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Abstract

Digital wireless channels are extremely prone to errors that appear in bursts or clus-

ters. Error models characterise the statistical behaviour of bursty profiles derived from

digital wireless channels. Generative error models also utilise those bursty profiles in

order to create alternatives, which are more efficient for experimental purposes. Error

models have a tremendous value for wireless systems. They are useful for the design

and performance evaluation of error control schemes, in addition to higher layer pro-

tocols in which the statistical properties of the bursty profiles are greatly functional.

Furthermore, underlying wireless digital channels can be substituted by generated

error profiles. Consequently, computational load and simulation time can be signif-

icantly reduced when executing experiments and performing evaluation simulations

for higher layer communications protocols and error control strategies.

The burst error statistics are the characterisation metrics of error models. These

statistics include: error-free run distribution; error-free burst distribution; error burst

distribution; error cluster distribution; gap distribution; block error probability distri-

bution; block burst probability distribution; bit error correlation function; normalised

covariance function; gap correlation function; and multigap distribution. These burst

error statistics scrutinise the error models and differentiate between them, with re-

gards to accuracy. Moreover, some of them are advantageous for the design of digital

components in wireless communication systems.

This PhD thesis aims to develop accurate and efficient error models and to find ap-

plications for them. A thorough investigation has been conducted on the burst error

statistics. A breakdown of this thesis is presented as follows.

Firstly, an understanding of the different types of generative error models, namely,

Markovian based generative models, context-free grammars based generative models,

chaotic models, and deterministic process based generative models, has been pre-

sented. The most widely used models amongst the generative models have been

compared with each other consulting the majority of burst error statistics. In order

to study generative error models, error burst profiles were obtained mainly from the

Enhanced General Packet Radio Service (EGPRS) system and also the Long Term

Evolution (LTE) system.

Secondly, more accurate and efficient generative error models have been proposed.

Double embedded processes based hidden Markov model and three-layered processes



based hidden Markov model have been developed. The two types of error profiles,

particularly the bit-level and packet-level error profiles were considered.

Thirdly, the deterministic process based generative models’ parameters have been

tuned or modified in order to generate packet error sequences rather than only bit

error sequences. Moreover, a modification procedure has been introduced to the same

models to enhance their generation process and to make them more desirable.

Fourthly, adaptive generative error models have been built in order to accommodate

widely used generative error models to different digital wireless channels with different

channel conditions. Only a few reference error profiles have been required in order to

produce additional error profiles in various conditions that are beneficial for the design

and performance evaluation of error control schemes and higher layer protocols.

Finally, the impact of the Hybrid Automatic Repeat reQuest (HARQ) on the burst

error statistics of physical layer error profiles has been studied. Moreover, a model that

can generate predicted error sequences with burst error statistics similar to those of

error profiles when HARQ is included has been proposed. This model is constructive

in predicting the behaviour of the HARQ in terms of a set of higher order statistics

rather than only predicting a first order statistic. Moreover, the whole physical layer

is replaced by adaptively generated error profiles in order to check the performance

of the HARQ protocol.

The developed generative error models as well as the developed adaptive generative

error models are expected to benefit future research towards the testing of many

digital components in the physical layer as well as the wireless protocols of the link

and transport layers for many existing and emerging systems in the field of wireless

communications.
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Chapter 1

Introduction

1.1 Problem Statement

When we look around us, we see many devices that are receiving instructions and

are communicating with each other. However, we cannot see how these devices can

maintain contact with each other. It is true that wireless communication is now very

much part of our lives which we cannot relinquish. In fact, wireless communication

makes our life fruitful as it is able to convert the whole world into a small village

whereby its residents figure as a family. Wireless communication has also an immense

importance for spreading knowledge within a global context. It has assisted in rapidly

developing the world as information has become like an open source from where it

can be acquired by anyone. Hence, developments are built up upon what has already

been achieved and the experiences of others .

Wireless communications have been receiving a numerous number of applications,

especially when wired communication is not possible or is very expensive to imple-

ment. The mission of the curiosity rover which landed on Mars and the jump of Felix

Baumgartner from the edge of space would have been impossible without wireless

communication. Additional applications include: satellite communications; global

1



Chapter 1: Introduction

positioning system (GPS); TV and radio broadcasting; cellular communications; ma-

rine communications; aeroplanes and traffic control systems; bus waiting time mon-

itoring; internet broadcasting; ultrasonic and infrared remote controlling; computer

peripherals communications; wireless home entertainment systems; and much more

applications can be related to defence, education, and health.

Investigating the history of wireless communication, Alexander Bell and Charles Tain-

ter made the first wireless telephone conversation in 1880 whereby the signals were

modulated over light beams. However, their invention did not receive applications at

that time due to the lack of understanding of optical communications systems. In

1879, David Hughes transmitted radio signals over a few hundred yards utilising a

clockwork keyed transmitter. In 1885, Thomas Edison used a vibrator magnet for

induction transmission. Later on in 1888, Edison deployed a system of signalling on

the Lehigh Valley Railroad; and in the same year, Heinrich Hertz demonstrated the

existence of electromagnetic waves, which are the underlying basis of most wireless

technologies. The theory of electromagnetic waves was already predicted by James

Maxwell and Michael Faraday. However, Hertz demonstrated that electromagnetic

waves could be transmitted and received by experimental means. In the late 1880s Ja-

gadish Bose developed a wireless detector and enhanced the knowledge of millimetre-

length electromagnetic waves. Nikola Tesla was later engaged with practical applica-

tions of wireless radio communication for short ranges. In 1901, a huge improvement

to wireless communications occurred when Guglielmo Marconi transmitted the first

radio signal across the Atlantic. In 1909 both Guglielmo Marconi and Karl Ferdi-

nand Braun were awarded the Nobel Prize for Physics for their contribution towards

wireless telegraphy [1].

Any wireless communication system must include a transmitter and receiver or a

transceiver in order to send informations from one side and to be detectable at the

other side. The problem is that some of the detected information may be received

differently from that which has been sent. This is due to the errors which are occurring

between the transmitter and the receiver. It is very important to study these errors

from different perspectives. One perspective is to understand the sources or the causes
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of errors in the transmission channel. Another perspective is to obtain knowledge

about the statistical properties of these errors in terms of numbers and distributions.

For both perspectives the final goal is to tackle these errors by suspending or mitigating

their effects on the received signals. Some of the main causes of error events are [2]:

• Attenuation: which is a decrease in the electromagnetic energy at the receiver

due to long distance propagation and the existence of obstacles between the

transmitter and the receiver.

• Intersymbol interference (ISI): symbols are interfering with each other resulting

in partial cancellation of some symbols due to delays in receiving them.

• Doppler shift: which is a frequency shift in the arriving signal because of the

relative velocities of the transmitter and the receiver.

• Multipath fading: which is a fluctuation in the amplitude, phase, and angle of

the signal received at the receiver.

• Internal processing of symbols: these are errors occurred inside the processing

parts of symbols inside the transceiver, such as the errors that happen at the

demodulation because of the decision scheme.

The main factors that influence the wireless radio propagation are illustrated in Fig-

ure 1.1 to be:

• Reflection: occurs when an electromagnetic wave impinges on a smooth surface

that has a larger size than the wavelength of the radio wave. Reflected signals

are collected constructively or destructively at the receiver.

• Diffraction: occurs when the path of the electromagnetic wave hits an impenetra-

ble object that has larger dimensions than the signal wavelength. Subsequently,

secondary waves appear behind the obstructing object without any line of sight

(LOS) path between them. Therefore, signals can be detected by the receiver

despite the absence of LOS path.
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Figure 1.1: Reflection, diffraction, and scattering are the main factors of wireless
propagation fading [3].

Diffraction can also be called shadowing because the diffracted signals can arrive

at the receiver even when shadowed by an impenetrable obstruction.

• Scattering: occurs when the radio signals meet obstructing objects of dimensions

that are on the order (or less) of the electromagnetic wavelength. Scattering

allow the signals to be emitted in many different directions. Foliage, lamp

posts, and street signs are typical objects that cause scattering.

1.2 Motivation

The engineers and designers of wireless communication systems must be aware of the

errors, which are encountered in the wireless channel, in order to enhance the quality

of service that is provided to customers. Better communication links can be achieved

by deploying appropriate modulation, coding schemes, interleavers, and other channel

components as well as high layer protocols, such as the Automatic Repeat reQuest

(ARQ). Error models for digital wireless channels can identify such errors and analyse

them statistically, in order to better understand the impairments inside the digital
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wireless channels and to work thoroughly to mitigate the impact of such errors on the

quality of the received information. A reliable wireless communication really needs a

thorough understanding of errors in the wireless channels

An accurate and comprehensive reproducible error model is in high demand. Such

accurate models assist the wireless communication engineers in evaluating the error

control schemes and high layer protocols and algorithms in a controlled and repeatable

way. This could have a significant impact on research and the industry pertaining to

wireless communication as error models considerably reduce the computational load

and simulation time of executing a wireless communication system when an evaluation

or a design of a component is in progress.

Thus imagine that you are testing a wireless protocol and this protocol has many

variations with regards to its parameters or steps. Each time you test one parameter

you would need to set up the equipment again and send a long sequence of data

and wait until you had received all of the data, which could take hours if not days.

However, the underlying wireless channels could be replaced by an error model that

could generate data profiles of tremendous lengths as required within seconds in order

to examine the associated component or protocol.

It is also deemed extremely desirable to attain error profiles for various channel con-

ditions or different digital wireless channels from a few already obtained error profiles

at fixed channel conditions. There is no doubt that this idea leverages the reducibility

of error models and enriches their applications.

The statistical characteristics for higher layer protocols, particularly the ARQ, occupy

part of our interests. Understanding these characteristics takes us to the core of our

purpose, which is reducing the computational burden by simplifying the simulation

model; and hence saving our valuable time.

It is extremely enviable for researchers and designers to have error models which

are accurate, as accuracy has an impact on the final decision of the designation or

evaluation. However, any accurate model requires complexity in computation. In this

thesis, we have put our efforts into designing accurate error models whilst keeping
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the computation complexity acceptable. Thus, the parametrisation of our models

are considered to be simple and easy to understand and apply. Moreover, for some

models that have certain disadvantages which affect their production ability, we have

proposed a solution for alleviating their problems.

1.3 Contributions

The key contributions of the thesis are summarised as follows:

• Modelling the digital wireless channels:

Models of digital channels are to be proposed based on the idea of Hidden

Markov Models (HMMs). The first model has two embedded processes whereby

the first process is dedicated to assembling error bursts with error-free bursts.

However, the second one is devoted to creating individual error bursts whilst

employing the maximum gap norm within error bursts. This model is not only

applicable for hard bit error profiles but also for soft bit error profiles as well as

packet error profiles.

The second proposed model is the layered generative error models. This has

in particular three layers, whereby the first layer is comprised of one error-free

burst state, and several error burst states assigned according to the maximum

error cluster lengths. The second layer further divides the classes of error bursts

based on their maximum gap lengths. The final layer constructs the error bursts.

• Improving the deterministic process based generative model (DP-

BGM):

The DPBGM parameters are tuned to accommodate packet error profiles. More-

over, a modification to the DPBGMs has taken place in this thesis. A new

packet-level generative model has been proposed to replace the problematic fi-

nal design step (generation of error profiles) of the DPBGMs by using a HMM.

The new packet-level generative model is called the Deterministic Process based

Hidden Markov Model (DPB-HMM). The exact problem of the DPBGMs is that
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they do not create new error bursts on their own in the design step of generating

error sequences; but only create the lengths of error bursts and error-free bursts.

The DPBGMs subsequently retrieve error bursts of the same length directly from

the reference error profiles. This behaviour restricts the capability of DPBGMs

to generate new error sequences at different channel conditions when only a few

reference error profiles are available. In addition, if only reference burst error

statistics are given while reference error profiles are not available; the DPBGM

is of no use. Therefore, a modification is needed to overcome the drawback of

DPBGMs and to enhance the adaptability of the new model to generate error

bursts and consequently error profiles at various channel conditions.

• Designing adaptive generative models:

The adaptive generative model concept has been introduced and applied to

widely used generative models, such as the Simplified Fritchman’s Model (SFM),

HMM, DPBGM, and DPB-HMM. Each of these generative models has been

checked against the most effective featuring property. These properties have

subsequently been studied to make them reproducible for various parameters of

the wireless systems or different channel conditions rather than a fixed channel

condition. There is no doubt that adaptive generative error models influence

the speed of business as they significantly reduce the simulating time of a real

wireless communication system when several error profiles at different channel

conditions are needed.

• Testing the adaptive generative models:

Adaptively generated uncoded error profiles at bit level have been fed into the

digital channel in order to investigate their performance with a coding scheme,

specifically the LTE turbo coding scheme. Moreover, adaptively generated er-

ror profiles at the packet level have replaced the entire physical layer in order

to scrutinise their accuracy with higher layer protocols, particularly the LTE

Hybrid Automatic Repeat reQuest (HARQ).
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• Predicting the performance of HARQ:

A statistical prediction model for a digital wireless channel with HARQ has

been proposed to enable an understanding to be elicited regarding the burst

error statistics of a digital wireless channel that includes HARQ from a digital

wireless channel that does not include HARQ. Firstly we studied the statistical

behaviour of digital wireless channels when they had or did not have HARQ.

Then, we have found the statistical relationship between these digital channels

when they did or did not have HARQ. This prediction model also has an impact

on reducing the time of designing HARQ.

• Studying and simulating a set of burst error statistics and widely

known generative models:

Thorough investigations have been conducted to study the burst error statistics

and then to simulate them. Moreover, studying and implementing several ex-

isting generative models have been required for understanding and comparison

purposes. The aforementioned achievements in this thesis could not have been

accomplished without these studies.

1.4 Publications

The work presented in this thesis has led to the following publications:

Journals

1. Y. He, O. S. Salih, C.-X. Wang, and D. Yuan, “Deterministic process based

generative models for characterizing packet-level bursty error sequences,” Wire-

less Commun. and Mobile Computing, 2013, DOI: 10.1002/wcm.2356.

2. O. S. Salih, C.-X. Wang, Y. He, R. Y. Mesleh, and D. Yuan, “A packet-level

deterministic process based hidden Markov model for digital wireless channels,”

IEEE Trans. Mobile Computing, submitted for publication.
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3. O. S. Salih, C.-X. Wang, B. Ai, and D. I. Laurenson,“Adaptive generative mod-

els for digital wireless channels,” IEEE Trans. Wireless Commun., submitted

for publication.

Conferences

1. O. S. Salih, C.-X. Wang, R. Mesleh, X. Ge, and D. Yuan,“Predicting burst error

statistics of digital wireless systems with HARQ,” in Proc. IEEE International

Wireless Communications and Mobile Computing Conference, IWCMC 2013,

Cagliari, Sardinia, Italy, 1–5 Jul. 2013, pp. 276–281.

2. O. S. Salih, C.-X. Wang, D. I. Laurenson, and Y. He,“Hidden Markov models

for packet-level errors in bursty digital wireless channels,” in Proc. Loughborough

Antennas and Propagation Conference, LAPC 2009, Loughborough, UK, 16–17

Nov. 2009, pp. 385–388.

3. O. S. Salih, C.-X. Wang, and D. I. Laurenson,“Soft bit error modeling for

discrete wireless channels,” in Proc. IEEE International Wireless Communi-

cations and Mobile Computing Conference, IWCMC 2009, Leipzig, Germany,

21–24 Jun. 2009, pp. 759–763.

4. O. S. Salih, C.-X. Wang, and D. I. Laurenson,“Three-layered hidden Markov

models for binary digital wireless channels,” in Proc. IEEE International Con-

ference on Communications, ICC 2009, Dresden, Germany, 14–18 Jun. 2009.

5. O. S. Salih, C.-X. Wang, and D. I. Laurenson,“Double embedded processes

based hidden Markov models for binary digital wireless channels,” in Proc. IEEE

International Symposium on Wireless Communication Systems, ISWCS 2008,

Reykjavik, Iceland, 21-24 Oct. 2008, pp. 219-223.
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1.5 Thesis Organisation

The remainder of this thesis is organised as follows:

Chapter 2 provides some essential background information related to the area of re-

search presented in this thesis. Firstly, an introduction about digital wireless channels

has been provided. Secondly, the error sequences (error profiles) which have been ob-

tained from the digital wireless channels have been introduced. Analysing the error

sequences and its statistics which is called “Burst error statistics” occupies part of

this chapter. Finally, the description of error models has been provided with a general

overview of generative error models categorised into five groups, in particular Markov

models, hidden Markov models, stochastic context-free grammars, chaotic attractors

generative models, and deterministic process based generative models.

Chapter 3 presents novel Markovian generative models that compromise very well

between complexity and accuracy. The first model has two layers of processes, one for

combining error-free bursts with error bursts which are divided into groups according

to a specific criterion. The second process is dedicated to construct accurate error

bursts to subsequently create accurate error profiles. This model has been scrutinised

against hard and soft error profiles in addition to packet error profiles. Moreover, the

criterion of grouping the error bursts in the first layer of this model has been varied

to check the effect of the grouping criterion on the final results. The second model

improves upon the aforementioned model by adding an extra layer of processes in

order to further enhance the processing procedure.

Chapter 4 develops the DPBGM for the packet level and shows its performance at this

level compared to the SFM and the BWHMM. Moreover, the existing DPBGM has

been improved in order to advance its ability of generating the error bursts. All the

aforementioned models are parametrised involving reference error profiles derived from

EGPRS system. Moreover, the burst error statistics of the generated error profiles

have been compared with those of the EGPRS system.

Chapter 5 introduces the concept of adaptive generative models and the motivation

behind them. The most efficient features of widely-used generative error models,
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namely the SFM, BWHMM, DPBGM, and DPB-HMM have been studied. From the

prevailing features trend and behaviour of few error profiles, new required error profiles

have been created by interpolating the prevailing features trends for each generative

error model. Surely, for parameterising the error models and studying the prevailing

features, a few reference error profiles are required. Hence, an LTE system has been

used to obtain uncoded reference error profiles for the aforementioned purposes as well

as the comparison evaluation. The newly generated error profiles by adaptive means

have replaced the digital wireless channel to investigate the LTE coding performance

for different generative models.

Chapter 6 analyses the digital wireless channels when the HARQ is attached to the

physical layer; whilst conversely, the digital wireless channel has been analysed when

the HARQ is excluded. The statistical differences between the two digital chan-

nels have been noticed and studied. A prediction generative model has subsequently

evolved which is able to predict the behaviour of HARQ while error profiles of the

physical layer without HARQ are only available. Moreover, the entire physical layer is

replaced by packet error profiles obtained from the developed adaptive procedures in

order to scrutinise the generative models against the performance of HARQ. An LTE

system has been utilised to attain reference error profiles for the above experiments.

Chapter 7 concludes the thesis and suggests some future research topics.

11



Chapter 2

Background

2.1 Digital Wireless Channels

Wireless communication systems have generally two types of channels, namely, ana-

log (physical) and digital (time-discrete) [4–6]. For the analog channel, we are in-

terested in the signal strength, signal-to-noise ratio (SNR) or carrier-to-interference

ratio (CIR), and mobile speed, etc [7–10]. Digital wireless channels have time-discrete

inputs and outputs. Thus, digital wireless channels comprise the transmission chain

in a communication system including the transmitter, physical channel, and receiver.

Hence, the physical channel is part of the digital wireless channel. Common param-

eters set for digital wireless channels are the number and distribution of error events

within a sequence of bits or packets. A typical digital wireless channel is shown in

Figure 2.1.

2.1.1 Error Sequences

An error sequence can be attained by comparing the digitised output of a digital

channel with its digitised input sequence. Therefore, an error sequence is a series of

consecutive digitised symbols. Error sequences can be considered at either bit level

or packet level.
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Figure 2.1: A typical digital communication channel.

Figure 2.2: Soft error sequence example (η = 4,M = 4).

Bit error sequences can be either soft or hard, depending on the type of the decision

at the output of a digital channel.

A soft error sequence consists of real integers as Figure 2.2 points up. The values of

the input sequence are in fact binary integers belong to -1, 1. However, the output

sequence consists of integer numbers ranging from −2M−1 to 2M−1 − 1, where M is a

positive integer [6]. Mathematically, a soft error sequence is obtained by multiplying

the input sequence with output sequence. The resulting negative integer indicates an

error bit, whereas a non-negative integer implies a correctly received bit.

A hard error sequence, on the other hand, is a binary sequence. This means that

the values of the elements of the hard error sequence belong to 0, 1 as Figure 2.3

illustrates. This means that the input and output to the underlying digital channel

belong to 0, 1 as well. A binary error sequence can be mathematically worked out

by carrying out modulo 2 addition between an input sequence and output sequence.

The “0”s and “1”s correspond to correct bits and error bits, respectively. Please

notice that a hard error sequences is a quantised version of soft error sequence, i.e.,

Figure 2.3: Hard error sequence example (η = 4).
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non-negative integers can be quantised to ‘0’, and negative integers can be quantised

to ‘1’.

In order to understand the error sequences and their burst error statistics, some terms

related to the error sequences must be introduced.

2.1.1.1 Error Sequence Terms

In this section the terms of error sequence, which are demonstrated in Figure 2.4,

and the burst error statistics which are used in the simulations are defined.

A gap (G) is a series of successive zeros (non-negative integers) between two ones

(negative integers). The gap length is the number of zeros (non-negative integers).

An error cluster (EC) is a series of successive ones (negative integers). It has a

length equal to the number of ones (negative integers). An error-free burst (EFB)

is a sequence of successive zeros (non-negative integers) that have at least η symbols

length. It is different from the gap in the length restriction. Also, it is not necessary

for an error-free burst to be located between two ones (negative integers). An error

burst (EB) is a sequence of zeros (non-negative integers) and ones (negative integers).

Figure 2.4: (a) Soft error sequence example (η = 4,M = 4). (b) Hard error
sequence example (η = 4).
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It starts and ends with ones (negative integers), and separated from other error bursts

by error-free bursts.

The error burst lengths and error-free burst lengths of a reference error sequence

can be recorded as vectors called EBrec and EFBrec, respectively. We denote the

minimum value in EBrec as mB1 and the maximum value as mB2. Subsequently, the

lengths me of error bursts satisfy mB1 ≤ me ≤ mB2. By analogy, the minimum value

and the maximum value in EFBrec are denoted as mB̄1 and mB̄2, respectively, and

the lengths mē of error-free bursts satisfy mB̄1 ≤ mē ≤ mB̄1.

The following quantities are related to the reference error sequences:

1) Nt: the total length of the reference error sequence.

2) NEB: the total number of error bursts, which equals the number of entries in

EBrec.

3) NEFB: the total number of error-free bursts, which equals the number of entries

in EFBrec.

4) RB: the ratio of the mean value MEB of error burst lengths to the mean value

MEFB error-free burst lengths, i.e., RB =MEB/MEFB.

To study the error sequences comprehensively, error models need to be introduced.

2.2 Error Models

Errors which occur in digital wireless channels are not random, but appear in bursts

or clusters, such that long error-free bursts are followed by error bursts or clusters.

Models that can characterise the statistical behaviour of bursty error sequences in

digital wireless channels are basically called error models. Error models also exploit

the characterised statistics in order to produce required error sequences.
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In general, error models contain two categories: descriptive (reference) and generative

(simulation) models [11, 12]. Descriptive models identify the statistical behaviour of

reference error sequences, which can be obtained from real digital wireless channels or

from computer simulations implementing the whole communication link. Generative

models, on the other hand, describe a procedure or methodology that can generate

error sequences which have approximately similar error burst statistics to those of the

reference error sequences.

Error models have two main advantages. Firstly, they are significant in the design

of error control schemes and higher layer protocols, where the burst error statistics

are beneficial. Secondly, the underlying digital wireless channels can be replaced by

generated error sequences. Consequently, the computational load and simulation time

can be greatly reduced, especially when performing evaluation simulations on different

error schemes [13–16] and communication protocols [17–20]. In other words, there is

no need to transmit the data again when a new test for error schemes or protocols is

established. The replaced error sequences can perform instead of the digital wireless

channel which is the core part of the wireless communication system.

2.2.1 Burst Error Statistics

Burst error statistics are the crucial metrics for criticising any generative error model

and are considered the basis for the comparison between different generative models.

Some of them are essential for the design and performance evaluations of parts of the

digital wireless channel. Moreover, the majority of them demonstrate the structural

nature of various error profiles.

Since error sequences could be hard bits, soft bits, or packets, the burst error statistics

can be divided into two categories: binary burst error statistics and soft burst error

statistics.
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2.2.1.1 Binary Burst Error Statistics

Binary burst error statistics cover the hard bit error sequences as well as the packet

error sequences because both types of error sequences are represented by “0”s and

“1”s only.

To illustrate the binary burst error statistics we define them and show their figures

at specific conditions in the following. We obtain reference error sequences from

an uncoded Enhanced General Packet Radio Service (EGPRS) system with ideal

frequency hopping (IFH). This system was built in the baseband algorithms and

standardisation laboratory, Siemens AG-Mobile phones, Munich, Germany, within the

framework of the 3GPP GERAN system concept R&D project. In our simulations,

the underlying physical channel is tailored to a typical urban (TU) environment, and

the mobile speed is 3 km/h. The CIR values vary at 5, 8, and 15 dB. The figures are

for hard bit error sequences. The binary burst error statistics are:

1) G(mg): the gap distribution (GD), which is defined as the cumulative distribu-

tion function (CDF) of gap lengths mg [21].
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Figure 2.5: GDs of the descriptive model obtained from the EGPRS system at
different CIRs.
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Figure 2.6: EFRDs of the descriptive model obtained from the EGPRS system
at different CIRs

2) P (0m0 |1): the error-free run distribution (EFRD), which is the probability that

an error (“1”) is followed by at least m0 error-free digits (“0”s) [22]. The EFRD

can be calculated from the GD [21]. Obviously, P (0m0 |1) is a monotonically

decreasing function of m0 such that P (00|1) = 1 and P (0m0 |1) → 0 as m0 → ∞.
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Figure 2.7: ECDs of the descriptive model obtained from the EGPRS system at
different CIRs.
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3) P (1mc |0): the error cluster distribution (ECD), which is the probability that a

correct digit is followed by mc or more consecutive digits in error [22].

4) PEB(me): the error burst distribution (EBD), which is the CDF of error burst

lengths me.

5) PEFB(mē): the error-free burst distribution (EFBD), which is the CDF of error-

free burst lengths mē.

6) P (m,n): the block error probability distribution (BEPD), which is the proba-

bility that at least m out of n digits are erroneous. This statistic is important

for determining the performance of Automatic Repeat Request (ARQ) proto-

cols [23].

7) Q(l, n): the block burst probability distribution (BBPD), which is the probabil-

ity of an error burst of length l occurring in a block of length n. For only this

statistic, the length of a burst in a block of n digits: is the number of zeros and

ones between the first error to the last error in the block (both errors included)

irrespective of the nature of the digits in between [12].

8) Cov(l): the normalised covariance function (NCF) [24].
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Figure 2.8: EBDs of the descriptive model obtained from the EGPRS system at
different CIRs.
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Figure 2.9: EFBDs of the descriptive model obtained from the EGPRS system at
different CIRs.

9) ρ(∆k): the bit (or packet) error correlation function (BECF or PECF), which

is the conditional probability that the ∆kth bit (or packet) following an error

bit (or packet) is also in error. This statistic represents the burstiness of the

channel [11, 12].
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Figure 2.10: BEPDs of the descriptive model obtained from the EGPRS system
at different CIRs (n = 116).
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Figure 2.11: BBPDs of the descriptive model obtained from the EGPRS system
at different CIRs.

10) GCF : the gap correlation function, which is the conditional probability that

the ∆rth gap following a short (long) gap is also short (long) [12].

11) MGD: the multigap distribution, which is the CDF of r consecutive gaps, con-

sidered as a single parameter, which are separated by one or more consecutive

errors [12]. The gap here is different from the one adopted before, it is defined
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Figure 2.12: NCFs of the descriptive model obtained from the EGPRS system at
different CIRs.

21



Chapter 2: Background

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

∆ k+1

B
it 

au
to

co
rr

el
at

io
n 

fu
nc

tio
n,

 ρ
(∆

 k
)

 

 

5 dB
8 dB
15 dB

Figure 2.13: BECFs of the descriptive model obtained from the EGPRS system
at different CIRs.

here as: a string of consecutive zeros between two errors and having a length

equal to one plus the number of zeros between the two errors. It can be seen

that the minimum value for a gap length is one, occurring in case of consecutive

errors.
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Figure 2.14: GCFs of the descriptive model obtained from the EGPRS system at
different CIRs.
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Figure 2.15: MGDs of order 100 for the descriptive model obtained from the
EGPRS system at different CIRs.
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Figure 2.16: MGDs of order 1000 for the descriptive model obtained from the
EGPRS system at different CIRs.

12) K(r): the variation coefficients [12], which compare, for any channel C and

its corresponding binary symmetric channel (BSC), with the same BER, the

spreads of the multigap-length distributions around their common mean value

r/p, where p is the average probability of error.
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Figure 2.17: The variation coefficients of the descriptive model obtained from the
EGPRS system at different CIRs.

2.2.1.2 Soft Burst Error Statistics

Soft burst error statistics analyse the soft error sequences. Some of these statistics

are defined as follows.

1) P (m+): the soft error-free run distribution (SEFRD), which is the probability

that a negative integer is followed by m+ or more non-negative integers.

2) P (m−): the soft error-cluster distribution (SECD), which is the probability that

a non-negative integer is followed by at least m− successive negative integer.

3) G(mg): the soft gap distribution (SGD), which is the cumulative distribution

function (CDF) of gap lengths mg.

4) P (m,n): the soft block error probability distribution (SBEPD), which is the

probability that a block of n integers contains at least m negative integers.

5) ρ(∆k): the soft bit-error correlation function (SBECF), which is the conditional

probability that the ∆kth integer following a negative integer is also a negative

integer.
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6) P (ej): the soft decision-symbol distribution (SDSD), which is the CDF of soft

decision symbols ej ∈ [−2M−1, 2M−1 − 1].

2.3 Overview of Generative Models

The literature is rich with many generative models that have been proposed during

the last century in order to create accurate and efficient error sequences to achieve

the purposes from there innovation. Generative models can in general be classified

into five categories as briefed in the following subsections.

2.3.1 Markov Models

Markov models (MMs) are based on Markov chains which follow the well known

Markov property. The first basic generative model of this category is called Gilbert’s

model [25], which is composed of two states: good (G) and bad (B) as shown in

Figure 2.18. For the G state, the produced error digit is always 0, whereas for the

B state the output digit is 0 or 1. The transitions between the states are carried

out according to transition probabilities in order to construct an error sequence. The

probabilities for persisting in the same state are greater than the other probabilities

which are for transferring to the other state. Elliot [26] suggested generating errors

in both of the two-states of the Gilbert’s model, but the generated errors in the G

state have low probability and hence quantity. The two-state models have received

many applications due to their simplicity. However, these models are disappointing in

terms of accuracy as they failed to generate error sequences with burst error statistics

closer to those of the original error sequences. The two-state models have a simple

structure and basic parameters. They also have renewal natures which limit their

accuracy. Moreover, they are parametrised based on the assumption of having a

geometric distribution for the run lengths of both states.
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Figure 2.18: Gilbert-Elliot (two state) generative model.

Thereafter, several modifications to the simple MMs have been proposed in order

to improve their performance. These modifications include increasing the number of

states[27–36] or imposing certain conditions on the transitions [37–43]. Berkovits et

al. [27] proposed a model that consists of three states. Two states are bad and the

third is good. The error gap distribution for this model is the sum of three exponential

terms. In fact, Berkovits’ model failed to obtain satisfactory results. McCullough[28]

proposed to further increase the number of states. In his model, errors can occur in

all the states with different error rates, and the transitions between the states are

allowed only immediately following an error. Trafton et al. [37] suggested a model

with similar idea to McCullough’s, but his model has only two states. For Trafton’s

model, the transition probabilities are functions of sojourn times in each state.

A well-known Markovian model is the Fritchman’s partitioned finite-state model[22].

It is composed of N -states divided into two groups of k error states and N − k error-

free states. Fritchman’s model has a simplified and widely used version called the

Simplified Fritchman’s model (SFM).

Another Markovian model which is based on infinite states was proposed by Adoul

et al. [38]. It consists of two coupled renewal infinite state Markov chains. For this

model, the transitions between the chains can happen only after an error occurs. The

transitions are also conditioned on the length of the previous gap. A higher order MM
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which is consisting of N -states was suggested by Blank et al. [39]. Only one transition

step is allowed in this model. An N -state model with transition probabilities based

on a conditional gap distribution was proposed by Chein et al. [40]. An extension

to this model with additional memory incorporated for short gaps was recommended

by Varshney et al. [43]. A major drawback of the infinite states Markov models is

their extreme complexity. It is also recognised that the conditional and unconditional

gap distributions for the infinite states Markov models are in the form of sums of

exponentials, which are similar to the gap distributions of Fritchman’s model. This is

a reason which could have given Fritchman’s model a pioneer over all the other MMs.

Fritchman’s model also gives a good compromise between simplicity and accuracy.

2.3.1.1 Simplified Fritchman’s Models (SFMs)

As previously mentioned, a SFM (see Figure 2.19) consists of N -states; one error

state and N − 1 error-free states that characterise the error cluster distribution and

error-free distribution, respectively.

When a SFM is transiting into the error state, it generates “1” (error bit). When a

transition to an error-free state occurs, the SFM generates “0” (correct bit). While

the SFM is circulating within an error-free state, “0”s are generated until a transition

to the error state occurs. In this case, the SFM generates “1”s again. Transitions

between the error-free states in a SFM are forbidden. The reason for having many

states generating “0”s is to generate different lengths of gaps. All the transitions take

place according to assigned probabilities.

The SFMs were applied to many channels, such as HF [21], VHF [23], UHF [44],

and indoor channels [24, 45]. It is found that, SFMs are not applicable to slow

fading scenarios, whereas they are more applicable to scenarios of intermediate to fast

fading [23].
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Figure 2.19: States diagram of the SFM.

2.3.2 Hidden Markov Models

Hidden Markov models (HMMs) [24, 45–56] employ the idea of Markov models, but

with using two stochastic processes. One of the stochastic processes is not observable,

but can only be observed by another stochastic process which produces a sequence

of observations. The HMMs are most likely used for burst error characterisation in

indoor radio channels. One of the methods used to implement this class is the one

mentioned in [45] and is called Baum-Welch based HMMs (BWHMM). For these

models, the error bursts in the reference error sequence are extracted and numbered.

They are then divided into blocks of length L bits. Each block is marked by the

number of errors it contains (compacted format), as in Figure 2.20. The largest

compacted number in each error burst called the Peak Number of Errors (PNE).

After that, the error bursts are classified into j disjoint classes (bursty classes) using

the PNE as a criterion in such a way that ξ(j − 1) + 1 ≥ PNE ≥ ξj, where ξ

is a positive integer number. Then, the compacted blocks of each class are used to
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Figure 2.20: Error bursts in compacted format.

train hidden Markov submodels using the Baum-Welch algorithm [47, 57, 58]. Each

submodel contains one class of error bursts. Consequently, many error bursts can be

generated from the submodels after the training. From the mathematical point of

view, the BWHMMs have the following elements:

1) S = {s1, s2, ..., sN}: the set of states of the model, where N is the number of

states.

2) V = {v1, v2, ..., vD}: the set of observable values, where D is the cardinality of

the observable values.

3) A = [aij]: the state transition probabilities matrix, where aij is the probability

of transition from state si to sj.

4) B = [bjk]: the observations probabilities matrix, where bjk is the probability of

emitting vk from state sj.

5) Π = [πi]: the initial state probability.

To build the BWHMM submodels, the parameters N , D, and the set λ = {A,B,Π}

must be specified. The value of N can be decided according to the guidelines in [45].

Given a set of observation sequences representing the compacted error burst Ok ={
Ok

1 , O
k
2 , · · · , Ok

Dk

}
, k = 1, · · · , K (K is the number of error bursts in each class),

the BW algorithm is utilised to maximise the probability Γ =
∏K

k=1 P (λ|Ok).
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Figure 2.21: The BWHMM states concatenation.

Finally, an error-free bursts concatenation to the BWHMM submodels is executed.

Figure 2.21 shows the concatenation implementation of the error-free burst state

with the error bursts submodels. Each submodel represents one class and has one

state. The transitions from the error-free state to the other states generate error

bursts with variable structures according to the states of transition. Whereas, the

transitions from the error burst states to the error-free state generate error-free bursts

with different lengths.

In fact, the Baum-Welch algorithm is robust since it always converges, but it cannot

guarantee that the convergence point is always a global maximum. Thus, its final

parameters may not be the optimal ones. Another drawback is that the BWHMMs

consist of a large number of states. This in turn increases the complexity of the model.

Furthermore, the BWHMMs are best for characterising the error bursts of indoor
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channels, where the error profiles have long error bursts and the errors’ densities in

the error bursts are following the bell-shape.

2.3.3 Stochastic Context-Free Grammars

Stochastic Context-Free Grammars (SCFGs) are set of rewriting rules called pro-

ductions. Each production is augmented with a probability. The probability of a

derivation (parse) is then the product of the probabilities of the productions used in

that derivation [59].

SCFGs can be utilised in order to generate error sequences [24]. Similar to the HMMs,

the SCFG models are only able to portray the statistics of error burst profiles of

indoor environments, where the error-density behaviour is bell-shaped. This limitation

reduces the applicability of these models. The HMMs were afterwards modified based

on the idea of context-free grammars. Nonetheless, the advantage of the SCFGs over

the HMMs is that they are much more powerful in modelling palindromes. Therefore,

the SCFGs make the modelling of the bell-shaped error density inside an error burst

to occur in a natural and easy way. They can generate the ascending and descending

parts inside an error burst at the same time.

Figure 2.22 shows an SCFG and modified HMM. The starting point in the process-

ing of both the SCFG models and modified HMMs is to extract the error bursts from

the original error sequence. Each error burst is partitioned into blocks of length L

bits. A compact format representation can then be obtained by counting the number

of errors inside each block of L. Consequently, the bursts are grouped into classes.

Figure 2.22 (a) illustrates the SCFGs. They are made up of terminal and nonter-

minal symbols. The terminal symbols contain all the symbols that can appear in

the reference sequence. Whereas, the nonterminal symbols are those which appear

in the process of generating error sequences and are always replaced by a string of

terminal and nonterminal symbols. In the SCFG models, a nonterminal symbol S0 is

associated with an error-free interval. A transition from S0 to a nonterminal symbol

S1 identifies the beginning of an error burst, for which the ascending and descending
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Figure 2.22: (a) Error sequence generation for the SCFG models. (b) State
diagram for the modified HMMs.

parts of an error burst can be generated at the same time. Each error burst class

is allocated a nonterminal symbol Sk, which has a probability to terminate the error

burst generation. Then, the state S0 resumes and the process starts again until the

desired error sequence length is achieved. Here, k is a positive integer.

The modified HMMs [24] are demonstrated in Figure 2.22(b). The state D0 gener-

ates error-free intervals. It has a small transition probability to state U1 which begins

an error burst generation. For each error burst class, there are Uk and Dk states,

which generate the ascending and descending parts of an error burst, respectively.

The state Uk has a transition probability to Uk+1 to continue forming the ascending

part or Dk to initialise the descending part, whereas Dk has a transition probability

to Dk−1 to continue forming the descending part. Once the model reaches D1, there

is a probability to stay at D1 for sometime or to terminate the error burst generation,

then the error-free state D0 resumes. The process continues till an error sequence with
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a specified length is obtained. By the way, it is realised that the modified HMMs out-

perform the SCFG models regarding the burst error statistics results [24]. Therefore,

we will not consider this class of models in our future analysis and comparison.

2.3.4 Chaotic Attractors Generative Models

The chaotic attractors generative models (CAGMs) are based on chaotic systems [60–

64]. In fact, solving a differential equation that analyses a physical system in the

time domain (continuous or discrete) gives a solution which can be stable, periodic,

quasi-periodic, or chaotic. The chaotic solution should be treated by methods of

linearisation to get more acceptable resolutions.

A chaotic attractor is considered as a subclass of chaotic systems. It can be considered

as an intersection of a mathematical chaos and topological geometry. The aim of this

approach is to exploit the properties of a chaotic system to generate a time series of

arbitrary events with given statistics. The attractor of interest is the Lorenz attractor

which is shown in Figure 2.23. It is worth mentioning that, the chaotic system

exhibits a random behaviour in spite of its deterministic nature.

To obtain meaningful numbers from a chaotic attractor in the target environment,

sampling should be done for the trajectories. Consequently, projections of the sampled

points on the system axes should be calculated. In this case, the projections resemble

the bell-shaped Gaussian noise distribution, and then the probability of the error can

be determined by the tails of the distribution. A PDF of the coordinate variable

can be estimated in the tail region. After that, the minimum distance between the

estimated error gap distribution and the one of the reference can be calculated by

means of “Nelder and Mead” algorithm or other optimisation procedures. Another

way to follow is to use several attractors in which the sampling can be performed to

all of them, but with different steps. The obtained coordinates are added up using a

cost function that weights the mix. A PDF of the gap lengths can then be calculated.

After that, a shaping function is considered to match the error gap distribution to that

of the reference time series. By sampling the attractors again, the model generates
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Figure 2.23: Lorenz attractor.

a new realisation of the error process, which is different from the reference one but

exhibiting, generally speaking, similar statistics. In reality, the discrepancy between

the reference burst error statistics and those obtained from the attractor is quite high,

especially for the most important burst error statistics such as the bit error correlation

function. This method in general depicts the following equation:

l = S[f(
∑
i

(kiui))], (2.1)

where f(·) is an exponential or a polynomial function for the projections of the vectors

joining the current point of the trajectory and the coordinate origin, S[·] is a shaping

function to match the gap lengths probability distribution to that obtained from the

reference error sequences, k is a suitable weight, u is the x, y, or z coordinates and i

denotes the number of attractors.
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Despite that this model has a new idea rather than the well-known Markov models, it

is considered very complex and it takes long time to execute. Furthermore, it lacks the

accuracy in describing important burst error statistics, such as the bit error correlation

function as mentioned before. Consequently, we will not consider this class of models

any further.

2.3.5 Deterministic Process Based Generative Models

The final category, we consider in this chapter, is called the deterministic process

based generative models (DPBGMs) [65–70]. These models are related to the fading

processes, which can be represented by deterministic processes [7, 71] that are based on

the rule of sum of sinusoids [72–76]. The deterministic process is called as such because

all of its parameters are held constant during the simulation. In fact, some statistics of

bursty error sequences, namely the error burst and error-free burst distributions, can

be approximated from the second order statistics of fading envelope processes, more

precisely the level crossing rate (LCR) and the average duration of fades (ADF). The

error burst and error-free burst lengths are associated with the fading and inter-fading

intervals. Hence, fading processes can be used to generate error sequences.

To build a DPBGM, an underlying reference transmission system is replaced by a

properly parametrised and sampled deterministic process followed by a threshold de-

tector and two parallel mappers to fit the obtained length distributions of the error

and error-free bursts to the desired statistics of the descriptive models. Figure 2.24

demonstrates the DPBGM.

When the simulation is run, the deterministic process varies in a way that it crosses

the threshold with positive and negative slopes. When the level of the deterministic

process is above that threshold (inter-fade intervals) an error-free burst is generated.

On the contrary, when the deterministic level is below the threshold (fading intervals)

an error burst is generated. The lengths of the error-free bursts and error bursts

equal the number of samples counted in inter-fading and fading intervals, respectively.

Subsequently, error burst and error-free burst generators are created. After that, a
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Figure 2.24: The DPBGM implementation.

mapping process is forced to adjust the generated error burst and error-free burst

lengths to those of the reference error sequence. At the end, error sequences can be

obtained by consecutive combining of the generated error bursts with the generated

error-free bursts.

The deterministic process can be represented by:

ζ̃(t) = |µ̃1(t) + jµ̃2(t)| (2.2)

where

µ̃i(t) =

Ni∑
n=1

ci,n cos(2πfi,nt+ θi,n) , i = 1, 2 (2.3)

here Ni is the number of the required sinusoids and θi,n are phases uniformly dis-

tributed over (0, 2π]. The discrete frequencies fi,n = fmax sin
[

π
2Ni

(n− 1
2
)
]
where fmax

represents the maximum Doppler frequency. The gains ci,n = σ0
√

2
Ni

where σ0 is the

square root of the mean power of µ̃i(t).

Some second order statistics of the sampled deterministic process, such as the LCR,

the ADF, and the average duration of the inter-fades (ADIF) can be described using

the parameters in Ψ = (N1, N2, rth, σ0, fmax, TA), where rth is the threshold. The

values of N1 and N2 ≥ 7 to compare the deterministic process statistics with those of

the Rayleigh process [70]. Consequently, the parameter σ0 can be calculated through:
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σ0 =
rth√

2 ln(1 +RB)
. (2.4)

The sampling interval TA is defined as:

TA ≈
4σ0[exp(

r2th
2σ2

0
)− 1]

√
5πrthfmax

√
−1 +

√
1 + 10qs/3 , (2.5)

where qs is a very small quantity determining the maximum measurement error of the

LCR and

fmax =
NEB(1 +RB)

Tt
√
2π ln(1 +RB)

, (2.6)

where Tt is the total transmission time of the reference system.

In the aforementioned procedure, a careful selection should be taken into account when

deciding the value of the threshold and the parameters of the sampled deterministic

process. The threshold is chosen such that it is much less than 1. The other parameters

of the deterministic process were obtained by adapting the ratio of ADF and AIDF at

a chosen threshold to RB. Moreover, the level-crossing rate at the chosen threshold is

fitted to the desired occurrence rate REB of the error bursts, where REB = NEB/Tt.

After we obtain the error burst lengths and error-free burst lengths. It is observed

that the obtained lengths do not match the desired lengths properly. Therefore,

two mappers are designed in order to achieve good fit to the desired burst error

statistics. The number of error bursts of length me is denoted by NEB(me) and the

number of error-free bursts of length mē is denoted by NEFB(mē). A modification

to these lengths can be done such that ÑEB(me) = N̂EB(me) and ÑEFB(mē) =

N̂EFB(mē) hold, respectively. Here, N̂EB(me) equals ⌊ Ñt

Nt
NEB(me)⌋ or ⌊ Ñt

Nt
NEB(me)⌋+

1 for different error burst lengths me in order to fulfill
∑mB2

me=mB1
N̂EB(me) = ÑEB.
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Similarly, N̂EFB(mē) equals ⌊ Ñt

Nt
NEFB(mē)⌋ or ⌊ Ñt

Nt
NEFB(mē)⌋+ 1 for different error-

free burst lengths mē to satisfy
∑mB̄2

mē=mB̄1
N̂EFB(mē) = ÑEFB.

In order to modify the obtained error burst lengths, we first find the corresponding

values ℓ1me
and ℓ2me

in the obtained error burst lengths to assure the following conditions

ℓ2me
−1∑

l=ℓ1me

ÑEB(l) < N̂EB(me)

and

ℓ2me∑
l=ℓ1me

ÑEB(l) ≥ N̂EB(me) . (2.7)

Then,
ℓ2me−1∑
l=ℓ1me

ÑEB(l) +Nℓ2me
= N̂EB(me) . (2.8)

The same idea applies to the obtained error-free bursts. Then the modified error

bursts and error-free bursts are combined such that an error-free burst is followed by

error burst and so on. Hence, an error sequence can be generated

The DPBGM is a recent and promising class of error models. It really gives a perfect

match for the important burst error statistics compared with those of the reference

error sequences with just a small discrepancy. More advantages for the DPBGMs are

that their parameters can easily be determined, the design procedure can efficiently

be implemented using the computer, and the statistical properties can be varied in a

wide range. The approach has a drawback in the stage of generating error sequences,

because it needs the reference error sequences to carry out the generation. In compar-

ison, other models, especially those based on Markov chains, do not need the reference

error sequences to create the error bursts and hence the error sequences.

2.3.6 Generative Models Comparison and Summary

We classified the existing generative models in the literature into five classes. Each

class of models identifies a method for generating error sequences and has advantages
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and disadvantages. Table 2.1 summarises the differences between these different

classes.

Although many improvements were accomplished to Markov models by either increas-

ing the number of states or changing the transition conditions, all devolved models

became complex with unsatisfactory results. The best model amongst Markov models

is SFM as it has a good compromise between simplicity and accuracy and applied to

various channels. Moreover, its error-free distributions follow a sum of exponentials.

Nevertheless, SFM is not suitable to slow fading scenarios.

SFM is our choice to compare with our proposed models in addition to BWHMM

and DPBGM as they are widely used. We discarded SCFG and CAGM from our

comparisons as their usage is limited to specific environments and their performance

can hardly conquer our selected models, namely SFM, HMM, and DPBGM.

It can also be noticed in Table 2.1 that DPBGM has the least disadvantages and

the most advantages. Therefore, DPBGM is expected to take the lead amongst all

generative models regarding the best performance.
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Table 2.1: Generative models comparison.

Generative models Advantages Disadvantages

MMs • Simply structured and
easily implemented

• Failed to closely match
original error sequences

• Applied to wide range of
channels

• Have renewal natures

• Parametrised based on the
assumption of having geo-
metric distribution for the
run lengths

BWHMMs • Robust and always con-
verge

• The convergence point is
not always a global maxi-
mum
• BW algorithm needs long
time to reach convergence
points
• Very complex because of
the huge number of needed
states
• Better characterise error
bursts of indoor channels

SCFGs • More useful than
BWHMM in modelling
palindromes

• Only portray the statis-
tics of error bursts derived
from indoor environments,
i.e., the error-density be-
haviour is bell-shaped

• Have faster execution
than the BWHMM

• General performance is
not better than HMM

CAGMs • Use chaotic attractors • Very complicated to
parametrise
• Take long time to execute
• Do not accurately de-
scribe most of burst error
statistics

DPBGMs • Linked with the underly-
ing fading process

• The generation stage is
not self-driven

• Easy to understand, de-
termine their parameters,
and implement
• Performance is very satis-
factory
• Applicable to all environ-
ments
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Novel Hidden Markov Generative

Models

3.1 Introduction

Markovian models have plenty of applications in many fields of science including error

models. The structure of the Markovian generative models ranges from simple to

very complicated. It is well-known that simplicity in modelling adversely impacts the

accuracy. However, It is always very desirable to have simple models with acceptable

accuracy of the outcome of the results. In this chapter, we propose a Markovian

based generative models that is very simple to parametrise and the results have very

satisfactory accuracy. This model is tested against hard bit and soft bit error sequences

in addition to packet error sequences. Moreover, we increase the complexity of the

proposed Markovian model a bit by introducing extra layer of processing but having

more accurate results.

3.2 Double Embedded Processes based HMMs

In this section, a novel generative model called Double Embedded Processes based

Hidden Markov Model (DEPHMM) has been proposed. This model consists of two
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layers of processes: the first layer is composed of only one error-free state and many

error bursts states, whereas the second layer constructs detailed error bursts inside

the error bursts states. Estimating the DEPHMM parameters is intuitive and plain.

3.2.1 DEPHMMs for Hard Bit-Level Error Sequences

The starting point in configuring the DEPHMM is to divide an obtained reference error

sequence from a real system into error bursts and error-free bursts. But, to ascertain

the error-free bursts we firstly need to find out the value of η. It can be chosen

through a range of values between ηi and ηf so that the error burst identification is

not affected. Both values are simply obtained from the EFRD curve when it is flat.

Figure 3.1 illustrates a breakdown of an error sequence. It demonstrates that an

error sequences consists of error-free bursts and error bursts which in turn break

into error clusters and gaps. This configuration was a source of inspiration towards

constructing the DEPHMM.

Figure 3.2 shows a sketch of the DEPHMM. Since the error-free bursts consist of

only “0”s, one state is sufficient to represent them. On the other hand, the error

bursts are considered as the most important part in the DEPHMM, because they have

many structural variations. Therefore, error bursts deserve to be classified into many

groups. Each group should convey a specific structural behaviour. Subsequently, a

structural criterion must be adopted for the purpose of error bursts classification. The

maximum gap in each error burst of the reference sequence is the choice. Explicitly,

the maximum gaps of error bursts which could range from 0 to η−1 should be divided

according to their histogram into the number of error burst states, where the divided

intervals of the maximum gaps have approximately equal number of error bursts. By

using this criterion, the model can circumscribe any degradation in error correlation,

which is adequately obvious in wireless communication systems. Joining the error

burst states with the error-free burst state to construct generated error sequences is

the first process in the DEPHMM.
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Producing error-free bursts is straightforward. Once we recognise the reference error-

free burst lengths distribution, many error-free burst lengths can then be generated.

The big challenge now is how to construct generated error bursts so that they convey

the same behaviour of the reference error bursts. Because error bursts are composed

of error clusters and gaps with lengths less than η, both of them can be represented by

a separate number of states. As a result, many state configurations are possible. But,

since our major apprehension is the detailed construction of errors within an error

burst, we allot several substates for the error clusters of each class of the first process

and single substate for the gaps of the error bursts. Each error cluster substate is

occupied by a single error cluster length due to error clusters’ short lengths. Similar to

the error-free bursts, the production of gaps within error bursts of each class depends

mainly on their length probability distribution. Connecting the error cluster substates

with the gaps substate is the second process. The mean gap length of the generated

error bursts in each state should match that of the original error bursts. Otherwise,

the states with mismatched mean gap lengths should be further partitioned.

Figure 3.1: A breakdown of an extract of an error sequence.
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The parameters of the DEPHMM are as follows:

1) N : the number of states for error bursts, i.e., S = {s1, s2, ..., sN , sN+1}, where

S is the set of states. N is selected according to the accuracy demand.

2) Mu: the number of error cluster substates in each state, i.e.,

VOu = {v1u, v2u, ..., vMu, vMu+1}, where VOu is the set of substates, O = 1, ...,M ,

and u = 1, ..., N . Mu is designated according to the number of lengths that the

error clusters have in each error burst state.

3) F = (fi,j): the state transition matrix, where fi,j is the transition probability

from State si to State sj, such that

fi,j = P [Qt+1 = sj |Qt = si] , 1 ≤ i, j ≤ N + 1

Figure 3.2: The DEPHMM.
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=


1, 1 ≤ i ≤ N, j = N + 1,

NEB,j∑N
j=1 NEB,j

≈ NEB,j

N×NEB,N
, i = N + 1, 1 ≤ j ≤ N,

0, otherwise,

(3.1)

with Qt being the current state at time t and NEB,j the number of error bursts

in sj. The structure of the state transition matrix is

F =


0 · · · 0 1
...

. . .
...

...

0 · · · 0 1

fN+1,1 · · · fN+1,N 0

 . (3.2)

4) Du = ((dh,k)u): the substate transition matrix, where (dh,k)u is the transition

probability from Substate vhu to Substate vku , such that

(dh,k)u=P [Rt+1= vku |Rt= vhu ],1 ≤hu, ku≤Mu + 1

=


1, 1 ≤ hu ≤Mu, ku =Mu + 1,

NC,ku∑Mu
ku=1 NC,ku

, hu =Mu + 1, 1 ≤ ku ≤Mu,

0, otherwise,

(3.3)

with Rt being the current substate at time t and NC,ku the number of error

clusters in Substate vku . The structure of the substate transition matrix is

Du =


0 · · · 0 1
...

. . .
...

...

0 · · · 0 1

dMu+1,1 · · · dMu+1,Mu 0

 . (3.4)

The reason that (3.2) and (3.4) have probabilities of 0 values is that no transi-

tions occur between the error burst states themselves as well as the error cluster

substates themselves, respectively. Moreover, self transitions are not allowed.

On the contrary, (3.2) and (3.4) have probabilities with values of 1. That means
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the transitions between the relevant states are enforced. This is natural to guar-

antee that each error burst is followed by a sole error-free burst, and each error

cluster is followed by a single gap.

5) A = (aj(n)): the first process emission probability distribution matrix, where

aj(n) (1 ≤ j ≤ N +1) is the probability of getting the burst yn in State sj, that

is

aj(n) = P [yn at t|Qt = sj] , 1 ≤ n ≤ NEB,j, NEFB,j.

NEFB,j is the number of error-free bursts in State sj.

6) B = (bku(m)): the second process gap emission probability distribution matrix,

where bku(m) (ku =Mu +1) is the probability of getting the gap xm in Substate

vku , that is

bku = P [xm at t|Rt = vku ] , 1 ≤ m ≤ NG,ku .

NG,ku is the number of gaps in Substate vku .

7) Πu = ((πk)u): the initial substate distribution vector, where (πk)u is the prob-

ability of Substate vku to be an initial substate.

Πu = (dMu+1,1, ..., dMu+1,Mu , 0) , (3.5)

which is extremely important since it assures the initiation of an error burst by

an error cluster, otherwise the definition of error burst is no longer valid. By

analogy, we can obtain the initial state distribution vector.

8) Ωu = ((ωk)u): the termination substate distribution vector, where (ωk)u is the

probability of vku to be the final substate.

Ωu = (dMu+1,1, ..., dMu+1,Mu , 0) , (3.6)

which is also very important because it ensures that the error burst is finalised

with an error cluster as specified in the definition.
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9) δn,u: error burst length values. These values regulate the termination of error

bursts generation, so that Ωu shall be activated according to them. The Activa-

tion takes place when the generated error burst lengths become either equal or

around a chosen δn . The deviation from δn should be small enough, otherwise,

the current generated error burst will be discarded. δn,u are acquired from the

reference error burst length distribution.

10) Γ: generated error sequence length. This value terminates the error sequence

generation once it is reached or exceeded. It does not matter whether the current

state is error burst or error-free burst.

All the aforementioned parameters construct the DEPHMM and explain its operation.

3.2.1.1 Simulation Results and Discussions

In order to scrutinise the DEPHMM operation, a reference error sequence needs to

be obtained for its parametrisation. To achieve this, we consider an uncoded EGPRS

transmission system with ideal frequency hopping. The elementary digital channel

is constituted of a Gaussian minimum shift keying (GMSK) modulator, an interfered
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Figure 3.3: EFRDs of the descriptive model obtained from the EGPRS system
and different generative models.
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propagation channel, a GMSK demodulator, and a hard decision Viterbi equaliser [77].

The underlying channel is tailored to TU environment with CIR of 8 dB, and mo-

bile speed of 3 km/h. The data are transmitted using time-division multiple access

(TDMA) with blocks of 116 bits and a transmission rate of Fs = 270.8 kb/s

The reference error sequence has 15 million bits. It exhibits long error bursts inter-

weaved with long error-free bursts. It has 4269 error bursts and 4268 error-free bursts

with maximum lengths of 6489 and 6251 bits, respectively. We find η from Figure 3.3

which displays the EFRD. From its shape plateau, we find ηi = 400 and ηf = 1000

hold. Here, ηi is the beginning of the plateau and ηf is the end of the plateau. The

selection of any value η between ηi and ηf results in the same burst identification

because the probability of encountering error-free bursts of lengths ranging from ηi to

ηf is negligible [45]. The chosen value of η is 800. Γ = 21 million bits.

For the sake of comparison, a SFM, BWHMM, and DPBGM have been implemented.

The parameters of a SFM with N states are obtained by fitting the weighted sum

of N − 1 exponentials to the EFRD. The number of states used for the SFM is 6.

In fact, no better improvement of the SFM statistics could be attained by increasing

its number of states to more than 6. Therefore, this number of states makes SFM to
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Figure 3.4: ECDs of the descriptive model obtained from the EGPRS system and
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Figure 3.5: EBDs of the descriptive model obtained from the EGPRS system and
different generative models.

compromise between accuracy and complexity, such that adding more states increases

the complexity whilst no further enhancement to the SFM performance occur. On

the contrary, reducing the number of states to less than 6 reduces the accuracy. In

the BWHMM, the number of classes is 12, whereas the total number of states is

400. The number of bits which should represent each block in the error bursts is
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Figure 3.6: EFBDs of the descriptive model obtained from the EGPRS system
and different generative models.
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Figure 3.7: BEPDs of the descriptive model obtained from the EGPRS system
and different generative models (n = 116).

chosen to be 103 bits. For the DPBGM, the vector Ψ=(N1 = 9, N2 = 10, rth =

0.09, σ0 = 0.0783, fmax = 73.22Hz, TA = 0.8132ms), such that N1 and N2 ≥ 7 in order

to compare the deterministic process statistics with Rayleigh process statistics [70],

rth ≪ 1 (any value below 1 works because of the usage of the mappers). Here also

σ0, fmax, and TA are obtained from (2.4), (2.5), and (2.6), respectively, whilst RB =
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Figure 3.8: BECFs of the descriptive model obtained from the EGPRS system
and different generative models.
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0.9344, and qs = 0.01.

To assess any generative model, we need to investigate how close its burst error statis-

tics can match the descriptive model. Figures 3.3–3.8 illustrate the behaviour of the

burst error statistics, mentioned in Subsection 2.2.1, for the descriptive model and

the well-known generative models addressed before. It is apparent that the SFM fails

to characterise all the statistics except the EFRD, since the SFM is designed by fit-

ting it. The BWHMM depicts an enhancement to the SFM, despite the fact that it

misses the contiguity with the descriptive model. This is because the BWHMM was

designed to best describe error sequences with bell-shaped error density bursts. But,

our reference error sequence has many error bursts which do not comply with such

a shape. However, the DPBGM statistics has small differences from the DEPHMM

statistics of high accuracy. Nevertheless, the DEPHMM leads the other generative

models since the DPBGM fetches the error bursts from the reference error sequence

rather than constructing them by itself.

In Figures 3.3–3.6, 10 classes of error bursts are selected for the DEPHMM. However,

this number of classes is not sufficient to fit the EFBD and BECF in Figures 3.7–3.8

perfectly. Therefore, we increased this number to 20 and 30. As a result, a notable

augmentation in the performance is achieved. Although the total number of states of

the DEPHMM reaches 260 (including the substates), it is still less than the number of

states of the BWHMM. Similar to the EFBD and BECF, it is worth mentioning that

the burst error statistics in Figures 3.3–3.6 could be enhanced as well by increasing

the number of classes.

3.2.2 DEPHMMs for Soft Bit-Level Error Sequences

Dealing with soft error sequences is quite similar to hard error sequences when pa-

rameterising the DEPHMM. We start with decomposing an obtained soft reference

error sequence into soft error bursts and soft error-free bursts. However, to extract

the error-free bursts the value of η must be determined. It can be chosen from a range

of values between ηi and ηf so that the soft error burst identification is not seriously
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affected. Both values are simply obtained from the SEFRD curve when it becomes

approximately flat.

Again, one state is used to represent the soft error-free bursts in the first process

because it contains nonnegative integers only. Whereas, the error bursts are more

complex in the DEPHMM than the soft error-free bursts, because they have nega-

tive and nonnegative integers arranged variously. Therefore, soft error bursts deserve

partitioning into many groups. Each group should convey a specific structural be-

haviour. Subsequently, a structural criterion must be adopted for partitioning the

soft error bursts. Since the errors (nonnegative integers) control the behaviour of the

soft error sequence, we have decided to use the number of soft error clusters as a

criterion. However, the length of the soft error bursts varies and this would affect the

number of soft error clusters. Therefore, the ratio of the number of soft error clusters

in an error burst to the length of the error burst is the best choice for the purpose of

partitioning. Notice that this criterion of division is different from the one of the hard

bit DEPHMM. The range of ratios should then be divided into the number of soft

error burst states, where each state has approximately the same numbers of soft error

bursts. By utilising this criterion, the model can delimit serious degradation in the

error correlation, which is obvious in wireless communication systems. Combining the

soft error burst states with the soft error-free burst state to produce error sequences

is the task of the first process in the DEPHMM.

Generating soft error-free bursts’ lengths is straightforward. Once we find the ref-

erence error-free burst lengths distribution, many error-free burst lengths can then

be generated by knowing the distribution of each integer from the reference error se-

quence. The remaining challenge is how to create soft error burst lengths so that they

convey similar statistics to the reference error bursts. Since soft error bursts are com-

posed of soft error clusters as well as soft gaps with lengths less than η, both of them

are represented by a number of states. Therefore, several substates have been selected

for the soft error cluster lengths of each class of the first process and a single substate

for the soft gap lengths of the error bursts. Each error cluster substate is alloted a

single error cluster length because of error clusters’ short lengths. Similar to the soft
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error-free bursts, the generation of soft gaps lengths within the soft error bursts of

each class depends basically on their length probability distribution. Connecting the

soft error cluster substates with the soft gaps substate is certainly the second process.

Thus, Figure 3.2 applies.

The percentage of error numbers for each state of error burst states should approxi-

mately match the one of the reference error sequence. However, if the percentage is

much larger than the one of the reference sequence, then the state should be further

divided. On the contrary, if the percentage is much less than the one of the refer-

ence sequence, then 10-50% of the soft gap lengths must be deleted till the previous

condition is accomplished.

At the same time, the distribution of each symbol must be known for each state in

the reference error sequence. Subsequently, the symbols of the soft gaps and error

clusters are substituted in the generated error bursts and error-free bursts according

to their reference distribution. A prior knowledge of the number of generated error

bursts to achieve a target length of generated error sequence is helpful to keep similar

generated symbol distribution to the reference error sequence. The parameters of the

soft bit DEPHMM are very similar to those of the hard bit DEPHMM.
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Figure 3.9: SEFRDs of the descriptive model obtained from the EGPRS system
and different generative models.

53



Chapter 3: Hidden Markov Generative Models

3.2.2.1 Simulation Results and Discussions

In order to examine the ability of the soft DEPHMM to produce satisfactory results

of burst error statistics, a reference soft error sequence is obtained for the purpose of

parametrisation. Therefore, we employ the same EGPRS transmission system with

small difference. Here, the underlying discrete channel is constructed from a GMSK

modulator, an interfered propagation channel, a GMSK demodulator, and a 4-bit soft

decision Viterbi equaliser. The underlying channel is still tailored to a TU environment

with CIR of 8 dB, and mobility speed of 3 km/h.

The reference soft error sequence has 10 million integers, whereas Γ = 20 million

bits. We find η from Figure 3.9 which displays the SEFRD. From the shape of its

plateau, the best value of η is 800. Afterwords, the soft error bursts can be extracted

and partitioned into classes. The number of partitions should be high e.g., more

than 10. The choice of this number is a trade-off between the accuracy of the final

results and the complexity of the model [51]. For our soft DEPHMM, we choose the

number of states to be 20. For the purpose of comparison, a soft DPBGM has been

implemented. The parameters of the soft DPBGM are the same as those of hard bit

error sequences.
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Figure 3.10: SGDs of the descriptive model obtained from the EGPRS system
and different generative models.
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Figure 3.11: SECDs of the descriptive model obtained from the EGPRS system
and different generative models.

Figures 3.9–3.14 illustrate the behaviour of the soft burst error statistics for the

descriptive model and the DPBGM. The DPBGM burst error statistics have small

differences from the DEPHMM statistics. Nevertheless, the DEPHMM leads the

DPBGM since the latter retrieves the soft error bursts from the reference soft error

sequence rather than constructing them by itself. In Figure 3.9, the SEFRD is
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Figure 3.12: SBEPDs of the descriptive model obtained from the EGPRS system
and different generative models.
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Figure 3.13: SBECFs distributions of the descriptive model obtained from the
EGPRS system and different generative models.

drawn, where the DEPHMM has very small difference from the descriptive model.

This difference is negligible. The SGD in Figure 3.10 almost matches the one of the

descriptive model. Figure 3.11 shows the SECD which has a little deficiency at large

lengths of soft error clusters. This is because the probabilities to select these lengths

are smaller than the others in the second process of the DEPHMM. The SBEPD is
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Figure 3.14: SDSDs of the descriptive model obtained from the EGPRS system
and different generative models.
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depicted in Figure 3.12. This statistic is very important to evaluate and design many

error coding schemes. The result of this statistic for the DEPHMM is satisfactory

compared to the DPBGM, the value of n = 116 holds. In Figure 3.13, the SBECF is

illustrated. It has a sufficient image of the descriptive model as well. The SBECF is

vital to the evaluation and designation of bit interleavers. Finally, Figure 3.14 shows

the SDSD. Here, the soft decision has M = 4, therefore, ej ∈ [−8,+7]. This statistic

shows a competent match between the DEPHMM and the descriptive model.

3.2.3 DEPHMMS for Packet-Level Error Sequences

The steps for formulating the packet DEPHMM is similar to those of the hard bit

DEPHMM because both of them require binary error sequences, Hence, Figure 3.2

applies. However, partitioning the packet error bursts has here different criterion

from the hard bit DEPHMM. The ratio of the number of error packets in an error

burst to the length of the error burst has been used as a criterion for partitioning.

Consequently, the range of ratio values should be partitioned to accommodate the

number of error burst states, where each state has approximately the same numbers

of error bursts. By utilising this criterion, the model can delimit serious degradation

in the error packet correlation, which is perceived in packet error sequences.

The parameters of the packet DEPHMM are almost the same of those of the hard bit

DEPHMM.

3.2.3.1 Simulation Results and Discussions

In order to obtain a reference packet error sequence for the purpose of parametrisa-

tion, we simulate again an uncoded EGPRS transmission system with ideal frequency

hopping. However, the CIR value is changed to 11 dB. The length of the reference

packet error sequence is 1 million. It is structured by allocating a one for a failed

or erroneous packet which contains at least one undecodable error, and a zero for a

correctly decoded packet.
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Figure 3.15: EFRDs of the descriptive model obtained from the EGPRS system
and different generative models.

The value of η is chosen to be 50 from the EFRD plateau of Figure 3.15 and Γ = 1.7

million bits. The error bursts can then be extracted and partitioned into classes.

The number of partitions should be high e.g., more than 10. This number affects the

accuracy of the final results and the complexity of the model. The selected number

of states N = 20. For the purpose of comparison, a packet DPBGM and SFM are
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Figure 3.16: EBDs of the descriptive model obtained from the EGPRS system
and different generative models.
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Figure 3.17: EFBDs of the descriptive model obtained from the EGPRS system
and different generative models.

implemented. The parameters of the packet DPBGM are RB = 0.052 and qs =

0.01. Subsequently, the vector Ψ = (9, 10, 0.09, 0.2255, 300.85Hz, 0.0394ms), and the

number of states used for the SFM is 6.

For the purpose of evaluating the packet DEPHMM, we need to find out how closely
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Figure 3.18: ECDs of the descriptive model obtained from the EGPRS system
and different generative models.
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Figure 3.19: PECFs of the descriptive model obtained from the EGPRS system
and different generative models.

its burst error statistics can match the descriptive model. Figures 3.15–3.19 demon-

strate the performance of the packet DEPHMM, DPBGM, and SFM compared with

the descriptive model in terms of the burst error statistics. It is clear that the DE-

PHMM burst error statistics have small discrepancies from the DPBGM statistics and

the descriptive model. The high performance quality for the DPBGM is due to the
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Figure 3.20: BEPDs of the descriptive model obtained from the EGPRS system
and different generative models.
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borrowed error bursts from the reference packet error sequence. Nevertheless, this

borrowing process is not desirable in generative models. Therefore, the DEPHMM

can be considered better than the DPBGM. Figure 3.15 depicts the EFRD where

the DEPHMM has very small difference from the descriptive model. This difference

is negligible. The EBD of the DEPHMM in Figure 3.16 almost matches that of

the descriptive model. Figure 3.17 shows the EFBD of the DEPHMM with good

agreement with the descriptive model. The ECD of the DEPHMM is illustrated in

Figure 3.18, it has a little divergence for long error clusters, e.g., 8. This is because

the probability of selecting these lengths are smaller than the others in the second

process of the DEPHMM. In Figure 3.20, the PECF of the DEPHMM is shown. It

has a sufficient image of the descriptive model at high correlation values, but it fails

to mimic the distinct breakpoints so it shows average correlation values. Finally, The

BEPD is illustrated in Figure 3.19, the value of n = 55 is selected. This statistic

shows a good match between the DEPHMM and the descriptive model. Whereas, the

SFM failed to match most of the burst error statistics except the EFRD.

3.3 Layered HMMs

Hierarchical [78–80] and Layered HMMs (LHMMs) [81] have been introduced to dra-

matically reduce processing the amount of training data required for them to achieve

a comparable performance to conventional HMMs.

The LHMM is a statistical model derived from the HMM. A LHMM consists of several

levels of HMMs, where the HMMs on level i + 1 correspond to observation symbols

or probability generators at level i. Every level i of the LHMM consists of Ki HMMs

running in parallel [82].

In this section, we propose a novel generative model, called three layered HMMs

(3LHHM). The first layer is made up of one error-free burst state and several error

burst states assigned according to the maximum error cluster lengths. The second

layer divides further the classes of error bursts based on their maximum gap lengths.
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Figure 3.21: The 3LHMM.

The final layer constructs the error bursts. Implementing the 3LHMMs and deter-

mining its parameters are simple and straightforward. Binary bit error sequences are

used and the resulting burst error statistics are competent.

3.3.1 Three Layered HMMs for Hard Bit Error Sequences

In order to distinguish the error-free bursts from the error bursts, the value of η should

be determined. As we have previously learnt, the value of η can be obtained from the

EFRD curve when it is flat.

The 3LHMM design is shown in Figure 3.21. One state is used to represent the error-

free bursts because they consist of “0”s only. On the contrary, the error-bursts have

various structural configurations and therefore are entitled to classification. Thus,
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several error burst states are required, each state typifies a common structural be-

haviour. The classification criterion for the first layer is the maximum error cluster

length in each error burst. This means that each class is represented by one state

and each state contains all error bursts that have the same maximum error cluster

length. The number of values of the maximum error cluster lengths in the original

error sequence determines the number of error burst states in the first layer. For the

purpose of further classification, each error burst state in the first layer can be parti-

tioned into internal states according to the maximum gap lengths of its error bursts.

The internal states have error bursts within equal intervals of the entire maximum

gap lengths range of each error burst state. The maximum gap lengths in each state

have long range, consequently, the number of internal states can be large, e.g., 8-15.

Those internal states are held to be the second layer in the model. The third layer

is dedicated to constructing error bursts. Clearly, an error burst consists of error

clusters of different lengths and gaps of lengths less than η. Since the errors are our

concern in error models, we allocate several substates of the second layer for the error

clusters in a manner that each substate represents one error cluster length. Moreover,

because the gaps of the error bursts consist of “0”s only, one state is still sufficient to

represent them. Generating gaps of length less than η in the third layer and error-free

bursts in the first layer depends only on their lengths distribution.

The parameters of the 3LHMM are as follows:

1) N : the number of error burst states in the first layer, i.e., S = {s1, s2, ..., sN , sN+1},

where S is the set of states and N is the number of the values of the maximum

error cluster lengths in the original error sequence.

2) Mp: the number of the internal states for each error burst state, i.e., WOp ={
w1p , w2p , ..., wMp

}
, where WOp is the set of internal states, O = 1, ...,M , and

p = 1, ..., N . The parameter Mp is chosen to be large enough e.g., 8-15.

3) Lp,q: the number of error clusters substates in each internal state, i.e., Vp,q ={
v1p,q , v2p,q , ..., vLp,q , vLp,q+1

}
, where Vp,q is the set of substates and q = 1, ...,Mp.
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The parameter Lp,q is designated according to the number of error cluster lengths

in each internal state, such that each length has one substate.

4) F = (fi,j): the state transition matrix, where fi,j is the transition probability

from State si to State sj, such that

fi,j = P [Qt+1 = sj |Qt = si] , 1 ≤ i, j ≤ N + 1

=


1, 1 ≤ i ≤ N, j = N + 1,

NEB,j∑N
j=1 NEB,j

, i = N + 1, 1 ≤ j ≤ N,

0, otherwise,

(3.7)

with Qt being the current state at time t and NEB,j the number of error bursts

in State sj. The state transition matrix is

F =


0 · · · 0 1
...

. . .
...

...

0 · · · 0 1

fN+1,1 · · · fN+1,N 0

 . (3.8)

5) Dp,q = ((dh,k)p,q): the substate transition matrix, where (dh,k)p,q is the transition

probability from Substate vhp,q to Substate vkp,q , such that

(dh,k)p,q =P
[
Rt+1= vkp,q |Rt= vhp,q

]
,1 ≤hp,q, kp,q ≤Lp,q + 1

=


1, 1 ≤ hp,q ≤ Lp,q, kp,q = Lp,q + 1,

NC,kp,q∑Lp,q
kp,q=1 NC,kp,q

,hp,q = Lp,q + 1, 1 ≤ kp,q ≤ Lp,q,

0, otherwise,

(3.9)

with Rt being the current state at time t and NC,kp,q the number of error clusters

in Substate vkp,q . The substate transition matrix is
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Dp,q =


0 · · · 0 1
...

. . .
...

...

0 · · · 0 1

dLp,q+1,1 · · · dLp,q+1,Lp,q 0

 . (3.10)

6) A = (aj(n)): the first layer emission probability distribution matrix, where

aj(n) (1 ≤ j ≤ N +1) is the probability of getting the burst xn in State sj, that

is

aj(n) = P [xn at t|Qt = sj] , 1 ≤ n ≤ NEB,j, NEFB,j.

NEFB,j is the number of error-free bursts in State sj.

7) B = (bu(m)): the second layer emission probability distribution matrix, where

bu(m) is the probability of getting the error burst ym from the internal State w1p ,

that is

bu(m) = P
[
ym at t|Tt = w1p

]
, 1 ≤ m ≤Mp,

where Tt is the current state at time t.

8) E = (ekp,q(l )): the third layer gap emission probability distribution matrix,

where ekp,q(l ) (kp,q = Lp,q+1) is the probability of getting the gap zl in Substate

vkp,q , that is

ekp,q(l ) = P
[
zl at t|Rt = vkp,q

]
, 1 ≤ l ≤ NG,kp,q .

NG,kp,q is the number of gaps in Substate vkp,q .

9) Πp,q = ((πk)p,q): the initial substate distribution vector, where (πk)p,q is the

probability of Substate vkp,q to be an initial substate.

Πp,q =
(
dLp,q+1,1, ..., dLp,q+1,Lp,q , 0

)
, (3.11)

which assures the initiation of an error burst by an error cluster, otherwise

the definition of error burst is no longer valid. Similarly, we can obtain the
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termination substate distribution vector Ωp,q, which ensures that the error burst

is ending with an error cluster, and the initial state distribution vector.

10) δn,p,q: error burst length values. These values regulate the termination of error

burst lengths, so that Ωp,q shall be activated according to them. The activation

takes place when the generated error burst lengths become either equal or around

a chosen δn . The deviation from δn shall be small enough, otherwise, the current

generated error burst shall be discarded and the process shall be repeated again.

The δn,p,q are acquired from the reference error burst lengths distribution.

11) Γ: the length of the generated error sequence. This value terminates the error

sequence generation once it is reached or exceeded regardless of the current

state, i.e., whether it is error burst or error-free burst state.

The above mentioned parameters set up the 3LHMM. In summary, each substate in

the third layer of the 3LHMM creates error bursts and forward them to the second

layer, which in turn collects all the created error bursts and forward them to the first

layer. The first layer combines the error bursts with the error-free bursts to produce

error sequences. But, before generating error sequences, the produced error bursts in

each state should be tested to ensure that they convey similar statistical behaviour to

the originals. The testing parameters in each state are the mean value of error cluster

lengths and mean value of the gap lengths of the error bursts. If the matching test

fails, it can be conducted to the internal states of the failed state. The internal state

which fails the test must be divided into several parts. If this procedure does not

work, then 10-50 % of the related gaps in the failed internal state should be deleted

since many of them are duplicate.

3.3.1.1 Simulation Results and Discussions

For the sake of model parametrisation, a reference error sequence should be obtained

from a real system as usual. We have used the same EGPRS transmission system

which is aforementioned in Subsection 3.2.1.1 to get bit error sequences.
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Figure 3.22: EFRDs of the descriptive model obtained from the EGPRS system
and different generative models.

The chosen reference error sequence has 15 million bits and is corresponding to a CIR

of 8 dB. It exhibits long error bursts interleaved by long error-free bursts. We find η

from Figure 3.22 to be 800. The value of N is 19, whereas Mp is fixed to 10 and

Γ = 20 million bits.
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Figure 3.23: GDs of the descriptive model obtained from the EGPRS system and
different generative models.
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Figure 3.24: ECDs of the descriptive model obtained from the EGPRS system
and different generative models.

For the purpose of comparison, again a SFM, BWHMM, and DPBGM are imple-

mented. The number of states used for the SFM is 6. In the BWHMM, the number

of classes is 12, whereas the total number of states is 400. The number of bits which

should represent each block in the error sequence is chosen to be 103 bits.
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Figure 3.25: BEPDs of the descriptive model obtained from the EGPRS system
and different generative models.
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Figure 3.26: BBPDs distributions of the descriptive model obtained from the
EGPRS system and different generative models.

For the DPBGM, the vector Ψ =(N1 = 9, N2 = 10, rth = 0.09, σ0 = 0.0783, fmax =

73.22Hz, TA = 0.8132ms), such that N1 and N2 ≥ 7 in order to compare the deter-

ministic process statistics with Rayleigh process statistics [70], rth ≪ 1 (any value

below 1 works because of the usage of the mappers). Here also σ0, fmax, and TA are

obtained from (2.4), (2.5), and (2.6), respectively, whilst RB = 0.9344, and qs = 0.01.

10
0

10
2

10
4

10
6

0

0.2

0.4

0.6

0.8

1

∆ k+1

B
it 

er
ro

r c
or

re
la

tio
n 

fu
nc

tio
n,

 ρ
(∆

 k
)

 

 

Descriptive model
3−LHMM
DPBGM
BWHMM
SFM

Figure 3.27: BECFs of the descriptive model obtained from the EGPRS system
and different generative models.
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In order to appraise the 3LHMM, we have to inspect how close its burst error statistics

can fit those of the reference error sequence. Figures 3.22–3.27 demonstrate the

behaviour of the burst error statistics of an EGPRS reference error sequence and

those attained from the generative models. It is shown that the SFM fails to describe

the ECD, BEBD, BBPD, and BECF statistics, whereas the BWHMM has better

description for them than the SFM except for the EFRD and GD. On the other hand,

the BWHMM burst error statistics performance still does not reach the one of the

reference error sequence. This remark excludes the BBPD which has good behaviour

for block bursts of lengths 0-60 bits. The lack of agreement is because that the

BWHMM behaviour was conceived to best characterise the bell-shaped error density

bursts. But, our reference error sequence has many error bursts which do not conform

to such a shape. However, the EFRD, GD, ECD, BEBD, BBPD, and BECF statistics

of the DPBGM have small differences from the 3LHMM statistics which nearly match

the reference sequence statistics. On the other hand, the 3LHMM illustrates perfect

match to the reference sequence for the BBPD. Therefore, the 3LHMM leads the

other generative models given that the DPBGM retrieves the error bursts from the

reference error sequence instead of constructing them by itself.

3.4 Summary

Having accurate error models with not very complicated processing and parametrisa-

tion is strongly desirable. This can be achieved by implementing the double embedded

processes based HMM and the layered HMM. Simulation results have shown that the

output burst error statistics match the desired statistics perfectly. Therefore, the per-

formance of the proposed models is satisfactory. The scrutinising has been applied to

hard and soft bit error sequences in addition to packet error sequences.

The DPBGM can outperform the proposed models. However, it is not desirable in

the industry as it has a deficiency in the process of generating error bursts. This

deficiency can easily be tackled by changing the generation process. Therefore, a new
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model related to the DPBGM has been suggested in Chapter 4 which can eliminate

the flaw so that the model becomes more desirable.
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Chapter 4

Deterministic Process based

Generative Models at Packet Level

4.1 Introduction

Most of the generative models in the literature are designed at bit level, but their

parameters can easily be tuned to adapt the packet level. The authors of [83–87]

addressed the packet-level error modelling.

The DPBGM performance has shown superiority over the other discussed generative

models by fitting the descriptive model. Therefore, it receives more attention in

this chapter. The DPBGM has been developed for bit-level error sequences and its

performance has been shown in [70]. Although some of the DPBGM’s performance for

packet level have been shown in Subsection 3.2.3.1, we show here more performance

results for it. In addition, the packet DPBGM parametrisation is demonstrated.

We also provide a modification procedure to the DPBGM in order to mitigate its dis-

advantage of borrowing error bursts from the reference error sequences in the stage of

generating new error sequences. This behaviour is very undesirable in error modelling.
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4.2 Packet-Level DPBGM

The utilised deterministic fading process ζ̃(t) of (2.2) is sampled with a reliable sam-

pling period TA. This is natural when considering block or packet transmissions,

especially when the packet is short and the data rate is high, i.e., data rate is much

greater than Doppler frequency. In this case, it is reasonable to assume that the vari-

ous bits of a same packet experience approximately the same channel conditions [18].

For this purpose, a threshold detector with a chosen threshold value rth is then applied

to the sampled deterministic process ζ̃(kTA), where k is a non-negative integer. During

the simulation, the level of the deterministic process fluctuates and crosses the given

threshold rth along the time axis. If the level of ζ̃(kTA) is larger than rth, the model’s

output produces error-free sample, whereas error sample occurs when the level of

ζ̃(kTA) is less than rth. The counts of consecutive error samples or error-free samples,

in the corresponding fading and inter-fading intervals of ζ̃(t), are the lengths of the

error bursts and error-free bursts. This is the mechanism for obtaining the error burst

length generator ẼBrec and error-free burst length generator ẼFBrec. Note that any

symbol that has a tilde (˜) sign is related to the generative model.

For the parametrisation purpose, the level-crossing rate (LCR) Ñζ(rth) at the chosen

threshold rth is fitted to the desired occurrence rate REB = NpNEB/Tt of error bursts.

Here, Np stands for the packet size, NEB is the total number of error bursts, and Tt

denotes the total transmission time of the reference transmission system, from which

the reference packet error sequence of length Nt bits is obtained. The ratio R̃B of

the ADF T̃ζ−(rth) at rth to the average duration of inter-fades (ADIF) T̃ζ+(rth) at

rth is approximated to the desired ratio RB = MEB/MEFB, where MEB and MEFB

are the mean values of the error burst and error-free burst lengths, respectively, of

the reference packet error sequence. Moreover, the sampling interval TA is chosen

carefully, as specified below, in order to detect most of the level crossings and fading

intervals at deep levels.

In (2.4), when using the method of exact Doppler spread (MEDS) with Ni ≥ 7,

the LCR Ñζ(rth) of ζ̃(t) approximately fits the LCR Nζ(rth) of a Rayleigh process.
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Moreover, the ADF T̃ζ−(rth) and the ADIF T̃ζ+(rth) of ζ̃(t) approximate very well the

corresponding quantities of a Rayleigh process Tζ−(rth) =
√

2π
β

σ2
0

rth

[
exp(

r2th
2σ2

0
)− 1

]
and

Tζ+(rth) =
√

2π
β

σ2
0

rth
, respectively. Therefore, R̃B can be approximated as

R̃B ≈
Tζ−(rth)

Tζ+(rth)
= exp(

r2th
2σ2

0

)− 1 . (4.1)

As observed, the second order statistics of ζ̃(kTA) are determined by the parameter

vector Ψ = (N1, N2, rth, σ0, fmax, TA). The parameter rth can be assigned such that it

is much less than 1. In order to find other parameters, we apply RB = R̃B and REB =

Nζ(rth) to get fmax = NpNEB(1+RB)

Tt

√
2π ln(1+RB)

. TA ≈
4σ0[exp(

r2th
2σ2

0
)−1]

√
5πrthfmax

√
−1 +

√
1 + 10qs/3 , where

qs is a very small value, e.g., qs = 0.01. This value determines the maximum mea-

surement error of the LCR. This implies that the probability of undetectable level

crossings at rth is not larger than qs [67, 88].

Finally, the sampled deterministic process ζ̃(kTA) can be simulated within the neces-

sary time interval [0, T̃t]. Here, T̃t = TtÑt/Nt with Ñt denoting the required length

of the generated packet error sequence. The total numbers of the generated er-

ror bursts ÑEB and error-free bursts ÑEFB can approximately be estimated from

ÑEB = ⌊ Ñt

Nt
NEB⌋ and ÑEFB = ⌊ Ñt

Nt
NEFB⌋, respectively. Here, ⌊x⌋ stands for the floor

of x. Consequently, an error burst length generator ẼBrec with ÑEB entries and an

error-free burst length generator ẼFBrec with ÑEFB entries are derived.

The mappers of (2.7) and (2.8) are then applied as in Chapter 2. The mapping process

yields the correct ẼBrec and ẼFBrec, from which the corresponding error burst and

error-free bursts, respectively can be produced. Since error bursts consist of clusters

and gaps combined in sequence, it is convenient to create parameter vectors ẼCGj

(j = 1, 2, . . . , ÑEB), which reflect the construction of each error burst from ẼBrec as

error cluster and gap lengths. Therefore, all vectors ECGi corresponding to error

bursts with length me are found in EBrec. Thereafter, for all error bursts with the

same lengthme in ẼBrec, random ẼCGj are allocated from all possible vectors ECGi.

This is the procedure for generating the error bursts. Error-free bursts, on the other

hand, consist of zeros only. Therefore, they are obtained by generating a series of
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Figure 4.1: EFRDs of the descriptive model obtained from the EGPRS system
and three generative models.

zeros for each length in ẼFBrec. By combining generated error bursts with error-free

bursts in succession, an entire packet error sequence is constructed.

For the above three design steps of the DPBGM, the first two steps (parametrisation

and mapping) are called the simulation set-up phase, while the last step (generation

of packet error sequences) is called the simulation run phase.
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Figure 4.2: GDs of the descriptive model obtained from the EGPRS system and
three generative models.
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Figure 4.3: ECDs of the descriptive model obtained from the EGPRS system and
three generative models.

4.2.1 Simulation Results and Discussions

The performance criteria are normally evaluated by working out the burst error statis-

tics. One generative model is preferred over others if its burst error statistics fit very

well those of the reference packet error sequences obtained directly from the EGPRS
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Figure 4.4: EBDs of the descriptive model obtained from the EGPRS system and
three generative models.
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Figure 4.5: EFBDs distributions of the descriptive model obtained from the EG-
PRS system and three generative models.

system. Especially, the most important burst error statistics such as the BEPD which

is helpful for designing the high layer protocols.

Here, we use the same descriptive models, DPBGM, and SFM as the one of Subsection

3.2.3.1. The value of Np = 456 for the DPBGM. We additionally add here the

modelling of BWHMM for further comparison demonstration. The simulation set-up
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Figure 4.6: BEPDs of the descriptive model obtained from the EGPRS system
and three generative models.
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Figure 4.7: BBPDs distributions of the descriptive model obtained from the EG-
PRS system and three generative models.

phase of the BWHMM involves extracting the error bursts from the error sequence,

that are then divided into smaller blocks of length L = 2. Based on the maximum

number of errors in L, the error bursts are classified. In our simulations, the number

of classes is 3 and the total number of states is 100.
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Figure 4.8: NCFs of the descriptive model obtained from the EGPRS system and
three generative models.
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Figure 4.9: PECFs distributions of the descriptive model obtained from the EG-
PRS system and three generative models.

Figures 4.1–4.12 depict the behaviour of the descriptive model and the genera-

tive models of the DPBGM, BWHMM, and SFM in terms of EFRDs, GDs, ECDs,

EBDs, EFBDs, BEPDs, BBPDs, NCs, PECFs, GCFs, MGDs against the multigap

length of order 10, and MGDs against the multigap length of order 100, respec-

tively. In general, the DPBGM outperforms the SFM and BWHMM in terms of
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Figure 4.10: GCFs of the descriptive model obtained from the EGPRS system
and three generative models.
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Figure 4.11: MGDs with order 10 of the descriptive model obtained from the
EGPRS system and three generative models.

accuracy by well fitting the descriptive model for all the defined burst error statistics.

An exception is the MGD against the multigap length of order 100 (Figure 4.12),

for which the SFM behaves the best. However, the SFM fails to describe some

of the desired burst error statistics, as can be seen from the large deviations for

ECD (Figure 4.3), EBD (Figure 4.4), BEPD (Figure 4.6), NCF (Figure 4.8),
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Figure 4.12: MGDs with order 100 of the descriptive model obtained from the
EGPRS system and three generative models.
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and PECF (Figure 4.9), whereas it satisfactorily matches the descriptive model for

EFRD (Figure 4.1), GD (Figure 4.2), EFBD (Figure 4.5), BBPD (Figure 4.7),

and MGDs (Figures 4.11 and 4.12). The BWHMM fails to characterise the GD

(Figure 4.2), ECD (Figure 4.3), BEPD (Figure 4.6), NC (Figure 4.8), and

PECF (Figure 4.9) adequately, while the performance is acceptable for the rest

burst error statistics. This is because the BWHMM is best designed to be used for

error sequences having error bursts with bell-shaped error density, while this property

is difficult to be found in packet error sequences. Nonetheless, the BWHMM shows

better performance than the SFM in terms of ECD (Figure 4.3), EBD (Figure 4.4),

EFBD (Figure 4.5), BEPD (Figure 4.6), and PECF (Figure 4.9), whereas it is

not better than the SFM for the remaining burst error statistics.

In terms of model complexity and simulation efficiency, all the three generative models

require two phases: simulation set up phase and simulation run phase. For the set

up phase, all the three models have high complexity and require a long simulation

time, which depends on individual experiences and are difficult to compare. For the

simulation run phase, the DPBGM has the minimum complexity followed by the

BWHMM and then the SFM. Using a PC with a 2.4 GHz processor, the DPBGM,

BWHMM, and SFM need 0.422, 1.125, and 3.422 s, respectively. Thus, the DPBGM

outperforms the BWHMM and SFM in terms of accuracy as well as efficiency.

4.3 Deterministic Process based HMM

It is well explained in the former Sections that the DPBGMs do not create new error

bursts by its own in the design step of generating error sequences. The DPBGMs

only create the lengths of error bursts and error-free bursts. Then, they retrieve error

bursts of the same length directly from the reference error sequences. This behaviour

restricts the capability of DPBGMs to adaptively generate new error sequences at

different channel conditions. Also, if only reference burst error statistics are given

while target error sequences are not available, the DPBGM is of no use but other

generative models (e.g., SFM and BWHMM) can still generate error sequences.
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To overcome the drawback of DPBGMs, we have proposed a new packet-level gen-

erative model that replaces the problematic last design step (generation of error se-

quences) of the DPBGMs by using a HMM. This enhances the adaptability of the new

model to generate error bursts and consequently error sequences at various channel

conditions. We call the new model the deterministic process based HMM (DPB-

HMM). Note that the proposed DPB-HMM can also be used for generating bit-level

error sequences. The chosen HMM can easily be parametrised based on the procedure

developed in [51]. Unlike the model in [51], the DPB-HMM keeps the link between

the fading process and the underlying Markov process. Furthermore, the proposed

DPB-HMM is less complicated than the BWHMM.

Therefore, we develop a general design procedure for generating packet-level error

sequences using a properly parametrised and sampled deterministic fading process,

followed by a threshold detector and two parallel mappers, combined with a HMM.

The first two design steps, i.e., parametrisation of a sampled deterministic fading

process with a threshold detector and mapping process, of the proposed DPB-HMM

are called ‘simulation set-up phase’, which is very similar to that of a DPBGM. The

major challenge for the DPB-HMM is the third design step, i.e., generating packet-

level error sequences using a HMM without retrieving error bursts from reference error

sequences as in DPBGM. We call the third design step the ‘simulation run phase’.

Figure 4.13 illustrates the structure of the proposed DPB-HMM. Two embedded

classifiers or layers are added after the two mappers.

The first layer is to generate error bursts and error-free bursts, while the second layer

is to construct error bursts in more detail, which include error clusters and gaps.

In the first layer, the generation of error-free bursts (represented by the 0 state or

error-free state) is straightforward since each entry of ẼFBrec is basically presented

as the number of consecutive zeros. The error bursts are more complicated than

error-free bursts, because they consist of clusters (ones) and gaps (zeros) of different

lengths. A good practice of generating error bursts is to divide the modified ẼBrec

into different classes to simplify their generation. Each class, representing an error-

state in the first-layer Markov chain, conveys a common structural behaviour of error
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bursts. To balance the simplicity and accuracy of the HMM, the number of classes

or error-states should be properly chosen. Since we know EBrec from the descriptive

model, we can count the number of errors in each length. Consequently, we can use

the ratio of the number of errors to the error burst length (or local error density) as

a criterion to divide the error bursts into classes. This is reasonable because our aim

is to characterise the errors in the error bursts. Therefore, the range of the resulting

ratios is divided into N states, i.e., S = {s0, s1, ..., sN}, where S is the set of error

Figure 4.13: The DPB-HMM.
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burst states. Each state is allocated an approximately equal number (e.g., 300) of

error bursts corresponding to the divided range of ratios.

Once the error bursts are classified and the number of error states is defined, we need

to determine the state transition matrix F = (fi,j), 0 ≤ i, j ≤ N . The element fi,j

is the transition probability from the current state Qt = si at time t to the next

state Qt+1 = sj at time t + 1. From the first layer of the hidden Markov process

in Figure 4.13, it is clear that the transition from any error state to the error-free

state is compulsory so that we can generate the required packet error sequence in a

successive manner of error bursts and error-free bursts. This means that the transition

probability fi,j = 1 for 1 ≤ i ≤ N and j = 0. Moreover, there is no self-transition

in any state, i.e., fi,j = 0 for i = j. In addition, there is no transition between the

different error burst states, i.e., fi,j = 0 for 1 ≤ i, j ≤ N . The state transition from

the error-free state to any of the error burst states depends mainly on the number

of error bursts in each error burst state. Based on the above analysis, the transition

probability fi,j can be expressed by

fi,j = P [Qt+1 = sj |Qt = si] , 0 ≤ i, j ≤ N

=


1, 1 ≤ i ≤ N, j = 0

NEB,j∑N
j=1 NEB,j

≈ NEB,j

N×NEB,N
, i = 0, 1 ≤ j ≤ N

0, otherwise

(4.2)

where NEB,j denotes the number of error bursts in State sj. It follows that the state

transition matrix is given by

F =


0 f0,1 · · · f0,N

1 0 · · · 0
...

...
. . .

...

1 0 · · · 0

 . (4.3)

Each error burst can be further divided into error clusters and gaps (with lengths less

than η). Therefore, the second layer of the hidden Markov process, emitting from
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each error state in the first layer, is used to construct the error bursts in detail. For

this purpose, we need to find the error cluster recorder ECrec(sj) and gap recorder

Grec(sj) for each error burst state of the first layer. For the second layer, we assign

only one substate for the gaps, and a number of substates for the error clusters. The

number of error cluster substates depends on the number of lengths the error clusters

has in each state. Each error cluster length has a substate. The number of error

cluster substates is denoted by M , i.e., VOu = {v0u , v1u , ..., vMu}, where VOu is the set

of substates in state Su (u = j when j ̸= 0). Here, O = 0, 1, ...,M . The elements

(duh,k) of the substate transition matrix Du = (duh,k) can be calculated as

duh,k =P [Rt+1= vku |Rt= vhu ],0 ≤hu, ku≤Mu

=


1, 1 ≤ hu ≤Mu, ku = 0

NEC,ku∑Mu
ku=1 NEC,ku

, hu = 0, 1 ≤ ku ≤Mu

0, otherwise

(4.4)

where duh,k is the transition probability from Substate vhu to Substate vku , Rt is the

current substate at time t, and NEC,ku is the number of error clusters in vku . It is

apparent that the substate transitions depend mainly on NEC,ku .

In the process of generating error bursts in the hidden second layer, we must make

sure that the generation starts and ends with error clusters (based on the definition of

an error burst). Therefore we define the initial substate distribution vector Πu = (πu
k )

as

Πu = (0, d0,1, ..., d0,Mu) (4.5)

where πu
k is the probability of vku to be an initial or final substate. The generation of

gap lengths in each group depends on their length probability distribution.

Once the states and state transition matrices in the two layers of the hidden Markov

process are determined, packet error sequences with consecutive error bursts (with

error clusters and gaps) and error-free bursts can be generated.
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To recap, we obtain the consecutive error burst lengths ẼBrec and error-free burst

lengths ẼFBrec from the deterministic fading process. Basically, the length of the

error-free burst produces an error-free burst by interpreting the length to the number

of zeros. Whereas, the error burst length determines in which state the error burst

shall be constructed. If one error-burst length is located in many different states,

we randomly (uniformly distributed) choose one of the states. Finally, according to

the error burst length, an error burst is created in the hidden second layer. The

generated error burst length does not necessarily have the exact length as required,

because the gaps are chosen randomly and the final error burst length could exceed

the required length. The difference between the required and generated error burst

lengths should be small (e.g., less than 10 bits). Otherwise, the current error burst

should be discarded and the generation process should be repeated. The generation of

a packet error sequence is stopped once its length reaches Ñt or exceeds it. At the end,

the percentage of the generated error packets among all the generated packets from

each state must approximately match that of the corresponding state of the reference

error sequence. If the difference is large, it means that the error bursts of this state

cannot convey the structural behaviour of those of the reference sequence. In this

case, this state should be divided initially into two parts. Each part should be tested

again for the same purpose. This might happen at good channel conditions when the

errors are less correlated.

4.3.1 Simulation Results and Discussions

Again, we adopt the widely used SFM [22], BWHMM [45], and DPBGM [70] to show

their burst error statistics against those of the descriptive model and the proposed

DPB-HMM. The descriptive model of the EGPRS has been illustrated in the previous

sections as well as the DPBGM, SFM, and BWHMM. However, the CIR value here

is 8 dB. For the DPBGM, Ψ = (9, 10, 0.09, 0.1001, 2.32kHz, 1.432ns) with η = 50,

RB = 0.4979, and NEB = 6044 hold. In case of the BWHMM, the number of classes

is 9, the total number of states is 321, and L = 8.
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Figure 4.14: EFRDs of the descriptive model obtained from the EGPRS system
and different generative models.

Figures 4.14–4.22 show the burst error statistics of the descriptive model and the

four generative models (DPB-HMM, DPBGM, BWHMM, and SFM) in terms of their

EFRDs, GDs, ECDs, EBDs, EFBDs, BEPDs, BBPDs, NCFs, and PECFs, respec-

tively. For NCFs (Figure 4.21), the behaviour of different generative models becomes

crowded at the end. Therefore, we consider the comparison up to a value where the
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Figure 4.15: GDs of the descriptive model obtained from the EGPRS system and
different generative models.
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Figure 4.16: ECDs of the descriptive model obtained from the EGPRS system
and different generative models.

covariance is greater than 0.01. That value determines the length of the used inter-

leaver in the system design. The interleaver converts bursty errors to random errors

to be handled by error control schemes.

Regarding the generative models performance, the DPBGM generally shows the best

behaviour among all the four generative models regarding the accuracy of matching
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Figure 4.17: EBDs of the descriptive model obtained from the EGPRS system
and different generative models.
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Figure 4.18: EFBDs of the descriptive model obtained from the EGPRS system
and different generative models.

the descriptive model for all the defined burst error statistics. However, the DP-

BGM retrieves the error bursts from the reference packet error sequence rather than

constructing them by itself, which explains its good performance. Nonetheless, this

process of borrowing error bursts from the reference error sequence limits its adapt-

ability to generate new error sequences with different channel conditions using the
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Figure 4.19: BEPDs of the descriptive model obtained from the EGPRS system
and different generative models.
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Figure 4.20: BBPDs of the descriptive model obtained from the EGPRS system
and different generative models.

existing error sequences and is therefore not preferred in generative models. The

SFM, BWHMM, and the proposed DPB-HMM all create error bursts directly after

they are parametrised.

The SFM can approximate the desired EFRD, GD, EFBD, and BBPD (see Fig-

ures 4.14, 4.15, 4.18, and 4.20, respectively) with a satisfactory performance but
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Figure 4.21: NCFs of the descriptive model obtained from the EGPRS system
and different generative models.
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Figure 4.22: PECFs of the descriptive model obtained from the EGPRS system
and different generative models.

fail to describe the desired ECD, EBD, BEPD, NCF, and PECF (see Figures

4.17, 4.19, 4.21, and 4.22, respectively) with a large deviation. The BWHMM can

only match well the desired EBD and EFBD (see Figures 4.17, and 4.18, respec-

tively) while fail to characterise the rest burst error statistics. This is because the

BWHMM [45] is best designed to be used for error sequences having error bursts

with a bell-shaped error density, which is not a property for our reference packet er-

ror sequences. The SFM outperforms the BWHMM with regard to the EFRD, GD,

ECD, BBPD, NCF, and PECF (see Figures 4.14, 4.15, 4.16, 4.20, 4.21, and 4.22,

respectively), whereas the BWHMM outperforms the SFM in terms of EBD, EFBD,

and BEPD (see Figures 4.17–4.19, respectively).

The proposed DPB-HMM can approximate most of the desired burst error statistics

very well, including the EFRD, ECD, EFBD, BEPD, BBPD, and NCF (see Fig-

ures 4.14, 4.16, 4.19–4.21, respectively). The accuracy of matching the desired GD,

EBD, and PECF (see Figures 4.15, 4.17, and 4.22, respectively) using the DPB-

HMM is also acceptable but not as good as that using the DPBGM. Note that the

BEPD, BBPD, NCF, and PECF are the four most important ones amongst all burst

error statistics. When the users choose the generative models, they should pick up
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the one which has the best fit to the 4 most important burst error statistics of the de-

scriptive model with proper consideration to the model complexity and adaptability.

It is also worth mentioning that using generative models can significantly save compu-

tation time compared with using the descriptive model. The descriptive model needs

approximately 28 minutes for generating a packet error sequence that has a length

of 1 million. For generating a packet error sequence with a length of 1.5 million,

the DPBHMM, DPBGM, BWHMM, and SFM need for their simulation run phase

about 1.1, 0.5, 6.6, and 9.8 seconds, respectively, using a PC with an Intel processor

of 2 GHz.

Note that the EBD of the DPB-HMM has a small mismatch from the descriptive

EBD. This is because the generated lengths sometimes exceed the required length by

a small value. Moreover, the GD of the DPB-HMM does not closely match that of the

descriptive model due to some non-generated gaps, but the distribution still mimics

the reference one. The DPB-HMM does not fit the distinct breakpoints of the PECF,

however, it fits the other parts of the PECF very well.

In summary, the DPB-HMM has a slightly reduced performance compared to the DP-

BGM but outperforms the SFM and BWHMM. Also, the DPB-HMM eliminates the

drawback of the DPBGM with better adaptability and has less complexity compared

with the BWHMM. Therefore, the proposed DPB-HMM is deemed to be the best

generative model among the four models in terms of the tradeoff between accuracy,

complexity, and adaptability.

Please note that we have also tried error sequences with different channels and different

CIRs, rather than TU3 IFH with a CIR of 8dB. In all the cases, the burst error

statistics of the proposed DPB-HMM can match well those of the descriptive model.

The DPB-HMM shows superior performance than SFM and BWHMM. Therefore, the

above conclusions remain the same for target error sequences with different channels

and different CIRs.
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4.4 Summary

We have established a general procedure for developing a fast binary packet-level

generative model with a properly parametrised and sampled deterministic process

followed by a threshold detector and two parallel mappers. It has been demonstrated

that in general the DPBGM exhibits excellent conformity with the descriptive model

especially for the most important burst error statistics like the PECF and BEPD

which are used in the design and performance evaluation of the MAC layer, link control

layer, and high layer wireless communication protocols. The SFM and BWHMM fail

to describe most of the burst error statistics and notably the important ones. The

SFM outperforms the BWHMM in terms of the EFRD and MGD but is worse than

the DPBGM for the same statistics. The BWHMM performs better than the SFM in

terms of ECD, EBD, EFBD, BEPD, and PECF, but not better than the DPBGM. The

DPBGM has shown its superiority in terms of efficiency as well. However, its method

of generating error bursts is not desirable and limits its applications. Therefore, the

DPB-HMM has been suggested to tackle the DPBGM’s shortcoming.

This shortcoming has been eliminated in the DPB-HMM by replacing the DPBGM’s

generation process with a simple HMM process. The DPB-HMM outperforms the

SFM and BWHMM and has a slightly reduced accuracy performance compared to the

DPBGM. In terms of the overall tradeoff between the model accuracy, complexity, and

adaptability, the proposed DPB-HMM is deemed as the best amongst all the existing

generative models.
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Adaptive Generative Models

5.1 Introduction

All the aforementioned traditional generative models (MMs, HMMs, SCFGs, CAGMs,

DPBGMs) were developed for error sequences corresponding to one digital channel

with fixed system parameters and channel conditions, e.g., signal-to-noise-ratio (SNR)

values. If SNRs change, the whole communication system will have to be simulated

again in order to generate new reference error sequences. Consequently, those tradi-

tional generative models will have to be developed again with modified model param-

eters in order to fit the burst error statistics to those of new reference error sequences.

However, for appropriate design and performance evaluation of error control schemes

and high layer protocols, we need to test transmission schemes with many different

channel conditions or SNRs. In this case, using traditional generative models are still

very time consuming, as numerous reference error sequences corresponding to different

SNRs have to be first produced by the reference communication system. Therefore, it

is highly desirable to develop adaptive generative models that can utilise the limited

available error sequences in order to attain new error sequences with any SNRs.

In this chapter, we propose four adaptive generative models based on well-known

generative models, i.e., SFM, BWHMM, DPBGM, and DPB-HMM, by adjusting

94



Chapter 5: Adaptive Generative Models

some useful model parameters. Reference error sequences (descriptive models) were

obtained from uncoded long term evolution (LTE) systems.

The burst error statistics of newly generated error sequences using four adaptive

generative models are compared with those of reference error sequences. Also, the

bit error rates (BERs) of coded LTE systems are compared using reference error

sequences and new error sequences obtained from four adaptive generative models. It

is shown that the proposed adaptive DPBGM and DPB-HMM can provide excellent

approximation to the desired burst error statistics of reference error sequences and

the desired BER of coded LTE systems. However, the adaptive SFM and adaptive

BWHMM fail to do so.

5.2 Adaptive SFM (ASFM)

The probability transition matrix for an N -state SFM is [22]

T =



P11 0 0 0 P1N

0 P22 0 0 P2N

0 0
. . . 0

...

0 0 0 PN−1N−1 PN−1N

PN1 PN2 · · · PNN−1 PNN


(5.1)

where Pij is the the probability of transition from State i to State j (i, j = 1, ..., N).

Note that States 1, ..., N are error-free states, whereas State N is the error state. The

transitions between the error-free states are not allowed, i.e., Pij = 0 for i ̸= j and

i, j<N . The elements of T can be determined from the EFRD of the reference error

sequence according to [22]

P (0m0 |1) =
N−1∑
i=1

PNi

Pii

Pm0
ii , m0 > 0. (5.2)

The EFRD can also be approximated by the weighted sum of N − 1 exponentials

given by [22]
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P (0m0 |1) ≈
N−1∑
i=1

Aie
aim0 . (5.3)

The parameters Ai and ai can be found by using an optimisation method or curve

fitting technique to match (5.3) with the EFRD obtained from the reference error

sequence. Consequently, the elements of T in (5.1) are obtained as follows [22]

Pii = eai , i = 1, . . . , N − 1 (5.4)

PNi = Ai × Pii, i = 1, . . . , N − 1 (5.5)

PiN = 1− Pii, i = 1, . . . , N − 1 (5.6)

PNN = 1−
N−1∑
i=1

PNi. (5.7)

Once the above transition probabilities, i.e., all the elements of T, are known, an error

sequence with any desirable length can be generated. Therefore, the key to generate

new error sequences with any required SNRs from two reference error sequences is to

obtain the EFRDs of new error sequences, as can be seen from (5.1)–(5.7)

Table 5.1 summarises the ASFM procedure. Suppose that we have two reference

error sequences, e.g., X and Y with two different SNRs in dB, e.g., SNRX and

SNRY . Their EFRDs are denoted as PX(0
m0|1) and PY (0

m0 |1), respectively.

Table 5.1: The ASFM algorithm.

1. Find EFRD corresponding to error sequence X.
2. Find EFRD corresponding to error sequence Y .
3. Apply (5.8)–(5.10) to get the EFRD corresponding to

the required error sequence Z.
4. Find the parameters of (5.3) by curve fitting with the newly

obtained EFRD.
5. Work out (5.4)–(5.7).
6. Generate the error sequence Z.
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The EFRD PZ(0
m0 |1) of a new error sequence Z with different SNR in dB can be

obtained from

PZ(0
m0|1) = [PX(0

m0|1)]α × [PY (0
m0 |1)]β (5.8)

where the exponential indices α and β are given by

α =

∣∣∣∣SNRZ − SNRY

SNRX − SNRY

∣∣∣∣ (5.9)

and

β =

∣∣∣∣SNRZ − SNRX

SNRX − SNRY

∣∣∣∣ (5.10)

respectively.

Figure 5.1 shows the EFRDs of some reference error sequences (SNRs=1, . . . , 5 dB)

and newly generated error sequences with SNRs=2 dB and 4 dB. Note that the EFRD

of the new error sequence with SNR=2 dB (SNR=4 dB) was obtained from the EFRDs

of reference error sequences with SNRs=1 dB (3 dB) and 3 dB (5 dB), according
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Figure 5.1: EFRDs of the descriptive model obtained from the LTE system at
different SNRs.
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to (5.8)–(5.10). It is clear that the EFRDs of new error sequences can match those of

reference error sequences with the same SNR very well, which verifies the proposed

adaptive technique, as shown in (5.8)–(5.10).

5.3 Adaptive Baum-Welch based HMM (ABWHMM)

For the BWHMM, the error bursts of the reference error sequence are extracted and

numbered. Each error burst is then divided into blocks of L bits length. Each block

is then represented by the number of error bits it contains. For example, when L = 4,

the error burst 110011110001 has 3 blocks. Hence, that error burst is represented by 3

digits as 2 4 1. In this way, the error bursts are converted into a compact format and

they then form the vectors NELh(h = 1, . . . ,NEB). The largest number in NELh

vector is called the peak number of errors (PNE). Therefore, we have h numbers of

PNE. In the previous example, PNE=4 holds.

The next step is to classify the error bursts into N disjoint classes (submodels or

bursty states) according to ξ(N − 1) + 1 ≤ PNE ≤ ξN where ξ is a positive integer

number. Afterwards, the compact blocks of each state are used to train hidden Markov

submodels using BW algorithm [47]. Each submodel contains one class of error bursts.

It is already mentioned that in order to build the BWHMM submodels, the parameters

N , D, and the set λ = {A,B,Π} must be specified. The value of N can be decided

according to the guidelines in [45]. Given a set of observation sequences (error burst

blocks) representing the compact error burstOk =
{
Ok

1 , O
k
2 , · · · , Ok

Dk

}
, k = 1, · · · , K

(K is the number of error bursts in each class), the BW algorithm is utilised to

maximise the probability Γ =
∏K

k=1 P (λ|Ok) [45]. In our previous example, O =

{2, 4, 1}.

Once the optimised transition probabilities are found, error bursts can be generated

from the submodels. To complete the generation of new error sequences, the error-

free bursts concatenation to the hidden Markov submodels should be executed. The

error-free bursts are represented by one state only. The transitions from the error-free

98



Chapter 5: Adaptive Generative Models

state to the other states generate error bursts with variable structures according to

the submodel. However, the transitions from the burst states to the error-free state

generate error-free bursts with different lengths. Both error-free bursts and error

bursts are combined in the end.

Table 5.2 explains the ABWHMM procedure. To generate new error sequences with

any desirable SNRs from two reference error sequences, we should find out the most

important feature of the BWHMM. In fact, error models aim to identify the errors

and their distribution in the error bursts and this is recognised by the NELh vector.

From NELh, we can know the number of errors in each block for each error burst.

Consequently, from two NELh vectors, i.e., NELhX and NELhY corresponding to

two reference error sequences X and Y , we can obtain NELhZ corresponding to the

new error sequence Z. The SNR of Z is between the other two SNRs of X and Y

error sequences.

Once the NELhZ is calculated, the set of steps described before to construct the sub-

models are applicable in the process towards generating the required error sequence.

The new error sequence Z can then be generated directly using NELhZ without the

need for a reference error sequence. Therefore, the key to generate new error sequences

Table 5.2: The ABWHMM algorithm.

1. Find NELh vectors and error-free burst distribution
corresponding to error sequence X.

2. Find NELh vectors and error-free burst distribution
corresponding to error sequence Y .

3. Sort the contents of each vector in descending order.
4. Sort each set of vectors related to X and Y in descending order,

i.e., according to the first element in each vector NELh.
5. Work out the NELh corresponding to the

required error sequences Z using (5.9), (5.10), and (5.11).
6. Follow the normal steps of creating the HMM submodels

to generate the error bursts.
7. Work out the error-free distribution corresponding to the new

error sequence Z by interpolation between those of X and Y .
8. Derive the new error-free bursts and concatenate them to the new error bursts.
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with any required SNRs from two reference error sequences using the ABWHMM is

to obtain the NELhZs of new error sequences.

In order to findNELhZ , we need to first sort eachNELhX andNELhY in a descending

order so that the PNE is the leading element. Secondly, NELhX and NELhY each

should be sorted in the vertical direction, e.g., the PNE for NEL1X is greater than

PNE for NEL2X and so on. Then, NELhZ can simply be obtained by

NELhZ = ⌊α ·NELhX + β ·NELhY ⌋. (5.11)

Here, ⌊·⌋ denotes the floor function and α and β are given by (5.9) and (5.10), respec-

tively. Afterwards, we apply the classification rule and training procedure to generate

new error bursts.

To generate error-free bursts related to the new error sequence Z, we interpolate

two error-free burst distributions related to error sequences X and Y . Moreover, the

number of error-free bursts of Z is obtained by interpolation from the numbers of

error-free bursts of X and Y . Subsequently, the error-free burst lengths are worked

out and substituted with zeros. Eventually, concatenation of new error bursts and

error-free bursts is performed to produce the error sequence Z.

5.4 Adaptive DPBGM (ADPBGM)

In the DPBGM, the EBrec and EFBrec are collated as vectors in order to generate

error sequences at a later stage. We denoted the minimum value in EBrec as mB1

and the maximum value as mB2. Moreover, the minimum value and the maximum

value in EFBrec were denoted as mB̄1 and mB̄2, respectively. For the convenience of

developing the ADPBGMs, let us remember two quantities:

1) NEB(me) is the number of error bursts of length me in EBrec. Thus,∑mB2

me=mB1
NEB(me) = NEB holds. Then, the EBD PEB(me) can be calculated
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Figure 5.2: EBDs of the descriptive model obtained from the LTE system at
different SNRs.

by

PEB(me) =
1

NEB

∑me

x=mB1
NEB(x).

2) NEFB(mē) is the number of error-free bursts of length mē in EFBrec. Similarly,∑mB̄2
mē=mB̄1

NEFB(mē) = NEFB holds. Then, the EFBD PEFB(mē) is given by

PEFB(mē) =
1

NEFB

∑mē

x=mB̄1
NEFB(x).

In order to design the ADPBGM, we focus on EBrec and EFBrec since the most

important features of this model are the lengths of error bursts and error-free bursts.

Table 5.3 illustrates the ADPBGM method.

Subsequently, the key to generate a new error sequence Z with any required SNRs

from two reference error sequences X and Y , having different SNRs, i.e., SNRX and

SNRY , is to obtain the parameters ψ = (σ0, fmax, TA), P̃EB, P̃EFB, N̂EB(me), and

N̂EFB(me) for the error sequence Z from similar parameters of the error sequences X

and Y .

The first key parameter ψ is calculated by

ψZ = α · ψX + β · ψY . (5.12)
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The values of α and β are given by (5.9) and (5.10), respectively. Then, we have to

find P̃EBZ
of the error burst generator by

P̃EBZ
= α · P̃EBX

+ β · P̃EBY
. (5.13)

In order to construct ẼBrec from P̃EBZ
, we have to know the total number of error

bursts ÑEB for the error sequence Z. The number ÑEBZ
is obtained by interpolating

between ÑEBX
and ÑEBY

, given that X and Y have the same length. Multiplying

the obtained number with the extracted P̃EBZ
with some manipulations related to

the CDF gives us the required ẼBrec of Z. Similar procedure can be applied to find

ẼFBrec. In order to apply the mappers, we need to find N̂EB(me) corresponding to

Z by finding PEBZ
as follows

PEBZ
= α · PEBX

+ β · PEBY
. (5.14)

The distribution PEB has a monotonically increasing property which simplifies finding

new curves of PEB between the other two PEB curves. Figure 5.2. demonstrates

this property of PEB. Now, we have to work out the total numbers of error bursts

Table 5.3: The ADPBGM algorithm.

1. Find ψ, P̃EB, P̃EFB, N̂EB(me), and N̂EFB(me) corresponding to
error sequence X.

2. Find ψ, P̃EB, P̃EFB, N̂EB(me), and N̂EFB(me) corresponding to
error sequence Y .

3. Work out ψ, ÑEB(me), ÑEFB(me), the modified ÑEB(me), and

the modified ÑEFB(me) corresponding to error sequence Z
from (5.9), (5.10), (5.12), (2.7), (2.8), (5.13), and (5.14).

4. Find out the modified EBrec and EFBrec corresponding to the
required error sequences Z.

5. Create the error bursts and error-free bursts corresponding to the
error sequences Z.

6. Follow the normal procedure of the DPBGM to generate the error sequence Z.
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NEBZ
for the error sequence Z by interpolating between NEBX

and NEBY
given that

X and Y have the same length, and then we find N̂EB(me). Similar methodology

can be applied to find N̂EFB(me). Consequently, mappers are used according to (2.7)

and (2.8) to work out the modified ẼBrec and ẼFBrec.

Afterwards, we can create error bursts and error-free bursts according to the lengths

in the modified ẼBrec and ẼFBrec. Generating error-free bursts is simple because

the lengths of the modified ẼFBrec can easily be converted to series of zeros, unlike

error bursts which contain zeros and ones. Generating error bursts involves retrieving

their structures from the error bursts of error sequences X and Y . The retrieved error

bursts have the same length me as in the newly obtained ẼBrec of Z. Finally, the

error bursts and error-free bursts are combined together to construct the new required

error sequence Z.

5.5 Adaptive DPB-HMM (ADPB-HMM)

In order to design the ADPB-HMM, we follow the same procedure aforementioned in

Section 5.4. However, the generation stage of the DPB-HMM is different and depends

on the DEPHMM. Therefore, we have to focus on the transition matrix as well as

the distribution of the gaps of the second layer of the HMM. This is because the

second layer of DEPHMM is in charge of constructing the error bursts. Constructing

adaptive error-free bursts has been discussed in Section 5.4. Thus, the main work here

is to construct the adaptive error bursts. The concatenation between the adaptive

error-free bursts and adaptive error-bursts is subsequently conducted in the first layer

to generate new adaptive error sequences. Table 5.4 shows the detailed steps of

ADPB-HMM.

The first step is to calculate the two transition matrices duX and duY of the error cluster

substates in the second layer in DEPHMM for two different SNRs corresponding to

two reference error sequences X and Y , respectively. Our aim is to find the substates

transition matrix duZ for the adaptive error sequence Z.
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We perceived that each row, corresponding to each error burst state, in the substates

transition matrix, i.e., the substate transition vector in each error burst state, is

monotonically decreasing with the number of substates. Therefore,

duZ = α · duX + β · duY (5.15)

The values of α and β are given by (5.9) and (5.10), respectively.

It is also very important to know the number of error cluster substates in each error

burst state. It is already known that the number of error cluster substates corresponds

to the maximum error cluster length in each error burst state. The new number of

the error cluster substates for Z is worked out by

Mu
Z = ⌊α ·Mu

X + β ·Mu
Y ⌋ (5.16)

The error cluster substates are now constructed. Nonetheless, to complete the second

layer design, we need to find the gaps substate, for each error burst state, correspond-

ing to error sequence Z. We have found by investigations that the gaps distribution in

Table 5.4: The ADPB-HMM algorithm.

1. Find out the modified EBrec and EFBrec corresponding to
the required error sequences Z as in Table 5.3.

2. Find duX , M
u
X , and µ

u
X corresponding to error sequence X.

3. Find duY , M
u
Y , and µ

u
Y corresponding to error sequence Y .

4. Work out duZ , M
u
Z , and µ

u
Z corresponding to error sequence Z

from (5.9), (5.10), (5.15), (5.16),and (5.17).
5. Create the new error bursts.
6. Work out PEFB corresponding to error sequence Z.
7. Work out NEFB corresponding to error sequence Z.
8. Find out the EFBrec corresponding to the required error sequences Z.
9. Create the new error-free bursts.
10. Concatenate together the new error bursts and error-free bursts.
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the second layer follows the exponential distribution. However, to define any exponen-

tial distribution, its mean value is required. The mean values of the gaps distributions

related to error sequence Z is given by

µu
Z = α · µu

X + β · µu
Y (5.17)

The gap substate as well as the error clusters substates are now ready for each error

burst state of the new error sequence Z. Consequently, the error bursts can now

be constructed in the second layer and can subsequently be concatenated with the

error-free bursts in the first layer to form the new error sequence Z.

5.6 Simulation Results and Discussions

To validate our proposed adaptive generative models, we first need to obtain reference

error sequences, which are essential to initialise various parameters for the generative

models. We use an uncoded LTE system to obtain the required reference error se-

quences.
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Figure 5.3: ECDs of the descriptive model and different adaptive generative mod-
els.
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Figure 5.4: BEPDs of the descriptive model and different adaptive generative
models.

The open source Vienna LTE simulator v1.6r917 [89–91] that is used here, includes

Adaptive Modulation and Coding (AMC), MIMO transmissions, downlink transmis-

sion scheme based on Orthogonal Frequency Division Multiple Access (OFDMA).

The LTE simulator can also be utilised at both link level and system level. We used

the link level simulator which consists of one transmitting eNodeB, one receiver User
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Figure 5.5: BCFs of the descriptive model and different adaptive generative mod-
els.
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Figure 5.6: EBDs of the descriptive model and different adaptive generative mod-
els.

Equipment (UE), a downlink channel model over which only the Downlink Shared

Channel (DL-SCH) is utilised, signalling information, and an error-free uplink feed-

back channel with zero delay. We used the following channels: RA275, TU3, TU50,

PedB5 (pedestrian B)5 , and PedB10. The received data has a length of 12× 106 and

the transmission rate is Fs = 3450 kb/s. Reference error sequences were produced at

SNRs of 1 dB, . . . , 7 dB.
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Figure 5.7: GDs of the descriptive model and different adaptive generative models.
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Figure 5.8: BEPDs of the descriptive model and two adaptive generative models
(n = 50).

By comparing the transmitted error sequence with the received one, we work out the

bit error sequences. We use the four discussed generative models, namely, the ASFM,

ABWHMM, ADPBGM, and ADPB-HMM in order to generate new error sequences

of length 15 × 106 bits based on the obtained error sequences from the LTE system.

Here, we show only the results of the TU50 channel having SNRs of 2 dB, 3 dB, 4 dB,

and 5 dB.
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Figure 5.9: BCFs of the descriptive model and ADPBGMs.
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Figure 5.10: EBDs of the descriptive model and ADPBGMs.

The performance criteria when comparing between different generative models are al-

ways the burst error statistics. A generative model is better if its burst error statistics

better match those of the descriptive model, especially the most important statistics

such as the BEPD and BECF.

For the sake of comparison, the fitting of P (0m0 |1) in ASFM is achieved by using

five exponentials and therefore, N = 6 holds. After we fit (5.3) with P (0m0 |1) of
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Figure 5.11: ECDs of the descriptive model and ADPBGMs.
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Figure 5.12: The coded BER of the descriptive model and three adaptive gener-
ative models.

SNRs of 2 dB, 3 dB, and 5 dB, we can obtain the transition matrices from which

we can generate new error sequences. Afterwards, we apply (5.9), (5.10), and (5.8)

to calculate the adaptive P (0m0 |1) having SNR of 4 dB. Once we know the adaptive

P (0m0 |1), (5.3) and (5.1) can be applied to generate the new error sequences.

For the ABWHMM, we extract the error bursts from the error sequences of 3 dB

and 5 dB SNRs. Then, we divide each error burst into blocks with L = 20 bits and

obtain the NELh vectors. We apply (5.11) afterwards to obtain the NELhZ vector.

A Baum-Welch training process will then be applied to NELhZ after classifying it

into a satisfactory number of states. The number of classes N is 7 in our example,

and the number of substates is considerably large. Finally, the generated error burst

will be concatenated with the generated error-free bursts in order to produce the full

required error sequence.

In order to proceed with the ADPBGM and ADPB-HMM, we need to find the

vector Ψ. The value of qs was chosen to be 0.01. For the error sequences with

SNRs of 2 dB, 3 dB, and 5 dB, the values of NEB = 428418, 69706, 122474 and

RB = 8.43, 5.24, 2.09, respectively. Consequently, Ψ = (9, 10, 0.09, 0.0425, 34.9 kHz,

8.33 µs) for SNR = 2 dB, Ψ = (9, 10, 0.09, 0.0470, 36.8 kHz, 5.43 µs) for SNR =
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3 dB, and Ψ = (9, 10, 0.09, 0.0599, 40.9 kHz, 4.97 µs) for SNR = 5 dB. For the new

required error sequence Z, the vector ΨZ can be obtained by (5.12). Then, we find

ÑEB(me) and the modified ÑEB(me) for the error sequence Z with the aid of (5.13)

and (5.14). Similarly, ÑEFB(me) and the modified ÑEFB(me) can be found. Even-

tually, the error bursts and error-free bursts are combined together to construct the

entailed error sequences. The bit structure in the new error bursts is retrieved from

the other two surrounding error sequences based on the error burst lengths. For the

ADPB-HMM the number of states is 20. We calculate (5.15), (5.16), and (5.17) in

order to create the error bursts and then we concatenate them with the error-free

bursts in order to generate the new error sequences.

In our simulations, we produce an error sequence Z of 4 dB SNR from reference error

sequences X of 3 dB and Y of 5 dB SNRs (First scenario, Figures 5.3–5.7). We also

produce an error sequence Z with SNR=4 dB from error sequences X with SNR=2 dB

and Y with SNR=5 dB (second scenario, Figs. Figures 5.8–5.11). This means that

α = β = 0.5 for the first scenario and α = 1/3 and β = 2/3 for the second scenario.

The second scenario investigates the impact of further distancing the SNRs of error

sequences X and Y from the SNR of error sequences Z. We compare the burst error

statistics of error sequences Z, obtained from both scenarios, with those statistics

obtained from the reference error sequence of the LTE simulator having SNR=4 dB.

In terms of parametrisation, the value of η can be found from Figure 5.1 when the

curve is tending to turn and it was chosen to be 20.

Figures 5.3–5.11 illustrate various burst error statistics of the descriptive model

and adaptive generative models such as the ECDs (Figure 5.3 and Figure 5.11),

BEPDs (Figure 5.4 and Figure 5.8), BCFs (Figure 5.5 and Figure 5.9), EBDs

(Figure 5.6 and Figure 5.10), and GDs (Figure 5.7). Figures 5.3–5.7 omit the

comparison between the DPBGM and ADPBGM since the DPBGM gives approxi-

mate results to the descriptive one[70].

In general, the ADPBGM shows the best fit to the descriptive model. This is clear

for all the burst error statistics except a small mismatch at the end of the curve of

the ECD (Figure 5.3) and BEPD (Figure 5.4). The second best generative model
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is the ASFM, although its burst error statistics considerably mismatch those of the

ADPBGM. However, the ASFM and SFM fit each other. The ABWHMM results are

slightly worse than those obtained using the normal BWHMM procedure.

As it was noticed, the ADPBGM burst error statistics match those of the DPBGM

and those of the ASFM match those of the SFM. In addition, this applies to DPB-

HMM and ADPB-HMM because their main characteristics, i.e., EBD, EFRD, and du,

respectively, have a certain known trend as a monotonically increasing or decreasing.

However, the ABWHMMmain characteristic is a vector which is difficult to be utilised

for deriving a new accurate vectors using the interpolation methods.

We also examine the ADPBGM and ADPB-HMM by producing error sequences of

4 dB from other error sequences of 2 and 5 dB as shown in Figures 5.8–5.11 (second

scenario). We omit the ABWHMM investigations from the second scenario because

their burst error statistics do not match those of the BWHMM for the first scenario,

knowing that the second scenario is distancing the reference error sequences more from

the new error sequences. It is found that, distancing the SNRs that are required to

produce the new error sequence, deteriorates the performance. Figure 5.8 also illus-

trates the production of 4 dB BEPD by the ASFM using 2 and 5 dB error sequences.

It is apparent that the ASFM is not affected by distancing the reference SNRs. This

is because the required EFRD to parametrise the ASFM can be obtained by any pair

of other EFRDs of different SNRs. However, the general performance of the ASFM is

not satisfactory. Figures 5.8–5.11, show that the ADPBGM and ADPB-HMM are

slightly affected by changing α and β. Figure 5.12 shows the coded BER curves af-

ter feeding the generated error sequences obtained from neighbouring error sequences

X and Y with SNRs distancing one unit from the SNR of error sequences Z. It is

apparent that the ADPBGM outperforms the other models.

5.7 Summary

Adaptive generative models are very convenient for evaluating error control schemes

and high layer protocols as they can generate many new error sequences from at
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least two reference error sequences. This ability has a huge impact in reducing the

simulation time of the original system as well as the simulation time for evaluating

error control schemes.

In this chapter, we have proposed general methods for extracting adaptive generative

error sequences without the need of their reference error sequences given that a few

surrounding reference error sequences are available. Adaptive generative models are

important because the designer does not need to refer to the original system in order

to derive new error sequences when the channel conditions are changing. Therefore,

these methods can significantly reduce the computational time when there is a need

for huge number of error sequences for the purpose of evaluating the performance

of digital components in communication links. Two reference error sequences with

different channel conditions should be sufficient for the method presented in this

work.

To validate our proposed method, we have used uncoded LTE system to obtain a few

samples of reference error sequences at various SNRs. It has been illustrated through

simulations that the ADPBGM followed by the ADPB-HMM can approximately fit

the descriptive model. Other adaptive generative models like the ASFM and AB-

WHMM give poor burst error statistics compared to the descriptive model. However,

the ASFM is superior to the ABWHMM regarding most of the burst error statistics.

In other words, the ASFM performance is generally closer to that of the descriptive

model than the one of the ABWHMM. It has also been found that the burst error

statistics of the ASFM match those of the SFM. However, the burst error statistics of

the ABWHMM do not have a satisfactory match to those of the BWHMM. A draw-

back of ADPBGM is that it retrieves the error bursts’ structure from the neighbouring

error sequences. In contrary, the ADPB-HMM, ABWHMM, and ASFM can create

the error bursts and error-free bursts automatically once the required parameters are

calculated.
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Applications of Error Models to

HARQ

6.1 Introduction

Wireless communication systems employ HARQ in order to effectively detect and

correct errors occurred in wireless channels and hence enhance the throughput per-

formance of the system. HARQ consists of error detection, Forward Error Correction

(FEC), and the well-known ARQ, e.g., an N -channel Stop-And-Wait (SAW) proto-

col [92]. There are three types of HARQ, namely packet combining or Chase Combin-

ing (CC), full Incremental Redundancy (IR), and partial IR [93]. By using the Cyclic

Redundancy Check (CRC), erroneous packets can be detected and a request for a re-

transmission is sent to the transmitter. The retransmission can be a duplicate packet

or just some redundancy bits that are combined with the erroneous packet so that

it can easily be corrected by the FEC. For instance, the LTE system utilises the full

IR HARQ with 1/3 turbo encoder [94]. Full IR HARQ decreases the coding gain in

each retransmission by retransmitting only redundancy bits, which will be combined

with the stored erroneous packet in the receiver buffer. The retransmission continues

when needed until the packet is successfully decoded at the receiver or the maximum
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number of retransmissions is reached. In the latter case, the packet is discarded and

is recorded as a packet error.

In this chapter, we obtain packet error sequences utilising the Vienna LTE simu-

lator [89, 90]. We first statistically analyse the obtained error sequences without

considering HARQ. We then produce more packet error sequences applying the adap-

tive methods. These newly obtained error sequences replace the entire physical layer

and feed the HARQ protocol. At last, Packet Error Rate (PER) performance is ob-

tained. In the second part of this chapter, we investigate more statistical properties

of the HARQ error sequences for a different type of channel. Moreover, we propose

a prediction generative model that is capable of creating packet error sequences with

similar burst error statistics to those obtained from the LTE Vienna simulator having

HARQ from error sequences that do not take into account the effect of HARQ. In

other words, the newly developed prediction generative model can predict the per-

formance of HARQ in terms of high-order statistics called burst error statistics. In

the literature [95–102], researchers have predicted the performance of HARQ in terms

of PER only, which is a first-order statistic. However, we here predict higher order

statistics of the HARQ performance.

6.2 Applications of Adaptive Generative Models

to HARQ

As previously mentioned, for this section, we adaptively generate packet error se-

quences in order to replace the whole physical layer with them. These adaptive packet

error sequences are used to test the HARQ performance in terms of the PER.

6.2.1 Simulation Results and Discussions

In our simulations, we use again the LTE simulator. The detailed data processing

in the transmitter and receiver is as follows. In the transmitter, the user data are
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Figure 6.1: The PER of the descriptive model and three adaptive generative
models after the HARQ.

prepared as Transport Blocks (TBs). A CRC is derived and appended to each TB.

Then, each TB is encoded using a turbo encoder, interleaved, and rate-matched with

a target rate depending on the received CQI. After these processes, the blocks are

modulated and then mapped to the transmission antennas. The LTE simulator can

utilise several channel models based on ITU and 3GPP standards.

In the receiver, each UE receives the signals transmitted by the eNodeB and performs

signal processing in order to extract the useful transmitted data. Signal demapping,

demodulation, and decoding are executed. The CRC of the received packets is calcu-

lated in order to check whether the packets are received in errors or correctly. If the

received packet is correct, then “0” is recorded in the error sequence. Otherwise, “1”

is noticed in the error sequence.

We use here a TU100 channel with SNRs of 2 dB, 3 dB, 4 dB, 5 dB, and 6 dB. The

length of the obtained error sequences is 0.5 million packets. These error sequences

are exploited to generate more of them by means of developed adaptive methods.

These newly generated packet error sequences are then fed into the HARQ protocol

to test its performance in terms of PER.
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Figure 6.2: An error sequence extract to show the effect of adding the HARQ.

Figure 6.1 shows the PER of the descriptive model and ADPB-HMM, ADPBGM,

ABWHMM, and ASFM at 3 dB, 4 dB, and 5 dB. The adaptive packet error sequences

are obtained utilising two neighbouring error sequences distancing from the required

SNR by one unit at both sides. Figure 6.1 illustrates that the ADPB-HMM and the

ADPBGM have the closest performance to the descriptive model. The ABWHMM

comes next followed by the ASFM.

6.3 Predicting the Burst Error Statistics of HARQ

In order to develop the prediction generative model [103], we first have to under-

stand the effect of HARQ on error sequences, which are obtained without HARQ.

Therefore, we obtain error sequences with disabled and enabled HARQ from the LTE

simulator and compare between them. Figure 6.2 shows the effect of HARQ on an

extract of an error sequence. The HARQ breaks the error clusters reducing the error

correlation and producing new error rates inside the error cluster blocks of lengths

ECi (EC1, ...,ECk), k is the number of error clusters of the original error sequence

that does not include HARQ. This property of having many shorter error clusters

after including the HARQ, guides us to develop a prediction generative model that
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Figure 6.3: The density of error rates inside ECi after using the HARQ.

can predict the performance of HARQ. In other words, the prediction generative

model generates error sequences that cover the physical layer with HARQ from error

sequences obtained without considering the HARQ. In this way, we can catch the

statistical behaviour of the HARQ.

To characterise the effect of adding HARQ to the physical layer, the following steps

are considered:

1. we extract the k error clusters from the original error sequence which does not

include HARQ.

2. we work out the error cluster lengths recorder ECi and gap lengths recorder Gj

(G1, ...,Gk+1).

3. we now consider the effect of HARQ. That means some errors are corrected in

each ECi. Therefore, each original error cluster converts to new smaller error

clusters, and new gaps are formed as previously mentioned. In other words,

the error rate inside each ECi reduces from 1 to a value less than 1. We call

the new error cluster lengths ECi,h (h = 1, ..., li), and new gap lengths EGi,u

(u = 1, ..., li + 1). Here, li indicates the number of new error clusters in each

ECi.

The aforementioned error rate distribution follows a Gaussian distribution N (µ, σ2).

We have tested that for different channels, such as the TU, Pedestrian A (PedA),
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and Pedestrian B (PedB) channels. Figure 6.3 demonstrates the new error rates

distribution for PedB. The mean value µ of the Gaussian distribution is the PER at

the specific SNR, such that

N (µ, σ2) = N (PER, σ2). (6.1)

The PER can be calculated by using one of the PER prediction methods in [95–98].

These methods do not produce error sequences but predict the PER curves by other

mathematical means. For example, we use the Exponential Effective SIR Mapping

(EESM) algorithm in [95] to work out the required PER. The basic idea of EESM is

to calculate the instantaneous effective SNR δeff of the AWGN channel that yields

the right PER at the given SNR value δ in the LTE wireless channel, such that

PER(δ) = PERAWGN(δeff ) (6.2)

where

δeff = −γ ln( 1
N

N∑
k=1

e(
−δk
γ

)) (6.3)
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Figure 6.4: The density of error rates inside ECi after using the HARQ.
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and N is the number of subcarriers, γ is an optimisation parameter depending on

the code rate, modulation, and block size. Note that this method requires the prior

knowledge of PER curve of the system with AWGN channel.

Figure 6.4 also shows that the number of new error clusters li within ECi after the

retransmission follows the exponential distribution. The mean value of the exponential

distribution is:

ϵ =

∑k
i=1 ECi

k × δ
. (6.4)

Here, δ ≤ 10dB in our examples in order to guarantee sufficient number of error

clusters (k) with sufficient error cluster lengths (ECi).

As we have recognised the distributions of both the new error rates and the error

cluster lengths after the retransmission, we are able to produce any quantity of these

error rates and error cluster lengths to construct generated error clusters combined

with gaps that together occupy lengths equivalent to ECi of the system with HARQ.

We rename these lengths as ECi,HARQ. In other words, we produce ECi,HARQ to

replace ECi of the original error sequence as of the effect of including the HARQ (see

Figure 6.2).

The procedure of constructing the ECi,HARQ is as follows.

1. we randomly choose an error cluster length ECi.

2. we choose the number of new error clusters li (obtained from the exponential

distribution) that can fit within the chosen ECi according to a specified error

rate (obtained from the Gaussian distribution).

3. we fill in random gaps between these error clusters to complete the required

length ECi, giving that the first and last parts within ECi are gaps. Hence, the

structure of the ECi,HARQ is completed.

To finalise the process of generating a new error sequence that takes into account

the effect of HARQ, we replace each ECi, which contains ones only, with one of
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ECi,HARQ, which now contains zeros and ones. Consequently, the gap and error cluster

distributions are now completely different from those obtained from the original error

sequence.

6.3.1 Simulation Results and Discussions

The same LTE simulator was used here to obtain reference error sequences with the

existence and absence of HARQ. When HARQ is included, if the received packet

is correct, an acknowledgment signal is sent back to the transmitter. Otherwise, the

transmitter will send further information, with the help of the HARQ scheme, in order

to assist the receiver in correcting the errors. The received packet is dropped once the

retransmission fails to correct the errors. The receiver is also capable of estimating

the channel from the received data using the reference signals. From the channel

estimation, the quality of the channel is evaluated and feedback information is sent

in order to help the transmitter cope with the channel impairments by adjusting the

transmission parameters.
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Figure 6.6: EBDs of LTE error sequences with and without HARQ and the HARQ
prediction generative model.

In the LTE simulator, we use pedB wireless channel with an average SNR of 10 dB.

The user speed is set at 5km/h, the bandwidth is 1.4MHz, and the CQI is set to be

7, 8, and 9. This means that the modulation scheme used is 16QAM with coding

rates 0.37, 0.48, and 0.60. Other modulation schemes are also tested. The MIMO

configuration is 2×1. We show here only the results having CQI of 8. The number of
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Figure 6.7: ECDs of LTE error sequences with and without HARQ and the HARQ
prediction generative model.
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Figure 6.8: BEPDs of LTE error sequences with and without HARQ and the
HARQ prediction generative model (n = 10).

transmitted packets is 500000. For our used parameters, the method of EESM gives

us that the PER is 0.38 at 10 dB. The variance in (6.1) is chosen to be very small,

such as 0.02, this value has not been exceeded in our examples. The mean value of

the exponential distribution is calculated as 6.
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Figure 6.9: PECFs of LTE error sequences with and without HARQ and the
HARQ prediction generative model.
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Figures 6.5– 6.9 show the burst error statistics with and without HARQ. It is ap-

parent that the error occurrence is severe without HARQ. For example, Figure 6.5

is the probability that an error packet is followed by a specific minimum error-free

packets. It is apparent that the gap lengths become longer when the HARQ is added

and hence the probability becomes higher. Figure 6.6 shows the error burst distri-

bution and illustrates the extreme change in the error burst lengths when HARQ is

introduced. Figure 6.7 demonstrates the error cluster distribution where the length

of error clusters is severely affected due to the effect of HARQ. Moreover, many error

clusters are cancelled. For Figure 6.8 the number of errors counted in blocks of 10

is very large without HARQ. A dramatic decrease in the number of errors counted in

blocks occurs when using HARQ. Figure 6.9 is the most impressive and shows that

the error correlation decreases after HARQ.

Figures 6.5– 6.9 also illustrate the predicted burst error statistics of the newly gen-

erated error sequence when HARQ is activated. The burst error statistics of the

generated error sequence have a satisfactory fit with those burst error statistics of

an error sequence obtained directly from the LTE simulator having HARQ included

(descriptive model).

It is worth mentioning that receiving 500000 packets in the LTE simulator requires

approximately 64 hours using a processor with speed of 2.27 GHz. However, our gen-

erated error sequence with the same length as the one obtained directly from the LTE

system takes 1.38 s.

6.4 Summary

We have checked the performance of the HARQ using adaptive error sequences. Fur-

thermore, we have proposed a prediction generative model that is capable of predicting

the statistical behaviour of HARQ systems in terms of a set of packet-level burst error

statistics utilising the predicted PER. The adaptive packet error sequences dramati-

cally reduce the evaluation time of higher layer protocols. We have used the Vienna
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LTE open source simulator to obtain packet error sequences. The proposed predic-

tion generative model can generate packet error sequences with burst error statistics

very similar to those of error sequences obtained directly from the LTE system with

HARQ. Importantly, the proposed prediction generative model is not only accurate

but also efficient as it considerably reduces the time consumed for generating HARQ

error sequences. Such error sequences are consumables for higher layer checks and

performance evaluations.
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Conclusions and Future Work

7.1 Summary of Results

Error models are crucial for the design and performance investigations for many error

control strategies as well as higher layer protocols in the data link layer up to the

transport layer. Error models can be either descriptive or generative. Descriptive

models are derived from real or computer implemented systems for the purpose of

parametrisation and comparison. However, generative models play the major role of

error models since they construct a handy alternative of descriptive models and hence

save the time of designing and/or testing the digital component, scheme, or protocol.

Generative models do exist in the literature, however, they may not be applicable for

modern communications systems. Moreover, most of the existing generative models

are either not very accurate or extremely complicated for the new wireless communica-

tion systems. It is always desirable to have accurate models with simple parametrisa-

tion. Compromising between the accuracy and complexity is a key issue in modelling.

In this thesis, we have attempted to develop desired generative models which can cope

with new profiles of errors related to widely-used wireless communication systems;

and therefore have proposed the DEPHMM and 3LHMM. The former has been tested

for hard bit, soft bit, and packet error sequences, and has proven its accuracy and
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efficiency. The 3LHMM on the other hand improves the generation of required error

sequences despite the fact that it has additional complexity. This extra complexity in

the setting-up simplifies the data training at the end.

These developed generative models have been compared with the descriptive model

as well as the SFM, BWHMM, and DPBGM. In most cases, the SFM and BWHMM

provided a non-satisfactory performance compared with the descriptive model. How-

ever, the DEPHMM and DPBGM were competing with each other. Although the

DPBGM took the lead, it had a structural flaw when generating error bursts which

reduced its desirability.

Therefore, a modified version of the DPBGM has been suggested with an aid of the

DEPHMM to construct the DPB-HMM. This modification degrades the final perfor-

mance a bit compared with the DPBGM performance, but increases its desirability.

Furthermore, the DPB-HMM performance is still better than the SFM and BWHMM;

and the DPBGM remains superior to the SFM and BWHMM at packet-level error

profiles.

The DPBGM and DPB-HMM have the best performance because they adopt match-

ing the error burst distribution and error-free burst distribution with those of the de-

scriptive model rather than the error cluster distribution and gap distribution. This

is because the error bursts and error-free bursts are the longest components in the

error sequence. Consequently, matching their lengths with the reference lengths would

implicitly match the lengths of smaller components such as the error cluster and gaps.

This will keep the number of errors and their distribution restricted within the er-

ror burst length. Subsequently, the other burst error statistics perfectly match the

reference statistics. On the contrary, the Markov models generate bit by bit error se-

quences, and therefore they could not guarantee the correlation between error events.

However, the BWHMM demonstrated an improvement over traditional Markov mod-

els at the bit level. This is because BWHMM divides the error sequence into blocks

and generates error bursts on block basis rather than bit basis. However, there are

limitations on the block lengths. The DPB-HMM adopts longer blocks with a different

strategy, and hence its results were found to be satisfactory.
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Adaptive generative models have been introduced in order to reduce the burden on the

descriptive models. The DPBGM still kept the lead position followed by the DEP-

HMM. However, the BWHMM performance fell back to the last position preceded

by the SFM. In order to further evaluate the performance of the adaptive generative

models, generated bit error sequences replaced the digital wireless channel and BER

curves were obtained for the physical layer. Moreover, the whole physical layer was

replaced by packet error sequences which were produced adaptively in order to further

check our adaptive generative models at packet level. The same conclusion was found,

that the DPBGM led with a satisfactory performance followed by the DEP-HMM.

Finally, we have also proposed a prediction generative model capable of predicting the

statistical behaviour of HARQ systems. The proposed prediction generative model

can generate packet error sequences with burst error statistics very similar to those

of error sequences obtained directly from the LTE system with HARQ. In fact, the

proposed prediction generative model is not only accurate but also efficient as it con-

siderably reduces the time consumed for generating HARQ error sequences. Such error

sequences are also consumables for higher layer checks and performance evaluations.

7.2 Future Work

As the research in this area is interesting and has many industrial benefits, it is

recommended to further persuade research in this field for further developments and

improvements.

One of the further research topics is to conduct more research on adaptive genera-

tive models. In our adaptive generative models we have only changed the CIRs and

SNRs, but further investigations could be conducted to other parameters of the digital

wireless channels such as the modem and coding parameters.

Moreover, the performances of our generative models have been tested against de-

scriptive models of the EGPRS and LTE. However, it is also possible to check the

performances of the generative models against other descriptive models, such as the
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ultra wide band (UWB) or those beyond the 4G systems as well as the wireless sensor

networks. Different types of physical models can also be used such as the spatial

channel model (SCM) and WINNER.

Linking the physical channel’s parameters, e.g., fmax, angle of arrival, etc., with the

parameters of the generative models is interesting topic to study. So that the generated

error sequences change upon varying parameters of physical channels.

Less concentration was demonstrated for the soft bit error sequences and their mod-

elling. More efficient and simple models could be developed in order to cover soft

error sequences.

Last but not least, more applications and prediction models can be developed for error

control schemes and higher layer protocols, such as protocols of the MAC layer and

transport layer. The impact of the burst error statistics on designing and evaluating

such schemes and protocols could also be studied.
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