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Abstract 

The estimation of energy dissipated during multiple particle impact is a key aspect in 

evaluating the abrasive potential of particle-laden streams. A systematic investigation of 

particle impact energy using acoustic emission (AE) measurements is presented in this 

thesis with experiments carried out over a range of particle sizes, particle densities and 

configurations. A model of the AE impact time series is developed and validated on 

sparse streams where there are few particle overlaps and good control over particle 

kinetic energies. The approach is shown to be robust and extensible to cases where the 

individual particle energies cannot be distinguished.   

 

For airborne particles, a series of impact tests was carried out over a wide range of 

particle sizes (from 125 microns to 1500 microns) and incident velocities (from 0.9 ms
-1

 

to 16 ms
-1

). Two parameters, particle diameter and particle impact speed, both of which 

affect the energy dissipated into the material, were investigated and correlated with AE 

energy. The results show that AE increases with the third power of particle diameter, i.e. 

the mass, and with the second power of the velocity, as would be expected. The 

diameter exponent was only valid up to particle sizes of around 1.5mm, an observation 

which was attributed to different energy dissipation mechanisms with the higher 

associated momentum. The velocity exponent, and the general level of the energy were 

lower for multiple impacts than for single impacts, and this was attributed to particle 

interactions in the guide tube and/or near the surface leading to an underestimate of the 

actual impact velocity in magnitude and direction.  

 

In order to develop a model of the stream as the cumulation of individual particle arrival 

events, the probability distribution of particle impact energy was obtained for a range of 

particle sizes and impact velocities. Two methods of time series processing were 

investigated to isolate the individual particles arrivals from the background noise and 

from particle noise associated with contact of the particles with the target after their first 

arrival. For the conditions where it was possible to resolve individual impacts, the 

probability distribution of particle arrival AE energy was determined by the best-fit 

lognormal probability distribution function. The mean and variance of this function was 

then calibrated against the known nominal mass and impact speed. A pulse shape 

function was devised for the target plate by inspection of the records, backed up by 

pencil lead tests and this, coupled with the energy distribution functions allowed the 
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records to be simulated knowing the arrival rate and the nominal mass and velocity of 

the particles. A comparison of the AE energy between the recorded and simulated 

records showed that the principle of accumulating individual particle impact signatures 

could be applied to records even when the individual impacts could not be resolved. 

 

For particle-laden liquid, a second series of experiments was carried out to investigate 

the influence of particle size, free stream velocity, particle impact angle, and nominal 

particle concentration on the amount of energy dissipated in the target using both a 

slurry impingement erosion test rig and a flow loop test rig. As with airborne particles, 

the measured AE energy was found overall to be proportional to the incident kinetic 

energy of the particles. The high arrival rate involved in a slurry jet or real industrial 

flows poses challenges in resolving individual particle impact signatures in the AE 

record, hence, and so the model has been further developed and modified (extended) to 

account for different particle carrier-fluids and to situations where arrivals cannot 

necessarily be resolved. In combining the fluid mechanics of particles suspended in 

liquid and the model, this model of AE energy can be used as a semi-quantitative 

diagnostic indicator for particle impingement in industrial equipments such as pipe 

bends.  
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Chapter 1 

Introduction 

 

Erosion due to the impact of fluid-suspended solid particles affects many industrial 

applications, from bulk solids handling, where the fluid is gaseous, to oil production, 

where the fluid is liquid. Moreover, slurry erosion has been recognized as a serious 

problem in a range of industrial applications such as slurry transport pipelines, slurry 

handling systems and hydraulic components, causing thinning of components, surface 

roughening and degradation, and reduction in functional life. The basic element of 

material removal is the impact of a hard particle, carried in the fluid stream, with the 

surface of the target. Therefore, there is a need for monitoring particle impact as a first 

step in the development of techniques for monitoring erosion in pipes. This work relates 

to the application of acoustic emission (AE) techniques in condition monitoring of 

particle impacts. This chapter introduces the background and significance of the work as 

well as presenting the motivation for the research. 

 

1.1 Background  

 

Material removal (erosion) occurs as a result of interaction between a large number of 

impacts of particles whose shape can range from spherical to angular, usually carried in 

pressurized fluid streams, and a steel surface. Several models have been proposed to 

describe the rate of material removal in terms of the applied conditions [1-9], which can 

be classified as; impingement-related (particle velocity, particle concentration and 

impact angle), particle–related (size, shape and density), and material-related (elastic 

properties, hardness and toughness of both particle and target). A comprehensive review 

carried out by Meng and Ludema [10] has revealed more than 28 equations for erosion 

by solid particle impingement involving 33 variables and constants. However, most 

researchers agree that particle impact velocity, particle size and impact angle are the 

primary variables affecting erosion rate. 
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On the empirical side, many researchers have observed that the erosion rate increases 

with increasing particle size, being proportional to D
φ
, where φ is the particle size 

exponent [11-14]. For example, Feng and Ball [13], using silica sand erodent of sizes 63 

to 1000 μm impacting a stainless steel target, observed that the value of particle size 

exponent was approximately 3 1.0 . Whereas most authors agree that particle impact 

velocity has a significant effect on the erosion rate [11, 13, 15], values of velocity 

exponent reported in the literature vary between 1.1 and 3.4 depending on target 

material and impingement angle [13]. Levin et al [16] investigated the erosion 

resistance of a number of target materials of different hardness and toughness and 

concluded that target materials which combine high hardness (which reduces the energy 

transferred from the incident particle into the target) and high toughness (which reflects 

the ability of the target material to absorb impact energy without fracture) offer the 

highest erosion resistance. It is also well established [11, 15, 17, 18] that the effect of 

impact angle on erosion rate is fundamentally different for ductile target materials than 

if is for brittle ones, this being dictated by the material removal mechanism. 

 

From a monitoring point of view, it is important to isolate how individual particle 

impacts give rise to a sensor signal, so that the effects of multiple particle impacts can 

be properly understood. Therefore, the monitoring of single particle impact is an 

essential step towards monitoring particle erosion. Because of its very high temporal 

resolution, Acoustic Emission (AE) has the potential to be a very useful tool in 

monitoring high particle arrival rates [19-21]. Monitoring of particle impact using 

acoustic emission relies upon a fraction of the incident kinetic energy of each impacting 

particle dissipating as elastic waves, which propagate through the target material before 

being detected by a suitably placed AE sensor. Some of the investigators in this area 

have concentrated on monitoring the erosion variables [22, 23] and others have 

concentrated on monitoring the amount of erosion [24, 25].  

 

Thus, although some work has been done on correlating AE signals with the variables 

known to affect erosion and, to an extent, with wear rate, these correlations have not, so 

far been linked with established models to offer a general, quantitative approach to 

predicting the material removal rate using AE. The theoretical analyses described above 

have not generally been supported by experimental measurements of the energy 

dissipated due to particle impact. Since the primary cause of erosion is the energy 

transmitted from impinging particles to the target [26], the main objective of this work 
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is, over a wide range of impact conditions, to develop a way of measuring this energy in 

a way that can be calibrated against the incident kinetic energy and, consequently, to use 

AE as a semi-quantitative diagnostic indicator for particle impingement. 

 

1.2  Research methodology and objectives  

 

To the best of the author’s knowledge, there is no systematic work on particle impacts 

using the AE technique which spans the range from individual well-controlled impacts 

to practical particle-laden flows. Therfore, three experimental arrangements were 

devised in this work to assess the feasibility of using the AE technique in monitoring 

particle impacts semi-quantitativelly. Therefore the main research objectives were: 

 

1 Develop a way of measuring AE energy due to particle impact in a way that can be 

calibrated against the incident kinetic energy.  

2 Develop a model describing the AE time series associated with a particle stream, 

which accumulates the effect of incident particles, is based on observations of 

individual impacts, and can be extended to situations where the particle arrivals 

cannot be resolved. 

3 Examine, over a wide range of impact conditions, the relationship between 

measured AE energy and impingement parameters and adjust the model as 

necessary.  

4 Extend the applicability of the model further to situations where no control over 

particles is possible, and make recommendations on using AE as a semi-quantitative 

diagnostic indicator for particle impingement. 

 

1.3 Thesis outline 

This thesis is structured in 8 chapters, a brief summary of each of which is given below. 

 

Chapter 1: Introduction 

This chapter introduces the general background of theoretical and experimental 

understanding of erosion caused by solid particle impacts and summarises the state of 

knowledge of AE monitoring of particle impacts. It also outlines the research 

objectives, the claimed contribution to knowledge and offers a summary of the thesis. 
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Chapter 2: Literature Review 

This chapter presents a critical review of three key research areas related to the thesis. 

The first is the extent to which the phenomenon of energy dissipation and material 

damage mechanisms in erosion are understood as a background to what aspects of 

erosion that might be feasible to monitor using AE. The second area is the state of 

knowledge on the reproduction of erosion in the laboratory and the key experimental 

variables that might be used. The last area is to review critically the work that has 

already been done in monitoring erosion using AE with a view to encompassing and 

extending it. 

 

Chapter 3: Experimental Method 

This chapter describes the solid particle types and target details, the AE measurement 

system, and all the experimental procedures and arrangements for this study including 

calibration tests. Three distinct types of experiments are presented the first related to AE 

monitoring of free-fall and air-assisted particle impacts, the second related to the AE 

monitoring of slurry impact using a slurry jet impingement rig, and the third related to 

the AE monitoring of particle impacts in a flow loop bend. 

 

Chapter 4: Experimental Results  

This chapter presents the results of the main systematic experiments. First, the results of 

three experimental arrangements which were used to investigate three dry impact 

regimes; low velocity-low mass (impact speeds of 1.5 ms
-1

 to 3 ms
-1

  and masses of    

4.9 10
-6  

to 2.3 10 
-4 

g), low velocity-high mass (sphere masses of 0.001 to 2 g), and 

high velocity-low mass (impact speeds of 4 to 16 ms
-1

) are presented. Within each of 

these regimes, results for both single-particle and multiple-particle impacts are 

presented. Next, the results of two distinct types of experiments, both of which used 

water as different particle carrier medium are also presented. The first is the slurry 

impingement jet experiment and the second is the flow loop experiment. 

 

Chapter 5: AE time series model  

This chapter presents the basis of the AE time series model applied to the particle laden 

airflow. Two time-domain processing techniques used to isolate the individual particle 

arrivals from the background noise are presented; the dynamic threshold method and the 

truncated distribution method in order to arrive at a suitable statistical distribution 

function to represent AE energy per impact in terms of the incident conditions.             
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A model, developed by the author, for describing the AE time series associated with a 

particle stream is then presented along with time series simulations, and the findings are 

discussed in relation to the literature. 

 

Chapter 6: Analysis and Discussion  

This chapter analyses and discusses the results presented in Chapter 4 in order to 

provide an overall interpretation of the measurements of AE energy dissipated in the 

carbon steel target during particle impacts. The analysis is developed to account for the 

presence of noise due to fluid impingement, and techniques for separating flow noise 

from the AE activity of interest are discussed. Again, the findings are discussed with 

reference to the literature. 

 

Chapter 7: Conclusions and Recommendations for Future Work 

This chapter summarises the main findings emerging from the preceding chapters and 

provides recommendations for practical application and also future studies that could 

complement and extend the findings of this thesis. 

 

1.4 Contribution to knowledge 

 

The claimed contribution to knowledge centres around a systematic study of AE 

associated with particle impacts. This study links the AE associated with single particle 

impacts where the incident conditions are likely controlled through to AE from particle-

laden flows with multiple overlapping impacts where the carrier fluid itself generates 

some AE. At the heart of this integrated approach is a model of the AE time series 

which, when “calibrated” using single particle impacts, can be applied to cases where 

the particles can no longer be resolved.  
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Chapter 2 

Literature review 

 

This chapter reviews the literature relevant to the monitoring of fluid-suspended solid 

particle impacts using AE technology. The review is divided into three main sections. 

The first section provides a general overview of impact analysis, then focussing on the 

generation of elastic waves in the impact target. The second section reviews the state of 

knowledge of erosion phenomena, including the types of apparatus used for erosion 

testing, empirical studies of the factors affecting erosion rate, and models which have 

been developed to describe particle erosion. The third section deals with AE techniques, 

particularly insofar as these have been applied to material removal studies, including 

particle impact monitoring. 

 

2.1    Impact dynamics and elastic waves 

 

The study of impact is a large area of engineering study, with analytical and numerical 

models having been developed for a wide range of applications, from ballistics to 

materials testing. Here, the interest is in isolating those aspects of particle impact which 

are relevant in generating AE, for which it is sufficient to focus on the contact/impact 

behaviour of a sphere with a half-space, which exhibits the principal mechanisms of 

impact. 

 

2.1.1  Hertz theory of elastic contact/impact 

 

The first analysis of the stresses at the contact of two elastic solids was given by Hertz 

(1896). Johnson [27] has summarised the assumptions made in the Hertz theory as 

follows, 

 the contacting surfaces are continuous and non-conforming, and their profiles 

are described by quadratic formulae, 

 the strains are small, 

 each solid can be considered as a linear elastic half-space, 
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 the surfaces are frictionless and the surface tractions are only induced by normal 

contact forces, i.e. neither tangential forces nor adhesive forces are considered. 

 

Based on the above assumptions, Hertz obtained an analytical solution for the elastic 

contact problem, and showed that, as the contact region spreads to a radius a  for a 

given contact force, there is an elliptical distribution of contact pressure within the 

contact area, given by: 

 

ar
a

r
PrP ,1)(

21
2

0
 (2.1) 

 

where 0P  is the maximum normal pressure at the contact centre and r  is the distance 

from the contact centre. This contact pressure generates local elastic deformations and 

surface displacements and accounts for the compressive contact force F between the 

two bodies: 

 

a

PardrrPF
0

0

2

3

2
2)(   

 

Thus,  

 

20
2

3

a

F
P  (2.2) 

 

 

For elastic collisions, it is of interest to know the relationship between contact force and 

normal displacement, . If the two bodies have the same Poisson’s ratio and Young’s 

modulus, ν and 
'E  the normal displacement  induced by the contact pressure at any 

arbitrary point at a distance r  from the contact centre is given by [27], 

 

220

'

2

2
4

1
ra

a

P

E
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For the more general case where the two bodies have different radii of curvature, R1 and 

R2 and different isotropic elastic properties, E
’
1 and E

’
2 and ν1 and ν2,  an effective 

radius R  and modulus E  can be defined as Stronge [28]:  

21

111

RRR
 (2.3) 

 

2
'

2

2

1
'

2

1 111

EEE
  

 

and the (maximum) normal displacement at the centre of the contact can be related to 

the maximum pressure by:  

 

E

aP

2

0  (2.4) 

 

and the radius of the contact circle by:  

 

E

RP
a

2

0
 (2.5) 

 

 

Using Equations 2.2, 2.4 and 2.5 the relationship between the normal force and the 

resulting normal displacement can be determined:  

 

3 2 1 21.25F R E  (2.6) 

 

and, using Equations 2.2 and 2.5 the relationship between the contact area radius and  

normal force can be obtained: 

 

31

4

3

E

FR
a  (2.7) 
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When, as is the case for particle contacts, the radius of curvature of the contactor is 

much smaller than that of the target, the effective radius is simply equal to the particle 

radius (Equation 2.3).  

 

Once a static force-displacement relationship ( Equation 2.6) has been determined, it is 

then possible to develop the dynamics of the normal impact of elastic bodies. For 

instance, the duration of elastic contact between two bodies of masses m1 and m2 

coming into contact with  an initial relative velocity, Vr, has been  determined  by 

numerical integration of the relative velocity [27], and using some additional 

assumptions (over those of Hertz theory) : 1) the deformation is assumed to be restricted 

to the vicinity of the contact area and to be given by the static theory, 2) elastic wave 

motion in the bodies is ignored, and 3) the total mass of each body is assumed to be 

moving with the velocity of its centre of mass at any instant, the contact time is: 

 

 (2.8) 

 

where the effective mass is given by:  
21

111

mmm
  

Again, if the mass of the target is much greater than the mass of the contacting particle, 

the effective mass is simply the mass of the particle so that, for the case of a moving 

elastic sphere contacting a static elastic half-space, Equation 2.8 becomes: 

 

    

 

where, in this case, , 1R , pV  are the density, radius, and velocity of the sphere, 

respectively. Thus, for normal particle impacts of elastic spheres on a flat, static target 

the duration of contact might be expected to be proportional to the radius of the sphere 

and inversely proportional to 1 5V [29].  

 

Quoc et al [30] applied finite element analysis to the problem of two identical elastic 

spheres in contact and subject to normal loading. They compared their solutions to the 

analytical ones for the pressure distribution on the contact area Equation 2.1, the 
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relationship between normal force and normal displacement, Equation 2.6, and the 

variation of the radius of the contact area with normal force Equation 2.7 and found 

agreement between FEA and Hertz theory for both loading and unloading stages. Hertz 

theory has been also validated by Tsai [31] who measured the dynamic contact stresses 

(normal contact stress and radial surface stress) caused by the impact of a projectile on 

an elastic-half space. These stresses were taken as the sum of the Hertz contact stresses 

and the effect of stress waves, and compared with those predicted by the Hertz theory in 

terms of contact time and contact radius. They found that Hertz theory was a good 

approximation for determining the total force produced by the projectile, while, for the 

radial surface stress, Hertz theory only applies for moderate impact velocities where the 

contact time is more than 40 μs. 

 

 

Generally, the impact period can be divided into compression and restitution phases, 

where the bodies continue to approach each other and separate, respectively. During 

elastic compression, the initial kinetic energy is converted into elastic strain energy 

stored in the contacting bodies and some is converted into propagating elastic waves. 

Thus, the contact force does work that reduces the initial relative velocity of the 

colliding bodies and also does work that increases the internal deformation energy of 

both bodies. Hence the relative velocity reduces to zero during the compression phase at 

the end of which the maximum compression is reached. During restitution, the stored 

elastic strain energy is released and accelerates the bodies apart so that the relative 

velocity increases to a maximum at the end of restitution when the contacting bodies 

separate. Overall, the contacting bodies rebound with a kinetic energy that is somewhat 

less than the initial kinetic energy, the remainder, in the case of elastic contacts, being 

dissipated as stress wave propagation. 

 

2.1.2 Elastic plastic contact 

 

In many contact problems, most notably in hardness testing, the main assumptions of 

Hertz theory, that of continued elastic deformation of both bodies for the entire duration 

of contact, no longer holds. Also, aside from the hardest target materials, some plastic 

deformation in the contact zone is a necessary precursor to wear, so it is important to 

acknowledge the effect of plastic deformation on contact mechanics and dynamics. 
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As the contact load increases elastic indentation will continue until some point in the 

contact region reaches a state of stress satisfying the yield criterion. For the case of 

axisymmetric contact of two spheres both with 3.0 , both the von Mises and Tresca 

criteria predict that yield occurs when the maximum contact pressure reaches a 

particular value
yP  [27],  

 

YPy 6.1   

 

where Y  is the yield stress. Tabor [32] has expressed this in terms of the mean contact 

pressure at which the onset of plastic deformation occurs 
myP : 

 

YPmy 1.1   

 

For a sphere of density  impacting a plane surface, Thornton [33]  defined a “contact 

yield stress
y
”, using Equations 2.2 and 2.5: 

 

R

aE y

y

2
  

 

where
ya , is the contact radius at which yield first occurs, and obtained an expression  

for the impact velocity below which the interaction behaviour can be assumed to be 

elastic, 
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It might be noted that the impact velocity required to cause yield on metal surfaces is 

very small; for example, for a hard steel ball impacting a mild steel target, it is about 

0.05 m/s [34]. 

 

 

Plastic deformation will occur first in the body of the material with the lower yield 

stress (Y) at some distance from the centre of the contact surface (see Figure 2.1a) and, 
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as the load increases, the plastic zone grows and finally breaks out to the free surface at 

which point the displaced material is free to escape by plastic flow and the whole of the 

material around the contact area undergoes plastic deformation (see Figure 2.1b) [3]. 

 

 

 

Figure 2.1: Plastic deformation process during the compression of a spherical indenter into a 

plastic solid (a) the onset of plastic deformation, (b) expansion of plastic zone [29] 

 

 

 Thus, the contact deformation process can be divided into three phases  [28]: 

 

1. elastic phase, in which the deformations of both contacting bodies are elastic 

and Hertz theory can be applied, 

2. elastic-plastic phase, in which part of the contact is plastic, starting when the 

mean pressure mP  between the contacting bodies reaches 1.1Y  and terminating 

in full plasticity, 

3. fully plastic phase, which occurs once the plastic zone reaches the surface and 

the material surrounding the contact area undergoes plastic deformation. 

 

Generally, plastic deformation starts in one of the two contacting bodies, but, as the 

contact deformation proceeds and the maximum contact pressure increases it may 

exceed 1.6Y of the other contacting body. Thus, as a result of impact, one or both bodies 

may be partially or fully plastically deformed around the contact zone.  

 

An analytical solution for the fully plastic contact pressure has been derived  by 

Ishlinsky (see Tabor [32]) using slip-line theory. He showed that the pressure over the 

contact area is not uniform but is somewhat higher in the centre than at the edge. The 
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mean contact pressure for fully plastic contact mP  was given by  to . 

Based on available numerical analyses at the time and on experimental measurements 

published in the literature of the spherical indentation of an elastic-plastic half-space, 

with or without work hardening,  Johnson [27] has given a relationship between the 

mean contact pressure Pm and the yield stress Y for fully plastic contact as Pm = 2.8Y. 

Johnson [27] also observed that Pm  is a function of the dimensionless parameter 

YRaE  for a spherical indenter. For an incompressible material indented by a 

spherical indenter of radius R, the pressure mP  is given by 

 

YR

aE

Y

Pm

3
ln1

3

2
 (2.10) 

 

Figure 2.2 shows how the mean contact pressure increases from mP 1.1Y  (the onset 

of plastic deformation) to 3Y  (full plastic deformation) as the size of the contact      

Ra  
increases, based on the prediction of Equation 2.10 for spherical indentation. 

Fully plastic
 
deformation occurs at a value of  YRaE  = 40, which is about 16 times 

greater than the value for first yield. For the case of a hard steel sphere pressed into the 

surface of a fully work-hardened mild steel specimen, Tabor [32] showed that the load 

increases by a factor of about 300 and the contact radius increases by a factor of about 

10 from the onset of plastic deformation until fully plastic deformation, which is 

consistent with what is described in Figure 2.2.
 

 

Figure 2.2: Régime diagram for elastic-plastic contact [27] 
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2.1.3 Contact force-displacement relationships  

 

The relationship between the instantaneous force on the particle F and the penetration of 

the particle into the substrate  is fundamental to the impact behaviour of elastic-

plastic contacts. This can be approached by determining the contact pressure 

distribution and the relationship between the relative approach, , and the contact 

radius, a.  

 

For fully plastic contact, it is generally accepted (e.g. Johnson [27] and Tabor [32]) that 

the mean contact pressure is constant at (2.8 - 3.0)Y  as shown in Figure 2.2 and the 

relative approach is related to the contact radius by Ra 2
provided that neither 

piling-up nor sinking-in occurs. Hence, the force-displacement relationship can be 

determined in the plastic régime. 

 

For the elastic-plastic régime, an accurate determination of the contact pressure 

distribution and the relationship between relative approach and contact radius becomes 

more complicated usually requiring some simplifying assumptions. For example, Bitter 

[2, 3] assumed that, after yield is initiated, the pressure remains constant and the area 

that is loaded to the constant pressure increases upon further penetration of the particle 

into the body. A flattened contact pressure distribution, obtained by truncating the 

Hertzian pressure profile, was proposed by Thornton [33], who also assumed that the 

Hertzian substitution Ra 2
 is still valid for the elastic-plastic regime.  

 

Vu-Quoc et al [30] developed an elastoplastic normal force-displacement model in 

which the contact radius is decomposed into an "elastic" part and a "plastic" part, and 

the contact curvature is modified by an adjustable coefficient to account for plastic 

deformation. In addition, the pressure distribution is assumed to be of similar pattern to 

the Hertzian distribution. Yigit and Christoforou [35] combined the classical Hertz 

theory with the elastic-plastic indentation theory of Johnson [27] to give three force-

displacement equations for elastic loading, elastic-plastic loading and elastic unloading 

as follow: 

 

Elastic loading (Hertz theory): 

ERF
212325.1   
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Elastic-plastic loading: 

ERKF ee

212325.1)(  

 
 

Elastic unloading: 

)()(25.1 23232321

emeem KREF   

 

where e  and m  are the relative approaches at the onset of plastic yielding and at the 

maximum compression, respectively and eK  is given by: 21212 ee REK  

 

2.1.4 Coefficient of restitution  

 

The coefficient of restitution, which is normally used to characterise the change in 

kinetic energy during an impact, is a useful concept when dealing with monitoring of 

particle impacts. There are several definitions for the coefficient of restitution [29]: 

1. In Newton's definition, the coefficient of restitution e is defined as a ratio of the 

rebound velocity rV , to the incident velocity iV . This is usually referred to as 

Newton's Law of restitution and the ratio as the kinematic coefficient; 

2. Poisson defined the coefficient of restitution as the ratio of the impulse during 

the restitution phase to the impulse during the compression phase of the impact 

as, , where Fr, Fi are the contact forces after and before the impact, 

respectively. This definition is normally known as Poisson's hypothesis and the 

ratio as the kinetic coefficient; 

3. An energetic coefficient of restitution proposed by Stronge [36] as the ratio of 

work done by the normal force during the restitution to that during the 

compression as,  . 

 

Using Hertz theory where energy dissipation due to elastic wave motion is neglected 

and there is no plastic deformation, the incident kinetic energy iKE  can be assumed to 

be completely converted to elastic strain energy stored in the contact bodies during the 

compression: 
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where m  and ma  are the maximum relative approach and maximum contact radius 

during the impact. 

 

This elastic strain energy will be recovered and becomes the rebound kinetic energy

rKE , so that, for a sphere striking a fixed target, the rebound velocity, rV , is  the same 

as the initial impact velocity iV  and the coefficient of restitution is unity. In the more 

general case, the incident kinetic energy is converted to elastic strain energy stored in 

the contacting bodies, plastic strain energy to deform the materials plastically (if the 

stress is high enough anywhere to initiate plastic deformation) and any energy lost by 

propagation of elastic waves in either body. Only the stored elastic strain energy can be 

recovered as the rebound kinetic energy, so, at impact velocities greater than the value 

defined in Equation 2.9, some energy is lost due to plastic deformation, and the 

coefficient of restitution becomes lower and lower as the impact velocity is increased.  

 

Several theoretical models have been developed to predict the coefficient of restitution 

during the impact of elastic-plastic spheres, in most of which the energy losses due to 

stress waves are neglected. Starting from a simplified theoretical model for the normal 

contact interaction of two elastic-perfectly plastic spheres, Thornton [33] developed a 

theoretical model using a Hertzian pressure distribution with a cut-off pressure, 
yP , 

assumed to be constant during plastic loading, making it possible to obtain an explicit 

analytical solution for the coefficient of restitution for the case of a sphere impacting a 

plane surface as follows, 

 

41

81

4

5

0324.1 iV
E

P
e   

 

where iV  is the impact velocity and 0P  is the maximum pressure below which the 

contact deformation can be considered to be elastic and is defined by Equation (2.2). 
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Considering only the fully plastic deformation regime, Johnson [27] has assumed that 

the relative approach is related to the contact radius by 
R

a

2

2

 (which implies neither 

"pile-up" nor "sinking in" at the edge of the indentation) as well as taking the mean 

contact pressure mP  to be constant and equal to 3Y. Johnson then was able to obtain an 

expression for the coefficient of restitution for the case of a sphere impacting a wall as: 
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2.1.5 Elastic wave dissipation during contact/impact 

 

During any impact, the local elastic deformation of the contacting bodies can generate 

elastic waves that radiate away from the contact region. Elastic waves can propagate 

within the body of solid materials as either longitudinal (compression) waves or 

transverse (shear) waves where the particle motion in a longitudinal wave is parallel to 

the wave propagation direction (Figure 2.3a) whereas transverse waves are 

characterised by particle motion perpendicular to the wave propagation direction, 

(Figure 2.3b). The velocities of both longitudinal waves ( 1c ) and shear waves ( 2c ) are 

frequency independent and are given by the following expressions: 

 

)21)(1(

)1('
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E
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where E
’
 is Young’s modulus of elasticity for the material, ρ is the density of the 

material, and ν is Poisson’s Ratio for the material.  
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For semi-infinite media, a third type of wave can also exist, called Rayleigh waves, 

(Figure 2.3c). These waves propagate over the surface of the medium at a speed a little 

lower than that of shear waves [27], typically about 0.9 of the shear wave velocity [37]. 

 

a) Longitudinal wave 

 

 

b) Shear wave 

 

c) Rayleigh wave 

Figure 2.3: The main AE waves in infinite and semi-infinite media [37] 
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In an infinite medium bounded by two surfaces, such as a plate, the waveforms couple 

at the surfaces to produce more complex propagation modes called Lamb waves. The 

two basic Lamb wave mode classes are shown in Figure 2.4, normally referred to as 

symmetric ( 0s ) or extensional and asymmetric ( 0a ) or flexural wave modes. 

 

Figure 2.4: Zero-order Lamb wave [37] 

 

In Lamb waves, the particles move in ellipses, and the relative magnitudes of the 

motion parallel and perpendicular to the plate depend on mode and frequency in a 

complicated manner.  

 

Elastic waves are only generated if some aspect of the impact takes place at a speed of 

the order of the wave speed, which is well above the particle arrival speed in most 

particle impingement situations. However, local plastic deformation, particle fracture 

and fracture of microscopic components can all contribute to the generation of elastic 

waves although, in practical situations, these are not very well-conditioned events and 

can lead to any or all of the above types of waves being generated in either of the 

contacting bodies. 
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Hunter [38] calculated the energy contained in elastic waves in terms of the Fourier 

components of a transient normal force and solved a force-time relationship for the case 

of purely elastic deformation around an indentation. He estimated the energy converted 

into elastic waves during normal elastic impact of a hard steel sphere on a steel target to 

be less than 1%  of the incident kinetic energy and found that this total elastic energy, 

W, can be written in terms of the particle impact velocity, Vp , and the particle diameter, 

D, as:   

6.23

pVKDW  (2.11) 

where K is a constant of proportionality. The same power dependence for both impact 

velocity and particle diameter, but with a different value of K, was obtained by Reed 

[39], who estimated the elastic wave energy to be more like 4.5% of the incident kinetic 

energy using a modified approximation to the force-time relationship for an elastic 

impact. 

 

It should be noted that both the Hunter and Reed analyses assume elastic impact at right 

angles to the surface. For impacts at a velocity high enough to cause plastic deformation 

in the target, the force between the particle and the substrate will not be accurately 

represented by the Hertz equation and hence the assumptions made above will no longer 

be valid. To overcome this problem, Hutchings [34] modified Hunter’s analysis by 

assuming a constant plastic pressure to act on the sphere during the loading cycle while 

making use of Hunter’s numerical analysis to predict the force during the unloading 

cycle and then solving the force-time relationship for the complete cycle. Hutchings 

made a similar estimate to Reed for the proportion of the original kinetic energy of a 

sphere dissipated in the elastic wave field (mostly as Rayleigh waves) for normal 

impacts where some plastic deformation of the target has occurred. The total energy 

dissipated as elastic waves in the solid was given by Hutchings [34]: 
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 where  is a dimensionless quantity dependent only on Poisson’s ratio ν, 0  is the 

density of the target material, 0C is the velocity of longitudinal elastic wave along a thin 

rod of the target material, α is a dimensionless function of the coefficient of restitution, 
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e , which was found to be about 1 and 0F   is the maximum force acting on the sphere 

and can be given by: 

 

212
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ppp PVRF  (2.13) 

 

where, 
p
  is the density of the sphere, P is the (constant) plastic indentation pressure 

acting during the loading cycle and 0w is given by, 
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Substituting Equations 2.13 and 2.14 into Equation 2.12, yields: 
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where K´ is again a constant of proportionality. This equation suggests a different 

dependence of elastic energy on velocity than Hunter or Reed (Equation 2.11).  

 

As mentioned above, Hutchings assumed that, during the loading cycle, the force 

between the sphere and the plane can be represented by a constant pressure acting over 

the area of contact, while, according to Tabor [40], this pressure varies during collision 

for two reasons. The first is the dynamic effect associated with the kinetic displacement 

of the metal during impact which tends to increase the pressure at the initial stages of 

the deformation when the velocity of displacement is a maximum. The second reason is 

that work-hardening of the deformed material will occur during the formation of the 

indentation. As a result, the pressure will tend to increase during impact. 

 

More recently, Wu et al [41] have applied FE analysis to the energy dissipation 

mechanisms during the impact of an elastic sphere with elastic and elastic-perfectly 

plastic substrates. In this simulation, the number of reflections of the elastic waves 

during the contact varied with substrate thickness. For elastic impacts where more than 
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one reflection occurs, the results were consistent with Hunter’s earlier finding that the 

energy converted into elastic waves is less than 1% of the incident, while a significant 

amount of energy (approximately 6% of the incident) was found to dissipate by this 

mechanism if there was no reflection at all. For impacts involving plastic deformation, 

the proportion of the energy dissipated as elastic waves was found to be small compared 

with that due to plastic deformation.  

 

The foregoing discussion has shown some uncertainties associated with each theoretical 

model, since all have embedded assumptions that are likely to affect the accuracy of 

estimating the kinetic energy dissipated as elastic waves through the material. 

Moreover, the discussion highlights the fact that there is a necessity for some structured 

observations of elastic wave energy dissipation to compare with the model predictions. 

 

2.2 Erosive wear of materials  

 

Erosive wear is caused by the interaction of solid particles suspended in a gas or liquid 

stream and a surface which experiences a loss of mass due to successive impacts of hard 

particles travelling at velocities sufficient to give them a kinetic energy which will 

damage metallic surfaces [42]. Erosive wear by solid particle impacts can be found in 

many engineering applications such as pneumatic and hydraulic systems, causing 

thinning of components, surface roughening and degradation, and reduction in 

functional life of equipment. For this reason, the subject has received a great deal of 

attention and a large body of literature exists dealing with solid particle erosion of 

materials. 

 

2.2.1 Mechanisms of particle erosion 

 

Generally speaking, erosion can arise from mechanical, chemical or thermal actions. 

The main mechanisms for solid particle erosion are; cutting or abrasive action, fatigue 

or delamination, brittle fracture, deformation, and melting [12, 13, 43]. Thapa [42] has 

categorized erosion mechanisms according to the impingement angle and impact 

velocity into the following: 
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 Cutting (abrasive) erosion 

When particles strike the target at an acute impingement angle (Figure 2.5a) and 

remove material by cutting chips out of the abraded material, the erosion mechanism is 

called abrasive erosion.  

 Surface fatigue (delamination) 

When the particles strike the surface with a large impact angle at low velocity as shown 

in (Figure 2.5b), the surface may not be plastically deformed. Even so, contact fatigue 

can occur leading to cracks being initiated below the surface after repeated collisions. 

Eventually, the cracks will emerge at the surface, leading to spalling and detachment of 

particles from the target. 

 Brittle fracture 

When particles strike a brittle surface with a large impingement angle with medium 

velocity, erosion takes place by brittle fracture (Figure. 2.5c). If the impinging particles 

are sharp, then brittle fragmentation is more likely and pieces detach from the target 

following subsurface cracking. 

 Plastic deformation 

Plastic deformation of the surface can lead to the formation of flakes around the striking 

point if the particles strike the elastic surface with medium speed and large 

impingement angle as shown in (Figure 2.5d). With repeated strikes on the flakes, the 

material will detach as debris. 

 Melting 

When a particle impinges upon the surface of material, it loses some kinetic energy. 

Most of this lost energy is transformed into plastic energy and then into heat within the 

target. If this heat is generated sufficiently quickly and within a small enough volume of 

the target, the temperature can reach the melting point. Consequently, material can be 

removed more easily due to its much reduced cohesive strength. 
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Figure 2.5: Basic mechanisms of particle erosion [42]. 
 

 

 

 

It is well known that there is a dramatic difference in impact material removal 

mechanisms for ductile and brittle materials. Ceramics and other brittle materials are 

eroded by cracking and chipping, Figure 2.6, while ductile materials erode due to 

mechanisms involving the sequential steps of micro extrusion, forging, and plastic 

deformation, Figure 2.7 [1]. 

 

 

 

Figure 2.6: Impact material removal mechanism for a brittle material [1] 

 

 

Fatigue erosion Cutting erosion 

Plastic deformation 
Brittle fracture 

(a) (b) 

(d) (c) 
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Figure 2.7: Impact material removal mechanism for a ductile material [1] 

 

Finnie’s seminal paper [4] sets out the basis of our current understanding of material 

removal mechanisms for ductile and brittle materials. It has been suggested that the 

particle acts as a miniature machine tool which cuts out a chip of surface material. Bitter 

[2, 3] has attributed the material removal to the sum of material lost as a result of plastic 

deformation (where the elastic limit is exceeded, the surface layer is destroyed and its 

fragments are removed) and that lost due to a cutting mechanism (where the particles 

strike the body and scratch out some material from the surface). A later review by 

Finnie [44] presented further understanding of erosion behaviour and traced the history 

of publications on erosion mechanisms from 1807. He reported a number of different 

mechanisms that have been proposed for material removal due to impingement at high 

impact angles, including brittle behaviour brought about by work hardening, 

fragmentation of particles, low cycle fatigue, temperature effects due to high strain 

rates, delamination wear, an extrusion mechanism and platelet formation. Finnie also 

concluded that plastic deformation was believed to be the main erosion mechanism. 

 

Hutchings and his co-workers have provided valuable insights into the different 

mechanisms of solid particle erosion using both irregular and spherical particles at 

normal and oblique impingement angles. Hutchings and Winter [45] have shown that, 

during oblique impact by an individual spherical particle, a lip can be formed from 

surface material sheared in the direction of motion of the particle and that above a 

critical velocity, this lip can become detached. This mechanism of material removal was 

named ploughing deformation, (Figure 2.8c). 

 

In another study of erosion by angular particles, Winter and Hutchings [46] identified 

two distinct modes according to the angle between the leading face of the particle and 

the target surface. When the leading face of the square particle makes a large angle with 
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the target surface (Figure 2.8a), a micro machining action takes place through which a 

lip is displaced above the surface. When the angle between the particle and the surface 

is very small (Figure 2.8b) ploughing deformation occurs, by which material is forced 

ahead of the particle and forms a lip at the exit end of the impact crater. Winter and 

Hutchings believed that both mechanisms are adversely affected if the particle executes 

a rolling type rotation during its time of contact with the surface rather than sliding 

along it, because some of the initial particle kinetic energy is lost in the rotation kinetic 

energy.   

 

 

Figure 2.8: Modes of deformation, (a) cutting deformation, (b) ploughing deformation with an 

angular particle, (c) ploughing deformation with a sphere [7] 

 

Hutchings [5] has divided the cutting deformation mechanism caused by angular 

particles (modelled as square plates) at oblique impacts into two types according to the 

rotation direction of the particle after impact. He suggested that, for particles that 

exhibit a forward rotation, all the metal displaced from the indentation is pushed 

forward into the large lip at the exit end, which is clearly vulnerable to removal by 

subsequent impacts. However, for particles that execute a backward rotation, a complete 

machining action was observed in which a chip of metal was thrown out from the target 

(see Figure 2.7).  More recently, Dhar et al [47] have identified two primary erosion 

mechanisms when angular steel particles were launched against a soft aluminium alloy 

target, ploughing resulting from forward rotating particles and machining resulting from 

backward rotating particles. The backward rotating particles were not found to machine 

a chip to complete removal leaving a smooth cut profile (as was found by Hutchings 

[5]), but, instead, the chip was found to break off prior to completion of the machining 

action. They explained this apparent contradiction by suggesting that angular particles, 

in contrast to square particles, tend to tunnel below the surface and then pry themselves 

out, rather than cut a chip. 

 

For normal incidence, Hutchings et al [6] have proposed a platelet mechanism of 

erosion, whereby the material from which platelets are formed becomes detached from 



 27 

the surface only after many cycles of plastic deformation. Recently, Abouel-Kasem [48] 

examined the surface morphology of a steel target subjected to silica sand particle 

impacts at 30
o
 impingement angle using a whirling arm slurry tester and concluded that 

the erosion mechanism depends on the particle size, as indentation and material 

extrusion were observed for particle sizes below 200 µm whereas, for bigger particles, a 

ploughing mechanism was observed. 

 

Microscopy and other surface techniques can help identify the type of erosion which has 

occurred as well as reveal valuable information on erosion mechanisms. Albukhaiti et al 

[49] have used scanning electron microscopy, image analysis, optical microscopy as 

well as gravimetric and microhardness measurements to identify the slurry erosion 

mechanisms of 1017 steel using a whirling arm slurry test rig. Shallow ploughing and 

particle rolling was observed at low impact angles then deeper ploughing and 

microcutting at intermediate angles followed by indentation and material extrusion at 

higher angles. Ferer et al [21] have examined the damaged surfaces impacted by a 

slurry jet microscopically. Two damage mechanisms, extrusion and forging, were 

observed where impacts are not sufficient to tear the material at the surface, and no 

weight loss can be measured. When the impacts are sufficiently energetic for the surface 

to be removed, the contact time has to be long enough for deformation of the formed 

flakes to lead to tearing of the material. 

 

Zhang et al [25] have investigated the material removal mechanisms in the mechanical 

erosion of boiler tubes caused by particle impacts. Four regimes with different 

mechanisms of material removal, according to the particle impact angle, were identified 

with the aid of scanning electron microscopy. They are; a rubbing and scratching regime 

when the particle collision angle is below 20°, a cutting and cracking regime when it is 

between 20° and 30°, a forging and extrusion regime between 30° and 80°, and a 

sputtering and adhering regime when the angle is beyond 80°, but less than 90°. 

 

2.2.2 Erosion testing 

 

Erosion is a slow process and hence it is costly to be observed from an experimental 

point of view in practical environments. Consequently, many attempts have been made 

to construct small-scale rigs to simulate and accelerate material erosion. Since most of 
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the observations and models of erosion mechanisms have been made on such rigs and 

since the current work will involve simulation of erosion conditions, it is appropriate to 

review these together here.  

 

2.2.2.1  Erosion testers 

 

For solid-gas flow, two major types of laboratory erosion testers have been widely used 

to simulate industrial applications. These are the gas-blast erosion testers [13, 16-18, 26, 

50-57] and the centrifugal accelerator erosion testers [58, 59]. Gas-blast erosion testers 

are the subject of an ASTM standard [60]. Other types of erosion testers have been 

reported from time to time in the literature, for example a gas gun erosion tester [61] 

and a free-fall test rig [62]. Very recently, Deng et al  [63] studied the particle dynamics 

in the centrifugal erosion tester and the gas-blast erosion tester and noted considerable 

differences in particle acceleration which may lead to significant differences in results 

under nominally the same conditions.  

 

 

For solid-liquid (slurry) erosion, there is a wide variety of established test rigs, the most 

commonly used bench-scale ones being the slurry pot tester [12, 64-69] and the abrasive 

water jet (jet impingement tester) [20, 21, 70-73]. Nevertheless, many other types of 

slurry erosion testers have been used, including the Coriolis erosion tester [74] and the 

whirling arm slurry tester [49]. 

 

Centrifugal accelerator erosion testers use the centrifugal force imposed on the particles 

flowing through radially positioned tubes in a rotating disc to accelerate the particles to 

the required velocity, as shown in Figure 2.9. Targets are arranged around the perimeter 

of the rotating disc and eroding particles are continuously fed into the central hole of the 

rotating disc then accelerate in the acceleration tubes to achieve the desired impact 

velocity upon striking on the targets. The edges and the back sides of the targets are 

protected in specimen holders in order to prevent erosion in unwanted locations [63]. 
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Figure 2.9: Centrifugal accelerator type erosion tester [75] 

 

 

The principle of the gas blast erosion tester is that pressurized gas is allowed to expand 

through a narrow bore tube (acceleration tube) hence developing a high-velocity gas 

flow inside the tube. At the entrance of the tube, a constant feed rate of abrasive solid 

particles is introduced into the stream. The drag force of the expanding gas accelerates 

the particles to a desired speed, and then the particles strike a target that is placed at a 

known distance away from the tube nozzle. The target holder can be rotated relative to 

the particle jet to achieve a desired impact angle. A schematic diagram of a version used 

by Shipway and Hutchings [56] to investigate the effect of the acceleration tube internal 

roughness on the velocity of the erodent particles is shown in Figure 2.10. They found 

that a rough nozzle results in lower erodent velocity and a greater spread of velocities. 

Due to the influence of the acceleration tube and turbulent air, the particles contained in 

the acceleration tube do not travel parallel to the nozzle axis. Also, as the pressurized 

gas expands at the end of the acceleration tube, the particles tend to spread out and this 

divergence into a particle plume (jet) is attributed to two mechanisms, aerodynamic and 

particle-particle interaction. Shipway [55] has investigated the jet divergence angle by 

examining the profile of the wear scars. Although he did not introduce any particle flux 

distribution or particle velocity distribution in the jet, he suggested that the profile of the 

wear scar observed can be caused by particles exiting the jet at different angles and 

possibly at different velocities. 
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Figure 2.10: The gas-blast type erosion tester [56] 

 

 

The slurry pot tester relies on the relative motion between the particle-liquid mixture 

and the specimen. Generally, two cylindrical test specimens are rotated in a pot 

containing the mixture. One design, by Desale et al [66] (see Figure 2.11) used a shaft 

with a mixer propeller inserted from the bottom to ensure a homogenous mixture. 

Another shaft was inserted from the top incorporating flat arms to hold the specimen 

inside the pot, this shaft being driven by a variable speed motor to achieve the required 

relative speed. 
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Figure 2.11: Pot tester used for conducting wear studies [66] 

 

The slurry jet impingement tester is popular for research use since it allows fine control 

over a number of the most important impact parameters. The principle is that a pre-

prepared mixture flows through a tank and enters a pump which is used to circulate the 

mixture through a flow loop. Valves are used to control the flow rate by adjusting the 

amount of mixture passing through a by-pass line, hence obtaining the desired impact 

speed. The particles carried by the fluid circulate in the main circuit and then impinge 

upon a target that is placed at a defined distance from the nozzle inside the erosion 

chamber. The target can be adjusted to achieve a range of impact angles. A schematic 

diagram of a version of this type erosion tester used by Ferrer et al [21] is shown in 

Figure 2.12. 

 

 

Figure 2.12: Schematic view of the jet impingement tester used by Ferrer et al [21] 
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2.2.3 Empirical observations of factors affecting erosion 

 

Erosive wear is a complex phenomenon due to the many interrelated factors, which act 

simultaneously and interactively and affect the erosion to a greater or lesser degree. 

These factors can be split into three categories, those associated with the erosion 

conditions, those associated with the impacting particles and those associated with the 

target, as discussed in the following sections. In this context, numerous empirical 

models [1-9] have been proposed to describe the rate of material removal in terms of 

parameters which, again, can be classified as; impingement-related (particle velocity, 

particle concentration and impact angle), particle–related (size, shape and density), and 

material-related (elastic properties, hardness and toughness of both particle and target). 

A comprehensive review carried out by Meng and Ludema [10] has revealed more than 

28 equations for erosion by solid particle impingement involving 33 variables and 

constants. However, most researchers agree that particle impact velocity, particle size 

and impact angle are the primary variables affecting erosion rate. 

 

2.2.3.1 Factors associated with erosion conditions 

 

Among these parameters, impingement angle, particle velocity, and particle 

concentration play an important role on the material removal process.  

 

The impingement angle is usually defined as the angle between the target material and 

the trajectory of the impacting particle immediately before the collision [14]. It is well 

known that impact angle is one of the most significant parameters affecting the erosion 

behaviour of materials [11, 15, 17, 18]. In the literature, materials are broadly classified 

into two groups according to their response to their very different dependence of erosion 

rate on the impingement angle. The group in which plastic deformation predominates 

and which displays the most severe erosion rate at low impingement angles (between 

10°
 
and 30°) is generally known as “ductile material”, while the group in which cutting 

and fracture dominates and which displays a maximum erosion rate at normal incidence 

(i.e. 90°) is known as “brittle material”. Figure 2.13 illustrates schematically the 

variation in erosion rate with impact angle for a ductile and a brittle material when 

impacted by silica sand particles. As can be seen, these materials show a very 

significant difference in both general erosion rate and the effect of impact angle.  
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Figure 2.13: Effect of impact angle on erosion for brittle and ductile materials [17] 

 

Al-Bukhaiti et al [49] investigated the effect of impact angle on slurry erosion 

behaviour and mechanisms for two materials, 1017 steel (ductile) and high-Cr white 

cast iron (brittle), using a constant impingement velocity in a whirling arm slurry test 

rig. In addition to its well known effect on erosion rate, impact angle was found to 

influence significantly the erosion mechanism involved. Al-Bukhaiti et al concluded 

that the main erosion mechanisms for 1017 steel could be divided into three regions, 

according to impact angle (see Figure 2.14). 

 

1. Region of small angles, Ө<15
o
, where shallow ploughing is the predominant 

erosion mechanism. 

2. Region of intermediate angles, (15
o
<Ө<70

o
), where deep ploughing and 

micro cutting are the main erosion mechanisms. 

3. Region of high impingement angle, (70
o
<Ө<90

o
), where indentation and 

material extrusion are dominant.  
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Figure 2.14: Variation of erosion rate and erosion mechanism of 1017 steel (ductile) as a 

function of impingement angle at impact velocity of 15 m/s [49] 

 

The main erosion mechanisms for high-Cr cast iron could be divided into two regions, 

(see Figure 2.15),                                                                                                                    

1. Region of low impingement angles, up to 45
o
, where ploughing and micro 

cutting are the main mechanisms of material removal. 

2. Region of high impingement angles, from 45
o
 up to 90

o
, involving plastic 

indentation with extrusion lips and gross fractures and cracking. 

 

Zhang et al [25] have investigated the effect of impact angle on the erosion of steel 

(AISI 1015) under various impact conditions. They reported low wear at very small 

angles, reaching a maximum between 20
o
 and 30

o
, decreasing steadily until the angle 

becomes 80°, finally increasing between 80° and 90°. 
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Figure 2.15: Variation of erosion rate and erosion mechanism of high-Cr white cast iron as a 

function of impingement angle at impact velocity of 15 m/s [49] 

 

The velocity of the erosive particles has a very strong effect on the erosion rate [11, 17, 

18, 59]. Erosion occurs only when the impact velocity exceeds a critical value known as 

the threshold velocity. Yabuki et al [43] found this critical velocity to be dependent on 

the mechanical properties of the erosive particles and the target, as well as on the shape 

and size of the erodent. For example, they found the threshold velocity to be 2.5 m/s for 

0.26 mm silica sand particles impinging on carbon steel. As the velocity increases above 

the critical velocity, both the cutting and plastic deformation components increase, 

which amplifies the erosion rate drastically. The modes of erosion also vary depending 

on the velocity of the particles. At low velocity, the particles do not have enough energy 

to erode the material by cutting action, but elastic deformation or fatigue effects may be 

observed [42]. 

 

Many investigators e.g. [2, 4, 7, 11, 13, 17, 18, 54, 59, 68] agree that erosive wear rates 

of materials are strongly dependent on the particle impact velocity and a number have 

attempted to correlate the erosion rate with particle velocity. For example, Chen et al 

[11] have reported a linear logarithmic relationship between erosion loss and erodent 

velocity for both ductile and brittle materials. More generally, the dependence is 

commonly expressed as a power law, in which the erosion rate is proportional to the 

impact velocity raised to some power n  as follows: 
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n

pr kVE   

 

 where E
r is the erosion rate, k  is a constant, 

pV  is the impact velocity of particles, 

and n  is the velocity exponent. The value of the velocity exponent n varies with target 

material and erodent particle type and many other operating conditions. In a systematic 

study carried out by Feng and Ball [13], the erosion of four materials using seven 

different erodents has shown the velocity exponent to vary in the range of 1.5-2.7 

according to the material properties and erodent characteristics. Ghandi et al [69] used a 

slurry pot tester to study the effect of velocity on erosion rate of brass wear pieces at 

different concentrations and found an n value of 2.56. Oka et al [53] have examined the 

effect of various types of particle on the impact velocity dependence of erosion damage 

for both ductile and brittle materials. They found the velocity exponent to vary between 

2 and 2.9 for (ductile) aluminium alloy, and between 2.1 and 3.1 for (brittle) cast iron 

material. Harsha and Thakre [18] observed velocity exponents are in the range of 2-2.8 

for various polymer composites at different impingement angles (15°-90°) and impact 

velocities (30-88 ms
-1

).  

 

Since the impact velocity has such a significant influence on the erosion rate, it is 

important that its value can be controlled and measured. Accordingly, several methods 

have been implemented in the literature to measure the particle velocity such as a laser 

Doppler velocimeter [16], and photographic techniques using a high-speed light source 

[4]. 

 

It is generally agreed that the erosion rate increases with increasing particle 

concentration within a dilute suspension [25, 59, 69] and then decreases when the 

concentration rises beyond a critical value. Particle concentration can be defined as the 

mass (or volume) of particles present in a unit mass (or volume) of fluid, as a fraction or 

percentage [59, 66, 69].  

 

Desale et al [66] reported that the wear rate of aluminium alloy (AA6063) decreases 

with increasing solid concentration (10-30 wt%) at all impingement angles between 15° 

and 90°, Figure 2.16, attributing this phenomenon to the decrease in collision efficiency 

due to increased particle interaction at higher concentrations. Deng et al [58] have 
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observed a similar effect and again ascribed the reduction in erosion rate to the shielding 

effect whereby particles act as a defensive barrier, impeding the progress of further 

particles travelling towards the surface. 

 

 

Figure 2.16: Variation of erosion rate for AA6063 material by a narrow size range of particles 

(550 µm) with impact angle at different concentrations [66] 

 

On the other hand, some researchers e.g. [25, 59, 69] have examined the effect of 

concentration of particles on erosion rate using dilute suspensions where the shielding 

effect is less likely and increasing particle concentration might be expected to cause 

more particle impacts onto the surface in a given time and hence greater wear. However, 

only a very slight increase in erosion rate is observed as a result of increasing particle 

concentration [25] and this increase depends on the dominant mechanism of wear when 

the particle impact angle changes. At low concentration, these investigators [59, 66] 

have proposed a power law relationship between erosion rate and particle concentration 

as follows: 

 

kCEr   

 

where E
r is the erosion rate, k  is a constant, C  is the particle concentration, and β is 

the concentration exponent. The value of the concentration exponent β was found in the 

literature [25, 59, 69] to vary between 0.2 and the expected value of 1 according to the 

target material and erodent particle type. 
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2.2.3.2 Factors associated with erodent particles 

 

The properties of the erodent are also very significant in affecting erosion rate [48], with 

particle size, shape and properties all having an effect.  

 

The effect of particle on erosion rate has been studied over a number of years e.g. [11-

13, 15, 25, 69, 74]. Gandhi et al [69] evaluated the effect of particle size on the erosion 

rate of brass targets by zinc erodents in a slurry pot tester. The erosion rate was found to 

increase linearly with increase in particle diameter for all velocities and concentrations 

investigated. Using a Coriolis wear tester, Tian et al [74] have examined the same effect 

using three different target materials and silica sand slurry with particle size range (25-

1400 µm). For all materials considered (see Figure 2.17), it was observed that larger 

solid particles generate more wear damage at a given impact speed and concentration, 

not only for the obvious reason but also due to the fact that the larger mass and hence 

higher kinetic energy tend to be more effective in getting the erodent onto the surface of 

the material, while smaller particles are more likely to follow the streamlines.  

 

 

 

Figure 2.17: Variation of linear wear rate with respect to solid particle size [74] 

 

Many researchers have found a strong dependence of erosion on particle size [12, 13, 

25, 69], and have used a power law correlation to describe the relationship between 

erosion wear and particle size as follows: 
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pr kdE   

 

where E
r is the erosion rate, k  is a constant, 

pd  is the particle size, and φ is the 

particle size exponent. Reported values of the size exponent φ vary; Feng et al [13] 

found it to be in the range between 2.4 and 4 according to the target material and erosive 

particle type (e.g. being 3 for silica sand erodents impacting a stainless steel target), 

Clark et al [12] found it to be 2 for SiC erodents in the size range between 100 and 780 

μm impacting aluminium targets.  

 

Most experimenters prepare erodents by sieving materials into fractions that will 

contain a distribution of sizes between the mesh sizes of the upper and lower sieves, and 

so some uncertainty is always associated with the size range distribution of any given 

erodent sample [12]. Notwithstanding this, Zhang et al [25] have observed a linear 

relationship between the amount of wear and the particle size for gas-solid erosion when 

the average particle diameter is <350 μm, but a stronger linear dependence was 

observed beyond 350 μm. 

 

Erosion is also affected by the shape of the erodent particles, which are usually 

classified as round, angular, or semi-round, based on visual observation. Many naturally 

occurring particles are rounded and uniform, but newly or artificially-formed particles 

can be sharp and complex, and difficult to describe in simple quantitative terms. The 

general shape of a particle is an indicator of its erosive effect; for instance, irregular 

shapes with sharp edges increase erosion rate, whereas blunt particles with round edges 

retard it [42]. Desale et al [67] have investigated the effect of erodent shape on erosion 

wear of two ductile materials by using three different erodents; quartz, alumina and 

silicon carbide. They compared erosion rates for two shapes of particles, spherical and 

angular, having the same size and density (see Figure 2.18) and pointed out that the 

reduction in contacting area of angular particles leads to an increase in kinetic energy 

dissipated per unit area, leading to higher stress intensity which enhances the severity of 

impact. 
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Figure 2.18: Contact area due to impact of spherical and angular particles [67] 
 

 

 

 

 

It is well established that more angular particles penetrate more deeply and cause more 

effective material removal than do spherical particles, if all other factors remain the 

same [4, 14, 74]. The effect of erodent shape was found by Desale et al [67] to be more 

dominant at shallow impact angles compared to high impact angles. They suggested that 

the erosion rate by angular particles is higher than rounded particles because they were 

observed to produce deeper craters and higher average surface roughness. 

 

Chen and Li [11] have simulated the erosion process using a computer model (two-

dimensional, micro-scale, dynamic model) and have investigated the influence of 

particle shape, including triangular, square, and circular cross-sections on erosion. The 

highest calculated single particle impact erosion loss in the orientation shown in   

Figure 2.19 was by triangular particles followed by circular then square particles. This 

observation was attributed to the contact area of each particular shape and its 

consequent contact stress.  
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Figure 2.19: Erosion rate due to particles of different shapes [11] 
 

 

The effect of particle shape has also been studied in detail by Winter and Hutchings [46] 

who introduced the term ‘‘rake angle’’ to denote the angle between the front face of the 

particle and the normal to the target surface. This angle is dependent on the particle 

shape, for example always being large and negative for spherical particles. They showed 

that rake angle caused a change in erosion mechanism from a ploughing or smearing 

type of impact crater with large rake angles to a cutting mechanism at small rake angles. 

Angular particles were generally found to cause a greater proportion of cutting type of 

material removal [13]. 

 

As might be expected, the particle property which most affects erosion is the hardness 

relative to the target material. For example, Truscott [15] indicated that, for metals in 

general, wear increases rapidly once the particle hardness exceeds that of the metal 

being abraded. Beyond this, the wear rate may become fairly constant or may even 

reduce with increasing abrasive hardness. The same effect was observed by 

Sundararajan and Roy [14] who pointed out that, as long as the hardness of the erodent 

is at least twice that of the target material, the erosion rate is independent of particle 

hardness. Feng et al [13] studied the effect of eight erodents of different hardness on 

erosion rates for brittle and ductile materials. It appeared from their results that the 

erosion rate increases with particle hardness once the particles are harder than the target 

to be eroded. They also noted that the dependence of erosion rate on particle hardness 

and toughness is stronger for brittle materials than for ductile materials. 
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2.2.3.3 Factors associated with target material 

 

A wide range of materials including metals, ceramics, and polymers are used in 

applications exposed to erosive environments and the characteristics of these materials 

have a strong effect on erosion. Chemical composition, elastic properties, hardness [74] 

and surface morphology [67] are some of the major parameters of the target materials 

which affect the erosion rate. Among these, hardness is the most widely used target 

property to control erosion rate and its effect has been explored by many investigators 

[4, 13, 74]. When hard angular particles strike a relatively soft target, the target surface 

will deform plastically. On the other hand, when soft erodent particles are used, they 

may fracture upon impact, and hence, erosion damage will decrease as the target 

hardness increases. 

  

Levin et al [16] have investigated the effect of target material hardness and toughness 

on erosion resistance. It was noted that, at low particle velocities, materials with high 

hardness may offer good erosion resistance. However, at high particle velocities, when 

plastic deformation and/or cracking are more likely, hardness may not improve the 

erosion resistance of the target. They concluded that materials that combine high 

hardness (which reduces the energy transferred from the incident particle into the target) 

and toughness (the ability of the target material to absorb this energy without fracture) 

may offer high erosion resistance. 

 

Using a slurry jet impingement rig, Wood [76] has correlated erosion rates, expressed as 

volume loss (μm
3
) per particle impact, with material surface hardness for 21 typical 

engineering surfaces including both ductile and brittle materials. He reported that the 

erosion rate of brittle materials is more sensitive to hardness with erosion rate 

proportional to H 
-3.2

 (see Figure 2.20) while ductile surfaces showed erosion rates 

proportional to H 
-1.6

, where H is the surface hardness. 
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Figure 2.20: Effect of hardness on erosion rate for a range of ductile and brittle materials [76] 

 

2.2.4 Erosion models  

 

Erosion models are useful for the design of slurry components and, in the context of this 

work, are also useful in designing experiments which are relevant to real systems. 

 

Over the last 50 years, many models have been proposed to evaluate the rate of material 

removal under various eroding conditions. The pioneering work in the prediction of 

cutting action damage due to the impact of single particles against a ductile target was 

due to Finnie [4]. In his model, the particles were assumed to be rigid (non-deforming) 

with sharp edges and the target was assumed to reach a constant flow pressure (perfectly 

plastic target) immediately upon impact. Finnie further assumed that no rotation of the 

particle occurs during the impact process and hence was able to solve the equation of 

motion for the particle trajectory as it cuts the surface by considering all forces acting 

on it, and thus predicting the shape of the crater or scratch left by the impacting particle. 

The resulting expression was further extended to take into account impacts by several 

free moving particles of total mass, M. This resulted in two expressions for total 

volume, Q, removed by cutting wear, 

 

 for  

 for  
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where 
pV  is the velocity of the particles, θ is the impingement angle and P is the  flow 

pressure (constant horizontal pressure between particle and target). 

 

Finnie indicated that no erosion could occur at normal impingement impact, which is 

contradictory to other works [6, 61] and noted that the prediction of material removal 

for brittle materials is difficult to obtain due to the complex nature of cutting of such 

materials [26].  

 

Finnie’s theory formed the foundation for later models, and a more general model was 

developed by Bitter [2, 3] who considered both ductile and brittle materials. The Bitter 

model makes the hypothesis that the loss of material is the sum of material lost due to 

plastic deformation, DW (deformation due to repeated impact of particles normal to the 

target where the material elastic limit is exceeded and the surface layer is destroyed and 

fragments of it are removed), and that lost due to cutting deformation CW (when the 

particles strike the body at an acute angle scratching out some material from the 

surface). Using an approach based on Hertzian theory and making use of the energy 

balance equation, Bitter derived an equation for deformation wear, WD using a 

deformation wear factor, ε, which is the ratio of the energy absorbed by the surface 

layer during collision and the amount of energy needed to remove a unit volume of 

material: 

 

 

 

This equation is valid if 
yp VV sin , where 

yV   represents the maximum particle 

velocity at which the collision is still purely elastic and hence no deformation wear 

occurs. The effect of target mechanical properties on deformation wear is encapsulated 

in
yV , which can also be considered to be a threshold velocity, below which deformation 

wear does not take place and is given by Equation 2.9. 

 

The velocity of impinging particles can be resolved into two components, one normal to 

the surface (V1) which is responsible of the particle penetration into the target and one 

parallel to the surface (V2) causing a scratching action. Depending on whether the 

parallel component of particle velocity becomes zero during the collision process, two 
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expressions of the material removed by cutting wear can be suggested. In the first one 

the particle velocity has a parallel component to the surface when it leaves the target 

and the material removed is given by:  
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On the other hand, if the velocity component parallel to the surface becomes zero during 

the collision, the expression for the material removal due to cutting action is 
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where, K and K1 are constants which depend on material properties, ς is a cutting wear 

factor which is defined as the quantity of energy needed to scratch out a unit volume 

from a surface. 

 

The total wear in any instance is therefore, 

 

1CDTOT WWW  or  2CDTOT WWW   

 

Finnie’s restriction of no particle rotation during the impact process was removed by 

Hutchings et al [5-7] who developed a rigid-plastic theory (the particle is undeformable 

and the target reaches the fully plastic condition very quickly in the impact process) to 

predict collision kinematics and crater dimensions for impacts of single spheres and 

square plates on ductile targets. The theory assumed that the elastic effect can be 

neglected and predicted the kinematics of the particle as it ploughs or cuts through the 

material, under the assumption that the instantaneous resisting force could be calculated 

by multiplying a constant plastic flow pressure by the instantaneous contact area. 

Because the contact area changes as the particles travel through the target material, the 

force resisting the particle motion changes in both direction and magnitude. Hutching’s 

theory thus resulted in equations of motion for the particle that had to be solved 

numerically, and comparison with experimental measurements of crater volume, energy 

loss, and particle kinematics revealed a reasonable agreement. 
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Hutchings’ theory was subsequently generalized by Papini and Spelt  [8, 9] so that the 

impact of particles of arbitrary shape against targets of arbitrarily dynamic hardness and 

dynamic friction coefficient could be analysed. Papini and Spelt [9] further studied the 

special case of two dimensional ‘diamond particles’ of various angularities by 

constructing a computer programme capable of describing the trajectories of particles as 

they form impact craters, so that their size and shape can be predicted. Experimental 

work carried out by Papini and Dhar [77] has shown that the agreement between 

experimental and predicted rebound linear, angular velocity, and energy loss was good, 

while the model generally overestimates the measured crater volume, and 

underestimates the rebound angle.  

 

In addition to the contact mechanics-based approaches discussed above, empirical 

correlations between impact parameters and erosion damage caused by solid particle 

impact offer an alternative approach taken in the literature in order to estimate the 

material erosion rate [16, 53]. Based on empirical expressions derived from a wide 

range of experiments and observations, the simplest way of writing an equation for 

erosion is parametrically [42]: 

Erosion = f (operating condition, properties of particles, properties of base material).  

 

However, each equation reflects a very specific and individual case and there are no 

predictive equations for erosion damage that can be applied to many types of metallic 

materials under various impact conditions. The great variability of the such models 

together with the high expense involved in carrying out erosion experiments has led 

some authors [78] to develop a numerical model based on the finite element method to 

evaluate the removed volume of material due to particle impacts. 

2.2.5 Particle interference effects  

 

The work reviewed above focuses on the analysis of single particles striking a surface, 

but the importance of multiple overlapping impacts in real eroding flows is now 

recognized and currently receives considerable attention. In solid particle erosion 

testing, the dependency of the erosion rate on incident particle flux (stream density) can 

be attributed to the effects of interference between impacting and rebounding particles 

in the collision zone, an effect that limits the erosive potential of the particles at the 
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surface and hence reduces the efficiency of solid particle erosion with increasing 

particle flux. Shipway and Hutchings [79] considered the interference between an 

incident stream of particles and those rebounding from a flat surface. They describe a 

method to determine experimentally both the particle flux below which inter-particle 

collisions are insignificant, and the spatial distribution of particles in the incident 

stream, for a sand blast type erosion setup. The method is based on the observation that 

the erosion scar produced by particles impinging on a coated substrate abruptly 

increases in size at a critical particle flux. This increase in scar radius is attributed to 

increased particle interactions, as incoming particles are scattered by rebounding 

particles.  

 

A computer model that simulates a stream of spherical particles impacting a flat surface 

was devised by Ciampini et al [80, 81] in order to determine the interference effect 

between rebounding and incident streams of spheres. The simulations allowed for 

multiple spherical particle collisions by tracking the movement and collision of 

individual particles in three dimensions, so that interference effects could be determined 

as a function of stream angle of incidence, incident particle velocity and size, nozzle 

divergence angle, particle flux, stand-off distance, and coefficient of restitution for both 

particle-particle and particle-surface interactions. A dimensional analysis allowed for 

presentation of generalized results, and a parametric analysis identified the 

dimensionless groups that were proposed to assess the reduction, due to interference 

effects, in stream power from that available at the nozzle exit. In erosion testing, to 

avoid confusion between effects due to interference with more fundamental parameters 

such as particle size, shape, angle of attack, and material, care must be exercised to 

ensure that the particle flux is low enough that only a small proportion of incident 

particles undergo collisions. Ciampini et al [80, 81] show that the results of their 

simulation can be used to determine the optimum particle flux to be used in such 

experiments. 

 

 A number of investigators have attempted to construct models that allow assessment of 

particle interference effects to be measured analytically [82, 83]. Gomes-Ferreira et al  

[84] have simulated particle streams allowing for divergence and for inter-particle 

collisions both on the way to the surface and after rebound. Modifying the model of 

Shipway and Hutchings [79] for the probability density function (p.d.f.) of particle 

angles: , where τ is a dimensionless parameter 
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describing the tendency of the stream to diverge, Gomes-Ferreira et al developed an 

expression for the radial distribution of dimensionless incident energy per particle in a 

diverging stream with no collisions: 

 , where the subscript 0% indicates no particle 

interference effect, r1* is a dimensionless radial position equal to , where s is the 

nozzle-to-surface stand-off distance, and r is the radial distance from the centre of 

impacting stream.                     

 

When collisions are taken into account, two distributions arise, one for particles which 

reach the surface without colliding with other particles: 

 

and one for particles which collide before they reach the surface: 

 

where c is the proportion of particles which collide with others before reaching the 

surface,  *r    and *r is the average dimensionless radius at which 

particles which do not collide with others strike the surface. All of the parameters c,  

*r , α, A, B, C, D, E, F, G, H and M were determined by fitting the above distributions 

to the results of simulations of the particle stream and the entire distribution was 

obtained by adding the two. 

 

Simpler distribution functions of particle energies have been considered for other 

situations where the flux and velocity are somewhat lower. For example, Crespo [85] 

has taken the energy p.d.f. of balls in a ball mill to be given by a Boltzmann 

distribution:  

1
exp

e
g e

P P
, where P is the average energy. 

In a rather different sphere of engineering Brodie and Rosewell [86] have considered 

the intensity of rainfall in models of particle wash-off. Whereas these authors were 

primarily interested in the total kinetic energy of a given storm, they calculated this 

from an empirical distribution of raindrop size, D: 

0 expVN D N D  

and an empirical relationship between raindrop size and velocity: 
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4.854 exp 0.195FV D D
 

 

2.2.6 Particle-laden liquids  

 

The presence of a liquid carrying the particles influences the movement of the abrasive 

particles near the test surface much more than in dry erosion. Therefore, it is necessary 

to understand the fluid dynamic behaviour of particle-laden liquids and their interaction 

with flat surfaces.   

 

Turenne et al [87] have investigated the effect of particle concentration in a slurry on 

the erosion rate of aluminium samples using a narrow slurry jet of (200-300 μm) sand 

particles in water at normal incidence angle at a fixed velocity of 17 ms
-1

, whilst varying 

the slurry concentration between 1 and 20% by weight. They characterised the so-called 

“blanketing effect” in dense slurries by identifying an erosion efficiency, ηe, (ratio of 

mass lost by erosion to mass of erodent used) which decreased with the inverse cube 

root of the volume fraction of sand in the stream, f:  

0.33e

K

f  

where K is a constant which will depend on the erodent, the target, the jet size and the 

fluid velocity.  

 

On examination of the eroded surfaces, Turenne et al also noted that they expected that 

different impingement angles could result in very different effects of slurry 

concentration even to the extent that efficiency could increase with concentration at low 

angles of incidence.   

 

Fang et al [88] directed a jet of silica sand (particle size 600-850 μm) suspended in 

water at samples of four different ceramics and found that the erosion rate did not 

change in a consistent way in the concentration range 3 to 7.5 wt.%, although the 

maximum erosion rate for all the materials investigated was at an impact angle of 90°. 

Iwai et al [89] investigated the slurry wear rate of 13 materials and found that the effect 

of changing one of the experimental conditions such as jet velocity Vj, particle size D, 

or particle concentration C on the erosion rate of the target Er was characterised 
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typically by exponents whose values were chosen to fit the experimental data as 

follows: 

 

 

Particularly when the carrier fluid is a liquid, fluid-particle-surface interactions can have 

a significant effect on particle trajectories and velocities near the target, and hence on 

the AE energy transferred to the target. Laitone [90] was one of the first to comment 

that particles approaching a surface always impinge with angles of less than 90
o
 

indicating that there is always a difference between the true incidence angle and the 

angle of the approaching flow. Benchaita et al [91] have noted that the form and 

dimensions of the erosion crater in a copper target subject to a 20 mm square section jet 

consisting of a 0.3 wt.% suspension of silica sand in water were consistent with a spread 

in particle trajectories from normal to more inclined angles. They identified three 

regions in a jet with normal incidence; a uniform flow at the nozzle exit, a streamlined 

flow near the target and a uniform exit flow parallel to the surface. In the streamlined 

region, the components of the flow are given by: 

and   

where x and y are measured from the stagnation point and Z is a flow parameter which 

depends on the jet velocity, the nozzle width and the stand-off distance. These authors 

also noted that the boundary layer thickness, given by  (where ν is the 

kinematic viscosity of the fluid), relative to the particle size is important in assessing the 

extent to which the boundary layer will slow the impinging particles. 

 

Clark and Burmeister [92] have identified the role of a “squeeze film” as a cushion 

between an approaching particle and a surface, irrespective of particle size and initial 

velocity of approach. They suggested that the extrusion of the intervening layer may 

even prevent impact entirely at low Reynolds numbers, a suggestion which was 

confirmed later by Wong and Clark [93] who showed that, for 50 μm glass beads in a 

flow at 6 ms
-1

, impact is prevented altogether. More recently, Clark [64] has noted that 

knowledge of the flow conditions close to the surface in erosion testers, such as the 

slurry pot, is “not very sound”, but that the impact velocity of particles, deduced from 

individual crater dimensions, can be  50% or less of the free stream velocity of the fluid. 

Much of this difference could be explained by potential flow, taking into account the 

distribution of impact angles and consequent components of the velocity normal to the 
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target, and the rest  was attributed to the retardation effect of the squeeze film, with 

small (<100μm) particles in dense slurries being most susceptible. Not only may 

particles approaching the target surface at low Reynolds number be unable to penetrate 

the squeeze film on rebound or approach and, in more concentrated slurries, a layer of 

particles can become trapped at the surface offering the target some protection from the 

effect of impact by further approaching particles.  

 

Turenne and Fiset [94] solved numerically the differential equations for particle 

movement in the flow field near the surface for a slurry jet impinging a surface with 

normal incidence. By curve-fitting their numerical results, they produced parametric 

equations for particle trajectories in terms of the final radial position of the particle on 

the surface, r, the incident speed V, and the impact angle θ as a function of initial 

location of the particle in the jet, ri, the initial velocity (jet exit velocity) Vj, and the 

particle size d: 

 

 

 

 

(2.15) 

 

Turenne and Fiset noted that the predominant variable affecting the impact parameters 

is the particle size. Due to their higher inertia, the trajectories of larger particles are 

deflected less, resulting in an impact angle closer to the original jet direction and the 

impact velocity is also a higher proportion of the original jet velocity.  

 

2.3 Acoustic emission (AE) technology 

 

All solid materials exhibit some degree of strain under external forces and will spring 

back when released. If this spring back is rapid, such as might occur during incremental 

crack propagation or even the sudden movement of dislocations in plastic deformation 

the recoil can generate an elastic wave. Such rapid releases of elastic energy caused, for 

example, by deformation or damage within or on the surface of a material and the 

associated stress waves (essentially propagating elastic strains), are normally referred to 

as acoustic emission (AE) [95]. A generating event (source) produces an elastic wave 

which propagates in all directions in the body and on the surface and can be detected by 
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locating sensors at appropriate positions on the surface of the object to be monitored, as 

shown schematically in Figure 2.21. Sources of AE in rotating fluid-handling 

machinery include impacts, fatigue, friction, turbulence, cavitation and leakage [96]. 

 

 

 

Figure 2.21: Working principle of AE technique [95]. 

 

2.3.1 Characteristics of “hit-based” AE 

 

In the current work, the primary interest is in the AE generated by impacting particles, 

the monitoring principle being that each particle impact will act as a generating event, 

and the cumulative effect of a number of these events can be recorded using AE sensors. 

AE is unlike other non destructive methods in many regards [96]: 

 

 AE offers the advantage of earlier defect/failure detection due to the increased 

sensitivity to the events leading to failure. 

 Instead of supplying the energy to the object under examination, AE simply 

listens to the energy released from the object. 

 AE is sensitive to the degradative processes, for example, defect growth or 

changes in the material, rather than to the static presence of a defect and this is 

particularly meaningful because only active defects will be detected. It is 

therefore primarily an in-service monitoring tool as opposed to an out-of-service 

testing tool. 

 AE has the ability to monitor simultaneously the entire structure without taking 

it out of service. This can offer great cost savings compared to other tests, 
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although more advanced processing is required to interpret the signal if multiple 

sources of AE are present or if it is necessary to locate the source. 

 

AE wave types cannot be controlled, and the different wave types travel over 

different paths and at different speeds according to the shape and properties of the 

propagation medium and surrounding media [97]. At any point on a surface, AE 

waves are subject to refraction, scattering, attenuation and reflection from the 

boundaries, all of which makes interpretation difficult. Whereas it is rarely the case 

in real systems, AE waves are normally treated as if they were pure modes; the most 

commonly considered being dilatational (compression) waves, distortional (shear) 

waves, surface waves (Rayleigh) and plate waves (Lamb).  

 

AE covers a wide frequency range (100 kHz to 1MHz), and recorded AE signals can 

broadly be categorised into burst, continuous and mixed type (see Figure 2.22). In 

the first type, the signal can be characterized by discrete transients with relatively 

short decay time and even shorter rise times, this type of signal is observed in 

unsteady process such as cracking in materials [98]. Continuous emissions are either 

bursts that occur too closely together to be distinguished or are due to sources that 

are spread out in time. Examples of the former type of signal might be those 

associated with plastic deformation in ductile materials and erosion processes in 

brittle materials [70]. The final type of AE signal is called mixed mode which 

contains a number of high level bursts above the background continuous emission 

[99], and are typical of sources which are themselves have some kind of temporal 

structure, often those where the source is distributed, such as in engines. 

 

  

Figure 2.22: AE signal wave types [43] 
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Typical parameters used to describe time-based AE signal features are shown in   

Figure 2.23 and these can be summarised [37]: 

 

 AE energy is calculated from the integral of squared amplitude of signal 

duration over time. 

 AE count is the number of times that burst signal amplitude exceeds the 

preset threshold. 

 RMS AE is the energy rate or the root mean square of voltage, which is 

generally an indicator of average AE energy over each averaging time. 

 Rise time is the time interval between the first threshold crossing and 

maximum amplitude of the burst signal. 

 Signal duration is the time interval between the first and last threshold 

crossing of the burst signal. 

 

However, these descriptors have evolved from the needs of hit-based inspection systems 

(aimed at identifying and timing of single events) and they are rarely used as the only 

means of analysing the more complex time series typical of a monitoring application.  

 

 

Figure 2.23: Traditional time-based features of AE signals. Adapted from [99] 
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Signal processing is probably the most important single entity in a condition monitoring 

system since it is the means of determining the condition of the system from one or 

more complicated time-series signal. Arguably, AE signals contain too much 

information, since signals, as acquired, have a bandwidth of 0.1-1MHz. The extraction 

of a set of diagnostically significant features from such a signal is the role of signal 

processing and this normally requires to be carried out automatically in a real 

application. The main aims of signal processing are therefore [100] to: 

 Reduce the information to a manageable amount. 

 Reveal the signal features which are of interest. 

 Minimise the influence of unwanted effects on the signal. 

 

2.3.2 Application of AE as a tool to monitor erosion damage caused by 

solid particle impacts 

 

Monitoring of particle impact using acoustic emission exploits the fact that, when a hard 

solid particle strikes a target, a fraction of the incident energy dissipates as elastic 

waves, which will propagate through the target material according to its shape and 

elastic properties before being detected by a suitable AE sensor. The characteristics of 

the observed signal from the sensor will depend not only on the particle impact 

dynamics, but also upon the propagation of waves into the target medium and the type 

of sensor used. Because of this, and the very high temporal resolution available from 

AE, and despite the theoretical observation that little of the energy in particle impact is 

converted to elastic waves (AE), the potential of AE to monitor erosion phenomena has 

attracted many investigators, some concentrating on measuring the erosion variables 

identified in section 2.2.3, and others concentrating on monitoring the amount of 

erosion. It should, however, be noted that AE monitoring is indirect, in that, at best, it 

will reveal the characteristics of the impacts rather than the effect that these impacts 

have on removing surface material. 

 

One of the seminal studies of hard particle impact on surfaces using acoustic emission 

was by Buttle and Scruby [62] in which bronze and glass particles were allowed to fall 

under gravity in a vacuum onto a specimen onto whose opposite face was mounted an 

AE sensor of very high fidelity. Using a calibration with a capacitance transducer and 

pulsed laser, they were able to deconvolve the AE signal to produce force signals for the 
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impacts, and showed that the peak force and impact times were consistent with 

Hutchings’ model [34] for impact time: 

, where A is a constant, ρp, R and Vp are the density, radius and 

impact velocity of the particle, and f(E) combines the elastic properties of the particles 

and target: 

2 2

1 2

1 2

1 1
f E

E E
  

The peak impact force indicated by the Hutchings model:  

  , where B is a constant, somewhat overestimated the 

experimental peak forces for some impacts, an observation which was attributed to 

possible overestimates of velocity, a non-unity coefficient of restitution and non-

spherical particles. Nevertheless, Buttle and Scruby concluded that, in the range of 

impact speeds of 2.5 to 7.1ms
-1

 and particle sizes 50-100μm, particle size could be 

distinguished using AE provided that individual impacts are separated by at least 1ms.  

Boschetto and Quadrini [101] have taken a different approach, dropping a fixed weight 

of powder of various materials and sizes, and measuring a normalised number of counts, 

which they found to be simply related to the mean particle diameter. At the other 

extreme of particle flux, Ivantsiv et al [102] have measured the mass flow rates of 

particles in abrasive jets using AE. Glass beads of approximately 60 μm nominal 

diameter and aluminium oxide powder of 25 μm equivalent spherical diameter were 

used as abrasives with particle velocities of around 150ms
-1

 and particle impacts 

separated by around 30-100μs. They used two approaches to estimate the mass flow rate 

(controlled to be between 1 and 11 g min
-1

), the first using a dynamic threshold to count 

individual impacts and the second using the power spectral density (PSD) of the AE 

signal. Also working with high particle fluxes (80 g min
-1

 of 18-80 μm equivalent 

spherical diameter particles), Faisal et al [103] showed that the measured AE energy 

and expected kinetic energy rate in HVOF spraying were well correlated. In both of 

these pieces of work, it was necessary to mask the surface to limit the number of 

incident particles. The simple kinematic model for spraying through a slit used by Faisal 

et al [103] assumed that the particle velocity and density was constant across the 

impinging spot and the particle spay was collimated. 
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Duclos et al [22] carried out a rather more applied study using AE to monitor impacts of 

streams of particles of various sizes at various concentrations in a water flow loop. By 

estimating the number of impacts from the particle concentration and flow rate, they 

showed that the AE energy per particle was approximately proportional to the cube of 

particle size (i.e. particle mass), although they noted anomalies at higher particle sizes, 

attributable to particle drop-out according to Stokes’ Law. Some authors have reported 

the possibility of using an AE sensing technique for on-line monitoring of slurry flow 

properties. Hou et al [23] mounted an AE sensor on the external wall of a small 

diameter pipeline conveying dense slurries of fine silica particles with an average 

particle size of 13 μm. Based on the acoustic noise produced by the fluid flowing inside 

the pipeline and using a stepwise regression analysis technique, they were able to derive 

quantitative relationships between the physical properties of the flow, such as solid 

concentration, mass flow rate and volume flow rate, and the statistical and spectral 

characteristics of the recorded AE. They also observed that the frequency in the power 

density spectrum of the signal increased with increasing flow rate. However, the 

validity of this empirical regression approach depends upon the mechanical flow 

properties of the two-component mixture, and is unlikely to be applicable on all other 

configurations where different components and materials might be involved.  

Ferrer et al [20, 21] attempted to characterize and understand the mechanical damage 

during the abrasion-corrosion process with the aid of a combination of AE measurement 

and an electrochemical device used for corrosion potential measurements. A slurry jet 

impingement rig was used with the potential of varying fluid flow rate (1-16 ms
-1

), 

concentration (1-8 wt.%), and angle of impact (30°-90°) with an AE sensor coupled on 

the rear surface of the 304L stainless steel target. Two different methods were studied. 

For the single impact method, where glass beads of diameter 720 μm were introduced 

into the suspension one by one, they observed that the acoustic energy due to the impact 

is proportional to the incident kinetic energy. The coefficient of proportionality was 

found to increase with the impact angle, and this observation was attributed to the 

hydrodynamic boundary layer that slows the particles at low impact angle as well as 

lowering the amount of elastic energy transmitted to the target. They also observed that 

the amplitude and the frequency of the AE bursts increase with the velocity of the fluid 

(which was assumed to be the same as the velocity of the particles). When the particle 

velocity was greater than 10 ms
-1

, new bursts characterized by low amplitude and low 

frequency parameters were observed. These new bursts were attributed to bubbles 
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generated in different locations on the test loop and it was concluded that AE was 

capable of separating easily the impact of particles from the collapse of bubbles, an 

observation confirmed later by Duclos et al [22], who reported that acoustic energy due 

to air bubbles is much lower than that for particle impacts. Both sets of author concur 

that bubble collapse is unlikely to constitute a significant uncontrolled source of 

acoustic emission in systems where abrasion and erosion need to be monitored. For the 

multi-impact method, where defined quantities of SiC particles of size 125 μm were 

introduced into the suspension, Ferrer et al [20] obtained a simple relationship between 

the weight loss measured at the end of the test (2 hours) and cumulated acoustic energy 

measured during each test. On this basis, they claimed that acoustic energy may used to 

quantify the mechanical damage due to abrasion-corrosion processes, whatever the flow 

rate and the concentration of particles, although clearly some kind of calibration would 

be required.  

Oltra et al [73] used AE to monitor combined abrasion and corrosion of stainless steel 

plates with a slurry jet impinging normal to one surface and an AE sensor fixed on the 

other. They measured the relative amounts of erosion and corrosion, and showed that 

the mechanical wear (measured as a mass loss after the 1 hour erosion test) was 

proportional to the mean value of RMS AE signal for the duration of the test. However, 

in parallel experiments with individual impacts using spherical glass beads of various 

diameters (from 1 to 2.5 mm) and SiC particles of various sizes (from 1 to 2.8 mm), 

they observed that the acoustic emission was proportional to the kinetic energy of the 

particle impact and not to the mechanical damage, measured as the volume of the wear 

crater which was determined after averaging the mass loss due to several impacts.  

 

Burstein and Sasaki [24], as well as concurring with the observation [73] that the wear 

rate by particle abrasion is correlated to the RMS AE signal, further indicated that using 

either the maximum amplitude of individual AE events or the RMS AE value was  an 

acceptable measure of the magnitude (wear induced) of the impact in slurry handling 

after a clear linear correlation between RMS AE signal and maximum amplitude of 

individual AE events was found. Using a slurry jet impingement rig to study the effect 

of impact angle on slurry erosion-corrosion of a stainless steel target, they examined the 

correlation between the maximum amplitude of AE events and the electrochemical 

transient caused by the impact of an individual erosive particle (400-650 μm rounded 

silica sand particles). A high degree of scatter was observed in correlations between 
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current rise and AE amplitude although it was observed that each sharp rise in the 

electrochemical current transient under particle impact was accompanied by an AE 

event. The correlation was found to depend on impact angle and less scatter was found 

at oblique angles than at normal incidence. The sharp current rises were ascribed to the 

rupture or removal of oxide film on the surface by the impact of abrasive particles. To 

simulate erosion of boiler tubes, Zhang et al [25] directed an air stream with particles 

<500 μm onto the surface of a tube while measuring the AE energy. Using dimensional 

analysis, they established a relationship between AE energy and the erosion wear, 

including erosion parameters: E
g

f

H

p
, where ζ is the erosion wear after a given 

time, E  is the acoustic emission energy, ρp is the particle density, H is the hardness of 

the tube material, and f and g are dimensional functions of ,,,
pp

p

p H

V

H

dC

where c is the particle concentration, dp is average particle diameter, V is particle 

velocity and θ is the particle impingement angle.  Zhang et al observed that the 

measured AE indicated that low collision angles dissipate less energy than higher 

collision angles, an observation which is consistent with [20]. 

 

AE has also been proposed as a promising tool for on line monitoring of material 

removal involved in the abrasive water jet (AWJ) drilling process. Mohan et al [104] 

have investigated the ability of the AE technique to detect the amount of energy 

dissipated in the workpiece during such a process. A simple physical model to 

determine the absorbed jet energy was developed and correlated to the measured energy 

of the AE signals at different water pressures. A logarithmic relationship was found 

between the calculated absorbed energy and the measured AE energy which implies the 

possibility of using AE as an indicator of energy dissipated during AWJ machining. In 

related work, Kovacevic et al [70] used AE to study the material removal mechanisms 

involved in the AWJ drilling process for three different materials, magnesia chromite, 

sintered magnesia, and bauxite. The time domain AE signals corresponding to the first 

material, which is characterized by a lower Young’s modulus and lower cold 

compressive strength as well as the presence of hard inclusions in a much softer matrix, 

were of continuous type representing a material removal mechanism due to 

intergranular erosion or microcracking. The material removal in a highly brittle material 

(the second material) was primarily due to continuous propagation of a microcracking 

network as was indicated by dense continuous AE. The time domain AE signals for the 
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last material were of burst type which indicated that the material removal mechanism is 

of the transgranular fracture type. Moreover, they correlated RMS AE signals with 

drilling depth to investigate the feasibility of using AE to monitor the AWJ drilling 

depth. Plots of RMS AE against drilling depth for the three materials showed that RMS 

AE reduces with increase in drilling depth. This reduction was attributed to the effect of 

back flow of the jet which reduces the particle velocity in addition to the damping effect 

on the AE signal caused by AWJ debris present in the small diameter hole.  

 

In another area of abrasion study, Momber et al [72] employed the AE technique for on 

line monitoring of hydro-abrasive erosion (HAE) of pre-cracked multiphase materials 

exemplified by five types of concrete. They investigated the effect of a range of erosion 

parameters such as abrasive particle velocity, local exposure time, and abrasive mass 

flow rate on the AE signals. They observed a higher amplitude of AE signal at higher 

impact velocities and attributed this to the presence of a more powerful material 

removal process, whereas, in contrast, the influence of the abrasive mass flow rate was 

not very significant. In addition, they found that material removal which is dominated 

by intergranular fracture is characterized by continuous AE signals, while material 

removal dominated by transgranular fracture is characterized by burst emission due to 

the sudden energy release during inclusion fracture. This observation is consistent with 

other work [70], and confirms the suggestion that AE is capable of revealing different 

material removal mechanisms occurring in materials when subject to HAE. 

 

AE has also been used to monitor sliding wear in various types of laboratory test. 

Boness and McBride [105], using a ball-on-cylinder test apparatus, where a stationary 

ball is loaded against a rotating cylinder, acquired AE signals from a sensor coupled 

acoustically to the ball housing. They obtained an empirical relationship between RMS 

AE and the volume of wear removed from the test ball. They also studied the effect of 

using different lubricants in the sliding contact on both wear and acoustic emission. 

They indicated that RMS AE is quite sensitive to the type of lubricant used (for example, 

RMS AE signals were larger for light paraffin, followed by heavy paraffin then smallest 

for SAE 30 oil) and were able to characterise the abrasive wear involved in lubricated 

sliding contacts. A similar empirical relationship between material removal and RMS AE 

was verified later by Matsuoka et al [106]. Another study concerning sliding wear was 

carried out by Mechefsek and Sun [107], who used a similar experimental rig to Boness 

and McBride in an attempt to distinguish between effective and poor boundary 
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lubrication. In the time domain, they observed that the AE counts were small when the 

wear rate was mild (effective lubrication) and large when the wear rate was severe (poor 

lubrication). They suggested using either AE peak level or RMS AE values to represent 

the wear surface strain rate. This is in agreement with the work of Burstein and Sasaki 

[24]. 

 

2.4 Identification of thesis topic 

 

It is clear from the foregoing review that AE has been used successfully as a means of 

monitoring erosion caused by hard particle impact on a target material. However, 

different investigators have made measurements under varying geometrical and 

dynamic conditions which in turn lead to results which are often simply correlations and 

are not precisely comparable with each other and, indeed, are divergent in some cases. 

No model is available so far to link either the material removal or the incident kinetic 

energy with AE signals for practical applications. Also, most of the work that has been 

done (with a few exceptions) on identifying AE energy with impact energy carries with 

it an inherent calibration problem in a system where energy might be lost by 

propagation and multiple sources with different propagation paths might be present. The 

approach to be taken here, therefore, is to use a standard measurement “cell” consisting 

of a target and sensor and to carry out a set of staged experiments where control of the 

impact conditions is gradually ceded in the interest of practical applicability, thus 

bridging the gap between controlled impact experiments with one or few impacts to 

experiments in realistic flow conditions with multiple overlapping impacts and noise 

from the carrier fluid. 
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Chapter 3 

Experimental method 

 

This chapter describes the solid particle types and specimen details, AE measurement 

system, and all the experimental procedures and arrangements for this study including 

calibration tests. 

 

First, the materials, AE monitoring apparatus and signal processing techniques are 

described. Next, the calibration of  the AE sensor using simulated sources on a steel 

block and on the target specimen along with the calibration of the specimen for its AE 

propagation characteristics are presented. Finally, the details of systematic experimental 

procedures for the three types of AE monitoring experiments are presented; free-fall and 

air-assisted particle impacts, slurry impact using a slurry jet impingement rig, and 

particle impacts in a flow loop bend. 

3.1  Materials, instrumentation and signal processing 

 

The experiments essentially consisted of monitoring particles impinging on a steel 

surface and, as such, used a common set of materials and equipment. 

3.1.1 Particle types and target plate details 

 

The free-fall and air-assisted particle impact experiments used the widest range of 

particle types; steel balls, solid spherical glass beads, and angular silica sand. The sizes 

and fractions used are listed in Table 3.1. Most of the experiments were performed with 

sieved samples of glass beads and silica sand, the sieving having been carried out to 

British Standard 410, and size distributions for air-assisted multiple particle impact 

experiments are given in Table 3.2. The distribution functions were measured using a 

Malvern particle size analyser, an example distribution being shown in Figure 3.1. 

These distributions were assumed to be Gaussian and the mean and standard deviation 

were obtained by curve fitting to the Malvern data.  

 

For the slurry jet impingement and flow loop experiments, silica sand sieved fractions 

were separated with dry sieves from commercial bulk silica sand (from Hepworth 
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Minerals and Chemicals Ltd, UK). The fractions used are listed in Table 3.3.            

The geometry of the silica sand was examined using an optical microscope (Nikon, with 

N50 monochrome camera) and found to be angular with semi sharp-semi round corners, 

as shown in Figure 3.2.  

 

 

Free-fall experiments 

Single particle impacts Multiple particle impacts 

Particle 

type 

Particle size fraction 

μm 

Particle 

type 

Particle size fraction 

μm 

silica sand 

125-212 

silica sand 

125-180 

212-300 180-212 

300-425 212-250 

425-500 250-300 

500-600 300-425 

Single particle impacts 

Particle 

type 
Particle diameter mm 

Particle 

type 
Particle diameter mm 

steel balls 

1 

glass beads 

0.9 

1.5 1.97 

2 2 

2.5 3.5 

3.2 4 

4 6 

Air-assisted 

experiments 

Single particle impacts Multiple particle impacts 

Particle 

type 

Particle size fraction 

μm 

Particle 

type 

Particle size fraction 

μm 

silica sand 

125-180 

silica sand 

 
212-250 125-180 

300-425 212-250 

500-600 300-425 

glass beads 

125-180 

glass beads 

 
212-250 

 
300-425 500-600 

500-600 600-710 

600-710 710-850 

710-850 
 

850-1000 
 

 

Table 3.1: Particle types and sizes used in free-fall and air-assisted experiments for single and 

multiple particle impacts. 
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Particle type 
Particle size fraction   

(μm) 
Size distribution function 

silica sand 

125-180 
13448

)175(
exp

205

1 2d
 

212-250 
7442

)252(
exp

5.152

1 2d
 

300-425 
20808

)320(
exp

255

1 2d
 

glass beads 

500-600 
5832

)586(
exp

135

1 2d
 

600-710 
13778

)668(
exp

2075

1 2d
 

710-850 
39762

)776(
exp

5.352

1 2d
 

 
Table 3.2: Size distribution functions for air-assisted particle impact experiments. 

 



 65 

 

Figure 3.1: Measured particle size distribution for glass beads in size range 710-850μm. 

 

 

 

 

 

Figure 3.2: Silica sand erodent particles of size fraction 300-425 µm. 
 

 

 

  Particle type Particle size fraction μm 

slurry impact experiments 

silica sand 

125-180 

212-250 

300-425 

Flow loop experiments 

212-250 

300-425 

500-600 

600-710 

 

Table 3.3: Particle types and fraction sizes used in slurry impact and flow loop experiments. 
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The target material was carbon steel, on which all measurements reported in this study 

have been made. For most of the tests, a specially-designed target was made, consisting 

of a circular plate of diameter 75 mm and thickness 7 mm, mounted into a sample 

holder as shown in Figure 3.3. A purpose-designed clamp with screws was designed to 

hold the sensor onto the centre of the rear specimen surface. Great care was taken to 

isolate the target material from the surrounding sample holder material both to avoid 

noise and to provide reproducible conditions over a range of experiments. For the flow 

loop experiments, a sharp 90 degree bend made from 5 mm bore carbon steel was 

machined and used as a target (see Section 3.3.3). 

 

 

 

 

3.1.2 AE apparatus  

 

The AE acquisition system is shown schematically in Figure 3.4. The system 

comprised a target, an AE sensor, a pre-amplifier, a signal conditioning unit, a 

connector block, a data acquisition card and a computer with LabVIEW software for 

controlling the acquisition and storage of data in the PC as shown in Figure 3.5. 

 

 

 

Impinging 

particle 

AE sensor 

Target Pre-amplifier: 

PAC-1220A Elastic waves 

Computer 

75 mm 

7 mm 

AE sensor 

Sample 

holder Target Rubber O-ring 

Nylon 

insulator 

Retaining collar 

Figure 3.3: Sectional view of target plate in sample holder 

Figure 3.4: Schematic view of the AE acquisition system 
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Figure 3.5: The AE acquisition system 

 

 

The AE sensor, which was used for all experiments, was a commercially available 

“broadband” sensor of type Physical Acoustics (PAC Micro 80 D-93), based on lead 

zirconate titanate (PZT). The sensor was 10 mm in diameter and 12 mm in length, and 

is not truly broadband but produces a relatively flat frequency response across the range 

(0.1 to 1 MHz) and operates in a temperature range of -65 to 177 
o
C. The sensor was 

chosen because of its wide use in other research on machinery monitoring and its 

relative robustness. In order to obtain a good transmission between the test object and 

the AE sensor, silicone high vacuum grease was applied to the sensor face before 

mounting onto the specimen to fill any air gaps caused by surface roughness which 

might otherwise impair wave transmission. Before every test, the sensor was checked 

by performing a pencil lead break test to ensure proper connection and attachment of the 

sensor.  

A preamplifier shown in Figure 3.6a, was used to amplify the AE signal to a level that 

can be transmitted and read by an ADC of type PAC model 2/4/6, having a switchable 

gain (20/40/60 dB) and internal band pass filter from 0.1 to 1.2 MHz to ensure that 

electronic noise outside the frequency range of interest is kept to a minimum. The 

preamplifier was powered by a +28 V power supply and used a single BNC connection 

for both power and signal. A programmable 4-channel signal conditioning unit (SCU) 

and a gain programmer (shown in Figure 3.6b) of in-house manufacture were used to 

PC with DAQ 

card installed 

Signal 

Conditioning 

Unit 
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power the AE sensors and pre-amplifiers as well as to adjust the gain level, if necessary, 

to ensure that all relevant parts of the signal could be examined.  

 

               

 

Figure 3.6: (a) Pre-amplifier, (b) Signal conditioning unit, connector block and gain 

programmer 

 

Different levels of amplification were used both in the preamplifier and the gain 

programmer, according to experimental conditions. Prior to any signal processing, all 

amplifications due to different gains were normalized using a code in MATLAB.  

 

A National Instruments BNC-2120 connector block (Figure 3.6b) was used to carry 

signals from the sensor to the data acquisition system. This was a shielded connector 

block with signal-labelled BNC connectors and included a LED to check the 

functioning of the hardware.   

 

Since the acquisition of raw AE signals in the bandwidth 0.1 to 1MHz requires a high 

sampling rate, a 12-bit resolution National Instruments (NI), PCI-6115 data acquisition 

card (DAQ) was used, and assembled into an in-house built desktop PC as shown in 

Figure 3.5. The board allowed raw AE to be sampled and stored simultaneously at up to 

10 M Samples/s for up to four channels (i.e. 2.5 M samples/s/channel) with a total 

onboard memory of 32 MB. The board supports only a differential input configuration 

and has a maximum voltage protection of 42 V. LabVIEW software from National 

Instruments was used to obtain the raw signals from the PCI-6115 board along with 

LabVIEW code [108] to control sampling frequency, number of acquired samples per 

channel, number of records, input range, pre-trigger data, trigger channel and trigger 

(a) 

(b) 
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level. Most of the data in this study were acquired at 2.5 M Samples/s for different 

record lengths. 

 

3.1.3 AE signal processing techniques 

 

Once generated, AE waves radiate in all directions, propagating throughout the material 

in a variety of forms namely; compression, shear, Lamb and Rayleigh waves. Since the 

wave from a point source has a fixed amount of energy, the wave amplitude will 

decrease with distance. According to Pollock [109], this phenomenon, known as 

attenuation can be attributed to four reasons; geometric spreading of the wavefront, 

internal friction, dissipation of energy into adjacent media and velocity dispersion. 

Further signal distortion can occur when material boundaries are encountered where 

wave reflection, refraction, transmission and mode conversions can all occur. In reality, 

this means that AE waveforms are complex and using them to characterise the source 

can be difficult as AE signal waveform (amplitude-time) is affected by characteristics of 

the source, the path taken from the source to the sensor, the sensor characteristics and 

the AE measuring system. Therefore, signal processing is probably the most important 

single entity in a condition monitoring system whose aim is to determine the condition 

of a system under test. The aim can be translated as the need to extract a set of 

diagnostically significant features from the AE waveform. 

For this particular application, there are multiple random sources arriving at an area 

quite close to the sensor, so some of the more sophisticated methods associated with 

source location and propagation are not needed. However, the target plate is thin and 

considerable ringing in the target can be expected.  

 

3.1.3.1 Time domain analysis 

 

Time domain analysis involves extracting time features from raw AE time series 

signals, which themselves can be categorised as continuous type or burst type. For AE 

burst signals, where the amplitude usually rises rapidly to a maximum value and decays 

nearly exponentially to the background noise level, a number of conventional features 

have been developed to describe the AE burst signal, and these were summarised in 

Section 2.3.1. 
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For the purpose of making an assessment of the correlation between particle incident 

energy and AE energy for single particle impact experiments, the AE impact energy E 

was calculated from the raw signal by integrating over the entire time record t above a 

threshold level of 10% of the maximum peak height,  (measured as an amplified 

voltage, V): 

 

 
t

dttVE
0

2 )(
 

(3.1) 

 

In practice, even at 2.5 MHz sampling rate, the AE associated with multiple particle 

impact events may well overlap. In order to simplify the signal processing for peak 

searching, each record was divided into intervals and then the root mean square RMS for 

each interval was calculated. It should be noted here that other time domain analysis 

using different thresholding techniques are described later. 

 

 

3.1.3.2  Frequency domain analysis 

 

Frequency domain analysis offers further options for investigation of AE signals. It 

involves obtaining signal spectral characteristics to estimate the distribution of the 

signal energy in the frequency domain. In general, frequency analysis involves the 

decomposition of time-series data into the frequency domain using a Fast Fourier 

Transform (FFT) algorithm [110] or Welch’s Power Spectral Density PSD estimate 

[111]. Frequency analysis is sometimes used to filter out noise from a signal in cases 

where AE sources are masked by the noise or the frequency structure may be used as a 

diagnostic indicator itself. In the first of these, if the required filter is carefully identified 

and constructed, then this can allow removal of noise in narrow frequency bands and 

accordingly enhance signal-to-noise ratios, provided, of course, that the noise has a 

different frequency structure to the signal. 

 

Another application of the FFT which is of particular use is called demodulated 

resonance analysis [112]. The technique involves averaging the signal using a sliding 

root mean square RMS to reveal lower frequencies in the envelope of the signal, where 

the AE wave acts as a carrier frequency for the lower frequency information,        

Figure 3.7. Again, the structure of the demodulated spectrum can itself be used as a 

diagnostic indicator, or can be used to identify, and remove, noise.  
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Figure 3.7: Steps of demodulation frequency analysis, (a) raw AE signal, (b) RMS of the AE 

signal, using averaging time of 0.2 ms 
 

  

3.2  Calibration tests  

 

 The calibration tests were carried out to determine AE propagation characteristics in 

the target and to assess the repeatability and functionality of the AE system. First, the 

simulated AE source is described, and then, the three calibration tests for the sensor in 

different installations are presented. 

 

All AE signals associated with the calibration tests were acquired at 2.5 MHz for a 

record length of 20 ms, and a total of ten lead breaks were performed at each location. 

The total energy in each record was obtained using the method described in          

Section 3.1.3.1. 

3.2.1 Simulated source for calibration tests 

 

A pencil lead break test is a well established procedure for generating simulated AE 

sources. Therefore, a commercial mechanical pencil with an in-house machined guide 

ring was used to generate simulated AE sources by breaking a 0.5 mm diameter and 2-3 

mm length 2H pencil lead, as recommended by ASTM standards (E976-99) [113]. The 

so-called Hsu-Nielson source along with its guide ring is shown in Figure 3.8.  The 

guide ring made it possible to maintain the same orientation of the pencil for all tests 

and hence break the lead in a consistent way. 
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Figure 3.8: Hsu-Nielsen source and guide ring [113] 

 

3.2.2 Calibration tests on steel cylinder 

 

Using a large steel block with a pencil lead break source can provide a reference 

calibration for characterizing a sensor. So, AE signals were acquired at four positions 

separated circumferentially by 90
o
 on a large cylindrical steel block of dimension 300 

mm diameter and 200 mm height as shown in Figure 3.9. The AE sensor was placed on 

the surface of the block at the same radial distance (120 mm) from the source at the 

centre of the top surface, and was installed and de-mounted 5 times at each position 

with records of 10 pencil-lead breaks being acquired each time, so that 50 breaks were 

recorded for each position (indicated P in the Figure). Then, the sensor was moved to 

another position and the entire process was repeated.  

 

 

 

 

P4 

P3 

P2 

P1 
Wooden supports 

AE sensor Pencil lead 

break 

Steel 

cylinder 

(a) (b) 

Figure 3.9: Sensor calibration set-up (a) schematic view of steel cylinder arrangement, (b) 

plan view of sensor positions relative to the cylinder and supports 
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Figure 3.10 shows the AE energy recorded for all of the 50 pencil-lead breaks at each 

of the four positions, each point showing the average and the variation over the 50 lead 

breaks. As can be seen, P1 and P3 show similar (lower) values with less scatter in 

recorded AE energy than P2 and P4. This effect is probably due to the configuration 

with the wooden support underneath P1 and P3 providing a leakage path.  

 

 

 

Figure 3.10: AE energy recorded at the four calibration positions on the steel cylinder 

 

 

Figure 3.11 shows the energy distribution as average, minimum, and maximum AE 

energy recorded, for the five independent trials in which the sensor was removed and 

replaced at each of the four positions. As can be seen, the energy recorded for a given 

installation varies considerably and this can be attributed to the variation of the pencil-

lead break (within group variation). In addition, the energy recorded between 

installations at the same position is different and this is attributed to changes in coupling 

conditions and magnetic clamp tightening force. In order to analyse the variance 

between a given installation (the effect of de-mounting the sensor) and among 

installations (the effect of lead breaks) quantitatively, the data for each placement at 

each position was grouped and ANOVA testing was carried out. The indicator Fvalue 

was compared with Fcrit (2.57 for the degrees of freedom involved and at the 95% 

confidence level) and, as can be seen in Table 3.4, Fvalue is always greater than Fcrit 

indicating that the variation due to removal and replacement of the sensor is more 

important than the variation in pencil lead breaks at all positions. In addition, the data 

for each position was grouped to analyse the variance between positions and among 
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positions which enables the comparison between the effect of position and the effect of 

lead break and sensor replacement. This time Fvalue was 74, much greater than Fcrit 

indicating that the effect of changing position is more important than the effect of pencil 

lead break and sensor replacement. 

 

 

Figure 3.11: Recorded AE energy for simulated sources at four positions (results of five 

independent tests between which the sensor was removed and replaced) 

 

 

Position Fvalue Fcritc 

1 4.56 2.57 

2 3.38 2.57 

3 5.93 2.57 

4 3.04 2.57 

 
Table 3.4: Summary of ANOVA results comparing the effect of demounting the sensor with the 

effect of pencil lead breaks at each position 

 

3.2.3 Calibration tests on target  

 

Since the target was relatively small, it was necessary to obtain an indication of the type 

of propagation behaviour shown by the wave generated from a simulated source, as well 

as understanding any time or frequency domain characteristics introduced by the target. 

 

The AE sensor was placed at the rear surface of the target on its epicentre, as it is placed 

for all of the experiments carried out during this study, and AE was recorded with the 

simulated source placed at four different positions on the face of the target as shown in 
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Figure 3.12. Two independent tests were carried out, acquiring ten pencil leads at each 

of the four positions, after which the sensor was removed and replaced on the target 

plate, giving a total of 20 AE records at each position. 

 

 

 

 

Figure 3.13 summarises the recorded AE energy for the pencil lead breaks at all 

positions represented by average points and the range for the ten lead breaks at each 

position for each test. It is clear that significant change in recorded AE energy occurs as 

the source was moved away from the plate centre. It might be noted that the variation in 

AE energy at each position due to the variation of the pencil-lead break was smaller 

than the variation due to sensor removal and repositioning as was found in the 

calibration tests.  

 

 

Figure 3.13: Recorded AE energy for simulated sources across the target diameter (results of 

two independent experiments between which the sensor was removed and replaced) 

 

Because the experiments involve re-installing the sensor at different times, it was 

necessary to establish the repeatability of AE energy measurement and quantify the 

effect of sensor remounting at different installations. Therefore, at a fixed position 
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Figure 3.12:  Schematic view of the target calibration arrangement 
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(centre of the target plate), 5 pencil lead breaks were recorded in each of ten 

independent batches after each of which the sensor was removed and replaced in the 

same position. As can be seen in Figure 3.14, the energy recorded between installations 

is different and this is might be attributed to changes in coupling conditions and clamp 

tightening force. 

  

As with the steel cylinder calibration tests, the data for each installation was grouped to 

carry out an ANOVA test. The Fvalue  of 4.1 was greater than Fcrit  (2.1 for the degrees of 

freedom involved and at the 95% confidence level), indicating that the variance 

associated with de-mounting the sensor is more significant than that of the pencil lead 

break, confirming the finding with the steel cylinder. Therefore, the sensitivity variation 

for a given installation (approximately 15%) needs to be taken into account when 

comparing measurements made at different times where the sensor has been removed 

and re-mounted again. 

 

 

Figure 3.14: Testing of repeatability of recorded AE energy using H-N source 

 

 

Figure 3.15a shows the time-domain of a typical raw AE signal due to a pencil lead 

break at the centre of the target plate, whereas, using the same sensor, a typical raw AE 

signal due to a pencil lead break on the face of the steel cylinder is shown in         

Figure 3.16a. To compare these signals Figure 3.16b shows part of the record from 
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Figure 3.16a expanded to a length similar to that shown in Figure 3.15a. Cleraly both 

test objects exhibit considerable ringing with the target plate decaying more rapidly than 

the cylindrical block. In order to understand the causes of the ringing, Figure 3.15b and 

Figure 3.16c show magnified segments of the records depicted in Figure 3.15a and 

Figure 3.16b, respectively. As can be seen, the AE signal in the target plate is of higher 

intensity than that in the steel block. Figure 3.16c also shows two clear wave reflections 

whose return times are consistent with a Rayleigh surface wave reflecting from the 

edges of the cylinder nearest to and diametrically opposite to the sensor, while reflection 

from the bottom of the cylinder is not clearly observable above the background. In the 

target plate, the return time of a compression wave reflected at both surfaces is 

observable, but this time is so short as to be within the period of the AE waves 

themselves. These signals indicate a strong influence of the carrier structure on the AE 

recorded. Therefore, in order to quantify the effect of the target thickness on AE energy, 

Figure 3.17 shows the variation in AE energy for pencil lead breaks on the face of the 

target plate and on the face of the steel cylinder, where each point represents the 

average, maximum, and minimum of 10 AE records. The high energy recorded for the 

target plate is therefore associated with many reflections from the faces and little 

absorption at each reflection. 

 

 

 

 

Figure 3.15: Typical raw AE signal for a pencil lead break on the face of the target plate: (a) a 

full record, (b) a magnified view of (a) 
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Figure 3.16: Typical raw AE signal for a pencil lead break on the face of the steel cylinder: (a) 

a full record, (b) a magnified view of (a), (c) a magnified view of (b) 
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The decay time was obtained from the AE records as the time between the first and final 

appearance of the AE above a threshold level of 15% above the continuous background 

level. Figure 3.18 shows the variation in AE decay time for pencil lead breaks on the 

face of the target and on the face of the steel cylinder, where each point again represents 

the average, maximum and minimum of 10 AE records. As can be seen, the decay time 

for the target plate is much shorter than that for the steel cylinder, most likely because 

there are many more reflections per unit time for the target plate but also possibly due to 

differences in the reflections coefficients for Rayleigh and compression waves.  

 

 
Figure 3.17: AE energy for a pencil lead break on the face of the target plate and on the face of 

the steel cylinder 

 

 

 

Figure 3.18: AE decay time for a pencil lead break on the face of the target plate and on the 

face of the steel cylinder 
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Figure 3.19a shows a typical frequency domain plot of a raw AE signal due to a pencil 

lead break at the centre of the target plate whereas, using the same sensor and source, 

Figure 3.19b shows a typical frequency domain plot for the steel cylinder.  As can be 

seen, the spectrum for the target plate shows that most of the power is focused in one 

very narrow band centred on a frequency of around 280 kHz, and the proportion of 

energy in this band was checked for the 10 AE records and was found to vary from 45% 

to 60%, against 56% in Figure 3.19a.  This frequency corresponds to the frequency 

with which a compression wave would return having traversed twice the target plate 

thickness (14 mm), at a speed in the published range for compression waves in steel 

(3000-5000 ms
-1

) [108], i.e. a frequency range of (210-350 kHz).  Figure 3.19b shows 

two dominant spectral peaks; a band centred on a frequency of around 160 kHz and a 

band centred on a frequency of around 240 kHz.  Again, the proportion of energy in 

these two bands was checked for 10 AE records and was found to vary from 17% to 

25% for the first band and from 15% to 20% for the second band, while the example in  

Figure 3.19b is 23% and 18%, respectively. The frequencies corresponding to surface 

wave reflections are more difficult to estimate, but the return time from the near edge 

taking a surface wave speed of 3000 ms
-1

 [108] and twice the sensor-edge distance of 6 

cm gives a frequency of 50 kHz, while the frequency corresponding to reflection from 

the far edge (approximately 1.5 diameters of the cylinder) was calculated to be around  

7 kHz. Although these low frequencies are absent from the raw AE spectrum, the 

observed bands are close to low multiples of the 50kHz frequency. In summary, the 

spectral analysis confirms reasonably well the preliminary observations about the 

ringing in the two structures concerned, especially given that the frequencies involved 

are distorted somewhat by the characteristics of the sensor (as shown in the calibration 

certificate, Appendix A). 
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Figure 3.19: Typical raw AE frequency domain for a pencil lead break: (a) on the face of the 

target plate, (b) on the face of the steel cylinder 

 

 

3.3 Particle impact tests  

 

Since the primary cause of erosion is the energy transmitted from impinging particles to 
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particle impact; airborne particle impacts (both free-fall and air-assisted), slurry impact 

using a slurry jet impingement rig, and particle impacts in a flow loop. These 
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over particles was relatively good to more realistic experiments with limited control 

over individual particles as the behaviour of the flow near the surface has a major 

influence on particle motion. The rationale behind each of the experiments is described 

below.  

 

3.3.1 Free fall and airborne particle impact tests 

 

These measurements were aimed at detecting the amount of energy dissipated in a 

carbon steel target during airborne particle impact in a situation where the kinetic 

energy of the particles was under relatively close control. The second important aim was 

to use single particles (or relatively small numbers of particles) in order that a model for 

single-particle impact AE energy could be obtained as an aid to analysing further 

experiments. Three experimental arrangements were used to investigate three impact 

regimes; low velocity-low mass (impact speeds of 1.5 ms
-1

 to 3 ms
-1

 and masses of 4.9

10
-6  

to 2.3 10 
-4 

g), low velocity-high mass (sphere masses of 0.001 to 2 g), and high 

velocity-low mass (impact speeds of 4 to 16 ms
-1

). Within each of these regimes, both 

single-particle and multiple-particle impacts were studied in order to investigate the 

effect of overlapping events and determine the time and kinetic energy resolution of the 

target-sensor arrangement. Two variables, particle diameter and particle impact speed, 

both of which affect the energy dissipated into the material were investigated and 

correlated with AE energy. The essential experimental approach was to control, as far as 

possible, the impact of individual particles, and groups of particles, impinging normal to 

the carbon steel target, whilst monitoring the AE.  

 

Single and multiple particle impacts were conducted either at “low velocity”, where 

particles were dropped under gravity (dropping distances of 10 cm, 20 cm, 30 cm and 

40 cm) or at “high velocity” where particles were entrained into an air stream. Slightly 

different arrangements were made for particle handling for single and multiple impacts, 

respectively. 

 

Figures 3.20 (a) and (b) show the two arrangements for individual particle free-fall 

impact, both of which used glass guide tubes of lengths from 100mm to 400mm in order 

to provide different impact speeds. For larger particles individual steel balls or glass 

beads of sizes specified in Table 3.1 were positioned at the top of a glass tube using 
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tweezers and released to drop onto the target, Figure 3.20a. For smaller (sieved) 

particles a small quantity of the appropriate size fractions (listed in Table 3.1) was 

placed on a vibrating tray with a slight slope so that particles fell into the guide tube 

individually, Figure 3.20b. 

 

Preliminary tests using pencil lead breaks as a simulated AE source at different 

positions on the face of the target showed significant changes in recorded AE energy as 

the source was moved away from the plate centre, as can be seen in Figure 3.13. 

Therefore, different glass guide tube diameters were employed in order to restrict the 

impact area whilst not interfering with the fall of the particles. The largest diameter used 

was 10 mm so that the maximum expected variation in energy due to the position of the 

impact was around 40%.   
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Figure 3.20: Free fall impingement arrangements: (a) individual large particles, (b) 

individual small particles using vibrating ramp, (c) multiple small particles 
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For multiple impact experiments small quantities (approximately 5g) of the silica sand 

fractions specified in Table 3.1 were loaded into a funnel which was placed above the 

guide tube as shown in Figure 3.20c. Opening a valve in the funnel allowed the 

particles to drop into the guide tube at a relatively reproducible rate depending on the 

particle size (approximately 0.23 gs
-1

). In order to limit the number of particles hitting 

the target surface in a given time (and hence reduce the likelihood of overlapping 

signals) and also to focus the stream on the area opposite the sensor, a mask plate with a 

4 mm diameter hole concentric with the sensor was fixed above the target plate. All 

particles passing through the mask hole were collected for each experiment in order to 

determine approximately the number of particles generating the signal. All single and 

multiple impact experiments were repeated ten times.  

 

 The AE sensor was mounted on the centre of the rear surface as shown in Figure 3.20 

and coupled by means of vacuum grease. The pre-amplified data were acquired at 2.5 

MHz for record lengths which depended on the particle size, and which were 

determined on the basis of some preliminary drops in order to avoid picking up signals 

due to return after rebound.  

 

For the free-fall impact system, the smaller particles were significantly affected by 

viscous drag and some did not reach their terminal velocity during the free-fall. 

Therefore, it was necessary to estimate the velocity using an equation of motion: 

 

2
33

2

1

66
pdpp

p

p VCAg
D

dt

dVD
  (3.2) 

 

where the terms on the right hand side represent the weight and viscous drag, 

respectively, and ρp and ρ are the particle and fluid densities, respectively, pA is the 

particle projected area and dC  the drag coefficient, which depends on Reynolds 

number, and was taken from Brucato et al. [114]: 75.0Re25.11
Re

24
dC . Because 

Equation 3.2 is non-linear, it was necessary to solve this numerically, which was done 

using a Runge-Kutta iteration, and assuming the particles to be spherical, to yield the 

particle impact velocities shown in Table 3.5.  
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Dropping 

distance 

(cm) 

Particle fraction
*
 (μm) 

125-

212 

212-

300 

300-

425 

425-

500 

500-

600 

125-

180 

180-

212 

212-

250 

250-

300 

300-

425 

10 0.995 1.1 1.3 1.35 1.33  

20 1.1 1.5 1.65 1.78 1.8 1.06 1.3 1.44 1.56 1.7 

30 1.2 1.7 1.9 2.1 2.17 1.1 1.4 1.6 1.76 2 

40           1.19 1.48 1.7 1.91 2.17 

 

Steel sphere diameter (mm) Glass Bead diameter (mm) 

1 1.5 2.5 3.2 4 0.9 2 3.5 4.1 6 

10 1.395 1.396 1.399 1.4 1.401 1.367 1.393 1.396 1.397 1.4 

20 1.96 1.965 1.973 1.975 1.977 1.902 1.956 1.97 1.973 1.973 

30 2.39 2.4 2.413 2.417 2.42 2.298 2.382 2.404 2.41 2.414 

*
 Values calculated for mean size in the range. 

 

Table 3.5: Free-fall particle impact velocity (ms
-1

), estimated from Equation 3.2 

 

The air-assisted impingement arrangement (Figure 3.21) consisted of an air 

compressor, a pressure regulator to adjust the air pressure, a pressure gauge to read the 

pressure drop across the nozzle, and a needle valve and rotameter to measure and 

control the air flow rate. As before, for single particle impacts, individual glass beads or 

silica particles from the fractions specified in Table 3.1 were introduced into a guide 

tube. Then the particles were accelerated by the air flow down the guide tube. For 

multiple impact experiments, the particle fractions listed in Table 3.1 were, as before, 

loaded into a funnel and, once the valve was opened, could roll down through the feed 

tube to be drawn into the gas stream and then accelerated down towards the target. The 

cylindrical nozzle/guide tube was of internal diameter 12 mm and length 300 mm, and 

the nozzle exit plane was held parallel to the target plate to ensure that the particle 

stream axis was normal to the plate. Again, a steel mask with a 4 mm diameter hole 

concentric with the sensor was fixed above the target plate in order to limit the number 

of particles hitting the target surface in a given time and also to limit the stream to a 

relatively small area of the target. The distance between the guide tube exit and the 

mask was 20 mm, and the distance between the mask and the target was 30 mm. 

Particles which passed through the mask and struck the surface of the target were 

collected using a circumferential mesh trap and weighed using a digital microbalance to 
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give an estimate of the number of particles landing on the surface for a given 5-second 

run.  

 

 

 

 

 

 

As before, the AE sensor was mounted and coupled by means of vacuum grease to the 

opposite surface of the target plate directly under the impingement area as shown in 

Figure 3.21. The pre-amplified data were acquired at 1 MS/second for a record length 

of 5 seconds. Preliminary tests were performed in which the specimen was exposed to 

the air stream from the nozzle alone without any particles. No detectable AE signal was 

observed indicating that the AE signals were caused by the effect of particle impacts 

rather than the effect of the accompanying air stream. 

 

Stevenson and Hutchings [57] have provided an empirical power-law model for the 

velocity of particles entrained in an air stream confined to a nozzle:  

 08.157.0

2

pp

n

p
d

P
V  (3.3) 

 

where Pn is the pressure drop along the nozzle, dp is the particle diameter and ρp is the 

particle material density. In order to calibrate the rig for air-assisted impact, the impact 

velocities of glass beads in the size ranges 500-600 μm and 850-1000 μm were 
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Figure 3.21: Air-assisted particle impact test arrangement 
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measured photographically with the aid of a high speed camera and scale as shown in 

Figure 3.21. Figure 3.22 shows that the measured data fit the Stevenson-Hutchings 

model to within the experimental error.  

 

 

Figure 3.22: Variation of particle velocity with nozzle pressure drop for two particle size ranges 

 

In order to obtain a semi-empirical model to correlate the particle velocity with air 

speed another model, suggested by Heuer et al [115], was used for pressure drop, P , 

along a tube with turbulent air velocity, U:  
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l
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 (3.4) 

 

where λ is the tube skin friction coefficient, tubel  is the length of the tube, tubed  is the 

internal diameter of the tube and ρair is the density of the air. 

 

Combining Equations 3.3 and 3.4, taking into consideration that the tube characteristics 

are constants, yields a relationship between particle velocity and air speed along the 

tube: 
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Figure 3.23: Dependence of particle velocity on air speed and particle diameter 

 

 

Figure 3.23 shows that the particle velocity can be described by the relationship: 

 

 
 (3.5) 

 

where dp is the particle diameter in microns and U is the air velocity in ms
-1

. This semi-

empirical relationship was used to assess the nominal particle velocity for all of the air-

assisted impact experiments. 

 

3.3.1.1 Statistical distribution model 

 

Experiments were performed with sieved (to British Standard 410) samples of solid 

spherical glass beads and angular silica sand whose size distributions are given in   

Table 3.6. The nominal particle velocity, Vp, was controlled by adjusting the air velocity 

and was determined using Equation 3.5. For each combination of size fraction and 

impact speed, five runs were carried out giving a total of 120 5-second records of full 

bandwidth AE. The particle arrival rate shown in Table 3.6 was determined by 

weighing the particles recovered from the mesh trap, dividing by the average mass of a 

particle and then dividing by the length of the record which contained AE events, found 

by inspection of the individual records. Ten single impacts were also recorded for each 

Vp = 7.2566U2/dp
0.57 + 12.363 

 
R2 = 0.9794 

0 

20 

40 

60 

80 

100 

120 

140 

0 5 10 15 20 

 V
e

lo
c

it
y

2
, 

m
2
s

-2
 

U2/dp, m2s-2/μm  



 89 

size range and each velocity, the limited number being dictated by the painstaking 

nature of these experiments. Accordingly, the single particle records were used as a 

cross-check, rather than as a primary data source.  

 

A simple auxiliary experiment was also performed by dropping individual glass beads 

of sizes listed in Table 3.1 from various heights onto the target. By using a high-speed 

camera assess the particle speeds before and after impact, Vp1 and  Vp2, it was possible to 

obtain an average value of the coefficient of restitution 
2

1

0.65
p

p

V
e

V
 . 

 

Particle 

type 

Particle size 

fraction   

(μm) 

Size distribution function 

Nominal 

velocity  

(ms
-1

) 

Average arrival 

rate  

(s
-1

) 

silica sand 

125-180 
13448

)175(
exp

205

1 2d
 

4.9 4238 

8.3 4238 

11.8 2928 

15.5 3140 

212-250 
7442

)252(
exp

122

1 2d
 

4.7 910 

7.5 803 

10.6 770 

13.8 653 

300-425 
70808

)320(
exp

255

1 2d
 

4.4 151 

6.8 162 

9.5 180 

12.3 231 

glass 

beads 

500-600 
5832

)586(
exp

135

1 2d
 

4.3 73 

6.3 70 

8.6 84 

11 110 

600-710 
13778

)668(
exp

2075

1 2d
 

4.2 54 

6 49 

8.2 69 

10.5 69 

710-850 39762

)776(
exp

3525

1 2d
 

 

4.1 27 

5.8 35 

7.9 29 

10.1 47 

 
Table 3.6: Summary of particle and particle stream conditions 
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3.3.2 Slurry impingement tests 

 

In this set of relatively controlled impingement experiments, the carrier fluid was 

changed to a liquid in order to assess the extent to which the findings with air-borne 

particles could be carried over to this medium. The experimental set-up consisted of a 

slurry impingement rig and AE system with a carbon steel target assembly identical to 

that used for the air jet tests. The test rig was designed to project a jet of slurry with a 

controlled range of nozzle exit velocities at the target surface. The flow loop used for 

performing the experiments consisted of a positive displacement pump, standard 25 mm 

diameter  PVC piping, a 50 litre conical tank and choke valves. A schematic diagram of 

the experimental set up is shown in Figure 3.24. 

 

 

 

 

 

Figure 3.24: Schematic diagram of slurry impingement rig 
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Figure 3.25: Tee joint inside the tank used for mixing 

 

The solid particles were thoroughly mixed with tap water in the slurry tank. In order to 

ensure a uniform distribution of solids inside the tank, a T-piece joint was attached to a 

by–pass leg incorporating end caps which had been drilled at 45
o
 (as shown in Figure 

3.25) to encourage vortices and swirls to be created in the tank in order to generate 

enough turbulence and sufficient mixing. The mixture flowed through the tank and 

entered the pump through a connection at the bottom of the slurry tank. A Mono pump, 

model C22BC10RMB, driven by a 1.1 kW geared motor to give an output speed of 587 

rpm, was used to circulate the mixture through the flow loop. The action of pumping 

liquid through the by-pass leg whilst adding the particle charge to the slurry tank 

provided pre-mixing at the start of an experimental run. Once the solids were fully 

suspended, the flow could be diverted through the nozzle by partly closing the by-pass 

and opening a main valve positioned before a flow meter. The flow meter was equipped 

with a thermal dispersion flow sensor which included a heated element cooled at a rate 

which varies with the flow rate. This kind of flow meter was chosen because it has no 

moving parts exposed to the slurry flow thus reducing the potential for wear to occur 

and the opportunity for blockage. The slurry stream was projected towards the specimen 

through a 5 mm-diameter nozzle with a 30 mm stand-off distance. After impingement, 

the slurry falls back into the tank which was provided with a plastic splash cover.  
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Figure 3.26: Two views of target plate and sensor arrangement for slurry impingement tests. 

 

 

The specimen was held into a stainless steel specimen holder main body and held with 

an aluminium clamping ring against a combination of nylon and a rubber O-ring to seal 

the target plate and isolate it from the surrounding holder. The sensor was placed onto a 

rubber pad inside the sensor holder, and a nylon screw used to compress the rubber to 

ensure an appropriate contact with the specimen, the assembly being clamped to the 

back of the internal main body as shown in Figure 3.26. To avoid fluid reaching the 

sensor, an aluminium splash guard was used to enclose the sensor assembly so that only 

the front surface of the specimen was exposed to the impinging slurry.  

 

The specimen holder was mounted onto a U-shaped clamp which was slotted to allow 

the slurry stream to impact the centre of the target at any pre-set impact angle between 

0
o
 and 90

o
, defined as the angle between the plane of the target and the direction of the 

slurry flow. The U-shaped clamp was attached to a rail which was bolted inside the 

slurry tank and slotted to allow the impact distance to be adjusted as shown in      

Figure 3.27.  



 93 

                  

 
Figure 3.27: Two views for the specimen holder position inside the tank 

 

 

Before each test, the sensitivity of the sensor was checked using pencil lead breaks to 

ensure proper connection and attachment of the sensor and, following each set of 

experiments where the particle size fraction needed to be changed, the test rig was 

drained and flushed repeatedly to remove all suspended particles.  

 

Five 1-second records were acquired at each of three different size ranges, with each of 

three different impingement angles, three nominal concentrations and four nozzle exit 

velocities as summarised in Table 3.7. The mean particle masses for the graded 

particles were 4.8, 16.8 and 64.5 µg determined from the average diameter for each size 

fraction and the density of silica (2600 kg.m
-3

), assuming the particles to be spherical. 

The nominal concentration of the particles in the suspension was based on the amount 

added to the rig, but, for each combination of size fraction, nominal concentration, and 

jet exit velocity, the sand content of the mixture emerging from the impingement nozzle 

was measured by sampling the slurry jet flow at the nozzle exit. Ten samples were 

taken, dried in an electronic oven, and weighed to measure their sand contents, the 

average of these ten samples being used as the measured concentration. The launch 

frequency, total number of particles launched from the nozzle per second, shown in 

Table 3.7 was determined by multiplying the volumetric flow rate (m
3
s

-1
) by the 

average measured concentration (kg.m
-3

) and dividing by the average mass of a particle 

(kg).   

 

The entrainment of air into the jet and the subsequent collapse of air pockets on the 

target surface might generate significant AE, and so it was necessary to carry out 
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control measurements with particle-free water to identify the background noise 

characteristics. Also, because the nature of the experiments might involve the removal 

and replacement of the sensor, it was again necessary to assess the variability associated 

with sensor coupling to the target. Accordingly, a series of three independent 

experiments were carried out between which the sensor was removed and replaced. In 

each experiment, five 1 second AE records were taken at each of the jet exit velocities 

shown in Table 3.7. Figure 3.28 shows the recorded AE energy at each of the four 

speeds for each of the three experiments. As can be seen, the variation between records 

for a given speed and installation is negligible, while the variation between installations 

is slightly larger although still small in comparison with the variation with speed. The 

best fit power equation is also shown for each installation and, as can be seen, the 

exponent is about 2.5, although the fit is not particularly satisfactory, the slope 

increasing more rapidly at the highest speed than indicated by this exponent. 

 

 

 

Figure 3.28: Recorded AE energy for pure water jet impingement in slurry impact rig 
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Particle size 

range (µm) 

Nominal 

concentration 

(kg/m
3
) 

Jet exit 

velocity (m/s) 

Average measured 

concentration 

(kg/m
3
) 

Average launch frequency 

(particles/second)×10
3 

125-180 

10 

4.2 1.6 ±0.6 27 ±41% 

6.8 5.5 ±0.8 153 ±14% 

10.2 6.1 ±1.7 254 ±29% 

12.7 1.8 ±0.7 94 ±41% 

25 

4.2 11.2 ±3.5 193 ±31% 

6.8 19.5 ±1.9 543 ±9.5% 

10.2 19.8 ±0.5 791 ±3.6% 

12.7 9.6 ±1.6 490 ±17% 

50 

4.2 42.5 ±2.5 736 ±6.6% 

6.8 52.5 ±4.1 1454 ±6.9% 

10.2 57.3 ±5.7 2380 ±11% 

12.7 47.2 ±2.7 2451 ±7.1% 

212-250 

10 

4.2 1.8 ±1.4 9.2 ±76% 

6.8 6.2 ±2.1 49 ±34% 

10.2 6.2 ±2.8 74 ±44% 

12.7 5.9 ±2.6 88 ±47% 

25 

4.2 10.1 ±2.9 50 ±27% 

6.8 16.4 ±0.6 130 ±8.4% 

10.2 18.4 ±1.9 220 ±11% 

12.7 14.3 ±5.2 214 ±35% 

50 

4.2 42.7 ±2.3 212 ±10% 

6.8 51.3 ±2.7 408 ±5.4% 

10.2 52.9 ±6.5 631 ±16% 

12.7 54.5 ±5.6 812 ±11% 

300-425 

10 

4.2 1.5 ±1.1 1.9 ±66% 

6.8 8.7 ±3.3 17 ±41% 

10.2 7.9 ±2.9 24 ±49% 

12.7 4.7 ±2.2 18 ±46% 

25 

4.2 10.2 ±3.3 13 ±31% 

6.8 17.2 ±2.9 35 ±15% 

10.2 19.0 ±2.9 58 ±15% 

12.7 14.5 ±3.5 55 ±24% 

50 

4.2 44.0 ±3.9 564 ±9.1% 

6.8 52.5 ±4.5 107 ±8.6% 

10.2 56.5 ±3.4 173 ±11.5% 

12.7 48.5 ±6.5 186 ±11.3% 

 
Table 3.7: Summary of measured and derived impingement conditions in slurry impact rig 
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3.3.3  Flow loop impingement tests 

 

In the final series of tests, and in order to simulate  realistic flow conditions, the slurry 

jet impingement tester described in Section 3.3.2 was modified to make a flow loop. 

The purpose of this relatively uncontrolled impingement experiment was to assess any 

further adjustments that need to be made in the processing to use AE as a semi-

quantitative diagnostic indicator for particle impingement in real process flows.    

Figure 3.29 shows a schematic view of the flow loop experimental apparatus along 

with the AE measurement system. The test rig again consists of a large plastic conical 

tank from which the liquid (with or without sand) was drawn using the mono pump. 

This pump circulated the liquid or slurry through a PVC pipe loop, and was operated 

and controlled in essentially the same way as that described in Section 3.3.2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A sharp 90 degree bend made from 5 mm bore carbon steel (Figure 3.30) was inserted 

into the 23 mm bore PVC pipeline system, a sharp bend having been selected in order to 

localize the impingement area and minimize the impact angle range. The pipe wall 

opposite to the stream was milled flat in order to have a plane area to mount the AE 

sensor and the bend was machined to give an internal bore of 5 mm with a conical 

transition, giving 7 mm wall thickness at the site where the sensor was mounted. The  

length of the target section was 75 mm giving an overall impingement area similar to 
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Figure 3.29: Sketch of the experimental flow loop with AE measurement system 
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the other studies. The AE sensor was mounted using the magnetic clamp and coupled by 

means of vacuum grease to the opposite surface of the bend directly above the 

impingement area as shown in Figure 3.30. As with the slurry impingement tests, the 

pre-amplified data were acquired at 2.5 MS/second for a record length of 1 second. 

Prior to testing, the sensitivity of the sensor was checked by performing a pencil lead 

break test at the bend to check the functioning of the AE detection system and to 

confirm the quality of sensor coupling.  

 

Figure 3.30: Sectional view of carbon steel bend test section 

 

 

Silica sand slurry was made from 10 litres of clean water and a predetermined mass of 

different particle size fractions in order to obtain the required concentration. Four 

different particle size ranges were used and, for each particle size range, an 

impingement run was carried out with a total of three levels of solid concentration   (1, 

2.5, and 5wt%) and four different flow velocities ( 4.2, 6.8, 10.2, and 12.7 ms
-1

). The 

AE energy measured was based on at least ten repeat records making a total of 120 AE 

records for each particle size range tested. Following each set of experiments, the rig 

was drained and cleaned. 
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As with the slurry impingement tests, the AE signals were acquired at full bandwidth so 

that spectral analysis could be carried out on the raw signal and also time domain 

characteristics could be examined up to the waveform resolution. 

 

The average particle impact rate and the total number of particles expected to strike the 

bend per second are shown in Table 3.7 for size fractions 212-250 um and 300-425 um 

while Table 3.8 shows particle impact rate for the larger size fractions (500-600 μm and 

600-710 μm) assuming similar average concentrations to those for the 300-425 μm size 

range. Again, average particle impact rate was determined by multiplying the 

volumetric flow rate (m
3
s

-1
) by the average measured concentration (kg.m

-3
) and 

dividing by the average mass of a particle (kg).  

  

As with the slurry impingement tests, it was necessary to identify the background noise 

AE energy associated with particle-free water impact as well as to assess the variability 

in AE energy that due to the sensor removal and replacement. Again, a series of three 

experiments were carried out between which the sensor was demounted and reinstalled 

on the surface of the target section. In each experiment, ten-1 second AE records were 

taken at each of the flow speeds shown in Table 3.8. Figure 3.31 shows the recorded 

AE energy at each of the four speeds for each of the three experiments where each point 

represents the average of ten AE energy values along with its standard deviation. As can 

be seen, the variation in the energy recorded at each installation (within group variation) 

is small, while the variation between installations is slightly bigger due to changes when 

the sensor was re-mounted. 

 

 
Figure 3.31: Recorded AE energy for pure water impingement in flow loop 
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Particle size 

range (µm) 

Nominal 

concentration 

(kg/m
3
) 

Flow speed 

(m/s) 

Average assumed 

concentration 

(kg/m
3
) 

Average particle impact rate 

(particles/second)
 

500-600 

10 

4.2 1.5 ±1.1 568 ±66% 

6.8 8.7 ±3.3 5200 ±41% 

10.2 7.9 ±2.9 7200 ±49% 

12.7 4.7 ±2.2 5300 ±46% 

25 

4.2 10.2 ±3.3 3800 ±31% 

6.8 17.2 ±2.9 10400 ±15% 

10.2 19.0 ±2.9 17200 ±15% 

12.7 14.5 ±3.5 16400 ±24% 

50 

4.2 44.0 ±3.9 16600 ±9.1% 

6.8 52.5 ±4.5 31800 ±8.6% 

10.2 56.5 ±3.4 51300 ±11.5% 

12.7 48.5 ±6.5 55100 ±11.3% 

600-710 

10 

4.2 1.5 ±1.1 330 ±66% 

6.8 8.7 ±3.3 3000 ±41% 

10.2 7.9 ±2.9 4100 ±49% 

12.7 4.7 ±2.2 3000 ±46% 

25 

4.2 10.2 ±3.3 2200 ±31% 

6.8 17.2 ±2.9 6000 ±15% 

10.2 19.0 ±2.9 10000 ±15% 

12.7 14.5 ±3.5 9500 ±24% 

50 

4.2 44.0 ±3.9 9600 ±9.1% 

6.8 52.5 ±4.5 18400 ±8.6% 

10.2 56.5 ±3.4 29700 ±11.5% 

12.7 48.5 ±6.5 31900 ±11.3% 

 

Table 3.8: Summary of derived impingement conditions for flow loop experiments 
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Chapter 4 

Experimental Results  

 
This chapter is arranged into two main sections. The first section summarises the results 

of the experimental arrangements which were used to investigate airborne impacts in 

three regimes; low velocity-low mass, low velocity-high mass, and high velocity-low 

mass. Within each of these regimes, both single-particle and multiple-particle impact 

results are presented. The second section presents the results of the slurry impingement 

tests to investigate the influence of particle size, free stream speed, nominal particle 

impact angle, and nominal particle concentration on the carbon steel target. The third 

section examines the effect of the same variables (except the nominal impact angle) on 

AE energy dissipated in the carbon steel bend in the flow loop.  

It should be noted here that the AE impact energy E was calculated from the raw AE 

signal by integrating over the entire time record above a threshold level of 10% of the 

maximum peak height. 

 

4.1 Airborne particle impact test 

 

The purpose of this set of experiments was to establish whether, over a wide range of 

impact conditions, a known incident particle kinetic energy gave rise to a predictable 

AE energy, i.e. if the proportion of the incident energy converted to AE is constant or 

not, in an arrangement using sensors and a target which might realistically be applied 

industrially. Two particle mass ranges and two velocity ranges were identified and three 

regimes of impact were used: low velocity-low mass (impact speeds of 1.5 ms
-1

 - 3 ms
-1

 

and masses of 4.9 10
-6 

- 2.3 10 
-4 

g), low velocity-high mass (sphere masses of 0.001 

to 2 g), and high velocity-low mass (impact speeds of 4 to 16 ms
-1

). In addition, low 

mass experiments were carried with individual particles and particle streams, but 

particle streams were not necessary for the high mass particles. 

4.1.1  Low velocity-low mass impacts  

                        

Figure 4.1 shows the measured AE energy normalized by particle mass for the 

individual impacts against the estimated particle velocity and Figure 4.2 shows the 

relationship between measured AE energy normalized by particle velocity and mean 
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particle diameter for the low mass particles. It is clear from these figures that the 

measured AE energy in this region is only weakly dependent on the estimated impact 

velocity, whereas the relationship with diameter is much stronger, as can be seen in 

Figure 4.2. It might be noted that the error in the measurements is largely due to the 

range in particle size within a fraction, which affects the estimated velocity, the size 

and, to a great extent, the mass.   

 

Figure 4.1: AE energy per unit mass of particle versus particle velocity for low velocity – low 

mass individual impacts 
 

 
Figure 4.2: AE energy per unit velocity versus mean particle diameter for low velocity – low 

mass individual impacts 
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Figures 4.3 and 4.4 show the corresponding plots for multiple impacts, respectively, the 

effect of estimated particle velocity on the measured AE energy per particle per unit 

mass and the effect of mean particle diameter on the measured AE energy per particle 

per unit velocity. Comparing Figures 4.1 and 4.3, it is clear that the scatter is much 

reduced due to the averaging effect of multiple impacts, although the range of measured 

energy is similar, suggesting that, at the impact rates used (a few hundreds per second 

for bigger fractions and a few thousands per second for smaller fractions) the effects of 

individual particles are additive. The multiple impact data exhibit a much clearer trend 

of energy per unit mass with velocity with a power law exponent of around 2. 

Comparing Figures 4.2 and 4.4, a much stronger trend of energy per unit velocity with 

diameter also emerges, this time with an exponent of around 4. Given that the range of 

particle sizes is much smaller than in the single particle experiments, it is clear that the 

values of the energy per particle per unit velocity are much higher (by a factor of about 

2) in the multiple particle experiments. This observation has, of course, to be 

conditioned by the fact that the normalisation per unit mass and unit velocity are 

interdependent.  

 

 

Figure 4.3: AE energy per particle per unit mass versus particle velocity for low velocity – low 

mass particle streams 
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Figure 4.4: AE energy per particle per unit velocity versus mean particle diameter for low 

speed – low mass particle streams 
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Figure 4.5: AE energy per unit mass of particle versus particle velocity for low velocity – high 

mass individual impacts 

 

 

 

Figure 4.6: AE energy per unit velocity of particle versus particle diameter for low velocity – 

high mass individual impacts 
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4.1.3 High velocity-low mass impacts  

 

Figure 4.7 shows the measured AE energy normalized by particle mass against incident 

particle velocity for high velocity single impacts, where the velocities were estimated 

using the semi-empirical calibration (Equation 3.5) and the average and range of the 

ten repeat AE energies are shown. For clarity, the diameter used to calculate the mass is 

simply the mean, unlike the presentation in Figure 4.1 where the range of diameter is 

used to show the potential error in the mass. As can be seen, there is a general increase 

in AE energy per unit mass with a velocity exponent of around 1.5, similar to       

Figure 4.3. The correlations for the two types of particle are not substantially different, 

although the scatter and the general level of energy are both slightly higher for the glass 

beads than for the sand.  

 

 

Figure 4.7: AE energy per unit mass of particle versus particle velocity for high velocity – low 

mass single impacts 
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lower than those for single impacts but the general level is consistently lower for 

multiple impacts.  

 

 

 

Figure 4.8: AE energy per unit velocity versus particle diameter for high velocity – low mass 

single impacts 

 

 
 

Figure 4.9: AE energy per particle per unit mass versus particle velocity for high velocity – low 

mass multiple impacts 
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Figure 4.10: AE energy per particle per unit velocity versus diameter for high velocity – low 

mass multiple impacts 
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At least five repeat 1-second records were analysed for each condition and the average 

value is used in the following general analysis to establish the effects of flow speed, 

particle size, impact angle and concentration, against the normal expectation that energy 

will depend on the square of both the impact speed and the sine of the impact angle, the 

cube of the particle diameter (i.e. the particle mass) and be linear with concentration, if 

expressed as mass per unit volume of water.  

 

 (i) (ii) 

(a) 

  

(b) 

  

(c) 

  

Figure 4.11: Typical 1-second AE records for (a) water and (b) slurry with 300-425 µm sand, at 

(i) a flow speed of 4.2m/s and a nominal particle concentration of 10kg/m
3
 and (ii) a flow speed 

of 12.7m/s and a nominal particle concentration of 50kg/m
3
 Graphs (c) show the RMS AE 

signal magnified to reveal events, with record c(i) corresponding to around 70 particle launches 

and record c(ii) corresponding to around 1000 particle launches. 
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Figures 4.12 and 4.13 show examples of the effect of flow speed (jet exit velocity, Vj) 

on the measured AE energy for a given concentration and particle size, respectively, at 

normal incidence. As can be seen, the energy varies with approximately the second 

power of flow speed, and this power dependence increases slightly with decreasing 

concentration (at the particle size chosen) and appears also to decrease slightly with 

decreasing particle size (at the concentration chosen). Table 4.1 shows the best fit 

power index for all of the measurements along with the associated R
2
 values. The 

weighted average exponent calculated from 

2

2

i i

i

n R
n

R
 was found to be 2.7, which is 

in reasonable agreement with other studies which report this index to lie in the range of 

1.5-3 depending on the slurry properties and mechanical properties of the material under 

investigation [89]. It is also evident from Table 4.1 that exponents higher than 2 are 

associated with the lower concentrations where the signal:noise might be expected to be 

low.  

 

 

Figure 4.12: Effect of flow speed on AE energy for the three particle sizes at a concentration of 

5kg/m
3
 impinging at normal incidence 
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Figure 4.13: Effect of flow speed on AE energy for the three concentrations for particles in size 

range 125-180 µm impinging at normal incidence 
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angle θ (°) 
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concentration 

(kg/m
3
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Flow speed 

exponent (n) 

Curve fitting R
2
 

value (%) 

125-180 

90 

1 2.0 94 

2.5 1.95 99 

5 1.8 98 

60 

1 3.1 78 

2.5 2.3 98 

5 1.3 99 
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90 

1 4.4 89 

2.5 2.2 99 

5 1.7 97 

60 

1 4.3 81 

2.5 1.8 99 

5 1.8 99 

30 

1 4 96 

2.5 2 99 

5 1.9 98 

300-425 

90 

1 5 81 

2.5 5 91 

5 2.2 99 

60 

1 5.2 93 

2.5 2 98 

5 1.8 99 

30 

1 4.2 76 

2.5 2.2 99 

5 1.7 98 

 

Table 4.1: Exponent of flow speed dependence of measured AE energy for all experiments. 

(Data in bold font are plotted in Figures 4.12 and 4.13) 
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Figures 4.14-4.16 show the effect of mean particle diameter on the measured AE 

energy for the range of flow speed and nominal concentration studied at normal 

impingement angle. Generally, the power exponent is between 2 and 3, except in the 

cases (low speed and lower concentrations) where there is very little particle signal 

(above the water “noise”) and where changes are difficult to discern at all. As with the 

flow speed exponent, the diameter exponent tends towards the expected value of 3 at 

higher concentrations whereas, at the lower speeds and concentrations, the exponent 

tends towards 2 (in cases where a change can be discerned). Table 4.2 shows the 

parameters for the remaining experiments where similar trends can be seen, leading to a 

weighted mean exponent of 2.1. 

 

 

Figure 4.14: Effect of mean particle diameter on AE energy for normal impact at the four 

nozzle exit velocities with a 1% slurry 
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Figure 4.15: Effect of mean particle diameter on AE energy for normal impact at the four 

nozzle exit velocities with a 2.5% slurry 

 

 

 

Figure 4.16: Effect of mean particle diameter on AE energy for normal impact at the four 

nozzle exit velocities with a 5% slurry 
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Nominal impact 

angle θ (°) 

Nominal 

concentration 

(kg/m
3
) 

Jet exit velocity 

(m/s) 

Particle diameter 

exponent (Φ) 

Curve fitting R
2
 

value (%)  

90 

1 

4.2 - - 

6.8 2 99 

10.2 2  99 

12.7 2.4 93 

2.5 

4.2 - - 

6.8 2.1 99 

10.2 2.7 99 

12.7 2.7 99 

5 

4.2 2.2 92 

6.8 2.4 99 

10.2 2.7 99 

12.7 2.8 99 

60 

1 

4.2 0.3 12 

6.8 0.5 76 

10.2 2.5 98 

12.7 2.8 98 

2.5 

4.2 2.4 88 

6.8 2.2 99 

10.2 2.2 100 

12.7 2.1 97 

5 

4.2 1.6 99 

6.8 1.9 100 

10.2 2.4 99 

12.7 2.2 97 

30 

1 

4.2 - - 

6.8 2 56 

10.2 0.7 97 

12.7 1.6 99 

2.5 

4.2 3 91 

6.8 2 99 

10.2 1.7 98 

12.7 2 99 

5 

4.2 2 97 

6.8 2.2 95 

10.2 2.3 88 

12.7 2.3 88 

Table 4.2:  Exponent of particle size dependence of measured AE energy for all experiments. 

(Data in bold font are plotted in Figures 4.14-4.16) 
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Figures 4.17 and 4.18 show the variation of the measured AE energy with nominal  

solid concentration for the two smaller particle size fractions and for the largest size 

fraction, respectively. Again, for the larger particle sizes and flow speeds, the exponent 

tends towards the expected value of unity. Table 4.3 summarises all of the results for 

the concentration exponent and led to a weighted average of 1.1. 

 

 

Figure 4.17: Effect of nominal solid concentration AE energy for normal incidence for the 

smaller particle sizes 
 

 

 

 

Figure 4.18: Effect of nominal solid concentration AE energy for normal incidence for the 

smaller particle sizes 
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Particle size range 

(µm) 

Nominal impact 

angle θ (°) 

Jet exit velocity 

(m/s) 

Solid 

concentration 

exponent (β) 

Curve fitting R
2
 

value (%) 

125-180 

90 

4.2 1.5 0.92 

6.8 0.6 0.98 

10.2 0.5 0.98 

12.7 0.73 0.94 

60 

4.2 2 0.99 

6.8 0.4 0.66 

10.2 0.5 0.97 

12.7 0.7 0.99 

30 

4.2 1.6 0.79 

6.8 0.6 0.99 

10.2 0.3 0.86 

12.7 0.5 0.99 

212-250 

90 

4.2 2.7 0.96 

6.8 0.7 0.99 

10.2 0.6 0.99 

12.7 0.7 0.99 

60 

4.2 2.7 0.86 

6.8 0.6 0.99 

10.2 0.6 0.99 

12.7 0.9 0.98 

30 

4.2 2.5 0.98 

6.8 1.6 0.98 

10.2 0.9 0.90 

12.7 1.2 0.98 

300-425 

90 

4.2 2.9 0.83 

6.8 0.9 0.95 

10.2 0.7 0.99 

12.7 1.1 0.93 

60 

4.2 2.8 0.91 

6.8 1.1 0.95 

10.2 0.3 0.86 

12.7 0.5 0.99 

30 

4.2 3 0.95 

6.8 0.7 1.00 

10.2 0.6 0.98 

12.7 1.2 0.95 

 

Table 4.3: Exponent of particle concentration dependence of measured AE energy for all 

experiments. (Data in bold font are plotted in Figures 4.17 and 4.18) 
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Finally, Figure 4.19 shows the effect of the sine of the impact angle on the measured 

AE energy, at the highest concentration and the largest size tested and Table 4.4 

summarises the exponents for all experiments. As can be seen the power index 

occasionally approaches the expected value of 2, but there is a considerable variation 

with no consistent pattern and the weighted average is around 1. 

 

 

 

Figure 4.19: The effect of the sine of the impact angle on AE energy, for a 5% slurry 

for the largest particle size tested 
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Particle size 

range (µm) 

Nominal concentration 

(kg/m3) 

Jet exit velocity 

(m/s) 

Sin (impact angle) 

exponent (q) 

Curve fitting R
2
 

value (%) 

125-180 

1 

4.2 0.4 57 

6.8 1.1 62 

10.2 0.4 96 

12.7 0.1 29 

2.5 

4.2 2.8 99 

6.8 0.77 98 

10.2 0.55 87 

12.7 0.65 94 

5 

4.2 0.3 17 

6.8 1 90 

10.2 1.1 99 

12.7 0.72 96 

212-250 

1 

4.2 0.1 8 

6.8 2.9 93 

10.2 1 99 

12.7 1.4 94 

2.5 

4.2 1 55 

6.8 1 95 

10.2 1.2 97 

12.7 1.1 96 

5 

4.2 0.5 68 

6.8 0.5 98 

10.2 0.22 87 

12.7 0.3 72 

300-425 

1 

4.2 0.37 18 

6.8 0.5 21 

10.2 1.6 88 

12.7 2 82 

2.5 

4.2 0 25 

6.8 0.9 93 

10.2 1.7 98 

12.7 1.4 82 

5 

4.2 0.4 97 

6.8 1.3 93 

10.2 1.5 94 

12.7 1.2 83 

 

Table 4.4: Power index for sin (nominal impact angle) dependence on the measured AE energy 

for all experiments. (Bold text data are shown in Figure 4.19) 
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4.3 Flow loop test 

 

As with the slurry jet impingement experiments, the aim of this set of experiments was 

to investigate, over a wide range of impact conditions, the dependence of the measured 

AE energy associated with particle impacts upon the slurry impingement parameters 

this time in a way in which it might be deployed in practice. As with the slurry jet 

impingement experiments and for each experimental condition specified in Table 3.8, 

the measured AE impact energy was calculated from Equation 3.1. At least ten repeat 

1-second records were analysed for each condition and the average value is used in the 

following general analysis to establish the effects of flow speed, particle size, and 

concentration. As before, the normal expectation is that energy will depend on the 

square of the impact speed, the cube of the particle diameter (i.e. the particle mass) and 

be linear with concentration expressed as mass per unit volume of water.  

 

Figures 4.20 to 4.23 show the effect of the flow speed (v) on the measured AE energy 

for a given particle size and all concentrations. As can be seen, the measured AE energy 

generally increases with both flow speed and concentration following approximately the 

second power of flow speed for all particle size ranges except the lowest size fraction 

where the signal:noise might be expected to be low. The variation of the best fit power 

index for all experiments along with the respective correlation coefficients are 

summarised in Table 4.5 which shows the weighted average exponent to be 2. 

 

 

Figure 4.20: Effect of flow speed on the measured AE energy for the three concentrations for 

particle size range 212-250 µm 
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Figure 4.21: Effect of flow speed on the measured AE energy for the three concentrations for 

particle size range 300-425 µm 

 

 

Figure 4.22: Effect of flow speed on the measured AE energy for the three concentrations for 

particle size range 500-600 µm 
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Figure 4.23: Effect of flow speed on the measured AE energy for the three concentrations for 

particle size range 600-710 µm 

 

 

Particle size range 

(µm) 
Nominal concentration (kg/m

3
) 

Flow speed exponent 

(n) 

Curve fitting R
2
 

value (%) 

212-250 

1 - - 

2.5 0.45 36 

5 0.63 91 

300-425 

1 2.5 97 

2.5 1.9 98 

5 2 96 

500-600 

1 2 88 

2.5 1.8 94 

5 2.2 94 

600-710 

1 3.6 95 

2.5 2.5 99 

5 2.4 99 

 

Table 4.5: Exponent of flow speed dependence of measured AE energy and correlation 

coefficient for all experiments 
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energy for the range of flow speed and nominal concentration studied. Generally, the 

energy varies with approximately the third power of the mean particle diameter, except 

in the cases (low speed and lower concentrations) where there is very little particle 
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signal (above the water “noise”) and where changes are difficult to discern at all. As for 

the flow speed exponent the diameter exponent tends towards the expected value of 3 at 

higher concentrations whereas, at the lower speeds and concentrations, the exponent 

tends towards 2 (in cases where a change can be discerned). Table 4.6 lists the best fit 

power index for all measurements, leading to a weighted mean exponent of 2.6. 

 

 

Figure 4.24: Effect of mean particle diameter on the measured AE energy at the four flow 

speeds with a 1% slurry 
 

 

 

Figure 4.25: Effect of mean particle diameter on the measured AE energy at the four flow 

speeds with a 2.5% slurry 
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Figure 4.26: Effect of mean particle diameter on the measured AE energy at the four flow 

speeds with a 5% slurry 

 

 

Nominal concentration (kg/m
3
) Flow speed (m/s) 

Particle diameter 

exponent (φ) 

Curve fitting R
2
 

value (%) 

1 

4.2 0.8 17 

6.8 3.3 97 

10.2 3.8 92 

12.7 4.8 91 

2.5 

4.2 1.5 79 

6.8 2 97 

10.2 3.2 88 

12.7 3.2 94 

5 

4.2 0.95 74 

6.8 1.8 81 

10.2 2.4 80 

12.7 2.75 85 

 

Table 4.6: Exponent of particle size dependence of measured AE energy for all experiments 

 

 

 

Finally, Figures 4.27 to 4.30 show the effect of nominal solid concentration on the 

measured  AE enrgy for all particle size ranges. The resulting average values of the ten 
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for all particle sizes at all flow speeds, although there is a considerable scatter at higher 

flow speeds. The nominal concentration exponent tends towards the expected value of 

unity except in cases of larger particle sizes and flow speeds where  a drop out 

phenomenon might play a significant role. Again, Table 4.7 summarises the solid 

concentration exponent along with curve fitting R
2 

values and led to a weighted average 

of 0.95. 

 

 

 

Figure 4.27: Effect of nominal solid concentration on the measured AE energy for the four flow 

speeds for particle size range 212-250 µm 
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Figure 4.28: Effect of nominal solid concentration on the measured AE energy for the four flow 

speeds for particle size range 300-425 µm 
 

 

 

 

Figure 4.29: Effect of nominal solid concentration on the measured AE energy for the four flow 

speeds for particle size range 500-600 µm 
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Figure 4.30: Effect of nominal solid concentration on the measured AE energy for the four flow 

speeds for particle size range 600-710 µm 
 

 

 

Particle size range 

(µm) 
Flow speed (m/s) Solid concentration exponent (β) 

Curve fitting R
2
 

value (%) 

212-250 

4.2 0.76 80 

6.8 1.5 95 

10.2 1.6 98 

12.7 1.6 99 

300-425 

4.2 1.4 99 

6.8 1.1 99 

10.2 1.3 99 

12.7 0.9 82 

500-600 

4.2 0.25 84 

6.8 0.37 93 

10.2 0.46 99 

12.7 0.3 72 

600-710 

4.2 1.4 99 

6.8 0.7 97 

10.2 1 98 

12.7 0.45 69 

Table 4.7: Exponent of particle concentration dependence of measured AE energy for all 

experiments 
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Chapter 5 

 

Time series model for particle impacts 

 
This chapter further analyses the results of the measurements in which a particle laden 

airflow was directed at the target plate. The impingement conditions were chosen to 

limit the amount of overlap of particle arrival events in order to develop a model of the 

stream as the cumulation of individual particle arrival events. To this end, some limited 

experiments were also done with individual particles.  

 

First, the probability distribution of particle impact energy was obtained for a range of 

particle sizes and impact velocities. Two methods of time series processing were 

investigated to isolate the individual particle arrivals from the background noise and 

from particle noise associated with contact of the particles with the target after their first 

arrival. For the conditions where it was possible to resolve individual impacts, the 

probability distribution of particle arrival AE energy was determined by the best-fit 

lognormal probability distribution function. The mean and variance of this function was 

then calibrated against the known nominal mass and impact speed.  

 

A pulse shape function was devised for the target plate by inspection of the records, 

backed up by pencil lead tests and this, coupled with the energy distribution functions 

allowed the records to be simulated knowing the arrival rate and the nominal mass and 

velocity of the particles. This successful simulation of an AE record was taken as the 

time series model for any particle arrival and forms the basis of further analysis of the 

remaining experiments. 

 

5.1 Determination of probability distribution functions 

 

The purpose of this analysis is to develop a model describing the AE time series 

associated with a particle stream, which accumulates the effect of incident particles, is 

based on observations of individual impacts, and can be extended to situations where 

the particle arrivals cannot be resolved.  The particle impact energy will depend on the 
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mass and the velocity of the particles arriving at the surface, and may also depend on 

their angle of incidence. All of these quantities will have a range of values which can be 

described by probability density functions and these functions will be related to the 

physical attributes of the flow as well as of the particles themselves.  

 

Figure 5.1a shows a typical example of a 5-second record of raw AE. In order to 

simplify the signal processing for peak searching, each record was divided into intervals 

of length 100 points and then the root mean square RMS for each interval was calculated 

to produce 50 000 points of RMS in a 5-second record, Figure 5.1b. This averaging time 

ensures that there are at least two (re-sampled) samples for each particle arrival at the 

highest rate observed, although, as will be seen later, it is the ring-down which affects 

the resolution of particle arrivals.  

 

As can be seen in Figure 5.1, the nature of a multiple-particle impact signal is 

complicated by the particle arrival rate being variable across the record, dictating a 

time-based processing approach. Given the measured coefficient of restitution, it is 

possible to estimate the particle speed after impact, Vp2, and hence the time, Tr, between 

first arrival and re-arrival of a rebounding particle, since 
2

2
r

p

gT
V . These times      

(0.5 sec for the lowest speed and 2 sec for the highest) are in considerable excess of the 

time between particle arrivals, even at the lowest arrival rate. However, rebounding 

particles are unlikely to pass back through the hole, so most rebounding particles will 

hit the underside of the mask and be reflected back onto the target. Assuming the same 

coefficient of restitution, the return times are 30 msec for the lowest speed and 8 msec 

for the highest, compared with the respective times between arrivals of 37 msec and   

0.3 msec, respectively, and the re-arrival kinetic energy will be in the order of 20% of 

the original. Since the air passes through the hole and out through the mesh trap, it will 

also lift “dead” particles and drive them towards the periphery, further confusing the 

picture, as saltation will produce some AE noise. 
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Figure 5.1: Typical 5-second record for particle impacts: (a) raw AE signal, (b) RMS AE signal. 

710-850 μm glass beads, impact velocity 10.1 ms
-1

 

 

Given that the effects of interaction between the particles and between particles and the 

guide tube walls are unknown and the effects of rebounding and saltating particles 

constitute mechanical noise expected to be of amplitude less than 20% of first particle 

arrivals, two approaches were taken to identifying those peaks in the record that are due 

to first particle arrivals and finding the relevant distribution of AE energy, one using a 

dynamic amplitude threshold to identify significant AE peaks and the other using a 

fixed threshold, but truncating the particle energy distribution function to match the 

estimated number of arrivals. 

 

5.1.1 Dynamic threshold method 

 

Figure 5.2 shows a magnified segment of the record depicted in Figure 5.1 in both raw 

and averaged forms. At the estimated average particle arrival rate of 50 particles per 

second (Table 3.6), only around 2 particles would be expected in the time interval 

shown, so, even allowing for some unevenness of arrival rate, it would seem likely that 

some events are secondary, possible sources being rebounding, rolling and saltation 

after arrival.  

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
-1

-0.5

0

0.5

1

Time (s)

A
m

p
lit

u
re

 (
V

)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.1

0.2

0.3

0.4

A
m

p
lit

u
d
e
 (

V
)

Time (s)

(a)

(b)



 129 

 

Figure 5.2: Magnified view of (a) raw and (b) RMS AE signal shown in Figure 5.1, illustrating 

dynamic threshold method 

 

The dynamic threshold Matlab algorithm incorporated two rules, the first one to identify 

the most significant peaks on the assumption that these correspond to the first particle 

arrivals, and the second one to compute the energies of those peaks. 

 

In the first rule, a varying threshold was adjusted in the range 10% to 50% of the 

maximum peak height in the record, and the number of peaks were counted for each 

threshold. This rule allowed the threshold to be chosen at which the number of peaks 

matched the number of particles estimated by weight.  In the second rule, a fixed 

threshold of 10% of the maximum peak height (the same threshold used to analyse 

single impacts) was applied to the peaks identified by the first rule, in order to obtain an 

AE energy which could be compared with single impact AE energies. The signal was 

traversed temporally and when a peak (i.e. 11 nnn yyy ) voltage index, yn, was 

found to be above the preset threshold, the peak start An, end Bn, and peak height Pn  

were identified as shown in Figure 5.2b. Then, if the peak height exceeded the dynamic 

threshold, the particle impact energy was computed by integrating the area under the 

peak: 
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n

n

B

A
impact dttVE )(2                (5.1) 

 

The process is illustrated in Figure 5.2b for three of the peaks in the record. Peak P1 

was above the dynamic threshold and its energy was found by integrating the signal 

above threshold between A1 and B1. Peak P2 was below the dynamic threshold and was 

therefore discounted as a possible rebound peak. Peak P3 appears to have two 

overlapping events, but the algorithm treats it as one event integrated between A3 and 

B3 because the trough between the events does not go below the fixed threshold.  

 

Figure 5.3 shows the distribution of AE energy thus obtained from the record shown in 

Figure 5.1, which is one of five obtained under these experimental conditions. The 

other four runs produced similar distributions. 

 

 
Figure 5.3: Distribution of AE energy attributed to particle impact from record shown in 

Figure 5.1 using dynamic threshold approach 
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algorithm implemented in Matlab was used to obtain the best fit to each distribution as 

shown in Figure 5.4.  

 

 

 

Figure 5.4: Probability function fit to distribution of AE energy attributed to particle impact 

from record shown in Figure 5.1 using the dynamic threshold approach: (a) bimodal 

distribution and (b) log-normal distribution 
 

5.1.2  Truncated distribution method 
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to obtain the distribution of AE energy attributed to particle impact. All peaks above the 
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overlap detector identified, within each peak, any reversal in signal slope, recording 

times at which these reversals take place. The energy of each peak was obtained as 

before, except that any overlapping peaks were split into two (or more) at the overlap 

point. The process is illustrated in Figure 5.5 for the same time-series segment as 

Figure 5.2 using the same peaks.  As before, peak P1 was above the threshold and its 
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between A2 and B2. Peak P3 was found to include two overlapping events, so the energy 

of the first was integrated between A3 and B3 and the second, labelled P4, was integrated 

between A4 and B4. The histogram of energies was then prepared using 15 bins, and 

events counted from the highest values of energy downwards. In order to obtain an 

internally consistent number of events, the distribution was truncated at the nearest bin 

to the number of particles estimated by weighing. 

 

 

Figure 5.5: Magnified view of (a) raw and (b) RMS AE signal shown in Figure 5.1, illustrating 

truncated distribution method 

 

 

Figure 5.6 shows the resulting distribution, again with the best-fit bimodal and         

log-normal distribution functions.  
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Figure 5.6: Probability function fit to distribution of AE energy attributed to particle impact 

from record shown in Figure 5.1 using the truncated distribution approach. (a) bimodal 

distribution and (b) log-normal distribution 

 

5.2  Development of time series model 

 

Following the approach of Brodie and Rosewell [86], the expected distribution of 

particle energies can be calculated using the measured particle size distribution 

functions given in Table 3.6 and the semi-empirical relationship between particle speed, 

gas flow speed and particle size Equation 3.5. The size distribution was divided into   

5-micron sized bins and the incident kinetic energy,
 

21
2 pmV , calculated for each bin. The 

resulting distribution matching the conditions for the record illustrated in Figure 5.1 is 

shown in Figure 5.7. As can be seen, the non-linear relationship for the energy results 

in a skewing of the expected distribution, giving it a shape more like the lognormal 
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Figure 5.7: Expected distribution of incident particle energy, accounting for particle size 

distribution only. 

 

The bimodal distribution equations developed by Gomes-Ferreira et al [84] cannot 

directly be used here since they are spatial distributions rather than p.d.f.s. Nevertheless, 

an estimate of the bimodality due to particle interaction can be obtained from the best-fit 

values of c, the proportion of particles which interact, reported in their simulations 

carried out for a range of values of β (the dimensionless divergence parameter), 

coefficient of restitution, and two other dimensionless parameters, the dimensionless 

particle radius: *
p

p

r
r

d
 and the dimensionless stand-off distance: *

p

f d
d

V
, where d 

is the nozzle stand-off distance (here 50mm), rp is the particle radius and f is the particle 

launch rate (here taken to be the same as the particle arrival rate). Values of these 

dimensionless parameters are shown for the present stream conditions in Table 5.1. 

Taking the highest value (40) of β simulated by Gomes-Ferreira et al, representing the 

most focused stream, and using the results for a coefficient of restitution of unity, the 

results for the fraction of particles colliding as a function of d* are shown in Figure 5.8, 

for two values of rp*; 0.01 which covers the larger particles in the present study and 

0.005, which covers the smaller. The dimensionless stand-off is the number of particles 

launched into the stream in the time it takes for a particle to traverse the stand-off 

distance and so is a measure of the number particles in transit at any given time. 

Comparison of Table 5.1 and Figure 5.8 suggests that the fraction of interacting 

particles will vary between 0 and about 0.5 over the conditions studied here, although 

the extrapolation to values of rp* other than those simulated is uncertain.  For the 
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is clear that inter-particle interactions in the stream are rather unlikely and that the noise 

peaks observed in the record must be due to recirculation of particles caused by the air 

passing through the cavity between the mask and the target plate. This means that a 

monomodal distribution is more appropriate for describing first particle arrivals. 

 

Particle 

size 

fraction   

Nominal 

particle 

diameter, dp  

Nominal 

particle 

velocity, Vp  

Average 

arrival rate, 

f  

Dimensionless 

stand-off 

distance, d* 

Dimensionless 

particle radius, 

rp* 

(μm) (μm) (ms
-1

) (s
-1

)   

125-180 152.5 

4.9 4238 132 

0.003 
8.3 4238 77.9 

11.8 2928 37.8 

15.5 3140 30.9 

212-250 
 

231 

4.7 910 44.7 

0.005 
7.5 803 24.7 

10.6 770 16.8 

13.8 653 10.9 

300-425 
 

362.5 

4.4 151 12.4 

0.007 

 

6.8 162 8.64 

9.5 180 6.87 

12.3 231 6.81 

500-600 
 

550 

4.3 73 9.34 

 

0.011 

6.3 70 6.11 

8.6 84 5.37 

11 110 5.50 

600-710 
 

655 

4.2 54 8.42 

0.013 
6 49 5.35 

8.2 69 5.51 

10.5 69 4.30 

710-850 

 

780 

4.1 27 5.14 

 

0.016 

5.8 35 4.71 

7.9 29 2.86 

10.1 47 3.63 

 

Table 5.1:Derived particle and particle stream conditions. See text for shaded conditions 
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Figure 5.8: Values of fraction of particles colliding derived from the simulations of Gomes-

Ferreira et al [84]. Dotted and chained lines are manual extrapolations of the simulation results 

to low particle densities 

 

The two main advantages of using the truncated energy method over the dynamic 

threshold method are that it can handle the smaller size fractions which produce weaker 

impact signals, and it can be used to measure the higher arrival rates which create 

frequent impacts with small time intervals between them. Nevertheless, either method 

can only distinguish individual impacts if: (a) the peaks corresponding to particle 

impacts are above the threshold level (here 10% of the maximum peak height), and (b) 

the time interval between peaks is sufficient for the first peak amplitude to decay 

sufficiently that a down-crossing can be detected. For the current configuration, this 

meant that the peaks for the smallest size fraction (125-180 μm) were not 

distinguishable for either method. 

 

In order to examine the goodness of the bimodal and log-normal fits for each signal 

processing approach, a comparative measure (error) (CM) was devised, that computes 

the sum of absolute differences between observed values and fitted values of 

frequencies multiplied by the corresponding AE energy in each of the N classes: 
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Figure 5.9 shows how the error varies with average particle arrival rate over the three 

size ranges where it was possible to obtain results using the dynamic threshold 

approach. The error increases with increase in particle arrival rate, which is to be 

expected as it becomes more challenging to identify individual particles as the overlap 

rate increases. Also, the bimodal fit generally gave higher errors as well as a larger 

variation in error, indicating that it is generally a less good description of the 

distributions. 

  

Figure 5.9: Dependence of comparative error upon average particle arrival rate using the 

dynamic threshold method for the particle size range 850μm to 300 μm 

 

 

Figures 5.10 and 5.11 show the error using the truncated distribution method over the 
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respectively. Comparing Figures 5.10 and 5.11 shows the truncated energy method to 

give about the same error for bimodal and log-normal distributions, and an overall error 

about the same as that for log-normal distributions using the dynamic threshold method. 

At higher arrival rates, the error stops increasing, and the log-normal distribution gives 

significantly lower error and scatter in error.  
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Figure 5.10: Dependence of comparative error upon average particle arrival rate using the 

truncated energy method for the particle size range 850μm to 212 μm 

 

 

Figure 5.11: Dependence of comparative error upon average particle arrival rate using the 

truncated energy method for the particle size range 850μm to 300 μm 
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5.2.1  Correlation between truncated distribution and incident impact 

energy method using log-normal distributions 

 

As can be seen from Table 5.1, there are 20 discrete combinations of average particle 

diameter, dp, (hence particle mass, m) and nominal particle impact velocity, Vp, 

excluding the smallest size fraction. The log-normal probability distribution function is 

given by:  
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(5.2) 

where P is the probability, E is particle impact energy variable, and M and v  are the 

mean and variance, respectively, of the lognormal distribution. 

 

Figures 5.12 and 5.13 show the best fit mean and variance of the lognormal distribution 

for each of the 20 combinations (incident energy), the error bars indicating the range of 

values over the five observations at each incident energy. The best-fit straight line 

through each of these plots provides a calibration of the distribution functions:  

 52 1017621.1 pmVM
 and 

1025 102107 pmV                (5.3) 

 

where m is particle mass in kg and Vp is particle velocity in ms
-1

. 

  

Figure 5.12: Correlation between the mean of the log-normal distribution and nominal incident 

energy 
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Figure 5.13: Correlation between the variance of the log-normal distribution and nominal 

incident energy 

 

As a calibration check, Figure 5.14 illustrates the correlation between the distribution 

mean (average value of the 5 observations) and the AE energy (average of the ten 

observations) from the single impact tests. As can be seen, the correlation is excellent, 

although the slope indicates that the distribution only captures about 85% of the energy 

recorded in a single impact.  

 

 

Figure 5.14: Correlation of mean distribution AE energy with mean AE energy for single 

impacts 
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The “truncated energy”, all energy not attributed to primary particle impacts (Equation 

5.1), was calculated for all records as a proportion of the total energy of the record: 

 

2

0

2

0

sig

sig

t

impact

impacts

trunc t

V t dt E
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This energy can be regarded as particle noise, i.e. AE activity associated with rebound 

and saltation of the particles after primary impact. As can be seen in Figure 5.15, this 

noise generally increases with nominal impact velocity as might be expected for 

rebounds or from the higher fluid speeds associated with the higher particle speeds. The 

particle noise also increases with particle size, again as might be expected with the 

secondary activity of larger particles being more likely to come above the threshold. 

 

 

Figure 5.15: Truncated energy versus particle impact speed 
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5.2.2 Time series simulation 

 

Equations 5.2 and 5.3 form the basis of a time-series model where the pulse energies 

(Equation 5.1) are given by the distribution function: 

1
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(5.4) 

 

  

 

As can be seen from the RMS AE traces, the pulses can be modelled approximately by 

an instantaneous rise followed by an exponential decay: 
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peakpeak eVV ,0  
               (5.5) 

 

Thus, using Equation 5.1: 
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The decay constant, k, was found to be approximately 3000 sec
-1

 by inspection of 40 

randomly selected pulses and was confirmed by breaking a pencil lead on the surface of 

the target plate, Figure 5.16. 
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Figure 5.16: Raw AE signal for pencil lead break on the face of the sample. The pulse shape is 

identified by the solid lines bounding the signal 
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Figure 5.17: Raw AE signal for pencil lead break on the face of a large cylindrical steel block. 

Curve (a) is the decay curve estimated from Ivantsiv et al [102], and Curve (b) is the decay 

curve for the target plate 
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effect of reducing the amount of ringing in the target plate, indicating how the 

simulation can be used to design the sensing/acquisition approach and to determine 

performance limits.  

 

Figure 5.18: Measured (top) and simulated AE records for 212-250μm silica sand with nominal 

impact velocity of 12.3 ms
-1

, and particle arrival rate of 900 per second. Peaks that were 

identified as particle impacts in the measured record are labelled 
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Figure 5.19: Measured (top) and simulated AE records for 710-850μm glass beads with 

nominal impact velocity of 4 ms
-1

, and particle arrival rate of 40 per second. Peaks that were 

identified as particle impacts in the measured record are labelled 
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In order to evaluate the performance of the time series model, the energy of the 

simulated AE time series signal was correlated to the energy of raw AE signal 

(including the fraction 125-180 μm). Figure 5.21, shows that the average slope is very 

close to unity, although there is a distinct tendency for small particle sizes to contain 

about 10% excess energy in the simulation and larger particle sizes to show a 10% 

deficit. The error for the larger particles is likely to be because of some noise leakage 

into the correlated distributions whereas the excess for the smaller particles is likely to 

be due some signal being lost in the noise for the correlated distributions. Overall, the 

correlation shows that the model can be used to simulate time series where the degree of 

overlap is such that individual particles cannot be resolved. 

 

 

Figure 5.21: AE energy from simulated time series signal versus raw AE energy 
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Chapter 6 

 

Analysis and Discussion 

This chapter uses the findings of Chapter 5, in which it was demonstrated that an AE 

time series could be simulated for dry particle impacts. Using this model, it is then 

possible to analyse more meaningfully data which include cases where the particles act 

as an ensemble. The approach is applied first to the remaining dry particle impact data, 

then to the slurry impingement results and, finally, to the results for the flow loop. 

6.1 Airborne particle impact test 

 
The main aim of the dry impact study was to assess whether AE energy could be 

calibrated for incident particle kinetic energy under a wide range of conditions where 

particles could be relatively easily controlled. Figures 6.1 to 6.4 present all of the 

measured data in a format that allows such an assessment, where the measured energy is 

divided by particle mass (Figures 6.1 and 6.2) and by the square of particle velocity 

(Figures 6.3 and 6.4).  

 

As can be seen in Figures 6.1 and 6.2, AE energy per particle per unit mass generally 

increases with increasing particle velocity across the whole range of mass and velocity 

studied. However, the measured AE energy per particle per unit mass is higher for 

individual impacts and shows a stronger dependence on particle velocity than that for 

multiple impacts at higher velocities but the difference is less evident at lower 

velocities.  As the velocity increases, the number of particle impacts per second 

increases from a few hundreds to a few thousands, and this may lead to overlapping of 

the transmission paths, or, indeed, to particle interactions at or near the surface, both of 

which would reduce the amount of energy being recorded at the sensor for each particle.  

Closer inspection of Figure 6.2 also shows that the lower fractions of the low mass 

range and high mass range (1a vs 1b and 3 vs 4) for single impacts both exhibit higher 

energies per unit mass, whereas this is not observed for multiple impacts. For the 

smaller particles, this might be explained by the difficulty in controlling the number of 

particles leaving the shaker, where perhaps more than one is recorded on some 

occasions. The particle streams, where relatively large numbers of particles impinge on 



 149 

the surface, would not be susceptible to this type of error. This explanation does not 

hold for the high mass particles which are large enough to be individually handled, and 

here the explanation is more likely to be that the particle momentum is sufficient to 

cause significant whole body movement of the target (specimen and holder) and hence a 

different additional energy dissipation mechanism. 

 
Figure 6.1 AE energy per unit mass versus particle velocity for all regimes investigated: (A) 

low velocity, (5) high velocity-low mass single impacts, (6) high velocity-low mass multiple 

impacts 

 

Figure 6.2: AE energy per unit mass versus particle velocity for all low velocity measurements 

(area A above): (1a) low mass-lower range single impacts, (1b) low mass-higher range single 

impacts, (2) low mass multiple impacts, (3) high mass-lower range, (4) high mass-higher range 
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Figure 6.3 shows that AE energy per particle divided by the square of the velocity 

increases with particle diameter only up to a diameter of about 1.5mm, above which the 

energy appears to remain constant. Figure 6.3 also shows that the curvature at 

diameters less than 1.5mm is positive, ie. a higher order dependence than linear. The AE 

energy level is again higher for single impacts than for multiple impacts at high 

velocities (5 vs 6) and not at low velocities (2 vs 1) attributable, again, to the 

overlapping effect described above. 

 

 

Figure 6.3: AE energy per particle divided by the square of the velocity versus particle diameter 

for all regimes investigated: (B) low velocity-low mass regime, (3) high mass-lower range, (4) 

high mass-higher range, (5) high velocity-low mass single impacts, (6) high velocity-low mass 

multiple impacts 
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Figure 6.4: AE energy per particle divided by the square of the velocity versus particle diameter 

for low velocity-low mass regime (area B above): (1) low velocity-low mass single impacts, (2) 

low velocity-low mass multiple impacts 
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[63],  for example, have found, for an average velocity of about 20 m/s, that actual 
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Figure 6.5: The dependence of AE energy per unit mass upon particle velocity 

 

 

Figure 6.6, shows that, assuming that the velocity exponent is 2, particle diameter 

exponent is close to 3, which is in agreement with other workers [23, 73]. Figure 6.6 
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best-fit curve (and therefore contribute to the exponent being a little above 3). This 
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and/or because none of these larger particles were used in multiple impact streams.  
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Figure 6.6: Influence of mean particle diameter on AE energy divided by the square of impact 

velocity 
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mean along with error bars indicating the range of values over the five observations for 

each incident energy giving the mean AE energy: 

 

 (6.1) 

 

 

 

Figure 6.7: Correlation between the mean of the lognormal distribution and nominal incident 

energy, using data from Figure 5.12 

 

 

The expected AE energy in a population of impacts, Ecalculated , can now be obtained 

using the average particle arrival rate given in Table 3.7 and the mean of the energy 

distribution function: 

 

 (6.2) 

 

The measured AE energy associated with the particles, Emeasured , can be estimated by 

subtracting the background water jet energy Ew from the integral of the signal, E: 

 

 

where Ew was taken as the average of the three curves shown in Figure 3.28. 
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The nominal impact angle is accounted for by calculating the normal component of the 

jet exit velocity, and Figure 6.8 shows the resulting relationship between the measured 

and calculated energy and, as can be seen, there is a considerable discrepancy between 

(measured) wet and (calculated) dry impacts with the same jet exit velocity, the dry 

impacts giving at least a factor 10 higher AE energy. Such a discrepancy in the AE 

energy could stem from the difference in the carrier medium and its influence on the 

direction of particles. For particles laden gases, this direction is little affected by the 

spreading effect of the fluid, because the viscosity of air is very small (1.81×10
-5

      

Kg.m
-1

sec
-1

), leading to a much lower drag force than arises from the viscosity of a 

water-based carrier (8.9×10
-4

 Kg.m
-1

sec
-1

). Therefore, the incident particle velocity is 

important, but there are difficulties in measuring or modelling this. 

 

 

 

Figure 6.8: Measured and calculated AE energy, assuming the particle arrival speeds given in 

Table 3.7 

 

 

The most likely reason for the discrepancy in Figure 6.8 is that the water-driven 

particles are moving much less rapidly than the jet exit velocity when they strike the 

target. To deal with this, the empirical model of Turrene and Fiset [94] (Equation 2.13) 

was used to calculate the average arrival speed, using the particle mean diameter, the jet 

exit velocity, and taking an average value of the initial radial position of the particle 

(1.25mm). Table 6.1 shows the calculated arrival speeds for all the conditions studied. 

In some cases of slowly moving particles the model does not give a positive speed, 

corresponding to particles that fail to penetrate the squeeze film. 
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Particle size range (µm) Jet exit velocity (m/s) 
Average calculated arrival speed 

(m/s) 

125-180 

4.2 - 

6.8 0.21 

10.2 0.73 

12.7 1.10 

212-250 

4.2 - 

6.8 0.30 

10.2 0.95 

12.7 1.43 

300-425 

4.2 0.10 

6.8 0.84 

10.2 1.80 

12.7 2.50 

 
Table 6.1: Calculated particle arrival speed using the model of Turenne and Fiset [94] 

 

 

Figures 6.9 to 6.11 show the calculated and measured AE energy for each of the three 

impact angles, sorted for each of the particle sizes, and using the estimated impact speed 

following Turenne and Fiset. As can be seen, the calculated and measured values are 

much more compatible, the slope varying from a little below unity to a little above and 

these are listed in Table 6.2 along with the average slope for each angle. Figure 6.12 

shows that the average slope is very close to unity when taking all the data together, 

although there is a distinct tendency for smaller particles to have higher than expected 

energy and larger particles to have lower than expected. Table 6.2 also shows the 

average slope to be very close to unity for nominal impact angles of 60
o
 and 90

o
, but 

rather less for impingement at 30
o
, even when the normal component is taken into 

account. 

 

The particle size effect might be explained by the fact that the slurry jet is directed 

horizontally, so that there might be some drop-out relative to the water which would 

change the angle and also proportion of particles striking the surface, and this would 

affect larger particles more than smaller ones. Also, streams that are directed in a 

downward direction will have the vertical (parallel to the target) component of their 

velocity affected more than the horizontal, and so the lower impingement angles might 
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be expected to have lower normal speeds than expected, and this would be expected to 

affect the larger particles more.  

 

Figure 6.9: Calculated AE energy versus measured AE energy at nominal impact angle 90
o
 

 

 

Figure 6.10: Calculated AE energy versus measured AE energy at nominal impact angle 60
o
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Figure 6.11: Calculated AE energy versus measured AE energy at nominal impact angle 30
o
 

 

 

 

Nominal impact 

angle (θ
o
) 

Particle size range 

(µm) 
Correlation function Average slope 

90 

125-180 Ec=1.53 Em 

0.99 212-250 Ec=0.82 Em 

300-425 Ec =0.63 Em 

60 

125-180 Ec =1.39 Em 

0.95 212-250 Ec =0.85 Em 

300-425 Ec=0.63 Em 

30 

125-180 Ec =0.85 Em 

0.61 212-250 Ec =0.40 Em 

300-425 Ec =0.60 Em 

 

Table 6.2: summary of correlation functions between calculated and measured AE energy 
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Figure 6.12: Calculated AE energy versus measured AE energy for all nominal impact angles 

investigated 

 

In summary, the slurry impingement tests have shown that the “calibration” of the target 

plate carried out using the airborne particles can be used to predict the expected AE 

energy in slurry impingement tests. Such a prediction requires a re-assessment of 

particle velocities using a published model and is best for normal or near-normal 

impingement. 
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sections, the data acquired from the flow loop can be expected to differ from the 

previous tests in two important respects. The structure of the bend introduced in the 

flow loop will involve more contact between the slurry and the surrounding internal 

surfaces of the bend, and so the target impact area is potentially much larger. Also, AE 

wave propagation will be more complex than in the target plate,  although the greater 

wall exposed area may well lead to less ringing and hence greater temporal resolution of 
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free jet experiments was expected to allow an assessment of the factors which need to 

be taken into account in a real implementation. 

 

This section firstly presents a more detailed analysis of the particle-free water AE 

signals in order to identify the background noise characteristics, and hence develop a 

model for background water noise which is itself more complex than for the slurry jet. 

Then, the analysis was focused onto dividing the AE recorded in particle-laden flows 

into stationary and non-stationary parts and dealing with the non-stationary part where 

frequency can vary substantially with time.  

 

6.3.1 Analysis for particle-free water 

 

The high AE energy associated with the water impingement signal in the flow loop 

dictated a different approach to that used in slurry impingement, where it was possible 

simply to subtract an average energy. In particular, the hydraulic conditions produce a 

strong pulsatile nature to the particle-free time series which can be seen as a carrier 

wave for the particle signatures. Dealing with such pulsatile signals requires a 

demodulated analysis of the signals to make use of the periodicity. 

Figure 6.13 shows  samples of typical raw AE signals recorded for water impingement 

along with typical raw AE spectra over the range of flow speeds tested. It is clear that 

the raw AE signal amplitude, in general, increases with increasing flow speed. The 

effect of the sensor bandwidth is apparent in the raw frequency spectrum, with most 

energy being contained in the range 100-400 kHz. The spectra show that most of the 

power is focused in three bands; one very narrow band centred on a frequency of around 

100 kHz and characterised by a spike at the lowest speed whose magnitude decreases 

rapidly with increasing flow speed, a band at 150 kHz to 200 kHz, and another band at 

300 kHz to 400 kHz.  It is also clear that, within its bandwidth, the sensor shows a 

systematic shift in frequency content (power) towards the higher end as the flow speed 

increases. To quantify these systematic changes in raw AE frequency content, the 

proportion of the total energy in these three frequency bands was determined, for each 

of the 20 AE records at each flow speed. Figure 6.14 shows the variation in AE energy 

proportion in each band with flow speed where each point represents the average of 20 

AE records along with the standard deviation. As can be seen, the first band decreases 

rapidly with flow speed while the highest frequency increases with speed. Thus, raw AE 

frequency analysis can potentially offer a means of monitoring flow speed. 
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Raw AE signal Frequency spectrum 

 

(a) 

  

(b) 

 
 

(c) 

 
 

(d) 

 
 

 

Figure 6.13: Typical 1-second raw AE time series for water impingement in the flow loop and 

their corresponding raw frequency spectra for flow speeds: (a) 4.2 ms
-1

, (b) 6.8 ms
-1

, (c) 10.2 

ms
-1

, and (d) 12.7 ms
-1
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Figure 6.14: Proportion of AE energy in raw frequency bands versus flow speed; Band 1: 100 

kHz, Band 2: 150-200 kHz, Band 3: 300-400 kHz 

 

Figure 6.15 shows a magnified 0.1-second segment of the record depicted in        

Figure 6.13a in both raw and averaged forms. These signals suggest a strong influence 

of fluid pulses on the recorded AE with a pulse period of around 0.01 s, most likely 

associated with the rotational speed of the pump.  

 

                    (a) Raw AE signal                                             (b) RMS AE signal 

 

 

Figure 6.15: Magnified view of 0.1-second segment of the signal shown in Figure 6.13a,       

(a) raw and (b) RMS AE  
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bipolar by subtracting the mean value of the record from each point in order to remove 

the DC component before transforming the signal into the frequency domain. Finally, 

all spectra were normalized to a unit energy content in order to facilitate comparison. 

 

Figure 6.16 shows typical examples of the resulting normalized RMS AE signals along 

with the corresponding normalized frequency for water impingement for each of the 

flow speeds tested. The frequency domain at the lowest flow speed, Figure 6.16a, 

shows spectral peaks occurring at relatively regular frequency intervals which imply the 

possibility of one fundamental frequency component with other peaks resulting from 

harmonics. On closer inspection, it was found that two spectral peaks are dominant; 100 

Hz at the lowest flow speed and 42 Hz at the highest flow speed, Figure 6.16d. 

Between the two extreme speeds, the energy in the 100 Hz peak decreases with speed 

while the 42 Hz increases. The spectra at the intermediate speeds show a transition 

between the two extremes, Figure 6.16b showing both spectral peaks and Figure 6.16c 

exhibiting a broad demodulated frequency spectrum.  

 

At first sight, the complexity of what is essentially a noise pattern might make the 

identification of particle impact signatures a daunting prospect. However, a clear 

understanding of this pattern assists in separating signal from noise, but also allows the 

exploration of the potential to use the low frequency as a carrier wave.  
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RMS AE signal Normalized Frequency spectrum 

 

(a) 

  

(b) 

  

(c) 

  

(d) 

  

 

Figure 6.16: Typical 1-second RMS AE signals for water impact and their  corresponding 

normalized demodulated spectrum for flow speeds: (a) 4.2 ms
-1

, (b) 6.8 ms
-1

, (c) 10.2 ms
-1

, and 

(d) 12.7 ms
-1

  

 

 

 

 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-6

-4

-2

0

2

4

6
x 10

-3

A
m

pl
itu

de
 (

V
)

Time (s)

0 500 1000 1500 2000 2500
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

Frequency (Hz)

P
ow

er
 s

pe
ct

ra
l d

en
si

ty

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-0.01

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

A
m

pl
itu

de
 (

V
)

Time (s)
0 500 1000 1500 2000 2500

0

0.005

0.01

0.015

0.02

0.025

Frequency (Hz)

P
ow

er
 s

pe
ct

ra
l d

en
si

ty

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-0.02

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

A
m

pl
itu

de
 (

V
)

Time (s)

0 500 1000 1500 2000 2500

0.5

1

1.5

2

2.5

3
x 10

-3

Frequency (Hz)

P
ow

er
 s

pe
ct

ra
l d

en
si

ty

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-0.05

0

0.05

0.1

0.15

0.2

A
m

pl
itu

de
 (

V
)

Time (s)

0 500 1000 1500 2000 2500
0

1

2

3

4

5

6

7

8
x 10

-3

Frequency (Hz)

P
ow

er
 s

pe
ct

ra
l d

en
si

ty



 165 

In order to quantify these demodulated spectra, a processing approach was devised 

based on categorisation of peak heights and their corresponding frequencies. For each 

flow rate, across the 20 records, all peaks in the spectrum were identified automatically 

by first applying an identification threshold of 5% the maximum peak heights and then 

obtaining each peak height and its corresponding frequency. The ten highest peaks in 

the spectrum were then taken along with their corresponding frequency values for each 

record. Next, the resulting 200 values of peak height and corresponding frequency for 

each combination were used as an input to a Matlab algorithm. The algorithm divided 

the frequency range into 20 Hz bins and allocated each peak height to the appropriate 

frequency bin, calculating the number of occurrences in each bin. The average peak 

height for each bin was then determined by dividing the sum of all peak heights by the 

number of occurences: . Figure 6.17 

summarises the results, quantifying the two distinct frequency patterns described above. 

As can be seen in Figure 6.17a a very clear harmonic pattern occurs at low speed with a 

fundemantal frequency of 100 Hz and charactersied by a set of much smaller harmonics. 

At the next highest speed, Figure 6.17b a broader spectrum based on 42 Hz begins to 

emerge alongside the 100 Hz pattern noted in Figure 6.17a. At the highest speed, the 

100 Hz pattern is absent and is replaced by the 42 Hz band plus some higher frequency 

components not on the 100 Hz series. The spectrum for the higher intermediate speed is 

slightly anomalous in that, although it contains a growing 42 Hz component, there are a 

number of other components present at higher intensity. Although the exact causes of 

this low frequency spectral behaviours are not entirely clear, it is likely that they are 

associated with the hydraulic behaviour of the flow loop. The rotational speed of the 

pump is 10 Hz, so this does not explain either the 42 Hz or 100 Hz frequencies, nor, 

indeed the very obvious pulsation at lower speed. In fact, the spiral shape of the mono 

pump impeller is specifically designed to eliminate flow pulsations. However, it is 

possible that any practical application will be on a system with its own hydraulic 

characteristics, so the flow loop provides an example of how such characteristics might 

be dealt with in attempting to monitor particle impingement. 
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Figure 6.17: Distribution of the ten top frequency peak heights for water impingement at four 

flow speeds: (a) 4.2 ms
-1

, (b) 6.8 ms
-1

, (c) 10.2 ms
-1

, and (d) 12.7 ms
-1

 

 

 

The proportion of oscillatory energy that is contained in the top 10 peaks for all flow 

speeds is shown in Figure 6.18. As can be seen, the remaining energy is quite high for 

the higher speeds indicating a generally more broadband distribution of energy. 
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Figure 6.18: Proportion of the oscillatory energy contained in the top 10 peaks for water 

impingement at four flow speeds: (a) 4.2 ms
-1

, (b) 6.8 ms
-1

, (c) 10.2 ms
-1

, (d) 12.7 ms
-1

 

 

Considering only the total AE energy analysis is not sufficient for practical situation, 

and bearing in mind the fact that the signal is not wholly continuous which indicates a 

dynamic effect which potentially contains information below and above the mean 

energy level, the total AE energy for slurry impingement signal was divided into static 

and oscillated parts. 

 

As is obvious from the foregoing, any model for the AE arising from water 

impingement will consist of an oscillatory component and a static component. 

Therefore the total AE energy was divided into two parts, a static component Est and an 

oscillatory component Eosc. The static component was simply obtained by calculating 

the average of the entire AE record. The oscillatory part was obtained by integrating the 

RMS of the 1-second averaged records using Equation (3.1), once the static component 

had been removed (records such as those shown in Figure 6.16). 

  

Figures 6.19 and 6.20 show the effect of flow speed on both the static and dynamic AE 

energy components, respectively. Since there is no particular reason to expect the 

hydraulic behaviour to show a power law dependence with flow speed, an exponential 
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fit showing the dependence of AE energy components associated with (v-4.1) was used 

in the interest of obtaining a better fit, although the best fit power equation is also 

shown for each AE component. Thus, the AE energy associated with water 

impingement can be described by a mean level   and 

an oscillatory component of energy  . 

 

 

Figure 6.19: Effect of flow speed on static AE energy for water impingement showing the best 

power fit and the best exponential fit 
 

 

 

 

 

Figure 6.20: Effect of flow speed on oscillatory AE energy for water impingement showing the 

best power fit and the best exponential fit 
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6.3.2 Slurry impact analysis 

 

A similar decomposition into static and oscillatory components (Figure 6.21) was used 

to analyse the AE from a particle-laden flow. The first stage in the analysis of particle-

laden flow was to separate the two main components of the signal in a systematic way. 

To do so, the total AE energy for each record,  was divided into its two main 

components the static component,   and the oscillatory component,  in the same 

way as was done for particle-free water. Each of these can be further divided 

accordingly into components due to particles E
p
 and due to water E

w
.  

                                            

The static energy associated with particle impact, , can be determined by subtracting 

the actual average values of the static energy of water impingement Figure 6.19, , 

from the total static energy of the slurry  as:  . 

 

 

Figure 6.21: Schematic illustration of the decomposition of slurry impingement AE energy in 

the flow loop 

 

 

Figures 6.22 to 6.25 show the effect of flow speed on the static AE energy associated 

with particle impacts for all particle sizes and nominal concentrations tested. As before, 

the best power law fit was used and the resulting exponents are shown in Table 6.3. 
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Figure 6.22: Effect of flow speed on the static AE energy for the three concentrations for 

particles in size range 212-250 µm 

 

 

Figure 6.23: Effect of flow speed on the static AE energy for the three concentrations for 

particles in size range 300-425 µm 

 

 

 

Figure 6.24: Effect of flow speed on the static AE energy for the three concentrations for 

particles in size range 500-600 µm 
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Figure 6.25: Effect of flow speed on the static AE energy for the three concentrations for 

particles in size range 600-710 µm 

 

 

Particle size range 

(µm) 
Nominal concentration (kg/m

3
) 

Flow speed exponent 
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Curve fitting R
2
 

value (%) 

212-250 

1 1.18 75 

2.5 1.22 82 

5 1.03 93 

300-425 

1 2.6 93 

2.5 1.8 97 

5 1.95 93 

500-600 

1 2.1 78 

2.5 2.2 86 

5 2.3 87 

600-710 

1 3.6 89 

2.5 2.2 99 

5 2.5 99 

 

Table 6.3: Exponent of flow speed dependence of the static component of measured AE energy 

for all flow loop tests 
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In order to examine if the energy for slurry impingement is carried in the same 

frequency bands as water impact, the dynamic slurry energy, was divided into three 

parts, the component associated with the 100 Hz harmonic series, , the component 

associated with the 42 Hz band, , and the remainder of the demodulated band 

 (see Figure 6.21), 

  (6.4) 

 

To decompose the oscillatory part of the AE, each record was band-pass filtered twice 

in the sp1 and sp2 bands using an infinite impulse response (IIR) digital filter of 

Chebyshev Type I , set with a fifth order low pass digital Chebychev filter and 0.9 peak 

to peak ripple in the bassband. 

  

Figures 6.26 to 6.28 show the variation of the energy in each spectral component with 

flow speed for all particle size fractions and solid concentrations tested, along with the 

corresponding components for particle-free water. Over the range of flow speed, the 

dominant band is the broad oscillatory component, the 100 Hz band only being 

significant at lower flow speeds. The 42 Hz spectral component is always very small 

and increases with flow speed. There is particularly no difference between the various 

particle sizes and concentrations and particle-free water for this component, so it is of 

little use in detecting particle impacts. Unlike all the other spectral components, the   

100 Hz band decreases with flow speed. Figure 6.29 shows the effect of particle size 

and concentration on this spectral component at the lowest flow speed. As can be seen, 

the 100 Hz spectral component decreases with both the nominal particle concentration 

and particle size range indicating that the pump rotational speed effect on the AE 

recorded can be obscured by more particles in the mixture or bigger particle size range. 
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Figure 6.26: Effect of flow speed on the spectral AE energy, Esp1 , for the three concentrations 

and particle-free water for each of the particle size ranges shown 
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Figure 6.27: Effect of flow speed on the spectral AE energy, Esp2, for the three concentrations 

and particle-free water for each of the particle size ranges shown 
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Figure 6.28: Effect of flow speed on the broad spectral AE energy, Ebroad, for the three 

concentrations and particle-free water for each of the particle size ranges shown 
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Figure 6.29: Effect of particle size and concentration on the spectral AE energy, Esp1 , for each 

of the particle size ranges at 4.2 ms
-1

 flow speed 

 

6.3.3 Application of time series model to flow loop tests 

 

The purpose of this section is to examine the applicability of the model to simulate 

(predict) AE energy in more practical environments and to assess any adjustments that 

need to be made in the processing techniques to use AE as a semi-quantitative 

diagnostic indicator for particle impingement in industrial flows. Besides the fact that 

the flow environment is different from the free jet tests, the target design is also slightly 

different, so the effects of these on the recorded energy both need to be assessed.  

 

As with the slurry jet impingement experiments, what remains to be seen is whether the 

AE energy measured corresponds to what would be expected from the previously 

developed log-normal distribution function. Since the flow loop experiments involved a 

wider range of particle size ranges (up to 600-710 µm) than the slurry jet impingement 

experiments, the mean of the log-normal distribution shown in Figure 5.12 was used 

here giving the mean AE energy: 
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from the integral of the signal, E as seen in Equation 6.3. The background water energy 

was estimated using Equation 5.4, where Ew was taken as the AE energy associated of 

the best fit power equations of both components of water impingement, static AE 

energy  and oscillatory AE energy . As for the slurry impingement tests, the 

empirical model of Turrene and Fiset [94] was used to calculate the average particle 

speed for all the conditions studied (Table 6.4). 

 

Particle size range (µm) Flow speed (m/s) Average calculated speed (m/s) 

212-250 

4.2 - 

6.8 0.3 

10.2 0.95 

12.7 1.43 

300-425 

4.2 0.1 

6.8 0.84 

10.2 1.8 

12.7 2.5 

500-600 

4.2 0.65 

6.8 1.75 

10.2 3.19 

12.7 4.24 

600-710 

4.2 0.98 

6.8 2.28 

10.2 3.99 

12.7 5.24 

 

Table 6.4: Calculated particle arrival speed using the model of Turenne and Fiset [94] 

 

Figures 6.30 to 6.33 show the correlation between the calculated and the measured AE 

energy for each of the particle sizes using the average calculated impact speed in   

Table 6.4. It is clear from these figures that the correlation slope approaches the 

expected value of unity with increasing particle size. This might be explained by the 

fact that smaller particle fractions (less inertia) are more vulnerable to influences of the 

fluid than bigger fractions (bigger inertia), which would change the impact angle and 

also the proportion of particles striking the surface, and this would also explain the 

lower measured values in Figure 6.30 where uncontrolled behaviour of particles 

sweeping around the bend is more likely. Figure 6.33 shows the average slope of the 

correlation between calculated AE energy and measured AE energy when taking all the 
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data together. As can be seen, the slope is close to unity, although, the calculated 

(expected) AE energy is slightly overestimated. This might partly be explained by 

particle trajectories around the bend generally having an angle of incidence influenced 

by the bulk fluid flow, resulting in a greater proportion of particles having an angle of 

impact less than 90
o
, and thus overestimate in the calculated AE energy. Another 

possible reason might be that the hydraulic differences between the bend and the slurry 

impingement rig result in a smaller proportion of particles actually striking the target  

and contributing to AE energy due to a higher degree of particle interaction at or near 

the surface, resulting in particle collisions, reduced particle impact velocities and 

changed impact angles. Also, the effect of the slightly different design of the target at 

the bend might provide a leakage path for AE energy reducing the amount of measured 

AE energy. These factors have probably all contributed to the overestimate in the 

calculated AE energy and are those which would have to be taken into account in any 

real application of the technique as they are dependent on the design of the system being 

monitored.  

 

 

Figure 6.30: Calculated AE energy versus measured AE energy at particle size range           

212-250 µm 
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Figure 6.31: Calculated AE energy versus measured AE energy at particle size range           

300-425 µm 

 

 

 

 

Figure 6.32: Calculated AE energy versus measured AE energy at particle size range           

500-600 µm 
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Figure 6.33: Calculated AE energy versus measured AE energy at particle size range           

600-710 µm 

 

 

 

 

Figure 6.34: Calculated AE energy versus measured AE energy for all particle size ranges 

investigated 
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Chapter 7 

Conclusions and Recommendations 

 

In this work, two main types of experiments were carried out, AE monitoring of particle 

laden gas and AE monitoring of particle laden liquid, the tests with particle laden gas 

including free fall and free jet impingement and those with liquid including a free jet 

and pipe flow. A statistical distribution model describing the AE time series associated 

with a particle stream was developed, which allows a direct calculation for AE energy 

provided that the nominal mass and nominal speed of the impinging particles are 

known. The development and extension of this model to account for different particle 

carrier-fluids and to situations where particle arrivals cannot necessarily be resolved is 

considered to be the most important contribution of this study. The overall conclusion is 

that, provided appropriate calibrations are carried out, it is possible to develop an AE 

monitoring cell which will be able to measure the cumulative impingement energy (in 

terms of ) in practical particle-laden flows. The main conclusions which led to 

this are outlined below followed by recommendations for future work. 

 

7.1 Conclusions 

 

The detailed conclusions are outlined below according to the order in which they are 

revealed in the thesis; dry impacts, time series model, slurry impacts and flow loop. 

7.1.1 Free fall and preliminary airborne particle tests 

 

7.1.1.1 Generally, AE offers the potential to monitor particle impact energy and thus 

assess the abrasive potential of dry particle flows. 

 

7.1.1.2 For individual impacts, the AE energy was found overall to be proportional 

to the incident kinetic energy 21
2
mv of the particles over a wide range of 

particle sizes (from 125 microns to 1500 microns) and incident velocities 

(from 0.9 ms
-1

 to 16 ms
-1

) in accord with a number of other workers. 
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7.1.1.3 A distinct difference was found in the velocity exponent (assuming the 

diameter exponent to be 3) between multiple and individual impacts, the 

individual impacts generally giving higher energies per particle, This is 

attributed to particle interactions either in the guide tube or at the surface 

which modify the actual incident velocity from that assumed, and that effect 

has been observed by workers carrying out erosion experiments.  

 

7.1.1.4 For the configuration used in this work, the diameter exponent was only valid 

up to particle sizes of around 1.5mm, above which it appears that a 

significant proportion of the incident kinetic energy was dissipated in whole 

body movement of the target.   

 

7.1.2 Time series model 

 

Acoustic emission has been used to measure and characterise the cumulative impact 

energy of particle streams impinging normally against a carbon steel target, with the 

following broad findings:  

 

7.1.2.1 The temporal resolution was found to be determined by the design of the 

target plate, and individual particle analysis was only possible in records 

containing relatively few overlapping events. 

 

7.1.2.2 For records where individual particle arrivals could be resolved, of the two 

time-domain processing techniques that were examined, the truncated 

distribution method was found to be the more effective. 

 

7.1.2.3 Of the two distribution types examined, a lognormal distribution of AE 

energies was found to represent the observations better and this was 

consistent with literature findings on particle impact energy distributions 

from other areas of study. 

 

7.1.2.4 The lognormal distributions of AE energy were calibrated against the 

expected kinetic energy at impact and validated against single particle 

findings. This resulted in a particle AE energy distribution function which 
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could be calculated directly from the nominal mass and nominal speed of the 

impinging particles.   

 

7.1.2.5 By inspection of the times series and the results of pencil-lead breaks, the 

pulse-shape function for an AE impact on the target plate could be 

determined and hence the particle time series could be simulated, irrespective 

of the amount of overlap. Comparison of the total energy in the recorded and 

simulated time series (including those in which the individual particles could 

not be resolved) showed generally good agreement, but with the simulations 

overestimating the energy by about 10% for small particles and 

underestimating by about 10% for large particles.  

 

7.1.3 Slurry jet impingement tests 

 

A series of slurry impingement tests were carried out to study the effect of particle size, 

flow speed, particle concentration, and impact angle, on the AE energy dissipated in a 

carbon steel target, with the following broad findings: 

 

7.1.3.1 The main problem encountered in the use of the AE technique in slurry 

impact experiments, compared with air-directed jets, was the high degree of 

particle arrival overlap and the lower-than-expected (particle) signal to 

(water) noise ratio.  

 

7.1.3.2 The measured AE energy was found generally to scale with the expected 

square of velocity, cube of particle size, linear with concentration and sin
2
 of 

nominal impact angle, but with weaker expression for smaller, slower 

particles. 

 

7.1.3.3 The cumulative impact energy, discounting that due to the water, was a factor 

of at least ten lower than would be expected compared with similar 

experiments using an air-directed jet.  
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7.1.3.4 Correcting the actual arrival speed relative to the jet exit velocity using a 

published semi-empirical model gave calculated cumulative energies which 

were much closer to those observed. 

 

7.1.3.5 Larger particles tended to give lower than expected cumulative energy, an 

observation that is attributed to drop-out of the particles relative to the fluid 

in the horizontally-directed jets. 

 

7.1.3.6 Lower nominal angles of impingement tended to give lower than expected 

cumulative energy even when the normal component of the velocity is 

considered. This has again been attributed to the gravitational effect on both 

the slurry and the particles which will affect the vertical components of the 

velocity relative to the horizontal one. 

 

7.1.4 Flow loop impingement tests 

 

7.1.4.1 The measured AE energy was found overall to be proportional to the 

expected square of velocity, cube of particle size, and linear with 

concentration of the incident flow over a wide range of particle sizes (125-

600 µm), flow speeds (4-12 ms
-1

), and nominal concentrations (1-5 wt%), 

but, again, with weaker expression for smaller, slower particles. 

 

7.1.4.2 The cumulative AE energy, due to water impingement, was approximately 

seven times higher than similar experiments using the slurry jet impingement 

test rig. 

 

7.1.4.3 AE recorded by a sensor mounted on a pipe bend was strongly influenced by 

flow noise attributed to the hydraulic conditions in the pipe. 

 

7.1.4.4 The raw AE power density spectrum varied systematically with the flow 

speed which indicates the potential of using AE as a monitoring indicator for 

hydraulic conditions. 
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7.1.4.5 Demodulated frequency analysis of the water impingement signals at 

different speeds showed two distinct patterns of spectral peaks in the 

demodulated signal. 

 

7.1.4.6  A simple model for water impingement AE energy relative to flow speed 

was developed based on the static and oscillatory parts of the signal.   

 

7.1.4.7 AE energy decomposition coupled with spectral peak filtering could be used 

on the static and oscillatory components of the particle flows to remove the 

fluid noise and to establish that both components showed speed, size and 

concentration exponents consistent with the slurry and airborne tests. 

 

7.1.4.8 The mean of the AE energy distribution function for particle laden gas could 

again be generalised to account for particle laden liquid after correcting the 

actual arrival speed relative to the flow speed using a published empirical 

model.  

 

7.1.4.9 The calculated AE energy (form the model) showed good agreement with the 

measured AE energy, but with the model overestimating the energy, 

particularly for smaller particles. The discrepancies could be traced to details 

of the design of the hydraulics and the target, and these are factors which 

would need to be accounted for in any practical application. 

 

 

7.2  Future work 

 

The work presented in this thesis contributes a strong grounding for future research in 

using the AE technique to monitor particle impact erosion in slurry handling systems. 

 

 

 

The following recommendations are suggested for future research 

 

 The AE energy model could be developed on the basis of the present study and 

could be tested in an industrial-scale flow loop to assess the degree to which the 
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findings of this work are generic. Particular attention needs to be paid to the 

design of the monitoring cell and its local hydraulic environment. 

 This study has considered mainly impacts between silica sand and a carbon steel 

target. It would be useful to examine the applicability of the model for a wider 

range of abrasives and target materials. It would also be useful to investigate the 

AE energy with a wider range of particle sizes and carrier fluids in order to 

improve the model predictive capability. 

 The model should be examined for different impact regimes using different 

particle and target materials. In particular, there may be a scope for AE to 

distinguish between ductile and brittle erosion. 
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