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Abstract

The continuous growth of complex systems makes the development of correct software
increasingly challenging. In order to address this challenge, formal methods offer rigor-
ous mathematical techniques to model and verify the correctness of systems. Refinement
is one of these techniques. By allowing a developer to incrementally introduce design
details, refinement provides a powerful mechanism for mastering the complexities that
arise when formally modelling systems. Here the focus is on a posit-and-prove style of
refinement, where a design is developed as a series of abstract models introduced via
refinement steps. Each refinement step generates proof obligations which must be dis-
charged in order to verify its correctness — typically requiring a user to understand the
relationship between modelling and reasoning.

This thesis focuses on techniques to aid refinement-based formal modelling, specifi-
cally, when a user requires guidance in order to overcome a failed refinement step. An in-
tegrated approach has been followed: combining the complementary strengths of bottom-
up theory formation, in which theories about domains are built based on basic background
information; and top-down planning, in which meta-level reasoning is used to guide the
search for correct models.

On the theory formation perspective, we developed a technique for the automatic dis-
covery of invariants. Refinement requires the definition of properties, called invariants,
which relate to the design. Formulating correct and meaningful invariants can be tedious
and a challenging task. A heuristic approach to the automatic discovery of invariants has
been developed building upon simulation, proof-failure analysis and automated theory
formation. This approach exploits the close interplay between modelling and reasoning
in order to provide systematic guidance in tailoring the search for invariants for a given
model.

On the planning perspective, we propose a new technique called refinement plans.
Refinement plans provide a basis for automatically generating modelling guidance when
a step fails but is close to a known pattern of refinement. This technique combines both
modelling and reasoning knowledge, and, contrary to traditional pattern techniques, allow
the analysis of failure and partial matching. Moreover, when the guidance is only partially
instantiated, and it is suitable, refinement plans provide specialised knowledge to further
tailor the theory formation process in an attempt to fully instantiate the guidance.

We also report on a series of experiments undertaken in order to evaluate the ap-
proaches and on the implementation of both techniques into prototype tools. We believe
the techniques presented here allow the developer to focus on design decisions rather than

on analysing low-level proof failures.
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Chapter

Introduction

1.1 Motivation and context

The development of software has become increasingly important due to the continuous
growth of complex systems across different areas in modern life. However, software often
contains errors. This increases the development costs, and makes software systems vul-
nerable to malicious attacks, as well as fatal failures in critical applications. Guaranteeing
the reliability of the software embedded in systems is therefore crucial. Traditional testing
methodologies are often not enough to ensure the correctness of large and complex sys-
tems because of the size of the state space that must be explored. Moreover, testing works
at the level of code where the costs of fixing are higher. Formal methods provide math-
ematical rigorous techniques for the modelling and verification of systems. Specifically,
the application of formal methods at the design stage results in the creation of precise
models that can be formally verified early during the development cycle. This not only
increases the reliability and correctness of systems but also brings significant benefits in
terms of development time and costs.

A recent survey by Woodcock et al. [[119] reports on the current use of formal tech-
niques in 62 industrial projects. The survey showed that formal verification is increasingly
used in the development of systems across different critical and non-critical domains such
as: transport, nuclear, healthcare, resource planning and automated car parking. Further-
more, the survey showed that a range of formal techniques are being used within industry,
with formal specification being the most common and formal proof being the least used.
The report concludes that on average there was an overall positive response towards the
use of formal methodologies within industry. However, formal methods have not been
widely adopted in practice. As a result, there is still a need for evolving these techniques
and increasing their accessibility. This need has been identified by the Verified Software
Initiative (VSI), the goal of which is:

“to establish the viability of verification as a core technology for developing
reliable software” [61]].



The VSI identified three key aspects in order to achieve this goal: 1) to focus on formal
techniques that enable the development of software systematically, including the integra-
tion of these techniques with programming languages; ii) to increase the power of tools
for the automatic construction and verification of software; and iii) to evaluate such tools
via the use of experiments relevant to industry.

This thesis contributes to achieving this goal by supporting refinement-based formal
modelling, where a design is developed as a series of abstract models — level by level
concrete details are progressively introduced via provably correct incremental steps. The
techniques developed in this thesis are part of a more generic vision called Reasoned Mod-
elling (REMO), introduced by Ireland et al. in [69], which combines reasoning and mod-
elling knowledge in order to abstract away from the complexities of proofs by providing
high-level modelling guidance. The long-term goal of reasoned modelling is to improve
the accessibility of formal methodologies and to allow experienced users to make better
use of their time by focusing on the modelling activities rather than in low-level reasoning
tasks.

The techniques investigated in this thesis have been prototyped and evaluated via a
series of experiments, drawing upon various developments from the literature as well as

two case studies derived from the verification grand challenge [117]:

o the Mondex electronic system, a smart card purse system developed by bank NatWestﬂ

e and a flash file system case study proposed by Joshi and Holzmarﬁ [78]].

Moreover, the techniques have been explored for the Event-B formalism [3]. Event-B
promotes an incremental style of formal modelling where each step of a development is
underpinned by formal reasoning. In order to support the activity of refinement, this thesis
has focused on two aspects: the automatic discovery of invariants and the use of planning
for the generation of automatic guidance when a development fails to verify, but is close

to a known pattern of refinement.

Automatic invariant discovery

Invariants play an important role when proving the consistency between the behaviour of
a concrete model and the abstract model it refines. The presence of invariants in a model
ensures that the properties expressed by them are not violated by subsequent refinement
steps. Furthermore, invariants prevent the introduction of errors when changes are made
to a model; conversely, their absence increases the possibilities of errors being introduced
into a model when the system evolves. Different types of invariants are required when

modelling a system using Event-B:

e system invariants, which describe requirements of the system,

e gluing invariants, which relate the abstract state with the concrete state, and

I The formal model of the Mondex smart card used in the experiments was developed by Butler et al.[22].
2The formal model of the flash file system used in the experiments was developed by Damchoom [39].
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e technical invariants, which act as intermediate lemmas required for their proofs to

be discharged.

From a theoretical perspective these invariants are typically not very challenging. They
are, however, numerous and represent a significant obstacle to increasing the accessibility
of formal refinement approaches such as Event-B.

Different approaches to automatic invariant discovery have been explored. These ap-
proaches may be dynamic, such as the Daikon system [44] which explores whether invari-
ant templates hold on traces that represent program executions; constraint-based, such as
[17] in which the Alloy analyser is used to discover retrieve relations from Z specifica-
tions; or based on term synthesis, such as that in [90] which is used to find loop invariants
by combining program analysis and proof planning. Here, a novel technique is developed
based upon Automated Theory Formation (ATF) [32] and simulation. Crucially, proof
failure analysis is used to constrain the search of invariants that are required to prove a
refinement step.

Proof failure analysis is often used to discover invariants that are required to prove
refinement steps. For instance, in the model of the Mondex electronic purse developed
in [22], it is explained in detail how a few iterations of proof failure analysis are used to
manually strengthen the set of invariants which are required to prove the refinement of
the states of a transaction. Additionally, in [3] Abrial highlights that the productive use
of proof failure not only aids understanding of the model but also assists in the discovery
of missing invariants and in the strengthening of existing ones. In particular, Abrial uses
proof failure analysis to obtain clues about the invariants that are required to prove strong
synchronisation between an action and a reaction in a mechanical press controller system
[3, Chap. 3]. Automating these kind of analyses should increase the productivity of users
and improve the accessibility of formal modelling methods. Here, this manual process
has been significantly automated through a prototype tool called HRemo, which identified
a subset of the invariants discovered in [22] that are enough to prove the refinement step.

This approach to invariant discovery assumes that the refinement step being analysed
is correct; that is, the concrete model is consistent with the abstract model. However,
the process of finding a “correct” refinement typically involves exploring many incorrect
models. The application of the approach is restricted to cases in which an invariant that
helps discharge a current proof failure is found; otherwise, if no invariant is discovered
the analysis terminates. For such cases, a planning technique has been developed in this
thesis which handles instances of incorrect models. The integration between these two

approaches has also been explored and reported in this thesis.

The use of planning for refinement-based modelling

Discovering the right levels of abstraction and ensuring correctness of a design are also
challenging tasks. Developers often start their developments by being too concrete or

perform refinement steps that are too large. As a result requirements may not be naturally



expressed, the link with informal requirements may become too large, models are often
cluttered with details making it hard to understand them, debug them, or find a good proof
strategy, and proof automation may be decreased. Techniques that analyse a model and
provide feedback would help improve the quality of the refinement steps carried out in a
development, for instance when the model fails to verify.

There are two major approaches in achieving refinement-based formal modelling.
Firstly, within the rule-based approach, a user is restricted to a provably correct set of
refinement steps — thereby ensuring the soundness of their development. An example of
this style of development is found in [99]]. Secondly, within the posit-and-prove approach,
a user is free to “posit” models, but they are required to formally prove correctness of suc-
cessive layers of abstraction. Examples of posit-and-prove approaches are VDM [75], B
[2]] and Event-B [3]].

The work reported here aims to enhance the posit-and-prove approach. A number of
tools and techniques exist to support refinement across a spectrum of formalisms. Often
they focus on automating the refinement from a given step to a more concrete step — re-
ducing the gap with rule-based approaches. Instances of these are: the BART tool for
classical B [107]; the ZRC refinement calculus for Z [25]]; and more relevant to the work
presented here, Event-B based tools and techniques as described in [66, 67, 6, 60]. Con-
trary to those techniques, this thesis focuses on correcting a refinement step which almost
matches an existing pattern, exploiting both refinement patterns and failure-analysis in
order to provide alternative solutions to a broken refinement step.

More specifically, this thesis presents a technique called refinement plans, which au-
tomatically generates guidance for users within posit-and-prove formal modelling. This
technique identifies matches between patterns of refinements and refinement steps. When
a partial match is found, the failure is analysed and compared with common patterns of
failures associated with the pattern. If a match is found, modelling guidance is generated
which addresses the failure. The guidance may be in the form of complete solutions or
partially instantiated schemas — where the guidance corresponds to a partially instantiated
invariant schema. We show via a number of experiments how HREwmo can be used to at-
tempt to fully instantiate the guidance. Finally, the refinement plans mechanism has been
implemented in a prototype tool called REMO.

The research reported in this thesis was supported by EPSRC grants EP/F037058 and
EP/J001058, as well as by a BAE systems studentship.

1.2 Research contributions
The research contributions of this thesis are as follows:

1. The development of a novel approach to the automatic discovery of invariants of
formal models through ATF, which uses a set of heuristics based on proof-failure

analysis to tailor the theory formation routine to the requirements of the formal

4



methods domain. This approach effectively identifies conjectures about a model

that represent candidate invariants.

2. The development of refinement plans, a new pattern-based technique that supports
a refinement style of modelling by exploiting partial pattern matching and proof-
failure analysis in order to provide high-level modelling guidance when a refine-

ment step fails to verify but is close to a known pattern of refinement.

3. The design and implementation of HREmo, a prototype tool that supports automatic
invariant generation for formal models, which extends HR, the leading system in
the field of ATF, by automatically generating domain information from a formal
model. HRemo bases the theory formation on the requirements of the input model

and selects interesting conjectures that represent candidate invariants for the model.

4. The design and implementation of REMO, a prototype tool that supports refinement
plans. REMO automatically classifies the patterns of refinement that appear in a
formal development and offers automatic guidance when the input development

has failures that can be associated with pattern-related failures.

5. An experimental integration of HREmo and REMO, which shows the potential of a
framework to support refinement-style of modelling in which: i) partially instan-
tiated guidance templates may be completed by HREmo, giving greater flexibility
to refinement plans, and ii) specialised knowledge obtained from the application of
refinement plans can be used to further tailor the search for invariants, increasing

the probability of success by HRemo.

6. A set of experiments that evaluate the effectiveness of the approaches, which involve
a number of developments taken from the literature as well as case studies derived
from the VSI. The set of experiments illustrates the application of the approaches

in various domains as well as showing their effectiveness.

Publications

A number of publications have arisen during the development of this thesis:

e An early version of Chapter 3 appears in: Maria Teresa Llano, Andrew Ireland,

Alison Pease. Discovery of Invariants through Automated Theory Formation. In
Proceedings of the 15th International Refinement Workshop. EPTCS, 2011. [89].

e Chapters 3, 4 and 5 appear in: Maria Teresa Llano, Andrew Ireland, Alison Pease.
Discovery of Invariants through Automated Theory Formation. In Journal of For-

mal Aspects of Computing. Springer, 2012. [88]
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e Chapter 6 appears in: Gudmund Grov, Andrew Ireland, Maria Teresa LLano. Re-
finement plans for informed formal design. In Proceedings of Abstract State Ma-
chines, Alloy, B, VDM, and Z - Third International Conference (ABZ 2012). Lecture
Notes in Computer Science. Springer, 2012. [S5]

e Parts of chapter 7 appear in: Andrew Ireland, Gudmund Grov, Maria Teresa Llano,
Michael Butler. Reasoned Modelling Critics: Turning Failed Proofs into Modelling
Guidance. In Science of Computer Programming Journal. 2013. [70]

1.3 Thesis structure

The rest of the thesis is organised as follows:

Chapter 2. Introduces the field of formal methods by briefly outlining different for-
malisms and techniques for the verification of formal specifications. Moreover, the
relevant background about the Event-B formalism and the ATF machine learning

technique is provided; in particular, the HR system is described.

Chapter 3. Describes the heuristic approach to invariant discovery. This shows how to
use ATF and in particular HR to form theories about Event-B models and to select

candidate invariants from the conjectures formed within the theories.

Chapter 4. Introduces HREmo, the prototype tool that implements the invariant discovery
approach. The design of the system is described as well as some experimental

results.

Chapter 5. Discusses various aspects of HRemo. First, it presents a comparative study
with Daikon, a dynamic invariant generator. Second, it illustrates the generality
of the approach by showing how it can be mapped to a different formalism: the Z
notation. Finally, it discusses further benefits of the invariant discovery approach

and the potential to extend the technique to manage incorrect models.

Chapter 6. Describes the refinement plans approach. It introduces a refinement pattern
classification based on common patterns of refinement found in the literature and
through manual inspection of various Event-B developments. Two refinement plans
associated with patterns specified in the classification are developed and examples

illustrating their applications are also provided.

Chapter 7. Introduces REMO, the prototype system that implements refinement plans.
The design of the tool, as well as experimental results in the identification of pat-

terns and the application of the refinement plans are described.

Chapter 8. Discusses strengths and limitations of the approaches introduced in this

thesis. Moreover, it outlines future directions and conclusions.



Chapter 2

Background

In this chapter a brief description of the field of formal methods and ATF is provided. In
particular, refinement, invariant discovery and automated reasoning techniques are out-
lined. Moreover, an overview of Event-B is provided, the formalism for which the tech-
niques presented in this thesis have been developed and a detailed description of HR, the

ATF system which we build upon, is presented.

2.1 Formal methods

The failure of software systems to perform as expected can generate high losses for com-
panies and in safety critical systems can even mean a threat to human lives. Previous
experiences have shown evidence of the need for high-quality software. For instance,
the flight of the Ariane 5 launcher [[1] self-destroyed after just 40 seconds of its launch
due to an overflow error when trying to convert 64-bits of data to 16-bits. The failure
represented over 850 million dollars in losses. Another case was the Therac-25 [87], a
computer-controlled radiation therapy system that overdosed six people resulting in the
death of two. The new design of the Therac-25, successor of the Therac-20, contained
errors which caused a failure in the interlocking system and lead to the overdose.

Formal methods are mathematical rigorous techniques used for the development and
verification of software and hardware systems. They complement traditional development
techniques, increasing confidence about the correctness and reliability of systems. Formal
methods can be used at different stages of the development life-cycle:

o At the requirements stage, as reported in [49], for the elicitation, traceability, evo-

lution, and other aspects of requirements engineering.

o At the design stage to write models of systems using formal specification languages
such as B [2]], VDM [[75]], Event-B [3]] and Z [[114]].

e At the implementation stage, with techniques for code generation such as [24]] and
[43] that generate JML and Ada code from Event-B, as well as languages to anno-
tate and verify code such as Spec# [10] for C# programs, ESC/JAVA2 [26] for Java
programs, SPARK [9] for (a subset of) Ada [[14] programs, VCC [30] for concurrent
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systems written in C and Dafny [83] to verify functional correctness for the .NET
platform.

o At the testing stage as described in [[63], which reports the use of assertions to pro-
vide test probes. In this thesis the focus is on the development of techniques to
support the design stage; in particular, refinement-based formal specification lan-

guages.

2.1.1 Formal specification

Formal specifications are mathematical descriptions of systems whose semantics are well
defined and that can be subject to formal analysis, i.e. it is possible to reason about their
correctness. A key aspect of formal specifications is abstraction, a modelling process
that focuses on describing the intrinsic requirements of systems while hiding away im-
plementation details. In other words, a formal specification describes what the system
does rather than how it does it. Different types of systems can be described through for-
mal specification; for instance, process algebras like CSP [62] and CCS [97] are used to
model concurrent systems and to reason about them via the use of algebraic laws; the
Z [114], VDM [/5]], B [2] and Event-B [3] formalisms are used to specify state-based
aspects of systems; the Promela language [64] is used for modelling distributed systems,
among others.

However, the development of high quality and correct models has been identified as
a difficult task. In the formal methods survey presented in [[119]], formal specification
was estimated to be the phase with the higher increase in the development time, while
in [[113] it was identified that choosing the right set of abstractions was the main barrier
when writing formal models. As described in [[/7], techniques such as decomposition and
refinement have been developed in order to aid formal modelling. Decomposition allows
the verification of a system through the individual verification of its sub-components while
refinement enables the gradual verification of systems through the use of incremental

steps. Here we focus on refinement.

2.1.2 Refinement

Reﬁnementﬂ is a technique used to model systems at different levels of abstraction. Its
main purpose is to handle the complexity of large systems through the gradual intro-
duction of steps that are verified by proof. Starting from an abstract representation of
a system, details are added incrementally in the search for a more concrete representa-
tion which is closer to implementation. As described by Abrial in [3], refinement can be

achieved via two complementary techniques:

o Vertical refinement: known as well as data refinement, makes reference to the re-

finement of data types, i.e. the transition from abstract data types to concrete data

'Refinement is sometimes called reification [75].



structures. The rationale for the transition is usually specified through gluing invari-
ants as in the Event-B formalism or retrieve functions as in VDM. The consistency
of the transformation is verified by proving that the concrete operations preserve

that rationale.

e Horizontal refinement: refers to refinement steps in which new requirements or
more detailed functionality are introduced into the model. The correctness of each
step is verified by proving that the behaviour at the concrete level is consistent with

the behaviour at the abstract level.

Additionally, refinement can be achieved via two main approaches. Firstly, the rule-
based approach, which uses predefined rules whose correctness has been previously veri-
fied. The most notable example is the technique proposed by Carroll Morgan [99] where a
set of basic refinement transformation rules are introduced. Secondly, the posit-and-prove
approach, which allows users to explore their own refinements but a formal proof is then
required in order to determine the correctness of the steps. Formalisms such as VDM
[76], B [2] and Event-B [3]] implement this style of refinement. The techniques developed
in this thesis are tailored for the posit-and-prove approach.

There are several techniques that have been proposed for the enhancement of the posit-
and-prove approach. In general, these can be seen as incorporating rule-based features.
For instance, BART [107] is a tool for classical B, which uses a series of small rules to
automate the refinement of a specification into an implementation by targeting specific el-
ements of a model at a time; for instance, transforming a variable. The application of these
rules may yield more than one alternative refined model. At present these rules are not for-
mally verified, i.e. it is the responsibility of the user to prove the correctness of each rule
application. Another technique is the ZRC refinement calculus for Z [235]], which intro-
duces a refinement method for Z that follows the style of Morgan’s work and that supports
procedures, recursion, and data refinement. ZRC is completely formalised and therefore
its transformation rules yield correct refinement steps. Pattern-based methodologies have
also been explored in [66, 67, 6, [60]. In their methodologies a pattern is represented by
an abstract and a concrete model that specify the structure of the refinement. The patterns
are then applied by matching the abstract part of the pattern with the model of the user,
and automatically producing the refinement steps alongside the proofs. The aim of all
these techniques is to reuse common refinement steps and increase the productivity by
automatically producing a proved refinement step.

The techniques developed in this thesis are focused on refinement-based formalisms,
and in particular on Event-B. A brief description is given next about some relevant for-

malisms that are based on refinement:

e VDM: VDM [/5]], which stands for Vienna Development Method, is a formalism
originated in the 70s at the IBM laboratory in Vienna. VDM is used for the develop-

ment and verification of software systems. A VDM specification is a mathematical
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model composed of a state and a set of operations which are defined through pre-
and post-conditions. Refinement is implemented in VDM via data reification and
operation decomposition. A retrieve function, which relates the abstract data types

and their corresponding concrete types, is used in VDM to explain data reification.

VDM has been extended to VDM++ [42], which supports the modelling of object-
oriented and concurrent systems. A large number of tools are available for the
development of systems in VDM; for instance, the Overture development environ-
menﬂ for VDM, which includes model editing, syntax and type checking, debug-
ging and proof obligation generation among others. VDM has been widely used in
the industry; one of its most recognised applications is the development of compil-

ers, in particular the first European Ada compiler [29].

o The Z notation: 7 [114] is a formal specification language first introduced by
Abrial, Schuman and Meyer in the early 80s [[/]. The Z notation is based on math-
ematical constructs used in set theory and first order predicate logic. The state of
a system in a Z specification is represented by global variables, predicates are use
to express the types of variables as well as invariants, and operations are structured
through schemas. Schemas are atomic actions expressed in terms of inputs and

outputs as well as pre- and post-conditions.

Refinement is possible in Z via ZRC. Z has also been extended to allow the speci-
fication of complex systems by introducing object-oriented constructs and notions
such as classes, inheritance and polymorphism [82]. Tool support is also available
for the development of Z specifications; this includes test case generation tools,

model checking, animation and type-checkers, among others.

e The B method: B [2] is a formalism for the specification, design and coding of
software systems. A B specification is composed of variables that describe the state
of the system, invariants which describe properties of the variables that must always
hold, and a set of operations that define changes in the state. B specifications are
built by means of refinement of abstract machines. An abstract machine specifies
the basic requirements of the system and is subsequently refined all the way to
implementation via refined machines, which refine an abstract or a refined machine;
and an implementation machine, which represents the last model from which code
can be automatically generated. The verification of B developments is achieved
through the generation of proof obligations, which are used to check the correctness
of the model against the invariants and the consistency between different levels of

refinement.

The B method has been successfully applied to industrial projects, one of the most

successful applications is its use in the development of Line 14 of the Paris metro.

2See http://www.overturetool.org/.
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The B method is also supported by a set of tools such as Atelier BE], which enables
the development of industrial-sized developments, and BART [107], a tool that

automates refinement in B.

e LEvent-B: Even-B [3] is a formalism used for the modelling of discrete event sys-
tems. An Event-B development is structured into models and contexts. A con-
text describes the static part of a system, i.e. constants and their axioms, while a
model describes the dynamic part; i.e. variables, invariants and events. Event-B
promotes refinement-based formal modelling, where each step of a development
is underpinned by formal reasoning. That is, each refinement step generates proof
obligations that must be discharged in order to prove the correctness of the step. A
detailed description of Event-B is provided in Section [2.2]

2.1.3 Invariant Discovery

The work on invariant discovery can be classified into two main lines of research: static
analysis and dynamic analysis. Static techniques, such as data flow analysis, explore the
code of the system in order to reason about it via symbolic execution. This approach is for
instance applied by Givan [51]], where postconditions are obtained from the analysis of
an operations’ preconditions and their semantics. Another technique for static analysis is
proposed in [73]], in which invariants are detected at the level of requirements by analysing
a state machine model associated to the requirements specifications. Shape analysis also
applies static analysis by inferring invariants from graph structures that model memory ac-
cess, an example of this is [110]. Term synthesis has also been applied for the discovery
of loop invariants by combining program analysis and proof planning [91]. Other ap-
proaches to invariant discovery have been based on proof planning; for instance [[71,115]
in which the discovery is driven by the failure of rippling.

Dynamic techniques, on the other hand, examine variable traces from test runs and
report properties that are observed to be true over such executions. Current dynamic
approaches, such as the Daikon system [44], infer invariants by examining existing tem-
plates against execution traces, where a potential invariant is one that is true for all states
in the trace. Special purpose techniques have also been developed; for instance, value
profiling [23], which addresses the detection of constant and near-constant properties,
and [[116] which allows the discovery of ordering relationships within the Spin model
checker. Machine learning techniques also provide approaches to concept extraction from
data sets. An example is Inductive Logic Programming (ILP) [[100], which has been used
to discover loop invariants [18]. A key aspect of machine learning techniques like ILP
is that they require positive and negative examples in the data set in order to generate
relevant invariants.

The invariants discovered by static approaches are true for all program runs, while for

3See http://www.atelierb.eu/en/
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dynamic approaches not all the reported invariants turn out to be true. However, dynamic

approaches are more flexible since they focus on behaviour instead of code structure.

2.1.4 Automated Reasoning

Formally verifying the correctness of systems is a complex task which requires the sup-
port of automatic tools. Automated reasoning is the study of techniques to automate
formal reasoning. Particular development effort has been carried out in two subareas of
automated reasoning: namely, theorem proving and model checking. A brief description

of these techniques is provided in the following sections.

2.14.1 Theorem Proving

Theorem proving techniques are used to verify if a mathematical statement follows logi-
cally from a set of axioms through the application of inference rules; i.e. if it is a theorem
of the theory under consideration. The conjecture, axioms and inference rules are all writ-
ten as predicates of a logic that enables the verification. Theorem proving then involves
the use of search control techniques to automate the search for mathematical proofs.

The first attempt for a theorem prover that showed that the automatic search for proofs
in a computer was possible was by Paul Gilmore in 1960 [S0]; however, the system could
only perform proofs of trivial theorems. A subsequent effort was the Logic Theory Ma-
chine [[101], a heuristic-based system that built proofs for a small subset of propositional
logic. Further advances were made in the following years; the main attempts can be
categorised into two complementary type of systems: machine-oriented automated the-
orem provers and human-oriented theorem provers. Machine-oriented provers are those
based upon computer-oriented inference systems, which are able to solve mathematical
problems through the application of automatic proof steps. These provers either provide
a complete proof or no proof at all. The most notable invention in this field is resolu-
tion [109]], a technique that performs proofs by contradiction. Furthermore, systems that
incorporate more powerful constructs, called tactics, were developed. These are small
programs that manipulate a proof by applying sequences of steps simultaneously. The
first work on tactic-based theorem proving was in the LCF project [54]. However, as
shown by Godel’s incompleteness theorem, proving all theorems of a sufficiently power-
ful theory is undecidable. Human-oriented theorem proving systems attempt to address
this limitation. While machine-oriented systems rely on generic proof strategies, human-
oriented systems focus on domain specific heuristics. Although their application does not
guarantee success, if the fail, such approaches provide insight to a user in the search for
a proof. The most prominent work on this area is proof planning [[19]], which divides rea-
soning into two levels: a planning level, which heuristically reasons about a proof, and an
execution level, which applies a tactic that executes the plan. Example of planning-based

techniques are rippling [20] and proof critics [68l], which use meta-level reasoning and
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failure analysis to guide the search for proofs.

A variety of theorem provers are currently available. For instance, PVS [103] and
ACL2 [[79], integrate verification systems that include higher-order logic and first-order
logic theorem provers, respectively; Isabelle/HOL [102], an interactive theorem prover,
and successor of HOL [53]], also integrates a framework for proof planning: IsaPlanner
[40]; Coq [16] is an interactive theorem prover for the calculus of inductive constructions;
among others. Theorem proving has been used in some fields of the industry, for instance
in the verification of integrated circuits of microprocessors, e.g. AMD and Intel, for flight

control systems and in general for safety-critical systems.

2.1.4.2 Model checking

Model checking is an algorithmic technique to exhaustively and automatically verify if a
property is satisfied by a model. The study of model checking problems started with the
work of Clarke and Emerson [27] in the early 80’s in concurrency and verification as an
alternative to theorem proving and a fully automatic way of proving the correctness of
programs. More specifically, model checking procedure takes a model M and a logical
formula ¢ as input and asks the question does M have the property specified by ¢?; i.e.
ME @?.

Unlike theorem proving, model checking procedures are always intended to be fully
automatic, which is the reason why they were tailored to be used over finite state systems;
however, new developments allow the verification of some infinite state systems too. The
main limitation of model checking is well known: the state explosion problem. In order
to tackle this problem a number of techniques have been studied, for instance, symbolic
model-checking [93]], partial-order model checking [52], or unfoldings [45]], amongst oth-
ers. Examples of well known model checkers include: SPIN [64], a model checker for
the Promela language; ProB [86], for checking B and Event-B specifications; UPPAAL
[13]], which is used to verify hybrid and timed systems; PRISM [80], a model checker for
probabilistic systems; and SMV [28| Chapter 8], a tool for symbolic model checking.

2.2 Event-B

Event-B is a formalism used for the modelling of discrete event systems [3]. It promotes
an incremental style of formal modelling where each step of a development is underpinned
by formal reasoning. Event-B is an evolution of the B-method [2]], and it builds upon the
Action System formalism [8]. Uses set theory and first order logic as the modelling
notation, refinement to handle complex systems, and proof to verify the correctness of the
models and consistency between refinement steps.

As shown in Figure 2.1} an Event-B development is structured around machines and
contexts. Machines represent the dynamic part of the system while contexts model the

static part. A machine is said to see a context, i.e. machines can reference the elements
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of the contexts they see. Contexts are structured in terms of carrier sets that define the
basic types in the system, constants, which represent the static values and axioms that
describe properties of the constants. Machines are defined in terms of variables, which
represent the state of the system, events, which are conditioned actions that define the way
the state changes, and invariants that specify properties over the state that must always be

preserved by the events.

MACHINE CONTEXT

Variables sees Sets

Invariants Constants
Events Axioms

Figure 2.1: Event-B model structure.

An event takes the following general form:
(name) = any {parameters) where {guards) then {actions)

where the parameters are arbitrary values received by the event, the guards are conditions
that have to be true for the events to be triggered, and the actions define the changes over
the variables. All machines have an initialisation event, which defines the initial state of
a model. The initialisation event does not have parameters or guards.

To illustrate the basic features of Event-B, we draw upon an example of a vending
machine model that dispenses various products and for which a stock count is kept. The
model does not deal with money, instead it focuses on managing the stock availability for
each product within the vending machine. The model is shown in Figure [2.2]

The context contains a carrier set named PRODUCT while the machine is composed of
four variables: products, stock, available and soldout. The system classifies the products
according to their stock availability into sets available and soldout. The types of the
variables are defined by the invariants. As can be observed, variable products is a subset
of the carrier set PRODUCT, stock is a function that maps each product to its current stock;
and available and soldout partition the products set. Note that partition is a primitive of
Event-B, and is used here to ensure that the available and soldout sets are disjoint.

The model contains five events: addProduct, buy,, buy,, reStock and an initialisation
event. A new type of product can be added to the vending machine through the addProd-
uct event, which will also set its initial stock as well as make it available. The buy, and
buy, events decrease the stock of a given product. Event buy, triggers when there are
multiple units of a product available in the vending machine, while the buy, event triggers
when there is only one unit left. Additionally, the buy, event moves the product from the
available set to the soldout set. Finally the reStock event sets a new stock to a product

that has been soldout and makes it available.

14



CONTEXT:
Sets PRODUCT
MACHINE:
Variables Events Event addProduct =
available soldout stock products Initialisation any p amount
Invariants then where
products € PRODUCT available := 2 p € PRODUCT\products
stock € products —» N soldout := @ amount € N
partition(products, available, soldout) stock := @ then
products := @ products := productsU{p}
end available := availableU{p}
stock := stockU{pr>amount}
end
Event buy, = Event buy, = Event reStock =
any p any p any p amount
where where where
p € available p € available p € soldout
stock(p) > 1 stock(p) =1 amount € N
then then then
stock(p) := stock(p)—1 available := available\{p} stock(p) := amount
end soldout := soldoutU{p} soldout := soldout\{p}
stock(p) :=0 available := availableU{p}
end end

Figure 2.2: Event-B model of a vending machine system.

Event-B is a language designed for the modelling of reactive and distributed systems.
These type of systems are characterised for being composed of many different parts that
interact with each other, that often exhibit concurrent behaviour and whose environment
tend to evolve. Event-B manages the complexity of these type of systems via Refinement,
Decomposition and Generic Instantiation [5]. Refinement promotes the evolution of sys-
tems through incremental changes, decomposition allows a development to be divided
into smaller workable models and generic instantiation allows one to reuse a generic de-
velopment within an outgoing one. Key to our work is the use of refinement. Next, we

provide details of how refinement can be accomplished within the context of Event-B.

2.2.1 Refinement in Event-B

Refinement is the process of transforming an abstract model into a concrete implementa-
tion. Event-B implements stepwise refinement, that is progressively making an abstract
specification more precise through a series of incremental steps. Each step creates a more
concrete model which is a refinement of the previous one and must be verified through
the use of proof. This modelling style facilitates the verification of large complex systems
by focusing on each refinement step at a time.

In an Event-B model, contexts are extended while machines are refined. This is illus-

trated in Figure A context is extended by preserving the elements from the abstract
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context, i.e. carrier sets and constants, and adding new ones at the concrete level. The

new constants are defined through the use of axioms that represent their properties.

MACHINE CONTEXT
Variables sees | Sets
Invariants g Constants
Events Axioms
refines T \\“\\\ T extends
Goncrete Viachine |- - Concrele Gorext
Invariants + ‘

i Gluing invariants

Figure 2.3: Event-B refinement structure.

In the refinement of a machine, the state of the concrete machine can be extended or
modified by replacing abstract variables with new variables in the refinement. As with
the abstract machine, the concrete machine includes invariants that handle its variables.
However, the refined machine includes a special invariant that relates the states of the
abstract and concrete machines, that is the gluing invariant. This invariant is required in
order to prove that the behaviour of the concrete machine is consistent with the behaviour
of its abstraction. Machines can also be refined by adding new events or modifying exist-
ing ones. The refinement of existing events is verified by proving that the concrete event
implies the abstract event and the gluing invariant; while the addition of new events is
verified by proving that the new event hold the gluing invariant. This is extended later in

this chapter.

In order to illustrate refinement in Event-B, we use the model of the vending machine
introduced in Figure 2.2] In the model, the products are classified by the disjoint sets
available and soldout. At the concrete level, the representation is changed to a total func-
tion status that maps products to their availability. The state of products is represented by
an enumerated set STATE whose members are the constants AVAILABLE and SOLDOUT.

The refinement step is shown in Figure 2.4

As can be observed, the refinement affects the context as well as the machine. Note
also that where an abstract event is refined, the keyword refines is used to indicate the
refining event at the concrete level. Observe that where applicable, the events have been

modified, replacing the abstract disjoint set by a function check.

It is important to note that the refinement presented in Figure [2.4]is only provable if
the required gluing invariants are in place. In this case, the gluing invariants must relate

the disjoint sets from the abstract model with the new function at the concrete level. The
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CONTEXT:

Sets
STATE

Constants
AVAILABLE SOLDOUT

Axioms
partition(STATE,{AVAILABLE},{SOLDOUT})

MACHINE
Variables
products status stock
Invariants
status € products—STATE
available = status™'[{AVAILABLE}]
soldout = status~'[{SOLDOUT}]

Events
Initialisation Event addProduct =
then refines addProduct
products := @ any p amount
status := @ where
stock := @ p € PRODUCT\products
end amount € N;
then
products := productsU{p}
status := statusU{p—AVAILABLE}
stock := stockU{pramount}
end
Event buy, = Event reStock =
refines buy, refines reStock
any p any p amount
where where
p € products p € products
status(p) = AVAILABLE status(p) = SOLDOUT
stock(p) =1 amount € N;
then then
status(p) := SOLDOUT status(p) := AVAILABLE
stock(p) :=0 stock(p) := amount
end end

Event buy, =
refines buy,
any p
where
p € products
status(p) = AVAILABLE
stock(p) > 1
then
stock(p) := stock(p)—1
end

Figure 2.4: Refinement step of the vending machine model.

gluing invariants from the model are:

available = status™! [{AVAILABLE}]
soldout = status™![{SOLDOUT}]
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These invariants state that the abstract sets available and soldout can be obtained from
the inverse of the function status evaluated over the enumerated sets AVAILABLE and
SOLDOUT.




2.2.2 Veritying Event-B developments

Event-B developments are verified through the use of Proof Obligations (POs). A PO is a
sequent of the form:

Hr G

where H represents the set of hypotheses and G represents the goal to be proved.

There are two different types of POs associated with Event-B developments: POs
relating to a single level in the refinement chain and POs relating to an abstract model and
its refinement. Next we give a brief description of each of these POs. We use £ to denote
an Event, M to denote a list of abstract and concrete models related by a refinement step,
BAP(F) to denote the before-after predicate associated to an event £ and z’ to denote

the after value of element x (where x denotes a variable, an invariant or a variant).

Invariant preservation PO (INV): this PO verifies that an invariant is preserved by an
event before and after its execution. For an invariant inv, the INV PO has the

following form:

Azioms(M) A Invariants(M) A Guards(E) A BAP(E) v inv’

Feasibility PO (FIS): this PO is used to ensure that a non-deterministic action is feasible;
i.e. that there exists an after-value for which the before-after predicate of the non-

deterministic action is true. The FIS PO has the following form:

Azioms(M) A Invariants(M) A Guards(E) v 3v'.BAP(E)

Guard strengthening PO (GRD): this PO ensures that the guard of a refined event im-
plies the guard of the abstract event it refines. For an event £ that is refined by
event £, the GRD PO has the following form:

Azioms(M) A Invariants(M) A Guards(E») A Witnesses(E») + quard(Ey)

Note that a GRD PO is generated for each guard of the abstract event.

Simulation PO (SIM): this PO verifies that the actions of a refined event simulate the
same behaviour than the abstract event it refines. For an event F; that is refined by
event [, the SIM PO has the following form:

Axioms(ﬁ) A Invariants(ﬁ) A Guards(E,) A\ Witnesses(F,) A BAP(E,)
+ BAP(FE))

Variant PO: this PO ensures that under the guards of each convergent or anticipated
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event, a variant holds. This PO has different variations according to the type of the

variant, that is: natural numbers or sets.

e Variant PO to ensure a variant is a natural number (NAT).

Azioms(M) A Invariants(M) A Guards(E) v variant € N

e Variant PO to ensure a variant is a finite set (FIN).

Axioms(M) A Invariants(M) A Guards(E) v finite(variant)

e Variant PO to ensure that the numeric or set variant is decreased by each con-

vergent or anticipated event (VAR).

For convergent events:
Axioms(M) A Invariants(M) A Guards(E) A BAP(E) v variant < variant

Axioms(M) A Invariants(M) A Guards(E) A BAP(E) v variant C variant

For anticipated events:
Axioms(M) A Invariants(M) A Guards(E) AN BAP(E) v variant < variant’

Axioms(M) A Invariants(M) A Guards(E) N BAP(E) v variant C variant’

Witness feasibility PO (WFIS): this PO verifies that for an event for which a witness
has been proposed, there is indeed a value that holds the witness. For an event £,
the WFIS PO has the following form:

Axioms(M) A Invariants(M) A Guards(E) AN BAP(E) + A w.Witness(E) = w

Theorem PO (THM): this PO verifies that a theorem follows from the invariants and/or
axioms of the model. Depending if the theorem is in the context or in the machine
the THM PO has the following forms:

Context theorem: Axioms(M) + theorem

Machine theorem: Axioms(M) A Invariants(M) v+ theorem

Guard strengthening for merged events PO (MRG): this PO ensures that the guard of
a refined event that merges two or more events implies the guards of the events it

merges. For a set of events E4,...E4, which are merged at the concrete level by
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event F;,, the MRG PO has the following form:

Axioms(M) A Invariants(M) A Guards(E,) v Guards(E4,) V ... V Guards(Ey,)

Well-definedness PO (WD): this PO ensures that all predicates and expressions within
an Event-B development are well defined. The WD PO has several forms depending
on the potentially ill-defined expression. For instance, for a partial function, the

expression F'(z) has the well-definedness condition z € dom(F).

In order to illustrate the generation of POs within Event-B, two POs associated with
event buy, of the model of the vending machine (Figure are presented. A guard
strengthening PO is shown in Figure This PO specifies that the refined event
must imply the guard p € available — that is, prove that the abstract guard follows
from the concrete guard status(p) = AVAILABLE. On the other hand, an invari-
ant PO is shown in Figure which verifies that the gluing invariant available =
status ' [{AVAILABLEY}] is preserved after the execution of the event — in this case it
must be proved that changing the status of p form AVAILABLE to SOLDOUT at the con-
crete level is equivalent to removing p from the set available at the abstract level. Both

POs are trivial and are discharged automatically.

p € sellProducts available = status™! [{AVAILABLE}]
status(p) = AVAILABLE p € products
stock(p) =1 status(p) = AVAILABLE
F stock(p) =1
p € available F
available\{p} = (status<{p—SOLDOUT})"' [{AVAILABLE}]
(a) GRD PO. (b) INV PO.

Figure 2.5: Proof obligations associated to event buy; in the vending machine model.

2.2.3 Rodin

Rodin [4] is a platform implemented on top of the Eclipse environmentﬂ for the develop-
ment and verification of Event-B specifications. Rodin allows a developer to reason about
a model by giving instant feedback about its correctness. This is achieved by automati-
cally generating and discharging POs, which allows the integration of reasoning as part
of the modelling task during the development of Event-B models. Furthermore, discharg-
ing POs may not always be automatic; depending on the model, user interaction may be
needed to discharge a PO. The close interplay between modelling and reasoning provided
by the Rodin toolset facilitates the identification of problems when a PO fails to verify. It

“http://www.eclipse.org/
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is important to stress that Rodin is not used to run programs but to reason about models

at the design stage.

The Rodin tool chain is composed of three main components:

The static checker (SC): analyses a model developed in Event-B in order to find syntax

and type errors.

The proof obligation generator (POG): automatically generates the POs that must be
verified for a given Event-B model — the different type of POs associated with
Event-B were described in Section 2.2.2] The POG does not perform proofs, it

only carries out simple rewritings within a PO sequent.

The proof obligation manager (POM): handles the POs’ status as well as the associ-
ated proof tree for each PO. It works automatically alongside the automatic Rodin
provers or interactively with the user and external provers — since all POs are rep-
resented as sequents in predicate calculus, different external provers for predicate

calculus can be used through Rodin.

Rodin provides similar functionalities to those provided by tools used for program-
ming, in which tasks are performed automatically in the background. This facilitates and
improves the modelling experience for Rodin users. Among the characteristics offered by
Rodin are:

¢ instant feedback when a change has been made to the model; i.e. syntax errors,

inconsistent types, etc.,

e automatic generation and verification of POs when a model is saved to the disk (no

need of compilation processes),

® cITOor traces,

e management of a schema of colours for reserved words (which make the models

more readable),

o templates for the creation of Event-B basic elements; i.e. events, variables, etc.
Furthermore, Rodin is composed of two main graphical interfaces: the modelling perspec-
tive and the proving perspective. The former allows users to edit their models, see prob-
lems related to them and explore the structure and status (POs) of their Event-B projects.
The latter allows the user to explore the proof tree associated to a P(ﬂ as well as to per-
form interactive proofs. Moreover, because Rodin is built on the Eclipse platform, new
functionalities can be provided through the addition of plug-ins. This flexible architecture
contributes to the improvement and extensibility of the tool as well as to the formation of
a bigger community working around Event-B. We mention some of the plug-ins available

in Rodin which illustrate different aspects of the toolset that have been extended :

>A PO may not have a proof tree associated with it if an external prover has been used in order to
discharge the PO (or part of it).
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e UML-B [112]: graphical front-end for the modelling of Event-B systems as UML-
like diagrams. Currently contains modelling and refinement of systems with class
and state machine diagrams.

e ProB [86]: provides animation and model checking capabilities for Event-B mod-
els.

e ProR [72]: provides requirement traceability between an Event-B model and the
natural language requirements associated to the model.

o Atelier B provers ﬂ provide additional capabilities of automated theorem proving
(not contained in the Rodin provers).

° B2Late: exports Event-B models as Latex documents.

Currently the development of new plug-ins for the Rodin platform is growinﬁ We de-

scribe in more detail the ProB simulator and model checker, which is key for our research.

2.2.4 ProB

ProB is a simulator and model checker for the B method implemented in Prolog. It
supports automated consistency checking of B machines through model checking and
constraint-based checking as well as the simulation of B machines. The consistency
checking and simulation capabilities of ProB provide a way of facilitating the verifica-
tion of B models. That is, ProB can provide counter-examples when a model is not free
of errors. This means that current unproven POs are indeed not provable and therefore,
the user does not have to spend time trying to discharge proofs that are false.

The model checker verifies if an invariant of the model is violated by finding a se-
quence of operations that starting from a valid initialisation reaches a state where the
invariant does not hold. If this situation is found, the model checker provides the shortest
trace that leads to the error within the states that have been explored. In order to do ex-
haustive model checking over B models, the model should have a finite set of states, and
the size of sets and the bounds of integer variables are limited. ProB can also be used over
models with infinite set of states. In this case the model checker will finish when an error
is found or when the system runs out of memory.

The constraint-based checker verifies if an individual operation can violate an invari-
ant independently of the initial state. This is achieved by setting up constraints that ensure
that the starting state satisfies the invariant. Then, the operation is applied and new con-
straints are set up and evaluated to determine if the invariant has been violated. If this
is the case, concrete values for the variables in the model are instantiated and a counter
example is provided.

The underlying mechanism of the constraint-based checker is more complex and re-

quires more resources than the model checker. However, for situations when the checking

Shttp://www.atelierb.eu/en/

"http://wiki.event-b.org/index.php/B2Latex

8The complete list of past and current plug-in developments can be found at http://wiki.event-b.
org/index.php/Rodin_Plug-ins.
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can be focused on a single operation; for instance, when adding or modifying an operation
of a machine previously proved, the constraint-based checker may be preferred. Also, as
constraint-based checking can be enabled after finding one state that satisfies the invariant,
it can be executed when an exhaustive search is too costly.

ProB can also be used as a simulation tool to explore and debug a model. This func-
tionality enables the identification of errors, showing inconsistencies between models,
invariant violations, references to undefined expressions. When an error is identified dur-
ing a simulation, ProB provides the concrete values of the variables for which the model
fails.

ProB is available for Rodin in the form of a plug-in that can be installed through the
software update option provided by Eclipse. The plug-in provides model checking and
simulation capabilities for Event-B models. We use simulation for our research. The
simulation of Event-B models can be performed step by step or through a sequence of
random steps (the number of steps to be performed must be specified by the user). The
simulator provides the user with information about the current state of the system, the
history of steps (events) applied, the events currently enabled and any errors found within
the model. For each enabled operation ProB provides a set of possible values that can be
used to instantiate the parameters of the operation (if any are needed). Limits for the size
of sets and integer range must be provided by the user; otherwise the default values are
used.

The ProB plug-in for Rodin also allows the simulation of various levels of refinement
simultaneously. This process requires one to load into ProB a machine and all its ancestor
machines—or a number of ancestor machines specified by the user—and all the contexts
seen by them. Then, ProB produces an internal representation of each event of the most
concrete machine. This representation contains the list of all abstract events related to
the concrete event. During simulation, the state is composed of all the variables of the
machines loaded into ProB and the invariant consists of the conjunction of the invariants
of each machine. The steps of the simulation, as described in [38]], are:

1. Find valid values for all constants.

2. Ateach step ProB executes an event of the most concrete machine as follows:
(a) Find valid values for the parameters of the event.

(b) Execute each action of the event. An error is found at this stage if: 1) the
predicate associated with a non-deterministic action does not hold (FIS PO
fails), or ii) the value assigned to a variable cannot be assigned in the abstract
event (SIM PO fails).

(c) If the event has witnesses, there must exist valid values for the witnesses;

otherwise an error is reported (WFIS PO fails).

(d) If more than one abstract event is associated with the concrete event, one of
them is chosen and evaluated as in step [2a] If valid values are found, the

simulator continues recursively with step 2b, otherwise, it tries another of the
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abstract events. If none of the abstract events hold, an error is produced since
the guard of the most concrete event is weaker than its abstractions (GRD PO
fails).

As can be observed, ProB can detect different errors associated with refinement. For
instance, guard weakening, witnesses that are not feasible, inconsistent behaviour. The
same algorithm is applied by the model checker.

Simulation of multiple levels in the refinement is a key feature of our work on in-
variant discovery. This functionality allows us to simulate a machine and its immediate

abstraction in order to observe patterns in their behaviour and discover missing invariants.

2.3 Automated Theory Formation and HR

Artificial Intelligence (Al) has been used for the development of tools and techniques that
automate aspects of reasoning in mathematics and systems development. For instance,
computer algebra systems, theorem provers, constraint solvers and SAT solvers are used
to assists mathematicians as well as for hardware and software verification. ATF is a
novel machine learning approach to automated reasoning which explores mathematical
domains in order to construct theories about them. The theory formation process con-
sists of exploring background information that describes a domain in order to invent new
concepts from the old background information and hypothesise relationships within the
newly generated concepts.

The term Automated Theory Formation was first introduced by Lenat in [85] where
he presented the Automated Mathematician (AM) system, the first system that performed
both concept invention and conjecture inference to relate the invented conceptsﬂ Subse-
quent work on ATF systems includes Eurisko [84], the successor of AM, which attempted
to generate new heuristics with better applicability throughout the theory formation pro-
cess; Cirano [S6], which focused on constraining some implementation aspects of Eurisko
in order to make the theory formation cycle more efficient; the ARE system [111]], which
extended concept invention through the introduction of functional transformation; HR
[32], which uses an iterative application of general purpose production rules for concept
invention. Consecutively, ATF was further developed by improving and developing new
techniques as to how concepts were invented and conjectures were identified, and by ap-
plying it within new mathematical domains such as graph theory and plane geometry,
among others. More recently, Lakatos’s [81] characterisation of ways in which mathe-
maticians respond to counterexamples and use them to evolve concepts, conjectures and
proofs form the basis of the theory formation system HRL [104] and TM [38]]; IsaCoSy

[74] and IsaScheme [98] support the discovery of theorems within the context of math-

“However, the work carried out by Lenat in the AM system has been criticised by Al researches. For
instance, through a case study of Lenat’s work [[108]], Ritchie and Hanna discovered the use of heuristics
implemented for specific purposes contrary to claims of the use of a generic methodology.
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ematical induction, the CORE system [91] supports term synthesis within the context of
separation logic, among others.

As it has been described, ATF was developed with the aim of exploring mathematical
domains; however, new applications have emerged through the time. ATF has being
studied within Computational Creativity [33] as a case study of the application of a model
that describes and categorises the creativity of programs. Moreover, ATF has been used
for the invention of games [12] and the automatic generation of puzzles [31]. In the
former, data obtained from playing simple physical games is explored in order to invent
mixed reality games, while the latter extends the HR system by adding a categorisation of
three types of puzzles, enabling HR to generate puzzles about theories being analysed.

The general process of theory formation involves three iterative aspects:

1. The invention of concepts that are generated from old ones. New concepts are
invented by performing calculations or applying transformations over the existing
concepts. For instance, applying arithmetic operations to numeric concepts, adding
elements to build more complex concepts, such as planes in geometry, combining
concepts with the same types.

2. Identification of empirical relationships between concepts. In this step, the theory
formation engine searches for patterns that appear within the newly generated con-
cepts and the existing concepts. Different techniques are used to hypothesise these
relationships; for instance, observing that a value is constant within a concept, ob-
serving that two concepts have the same values.

3. Proving and disproving the identified relationships. The validity of the discovered
potential relationships are usually verified through the use of theorem provers and
model generators that search for counterexamples.

For the work presented in this thesis we used the HR system developed by Colton
[32]. There are two main reasons we selected the HR system for invariant discovery of
Event-B models. Firstly, the input format of the background information is based upon
examples. This is convenient for the work on invariant discovery since examples can be
easily obtained in Event-B through the simulation of the model. Moreover, different from
other theory formation systems such as ILP [[100], which are also based on examples,
HR does not require positive and negative examples in order to form theories. Secondly,
the transformation technique applied by HR to invent new concepts allows Event-B-like

relationships to be formed. Below we consider the HR system in more detail.

2.3.1 The HR system

Colton’s machine learning system HRH [32] performs descriptive induction, which aims

at finding interesting relationships in unclassified relational data, to form a theory about a

1OHR is named after mathematicians Godfrey Harold Hardy (1877 - 1947) and Srinivasa Aiyangar Ra-
manujan (1887 - 1920). A website for HR can be found in http://www.doc.ic.ac.uk/~sgc/hr/. To
download a more recent version of HR an its documentation please contact its creator: Simon Colton.
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set of objects of interest which are described by a set of core concepts. This is in contrast
to predictive learning systems which are used to solve the particular problem of finding
a definition for a target concept. HR constructs a theory by finding examples of objects
of interest, inventing new concepts through the use of production rules (PRs), making
plausible statements relating those concepts, evaluating both concepts and statements,
and proving or disproving the statements.

HR has been used for a variety of discovery projects, including mathematics and scien-
tific domains. It has been particularly successful in number theory [35]], algebraic domains
[96] and constraint solvers [36,[105]].

HR requires two inputs: domain information, which contains the building blocks of
the theory (the background concepts and objects of interest); and macro information,
which contains instructions for the way in which the theory should be constructed (e.g.
which production rules are to be used, which arguments they will take, a weighted sum
for the interestingness measures).

Next, we present a brief description of HR’s theory formation process using a running

example taken from [32] to illustrate it.

2.3.1.1 Representation of concepts

The objects of interest are the entities which a theory discusses. For instance, in set
theory the objects of interest are sets, in number theory they are integers. Unary concepts
are used to represent the objects of interest in HR. In this thesis, we categorise these as
concepts of type 1 (T1). These concepts enumerate each object of interest within a theory.
For instance, the unary concept of the integer numbers from 1 to 10 is shown in Figure
2.0

integer(A)
1

Definition:
integer(A)

O 00 1O\ N B~ Wi

—
(=)

Figure 2.6: Unary concept representing the integers from I to 10.

Note that a concept is represented as a data table (or table of examples). This repre-
sentation is crucial for the application of the PRs as it will be shown later. Furthermore,
concepts have a definition; i.e. a signature, that specifies the type of the arguments of
the concept and the relations between these arguments. For the concept presented in Fig-

ure [2.6] the definition is very simple: integer(A), which states that A is of type integer.
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These definitions become more complex through the application of the PRs. Within HR,
a concept also has an associated categorisation and measures of interestingness — categori-
sations group the examples of a data table which have the same value, while the measures
of interestingness evaluate general properties of concepts; e.g. applicability and novelty.
Other type of concepts are those that define features about the objects of interest. These
concepts can be provided by the user as part of the background information or developed
through the theory formation process by the application of the PRs. We categorise the
former as concepts of type 2 (T2) and the latter as concepts of type 3 (T3). For instance,
the concept that represents the divisors of the integers from 1 to 10 is shown in Figure

This is a T2 concept provided by the user where B represents a divisor of A.

divisors(A,B)
integer | divisor

1 1
2 1
2 2
3 1

3 3
10 1
10 2
10 5
10 10

Definition:
divisors(A, B) : integer(A) A integer(B) A divisors(A, B)

Figure 2.7: Concept representing the divisors of the numbers from I to 10.

Note that for this type of concept, the data table is a function that maps an object of
interest to a truth value or a set of objects. For instance, for the data table shown in Figure
2.7, applying the function to the integer 10 yields: f(10) = {1,2,5,10}. Moreover, note that
all concepts in HR are expressed either as unary predicates or as binary relations.

For the purposes of the invariant discovery work carried out in this thesis, we fur-
ther distinguish between concepts that are provided by the user, what we call core con-
cepts, or developed by HR through the use of the PRs, what we call non-core concepts.
Consequently, 71 and 72 concepts represent core concepts, while T3 concepts represent

non-core concepts.

2.3.1.2 Concept generation

Colton [32]] observed that it is possible to gain an understanding of a complex concept by
decomposing it via small steps into simpler concepts. Based on this, he defined produc-
tion rules which take in concepts and make small changes to produce further concepts.
Each production rule is generic and works by performing operations on the content of one

or two input data tables and a set of parameterisations in order to produce a new output
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data table, thus forming a new concept. The production rules and parameterisations are
usually applied automatically according to a search strategy which has been entered by
the user, and are applied repeatedly until HR has either exhausted the search space or has
reached a user-defined number of theory formation steps to perform. Currently, HR has
three types of PRs: nullary rules, unary rules and binary rules. A brief overview of the
available PRs is given below along with examples of their application. HR performs inter-
nal processes for renaming concept arguments and in some cases intermediate concepts
are also required with the application of a PR. We do not get into that level of detail here

but refer the reader to [32,137] where these processes are described.

Production rules:

1. Nullary rules: these PRs receive as input a T1 concept and generate a new unary con-

cept which represents a subset of the examples of the original concept.

the entity-disjunct rule: singles out examples, given as parameters of the rule,
from the original data table in order to invent concepts that represent con-
stants of the background domain. The output data table contains the constants
extracted from the original concept. For instance, applying this PR to concept
integer(A) (see Figure with parameter (3) produces the following concept

definition:
newC(A) : integer(A) A A =3

2. Unary rules: these PRs receive one concept as input and generate a new concept from
it. The concept of divisors presented in Figure will be used to illustrate the

application of the unary PRs. Remember the definition of this concept is:
divisors(A, B) : integer(A) A integer(B) A divisors(A, B)

where B is a divisor of A.

the exists rule: removes specified arguments from a concept definition. The output
data table contains the examples of the arguments that are kept in the concept
definition. For instance, applying this PR with parameters (1) produces the

following concept definition:
newC(A) : integer(A) A A B(integer(B) A divisors(A, B))

This parameterisation removes argument in position 1 from the original con-
cept definition; resulting in a new concept which contains the integers that

have associated divisors.
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the match rule: finds tuples within a concept in which the examples of a specified
set of arguments are equal. The output data table merges the duplicated argu-
ments into one in the new concept definition. For instance, the application of

this PR with parameters (0, 0) returns the following concept definition:
newC(A) : integer(A) A divisors(A, A)

which stands for the concept of integers that are divisors of themselves. The
parameterisation 0, 0) specifies that the argument in position 0 is left the same
and the argument in position 1 is matched with the one in position 0. Note
that the redundant arguments are removed from the resulting concept; i.e. the

output datatable contains only one instance of the matching parameters.

the equals rule: this PR performs the same transformation as the match PR; how-
ever, here all the arguments are left in the new concept definition and the
equality is expressed by adding the predicate equals(ay,...,a,) to the definition
of the new concept — where a; are the arguments that are equal. For instance,
applying this PR with parameters (0, 1) produces the following concept defi-

nition:
newC(A, B) : integer(A) A integer(B) A divisors(A, B)A A= B

which also stands for the concept of integers that are divisors of themselves;
however, the resulting data table keeps all the arguments from the original

concept.

the split rule: extracts the list of tuples from the data table of a concept for which
a set of specified arguments are equal to some given values. The output data
table contains the tuples from the original data table that meet the conditions
specified in the parameterisation. For instance, applying this PR with param-

eters (1 = 2) produces the following concept definition:
newC(A) : integer(A) A integer(2) A divisors(A,?2)

The new concept results in the list of integers for which 2 is one of their di-
visors. The parameterisation (1 = 2) specifies the output data table should
contain only tuples from the original concept for which the value of the argu-

ment in position 1 is equals to 2.

the size rule: counts the number of times that the examples of a given set of argu-
ments are repeated within a concept data table. The output data table contains
the distinct occurrences of the given set of arguments and the number of times

they occur within the original data table. For instance, the application of this
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PR with parameters (1) produces the following concept definition:
newC(A, B) : integer(A) A integer(B) A B = [{C' : integer(C') A divisors(A, C)}|

This concept counts the number of divisors for each integer in the background
domain. The parameterisation (1) specifies that the argument to be counted is

the one in position 1 from the original concept data table.

the linear-constraint rule: given a concept for which two of its arguments are in-
tegers, this rules allows the application of linear constraints =, >, <, > and
< over such arguments. The output data table is the set of tuples for which
the chosen constraint is true. For instance, the application of this PR with

parameters (0, 1), <) results in the following concept definition:
newC(A, B) : integer(A) A integer(B) A divisors(A, B) A less-than(A, B)

which stands for the concept of integers that have divisors greater than the
integer they divide. The parameterisation (0, 1), <) compares the arguments

in positions 0 and 1 through the relationship <.

the embed-algebra and record rules: the embed-algebra PR identifies algebras
embedded within concepts in the theory by using axioms provided within the
background information. The record PR takes the definition of a function and
produces a new function concept whose output is an integer sequence. These
two PRs were developed specifically for algebraic domains and details of their

implementation are not available.

3. Binary rules: these PRs form a new concept from two old concepts: a primary concept
considered as the first input concept to the PR and a secondary concept. To describe
the application of the binary PRs the concepts of multiples and square numbers
will be used in addition to the concept of divisors. The definitions for these two

concepts, supplied in the background domain, are:

multiples(C, D) : integer(C) A integer(D) A multiples(C', D)

non-square(F) : integer(F) A non-square(F)

where D is a multiple of C, and E is a non-square number.

the compose rule: combines the predicates from two concepts in the new concept
by conjoining the predicates in the new concept definition and removing any
duplicates from the output data table. Applying this PR to the concepts of divi-

sors and non-square numbers, with the parameters (0, 1) yields the following

30



concept definition:
newC(A, B) : integer(A) A integer(B) A divisors(A, B) A non-square(B)

which stands for the concept of divisors that are also non-square. The pa-
rameters (0, 1) specify that the argument in position 1 of the primary concept
should match the argument of the secondary concept.

the disjunct rule: takes two concepts with the same definition and produces the
disjunction of their data tables in the new concept. For instance, the applica-

tion of this PR to the concepts of divisors and multiples produces the following
concept definition:

newC(A, B) : integer(A) A ((integer(B) A divisors(A, B)) V (integer(B) A multiples(A, B)))

which produces the concept of multiples and divisors of an integer. Note
that the application of this PR does not require a parameterisation since the

definition of both concepts must be the same.

the negate rule: takes two concepts and finds the tuples within the data table of the
first concept that complement the data table of the second concept. Applying
this PR to the concepts of non-square and integer results in the following

concept definition:
newC(A) : integer(A) A —non-square(A)

which produces the concept of integers that are not non-square numbers. The

application of this PR does not require a parameterisation.

the forall rule: takes two concepts whose definitions coincide and generates a new
concept containing a universally quantified implication involving the two in-
put data tables. The application of this PR to concepts divisors and multiples
produces the following concept definition:

newC(A) : integer(A) A Y B((integer(B) A divisors(A, B)) = (multiples(A, B)))

which stands for a new concept in which if an integer is a divisor of a number
implies that the integer is also a multiple of the number. Different parameteri-
sations can be applied through the application of this PR; however, there is not
a description available of how this mechanism works for this PR. Therefore,

an explanation of this cannot be provide in this thesis.

the arithmetic rule: performs arithmetic operations (+, -, *, div) on specified en-
tries of two input concepts. The output data table contains the result of the
chosen arithmetic operation. Assume the concepts C and C,, which repre-

sent the number of divisors and the number of multiples of each integer, have
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been formed previously by HR as shown below:

C\(A, B) : integer(A) A integer(B) A B = |{C' : integer(C) A divisors(A, C)}|
Cy(A, B) : integer(A) A integer(B) A B = |{C' : integer(C) A multiples(A, C)}|

the application of the arithmetic PR over concepts C and C, with parameters
(+) produces the following concept definition:

newC(A, B) : integer(A) A A C, D(integer(C) A C = {E : integer(E) A divisors(A, E)}|
Ainteger(D) A D = |{F : integer(F) A multiples(A, F)}y A B = C + D)

which stands for the concept that adds up the number of divisors and number
of multiples of an integer. Note that in this example the parameterisation

specifies the use of the addition operation.

the numrelation rule: performs arithmetic comparisons (<, >, <, >) on specified
entries of two concepts. The output data table contains the tuples of the origi-
nal data tables that meet the conditions specified by the comparison operator.
Again, applying this PR to concepts (' and C, with parameters (>) produces
the following concept definition:

newC(A) : integer(A) A A B, C(integer(B) A B = |{D : integer(D) A divisors(A, D)}|
Ninteger(C) A C = [{E : integer(E) A multiples(A, E)}| A B > ()

This concepts defines the integers for which the number of divisors is greater
or equal than the number of multiples. Observe that the paremeterisation de-

fines the use of the relationship >.

In order to fully illustrate the application of the PRs, we show how the concept of
prime numbers can be generated via HR. First, the size PR is applied to the concept of
divisors (shown in Figure with the parameterisation < 1 >. This means that the
number of tuples for each entry in column 1 of the concept data table is counted, and this
number is then recorded for each entry. For instance, in the data table representing the
concept of divisors, 1 appears only once in the first column, 2 and 3 appear twice each,
and 10 appears four times. This number is recorded next to the entries in the concept data
table as shown in Figure[2.§]

Then, as illustrated in Figure [2.9] the split PR is applied to the new concept with the
parameterisation < 2 = 2 >. This application of the split PR produces a new data table
consisting of those entries in the previous data table whose value in the second column is
equals to 2. Through manual inspection of the new concept it is observed that it represents

the concept of prime numbers.
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: d1v150rs(1'&,B) numberOfDivisors(A,B)
integer | divisor - —
i i integer | number of divisors
’ | 1 1
2 2
2 2
3 2
3 1 .
3 3 size < 1 > 4 3
— 5 2
6 4
10 1 7 2
8 4
10 2
9 3
10 > 10 4
10 10

Definition:
numberOfDivisors(A, B) = integer(A) A integer(B) A B =|C : integer(C) A divisors(A, C)|

Figure 2.8: Generation of the concept of number of divisors.

numberOfDivisors(A,B)
integer | number of divisors
1 1
2 2 prime(A)
3 2 B E—
4 3 split< 2 =2 >
3
5 2 — 5
6 4 .
7 2
8 4
9 3
10 4
Definition:

prime(A) = integer(A) A integer(2) A2 = |B : integer(B) A divisors(A, B)|

Figure 2.9: Generation of the concept of prime numbers.

2.3.1.3 Conjecture making

Each time a new concept is generated, HR checks to see whether it can make conjectures
with it. This could be equivalence conjectures, if the new concept has the same data table
as a previous concept; implication conjectures, if the data table of the new concept either
subsumes or is subsumed by that of another concept, or non-existence conjectures, if the
data table for the new concept is empty.

Following the running example of prime numbers, we show how HR identifies the
conjecture that all prime numbers are non-squares. After the concept of prime numbers
has been formed, HR checks to see whether the data table is equivalent to, subsumed
by, or subsumes another data table, or whether it is empty. Assuming the concept of
non-square numbers has been previously generated by HR, the data tables of both the
concept of prime numbers and the concept of non-square numbers, shown in Figure [2.10]
are compared. Note that in this case we assume the concept of non-square numbers was
developed by HR instead of given in the background domain. Details of how this concept

is invented by HR can be found in [[104, Chapter 3] where it is shown the steps to generate
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this concept through the application of the match, exists and negate PRs.

non-square(A)
prime(A) g

2
3 = >
5 6
7 7

8

10

Definitions:
prime(A) = integer(A) A integer(2) A2 = |B : integer(B) A divisors(A, B)|
non-square(A) = integer(A) A = B(integer(B) A divisors(A, By A A = B * B)

Figure 2.10: Concepts representing the prime and non-square numbers between I and 10.

HR would immediately see that all of its prime numbers are also non-squares, and
so conjectures that this is true for all prime numbers. That is, it will make the following

implication conjecture:
prime(A) = non-square(A)

which in HR output is given as:

Y A(integer(A) A integer(2) A 2 = |B : integer(B) A divisors(A, B)| =
integer(A) A = 3 C(integer(C) A divisors(A, C)YN A = C x C)

This illustrates the process of theory formation within HR. For a more detailed de-

scription about HR and its capabilities the reader is referred to [37, 32].

2.3.1.4 Challenges in using HR in the formal modelling context

As mentioned earlier in this section ATF and in particular HR has been successfully ap-
plied in different domains; however, at the moment of writing this thesis there is no pre-
vious account of using HR in the context of formal modelling. In general, using HR to
form theories about formal models and identifying interesting conjectures as candidate

invariants presents with some challenges:

1. HR produces a large number of conjectures — in our experiments some were in the
range of 3000 to 12000 conjectures per run — from which only a very small set
represent interesting conjectures. Our main challenge was to find a way of auto-
matically selecting the conjectures that are interesting for the domain among the
conjectures obtained from HR; in this way, only a handful of candidate invariants

is presented to the user instead of a large set of uninteresting conjectures.

2. The HR theory formation mechanism consists of an iterative application of produc-

tion rules over all concepts in the theory. In order for HR to perform an exhaustive
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search, all possible combinations of production rules and concepts must be carried
out. However, there is not a fixed number of theory formation steps set up for
this process, since this varies depending on the domain, i.e. some domains need
more theory formation steps than others. This represented a challenge for the use
of HR in the discovery of invariants since it was possible that an invariant had not
been formed only because not enough steps had been applied, and performing an

exhaustive search would give rise to an unmanageable number of conjectures.

. Some production rules are more effective in certain domains than others. Selecting
the appropriate production rules results in the construction of a more interesting
theory. For instance, if we are looking at a refinement step in an Event-B model
that introduces a partition of sets, we expect the new invariants to define properties
over the new sets; therefore, production rules such as the arithmetic PR will not be
of much interest in the development of the theory associated to the refinement step.
Automatically selecting appropriate production rules requires knowledge about the

domain.

. HR production rules were created for the context of mathematical domains, this
means that some type of invariants cannot be generated by HR. For instance, HR
cannot invent invariants that contain recursive definitions or invariants that require
the inverse type of a concept. In Section[4.2.1.1]a possible interesting new produc-

tion rule is identified.

. HR does not support sets as parameter to a concept; therefore, common Event-B
expressions, such as sets of sets cannot be represented in HR. The parameters of a
concept are treated as strings; thus, the operations performed by the PRs are based
on string comparisons. In order to add support for sets we need to add support for

strings that represent lists of elements and add list handling in the required PRs.

Challenges 4] and [ require modifying the core of HR which is not in the scope of this

thesis. However, future directions of work are described in Section [8.3] In addressing

challenges [I] 2] and [3] a set of heuristics were developed which automatically constrain

both the configuration of HR and the selection of conjectures that arise from a theory

formation run. In the following chapter we describe how ATF can be applied to form

theories of Event-B models as well as present the heuristics and their application in detail.

2.4 Summary

Formal methods are supported by a wide range of tools and techniques. As shown in

this chapter, these techniques can be applied at different stages of the development cycle.

Moreover, different aspects of the development can be targeted by formal approaches;

for instance, refinement and automated invariant discovery aid formal modelling, while

theorem proving and model checking aid formal verification.
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We have described in detailed Event-B, a formalism for the development of discrete
event systems that provides support for a refinement-style of modelling. The Rodin plat-
form has also been outlined, an eclipse-based tool used for the development of Event-B
models. In particular, we have described ProB, a Rodin plug-in for the simulation and
model checking of Event-B models. Finally, ATF was presented, a machine learning
technique whose purpose is to form theories about objects of interest in a domain. In
particular, we have outlined HR, a system that implements ATF. HR attempts to construct
new concepts through the use of a set of production rules and to formulate conjectures
that relate those concepts.

The work presented in this thesis focuses on formal methods tailored for the design
stage. Specifically, our techniques aim at providing modelling guidance for refinement-
based formal modelling. For this purpose we built upon Event-B; specifically, ProB is
exploited, alongside HR, for the dynamic analysis of simulation traces in order to dis-
cover invariants of Event-B models. Furthermore, proof failure analysis and patterns of
refinement are key aspects to guide the search for invariants as well as to provide mod-

elling guidance when a step fails but is close to a known pattern of refinement.
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Chapter

Invariant Discovery through HR

The posit and prove style of refinement adopted by Event-B gives the developer the free-
dom of incrementally introducing design details; however, the user is responsible for
ensuring the correctness of each refinement step by proving the generated POs. Discharg-
ing such POs typically requires a developer to supply properties — properties that relate to
their design decisions. This chapter presents a heuristic approach that supports the activ-
ity of formal modelling by automatically discovering such properties through the use of

ATF, simulation and proof.

3.1 Approach

The approach consists of exploring simulation traces of formal models in order to identify
properties that are true over such traces. There are three main components involved:

1. a formal modelling component that supports proof;

2. asimulation component that generates system traces; and

3. an ATF component that generates conjectures from the analysis of the traces.

Figure [3.1]illustrates how these three components interact with each other.

Formal Model
+

Candidate

Model Invariants

Failed
proofs

Automated
Theory Formation

Figure 3.1: Approach for the automatic discovery of invariants.

Traces

The formal model is simulated in order to generate traces that specify the state of the
system in different scenarios; these traces along with proof failure analysis are used to

tailor the theory formation process. The result from this is a set of candidate invariants
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which are fed back to the model and presented to the user, who makes the final decision
about which invariants should be introduced into the model. From a modelling perspective
we have focused on Event-B and the Rodin tool-set, in particular we have used the ProB
animator plug-in [86] for the simulation component. In terms of ATF, we use the HR

system.

3.1.1 Construction of conjectures within the Event-B formalism

The model in Figure [3.2]is used to show how a gluing invariant can be generated through
the use of theory formation. At the abstract level the boolean variable full is modified
in event addA through a non-deterministic substitution when full is false — note that
the non-deterministic substitution, i.e. full :€ BOOL, specifies that variable full is non-
deterministically assigned a boolean value. At the concrete level the state of the system
is refined by replacing the abstract variable full by concrete variables x and m. Moreover,
the abstract event addA is refined by the concrete event addC, which gradually increments

variable x by one unit when x is less than m.

ABSTRACT LEVEL: CONCRETE LEVEL:
Variables Variables
full Xm
Invariants Invariants
full e BOOL Xx€eN
meN
Events Events
Initialisation Initialisation
then then
full := false x:=0
end m:=3
Event addA = end
when Event addC =
full = false refines addA
then when
full :e BOOL X <m
end then
X :=X+1
end

Figure 3.2: Flawed Event-B model.
As it stands the model generates a failed guard strengthening PO, shown in (3.1)). This
PO specifies that the concrete guard x<m must imply the abstract guard full=false.
x <mt full = false (3.1

The failure is generated because the relationship between the abstract and concrete state;

1.e. the gluing invariant, has not been defined.
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The first step in the discovery of invariants is to simulate the Event-B model. The aim
of the simulation is to obtain the set of examples required by HR to invent conjectures
about a domain. The animation trace shown in Figure [3.3]is produced by the ProB simu-
lator for the flawed Event-B model. The trace shows the value of the abstract and concrete

variables at each step of the simulation.

Animation steps

Variables | S1 S2 S3 S4

Abstract full false | false | false | true
Concrete X 0 1 2 3
m 3 3 3 3

Figure 3.3: Animation trace generated by the ProB simulator.

The input background information required by HR is extracted from the Event-B
model and the simulation trace. This consists of the set of core concepts that describe
the domain; i.e. the data types and the state of the model, with their respective exam-
ples. Figure [3.4] shows the data tables of the core concepts corresponding to the model.
That is, the concept state which represents every step of the animation trace, the concepts
boolean and integer which are the data types and and the concepts full, x and m which are

the abstract and concrete variables of the model.

state(A) integer(C) full(A,B) x(A,C) m(A,C)
S1 boolean(B) 0 S1 | false S1 |0 S1 1] 3
S2 true 1 S2 | false S2 |1 S2 1 3
S3 false 2 S3 | false S3 |2 S3 1 3
S4 3 S4 | true S4 |3 S4 | 3

Figure 3.4: Core concepts.

With this background information HR applies all possible combinations of concepts
and production rules in order to generate new concepts and form conjectures. After 1000
theory formation steps HR generates a total of 2083 conjectures. Through manual in-
spection, conjecture (3.2)) is identified as the missing invariant of the flawed model —
the equivalent Event-B representation of the conjecture is shown in (3.3)). Note that this
transformation is carried out manually by the user.

¥ A(state(A) A boolean(FALSE) A full(A, FALSE) &
state(A) A A B, C(integer(B) A (A, B) A integer(C) A m(A, C) A B < () (3.2)
full = false & x <m (3.3)

This conjecture is built by HR in three steps:

1. HR produces the concept of the set of states for which full is equals to false. This
concept is generated through the application of the split production rule as illus-

trated in Figure As can be observed an intermediate output datatable is gener-
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ated with all tuples of concept full whose second column is equals to false. Since the
second column is the same for all tuples of the intermediate concept, this column is

removed from the final output concept; i.e. full false(A).

Sflll“(l?’ll;) full(A false) full_false(A)
ASC | split(full,2=false) | SI | false S1

S2 | false -

$3 | fal - S2 false S2
aise S3 | false S3

S4 | true

full_false(A) = state(A) A boolean(false) A full(A, false)

Figure 3.5: Generating the concept of states for which full is false.

2. Then HR produces the concept of the set of states for which x is less than m. This
concept is generated by HR through the application of the numrelation production
rule. The application of this step is illustrated in Figure [3.6] The output concept

lists all the states for which x<m.

X(A,0) m(A,C) x_less_m(A)
S110 SL 3 numrelation{x,m,<) - S1

S2 |1 S2 | 3 IR T S

S3 |2 S3 | 3 93

S4 | 3 S4 | 3

z_less_m(A) = state(A) A (A B, C(integer(B) A z(a, B) A integer(C) A m(A, C) A B < ()

Figure 3.6: Generating the concept os states for which x is less than m.

3. Immediately after the generation of new concepts, HR looks for relationships with
other existing concepts. As shown in Figure[3.7] HR finds that the concept full_false(A)
has the same list of examples as concept x_less_m(A), giving rise to the equivalence

conjecture (3.2)), which represents the missing invariant.

full_false(A) x_less_m(A)
S1 o S1
S2 S2
S3 S3

Y A(state(A) A boolean(FALSE) A full(A, FALSE) &

state(A) A A B, C(integer(B) A (A, B) A integer(C) A m(A, C) A B < ()

Figure 3.7: Identified equivalence conjecture.
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In this section it was illustrated how theories of Event-B models can be formed by
HR. A simple Event-B model was used to identify a missing invariant within the set of
conjectures generated during the theory formation process. In the next section the model
of the Mondex system developed by Butler and Yadav [22] is used in order to show how

this process is performed automatically.

3.2 Automatic invariant discovery of Event-B models

The Mondex system models a protocol for money transfer that ensures that no money is
lost in a transaction regardless of the success or failure of the transaction. The model de-

veloped in [22] is composed of one abstract model and eight refinement steps as follows:

Abstract model: models successful and failed transfers of money through atomic steps
that modify the balance of the purses involved in the transaction.

Level 2: introduces states for a transaction as well as the concepts of source, target and
amount within a transaction.

Level 3: removes some redundant variables from the model.

Level 4: introduces dual states for each side of the transaction.

Level 5: uses messaging between purses instead of allowing direct access to their state
information.

Level 6: limits the purses to participate only in one transaction at a time.

Level 7: controls the freshness of a transaction by introducing a history of sequence num-
bers used by each purse involved in the transaction.

Level 8: replaces the history of sequence numbers with a single counter for each purse
that is increased every time the purse is in a new transaction.

Level 9: replaces the sets that model the states of the purses by a function that maps a

purse to its status.

Details of each of these steps can be found in [22]]. Here the focus is on the last
refinement step. A fragment of the model is shown in Figure 3.8}

The StartFrom event handles the initiation of a transaction on the side of the source
purse. In order to initiate a transaction, the source purse, i.e. pI, must be in the idle state
(waiting state) and after the transaction has been initiated the state of the purse must be
changed to epr (expecting request). As shown in Figure[3.8] at the abstract level a purse is
active if it is the source of a transaction, i.e. it belongs to the domain of function currentF,
or the target, i.e. it belongs to the domain of function currentT. Moreover, the state of a
purse is represented by disjoint sets, e.g. the variables eprP and idleFP. At the concrete
level the representation is changed to a function, i.e. the variable statusF, a mapping from
the set of purses to an enumerated set (state), e.g. the constants IDLEF and EPR.

Note that the refinement presented in Figure [3.§]is unprovable as it stands since the

relationship between the abstract and concrete states has not been defined. In order to
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ABSTRACT LEVEL:

Context:
Sets
purses, trans

Model:

Variables
currentF, currentT, active,
idleFP, eprP, epaP, aborteprP,
abortepaP, endFP, idleTP,
epvP, abortepvP, endTP

Invariants

CONCRETE LEVEL:

Context:

Sets
status

Constants
IDLEF, EPR, EPA, ABORTEPR,
ABORTEPA, ENDF, IDLET, EPV,
ABORTEPYV, ENDT

Axioms
partition(status,{IDLEF},{EPR},{EPA},
{ABORTEPR},{ABORTEPA} {ENDF},
{IDLET},{EPV},{ABORTEPV} {ENDT})

active C purses

currentF € purses + trans Model:
currentT € purses -+ trans Variables
partition(active,dom(currentF),dom(currentT)) statusF
partition(dom(currentF),idleFP,eprP,epaP, Invariants
aborteprP,abortepaP,endFP) statusF € purses + status
partition(dom(currentT),idleTP,epvP, Events
abortepvP,endTP)
Events StartFrom =
refines StartFrom
StartFrom = any t, pl
any t, pl where
where pl — IDLEF e statusF
pl € idleFP
then
then statusF(p1) := EPR

eprP :=eprP U {p1}

idleFP :=idleFP \ {p1} end

end

Figure 3.8: A refinement step from the Mondex [22l] development.

verify the refinement a gluing invariant is required. That is:

idleFP = statusF~'[{IDLEF}] (3.4)

This invariant states that the abstract set idleFP can be obtained from the inverse of the
function statusF evaluated over the enumerated set IDLEF — a similar gluing invariant
would be required for the abstract set eprP and the function statusF. Next, it is shown
how @) is generated via HR. Furthermore, we motivate the need for the development
of some heuristics in order to optimise the theory formation process and to automate the

selection of candidate invariants.

Figure [3.9 describes the flow of data for the invariant discovery process. Concepts are
extracted directly from an Event-B model, while examples are derived from simulation
traces. The result of the theory formation process is a set of conjectures from which some

may represent candidate invariants of the given Event-B model. Details of how this data
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is obtained are presented next. We use the refinement step of the Mondex model as a

running example.

Event-B model — Concepts

Traces —® Examples —» . —» Conjectures

PRs —» Enabled _PRs

Figure 3.9: Discovery of invariants in Event-B models through HR.

3.2.1 Extracting concepts
There are three types of concepts in HR:

T1: user-given concepts that enumerate the objects of interest,
T2: user-given concepts that define features of the objects of interest, and

T3: concepts automatically generated by HR through the use of the PRs.

Within Event-B, the input concepts are defined by the state of the model which is
represented via carrier sets, constants and variables. Carrier sets are considered to be T1
concepts because they represent the basic entities in an Event-B model, i.e. they are user
defined types from which constants and variables can be formed. Variables are considered
to be T2 concepts since they are defined in terms of the objects of interest, i.e. the carrier
sets. Constants also represent T2 concepts unless they are members of a carrier set, in
which case they are considered to be examples of the carrier set. More formally, the sets
of T1 and T2 concepts are defined as follows:

conceptsT1(M) £ carrierSets(M) (3.5)
conceptsT2(M) = wvariables(M) U {c| ¢ € constants(M) A ¢ ¢ U carrierSets(M)} (3.6)

where carrierSets(M), variables(M) and constants(M) denote carrier sets, variables and
constants associated with model M respectively.

To illustrate the process of concept extraction, consider again the refinement step from
our running example. Figure [3.10] summarises the abstract and concrete state associated
with this refinement step.

The results of applying functions (3.5 and (3.6) to the abstract and concrete models
is shown in Figure [3.T1] Note that the constants associated with the concrete level, i.e.
IDLEF, EPR, etc, are not 1dentified as core concepts because they are subsets of the set

status, as defined by the axiom:

partition(status, {IDLEF}, {EPR},{EPA},{ABORTEPR}, {ABORTEPA},
{ENDF},{IDLET},{EPV},{ABORTEPV},{ENDT})
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Abstract Level: Concrete Level:

Sets: Sets:
purses, trans status

Variables: Constants:
active, currentF, currentT, idleFP, IDLEF, EPR, EPA, ABORTEPR, ABORTEPA,
eprP, epaP, aborteprP, abortepaP, ENDF, IDLET, EPV, ABORTEPV, ENDT
endFP, idleTP, epvP, abortepvP, Variables:
endTP statusF

Figure 3.10: State in the abstract and concrete levels of the Mondex refinement step.

conceptsT 1(abstractModel) = {purses, trans}
conceptsT2(abstractModel) {active, currentF, currentT, idleFP, eprP, epaP,
endFP, idleTP, epvP, end TP, aborteprP,

abortepaP, abortepvP}
(a) Core concepts obtained from the abstract model.

conceptsT 1(concreteModel) {status}

conceptsT2(concreteModel) {statusF}
(b) Core concepts obtained from the concrete model.

Figure 3.11: Core concepts extracted from the Mondex refinement step.

The next step involves translating the core concepts into HR definitions. An HR def-
inition consists of a functor along with the type of its parameters. The required type
information is given as invariants and axioms within a model. In the case of the Mondex

example, the invariants shown in Figure [3.12] specify the types of the T2 concepts listed

in Figure[3.11]

Abstract invariants:

active C purses

currentF € purses + trans

currentT € purses + trans
partition(active,dom(currentF),dom(currentT))
partition(dom(currentF),idleFP,eprP,epaP, aborteprP,abortepaP,endFP)
partition(dom(currentT),idleTP,epvP, abortepvP,endTP)

Concrete invariant:
statusF € purses - status

Figure 3.12: Core concepts type invariants.

From these invariants it is observed that the abstract variables currentF’ and currentT
are function from purses to trans, variables active, idleF'P, eprP, etc. are subsets of purses,

and the concrete variable statusF is a function from purses to status. In terms of a HR
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definition, idleFP is represented as idleFP(A) where A denotes the type of purses. Sim-
ilarly, statusF is represented as statusF(A, B) and currentF is represented as currentF(A,
C), where A, B and C denote the types purses, status and trans, respectively. Figure[3.13|
shows the HR definitions for all the core concepts that arise in the running example.

Types: Definitions:

A = purses active (A) epaP(A) eprP(A) epvP(A)

B = status endFP(A) endTP(A) idleFP(A) idleTP(A)

C = trans abortepaP(A) aborteprP(A)  abortepvP(A) statusF(A,B)
currentF(A,C) currentT(A,C)

Figure 3.13: Definitions of the Mondex core concepts.

Details about how the data tables of these concepts are built will be given in the next
sections. The process of identifying the core concepts for a given Event-B refinement step

is fully automatic. Details on the automated process are presented in Chapter [4]

3.2.2 Generating examples of concepts

For each concept definition, HR requires a set of examples in order to apply its PRs. As
mentioned earlier, within the context of Event-B, simulation provides a source of such
examples. Through simulation it is possible to analyse the operation of an Event-B model
by observing how its state changes when different scenarios are explored. We use the
ProB animator in order to construct simulation traces of Event-B models, from which the
required examples are extracted.

A trace represents a record of the behaviour of the system during the simulation, i.e. it
contains the value of the domain data at each step. Drawing upon the Mondex refinement
step, Figure [3.14] shows a fragment of a trace generated from a simulation run performed
by ProB.

Note that we have only shown the concepts that are needed for the generation of the
gluing invariant (3.4). Note also that carrier set purses and variable idleFP denote abstract
concepts, while the carrier set status and variable statusF denote concrete concepts. In
order to observe gluing invariants we must be able to link the abstract and concrete states.
To achieve this, state is added as a core concept to the domain of an Event-B model —
where a state represents a step in the simulation trace .

In terms of generating examples, when the axioms of an Event-B model enumerate
the members of a carrier set, ProB assigns these as the examples of the carrier set. For
instance, ProB automatically selects the constants IDLEF, EPR, EPA, etc. as the examples
of status. In the case of carrier sets such as purses, where there are no axioms defining
membership, ProB dynamically generates a list of arbitrary members using the name of

the carrier set as a prefix. To illustrate, for purses ProB generates the list pursesl, purses2,
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Sets and Constants (all states)

purses status
purses1,purses2,purses3, | IDLEF,EPR,EPA,ABORTEPR,ABORTEPA,
purses4,purses5 ENDEIDLET,EPV,ABORTEPV,ENDT

Variables

state idleFP statusF
SO - -
S1 - -
S2 - -
S3 - -
S4 - -
S5 purses3 purses3—IDLEF
S6 purses3, pursesS | purses3—IDLEF,pursesS—IDLEF
S7 pursesS purses3—EPR purses5—IDLEF
S8 pursesS purses3—EPR purses5—IDLEF
S9 - purses3—EPR,purses5—EPR
S10 | - purses3—EPR purses5—EPA
S58 | - purses1—ABORTEPA purses5—ENDF
S59 | - purses1—»ABORTEPA

Figure 3.14: An example animation trace.

purses3, purses4 and purses5. Note that once set at the beginning of the simulation, the

values of carrier sets and constants remain the same in all steps of the simulation trace.

The examples of variables and the state concept vary per step within the simulation
trace. Each step represents the execution of an event; therefore, only the value of the
variables modified by the event are changed in each step. It is also possible that a variable
does not have a value associated with a state; for instance, a set that is empty at a particular
moment in the simulation. This is represented in Figure [3.14] with the symbol ‘—’. The
examples of the state concept consists of an ID list that indicates the sequence of steps in
the trace. The ID of a state is represented by the letter S attached with a sequence number.
Each step within the simulation trace represents the execution of an event. While the
events themselves are not part of the trace since the invariants specify global properties of
the data, their effect on the value of the variables is recorded. The examples of the state

concept are obtained by enumerating each step within the trace.

Simulations can be generated randomly or through the use of test case generators. The
quality of the invariants depends on the quality of the simulations, so the use of test case
generators is highly recommended whenever possible. For the Rodin toolset, no test case
generator is available. The simulations used in our experiments are randomly generated
as the development of a test case generator is outside of the scope of this thesis. We come
back to this in Chapter 3]
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3.2.3 Constructing data tables

HR does not work directly with simulation traces; it works instead with data tables. For

each concept, a data table is constructed as follows:

DataTable(z) = if isa_conceptT1(z) then {e | e € x}

else {< s,e > | s € state A e € trace(s, x)} (3.7

where isa_conceptT'1(z) is true iff z denotes a T1 concept, and trace(s, z) computes the
set of examples e for concept z in state s of a previously generated simulation trace. Note
that in the case of a T1 concept, the associated data table simply enumerates the elements

of the concept. For example, applying (3.7) to the T1 concepts given in Figure[3.14]yields:

DataTable(purses) = {pursesl, purses2, purses3, purses4, pursesS}

DataTable(status) = {IDLEF, EPR, EPA, ABORTEPR, ..., ENDT}

The corresponding data tables are given in Figure [3.I5] Note that a data table for state
is always required in order to link abstract and concrete perspectives. In the case of a
T2 concept, the data tables corresponds to a set of tuples that associate examples of the
concept with the states in which they appear within the trace. To illustrate, the application
of (3.7) to the T2 concepts given in Figure [3.14] yields:

DataTable(idleFP) = {< S5, purses3 >, < S6, purses3 >, ..., < 554, purses4 >}
DataTable(statusF) = {< S5, purses3 — IDLEF >, ...,< 559, pursesl — ABORTEPA >}

The corresponding data tables are shown in Figure [3.16

state

SO

status S1

IDLEF S2

purses EPR 243]_
: EPA

pﬁ;z:z ABORTEPR S5

gurses3 ABORTEPA gg

purses4 ENDF S8

pursesS IDLET S9
EPV

ABORTEPV | | S10

ENDT :

S58

S59

Figure 3.15: HR data tables type 1 core concepts.

47



idleFP(A,B)

S5 3 statusF(A,B,C)

36 purses 3 S5 | purses3 IDLEF

6 purses 5 S6 | purses3 IDLEF
purses S6 | purses5 | IDLEF

S7 | pursesS

sg 5 S7 | purses3 EPR

310 purses 2| | 87 | pursess IDLEF
purses S8 | purses3 EPR

S25 | purses5
S29 | pursesl
S30 | pursesl : : :
S31 | pursesl S29 | pursesl IDLEF
S38 | purses5 S29 | purses5 | ABORTEPR
S39 | purses5 S30 | pursesl IDLEF
S40 | purses5 S30 | purses5 | ABORTEPR
S44 | pursesS S31 | pursesl IDLEF
S45 | pursesS S31 | pursesS | ABORTEPR
S52 | purses5 . . .

S53 | pursesS
S54 | purses5

S8 | pursesS IDLEF

S59 | purses] | ABORTEPA

Figure 3.16: Example HR data tables for type 2 core concepts.

3.2.4 Selecting PRs and running HR

Once provided with data tables, HR applies all possible combinations of concepts and
PRs in order to generate new concepts and form conjectures. HR currently contains a set
of 22 PRs. In our work we have focused on 7, which we found relevant to the Event-
B formalism. Table [3.1] shows the correspondence between the 7 PRs and the Event-B

operators. However, as will be explained in Chapter [ we believe that there is scope for

new PRs that address aspects of the formalism not currently covered.

Production Rule

Formula Operator

negate
compose
disjunct
arithmetic
numrelation
exists

split

_
AN, <, <>, b

Vv, U

+, —, X, div

> >, <, <, =

dom, ran

when a member of a finite set is identified.

Table 3.1: Compatibility between production rules and formula operators.

In order to illustrate HR’s theory formation mechanism, consider again the data tables
given in Figures [3.15 and [3.16] Starting with these tables and all the PRs mentioned in
Table [3.1] enabled, HR is run for 1000 theory formation steps. Through our experience
most interesting conjectures have been formed within 1000 steps. Moreover, it has been
noted that with the Event-B domain models, the theory formation process slows down not

far after these 1000 steps. Thus our selection of length. After 433 steps of the theory
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formation run, HR forms the following conjecture:

¥ A, B.(state(A) A purses(B) A idleFP(A, B) &
status(IDLEF) A statusF(A, B, IDLEF)) (3.8)

This conjecture specifies that the concept IdleFP(A,B) is equivalent to the concept sta-
tusF(A,B,C) when C is instantiated to be IDLEF. In the context of the Mondex refinement
step, this means that the set idleFP (abstract) is equal to the inverse image of the singleton

set {IDLEF} under the function statusF (concrete), i.e.

idleFP = statusF~!'[{IDLEF}]

which is gluing invariant (3.4) — note that the transformation of (3.8) to its Event-B rep-
resentation is not currently automatic. This is addressed as future work in Section[8.3]

The discovery of this conjecture involves noticing that data table idleFP(A,B) is iden-
tical to the rows of data table statusF(A,B,C) for which C is equals to IDLEF. HR’s split
PR plays a central role in such discovery as illustrated in Figure [3.17] Within the theory
formation process, when the split PR is applied with the parameters <3, IDLEF>, a spe-
cialisation of concept statusF is formed, i.e. a data table is formed by extracting the tuples
of concept statusF whose third column matches the parameter IDLEF. Note that since the
third column is the same for all tuples, this column is removed from the output concept.
Immediately after the generation of this concept, i.e. status_IDLEF, HR discovers that
its datatable has the same list of examples as concept idleFP (as shown in Figure [3.18)),
giving rise to conjecture (3.8).

Input Intermediate Output
statusF(A,B,C) statusF(A,B,IDLEF) statusF _IDLEF(A,B)

S5 purses3 IDLEF S5 purses3 | IDLEF S5 purses3
S6 purses3 IDLEF S6 purses3 | IDLEF S6 purses3
S6 purses5 IDLEF S6 pursesS | IDLEF S6 pursesS
S7 purses3 EPR S7 pursesS | IDLEF S7 pursesS
S7 purses5 IDLEF S8 pursesS | IDLEF S8 pursesS
S8 purses3 EPR S19 | purses4 | IDLEF S19 purses4
S8 purses5 IDLEF S25 | pursesS | IDLEF S25 pursesS
split<3,IDLEF> | S29 | pursesl | IDLEF _ S29 purses1

: : : — S30 | pursesl | IDLEF S30 purses|
S29 | pursesl IDLEF S31 | pursesl | IDLEF S31 purses1
S29 | purses5 | ABORTEPR S38 | purses5 | IDLEF S38 purses5
S30 | pursesl IDLEF S39 | pursesS | IDLEF S39 pursesS
S30 | pursesS | ABORTEPR S40 | pursesS | IDLEF S40 pursesS
S31 | pursesl IDLEF S44 | pursesS | IDLEF S44 pursesS
S31 | pursesS | ABORTEPR S45 | pursesS | IDLEF S45 pursesS
. . S52 | pursesS | IDLEF S52 pursesS

. . . S53 | pursesS | IDLEF S53 pursesS
S59 | pursesl | ABORTEPA S54 | purses5 | IDLEF S54 purses5

Given a data table T, split<M, N> derives a new data table 7" such that all the rows in 7"
are identical to the rows in T where the column M has value N.

Figure 3.17: Concept of purses whose status is IDLEF.
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statusF_IDLEF(A,B) idleFP(A,B)
S5 purses3 S5 purses3
S6 purses3 S6 | purses3
S6 purses5 S6 | purses5
S7 pursesS S7 pursesS
S8 pursesS S8 pursesS
S19 purses4 S19 | purses4
S25 pursesS S25 | pursesS
S29 purses| S29 | pursesl
S30 purses1 S | s30 purses1
S31 pursesl S31 | pursesl
S38 pursesS S38 | pursesS
S39 purses5 S39 | pursesS
S40 pursesS S40 | pursesS
S44 pursesS S44 | pursesS
S45 purses5 S45 | pursesS
S52 pursesS S52 | pursesS
S53 purses5 S53 | pursesS
S54 pursesS S54 | pursesS

Y A, B.(state(A) A purses(B) A status(IDLEF) A statusF(A, B, IDLEF) & idleFP(A, B))

Figure 3.18: Formed equivalence conjecture.

3.3 Heuristic Approach

Event-B model | —» prioritise(Concepts, POs)

N

Traces ———» Examples ——» —» Conjectures

PR —» select(Enabled_PRs, POs) l
S filter(Model, Conjectures, POs, prioritisedConcepts)

'

Automatically
Selected
Invariants

prioritise(Concepts, POs): concepts that occur within failed POs are prioritised during

theory formation.

select(Enabled_PRs, POs): the selection of the enabled PRs is determined by the rela-

tionships specified between the concepts that occur within failed POs.

filter(Model, Conjectures, POs, prioritisedConcepts): the filtering of the conjectures

(candidate invariants) is driven in part by the concept prioritisation.

Figure 3.19: Approach for the automatic discovery of invariants.

As illustrated above, the use of HR in discovering Event-B invariants can involve sig-
nificant user interaction. In particular, the user must supply domain information about
their models, the set of PRs that are to be enabled, as well as analyse the large number of

conjectures formed during theory formation. For instance, recall in Section [3.2.4] where
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invariant (3.4) was discovered by an application of the split PR to the concept statusF
using the parameter <3, IDLEF>. Without guidance, HR’s search for such parameter
settings makes invariant discovery infeasible. As particular combinations of these param-
eters turn out to be useful for different domains, finding the right combination is largely a
process of trial and error. To achieve such guidance, we have developed a set of heuris-
tics. Figure [3.19) provides a high-level picture of how these heuristics relate to the basic

invariant discovery diagram given in Figure 3.9

Our heuristics exploit the strong interplay between modelling and reasoning in Event-
B. Specifically, central to the design of our heuristics is the observation that proof-failure
analysis provides insights into the structure of missing invariants. Figure [3.19]illustrates
this by showing that each heuristic is parametrised by the POs associated with a failed
refinement step; which implies that the invariant discovery search is guided by the failed
POs. The heuristics are used both in configuring HR as well as filtering the conjectures.
In other words, we required heuristics to automatically focus the theory formation to
each Event-B domain defined by a user. The heuristics achieve this through the syntac-
tic analysis of the model and the POs, which allows the prioritisation in the conjecture
generation and the filtering of the theory formation output. Below we provide definitions
and explanations for each heuristic, focusing first on the Configuration Heuristics (CH) in
Section [3.3.T|and then the Filtering Heuristics (FH) in Section[3.3.2] The example shown
in Section [3.1.1]is used to illustrate the application of the heuristics.

3.3.1 Configuration heuristics

Every time HR forms a new concept it tries all applicable theory formation steps; i.e. all
applicable combinations of PRs and concepts that involve the new concept. Furthermore,
most PRs can be applied with different parameterisations. This means that the theory for-
mation process can lead to a combinatorial explosion [34]. HR uses an agenda mechanism
to organise how concepts are explored. We use the CH heuristics to influence this agenda
mechanism and to constrain the applicable PRs during theory formation. This is achieved
by prioritising the concepts of interest according to the failed POs and by choosing only
PRs that can rise interesting relationships between those concepts. We use two overall

heuristics, i.e. CHI and CH2, when configuring HR for a given Event-B refinement step:

CHL1. Prioritise core and non-core concepts that occur within the failed POs.
Through this heuristic a higher priority is given to core and non-core concepts that
occur within the failed POs during theory formation. Consequently, the prioritised
concepts are placed in the top of HR’s agenda which results in the earlier generation
of conjectures that relate to these concepts. The set of core and non-core concepts
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associated with the set of failed POs is organised as follows:

prioritise( Concepts, POs) =
{pri(c, 1) | c € Concepts A c € goalConcepts(POs)} U
{pri(c,2) | ¢ € Concepts A c € hypConcepts(POs) N c¢ ¢ goalConcepts(POs)} U
{pri(c,3) | c € Concepts A c & goalConcepts(POs) A ¢ ¢ hypConcepts(POs)} U
{pri(c,4) | c € goalNonCoreConcepts(POs)} U
{pri(c,5) | ¢ € hypNonCoreConcepts(POs) A ¢ & goalNonCoreConcepts(POs)}

where:

e pri(C, N): N denotes the priority assigned to concept C'.

e goalConcepts(POs): denotes core concepts occurring within the goals associ-
ated with POs.

e hypConcepts(POs): denotes core concepts occurring within the hypotheses
associated with POs.

e goalNonCoreConcepts(POs): denotes non-core concepts occurring within the
goals associated with POs.

e hypNonCoreConcepts(POs): denotes non-core concepts occurring within the

hypotheses associated with POs.

We have observed that in most cases we are able to identify the missing invariants
by focusing in the first instance on the core concepts that arise within the goals
of the failed POs; therefore the highest priority is given to such concepts. The
core concepts associated with the hypotheses follow in order of interest while the
remaining core concepts are dealt with next. Finally, compound expressions that
occur within the goal (and hypotheses) which represent potential non-core con-
cepts are identified. This is achieved by finding expressions within the POs which
can be replicated via the application of PRs. We define these as “anticipated” non-
core concepts. Note that we assume that the input POs are well defined since they
are generated from the Rodin toolset; therefore, no invalid expressions would arise
when identifying non-core concepts from the predicates of a PO. The implementa-
tion details of how these concepts are extracted from the POs is provided in Chapter
1|

Recall that the state in the example of Section [3.1.1] consisted of the following

concepts:
full(A,B), x(A,B) and m(A,B)

where A represents the step in the simulation trace and B the value of the variable in

the step. Moreover, the following failed PO is produced if the invariant is missing
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from the model:
x < mt full = false.

Observe that a core concept can be identified from the goal of the PO, namely con-
cept full, while there are two core concepts in the hypothesis, that is concepts x and
m. Moreover, a non-core concept is found in the goal of the failed PO: full=false,
which can be obtained through the application of the split PR over concept full
with parameter false; i.e. split(full,2=false). Moreover, a non-core concept is
identified in the hypothesis of the PO, that is x<m. This concept can be repli-
cated in HR through the application of the numrelation PR with parameter ‘<’;
1.e. numrelation{x,m,<). Therefore, the application of heuristic CH1 results in the

following sets of prioritised core and non-core concepts:

prioritised core concepts = {full, x, m}

prioritised non-core concepts = {full=false, x<m}

CH2. Select the subset from the enabled PRs that are most relevant to the given failed
PO:s.
Typically the invariants required in order to overcome proof failures have strong
syntactic similarities with the failed POs. This is the intuition behind CH2, which
selects PRs that focus HR’s theory formation on such syntactic similarities. The

selected PRs are identified as follows:

select(Enabled_PRs, POs) =
{pr | pr € Enabled_PRs A 3 op € operators(POs) . op € related_ops(pr)}

where:

e operators(POs): denotes the set of operators that occur within the predicates
associated with POs.

o related _ops(PR): denotes the set of operators that are associated with PR (see
Table [3.1]in Section [3.2.4).

Because of the set theoretic nature of Event-B, the compose, disjunct and negate
production rules are always used in the search for invariants — where compose re-
lates to conjunction and intersection, disjunct relates to disjunction and union and
negate relates to negation and set complement.

Based on the failed PO shown in the previous heuristic, the application of CH2 to

the example produces the following selection of PRs:
production rules = {compose, disjunct, negate, split, numrelation}

the compose, disjunct and negate PRs are enabled by default, the split PR is selected
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because of the presence of the split value false in the goal of the PO, and the num-

relation PR is selected because of the occurrence of operator < in the hypothesis.

As will be shown in Chapter ] the empirical evidence we have gathered so far sup-

ports our rationale for both configuration heuristics.

3.3.2 Filtering heuristics

As mentioned earlier, HR produces a large number of conjectures, only a few of which
represent candidate invariants. Constrained by the initial concept prioritisation, our FH
heuristics guide the search for these candidate invariants via a series of 5 filters — defined
here as a functional composition:

filter(Model, Conjectures, POs, PrioritisedConcepts) =
{c | c € filters(Model, POs, filter4(POs, filters(filter, (filter; (Conjectures, PrioritisedConcepts)))))}

Parameter Model refers to the Event-B model being analysed, Conjectures are all the
conjectures generated through the theory formation process, POs is the set of failed proof
obligations associated with the model and PrioritisedConcepts refers to the concepts iden-
tified through the application of configuration heuristic CH1.

As with the configuration heuristics, the development of the filtering heuristics was
mainly driven by the PO failures; i.e. their focus is to find conjectures that would address
the failures expressed by the POs. Furthermore, the order in which the heuristics are
applied serve the purpose of optimising the search. That is, heuristics FH1 and FH2
require only a syntactic analysis of the conjectures, while heuristics FH3, FH4 and FH5
perform a semantic analysis through the use of external tools: the CVC3 prover and the
Rodin toolset. This implies a major use of computational resources. Moreover, applying
FH1 in the first place focuses the search on a smallest set of conjectures than applying
FH2 in the first step. Additionally, the application of FH4 requires the translation of the
conjectures from HR to Event-B; while FH1, FH2 and FH3 can be performed before this
translation takes place. Finally, FH5 depends on the outcome of FH4; therefore, it must
be applied in the last step. Note that applying these heuristics in a different order would

yield the same result; however, the search would not be optimal.

Each of the 5 filtering heuristics is defined below:

FH1. Select conjectures that focus on prioritised core and non-core concepts.
As mentioned before, the required invariants tend to have strong syntactic simi-
larities with the failed POs; therefore, focusing on the concepts associated with
the POs increases the possibilities of discovering the missing invariants. In other
words, focusing on the prioritised concepts identified through heuristic CH1; i.e.
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PrioritisedConcepts, guides the filtering process. This is achieved as follows:

filter|(Conjectures, PrioritisedConcepts) =
{c| c € Conjectures A I a € PrioritisedConcepts .

(c=(a=> )Vcec=C=2a)Vc=@e_ )Vcec=Cea)V c=-3a.))

The selected conjectures should focus purely on the prioritised concepts, i.e. we
are interested only in equivalence and implication conjectures where either the left
or right hand side represents a prioritised concept, as well as in all non-existence

conjectures where a prioritised concept occurs.

Recall in the example the following prioritised core and non-core concepts were

selected:

full, x, m, full=false and x<m

Applying heuristic FH1 requires the selection of conjectures that focus on these
prioritised concepts. This results in a total of 14 conjectures associated with each

concept as follows:

concept | equivalences | implications | non-exists
full 0 0 1
X 0 1
m 0 1 3
full=false 2 2 1
x<m 0 0 0

FH2. Select conjectures where the sets of variables occurring on the left- and right-hand
sides are disjoint.
Based on our experience with Event-B, the literature and the case studies presented
in this thesis, it was observed that typically the set of variables involved in an in-
variant does not contain duplicates. This heuristic focuses the search on conjectures
that have such shape. Thus, the set of conjectures is further pruned by selecting only
those that do not contain multiple occurrences of a variable, i.e.

filter,(Conjectures) =
{c| c € Conjectures AN ((c=(L=>R) V c=(L e R) A
no_duplicate_variables(L) A no_duplicate_variables(R) N vars(L) Nvars(R) = @) V

(¢ ==3(0) A no_duplicate_variables(c)))}

where vars(X) denotes the free variables that occur in X, while the predicate
no_duplicate _variables(X) holds if and only if no multiple occurrences of a vari-
able occur within X. The disjointness property reflects the nature of gluing invari-

ants which relate abstract and concrete variables.
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FH3.

FH4.

FHS.

In the case of the example, the application of the heuristic does not reduce the
number of conjectures. This may occur because the model is very simple with only
four steps in the simulation trace. Moreover, based on the new configuration applied
through the CH heuristics only 23 conjectures are generated. This is contrary to the
initial 2083 conjectures that are produced without tailoring the search in HR as was
mentioned in Section B.1.1]

Select only the most general conjectures.
This heuristic eliminates redundancies amongst the set of selected conjectures by
removing those that are logically implied by more general conjectures, i.e.

filters(Conjectures) =

{c]| c € Conjectures N =" € (Conjectures \ {c}) . ¢’ = ¢}

The identification of the most general conjectures is done through the use of CVC3;

i.e. we use CVC3 to identify if ¢’ = c.

Applying this heuristic to the example reduces the number of conjectures to half;

i.e. a total of 7 conjectures, which are associated with the prioritised concepts as

follows:
concept | equivalences | implications | non-exists
full 0 0 1
X 0 1 2
m 0 1 0
full=false 1 1 0
x<m 0 0 0

Select conjectures that discharge the failed POs.
Through this heuristic only conjectures that help discharge the given failed POs are
selected, 1.e.

filter4(POs, Conjectures) =
{c| c € Conjectures A Apo € POs . provable(c, po)}

where provable(c, po) holds if and only if po can be discharged by adding conjec-

ture c to its set of hypotheses.

Applying this heuristic to the example results in the selection of only two conjec-
tures associated with the prioritised non-core concept full=false, one equivalence

and one implication.

Select conjectures that minimise the number of additional proof failures that are
introduced.

Overcoming a proof failure potentially leads to new proof failures. Here we select
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conjectures that minimise the number of new failures introduced into the model,

i.e.
filters(Model, POs, Conjectures) =
{c|ce U minEztraFailedPOs(Model, po, Conjectures)}
po€ePOs
where

minExtraFailedPOs(M, P, C) £
{c|ce C A provable(c, P) A
V' e (C\{c}). provable(c’, P) = | failedPOs(c, M) |<| failedPOs(c’, M)) |}

Note that failedPOs(C, M) denotes the set of failed POs that arise when conjecture

C is added as an invariant to model M.

Regarding the example, the two conjectures selected by heuristic FH4 discharge the
failed PO and do not produce any extra failure; thus, both of them are presented to
the user as candidate invariants. The conjectures in their Event-B representation

are:

Jull=FALSE & x<m (3.9
x #m = full=FALSE (3.10)

Observe that conjecture (3.9) represents the invariant that was manually identified
in Section [3.1.1] This is evidence of the effectiveness of the automatic approach

presented here.

The application of the filtering heuristics described above may involve iteration. That
is, if focusing on the prioritised concepts identified from the goals of the failed POs does
not generate suitable invariants, then the filtering heuristics are reapplied to the priori-
tised concepts that appear within the hypotheses. This iterative approach to discovering
the missing invariants is typical of Event-B developments, as described in [22, Section
5] where invariant discovery is manual. However, when dealing with incorrect develop-
ments, this process will not terminate. Furthermore, the failure of a PO does not neces-
sarily mean the absence of invariants in the model; a failure can also occur because the
prover could not handle it. As a way of coping with these cases, the invariant discovery
process would terminate if none of the selected conjectures help discharge at least one
failed PO. This also means that a conjecture generated by HR, which is indeed a missing
invariant, may be rejected through the approach because the auto-provers failed to dis-
charge the associated POs. Currently, we do not have a mechanism to deal with this case.
However, the use of a proof planner may help overcome this issue. This is part of our plan
for future work. We return to this in Section
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3.4 Mondex invariant discovery revisited

In this section we show the application of the heuristics over the example of the Mondex

system and the discovery of the missing gluing invariant:
idleFP = statusF~![{IDLEF}]

Without this invariant, an unprovable guard strengthening (GRD) P(ﬂ, associated with
event StartFrom, is generated. The unprovable PO, together with the abstract and concrete
versions of the event StartFrom, are shown in Figure[3.20] Inspection of the PO shows that
the abstract guard p1 € idleF'P (goal) is not implied by the concrete guards (hypotheses).

Abstract Event Concrete Event Failed PO
StartFrom = StartFrom = pl — IDLEF e statusF
any t, pl refines StartFrom t € startFromM
where any t, pl pl = from(t)
pl € idleFP where Fseqno(t) = currentSeqNo(p1)
t € startFromM pl — IDLEF e statusF -
pl = from(t) t € startFromM pl €idleFP
Fseqno(t) = currentSeqNo(p1) pl = from(t)
then Fseqno(t) = currentSeqNo(p1)
eprP :=eprP U {p1} then
idleFP := idleFP \ {p1} statusF(p1) := EPR
currentF2(pl) :=t currentF2(pl) :=t
end end

Figure 3.20: Failed guard strengthening PO resulting from a missing gluing invariant.

The application of the configuration heuristics starts with CH1, i.e. the identification
of core and non-core concepts that occur within the failed PO in order to give them higher
priority during theory formation. The following core concepts are identified from the goal
and hypotheses of the failed PO:

{idleFP, statusF, startFromM, from, FSegno, currentSeqNo}

Observe that the identifiers p/ and ¢, which appear within the failed PO, are not consid-
ered as core concepts as they do not represent either a variable, a constant or a set, they

represent parameters of the event. Furthermore, we identify the non-core concept:
{p | p € purses A statusF(p) = IDLEF}

because of the occurrence of constant IDLEF, which is a split value, and statusF, which

is a core concept in the hypothesis:
pl — IDLEF € statusF

The non-core concept corresponds to all purses that are mapped by statusF onto IDLEF.

This non-core concept can be obtained through the application of the split PR to the

'A GRD PO verifies that the guards of a refined event imply the guards of the abstract event.
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concept statusF, using the constant IDLEF as a parameter. No other non-core concepts
are identified within the PO.
The next step is the application of heuristic CH2. The following PRs are selected for

the invariant discovery process:
{compose, disjunct, negate, split}.

The compose, disjunct and negate PRs are always used in the search, as defined by heuris-
tic CH2. The split PR is selected when any reference to a member of a finite set occurs.
In the context of the example, the constant IDLEF, which is a member of the finite set
status, triggers the selection of the split PR. Thus, the split PR is applied over the finite
set status and the values to split are all the members of the set, i.e.: IDLEF, EPR, EPA,
ABORTEPR, ABORTEPA, ENDEF, IDLET, EPV, ABORTEPV and ENDT.

After completing the configuration, we run HR for 1000 steps which generates 2134
conjectures. This should be compared with the 4545 conjectures that are generated if our
CH heuristics are not used to configure HR.

Next we follow with the application of the filtering heuristics focusing on the conjec-
tures that relate to the prioritised core and non-core concepts. We focus first on the core
and non-core concepts that appear within the goal of the failed PO. In our example, this
implies looking for conjectures that involve the concept idleF'P. The application of FH1

returns:
4 equivalences, 2 implications and 79 non-exists conjectures.

FH2 removes conjectures whose left- and right-hand sides are not disjoint with respect to

the variable occurrences. This selection of conjectures produces:
1 equivalence, 2 implications and 79 non-exists conjectures
Less general conjectures are removed through FH3, this results in:
1 equivalence, 2 implications and 46 non-exists conjectures.
FH4 selects only conjectures that discharge the failed PO, resulting in:
1 equivalence, 0 implications and 0 non-exists conjectures

Note that in this example a single conjecture remains. Furthermore, this conjecture does

not introduce any additional failures. The remaining conjecture is:

Y A, B.(state(A) A purses(B) A idleFP(A, B) &
status(IDLEF) A statusF(A, B, IDLEF))

which can be translated into the missing gluing invariant (3.4)), i.e.:

idleFP = statusF~'[{IDLEF}].
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It should be noted that this conjecture was formed by HR after a single iteration of the
theory formation process. This shows that in this example our heuristics guided HR to
discover interesting conjectures early within the theory formation process.

The translation from HR generated conjectures to Event-B invariants is currently per-
formed manually. In order to automate this process the first-order logic formulas used by
HR must be translated into their equivalent set-theory representation in Event-B. In order
to do this we need to remove extra type information and new concepts introduced by HR
and HRewmo, remove quantifiers whenever possible and identify the appropriate Event-B
operators. For instance, a disjunction between two HR concepts that represent sets in the

Event-B model is translated into set union. This translation is part of our future work.

3.5 Summary

This chapter presents an automatic approach to invariant discovery that builds upon HR,
animation and proof-failure analysis. In particular, a set of heuristics are used to guide
the search for invariants in HR. These heuristics exploit the strong interplay between
modelling and reasoning in Event-B by using the feedback provided by failed POs to make
decisions about how to configure HR. Specifically, the approach consists of analysing the
structure of failed POs to automate the prioritisation of concepts, the selection of PRs,
and the filtering of conjectures. Two classes of heuristics are used to constrain the search
for invariants: those used in configuring HR, i.e. configuration heuristics, and those used
in filtering conjectures from HR’s output, i.e. filtering heuristics. Using proof-failure
analysis to prune the wealth of conjectures HR discovers, these heuristics have proven

highly effective at identifying missing invariants.
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Chapter

HRemo : Invariant discovery workbench

and results

In this chapter we outline our prototype system, HReEmo, which implements the approach
described in the previous chapter. The HREmo system extends HR by implementing the
configuration and filtering heuristics used for the discovery of invariants.
HREewmo reflects the extension to HR as well as the fact that it applies our reasoned mod-
elling vision in which modelling and proof patterns are combined in order to provide high

level modelling guidance to the user; in the case of HREwmo this guidance takes the form

of candidate invariants.

4.1 Tool architecture

s Rodin
! development

o

HReEmoO
Rodin L Tracesg Domain
plug-in POs file I Generator

PRs & prioritized
core and non-core
concepts

POs &
core concepts

Configurator

I
conjectures

Conjecture
Selector

@

candidate invariants

indicate work in progress; the rectangle box

/

The labels with bold font indicate the main components of the tool chain; the stippled lines
represents input data used in a process; the
square boxes represent processes; the document boxes [ ™) represent files that are used

as inputs and/or outputs of a process; and the ovals O represent external processes.

Figure 4.1: Tool-chain architecture
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The tool architecture is shown in Figure 4.1] While we have focused on Event-B, and the
Rodin tool-set, our design aims to minimise the coupling between the formal modelling
tool and HR. This was achieved by building a Rodin plug-in that manages the interface
between an Event-B development and HR domain description. Our heuristics were mech-
anised via an extension to HR; i.e. HRemo. Both the HR tool and the Rodin toolset are
implemented in Java; therefore, the implementation effort was also carried out in Java.

Below we describe each of the major components of the tool.

4.1.1 Rodin plug-in

The main role of the Rodin plug-in is to provide an interface between the Rodin toolset
and HREewmo, specifically the plug-in is responsible for supplying domain information from
an Event-B model, i.e. the animation traces and failed POs, to HRemo.

As shown in Figure d.1] the plug-in receives as input a Rodin development. The user
selects an Event-B machine in the associated refinement chain for which the invariant
discovery analysis should be performed — note that only one step of the refinement is han-
dled at a time. ProB is then invoked in order to run a simulation of the selected refinement
step. As previously mentioned, we rely on the random animation capability of ProB for
the generation of traces; however, the plug-in allows the user to set up the initial state of
the system and to perform his own animation steps in addition to the randomly generated
steps. Currently, the plug-in sets up ProB to generate 100 random steps — In private dis-
cussions with Simon Colton, the creator of HR, 100 steps were identified as a sufficiently
large data sample. Selecting fewer steps may not provide a representative sample of the
behaviour of the system and selecting a larger number may affect the performance of HR;
for instance, a PR may not be applicable when the number of tuples in the output data ta-
bles exceeds the maximum allowed by the PR — that is, there is a maximum size allowed
for a concept data table in HR as a way of controlling possible memory issues.

When the simulation finishes, the plug-in extracts the structure of the model, i.e. vari-
ables, constants and sets, the examples from the animation traces and the failed POs. This
information is then output into a xml file: the traces and POs file, which follows the Doc-
ument Type Definition (DTD) schema shown in Appendix |E.1|— an example of this output
file is presented in Appendix [E.2|for a simple traffic light model. The xml file produced
by the plug-in contains:

o the elements of the model (i.e. variables, constants and sets) with their respective

parameters;

o the value of each variable, constant and set for each step of the animation; and

o the failed POs represented as tree-like structures.

The tree-like representation of the POs classifies goal and hypothesis formula as either
binary, unary or literal. Binary formulas are composed of a left- and a right-hand side
formula and a binary operator. Unary formulas are composed by an unary operator and a

formula, and literal formulas are composed of a string that represents a name or identifier.
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4.1.2 Domain Generator

The main functionality of the domain generator is to process the traces and POs in order to
transform the information of the model into HR data tables. The input to this component
is the traces and POs file and its outputs are a domain file that represents the model
as domain information for HR, and a macro file which contains instructions about the
application of the PRs as well as other parameters for the theory construction.

The traces contained in the file are transformed into background concepts in HR; i.e.
the definition and data tables of each variable, constant and set are built as explained
in Section [3.2.3] Parsing the POs consists of translating the tree-like representation ex-
plained in the previous section into a similar tree-like representation within HRemo; i.e.
classifying each predicate in the PO as binary, unary and literal formulas. After the POs
are parsed, the domain generator uses the configurator to analyse the failed POs. Exam-

ples of macro and domain files are given in Appendices [E.4and [E.3] respectively.

4.1.3 Configurator

Algorithm 1 Pseudo-code for the identification of core and non-core concepts.

1 function coREANDNONCORECONCEPTS(formula)

2 if formula is a literal formula then
3 literal < get identifier from formula
4 if literal is a domain variable OR literal is a domain constant then
5 add formula to prioritised core concepts
6 return TRUE
7 else if formula is a unary formula then
8 operator « get operator from formula
9 uniFormula < get unary sub-formula from formula
10 valid — COREANDNONCORECONCEPTS (uniFormula)
11 if valid AND operator is compatible with a PR then
12 add formula to prioritised non-core concepts
13 return TRUE
14 else if formula is a binary formula then
15 operator < get operator from formula
16 leftFormula < get left sub-formula from formula
17 rightFormula < get right sub-formula from formula
18 validLeft — COREANDNONCORECONCEPTS(leftFormula)
19 validRight — COREANDNONCORECONCEPTS(rightFormula)
20 if validLeft AND validRight AND operator is compatible with a PR then
21 add formula to prioritised non-core concepts
22 return TRUE
23 else
24 splitValues «— GETSPLITVALUES (formula) > see Algorithm 2]
25 coreConcepts < get core concepts from formula
26 if size of splitValues > O then
27 for all val in splitValues do
28 for all concept in coreConcepts do
29 parameters < get parameters from concept
30 if val is compatible with parameters then
31 binaryFormula < newBinaryFormula(val, concept)
32 add binaryFormula to prioritised non-core concepts

33 return FALSE
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The configurator receives the parsed POs and the core background concepts from the
domain generator. Its role is to apply the configuration heuristics in order to make the
selection of the prioritised core and non-core concepts as well as the PRs from the failed
POs. In other words, it determines the order of the concepts in the domain file, the non-
core concepts that are forced into the domain, and the PRs that are to be specified in the
macro file. The pseudo-code for the identification of core and non-core concepts is given
in Algorithm[I] This procedure is broken into smaller pieces and explained below.

The analysis of this process is as follows:

1. The configurator analyses the goals and then the hypotheses within the failed POs.
This is because as mentioned previously, we have observed that in most cases, we
are able to identify the missing invariants by focusing in the first instance on the

concepts that arise within the goals of the failed POs.

2. The configurator examines each formula to decide whether or not there exists a core

or a non-core concept. This decision is made based on the following parameters:

(a) A core concept is identified if a literal formula has been found (Line [2), and
the identifier associated with the formula represents a variable or constant

from the domain background concepts (Line [)).

2 if formula is a literal formula then

literal « get identifier from formula

if literal is a domain variable OR literal is a domain constant then
add formula to prioritised core concepts
return TRUE

o 0~ W

(b) A non-core concept is a combination of variables and constants that can be
replicated in HR through the use of the PRs. In order to identify non-core
concepts from a formula we analyse the compatibilities between formula op-
erators and PRs. These compatibilities were introduced in Table [3.1] (Section
[3.2.4). A binary or unary formula is a valid non-core concept if its operator
is compatible with a PR and its sub-formulas are themselves valid formulas.
Therefore, for unary formulas (Line , the sub-formula is recursively anal-
ysed (Line [I0) and if the sub-formula is valid and the operator is compatible

with a PR (Line[TT)) the formula is added as a non-core concept.

if formula is a unary formula then
operator « get operator from formula
uniFormula <« get unary sub-formula from formula
10 valid «— COREANDNONCORECONCEPTS(uniFormula)
11 if valid AND operator is compatible with a PR then
12 add formula to prioritised non-core concepts
13 return TRUE

© N

Likewise, for binary formulas (Line [I4), the left and right sub-formulas are
recursively analysed (Lines|I18|and and if both sub-formulas are valid and
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the operator is compatible with a PR (Line [20) the formula is added as a non-

core concept.

14 if formula is a binary formula then

15 operator « get operator from formula
16 leftFormula < get left sub-formula from formula
17 rightFormula < get right sub-formula from formula

18 validLeft «— COREANDNONCORECONCEPTS(leftFormula)

19 validRight «— COREANDNONCORECONCEPTS(rightFormula)

20 if validLeft AND validRight AND operator is compatible with a PR then
21 add formula to prioritised non-core concepts

22 return TRUE

(c) Moreover, a non-core concept can be derived from the application of the split

PR over a binary formula if:

1. the formula is not valid, i.e. one or both sub-formulas are not valid or the
binary operator is not compatible with a PR, i.e. condition in Line 20]does
not hold;

ii. the formula contains valid split values (Line [26)) (procedure explained
below in Algorithm [2); and

iii. the formula contains a core concept that is compatible with a split value;
i.e. if one of the parameters of the core concept can be assigned the split
value (Line[30)); e.g. the core concept mi_tl, which denotes a traffic light,

can be assigned the split value green.

24 splitValues < GETSPLITVALUES(formula) > see Algorithm [2]
25 coreConcepts < get core concepts from formula

26 if size of splitValues > 0 then

27 for all val in splitValues do

28 for all concept in coreConcepts do

29 parameters < get parameters from concept

30 if val is compatible with parameters then

31 binaryFormula < newBinaryFormula(val, concept)
32 add binaryFormula to prioritised non-core concepts

Algorithm [2]shows the pseudocode of the procedure that identifies split values
from a formula. A valid split value is an identifier from a literal formula
(Line [) that does not represent a background concept (Line [5) but that is a
member of a domain set (Line [/)); e.g. the value green is a member of the

domain set Color; therefore, green is a valid split value.

The same methodology is followed in order to identify the PRs that are used during
the search for conjectures within the theory formation process. That is, when an operator
is found that is compatible with a PR, then the PR is enabled for the search.
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Algorithm 2 Pseudo-code for the identification of split values from a formula.

1 function GeTSpLITVALUES(formula)

2
3
4
5
6
7
8
9

10
11
12

13

splitValues « [] > stores the split values found in formula
if formula is a literal formula then

literal « get identifier from formula

if literal not a domain variable AND literal not a domain constant then

for all sef in domain sets do
if literal is an element of set then
add literal to splitValues

else if formula is a unary formula then

get split values from the unary formula in the input formula ...
else if formula is a binary formula then

get split values from the left and right formulas in the input formula ...

return splitValues

4.1.4 Conjecture selector

The conjecture selector receives the set of conjectures generated by HR after the auto-

mated theory formation process. The main functionality of the selector is to prune the

generated conjectures by selecting only those that represent candidate invariants. There

are two important aspects to the implementation of the filtering process:

1. The identification of the predecessors of a concept. The predecessors are the core

concepts involved in the construction of a concept generated through the PRs; i.e.
the transitive closure of the ancestors relation. Algorithm [3|shows the pseudocode
for the identification of the predecessors of a concept. If the concept represents a
core concept (Line [2)) its ID is returned; otherwise, the predecessors of the concept
are the predecessors of its ancestor concepts; i.e. the concepts that were immedi-

ately used together with a PR in order to generate the concept within the theory

(Lines [6H3).

Algorithm 3 Identification of the predecessors of a concept.

1 function PREDECESSORS(concept)

2
3
4
5
6
7
8
9

if concept is a core concept then
return id of concept
else
preds « [] > stores the predecessors of concept
ancestorConcepts < ancestors of concept
for all c in ancestorConcepts do
preds « preds + PREDECESSORS(c)

return preds

2. The identification of alternative conjectures. When HR finds two equivalent con-

cepts only one of them is kept in the theory since both concepts will derive the same
conjectures. This results in some interesting implication conjectures not being iden-
tified because they were “hidden" to us by the equivalences previously formed by

HR. In particular, interesting implications were not identified when a prioritised
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concept appeared in both sides of the conjecture. In other words, the invariant dis-
covery process searches for conjectures of the form: @« = _ and _ = «, where a is
a prioritised concept. Assume that after the theory formation process is performed
a conjecture 8 = « is found. Moreover, associated with concept S there is a con-
jecture B & 6. Thus, 6 = @ may be an interesting conjecture as well; however,
this conjecture is not formed by HR because the equivalence conjecture “hides” 6
from the theory — since HR chooses only one of the equivalent concepts to keep
in the theory. Therefore, the invariant discovery search must find all alternative

conjectures that may represent potential candidate invariants.

Algorithm [ shows the process of identifying alternative implication conjectures in
which a prioritised concept appeared in the antecedent and consequent (Line [I)).
First, we find all equivalent concepts of the concept that is implied by or that
implies the prioritised concept (Line ). Then, if the prioritised concept is not a
predecessor of the equivalent concept (Line [6), i.e. the concepts are disjoint, an
implication conjecture is added to the set of interesting conjectures (either in the
form ‘prioritisedConcept = equivalentConcept’ (Line[§)) or ‘equivalentConcept =
prioritisedConcept’ (Line[10)).

Algorithm 4 Identification of alternative conjectures of a prioritised concept.

1 Requires: (impConcept = prioritisedConcept OR prioritisedConcept = impConcept) AND

(prioritisedConcept in predecessors(impConcept))

2 function ALTERNATIVECONIECTURES(prioritisedConcept, impConcept)

3
4
5
6
7
8
9

conjectures « [] > stores the identified alternative conjectures
eqvConcepts « get equivalent concepts of impConcept
for all egv in eqvConcepts do
if prioritisedConcept not in PREDECESSORS(egv) then
if prioritisedConcept = impConcept then
imp « (prioritisedConcept = eqv)
else
imp <« (eqv = prioritisedConcept)
add imp to conjectures

return conjectures

Taking these two aspects into account, the filtering heuristics are applied as follows:

1. The selection of conjectures associated with prioritised core and non-core concepts

is applied first. That is:

(a) Finding the equivalence conjectures as shown in Algorithm[5] For each equiv-
alence in the theory (Line [)), if the left- or the right-hand side concept of the
conjecture is equal to the prioritised concept (Line[7)) the equivalence is added

to the set of interesting conjectures (Line [g)).

(b) Finding the non-existence conjectures as shown in Algorithm|6] If a prioritised
concept occurs as a predecessor of a non-existence conjecture (Line [6)), the

non-existence conjecture is added to the set of interesting conjectures (Line|[7)).
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Algorithm 5 Equivalence conjectures associated with prioritised core and non-core con-

cepts.

1 function GeTEQuivALENCES(prioritisedConcept)

© 00 N o o~ 0N

conjectures « [] > stores the equivalence conjectures of prioritisedConcept
equivalences < get equivalence conjectures from theory
for all egv in equivalences do

left < get left concept from egv

right « get right concept from eqv

if prioritisedConcept = left OR prioritisedConcept = right then

add eqv to conjectures

return conjectures

Algorithm 6 Non-existence conjectures associated with prioritised core and non-core
concepts.

1 function GeTNoNEx1STENCECONJECTURES(prioritisedConcept)

0o N o o A 0D

conjectures « [] > stores the non-existence conjectures of prioritisedConcept
nonExists < get non-existence conjectures from theory
for all nEx in nonExists do
nExConcept < get concept from nEx
if prioritisedConcept is in PREDECESSORS(nExConcept) then
add nEx to conjectures

return conjectures

(c) Identifying the implication conjectures requires:

1. Finding the concepts for which the prioritised concepts are generalisa-
tions. HR defines a concept ¢/ as a generalisation of a concept c2 if the
definition of ¢/ is contained within the definition of ¢2. In other words,
generalisations are identified by comparing the definitions of the con-
cepts, while the implication conjectures are identified by comparing their
data tables. Algorithm [/|shows the process of identifying the generalisa-

tions associated with prioritised core and non-core concepts.

Algorithm 7 Generalisations associated with prioritised core and non-core concepts.

1 function GETGENERALISATIONS(prioritisedConcept)

0o N o o~ ODN

11
12

13

conjectures « [] > stores the generalisations of prioritisedConcept
concepts « get all concepts from theory
for all ¢ in concepts do > Get the generalisations.

generalisations < get generalisations from ¢
if prioritisedConcept in generalisations then
if prioritisedConcept is in PREDECESSORS(c) then
altConjs <« ALTERNATIVECONJECTURES(prioritisedConcept, c)
conjectures «— conjectures + altConjs
else
imp < ¢ = prioritisedConcept
add imp to conjectures

return conjectures

If a prioritised concept is a generalisation of a concept ¢ (Line[6) and the

68



il.

prioritised concept is a predecessor of ¢ (Line[7), then alternative conjec-
tures between the prioritised concept and ¢ are found (Line [§). However,
if the prioritised concept is not a predecessor of ¢, i.e. the condition in
Line [/| fails, then an implication conjecture of the form ¢ = prioritised-
Concept is created (Line [I1]) and added to the collection of interesting
conjectures (Line[I2]).

Finding the implication conjectures associated with the prioritised con-
cepts. This procedure is shown in Algorithm [§] If the left-hand side
concept of an implication is equal to the prioritised concept (Line [7) and
if the prioritised concept is a predecessor of the right-hand side concept
(Line [§), the alternative conjectures of the prioritised concept and the
right-hand side concept are found (Line [9)). If both sides of the implica-
tion are disjoint, i.e. condition in Line @ fails, the implication is added
to the set of interesting conjectures (Line [I2). A similar analysis is car-
ried out if the prioritised concept is equal to the right-hand side of the
implication (Line

Algorithm 8 Implication conjectures associated with prioritised core and non-core con-

cepts.

1 function GerImpLIcATIONS(prioritisedConcept)

2

© 00 N o 0o »~ W

conjectures « [] > stores the implications of prioritisedConcept
implications < get implication conjectures from theory > Get the implications
for all imp in implications do

left < get left concept from imp

right « get right concept from imp

if prioritisedConcept = left then

if prioritisedConcept is in PREDECESSORS(right) then

altConjs «— ALTERNATIVECONJECTURES (prioritisedConcept, right)
conjectures «— conjectures + altConjs

else

add imp to conjectures

else if prioritisedConcept = right then

> similar analysis than previous case.

return conjectures

2. Next, the disjoint conjectures are selected. Algorithm [0 shows the pseudocode to
define if a conjecture is disjoint. If the conjecture is an implication or an equivalence
(Line [2)) and, if there exists a core concept in the predecessors of the left-hand side
concept that also occurs in the predecessors of the right-hand side concept and
that represents a variable of the domain (Line [§)) then the conjecture is not disjoint
(Line [9). On the other hand, a non-existence conjecture (Line [I0) is not disjoint
if there exists a core concept that is a variable and that occurs more than once

in its predecessors (Lines [I5] and [I6). The given conjecture is disjoint otherwise

(Line [T8).
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Algorithm 9 Selection of disjoint conjectures.

1 function GeTD1s;oINTCONJECTURES(conjecture)

2
3
4
5
6
7
8
9

11

if conjecture is an implication OR conjecture is an equivalence then
leftConcept « get left concept from conjecture
rightConcept < get right concept from conjecture
leftlds «— PREDECESSORS(/eftConcept)
rightlds <« PREDECESSORS(rightConcept)
for all left in leftlds do
if left in rightlds AND left in domain variables then
return FALSE
else if conjecture is a non-existence conjecture then
concept < get concept in conjecture
ids « PREDECESSORS(concept)
for all id/ in ids do
for all id2 in ids do
if idl = id2 AND id] position is different to id2 position AND
idl in domainVariables then
return FALSE
return TRUE

3. Prover9 [94]] is used to choose the most general conjectures. Prover9 is an au-

tomated theorem prover for first-order logic with equality and is the successor of
Otter [93], the theorem prover originally used by HR to prove/disprove the con-
jectures. So, for two conjectures conjl and conj2, if conj2 is logically implied by

conjl, conj2 can be removed from the set of candidate invariants.

. Selecting the conjectures that discharge the failed POs (FH4) and that produce less

extra failed POs (FHS) are the next steps of the process. We have implemented
heuristics FH1, FH2 and FH3; however, although we believe the approach can be
applied to different formalisms, the implementation of heuristics FH4 and FHS are
language- and tool-dependent; this is due to the fact that the generation of POs in
a formal model requires specialised mechanisms that are particular to each formal-
ism. Therefore, heuristics FH4 and FHS are currently performed manually. Their
implementation for Event-B would involve translating the conjectures selected up
to heuristic FH3 from the format given by HR to the Event-B language. This trans-

lation will be pursued in future work.

The output from the conjecture selector is the set of candidate invariants.

4.2 Experimental results

The experiments we carried out were divided into two stages. The first stage involved the

development of our heuristics, and was based upon four relatively simple Event-B models,

as described below:

1. Traffic light system: this model represents a traffic light circuit that controls the
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sequencing of lights. It is composed of an abstract model and involves a single re-
finement. The abstract model controls the red and green lights, while the refinement

introduces a third light to the sequence, i.e. an amber light.
2. Two representations of a vending machine:

e Set representation: this model of a vending machine controls the stock of
products through the use of states. It is composed of an abstract and a concrete
model. The abstract model represents the states of products using state sets,
while the refinement introduces a status function that maps products to their

states.

e Arithmetic representation: this model of the vending machine uses natural
numbers to represent the stock and money held within the machine. While the
abstract model deals with a single product, the refinement introduces a second

product to the vending machine.

3. Refinements one and two of Abrial’s cars on a bridge system [3|]: models a system
that controls the flow of cars on a bridge that connects a mainland to an island.
At the abstract level, cars are modelled leaving and entering the island. The first
refinement introduces the requirement that the bridge only supports one way traffic,

while the second refinement introduces traffic lights.

All the configuration and filtering heuristics were identified in the first stage. We used
the second stage of our experiments to evaluate these heuristics; 1.e. during the second
stage no new heuristics were developed, but the experiments were used to provide evi-
dence of the effective application of the approach. Here the experiments were performed

on more complex Event-B models:

1. Refinement three of Abrial’s cars on a bridge system [3l]: the third refinement of
this system models the introduction of sensors that detect the physical presence of

cars.

2. The Mondex system [22]]: models an electronic purse that allows the transfer of
money between purses. This development is composed of one abstract model and
nine refinement steps. We applied our invariant discovery technique over each of

the these refinement steps.

3. Location access controller system [3|]: models a system that controls the access to

the rooms within a building.

4. Flash-based file system [39]: models a flash-based file system that allows a user to
read, write and erase information from a flash disk. This development consists of
two models; one that handles the logical (software) operation and the other that han-

dles the physical (hardware) operation. Here we targeted the latter, which involves
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five refinement steps that model the reading, writing and erasing of the physical

pages within a flash disk.

In the following section we present the results obtained by applying our approach to
the refinement of level three of the Mondex system. Furthermore, in Sections
and [4.2.2] we summarise the results we achieved across the whole refinement chain of the

Mondex system model and the flash file system case study.

4.2.1 The Mondex system

In the work reported in [22] on the Mondex system, it was highlighted that the manual
analysis of failed POs was used to guide the construction of gluing invariants. In partic-
ular, this was illustrated in the third step of the refinement in which, through the analysis
of failed POs, and after three iterations of invariant strengthening, the set of invariants
needed to prove the refinement between levels three and four were added to the model.
As part of our experiments, we re-constructed the Mondex system in Event-B based upon
the development presented in [22]. In this section we show that these results are similar
to the ones obtained through the interactive development in [22]].

In level three of the Mondex system a transaction is permitted to be in one of four
states: idle, pending, recover or ended. The refinement in level four introduces dual states
to a transaction so that each side has their own local protocol state. That is: states idleF,
epr, epa, abortepr, abortepa and endF for the source side of a transaction, and states
idleT, epv, abortepv and endT for the target side. These states model the communication
between the source and the target sides during a transaction; e.g. expecting request (epr)
or expecting value (epv), etcﬂ In order to evaluate our approach, we introduced the model
in level four with only basic typing invariants. The absence of the rest of the invariants
produces the failed POs shown in Figure [4.2]

teepv
pl € purse pl € purse t € abortepa
P2 € purse pl € purse
teepr ) - D
t € epv U abortepv cepy t € pending € abortepa
t € epa U abortepa t € abortepv
pl = from(t) (c) PO3.
aeN aeN aeN
a = am(t) a=am(t)
a = am(t)
a < bal(pl) pl = from(t) t€epa pl = from(t)
L P p2 = to(t) t € abortepv F
t € idle i F t € recover
(a) POI1 t € pending t € pending (e) PO5.
' (b) PO2. (d) PO4.

Figure 4.2: First set of failed POs.

'Further details about the model of the Mondex system can be found in [22].
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In order to discharge these failed POs, the gluing invariants that relate the abstract
states with the states introduced in the refinement are needed. HRemo starts the invariant
discovery process with the application of heuristic CH1. The set of core concepts selected
from the failed POs are:

{idle, pending, recover, purse, epr, epv, abortepv, from, am, bal, epa, abortepa, to}

Note that ¢, a, pl and p2 do not represent core concepts since they are parameters
of events in the model. Moreover, from the analysis of the predicates in the failed POs,

HREewmo identifies the following non-core concepts:
{epv U abortepv, epa U abortepa}

These concepts are identified from hypotheses ¢ € epv U abortepy and t € epa U
abortepa within PO1 and PO2, respectively. Figure [4.3]illustrates how epv U abortepy
1s identified as a non-core concept from the formula € epv U abortepv (based on Algo-
rithm [I] described previously in Section4.1.3). The formula tree is traversed until finding
the leaves (Figure 4.3(a)), then each node is analysed returning true if the node is a valid
formula, i.e. a core or a non-core concept, or a compatible operator. It returns false other-
wise. Note that the left sub-formula is not a valid core or non-core concept (Figure4.3(b)).
This is because ¢ does not represent a concept in the domain, i.e. it represents a parameter
of the event associated with the failed PO. On the contrary, epv and abortepv are valid
core concepts (Figure and Figure 4.3(d)) as they are variables in the domain. Fur-
thermore, U is a valid operator (Figure since it is compatible with the disjunct PR
as stated in Table[3.1] This results in the right sub-formula being identified as a valid non-
core concept (Figure 4.3(f)). Finally, the operator € is not valid (Figure 4.3(g)) as it is not
compatible with any PR. For this reason, and because the left sub-formula is also invalid,
the formula as a whole is not considered as a valid non-core concept (Figure d.3(h)). A
similar analysis is carried out over formula ¢ € epa U abortepa.

The process continues with the selection of the PRs. Based on the failed POs shown

in Figure d.2] the following PRs are selected for the search:
{compose, disjunct, negate, numrelation}

The compose, disjunct and negate production rules are always used in the search as
stated in heuristic CH2. The numrelation PR is selected because of the occurrence of
operator < in hypothesis a < bal(p1) within PO1. After the configuration heuristics have
been applied HR is run for 1000 steps.

The filtering heuristics are now applied. Heuristic FH1 suggests looking at the pri-
oritised concepts associated with the goals of the failed POs. From the goals of the POs
shown in Figure 4.2] the concepts idle, pending and recover are identified. Thus, HRemo

looks for the conjectures associated with each of these concepts. The results of applying
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binary binary
literal operator binary false operator binary

| | /’\ |
t € © €
literal operator literal literal operator literal

epv U abortepv epv U abortepv
(a) Formula tree. (b) Invalid core concept.
binary binary
false operator binary false operator binary
© N ) | M
E €
true oper‘ ator htTr al true  operator true
(epv) U abortepv (epv) L‘J (abortepv)
(c) Valid core concept. (d) Valid core concept.
binary binary
false operator binary false operator true
/’\ ® ‘e (epv U abortepv)
true troe true (f) Valid non-core concept.
(epv) u | (abortepv)
(e) Valid operator.
binar false
y (t € epv U abortepv)
/M\ (h) Invalid non-core concept.
false false true
(1) c (epv U abortepv)

(g) Invalid operator.

Figure 4.3: Identifying core and non-core concepts from formula t € epv U abortepyv.

FH1 are shown in Table [4.1] along with the results obtained for heuristics FH2, FH3 and

FH4 for each of the selected concepts.

As can be observed, after applying the four initial filtering heuristics we have narrowed
the set of selected conjectures to six: three implications involving the concept idle, two

implications for concept pending and one equivalence about the concept recover. These

conjectures are presented in Table 4.2

Note that we have given the equivalent set theoretic representation of the conjectures

instead of using the universally quantified format provided by HR. This is because some
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Concept | Heuristic | Equivalences | Implications | Non-exists | Total
FH1 7 27 24 58
idle FH2 0 27 24 51
FH3 0 16 17 33
FH4 0 3 0 3
FH1 6 27 35 68
pending | FH2 0 27 35 62
FH3 0 8 26 34
FH4 0 2 0 2
FH1 9 51 41 101
recover | FH2 2 51 41 94
FH3 2 3 30 35
FH4 1 0 0 1

Table 4.1: Results of the application of filtering heuristics FHI, FH2, FH3 and FHA4.

Conjecture Discharged | Extra failed
POs POs
1. abortepr U epr C idle PO1 2
2. idleF U epr C idle PO1 1
3. idleT U epr C idle PO1 2
4. epv N (epa U abortepa) C pending | PO2, PO3 2
5. epa N (epv U abortepv) C pending PO4 3
6. recover = abortepv N abortepa PO5 0

Table 4.2: Conjectures obtained after applying selection heuristic FH4.

experiments, for instance the development of the Mondex system carried out in [22], have
shown that the automatic provers do better with quantifier-free predicates.

Heuristic FHS is the final step in the discovery process. This heuristic selects the
conjectures that produce the smaller number of new failed POs. The correspondence
between the conjectures and the failures they help overcome is presented in Table 4.2] as
well as the number of extra failed POs generated when they are introduced into the model.

As can be observed, the three conjectures associated with concept idle, i.e. conjectures
1,2 and 3, discharge PO1. However, two of them each generate two new failed POs, while
the other conjecture only generates one extra failure. Thus, conjecture 2, which produces
the least number of failures, is presented as a candidate invariant. Regarding the two
conjectures associated with concept pending, one of them discharges PO2 and PO3 and
produces two new failed POs, while the other one discharges PO4 but produces three new
failed POs. As there are no other conjectures that help overcome the failures produced by
PO2, PO3 and PO4, both conjectures are suggested as candidate invariants. Finally, the
equivalence conjecture associated with concept recover discharges POS and it does not
produce any extra failures, so this conjecture is also suggested as a candidate invariant.

Thus, the candidate invariants obtained from the first iteration of HRemo over the third
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refinement of the Mondex system are shown in Figure 4.4

(idleF U epr) C idle

epv N (epa U abortepa) C pending
epa N (epv U abortepv) C pending
recover = abortepa N abortepv

Figure 4.4: Candidate invariants obtained from first iteration.

An overview of the application of the heuristics is presented in Table 4.3] Note that
this is a summary of the results shown in Table[d.1] Initially there are a total of 7296 con-
jectures generated by HR; after applying heuristic FH1 the set of conjectures is reduced
to a total of 227 conjectures. This represents a 97% reduction of the total of conjectures
generated by HR, proving heuristic FH1 to be effective at focusing the search for candi-
date invariants. Heuristic FH2 reduces the set of conjectures from 227 to 207; i.e. 8% of
conjectures are discarded. This may suggest that heuristic FH2 could be removed from
the process since the reduction is not significant; however, it is possible that for larger
systems this heuristic proves more effective. Further experiments would be required in
order to identify the effectiveness of the heuristic in larger case studies. This study is
not carried out in this thesis but it is part of our future work. Heuristics FH3 and FH4
decrease the number of conjectures to 102 and 6, respectively. This represents a reduction
of 51% by FH3 and 94% by FH4. Both heuristics decrease considerably the number of
conjectures; in particular, heuristic FH4 shows that, assuming the model is correct, using
the failed POs as a measure to discard conjectures is very effective. Finally, heuristic FH5
results in a total of 4 conjectures. At this point the reduction is minimal since FH4 has
focused the search to only those conjectures that help discharge the failed POs. Never-
theless, the application of heuristic FHS is very important since decreasing the number of

extra failures results in less interactions with HRemo.

idle | pending | recover | total
FH1 | 58 68 101 227
FH2 | 51 62 94 207
FH3 | 33 34 35 102
FH4 2 1 6
FHS | 1 2 1 4

Table 4.3: Overview of heuristics application.

After the new set of invariants is introduced into the model, six new PO failures are
generated. The new set of failed POs is shown in Figure 4.5] These POs raise failures
related to the preservation of the invariants found in the first iteration. A second iteration
of the invariant discovery process is then performed based on the new set of failed POs.
The application of the configuration heuristics results in the following prioritised core and

non-core concepts:
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epv N (epa U abortepa) C pending epa N (epv U abortepv) C pending

p2 € purse
t € idleT
p2 = to(t)
'_

P2 € purse
t € idleT
p2 = to(t)
|_

(epv U {t}) N (epa U abortepa) C pending epa N ((epv U {t}) U abortepv) C pending
(a) POG. (b) PO7.

epr U idleF C idle

pl € purse
t€epr

t € epv U abortepv

pl = from(t)
aeN

a = am(t)

a < bal(pl)
'_

epa N (epv U abortepv) C pending
pl € purse

p2 € purse

t e epv

t € epa U abortepa

aeN

a = am(t)

pl = from(t)

to(t) = p2

(epr \ {t}) U idleF Cidle \ {t} F

(c) POS.

epa N ((epv \ {t}) U abortepv) C pending \ {t}
(d) PO9.

epa N (epv U abortepv) C pending
t € epv
t € abortepa

l_

epa N ((epv \ {t}) U (abortepv U {t})) C pending \ {t}

(e) PO10.

epv N (epa U abortepa) C pending
t € epa
t € abortepv

'_

epv N ((epa \ {t}) U (abortepa U {t})) C pending \ {t}

(f) POI11.

core concepts

non-core concepts

Figure 4.5: Second set of failed POs.

{epv, epa, abortepa, pending, abortepv, epr,
idleF, idle, purse, idleT, to, from, am, bal}

{epa U abortepa, epv N (epa U abortepa),
epv U abortepv, epa N (epv U abortepv)}

and in the selection of the following PRs:

production rules = {compose, disjunct, negate, numRelation}.

As with the first iteration, we apply the filtering heuristics first to the core concepts
identified in the goals of the failed POs. Therefore, the search for invariants is focused
on concepts epv, epa, abortepa, pending, abortepv, idleF, epr and idle. A summary of
the result of the application of heuristics FH1 to FH4 is shown in Table d.4] Observe that
after applying the four initial filtering heuristics, the set of selected conjectures has been

narrowed to a total of four non-existence conjectures: one involving the concept epv, two
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for concept epa and one about the concept idleF. These conjectures are presented in Table
Note that these conjectures help overcome all the current failures, i.e. PO6, PO7,
PO8, PO9, PO10 and POI11; therefore, the four conjectures are proposed as candidate
invariants. Note also that when the new set of invariants are added to the model, two new

failed POs are generated. These new failures are shown in Figure 4.6

Concept | Equivalences | Implications | Non-exists
epv 0 0 1
epa 0 0 2
abortepa 0 0 0
pending 0 0 0
abortepv 0 0 0
idleF 0 0 1
epr 0 0 0
idle 0 0 0

Table 4.4: Iteration 2: Results of the application of filtering heuristics FHI-FH4.

Conjecture Discharged POs | Extra failed POs
epv N abortepv = @ PO9, PO11 1
epa N abortepa = @ PO10 0
idleT N (epa U abortepa) = @ PO6, PO7 1
idleF Nepr =@ PO8 0

Table 4.5: Iteration 2: Conjectures obtained after applying heuristics FHI1-FH4.

idleT N (epa U abortepa) = @
pl € purse

epv N abortepv = @ t € epr

p2 € purse t € epv U abortepv

t €idleT pl = from(t)

p2 = to(t) aeN

F a = am(t)

(epv U {t}) N abortepv = @ a < bal(p1)

(a) POI12. F
idleT N ((epa U {t}) U abortepa) = @
(b) PO13.

Figure 4.6: Third set of failed POs.

As there are still failures present in the model, another iteration of HRemo is required.
Again, applying the configuration heuristics results in the selection of the following core

and non-core concepts:

core concepts {epv, abortepv, idleT, epa, abortepa, purse,

to, epr, from, am, bal}

non-core concepts {epv N abortepv, epa U abortepa,

idleT N (epa U abortepa), epv U abortepv}
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and in the selection of the following PRs:

production rules = {compose, disjunct, negate, numRelation}.

As with the first and second iteration, the filtering heuristics are applied in the first
place to the core concepts identified in the goals of the failed POs. In this case, the search
for invariants is focused on concepts epv, abortepv, idleT, epa and abortepa. The result
of applying heuristics FH1-FH4 is shown in Table 4.6] Observe that the application of
these filtering heuristics have limited the set of selected conjectures to a total of one non-
existence conjecture involving the concept epv. This conjecture discharges both PO12
and PO13 and it does not generate any extra failed PO; thus, this conjecture is proposed

as a candidate invariant.

Concept | Equivalences | Implications | Non-exists
epv 0 0 1
abortepv 0 0 0
idleT 0 0 0
epa 0 0 0
abortepa 0 0 0

Table 4.6: Iteration 3: Results of the application of filtering heuristics FH1-FH4.

As no extra failures are generated with the introduction of this invariant, no further
iterations are needed. The final set of invariants represented by the conjectures obtained

from HREmo in the three iterations of our approach are shown in Figure

(idleF U epr) C idle epv N abortepv = @
epv N (epa U abortepa) C pending epa N abortepa = @
epa N (epv U abortepv) C pending  idleT N (epa U abortepa) = @
recover = abortepa N abortepv epr NidleF = @
(a) First iteration. (b) Second Iteration.

idleT N (epv U abortepv) = @
(c) Third iteration.

Figure 4.7: Mondex refinement fourth: automatically discovered invariants.

The invariants shown in Figure [@4.7] for level 4 of the Mondex case study are a subset
of the invariants suggested in [22] for this step of the refinement. In total HREmo obtained
8 invariants from the 17 used in [22]], plus one invariant that implies two of the invariants
suggested in [22]; that is, HRemo identified invariant (idleF U epr) C idle which implies
invariants idleF C idle and epr C idle suggested in [22]]. It is important to note that HREmo
has addressed all the failures produced in the refinement step. Some of the extra invariants
used in [22] represent new requirements of the system, which are beyond the scope of our

technique since we only target invariants needed to prove the refinement steps. However,
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some of these invariants are required in order to prove later refinements. This means that
some extra failures would arise in the subsequent refinements. HRemo can be applied to

explore these failures.

4.2.1.1 Overview of the application of HREmo to the full refinement chain of the

Mondex case study

In the previous section we detailed the application of our approach to level four of the
Mondex development. In Table we summarise the results of applying the invariant
discovery technique to each step of the refinement chain. As can be observed our tech-
nique succeeded in finding the invariants required to discharge all failed POs in levels
four, five, six and nine. However, in levels two, three, seven and eight not all failures were
discharged. Next, we explain for each level why the missing invariants were not identified
by HRemo.

Step Discovered invariants | All failures

Glue | System | Total | discharged?
Level 2 0 1 1 No
Level 3 0 0 0 No
Level 4 4 5 9 Yes
Level 5 0 9 9 Yes
Level 6 7 45 52 Yes
Level 7 3 0 3 No
Level 8 0 0 0 No
Level 9 | 10 0 10 Yes

Table 4.7: Summary of results for the Mondex development.

The following invariants were not identified at level 2:

Y p-p € purse = abal(p) = bal(p) + sum(am|[pfrom[{p}]]) “4.1)
Y p-p € purse = lost(p) = sum(am[lfrom[{p}]]) “4.2)

which are gluing invariants that explain how the balance and the money of failed trans-
actions are related in the abstract and concrete level — where the abstract balance of a
purse, i.e. abal, is equal to the concrete balance of the purse, i.e. bal, plus the amount
of money involved in all pending transactions for which the purse is the source (a similar
case is represented by the other invariant). The reason these invariants are not identified
is because the constant sum cannot be represented as a concept within HR. Note that sum
represents a partial function which maps finite sets of natural numbers to natural numbers

that represent the summation of each set, 1.e:
sum € P(N) + N,
for instance, sum({ 1, 2, 3 }) = 6. This constant would be defined within HR as:
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sum(A,B)

where A is of type P(N) and B is of type N. This means that the first parameter of sum
is a set; however, HR does not support sets as parameters of concepts, it only accepts
parameters that contain at most one element.

The following invariants are the missing invariants from level 3:

pfrom_l = (pending < from) 4.3)

lfrom_1 = (recover < from) “4.4)

These invariants specify how the redundant information provided by variables pfrom
and [from can be obtained by restricting the domain of function from with the set of
transactions in the pending and recover states, respectively. Note that the functions pfrom,

Ilfrom and from are defined as follows:

pfrom € purse < trans
Ifrom € purse < trans

from € trans — purse

The difficulty with these invariants is that the inverse type of a concept cannot be generated
via HR because there are no PRs that allow the permutation of columns within a data
table. As a consequence, although HR invents the concepts on the right-hand side of
the invariants, i.e. pending < from and recover < from, it cannot invent the concepts
on the left-hand side, i.e. pfrom™' and Ifrom™'. We therefore consider that a PR that
permutes columns within a data table would be useful addition to HR for use in the formal
modelling domains, such as Event-B.

Regarding level 7, the invariants that could not be discovered by HRemo are presented
below:

Y p-p € (active \ idleFP) A\ p € dom(currentF2) = currentF'(p) = currentF2(p) 4.5)

Y p-p € (active \ idleTP) A p € dom(currentT2) = currentT(p) = currentT2(p) (4.6)

VY p,t-p € active A from(t) = p A currentSeqNo(p) = Fseqno(t) & currentF(p) =t “.7
V¥ p,t-p €active Ato(t) = p A currentSeqNo(p) = Tseqno(t) & currentT(p) =t 4.8)

All these are gluing invariants that describe how the abstract variables currentF and
currentT are represented in the concrete level. Invariants (#.5]) and (4.6) are not identified
through HREmo because they conflict with heuristic FH2 since the left- and right-hand
sides of the conjectures are not disjoint with respect to variables currentF2 and currentT?2.
On the other hand, invariants and (4.8) present the same problem that arose with
invariants (4.3) and (@.4) at level 3. Which again suggests that a new PR, that permutes
the columns within a data table, would be worth investigating in the future.

The final missing invariant is required in level 8, and takes the form:

VYp,n-(p— neused = n < currentSeqNo(p)) (4.9)
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which represents a gluing invariant that ensures the freshness of transactions is consistent
at the abstract and concrete levels by using sequence numbers.

This invariant cannot be invented by HR, because concepts used and currentSeqNo
do not meet the conditions for the application of the numrelation PR. In particular, the
numrelation PR can only be applied to concepts of arity 2, whereas the relevant concepts
in this example have arity 3. The rationale behind the decision to impose an arity limit
was to avoid unnecessarily broadening the search space, since the exists PR can be applied
prior to numrelation, in order to reduce a concept’s arity. However, in this case, applying
the exists PR would reduce in a loss of information which is necessary in order to form
the invariant. We propose that this could be amended simply, by enabling the numrelation
PR to operate on concepts of n arity where n is a user-defined parameter, with a default

setting of 2, which can be set prior to a run.

4.2.2 Flash file case study

This case study [39] was motivated by a “verification grand challenge” posed by Holz-
mann [65)]. As mentioned previously, this development consists of two sub-models; one
that handles the software component of the flash file system and one that handles the
hardware component. In this section we show the application of HReEmo to the hardware

model. The refinement chain for this model consists of five steps:

Initial model: introduces an abstract representation of the flash device as an array of

pages that store data. It also adds abstract events for reading, writing and erasing

pages.

Level two: introduces the concept of a page register that is used as an intermediate stor-

age when reading and writing data from/to a physical page of the flash disk.

Level three: models the process of block reclamation which consists of erasing and

reusing a set of pages from the flash disk.

Level four: handles the relocation of pages from a block that is going to be used to a free
block.

Level five: refines the process of erasing a block from the flash disk.

Level six: introduces the concept of a status register which is used to indicate if the flash

device is ready and if the previous operation has succeeded or not.

Table {.8] summarises the results of the invariant discovery process carried out by
HREewmo. Note that at levels two and four, HRemo found a set of invariants that discharged
all the failed POs. At level three, however, not all the failures were discharged. Note
also that when including only typing invariants at levels five and six, the models did not
generate any failed POs. This meant that HREmo was not required or Not Applicable (NA)

for the refinement steps modelled by levels five and six.
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Step Discovered invariants | All failures
Glue | System | Total | discharged?
Level 2 0 1 1 Yes
Level 3 0 6 6 No
Level 4 0 4 4 Yes
Level 5| NA NA NA NA
Level 6 | NA NA NA NA

NA = Not Applicable

Table 4.8: Summary of results for the Flash file development.

The failures that were not addressed at level 2 required the following invariants:

Y r-r e dom(trans_func) = flash(r) = flash2(trans_func(r)) (4.10)
programmed_pages2 = trans_func[programmed_pages]  (4.11)

dom(flash2) = programmed_pages?2 (4.12)

These invariants describe the relationships between the physical and logical views of the
content of pages in the flash device. Invariant (4.10)) is invented by HR; however, HREmo
does not choose it as a candidate invariant because it does not pass the filter imposed by
heuristic FH2; i.e. the left- and right-hand sides of the invariants are not disjoint since

variable trans_func appears on both sides. Invariants (4.11)) and (4.12) are also invented

by HR; however, both invariants are needed to discharge the same failure; therefore, they
are not selected as candidate invariants since HREmo only works for failures that require

no more than one invariant in order to be discharged.

4.2.3 Summary of results

Table 4.9 summarises the results of applying our approach to each of the Event-B models
we used during the development and the evaluation stages. All the experiments were
performed with only basic typing invariants included in the models, i.e. no gluing or
system invariants were present in the models. Table [4.9] shows for each refinement step,
the number of failed POs as well as the number of gluing and system invariants discovered
through our approach. We also record the number of iterations involved in the invariant
discovery process. Note that the rows marked with a cross symbol (X) in the column

Model proved show the refinement steps for which not all failures were addressed.
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Event-B model
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Table 4.9: Automatically discovered invariants.

Development

set

Evaluation

set

The run time for each iteration is also provided in Table 4.9 The calculated time

does not include the generation of the simulation trace and the time of applying filtering

heuristics FH4 and FHS as they are currently performed manually. As can be observe,

the Mondex development produces the highest run times, in particular the first iteration

at level 6. Mondex contains the largest state from the case studies carried out; this results
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in a larger amount of generated conjectures, which increases the time of the discovery
process. A possibility to reduce the execution time is to limit the search to only the con-
cepts appearing in the failed POs; i.e. do not include the rest of the state as background
information for HR. Further experiments are required in order to test this possible im-
provement.

In Table 4.10] we compare our results with the actual invariants given in the litera-
ture for the models used in the development set. Other developments are not compared
because they were developed by us. Note that the invariants associated with levels five
and seven of the Mondex system are not given in the literature. While all automatically
discovered invariants are subsets of the invariants given in the literature, it is important to
highlight that the automatically discovered invariants were sufficient to prove most of the

refinement steps we encountered during our experiments.

Given in Literature Automatically discovered
Event-B model Step
Glue | System | Total | Glue | System Total
Level 2 1 1 2 1 0 1
Cars on a bridge Level 3 0 5 5 0 5 5
Level 4 0 23 23 0 5 5
Level 2 0 0 0 NA NA NA
Location access controller | Level 3 0 3 3 0 2 2
Level 4 0 3 3 0 7 7
Level 5 1 6 7 2 18 20
Level 2 2 4 6 0 1 1
Level 3 2 0 2 0 0 0
Level 4 8 11 19 4 5 9
Level 5 - - - 0 9 9
Mondex Level 6 | 10 3 13 | 7 45 52
Level 7 - - - 3 0 3
Level 8 1 0 1 0 0 0
Level 9 10 0 10 10 0 10
Level 2 0 2 2 0 1 1
Level 3 0 9 9 0 6 6
Flash file system Level 4 0 5 5 0 4 4
Level 5 0 2 2 NA NA NA
Level 6 0 4 4 NA NA NA

Note that the automatically discovered invariants are sufficient to discharge all failed POs
generated when the invariants are absent from the models shown in the table. Our hypothesis
is that the rest of the invariants introduce new requirements; thus, their absence does not
produce proof failures.

Table 4.10: Comparison between hand-crafted and automatically discovered invariants.

Although we have identified some limitations of our approach, as discussed in Sec-
tions [4.2.1.1) and 4.2.2] it can be observed from Tables {.9] and [4.10] that the automatic

discovery of invariants through HREmo has provided promising results:

e In most cases, the set of invariants discovered through HRemo helped discharge all

failed POs required to prove the refinement steps.

e The set of gluing invariants found by HREmo in each refinement step was almost
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identical to the set of gluing invariants given in the literature — remember that the
exception cases in the Mondex model, i.e. levels two, three and eight, cannot be

handled by HR’s PRs — which have not been tailored for formal modelling.

With respect to system invariants, it can be observed that the last refinement of the
cars on a bridge system shows a big gap between the invariants given in the literature and
those found automatically with HREmo — although all failures are addressed by the auto-
matically discovered invariants. As mentioned previously, we believe that this difference
can be explained by the introduction of new requirements, resulting in the need for extra
properties within the model. In the case of the cars on a bridge model, the last refinement
introduces the physical environment of the system; for instance, the actual number of cars
on the bridge. Thus, the new invariants represent connections between the physical and
logical environments. These connections are not modelled at the abstract level; therefore,
the conditions expressed by them are new requirements within the model, which are not
identifiable through our approach. Details of the Event-B model can be found in [3].

Moreover, HREmo has shown that it works better at generating small invariants rather
than compound invariants. This is demonstrated at levels five and six of the location ac-
cess controller and within the Mondex case study, where HRemo identified more system
invariants than were given in the literature. Both refinement steps introduce a partition of
sets. In Event-B a partition can be specified by a single invariant using the predicate par-
tition(s, sy, ... S,), where sy, ... s,, partition the set s, or by multiple invariants defining the
containment and disjointness relationships, i.e. s =s; U ... Us, and s5; N's; = @. HREmO
generated invariants of the second type; this is reflected in the number of automatically

discovered invariants being greater than the number of invariants given in the literature.

4.3 Summary

In this chapter we have outlined our system, HRemo, and in particular described the im-
plementation details of the configuration and filtering heuristics. The overall process
embodied within the implementation of our technique involves: 1) the extraction of the
animation traces, domain information and failed POs from an Event-B development, ii)
the transformation of such information into HR domain knowledge; this requires the ap-
plication of the configuration heuristics, and iii) the selection of the candidate invariants;
this requires the application of the filtering heuristics.

We have also shown the results of using HRemo to automatically discover invariants
of seven Event-B models — all the experiments were performed with only basic typing
invariants included in the models. A total of 23 refinement steps were involved in the
seven case studies, which resulted in: 15 steps for which all the invariants needed to over-
come the failures were discovered, five steps for which not all failures were addressed
and three steps for which the approach was not applicable — because there were no fail-

ures associated with the steps. In the cases where HREmo failed to discover the needed
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invariants we could observe that was mainly because the current PRs could not produce
the type of relationships expressed by the missing invariants. Bearing in mind that the
theory formation process performed by HR has not been tailored for formal modelling,
we can already observe the potential of ATF and HR for the automatically discovery of
invariants. Further work is needed in order to build a theory formation tool dedicated to
formal methods, in the case of HRemo, that work can be seen as the addition of new PRs

and/or conjecture making techniques tailored for the formal modelling context.
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Chapter

Comparative Studies and Further
Applications of ATF

Generating invariants from the analysis of animation traces is an approach analogous
to that of the Daikon system [44]; however, while Daikon is tailored for programming
languages here we focus on formal models. In this chapter, a comparative study of HREmo
and Daikon is presented.

Moreover, in the previous two chapters the technique was presented through the use
of the Event-B formalism; however, the approach can be applied to other formalisms.
In this chapter, this claim is supported through the application of the invariant discovery
technique to a model written in the Z formalism. Finally, some remarks are made about

how the technique can be exploited to support other aspects of formal modelling.

5.1 Comparative study with the Daikon system

Daikon is a system for the dynamic detection of likely invariants of programs. Its mecha-
nism works by observing the values computed in a program execution and deriving prop-
erties that are true over such execution.

Daikon detects invariants for different programming languages, namely C, C++, Eif-
fel, Java, and Perl, and it can also detect invariants from record-structure data sources,
such as spreadsheet files. To detect likely invariants, it evaluates selected variables at
specified points within the code; these are called program points. Program points are usu-
ally object and procedure entries and exits, and variables are program variables, which
are those explicitly written in the program code, e.g. class instance variables, procedure
parameters, return values; and derived variables, which are aggregates of program vari-
ables that may not explicitly appear on the program code but that are in the scope of a
procedure and may be of interest. An example of a derived variable is a[z], where a
represents an array and ¢ an integer.

Daikon contains a collection of invariant templatesﬂ that are evaluated against the

'In [44] it was reported that Daikon contained 75 invariant templates and 25 derived variable templates.
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execution traces in order to determine if the template corresponds to an invariant of the
program. The analysis performed by Daikon consists of the following steps:

o the templates are instantiated using the set of selected variables;

o then, the instantiated invariant templates are evaluated against the execution values;
and

e any instantiated template that does not hold for all the states of the execution is
removed from the set of likely invariants.

The output set of invariants is then post-processed in order to remove redundant or unin-
teresting invariants. For instance, Daikon removes less general invariants and invariants
that express properties only about constants, etc.

Daikon has two main components: an instrumenter and an inference engine. The
instrumenter selects the variables and program points in the target program and adds in-
structions into the code in order to generate trace data. The inference engine reads the
traces and applies the invariant detection technique explained above. The inference en-
gine is written in Java and is independent of the instrumenter; a separate instrumenter is
required for each programming language.

Daikon and HREmo have a number of similarities:

e both approaches depend on data traces to search for candidate invariants — ProB

animation traces in our work and program test suites for Daikon;

e both contain an inference engine which is language independent;

e Daikon selects program and derived variables as “objects of interest” for which
invariants are searched. This is equivalent to the selection of core and non-core
concepts in our approach, where core concepts relate to program variables and non-
core concepts relate to derived variables; and

e both share common invariant elimination strategies such as the elimination of less
general invariants.

However, the approaches differ in that while Daikon selects the invariants from a set of
invariant templates HREmo uses general purpose production rules to generate conjectures
about the domain. Also, while Daikon selects program and derived variables from the
code, HREmo selects the core and non-core concepts from the failed POs. Moreover,
Daikon not only produces global invariants, but also invariants that represent pre- and/or
post-conditions of specific procedures within the code, while HREmo only generates global
invariants, which hold before and after the execution of all procedures, i.e. events, in
the model. Finally, it should also be stressed that Daikon is a system designed with
program analysis in mind, whereas the work presented here is an initial investigation into

developing an invariant generation tool for refinement based formal methods.

5.1.1 Experiments

Two experiments were carried out in order to compare Daikon with HRemo . The exper-

iments consisted of writing a Java program which is equivalent to the first and second
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refinements of Abrial’s “cars on a bridge” model [3]] and in comparing the invariants de-
tected by Daikon with the invariants detected by HRemo for each refinement. This model
was selected because it provides a set of invariants that facilitated the comparison, i.e.
invariants that fit the templates of Daikon.

The transformation from the Event-B model to Java consisted of converting:

e a refinement step, i.e. an abstract and a concrete level, into one Java class which

merges the behaviour from both levels;
e variables and constants into instance variables and constants of a Java class;
e cach event into a Java method;
e the guards of an event into conditional statements; and

e the actions into instructions to be executed by the correspondent method.

In addition, a method run was introduced into the Java code in order to simulate the

random execution of methods that occurs within ProB.

Experiment 1: First refinement. The “cars on a bridge” system models the control
of car traffic on a single lane bridge that connects a mainland to an island. In the first
refinement step, at the abstract level cars are modelled leaving and entering the island
while at the concrete level the requirement that the bridge only supports one way traffic is
introduced. Figure 5.1 shows the Event-B specification and two Java implementations of
this refinement step where, n represents the total number of cars at the abstract level while
at the concrete level a, b and c represent the cars going from the mainland to the island,
the cars on the island and the cars going from the island to the mainland, respectively.

The two Java implementations in Figure [5.1] differ from each other in the placement
of the guards inside the Java code. In the first implementation the guards are conditionals
located inside the correspondent Java method, i.e. after the method triggers the conditions
are checked; while in the second implementation the guards are conditionals placed within
the run method, i.e. first the conditions are checked and then, if the conditions are true,
the corresponding method is executed.

Table [5.1] shows the results of the invariant analysis from both approaches for the
models shown in Figure [5.1] The first column lists the invariants at the concrete level of
the model — since the invariant analysis is intended for the concrete level, the invariants at
the abstract level are ignored — the second column lists the invariants detected by HRewmo,
and columns three and four lists some of the invariants detected by Daikon for the two Java
implementations respectively. The output from Daikon is too large and for this reason we
only show a fragment of it, that is: the object invariants and the invariants for the method
ml_out at entry and exit points.

The first three invariants of the model, i.e. a € N, b € N and ¢ € N are type invariants.
While Daikon reports at the object level that: a > 0, b > 0 and ¢ > 0, HRemo does not deal
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Event-B model
abstract level

Event-B model
concrete level

Java first implementation

Java second implementation

Variables
n
Invariants
invl: ne N
inv2: n<d
Events
Event ML_out =
when
grdl: n<d
then
actl: n:=n+1
end

Event ML_in =
when

grdl: n>0
then

actl: ni=n—1
end

Variables
abc
Invariants
invl: ae N
inv2: be N
inv3: ce N
inv4: n=a+b+c
inv5: a=0 Vv c=0
Events
Event ML_out =
refines ML _out
when
grdl: a+b<d
grd2: c=0
then
actl: a:=a+1
end

Event IL_in =
when
grdl: a>0
then
actl: a:=a—1
act2: b:=b+1
end

Event IL_out=
when
grdl: 0<b
grd2: a=0
then
actl: b:=b—1
act2: c:=c+1
end

Event ML_in =
refines ML _in
when

grdl: c>0
then

act2: c:=c— 1
end

public class COB_MI1 {
private int n,a,b,c;
private final int d = 10;

public void run(){

int[] methods = {1,2,3,4}

int steps = 1000;

while(steps > 0){
foundActiveMethod = false;
while(!foundActiveMethod){

random_method_invocation ...

}
steps——;
}
}

public void ml_out(){
if(c==0 && a+b<d){
a=a+l;
n=n+1;
}
}

public void il_out(){
if(b>0 && a==0){
b=b-1;
c=c+1;

}

}

public void il _in(){
if(0<a){
a=a-l;
b=b+1;
}
}

public void ml_in(){
if(0<c){
c=c-1;
n=n-1;
}
}

public class COB_MI {
private int n,a,b,c;
private final int d = 10;

public void run(){

ArrayList<Integer> activeMethods;

int steps = 1000;

while(steps > 0){
if(c==0 && a+b<d)
activeMethods.add(1);
if(b>0 && a==0)
activeMethods.add(2);
if(0<a)
activeMethods.add(3);
if(0<c)
activeMethods.add(4);

random_method_invocation ...
activeMethods.clear();
steps——;

}

}

public void ml_out(){
a=a+1l;
n=n+1;

}

public void il_out(){
b=b-1;
c=c+1;

}

public void il_in(){
a=a-l;

b=b+1;

}

public void ml_in(){
c=c-1;
n=n-1;

}

} }

Figure 5.1: Event-B and Java models of the cars on a bridge system.

with these type of invariants. This is because, although HR generates these conjectures
from the domain, type invariants are always supplied by the user and therefore, HREmo
does not report them as candidate invariants. Regarding invariant a=0 V ¢=0, neither
HREewmo nor Daikon report it in their outputs. In the case of HREmo the reason for this is
that a=0 Vv ¢=0 represents a system invariant, i.e. introduces a new requirement to the
model. For the model of cars on a bridge the absence of this invariant does not produce
any failed PO; therefore, if no failed POs are associated with the absence of an invariant
HREewmo fails to identify and report it. Finally, the gluing invariant n = a+b+c is reported
by HREwmo but not by Daikon.

From this experiment it was also noted that different Java implementations of the same
behaviour yielded different likely invariants from Daikon. As can be observed in Table

the outputs from Daikon for the entry and exit points of the method m/_out in the two
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Invariants of = HREMO Reported

Daikon Reported Invariants

Daikon Reported Invariants

the model Invariants First Implementation Second Implementation
aeN n=a+b+c
beN cob.COB_M1:::OBJECT cob.COB_M1:::OBJECT
ceN this.n >=0 this.n >=0
a=0vc=0 this.a>=0 this.a >=0
n=a+b+c this.b >=0 this.b >=0
this.c >=0 this.c >=0
this.d == 10 this.d == 10

this.n >= this.a
this.n >= this.b
this.n >= this.c
this.n <= this.d
this.a < this.d

this.b <= this.d
this.c < this.d

cob.COB_M1.ml_out():::ENTER

this.n >= this.a
this.n >= this.b
this.n >= this.c
this.n <= this.d
this.a < this.d

this.b <= this.d
this.c < this.d

cob.COB_M1.ml_out():::ENTER

this.c ==0
this.n - this.a - this.b ==

cob.COB_M1.ml_out():::EXIT
this.b == orig(this.b)
this.c == orig(this.c)

cob.COB_M1.ml_out():::EXIT

this.d == orig(this.d) this.c == 0
this.n >=1 this.n >=1
this.n >= orig(this.n) this.a >=1

this.n > orig(this.a)
this.a >= orig(this.a)
this.b <= orig(this.n)
this.c <= orig(this.n)
this.d >= orig(this.n)
this.d > orig(this.a)

this.n - orig(this.n) - 1 ==

this.a - orig(this.a) - 1 ==

this.n - this.a - this.b ==

this.n - this.b - orig(this.a) - 1 ==
this.a + this.b - orig(this.n) - 1 ==0
this.b - orig(this.n) + orig(this.a) ==

Table 5.1: Comparison of expected and detected invariants for the first refinement of the “Cars on
a bridge” model.

Java implementations are different. In the second implementation, which uses method
calls after the conditions have been checked, Daikon reports a fragment of the gluing
invariant for the entry and exit points of the method ml_out, namely: n-a-b ==0orn
=a+b.

Experiment 2: Second refinement. In this refinement step traffic lights are introduced
into the model. The Event-B and Java developments are not presented here since they
are similar to the ones presented for the first refinement; however, details of the Event-B
development can be found in [3]. In terms of translating Event-B into Java, the same
approach as described for experiment 1 was followed. The results from this experiment
are shown in Table [5.2] The first four invariants of the model are type invariants, while
the other seven specify new requirements due to the addition of the traffic lights. HRemo
reported five of the seven system invariants while Daikon did not report any. From the
output of the second implementation it can again be observed that for the entry and exit
points of method m/_out Daikon produces fragments of the invariants which were not pro-
duced in the first implementation, e.g. the colour of the traffic lights, i.e. cob.Color.RED
== this.il_tl and cob.Color. GREEN == this.ml_tl and the number of cars going from the
island to the mainland, i.e. ¢ == 0; nevertheless Daikon does not produce global rela-

tionships between these values; for instance that ml_tl=green = c=0, which states that
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whenever the mainland traffic light is green, there are no cars travelling in the opposite

direction.
Invariants of the HREMO Reported Daikon Reported Invariants Daikon Reported Invariants
model Invariants First Implementation Second Implementation
ml_tl € { red,green} ml_tl = green = c=0
il_tl € { red,green} il_tl=green=>a=0 cob.COB_M2:::OBJECT cob.COB_M2:::OBJECT
il_pass € { 0,1} ml_tl = red = ml_pass = 1 this.a>=0 this.a >=0
ml_pass € { 0,1} il_tl=red = il_pass =1 this.b >=0 this.b >=0
ml_tl=green =>c=0 il_tl=redVml_tl=red this.c>=0 this.c >=0
ml_tl = green = a+b <d this.d == this.ml_tl != null
il_tl=green=>a=0 this.ml_tl != null cob.Color.GREEN != null
il_tl =green =>b >0 cob.Color.RED != null cob.Color.RED != null
ml_tl = red = ml_pass = 1 cob.Color.GREEN != null this.il_tl !=null
il_tl = red = il_pass = 1 this.il_tl != null this.a < this.d
il_tl =red vV ml_tl = red this.a <= this.d this.b <= this.d

this.b <= this.d this.c < this.d
this.c <= this.d

cob.COB_M2.ml_out():::ENTER
cob.COB_M2.ml_out():::ENTER this.ml_tl == cob.Color.GREEN

this.c < this.d cob.Color.RED == this.il_tl
this.c == 0

cob.COB_M2.ml_out():::EXIT this.il_pass == true

this.b == orig(this.b) this.a >= this.c

this.c == orig(this.c) this.b >= this.c

this.d == orig(this.d) this.b < this.d

this.il_tl == orig(this.il_tl)
this.il_pass == orig(this.il_pass) cob.COB_M2.ml_out():::EXIT

this.ml_pass == true cob.Color.GREEN == orig(this.ml_tl)
this.a >= orig(this.a) cob.Color.RED == orig(this.il_tl)
this.c < this.d this.il_pass == this.ml_pass
this.d >= orig(this.a) this.a >= 1

this.c ==

this.il_pass == true

Table 5.2: Comparison of expected and detected invariants for the second refinement of the “Cars
on a bridge” model.

Daikon provides a large set of options and filters to control the processing and output
of the likely program invariants. For instance, for each invariant template there is a con-
figuration enable switch that can be enabled or disabled. The type of derived variables
that should be involved in the discovery process can also be controlled through Daikon
configuration options. Filters to limit the invariants that are reported are also available.
Because of the vast number of available options it is difficult to find the optimal settings
with which to run Daikon. Daikon was run with its default setting over the Java programs
for both refinements of the cars on a bridge model but none of the system and gluing
invariants were detected and no additional invariant templates (apart from those enabled
by default) seem to fit the nature of the model. Furthermore, reading the Daikon docu-
mentation suggested that for the second experiment a splitter file was required. This is
a configuration file needed in order to create conditional invariants. The splitter file can
be manually supplied or automatically created through one of Daikon command line in-
structions. However, running Daikon using the splitter file did not generate the expected
invariants either. Because of the common structure and not high complexity of the in-
variants of the cars on a bridge model, we believe that given sufficient knowledge of the

configuration options, Daikon can be properly configured resulting in the detection of
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these invariants; however, expert knowledge about the discovery mechanism is required.
Like Daikon, HREmo is configurable; nevertheless, the configuration performed with our
technique is completely automatic and it does not require the user to have any knowledge
about how the detection process works.

From the results of the experiments presented above it can be concluded that:

1. Different implementations of the same behaviour affect the analysis performed by
Daikon, resulting in the generation of different invariants for each implementation.
Furthermore, it seems that the use of method or function calls to perform tasks of

the system is crucial in order to obtain better results from Daikon.

2. Daikon performs very well at finding pre- and post-conditions of methods; however,

based on our experiments, Daikon has difficulty at detecting global invariants.

3. HRemo performs better than Daikon at finding global invariants and in particular
at finding gluing invariants. However, system invariants represent a challenge for

HREwmo when there is no proof failure associated with the absence of the invariant.

4. HRewmo only detects global invariants; pre- and post-conditions are not part of its

intended output.

5. Daikon is restricted to the available invariant templates, and although it is possi-
ble to extend Daikon to add new templates, this means that possible interesting
invariants may be missed by the inference process because there is no a template
available. HReEmo is not restricted by patterns of conjectures but it is restricted by the
general purpose PRs provided by HR; however, the iterative application of the PRs

provides greater flexibility in terms of the kinds of invariants that can be discovered.

5.2 Application to other formalisms

As mentioned previously, we believe that the invariant discovery approach presented in
this thesis can be applied beyond Event-B. To illustrate this, a Z specification of a vending
machine system is used in order to show the mapping between the data from the model and
the required components of HRemo. The example, which is taken from [118]], is shown
in Figure[5.2] The specification models a vending machine which dispenses drinks when
a three-digit code is typed by a customer. In the abstract model, the action of entering
the code to the machine is modelled by an atomic step, i.e. the operation Choose, while
in the concrete model the three digits of the code are input one-by-one, i.e. operations
FirstPunch and NextPunch.

The abstract model defines the types Status (to track progress of a transaction), Digit
(possible digits in the code), seqs;[X] (set of sequences with length 3), busy (to specify if
the vending machine is in use) and vend (to specify if a transaction was successful), while

the concrete model introduces the type digits (to record the number of digits entered).

94



Abstract specification: Concrete specification:

Status ::= yes | no VMDesign=[digits : 0..3]
Digit ==0..9 VMDesignInit=[ VMDesign' | digits’ = 0]
seq[ X] == {s : seqX | #s = 3}
__ FirstPunch
VMSpec=[busy, vend : Status] AVMDesign
s d? : Digit
VMSpecInit=[ VMSpec’ | busy’ = vend’ = no]
digits = 0
_ Choose digits” = 1
AVMSpec
17 1 seq3 Digit
I — — NeztPunch
busy = no AVMDesign
busy’ = yes d? : Digit

(0 < digits < 3 A digits’ = digits + 1)V
(digits = O A digits’ = digits)

_ VendSpec
AVMSpec
o!: Status
I — VendDesign
busy’ = no AVMDesign
o! = vend o! : Status
digits’ =0

Figure 5.2: Z specification of a vending machine system taken from [[118|]

The schemas VendSpec and VendDesign model the end of a transaction in the abstract and
concrete models respectively, their outputs indicate if the transaction was successful or
not. From this specification, the following core concepts are identified:

concepts T1 = {Status, Digit}
concepts T2 = {seq;[X], busy, vend, digits}

where the examples of Status and Digit are {yes, no} and {0,1,2,3,4,5,6,7,8,9}, respec-
tively. The examples required for the T2 concepts can be obtained from an animator
for Z; for instance, the ProZ animator [[106]. In order to prove that the concrete schema

FirstPunch refines the abstract schema Choose, the following PO must be proved:

¥ busy, vend : Status; digits, digits’ : 0..3; seqs Digit; d?: Digit e
busy = no A digits = 0 A digits’ = 1 = A busy’, vend’ : Status e busy’ = yes
As it stands, the PO is not provable, a retrieve relation that explains the correspondence
between the abstract and concrete models is required. HRemo can be used to find the

retrieve relation. In order to do so, the prioritised core and non-core concepts must be
identified from the failed PO, i.e.
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core concepts = {busy, vend, digits, seq_3[X], Digit}
non-core concepts = {busy=no, digits=0, digits=1, busy=yes,
(digits = 0 A digits = 1),
(busy = no A digits = 0 A digits = 1) }

The first four non-core concepts can be represented in HRemo by applying the split PR to
core concepts busy and digits where the split values are no, 0, I and yes. The remaining
non-core concepts can be obtained through the application of the compose PR. Further-

more, the following PRs are selected:
PRs = {compose, disjoint, negate, split}

where the compose, disjoint and negate PRs are always enabled by default while the split
PR is enabled because of the identified non-core concepts. The required retrieve relation

is:
busy = no & digits =0

which is a type of relationship previously shown to be identifiable by HRemo .

Through the Z example it has been illustrated how HREmo could be applied to a differ-
ent formalism. The key features of this broader application are: firstly, the ability to map
data types and operators within the given formalism onto core concepts and PRs within

HREmo; secondly, the formalism must be supported by simulation and formal verification.

5.3 Beyond current applications

5.3.1 Debugging models

The experiments carried out in the previous chapter revealed an inconsistency between
levels five and six of the re-constructed Mondex system model. In the last iteration of
invariant discovery, HRewmo failed to find conjectures to discharge two failed POs. At
this point the invariant discovery process is not longer applicable since no failures are

addressed by the iteration. This may occur because:

1. HREemo cannot generate the missing invariant, or
2. more than one invariant is needed to discharge the same failure, or
3. the refinement step is not correct; either because there is an error in the invariants

or in the model.

The failed POs generated by the model at this iteration are shown in Figure [5.3] These
POs represent failures in the preservation of one of the invariants discovered by HRemo,
that is:

idleT = currentT[idleTP]
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idleT = currentT[idleTP] idleT = currentT[idleTP]

pl €idleFP pl € aborteprP

p2 € abortepvP p2 € idleTP

pl — t € currentF pl — t € currentF

p2 — t € currentT p2 — t € currentT

from(t) = pl from(t) = pl

to(t) = p2 to(t) = p2

= F

idleT = ({p2} < currentT)[idleTP] idleT = ({p2} <currentT)[idleTP \ {p2}]
(a) Failed PO1 (b) Failed PO2

Figure 5.3: Level 6 Iteration 10: Failed POs.

This is a gluing invariant used to express that the state set idleT is replaced in the concrete
model by the image of function currentT over the set idleTP.

The failed POs shown in Figure [5.3] are in fact unprovable. As can be observed, the
equality expressed by the invariant holds in the hypothesis of the POs; however, the right-
hand side of the equality is modified in the goals by removing the element p2 from the
domain of function currentT while the left-hand side remains unmodified. The events
associated with the failed POs are new events introduced in the concrete model. Their
role is to register the end of a transaction when either the source or the target purse has
failed while the other side of the transaction is still in the idle state. The failed POs suggest
that:

1. there is an inconsistency between the behaviour of the concrete and abstract models,

or
2. there is an error in the invariant.

In order to solve these failures either an abstract version of the events should be mod-
elled in level five of the development, or the invariant at level six should be removed or
modified. By manual inspection of the model we realised that in level five we had not
handled all possible cases for which a transaction could end because of an abort state.
The inconsistency was solved by adding new events in level five that handled all possible
states in which a transaction could fail.

Note that this analysis is not currently performed by HRemo. However, through the
automatically discovered invariants the inconsistency in the model was revealed. These
failures are not generated in the original development of the Mondex system presented in

[22], because the gluing invariant is defined as:
currentT[idleTP] C idleT

which expresses a weaker relationship than the invariant suggested by HRemo.
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5.3.2 Handling incorrect models

Our approach to invariant discovery assumes that the models are correct. Having the abil-
ity of identifying incorrect models would increase the effectiveness of HRemo. A tech-
nique that aims at providing modelling guidance when a failed refinement occurs, has
been developed in this thesis. This technique is called Refinement Plans [S5]. Refinement
plans are used to identify if a known pattern of refinement is closely aligned to the given
failed refinement. When a match is found, common patterns of failure at the level of POs
and models are analysed in order to provide modelling guidance as to how to overcome
the failure; for instance, the introduction of missing invariants. However, when a common
pattern of failure is instantiated by a particular refinement step, the associated guidance
will typically only be partially instantiated. In such cases, for instance when the guidance
is a partially instantiated invariant schema, HREmo can be used to complete its instantia-
tion. The next chapter presents the refinement plans approach and shows how refinement
plans and HReEmo complement each other by using the partially instantiated guidance ob-
tained from the plans to tailor the search for invariants in HREmo and provide complete

solutions to the user.

5.4 Summary

This chapter presented a comparative case study between HRemo and Daikon, a dynamic
invariant detector that uses program executions to instantiate invariant templates in order
to find likely invariants. The case study consisted on the analysis of two Java programs
equivalent to the first and second refinements of the Event-B model of the cars on a bridge
system. Daikon was successful at finding typing invariants, and pre- and post-conditions
of each method in the program; however, it failed to find the global invariants associated
with the model. On the other hand, HRemo discovered 6 out of the 9 global invariants
but neither typing invariants nor pre- and post-conditions were reported since they are not
part of its intended output. Although both systems are configurable, HREmo configuration
is performed automatically while Daikon must be configured by the user—this involves en-
abling invariant templates, generation of special files that enable the search of conditional
invariants, etc. Given the right configuration we believe that the invariants of the model
can be generated by Daikon; however, this requires the intervention of an expert user of
the system.

The generality of the invariant discovery approach presented in this thesis was also
illustrated by explaining how the mapping of a Z specification would be performed by
HRemo. This showed that as long as a formalism is supported by simulation tools and
the reasoning is underpinned by proof, HREmo can be used to discover invariants of its
models.

Finally, it has been discussed how HREwmo can provide a deeper insight about the model

by making more evident inconsistencies that otherwise the developer may not notice. For
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instance, the invariants found by HRemo revealed the absence of some events in the re-
constructed model of the Mondex system. Such situations also motivate the need for
handling models that are not correct. Refinement plans have been developed in this thesis
for this purpose. The next chapter introduces this technique and shows how the integra-
tion between top-down approaches, such as refinement plans, with bottom-up approaches,
such as HREmo, can provide greater flexibility and increase effectiveness of both strategies

of design.
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Chapter

Modelling Guidance with Refinement

Plans

Many approaches to design, whether informal [48] or formal [6, 21} 46, 47/], rely on
patterns. This is also the case for refinement plans, a technique that combines common
patterns of refinement with common patterns of failure in order to provide automatic
modelling guidance.

In this chapter a classification of refinement patterns is described which have been
identified from the analysis of Event-B developments. Moreover, the mechanism for re-
finement plans is introduced and developed for one of the identified patterns in the hier-
archy. Finally, an integration of refinement plans and HRemo is explored. That is, the use
of a refinement plan instantiation (or partial instantiation) to tailor HReEmo . Exploiting the
synergy between the approaches results in an improvement of HREmo’s mechanism for
the discovery of invariants as well as providing flexibility for the patterns handled by the

refinement plans.

6.1 Approach

Consider the Event-B mode]E] shown in Figure At the abstract level, the model shows

event incr, which increments variable x by y in an atomic step:
ri=z+y.

At the concrete level the value of y is assigned one unit at a time into a temporary

accumulator variable x_tmp in event step:
r_tmp = x_tmp + 1.

This iterative process is controlled using variable n which is also incremented by event

'This example has been extracted from [39].
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step and guarded by condition:
n <7y.
When the iterative process terminates, in other words, when
n=y

the value contained by the accumulator variable x_tmp is assigned to variable x in event
end_ok, which in turn refines event incr. The new event, start, initialises the variables so

that the iterative process carried out by event step can be enabled. The invariant:
flag = FALSE = x_tmp =z + n

specifies that when the iterative process starts the value of variable x_tmp is always equal
to the accumulated value; i.e. x+n. Using HRemo to find this invariant does not produce
positive results after the default 1000 theory formation steps. This does not imply that the
invariant cannot be found, rather it means that additional search is required. However, as
will be shown in Section [6.3] patterns of refinement provide additional information that

helps further tailor HREmo, leading to the discovery of the invariant.

ABSTRACT MODEL:
Variables  Event incr =
Xy then
Invariants X = X+y
x €N end
yEN
CONCRETE MODEL:
Variables Event start = Event step = Event end_ok =
x y n x_tmp flag when when refines incr
Invariants flag = TRUE n<y when
neN then flag = FALSE flag = FALSE
x_tmp € N n:=0 then n=y
flag e BOOL X_tmp := X X_tmp := x_tmp+1 then
flag=FALSE = x_tmp=x+n flag := FALSE n:=n+l X 1= X_tmp
end end flag := TRUE
end

Figure 6.1: Addition example [39)].

This type of refinement, in which an action is executed in an atomic step at the ab-
stract level and refined at the concrete level via iteration, represents a common pattern of

refinement. Here we call it the accumulator patterrﬂ More specifically, the accumula-

2This pattern has been inspired by the work presented in [22] where a technique for breaking up the
atomicity of an event was introduced by Butler and Yadav and further developed in [21} 46, 47].
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tor pattern allows the modelling of protocols that require to gradually process data of the
system before a conclusive action can take place.

As illustrated in Section[2.2] Event-B refinements contain a modelling and a reasoning
component. The latter takes the form of POs that must be discharged. Here, a pattern of
refinement is described in terms of its modelling and PO patterns, which are instantiated
with the user’s development. Refinement plans use the identified instantiations in order
to 1) classify refinement steps in a development, and ii) provide modelling guidance when
a development is flawed or is hard to verify but close to a known pattern. By combining
knowledge from PO failures with knowledge about the user intentions, in the form of par-
tial pattern instantiations, refinement plans automatically generate modelling alternatives
that help overcome the failures. We use a schematic representation in order to describe the
key elements of the modelling and PO patterns associated with the accumulator pattern.
The schemas are shown in Figures [6.2]and [6.3]

ABSTRACT MODEL:

Variables: V Event A=
where
then
Vv, = 3(Vp)
end

CONCRETE MODEL:

Variables: 7, W
Invariants: H, = F.(W, V)

EventC; = EventC, = EventC, =
where where refines A
Hy H, where
then G (W, V) H, Side conditions:
W, =1, then G_(W, Vi) e Hy & —H,
end W, =W,®«a then
end Vi :=Wa
end

Figure 6.2: Accumulator pattern — Modelling schema.

where:

Vs and Ws denote abstract and concrete meta-variables, respectively.

'V and W denote lists of meta-variables.

I'and J represent expressions used in assignments to meta-variables.

F, G and H denote meta-predicates, where subscripts are used to restrict their in-

stantiation, e.g. G restricts G to be an equality.

a denotes a meta-term that can be instantiated with any suitable basic data type

value or Event-B element, e.g. constant, variable, event parameter, etc.

@ denotes an additive operation (either for the natural numbers or for sets).
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[x :=

H = F(W, V) H = F (W, V)

Hy H,
3 G(W, Vi)
[Wa = LI(H, = F«(W, V) F
[W, := Wa @ al(H, = F«(W, Vi)
(a) Init event (Inv. Preservation) (b) Accumulator event (Inv. Preservation)
Hy = F(W, V) Hy = F<(W, V)
H H
G=(W, V) G=(W, V)
F F
(Vi := Wol(Hy = F<(W, V) [Vi = Wal(Vi = Vi)
(c) Refined event (Inv. Preservation) (d) Refined event (Simulation)

e]F' denotes the substitution of z for e in F' — and is a result of the before-after predicate [3[]

associated with an event.

Figure 6.3: Accumulator plan — POs schema.

Thus, based on these schemas, the key elements of the accumulator pattern are:

The abstract model has an event (A) that is refined in the concrete model.

A set of new variables W = {Wi, ..., W, } are introduced.

A variable W, € W, which denotes an accumulator variable. That is, W, has an
associated initialisation, accumulator and refined event, i.e. events with the action
patterns W,:=I,, W,:=W, ®a and V;:=W, respectively — where I, represents the
initial value assigned to meta-variable W,,.

The initialisation event (C;), accumulator event (C,), and refined event (C,.).

An invariant, H; = F S(W, Vk), that explains the refinement, i.e. that the content
of the accumulator variable is contained within the value assigned in the abstract
model — the < symbol generalises the containment relationship.

The initialisation, accumulator(s), and refined events must preserve the invariant,
Figures [6.3(a), [6.3(b)| and [6.3(¢)} respectively.

The refined event must simulate the abstract action, Figure [6.3(d)]

Instantiating the key elements listed above with the example presented in Figure [6.1]

yields the following:

Abstract event: incr.

Refined event: end_ok.

Set of new variables W={n, x_tmp, flag}.

Accumulator variable W ,=x_tmp — since the action patterns W :=I,, W,:=W, &
a, and V;:=W, occur in events start, step and end_ok; i.e. actions x_tmp:=x,

x_tmp:=x_tmp+1 and x:=x_tmp, respectively.
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e Initialisation event C; = start, accumulator event C, = step, and refined event C,. =
end_ok.

e Invariant flag=FALSE = x_tmp=x+n, since it fits the pattern H, =F(W,V})
where the containment relationship < is instantiated with =.

e The model preserves the invariant and simulates the abstract action.

6.1.1 Roles of refinement plans

Refinement plans are heuristic in nature, and can be applied flexibly during a development.
This flexibility is achieved through partial matching, proof-failure analysis, and the use
of theory formation, in particular the HREmo system. Moreover, we envisage a variety
of scenarios in which refinement plans can play a role within the development of formal

models:

Correcting refinements: a flawed refinement step may be overcome by modifications to

the abstract and/or concrete models, e.g. guard strengthening, invariant discovery.

Layering refinements: an overly complex refinement step can give rise to unproven
proof obligations — such failures may be overcome by the introduction of inter-

mediate layers of abstraction.

Abstracting refinements: a development which starts at a too concrete level may benefit
from guidance as to how to reduce the initial complexity and open up alternative

modelling choices.

Suggesting refinements: at the fringe of a development, suggesting alternative refine-

ment steps could be beneficial to a users productivity.

Increasing proof automation: our refinement plans will enable us to exploit the corre-
spondence between the structure of a refinement and the pattern of proof associated

with its verification.

So far the focus has been in the application of refinement plans for the first role,
i.e. correcting refinements. In particular, only failures at the concrete level have been
explored; i.e. where the abstract level is assumed to be correct. However, the exploration

of other roles is planned for future work. Further details are given in Chapter|[3]

6.1.2 Refinement patterns

The hierarchy of refinement patterns shown in Figure [6.4 was identified through the anal-
ysis of a set of Event-B developments taken from the literature. Details of these devel-
opments can be found in Chapter [7] (Section [7.2)). All nodes denote a distinct pattern of
refinement. Moreover, a development may contain an instance of a pattern only if the

pattern immediately above in the hierarchy is also identified in the development. This
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reflects the sharing of properties between patterns within the hierarchy. In other words,
the conditions of the ancestor patterns are also conditions for the descendants. All the

patterns are briefly described below and their details are given in Appendix [Al

Refinement patterns

control refinement data refinement

event atomicity event elaboration setto partitionto data data

decomposition partition  function extension removal

post-

o . control
decomposition  case split

elaboration

pre-
decomposition

accumulator

Figure 6.4: A hierarchical classification of common refinement patterns.

1. Control refinement: deals with steps that introduce details of the functionalities
of the system. These details usually refer to constraints or conditions that must be
imposed through a system process, or the introduction of intermediate operations

required by a protocol, etc. These are known as horizontal refinements [3].

(a) Event atomicity decomposition: deals with steps in which the atomicity of
an abstract event is broken in the concrete model through a sequence of new
events. Breaking the atomicity of an event implies the need of pre- or post-

processing the data associated with an event.

i. Pre-decomposition: handles the case when the data associated with an
abstract atomic event requires to be preprocessed at the concrete level
before the event is executed. In other words, the data must reach a re-
quired state for the event to be enabled. For instance, file system models
in which the data must be stored in a temporary buffer before being stored

in the main unit.

e Accumulator: deals with steps in which actions of an abstract atomic
event are performed in the concrete model via iteration by gradually

accumulating the abstract assigned values.

ii. Post-decomposition: makes reference to steps in which the refinement of
an abstract event results in the need of new events required to process the

effects of the refinement.

(b) Event elaboration: relates to steps in which the refinement of an abstract event
does not imply breaking its atomicity. That is, when new conditions or effects
are added to the application of an existing event by means of extensions to the

state.
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i. Case split: handle the cases when the abstract event is refined in the
concrete model by two or more events. These refinements result from
a change in the state that implies distinct conditions and/or effects in the
execution of an existing operation.

ii. Control elaboration: handles the cases when the abstract event is refined

by only one concrete event.

2. Data refinement: deals with steps in which the state of the system is transformed;
in other words, when data from the abstract level is replaced by new data at the
concrete level. Data refinement usually takes place when a refinement involves
changing the state of the system into a representation that is closer to the final

implementation. These are known as vertical refinements [3]].

(a) Set to partition: refers to steps in which an abstract variable is refined by

partitioning it through a set of new variables in the concrete model.

(b) Partition to function: involves steps in which an abstract partition of variables

18 refined into a function in the concrete model.

(c) Data extension: refers to steps in which an abstract variable is refined into
a concrete variable that extends the abstract data type in order to compile

information from the system into a single variable.

(d) Data removal: involves the elimination of data from the abstract level that is

not used to control the operation of any event at the concrete level.

Note that as progress is made down the hierarchy, the more specific the patterns are.
Refinement plans are usually developed for the most specific patterns: the leaf nodes in
the hierarchy. However, when analysing a design, the generality at the top levels of this
classification provides a better understanding of the user intentions in a refinement step
when this one does not match any of the specific patterns. This mechanism also opens up
the possibility of learning new refinement patterns; that is, when a match is not found with
one of the patterns in the leaves, the details of the refinement step could be logged for the
search of new patterns—however, this is not in the scope of this work. The classification
of patterns as a hierarchy also facilitates the automatic matching process. We come back
to this in Chapter

6.1.3 Refinement plans mechanism

Figure [6.5]illustrates the process undertaken by refinement plans. Given a development,
refinement plans classify refinement steps by finding matches between the step and the
patterns in the hierarchy. The patterns are described in terms of abstract and concrete
models, as well as the associated patterns of POs. A refinement plan is formally specified
through a declarative representation as shown in Figure[6.6|— Appendix [A.2] contains this

formalisation for all the refinement patterns identified in the hierarchy presented above.
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Event-B Development
Abstract | Concrete
Variables | Variables

Invariants

Patterns Instances (Partially) Instantiated Guidance

Events

Abstract | Concrete Abstract | Concrete

POs POs Variables | Variables

Add event:
event e

where ..
Events vents then..

Pattern
Refinement Patterns /' matching

nvarants

Figure 6.5: Refinement plans approach.

Plan_Name(arguments)
Inputs:
Models: set of models involved in the refinement step being analysed.
Instance: instance of the parent refinement pattern.
Preconditions: conditions that determine if the input models contain
an instance of the pattern.
POs: set of PO patterns associated with the refinement pattern.
Critics: set of common patterns of errors associated with the refinement pattern.

Figure 6.6: Refinement plans declarative representation.

Each plan has a set of arguments which represent the main elements of the pattern as-
sociated with the plan. They specify the minimum set of elements that should be present
in a refinement step in order to get a (partial) match of the pattern. Other elements asso-
ciated with a pattern, such as invariants, event guards, etc., are identified only if there is
a failure associated with the pattern. Moreover, the plan receives two inputs: the Mod-
els, which is the set of abstract and concrete models involved in a refinement step, and
an Instance that represents the instance of the parent pattern (if one exists according to
the hierarchy). Each plan also contains a set of Preconditions used to determine if the
input models contain an (partial) instance of the refinement pattern. These preconditions
describe the features of the set of arguments associated with the plan. Furthermore, the
POs component capture the patterns of proof obligations that are related to the refinement
plan, while partial matches and common patterns of failure are managed by the Critics
component.

Critics are particularly useful in situations where a development breaks down. In such
situations the plans attempt to automatically generate modelling guidance to overcome
the failure. This is achieved by:

1. identifying which of the known patterns are closely aligned to the given flawed

refinement step, and
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2. identifying if a common pattern of failure matches the failure associated with the

refinement step.

This critics style exception mechanism is analogous to proof critics [68], a technique that
analyses failed proof attempts in order to guide the search for a correct proof. In the
context of refinement plans, a critic represents a common pattern of failure at the level of

POs and refinements. Specifically, a critic is represented as shown below:
Critic_Name([models_set, pos_set, instances_set], [preconditions], [guidance])

Observe that there are three main components associated with a critic: a list of inputs, a
list of preconditions and the guidance associated with the failure. The inputs have access
to the abstract and concrete models involved in a refinement step, i.e. the models_set,
the PO failures arising from the Rodin provers for the refinement step, i.e. the pos_set,
and a set of plan instances which are partial successes in terms of the application of the
refinement patterns, i.e. the instances_set. Moreover, associated with each critic is a set
of preconditions that determine the requirements for the critic to be applicable as well as
generic modelling guidance that specifies how to overcome the failure, e.g. speculating
a missing invariant, splitting an existing event, etc. The guidance is provided as a list of
small modifications that must be carried out over the model in order to correct the pattern
instance. Concrete instances of the refinement plan and critics are given in the following
section for the accumulator refinement plan.

Another aspect of refinement plans is their integration with HREmo. When a common
pattern of failure is instantiated by a particular refinement step, the associated guidance
may only be partially instantiated. To fully instantiate the guidance for a given flawed
refinement requires, in general, additional search and reasoning; here is where HRemo
is exploited. Whenever possible, the information from the partial instantiation is used
to tailor the search for invariants and guards in HREmo in an attempt to fully instantiate
the guidance — further details about this are given in Section [6.3] Note that while the
failure analysis and guidance generation is automatic, the decision as to whether or not
the guidance is actually applied is left to the user.

The plans for four of the leaf refinement patterns have been explored: namely, the
accumulator, case split, set to partition, and partition to function patterns. Here, the details

for the accumulator plan are presented — the details of the other three plans are available
in Appendices and [D|respectively.

6.2 Accumulator refinement plan

The list of meta-terms shown in Figure |6.7|are used to formalise the accumulator plan.
The declarative representation associated with the accumulator plan is given in Fig-

ure[6.8] Observe that this plan contains six arguments: a set of new variables (newVars),
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true if act is an action of event evt

true if x is an element of set

true if i is an instance of pattern pattern_name
true if event evt is deadlocked

true if x is an empty set

an event with parameters pars, guards grds and
actions actions is added to model M
transforms predicate grd into a substitution
true if g is a guard of event evt

true if the proof obligation po is of type T and is
associated with event evt

true if predicate P is provable

a guard g is added to event evt

true if inv is an invariant of model M

an invariant inv is added to model M

true if an action act of the abstract model is
associated with the proof obligation po

true if an action act of the concrete model is
associated with the proof obligation po

a variable v with type T is added to model M
makes the event refEvt refine the abstract

event absEvt

replaces action oldAct with a new action newAct
in event evt

action(act, evt)

element_of(x, set)

is_instance_of(i, pattern_name)
is_deadlocked(evt)

is_empty_set(x)

addEvent(event(pars, grds, actions), M)

iy ny u) iy

grd2Sub(grd)
is_guard(g, evt)
po_type(po, T, evt)

iy ny u)

provable(P)

addGuard(g, evt)
is_invariant(inv, M)
addInvariant(inv, M)
po_abstract_action(act, po)

iy ny uy iy

1)

po_concrete_action(act, po)

addVariable(v, T, M)
makeRefine(refEvt, absEvt)

iy n)

1)

replaceAction(oldAct, newAct, evt)

Figure 6.7: Critics meta-terms.

Accumulator(new Vars, ?absVar, ?accVar, absEvt, refEvt, ?accEvt)
Inputs:
Models: {AM, CM}
Instance: Event_PreDecomposition(new Vars, absEvt, refEvt, predecessors)
Preconditions:
P1. ?accEvtepredecessors A ?accVarenew Vars A
action(?accVar := ?accVar®a, ?accEvt)
P2. 7absVare V(AM) A action(?absVar := F(?accVar), refEvt)
POs: {INV_PO_Init_Event, INV_PO_Accumulator_Event,
INV_PO_Refined_Event, SIM_PO_Refined_Event}
Critics: {initialisation_speculation, loopGuard_speculation, postGuard_speculation,
invariant_speculation, accumulator_speculation}

Figure 6.8: Declarative representation of the accumulator decomposition plan.

an abstract variable (absVar), an accumulator variable (accVar), an abstract event (ab-
sEvt), its respective refined event (refEvt), and an accumulator event (accEvt). The argu-
ments marked with ‘?” are instantiated through the evaluation of the preconditions while
the other arguments are obtained via the parent instance; i.e. they are instantiated by the
preconditions of the event pre-decomposition plan — which is the parent plan as specified

by the inputs of the accumulator plan. Moreover, two preconditions are specified in order
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to identify an (partial) instance of the pattern:

e P1 specifies that an accumulator event accEvt should be found among the prede-
cessors of the refined event; i.e. an event that modifies the accumulator variable
accVar through the action pattern accVar:=accVar®a should be part of the set of

events that enable the refined event refEvt, and

e P2 determines that the refined event refEvt must assign the accumulator variable ac-
cVar to the abstract variable absVar; i.e. the accumulated value should be assigned

in the refinement of an action in the refined event.

These two preconditions identify if an atomic event is refined through an accumulation at
the concrete level of a model. Note that the details of the PO patterns associated with the
accumulator plan were introduced in Section [6.T} therefore, they are only referenced here
by their name. The critics are also referred by their name only; however, the following

section provides details for each of them.

6.2.1 Critics

The focus of this section is on the critics aspect of the accumulator refinement plan, and
how modelling guidance is automatically generated via partial matching and failure anal-
ysis. The critics mechanism handles common patterns of failures associated with the
refinement patterns. It will be noted that typically the guidance is only partially instan-
tiated; i.e. the suggested guidance will be in the form of partially instantiated schemas.
When possible, HREmo should be used to fully instantiate these schemas. This integration
with HRemo will be explored in Section [6.3]

Five critics associated with the accumulator refinement plan have been identified. The
meta-terms presented in Figure [6.7) are used in order to specify the critics. Moreover,
the guidance may refer to elements presented in the modelling schema shown previously
in Figure @ These elements are identified by the critic; however, the details of their

identification is omitted here not to overload the presentation of the critics.

Initialisation_speculation critic:

Initialisation_speculation_critic (
[{AM, CM}, po_set, instances_set],
[P1: element_of(I, instances_set) A is_instance_of(I, “accumulator’),
P2: —is_deadlocked(I.accEvt),
P3: is_empty_set(predecessors(l.accEvt))],
addEvent(event(_,[Hyp], [accVar:=Init, grd2Sub(H;)]), CM)
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This critic triggers when the accumulation process does not have an initialisation
phase or the initialisation fails. This critic is applicable iff:
P1. An accumulator pattern instance / is detected within the set instances_set.
P2. The accumulator event accEvt associated with instance / deadlocks.
P3. The accumulator event accEvt does not have predecessors; i.e. there are no events

whose execution enable the accumulator event.

Verifying that the refinement step contains an instance of the accumulator pattern is the
first condition that must hold in order to apply the critic. Precondition 2 checks if the ac-
cumulator event deadlocks; which would suggests a possible failure in the initialisation.
Finally, precondition 3 verifies that in fact the deadlock of the accumulator event occurs
because of an error associated with the initialisation event — since the deadlock may occur
because of other errors in the model; e.g. failure to handle the termination of the accumu-
lation process. If these preconditions succeed, the guidance suggested to the user is the

addition of the initialisation event to the concrete model; i.e. an event with shape:
EventC; = when H, then accVar := Init || grd2Sub(H;)

note that Hj and H, refer to elements of the accumulator pattern introduced in Figure[6.2]

LoopGuard_speculation critic:

LoopGuard_speculation_critic (
[{AM, CM}, po_set, instance_set],
[P1: element_of(I, instance_set) A is_instance_of(l, “accumulator”),
P2: ﬁis,guard(G<(W,7k), LaccEvt) v
(element_of(po, po_set) A po_type(po, INV, LaccEvt) A =provable(po))],
addGuard(G.(W, V},), LaccEvt)

This critic triggers when there are incorrect or missing guards associated with the
accumulator event. This critic is applicable iff:

P1. An accumulator pattern instance / is detected within the set instances_set.

P2. The accumulator guard of the accumulator event accEvt associated with instance /
is missing; or is not compatible with the pattern G<(W,7k); or there is a failed
invariant preservation proof obligation po in the set of proof obligations po_set that
is associated with the accumulator event.

As in the previous case, the first precondition verifies that the refinement step contains

an instance of the accumulator pattern; while the second precondition verifies if there is a

failure associated with the guard that handles the accumulation process in the accumulator

event. This condition can be verified by comparing the guards of the event with the

expected guard pattern. If the pattern matches the general form but the guard is incorrect,
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a failed invariant preservation PO would be produced. The suggested guidance specifies
that a guard with the shape G. (W, V) should be added to the accumulator event.

PostGuard_speculation critic:

PostGuard_speculation_critic (
[{AM, CM}, po_set, instance_set],
[P1: element_of(I, instance_set) A is_instance_of(l, “accumulator”),
P2: element_of(po, po_set) A po_type(po, SIM, LrefEvt) A —provable(po),
P3: ﬂis,guard(Gz(W,Vk), LrefEvt)],
addGuard(G_( W, V}), LrefEvt)

This critic triggers when the guard of the refined event, which ensures the accumula-
tion process is complete, is either incorrect or missing. This critic is applicable iff:
P1. An accumulator pattern instance / is detected within the set instances_set.
P2. There is a failed simulation proof obligation po in the set of proof obligations po_set,
which is associated with the refined event refEvt of instance 1.
P3. The post-accumulator guard of the refined event refEvt is missing or it is not compat-
ible with the guard pattern G_( W, V).
The first precondition verifies that an instance of the accumulator pattern is identified in
the refinement step. Then, if the guard of the refined event is wrong or missing, a failed
simulation PO would be generated. This is verified through the second precondition.
However, the failure of the simulation PO can be associated with different causes; for
instance, the absence of the gluing invariant. The third precondition examines if the failure
is associated with the post-accumulator guard by comparing the guards of the refined
event with the expected guard pattern. If the three preconditions succeed the suggested
guidance is the introduction of a guard with the shape G_( W, V},) to the refined event.

Invariant_speculation critic:

Invariant_speculation_critic (
[{AM, CM}, po_set, instance_set],
[P1: element_of(I, instance_set) A is_instance_of(l, “accumulator’),
P2: element_of(po, po_set) A po_type(po, SIM, LrefEvt) A —provable(po),
P3: is,guard(G:(W,Vk), LrefEvt),
P4: —is_invariant(H; =F<(W,V}), CM)],
addInvariant(H, =F-(W,V}), CM)
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This critic handles the case when the accumulator invariant is incorrect or missing. This

critic is applicable iff:

P1. An accumulator pattern instance / is detected within the set instances_set.

P2. There is a failed simulation proof obligation po in the set of proof obligations po_set,
which is associated with the refined event refEvt of instance /.

P3. The post-accumulator guard of the refined event refEvt is not missing and it is com-
patible with the guard pattern G_( W, V).

P4. The accumulator invariant is missing or it is not compatible with the invariant pattern
H, =F (W, V).

Precondition 1 verifies that an instance of the accumulator pattern is identified in the

refinement step. As with the postGuard_speculation critic, if the gluing invariant is wrong

or missing, a failed simulation PO would be generated. The presence of the PO is verified

through precondition 2, while precondition 3 discards the failure being associated with the

post-accumulator guard. Finally, precondition 4 examines if the failure is associated with

the invariant by comparing the invariants of the concrete model with the expected invariant

pattern. If all the preconditions succeed the suggested guidance is the introduction of an

invariant with shape H; :FS(W,W) to the concrete model.

Accumulator_speculation critic:

Accumulator_speculation_critic (
[{AM, CM}, po_set, instance _set],
[P1: element_of(I, instance_set) A is_instance_of(I, “control_elaboration™),
P2: element_of(po, po_set) A po_type(po, SIM, LrefEvt) A —provable(po),
P3: po_abstract_action(V:=, po) A po_concrete_action(V:=V@a, po)],
[addVariable(accVar, 8. Type, CM),
addVariable(start, boolean, CM),
makeRefine(I.refEvt, skip),
replaceAction(V:=V@a,accVar:=accVar®a, [.refEvt),
addGuard(start=TRUE, L.refEvt),
addEvent(event(_, [start=TRUE], [V:=f(accVar), start:=FALSE]), CM),
addEvent(event(_, [start=FALSE], [accVar:=Init, start:=TRUE]), CM)])

This critic handles the case when an accumulator event refines an abstract event whose
actions are performed in an atomic step.
P1. A control elaboration pattern instance / is detected within the set instances_set.
P2. There is a failed simulation proof obligation po in the set of proof obligations po_set,
which is associated with the refined event refEvt of instance /.
P3. The abstract and refined actions associated with the failure have the form V:=4 and

V:=V@&a, respectively.
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The first precondition verifies that an instance of the control elaboration pattern is identi-
fied in the refinement step. The second precondition checks if a failed simulation PO has
been generated. Finally, the third precondition verifies if the failure is associated with the
refinement of an atomic action into an accumulation action. If an abstract atomic event
is refined through accumulation a failure would arise. That is because it is not possible
to prove that executing the abstract event results in the same outcome than executing the
event at the concrete level. If all the preconditions succeed the suggested guidance is to
transform the control elaboration instance into an accumulator pattern. In order to achieve

this, a set of steps must be carried out. That is:

e Add an accumulator variable to the concrete model whose type is determined by
the assignment in the abstract action.

e Add anew boolean variable to control the start and end of the accumulation process.

e Transform the refined event into an accumulator event, i.e. the event should refine
skip, the assignment V:=V@a should be replaced by accVar:=accVar®a and a guard
should be added that specifies the accumulation process has started.

o Create a new refined event with a guard verifying the accumulation process started
and with actions that assigned the accumulated value and specify the end of the
process.

e Create an initialisation event with a guard verifying the accumulation process has
not started and with actions that initialise the accumulator variable and specifies the
beginning of the process — note that the initialisation value must be supplied by the

user.

6.2.2 Example application of the accumulator plan

In this section the application of the critics mechanism is illustrated by analysing the

model shown in Figure [6.9]
Abstract model: Concrete model:
Variables Variables
Xy Xyn
Invariants Invariants Failed SIM PO:
xeN neN
yeN Event incr = n<y
Event incr = refines incr F
then whenn <y x+1 = x+y
X 1= X+y then
end X :=x+1
n:=n+l
end

Figure 6.9: Flawed accumulator refinement pattern instance.
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This is a flawed version of the addition model shown in Figure[6.1] The abstract model
adds the value of y to z in an atomic step, while at the concrete level the assignment is
intended to be performed gradually in the refined event. As can be observe, the model
produces a failed SIM PO.

Following the classification hierarchy, the model is classified as an instance of the
control_elaboration refinement pattern—since the refinement step refines an existing event
via a new variable and the refinement does not involve new events or case splits—see
Appendix [A.2]for details about the preconditions of the control elaboration pattern. As it

stands, the accumulator_speculation critic is triggered as follows:

Accumulator_speculation critic: the conditions yield:

P1. The model is an instance of the control elaboration pattern.

P2. A failed simulation PO associated with the refined event occurs, i.e.:
n<yrz+l=x+y.

P3. The abstract and refined actions associated with the failure have the form V:=4

and V:=V@®a, respectively. With respect to the example that is:

Abstract action: z :=z + ¥y

Concrete action: z ==z + 1

Guidance
An instance of the accumulator refinement pattern is speculated and suggested to
the user. The suggested model is shown in Figure

ABSTRACT MODEL:
Variables Event incr =
Xy then
Invariants X = X+y
xeN end
yeN
CONCRETE MODEL:
Variables Evente, = Evente, = Evente; =
X y n Xp start when when refines incr
Invariants start = FALSE start = TRUE when
neN then n<y start = TRUE
X; €N Xy := InitValue then then
start € BOOL start := TRUE Xy 1= Xp+1 X =Xy
end n:=n+l start := FALSE
end end

Figure 6.10: Guidance.

The modifications applied to the model involved:
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1. Adding an accumulator variable x, to the refined model.

2. Adding a new boolean variable start, conditions start=FALSE and start=TRUE,
and actions start:=TRUE and start:=FALSE to specify the start and termina-
tion of the accumulation process.

3. Transforming the existing event into an accumulator event, i.e. the event re-
fines skip and the assignment x := X + 1 is replaced by x, := x, + 1.

4. Creating a new refined event with action x := x,.

5. Adding an initialisation event with action X, := InitValue — initialisation value

to be supplied by the user.

The guidance currently provided is in the form of partial instantiations of the pattern
schema; thus, user interaction is required. Let us assume the user provides the
instantiation of the pattern shown in Figure [6.11] — where the user has added the

initialisation of variable n and the initial value for the temporal variable x,.

ABSTRACT MODEL:
Variables Event incr =
Xy then
Invariants X = X+y
X €N end
yeN
CONCRETE MODEL:
Variables Evente, = Event e, = Event 6.3 =
X y I X, start when when refines incr
In\?;lriarzlts start = FALSE n<y when
then start = TRUE start = TRUE
neN
n:=0 then then
XZEN o Xz'_X2+1 X 1= Xy
2= = =
start € BOOL start := TRUE n:=n+l start := FALSE
end end end

Figure 6.11: User provided partial instantiation.

At this point the postGuard_speculation critic triggers with the following instanti-
ation:

PostGuard_speculation critic: the conditions yield:

P1. The accumulator pattern is identified.

P2. A simulation PO pattern associated with the refined event fails, i.e.
start = TRUE + 1 = = + y.

P3. The post-accumulator guard is missing.

Guidance:
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Add a guard to event end_ok with the form:

G-(1p, n, start, x, y).

We will revisit this guard schema below, and describe how it can be automatically
instantiated. For now assume that the correct instantiation is available, i.e. n = y.
Because the invariant is also missing, the failure persists, this triggers the invari-

ant_speculation critic.

Invariant_speculation critic: the conditions yield:

P1. An accumulator pattern is identified.

P2. A simulation PO pattern associated with the refined event fails, i.e.
start = TRUE,n =y Frx =2+ 9.

P3. The post-accumulator guard n = y is present in the refined event and is com-
patible with the guard pattern.

P4. The accumulator invariant is missing from the model.

Guidance:

Add an invariant to the model with the shape:
(start = TRUE) = F. (1, n,xz, 7).

Note that due to use of natural numbers, < is instantiated to <.

Note also that the guidance currently provided is again in the form of partial instantia-
tions of the schemas. At this point, there are three options to find the correct instantiation:
i) through interaction with the user, ii) through the use of proof patterns, or iii) through
the use of automated theory formation (ATF). Option three is further explored in the fol-

lowing section.

6.3 Combining Refinement Plans and HRemo

In the previous section the application of the accumulator pattern for the addition example
yielded partial instantiations of missing invariants and guards. Using HREmo on its own
fails to find the missing invariant after the default 1000 theory formation steps. This does
not imply that the invariant cannot be found, rather it means that additional search is
required. By combining refinement plans and event error traces with HREmo these issues
can be effectively addressed. In this section we report on an experiment in which HReEmo
is used to fully instantiate the invariant and guard templates obtained in the example of

the previous section.
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The process of finding a “correct” refinement typically involves exploring many in-
correct models. Refinement plans aim at providing guidance when a failed refinement
is closely aligned with a known pattern. However, refinement plans are limited by the
observed patterns. On the other hand, as mentioned above, HRemo also exhibits some
limitations. In order to overcome these limitations we combine both approaches, in par-

ticular, we extend the invariant discovery approach by:

e using the ProB animator [86] to generate traces that contain undesirable states

which can be used by HRemo to find missing guards, and

e using the patterns of invariants and guards available in the refinement plans to au-

tomatically tailor the search in HRemo.

6.3.1 Illustrative example

Recall the Event-B model shown in Section [3.1.1] We use this example to illustrate how
HRewmo can identify a missing guard. Figure [6.12]shows a modified fragment of the orig-
inal model which specifies the refinement of event addA — at the abstract level variable
full is modified through a non-deterministic substitution full :€ BOOL when full is false,

while the concrete event gradually increments variable x by one unit.

Abstract event:

Concrete Event:

Event addA = Event addC =
when refines addA
full = false then
then X :=x+1
full :e BOOL end
end

Figure 6.12: Flawed refined event.

As it stands the model generates the failed guard strengthening PO shown below:
T + full = false

Note that the PO fails because the guard of the concrete event has not been defined.

The model is identified as an instance of the control elaboration refinement plan since
the abstract event is not split at the concrete level and the refined event remains atomic
(see Appendix [A.2] for the details of this plan). A critic associated with the refinement
plan is triggered and the provided guidance is the addition of a guard to the refined event
— this is identified by the critic through the inspection of the failed PO and the simulation
trace, which specifies an inconsistency between the guards of the abstract and concrete

event as it will be explained next.
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The animation trace shown in Figure [6.13]is produced by the ProB simulator for the
modified version of the model. Note that the trace contains an incorrect step; i.e. S4. This
is specified by ProB which detects that the abstract guard full=false is not satisfiable by
the guard of the refined event once step S4 has been carried out. Based on this simulation
trace and the modified Event-B model, the core concepts are extracted as shown in Figure
[6.14] Note that an extra concept is added to the input background information given to
HR. That is, the concept good, which specifies the states of the simulation trace that do
not contain errors. The purpose of this is to look for the missing guard(s) within the
conjectures associated with concept good — since the execution of the event should only

produce correct steps.

Animation steps
Correct steps Incorrect step
Variables | S1 S2 S3 S4
Abstract full false | false | false true
Concrete X 0 1 2 3
m 3 3 3 3

Figure 6.13: Animation trace generated by the ProB simulator.

state(A) | oo ‘“teggr(c) full(A,B) | [xA,0) | [m(A,0)
S1 S boolean(B) | S1 | false S1 |0 S1 | 3
S2 S true ) S2 | false S2 |1 S2 1 3
S3 $3 false 3 S3 | false S3 |2 S3 1 3
S4 4 S4 | true S4 |3 S4 | 3

Figure 6.14: Core concepts.

After running HR for 1000 theory formation steps a total of 41 conjectures are gen-
erated. Through manual inspection, the equivalence conjectures associated with concept
good are examined in order to find the missing guard. Only equivalence conjectures are
explored since the missing guard only occurs within the correct steps. The following

conjectures are identified:

V A.state(A) A good(A) < boolean(FALSE) A full(A,FALSE)

VY A,B,C.state(A) A good(A) & integer(B) A m(A,B) A integer(C) A x(A,C) A B>C
VY A,B,C.state(A) A good(A) & integer(B) A x(A,B) A integer(C) A m(A,C) A B<C
Y A.state(A) N good(A) & —(boolean(TRUE) A full(A,TRUE))

The right hand side of the conjectures represent the potential guards. These are shown
below in their corresponding Event-B representation. Note that (6.1)) and (6.4) cannot be
selected as guards since full is an abstract variable that disappears at the concrete level.
On the other hand, (6.2) and (6.3)) are valid predicates and both represent the missing
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guard — since they are equivalent predicates.

full=false (6.1)
m>x (6.2)

x<m (6.3)

= (full=true) (6.4)

This illustrates the integration between HRemo and refinement plans. That is, through
the use of refinement plans it was identified that a guard was missing in the model, while
HREwmo was used to automatically generate the missing guard.

In the following section new heuristics are described which tailor HRemo according to

the guidance generated by the refinement plans in order to discover invariants and guards.

6.3.2 Extending the heuristic approach

As described in Section [3.3] two type of heuristics are used by HRewmo, configuration
heuristics (CH) and selection heuristics (SH). When a pattern of an invariant or a guard is

available then the following heuristics are applied:

Configuration heuristics:

CHL1. Prioritise core and non-core concepts expected in the pattern of the invariant or
guard.

CH2. Follow with core and non-core concepts that occur within failed POs.

CH3. Generate conjectures that are compatible with the type of the expected invariant. If
looking for a guard, generate only equivalence conjectures unless there is a failed
GRD PO associated with the event, in which case, implication conjectures are also
formed. Moreover, if possible, prioritise the concept associated with the abstract
guard (as a core or non-core concept as it fits).

CHA4. Select only production rules which will give rise to conjectures relating to the type
of the expected invariant or guard.

Equivalence conjectures are always generated since this optimises the theory formation

process [32].

The selection heuristics for the search of invariants based on patterns are the same
as those applied previously in Chapter 3] This requires selecting conjectures where the
sets of variables occurring on the left- and right-hand sides are disjoint, selecting the
most general conjectures, and selecting the conjectures that discharge the failed POs and
that minimise the number of additional proof failures. Note that here the selection of
conjectures is focused in the core and non-core concepts that relate to the invariant pattern,
as opposed to the heuristics presented in Chapter 3] which focused on core and non-core

concepts from the failed POs.
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In the case of missing guards the selection process differs. Through the use of the ProB
animator it is possible to detect event errors which result in traces that contain undesirable
states. When a trace of this type is generated we provide HRemo with the concept of good
states, as it was shown above, which are the steps of the trace with no associated event
errors. The selection is then focused on conjectures that express equivalences with the

concept of good, i.e. conjectures of the form:
good & ¢

where ¢ represents the potential missing guard. Moreover, if there is a failed GRD PO
associated with the event, and the abstract guard could be represented as a core or non-

core concept, HREmo searches for conjectures of the form:
P> a

where a represents the abstract guard.

Recall the application of the postGuard _speculation and invariant_speculation critics
presented in Section resulted in partially instantiated guard and invariant schemas.
These schemas are used to tailor HREmo in the search for the missing guard and invariant.

The instantiated guard schema obtained by the postGuard_speculation critic was:
G-(1p, n, start, x, y)

Based on this, the configuration heuristics are instantiated as follows:

CHI1: Prioritised concepts from the guard schema: x,, n, start, x and y.

CH2: Concepts from the failed POs: x+y, x,=x+y and start=TRUE.

CH3: Searching for a guard and there is no failed GRD PO associated with the event;
thus, only equivalence conjectures are generated.

CH4: As the variables involved in the guard are natural numbers, the production rules
to be used are the arithmetic and numrelation PRs (no PR is associated with start

since it is a boolean variable).

After 65 seconds and 1000 theory formation steps HREmo returns 1 conjecture:
good & y=n

which means that the missing guard is y = n. A similar approach is followed in the
search for the missing invariant. Recall the invariant template instantiated by the invari-

ant_speculation critic of the accumulator plan:

(start = TRUE) = F. (1, n,x, 7).

Based on this, the configuration heuristics are instantiated as follows:
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CHI1: Prioritised concepts from the invariant schema: start, x, n, x and y.

CH2: Concepts from the failed POs: start=TRUE, x+y, and x,=x+Y.

CH3: The invariant template suggests the search for an implication. Therefore, implica-
tion conjectures are enabled during the search.

CH4: As the variables involved in the invariant template are natural numbers, the produc-
tion rules to be used are the arithmetic and numrelation PRs (no PR is associated
with start since it is a boolean variable).

After 45 seconds and 1000 theory formation steps HREmo returns 1 conjecture:
start= TRUE > =z +n

which represents the missing invariant.

6.4 Summary

This chapter presented Refinement Plans, an approach to the classification of refinement
steps as well as for the generation of guidance when a refinement step is flawed but is
close to a known pattern of refinement. Each refinement plan is composed of a modelling
pattern, a set of PO patterns, and a set of critics — where a critic represents a common
pattern of failure at the level of refinements and POs. Associated with each critic is generic
modelling guidance as how to overcome the failure. When a common pattern of failure is
instantiated by a particular refinement step, the associated guidance is provided to the user.
In cases in which the guidance is only partially instantiated, we have experimented with
HREmo as a mechanism to fully instantiate it. This is achieved by using the information

of the partial instantiation to tailor the search within HRemo.
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Chapter

Refinement plans: workbench and results

In this chapter REMO is presented. A prototype system that implements the ideas behind
reasoned modelling. In particular, it implements refinement plans as well as reasoned
modelling critics [[70], a technique that extends the notion of proof critics [68] by exploit-
ing the way in which proof failure analysis typically informs the activity of modelling. In
the following section the architecture of REMO is presented as well as the results obtained

from a series of experiments carried out over a set of Event-B developments.

7.1 Tool Architecture

Rodin
Development

REMO Tool
Event-B

Rodin j model Parsed N
REMO Models/POs | Models/POs Refinement
—

atterns
Plug-in —L)m e A

classifier \

T (Proven and
Unproven) .
instances

Guidance Critics /
! Generator results Analyser
i A

!

The

labels with bold font indicate the main components of the tool chain; the stippled lines
indicate work in progress; the rectangle box ,— represents input data used in a process;

Guidance

Explanation

the square boxes [___| represent processes (where the white filled processes are part of
the tool extension discussed here); the document boxes [ ™) represent files that are used

as inputs and/or outputs of a process; and the ovals O represent external processes .

Figure 7.1: The REMO tool architecture.
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An architectural view of the REMO tool is shown in Figure The Rodin REMO
plug-in provides the interface between the Rodin toolset and the REMO tool. A devel-
opment is parsed by the Models/POs parser and is then passed to the Refinement plans
classifier that classifies the patterns of refinement used in a development. The role of
the Critics analyser 1s to find ways of overcoming failures via the critics mechanism.
The classifier and the analyser interact with CVC3 when a precondition requires proof.
The analyser also interacts with HReEmo in order to search for missing/wrong invariants or
guards. The raw results are passed to the Guidance generator, which produces a list of
alternative guidance suggestions. The guidance is then sent to the Rodin Remo plug-in
and presented to the user — note that the stippled lines indicate work in progress. Detailed
descriptions of each component are provided in the following sections.

Since the ideas of reasoned modelling have been proposed for Event-B, REMO is nec-
essarily integrated with the Eclipse-based Rodin toolset — implemented in Java. How-
ever, the core of REMO has been implemented in OCaml (Objective Caml Languageﬂ

This has been motivated by the following factors:

e this is a prototype implementation which is expected will change (frequently).
OCaml is a declarative functional programming language which reduces the size

of the source code, thus making change to the code (relatively) easy;

e a large part of the work is checking preconditions, which can be handled very el-
egantly using inductive data types and pattern matching, which are supported by
OCaml;

e compared to other languages in the ML-family, OCaml embodies an object-oriented
layer, which provides a good encapsulation mechanism to represent models. In par-
ticular, the object-oriented feature of the language has been very useful for repre-

senting the hierarchal nature of refinement plans through the use of inheritance.

7.1.1 Rodin REMO Plug-in

The goal of the Rodin REMO plug-in is to provide an interface between the Rodin toolset
and the REMO tool. Specifically the plug-in has two main roles:

1. translate Event-B developments (models, contexts and proof obligations) from Rodin
into the REMO tool; and

2. communicate modelling guidance and explanation back from the REMO tool into
Rodin.

At the current state only role 1 has been implemented — role 2 is planned future work,

and communication is currently at the level of automatically generated files. However, a

ISee http://caml.inria.fr/ocaml/
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description is given throughout this section of how it is envisaged the guidance will be
presented to the user by the Rodin plug-in.

The input of the Rodin REMO plug-in is a Rodin development, from which the plug-
in generates two files that serve as the input of the REMO tool. The first file contains a
string representation of the Event-B models (machines and contexts) of a development,
while the second file stores a string representation of all the POs (status, type, hypotheses
and goal) associated with each model. These files are then translated into the REMO

internal representation, i.e. OCaml objects.

7.1.2 The REMO Tool

As shown in Figure [7.1), REMO contains the following components: Models/POs Parser,
Refinement Patterns Classifier, Critics Analyser and Guidance Generator, which are ap-

plied sequentially and discussed separately below.

7.1.2.1 Models/POs parser

The role of this component is to parse the model and PO files generated by the Rodin
REMO plug-in. This is achieved through the definition of types that represent the main
components of an Event-B model. That is, machine elements, event elements, predicates,
expressions, etc. The parsed representation of the developments is then used by REMO
in order to carry out the classification of patterns and analysis of failures associated with

instances of the patterns.

7.1.2.2 Refinement patterns classifier

The classifier evaluates the parsed Event-B models in order to classify the patterns of re-
finement that occur in a development. Moreover, the classifier invokes the critics analyser
when a failure related to a step with a pattern instance is detected.

The pattern hierarchy presented in the previous chapter (Figure[6.4) plays an important
role for the identification of patterns. As mentioned before, a pattern may appear in a
refinement step only if an instance of the pattern immediately above in the hierarchy has
been identified. This is implemented within REMO through the use of inheritance as
shown in Figure[7.2]

All refinement plans inherit from a virtual class called refinementPlan. In OCaml vir-
tual classes have the same role as abstract classes in common OO languages; i.e. they
are used in order to create subclasses that share the structure imposed by the virtual class.
Each refinement plan contains a variable parentInstance which has the reference to the
pattern instance above in the hierarchy. Moreover, each refinement plan contains a col-
lection childrenPlans that defines its children plans and a collection patterninstances that
contains the complete or partial instances of the refinement pattern found in the refinement

step.
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<<virtual>>

refinementPlan
evtProject : eventbProject
concreteMachine : machine
abstractMachine : machine
parentinstance : pattemninstance
childrenPlans : refinementPlan list
patterninstances : patterninstance list
virtual checkPreConditions : bool
virtual loadChildren : unit
virtual loadCritics : unit
setParentinstance instance' : unit
checkChildren : unit
checkCritics : unit
checkChildrenCritics : unit

FAN
ControlRefinementPlan DataRefinementPlan
parentinstance = null parentinstance = null
EventAtomicityDecompositionPlan partitionToFunctionPlan
parentlnstance : controlRefinementPlan parentinstance : dataRefinementPlan

EventPreDecompositionPlan
parentinstance : eventAtomicityDecompositionPlan

AccumulatorPlan
parentinstance : eventPreDecompositionPlan

Figure 7.2: Refinement patterns classifier structure.

The virtual methods checkPreconditions, loadChildren and loadCritics must be im-
plemented by each concrete instance of the refinementPlan class. In the method check-
Preconditions the specific preconditions that determine if the input models contain an
instance of the pattern associated with the plan must be implemented. The methods load-
Children and loadCritics must contain references to each of the children plans and the

critics associated with the plan.

Algorithm [I0] shows the pseudocode for the identification of the pattern associated
with the accumulator refinement plan in a refinement step. This illustrates the general

mechanism used to identify refinement patterns within a model.

The classifier searches for matches between the elements of the refinement patterns
and the models. The search consists of checking the preconditions associated with each
pattern starting at the top of the hierarchy and until the leaves are reached or the precon-
ditions at some level fail. That is, progress down the hierarchy can only be made if all
the preconditions of a pattern in a node are true. The pseudocode of the accumulator plan
shows that there are two preconditions associated with the pattern: 1) that an accumulator

event occurs in the concrete model (Line [3)), and ii) that an abstract atomic action is re-
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Algorithm 10 Pseudo-code for the identification of the accumulator refinement plan.

1 class ACCUMULATORREFINEMENTPLAN inherits REFINEMENTPLAN

2 parentInstance «— EVENTPREDECOMPOSITIONPLAN instance

3 method checkPreconditions

4 accumEvents < find accumulator events in parentInstance.predecessors
5

6

7

if there is an accumulator even in accumEvents then
for all evt in accumEvents do
if atomic action from parentInstance.absEvt is refined in parentInstance.refEvt
through accumulator variable from evt then

8 instance « create accumulator refinement instance
9 add instance to planInstances

10 if there is at least one instance in planlnstances then

11 super.checkChildren()

12 endMethod

13 endClass

fined via the accumulator variable associated with the accumulator event (Line[7). When
more than one match is found for a pattern precondition, each match is considered as a
potential separate instantiation of the pattern (Line [6)-multiple instances may be found as
progress is made down the hierarchy when the patterns are more specialised.

When a match is found that meets all the preconditions, a new instance of the pattern
is created (Line[8) and the instance is added to the set of plan instances (Line[9). If at least
one instance of the pattern is identified (Line[I0)), the procedure checks the preconditions
of the child patterns (Line [I1). Note that the checkChildren method is defined in the
parent class. Then for each child the preconditions are checked and a similar process is
started.

After all the patterns have been analysed, and if there is a failure associated with the
refinement step, then the classifier invokes the critics analyser with the pattern instances

that were identified.

7.1.2.3 Ciritics Analyser

The role of the analyser is to find ways of overcoming failures associated with a develop-

ment. Two types of critics have been implemented:

e Reasoned modelling critics: these are generic critics which exploit failure at a single
level of abstraction in a development. These type of critics were introduced in [69]

and their implementation, which is part of this PhD thesis, was reported in [70].

e Refinement plan critics: address failures at the level of refinement; and in particular,

failures associated with partial or failed instances of refinement patterns.

The general mechanism for both types of critics is the same; i.e. each critic has a set
of preconditions that are checked and if successful, automatically generated modelling

guidance is provided. The main difference is that refinement plan critics have additional
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input information; i.e. instances of refinement patterns. Here, the details of refinement
plans critics are described.

REMO evaluates the applicability of a critic with respect to a refinement pattern in-
stance, the refinement step and the failed POs. This process consists of the following

steps:

1. When the classifier finishes the identification of patterns, if there is a failure as-
sociated with the model, the instance is passed to the critics analyser where the

associated critics are explored.

2. Then the analyser searches for matches of the critics preconditions. If a precondi-
tion being checked is one that identifies different solutions to the same failure (e.g.
finding guards that are mutually exclusive with the existing guards of an event), all

the matches are part of the set of possible solutions of the failure.

3. For each element of the set of possible solutions the subsequent critic preconditions
are evaluated. When all the preconditions have been checked, the analyser verifies

which potential solutions were successful in all the preconditions.
4. Then, for each successful critic instance the raw guidance is generated.

5. When the guidance is in the form of a guard or an invariant template, and this
template is only partially instantiated, HREmois used in order to attempt and find the
complete instantiation of the guard or invariant template — this step of the process
is not implemented yet; however, the integration of REMO and HRewmo is part of

future work.

6. The analyser collects the results of each successful solution and sends them to the

guidance generator.

Note that what is on offer is guidance; whether or not the guidance is accepted is left
to the user. Alternatively, where better proof automation is required, the aim in the longer-
term is to include a proof planner which will enable REMO to improve upon the level of
automation provided by the current Rodin provers (see Chapter [g).

REMO uses the CVC3 SMT solver [11] when a pattern or critic precondition requires
proof. This choice of SMT solver follows from an existing OCaml interface developed by
Maclean [91]. Currently, only first-order predicates with equality are handled, as well as
arithmetic. Thus, the full underlying (set-theoretic) Event-B mathematical notation is not
supported. Future work includes taking advantage of SMT solvers for Event—BE], as well
as the use of a proof planner. Furthermore, we may possibly use generic purpose theorem

provers.

2See http://www.cprover.org/SMT-LIB-LSM/
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7.1.2.4 Guidance Generator

The guidance generator takes the raw results from the classifier and the analyser and
produces a formatted, ranked (ordered) list of alternative guidance suggestions, which
will then be sent to the Rodin plug-in and presented to the user.

Two processes take place here. The first process consists of interpreting the guidance
given as an input in order to produce written explanations, while the second process deals
with the linking of the guidance and explanation to the Rodin plug-in. Interpreting the
guidance produced by the analyser is linked to the critic preconditions of each suggestion.
The purpose behind this, is to help the user understand the nature of the guidance, to make
a more informed decision about which modification to apply. The guidance produced by

the generator will be classified into four categories:

1. Global guidance: refers to a global solution that addresses multiple local failures.
For instance, the addition of an invariant to the model instead of guards in multi-
ple events or the introduction of an intermediate layer of refinement. This type of
guidance is given alongside an explanation of how the local suggestions are used to

propose the general one.

2. Local guidance: is concerned with a solution that addresses a local failure. For
instance, a guard is missing from an event or an event is required in order to over-
come deadlock. An explanation of how the failure is overcome with the solution is

provided.

3. Conditional guidance: refers to solutions that are subject to the fulfilment of cer-
tain conditions. For instance, solutions that depend on how variables are prioritised
within the context of the modelled system. A list of conditions together with expla-

nations of why these conditions are needed is given with the suggested solution.

4. Partial guidance: is provided when the problem is identified but the solution is
in the form of a partially instantiated template or in the form of a set of possible
options. For instance, an invariant template that is not fully instantiated by HRemo.
An explanation of the failure together with the partial or set of possible solutions is

provided.

The result of the guidance generator is a set of files capturing both the guidance and
explanations for each pattern and critic instance. From the user perspective, the guid-
ance will consist of the fragment of Event-B model that is relevant to the pattern and the
suggested modification. The natural language explanation is available to user at his/her
request.

For instance, in the case of the accumulator plan and in particular the invariant_specu-
lation critic, the guidance will contain the current set of invariants plus the new invariant

as shown in Figure
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Guidance:
Machine machine_name

Invariants
list_of _current_invariants

’ new_invariant

Figure 7.3: Guidance provided by the invariant_speculation critic of the accumulator pattern.

The explanations are represented as templates, i.e. a natural language explanation
of the pattern and critic preconditions, with slots to denote instance specific details. To
illustrate, the proposed template associated with the invariant _speculation critic is shown

in Figure [7.4]- instantiations of these template are presented in Section

Explanation:

1. The abstract atomic event is refined through iteration at
the concrete level by the sequence of concrete events [ 1.

2. There exists an unproven simulation PO:

3. There are no other failures associated with event which

refines the abstract event
4. The invariant that explains how the iteration at the concrete level is
performed is missing\incorrect.

Therefore:
The failure can be overcome by adding the invariant new_invariant
to the concrete level.

Figure 7.4: Explanation template associated with the invariant_speculation critic of the accumu-
lator pattern.

7.2 Experimental results

A set of Event-B developments were explored in order to identify instances of the more
concrete patterns; i.e. the patterns at the leaves of the hierarchy — the developments in-
clude models of the Mondex and flash file systems proposed in the verification grand
challenge. The summary of this study is given in Table

The chosen models provided a good set of case studies that allowed us to explore
different instances of all the refinement patterns. Moreover, control elaboration is the
most common refinement pattern used across the different models. This is expected in a
refinement-based formalism like Event-B since this pattern develops existing events with-

out breaking their atomicity or changing the state representation. This is contrary to the
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other patterns, which introduce new functionalities and modifications to the current repre-
sentation of the state. As can be observed from Table[7.1] such kind of steps are expected
to occur fewer times during the refinement. That is because the initial abstraction should
model most of the functionality of the system, and the changes to the state representation

are usually performed during the last refinement steps.

control refinement data refinement
Model RP1 | RP2 | RP3 | RP4 | RP5 | RP6 | RP7 | RP8 | RP9 | RP10
Cars on a bridge [3]] 2 8 1
Mondex [22]] 1 17 1 4 1 1 2
Flash file system [39] 27 2 2
Location access ctrl. [3] 1 1 1 3
Network topology [159] 1 2 2 3 2
Where:
RP1: Control refinement  RP6: Post-decomposition
RP2: Case split RP7: Set to partition

RP3: Control elaboration RP8: Partition to function
RP4: Pre-decomposition ~ RP9: Data extension
RP5: Accumulator RP10: Data removal

Table 7.1: Refinement pattern analysis of Event-B developments.

The results for each refinement step with the associated refinement patterns are de-
scribed below — where each refinement step is denoted by the letter R and a consecutive

number:

1. Cars on a bridge: Models a system that controls the flow of cars on a bridge that

connects a mainland to an island.

R1: Partitions the number of cars into three variables: cars going towards the is-

land, cars on the island and cars going towards the mainland (RP7).

R2: Introduces traffic lights to control the number of cars allowed in and out of
the bridge and island. Splitting events is required in order to handle the traffic

lights when the maximum number of cars has been reached (RP2).

R3: Introduces sensors and communication channel variables to model the physical
environment in the bridge/island compound. These variables must be handled

by the existing events (RP3).

2. Mondex: models a smart card that allows the exchange of money between elec-

tronic purses.

R1: The atomic exchange of money between purses is decomposed at the concrete
level through a sequence of events that separate the deduction and increment

of money from the source purse to the target purse (RP4).

R2: Two redundant variables that store information about the balance currently

engaged in a transaction are removed (RP10).
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R3:

R4:

RS:

R6:

R7:

RS:

Dual states to a transaction are introduced. Splitting of events are required
to handle failure of a transaction based on the dual states (RP2), and existing

events are modified with details about the new states (RP3).

Message variables are added that constrain how the communication within the

protocol is performed in the existing events (RP3).

States are associated with purses instead of transactions. This requires the

modification of existing events to reference the new states (RP3).

The global history of transactions is handled in the refinement by local con-

secutive numbers assigned to each purse involved in a transaction (RP9).

A redundant variable used to store the history of consecutive numbers is re-
moved (RP10).

The state sets related to each side of the transaction are handled in the refine-

ment by a status function (RP8).

3. Flash file system: Models a flash-based file system that allows a user to read, write

and erase information from a flash disk.

R1:

R2:

R3:

R4:

RS:

R6:

The set of objects is partitioned within the flash file system into files and di-
rectories (RP7).

The set of files is partitioned into files being read and files being written (RP7).
A function is also introduced to represent the content of files which must be
handled by the existing events (RP3).

The concept of users and permissions to files and directories is introduced.

This restricts the application and adds effects to the existing events (RP3).

Extra information is added about files and directories; e.g. creation date, name,
etc. This data must be modified by the existing events (RP3).

The process of writing the content of a file is decomposed to be performed

iteratively in the refinement (RPS).

The process of reading the content of a file is decomposed to be performed

iteratively in the refinement (RPS).

4. Location access controller: Models a system that controls the access to the rooms

within a building.

R1: The concept of communication between locations is added which must be

checked by the existing events (RP3).

R2: The concept of one way doors to communicate from one location to another

is introduced. Accessing a location is decompose in order to verify first if the

destination connects with the origin (RP4).
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R3: Card readers which read and pass access information to the system are intro-
duced. The cards must be handled by the existing events in order to transfer

the current access information (RP3).

R4: Physical controls to lock and unlock the doors as well as timers are introduced.
This refinement requires the use of partitions in order to handle different states

of the doors associated with the controls and timers (RP7).

. Network topology: Models the algorithm used in routing tasks in which each node
of a network needs to discover and maintain information about the topology of the

network.

R1: The concept of logical network which is linked with the physical network from
the abstraction is introduced (RP1).

R2: A local network associated with each node which is updated through message
channels is introduced. This requires new events to transfer the messages

when an update to the network takes place (RP6).

R3: The local network and message variables are extended by adding information
about the age of the links being updated, where the parity of the age determine
the membership to the network (RP9).

R4: The events that handle the updates to the network and the transfer of messages

are merged.

RS: The history of messages is made redundant and therefore it is removed from
the model (RP10).

R6: A variable that stores the images of the network built by each node in order
to verify that they are equal to the actual network is introduced. This requires
existing events to handle the new variable (RP3).

R7: The physical network variable is extended by adding information about the
age of the links (RP9). This also makes the variable that keeps the current age
of each link redundant (RP10).

7.2.1 Flash file system

Consider the Event-B model shown in Figure [7.5] This model is a fragment of a flash-

based file system developed in [39]] and refers to the fifth refinement mentioned above.

The fragment shown in Figure [7.5deals with the function of writing the content of a file.

In the abstract model, the event writefile is responsible for writing the content of file f; 1.e.

wbuffer(f), into a storage variable fcontent in an atomic step. In the concrete model the

content is written one page at a time into a temporary storage fcont_tmp (event w_step)

before being written to the actual storage fcontent (event w_end_ok). The new events

w_start and w_step are said to refine skip, while event w_end_ok refines the abstract
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event writefile. Three invariants are specified at the concrete model, the two first invari-
ants specify the type of the new variables fcont_tmp and writing, while the last invariant
specifies a property of the refinement step, that is, that when the writing process starts for

a given file, the content of fcont_tmp is a subset or is equal to the content of wbuffer.

Abstract Model:
Variables Event writefile =
fcontent, w_opened_files, wbuffer, file_size, any f
power_on, dateLastModified where
Invariants f € w_opened_files
w_opened_files C files power_on = TRUE
file_size € files > N then
power_on € BOOL fcontent(f) := wbuffer(f)
fcontent € files » CONTENT dateLastModified(f) := nowdate
dateLastModified € (files U directories) — DATE file_size(f) := card(wbuffer(f))
wbuffer € w_opened_files - CONTENT end
Concrete Model:
Variables
fcontent, w_opened_files, wbuffer, file_size, power_on, dateLastModified, writing, fcont_tmp
Invariants

writing € w_opened_files
fcont_tmp € writing - CONTENT
¥ f. fe writing = fcont_tmp(f) C wbuffer(f)

Event w_start = Event w_step = Event w_end_ok =
any f any f i data refines writefile
where where any f
f € w_opened_files power_on = TRUE where
f ¢ writing f € writing f € writing
power_on = TRUE ieN dom(fcont_tmp(f))=dom(wbuffer(f))
then data € DATA power_on = TRUE
writing := writingU{f} i data € wbuffer(f) then
fcont_tmp(f) := @ i ¢ dom(fcont_tmp(f)) fcontent(f) := fcont_tmp(f)
end then dateLastModified(f) := nowdate
fcont_tmp(f) := file_size(f) := card(fcont_tmp(f))
fcont_tmp(f)U{i—data} writing := writing \ {f}
end fcont_tmp := {f} <fcont_tmp
end

Figure 7.5: Fragment of the Event-B model of a flash file system developed in [39)].

In order to experiment with REMO, the third invariant was removed and the modified
model was input into the tool. Figure[7.6|sums up the steps carried out by REMO during
the classification of refinement patterns with respect to the flash file model. The branches
represent the patterns at each level of the hierarchy while each node represents the result
(or matches) of the analysis of the preconditions of each pattern with the model. Each
branch terminates either in failure when it is not possible to find a match with a pattern
precondition or in the generation of a leaf pattern instance(s) when a match is found

with all its preconditions. In the case of the flash file model an instance of the control
refinement pattern is found, that is:
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Refinement Patterns Classification
Flash file model

Control_Refinement({fcont_tmp, writing}) Data_Refinement
e TS e e e m oo FAILURE
Event_Ellaboration Event_Atomicity_Decomposition

FAILURE ({fcont_tmp, writing}, writeFile, w_end_ok,
{w_step, wstartg
Event_PreDecomposition Event_PostDecomposition
({fcont_tmp, writing}, writeFile, w_end_ok, FAILURE

{w_step, w_start})

1. Accumulator
({fcont_tmp, writing}, fcontent, fcont_tmp,
writeFile, w_end_ok, w_step)

2. Accumulator
({fcont_tmp, writing}, file_size, fcont_tmp,
writeFile, w_end_ok, w_step)

Figure 7.6: Refinement pattern classification in the flash file model.

Control _Refinement({fcont_tmp,writing}).

This is because a set of new variables is identified at the concrete level in the model; i.e.
({fcont _tmp,writing}); however, at the same level of the patterns hierarchy, the data refine-
ment pattern branch fails because all the variables from the abstract level are preserved
by the refinement (see Appendix[A.2]to refer to the preconditions of each refinement pat-
tern). As a result of the previous analysis, the pattern matching continues only for the
children patterns of the control refinement pattern. At the following level an instance of

the event atomicity decomposition pattern is found; i.e.:

Event_Atomicity_Decomposition({fcont _tmp,writing}, writeFile, w_end_ok, {w_step,w_start},

i,

where the arguments represent: the set of new variables identified by the parent instance,
an abstract event (writeFile) and the event that refines it (w_end_ok), a set of new events
that precedes the refined event ({w_step,w_start}), and a set of new events that succeeds
it (which is empty for this instance). The event elaboration branch fails since the are
not events whose refinement is independent of predecessors or successors (which is a
precondition of the pattern). The analysis continues only for the children patterns of the
event atomicity decomposition pattern, for which REMO finds an instance of the event
pre-decomposition pattern since there is a set of new events that precedes the refined

event. The instance is:

Event_PreDecomposition({fcont _tmp,writing}, writeFile, w_end_ok, {w_step,w_start}).
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At the same level in the hierarchy, the event post-decomposition pattern fails since the
refinement of event writeFile does not have any successors. The analysis follows with the
children of the event pre-decomposition pattern for which two instances of the accumula-

tor pattern are found; these are:

1. Accumulator({fcont_tmp,writing}, fcontent, fcont_tmp, writeFile, w_end_ok, w_step)

2. Accumulator({fcont_tmp,writing}, file_size, fcont_tmp, writeFile, w_end_ok, w_step)

each instance is related to the same accumulator variable and accumulator event; however,
they refer to different abstract assignments to variables fcontent and file _size.

As it stands, the flash file model generates two failed POs associated with the refined
event. The failures, shown in Figure (7.7, are produced because it is not possible to prove
that the content of the temporal storage variable fcont_tmp is equal to the content of the
abstract variable wbuffer when the refined event is enabled. The failures are identified
by REMO and consequently the critics analyser component is invoked. There are five
critics associated with the accumulator refinement plan as presented in Section[6.2.1] The
preconditions of these critics are analysed against the failed POs, the refinement step and

the pattern instances. Table summarises the result of this analysis.

f € writing

dom(fcont_tmp(f)) = dom(wbuffer(f))

'_

fcontent < {f — fcont_tmp(f)} = fcontent < {f — wbufter(f)}
(a) POL1.

f € writing

dom(fcont_tmp(f)) = dom(wbuffer(f))

'_

file_size < {f — card(fcont_tmp(f))} = file_size < {f — card(wbuffer(f))}
(b) PO2.

Figure 7.7: Flash file system fifth refinement: Set of failed POs.

Critic Preconditions result
initialisation_speculation | P1¢/, P2X
loopGuard_speculation | P1¢/, P2X
postGuard_speculation Plv, P2v/, P3X
invariant_speculation Plv, P2v/, P3v/, P4v
accumulator_speculation | P1X

Table 7.2: Accumulator critics analysis result.

As can be observed there is only one successful critic, the invariant_speculation critic,
the other critics fail as follows: the initialisation_speculation critic fails in precondition
2 because the accumulator event is enabled; the loopGuard_speculation critic fails in

precondition 2 because a guard with the required shape is identified in the accumulator
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event; the postGuard_speculation critic fails in precondition 3 because a guard with the
required shape is identified in the refined event; and the accumulator_speculation critic
fails in precondition 1 because the refinement step is not an instance of the control elabo-

ration pattern. On the other hand, the successful critic is instantiated as follows:
P1. Two instances of the accumulator pattern are identified in the refinement step.

P2. Two failed SIM POs associated with the refined event and which fit the SIM PO
pattern are identified (Figures[7.7(a)l and [7.7(b)).

P3. The post-accumulator guard is instantiated to dom(fcont_tmp(f)) = dom(wbuffer(f))
which is compatible with the guard pattern G_( W, V).

P4. The accumulator invariant is missing in the refinement step.

The guidance associated with the critic suggests that an invariant with shape H, =F.(W, V},)

must be added to the concrete model. Instantiating the invariant template yields:
f € writing = Fc(fcont_tmp, writing, wbuffer)

where the containment relationship < is instantiated to C since the variables in the invari-
ant represent sets (functions fcont_tmp and wbuffer are seen as sets of pairs).

At this point, the guidance is only partially instantiated; however, HREmo can be used
to attempt to complete the invariant instantiation. Thus, by using the partially instantiated
invariant provided by the invariant_speculation critic and the failed POs, HRemo is set to

only develop conjectures about the following concepts:

core concepts = {writing, fcont_tmp, wbuffer, fcontent, file_size}

{}

Note that no non-core concepts are identified. Furthermore, the partially instantiated in-

non-core concepts

variant suggests a relationship between sets; therefore, the selected PRs are:
production rules = {compose, disjunct, negate, exists}.

Finally, only implication conjectures are set to be formed.

After HR is run, two conjectures that match the invariant template are identified:

C1: VAB,C,D - writing(A,B) = wbuffer(A,B,C,D)
C2: VA,B,C,D - writing(A,B) = —fcont_tmp(A,B,C,D) v wbuffer(A,B,C,D)

where A denotes the state (or step within the simulation trace), B denotes an element of
the carrier set OBJECT, C denotes an integer and D denotes an element of the carrier set
DATA. The second conjecture discharges the failed POs; therefore, it is suggested as the
missing invariant to the user.

The guidance currently reported by REMO is in the form of the partially instantiated

invariant since HREmo and REMO are not integrated yet. The partial guidance associated
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Guidance:
Concrete model

Invariants
writing € w_opened_files
fcont_tmp € writing - CONTENT
f € writing = Fc(fcont_tmp, writing, wbuffer) ‘

(a) Guidance provided by REMO.

Guidance:
Concrete model

Invariants
writing € w_opened_files
fcont_tmp € writing - CONTENT
Va,b,c,d - writing(a,b) = —fcont_tmp(a,b,c,d) v wbuffer(a,b,c,d)‘

(b) Guidance that would be generated with HRemo integration.

Figure 7.8: Guidance associated with the flash file system development.

with the flash file system is shown in Figure On the other hand, the guidance that
would be provided via the integration with HReEmo is shown in Figure Note that the
invariant is given in the format generated by HRemo since a formal translation to Event-B
is yet to be implemented.

The explanation associated with the partial guidance is presented in Figure[7.9] Note

that the explanation includes a description of the partial fragment of the invariant.

Explanation:

1. The abstract atomic event writeFile is refined through iteration at
the concrete level by the sequence of concrete events w_start, w_step
and w_end_ok.

2. There exists an unproven simulation PO: w_end_ok/act1/SIM.

3. There are no other failures associated with event w_end_ok which
refines the abstract event writeFile.

4. The invariant that explains how the iteration at the concrete level is
performed is missing.

Therefore:
The failure can be overcome by adding an invariant with the shape
f € writing = F(fcont_tmp, writing, wbuffer) to the concrete level. Where the

variables fcont_tmp, writing and wbuffer are related via an order relation of type C.

Figure 7.9: Explanation provided by REMO for the flash file system.
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7.2.2 Mondex

The model shown in Figure corresponds to a fragment of refinement three of the
Mondex development mentioned above. The refinement step consists of the introduction
of dual states to a transaction, and in particular, the fragment shown in Figure [7.10]refers
to the refinement of the event that handles the failure of a transaction. At the abstract
model, the event TransferFail marks a transaction failed by changing it from the pending
state to the recover state. At the concrete level, the event is split into events Abortepvl
and Abortepal. The Abortepvl event handles failure at the target side of a transaction by
changing its state from epv (expecting value) to abortepv, while the Abortepal event han-
dles failure at the source side by changing the state of the transaction from epa (expecting

acknowledgement) to abortepa.

ABSTRACT MODEL:

Variables Event TransferFail =
bal purse trans from any t
to am idle pending where
recover ended t € pending

then

recover := recover U {t}

pending := pending \ {t}
end

CONCRETE MODEL:

Variables Event Abortepvl = Event Abortepal =
bal purse trans from to am refines TransferFail refines TransferFail
idleF epr epa abortepr abortepa any t any t
endF idleT epv abortepv endT ~ where where

Invariants teepv t € epa
epvN(epaUabortepa)Cpending  then then
epan(epvUabortepv)Cpending abortepv := abortepvU{t}  abortepa := abortepaU{t}

epv :=epv\{t} epa := epa\{t}
end end

Figure 7.10: Mondex development - Refinement of transfer failure.

As illustrated with the flash file model in the previous section, the classification of
refinement patterns is carried out by REMO for the third refinement of the Mondex
development—note that the analysis presented here will only refer to the fragment of the
model shown in Figure REMO identifies an instance of the case split refinement

pattern which is instantiated as follows:

Case_Split({idleF,epr,epa,abortepr,abortepa,endFidleT epv,abortepv,endT}, TransferFail,
{Abortepvl,Abortepal}).

where the first argument represents the set of new variables in the refinement step, the

second argument represents an abstract event and the set of evens that refine it are repre-
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sented by the third argument. As it stands, the model has two failed POs associated with
the split events. The failures are shown in Figure[7.T1]

t € epv t € epa

F F

t € pending t € pending
(a) POIL (b) PO2

Figure 7.11: Mondex development third refinement: Set of failed POs.

The critics analyser component is then invoked by REMO which identifies the guard

speculation critic as successful. The critic is instantiated as follows:

P1. A case split refinement pattern is identified.

P2. The guard strengthening PO pattern fails for the refined events in the case split (Fig-

ures[7.11(a) and [7.T1(D)).

P3. Event errors associated with the events in the case split are identified by the ProB

simulator. The errors are a result of the events Abortepvl and Abortepal being
enabled at the concrete level while event TransferFail is disabled in the abstraction.
This is because the guard 7 € pending cannot be satisfied in either case — regarding
the execution of event Abortepvl the transaction is in the idle state, while event
Abortepal the transaction is in the ended state. Instance traces of these errors are
presented below. The traces show the sequence of executed events at both levels
of the refinement with their respective parameters. Furthermore, the ‘-> symbol is
used in the abstract trace when an event in the concrete model refines skip, while

the ‘X’ symbol is placed when the error occurs:

e Error trace associated with event Abortepvl1:
Abstract: (start(5,p1,p2,tl), -, -, X)
Concrete: (start(5,pl,p2,t1), startFrom(p1,t1), startTo(p2,t1), abortepv1(tl))
e Error trace associated with event Abortepal:
Abstract: (start(5,p5,p1,t10), -, - , deduct(t10,p5,5), increase(5,p5,p1,t10), X)
Concrete: (start(5,p5,p1,t10), startFrom(p35,t10), startTo(p1,t10),
deduct(5,p5,t10), increase(5,pS,p1,t10), abortepal(t10))

The guidance associated with the critic suggests adding a guard to the refined events with
the shape Hi(W); 1e.:

H(idleF, epr, epa, abortepr, abortepa, endF, idleT, epv, abortepv, endT)

That is, the guard is a predicate associated with the set of new variables.
Again, at this point the guidance is only partially instantiated. HREmo is then invoked
in an attempt to find the complete instantiation of the missing guards. The selected core

and non-core concepts, based on the partially instantiated guard and the failed POs are:
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core concepts = {idleFepr,epa,abortepr,abortepa,endF,idleT, epv,
abortepv,endT,pending}

non-core concepts = {}

Furthermore, the variables associated with the partially instantiated guard represent sets;

therefore, the selected PRs are:

production rules = {compose, disjunct, negate, exists}.

Finally, as the search is for a guard, and there are failed GRD POs associated with the
events, both equivalence and implication conjectures are set to be formed and the selection
focuses on conjectures with the shapes ‘good & ¢’ and ‘¢ = pending’, where good refers
to the steps of the trace that do not have errors associated, ¢ is the potential missing guard,
and pending refers to the abstract guard—in HR the membership to a set; e.g. ‘t € pending’
can be represented by just naming the set, in this case pending).

Because the invariant is also missing from the model shown in Figure it is not
possible to ensure if the missing guard has been identified by inspecting the state of the
failed POs after the potential guard(s) has been added to the event. Therefore, all conjec-
tures that match the partially instantiated guard template are selected as candidate guards
and presented to the user who makes the final decision. This is an example of partial
guidance, as introduced in Section for which the solution is presented as a set of
possible options. No conjectures with the shape ‘good & ¢’ are generated; however, five

conjectures with the shape ‘¢ = pending’ are identified:

C1: VA,B - epv(A,B) A (epa(A,B) V abortepa(A,B)) = pending(A,B)
C2: VA,B - epv(A,B) A abortepa(A,B) = pending(A,B)

C3: YA,B - epa(A,B) A abortepv(A,B) A good(A) = pending(A,B)
C4: VA,B - epv(A,B) A good(A) = pending(A,B)

CS5: VA,B - epa(A,B) A epv(A,B) = pending(A,B)

where A refers to a state (or step in the simulation trace) and B refers to a transaction. Note
that conjectures C3 and C4 contain the concept good within the potential guards. This
show us that the guards hold when there are no error states; therefore, we also consider
them as potential guards.

The guidance currently provided by REMO in the case of the Mondex development
is shown in Figure This is in the form of an explanation about the cause of
the failure. This is because without the integration with HRemo there are no partially or
completed guard templates provided. The guidance that would be provided via HREmo
is shown in Figure — for simplicity the guards have been converted into Event-B
language; however, this translation is not currently automatic.

Note that the potential guards denote the left hand side of the selected conjectures and
that ‘¢* refers to the parametrised transaction in the concrete events (Figure[7.10). Through
manual inspection, the missing guards are identified to be G2 for event Abortepvl and G3

for event Abortepal. It is important to note that currently there is not support in Rodin for
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the formulation of guards; therefore, although not exact, the guidance identified through

HREemo focuses the user on a small set of possible solutions.

Explanation:

1. A case split has been detected between abstract event TransferFail
and concrete events Abortepvl and Abortepal .

2. There exists two unproven guard strengthening POs:
Abortepvl/grd1/GRD and Abortepal/grdl/GRD.

3. There are event errors associated with the guards of the split events:
events Abortepvl and Abortepal are enabled when the guard of
the abstract event TransferFail cannot be satisfied.

Therefore:
The failures can be overcome by modifying the guards of events
Abortepvl and Abortepal .

(a) Partially instantiated explanation provided by REMO.

A list of potential guards are:

G1: t € (epv N (epa U abortepa))
G2: t € (epv N abortepa)

G3: t € (epa N abortepv)

G4: teepv

G5: t e (epa N epv)

(b) Potential guards that would be generated
with HRemo integration.

Figure 7.12: Guidance and explanation associated with the Mondex development.

7.3 Summary

This chapter introduced REMO, a prototype tool that implements the refinement plans ap-
proach. REMO uses the refinement plans to classify the patterns of refinement used in a
development as well as it attempts to overcome failures associated with a pattern instance
through the critics mechanism. Currently, the tool partially implements the hierarchy of
patterns so that four of the leaf patterns can be identified; that is: case split, accumula-
tor, set to partition and partition to function patterns. Also, it implements some of the
critics associated with them. Although REMO is still at the prototype stage, we have
demonstrated through experimental results the general procedure and the current guid-
ance provided to the user. Moreover, we have also demonstrated how partial guidance
can be fully instantiated via the integration of REMO and HRemo.

142



Chapter

Conclusions and Future Work

8.1 Summary

Refinement is a powerful technique that addresses the complexity of the design process
through incremental steps. This thesis has developed tools and techniques to assist in
the development of refinement-based formal models, in particular, refinement of Event-B
models. Two complementary techniques have been developed with this goal in mind.
First, building upon HR, animation, and proof-failure analysis, this thesis presented
HREMo— an automatic approach to invariant discovery of formal models. HR is a sys-
tem that implements Automated Theory Formation (ATF), a machine learning technique
that builds theories about domains through the inspection of examples that describe the
domain, the creation of new concepts via the use of Productions Rules (PRs), and the
identification of conjectures that relate the new and old concepts. The approach to auto-
matic invariant discovery developed here uses HR to form theories about models that fail

to verify because of the absence of required invariants. This is achieved by:

e using simulation traces, generated by ProB in the case of Event-B, to obtain a set

of examples that describe the state of the system,

e syntactically analysing the failures associated with the model in order to assign a
higher priority to the development of conjectures of concepts appearing in them, as

well as to select relevant PRs to be used during the theory formation process, and

o guiding the selection of interesting conjectures by focusing on the prioritised con-
cepts and by applying a set of filters, such as selecting the most general conjectures

and conjectures that only discharge the failed POs.

The final outcome is a set of selected conjectures which represent candidate invariants for
the input model.
Second, building upon common patterns of refinement and common patterns of fail-

ure, this thesis presents REMO — a tool that automates refinement plans, a technique
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which provides automatic modelling guidance for users of posit-and-prove style of re-
finement when a model fails to verify but is close to a known pattern of refinement. Re-
finement plans use automated analysis of refinement failure at the level of refinements

and POs in order to focus the search for modelling guidance. This is achieved by:

¢ identifying the patterns of refinement that occur in a development,

e using a critics-style mechanism when a refinement step (partially) matches a pattern

of refinement but the step has some associated failures, and

e providing guidance as how to overcome the failure when it matches a common pat-
tern of failure associated with the refinement pattern; i.e. when all the preconditions

of an associated critic hold.

The guidance provided can be in the form of a complete solution or a partially instantiated
template. Experimental results have shown that the HRemo theory formation tool can be

used to attempt the fully instantiation of the otherwise partially instantiated guidance.

8.2 [Evaluation

8.2.1 Strengths
8.2.1.1 HREemo

As pointed out by the VSI manifesto [61], one of the key aspects for the adoption of
formal methods by industry is the ability to support formal verification via automated
tools. This thesis has shown the power of HREmo to automatically generate invariants of
Event-B models, a process that currently is performed manually. Evidence of this is that
HREewmo successfully automated the generation of invariants of a re-constructed version of
the Mondex development, which required various iterations of manual PO failure anal-
ysis in the original development by Butler and Yadav [22]. Although, the automatically
discovered invariants are not mathematically challenging, they are numerous and usually
represent an obstacle for the wide adoption of formal methodologies.

While HRemo has only been applied to the Event-B formalism, the approach is generic
and can be applied to other formalisms. This has been illustrated in this thesis by showing
how the technique would be applied to the Z specification of a vending machine system.
Furthermore, the generality of the approach also applies to the types of invariants that can
be generated. That is, thanks to the use of the general purpose PRs provided by HR, and
to their iterative application, HREmo provides flexibility in the type of invariants that can
be discovered; i.e. invariant discovery is not limited to pre-defined templates.

Contrary to existing approaches, e.g. [44], HREmo does not require the user to provide
any configuration details in order to focus invariant discovery on interesting properties.
This is done automatically by the tool which works in the background without user in-

put. Furthermore, as HREmo identifies the invariants by inspecting the simulation traces
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rather than by analysing the code, the discovered invariants will always depend entirely
on the behaviour of the system and never on the way the model is written or its particular

representation in different languages.

8.2.1.2 REMO

The refinement plans mechanism is a novel approach to the application of planning within
the context of refinement. Compared to other pattern-based approaches [66, 67, 6, |60],
refinement plans benefit from their capability of exploiting partial pattern matching. This
inherit flexibility of refinement plans means that REMO is capable of providing the user
with insights about their developments, and failures associated with them, without requir-
ing a complete match between an input development and a pattern.

Moreover, the refinement pattern classification identified in this thesis provides an ef-
fective mechanism for pattern matching. Since the classification is in the form of a tree
structure in which patterns at the bottom of the tree share the characteristics of all the
patterns above, it is possible to anticipate that certain patterns will not yield a match so
that the system does not spend time and resources exploring them. Furthermore, even if a
match with one of the more specialised patterns is not found, i.e. a pattern in the leaves of
the tree-structure, a better understanding of the intentions of the user can be obtained by
identifying the path within the classification that is followed in the development. Further

details about possible directions of work related to this are given in Section [8.3]

8.2.1.3 Integration of HREmo and REMO

The automation achieved by both approaches is largely a result of the productive use of
failure which exploits the natural interplay between modelling and reasoning in formal
specifications. More specifically, HREmo uses syntactic analysis of failed POs in order to
configure HR and to prune the wealth of conjectures it generates. REMO, on the other
hand, uses semantic analysis of partial matching and failed POs to guide the understand-
ing of a development and to lead the generation of guidance. This is a key principle of
reasoned modelling, which has proven effective as demonstrated through the experiments
carried out in this thesis.

Lastly, through the experimental results obtained in this thesis, it can be observed that
the integration of HREmo and REMO would provide a framework to support verification
of refinement-based formal methods. While HREmo gives flexibility to refinement plans
in terms of the guidance that can be generated, i.e. completing the otherwise partially in-
stantiated guidance, REMO can improve the search for invariants in HReEmo by providing
detailed information about the shape of expected invariants. The experiments have also
shown the potential of integrating the approaches in order to discover missing guards. We

believe this would provide a firm foundation upon which to further explore techniques that
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support formal refinement — techniques that suggest design alternatives, whilst removing

the burden of proof-failure analysis from the user.

8.2.2 Limitations

Some limitations associated with the work presented in this thesis are outlined below:

The simulation traces require more randomness. Animation is a key aspect of the invariant
discovery approach, where the quality of the invariants produced by HRemo strongly de-
pends on the quality of the animation traces. The ProB animator provided good animation
traces for most of the experiments; however, ProB is not a test case generator. As a result,
some experiments showed a lack of randomness in the generated traces. Specifically, this
limitation arose during the analysis of the Mondex and the flash file developments. An
alternative way to obtain the required examples is to use the model checker of ProB as
a source for the generation of traces instead of the simulator. This would provide more
diversity to the examples handed over to HREmo , increasing the chances of discovering

the missing invariants.

Current PRs are not tailored for the formal modelling context. As mentioned before and
demonstrated through the experimental results, HREmo has proven effective for the dis-
covery of invariants of Event-B models. However, HR was originally developed to form
theories about mathematical domains. In this thesis the core of HR was not modified;
therefore, only the original PRs were used in the experiments. 7 out of the 22 original
PRs were identified to have a correspondence with an Event-B operator. Moreover, the
application of some of the suitable PRs is restricted to specific cases. This limits the type
of invariants that can be generated by HREmo. We believe there is scope for new PRs that

address aspects of the formalism not currently covered; we return to this in Section[8.3]

No external source available to explore failures. The patterns of failures explored in the
refinement plans presented in this thesis are limited to those known from personal expe-
rience or from recurrent errors mentioned in the literature, such as missing invariants and
guards. However, complex failures are usually not documented or they are difficult to
come across. The reason for this is that most developments that are available in the public
domain only present the final design. Intermediate and failed attempts are usually not
published. In order to identify further failures, it is necessary to form a database of failed
and intermediate attempts. A possible way to do this is by incorporating a mechanism

into Rodin to store these attempts; however, this is out of the scope of this thesis.

Integration with other formal verification tools. Within Rodin it is not possible to identify
if a failure is produced due to errors in the model or because the provers could not handle

a proof. Refinement plans address this issue to some extent via the critics mechanism by
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evaluating characteristics of the model through the preconditions. However, as mentioned
before, the available critics are limited to our own experience, so not all cases related to
failures may be explored. The integration of HREmo and REMO with a disprover would

improve the analysis and effectiveness of both approaches.

8.3 Future work

Some directions for future work have been identified regarding both HREmo and REMO.
These are outlined briefly below.

As far as we are aware, ATF techniques had not been investigated within the con-
text of refinement style formal modelling before this thesis. However, we believe the
generation of invariants is not necessarily dependent on a specific ATF system. Within
ATF there are a number of alternative tools to HR that could be explored. For instance,
Montafio-Rivas carried out initial experiments to enable IsaScheme to automatically dis-
cover invariant (3.4) by handcrafting a schema to match the structure of the invariant.
The main advantage of using IsaScheme in this context would be that it will not gener-
ate “non-interesting” invariants, thus bypassing the need for selection heuristics required
when using the HR system. However, a disadvantage is that the schema needs to be fine-
tuned to match specific invariants; such fine-tuning is only justified if it can be used to
invent further invariants. Even with the addition of other schemas, the approach would
constrain the type of invariants it is possible to generate: it is not yet known how serious a
problem this would be. Additionally, the more schemas there are, the more time the sys-
tem takes to generate all invariants, so additional schemas may detract from the efficiency
of IsaScheme.

Other examples of ATF and MTE (mathematical theory exploration) systems which
might find application in this domain include IsaCoSy [7/4], the CORE system [90] and
MATHsAID [92]. In order to show that ATF techniques in general can be used for auto-
mated invariant discovery, the exploration of other ATF systems should be performed.

As mentioned in the previous section, HREmo can be further tailored to the formal

modelling context. Some areas in which this can be achieved have been identified:
1. reducing the number of conjectures generated by HR,
2. adding new PRs suitable within formal modelling, and
3. adding support for concepts with sets as parameters.

Initial experiments to address 1 have been carried out. A reduction in the number of gen-
erated conjectures can be achieved by constraining the concepts allowed within the theory
to only concepts whose set of variables are disjoint. In the first iteration of the Mondex
development presented in Section #.2.1] 7296 conjectures were generated; by applying

this constraint, 742 conjectures were created instead. Regarding 2, some examples of
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suitable new PRs have been highlighted in Section 4.2} for instance, a PR that allows the
permutation of columns within a data table. Also, limitations of the current PRs have
been identified; for instance, the numRelation PR is restricted to concepts of arity 2. Fi-
nally, 3 would involve revising each PR in order to handle parameters which represent
lists. Addressing these limitations and assessing the development of new PRs are part of
the future work agenda.

Currently most of the invariant discovery process within HREmo has been automated;
however, heuristics FH4 and FHS5 are yet to be implemented. In order to automate these
heuristics, tool capabilities that depend on each formalism are required, e.g. a proof
obligation generator. The implementation of the heuristics for Event-B would also involve
the formal translation of the selected conjectures from the format given by HR to the
Event-B language. This translation as well as the automation of heuristics FH4 and FHS5
are considered future work. Moreover, as identified through the experimental results, the
application of heuristic FH2 may reject interesting conjectures. Additional experiments
should be carried out, either to determine a measure to use heuristics selectively; i.e. add
the capability to HReEmo of disabling heuristics, or to add new heuristics to further optimise
the search. A possible new heuristic could be to remove conjectures that only express
properties of abstract variables since we are looking for invariants of the refinement step;
i.e. the invariants should always involve the state of the concrete level.

As mentioned above, animation is key to our approach, where the quality of the in-
variants produced by HRewmo strongly depends on the quality of the animation traces. A
different source for the generation of the animation traces must be explored; candidate
sources are the ProB model checker or the use of a test case generator.

Continuing the development of refinement plans and its evaluation using case studie{]
is also an ongoing process. Moreover, experiments with novice users should be carried
out in order to evaluate the usefulness of the explanations attached to the guidance, and
consequently improve these explanations based on the output from the experiments. Fur-
thermore, the link with HRemo will be automated as well as the communication of the
results from REMO back to the user. One possible route is via Lopatkin’s transformation
patterns plug—ilﬂ which allow the transformation of Event-B models via the use of scripts.
Furthermore, information about how the events relate to each other should naturally be
part of the preconditions of plans and critics. Bendisposto and Leuchel [15], have devel-
oped a tool which turns ProB traces into more abstract flow graphs, showing the order in
which the events may be executecﬂ Support for such “event flow” information should be
added in the preconditions of the plans, either as described in [[15], or ideally extended
with support for infinite systems (in [15] only finite models are supported), which will

require theorem proving support.

! Case studies would mainly be drawn from the DEPLOY project. See http: //www.deploy-project.
eu/.

“For details see http://wiki.event-b.org/index.php/Transformation_patterns,

SHallerstede [57] suggests an approach achieving a similar goal where the user has to add more structure
to the model.
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Refinement plans have been applied for the role of correcting refinements. However,
as noted in Section refinement plans are yet to be evaluated from the perspective
of 1) suggesting refinements as in [66, |67, 6, 60]; as well as guiding users in ii) their
initial choice of a refinement; and iii) the formulation of abstract models. Abstraction is
particularly challenging and we believe it will require interaction with the user. Regarding
global analysis, counter example checkers could be used in order to validate the invariants
as well as to check for deadlock freedom. Finally, in the longer term we plan to develop a
proof planning capability in order to exploit proof methods. This will probably be based

upon IsaPlanner [41].
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Appendix A

Refinement patterns declaration

A.1 Language

This appendix presents the meta-terms used for the declarative representation of refine-

ment patterns. The language is divided into meta-predicates and meta-functions.

A.1.1 Meta-predicates

e refinesEvent(CE, AE) : true if event CE refines event AE.

e partition(whole, part,, ..., party) : true if part,, ..., party partition the set whole,
ie.
whole = ( J(party, ..., party) A
Y pi,pj - pi € {party, ..., party} A p; € {party, ..., party} A p; # p; = disjointSets(p;,p;)

o disjointSets(s;, s;) : true if the intersection between sets s; and s, is empty, i.e.:

S1NSy =g

e extends(v;, v;) : true if v; is a relation whose domain is equals to v,, i.e.:

Vi EVy) & _
e isFunction(f,dom,ran) : true if f is a function with domain dom and range ran.
e provable(PO) : true if PO holds, false otherwise.
e provable(h,PO) : true if PO holds by adding & to the set of hypothesis.

e enables(e;,e) : true if event e, is enabled only after the execution of event e;.

A.1.2 Meta-functions

e variables(M) : returns the set of variables of model M.
e constants(M) : returns the set of constants of model M.
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events(M) : returns the set of events of model M.
actions(E) : returns the set of actions of event E.
guards(E) : returns the set of guards of event E.

new Variables(AM, CM) : returns the set of variables that are new in the concrete
model CM; i.e.:
new Variables(AM, CM) = {v | v € variables(CM) A v ¢ variables(AM)}

newConstants(AM, CM) : returns the set of constants that are new in the concrete
model CM; i.e.:
newConstants(AM, CM) = {c | ¢ € constants(CM) A c ¢ constants(AM)}

newEvents(M) : returns the set of events from model M that refine skip, i.e.:
newEvents(CM) = {e | e € events(M) A refinesEvent(e, skip)}

predecessor(M) : contains the pairs of events (e;, €;) such that e; immediately
precedes e, in model M; i.e. e, can be enabled only after the execution of e;. That
is:

predecessor = {(e,e;) | €; € events(M) A e, € events(M) A refinesEvent(e;,skip) A

enables(eq, €;)}
preTClosure(M) : is the transitive closure of predecessor(M).

predecessors(E, M) : contains all the new events of model M that precede event E;
i.e. the events that must be executed in order to enable event E, i.e.:
predecessors(E, M) = {e; | (e;, E) € preTClosure(M)}

successor(M) : contains the pairs of events (e, €;) such that e; immediately suc-
ceeds e, in model M; i.e. e; can be enabled only after the execution of e,. That is:
successor = {(e, €,) | e; € events(M) A e, € events(M) A refinesEvent(e;, skip) A

enables(e,, €;)}
sucTClosure(M) : is the transitive closure of successor(M).

successors(E, M) : contains all the new events of model M that succeed event E,
1.e. the events that are enabled after the execution of event E, i.e.:
successors(E, M) = {e; | (e;, E) € sucTClosure(M)}

updated Variables(E, M) : returns the set of variables that are modified by the event
E, ie.:
updatedVariables(E, M) = {v | v € variables(M) A (F(v):=_) € actions(E) }

guardedVariables(E, M) : returns the set of variables that are conditioned by the
event £, i.e.:
guardedVariables(E, M) = {v | v € variables(M) A P(v) € guards(E)}
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e refinedEvents(E, M) : returns the set of events from model M that refine event E,
ie.:

refinedEvents(E, M) = {e | e € events(M) A refinesEvent(e, E)}

A.2 Declarative representation

The declarative representation of the refinement patterns presented in the hierarchy in
Section [6.1.2] is provided next. Observe that no reference to PO patterns and critics is
provided. This is because so far we have analysed four refinement patterns, one of which
was presented in Chapter [6] while the other three are presented in Appendices [B] [C] and
D] The arguments marked with ‘?* are instantiated through the evaluation of the precon-
ditions, while other arguments are instantiated by the preconditions of the parent pattern.

Moreover, F(V) is used to denote that an expression over variable(s) 'V oceurs.

Control refinement

An instance of this pattern requires:

e the concrete model to have new variables (P1).

Control_Refinement(?new Vars)
INPUTS:
MODELS {AM, CM}
P_INSTANCE null
PRECONDITIONS:
P1. 7newVars=new Variables(AM, CM) A new Variables(AM, CM)+ @

Event atomicity decomposition

An instance of this pattern requires:
o the refinement step to be an instance of the control refinement pattern,
e the concrete model to contain new events (P1),
e the concrete model to contain refined events (P2), and

o the refinement of an event to depend on a sequence of events (P3).

Event_Atomicity_Decomposition(new Vars, ?absEvt, 7refEvt, ?pred, ?suc)
INPUTS:

MODELS: {AM, CM}

INSTANCE: Control_Refinement(newVars)
PRECONDITIONS:

P1. newEvents(AM, CM) # @

P2. refines(?absEvt, ?refEvt, AM, CM)

P3. ?pred=predecessors(refEvt, CM) A ?suc=successors(refEvt, CM) A

predecessors(refEvt, CM) U successors(refEvt, CM) # @
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Event pre-decomposition

An instance of this pattern needs:
¢ the model to be an instance of the event atomicity decomposition pattern,

e a sequence of new events to precede the refined event (P1).

Event_PreDecomposition(new Vars, absEvt, refEvt, predecessors)
INPUTS:

MODELS: {AM, CM}

INSTANCE:

Event_Atomicity_Decomposition(newVars, absEvt, refEvt, predecessors, successors)
PRECONDITIONS:

P1. predecessors # @

Accumulator decomposition

An instance of this pattern requires:
e the refinement step to be an instance of the event pre-decomposition pattern,
e the sequence of predecessors to contain an accumulator event (P1), and

o the refinement of the abstract event to depend on the accumulator variable (P2).

Accumulator(new Vars, ?absVar, ?accVar, absEvt, refEvt, 2accEvt)
INPUTS:
MODELS: {AM, CM}
INSTANCE: Event_PreDecomposition(new Vars, absEvt, refEvt, predecessors)
PRECONDITIONS:
P1. ?accEvtepredecessors A ?accVarenewVars A
action(?accVar := ?accVar@ a, accEvt)
P2. ?7absVareV(AM) A
action(?absVar := E, absEvt) A action(?absVar := F(?accVar), refEvt)

Event post-decomposition

An instance of this pattern requires:
e the refinement step to be an instance of the event atomicity decomposition pattern,

e a sequence of new events to succeed the refined event (P1).

Event_PostDecomposition(new Vars, absEvt, refEvt, successors)
INPUTS:
MODELS: {AM, CM}
INSTANCE:
Event_Atomicity_Decomposition(newVars, absEvt, refEvt, predecessors, successors)
PRECONDITIONS:

P1. successors # @
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Event elaboration

An instance of this pattern requires:
o the refinement step to be an instance of the control refinement pattern,
e existing events to be refined (P1), and

o the refined events to remain atomic in the refinement (P2).

Event_Elaboration(new Vars, ?absEvt, 7refEvts)
INPUTS:
MODELS {AM, CM}
INSTANCE: Control_Refinement(newVars)
PRECONDITIONS:
P1. ?absEvt € E(AM) A refEvts=refinedEvents(absEvt, AM, CM)
A refinedEvents(absEvt, AM, CM)# @
P2. V ee?refEvts . predecessors(e, CM) U successors(e, CM) = @

Case split

An instance of this pattern requires:
e the refinement step to be an instance of the event elaboration pattern,

e the concrete model to refine an event with two or more events (P1).

Case_Split(new Vars, absEvt, refEvts)
INPUTS:
MODELS {AM, CM}
INSTANCE Event_Elaboration(newVars, absEvt, refEvts)
PRECONDITIONS:
P1. |refEvts| > 2

Control elaboration

An instance of this pattern requires:
o the refinement step to be an instance of the event elaboration pattern,

e the refined events to be refined by only one event (P1).

Control_Elaboration(new Vars, absEvt, refEvt)
INPUTS:
MODELS {AM, CM}
INSTANCE Event_Elaboration(newVars, absEvt, refEvts)
PRECONDITIONS:
P1. refEvts = {refEvt}
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Data refinement

An instance of this pattern requires:

e variables from the abstract model to be removed in the concrete model (P1).

Data_Refinement(?removedVars)
INPUTS:
MODELS {AM, CM}
INSTANCE: null
PRECONDITIONS:
P1. ?7removedVars=variables(AM)\variables(CM) A variables(AM)\variables(CM)# @

Set to partition

An instance of this pattern requires:

e the refinement step to be an instance of the data refinement pattern,
e the concrete model to contain a set of new variables (P1), and

o the concrete model to refine an abstract variable into a partition (P2).

SetToPartition(?absVar, ?partitionVars)
INPUTS:
MODELS: {AM, CM}
INSTANCE: Data_Refinement(removedVars)
PRECONDITIONS:
P1. newVariables(AM, CM)+# @
P2. ?absVareremovedVars A ?partVarsCnew Variables(AM, CM) A partition(?abs Var, ?partVars)

Partition to function

An instance of this pattern requires:

¢ the refinement step to be an instance of the data refinement pattern,

o the abstract model to contain a partition (P1),

e the concrete model to contain new variables (P2),

e the concrete model to contain a partition (P3), and

o the concrete model to refine the abstract partition via a function whose domain is

the abstract partition and codomain is the concrete partition (P4).
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PartitionToFunction(?absVars, ?function, ?concreteValues)

INPUTS:
MODELS: {AM, CM}
INSTANCE: Data_Refinement(removedVars)

PRECONDITIONS:
P1. 7absVars C removedVars A partition(_, ?absVars)
P2. newVariables(AM, CM)# @
P3. (?concreteValuesCnewConstants(AM, CM) V ?concrete ValuesCnew Variables(AM, CM))

A partition(_, concreteValues)

P4. ?functionenew Variables(AM, CM) A isFunction(?function, | J?absVars, | J?concreteValues)

Data extension

An instance of this pattern requires:
o the refinement step to be an instance of the data refinement pattern,
e the concrete model to contain new variables (P1), and

e anew variable to extend an abstract variable (P2).

DataExtension(?absVar, ?new Var)
INPUTS:
MODELS {AM, CM}
INSTANCE: Data_Refinement(removedVars)
PRECONDITIONS:
P1. newVariables(AM, CM)# @
P2. ?absVareremovedVars A ?new Varenew Variables(AM, CM) A extends(?new Var, ?absVar)

Data removal

An instance of this pattern requires:
o the refinement step to be an instance of the data refinement pattern,
e abstract variables to be removed in the concrete model (P1),

e without being replaced by new variables (P2).

Data_Removal(?absVar)
INPUTS:
MODELS {AM, CM}
INSTANCE: Data_Refinement(removedVars)
PRECONDITIONS:
P1. ?absVareremovedVars
P2. newVariables(AM, CM)=2
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Appendix
Case split refinement plan

The modelling and PO patterns of the case split plan are shown in Figures and
respectively. The key elements in the refinement are:

The abstract model has an event that is refined in the concrete model.

A set of new variables W are introduced in the concrete model.

A set of concrete events case; to casey that refine the abstract event.

An invariant, F(W)=G(V), that explains how the guard of the abstract event is
implied by the new guard in the concrete model.
Each case event must preserve the invariant, i.e. Figure

Each case event must imply the guards of the abstract event, i.e. Figure |B.2(b)

ABSTRACT MODEL:
Variables: V  Eventevt=
where
G(V)
then
end
CONCRETE MODEL:
Variables: V, W Event case; = Event casey =
Invariants: F(W) = G(V)  refines evt refines evt
where where Side conditions:
H{(W) Hy (W) .HI(I@:> _‘HN(E)
then then o HN(W) = —|H1(W)
end end

Figure B.1: Case Split plan — Modelling pattern.

We use a fragment of Abrial’s cars on a bridge model [3] to illustrate the case split
refinement pattern. The example, shown in Figure consists of an island connected
to a mainland by a bridge. The bridge has one lane, and the direction of the traffic is

controlled by traffic lights on each side. A maximum number of cars are allowed on the
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F(W)= G(V)
Hy(W)
'_

[.IE(W) = G(V)

(a) Case i (Invariant preservation)

F(W)= G(V)
Hy(W)

l_

[.]1G(V)

(b) Case i (Guard strengthening)

Figure B.2: Case Split plan — PO patterns.

ABSTRACT MODEL:

Variables Event ML_out =
a,b,c refines ML _out

Invariants when
aeN a+b< d
beN c=0
ceN then
n=a+b+c a:=a+l1
a=0Vvc=0 end

CONCRETE MODEL:

Variables Event ML_outl = Event ML_out2 =
a, b, ¢, ml_tl, ml_pass refines ML _out refines ML _out

Invariants when when
ml_tl € Color ml_tl=green ml_tl=green
ml_pass €0.. 1 a+b+1 <d a+b+1=d
ml_tl=green = c=0 then then
ml_tl=green = a+b+c<d ar=a+l ar=a+l

ml_pass:= 1 ml_tl:= red
end ml_pass:= 1
end

Figure B.3: Instance of the case split refinement pattern — Cars on a bridge model.

bridge/island, and is denoted by d. Variables a and ¢ denote the numbers of cars travelling
towards the island and towards the mainland respectively, while b denotes the number of
cars on the island. Variables m/_tl and il_t/ represent the traffic lights on the mainland
and island, respectively. Event ML_out models cars leaving the mainland. Instantiating

the key elements listed above from the example instance yields the following:

e Abstract event: ML_out.

e Set of new variables W = {ml_tl, ml_pass}.

e Set of case events: ML_outl and ML_out2.

e Invariants that explain the refinement and fit the template F( W):G(V):

ml_tl = green = ¢ =0

mi_tl = green =>a+b+c<d
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Critics
We have identified the following critics associated with the case split refinement pattern:

case_speculation critic: manages the instances of the pattern when a case has not been

handled. This critic is applicable iff:

P1. A case split refinement pattern is identified.
P2. The model is not deadlock free.
P3. The case under which the deadlock occurs suggest a set of complementary

conditions {f;, ..., [} to the current cases within the case split.

Guidance:
Propose new events with complementary guards {H;, ..., H;}. In other words, add

events:
Event case;, = refines evt where H,, then ... end

where £ > 7 and k < 7.

guard_speculation critic: handles the case when a guard of an event in the case split is

missing or incorrect. This critic is applicable iff:

P1. A case split refinement pattern is identified.

P2. The guard strengthening PO pattern fails for one or more events in the case
split.

P3. There are event errors associated with the guards of the split event(s) that pro-
duces the failure — these errors refer to inconsistencies when the abstract and

refined events are enabled.

Guidance:
Add guard(s) Hi(W) to the event(s) associated with the failure.

invariant_speculation critic: manages the instances of the pattern for which the case

split invariant is incorrect or missing. This critic is applicable iff:

P1. A case split refinement pattern is identified.

P2. The guard strengthening PO pattern fails for one or more events in the case
split.

P3. There are no event errors associated with the split event that produces the fail-
ure.

P4. The case split invariant is missing or it is not compatible with the invariant
pattern, i.e. F(W):G(V).

Guidance:
An invariant with the shape F (W):G(V) is suggested be added to the concrete

model.
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Appendix

Set to partition plan

The modelling and PO patterns of the set to partition plan are shown in Figures [C.1] and
[C.2] respectively.

ABSTRACT MODEL:
Variables: V. Event A, = Event A, =
where where
Go(V) G1(V)
then then
Vi=Vaéa V:i=Voa
end end
CONCRETE MODEL:
Variables: EventC, = EventC,, = EventC, =
Wi, ..., Wy refines A , where refines A,
Invariants: where Hi(W;, W;) where
partition(V, Wy, ..., Wy) Ho(W;) then H,(W;)
then W, =W, 0a then
W, =W;da Wj IZW]'EB(Y Wj ::Wjea
end end end

Figure C.1: Schematic representation of the set to partition refinement plan.

The key elements in the refinement are:

e A set variable V in the abstract level, which is removed at the concrete level.

e Abstract events that add (A,) and remove (A,) elements from the set variable.

e A set of new variables W = {W1, ..., Wy} in the concrete model.

e Refined events that add (C,) and remove (C,) elements from one of the new vari-
ables.

e Optionally, new or refined events (C,,) that move elements between pairs of new
variables.

e Aninvariant partition(V, Wy, ..., Wy ) (or a set of equivalent invariants) that specifies

that the new variables partition the abstract variable.
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partition( V, Wl’ oy WN) partition( V, W], cees WN)

Ho(W5) Ho(W5y)
L F
[W; .= W; ® alpartition(V © a, Wi, ..., Wy) [Wi:= Wi®a] Go(V)

(a) Add event (Invariant Preservation) (b) Add event (Guard strengthening)
partition( V, Wl’ .y WN) partition( V, Wl, vy WN)
Hy(W;) H(W;)

L F
[W; == Wj e alpartition(V © a, Wi, ..., Wy) [Wj := WjealGi(V)
(c) Remove event (Invariant Preservation) (d) Remove event (Guard strengthening)

partition(V, Wy, ..., Wx)
H(W;, W))
'_

[W; .= W, ea; W; = W; @ alpartition(V, Wi, ..., Wy)
(e) Move event (Invariant Preservation)

Figure C.2: Set to partition — PO patterns.

e The concrete events must preserve the invariant, i.e. Figures and
C.2(e)
e The refined events must imply the guards of the respective abstract event, i.e. Figure

[C.2(b)| and [C.2(d)}

A fragment of a flash-based file system developed in [39] is used to illustrate an in-

stance of the set to partition refinement pattern. The fragment of the refinement step,
shown in Figure [C.3] handles the representation of files and directories within the system.
In the abstract model, the variable objects represents all objects of the system and the
event newobj adds a new object to the set. In the concrete model the objects set is par-
titioned into the sets files and dirs, while the abstract event is split into the events mkdir
and crt_file, which create directories and files accordingly — parent is a variable used to
represent the tree-like structure of objects while root is a constant representing the top
of the files and directories structure. Instantiating the key elements listed above from the

example instance yields the following:

Abstract variable V = objects.

Abstract event A, = newob;.
Set of new variables W = {files, dirs}.

Refined events C,, = mkdir and C,, = crt_file.

Invariant specifying the partition: partition(objects, files, dirs).

Events mkdir and crt_file refine the abstract event newobj by modifying one of the

partitioned variables.
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ABSTRACT MODEL:

Variables Event newobj =
objects parent any

Invariants obj indr
objects € P(OBJECT) where

parent € objects\{root}—objects obj € OBJECT\objects
indr € objects
then
objects := objectsU{obj}
parent(obj) := indr

end
CONCRETE MODEL:
Variables Event mkdir = Event crt_file =
files dirs parent refines newobj refines newobj
Invariants any any
partition(objects,files,dirs) obj indr obj indr
where where
obj € OBJECT\(filesUdirs) obj € OBJECT\(filesUdirs)
indr € dirs indr € dirs
then then
dirs := dirsU{obj} files := filesU{obj}
parent(obj) := indr parent(obj) := indr
end end

Figure C.3: Fragment instance of the set to partition pattern — Flash file system [39)].

Critics

The following critics for the set to partition refinement pattern have been identified:

Merge_partition_events critic: triggers when an event involved in a set to partition pat-

tern is wrongly split, through the partition sets, at the concrete level. This critic is

applicable iff:

P1. A set to partition refinement pattern is identified.

P2. An event involved in the pattern is split at the concrete level.

P3. Proof of the guard strengthening PO pattern associated with the split events

fails.

P4. The failures can be addressed by merging the cases handled by each event.

Guidance:

Merge the split events into one single event — this involves merging guards and

actions, and referring to the union of the partition sets when needed.

Guard _speculation critic: triggers when a guard in the set to partition refinement pat-

tern is missing or incorrect. This critic is applicable iff:

P1. A set to partition refinement pattern is identified.
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P2. Proof of the invariant preservation PO pattern associated with an event in the
set to partition pattern fails.
P3. The failure can be addressed through the introduction of a guard(s) involving

the partition sets being modified in the event.

Guidance:
The correspondent guard(s) H'W;) or H(W;,W;) is suggested to be added to the

event.

Event_speculation critic: triggers when a set to partition event requires the introduction
of new events to handle the movement of objects through the partition sets. This

critic is applicable iff:

P1. A set to partition refinement pattern is identified.
P2. A deadlock occurs at the concrete level.
P3. There are some transitions between partitions sets that do not occur within the

model.

Guidance:
A new event is created for each missing transition. Note that the user must identify

which transitions are relevant to the model.

Invariant_violation critic: triggers when partitions are not disjoint, i.e. when the same

elements are added to different partition sets. This critic is applicable iff:

P1. A set to partition refinement pattern is identified.
P2. The invariant preservation PO pattern fails when the addition of an element(s)

« 1s performed to the partition sets.

Guidance:
The disjointness between the partitions W must be ensured. A set of possible solu-
tions should be explored — if more than one solution is applicable, the decision of

which option to choose is left to the user:

1. Add a guard @ ¢ W, if provable(event_guards + a ¢ W;) fails.
2. Add action W; := W, © « if provable(event_guards + a € W;) holds.
3. If more than one assignment of the form W, := W, @ a occur, then:
(a) Remove one (or more) of such assignments.
(b) Modify the assignments such that all the elements « being added to the

partition sets are disjoint with each other.

Example application of the set to partition plan

Consider the abstract and concrete versions of event copy shown in Figure [C.4] This

refinement is associated with the set to partition pattern instance of the flash file system
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presented in Figure [C.3] The purpose of the event is to make a copy of a set of objects
(files and/or directories) in a different location within the tree file structure. The root
of the objects to be copied is denoted by obj while its descendants are represented by
des. The corresponding new root object is denoted by nobj. The union of all objects is
represented by objs while the corresponding new objects are stored in nobjs. The function
corres expresses the bijection between the two sets. The directory where the objects will
be copied is denoted by to, and subparent and replica are the original tree structure and a
copy of it, respectively. The event adds the new objects to the set of files and directories,
accordingly, and updates the parent function, which maps all objects to their respective

parent directory.

Event copy = Event copy =
any refines copy
obj,des,to,objs,corres,nobjs,nobj, any
subparent,replica obj,des,to,objs,corres,nobjs,nobj,

where subparent,replica

obj € objects\{root} where

des C objects obj € (filesUdirectories)\{root}

des = (tcl(parent))~'[{obj}] des C (filesUdirectories)

to € objects des = (tcl(parent))‘l[{obj}]

to ¢ des U{obj} to € directories

objs = desU{obj} to ¢ desU{obj}

nobjs € OBJECT\objects objs = desU{obj}

corres € objs>»»nobjs nobjs € OBJECT\(filesUdirectories)
nobj = corres(obj) corres € objs»»nobjs

subparent = des<iparent nobj = corres(obj)

replica = corres™!;subparent;corres subparent = des<iparent

then replica = corres™!;subparent;corres
parent := parentUreplicaU{nobj—to}  then

objects := objectsUnobjs parent := parentUreplicaU{nobj—to}

end files := filesUcorres[objs]
directories := directoriesUcorres[objsNdirectories]
end
(a) Abstract event. (b) Concrete event.

Figure C.4: Event associated with the set to partition instance of the flash file system.

As it stands, the event has a failed invariant PO shown in Figure The invariant
violation critic is triggered and is instantiated as follows:

P1. The set to partition refinement pattern is identified.
P2. The failed invariant PO associated with the partition invariant is identified as shown
in Figure

Guidance:

The disjointness between the partitions files and directories must be ensured by:

e Removing action files := filesUcorres[objs], or
e Removing action directories := directoriesUcorres[objsNdirectories], or

e Replacing assignment files := filesUcorres[objs] for

164



partition(objects,files,directories)
obj € (filesUdirectories)\{root}

des C (filesUdirectories)

des = (tcl(parent))~'[{obj} ]

to € directories

to ¢ desU{obj}

objs = desU{obj}

nobjs € OBJECT\(filesUdirectories)
corres € objs »» nobjs

nobj = corres(obj)

subparent = des < parent

replica = corres™! ;subparent;corres

'_

partition(objectsUnobjs, filesUcorres[objs], directories Ucorres[objsNdirectories])

Figure C.5: Failed invariant PO associated with the copy event.

files := filesU(corres[objs] \ corres[objsNdirectories])

Note that corres[objsNdirectories] is a subset of corres[objs] — the elements added
to the directories and files sets, respectively. Here is where the disjointness of the

invariant is violated. Therefore, the assignment to set files should be modified.
Observe that options two and three of the critic are not applicable because:

e Adding a guard @ ¢ W; does not work since:

provable(event_guards + corres[objs]¢partition(objects.files,directories)), and

provable(event_guards - corres[objsNdirectories]¢partition(objects,files,directories))
are both provable since the guards:

nobjs € OBJECT\(filesUdirectories)

corres € objs »» nobjs

ensure the freshness of the elements being added to the partition sets.
e Adding an action of the form W; := W; © a does not work since it has been stated

that all the objects being added are fresh.
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Appendix

Partition to function plan

The modelling and PO patterns of the partition to function plan are shown in Figures
and respectively.

ABSTRACT MODEL:

Sets: S;  Variables: Vy, ..., Vy
Invariants: V; C S, ..., Vny C S
disjoint(Vy, ..., V)

EventevtAdd= EventevtMove = Event evtRemove =

refines evtAdd where refines evtRemove
where Gi1(V;, V) where
Go(V,) then Ga(V;)
then V, =V;\a then
Viszan VjZ:VjU(l’ V‘j:sz\a
end end end
CONCRETE MODEL:

Sets: S, Variables: W
Invariants: W € J_, (S, Sy)
partition(S,, oy, ..., ON)
Vi=WI[{o1}], ... Vv = W [{on}

Event evtAdd = Event evtMove =  Event evtRemove =
refines evtAdd refines evtMove refines evtRemove
where where where
Ho(W) H{(W, oy, o) Ho(W, o))
then then then
W= WUla - o} W(a) =0y W:=W\{a - o}

end end end

Figure D.1: Fartition to function — Schematic representation.

The key elements in the refinement are:

e A set of abstract variables, Vi, ..., Vy, that are not preserved in the concrete model.
e A new variable, W, which is a function.

e A set of new values, o, ..., oy, which form a partition.
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V= W '[{o)]
partition(Sy, o1, ..., ON)
Hy(W)

|_
[W:=WUler o}1Vi= W' [lo:}]

(a) Add event (Invariant preservation)

Vi= W 'l{o:})]
Vi = W '{o;)]
partition(S,, o1, ...
Hl( W, gy, 0’])

,ON)

|_
[W() :=0;]1V; = W [{o; 1]

(c) Move event (Invariant preservation)

Vi = W '{oj)]
partition(S,, o1, ...
H(W,o;)

,ON)

'_
[W = W \{a o o 1V; = W' o))

Vi = W' {o4)]
partition(Sy, oy, ...
Hy(W)

,ON)

l_
[W:=WUlaw- og}1Go(V;)
(b) Add event (Guard strengthening)

Vi= W 'l{o:}]
Vi = W{o;)]
partition(S,, oy, ...
0(W,o4,04)

,ON)

'_
[W(a) :=0;1Gi1(V;, V)
(d) Move event (Guard strengthening)

V; = W l{oy )]
partition(S,, o1, ...
HZ( W, 0-])

,ON)

'_
[W = W \{a - o}1G(V))

(e) Remove event (Invariant preservation) (f) Remove event (Guard strengthening)

Figure D.2: Partition to function — PO patterns.

e An invariant, Vy=F(W,0;), that explains the refinement; i.e. that each abstract vari-

able can be obtained through the function and one of the new values.
e Each refined event must preserve the invariant, i.e. Figures and
D.2()

e Each refined event must imply the guards of the respective abstract event, i.e. Figure

D.2(6)} [D.2(d)] and [D.2(F)}

An instance of the partition to function refinement pattern was introduced in Chapter
2.2l Remember that in this model, the abstract level handles the stock availability of
products through the disjoint sets available and soldout, whereas at the concrete level the
representation is changed to a function (status) that maps products to their availability
status; i.e. AVAILABLE and SOLDOUT. Instantiating the key elements of the pattern to

the example instance yields:

e Set of abstract variables: {available, soldout}.
e New function variable W = status.
e Set of new values: {AVAILABLE, SOLDOUT}.
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e An invariant with the shape V,=F(W,0;) is defined for each abstract set; i.e.:

available = status ' [{AVAILABLE}]
soldout = status ' [{SOLDOUT}]

e The respective abstract events are modified at the concrete level by replacing the

reference of an abstract set to the concrete function.

Critics
The following critics for the partition to function pattern have been identified:

invariant_speculation critic: handles the case when the invariant is missing or incor-

rect. This critic is applicable ift:

P1. A partition to function refinement pattern is identified.

P2. The guard strengthening PO associated with an event within the pattern fails.
The associated abstract guard involves abstract variable V.

P3. The invariant V; = W_l[{o-j}] is missing, is incorrect or it is not compatible

with the invariant pattern.

Guidance:

An invariant with the shape V; = W_l[{O'j}] must be added to the concrete model.

invariant_violation critic: handles the case when the relation imposed by an invariant

is violated. This critic is applicable ift:

P1. A partition to function refinement pattern is identified.
P2. The invariant preservation PO associated with an event within the pattern fails.
P3. The goal of the failed PO has the shape:
V. <op> a = (W<op> {a = o))" [{o}], or
V. <op> a = W [{o}]
That is, an assignment takes place at the abstract level, but at the concrete level

the assignment is not consistent or is missing.

P4. The failure can be addressed by adding the assignment:

W :=W <op>{a o}

Guidance:

The event is modified with the assignment that addresses the failure.
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Appendix

HRemo data output examples

ABSTRACT MODEL:

Variables
red_light, green_light
Invariants
red_light e BOOL
green_light e BOOL
green_light=TRUE & red_light=FALSE

Events

Initialisation
then
red_light := FALSE
green_light := TRUE

end
Event green_to_red =
when
green_light = TRUE
then

red_light := TRUE
green_light := FALSE

end
Event red_to_green =
when
red_light = TRUE
then

green_light := TRUE
red_light := FALSE
end

CONCRETE MODEL:

Variables

r_light, g_light, amber_light

Invariants
amber_light e BOOL
r_light e BOOL
g_light e BOOL

g_light=TRUE & green_light=TRUE
r_light=TRUE Vv amber_light=TRUE & red_light=TRUE

Events
Initialisation
then
r_light := FALSE
amber_light := FALSE
g_light := TRUE
end
Event amber_to_red =
when
amber_light = TRUE
r_light = FALSE
g_light = FALSE
then
r_light := TRUE
amber_light := FALSE
end
Event green_to_amber =
refines green_to_red
when
g_light = TRUE
then
amber_light := TRUE
g_light := FALSE
end

Event red_to_redAmber =
when
r_light = TRUE
amber_light = FALSE
then
amber_light := TRUE
end
Event red Amber_to_green =
refines red_to_green
when
r_light = TRUE
amber_light = TRUE
then
g_light := TRUE
r_light := FALSE
amber_light := FALSE
end

Figure E.1: Event-B model of a traffic light system.

The example shown in Figure [E.T] is used to show the output files associated with

HRemo. The model consists of a simple traffic light controller. At the abstract level there

169



are only two possible lights, green and red. At the concrete level a third light is introduced,
1.e. amber. This light changes the cycle to: red, red-amber, red-amber-green, green-

amber; red.

E.1 DTD schema

The DTD schema imposes the format that the simulation trace given as input to HREmo

must follow. The DTD schema is shown next.

<!ELEMENT domain (domainName, stateConcept,setConcept®,
constantConcept®,concept+,po*)>
domainName (#PCDATA)>

stateConcept (example+)>

<!ELEMENT
<!ELEMENT
<!ELEMENT
<!ELEMENT
<!ELEMENT
<!ATTLIST

setConcept (name,example+)>

constantConcept (name,parameter+,function?,example+)>
concept (name,parameter+,function?,example®)>

concept

abstract (TRUE|FALSE) "TRUE"

concrete (TRUE|FALSE) "TRUE">

<!ELEMENT
<!ELEMENT
<!ELEMENT
<!ELEMENT
<!ELEMENT
<!ELEMENT
<!ELEMENT
<!ELEMENT
<!ELEMENT
<!ELEMENT

name (#PCDATA)>

parameter (#PCDATA)>

function (dom+,ran+)>

dom (#PCDATA)>

ran (#PCDATA)>

example (#PCDATA)>

po (hypothesis*,goal)>

hypothesis (formula)>

goal (formula)>

formula ((formula,bioperator, formula)

| (bounds?,unioperator, (formula|formulalList)) |literal)>
formula type (NOTYPE|BINARY|UNARY|LITERAL) "NOTYPE">
<!ELEMENT bioperator EMPTY>

<!ATTLIST bioperator bop (NOBOP|AND|OR|EQV|IMP|EQUAL|NOTEQUAL

| LESSTHAN | LESSTHANEQ | GREATERTHAN | GREATERTHANEQ | IN | NOTIN | SUBSET

| NOTSUBSET | SUBSETEQ | NOTSUBSETEQ|UNION | INTER | BCOMP | FCOMP | OVR

| PLUS |MUL | MAPSTO | RELATION | TOTALREL | SURJECTIVEREL | SURTOTALREL

| PARTIALFUN | TOTALFUN | PARTIALINJ | TOTALINJ |PARTIALSUR|TOTALSUR

| TOTALBIJ | SETMINUS | CARTESIANPRODUCT | DIRECTPRODUCT | PARALLELPRODUCT
| DOMAINRES | DOMAINSUBS | RANGERES | RANGESUBS | UPTO | MINUS | DIVISION|
MODULO | POWEROF | FUNIMAGE | RELIMAGE) "NOBOP'">

<!ELEMENT bounds (#PCDATA)>

<!ATTLIST

170



<!ELEMENT unioperator EMPTY>

<!ATTLIST unioperator uop (NOUOP|EXISTS|FORALL|FINITE|NOT

| PARTITION|QUNION|QINTER|CSET|SETEXT | CARD|POW|POW1 | GENUNION

| GENINTER | DOMAIN | RANGE | FIRSTPROJ | SECONDPROJ | IDENTITY |MIN | MAX|
CONVERSE |UNMINUS) "NOUOP">

<!ELEMENT formulalist (formula+)>

<!ELEMENT literal (#PCDATA)>

E.2 Example simulation trace

The simulation trace contains the values of the carrier sets, constants and variables at each
step of the simulation. Furthermore, it includes the information of the failed POs, i.e. for

each PO it shows the hypotheses and goal.

<?xml version="1.0" encoding="IS0-8859-1"7>
<!DOCTYPE domain SYSTEM "hr.dtd">
<domain>
<domainName>TrafficLight</domainName>
<stateConcept>
<example>S0</example>
<example>Sl</example>
<example>S2</example>
<example>S3</example>
<example>S4</example>
<example>S5</example>
</stateConcept>
<setConcept>
<name>boolean</name>
<example>TRUE</example>
<example>FALSE</example>
</setConcept>
<concept>
<name>r_light</name>
<parameter>state</parameter>
<parameter>boolean</parameter>
<example>S0®, TRUE</example>
<example>S1,TRUE</example>
<example>S2,FALSE</example>
<example>S3,FALSE</example>
<example>S4,TRUE</example>
<example>S5,TRUE</example>
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</concept>

<concept>
<name>green_light</name>
<parameter>state</parameter>
<parameter>boolean</parameter>
<example>SO®,FALSE</example>
<example>S1,FALSE</example>
<example>S2,TRUE</example>
<example>S3,FALSE</example>
<example>S4,FALSE</example>
<example>S5,FALSE</example>

</concept>

<concept>
<name>g_light</name>
<parameter>state</parameter>
<parameter>boolean</parameter>
<example>S0®,FALSE</example>
<example>S1,FALSE</example>
<example>S2,TRUE</example>
<example>S3,FALSE</example>
<example>S4,FALSE</example>
<example>S5,FALSE</example>

</concept>

<concept>
<name>amber_light</name>
<parameter>state</parameter>
<parameter>boolean</parameter>
<example>S®,FALSE</example>
<example>S1,TRUE</example>
<example>S2,FALSE</example>
<example>S3,TRUE</example>
<example>S4,FALSE</example>
<example>S5,TRUE</example>

</concept>

<concept>
<name>red_light</name>
<parameter>state</parameter>
<parameter>boolean</parameter>
<example>SO®, TRUE</example>
<example>S1,TRUE</example>
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<example>S2,FALSE</example>
<example>S3,TRUE</example>
<example>S4,TRUE</example>
<example>S5,TRUE</example>
</concept>
<po>
<hypothesis>
<formula type="BINARY">
<formula type="LITERAL"><literal>g_light</literal></formula>
<bioperator bop="EQUAL"></bioperator>
<formula type="LITERAL"><literal>TRUE</literal></formula>
</formula>
</hypothesis>
<goal>
<formula type="BINARY">
<formula type="LITERAL"><literal>green_light</literal>
</formula>
<bioperator bop="EQUAL"></bioperator>
<formula type="LITERAL"><literal>TRUE</literal></formula>
</formula>
</goal>
</po>
<po>
<hypothesis>
<formula type="BINARY">
<formula type="LITERAL"><literal>r_light</literal></formula>
<bioperator bop="EQUAL"></bioperator>
<formula type="LITERAL"><literal>TRUE</literal></formula>
</formula>
</hypothesis>
<hypothesis>
<formula type="BINARY">
<formula type="LITERAL"><literal>amber_light</literal>
</formula>
<bioperator bop="EQUAL"></bioperator>
<formula type="LITERAL"><literal>TRUE</literal></formula>
</formula>
</hypothesis>
<goal>
<formula type="BINARY">
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<formula type="LITERAL"><literal>red_light</literal>
</formula>
<bioperator bop="EQUAL"></bioperator>
<formula type="LITERAL"><literal>TRUE</literal></formula>
</formula>
</goal>
</po>
</domain>

E.3 Example domain file

The domain file contains the same information than the simulation trace, minus the POs,
but in the format required by HR. This file represents the input for the theory formation
process performed by HR.

state

state(A)
prolog:state(G@A@)
prover9:state(@A@)
state(S®).
state(S1).
state(S2).
state(S3).
state(S4).
state(S5).

boolean

boolean(A)
prolog:boolean(@A@)
prover9:boolean(@A@)
boolean(TRUE) .
boolean(FALSE).

green_light

green_light(A,B)
green_light(A,B) -> state(A)
green_light(A,B) -> boolean(B)
prolog:green_light(@A@, @B@)
prover9:green_light (GA@,@B@)
green_light (S®,FALSE).
green_light(S1,FALSE).
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green_light (S2,TRUE).
green_light(S3,FALSE).
green_light(S4,FALSE).
green_light (S5,FALSE).

red_light

red_light(A,B)
red_light(A,B) -> state(A)
red_light(A,B) -> boolean(B)
prolog:red_light (GA@,@B@)
prover9:red_light (GA@,@B@)
red_light (S0, TRUE).
red_light(S1,TRUE).
red_light(S2,FALSE).
red_light(S3,TRUE).
red_light(S4,TRUE).
red_light (S5,TRUE).

g_light

g_light(A,B)
g_light(A,B) -> state(A)
g_light(A,B) -> boolean(B)
prolog:g_light(@A@,@B@)
prover9:g_light (@A@,@B@)
g_light(SO,FALSE).
g_light(S1,FALSE).
g_light(S2,TRUE).
g_light(S3,FALSE).
g_light(S4,FALSE).
g_light (S5,FALSE).

r_light

r_light(A,B)

r_light(A,B) -> state(A)
r_light(A,B) -> boolean(B)
prolog:r_light(@A@,@B@)
prover9:r_light (@A@,@B@)
r_light(SO®,TRUE).
r_light(S1,TRUE).
r_light(S2,FALSE).
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r_light(S3,FALSE).
r_light(S4,TRUE).
r_light(S5,TRUE).

amber_light

amber_light(A,B)
amber_light(A,B) -> state(A)
amber_light(A,B) -> boolean(B)
prolog:amber_light (@A@, @B@)
prover9:amber_light (GA@,@B@)
amber_light (S®,FALSE).
amber_light(S1,TRUE).
amber_light (S2,FALSE).
amber_light (S3,TRUE).
amber_light (S4,FALSE).
amber_light (S5,TRUE).

E.4 Example macro file

The macro file contains instructions passed to HR during the theory formation process,
1.e. it represents the configuration of HR. The information contained in this file involves:
the name of the domain file, the selected PRs, the type of conjectures to be generated, and

the number of theory formation steps to be executed.

clickCheckbox("arithmetic_check", "false");
setText("arithmetic_operators_text", "+*-/");
clickCheckbox("disjunct_check", "true");
setText("disjunct_arity_limit_text", "4");
clickCheckbox("negate_check", "true");
clickCheckbox("embed_algebra_check", "false");
clickCheckbox ("embed_graph_check", "false");
clickCheckbox("equal_check", "false");
clickCheckbox("entity_disjunct_check", "false");

176



clickCheckbox("numrelation_check", "false");
clickCheckbox("record_check", "false");
clickCheckbox("size_check", "false");
clickCheckbox("split_check", "false");
clickCheckbox("compose_check", "true");
setText("compose_arity_limit_text", "4");
clickCheckbox("arithmeticb_check", "false");
clickCheckbox("fogprl_check", "false");
clickCheckbox("linear_constraint_check", "false");
clickCheckbox("parity_check", "false");
clickCheckbox("correlation_check", "false");
clickCheckbox("cross_check", "false");
clickCheckbox("float_arithmetic_check", "false");
clickCheckbox("float_summary_check", "false");
clickCheckbox("forall_check", "false");
clickCheckbox("exists_check", "false");
clickCheckbox("match_check", "false™);

clickCheckbox("make_equivalences_from_combination_check", "true");
clickCheckbox("make_implicates_from_subsumes_check", "false");
clickCheckbox("make_implications_from_subsumptions_check", "true");
clickCheckbox("keep_non_exists_check", "true");

clickCheckbox("use_forward_lookahead_check", "true");

clickChoice("required_choice", "steps");
setText("required_text", "1000");
setText("complexity_text", "8");

clickButton("start_button");
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E.S Example HRemo output

This file contains the output of the invariant discovery process up to filtering heuristic
FH3. The output consists of the equivalence, implication and non-existence conjectures
associated with the prioritised core and non-core concepts identified in the hypotheses
and goals of the POs.

PRIORITISED GOAL CORE CONCEPTS
Concept: state(A), boolean(B), green_light(A,B)
2: all A all B state(A) & boolean(B) & green_light(A,B) <->
state(A) & boolean(B) & g_light(A,B)
Number of equivalences: 1
0: all A all B state(A) & boolean(B) & green_light(A,B) ->
state(A) & boolean(B) & g_light(A,B)
1: all A all B state(A) & boolean(B) & g_light(A,B) ->
state(A) & boolean(B) & green_light(A,B)
Number of implications: 2
6: -(exists A exists B state(A) & boolean(B) & green_light(A,B) & red_light(A,B))
86: -(exists A exists T exists R exists U exists E state(A) & boolean(TRUE) &
green_light(A,TRUE) & red_light(A,TRUE))
110: -(exists A exists T exists R exists U exists E state(A) & boolean(TRUE) &
green_light (A,TRUE) & amber_light(A,TRUE))
134: -(exists A exists T exists R exists U exists E state(A) & boolean(TRUE) &
green_light(A,TRUE) & r_light(A,TRUE))
305: -(exists A exists B state(A) & boolean(B) & green_light(A,B) & amber_light(A,B) &
((boolean(B) & red_light(A,B)) | (boolean(B) & r_light(A,B))))
344: -(exists A exists B state(A) & boolean(B) & green_light(A,B) & r_light(A,B) &
((boolean(B) & red_light(A,B)) | (boolean(B) & amber_light(A,B))))
507: -(exists A exists B exists T exists R exists U exists E state(A) & boolean(B) &
g_light(A,B) & boolean(TRUE) & green_light(A,TRUE) &
((boolean(B) & red_light(A,B)) | (boolean(B) & r_light(A,B))))
541: -(exists A exists B exists T exists R exists U exists E state(A) & boolean(B) &
g_light(A,B) & boolean(TRUE) & green_light(A,TRUE) &
((boolean(B) & red_light(A,B)) | (boolean(B) & amber_light(A,B))))
579: -(exists A exists B exists T exists R exists U exists E state(A) & boolean(B) &
g_light(A,B) & boolean(TRUE) & green_light(A,TRUE) &
((boolean(B) & r_light(A,B)) | (boolean(B) & amber_light(A,B))))
866: -(exists A exists B exists T exists R exists U exists E state(A) & boolean(B) &
green_light(A,B) & r_light(A,B) & -(boolean(TRUE) & amber_light(A,TRUE)))
1014: -(exists A exists B exists T exists R exists U exists E state(A) & boolean(B) &
green_light(A,B) & amber_light(A,B) & -(boolean(TRUE) & r_light(A,TRUE)))
Number of non-exists: 11
Concept: state(A), boolean(B), red_light(A,B)
Number of equivalences: 0
: all A all B state(A) & boolean(B) & r_light(A,B) & -(green_light(A,B)) ->
state(A) & boolean(B) & red_light(A,B)
: all A all B state(A) & boolean(B) & amber_light(A,B) & -(green_light(A,B)) ->
state(A) & boolean(B) & red_light(A,B)
:all A all B all T all R all U all E state(A) & boolean(B) & r_light(A,B) &
boolean(TRUE) & green_light(A,TRUE) -> state(A) & boolean(B) & red_light(A,B)
: all A all B all T all R all U all E state(A) & boolean(B) & r_light(A,B) &
-(boolean(TRUE) & amber_light(A,TRUE)) -> state(A) & boolean(B) & red_light(A,B)
: all A all B all T all R all U all E state(A) & boolean(B) & amber_light(A,B) &
-(boolean(TRUE) & r_light(A,TRUE)) -> state(A) & boolean(B) & red_light(A,B)
35: all A all B state(A) & boolean(B) & r_light(A,B) & amber_light(A,B) ->
state(A) & boolean(B) & red_light(A,B)
43: all A all B state(A) & boolean(B) & red_light(A,B) ->
state(A) & ((boolean(B) & r_light(A,B)) | (boolean(B) & amber_light(A,B)))
Number of implications: 7
22: -(exists A exists B state(A) & boolean(B) & red_light(A,B) & g_light(A,B))
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Number of non-exists: 1

PRIORITISED GOAL NON-CORE CONCEPTS
Concept: state(A), boolean(TRUE), green_light(A,TRUE)
4: all A all T all R all U all E state(A) & boolean(TRUE) & green_light(A,TRUE) <->
state(A) & boolean(TRUE) & g_light(A,TRUE)
68: all A all T all R all U all E state(A) & boolean(TRUE) & green_light(A,TRUE) <->
state(A) & -(boolean(TRUE) & red_light(A,TRUE))
1015: all A all T all R all U all E state(A) & boolean(TRUE) & green_light(A,TRUE) <->
state(A) & -(boolean(TRUE) & amber_light(A,TRUE)) & -(boolean(TRUE) & r_light(A,TRUE))
Number of equivalences: 3
: all A all B all T all R all U all E state(A) & boolean(B) & r_light(A,B) &
-(boolean(TRUE) & red_light(A,TRUE)) -> state(A) & boolean(TRUE) & green_light(A,TRUE)
88: all A all T all R all U all E state(A) & boolean(TRUE) & green_light(A,TRUE) ->
state(A) & -(boolean(TRUE) & amber_light(A,TRUE))
111: all A all T all R all U all E state(A) & boolean(TRUE) & green_light(A,TRUE) ->
state(A) & -(boolean(TRUE) & r_light(A,TRUE))
Number of implications: 3
Number of non-exists: 0
Concept: state(A), boolean(TRUE), red_light(A,TRUE)
52: all A all T all R all U all E state(A) & boolean(TRUE) & red_light(A,TRUE) <->
state(A) & -(boolean(TRUE) & green_light(A,TRUE))
139: all A all T all R all U all E state(A) & boolean(TRUE) & red_light(A,TRUE) <->
state(A) & ((boolean(TRUE) & r_light(A,TRUE)) | (boolean(TRUE) & amber_light(A,TRUE)))
Number of equivalences: 2
:all A all B all T all R all U all E state(A) & boolean(B) & g_light(A,B) &
-(boolean(TRUE) & green_light(A,TRUE)) -> state(A) & boolean(TRUE) & red_light(A,TRUE)
3: all A all T all R all U all E state(A) & boolean(TRUE) & amber_light(A,TRUE) ->
state(A) & boolean(TRUE) & red_light(A,TRUE)
5: all A all T all R all U all E state(A) & boolean(TRUE) & r_light(A,TRUE) ->
state(A) & boolean(TRUE) & red_light(A,TRUE)
954: all A all T all R all U all E state(A) & -(((boolean(TRUE) & amber_light(A,TRUE)) |
(boolean(TRUE) & green_light(A,TRUE)))) -> state(A) & boolean(TRUE) & red_light(A,TRUE)
Number of implications: 4
Number of non-exists: 0

PRIORITISED HYPOTHESES CORE CONCEPTS

Concept: state(A), boolean(B), g_light(A,B)

Number of equivalences: 0

Number of implications:

365: -(exists A exists B state(A) & boolean(B) & g_light(A,B) & r_light(A,B) &
amber_light(A,B))

Number of non-exists: 1

Concept: state(A), boolean(B), r_light(A,B)

Number of equivalences: 0

53: all A all B all T all R all U all E state(A) & boolean(B) & red_light(A,B) &
boolean(TRUE) & green_light(A,TRUE) -> state(A) & boolean(B) & r_light(A,B)

319: all A all B state(A) & boolean(B) & red_light(A,B) & -(amber_light(A,B)) ->
state(A) & boolean(B) & r_light(A,B)
836: all A all B all T all R all U all E state(A) & boolean(B) & red_light(A,B) &
-(boolean(TRUE) & amber_light(A,TRUE)) -> state(A) & boolean(B) & r_light(A,B)
867: all A all B all T all R all U all E state(A) & boolean(B) & r_light(A,B) ->
state(A) & ((boolean(B) & green_light(A,B) & boolean(TRUE) & amber_light(A,TRUE)) |
(boolean(B) & red_light(A,B)))

Number of implications: 4

Number of non-exists: 0

Concept: state(A), boolean(B), amber_light(A,B)

Number of equivalences: 0

54: all A all B all T all R all U all E state(A) & boolean(B) & red_light(A,B) &
boolean(TRUE) & green_light(A,TRUE) -> state(A) & boolean(B) & amber_light(A,B)

248: all A all B state(A) & boolean(B) & red_light(A,B) & -(r_light(A,B)) ->
state(A) & boolean(B) & amber_light(A,B)
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980: all A all B all T all R all U all E state(A) & boolean(B) & red_light(A,B) &
-(boolean(TRUE) & r_light(A,TRUE)) -> state(A) & boolean(B) & amber_light(A,B)

1020: all A all B all T all R all U all E state(A) & boolean(B) & amber_light(A,B) ->
state(A) & ((boolean(B) & green_light(A,B) & boolean(TRUE) & r_light(A,TRUE)) |
(boolean(B) & red_light(A,B)))

Number of implications: 4

Number of non-exists: 0

PRIORITISED HYPOTHESES NON-CORE CONCEPTS

Concept: state(A), boolean(TRUE), amber_light(A,TRUE)

Number of equivalences: 0

Number of implications: O

Number of non-exists: 0

Concept: state(A), boolean(TRUE), r_light(A,TRUE)

Number of equivalences: 0

955: all A all T all R all U all E state(A) & -(((boolean(TRUE) & amber_light(A,TRUE))
| (boolean(TRUE) & green_light(A,TRUE)))) -> state(A) & boolean(TRUE) & r_light(A,TRUE)

Number of implications: 1

Number of non-exists: 0
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