W/cm6106  2. 
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This estimate shows that cavity cooling of a large molecular sample is possible 

by use of a far off-resonant, high intensity pump. In this new parameter set for cooling 

of a CN molecular gas, the scaling relations of Eq. (3.45) and Eq. (3.50) should still 

be observed when molecules are self-organized above the pump threshold. 

910

The intracavity photon number in this case is increased by 6 orders because of 

the scaling 222 |||| efftrN    given by Eq. (3.45), whereas the spatial spreading 

parameter remains unchanged due to the fact that 122 )|(|  treffnm Nx   given by  

Eq. (3.50). We note that varying  gives more flexibility to the choice of the pump 

intensity and other parameters. 

3.6 Summary 

In summary, we have studied a cavity scheme for molecules and predicted, by 

example, that CN molecules can be cooled from the hundred milliKelvin range to sub 

milliKelvin temperatures in less than one millisecond.  While CN molecules have a 

complex energy level structure, the near-resonant interaction model can be simplified to 

comprise only three levels. This approach can be extended to other molecular species of 

current interest in cold molecule research for which the scaling laws discussed in this 

paper can be generalized. These results may therefore benefit researchers working on 

other species such as NH [3.20] and OH [3.21]. We note that the 1D cavity model is a 

good approximation which captures the main results of a more complete description that 

includes transverse effects [3.15]. Moreover, through the analysis of the scaling laws, it 

was shown that cavity cooling of a very large molecular sample is possible by use of a 

far off-resonant, high intensity pump. Interestingly, since far off-resonant interactions 

do not rely on specific internal energy levels of particles, cavity cooling can in principle 

be realized for any polarisable species.  We note that the molecule-field coupling in far 

off-resonance is described by the polarizability of molecules that accounts for all 

transition lines. Further investigation is required to extend the current model to the far 

off-resonance regime.  
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Chapter 4  

Statistical model 

4.1 Introduction 

It has been observed that the damped atomic motion in an optical cavity due to 

the coupled atom-field dynamics which leads to a friction force [4.1-4.2]. This cavity 

cooling scheme avoids or reduces several problems of the laser-cooling scheme, such as 

photon re-absorption and recoil heating. Moreover, cavity cooling is an attractive 

approach for creating ultracold molecules as there is no requirement of a closed 

multilevel system. Now a range of techniques is able to produce and trap stable cold 

molecules at temperatures in the 10-100 mK range [4.3-4.6]. Cavity cooling appears to 

be a effective method towards further cooling a large range of species1 to the ultracold 

regime below 1 mK [4.7-4.11].  

In cavity cooling, the commonly used mathematical model comprises a set of 

equations of motion for each particle that is coupled to the same intracavity field [4.9-

4.10]. This many-particle model can be represented quantum mechanically or semi-

classically. The latter has shown good agreement with the former in recent extensive 

studies for temperatures higher than the cavity cooling limit. While the model is 

effective, it becomes impractical when a large ensemble is involved according to 

realistic particle number [4.40, 4.41]. Our understanding so far of cooling of an 

ensemble of particles is based on scaling laws which are obtained using various 

approximations and have not yet been fully tested to reliably predict the instability 

thresholds or other conditions [4.9, 4.42, 4.43]. The quantities are very important to 

study system status in theory or to estimate the potential of future experimental 

applications as molecular cooling [4.39]. 
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In this chapter, we have developed a new statistical model based on the 

Boltzmann equation. This model could be used to statistical analysis the probability and 

other properties characteristic of a number of particles. We show a good agreement 

between the theory and numerical simulations. 

4.2 One-Dimensional Collisionless Boltzmann Equation 

In this section, we present one-dimensional collisionless Boltzmann equation for 

modeling molecular motion in a one-dimensional optical cavity as shown in Fig. 4.1. 

 

Fig. 4.1  The modeling of molecular motion with Boltzmann equation in a one-

dimensional optical cavity 

 

The one-dimensional collisionless Boltzmann Equation is initially used in recent 

experimental work in coherent Rayleigh scattering and its applications where the 

distribution function was measured using light scattering techniques [4.12-4.13]. 

Eq. (4.1) has also been used in theoretical treatments which describe a pulsed 

standing wave mirror, and the deceleration of cold molecules in a molecular beam using 

a one dimensional far-off resonant optical lattice [4.14-4.16]. This formalism could also 

be used to model recent experiments demonstrating the decelerating, trapping, and 

bunching of molecules by a Stark deceleration, and measurement of the polarizability of 

molecules with the optical dipole force [4.17-4.23]. 

The motion of molecules are considered in a high intensity optical cavity in 

which the momentum transferred to the molecules is several orders of magnitude larger 

than the recoil momentum, and then the molecules can be treated as classical particles 

under these conditions [4.14, 4.24]．Because the interaction time between the optical 
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fields and molecules is shorter than the collision time in many experimental schemes, 

thus most of collisionless conditions can be created within a pulsed supersonic beam 

[4.25-4.26]. For this situation, the collisionless Boltzmann equation, as shown in 

equation 4.1, can be used to describe the position and velocity distribution function of 

the molecules in the cavity [4.27-4.29]. 
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    (4.1) 

Where ),,( tvrf


 is the distribution function of molecules, ),( trF


 is the dipole force, 

and m is me mass of a single molecule． 

 Typically the interaction time of the transverse motion of molecules is very 

short with nanosecond magnitude, and the effect of the transverse force Fz on the 

molecules is weak and not significant, thus this transverse force Fz can be treated as a 

perturbation and neglected in the zero-order approximation of the position and velocity 

distribution function. With this approximation, the transverse motion can be decoupled 

from the longitudinal motion as 

),,(),,(),,( tvzftvxftvrf zzxx


                                            (4.2) 

where the transverse molecular beam distribution function ),,( tvzf zz


 is independent of 

the longitudinal molecular beam distribution function . Inserting Eq. (4.2) 

into Eq. (4.1) in which the transverse force Fz is neglected, and using the variable 

separation technique, we obtain that the molecular beam distribution function 

 in direction x can be determined by the 1-D Boltzmann equation 
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where x is the position in the cavity, v is the velocity, F is the force on the molecule, m 

is the mass of the molecule. 

Eq. (4.3) can be readily solved without the force term [4.30-4.31], however, if 

the force is present, an analytical result can hardly be obtained. In section 4.3, we 

present a numerical algorithm. We also find that in a special case that the force is 

produced by the lattice with a constant travelling velocity, the equation could be solved. 

The details are presented in section 4.4. 
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4.3 Normalization of Collisionless Boltzmann Equation 

4.3.1 Normalization of the force 

In the discrete model, the force on a certain particle j in the cavity (N particles, 

j=1, 2, …, N) is 
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(4.4) 

This force includes two terms, the dipole force and the noise 
pj  which occurs due 

to recoil caused by reason due to the spontaneous emission (linewidth γ) of the particles. 

The intracavity field equation in the discrete model is (xj is normalized by kx) 
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 (4.5) 

where the noise term   includes two parts, γ and the cavity linewidth κ. 

When we choose a large detuning of Δa, the effect of spontaneous emission will 

be reduced, and the parameter 2

2

0

a

g





 in the noise term approaches to 0. The stable 

temperatures of the molecule ensembles are related with the noise.  

This result proved we can only consider the noise caused by cavity linewidth κ. 

Then ( ) ( )/ 2 / 2a a
r i i      , where ( )a

r  and ( )a
i  are the random numbers with 

mean 0 and variance 1, 
pj  could be neglected. 

4.3.2 Normalization from velocity v to momentum p 

In our discrete model’s equations, the parameters are normalized by 
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The coefficient on equation of position is , for CN, . With these 

parameters, we should do some normalization in the statistical model. 

1
2 )/( cmk  32/11 c
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c2 is a dimensionless parameter. For example, under the conditions of our discrete 

model,  

26/12 c . 

So if the location of pn is [-50, 50], the velocity should be [-1.93, 1.93] (m/s). 

4.3.3 Normalization of Boltzmann Equation 

We put / /np p k mv k   and other conditions into Eq. (4.3), then get 
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Finally, we can obtain 
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According to the discussion in chapter 3, when the particle number in the cavity 

is large, their positions and velocities can be described by a continuous distribution 

function . The sum term   in Eq. (4.5) of the statistical model should 

be . P(x) is the probability distribution, which corresponds to f(x,p,t) 

in Boltzmann Equation. Thus the sum term is replaced as 
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The dynamics of the intracavity field in this statistical model is given by 
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(4.7) 

which is a straightforward extension from the first equation of Eq. (3.34).  

The dipole force F(x,t) exerted on the particles can be written as 

peffeff xixUktxF  







  )sin()()2sin()

2

1
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0                    (4.8) 

which comprises 3 sources: the dipole force, the force resulting from pump-intracavity 

field interference and noise p  due to the recoil. 

In our study we are interested in the case of large detuning, for example, 

, ,A g   , and in this case only the noise term in the field equation needs to be 

considered.  

4.4 An algorithm for Solving the Collisionless Boltzmann 

Equation 

In this section, a numerical algorithm is developed for solving the one 

dimensional Boltzmann Equation Eq. (4.3) with the initial condition of 

f(x, v, t=0)=f0(x, v)      (4.9) 

and the periodic boundary condition in real space 

f(-L, v, t)=f(L, x, t)      (4.10) 

together with the natural boundary condition in velocity space 

f(x, v, t)→0 as ∣v∣→∞                                           (4.11) 
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In this algorithm, Eq. (4.3) will be split into two partial differential equations: 

one governs the spatial evolution and is solved with fast Fourier transform [4.32], while, 

the other describes the propagation in velocity space and is solved with the Beam-

Warming method [4.33]. 

Eq. (4.3) is solved in one period, -L≤x≤L，due to the periodic boundary 

condition in real space (Eq. (4.10)). Also, the natural boundary condition in velocity 

space (Eq. (4.11)) is approximated by choosing two large velocities vL<0 and vR>0 

where f(x, vL, t)≈0 and f(x, vR, t)≈0. 

For numerical calculations，we plot grids in the space(z, u) with uniform 

spacing in each coordinate direction as shown in Fig. 4.2.  

 

 

 

 

 

 

 

 

 

 

Fig. 4.2  Discrete grid points in phase space (x, v) 

 

In the x and v directions, the spaces are denoted respectively as Δx=2L/K and Δv

≡(vR-vL)/M, so xk=-L+kΔx (k=0, 1, 2, …, K) and vm=vL+mΔv (m=0, 1, 2, …, M). The 

time evolution for t=0 to t=T is also discretized with the time step denoted as Δt. In the 

following t=nΔt is denoted as tn where n=0, 1, 2, …, N, Δt is determined by Δt=T/N. For 

convenience, the function value of f(x, v, t) at x=xk, v=vm, t=tn is denoted as fk,m,n. In the 

following we will present the details of the algorithm. 

4.4.1 Split-step technique 

From the Boltzmann equation Eq. (4.3), the position and velocity distribution 

function f(x, v, t) at time tn+1=(n+1)Δt is given by [4.32] 
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By the formal integration of both sides of Eq. (4.12) from tn to tn+1, 
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(4.13) 

Generally, the right side of Eq. (4.13) cannot be solved analytically. When the 

time step size Δt is small, it can be approximated by 
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In obtaining Eq. (4.14), we have used the Baker-Hausdorff formula [4.34] 
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is accurate to second order in the time step size 
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further by a symmetric split-step method [4.35], for example,  
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Then we can estimate the accuracy of Eq. (4.16) for calculating . Let ),,( 1ntpxf
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Comparing Eq. (4.16) with Eq. (4.17), we find that the leading error of Eq. (4.17) 

results from the double communator, 3)(~]],[,[ tabab  
, and therefore the accuracy of 

Eq. (4.16) is third order in the time step size t . The disadvantage of Eq. (4.16) is that 

we have to calculate the factor of )
2

exp( 1 x

tp
c




  twice. However, this disadvantage 

can be overcome by the following technique. 

  Using Eq. (4.13), the Boltzmann distribution function is calculated by 
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(4.18) 

4.4.2 Numerical procedures for solving the Boltzmann equation 

Eq. (4.18) gives a numerical calculation for the Boltzmann distribution function 

at the time T, f(x, v, T). Before discussing this procedure, we first define a function h(x, 

v, n) by 
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For n>1, where 
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Using these definitions, we briefly present a procedure for calculating the 

Boltzmann distribution function  based on Eq. (4.18): ),,( Tpxf
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4.4.3 Numerical calculation of operation functions 
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We can use the Beam-Warning method to solve Eq. (4.21) [4.33, 4.44], as 
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Using the central difference formula for the first derivative with respect to p, we obtain 
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Then Eq. (4.22) can be written as 
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For example, 
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Eq. (4.24) is of the tridiagonal form, and so can be solved by Thomas’ algorithm 

[4.36-4.37]. In this section, the case of full step Δt in Eq. (4.20) is discussed. For the 

term of half step Δt/2 in Eq. (4.19), the method is same. 

4.4.4 Fourier transform of operation functions 

For Eq. (4.20), it can also be shown as following after the function of Fourier 

transform: 
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The Fourier transform is  
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in which the second term can be solved as 
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and the third term is 
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According to Eq. (4.27) and Eq. (4.28), the Eq. (4.26) can be written as 
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Then Eq. (4.25) can be rewritten as 
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4.5 Direct Solution Method 

In this section, another method is used to solve the collisionless Boltzmann 

equation directly. 

The normalized collisionless Boltzmann equation Eq. (4.12) can be written as 
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where p is the momentum, which is related to the velocity. 

Usingthe split step method as described in Ref. 4.45, we can get 
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The solution for Eq. (4.31) and Eq. (4.32) will be described separately in the 

following: 

For Eq. (4.32), when the separated process with time step size Δt is considered, 

the integration from tn to tn+1can be written as 
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With the central-difference method, if the time stepsize Δt is small enough,  

Eq. (4.33) can be expressed as 
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Then we can get 
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If F(x, n+1)=0, Eq. (4.35) can be written as 
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If F(x, n+1)≠0, the second derivative and the first derivative for Eq. (4.35) can be 

written as 
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and 
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Putting Eq. (4.38) into Eq. (4.37), we can get 
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If we set 
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Eq. (4.39) can be shown as 
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Using central-difference formulas of order  [4.38], the first, second and 

third differential of momentum p for the distribution function can be displayed as 
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On the other hand, the distribution function f(x, p, n) can also be expanded with 

momentum p using a Taylor expansion as follow: 
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Calculating the difference between Eq. (4.43) and Eq. (4.44), we can get 
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Put Eq. (4.41) into Eq. (4.45) and replace tn by tn+1, we can get 
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If we set 
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Eq. (4.46) can be written as 
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Substituting Eq. (4.48) into Eq. (4.35), we can get 
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Then Eq. (4.32) can be transformed and numerically solved using 
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A similar method will be used to transform and numerically solve Eq. (4.31) and 

the process is shown in the following. 
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First, Eq. (4.31) is integrated from tn to tn+1with time step size of Δt= tn+1-tn, 
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With the central-difference method and the condition of a small time stepsize Δt, 

Eq. (4.51) can be integrated as 
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If p=0, Eq. (4.52) can be written as 
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If p≠0, the second derivative and the first derivative for Eq. (4.52) can be written 

as 
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and 
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Putting Eq. (4.55) into Eq. (4.54) and following the deforming process as 
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If we set 
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Eq. (4.56) can be rewritten as 
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Using central-difference formulas of order , the first, second and third 

differential of position x for the distribution function can be displayed as 
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On the other hand, the distribution function f(x, p, n) can also be expanded with 

position x using Taylor expansion as shown in the followings 
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Calculating the difference between Eq. (4.60) and Eq. (4.61), we can get 
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Put Eq. (4.58) into Eq. (4.62) and replace tn by tn+1, we can get 
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If we set 
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Eq. (4.63) can be written as 
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Substituting Eq. (4.65) into Eq. (4.52), we get 
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Then Eq. (4.31) can be transformed and numerically solved by  
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4.6 Numerical equations of the Statistical Model 

We have introduced two numerical methods in section 4.4 and 4.5 to simulate 

the distribution variation of the ensemble of particles in the cavity based on one-

dimensional Boltzmann Equation. 

In section 4.4, the distribution function  for the normalized 

collisionless Boltzmann equation Eq. (4.30) could be obtained after the numerical 

procedure. In section 4.5, the equations are 
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 The Thomas’ algorithm can be applied to solve the above tridiagonal equations 

[4.36-4.37].  

According to the discussion in section 4.3.3, the term  

in Eq. (4.7) can be replaced with , the subscripts i, j stand for 

the position and the momentum in the coordinates as shown in Fig. 4.2. 
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And Eq. (4.8) becomes 
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 (4.68) 

4.7 Boundary Conditions   

When we consider the numerical simulation of the statistical model, the 

boundary of the momentum and position are limited by the size of velocity and space.  

Therefore we need to discuss the boundary conditions for the numerical solutions for 

the normalized collisionless Boltzmann equation. 

As analysed in chapter 3, there are three types of movements of the particles in 

the optical cavity: 

1. The particles with lower initial momentum could be slowed and trapped 

within a small range along the cavity axis during the build up of the intracavity field; 

2. The particles with higher initial momentum could be trapped ultimately by a 

stronger intracavity field within a relatively longer range along the cavity axis; 

3. The particles with high initial momentum could not be trapped by the 

intracavity field. It can be treated as lost particle and neglected when it moves out of the 

cavity. 
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4.7.1 Boundary Condition of Momentum 

According to the distribution correlation of the collisionless Boltzmann Equation, 

we can set one equation to solve Eq. (4.67) as 
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When we know the initial distribution of the momentum at a certain time, we 

can try to solve the dynamic equations in the follow way: 

Putting Eq. (4.69) and Eq. (4.70) into Eq. (4.67), we can get 
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For Eq. (4.71), there are two variable parameters which satisfied with 
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In Eq. (4.72) and (4.73), we should have a boundary condition as 

when 0)1,,( npxf j p . In our model, the boundary is required to set as large 

as possible. Therefore the condition is 0)1,,( npxf j when limpp  . j=0 is a 
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4.7.2 Boundary Condition of Position 

For Eq. (4.68), the similar way can be used to get the boundary conditions of the 

position. First we set an equation as 
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Putting Eq. (4.74) and Eq. (4.75) into Eq. (4.68), then we can get 
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Eq. (4.76) can also be written as 
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The case of theboundary condition for the position x is a little complex. 

There are periodic boundary conditions for the x when we use the collisionless 

Boltzmann Equation method to do the simulation. Theoretically, the force due to the 

position of the particle is periodic and the boundary range can be set as 1 period, i.e. 

kx=2π. When the particles reach the boundary, they are treated as moving into the start 

of next period. 

However, there are some differences when we are doing the numerical 

simulation. 

Firstly, the third type particles with higher momentum could not be trapped and 

can be treated as “fly away particles” and neglected. 

Secondly, in the numerical algorithm the space is segmented with a certain step 

size. Due to the limitation of the amount of the calculation of the computer, the step size 

could not be small enough to reach the limitation of a theoretical value. Then the 
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movement of particles with high momentum at the boundary could have some errors 

which lead to instability and invalidate the numerical simulation model. 

Therefore, we consider two cases to deal with these situations.  

When we analyse the dynamic characteristic of an ensemble, the initial 

momentum is relative small. Nearly all the particles could be slowed down and trapped 

in a small space. The boundary condition can be set as when 0)1,,( npxf i

limxx  . 

When we try to simulate a dynamic process of an ensemble, the initial 

momentum is relatively high. The particles are easier to fly away due to weak 

interaction force to the intracavity field. Therefore we consider the case of adding a 

Super Gaussian potential along the cavity axis as discussed in section 2.3.5, which can 

trap and rebound the particles back in to the potential. The particles with momentum 

higher than the depth of the potential could be treated as the third type of particles and 

neglected. The boundary condition is also set as 0)1,,( npxf i when limxx  . 

4.8 Conclusion 

In this chapter, we develop the numerical method to simulate the case of a large 

ensemble of particles. T. Grießer/H. Ritsch and co-workers derive a corresponding 

Vlasov type equation by using the constancy of the distribution along the characteristics, 

i.e. particle trajectories, and Fourier expansion of the distribution [4.39]. In our 

numerical equation in section 4.6, the noises of the field and of the force on the particles 

are both considered. According to the scaling law discussed in section 3.5.6, the pump 

frequency detuning  should be large enough to avoid the effect of defect particles 

which cause the noise effect of 

a

0  is very small and could be been neglected. 

In chapter 5, we firstly test the validity of our statistical model and the numerical 

algorithm in section 5.2. Then we study the dynamic characteristic of a large ensemble 

of molecules in a cavity based on our model.   
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Chapter 5   

Cooling and trapping of a Molecular Cloud 

5.1 Introduction 

In chapter 2 and 3, we studied the centre-of-mass motion of N two-level 

particles in an optical cavity pumped by a laser field that is transverse to the cavity axis 

based on a discrete model which is so-called a multi-particle model. 

In chapter 4, we developed a new statistical model based on the collisionless 

Boltzmann equation which can simulate the movement of a huge of particles. 

In this chapter, we want to explore the scaling laws with a view to the self-

organization and cooling of a large ensemble of species. Firstly, we show a good 

agreement between the theory and numerical simulations based on the comparison 

results of the discrete model and the statistical model. Then we show that the scaling 

laws we obtain differ from the current ones which is introduced at chapter 3 in the case 

when a large ensemble of species are involved. Finally, we study the cooling of a CN 

molecular cloud of the density 1013/cm3, with an initial temperature at 10 mK in an 

optical cavity. We find that more than a third of the molecules are stably trapped by the 

intracavity field and the final temperature is below 1mK. 

5.2 Comparing Between Statistical Model and Discrete Model  

To validate the statistical model discussed in chapter 4, we choose same initial 

distribution conditions to do the simulation with two models (discrete and statistical) 

firstly. We still choosing CN as the object particles. 

107 
 



 

5.2.1 The distribution of position and velocity 

Before the simulation, we need consider the ranges, numbers and resolutions of 

the space x and momentum p. The initial particle distribution is Gaussian, placed in the 

central region of the cavity which means the position is uniform distribution and the 

velocity is normal. 

From the results of discrete model with small initial conditions, we set the space 

of position x as [-6π, 6π), and the space of momentum p as [-51.2, 51.2], which equal to 

the velocity as [-1.97, 1.97] (m/s). We set the nod number as Nx=2048, Nv=2048, then 

the resolution dx=12π/2048, dv=0.05. 

According to the scaling laws 
2 2

2
2

| | a
thr g N

 
 in chapter 3, we choose the 

parameters of N=1000, κ=20MHz, g=0.866κ, η=300κ, 1000 5a     , γ=0. In this 

case, the cavity parameters are L=1.5mm, waist wo≈5μm, finesse F=3.1×104. 

  Fig. 5.1 gives the evolution of position and velocity with the statistical model. 

Fig. 5.2 gives those with the discrete model. These two models have same initial 

conditions. The initial momentum of 1000 molecules obeys normal distribution with a 

mean of 0 and a standard deviation of 1. The position is uniform distribution in the 

space of [-π/2 π/2]. 

 

 

 

 

 

(a) Initial distribution of position f(x) (π) and velocity f(v) 
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(b) f(x) (π) and f(v) after 500steps 
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(c) f(x) (π) and f(v) after 1000steps  

 
 
 
 
 
 
 
 

(d) f(x) (π) and f(v) after 2000steps 

 
 
 
 
 
 
 
 

(e) f(x) (π) and f(v) after 10000steps  

Fig. 5.1  Evolution of position and velocity with the statistical model 

 

 

(a) Distribution of position f(x) (π) and velocity f(v) after 500steps with the discrete 

model 
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(b) f(x) and f(v) after 1000steps 

 

 

 

 

 

 

 (c) f(x) and f(v) after 10000steps 

Fig. 5.2  Evolution of position and velocity with the discrete model 

 
The simulation results of steady states are similar. However, there are some 

negative values of f(x) and f(v) in the case of statistical model due to calculate error 

caused by the lack of particles. Next we will increase the number of the particles and 

make a comparison in detail. 

5.2.2 Comparison between statistical and many-particle models 

Now according the scaling laws, we choose the following parameters as N=2000, 

κ=20MHz, g=0.866κ, η=300κ, 1000 10 3160a        , γ=0. In this case, the cavity 

parameters are still L=1.5mm, waist wo≈5μm, finesse F=3.1×104. 

As shown in Fig. 5.3, the simulation results after 0.05ms of two models (discrete 

and statistical) with same initial conditions are similar. 

The plot on the up shows the initial and final momentum distributions whereas 

that on the down gives the position distribution. The parameters used are N=2000, 

κ=20MHz, g=0.866κ, η=300κ, ΔA=-3160κ. 
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Fig. 5.3  Comparison of the results between the statistical and discrete models. 

 

Fig. 5.4 show the dynamic comparison of the photon number ( 2 ), spreading 

parameter (k2x2) and defect between the statistical and the discrete models. The left of 

each figure shows the first 40 steps in unit of κ and the right shows a period of 0.05ms. 

 

(a) Evolution plot of the intra-cavity field intensity (photon number 2 ) between 

the discrete model and the statistical model (continuous model). 
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(b) Evolution plot of the spreading parameter (k2x2) between the discrete model 

and the statistical model (continuous model).  

 

 

(c) Evolution plot of the defect (percentage) between the discrete model and the 

statistical model (continuous model). 

Fig. 5.4  Comparison of the photon number ( 2 ), spreading parameter (k2x2)and 

defect between the statistical and the discrete models. The left of each figure shows 

the first 40 steps in the unit of κ and the right shows a period of 0.05ms. 

 

Fig. 5.1 to 5.4 have shown a remarkable agreement of the distributions, photon 

number ( 2 ), spreading parameter (k2x2) and defect between the statistical and the 

discrete models. The discrete model can exactly work out the status of each particle in 

the cavity. However, it is limit to a maximum particle number N~104. The statistical 

model requires the continuity of the distribution, which means it work well with a large 

number of particles. The results indicate that particles as few as 2000 can be well 

described by the statistical model. However, the ranges of position and velocity are 

limited by the resolution and the grid number. 
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5.3 Simulation of Experiments 

5.3.1 Cavity parameters 

Now we investigate cavity cooling and trapping molecules in a realistic 

experimental environment. We still choose CN molecules as the object. For the 

experiment conditions, the cavity length could be L≈1.5mm with a waist of wo≈50μm. 

The finesse usually is less than F~103-4 when the wavelength is near ultraviolet. Now 

we need make a check for those parameters according to the details in chapter 3. 

 For the finesse, we got 

2
2 1 1
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 ,                                            (5.1) 

where R is the reflectivity. 

Then we can get  

41014.31 
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                                                           (5.2) 

which means the maximum reflectivity of the mirrors of the cavity is 0.999686. 

Then the cavity linewidth  
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and the coefficient 2
1 / ( )c k m   should be 1/100. The coefficient c2 in the statistical 

model will also change. 

To obtain higher coupling strength, we choose the waist wo≈25μm. We consider 

the transition of the CN B-X, whose transitions’ dipole moment is  

d2=2.954×10-60(C2m2)                                                                (5.4) 

The effective mode volume is  
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The coupling constant  
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The pump intensity is  
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where A is the pump area. As a rectangle,  
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If the power of the pump is around 15mW which is checked from internet [5.14], 
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then under these conditions, η≈32. 

5.3.2 Molecular parameters 

We consider the density of the molecular cloud to be 2×1014/cm3. If we assume 

that the full length in the cavity is available, the cylindrical volume is 

2 21.5mm 25 m   , and the maximum number N is 

(2×1014)×106×1.5×10-3×π×252×10-12=6×108. 

The actual density is smaller if the full cavity volume is considered. 

According to our scaling 
2 2

2
2

| | a
thr g N

 
  and the conditions discussed in section 

3.5, we set the parameters as below: 

 g changes from 0.866κ to 0.055κ, which decreases by 16 times; η decreases 

from 300 to 32; N increases from 2000 to 6×108, which increases by 3×105 times. 

Following the scaling, the 2
a  could be 3×105/(300/32)2/162=12 times larger. 

Therefore the molecules are considered to be pumped transversely by a laser source 

with a large frequency detuning. 

41000 10 12 1.1 10 690.8GHza           . 

Hence , which means 12
0 6 10 U    0 00  . 

From our simulation, we found if we increase η to η=64, the self-organization of 

this huge number of molecules can be built up rapidly according to the parameter of 

defect. This means the power of the pump will be 4 times higher, as 60mW. 

The temperature of the molecules has the relationship to the momentum as 
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According to our setting conditions, the coefficient c1=1/100, and the cooling 

limit )(48.0 mK . We set the initial temperature of the molecular cloud is about 

1mK, i.e. 200
1

2 
c

Tk
p B

n , the half width of the momentum Gaussian distribution 

should be larger than 3 3 200 42.5    to contain near all molecules. In the 

simulation, we choose the momentum range as [-102.4, 102.4]. 

5.3.3 Dynamics of a large ensemble of CN molecules 

The simulation results are shown in the Fig. 5.5 and 5.6. The figures of 

intracavity field intensity, spreading parameter k2x2 and the defect shows the self-

organization evolution of the ensemble of molecule. 

 

 

 

 

 

 

 

 

(a)                                                                (b) 

 

 

 

 

 

 

 

 

(c) 

 Fig. 5.5  Evolution plot of the intensity (a), spreading parameter (b) and defect 

with the statistical model. The parameters are setting as introduced in section 5.3. 

115 
 



 

 

 

 

 

 

 

Fig. 5.6  The distribution of position (left) and velocity (right) of molecules in 

steady state 

5.4 Scaling Laws for a large ensemble of Molecules 

5.4.1 The limit of the small number scaling laws 

In chapter 3, we have discussed the scaling laws in the case of smaller particle 

number and some conditions such as U0N<<1. For a huge number of particles, we need 

analysis in detail. 

We still start from the one-dimensional mathematical model as shown in Fig.5.7, 

which is introduced in chapter 3.  

 

Fig. 5.7  Schematic representation of the perpendicular pump case 

 
The equations of motion in the semi-classical limit are given by 

  
j
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mpx jj /     (j=1, 2, …, N)       (5.11) 

where )(t  is the amplitude of the intracavity field, ,  and t are particle 

position, momentum and the time. 
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describe the dispersion and absorption of the particles and the effective external 

pumping respectively, c c     and aa    are the pump-cavity and pump-

particle detuning. We restrict our investigation to the case of large detuning 

ga ,, , for which  can be neglected.  0

Eq.(5.9～5.11) include a set of noise terms that are defined as  
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We have investigated the pump threshold for the build-up of the intracavity field, 

which also marks the onset of self-organization (localization) of particles in space. 

Particles are initially uniformly distributed in space with statistical fluctuations. When 

the external pump is applied to them, the intracavity field emerges through a scattering 

process benefiting from the statistical fluctuations. The intracavity field then produces a 

periodic potential well along the cavity direction, which in turn localizes the particles 

around nkx 2  and )12( n  positions.  

According to Eq. (5.9), if we want to keep the intracavity intensity stable or 

higher, the pump photon must be larger than the reduction of the intensity. 

For 
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if we want 1
2  , we need 
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We can neglect the term of 0  in Eq. (5.15). When we simulate the threshold, 

we can choose the turning point where the intensity 
2  is above 1, the spreading 

parameter k2x2 is around , the defect particle number could be 83.012/2  N , the 

effective pump 
a

eff

gi




 , and the potential depth 
a

g
U




2

0 . 

So Eq. (5.15) can be written as 
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With the proximities,  
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Eq. (5.16) can be transformed into 
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Then we can get the relationship between the threshold and the defect as 
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When U0N<<1,  
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 . 

The defect number N  could be set as N , which is the scaling law in chapter 3. 

However, if we set N=5000, the defect %3.49%100/)2/2/(  NNN , the 

scaling law does not work. 

5.4.2 Scaling laws for a large number molecule 

In this section, we try to find a more applicable scaling law for the case of a very 

large number of particles based on the previous analysis. 

From Eq. (5.10), the potential is given by  
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where r  is the real part of the intracavity field amplitude. 

The intracavity field amplitude (and its real part) can be estimated under the 

steady state solution of Eq. (5.9),  
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and  
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The relations  and  /2)cos( Nkxj  2/)(cos2 Nkxj   hold well in the 

vicinity of the threshold, where N  is the deviation from the uniform distribution, for 

example, 2/)( NN   species around nkx 2  and 2/)( NN   around )12( n . 

Since    in the vicinity of the threshold, we can neglect the first term in  

Eq. (5.18). The amplitude of the potential wells is therefore aramp gU  /2  . 

Particles around the )12( n  positions and with energy 

ampUU
m

p
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can be trapped by the potential. Here U  is mean value of the potential U  around the 

)12( n  positions. Eq. (5.21) gives the maximum momentum that can be trapped 
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If the initial momentum distribution of the particles is Gaussian, the number of 

trapped particles is given by 
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                                                (5.23) 

The factor ½ in the above results from the fact that only those molecules around 

the )12( n  positions can be possibly trapped.  

By substituting Eq. (5.22) to Eq. (5.23), we have  
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The deviation N  thus depends on the external pump as well as other 

parameters of the system. 

 We note that the value given by Eq. (5.24) in the vicinity of the threshold is 

significantly larger than that of statistical fluctuations, NN  , when a large number 

of particles are placed in the cavity. We have verified this through extensive numerical 

simulations.  Now we go back to the threshold condition, / 2BE k T  . The trap depth is 

twice the amplitude of the potential produced by the intracavity field [5.1], we have 

therefore    
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By substituting Eq.(5.24) to Eq.(5.25), we obtain a threshold of 
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We briefly discuss this expression. When the collective dispersion width is 

much smaller than cavity line width, NU0 , Eq. (5.26) is simplified to  

gN

Tk aB
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Eq.(5.27) has the same scaling as that obtained under the mean-field 

approximation in terms of the system parameters Na ,  and g [5.1]. We note that there 

was a different scaling law derived in the same paper based on the statistical fluctuation 

consideration using the same threshold criterion as ours, / 2BE k T  . The reason for 

the difference is that they applied the simple finite-size fluctuation relation , NN   

to Eq. (5.25), whereas we derive  a new expression Eq. (5.24). 

 The physics behind the building-up of the intracavity field is therefore different 

between the two approaches.  In a certain sense, our approach unifies the scaling laws 

obtained by the statistical and mean-field models in the NU0  limit. When 0 /U N   

is not negligible, the scaling given by Eq. (5.26) deviates from that of Eq. (5.27). 

Generally speaking, the pump threshold thr  increases faster than ）（ gNa / . This 

will be discussed further when compared to numerical results. 
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Now we compare the numerically computed scaling laws to the analytic 

expression Eq. (5.26). By substituting Eq. (5.26) to Eq. (5.24), we obtain the value of 

the population deviation at the threshold, 22.5%thrN  , for the parameter set used in Fig. 

5.8. The defects at threshold, given as ( )thrN N / N2 , are 38.8%. We have observed 

numerically that this value of defects corresponds indeed to the beginning of a 

sustaining intracavity field.  We thus use this value to determine the pump threshold by 

averaging the defect of steady state in our simulations. 

Fig. 5.8 shows thr  vs. N while ）（ gNa /  is kept as a constant. This ratio 

keeps as a constant for up to N=1000, confirming the scaling given by Eq. (5.27) for 

. When the molecular number increases further from this value, this relation 

breaks and the curve follows the trend as described by Eq. (5.26). The numerical results 

fit the analysis quite well in terms of the fact that the latter is derived using the steady 

state solutions and involving various approximations. 

0 /U N 

 

Fig. 5.8  The scaling law for the pump in terms of the system parameters 

with the statistical model. 

 
A good agreement is obtained between the analysis and simulation. The 

parameters used in both theory and simulation are g=0.866κ, 1000a , κ=20MHz . 

The ratios 7.81/  ）（ gNa , and 1/ TkB . 

We note that stable defects have been shown to appear when molecular number 

 and they can destroy spatial self-organization [5.1-5.2]. Since 0/ | |thrN N U 
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2
0 / AU g  , to avoid stable defects, one must increase the detuning  with the 

molecular number proportionally. This indicates that if a large ensemble of molecules is 

to be cooled in an optical cavity, a strong far off resonant pump should be utilized.  

a

2 2( 

5.5 Trapping and Cooling of a Molecular Cloud 

The above sections deal with a general case of spatial self-organization of an 

ultra cold ensemble in an optical cavity. Here we will study the cooling and trapping 

effects of a large ensemble of species with a temperature much higher than the cavity 

cooling temperature limit. 

As an example we consider CN molecules, pumped by a far detuned optical 

beam. As studied in our earlier work, the molecules can be approximated as a three-

level system under far detuned pumping [5.2].  

The statistical model gives us an effective tool to simulate a large CN ensemble. 

Fig. 5.8(a) shows the time evolution of the intracavity field intensity and the 

temperature of the CN cloud. The results can be divided into three time zones. 

In the first, a small window from the beginning, the intracavity field fluctuates 

but has no sustained build-up, whereas the temperature stays at the initial value at 

around 11 mK. This region corresponds to a spreading process of the molecules from 

their initial position along the axis direction. No molecular localisation has observed. 

The duration of this region depends on the cavity length and the initial position of the 

molecules. 

The second region begins when a molecular group with the fastest velocity 

escapes as they reach the cavity mirrors. The intracavity field intensity then rapidly 

builds up while the temperature drops sharply. A rapid spatial self-organization of the 

remaining molecules is confirmed by the measurement of the spreading parameter (Fig. 

5.8(b)), from initial uniform distribution (k2x2≈0.83) to localization . The 

molecules continue to escape until the full build-up of the intracavity field occurs. This 

marks the beginning of the third region. Around 35% of the molecules are stably 

trapped in the cavity by the potential produced by the intracavity field intensity (Fig. 

5.8(b)). The temperature is now reduced to just below 1 mK. Molecules are further 

cooled in this region as the cavity non-adiabatic cooling process continues, but in a 

much slower scale. In general, the final temperature of the molecular cloud and the 

percentage number of trapped molecules depend on the pump intensity.       

0.2k x 8)
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Fig. 5.8  Cavity cooling of a large ensemble of CN molecules with statistical model. 

 
The parameters are set as g=0.055κ, =-1.1×10A

4κ. N=108, η=380κ and 

κ=62.8MHz. They corresponds to a CN cloud of 3×1013/cm3 in an optical cavity of 

length L=1.5mm, waist wo=25μm, and finesse F=104 with pump in 2×103 W/cm2. 

5.6 From Near Resonant to Far Off Resonant (FOR) Cooling 

5.6.1 Conditions for Far Off Resonant Cooling 

When 
A p A      , U0, 0  and the noise terms →0. We need to consider 

the polarizability of the particle αe [5.3-5.6]. The U0 of far off resonant case is 

U0=
02
e p

effV

 


. The pump photons are scattered into the cavity by the particles.  

123 
 



 

The dynamics of the intensity and amplitude in the cavity obey 

2
2

2 EP
dt

dE          (5.28) 

 and  

EE
dt

dE
eff          (5.29) 

We can normalize the above two equations by 
2

2

0

p

eff

E
V

 





 and get  

2
2

2
 pn

dt
d

        (5.30) 

and 


 effndt

d
         (5.31) 

where np is the scattered photon number rate, for example, the corresponding averaged 

free-space scattering rate  

0
23 6/ dksc  . 

The induced dipole 

d=Re(α)Est. 

We assume it is the steady state 0,
2


dt

d

dt

d 
. We get 




2
pn

  from Eq. 

(5.30), and get  

22
scp

effn

n 





.
       (5.32) 

5.6.2 FOR Case 

We can put the normalized effective pump 
2

effn sc
eff




 


   into the Eq. (5.28) 

and Eq. (5.29). Then the formulas of the far off resonant model are 

 
j
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(5.33) 
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))/(( 2 mkpx njnj                (j=1…N)     (5.35) 
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The pump intensity 
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5.6.3 The parameters of CN and Rb2 molecules 

For comparison, we choose Rb2 molecules and use the same cavity as the CN’s 

[5.7-5.11], whose length is L=1.5mm, waist is w0=10μm. The effective mode volume is 

Veff≈1.178×10-13(m3), pump area is A=3×10-8(m2). The finesse is F~103-4, which means 

the max reflectivity of the mirrors of the cavity is 0.999686. Then the linewidth of the 

cavity is κ=62.8MHz. 

 CN Rb2 

Polarizability volume (cm3) 3.061 79 

Polarizability (C2m2J-1) 3.4×10-40 87.75×10-40 

Pump wavelength (nm) 1060 1060 

Mass (u) 29 171 

mk /2  1/32 1/4920 

U0 (Hz) 0.29 7.48 

U0(κ) -4.65×10-9 -1.2×10-7 

ηeff (η) 1.4×10-9 3.6×10-8 

 

According to the above parameters, if the pump power for Rb2 is setting as 

P=15W,  the pump strength of the mathematics equation is equal to η=794.4. 

The polarizability volume of CN is 3.061(cm3), Rb2 is 79 (cm3). Then the 

potential depth parameter of Rb2 URb2= UCN×79/3.061=-3.781×10-8(κ). 

Ⅰ. About the dipole polarizability 
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The polarizability  can be described as polarizability volume a3
04 ae  

))/(( VmAs

3, 

where , and its atom unit is , i.e.  10113.14 10
0

 122 
hEae

1a.u.=1.6488×10-41c2m2J-1. 

Ⅱ. Pump setting 

The pump wavelength we can set as 1060p nm  , , 

. The pump intensity I can be set up to 10

65.93 10pk H  z

151.77 10p Hz   12W/cm2. 

The polarizability volume of CN molecule is 33.061( )A


, .  40 2 2 13.4 10 C m JCN   

For Rb2,  3 40 279( ) 87.75 10 C m JRb cm    2 1 . M=85.4678×2u=171u. 

If we think the cavity length l=3cm, waist width w0=10μm,
 

2
12 30 2.3562 10 m

4eff

w l
V

   
.
 The finesse of cavity is 410

1





R
F


, 

,  41014.31  R  MHz
l

c
14.3

  . 

The maximum pump is  

 6102 . 



 7

0
0 102.1372245.0

2
 Hz

V
U

eff

pe
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 8106.3 eff
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5.7 Conclusions and Remarks 

The cavity cooling concept was first proposed a decade ago and was confirmed 

through an experiment. However, little experimental progress has been made in 

extending cavity cooling from single particle to a dense cloud and from atoms to 

molecules, while optical manipulations of molecules using strong far off resonant 

lattices have been demonstrated in experiments [5.12]. The main activity in cavity 

cooling is so far still theoretical [5.13]. Lack of further progress may come from several 

factors. The realization of cavity cooling for a large molecular cloud is more 

complicated than conventional laser cooling, which makes it difficult to provide an 

accurate prediction on the operation conditions for experiments. The purpose of our 
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present work is to address the key issue of the scaling law of pump threshold for the 

onset of cavity cooling for a large ensemble of particles. We have shown a new scaling 

law applicable to a large ensemble. The statistical model we have developed offers an 

effective tool for extending cavity cooling to a molecular ensemble of any numbers. We 

have applied it for cooling of a dense CN molecular cloud. The agreement between the 

analysis and simulation is very good, which provides a platform for further theoretical 

and experimental studies. 
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Chapter 6 

Discussion and Conclusion 

6.1 Introduction 

This thesis aims to research a general cooling method that will be applicable to 

wide range of molecular and atomic species and other particles. Firstly we introduced 

the application of cold molecule and the techniques for creating cold molecules. The 

general model of cavity cooling from atoms to molecules and the dynamics of a particle 

in a single cavity mode were discussed. Then we studied the self-organization and 

scaling laws of many molecules in the cavity with a transverse pump. For simulate a 

huge of molecules, we proposed the statistical model and validate it with comparison of 

simulation. Then we discussed the scaling laws in the case when a large ensemble of 

species is involved. Finally, we studied the cooling of a CN molecular cloud and the 

case of far off resonant.  

6.2 Extension of present model of cavity cooling of atoms to 

molecules 

We extend the existing cooling scheme for two-level atoms to an ensemble of 

two-level molecules in chapter 2. This investigation linked with the existing work in the 

subject and provided useful insight into the development of the general cooling method. 

While the extension of the work is conceptually straightforward, there are some 

important differences between atoms and molecules. 

Compared with two-level atoms that are pumped typically at visible to infrared 

wavelengths, with 100 MHz-10 GHz detuning from the resonance transition, the pump 

frequency required for a rotational-vibrational transition of molecules is in the UV and 
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VUV regions for most molecules and we have to take into account the limited 

availability of laser sources and high finesse cavity optics in these frequency regions. 

Also the dipole momentum strengths of molecules corresponding to these 

transitions are generally much weaker than those of well-studied atoms such as 

Rubidium, which will lead to significant differences in the operating conditions between 

the two. 

6.3 Investigation of dynamical process leading to spatial self 

organisation of molecules 

We investigated the spatial dynamics and self-organisation of molecules in the 

new parameter conditions different from those of atoms.  Spatial organisation of atoms 

in an optical cavity has been studied in a recent theoretical work [6.1-6.5]. Both 

simulation and experiment have shown that spatial organisation leads to collective 

dynamics of atoms and a favourable scaling behaviour for cooling.  

We further investigated the scaling of a number of molecules. Cavity cooling 

began with a single atom theory based on a two-level model and the scaling with atomic 

numbers is nontrivial [6.6]. In general, the effects on the refractive index by one atom 

may be destroyed by another in the cavity, which leads to the increase of cooling time 

with the increase of atomic numbers [6.7]. On the other hand, when atoms are lined up 

in space, i.e., in spatially organised state, a simpler scaling holds from a single particle 

to a large number while the cooling rate remains the same [6.8-6.9]. 

We studied the dynamics of two-level molecules in an optical cavity in order to 

understand the cavity cooling schemes in general and the applicability and efficiency of 

the scheme to cooling molecules. We studied the dynamics of an ensemble of CN 

molecules in a millimetre cavity of finesse ; the transition B4101.3  2Σ+  X2Σ+ with 

dipole decay rate  MHz was pumped at nearly resonance (50MHz) by a tuneable 

diode laser at 387.5 nm. 

4.15

The simulation result shows a group of trapped CN molecules initially at 160 

mK to be cooled to 1 mK on the time scale of 5 ms. Accompanying with the cooling 

processing is the spatial localisation (selforganisation) of the molecules initially 

distributed uniformly in space, as evident by the decreasing spreading parameter 2x in 

time. The self-organisation takes place at the pump power of 0.4 mW [6.9].  
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Since collective dynamics and scaling depend on the parameters of the system 

such as the dipole strength, the recoil frequency and the cavity configuration, we 

anticipate different behaviours between molecules and atoms.  In the same time we are 

confident through the above preliminary work that collective cooling of molecules in 

the two-level interaction model will take place through spatial self-organisation in 

realistic conditions. The focus of this phase of programme is to qualify the system 

behaviour and compare with atomic systems. The results obtained will be important to 

the development of the general cooling method in the following parts of the programme. 

6.4 Numerical simulation of the general cooling model 

Numerical simulation plays an important role in studying a number of issues 

involved in the case that the analysis may not be possible due to the complexity of the 

problems. The numerical study is undertaken not only to put the analysis and model on 

test but also to address practical issues by providing useful guidelines in the design and 

implementation of experiments in the future. 

In cavity cooling, the commonly discrete model, i.e. the many-particle model 

which can be represented quantum mechanically or semi-classically, comprises a set of 

equations of motion for each particle that is coupled to the same intracavity field [6.9-

6.10]. This model has shown in good agreement with the former in recent extensive 

studies for temperatures high than the cavity cooling limit. However, it becomes 

impractical when a large ensemble is involved. Our understanding so far of cooling of 

an ensemble of particles is based on the scaling laws which are obtained using various 

approximations and has not yet been fully tested [6.10]. 

Therefore we developed a new statistical model based on the Boltzmann 

equation and studied two solution methods. The results of the theory and numerical 

simulations between discrete model and statistical model show a good agreement, 

which validated this new model. 

6.5 Study of collective cooling of a large molecular ensemble  

Based on the study and experience in the numerical treatments, including 

various noise sources, of field-many molecules interaction in optical lattices and more 
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recently field-atom/molecules coupling in optical cavities, we explored the scaling laws 

with a view to the self-organization and cooling of a large ensemble of species. 

We study the cooling of a CN molecular cloud of the density 1013/cm3, with an 

initial temperature at 10 mK in an optical cavity. We find that more than a third of the 

molecules are stably trapped by the intracavity field and the final temperature is below 

1mK [6.11]. 

6.6 Further Study 

Based on the above studies in this thesis, my workmate further investigated the 

deceleration of molecules in a supersonic beam by the optical field in a low-finesse 

cavity [6.18]. It has been discussed that the interplay of the optical pump with a 

supersonic molecular beam in an optical cavity can produce two dynamical effects: it 

segments the beam into a periodic density wave and generates an intracavity optical 

field via coherent Bragg-type scattering. The optical field is then switched dynamically 

with the travelingmolecules in each cycle of the cavity mode. The nonadiabatic nature 

of the cavity dynamics gives rise to a friction force, which slows most molecules to zero 

central velocity through many cycles. 

The simulation results demonstrate that most molecules in the beam can be 

decelerated to zero central velocity by the intracavity optical field in a process 

analogous to electrostatic Stark deceleration. It shows that the rapid switching of the 

optical field for slowing the molecules is automatically generated by the cavity-induced 

dynamics, and ~1% of the molecules can be optically trapped at a few millikelvin in the 

same cavity. 

6.7 Future Work 

Here we will investigate the effect of initial molecular distributions on the 

dynamical process of self-organisation and cooling rate. We expect that tailored initial 

conditions will reduce the self-organisation time and therefore cool molecules more 

rapidly. We will further consider the effects of Langevin-type noise fluctuations on the 

molecular momentum and intracavity field amplitude, and study their influence on the 

temperature limit and phase-space density of cooled molecules. Simulation will also 

provide us with the information of molecular dynamics in the transverse space. We are 
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interested in molecular dynamics under both 1D and 2D confinement by counter-

propagating pump beams in the transverse space and will study conditions for 

restricting phase randomisation in the transverse motion which may destroy collective 

dynamics.  

We will simulate cooling in cm long cavities as well as in microcavities (~100 

um) that have high finesse of 105. In relation to our experimental work, we will focus 

particularly on the possibility to cool molecules initially at ~10-100 mK to the 

temperature of 10-100

710

 K in the order of 100 ms and to simultaneously trap the cooled 

molecules within the strong intracavity optical potential wells. This work may need 

more processing to the statistical model and re-normalization to the mathematical 

simulation. 

It has been observed that the coupled atom-field dynamics in an optical cavity 

can lead to a friction force that damps atomic motion [6.1, 6.3]. This scheme is 

commonly called cavity cooling where dissipation takes place via cavity loss rather than 

by spontaneous emission. Cavity cooling avoids or reduces several problems of the 

laser-cooling scheme, such as photon re-absorption and recoil heating. Moreover, as 

there is no requirement in cavity cooling for a closed multilevel system, it is an 

attractive approach for creating ultracold molecules. A range of techniques is now 

capable of producing and trapping stable cold molecules at temperatures in the 10-100 

mK range [6.12-6.15].  Cavity cooling appears to be a promising route towards further 

cooling a large range of species1 to the ultracold regime below 1 mK [6.4, 6.5, 6.9, 6.10, 

6.16].  

We have extensively studied the cooling scheme under cavity configuration, 

naturally we will ask whether cavity cooling using a strong far off-resonant laser source 

can bring about a new cooling scheme.  A far off-resonant field means that its frequency 

is less than the half of the lowest electronic dipole transition frequency. The dipole force 

arising from the far off-resonant interaction therefore does not depend on the internal 

energy structures of molecules. We therefore anticipate that cavity cooling using a far 

off-resonant laser source can be a general cooling method that is applicable to any 

particles. 

In the final task we will explore methods for enhanced cooling of an ensemble 

of molecules in an optical cavity. The development of such methods is particularly 

important to molecules in a far off-resonant field because the weak coupling may lead to 
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a longer cooling duration. In the case of a single particle in an optical cavity, a simple 

relation holds between the position of the particle and the cavity transmittance, which 

can provide a means to control the motion of the particle by using the transmitted 

intensity as a feedback signal to modulate the pump strength. T. Fischer and his group at 

Max-Planck have employed this approach to extend the trapping time of an atom by 

30% [6.17]. Two new schemes for rapid cooling of a particle in an optical cavity have 

been studied [6.9]. The first one is a feedback scheme that uses the variations of 

transmitted intensity to modify the cavity length. The results show that this feedback 

leads to increased friction force to rapidly decelerate the particle up to 10 times over the 

conventional cavity cooling.  In a second scheme, it can be predicted that more rapid 

cooling can be attained by using an external pump field that decays over time. 

To extend the existing schemes from a single particle to an ensemble, we will 

take into account the self-organisation process of the ensemble and explore mechanisms 

to enhance the recoil force that organises the collective dynamics of the ensemble. We 

will investigate two methods to implement the time-dependent pump. We first use the 

transmittance of the cavity as a feedback signal to modulate a constant external pump in 

the transverse direction. Although the approach is similar to that used in the cooling of a 

single particle by the Max-Planck group [6.17], the pump into the cavity in the 

longitudinal and transverse directions gives a different scaling of the system and 

requires a thorough investigation. We will further introduce a time delay in the feedback 

loop to control the phase difference between the intracavity intensity and the cavity 

transmittance. This new system control parameter may provide an additional degree of 

freedom for the optimization of the recoil force in the presence of the feedback signal.  

In the second approach we will investigate the use of a laser source that 

exponentially decays in time as the external pump from the transverse direction. While a 

decaying pump may not enhance the recoil force for self-organisation (not obvious from 

the system dynamics), when a molecular ensemble is organised in space they behave in 

many ways like a single particle and the decaying pump can cool the ensemble 

significantly faster as in the single particle case [6.9]. Therefore, the feedback scheme 

and the time-dependent pump approach may enhance the cooling process in the two 

different stages of molecular dynamics and in this sense they are complementary. We 

will finally explore the possibility of combining the two schemes to achieve the optimal 

condition for faster cooling.  
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6.8 Thesis Conclusion 

The ability to cool and trap atoms has revolutionised atomic and ultra-cold 

physics. Molecular physics is currently undergoing a similar transformation as effective 

methods for manipulating the motion of molecules are being put in place.  

Our work is a basic research with the potential for cross-disciplinary 

applications in physics, chemistry, material science, metrology and engineering and 

aims to research a general cooling method that will be applicable to wide range of 

molecular and atomic species and other particles. 

We studied the dynamics of molecules in optical fields, focusing in particular on 

exploring the molecular self-organisation phenomena in optical cavities to cool 

molecular ensembles to sub-mK temperatures. The scheme complements well with our 

present experimental work on the deceleration and focusing of cold molecules and can 

extend our present capability to simultaneously cool and trap a large cold molecular 

ensemble.  

It will contribute to the understanding of optical interaction with molecules, and 

will be of immediate interest to researchers in the field of atom and molecule optics. 

The ability to create cold, slow molecules and clusters will make significant impact on 

the basic research of molecular dynamics, collisions and cold chemistry, and high-

resolution spectroscopy. The results of this research will be disseminated by 

presentation at both national and international conferences, and in refereed journals.  
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Appendix A:  Program of discrete model 

% Program of discrete model %%MatLab% 
 
global m pm; 
global g0 kr da n c1; 
xl=1; 
lop=1; 
m=60000; 
% mi=1:m; 
%   xi=(mi-15)*xl*2*pi; 
% ps=ones(1,m)*14.4*3; 
  
  xi=(rand(1,m)-0.5)*pi; 
  ps=normrnd(0,sqrt(32),1,m); 
 
icon=[0.1,0.1,ps,xi]; 
%load icon icon;   %for continue calculate 
 
h=0.1; 
dh=sqrt(h); 
l=sqrt(3); 
au=0.4; 
%c1=207.5; 
c1=32; 
% D=20000;      % for CN t(actual-1loop)=D*h/(2*10^4) ms, if D=2000, 
t-1loop=0.01ms 
%                % for Rb t=D*h/10^4ms,  if D=1000, t-1loop=0.01ms 
D=500; 
 
g0=0.866 
% kr=0.75; 
kr=0 
da=-1000*sqrt(5) 
u0=g0^2*da/(da^2+kr^2) 
r0=g0^2*kr/(da^2+kr^2) 
dc=m*u0-1 
n=300 
%n=40/sqrt(2) 
 
% g0=5 
% kr=2 
% da=-1000 
% u0=g0^2*da/(da^2+kr^2) 
% r0=g0^2*kr/(da^2+kr^2) 
% dc=m*u0-1 
% n=40 
 
realt=zeros(lop+1,1); 
%kx2=zeros(lop+1,1);  %stactic 
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eapp=zeros(lop+1,1); 
eabs=zeros(lop+1,1); 
%mdefect=zeros(lop+1,1); 
%anal=zeros(lop+1,m); 
ax=zeros(lop+1,m); 
 
tt=zeros(D+1,1); 
xx=zeros(D+1,m); 
pp=zeros(D+1,m); 
app=zeros(D+1,1); 
anr=zeros(D+1,1); 
 
ac=ones(1,2*(m+1)); 
ac=ac*(1e-12); 
options=odeset('RelTol',1e-6,'Abstol',ac); 
ani=zeros(D+1,1); 
 
eabs(1)=icon(1)^2+icon(2)^2; 
realt(1)=0;tstep=0.01; 
 
for ii=1:m 
ax(1,ii)=xi(1,ii)/(2*pi); 
end 
 
for vv=1:lop 
%load icon icon; 
tt(1)=0+(vv-1)*D*h; 
anr(1)=icon(1); 
ani(1)=icon(2); 
pp(1,:)=icon(3:m+2); 
xx(1,:)=icon(m+3:2*m+2); 
%  for jj=1:m 
%      if(abs(pp(1,jj))>100) 
%          anal(1,jj)=m; 
%      end 
%  end 
 
% for jj=1:m 
%     if(abs(xx(1,jj))>100) 
%         xx(1,jj)=(xx(1,jj)/(2*pi)-round(xx(1,jj)/(2*pi)))*2*pi; 
%     end 
% end 
 
vv 
 
for j=1:D 
 
t1=(j-1)*h+(vv-1)*D*h; 
t2=j*h+(vv-1)*D*h; 
tscal=[t1 t2]; 
tt(j+1)=t2;     
 
% sr1=(rand(1,1)-0.5)*2*l; 
 sr2=(rand(1,1)-0.5)*2*l; 
% si1=(rand(1,1)-0.5)*2*l; 
 si2=(rand(1,1)-0.5)*2*l; 
  
 sar=(rand(1,1)-0.5)*2*l; 
 sai=(rand(1,1)-0.5)*2*l; 
  
for jj=1:m 
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 sp1(jj)=(rand(1,1)-0.5)*2*l; 
 sp2(jj)=(rand(1,1)-0.5)*2*l; 
 ss(jj)=(rand(1,1)-0.5)*2*l; 
 sr1(jj)=(rand(1,1)-0.5)*2*l; 
 si1(jj)=(rand(1,1)-0.5)*2*l; 
end 
   
csx=0; 
cx=0; 
cxs=0; 
 for jj=1:m 
    cx=cx+cos(xx(j,jj))*sr1(jj);         % real part 
    csx=csx+cos(xx(j,jj))*si1(jj);       % image part 
    cxs=cxs+cos(xx(j,jj))*ss(jj);        % correlated 
 end 
sanr=(-sqrt(r0)/2*cx+sqrt(0.5)*sar-
ani(j)/(anr(j)^2+ani(j)^2)*sqrt(r0/2)*cxs)*dh; 
sani=(sqrt(r0)/2*csx+sqrt(0.5)*sai+anr(j)/(anr(j)^2+ani(j)^2)*sqrt(r0/
2)*cxs)*dh; 
for jj=1:m 
spp(jj)=(sqrt(2*au*r0)*((anr(j)*cos(xx(j,jj))+n/g0)*sp1(jj)+sqrt(abs(a
ni(j)^2-0.5))*cos(xx(j,jj))*sp2(jj))-
sqrt(2*r0*(anr(j)^2+ani(j)^2))*sin(xx(j,jj))*ss(jj))*dh; 
end 
 
icon=[anr(j),ani(j),pp(j,:),xx(j,:)]; 
[t,Y]=ode113(@markm,tscal,icon,options); 
%[t,Y]=ode45(@markm,tscal,icon,options); 
 
[o,w]=size(Y); 
%eabs=zeros(h,1); 
 anr(j+1)=Y(o,1)+sanr; 
 ani(j+1)=Y(o,2)+sani; 
 for jj=1:m 
 pp(j+1,jj)=Y(o,2+jj)+spp(jj); 
 xx(j+1,jj)=Y(o,2+m+jj); 
 end 
 
% for jj=1:m 
%     if(abs(xx(1,jj))>100) 
%         xx(1,jj)=(xx(1,jj)/(2*pi)-round(xx(1,jj)/(2*pi)))*2*pi; 
%     end 
% end 
end 
 
neabs=anr.^2+ani.^2; 
napp=mean(pp.^2/c1,2); 
realt(vv+1)=realt(vv)+tstep; 
% mapp(vv)=mean(app); 
eabs(vv+1)=neabs(D+1,1); 
eapp(vv+1)=napp(D+1,1); 
 
for jj=1:m 
     if(abs(pp(D+1,jj))>100) 
         anal(vv,jj)=jj; 
     end 
 end 
% rx=(xx/pi-round(xx/pi)); 
% kx2(vv)=mean(rx(D+1,:).^2),2); 
 
rx=(xx(D+1,:)/pi-round(xx(D+1,:)/pi)); 
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kx2(vv)=mean(rx.^2); 
 
rx=xx(D+1,:)/pi; 
rrx=round(abs(mod(rx,2)-1)); 
neven=0; 
nodd=0; 
nall=0; 
%for ii=1:D+1 
%     for jj=1:m 
%         if(rrx(ii,jj)==1) 
%             neven=neven+1; 
%         elseif(rrx(ii,jj)==0) 
%             nodd=nodd+1; 
%         end 
%         nall=nall+1; 
%     end 
%end     
    for jj=1:m 
        if(rrx(jj)==1) 
            neven=neven+1; 
        elseif(rrx(jj)==0) 
            nodd=nodd+1; 
        end 
        nall=nall+1; 
    end 
if((nodd/nall)>0.5) 
    mdefect(vv)=1-nodd/nall; 
else 
    mdefect(vv)=nodd/nall; 
end 
     
% ax=zeros(o,m); 
for ii=1:m 
ax(vv+1,ii)=xx(D+1,ii)/(2*pi); 
end 
 
 icon=[anr(j+1),ani(j+1),pp(j+1,:),xx(j+1,:)]; 
% save icon icon 
end 
 
%function of markm.m% 
 
function dy=markm(t,y) 
global m pm;                  % m atoms 
global g0 kr da n c1; 
 
% g0=0.866;                    % CN molecular 
% kr=0.75; 
% da=-1000; 
 
%g0=5;                % Rb molecular 
%kr=2; 
%da=-1000; 
u0=g0^2*da/(da^2+kr^2); 
r0=g0^2*kr/(da^2+kr^2); 
dc=m*u0-1; 
nr=n*g0*kr/(da^2+kr^2); 
ni=n*g0*da/(da^2+kr^2); 
 
%pm=2;               % max p0 of m atoms   used in standing wave added 
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dy=zeros(2*(m+1),1); 
 
% w=100;                 % wx  width 
% b=1;                  % Gaussian b=1 or Super-Gaussian b=12 
% a=1;                  % depth scale 
 
%dy(1)=(-1-r0*(cos(y(2*m+2)))^2)*(y(1))-(y(2))*(dc-
u0*(cos(y(2*m+2)))^2)+n; 
%dy(2)=y(1)*(dc-u0*(cos(y(2*m+2)))^2)-y(2)*(1+r0*(cos(y(2*m+2)))^2); 
 
yy1=0; 
yy2=0; 
for ii=1:m 
% yy1=yy1-(y(1)*r0-y(2)*u0)*(cos(y(m+ii+2)))^2-nr*cos(y(m+ii+2)); 
% yy2=yy2-(y(1)*u0+y(2)*r0)*(cos(y(m+ii+2)))^2-ni*cos(y(m+ii+2)); 
yy1=yy1+(cos(y(m+ii+2)))^2; 
yy2=yy2+cos(y(m+ii+2)); 
end 
 
dy(1)=-y(1)-y(2)*dc-(y(1)*r0-y(2)*u0)*yy1-nr*yy2;         
dy(2)=y(1)*dc-y(2)-(y(1)*u0+y(2)*r0)*yy1-ni*yy2; 
 
%dy(3)=u0*((y(1))^2+(y(2))^2)*sin(2*(y(4)));    %p 
for ii=1:m 
dy(2+ii)=u0*((y(1))^2+(y(2))^2-0.5)*sin(2*(y(m+2+ii)))-2*(nr*y(2)-
ni*y(1))*sin(y(m+2+ii));               %p 
%dy(2+ii)=u0*((y(1))^2+(y(2))^2)*sin(2*(y(m+2+ii)))-
a*b/w^(2*b)*pm^2*y(m+ii+2)^(2*b-1)*exp(-(y(m+ii+2)/w )^(2*b));    %add 
the Gaussian mirror 
%dy(2+ii)=u0*((y(1))^2+(y(2))^2)*sin(2*(y(m+2+ii)))-
a/4*pm^2*sin(y(m+2+ii)-pi/3);     % add a depth standing wave  xk/2 
phase 
%dy(2+ii)=u0*((y(1))^2+(y(2))^2)*sin(2*(y(m+2+ii)))-
a/4*pm^2*sin(y(m+2+ii));     % add the a depth standing wave  xk/2 
%dy(2+ii)=(u0*((y(1))^2+(y(2))^2)-a/2*pm^2)*sin(2*(y(m+2+ii)));     % 
add the a depth standing wave  xk 
dy(m+2+ii)=y(ii+2)/c1;  %Rb 85  %x 
%dy(m+2+ii)=y(ii+2)/32;  %CN  %x 
End 
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Appendix B:  Program of statistical model 

C================================================================= 
C  CCNSGCVTUN.F on 18/Jun/2008  using UN as U and N 
C  This programme is test for the mothod of Boltzmann Equation and 
C  discrete model. In this test, we calculate long time results. 
C  An SG potential with waist wx and depth ga (hk) is added in this 
C  model to enhance cooling effect 
C  Fortran 
C================================================================= 
 IMPLICIT NONE 
 INTEGER II,NX,NV,NT,NG,JJ,TT,KK,MM,NR,IIFALL 
 INTEGER I,J,M,JS,JS0,I0,NN,IW,NSN,NXX 
 INTEGER CNN,neven,nodd,tistart,tiend,avI 
 INTEGER VN,XN,OUTVL,OUTVZ,OUTXL,OUTXZ 
 INTEGER RN1,RN2,RN3,RN4,RN5,RN6,RN7,RN8 
 PARAMETER (NX=1024,NV=2048) 
      PARAMETER (NR=2,M=2000000,I0=0,JS0=200) 
      PARAMETER (IW=21*NR+28) 
 REAL*8 DT,TN,MTEM,PI,SI,PTEM,HTEM,VLI,TEMPER,realtime 
 REAL*8 FS(0:NV-1,0:NX-1),FE(0:NV-1,0:NX-1),EX(0:NX-1) 
 REAL*8 FORCE1(0:NX-1),FORCE2(0:NX-1),NAU,NPM 
 REAL*8 L0,L1,XSCAL(0:NX-1),VSCAL(0:NV-1) 
 DOUBLE PRECISION U,R,DC,P,T,T0,DH,au,g0,da,kr,conc,ga,wx 
 DOUBLE PRECISION PM,PR,TOL,TEND,dw,TO,DX,DV,LIX,parat 
 DOUBLE PRECISION AY(1:2),AF(1:2),AYO(1:2),FX(0:NX-1) 
 DOUBLE PRECISION SA(NR),SS(NR),W(IW),AYS(NR) 
 DOUBLE PRECISION eabs,app,timepm,irum,xlimit,lx 
 DOUBLE PRECISION D02CJW,X01AAF,relx(0:NX-1),kx2,rtemx(0:NX-1) 
 DOUBLE PRECISION xma,xmi,vma,vmi,G05CAF 
 DOUBLE PRECISION xstart,xend,stdp,meanp,yy1,yy2,relxs(0:NX-1) 
 DOUBLE PRECISION mdefect,peven,podd,xsumtem,xsumodd,xsumeven 
 DOUBLE PRECISION wxPI,LIXPI,stdpconc,xstartPI,xendPI,tipm 
 CHARACTER*8 name 
 CHARACTER*2 numb 
 INTRINSIC EXP,DBLE 
 EXTERNAL C06FCF,C06GCF,X01AAF,G05CAF 
 EXTERNAL D02CJF,D02CJX,FCN,D02CJW,FORCE,PROCESS 
 COMMON /PAP/ U,R,DC,P,PM,PR,PI,conc,DT,DX,DV,NAU,NPM 
 COMMON /FXSP/ FX 
 COMMON /XSC/ XSCAL 
 COMMON /VSC/ VSCAL 
 COMMON /FORC/ FORCE1,FORCE2 
 COMMON /yy/ yy1,yy2 
 COMMON /GU/ ga,wx 
  
 PI=X01AAF(0.0D0) 
 lx=4.0D0*PI 
 DX=lx/DBLE(NX) 
 DV=0.1D0 
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 DT=0.1D0 
 DH=SQRT(DT) 
 NT=M 
 RN1=5000 
 RN2=10000 
 RN3=20000 
 RN4=50000 
 RN5=100000 
 RN6=300000 
 RN7=500000 
 RN8=1000000 
 
C================================================================== 
C  Define the parameter of cavity model 
g0,r(kr),da,U,R,DC,P(Pump),PR(effective 
C  pump real), PM(image),conc(recoil parameter, for CN is 32), au( 
C  recoil direction probability) 
C================================================================== 
 name='CRbm6008' 
 numb='11' 
 U=-2.75D0*10.**(-7.) 
 NAU=-165.0D0 
 R=0.0D0 
 DC=NAU-1. 
 P=64.0D0 
 PR=0.0D0 
 PM=-5.0D0*P*10.**(-6.) 
 NPM=-3000.0D0*P 
 conc=100.0D0 
 au=0.4D0 
 ga=100.0D0 
 wx=1.6*PI 
 LIX=1.9*PI 
 VLI=100.0D0 
 parat=0.48D0 
 TOL=10.0D0**(-12) 
 meanp=0.0D0 
c stdp=SQRT(stdpconc*conc) 
 stdp=30.0D0 
 xstart=-PI 
 xend=PI 
 T=0.0D0 
C realtime=T*timepm 
 IIFALL=0 
 
 OPEN(9,FILE=name//'sgNUcd'//numb//'.txt',STATUS='unknown') 
 WRITE(9,*) 'name, numb=',name,',',numb 
 WRITE(9,*) 'U0=',U 
 WRITE(9,*) 'U0N=',NAU 
 WRITE(9,*) 'Pu=',P 
 WRITE(9,*) 'PM=',PM 
 WRITE(9,*) 'PR=',PR 
 WRITE(9,*) 'NPM=',NPM 
 WRITE(9,*) 'conc=',conc 
 WRITE(9,*) 'au=',au 
 WRITE(9,*) 'VLI=',VLI 
 WRITE(9,*) 'ga=',ga 
 WRITE(9,*) 'wx=',wxPI,'*PI=',wx 
 WRITE(9,*) 'LIX=',LIXPI,'*PI=',LIX 
 WRITE(9,*) 'meanp=',meanp 
 WRITE(9,*) 'stdp=SQRT(',stdpconc,'*conc)=',stdp 
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 WRITE(9,*) 'xstart=',xstartPI,'*PI=',xstart 
 WRITE(9,*) 'xend=',xendPI,'*PI=',xend 
c WRITE(9,*) 'timepm=1/',tipm,'=',timepm 
 WRITE(9,*) 'RN1=',RN1,' RN2=',RN2,' RN3=',RN3,' RN4=',RN4 
 WRITE(9,*) 'RN5=',RN5,' RN6=',RN6,' RN7=',RN7,' RN8=',RN8 
 WRITE(9,*) 'lx=',lx,'  DX=',DX,'  NX=',NX,'  DV=',DV,'  NV=',NV 
     *  ,'  DT=',DT 
 CLOSE(9) 
 
 DO 30 II=0,NX-1                       
 XSCAL(II)=DBLE(II-NX/2)*DX 
30 CONTINUE 
 DO 31 II=0,NV-1 
 VSCAL(II)=DBLE(II-NV/2)*DV 
31 CONTINUE 
 
c CALL G05ZAF('O') 
c CALL G05CBF(0) 
c CALL G05FDF(meanp,stdp,NA,rap) 
c CALL G05FAF(xstart,xend,NA,rax) 
 
C===================================================== 
C  INITIAL DISTRIBUTION FUNCTION 
C===================================================== 
c OUTVL=0 
c OUTVZ=0 
c OUTXL=0 
c OUTXZ=0 
c DO 35 JJ=0,NV-1 
c DO 36 II=0,NX-1 
c FS(JJ,II)=0.0D0 
c36 CONTINUE 
c35 CONTINUE 
c DO 39 II=0,NA-1 
c PTEM=0.0D0 
c VN=NINT(rap(II)/DV)+NV/2 
c XN=NINT(rax(II)/DX)+NX/2 
c IF(VN.GT.NV-1) THEN 
c VN=NV-1 
c OUTVL=OUTVL+1 
c ENDIF 
c IF(VN.LT.0) THEN 
c VN=0 
c OUTVZ=OUTVZ+1 
c ENDIF 
c IF(XN.GT.NX-1) THEN 
c XN=NX-1 
c OUTVL=OUTVL+1 
c ENDIF 
c IF(XN.LT.0) THEN 
c XN=0 
c OUTXZ=OUTXZ+1 
c ENDIF 
c FS(VN,XN)=FS(VN,XN)+1.0/DBLE(NA) 
c39 CONTINUE 
 
c DO 46 JJ=0,NV-1 
c DO 47 II=0,NX-1 
c IF (ABS(VSCAL(JJ)).GE.VLI .OR. ABS(XSCAL(II)).GT.LIX) THEN 
cc IF (ABS(VSCAL(JJ)).GE.VLI) THEN 
c FS(JJ,II)=0.0D0 
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c ENDIF 
c47 CONTINUE 
c46 CONTINUE 
 
c OPEN(3,FILE='inVCNNU'//numb//'.txt',STATUS='unknown')  
c MTEM=0.0D0 
c TEMPER=0.0D0 
c DO 40 JJ=0,NV-1 
c PTEM=0.0D0 
c DO 41 II=0,NX-1 
c      PTEM=PTEM+FS(JJ,II) 
c      MTEM=MTEM+FS(JJ,II) 
c41 CONTINUE 
c WRITE(3,*) VSCAL(JJ),PTEM 
c TEMPER=TEMPER+VSCAL(JJ)**2./conc*PTEM 
c40 CONTINUE 
c CLOSE(3,STATUS='KEEP') 
 
 DO 25 II=0,NX-1 
 EX(II)=EXP(-((XSCAL(II)-(xend+xstart)/2.0)/PI)**100.0) 
25 CONTINUE 
 
 OPEN(3,FILE='inVCNNU'//numb//'.txt',STATUS='unknown')  
 MTEM=0.0D0 
 TEMPER=0.0D0 
 DO 40 JJ=0,NV-1 
 PTEM=0.0D0 
 DO 41 II=0,NX-1 
 FS(JJ,II)=EXP(-((VSCAL(JJ)-meanp)/stdp)**2.0D0/2.)/SQRT(2.* 
     *  PI)/(xend-xstart)/stdp*EX(II)*DV*DX 
      PTEM=PTEM+FS(JJ,II) 
      MTEM=MTEM+FS(JJ,II) 
41 CONTINUE 
 WRITE(3,*) VSCAL(JJ),PTEM 
 TEMPER=TEMPER+VSCAL(JJ)**2./conc*PTEM 
40 CONTINUE 
 CLOSE(3,STATUS='KEEP') 
 
 peven=0.0D0 
 podd=0.0D0 
 xsumtem=0.0D0 
 xsumodd=0.0D0 
 xsumeven=0.0D0 
 
 OPEN(4,FILE='inXCNNU'//numb//'.txt',STATUS='unknown')  
 DO 37 II=0,NX-1 
 PTEM=0.0D0 
 DO 38 JJ=0,NV-1 
      PTEM=PTEM+FS(JJ,II) 
38 CONTINUE 
 relx(II)=XSCAL(II)/PI-NINT(XSCAL(II)/PI) 
 xsumtem=xsumtem+relx(II)**2.*PTEM 
 relxs(II)=XSCAL(II)/PI 
 rtemx(II)=ABS(ABS(MOD(relxs(II),2.))-1.) 
 IF(NINT(rtemx(II)).EQ.1) THEN 
 xsumeven=xsumeven+relx(II)**2.*PTEM 
 peven=peven+PTEM 
 ELSE 
 xsumodd=xsumodd+relx(II)**2.*PTEM 
 podd=podd+PTEM 
 ENDIF 
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 WRITE(4,*) XSCAL(II),PTEM 
37 CONTINUE 
 CLOSE(4,STATUS='KEEP') 
 
 IF(podd.GE.0.5D0) THEN 
 mdefect=(1.-podd)*100. 
 ELSE 
 mdefect=podd*100. 
 ENDIF 
 
C================================================== 
C  CALCULATE THE FORCE ON T=0 
C  AY(1) is the real part of field, AY(2) image. 
C  FORCE1(NX) is the force on start time 
C================================================== 
 OPEN(9,FILE='CNNUda'//numb//'.txt',STATUS='unknown') 
 AYS(1)= 0.1D0 
 AYS(2)= 0.1D0 
 AY(1)=AYS(1) 
 AY(2)=AYS(2) 
 JS=0 
 HTEM=AY(1)**2+AY(2)**2 
 WRITE(9,*) realtime,HTEM,TEMPER,MTEM,xsumtem,mdefect 
 CLOSE(9) 
C===================================================================== 
C  MAIN LOOP 
C===================================================================== 
 DO 100 TT=1,NT 
 CALL FORCE(AY,FORCE1) 
 
C================================================================= 
C  CALCULATE THE FIELD AFTER DT using variable step ODE method 
C================================================================= 
 DO 50 II=0,NX-1 
 PTEM=0.0D0 
 DO 51 JJ=0,NV-1 
 PTEM=PTEM+FS(JJ,II) 
51 CONTINUE 
 FX(II)=PTEM 
50 CONTINUE 
 
 DO 52 II=1,NR  
 irum=G05CAF(irum) 
 SS(II)=(irum-0.5D0)*2.*SQRT(3.) 
 SA(II)=SS(II)*(0.5**0.5)*DH 
52 CONTINUE 
 
C T=TO 
 TEND=T+DT 
C CALL FCN(T,AY,AF) 
 CALL D02CJF(T,TEND,NR,AY,FCN,TOL,'Default',D02CJX,D02CJW, 
     *  W,IIFALL) 
 
C AYO(1)=AY(1)+SA(1) 
C AYO(2)=AY(2)+SA(2) 
 AYO(1)=AY(1) 
 AYO(2)=AY(2) 
 
C================================================================= 
C  CALCULATE THE TEMP FORCE2 (AFTER DT) 
C================================================================= 
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 CALL FORCE(AYO,FORCE2) 
 
 CALL PROCESS(FS,FE) 
 MTEM=0.0D0 
 TEMPER=0.0D0 
 DO 120 JJ=0,NV-1 
 PTEM=0.0D0 
 DO 121 II=0,NX-1 
 IF (ABS(VSCAL(JJ)).LT.VLI .AND. ABS(XSCAL(II)).LE.LIX) THEN 
 FS(JJ,II)=FE(JJ,II) 
 ELSE 
 FS(JJ,II)=0.0D0 
 ENDIF 
 PTEM=PTEM+FS(JJ,II) 
 MTEM=MTEM+FS(JJ,II) 
121 CONTINUE 
 TEMPER=TEMPER+VSCAL(JJ)**2./conc*PTEM 
120 CONTINUE 
 
        JS=JS+1 
        IF(JS.EQ.JS0) THEN 
 peven=0.0D0 
 podd=0.0D0 
 xsumtem=0.0D0 
 xsumodd=0.0D0 
 xsumeven=0.0D0 
 DO 127 II=0,NX-1 
 PTEM=0.0D0 
 DO 128 JJ=0,NV-1 
      PTEM=PTEM+FE(JJ,II) 
128 CONTINUE 
 relx(II)=XSCAL(II)/PI-NINT(XSCAL(II)/PI) 
 xsumtem=xsumtem+relx(II)**2.*PTEM 
 relxs(II)=XSCAL(II)/PI 
 rtemx(II)=ABS(ABS(MOD(relxs(II),2.))-1.) 
 IF(NINT(rtemx(II)).EQ.1) THEN 
 xsumeven=xsumeven+relx(II)**2.*PTEM 
 peven=peven+PTEM 
 ELSE 
 xsumodd=xsumodd+relx(II)**2.*PTEM 
 podd=podd+PTEM 
 ENDIF 
127 CONTINUE 
 
 IF(podd.GE.0.5D0) THEN 
 mdefect=(1.-podd)*100. 
 ELSE 
 mdefect=podd*100. 
 ENDIF 
 
 realtime=T*timepm 
 HTEM=AYO(1)**2+AYO(2)**2 
 OPEN(9,FILE='CNNUda'//numb//'.txt',STATUS='old',ACCESS= 
     *  'APPEND') 
 WRITE(9,*) realtime,HTEM,TEMPER,MTEM,xsumtem,mdefect 
 CLOSE(9) 
 JS=0 
 ENDIF 
 
 IF(TT.EQ.RN1) THEN 
 OPEN(7,FILE='cnNUFX'//numb//'-1.txt',STATUS='unknown') 
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 DO 258 II=0,NX-1 
 PTEM=0.0D0 
 DO 259 JJ=0,NV-1 
      PTEM=PTEM+FE(JJ,II) 
259 CONTINUE 
 WRITE(7,*) XSCAL(II),PTEM 
258 CONTINUE 
 CLOSE(7,STATUS='KEEP') 
 
 OPEN(8,FILE='cnNUFV'//numb//'-1.txt',STATUS='unknown')  
 DO 453 JJ=0,NV-1 
 PTEM=0.0D0 
 DO 454 II=0,NX-1 
      PTEM=PTEM+FE(JJ,II) 
454 CONTINUE 
 WRITE(8,*) VSCAL(JJ),PTEM 
453 CONTINUE 
 CLOSE(8,STATUS='KEEP') 
 ENDIF 
 
 IF(TT.EQ.RN2) THEN 
 OPEN(7,FILE='cnNUFX'//numb//'-2.txt',STATUS='unknown')  
 DO 260 II=0,NX-1 
 PTEM=0.0D0 
 DO 261 JJ=0,NV-1 
      PTEM=PTEM+FE(JJ,II) 
261 CONTINUE 
 WRITE(7,*) XSCAL(II),PTEM 
260 CONTINUE 
 CLOSE(7,STATUS='KEEP') 
 OPEN(8,FILE='cnNUFV'//numb//'-2.txt',STATUS='unknown')  
 DO 456 JJ=0,NV-1 
 PTEM=0.0D0 
 DO 455 II=0,NX-1 
      PTEM=PTEM+FE(JJ,II) 
455 CONTINUE 
 WRITE(8,*) VSCAL(JJ),PTEM 
456 CONTINUE 
 CLOSE(8,STATUS='KEEP') 
 ENDIF 
 
 IF(TT.EQ.RN3) THEN 
 OPEN(7,FILE='cnNUFX'//numb//'-3.txt',STATUS='unknown')  
 DO 262 II=0,NX-1 
 PTEM=0.0D0 
 DO 263 JJ=0,NV-1 
      PTEM=PTEM+FE(JJ,II) 
263 CONTINUE 
 WRITE(7,*) XSCAL(II),PTEM 
262 CONTINUE 
 CLOSE(7,STATUS='KEEP') 
 
 OPEN(8,FILE='cnNUFV'//numb//'-3.txt',STATUS='unknown')  
 DO 457 JJ=0,NV-1 
 PTEM=0.0D0 
 DO 458 II=0,NX-1 
      PTEM=PTEM+FE(JJ,II) 
458 CONTINUE 
 WRITE(8,*) VSCAL(JJ),PTEM 
457 CONTINUE 
 CLOSE(8,STATUS='KEEP') 
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 ENDIF 
 
 IF(TT.EQ.RN4) THEN 
 OPEN(7,FILE='cnNUFX'//numb//'-4.txt',STATUS='unknown')  
 DO 264 II=0,NX-1 
 PTEM=0.0D0 
 DO 265 JJ=0,NV-1 
      PTEM=PTEM+FE(JJ,II) 
265 CONTINUE 
 WRITE(7,*) XSCAL(II),PTEM 
264 CONTINUE 
 CLOSE(7,STATUS='KEEP') 
 
 OPEN(8,FILE='cnNUFV'//numb//'-4.txt',STATUS='unknown')  
 DO 459 JJ=0,NV-1 
 PTEM=0.0D0 
 DO 460 II=0,NX-1 
      PTEM=PTEM+FE(JJ,II) 
460 CONTINUE 
 WRITE(8,*) VSCAL(JJ),PTEM 
459 CONTINUE 
 CLOSE(8,STATUS='KEEP') 
 ENDIF 
 
 IF(TT.EQ.RN5) THEN 
 OPEN(7,FILE='cnNUFX'//numb//'-5.txt',STATUS='unknown')  
 DO 266 II=0,NX-1 
 PTEM=0.0D0 
 DO 267 JJ=0,NV-1 
      PTEM=PTEM+FE(JJ,II) 
267 CONTINUE 
 WRITE(7,*) XSCAL(II),PTEM 
266 CONTINUE 
 CLOSE(7,STATUS='KEEP') 
 
 OPEN(8,FILE='cnNUFV'//numb//'-5.txt',STATUS='unknown')  
 DO 461 JJ=0,NV-1 
 PTEM=0.0D0 
 DO 462 II=0,NX-1 
      PTEM=PTEM+FE(JJ,II) 
462 CONTINUE 
 WRITE(8,*) VSCAL(JJ),PTEM 
461 CONTINUE 
 CLOSE(8,STATUS='KEEP') 
 ENDIF 
 
 IF(TT.EQ.RN6) THEN 
 OPEN(7,FILE='cnNUFX'//numb//'-6.txt',STATUS='unknown')  
 DO 268 II=0,NX-1 
 PTEM=0.0D0 
 DO 269 JJ=0,NV-1 
      PTEM=PTEM+FE(JJ,II) 
269 CONTINUE 
 WRITE(7,*) XSCAL(II),PTEM 
268 CONTINUE 
 CLOSE(7,STATUS='KEEP') 
 
 OPEN(8,FILE='cnNUFV'//numb//'-6.txt',STATUS='unknown')  
 DO 463 JJ=0,NV-1 
 PTEM=0.0D0 
 DO 464 II=0,NX-1 
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      PTEM=PTEM+FE(JJ,II) 
464 CONTINUE 
 WRITE(8,*) VSCAL(JJ),PTEM 
463 CONTINUE 
 CLOSE(8,STATUS='KEEP') 
 ENDIF 
 
 IF(TT.EQ.RN7) THEN 
 OPEN(7,FILE='cnNUFX'//numb//'-7.txt',STATUS='unknown')  
 DO 270 II=0,NX-1 
 PTEM=0.0D0 
 DO 271 JJ=0,NV-1 
      PTEM=PTEM+FE(JJ,II) 
271 CONTINUE 
 WRITE(7,*) XSCAL(II),PTEM 
270 CONTINUE 
 CLOSE(7,STATUS='KEEP') 
 
 OPEN(8,FILE='cnNUFV'//numb//'-7.txt',STATUS='unknown')  
 DO 465 JJ=0,NV-1 
 PTEM=0.0D0 
 DO 466 II=0,NX-1 
      PTEM=PTEM+FE(JJ,II) 
466 CONTINUE 
 WRITE(8,*) VSCAL(JJ),PTEM 
465 CONTINUE 
 CLOSE(8,STATUS='KEEP') 
 
C OPEN(8,FILE='cnNUFXV'//numb//'-7.txt',STATUS='unknown')  
C DO 280 II=0,NX-1 
C DO 281 JJ=0,NV-1 
C WRITE(8,*) FE(JJ,II) 
C281 CONTINUE 
C280 CONTINUE 
C CLOSE(8,STATUS='KEEP') 
 ENDIF 
 
100 CONTINUE 
 
 OPEN(7,FILE='CNNUFXd'//numb//'.txt',STATUS='unknown')  
 DO 256 II=0,NX-1 
 PTEM=0.0D0 
 DO 257 JJ=0,NV-1 
      PTEM=PTEM+FE(JJ,II) 
257 CONTINUE 
 WRITE(7,*) XSCAL(II),PTEM 
256 CONTINUE 
 CLOSE(7,STATUS='KEEP') 
 
 OPEN(8,FILE='CNNUFVd'//numb//'.txt',STATUS='unknown')  
 DO 451 JJ=0,NV-1 
 PTEM=0.0D0 
 DO 452 II=0,NX-1 
      PTEM=PTEM+FE(JJ,II) 
452 CONTINUE 
 WRITE(8,*) VSCAL(JJ),PTEM 
451 CONTINUE 
 CLOSE(8,STATUS='KEEP') 
 
c OPEN(10,FILE='FXVdistr1411.txt',STATUS='unknown')  
c DO 456 II=0,NX-1 
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c DO 457 JJ=0,NV-1 
c WRITE(10,*) FE(JJ,II) 
c457 CONTINUE 
c456 CONTINUE 
c CLOSE(7,STATUS='KEEP') 
 
 END 
 
C=================================================================== 
C       Ordinary differential equations (ODE) 
C       dAY(i)/dt=AF(i)=....................... 
        SUBROUTINE FCN(XXX,AY,AF) 
 IMPLICIT NONE 
        INTEGER  III,NR,NX 
 PARAMETER (NX=1024) 
 COMMON /PAP/ U,R,DC,P,PM,PR,PI,conc,DT,DX,DV,NAU,NPM 
 DOUBLE PRECISION U,R,DC,P,PM,PR,PI,conc,DX,DV,XSCAL(0:NX-1),NAU 
 DOUBLE PRECISION XXX,AY(1:2),AF(1:2),yy1,yy2,FX(0:NX-1),DT,NPM 
 COMMON /FXSP/ FX 
 COMMON /XSC/ XSCAL 
 COMMON /yy/ yy1,yy2 
 
 yy1=0.0D0 
 yy2=0.0D0 
 
 DO 180 III=0,NX-1 
c yy1=yy1+FX(III)*DBLE(NAA)*DX*DV*DCOS(XSCAL(III))**2. 
c yy2=yy2+FX(III)*DBLE(NAA)*DX*DV*DCOS(XSCAL(III)) 
 yy1=yy1+FX(III)*DCOS(XSCAL(III))**2. 
 yy2=yy2+FX(III)*DCOS(XSCAL(III)) 
180 CONTINUE 
 
 AF(1)= -AY(1)-AY(2)*DC+AY(2)*NAU*yy1 
 AF(2)= AY(1)*DC-AY(2)-AY(1)*NAU*yy1-NPM*yy2 
 
        RETURN 
        END 
 
C=================================================================== 
C       the dipole force 
C=================================================================== 
        SUBROUTINE FORCE(AY,FO) 
 IMPLICIT NONE 
 INTEGER III,NX 
 PARAMETER (NX=1024) 
 COMMON /PAP/ U,R,DC,P,PM,PR,PI,conc,DT,DX,DV,NAU,NPM 
 DOUBLE PRECISION U,R,DC,P,PM,PR,PI,conc,DT,DX,DV,ga,wx 
 DOUBLE PRECISION AY(1:2),XSCAL(0:NX-1),FO(0:NX-1),NAU,NPM 
 COMMON /XSC/ XSCAL 
 COMMON /GU/ ga,wx 
 
 DO 160 III=0,NX-1 
        FO(III)= U*(AY(1)**2.+AY(2)**2.-0.5)*DSIN(2.*XSCAL(III)) 
     *  -2.*(PR*AY(2)-PM*AY(1))*DSIN(XSCAL(III))-ga*12.*XSCAL(III)* 
     *  *23./(wx**24.)*EXP(-(XSCAL(III)/wx)**24.) 
160 CONTINUE 
 
 RETURN 
 END 
 
C=================================================================== 
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C       the subroutine of process 
C=================================================================== 
        SUBROUTINE PROCESS(FS,FE) 
 IMPLICIT NONE 
 INTEGER II,NX,NV,IFALL,JJ,KK,MM 
 PARAMETER (NX=1024,NV=2048) 
 COMMON /PAP/ U,R,DC,P,PM,PR,PI,conc,DT,DX,DV,NAU,NPM 
 DOUBLE PRECISION U,R,DC,P,PM,PR,PI,conc,DX,DV,DT,G05CAF 
 DOUBLE PRECISION FS(0:NV-1,0:NX-1),FE(0:NV-1,0:NX-1),NAU,NPM 
 DOUBLE PRECISION YY(0:NX-1),WORK(NX),X0(0:NX-1),Y0(0:NX-1) 
 REAL*8 H(0:NV-1,0:NX-1),G(0:NV-1,0:NX-1),X(0:NX-1),Y(0:NX-1) 
 REAL*8 A(1:NV),B(1:NV),C(1:NV),XX(0:NX-1),XSCAL(0:NX-1) 
 REAL*8 D(1:NV),BP(1:NV),DP(1:NV),MTEM,PTEM,HTEM 
 REAL*8 FORCE1(0:NX-1),FORCE2(0:NX-1),VSCAL(0:NV-1),FX(0:NX-1) 
 COMPLEX*16 Q 
 INTRINSIC EXP,DBLE 
 EXTERNAL C06FCF,C06GCF,G05CAF 
 COMMON /FXSP/ FX 
 COMMON /XSC/ XSCAL 
 COMMON /VSC/ VSCAL 
 COMMON /FORC/ FORCE1,FORCE2 
C================================================================= 
C  from f(x,v,t) to g(k,m,t) FFT TRANSFORM 
C================================================================= 
C OPEN(114,FILE='GVdistr.txt',STATUS='unknown')  
 
 DO 60 JJ=0,NV-1 
 PTEM=0.0D0 
 DO 61 II=0,NX-1 
 X(II)=FS(JJ,II) 
 X0(II)=X(II) 
 Y(II)=0.0D0 
 Y0(II)=Y(II) 
61 CONTINUE 
 
 IFALL=0 
  
 CALL C06FCF(X,Y,NX,WORK,IFALL) 
  
 DO 62 II=0,NX/2 
 Q=CMPLX(X(II),Y(II))*CMPLX(DCOS(-PI*VSCAL(JJ)*DT*DBLE(II)/conc 
     *  /(DX*DBLE(NX))),DSIN(-PI*VSCAL(JJ)*DT*DBLE(II)/conc/ 
     *  (DX*DBLE(NX)))) 
      XX(II)=DREAL(Q) 
 YY(II)=DIMAG(Q) 
62 CONTINUE 
 
 DO 63 II=NX/2+1,NX-1 
 Q=CMPLX(X(II),Y(II))*CMPLX(DCOS(-PI*VSCAL(JJ)*DT*DBLE(II-NX)/ 
     *  conc/(DX*DBLE(NX))),DSIN(-PI*VSCAL(JJ)*DT*DBLE(II-NX)/conc 
     *  /(DX*DBLE(NX)))) 
      XX(II)=DREAL(Q) 
 YY(II)=DIMAG(Q) 
63 CONTINUE 
 
 IFALL=0 
 
 CALL C06GCF(YY,NX,IFALL) 
 CALL C06FCF(XX,YY,NX,WORK,IFALL) 
 CALL C06GCF(YY,NX,IFALL) 
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 DO 64 II=0,NX-1 
 G(JJ,II)=XX(II) 
 PTEM=PTEM+G(JJ,II) 
64 CONTINUE 
 
60 CONTINUE 
  
C===================================================================== 
C  THOMAS ALGRITHM 
C=====================================================================
  
 DO 101 KK=0,NX-1 
 DO 102 MM=1,NV 
 A(MM)=-DT*FORCE2(KK)/DV/4.0 
 C(MM)=DT*FORCE2(KK)/DV/4.0 
 B(MM)=1.0D0 
102 CONTINUE 
 A(1)=0.0D0 
 C(NV)=0.0D0 
 D(1)=G(0,KK)-DT*FORCE1(KK)*G(1,KK)/DV/4.0 
 DO 103 MM=2,NV-1 
 D(MM)=DT*FORCE1(KK)*G(MM-2,KK)/DV/4.0+G(MM-1,KK)-DT*FORCE1(KK) 
     *  *G(MM,KK)/DV/4.0 
103 CONTINUE 
 D(NV)=DT*FORCE1(KK)*G(NV-2,KK)/DV/4.0+G(NV-1,KK) 
  
 BP(1)=B(1) 
 DP(1)=D(1) 
  
 DO 105 MM=2,NV 
 MTEM=A(MM)/BP(MM-1) 
 BP(MM)=B(MM)-(MTEM*C(MM-1)) 
 DP(MM)=D(MM)-(MTEM*DP(MM-1)) 
105 CONTINUE 
 
 H(NV-1,KK)=DP(NV)/BP(NV) 
  
 DO 106 MM=NV-1,1,-1 
 H(MM-1,KK)=(DP(MM)-C(MM)*H(MM,KK))/BP(MM) 
106 CONTINUE 
101 CONTINUE 
 
 DO 110 JJ=0,NV-1 
 HTEM=0.0D0 
 DO 111 II=0,NX-1 
 X(II)=H(JJ,II) 
 Y(II)=0.0D0 
 HTEM=HTEM+H(JJ,II) 
111 CONTINUE 
   
 IFALL=0 
 
 CALL C06FCF(X,Y,NX,WORK,IFALL) 
  
 DO 112 II=0,NX/2 
 Q=CMPLX(X(II),Y(II))*CMPLX(DCOS(-PI*VSCAL(JJ)*DT*DBLE(II)/ 
     *  conc/(DX*DBLE(NX))),DSIN(-PI*VSCAL(JJ)*DT*DBLE(II)/ 
     *  conc/(DX*DBLE(NX)))) 
      XX(II)=DREAL(Q) 
 YY(II)=DIMAG(Q) 
112 CONTINUE 
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 DO 113 II=NX/2+1,NX-1 
 Q=CMPLX(X(II),Y(II))*CMPLX(DCOS(-PI*VSCAL(JJ)*DT*DBLE(II-NX) 
     *  /conc/(DX*DBLE(NX))),DSIN(-PI*VSCAL(JJ)*DT*DBLE(II-NX)/conc 
     *  /(DX*DBLE(NX)))) 
      XX(II)=DREAL(Q) 
 YY(II)=DIMAG(Q) 
113 CONTINUE 
 
 IFALL=0 
 
 CALL C06GCF(YY,NX,IFALL) 
 CALL C06FCF(XX,YY,NX,WORK,IFALL) 
 CALL C06GCF(YY,NX,IFALL) 
 
 PTEM=0.0D0 
 DO 114 II=0,NX-1 
 FE(JJ,II)=XX(II) 
c PTEM=PTEM+FE(JJ,II) 
114 CONTINUE 
110 CONTINUE 
 
 RETURN 
 END 
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